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Editorial on the Research Topic

Role of Metabolism in Regulating Immune Cell Fate Decisions

Immunometabolism, an interplay between immunological and metabolic processes, describes not
only the stepwise adaptation of intracellularmetabolic pathways to sustain the bioenergetic demand
of an immune response, but also how these metabolic adaptations directly affect immune cell
functions and cell fate by controlling transcriptional, post-transcriptional and epigenetic events.
The first concepts of immunometabolism date back to the 1930s, when Kempner and Peschel
formulated their metabolic concepts of the physiology of inflammation using experiments they
performed in a cantharidin-induced skin blister model [as described in Nagy and Haschemi (1)].
Immunometabolism was rediscovered in the twenty-first century, when on one hand, it had
emerged that certain chronic, supposedly non-immune, pathologies including obesity contribute
to mobilization of the immune system that drives metabolic abnormalities, leading to increased
susceptibility to type 2 diabetes, cardiovascular and liver diseases, neurodegeneration and cancer.
On the other hand, it was proposed that well-known cellular nutrient sensors, serine/theonine
kinases AKT, APMK, LKB1, mTOR, and the transcriptional factor aryl hydrocarbon receptor
(AhR) control a fate switch of T cells (2–5). The field has seen a tremendous development
since then. This Research Topic contains 16 (Mini)Review, Opinion, and Original Research
articles that review and expand our current understanding of the molecular underpinnings of
immunological/metabolic cross-talk and metabolism-guided fate decisions of different immune
cells during an immune response.

In one of the first articles of the Research Topic, Viola et al. provide a comprehensive
overview of the main metabolic pathways in macrophages, and how these pathways are rewired
to support the particular functions of the pro-inflammatory (M1) vs. anti-inflammatory (M2)
macrophages. Special attention is given to the Krebs cycle metabolites citrate, itaconate and
succinate, due to their non-metabolic roles in specific events during macrophage activation,
and to disease-associated macrophage metabolic abnormalities. Wilson et al. continue to review
the role of macrophage metabolic reprogramming and immune functions in the context of
granulomatous diseases. Three examples of granulomatous disease are presented (tuberculosis,
schistosomiasis, and sarcoidosis), with important similarities and differences critically discussed,
highlighting dysregulated lipid metabolism as a common denominator in granulomatous disease
progression. In their Mini Review, Sharif et al. focus on the role of the class I phosphoinositide-
3-kinase (PI3K) signaling in sensing nutrients increased in obesity and subsequent rewiring of
the metabolism and responses of adipose tissue macrophages, linking metabolically triggered
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inflammation (meta-inflammation) to insulin resistance and
diabetes. Meta-inflammation is also studied in the Original
Research article by Min et al. who demonstrate that pyruvate
dehydrogenase kinase (PDK), which inhibits the pyruvate
dehydrogenase-mediated conversion of cytosolic pyruvate
to mitochondrial acetyl-CoA, is a metabolic checkpoint for
polarization of macrophages to the M1 phenotype. Combined
PDK2 and PDK4 deficiency (both global and hematopoietic
cell-specific), or alternatively, pharmacological inhibition using
a novel PDK inhibitor KPLH1130 prevents M1 macrophage
polarization, reduces obesity-associated insulin resistance,
and ameliorates adipose tissue inflammation, introducing a
viable strategy for the treatment of inflammatory metabolic
disorders. In the second Original Research article of this
collection, Chapman et al. link proinflammatory stimulation
of myeloid cells with ligands of the pattern recognition
receptors Toll-like receptor 2 (TLR2) and nucleotide-binding
oligomerization domain-containing protein 2 (NOD2) to
metabolic rewiring needed for effector functions by identification
of the deubiquitinating enzyme ataxin-3 downstream from TLR2
and NOD2, and demonstrate that ataxin-3 is necessary for
optimal mitochondrial respiration and reactive oxygen species
production, as well as for intracellular bacterial killing.

Given the particular importance of metabolic remodeling
in regulation of T cell development, activation, function,
differentiation, and survival, several Review articles within this
collection tackle the metabolic control of T cell fate, each from a
different angle. Konjar and Veldhoen thoroughly discuss recent
insights in metabolic characteristics and phenotypes of CD8T
cell subsets, by side-by-side comparison of naive, circulating
memory, effector and tissue resident CD8T cells. Emphasis is
given on tissue resident memory CD8T cells at the epithelial
barriers that show unique metabolic rewiring adapted to their
niche in order to fulfill their roles—tissue homeostasis and
immediate protection against microbial invasion. The review
by Pacella and Piconese addresses the roles and regulation of
cellular bioenergetic metabolic pathways in regulatory T cells
(Treg) compared to conventional CD4T cells. By critical analysis
of metabolic and functional differences of the two cell types
in metabolite-rich (liver, adipose tissue) vs. nutrient-restricted
(tumor microenvironment) tissues, they highlight the higher
capability of Tregs to adapt to metabolic hurdles, that could
be explored for therapeutic purposes. Stark et al. review the
metabolic requirements of Th2 cells during their early and late
differentiation, focusing on the impact of glucose and lipid
metabolism, mTOR activation, the nuclear receptor PPARγ

and several extracellular metabolites that directly promote Th2
functions, as well as on metabolic interventions targeting type
2 inflammation. Colamatteo et al. provide a comprehensive
review of the role of microRNAs (miRNAs) in regulating T cell
metabolism and how the dysregulation of this control can lead
to autoimmunity. They also speculate on the possibility that
the interplay between miRNAs and metabolism in T cells may
help identifying novel miRNA-based therapeutic strategies to
treat effector T cell immunometabolic alterations in autoimmune
and chronic inflammatory diseases. In their Opinion article,
Mondanelli et al. discuss the immunoregulatory interplay

between arginine and tryptophan metabolism, connecting
deregulated expression of the catabolising enzymes for these
amino acids [arginase 1 (ARG1) or indoleamine 2,3-dioxygenase
1 (IDO1), respectively] in neoplasia and autoimmune diseases to
functional reprogramming of immune cells, dendritic cells, and
T cells in particular. At the cellular level, Audrito et al. give a
comprehensive overview on the crosstalk between tumor cells,
stromal cells, and infiltrating immune cells (tumor infiltrating
lymphocytes, tumor-associated macrophages and neutrophils,
myeloid-derived suppressor cells) in tumor microenvironment
with specific focus on nicotinamide adenine dinucleotide (NAD)
metabolism. The role of the entire “NADome” (NADmetabolites,
NAD-biosynthetic and -consuming enzymes) in cancer growth
and immune evasion and currently pursuit therapeutic strategies
for NADome blockade are critically reviewed.

In a Mini Review, Yerinde et al. discuss a crosstalk between
the metabolic and the epigenetic regulation of CD8T cell
differentiation and function and also briefly summarize how
metabolic signals from the tumor microenvironment (or virus-
infected cells) shape the epigenetic landscape of CD8T cells.
Similarly, Magalhaes et al. draw parallels between mechanisms
employed by tumor cells and viruses to influence T cell
metabolic regulation and propose an emerging view that
metabolic changes in tumors and virally infected cells uniformly
create a suppressive microenvironment leading to inhibition of
effector CD4 and CD8T cells. Therefore, these reviews provide
an important insight into mechanisms that underlie T cell
exhaustion in anti-tumor and anti-viral immunity, which could
inspire development of effective therapeutic interventions against
it. This view is well-complemented by the Review article of
Mayer et al. detailing crucial cellular metabolic pathways that
are being utilized by several DNA and RNA viruses for their
replication and survival. The dichotomy between the strategy for
host cell manipulation—DNA viruses preferentially employ the
transcriptional control of key metabolic pathways, while RNA
viruses rely on post-transcriptional modifications—is noted and
in this view, currently pursuit strategies for metabolism-targeting
interventions against different viruses are clearly summarized.

Innate lymphoid cells (ILCs), are relatively recently discovered
lymphocytes lacking diversified adaptive antigen receptors.
These largely tissue-resident cells play an important role in
tissue homeostasis, host defense at mucosal barriers and tissue
repair (6). There is increasing evidence linking ILCs with
metabolic homeostasis, and immunometabolic regulation of
ILCs is an emerging frontier. At a cellular level, Poznanski
and Ashkar critically review recent literature to answer the
question whether metabolism—or phenotype—can define the
functional fate of human natural killer (NK) cells, and provide
evidence that indeed differences in metabolism (especially in
glucose metabolism) better discriminate between cytotoxic,
regulatory and memory NK cells than surface markers. At
the whole organ level, Willinger takes a systemic approach,
and in his Review thoroughly discusses metabolic signals
that regulate ILC homing to the particular tissues and their
strategic positioning in healthy and inflamed tissues. Trafficking
of both ILC precursors and mature ILCs (NK cells, ILC1s,
ILC2s, ILC3s, and lymphoid tissue-inducer, LTi cells), including
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species-specific differences between humans and mice, are
comprehensively covered.

In conclusion, this collection of Review and Original
Research articles critically summarizes current understanding
of intertwining of metabolic and signaling pathways as
ways to determine immune cell fates and ultimately, the
ensuing immune response. We anticipate that the articles
in the present collection will serve as an inspiration for
future research, that will lead to deeper knowledge of
cell-intrinsic and -extrinsic metabolic cues regulating
cell fate decisions in different immune cell types, and
subsequently to a development of novel medicines for
immune-mediated diseases.
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Metabolic reprogramming during macrophage polarization supports the effector

functions of these cells in health and disease. Here, we demonstrate that pyruvate

dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated

conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a metabolic

checkpoint in M1 macrophages. Polarization was not prevented by PDK2 or PDK4

deletion but was fully prevented by the combined deletion of PDK2 and PDK4; this

lack of polarization was correlated with improved mitochondrial respiration and rewiring

of metabolic breaks that are characterized by increased glycolytic intermediates and

reduced metabolites in the TCA cycle. Genetic deletion or pharmacological inhibition

of PDK2/4 prevents polarization of macrophages to the M1 phenotype in response to

inflammatory stimuli (lipopolysaccharide plus IFN-γ). Transplantation of PDK2/4-deficient

bone marrow into irradiated wild-type mice to produce mice with PDK2/4-deficient

myeloid cells prevented M1 polarization, reduced obesity-associated insulin resistance,

and ameliorated adipose tissue inflammation. A novel, pharmacological PDK inhibitor,

KPLH1130, improved high-fat diet-induced insulin resistance; this was correlated with a

reduction in the levels of pro-inflammatory markers and improved mitochondrial function.

These studies identify PDK2/4 as a metabolic checkpoint for M1 phenotype polarization

of macrophages, which could potentially be exploited as a novel therapeutic target for

obesity-associated metabolic disorders and other inflammatory conditions.

Keywords: dichloroacetate, high-fat diet, inflammation, insulin resistance, macrophage polarization, metabolic

reprogramming, pyruvate dehydrogenase kinase
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INTRODUCTION

Macrophage polarization (M1/M2) requires metabolic
reprogramming that enhances glycolysis and repurposes
mitochondrial function (1–3). Although the importance of these
metabolic pathway differences betweenM1 andM2macrophages
is well-established, our knowledge of the checkpoints in affected
metabolic pathways is limited primarily to HIF-1α and pyruvate
kinase M2 (PKM2) (4). Obesity-induced insulin resistance
is a disease process in which M1 macrophages contribute to
adipose tissue (AT) inflammation and insulin resistance. Chronic
low-grade inflammation in multiple organs increases the risk
of developing obesity, diabetes, cardiovascular diseases, and
cancers, indicating a major role for the immune system in
the etiology of metabolic disorders (5). Recruitment of M1
macrophages, IFN-γ-secreting Th1 cells, CD8+ T cells, and B
cells in the adipose tissue drives the inflammatory response,
locally promoting systemic inflammation and impaired insulin
action as a result of over-nutrition (6, 7). The phenotypic changes
in macrophages that occur in response to over consumption of
energy are considered potential therapeutic targets for managing
chronic metabolic diseases.

Pyruvate dehydrogenase kinase (PDK) provides a therapeutic
target for the Warburg effect in malignant cancers (8) and has
been suggested to serve this function during macrophage
polarization (9). PDK1 participates in M1 macrophage
polarization via HIF-1α-mediated aerobic glycolysis, accounting
for the proinflammatory responses (9). In contrast, among the
four PDK isozymes, PDK2 and PDK4 are the most strongly
associated with metabolic diseases, especially type 2-diabetes
(10). Recent work from our laboratory has indicated that dual
deficiency of Pdk2 and Pdk4 (PDK2/4 DKO) attenuates the
lactic acid surge, the proinflammatory markers, and the pain
hypersensitivity suggesting a key role for the PDK-PDH-lactic
acid axis in the pathogenesis of inflammatory pain mediated by
macrophage functional regulation (11). This finding suggests a
novel therapeutic approach for many inflammatory conditions
but is seemingly at odds with conclusions of others who have
addressed the role of the PDKs in macrophage polarization
(12–14); we have, therefore, examined this phenomenon in
greater depth in the present study.

Here we provide additional evidence for PDK4 induction
in macrophages in response to LPS and IFN-γ. We also show
that genetic and pharmacological blockage of PDK activity
in mice fed a high-fat diet (HFD) represses macrophage M1
polarization, which is correlated with amelioration of adipose
tissue inflammation as well as insulin resistance. These findings
support the hypothesis that the PDKs are therapeutic targets for
inflammatory diseases.

MATERIALS AND METHODS

Animals
All experiments were approved by the Institutional Animal Care
and Use Committee of Kyungpook National University and
were conducted according to recommendations in the National
Institutes of Health Guide for the Care and Use of Laboratory

Animals. Eight-week-old male WT (C57BL/6J) and PDK2/4
DKOmice (15) were either fed a HFD 20% of the calories derived
from carbohydrates and 60% from fat (Research Diets; D12492
pellets) for use as a diet-induced obesity (DIO) model or fed an
isocaloric control diet (CD) in which 70% of the calories were
derived from carbohydrates and 10% from fat (Research Diets;
D12450B pellets). The mice were housed and maintained on a
12 h light/dark cycle at 22 ± 2◦C. After the mice were sacrificed,
the tissues were rapidly collected and freeze-clamped with liquid
nitrogen-cooled Wollenberger tongs and stored at −80◦C prior
to analysis.

Isolation of Peritoneal Macrophages (PMs)
Eight- to ten-week-old WT, PDK2 KO (2KO), PDK4 KO
(4KO), and PDK2/4 DKO mice (15–17) were injected with
3% thioglycollate broth, i.p., and then sacrificed 4 days later.
Peritoneal lavage was performed twice using 4mL of 1X PBS,
and the harvested cells were then cultured in RPMI1640 (Gibco;
11875-093) supplemented with antibiotics. After 1 h of culture,
the suspended cells were discarded, and the adherent cells were
used for experiments.

Isolation and Differentiation of Bone
Marrow-Derived Macrophages (BMDMs)
Bone marrow cells were collected from the femurs and tibias
of 8- to 10-week-old mice. The cells were cultured at 2 ×

107 cells/plate in α-MEM medium (WELGENE; LM 008-02)
containing 30% L929-conditioned media and 10% FBS for 9 days
to allow the differentiation. The established BMDMs were then
used for experiments.

Isolation of Peritoneal Macrophages (PMs)
by Zymosan a or LPS Treatment
Zymosan-elicited peritoneal macrophages (ZEPMs) and LPS-
elicited peritoneal macrophages (LEPMs) were isolated as
previously reported (18). Briefly, zymosan A (1 mg/mouse) or
LPS (1 mg/kg) were i.p. injected into 8-week-old C57BL/6J mice.
One day after the injection, peritoneal fluid was harvested and
cells were cultured in RPMI1640 supplemented with antibiotics.
After 1 h of culture, the suspended cells were discarded and the
adherent cells were used for experiments.

Western Blot Analysis
The tissue cells were lysed using a lysis buffer [20mM Tris
(pH 7.4), 10mM Na4P2OH, 100mM NaF, 2mM Na3VO4, 5mM
EDTA (pH 8.0), 0.1mM PMSF, and 1% NP-40] containing
protease inhibitors (aprotinin 7µg/mL and leupeptin 7µg/mL)
and phosphatase inhibitor cocktail. Protein concentrations were
measured using BCA protein assay reagent (Thermo Fisher
Scientific; 23225). Cell lysates were separated on 10% SDS-
polyacrylamide gels and then transferred to polyvinylidene
difluoride membranes (Merck Millipore; IPVH00010). The
transferred proteins on the membrane were immunoblotted with
the following primary antibodies: anti-HIF-1α (1:1,000), anti-
iNOS (1:1,000), anti-Arg-1 (1:1,000), anti-PDK2 (1:1,000), anti-
PDK4 (1:500), and anti-β-actin (1:5,000). All antibodies were
diluted in TBST containing 5% BSA.
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Measurement of Oxygen Consumption
Rate (OCR)
The OCR was measured using a Seahorse XF-24 Flux Analyzer
(Seahorse Biosciences, Billerica, MA, USA). BMDMswere seeded
in XF-24 tissue culture plates (24-well) at a density of 1 ×

105 cells/well and incubated overnight. The cells were treated
with M1 stimulants (LPS 100 ng/mL + IFN-γ 10 ng/mL) with
or without dichloroacetate (DCA 10mM, Sigma; 47795) for
3 h. The assay medium used consisted of XF base medium
(Seahorse Biosciences) supplemented with 5.5mM D-glucose
(Sigma-Aldrich; G7528), 1mM sodium pyruvate (Sigma-Aldrich;
S8636), and 1X GlutaMAXTM (Gibco; 35050) and adjusted to
pH 7.4. The inhibitors and uncouplers used in this study
were as follows: oligomycin A (2µM, Sigma-Aldrich; 75351),
CCCP (carbonyl cyanide 3-chlorophenylhydrazone, 7.5µM,
Sigma-Aldrich; C2759), rotenone (1µM, Sigma-Aldrich; R8875),
and antimycin A (2.5µM, Sigma-Aldrich; A8674). OCR was
normalized to protein concentration.

Metabolite Extraction
Isolated cells were cultured overnight in 10% dialyzed FBSmedia.
The medium was replaced with fresh 10% dialyzed FBS medium
and cells were then stimulated with LPS (100 ng/mL) and IFN-γ
(10 ng/mL) for 12 h. Cells were washed with 3mL ice-cold 0.9%
NaCl twice and then collected in Eppendorf tubes. Cells were
resuspended in 200 µL of ice-cold metabolite extraction solution
(chloroform:methanol:water 1:3:1, v/v) and then sonicated. After
incubation on ice for 1 h, the metabolite samples were collected
by centrifugation at 13,000 rpm for 5min. All the samples were
lyophilized and re-suspended in 300µL of water containing 0.1%
formic acid, prior to LC-MS/MS analysis.

Data Presentation and Statistical Analysis
Data were presented using the GraphPad Prism software and
statistical analysis was performed using IBM SPSS Statistics
(version 21). Statistically significant differences were measured
by Student’s t-test for normally distributed data. Statistical
analysis of group comparison was performed by one-way or
two-way ANOVA followed by Tukey’s HSD (honestly significant
difference) post hoc test. p-values < 0.05 were considered
statistically significant. Detailed procedures are included as part
of Supplemental Materials.

Detailed Procedures
See the Supplemental Materials.

RESULTS

PDK2 and PDK4 Are Required for M1
Macrophage Polarization
We explored the role of PDKs in overnutrition-induced AT
inflammation. Among the 4 different isoforms of PDK, the
mRNA expression of only Pdk4 was significantly upregulated
in the AT of mice fed an HFD compared to those fed a CD
(Figure 1A). Furthermore, Pdk4 was more responsive to specific
M1 stimulation, which was correlated with the upregulation of
Pdk4, and M2 stimulation, correlated with pdk4 downregulation

in macrophages (Figures 1A,B and Figures S1A–D). The
induction of HIF-1α and iNOS by M1-only stimulation and
M1+M2 stimulation, respectively, to mimic in vivo wild-
type (WT) conditions, was completely suppressed in PDK2/4
DKO mice but only slightly suppressed in PDK2 or PDK4
KO-peritoneal macrophages (PMs) and bone marrow-derived
macrophages (BMDMs) (Figure 1C), suggesting that PDK2
and PDK4 can functionally compensate for each other. And
we confirmed no change of PDK1 expression in DKO mice
(Figure 1D and Figures S1E,F). Conversely,M2 stimulation with
IL-4 caused a greater increase in arginase-1 expression in a time-
dependent manner in PMs from PDK2/4 DKOmice compared to
those from WT mice (Figure S1G). Since HIF-1α is essential for
the upregulation of glycolytic genes and, therefore, the activation
of inflammatory macrophages, suppression of the increase in
HIF-1α by PDK2/4 deficiency in response to LPS + IFN-γ
stimulation is especially noteworthy.

RNA-seq analysis revealed increased aerobic glycolysis in
response to M1 stimulation; this was indicated by increased
expression of glycolysis-related genes and decreased expression
of TCA cycle-related genes. This response was practically
absent in LPS + IFN-γ-stimulated PMs from PDK2/4 DKO
mice (Figures 1E–G). Consistently, the decrease in isocitrate
dehydrogenase (Idh)1 and Idh2 mRNA expression levels that
normally occur in response to LPS + IFN-γ stimulation
was prevented (Figure 1F). The expression of Irg1 required
for the production of itaconic acid, an important factor in
the antimicrobial response of macrophages was less affected,
yet significantly suppressed in the PMs from PDK2/4 DKO
mice (Figure 1F). To evaluate the mitochondrial function in
response to reduced PDK activity, we measured the oxygen
consumption rate (OCR) in both PDK2/4-deficient BMDMs and
dichloroacetate (DCA; pan PDK inhibitor)-treated BMDMs. M1
polarization significantly reduced basal and maximal OCR in
WT-BMDMs; however, the OCR in LPS+ IFN-γ treated PDK2/4
DKO-BMDMs was still comparable to that in WT-BMDMs (M0)
(Figure 1H). Likewise, DCA treatment was found to largely
prevent the reduction in basal and maximal OCR in LPS + IFN-
γ-treated WT-BMDMs, which are known, otherwise, to have a
broken TCA cycle (evidenced by the accumulation of succinate)
during M1 polarization (Figure 1I) (19). Elevated extracellular
lactate and intracellular succinate levels were also significantly
attenuated in PDK2/4 DKO-BMDMs compared to that in WT-
BMDMs (Figures S2A,B). Overall, our data are indicative that
genetic as well as pharmacological inhibition of PDK2/4 can
block the metabolic reprogramming of aerobic glycolysis and
mitochondrial respiration under conditions that normally induce
M1 macrophage polarization.

PDK2/4 Deficiency Prevents the Increase
in Glycolytic Intermediates and the
Decrease in TCA Cycle Intermediates
Normally Induced by Treating
Macrophages With Inflammatory Stimuli
Based on our finding that mitochondrial respiration is enhanced
when M1 polarization is prevented by PDK2/4-deficiency,
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FIGURE 1 | PDK2 and PDK4 are required for M1 macrophage polarization. (A) Heat map for relative mRNA levels of PDK isoforms measured by qRT-PCR. eWAT

refers to epididymal AT from WT mice fed an HFD in comparison to epididymal AT from WT mice fed a CD for 24 weeks. M1 refers to PM stimulated for 24 h with LPS

100 ng/mL+ IFN-γ 10 ng/mL relative to unstimulated PM. M2 refers to PM stimulated for 24 h with IL-4 10 ng/mL+ IL-10 10 ng/mL relative to unstimulated PMs.

n = 5–7 per group for AT and n = 3 per group for PMs. Values are expressed as mean ± SD for PMs and ± SEM for AT. Statistical analysis was performed by

Student’s t-test. *p < 0.05 vs. control. (B) PDK expression levels were assessed in PMs after M1 stimulation with LPS 100 ng/mL+ IFN-γ 10 ng/mL for the indicated

times. (C) M1 and M2 markers in PMs prepared from WT, PDK2 KO, PDK4 KO, and PDK2/4 DKO mice followed by M1 stimulation with LPS 100 ng/mL+ IFN-γ

10 ng/mL or M2 stimulation with IL-4 10 ng/mL+ IL-10 10 ng/mL for 12 h. (D) The expressions of PDK isozymes in PMs from WT and DKO mice. (E) Volcano plots for

the comparisons of M1-WT vs. Cont-WT (upper) and M1-DKO vs. M1-WT (lower). Dotted lines represent the cutoffs for fold change and p-value. Red and green dots

denote up- and down-regulated genes, respectively. (F) Heat map of genes involved in glycolysis and TCA cycle. The color bar represents the gradient of log2 (fold

change) of mRNA expression levels in each comparison. The genes that were up- (down-) regulated in M1-WT compared to Cont-WT and down- (up-) regulated in

M1-DKO compared to M1-WT at the same time were indicated by an asterisk. (G) GOBPs represented by the genes that were up-regulated in M1-WT compared to

Cont-WT and down-regulated in M1-DKO compared to M1-WT at the same time. The p-value is the significance of GOBPs being enriched by the genes. (H,I) OCRs

were measured in WT- or DKO-BMDM in the presence or absence of M1 stimulation by LPS (100 ng/mL) + IFN- γ (10 ng/mL) treatment for 3 h (H) and DCA (10mM)

treatment (I); n = 4–5 per group. Values are expressed as mean ± SD. Statistical analysis was performed by Student’s t-test. *p < 0.05 vs. (–) M1 stimulation,
†
p <

0.05 vs. control-WT, and #p < 0.05 vs. M1-WT.

we hypothesized that acetyl-CoA (generated by conversion of
pyruvate to acetyl-CoA by PDH) might be utilized efficiently
by the intermediates of TCA cycle, resulting in increased
OXPHOS with less lactate production. To test our hypothesis,

we performed 13C6-glucose trace analysis (a schematic
representation of metabolite labeling with 13C6-glucose is
given in Figure 2A) and assessed the relative mass distribution
vector represented by the metabolites derived from 13C6-glucose
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directly, as well as the total amount of metabolites from glucose
metabolism during PDK2/4 deficiency (Figures 2B,C) (20).
As assessed by two different methods and consistent with the
altered expression of glycolytic enzymes (Figure 1F), the steady
state amounts of metabolites between glucose to lactate were
significantly increased in M1-polarized WT-PMs, while PDK2/4
deficiency was found to prevent increases in these intermediates
(Figure 2B, Figure S2C). Although the mass of citrate was not
significantly affected, formation of M+2 citrate (blue in the
pie chart) from M+6 glucose was reduced in M1-polarized
WT-PM but increased by PDK2/4 deficiency, consistent with
decreased flux in the former and increased flux in the latter
(Figure 2C). Although total amounts of succinate and malate
were significantly increased, M+2 succinate and M+2 malate
levels (blue in the pie chart) were significantly reduced in
M1-polarized WT-PM. Interestingly, metabolic flux analysis
of these intermediates displayed enhanced enrichments in
PDK2/4-deficient conditions (Figure 2C; Figures S2D,E). These
data suggest that increased provision of acetyl-CoA for the
maintenance of the TCA cycle by PDK2/4 deficiency prevents
the decrease in cellular respiration characteristic of M1-polarized
WT macrophages.

Global PDK 2/4 Deficiency in HFD-Fed
Mice Reduces Insulin Resistance and AT
Inflammation
Greater PDH activity caused by global PDK 2/4 deficiency
improves insulin sensitivity (15), suggesting PDKs are involved
in the development of whole-body insulin resistance. To
determine whether DKO mice show reduced HFD-induced AT
inflammation which may contribute to the healthier metabolic
phenotype of these mice, WT and DKO mice were fed
CD or HFD. As reported previously (15), HFD-fed-PDK2/4
ablated mice displayed lower body weight gain, lower fasting
blood glucose levels, improved glucose tolerance, and increased
insulin sensitivity along with reduced fat accumulation in
the AT and liver (Figures 3A–E). Furthermore, the number
of infiltrated epididymal AT macrophages was reduced, as
indicated by reduction in crown-like structures and the levels
of proinflammatory markers Emr1, Cd68, Itgax, and Tnf
(Figures 3F–H). These data show that global PDK2/4 deficiency
attenuates HFD-induced macrophage infiltration and thereby
reduces AT inflammation, suggesting that inhibition of PDH
activity by the PDKs is involved in the AT inflammation caused
by obesity.

Bone Marrow-Specific PDK2/4 Deletion
Interferes With HFD-Induced AT
Macrophage Infiltration
To investigate the potential effects of innate immune cells on
chronic inflammation, a bone-marrow (BM) transplantation
mouse model was used to evaluate the direct contribution of
BM-derived immune cells from PDK2/4 DKOmice. The method
involved irradiation of recipient WT mice to ablate BM cells
followed by transplantation via intravenous infusion of donor
BM obtained from WT mice or PDK2/4 DKO mice (21); donor

as well as recipient mice were maintained on a CD for this
study. Four weeks after maintaining all of the mice on a CD,
the mice were divided into four groups: 1) WT mice with WT
BM that were continued on the CD; 2) WT mice with WT BM
that were placed on the HFD; 3) WT mice with DKO BM that
were continued on the CD; and 4) WT mice with DKO BM
that were placed on the HFD. No differences in any subsequent
measurements were observed between the two groups of mice
(1 and 3) that were continued on the CD (Figure 4). Likewise,
no differences in body weight, body size, and food consumption
were observed between the two groups of mice (2 and 4)
that were maintained on the HFD (Figures 4A–C). However,
remarkable differences in markers of metabolic dysfunction were
observed between the latter two groups of mice. The HFD-fed
mice transplanted with WT-BM displayed an increase in fasting
blood glucose, AT, and liver fat, while the glucose tolerance
and insulin sensitivity was found to be reduced. All of these
expected negative consequences of HFD feeding were attenuated
in mice transplanted with DKO-BM (Figures 4D–H). These
findings along with reduced inflammatory responses and no
additional anti-inflammatory cytokine production such as IL-
10 and TGF-β by PDK2/4 deficiency under sterile inflammatory
condition (Figure 5 and Figure S3) are consistent with other
reports that have demonstrated improved insulin sensitivity in
response to global PDK 2/4 deficiency and, consequently, greater
PDH activity (22).

Furthermore, the number of crown-like structures was
dramatically increased in the AT of mice with WT BM but
not in the mice with DKO-BM (Figures 6A,B). To confirm
the reduced migrating capacity of PDK2/4 ablated monocyte to
fat tissue in vivo, we assessed that the PKH26-positive stained
macrophage (F4/80+CD11b+PKH26+) population derived from
DKOmonocyte was significantly reduced in the stromal vascular
fractions of 4 week HFD mice compared to WT monocyte
(Figure 6C). Pharmacological inhibition of PDK activity with
DCA was found to significantly attenuate MCP-1-induced
migration (Figure 6D). To mimic the in vivo physiological effect
of HFD, BMDMswere incubated with palmitate-treated, 3T3-L1-
conditioned medium. Interestingly, DCA treatment was found
to significantly reduce the migration induced by an unknown
chemoattractant in palmitate-treated 3T3-L1 cells (Figure 6E).
We also confirmed that the increase in M1/M2 ratio as well as
levels of proinflammatory markers was significantly blocked in
the epididymal AT from WT mice with DKO-BM (Figures 6F,G
and Figure S4). These results are indicative that PDK2/4 deletion
and PDK inhibition prevent macrophage polarization and
infiltration, thereby preventing inflammation of adipose tissue in
response to over consumption of dietary energy.

A Novel PDK Inhibitor Prevents
Polarization of Macrophages to the M1
Phenotype and Attenuates Adipose Tissue
Inflammation in Obesity
We used a series of previously established, highly specific
PDK inhibitors that target structurally conserved ATP-
binding pockets in the PDKs (23, 24) to perform an efficacy
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FIGURE 2 | PDK2/4 deletion increases glucose oxidation by macrophages. (A) Schematic representation of metabolite labeling by 13C6-glucose. The relative

amounts of metabolites are represented by the pie charts and the different colors indicate labeling with different mass isotopomers. (B,C) The relative amounts and
13C enrichment patterns of the intermediates of the glycolytic (B) and TCA cycle (C) in WT- and DKO-PMs compared with control-WT; n = 4–5 per group. Values are

expressed as mean ± standard error of mean (SEM). Statistical analysis was performed by Student’s t test. *p < 0.05 vs. (-) M1 stimulation,
†
p < 0.05 vs. control-WT,

and # p < 0.05 vs. M1-WT.

test against the inflammatory response (Figures S5A–C).
In contrast to the high DCA concentrations (0.5∼2mM)
required for the inhibition of PDKs, a novel PDK inhibitor,
KPLH1130, was found to significantly inhibit expression
of proinflammatory cytokines including TNFα, IL-6, and
IL-1β in various types of macrophages at much lower (5–
10µM) concentrations (Figures 7A–D, 8A–E; Figures S5D–F).
In addition to reduced migration capacity by KPLH1130
treatment, iNOS, nitric oxide, and HIF-1α levels were

significantly reduced by pharmacological PDK inhibition
in various types of macrophages (Figures 7E–G, 8F–H;
Figures S5G–M). KPLH1130 also prevented the decrease in
basal and maximal OCR caused by M1 polarizing conditions
in BMDMs (Figure 7H). We also found that KPLH1130
administration improved the glucose tolerance of HFD-fed
mice (Figure 7I). Similarly, these effects were not mediated
by induced anti-inflammtory cytokines (Figures 8I–K). Taken
together, our results are indicative that KPLH1130 can effectively
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FIGURE 3 | PDK2/4 deficiency ameliorates adipose tissue inflammation and insulin resistance in mice fed a high fat diet. (A–D) Measurements of body weights (A),

fasting blood glucose levels (B), glucose tolerance test (1.5 g/kg, i.p.) after 16 h fasting (C) and insulin tolerance test (0.75 U/kg, i.p.) after 6 h fasting (D) were

performed in CD or HFD-fed mice; n = 8–14 per group. (E) Representative morphology of the subcutaneous AT and liver from mice fed CD or HFD for 24 weeks, as

shown by H&E staining; magnification: 400X; scale bar: 20µm. (F,G) Representative morphology of the epididymal AT, as shown by H&E staining or IHC staining for

F4/80; magnification: 400X; scale bar: 20µm (F). Quantification of crown-like structures in the epididymal AT; n = 6–9 per group (G). (H) mRNA expression levels of

inflammatory genes in the epididymal AT; n = 7–12 per group. Values are expressed as mean ± SEM. Statistical analysis was performed by Student’s t-test. *p < 0.05

vs. CD-WT, and #p < 0.05 vs. HFD-WT.

attenuate inflammatory responses induced by obesity-associated
metabolic dysfunction.

DISCUSSION

This study shows that PDK2/4 deficiency blocks polarization
of resting macrophages to the M1 phenotype in response to
LPS and INF-γ. Our findings establish that the regulation
of PDH activity by the PDKs plays an important role in
M1 macrophage polarization. The evidence for this includes

a) dramatically induced PDK4 expression by LPS + INF-γ;
b) reduced HIF-1α levels and suppression of the Warburg

effect (phenomenon characterized by upregulation of glycolytic

enzymes and down regulation of TCA cycle enzymes) in
response to PDK2/4 deficiency; c) PDK2/4 deficiency-mediated

check on the pool size of glycolytic intermediates that would,
otherwise, feed into anabolic pathways required for proliferation
of macrophages; and d) significantly reduced levels of NO and
proinflammatory cytokines including TNFα, IL-6, and IL-1β in
response to PDK2/4 deficiency. These findings suggest that sterile
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FIGURE 4 | Hematopoietic cell-specific PDK2/4 deficiency attenuates insulin resistance in mice fed a high-fat diet. (A) Body weights were measured during feeding of

the different diets; n = 12–26 per group. (B) Representative mice of each group (C) Food consumption was measured per day in each group; n = 7 per group.

(D–G) Measurement of fasting blood glucose levels (D), glucose tolerance test (1.5 g/kg, i.p.) after 16 h fasting (E,F), and insulin tolerance test (0.75 U/kg, i.p.) after

6 h fasting (G) was performed in both CD and HFD-fed mice; n = 11–26 per group. Values are expressed as mean ± SEM. Statistical analysis was performed by

one-way or two-way ANOVA followed by Tukey’s HSD. # p < 0.05 vs. HFD-WT-BMT. (H) Representative morphology of the subcutaneous AT and liver from WT- and

DKO-BMT mice as shown by H&E staining; magnification: 400X; scale bar: 20µm.

inflammatory conditions, such as neuroinflammatory diseases,
obesity, and steatohepatitis may be amendable to therapeutic
intervention with PDK inhibitors.

Markers of AT inflammation including the number of
infiltrated AT macrophages in response to over-nutrition, M1
macrophage population, presence of crown-like structures, and
the levels of proinflammatory markers were found to be
significantly reduced in the global PDK2/4 DKO mice compared
to that in WT mice. These indicators of AT inflammation
are associated with the metabolic dysfunctions characteristic
of obesity including hyperglycemia, glucose intolerance, and
insulin resistance. These findings clearly establish an important
role for PDKs and, therefore, the regulation of the activity of
the PDH complex in obesity-induced AT inflammation and
metabolic dysfunction. To directly determine if these effects
could be due to prevention of M1 macrophage polarization
by PDK deficiency, macrophage-specific PDK deficiency was
induced by transplanting PDK2/4-deficient myeloid cells into

irradiated WT mice that were subsequently fed an HFD to
induce obesity. Whereas, the AT of obese mice transplanted
with normal myeloid cells became inflamed as evidenced by the
accumulation of crown-like structures and protein markers for
M1 macrophages, the AT of mice transplanted with PDK2/4-
deficient cells remained free of inflammation; additionally, the
negative effects on blood glucose levels, glucose tolerance, and
insulin sensitivity were partially ablated. The observation that
glucose tolerance and insulin sensitivity in HFD-fed DKO-BMT
mice is only partially improved in contrast to the almost complete
protection from HFD-induced glucose intolerance, insulin
insensitivity, obesity, andmacrophage infiltration observed in the
organs of PDK2/4 DKO mice is suggestive that the beneficial
effects of PDK deficiency are not totally due to inhibition
of macrophage polarization. In other words, increased PDH
activity in tissue other than myeloid cells plays a role in
the beneficial effects of global PDK2/4 deficiency in HFD-
fed mice.
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FIGURE 5 | Suppression of PDK2/4 in macrophages attenuates the secretion of proinflammatory effectors in response to inflammatory stimuli. (A–E) The levels of

mRNA expression (A) and secreted proinflammatory effectors (B–E) were measured after treatment of WT- and DKO-PMs or -BMDMs with LPS 100 ng/mL+ IFN- γ

10 ng/mL for 12 h; n = 3–4 per group. (F) Bactericidal effect was assessed by counting the colony numbers in WT- and DKO-PMs; n = 5 per group. (G) Effect on

PDK2/4 deficiency on the in vivo macrophage population in LPS (1 mg/kg)-injected mice; n = 5 per group. Values are expressed as mean ± SEM. Statistical analysis

was performed using Student’s t-test. #p < 0.05 vs. WT. (H–K) Secreted proinflammatory cytokine levels were determined at different DCA concentrations in THP1

cells treated with LPS 100 ng/mL for 24 h; n = 3 per group. (L) Adhesion assay was performed in collagen (10µg/mL)-coated wells with DCA-treated THP-1 cells

incubated with LPS (300 ng/mL) for 24 h; n = 3 per group. Values are expressed as mean ± SD. Statistical analysis was performed using Student’s t-test. *p < 0.05

vs. (–) LPS, #p < 0.05 vs. only LPS, and
†
p < 0.05 vs. 2mM DCA. N.D, not detected.

The present study also shows that KPLH1130, a novel
PDK-specific inhibitor, blocks M1 polarization and attenuates
proinflammatory responses. Additionally, we have observed that
M2-polarized PDK2/4 DKOmacrophages express elevated levels

of arginase-1—a superior competitor to iNOS for the substrate
arginine—which has anti-inflammatory functions. Themetabolic
activation of macrophages triggered by glucose, insulin, and
palmitate plays a key role in adipose-driven inflammation
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FIGURE 6 | Hematopoietic cell-specific PDK2/4 deficiency attenuates adipose tissue inflammation by preventing the recruitment of M1 macrophages. (A,B)

Representative morphology of the epididymal AT by H&E staining or IHC staining for F4/80; magnification: 400X; scale bar: 20µm (A). The numbers of crown-like

structures in the epididymal AT were determined; n = 8 per group (B). Values are expressed as mean ± SEM. Statistical analysis was performed by one-way ANOVA

followed by Tukey’s HSD. #p < 0.05 vs. HFD-WT-BMT. (C) PKH26+ cell population was measured by FACS analysis; n = 4 per group. Values are expressed as mean

± SEM. Statistical analysis was performed by Student’s t-test. #p < 0.05 vs. WT monocyte donor group. (D) MCP-1-induced migration was evaluated in DCA-treated

BMDMs using a trans-well migration assay; n = 3 per group; magnification: 200X; scale bar: 50µm. The relative number of migrated cells per field was counted.

Values are expressed as mean ± SEM. Statistical analysis was performed by Student’s t-test. *p < 0.05 vs. control, #p < 0.05 vs. MCP-1 induction.

(E) 3T3-L1-conditioned medium (C.M.)-induced migration was evaluated in DCA-treated BMDMs using a trans-well migration assay; n = 3 per group; magnification:

200X; scale bar: 50µm. The relative number of migrated cells per field was counted. Values are expressed as mean ± SEM. Statistical analysis was performed by

Student’s t-test. *p < 0.05 vs. control, #p < 0.05 vs. palmitate C.M. (F) M1 and M2 macrophage populations and their ratios were determined in the stromal vascular

fraction of WT- and DKO-BMT; n = 3 per group. Values are expressed as mean ± SEM. Statistical analysis was performed by Student’s t-test. *p < 0.05 vs.

corresponding CD-fed group, # p < 0.05 compared with WT- and DKO-BM donor group. (G) mRNA expression levels of inflammatory genes in the epididymal AT;

n = 7–12 per group. Values are expressed as mean ± SEM. Statistical analysis was performed by Student’s t-test. *p < 0.05 vs. CD, #p < 0.05 vs. WT-BMT.
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FIGURE 7 | A new PDK inhibitor, KPLH1130, attenuates the secretion of pro-inflammatory effectors by stimulated macrophages and improves glucose tolerance in

HFD-fed mice. (A–F) The levels of mRNA expression (A,E) and secreted proinflammatory effectors (B–D,F) were measured with different KPLH1130 concentrations in

PMs treated for 12 h with LPS (100 ng/mL) + IFN-γ (10 ng/mL); n = 3–6 per group. (G) M1 markers were assessed with different KPLH1130 concentrations in PMs

treated with LPS (100 ng/mL) + IFN-γ (10 ng/mL) for 12 h. (H) OCRs were measured in KPLH1130 (10µM) ± M1 stimulation by LPS (100 ng/mL) + IFN-γ (10 ng/mL)

for 3 h; n = 4–5 per group. Values are expressed as mean ± SD. Statistical analysis was performed by Student’s t-test. *p < 0.05 vs. control, #p < 0.05 vs. M1 only,

and
†
p < 0.05 vs. KPLH1130 (10µM). (I) Glucose tolerance test (1.5 g/kg, i.p.) after 6 h fasting was measured after HFD for 14 weeks with KPLH1130 (70 mg/kg, 4

weeks); n = 6 per group. Values are expressed as mean ± SEM. Statistical analysis was performed by one-way followed by Tukey’s HSD. *p < 0.05 vs. vehicle control.

which results in insulin resistance—a process distinct from
classical activation (25). Both genetic and pharmacological
inhibition of PDK in macrophages significantly suppressed
proinflammatory responses including M1 polarization markers,
bactericidal activity, adherence, and migration. These findings

support the notion that PDKs are potential targets for the
treatment of inflammation as well as the negative metabolic
repercussions of inflammatory conditions.

Gene set enrichment analysis identified the signaling pathways
associated with inflammatory responses. Interestingly, the
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FIGURE 8 | Macrophage activation is suppressed by the novel PDK inhibitor, KPLH1130 using Zymosan-elicited PMs and LPS-elicited PMs. (A–G) mRNA expression

(A,B,F) and secreted proinflammatory effectors (C–E,G) were measured following KPLH1130 (10µM) treatment of ZEPMs or LEPMs incubated with LPS (100 ng/mL)

+ IFN-γ (10 ng/mL) for 12 h; n = 3 per group. (H) M1 markers were assessed following KPLH1130 (10µM) treatment of ZEPMs incubated with LPS (100 ng/mL) +

IFN-γ (10 ng/mL) for 12 h. (I–J) mRNA expression of IL-10 and TGFβ (I) and secreted IL-10 (J) and TGFβ (K) were measured following KPLH1130 (10µM) treatment

of ZEPMs and BMDMs, respectively incubated with LPS (100 ng/mL) + IFN-γ (10 ng/mL) for 12 h; n = 3 per group. Values are expressed as mean ± SD. Statistical

analysis was performed using Student’s t-test. *p < 0.05 vs. control, #p < 0.05 vs. M1+V.C and
†
p < 0.05 vs. different doses of KPLH1130.

decrease in Idh expression, indicating a metabolic break in the
TCA cycle of M1-polarized macrophages (26), was significantly
attenuated after PDK2/4 deletion. PDK2/4 deletion prevented the
reduction in mitochondrial OXPHOS that normally occurs in
response to M1 stimulation. A metabolic switch from OXPHOS
to aerobic glycolysis is followed by increased production of
lactate and the accumulation of citrate and succinate by TLR4
activation (27, 28). According to our stable isotope flux study,

PDK 2/4 ablation prevented the metabolic breaks associated
with citrate and succinate accumulation as well as the increased
lactate production in M1-polarized macrophages. In the case of
PDK2 deficiency in hepatocytes, 13C-glucose tracer analysis has
suggested that PDC flux increases but TCA cycle intermediate
flux decreases due to shunted ketogenesis (29).

Although the same effects induced by PDK2/4 deficiency on
macrophage polarization are also induced by PDK1 deficiency
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(9), PDK1 is not sensitive to induction by LPS stimulation (13),
and PDK1 deficiency is less effective in preventing the expression
of the glycolytic enzymes (9). Nevertheless, the finding that
deficiencies of PDK1 and PDK2/4 blockmacrophage polarization
to the proinflammatory phenotype indicates that reducing
PDH activity by phosphorylation is required for LPS-induced
macrophage polarization. Surprisingly, it has been reported that
LPS-induced macrophage polarization is also prevented by a
number of manipulations that strongly inhibit PDH flux. These
include knockdown of pyruvate dehydrogenase phosphatase 1
(12), pharmacological inhibition of pyruvate import into the
mitochondria (13), and upregulation of PDK2 by VSIG4 (14).
These findings suggest that complete inhibition of PDH is
not compatible with proinflammatory macrophage polarization.
Indeed, pyruvate oxidation through PDH is necessary for
the synthesis of the antimicrobial metabolite itaconate, an
important product of mature proinflammatory macrophages
(13). The finding that macrophage polarization is prevented
by both inhibition of PDH and PDK deficiency suggests
that LPS-induced polarization of macrophages is extremely
sensitive to PDH flux. This is consistent with the evidence
that reprogramming of the mitochondrial processes, particularly
glutaminolysis, is also necessary for the inflammatory responses
of M1 macrophages (30). If flux through PDH is too high
or too low, changes in gene expression, reprogramming of
glycolysis and the TCA cycle, and polarization to the M1
phenotype are prevented. Perhaps changes in the levels of
metabolites transmit information to the nucleus when conditions
are right for the reprogramming of gene expression necessary
for polarization. The location of PDH allows it to precisely
control the relationship between glycolysis and the TCA cycle
and therefore serves as a sensitive checkpoint of bioenergetic
reprogramming. In spite of the complexity, this makes PDH
a sensitive target for therapeutic intervention in inflammatory
conditions, suggesting that PDK2 and PDK4 in immune
cells are potential targets for the treatment of inflammatory
metabolic disorders.
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NK cells are capable of an array of functions that range widely from their classic

anti-tumor and anti-viral cytotoxic effector functions, to their critical regulatory roles in

controlling inflammatory immune responses and promoting tissue growth. However,

the mechanisms that polarize NK cells to these distinct and opposing functions are

incompletely understood. NK cell functional subsets are primarily identified and studied

based on phenotype, which has served as an accessible means for profiling NK cells

and does offer information on NK cell activation state. However, inconsistencies have

emerged in using classic phenotypes to inform function, which raise the questions: Can

phenotype in fact define NK cell functional fate? What factors do profile and drive NK

cell fate? In other immune cells, cell metabolism has been shown to critically determine

subset polarization. There is a growing body of evidence that cell metabolism is integral

to NK cell effector functions. Glucose-driven glycolysis and oxidative metabolism have

been shown to drive classic NK cell anti-tumor and anti-viral effector functions. Recent

studies have uncovered a critical role for metabolism in NK cell development, education,

and memory generation. In this review, we will draw on the evidence to date to investigate

the relationship between NK cell phenotype, metabolism, and functional fate. We explore

a paradigm in which the differential activity of metabolic pathways within NK cells produce

distinct metabolic fingerprints that comprehensively distinguish and drive the range of NK

cell functional abilities. We will discuss future areas of study that are needed to develop

and test this paradigm and suggest strategies to efficiently profile NK cells based on

metabolism. Given the emerging role of metabolism in driving NK cell fates, profiling and

modulating NK cell metabolism holds profound therapeutic potential to tune inflammatory

and regulatory NK cell responses to treat disease.

Keywords: NK cell, cell metabolism, phenotype, NK cell subsets, glycolysis, mitochondria, CD56, innate immunity

INTRODUCTION

Natural Killer (NK) immune cells are capable of an array of functions that range widely from their
classic innate anti-tumor and anti-viral effector functions, to their regulatory roles in modulating
other immune cells and promoting tissue growth (1). These distinct functions play critical yet
paradoxical roles in a host of diseases. Cytotoxic NK cells are known to have an imperative role in
the clearance of virally-infected andmalignant cells (2); however, signals in the tumor environment
polarize NK cells to regulatory subsets that support tumor progression and suppress other cytotoxic
immune cells (3–5). While pathogenic in the context of cancer, regulatory NK cells have critical
homeostatic roles in tissue growth and immune tolerance in contexts such as placental development
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and fetal tolerance in pregnancy (6–8), and regulating fibrosis
and immune cells in the liver (9–11). Despite the critical
importance of mounting the appropriate NK cell response
in different disease contexts, the mechanisms that polarize
NK cells to these distinct and opposing functional fates are
incompletely understood.

To date, NK cell functional subsets have been primarily
identified and studied based on phenotypic markers. In
their most classic definition, human NK cells are broadly
dichotomized into CD56brightCD16− regulatory NK cells with
greater cytokine-producing capabilities, and CD56dimCD16+

anti-tumor/anti-viral NK cells with greater cytotoxic functions
(12, 13). Additional receptor families function to tune NK
cell activation and effector responses; these include activating
Natural Cytotoxicity Receptors (NKp30, NKp44, and NKp46),
activating and inhibitory CD94/NKG2 receptors that recognize
non-classical MHC, and inhibitory KIR receptors that recognize
classical MHC. The differential expression of these receptors is
used to further specify NK cell developmental stages, effector
subsets, and memory populations (14). Although phenotype
is an accessible means by which to profile NK cells and
provides information on NK cell activation state, reports are
increasingly emerging that highlight discrepancies between NK
cell phenotypic classification and their effector functions. These
discrepancies present the questions: Can phenotype in fact define
NK cell functional fate? What factors do define and drive NK
cell fate?

A cell’s ability to generate energy through metabolism enables
its functional capacities. Indeed, there is a growing body of
evidence that cell metabolism is integral to NK cell effector
functions. It has been established that glucose-driven glycolysis
and oxidative metabolism are required for classic NK cell anti-
tumor and anti-viral effector functions (15–18). Recent studies
have also emerged that point to critical roles of metabolism in
NK cell development, education, andmemory responses (19–23).
In other immune cell subsets including T cells and macrophages,
cell metabolism critically determines subset polarization. Up-
regulation of glycolytic metabolism drives the polarization of
pro-inflammatory T cells and macrophages (24–27). In contrast,
a shift to respiration-derived ATP drives the polarization and
functions of regulatory macrophages and T cells (24–26, 28).
The generation of memory in T cells is marked by an increase
in mitochondrial respiratory capacity, which enables a more
rapid and robust secondary immune response (29, 30). Even
within a terminally polarized subset, the activation of different
metabolic pathways leads to distinct functional outcomes (31).
While metabolism has been shown to regulate certain NK cell
effector functions, the role of metabolism in broadly determining
and defining different NK cell functional fates remains to be
fully characterized.

Herein, we explore the relationship between NK cell
phenotype, metabolism, and functional fate. Drawing on
the evidence to date, we investigate the utility and roles
of NK cell phenotype and metabolic activity in identifying
and determining NK cell effector fate. We propose that
differential activity in NK cell metabolic pathways, but not
phenotype, produces distinct and subset-defining fingerprints

that comprehensively distinguish and drive the range of possible
NK cell functional abilities.

NK CELL FATE BASED ON PHENOTYPE:
CAN WE JUDGE A BOOK BY ITS COVER?

For decades, NK cell phenotype has been integrally conflated
with effector function and used as the principle means of
classifying NK cells into distinct subsets. For instance, the stages
of NK cell maturation are demarcated by the expression of
specific phenotypic markers. Less mature human peripheral
blood (pb)NK cells are defined as CD56brightCD16− and express
CD94 and the NKG2A inhibitory receptor (32, 33). As NK cells
mature, they down-regulate CD56 expression and up-regulate
CD16, becoming CD56dimCD16+ (34). These lose expression of
NKG2A and acquire expression of KIR inhibitory receptors. A
final step of NK cell maturation is marked by the acquisition of
CD57. CD56dimCD57+ NK cells are considered to be the most
mature and terminally differentiated subset (32).

Contrary to this classic maturation paradigm, it is now
understood that CD56dim NK cells can in fact up-regulate CD56
expression upon cytokine activation and become CD56bright (35).
Thus, high CD56 expression does not necessarily differentiate
less mature from mature NK cells, as it can also indicate mature,
activated NK cells. Other recent studies provided evidence
that CD57+ NK cells are not terminally differentiated. It was
found that upon single cell expansion with K562 feeder cells,
some clones derived from originally CD56dimCD57+ NK cells
had lost CD57 expression. Moreover, clones from NKG2A−

populations were capable of reacquiring NKG2A expression
(36). Following autologous stem cell transplant in patients
with lymphoma or myeloma, a unique CD56bright NK cell
population was found to be the predominant NK cell subset
following leukocyte regeneration. These young CD56bright NK
cells had high expression of CD57 and KIRs and potent
degranulation (37). These studies demonstrate that unless NK
cells are capable of regressing throughmaturation, classic NK cell
development markers cannot definitively specify the stage of NK
cell maturation.

Recent studies have also introduced discrepancies in the
CD56bright/CD56dim phenotypic dichotomization of regulatory
and cytotoxic NK cells.Wagner et al. demonstrated that following
priming with IL-15, CD56bright pbNK cells not only had greater
cytokine production compared to CD56dim pbNK cells, but also
displayed greater degranulation and killing in response to tumor
cell targets. Importantly, they negated the possibility that this
was due to up-regulation of CD56 on CD56dim NK cells, as they
observed this effect even with pre-sorted CD56bright NK cells
(38). In addition, evidence has emerged to suggest that CD56bright

does not unanimously define NK cells with the strongest
cytokine-producing capabilities. The hepatic NK cell population
is highly enriched in CD56bright cells compared to pbNK cells;
yet, these have recently been shown to have reduced IFN-γ
and TNFα production in response to stimulation compared to
pbNK cells, despite the majority of pbNK cells being CD56dim

(39). Building further on this phenomenon, CD56superbright
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NK cells are considered highly immunoregulatory. Notably,
CD56superbrightCD16− uterine NK cells are instrumental in
promoting angiogenesis and tissue remodeling required for
healthy placental development in pregnancy. These regulatory
functions lend themselves as well to enhancing, rather than
inhibiting, tumor progression (7). However, in stark contrast
to their characteristic regulatory functions, highly cytotoxic
CD56superbright NK cells produced following NK cell expansion
with K562-based feeder cells were recently described. These
CD56superbright expanded NK cells eliminated large ovarian
tumors in xenograft models. What’s more, within the expanded
NK cell population, degranulation, cytotoxicity, and IFN-γ,
increased with increasing CD56 brightness (40). Together,
these studies indicate that CD56 expression cannot distinguish
regulatory from cytotoxic NK cells. Indeed, CD56bright NK cells
can be any combination of mature or less mature, and cytotoxic
or regulatory.

Since CD56bright NK cells can be either cytotoxic or regulatory,
the question that pursuantly arises is whether another phenotypic
marker may better define these functional subsets. CD16
expression is classically used in conjunction with CD56, with
CD16+ NK cells considered cytotoxic and CD16− NK cells
categorized as regulatory (13). It has been demonstrated that
upon activation, CD56dimCD16+ NK cells up-regulate CD56,
culminating in a CD56brightCD16+ cytotoxic NK cell population
(35). Thus, it could be postulated that CD16 expression
distinguishes CD56bright cytotoxic and regulatory NK cells.
However, highly cytotoxic IL-15-primed CD56bright NK cells
remained predominantly CD16− (38). Moreover, Siewiera et al.
have demonstrated regulatory capacities in CD16+ NK cells.
They reported that following culture in TGF-β/IL15/IL18, pbNK
cells acquired regulatory functions, as they produced high levels
of VEGF, and had reduced cytotoxicity and production of IFN-
γ and TNFα, but retained high expression of CD16 (41). These
studies call into question the relevance of CD16 for determining
cytotoxic and regulatory NK cell subsets.

Turning to other NK cell markers does not seem to address
the above discrepancies. Both regulatory and cytotoxic NK
cells can express high levels of activating receptors including
NKG2D, NKp30, NKp44, and NKp46, but stimulation through
these receptors instigates distinct functions in regulatory and
cytotoxic NK cells (7, 41, 42). While it has been reported
that expression of different splice variants in these receptors
partly contributes to determining downstream function (41), the
fundamental mechanisms that determine the receptor isoform
expressed remain unknown. Inhibitory receptor expression is
equally uninformative, as both regulatory and cytotoxic NK cells
can express high or low levels of NKG2A and/or KIRs (32, 38,
40, 43, 44). In all, a specific combination of NK cell phenotypic
markers that consistently distinguishes regulatory from cytotoxic
NK cells remains elusive (Figure 1).

A similar challenge arises in phenotypically defining memory
NK cells. MemoryNK cells are generated in response to a number
of stimuli, including hapten-induced contact hypersensitivity,
infections, cytokine activation, and pregnancy (6, 45–47).
Secondary responses of memory NK cells are variegated and
depend on the sensitizing stimulus. Some memory NK cells have

adaptive-like antigen-specific secondary responses, while others
have an innate-like non-antigen-specific recall response (46, 47).
What’s more, memory responses have now been identified in
both cytotoxic and regulatory NK cells (6, 45). However, what
does remain consistent and broadly defines memory subsets is
their functional capacity to have a rapid and enhanced response
upon re-stimulation.

Studies have largely used phenotypic markers to define
memory NK cells. Extensively studied memory NK cells
include those generated in response to cytomegalovirus (CMV)
infection. In humans, these have been predominantly defined
as CD56dimNKG2C+ NK cells, which preferentially expand in
response to acute infection. These NKG2C+ NK cells undergo
contraction following acute infection, but persist long-term and
specifically increase in response to human CMV (HCMV) re-
activation and produce high levels of IFN-γ (48). Certainly,
NKG2C plays a direct role in shaping HCMV adaptive NK
cell responses. NKG2C on HCMV-adaptive NK cells has been
shown to display fine peptide specificity through differential
recognition of polymorphic UL40-encoded peptides. These
UL40 polymorphisms enabled selective recognition of distinct
strains of HCMV and selective activation, proliferation, and
differentiation of NKG2C+ adaptive NK cells (49). HCMV
memory NK cells are considered to have a mature phenotype,
as they lack NKG2A, have lower levels of NKp30 and NKp46,
and have high KIR and CD57 expression (22, 48, 50). Although
NKG2C is principally used to identify HCMV-memory NK cells,
recent studies have challenged the requirement for NKG2C in
generating HCMV-memory NK cells. Memory NK cell responses
to HCMV have been reported in NKG2C-deficient humans
and upon HCMV re-activation in patients transplanted with
NKG2C-deficient cord blood (51, 52). Therefore, expression of
NKG2C is not necessary to define HCMV-memory NK cells.

In addition, memory NK cells do not unanimously express
a classically mature phenotype. Cytokine-induced memory-
like (CIML) NK cells generated by IL-12/IL-15/IL-18 pre-
activation are primarily CD56dim, but express CD25, NKG2A,
CD94, and CD69, and lack expression of KIRs and CD57
(53, 54). Memory NK cells are also not limited to the
CD56dim compartment. Frequencies of long-lived BCG-reactive
CD56bright and CD56dim NK cells were shown to be elevated
for up to 1 year after BCG re-vaccination in adults and
were predominantly KIR2DL2/DL3− and CD57−. BCG re-
vaccination induced greater IFN-γ expression in both CD56bright

and CD56dim NK cells for up to 1 year compared to NK cells
prior to BCG re-vaccination. Furthermore, perforin expression
was also enhanced upon BCG stimulation in CD56bright NK cells
1 year following BCG-revaccination, compared to CD56bright NK
cells pre-BCG-revaccination (55). Recently, memory NK cells
have been described in the context of pregnancy. Pregnancy-
trained memory uterine NK cells (PTuNKs) were reported
in the deciduae of multigravid women. PTuNK cells have
enhanced regulatory function including VEGF production,
relative to uNK cells from primigravid deciduae, which supported
enhanced vascularization and tissue growth. Given their tissue-
residency, it is perhaps not surprising that PTuNK cells have
a unique phenotype relative to other memory subsets, as they
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FIGURE 1 | Same covers, different stories: phenotype does not distinguish NK cell functional fates. To date, phenotype has been used as a principal means of

studying and classifying NK cell functional subsets. However, there is mounting evidence that demonstrates significant discrepancies in the classic phenotype

definition of NK cell subsets. For instance, while cytotoxic NK cells are classically defined as CD56dimCD16+, recent studies have demonstrated that CD56bright NK

cells in fact hold the greatest cytotoxic potential. It has now been shown that regulatory NK cells, classically defined as CD56brightCD16−, can also in fact express

CD16. Memory NK cells also present as either CD56bright or CD56dim and CD16+ or CD16−. Other phenotypic markers do not further distinguish NK cell subsets:

cytotoxic, regulatory, and memory NK cells can all express either high, low, or absent levels of Natural Cytotoxicity Receptors (NCRs), NKG2A, NKG2C, KIRs, and

CD57. Thus, not only can NK cells with the same functional fate express a range of possible phenotypes, but NK cells with opposing functions can express the same

phenotype. Indeed, the range of classic NK cell phenotypic profiles are expressed across NK cell fates and are thus insufficient to distinguish NK cell functional

subsets. Red denotes receptors classically associated with cytotoxic NK cells; green denotes receptors classically associated with regulatory NK cells; blue denotes

receptors classically associated with memory NK cells.

were predominantly CD56brightCD16−, expressed high levels of
NKG2C, but unchanged levels of NKp30 and NKp46 (6). It is
possible that certain phenotypic traits may distinguish antigen-
specific from non-specific memory NK cells. Nevertheless, there
remains no unifying phenotype to identify NK cells with memory
capacity (Figure 1). Furthermore, the mechanisms within NK
cells that ultimately drive and identify the capacity for an
enhanced secondary response are not fully elucidated.

If phenotype is unable to consistently identify NK cell subsets
and functional fate (Figures 1, 2A), what other factors might
achievably distinguish NK cell fate? Such identifying features
likely lie at the heart of mechanisms that drive NK cell function.

IF AN NK CELL CANNOT BE DEFINED BY
HOW IT LOOKS, COULD IT BE DEFINED
BY HOW IT IS FUELED?

As highly plastic innate responders, NK cell effector fate is
molded by its environment. NK cells integrate a number of
environmental cues which determine downstream function. In
the absence of activating signals, naïve NK cells remain in a
resting quiescent state. In response to inflammatory signals,
cytotoxic effector NK cell responses are marked by robust
proliferation and synthesis of proinflammatory cytokines and
cytotoxic machinery. Upon resolution of inflammation, NK
cells curb their response, returning to a quiescent state. It
is noteworthy that this shifting functional profile represents
a profound shift in energy dynamics from a low-energy
quiescent state to one with substantial energetic and biosynthetic
requirements. Further, NK cells exert distinct functions across

different tissue sites that vary greatly in nutrient types and
availability. From these factors arises a parallel between NK cell
energetics and functional fates.

Indeed, the capacity of a cell to generate energy through
metabolism has emerged as an important factor in enabling
immune cell effector functions. The burgeoning field of NK cell
metabolism has uncovered the involvement of cell metabolism
throughout different steps of NK cell fate determination,
including development, cytotoxic effector responses, and
generation of long-lived memory populations. Thus, could
distinct metabolic profiles comprehensively identify and drive
NK cell functional fates?

At Their Inception, NK Cell Development Is
Enabled by Metabolic Signals
NK cell development is an energy-intensive process as it requires
high levels of proliferation of NK cells in the bone marrow. As
NK cells progress through development, their proliferation slows
and they progress to state of quiescence in the periphery (56, 57).
In line with this, gene expression analysis has demonstrated that
metabolic pathways associated with cell growth are up-regulated
in developing NK cells whereas gene signatures associated with
metabolic quiescence, such as fatty acid catabolism and aerobic
metabolism, are predominant in resting NK cells in the periphery
(56). While studies have yet to comprehensively measure the
metabolic activity of NK cells at different stages of development,
key metabolic regulators have emerged as pivotal drivers of NK
cell maturation.

The mechanistic target of rapamycin (mTOR) is a major
energy sensor in the cell that integrates signals for nutrient
availability, growth, and activation. In response to such signals,
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mTOR up-regulates glycolytic metabolism and biosynthetic
processes (58). A seminal study by Marçais et al. revealed the
critical role for mTOR in murine NK cell development. They
found that mice with an NK cell-specific deletion of mTOR had
normal levels of developing NK cells in the bone marrow, but
only trace levels of NK cells in the periphery (56). Other studies
have further demonstrated that mTOR signaling is required
for the early stages of NK cell development (19, 20). The
protein E4BP4 plays an indispensible role in the commitment
to the NK cell lineage by promoting the transcription of Eomes
(59). Downstream of IL-15 signaling, mTOR activation by the
kinase PDK1 was found to be required for E4BP4 expression
in bone marrow NK cells. Indeed, knock-out of PDK1 in NK
cells arrested NK cell development in early stages by inhibiting
mTOR activation and reducing expression of the transferrin
receptor CD71 and the amino acid transporter CD98 (20). Tight
regulation of mTOR activity is critical for NK cell development,
as the expression of Tsc1, a repressor of mTOR, is required to
prevent deregulated proliferation and resulting exhaustion in
response to IL-15 in developing NK cells (19). Together, these
studies present mTOR-mediated metabolic signaling as a central
node in NK cell development.

The evidence to date has demonstrated the requirement
for metabolic regulators in NK cell development and that
a shifting metabolic expression profile parallels development.
These studies portray a baseline energy-intensive, biosynthetic
metabolic fingerprint for developing NK cells in the bone
marrow, which shifts to a more energy-conservative fingerprint
as NK cells progress to the periphery. Further developing and
characterizing the metabolic fingerprints of NK cells throughout
development may more broadly define the maturation stages of
NK cells, particularly for later stages in which phenotype fails
to do so and for NK cells at different tissue sites. Assessing the
baseline metabolic fingerprint in such instances holds potential
to more comprehensively define the degree of NK cell maturity.

Greater Glucose-Driven Metabolic Fitness
Identifies NK Cells With the Greatest
Cytotoxic Capacity
Although metabolically quiescent at baseline, mature cytotoxic
NK cells up-regulate the rate of glucose-driven glycolysis and
oxidative phosphorylation (OxPhos) upon stimulation (15–17,
60, 61). Increases in these metabolic pathways are accompanied
by increased expression of the nutrient receptors Glut1, CD71,
and CD98 (16, 56, 60). Activated cytotoxic NK cells primarily rely
on glucose to fuel mitochondrial ATP production, as inhibition
of glycolysis via the competitive inhibitor 2-deoxyglucose (2DG)
impaired ATP production comparably to direct inhibition of
OxPhos by the ATP synthase inhibitor oligomycin (61). The
activation-induced increase in NK cell glucose metabolism
has been shown to be regulated by mTOR, glutamine, and
transcription factors cMyc and Srebp. mTOR activity is highly
up-regulated in NK cells in response to stimulation (16, 56,
60, 62). In murine NK cells, knock-out or inhibition of mTOR
has been shown to prevent the increases in glycolysis, glycolytic
enzymes, and nutrient receptor expression upon activation (16,

56, 63). Similarly in human NK cells, the up-regulation of
glycolysis in response to IL-15 and IL-2 is dependent upon
mTOR, although independent from mTOR in response to IL-
15/IL-12 stimulation (60). cMyc is another key driver of glucose
metabolism in immune cells (64). In response to IL-2/IL-12
stimulation, glutamine uptake by NK cells was found to drive the
expression of cMyc which in turn was required for the activation-
induced increase in glycolysis and OxPhos by up-regulating
glycolytic machinery and mitochondrial biogenesis (17). Srebp
transcription factors promote the catabolism of glucose to
cytosolic citrate in NK cells by supporting the activity of the
citrate-malate shuttle which shuttles glucose-derived citrate from
the mitochondria to the cytosol. Activity of the shuttle in turn
produces mitochondrial NADH which fuels elevated OxPhos in
NK cells (15).

This up-regulation in glucose-driven glycolysis and OxPhos
is critical for NK cell cytotoxicity and IFN-γ production. Direct
inhibition of glycolysis in murine NK cells, by 2DG or by
substituting glucose with galactose in culture, inhibited IFN-
γ and granzyme B expression in response various modes of
stimulation including TLR-, cytokine-, or activation receptor-
mediated stimulation (16, 61). In line with the evidence that
glucose is the primary fuel driving OxPhos in cytotoxic NK cells,
inhibition of OxPhos by glucose-depleted media or the ATP
synthase inhibitor oligomycin also potently inhibited receptor-
mediated IFN-γ production (61). Mah et al. demonstrated
the pivotal role for NK cell glucose metabolism in the
defense against infection: inhibition of glycolysis with 2DG
impaired NK cell clearance of MCMV-infected cells in mice
and compromised control of viremia and resulting survival
of the mice (18). Arrest of NK cell glucose metabolism has
also been shown to play a critical role in obesity-induced
NK cell dysfunction. The increased presence of fatty acids in
obesity led to lipid accumulation in NK cells, resulting in
a PPAR-mediated increase in NK cell lipid metabolism and
abrogation of glycolysis and OxPhos. These metabolic changes
impaired polarization of cytotoxic machinery and resulting
anti-tumor NK cell functions (65). Consistent with its effects
on glucose metabolism, mTOR inhibition broadly impaired
cytotoxic NK cell functions, including IFN-γ, perforin, and
granzyme B expression and degranulation and cytotoxicity in
response to tumor cell targets (56, 63). Moreover, inhibition
of either cMyc expression, Srebp activity, or the citrate-malate
shuttle all critically impaired NK cell IFN-γ production and
cytotoxicity (15, 17). In human NK cells, elevated OxPhos
is essential for NK cell cytotoxicity and IFN-γ production
in response to IL-2 and IL-15/IL-12 stimulation. Heightened
glycolysis was also shown to be required for NK cell cytotoxicity
following 24 h IL-15 stimulation and for a robust IFN-γ
response to IL-15/IL-12, particularly in CD56bright NK cells
(18, 60). Keating et al. demonstrated metabolic differences
between CD56bright and CD56dim human pbNK cells (60). In
line with their greater cytotoxic functions following cytokine
priming, CD56bright pbNK cells had enhanced mTOR-mediated
expression of nutrient receptors and glucose uptake in response
to cytokine stimulation as compared to CD56dim pbNK cells.
Thus, up-regulation of glucose-driven glycolysis and OxPhos
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characterizes and enables the activation of cytotoxic NK
cell functions.

Accumulating evidence is demonstrating that the most highly
cytotoxic NK cells are endowed with greater glucose-driven
metabolic fitness. Extended pre-activation of NK cells for 3–5
days with IL-15 induces greater IFN-γ production in response to
receptor-mediated activation as compared to short-term (4–24 h)
IL-15 pre-activation (56, 61). During extended IL-15 stimulation,
NK cells undergo profound metabolic reprogramming as
compared to short-term stimulation, as they greatly increase both
their rate and overall capacity for glycolysis and OxPhos (56,
61). Following such metabolic reprogramming, NK cell IFN-γ
production was no longer susceptible to the inhibition of OxPhos
alone; rather, aggressive inhibition of both glycolysis and OxPhos
by treating NK cells with oligomycin in glucose-free media was
required to suppress IFN-γ (61). Such metabolic reprogramming
has demonstrated improved outcomes in the context of infection.
Pre-treatment of mice with the IL-15 super-agonist complex
ALT-803 for 3 days prior to MCMV infection increased basal
and maximal glycolytic and oxidative metabolism and rescued
impaired viral clearance in response to 2-DG treatment (18).
Similar metabolic reprogramming also underpins the enhanced
cytotoxic functions of licensed NK cells. The process of licensing
during NK cell development requires that inhibitory KIRs
expressed by the NK cell recognize self-MHC, the result of
which lowers the threshold required for activation and enables
greater effector potential in licensed NK cells compared to their
unlicensed counterparts (66). Schafer et al. demonstrated that
glycolytic metabolism is a critical regulator of NK cell licensing
(21). In NK cells expanded with IL-21-expressing K562 feeder
cells, highly functional licensed NK cells had greater glycolysis
and glycolytic reserve compared to less functional unlicensed
NK cells. Despite this increased conversion of glucose to lactate,
expanded licensed NK cells sustained comparable levels of
mitochondrial respiration as unlicensed NK cells, indicating a
greater net level of glucose-derived energy production. While
unlicensed NK cell cytotoxicity was highly sensitive to inhibition
of OxPhos with oligomycin, the cytotoxicity of licensed NK
cells was more resistant to metabolic inhibition. Similar to
following extended IL-15 stimulation, the cytotoxicity of licensed
NK cells was only inhibited upon aggressive abrogation of
glucose metabolism by overnight incubation in glucose-free
media, 2DG and oligomycin (21). Together, these findings
demonstrate that a greater capacity for glucose-fueled energy
production identifies NK cells with enhanced cytotoxic functions
(Figure 2B). Moreover, greater metabolic fitness in these highly
functional NK cells imparts greater flexibility in using either
glycolysis or OxPhos to fuel their cytotoxic functions, rendering
them more resistant to metabolic stressors.

A parallel emerges when considering the phenotype and
metabolism of highly cytotoxic NK cells. It is known that
upon extended cytokine stimulation including IL-15, in addition
to increasing their capacity for glucose metabolism, NK cells
also up-regulate CD56 expression and become predominantly
CD56bright (35). Indeed, evidence has separately demonstrated
that 1) CD56bright pbNK cells have a greater propensity for
glucose metabolism compared to CD56dim NK cells (67),

and 2) CD56bright pbNK cells have superior cytotoxicity and
IFN-γ production compared to CD56dim NK cells following
priming with IL-15 (38). Moreover, a recent report suggests
that highly functional licensed expanded NK cells have
greater CD56 expression than their less functional unlicensed
counterparts. Following the same feeder cell expansion with
IL-21-expressing K562 cells, expanded NK cell degranulation
and IFN-γ production increased with CD56 expression: the
most cytotoxic and thus licensed NK cells were CD56superbright

whereas the least cytotoxic were CD56dim (40). Together these
studies expose an inextricable tie between heightened cytotoxic
potential, capacity for glucose metabolism, and degree of CD56
expression. Thus, in the context of cytotoxic NK cells, both CD56
expression and heightened glucose metabolism are indicative of
subsets with the greatest functional capacity. However, highly
functional regulatory NK cells are also CD56bright, which raises
the question: can distinct metabolic programs differentiate highly
cytotoxic CD56bright NK cells from highly regulatory CD56bright

NK cells?

Glucose Metabolism—The Weight That
Tips the Balance Between Cytotoxic and
Regulatory NK Cells?
Research on NK cell metabolism has largely focused on the
metabolic pathways that generate anti-viral and anti-tumor
effector NK cells and it is clear that enhanced glucose metabolism
is critical for such functions. On the other hand, while regulatory
NK cells have critical homeostatic anti-inflammatory roles in the
body, there is a dearth of knowledge about the role of metabolism
in driving regulatory NK cell polarization and functions. In
order to more fully understand the role of metabolism in the
polarization of NK cell functions, it will be critical for future
studies to investigate the metabolic profile of regulatory NK cells.
For instance, is the metabolism of highly functional NK cells
similar irrespective of whether the downstream functions are
cytotoxic or regulatory? Or do regulatory NK cells predominantly
utilize distinct, non-glucose-driven metabolic pathways which
determine their regulatory functional fate?

The metabolism of a cell is largely dictated by its
microenvironment, including factors such as nutrient and
oxygen availability. Thus, in considering the above questions,
it is worthwhile to examine microenvironments that favor
regulatory NK cell polarization, such as the uterus, tumors, and
the liver, and the metabolic profile these may shape:

Following implantation in the uterine endometrium, the early
growth of the embryo occurs in hypoxic conditions in the uterus
(68). Hypoxia in turn stimulates the secretion of VEGF and other
angiogenic factors from uNK cells to support the demands for
increased vascularization (69, 70). In addition, TGFβ plays an
important role in inducing regulatory uNK cell functions (41, 69–
71). Many parallels are evident between regulatory uNK cells
and tumor-associated (TA-)NK cells. As a result of rapid tumor
cell proliferation, tumors have aberrant vascularization resulting
in large pockets of hypoxia (72, 73). In addition, high levels
of anti-inflammatory cytokines such as TGFβ are produced by
other tumor-associated immune cells and are known to impair
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FIGURE 2 | Distinct metabolic fingerprints, but not phenotype, underpin NK cell functional fates. (A) Though widely used to define NK cell subsets, classic NK cell

phenotypic markers are proving insufficient to comprehensively identify NK cell fates. The range of archetypal NK cell phenotypes are in fact expressed across NK

cells with different functional fates. In the absence of distinguishable phenotypes to reliably determine NK cell fate and functional potential, determining what drives

and identifies NK cell fate will be instrumental. (B–D) Studies so far have demonstrated that distinct metabolic profiles drive NK cell functions. (B) Cytotoxic NK cells

are fueled primarily by glucose. Upon activation, cytotoxic NK cells increase rates of glucose-driven glycolysis and OxPhos which in turn drive cytotoxic functions. A

greater capacity for glucose metabolism through glycolysis and OxPhos identifies NK cells with the greatest cytotoxic abilities. (C) NK cells are polarized to a

regulatory fate under hypoxic and glycolysis-limiting conditions. Thus, regulatory functions are promoted under low levels of glycolysis and OxPhos and may rely on

fuels other than glucose, such as fatty acids or amino acids. (D) Memory NK cells exhibit enhanced mitochondrial fitness. During the contraction phase of an immune

response, NK cells undergo autophagy to clear dysfunctional mitochondria, which is required for the generation of a memory NK cell pool. Memory NK cells exhibit an

increased spare respiratory capacity (SRC) and membrane potential (1ψm) and reduced levels of reactive oxygen species (ROS). While memory NK cells maintain an

enhanced capacity for glucose metabolism, they also up-regulate genes involved in lipid metabolism. Such a diversification in fuels in memory NK cells may provide

metabolic adaptability to support longevity and the greater energy demands for enhanced function upon re-activation. Taken together, a paradigm in which distinct

metabolic fingerprints comprehensively distinguish and drive the range of NK cell functional fates warrants further exploration.

NK cell anti-tumor functions (67). Similar to uterine NK cells,
TA-NK cells in a number of cancers have been shown to have
poor cytotoxicity, but secrete the angiogenic factors VEGF and
PlGF and, through amechanism involving TGFβ, acquire a uNK-
like CD56brightCD16− phenotype (4, 5, 74). The liver is another
site enriched in regulatory NK cells and anti-inflammatory
cytokines including TGFβ and IL-10 (75, 76). Liver-resident
NK cells have been shown to suppress the proliferation of
T cells and B cells through their secretion of IL-10, and to
inhibit the anti-viral activity of T cells through PD1/PDL1
engagement (77, 78). Moreover, the liver is predominantly
hypoxic, with oxygen levels dipping as low as 1.3% in the
healthy liver, which can be further exacerbated by infection and
fibrosis (79–82). Hypoxia has been shown to be an important
factor in limiting the anti-viral activity of NK cells in HCV+

patients, but does not affect their regulatory activity against liver
fibrosis (82).

Hypoxia and anti-inflammatory cytokines stand out as
hallmarks across environments that foster regulatory NK cell
functions. The critical role of hypoxia and TGFβ in directly
polarizing NK cells to a regulatory state was highlighted by a
study that demonstrated that in vitro culture of cytotoxic pbNK
cells in TGFβ+IL-15 under hypoxic conditions was sufficient
to convert pbNK cells to regulatory NK cells that secreted high
levels of VEGF and had poor cytotoxicity (69). The induction
of regulatory NK cells by hypoxia and TGFβ suggests that there
are vastly different metabolic requirements for regulatory NK
cell functions compared to the glucose-driven glycolytic and
respiratory requirements for cytotoxic functions. In contrast
to the ability of regulatory NK cells to thrive in hypoxic
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conditions and in line with the reliance of cytotoxic NK cells
on glucose-driven OxPhos, hypoxia suppresses NK cell anti-
tumor and anti-viral effector functions (82, 83). Studies have also
demonstrated that TGFβ inhibits NK cell cytotoxic functions
by suppressing glucose-driven glycolysis and OxPhos (63, 84).
It follows then, that regulatory NK cell functions induced by
TGFβ are not reliant on, and perhaps even inhibited by, elevated
glucose metabolism. Further supporting this notion is a recent
study which demonstrated that the tumor environment directly
limits glycolysis in NK cells. The lung tumor microenvironment
increased NK cell expression of fructose-1,6-bisphosphatase
(FBP1), a rate-limiting enzyme in gluconeogenesis, which
reduced glucose flux through glycolysis (85); thus, regulatory
functions such as VEGF and PlGF production by TA-NK
cells are unlikely to rely on elevated glucose metabolism.
Another recent study demonstrated that in response to cytokine
stimulation, regulatory liver-resident CD56bright NK cells had
lower expression of the glucose transporter Glut1, but higher
expression of the amino acid transporter CD98 and the CD71
transferrin receptor compared to pbNK cells (86). These findings
support a model in which regulatory NK cells are less reliant on
glucose metabolism compared to cytotoxic NK cells, and may
utilize other fuels, such as amino acids and/or fatty acids, to
support their functions (Figure 2C).

Indeed, the evidence to date indicates that dependence on
glucose-driven glycolysis and OxPhos may be a central node in
tipping the balance between cytotoxic and regulatory NK cell
fate. If this proves true, these distinct metabolic fingerprints
would consistently distinguish cytotoxic from regulatory NK
cells, addressing the drawbacks encountered in phenotypically
defining these subsets. Future studies investigating the metabolic
parameters that govern regulatory NK cell functions will be
imperative to establishing this paradigm.

Deep Breaths Bring
Longevity—Mitochondrial Respiration at
the Core of NK Cell Memory
The generation of memory NK cells requires a shift from
the energy-intensive effector phase of the immune response
to a contraction phase, characterized by a curtailment in
proliferation and effector functions, resulting in the generation
of resting long-lived memory NK cells. The ability of memory
NK cells to mount a more robust and rapid effector response
upon re-stimulation compared to naïve activated NK cells
suggests an enhanced ability to draw upon energy reserves
upon re-activation. Given the fundamental shifts between energy
expenditure and quiescence between effector, contraction, and
recall phases of an immune response, it is perhaps not surprising
that metabolic changes have been found to be both necessary and
sufficient to drive the formation and enhanced recall responses of
other memory immune cells (29, 30, 87, 88).

In NK cells, restoring mitochondrial function following
an effector response has been shown to be critical in the
generation of memory NK cells during murine CMV infection.
O’Sullivan et al. demonstrated that during the peak of the
effector phase in response to MCMV, virus-specific NK cells

developed reduced mitochondrial fitness, marked by a decrease
in mitochondrial membrane potential and increase in ROS
production. In contrast, the contraction phase was marked
by the clearance of dysfunctional mitochondria in NK cells
through autophagy, resulting in the restoration of mitochondrial
membrane potential and reduced ROS. The clearance of
dysfunctional mitochondria through autophagy was required
for the generation and survival of MCMV-memory NK cells,
as the inhibition of autophagy impaired the formation of
the memory NK cell pool, while treatment with an ROS
scavenger restored memory formation. Further, enhancement of
autophagic activity through the inhibition of mTOR or activation
of the metabolic regulator AMPK enriched the memory-NK cell
population (23).

Enhanced mitochondrial fitness has emerged as a
defining characteristic of HCMV-adaptive NK cells in
humans (Figure 2D). NK cells from HCMV-seropositive
donors had greater levels of maximal respiration, but not
glycolysis, compared to NK cells from seronegative donors.
Further, sorted CD56dimNKG2C+ HCMV-adaptive NK
cells had comparable basal levels of glycolysis and OxPhos,
but an increased capacity for these pathways, compared
to donor-matched CD56dimNKG2C− canonical NK cells.
These findings indicate that adaptive NK cells have a
greater ability to up-regulate glycolysis and OxPhos upon
activation. The enhanced respiratory capacity of adaptive
compared to canonical NK cells was supported by greater
mitochondrial membrane potential and expression of genes
involved in the electron-transport chain. The increased
mitochondrial fitness of adaptive NK cells was found to
be regulated by the chromatin-modifying protein ARID5B,
and necessary for enhanced NK cell survival and effector
function (22).

A question that remains to be addressed is which metabolic
fuel(s) is/are primarily used by adaptive NK cells. The greater
glycolytic capacity in HCMV-adaptive NK cells points to greater
glucose metabolism. However, gene expression analysis of
HCMV-adaptive NK cells also revealed an increase in genes
involved in lipid catabolism (22). Interestingly, autophagy is a
key regulator of lipid catabolism (89); thus, it is plausible that
a diversification and flexibility in fuel sources contributes to the
resilient longevity and recall effector response inHCMV-adaptive
NK cells (Figure 2D).

Although the above studies have demonstrated a metabolic
basis for the generation and function of memory NK cells,
these have been limited to assessing adaptive NK cells in
the context of CMV infection. While phenotypic variations
span different memory NK cell subsets, the memory-traits of
extended survival and enhanced recall effector responses, for
which the metabolic adaptations are necessary in the context
of CMV, are traits that remain consistent across memory NK
cells. Thus it is likely that across memory NK cell subsets,
increased mitochondrial fitness and fuel flexibility are broadly
required to support longevity and that an enhanced respiratory
capacity is necessary to derive the energy required for enhanced
function upon re-activation. An important area of future
study will be to verify that similar metabolic reprogramming
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broadly drives the formation and function of other memory-
NK cell subsets, including cytokine-induced memory-like NK
cells, BCG-memory NK cells, and pregnancy-trained uterine
NK cells.

CONCLUDING REMARKS

Research on NK cell biology is continuing to evolve and
uncover a wider scope of NK cell functional fates. However,
as knowledge on the complexity and plasticity of NK cells
has grown, so too have incongruities in the classic phenotypic
definitions of NK cell subsets. Classic NK cell phenotypes
have undoubtedly served as an accessible measure for profiling
NK cells and provide indications on NK cell activation state.
Nevertheless, in many instances phenotype in fact confounds
functional fates, as NK cells that express the same phenotype can
have divergent functions, and NK cells with similar functional
potential can express a range of phenotypic possibilities. Indeed,
identifiable phenotypes that are sufficient to profile NK cell
functional fates are lacking (Figure 2A). The shortcomings of
phenotype in informing function expose a need to further
search for what identifies NK cell fate and develop strategies
to efficiently profile NK cells by these factors. Turning to a
central hub that governs NK cell fate holds promise to address
these drawbacks.

Metabolism has emerged as an intriguing factor to distinguish
NK cell functional fates. The field of NK cell metabolism
is still in early stages, but studies so far point to distinct
metabolic profiles as drivers of NK cell functional potential
which may thus serve as reliable fingerprints to identify
functional fates (Figures 2B–D). A heightened capacity for
glucose metabolism through glycolysis and OxPhos identifies
NK cells with the greatest cytotoxic capacity. In contrast,
regulatory NK cells thrive in hypoxic and glycolysis-limiting
conditions, suggesting that regulatory functions can be effected
with minimal levels of OxPhos and glycolysis. Longevity
in its essence requires adaptability and endurance—memory
NK cells are marked by enhanced mitochondrial fitness,
achieved by the clearance of dysfunctional mitochondria,
increased mitochondrial respiratory capacity and membrane
potential, and reduced levels of damaging reactive oxygen
species. Collectively, the evidence to date suggests a paradigm
in which distinct metabolic fingerprints, but not phenotype,
comprehensively distinguish and drive the range of NK cell
functional fates (Figure 2).

Certainly, significant questions remain to fully delineate and
validate this paradigm. For instance, what metabolic fuels and
pathways are principally used by regulatory NK cells? Are low
levels of glucose metabolism sufficient to support regulatory
functions or do regulatory NK cells use an alternate fuel, such as
fatty acids, as a more efficient means of energy generation in low
oxygen conditions? Does enhancedmitochondrial fitness span all
memoryNK cell types? Are theremetabolic pathways that further
distinguish memory cytotoxic frommemory regulatory NK cells?

Are other factors, such as transcription markers and epigenetic
modifications, required in conjunction with metabolism to
determine NK cell fate? Such questions present exciting avenues
for future research and will provide a more comprehensive
understanding of the mechanisms and role of metabolism in
tuning the spectrum of NK cell functions.

While metabolism is a promising means by which to
identify NK cell fates, another critical question is whether
it is achievable to efficiently profile NK cells based on
metabolism. In this regard, similar to assessing classic phenotypic
markers, a number of metabolic measures are frequently
assessed via cytometry or microscopy, allowing for multiplex
analyses that comprehensively measure a number of metabolic
features. These include functional mitochondrial measures, such
as mitochondrial mass, structure, membrane potential, ROS
production, and oxidative stress (22, 29). Further, the relative
activity of major metabolic regulators such as mTOR and AMPK
are routinely measured by the phosphorylation status of these
and their downstream targets (16, 56, 60, 90). Although not
a direct measure of metabolic activity, the expression of cell
surface nutrient receptors such as Glut1, CD71, and CD98
have been shown to reflect certain metabolic states in NK
cells (16, 60). Finally, measuring the activities of key metabolic
enzymes through cytometry has shown to be a valid and
reliable means of assessing the metabolic configurations of
immune cells and can additionally be accomplished in situ
(91). With these applicable and efficient methods at hand, it
will be imperative that future work characterize and validate
combinations of metabolic measures that comprehensively
indicate and discern the metabolic fingerprints of NK
cell fates.

Given the critical and distinct roles that NK cells play
in a host of diseases, therapeutically modulating NK cell
function is garnering increasing attention. With distinct
metabolic fingerprints at the heart of NK cell functional
fates, profiling and modulating metabolism hold promise as
powerful therapeutic strategies to predict and control NK
cell fate.

AUTHOR CONTRIBUTIONS

SP designed and wrote the manuscript. AA designed and edited
the manuscript.

FUNDING

This review was supported by grants awarded to AA from
the Canadian Institutes of Health Research (CIHR) and the
Juravinski Hospital and Cancer Center Foundation. AA holds
a Tier 1 Canada Research Chair. SP is a recipient of a CIHR
Vanier Scholarship, an Ontario Women’s Health Scholars Award
funded by the Ontario Ministry of Health and Long-Term Care
and an Ontario Graduate Scholarship funded by the government
of Ontario.

Frontiers in Immunology | www.frontiersin.org 9 June 2019 | Volume 10 | Article 141430

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Poznanski and Ashkar Metabolism Defines NK Cell Fate

REFERENCES

1. Vivier E, Tomasello E, Baratin T, Walzer T, Ugolini S. Functions of natural

killer cells. Nat Immunol. (2008) 9:503–10. doi: 10.1038/ni1582

2. Bodduluru LN, Kasala ER, Madhana RM, Sriram CS. Natural killer cells: The

journey from puzzles in biology to treatment of cancer. Cancer Lett. (2015)

357:454–67. doi: 10.1016/j.canlet.2014.12.020

3. Crome SQ, Nguyen LT, Lopez-Verges S, Yang SY, Martin B, Yam JY, et al. A

distinct innate lymphoid cell population regulates tumor-associated T cells.

Nat Med. (2017) 23:368–75. doi: 10.1038/nm.4278

4. Bruno A, Focaccetti C, Pagani A, Imperatori AS, Spagnoletti M, Rotolo N,

et al. The proangiogenic phenotype of natural killer cells in patients with non-

small cell lung cancer. Neoplasia. (2013) 15:133–42. doi: 10.1593/neo.121758

5. Levi I, Amsalem H, Nissan A, Darash-Yahana M, Peretz T, Mandelboim

O, et al. Characterization of tumor infiltrating natural killer cell subset.

Oncotarget. (2015) 6:13835–43. doi: 10.18632/oncotarget.3453

6. Gamliel M, Goldman-Wohl D, Isaacson B, Gur C, Stein N,

Yamin R, et al. Trained memory of human uterine NK cells

enhances their function in subsequent pregnancies. Immunity.(2018)

48:951–62.e5. doi: 10.1016/j.immuni.2018.03.030

7. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C,

Natanson-Yaron S, et al. Decidual NK cells regulate key developmental

processes at the human fetal-maternal interface. Nat Med. (2006) 12:1065–

74. doi: 10.1038/nm1452

8. Ashkar AA, Di Santo JP, Croy BA. Interferon gamma contributes to initiation

of uterine vascular modification, decidual integrity, and uterine natural killer

cell maturation during normal murine pregnancy. J ExpMed. (2000) 192:259–

70. doi: 10.1084/jem.192.2.259

9. Gur C, Doron S, Kfir-Erenfeld S, Horwitz E, Abu-Tair L, Safadi R, et al.

NKp46-mediated killing of human and mouse hepatic stellate cells attenuates

liver fibrosis. Gut. (2012) 61:885–93. doi: 10.1136/gutjnl-2011-301400

10. Jinushi M, Takehara T, Tatsumi T, Kanto T, Miyagi T, Suzuki T, et al.

Negative regulation of NK cell activities by inhibitory receptor CD94/NKG2A

leads to altered NK cell-induced modulation of dendritic cell functions

in chronic hepatitis C virus infection. J Immunol. (2004) 173:6072–

81. doi: 10.4049/jimmunol.173.10.6072

11. Jinushi M, Takehara T, Tatsumi T, Yamaguchi S, Sakamori R,

Hiramatsu N, et al. Natural killer cell and hepatic cell interaction via

NKG2A leads to dendritic cell-mediated induction of CD4 CD25T

cells with PD-1-dependent regulatory activities. Immunology. (2007)

120:73–82. doi: 10.1111/j.1365-2567.2006.02479.x

12. Fehniger TA, Shah MH, Turner MJ, VanDeusen JB, Whitman SP, Cooper

MA, et al. Differential cytokine and chemokine gene expression by human

NK cells following activation with IL-18 or IL-15 in combination with IL-12:

implications for the innate immune response. J Immunol. (1999) 162:4511–20.

13. Cooper MA, Fehniger TA, Caligiuri MA. The biology of

human natural killer-cell subsets. Trends Immunol. (2001)

22:633–40. doi: 10.1016/S1471-4906(01)02060-9

14. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad

spectrum of human natural killer cell diversity. Immunity. (2017)

47:820–33. doi: 10.1016/j.immuni.2017.10.008

15. Assmann N, O’Brien KL, Donnelly RP, Dyck L, Zaiatz-Bittencourt V, Loftus

RM, et al. Srebp-controlled glucose metabolism is essential for NK cell

functional responses. Nat Immunol. (2017) 18:1197–206. doi: 10.1038/ni.3838

16. Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner

CM, et al. mTORC1-dependent metabolic reprogramming is a

prerequisite for NK cell effector function. J Immunol. (2014)

193:4477–84. doi: 10.4049/jimmunol.1401558

17. Loftus RM, Assmann N, Kedia-Mehta N, O’Brien KL, Garcia A, Gillespie

C, et al. Amino acid-dependent cMyc expression is essential for NK

cell metabolic and functional responses in mice. Nat Commun. (2018)

9:2341. doi: 10.1038/s41467-018-04719-2

18. Mah AY, Rashidi A, Keppel MP, Saucier N, Moore EK, Alinger JB, et al.

Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control.

JCI Insight. (2017) 2:95128. doi: 10.1172/jci.insight.95128

19. Yang M, Chen S, Du J, He J, Wang Y, Li Z, et al. NK cell development requires

Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation.

Nat Commun. (2016) 7:12730. doi: 10.1038/ncomms12730

20. Yang M, Li D, Chang Z, Yang Z, Tian Z, Dong Z. PDK1 orchestrates

early NK cell development through induction of E4BP4 expression

and maintenance of IL-15 responsiveness. J Exp Med. (2015) 212:253–

65. doi: 10.1084/jem.20141703

21. Schafer JR, Salzillo TC, Chakravarti N, Kararoudi MN, Trikha P, Foltz JA,

et al. Education-dependent activation of glycolysis promotes the cytolytic

potency of licensed human natural killer cells. J Allergy Clin Immunol. (2019)

143:346–58.e6. doi: 10.1016/j.jaci.2018.06.047

22. Cichocki F, Wu C-Y, Zhang B, Felices M, Tesi B, Tuininga K, et al. ARID5B

regulates metabolic programming in human adaptive NK cells. J Exp Med.

(2018) 215:2379–95. doi: 10.1084/jem.20172168

23. O’Sullivan TE, Johnson LR, Kang HH, Sun JC. BNIP3- and BNIPL-mediated

mitophagy promotes the generation of natural killer cell memory. Immunity.

(2015) 43:331–42. doi: 10.1016/j.immuni.2015.07.012

24. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, N.J. M, Mason EF, et al.

Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are

essential for effector and regulatory CD4+ T cell subsets. J Immunol. (2011)

186:3299–303. doi: 10.4049/jimmunol.1003613

25. Jha Abhishek K, Huang Stanley C-C, Sergushichev A, Lampropoulou V,

Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic

and transcriptional data reveals metabolic modules that regulate macrophage

polarization. Immunity. (2015) 42:419–30. doi: 10.1016/j.immuni.2015.02.005

26. Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-

Sanz P, et al. Substrate fate in activated macrophages: a comparison between

innate, classic, and alternative activation. J Immunol. (2010) 185:605–

14. doi: 10.4049/jimmunol.0901698

27. Chang CH, Curtis JD, Maggi LBJ, Faubert B, Villarino AV, O’Sullivan D, et al.

Posttranscriptional control of T cell effector function by aerobic glycolysis.

Cell. (2013) 153:1239–51. doi: 10.1016/j.cell.2013.05.016

28. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR,

et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated

inflammation. Cell Metab. (2006) 4:13–24. doi: 10.1016/j.cmet.2006.05.011

29. Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin

DE, et al. Mitochondrial dynamics controls T cell fate through metabolic

programming. Cell. (2016) 166:63–76. doi: 10.1016/j.cell.2016.05.035

30. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC,

Amiel E, et al. Mitochondrial respiratory capacity is a critical

regulator of CD8+ T cell memory development. Immunity. (2012)

31:68–78. doi: 10.1016/j.immuni.2011.12.007

31. Gerriets VA, Kishton RJ, Johnson MO, Cohen S, Siska PJ, Nichols AG, et al.

Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism

for suppression. Nat Immunol. (2016) 17:1459–66. doi: 10.1038/ni.3577

32. Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA,

et al. Expression patterns of NKG2A, KIR, and CD57 define a process of

CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood.

(2010) 116:3853–64. doi: 10.1182/blood-2010-04-281675

33. Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK, et al. CD94

surface density identifies a functional intermediary between the

CD56bright and CD56dim human NK-cell subsets. Blood. (2010)

115:274–81. doi: 10.1182/blood-2009-04-215491

34. Béziat V, Duffy D, Quoc SN, Le Garff-Tavernier M, Decocq J,

Combadière B, et al. CD56brightCD16+ NK cells: a functional

intermediate stage of NK cell differentiation. J Immunol. (2011)

186:6753–61. doi: 10.4049/jimmunol.1100330

35. Takahashi E, Kuranaga N, Satoh K, Habu Y, Shinomiya N, Asano

T, et al. Induction of CD16+ CD56bright NK cells with antitumour

cytotoxicity not only from CD16- CD56bright NK Cells but also

from CD16- CD56dim NK cells. Scand J Immunol. (2007) 65:126–

38. doi: 10.1111/j.1365-3083.2006.01883.x

36. Streltsova MA, Erokhina SA, Kanevskiy LM, Lee DA, Telford WG,

Sapozhnikov AM, et al. Analysis of NK cell clones obtained using interleukin-

2 and gene-modified K562 cells revealed the ability of “senescent” NK cells

to lose CD57 expression and start expressing NKG2A. PLoS ONE. (2018)

13:e0208469. doi: 10.1371/journal.pone.0208469

37. Jacobs B, Tognarelli S, Poller K, Bader P, Mackensen A,

Ullrich E. NK cell subgroups, phenotype, and functions after

autologous stem cell transplantation. Front Immunol. (2015)

6:583. doi: 10.3389/fimmu.2015.00583

Frontiers in Immunology | www.frontiersin.org 10 June 2019 | Volume 10 | Article 141431

https://doi.org/10.1038/ni1582
https://doi.org/10.1016/j.canlet.2014.12.020
https://doi.org/10.1038/nm.4278
https://doi.org/10.1593/neo.121758
https://doi.org/10.18632/oncotarget.3453
https://doi.org/10.1016/j.immuni.2018.03.030
https://doi.org/10.1038/nm1452
https://doi.org/10.1084/jem.192.2.259
https://doi.org/10.1136/gutjnl-2011-301400
https://doi.org/10.4049/jimmunol.173.10.6072
https://doi.org/10.1111/j.1365-2567.2006.02479.x
https://doi.org/10.1016/S1471-4906(01)02060-9
https://doi.org/10.1016/j.immuni.2017.10.008
https://doi.org/10.1038/ni.3838
https://doi.org/10.4049/jimmunol.1401558
https://doi.org/10.1038/s41467-018-04719-2
https://doi.org/10.1172/jci.insight.95128
https://doi.org/10.1038/ncomms12730
https://doi.org/10.1084/jem.20141703
https://doi.org/10.1016/j.jaci.2018.06.047
https://doi.org/10.1084/jem.20172168
https://doi.org/10.1016/j.immuni.2015.07.012
https://doi.org/10.4049/jimmunol.1003613
https://doi.org/10.1016/j.immuni.2015.02.005
https://doi.org/10.4049/jimmunol.0901698
https://doi.org/10.1016/j.cell.2013.05.016
https://doi.org/10.1016/j.cmet.2006.05.011
https://doi.org/10.1016/j.cell.2016.05.035
https://doi.org/10.1016/j.immuni.2011.12.007
https://doi.org/10.1038/ni.3577
https://doi.org/10.1182/blood-2010-04-281675
https://doi.org/10.1182/blood-2009-04-215491
https://doi.org/10.4049/jimmunol.1100330
https://doi.org/10.1111/j.1365-3083.2006.01883.x
https://doi.org/10.1371/journal.pone.0208469
https://doi.org/10.3389/fimmu.2015.00583
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Poznanski and Ashkar Metabolism Defines NK Cell Fate

38. Wagner JA, Rosario M, Romee R, Berrien-Elliott MM, Schneider SE, Leong

JW, et al. CD56bright NK cells exhibit potent antitumor responses following

IL-15 priming. J Clin Invest. (2017) 127:4042–58. doi: 10.1172/JCI90387

39. Lunemann S, Langeneckert AE, Martrus G, Hess LU, Salzberger W, Ziegler

AE, et al. Human liver-derived CXCR6(+) NK cells are predominantly

educated through NKG2A and show reduced cytokine production. J Leukoc

Biol. (2019) 2015:1331–40. doi: 10.1002/JLB.1MA1118-428R

40. Poznanski SM, Nham T, Chew MV, Lee AJ, Hammill JA, Fan IY,

et al. Expanded CD56superbrightCD16+ NK cells from ovarian

cancer patients are cytotoxic against autologous tumor in a patient-

derived xenograft murine model. Cancer Immunol Res. (2018)

6:1174–85. doi: 10.1158/2326-6066.CIR-18-0144

41. Siewiera J, Gouilly J, Hocine HR, Cartron G, Levy C, Al-Daccak R,

et al. Natural cytotoxicity receptor splice variants orchestrate the distinct

functions of human natural killer cell subtypes. Nat Commun. (2015)

6:10183. doi: 10.1038/ncomms10183

42. Gaynor LM, Colucci F. Uterine natural killer cells: functional distinctions

and influence on pregnancy in humans and mice. Front Immunol. (2017)

8:467. doi: 10.3389/fimmu.2017.00467

43. Verma S, King A, Loke YW. Expression of killer cell inhibitory receptors

on human uterine natural killer cells. Eur J Immunol. (1997) 27:979–

83. doi: 10.1002/eji.1830270426

44. King A, Allan DS, Bowen M, Powis SJ, Joseph S, Verma S,

et al. HLA-E is expressed on trophoblast and interacts with

CD94/NKG2 receptors on decidual NK cells. Eur J Immunol.

(2000) 30:1623–31. doi: 10.1002/1521-4141(200006)30:6&lt;1623::AID-

IMMU1623&gt;3.0.CO;2-M

45. Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells.

Nature. (2009) 457:557–61. doi: 10.1038/nature07665

46. O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH. T cell- and B

cell-independent adaptive immunity mediated by natural killer cells. Nat

Immunol. (2006) 7:507–16. doi: 10.1038/ni1332

47. Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM.

Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci USA.

(2009) 106:1915–9. doi: 10.1073/pnas.0813192106

48. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X,

et al. Cytomegalovirus reactivation after allogeneic transplantation

promotes a lasting increase in educated NKG2C<sup> + </sup>

natural killer cells with potent function. Blood. (2012) 119:2665–

74. doi: 10.1182/blood-2011-10-386995

49. Hammer Q, Ruckert T, Borst EM, Dunst J, Haubner A, Durek P,

et al. Peptide-specific recognition of human cytomegalovirus strains

controls adaptive natural killer cells. Nat Immunol. (2018) 19:453–

63. doi: 10.1038/s41590-018-0082-6

50. Guma M, Angulo A, Vilches C, Gomez-Lozano N, Malats N, Lopez-Botet

M. Imprint of human cytomegalovirus infection on the NK cell receptor

repertoire. Blood. (2004) 104:3664–71. doi: 10.1182/blood-2004-05-2058

51. Della Chiesa M, Falco M, Bertaina A, Muccio L, Alicata C, Frassoni F,

et al. Human cytomegalovirus infection promotes rapid maturation of NK

cells expressing activating killer Ig-like receptor in patients transplanted

with NKG2C-/- umbilical cord blood. J Immunol. (2014) 192:1471–

9. doi: 10.4049/jimmunol.1302053

52. Liu LL, Landskron J, Ask EH, Enqvist M, Sohlberg E, Traherne JA,

et al. Critical role of CD2 co-stimulation in adaptive natural killer cell

responses revealed in NKG2C-deficient humans. Cell Rep. (2016) 15:1088–

99. doi: 10.1016/j.celrep.2016.04.005

53. Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan

RP, et al. Cytokine activation induces human memory-like NK

cells. Blood. (2012) 120:4751–60. doi: 10.1182/blood-2012-04-4

19283

54. Leong JW, Chase JM, Romee R, Schneider SE, Sullivan RP, Cooper MA,

et al. Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a

functional high-affinity IL-2 receptor on human cytokine-induced memory-

like natural killer cells. Biol Blood Marrow Transplant. (2014) 20:463–

73. doi: 10.1016/j.bbmt.2014.01.006

55. Suliman S, Geldenhuys H, Johnson JL, Hughes JE, Smit E,

Murphy M, et al. Bacillus Calmette-Guerin (BCG) revaccination

of adults with latent mycobacterium tuberculosis infection induces

long-lived BCG-reactive NK cell responses. J Immunol. (2016)

197:1100–10. doi: 10.4049/jimmunol.1501996

56. Marcais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, et al. The

metabolic checkpoint kinase mTOR is essential for interleukin-15 signaling

during NK cell development and activation. Nat Immunol. (2014) 15:749–

57. doi: 10.1038/ni.2936

57. Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T. Maturation of

mouse NK cells is a 4-stage developmental program. Blood. (2009) 113:5488–

96. doi: 10.1182/blood-2008-10-187179

58. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and

metabolism. Cell. (2006) 124:471–84. doi: 10.1016/j.cell.2006.01.016

59. Male V, Nisoli I, Kostrzewski T, Allan DS, Carlyle JR, Lord GM, et al. The

transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and

directly regulates Eomes and Id2 expression. J Exp Med. (2014) 211:635–

42. doi: 10.1084/jem.20132398

60. Keating SE, Zaiatz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK,

et al. Metabolic reprogramming supports IFN-γ production by CD56bright

NK cells. J Immunol. (2016) 196:2552–60. doi: 10.4049/jimmunol.1501783

61. Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA. Activation-specific

metabolic requirements for NK cell IFN-g production. J Immunol. (2015)

194:1954–62. doi: 10.4049/jimmunol.1402099

62. Mao Y, van Hoef V, Zhang X, Wennerberg E, Lorent J, Witt K, et al.

IL-15 activates mTOR and primes stress-activated gene-expression leading

to prolonged anti-tumor capacity of NK cells. Blood. (2016) 128:1475–

89. doi: 10.1182/blood-2016-02-698027

63. Viel S, Marçais A, Guimaraes FS, Loftus R, Rabilloud J, Grau M, et al. TGF-

β inhibits the activation and functions of NK cells by repressing the mTOR

pathway. Sci Signal. (2016) 9:ra19. doi: 10.1126/scisignal.aad1884

64. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein

D, et al. The transcription factor Myc controls metabolic

reprogramming upon T lymphocyte activation. Immunity. (2011)

35:871–82. doi: 10.1016/j.immuni.2011.09.021

65. Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D,Wei K, et al. Metabolic

reprogramming of natural killer cells in obesity limits antitumor responses.

Nat Immunol. (2018) 19:1330–40. doi: 10.1038/s41590-018-0251-7

66. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, et al.

Licensing of natural killer cells by host major histocompatibility complex class

I molecules. Nature. (2005) 436:709–13. doi: 10.1038/nature03847

67. Krneta T, Gillgrass A, Poznanski S, Chew M, Lee AJ, Kolb M, et al. M2-

polarized and tumor-associated macrophages alter NK cell phenotype and

function in a contact-dependent manner. J Leukoc Biol. (2017) 101:285–

95. doi: 10.1189/jlb.3A1215-552R

68. Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in

endometrial and trophoblastic tissues during early pregnancy.Obstet Gynecol.

(1992) 80:283–5.

69. Cerdeira AS, Rajakumar A, Royle CM, Lo A, Husain Z, Thadhani RI,

et al. Conversion of peripheral blood NK cells to a decidual NK-like

phenotype by a cocktail of defined factors. J Immunol. (2013) 190:3939–

48. doi: 10.4049/jimmunol.1202582

70. Cavalli RC, Cerdeira AS, Pernicone E, Korkes HA, Burke

SD, Rajakumar A, et al. Induced human decidual NK-

like cells improve utero-placental perfusion in mice. PLoS

ONE. (2016) 11:e0164353. doi: 10.1371/journal.pone.01

64353

71. Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD,

et al. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into

CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA.

(2007) 104:3378–83. doi: 10.1073/pnas.0611098104

72. Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients

in solid tumors in vivo: high-resolution measurements reveal a lack of

correlation. Nat Med. (1997) 3:177–82. doi: 10.1038/nm0297-177

73. Michiels C, Tellier C, Feron O. Cycling hypoxia: a key feature of

the tumor microenvironment. Biochim et Biophys Acta. (2016) 1866:76–

86. doi: 10.1016/j.bbcan.2016.06.004

74. Nham T, Poznanski SM, Fan IY, Shenouda MM, Chew MV, Lee AJ, et al.

Ex vivo-expanded NK cells from blood and ascites of ovarian cancer

patients are cytotoxic against autologous primary ovarian cancer cells. Cancer

Immunol Immunother. (2018) 67:575–87. doi: 10.1007/s00262-017-2112-x

Frontiers in Immunology | www.frontiersin.org 11 June 2019 | Volume 10 | Article 141432

https://doi.org/10.1172/JCI90387
https://doi.org/10.1002/JLB.1MA1118-428R
https://doi.org/10.1158/2326-6066.CIR-18-0144
https://doi.org/10.1038/ncomms10183
https://doi.org/10.3389/fimmu.2017.00467
https://doi.org/10.1002/eji.1830270426
https://doi.org/10.1002/1521-4141(200006)30:6&lt
https://doi.org/10.1038/nature07665
https://doi.org/10.1038/ni1332
https://doi.org/10.1073/pnas.0813192106
https://doi.org/10.1182/blood-2011-10-386995
https://doi.org/10.1038/s41590-018-0082-6
https://doi.org/10.1182/blood-2004-05-2058
https://doi.org/10.4049/jimmunol.1302053
https://doi.org/10.1016/j.celrep.2016.04.005
https://doi.org/10.1182/blood-2012-04-419283
https://doi.org/10.1016/j.bbmt.2014.01.006
https://doi.org/10.4049/jimmunol.1501996
https://doi.org/10.1038/ni.2936
https://doi.org/10.1182/blood-2008-10-187179
https://doi.org/10.1016/j.cell.2006.01.016
https://doi.org/10.1084/jem.20132398
https://doi.org/10.4049/jimmunol.1501783
https://doi.org/10.4049/jimmunol.1402099
https://doi.org/10.1182/blood-2016-02-698027
https://doi.org/10.1126/scisignal.aad1884
https://doi.org/10.1016/j.immuni.2011.09.021
https://doi.org/10.1038/s41590-018-0251-7
https://doi.org/10.1038/nature03847
https://doi.org/10.1189/jlb.3A1215-552R
https://doi.org/10.4049/jimmunol.1202582
https://doi.org/10.1371/journal.pone.0164353
https://doi.org/10.1073/pnas.0611098104
https://doi.org/10.1038/nm0297-177
https://doi.org/10.1016/j.bbcan.2016.06.004
https://doi.org/10.1007/s00262-017-2112-x
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Poznanski and Ashkar Metabolism Defines NK Cell Fate

75. Tu Z, Bozorgzadeh A, Pierce RH, Kurtis J, Crispe IN, Orloff MS. TLR-

dependent cross talk between human Kupffer cells and NK cells. J Exp Med.

(2008) 205:233–44. doi: 10.1084/jem.20072195

76. Schon HT, Weiskirchen R. Immunomodulatory effects of transforming

growth factor-beta in the liver. Hepatob Surg Nutrit. (2014) 3:386–

406. doi: 10.3978/j.issn.2304-3881.2014.11.06

77. Yoshida O, Akbar SM, Chen S, Miyake T, Abe M, Murakami H, et al.

Regulatory natural killer cells in murine liver and their immunosuppressive

capacity. Liver Int. (2010) 30:906–12. doi: 10.1111/j.1478-3231.2010.02253.x

78. Zhou J, Peng H, Li K, Qu K, Wang B, Wu Y, et al. Liver-resident NK cells

control antiviral activity of hepatic T cells via the PD-1-PD-L1 axis. Immunity.

(2019) 50:403–17.e4. doi: 10.1016/j.immuni.2018.12.024

79. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C.

Why is the partial oxygen pressure of human tissues a crucial

parameter? Small molecules and hypoxia. J Cell Mol Med. (2011)

15:1239–53. doi: 10.1111/j.1582-4934.2011.01258.x

80. Kessler M, Hoper J, Krumme BA. Monitoring of tissue

perfusion and cellular function. Anesthesiology. (1976) 45:184–

97. doi: 10.1097/00000542-197608000-00007

81. Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, et al.

Hypoxia-induced VEGF and collagen I expressions are associated with

angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology. (2002)

35:1010–21. doi: 10.1053/jhep.2002.32524

82. Wolter F, Glassner A, Kramer B, Kokordelis P, Finnemann C, Kaczmarek DJ,

et al. Hypoxia impairs anti-viral activity of natural killer (NK) cells but has

little effect on anti-fibrotic NK cell functions in hepatitis C virus infection. J

Hepatol. (2015) 63:1334–44. doi: 10.1016/j.jhep.2015.08.008

83. Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, et al.

Hypoxia downregulates the expression of activating receptors involved in

NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol.

(2013) 43:2756–64. doi: 10.1002/eji.201343448

84. Zaiatz-Bittencourt V, Finlay DK, Gardiner CM. Canonical TGF-beta signaling

pathway represses human NK cell metabolism. J Immunol. (2018) 200:3934–

41. doi: 10.4049/jimmunol.1701461

85. Cong J, Wang X, Zheng X, Wang D, Fu B, Sun R, et al. Dysfunction of Natural

Killer cells by FBP1-induced inhibition of glycolysis during lungcancer

progression. Cell Metab. (2018) 28:243–55.e5. doi: 10.1016/j.cmet.2018.0

6.021

86. Salzberger W, Martrus G, Bachmann K, Goebels H, Hess L, Koch

M, et al. Tissue-resident NK cells differ in their expression profile of

the nutrient transporters Glut1, CD98 and CD71. PLoS ONE. (2018)

13:e0201170. doi: 10.1371/journal.pone.0201170

87. Gubser PM, Bantug GR, Razik L, Fischer M, Dimeloe S, Hoenger G, et al.

Rapid effector function of memory CD8+ T cells requires an immediate-

early glycolytic switch. Nat Immunol. (2013) 14:1064–72. doi: 10.1038/n

i.2687

88. O’Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck

MD, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support

the metabolic programming necessary for development. Immunity. (2014)

41:75–88. doi: 10.1016/j.immuni.2014.06.005

89. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M,

et al. Autophagy regulates lipid metabolism. Nature. (2009)

458:1131–5. doi: 10.1038/nature07976

90. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vazquez G,

Yurchenko E, et al. The energy sensor AMPK regulates T cell

metabolic adaptation and effector responses in vivo. Immunity. (2015)

42:41–54. doi: 10.1016/j.immuni.2014.12.030

91. Miller A, Nagy C, Knapp B, Laengle J, Ponweiser E, Groeger

M, et al. Exploring metabolic configurations of single cells

within complex tissue microenvironments. Cell Metab. (2017)

26:788–800.e6. doi: 10.1016/j.cmet.2017.08.014

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Poznanski and Ashkar. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 12 June 2019 | Volume 10 | Article 141433

https://doi.org/10.1084/jem.20072195
https://doi.org/10.3978/j.issn.2304-3881.2014.11.06
https://doi.org/10.1111/j.1478-3231.2010.02253.x
https://doi.org/10.1016/j.immuni.2018.12.024
https://doi.org/10.1111/j.1582-4934.2011.01258.x
https://doi.org/10.1097/00000542-197608000-00007
https://doi.org/10.1053/jhep.2002.32524
https://doi.org/10.1016/j.jhep.2015.08.008
https://doi.org/10.1002/eji.201343448
https://doi.org/10.4049/jimmunol.1701461
https://doi.org/10.1016/j.cmet.2018.06.021
https://doi.org/10.1371/journal.pone.0201170
https://doi.org/10.1038/ni.2687
https://doi.org/10.1016/j.immuni.2014.06.005
https://doi.org/10.1038/nature07976
https://doi.org/10.1016/j.immuni.2014.12.030
https://doi.org/10.1016/j.cmet.2017.08.014~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


REVIEW
published: 03 July 2019

doi: 10.3389/fimmu.2019.01462

Frontiers in Immunology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 1462

Edited by:

Anna Ohradanova-Repic,

Medical University of Vienna, Austria

Reviewed by:

Amir M. Ghaemmaghami,

University of Nottingham,

United Kingdom

Alexandre M. Carmo,

University of Porto, Portugal

*Correspondence:

Antonella Viola

antonella.viola@unipd.it

Alessandra Castegna

alessandra.castegna@uniba.it

Specialty section:

This article was submitted to

Molecular Innate Immunity,

a section of the journal

Frontiers in Immunology

Received: 16 April 2019

Accepted: 10 June 2019

Published: 03 July 2019

Citation:

Viola A, Munari F,

Sánchez-Rodríguez R, Scolaro T and

Castegna A (2019) The Metabolic

Signature of Macrophage Responses.

Front. Immunol. 10:1462.

doi: 10.3389/fimmu.2019.01462

The Metabolic Signature of
Macrophage Responses

Antonella Viola 1*, Fabio Munari 1, Ricardo Sánchez-Rodríguez 1, Tommaso Scolaro 1 and

Alessandra Castegna 2,3*

1Department of Biomedical Sciences, Istituto di Ricerca Pediatrica, University of Padova, Fondazione Città della Speranza,

Padova, Italy, 2Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy,
3 IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy

Macrophages are a heterogeneous population of immune cells playing several and

diverse functions in homeostatic and immune responses. The broad spectrum of

macrophage functions depends on both heterogeneity and plasticity of these cells,

which are highly specialized in sensing the microenvironment and modify their properties

accordingly. Although it is clear that macrophage phenotypes are difficult to categorize

and should be seen as plastic and adaptable, they can be simplified into two extremes:

a pro-inflammatory (M1) and an anti-inflammatory/pro-resolving (M2) profile. Based on

this definition, M1 macrophages are able to start and sustain inflammatory responses,

secreting pro-inflammatory cytokines, activating endothelial cells, and inducing the

recruitment of other immune cells into the inflamed tissue; on the other hand, M2

macrophages promote the resolution of inflammation, phagocytose apoptotic cells, drive

collagen deposition, coordinate tissue integrity, and release anti-inflammatory mediators.

Dramatic switches in cell metabolism accompany these phenotypic and functional

changes of macrophages. In particular, M1 macrophages rely mainly on glycolysis

and present two breaks on the TCA cycle that result in accumulation of itaconate

(a microbicide compound) and succinate. Excess of succinate leads to Hypoxia Inducible

Factor 1α (HIF1α) stabilization that, in turn, activates the transcription of glycolytic genes,

thus sustaining the glycolytic metabolism of M1 macrophages. On the contrary, M2

cells are more dependent on oxidative phosphorylation (OXPHOS), their TCA cycle

is intact and provides the substrates for the complexes of the electron transport

chain (ETC). Moreover, pro- and anti-inflammatory macrophages are characterized by

specific pathways that regulate the metabolism of lipids and amino acids and affect

their responses. All these metabolic adaptations are functional to support macrophage

activities as well as to sustain their polarization in specific contexts. The aim of this review

is to discuss recent findings linking macrophage functions and metabolism.

Keywords: macrophage, metabolism, inflammation, metabolic rewiring, immune cross-talk

INTRODUCTION

From a historical perspective, macrophages (“makros” = big, “phagein” = to eat) were discovered
in the 19th century by the Russian zoologist Metchnikoff, in a seminal study on starfish larvae.
Metchnikoff observed that few hours after pinning them with small thorns of a tangerine tree,
the thorns were surrounded by cells that he supposed to have origin from blood in response
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to injury (1). Macrophages were found in tissues as resident cells
patrolling their surroundings and removing invading pathogens,
apoptotic cells, and debris, thus maintaining tissue integrity. The
first hypothesis was that tissue macrophages may differentiate
from monocytes that exit the bloodstream during inflammation.
However, it is now established that while monocyte-derived
macrophages have origin in the bone marrow by definitive
haematopoiesis, tissue macrophage progenitors derive from yolk
sac and fetal liver, during primitive and definitive haematopoiesis
(2). Interestingly, embryo-derived macrophages retain self-
renewal potential, whereas monocyte-derived cells are terminally
differentiated (3).

Despite of these differences, it is clear that both monocyte-
derived and tissue-resident macrophages play a pivotal role in
the maintenance of tissue homeostasis and in tissue regeneration
after injury. In humans for example, the tissue cellular turnover
rate has been estimated to be more or less 1 million cells
per second each day (4): the removal of apoptotic cells is
constantly provided mainly by macrophages that reside in
tissues, through an immunologically silent process known
as efferocytosis. One of the hallmarks of this process is
represented by the release of anti-inflammatory cytokines that
prevent the development of inflammation, such as interleukin
(IL) 10 and transforming growth factor beta (TGF-β) (5, 6).
Indeed, defects in the clearance of apoptotic cells are directly
linked to the development of inflammation and autoimmune
diseases (4).

On the other hand, when an inflammatory process is triggered
by the perturbation of tissue homeostasis, bone-marrow derived
monocytes that circulate in the blood-stream are attracted to
the site of inflammation, through a specific milieu of pro-
inflammatory chemokines secreted by resident macrophages,
stromal and endothelial cells. At the site of inflammation,
monocytes differentiate into macrophages, which cooperate with
resident cells for sustaining immunity or promoting resolution of
inflammation and tissue regeneration (7).

THE TWO POLES OF
MACROPHAGES ACTIVATION

Macrophages are extremely plastic cells being able to change
rapidly their functional profile through a process defined as
polarization. Macrophage polarization is indeed the process by
which macrophages respond to stimuli coming from the local
microenvironment and acquire a specific functional phenotype.

Based on specific programs of gene expression leading to
the acquisition of different markers on the cellular surface, the
secretion of certain cytokines as well as to metabolic adaptations,
macrophages are usually classified into classically activated,
pro-inflammatory or M1 macrophages (8, 9), and alternatively
activated, anti-inflammatory, or M2 macrophages (10, 11). A
classification of the different phenotypes is reported in Table 1.

Pro-inflammatory macrophages are induced by microbial
products, such as the lipopolysaccharide (LPS) and other Toll-
like receptors (TLRs) ligands, or by cytokines secreted by TH-
1 lymphocytes, such as interferon gamma (IFN-γ) and tumor

necrosis factor alpha (TNF-α). From the functional point of
view, M1 macrophages are characterized by their ability to
kill pathogens and present their antigens to T lymphocytes
for initiation of adaptive responses. Thus, they express CD80,
CD86, CIITA, major histocompatibility complex class II receptor
(MHC-II), cyclooxygenase 2 (COX-2), and inducible nitric
oxide synthase (iNOS) and they produce high levels of pro-
inflammatory cytokines, such as TNF-α, IL1-β, IL-6, IL-12, and
IL-23, and promote TH-1 responses [extensively reviewed in (12,
13)]. The expression of these cytokines is mainly controlled by the
activation and nuclear translocation of the transcription factor
NF-κB (nuclear factor kappa-light-chain enhancer of B-cell)
(14, 15), together with STAT1 (Signal transducer and activator
of transcription) (16, 17), STAT3 (18), IRF4 (IFN-γ regulatory
factor) (19), HIF1α (Hypoxia induced factor 1 alpha), and AP1
(activator protein 1) (20).

M2 or anti-inflammatory macrophages are induced by IL-4 or
IL-13 secreted by innate and adaptive immune cells, such as mast
cells, basophils, and TH-2 lymphocytes (10, 11). Alternatively-
activatedmacrophages are characterized by an anti-inflammatory
profile, which permits resolution of inflammation and tissue
repair. They express high levels of mannose receptor (CD206),
the decoy receptor IL-1R as well as the IL-1R antagonist, and
produce pro-fibrotic factors such as the transforming growth
factor beta (TGF-β) and insulin-like growth factor 1 (IGF-1),
thus actively suppressing inflammation and promoting repair
(21). In addition, markers and effectors associated with M2
polarization include STAT6, GATA3 (GATA binding protein 3),
SOCS1 (suppressor of cytokine signaling 1), PPARγ (peroxisome
proliferator-activated receptor gamma), CD163, CD36, FIZZ1
(found in inflammatory zone 1), matrix metalloproteases
(MMPs), and arginase 1 (ARG1) (22). The increased arginase
activity results in production of polyamines and collagen and
favors tissue remodeling and wound healing (21). Finally, M2
macrophages induce angiogenesis and lymphangiogenesis by
producing vascular endothelial growth factor A (VEGF-A),
endothelial growth factor (EGF), platelet-derived growth factor
(PDGF), and IL-8 (23).

In addition to this phenotype induced by IL-4/Il-13 (also
known as M2a), specific profiles of M2 macrophages may be
induced by different stimuli, including TGFβ, IL-10, immune
complexes, or glucocorticoids (24). Thus, M2b or regulatory
macrophages–induced by stimulation with immune complexes
and TLR ligands or by IL-1R agonists–produce both pro- and
anti-inflammatory cytokines, such as IL-10, IL-1β, and TNF-α,
and regulate both immune and inflammatory reactions; on the
other hand, the M2c subset is activated by glucocorticoids or IL-
10 and exhibits a strong anti-inflammatory profile by releasing
IL-10 and TGF-β. Finally, M2d macrophages, also known as
tumor-associated macrophages (TAMs), are induced by TLR
ligands and A2 adenosine receptor (A2R) agonists, or by IL-6;
they secrete high levels of IL-10, TGF-β, and VEGF and low IL-
12, TNF-α, and IL-1β, and contribute to tumor angiogenesis,
growth and metastasis (25).

Considering the complexity of the tissue microenvironment
and the plasticity of macrophages, it is clear that a static vision of
M1–M2 polarization adopted from in vitro experiments may not
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TABLE 1 | A schematic summary of macrophage polarization.

Polarization Stimuli Released

cytokines

Surface markers Metabolic

enzymes

Transcription

factors

Functions

M1 LPS + IFN-γ TNF-α, IL-1β, IL-6,

IL-12, IL-23

CD80, CD86,

CIITA, MHC-II

iNOS, PFKFB3,

PKM2, ACOD1

NF-κB (p65),

STAT1, STAT3,

IRF-4, HIF1α, AP1

Bacterial killing, tumor

resistance, Th1

response

M2a IL-4/IL-13 IL-10, TGF-β CD206, CD36,

IL1Ra, CD163

ARG1, CARKL STAT6, GATA3,

SOCS1, PPARγ

Anti-inflammatory

response, tissue

remodeling, wound

healing

M2b IC, TLR ligands/IL-1Ra IL-10, IL-1β, IL-6,

TNF- α

CD86, MHC II ARG1, CARKL STAT3, IRF4,

NF-κB (p50)

Tumor progression,

immunoregulation, Th2

response

M2c Glucocorticoids/IL-10 IL-10, TGF- β CD163, TLR1,

TLR8

ARG1, GS STAT3, STAT6,

IRF4, NF-κB (p50)

Phagocytosis of

apoptotic bodies,

tissue remodeling,

immunosuppresion

M2d (TAM) TLR ligands +

A2R/IL-6

IL-10, VEGF CD206, CD204,

CD163

ARG1, IDO STAT1, IRF3,

NF-κB (p50)

Angiogenesis, tumor

progression

A2R, adenosine receptor 2; ACOD1, aconitate decarboxylase 1; AP-1, Activator proten 1; ARG1, Arginase 1; CARKL, carbohydrate kinase- like; IC, immunocomplexes; IDO, indoleamine

dioxygenase; iNOS, inducible Nitric Oxide Synthase; GATA3, GATA binding protein 3; GS, glutamine synthetase; HIF1α, Hypoxia-inducible factor 1-alpha; IFN-γ, Interferon gamma; IL-,

interleukin; IRF, interferon regulatory factor; MHC-II, major histocompatibility complex class 2; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PPARγ, Peroxisome

proliferator-activated receptor gamma; SOCS1, Suppressor of cytokine signaling 1; STAT, Signal transducer and activator of transcription; TNF-α, Tumor necrosis factor alpha; TGF-β,

transforming growth factor beta; TLR, toll like receptor; VEGF, Vascular endothelial growth factor.

fully describe macrophage polarization in vivo, which has to be
considered as an extremely dynamic and tissue-specific process.

MACROPHAGE METABOLISM

In addition to the functional properties mentioned above,
macrophage polarization involves alsometabolic reprogramming
(Figure 1). Thus, depending on the stimuli received by the
microenvironment, macrophages can switch from an aerobic
profile, based on oxidative phosphorylation, to an anaerobic one,
based on glycolysis, and vice versa.

The first studies in the field of immune cell metabolism
appeared in the 1950s, with the discovery that neutrophils
depend on aerobic glycolysis, a process defined as “Warburg
effect” (26). Indeed, this metabolic pathway was first recognized
by Otto Warburg, during his research on tumor cells, which
are characterized by increased glucose uptake, high rate of
glycolysis, followed by lactic acid fermentation in conjunction
with a reduced level of oxidative phosphorylation (OXPHOS),
even in the presence of abundant oxygen. In this setting,
aerobic glycolysis occurs to produce energy and to generate
biosynthetic intermediates (26, 27). In 1970, Hard et al. observed
that M1 macrophages display enhanced glycolysis accompanied
by decreased oxygen consumption (28, 29). Almost 20 years
later, Newsholme et al. demonstrated that the rate of glycolysis
increased dramatically during phagocytosis or upon macrophage
activation by inflammatory stimuli. Indeed, now we know that
pro-inflammatory macrophages utilize glycolysis (29, 30) and
the pentose phosphate pathway (PPP) (31, 32) to meet their
ATP requirements, whereas the Krebs cycle is broken at two
points (32, 33), and OXPHOS as well as the fatty acid oxidation
(FAO) are downregulated (32, 34, 35). In contrast, in M2

macrophages the Krebs cycle is intact and their metabolic activity
is characterized by enhanced FAO and OXPHOS (32).

Starting from these and other observations, the concept of
“immunometabolism” has been introduced to indicate that, in
addition to provide energy supporting immune activity in specific
contexts, these metabolic adaptations directly affect immune cell
functions by controlling transcriptional and post-transcriptional
events. In the next paragraph we will describe the main metabolic
blocks and the modulation of their fluxes for sustaining the
different functional states of macrophages.

GLYCOLYSIS AND THE PENTOSE
PHOSPHATE PATHWAY (PPP)

Glycolysis is one of the simplest ways to generate energy within
the cell (Figure 2). The glycolytic metabolic pathway takes place
in the cytosol and it converts glucose to pyruvate, thus generating
two molecules of ATP per unit of glucose. Although glycolysis
is relatively inefficient in ATP production, it provides metabolic
intermediates for biosynthetic pathways to support the synthesis
of ribose, amino acids, and fatty acids that are crucial for
metabolic adaptation of the cell. Furthermore, glycolysis supplies
the PPP, allowing the production of NADPH and ribose-5-
phosphate. In parallel to glycolysis, PPP occurs in the cytosol
and consists of two distinct phases. In the oxidative phase, the
energy from metabolic conversion of glucose-6-phosphate into
ribulose-5-phosphate is used for the reduction of NADP+ into
NADPH. NADPH is then used by several enzymes, including the
NADPH oxidase, which generates reactive oxygen species (ROS)
to kill pathogens and plays a crucial role inmacrophage responses
(36, 37).Moreover, high levels of NADPHoffer protection against
oxidative stress, by providing reducing power for generation of
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FIGURE 1 | Molecular and metabolic signatures of macrophage activation. Pro-inflammatory stimuli induce the activation of specific pathways through the activation

of transcription factors such as NF-κB, STAT1, STAT3, AP-1, SREBP-1, and HIF1α, which trigger the expression of markers like iNOS, COX-2, CD80, CD86, and

MHC-II and the release of IL-1β, TNF-α, IFN-γ, IL-6, IL-12, and IL-23. Cells undergo a metabolic reprogramming toward glycolysis, the pentose-phosphate pathway,

and fatty acid synthesis. This associates to interruption of the Krebs cycle, ROS formation and efflux of citrate, which supports NADPH and PGE2 synthesis, and

succinate, which stabilizes HIF-1α. Itaconate is produced from citrate and displays antibacterial function. Anti-inflammatory macrophages are characterized by the

expression of ARG1, FIZZ1, SOCS1, CD206, Adenosine receptor (A2R), and the decoy IL1RII and by the production of cytokines such as TGF-β, IL-10, IL-4, IL-13,

IL-8, IL-1Ra, and VEGFA. Their profile is mainly controlled by the activity of the transcription factors STAT6, GATA3, PPARγ, and LRX. Metabolically, these cells display

enhanced OXPHOS metabolism, fatty acid oxidation, glutaminolysis, tryptophan catabolism with release of kynurenine, and synthesis of polyamines. AP-1, Activator

proten 1; ARG1, Arginase 1; COX2, cicloxygenase 2; FIZZ1, Found in inflammatory zone 1; iNOS, inducible Nitric Oxide Synthase; GATA3, GATA binding protein 3;

HIF1α, Hypoxia-inducible factor 1-alpha; IFN-γ, Interferon gamma; LXR, Liver X receptor; MHC-II, major histocompatibility complex class 2; NF-κB, nuclear factor

kappa-light-chain-enhancer of activated B cells; PPARγ, Peroxisome proliferator-activated receptor gamma; SOCS1, Suppressor of cytokine signaling 1; SREBP-1,

Sterol regulatory element binding protein 1; STAT, Signal transducer and activator of transcription; TNF-α, Tumor necrosis factor alpha; TGF-β, transforming growth

factor beta; VEGFA, Vascular endothelial growth factor A.

the antioxidant glutathione (38). In the non-oxidative phase,
intermediates from glycolysis are diverted for the synthesis of
ribose-5-phosphate, a precursor of nucleotides, and amino acids.

Glycolysis is a crucial metabolic event for M1 macrophages
and its inhibition affects many functions typical of their
inflammatory phenotype, including phagocytosis, ROS
production, and secretion of pro-inflammatory cytokines
(29, 39, 40). Glycolytic metabolic adaptation relies on the
activation of several transcription factors, among which HIF1α
plays a key role in the commitment to glycolysis also under
normoxic conditions (41).

In macrophages, two main signaling pathways culminate
in oxygen-independent regulation of HIF1α transcription: the
TLR/NF-κB (42) and AKT/mTOR (43–45) pathways. Several
inflammatory signals, such as pathogen recognition through
pattern recognition receptors (PRRs) or pro-inflammatory
cytokines, converge in NF-κB activation, the master regulator
of macrophage functions that regulates the expression of several

genes, including HIF1α (46, 47). On the other hand, the
AKT/mTOR pathway is triggered by growth factors, such as
GM-CSF, and pathogen-sensing receptors, such as Dectin-1 or
TLR4 (45, 48, 49). Interestingly, mTORC1 also increases the
expression of genes involved in mitochondria biogenesis and
oxidative metabolism, such as PPAR-γ and Yin Yang 1 (YY-1)
(50). On this line, Akt kinases seem to regulate macrophage
polarization in an isoform-specific manner: while Akt1 deletion
promotes the M1 profile, deletion of Akt2 has opposite effects,
resulting in amplification of M2 responses (44). In addition to
these signaling pathways, in M1 cells HIF1α expression may also
be stabilized by succinate coming from the TCA breakpoint at
succinate dehydrogenase (SDH) (31) (see “Krebs cycle” section).

In macrophages, HIF1α acts as a metabolic and functional
regulator of cell responses, regulating the expression of genes
encoding for glycolytic enzymes, the glucose transporter
GLUT1, as well as inflammatory mediators (41, 42, 47). The
upregulation of GLUT1 is important for the glycolytic activity
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FIGURE 2 | Overview of glucose and fatty acid metabolism. Glucose is converted into pyruvate by glycolysis (red square), in the cytosol. Among the glycolytic

intermediates, glucose-6P can be diverted into PPP (green square) sustaining NADPH and ribose-5P production that, in turn, are used for fatty acid or nucleotide and

UDP-GlcNAC synthesis, respectively. In hypoxic conditions, pyruvate is preferentially reduced to lactate, whereas in normoxic conditions it is decarboxylated into

acetyl-CoA within the mitochondria. Here, acetyl-CoA enters into the TCA cycle, providing reducing agents to the ETC to generate energy. Citrate, an intermediate of

the TCA cycle, can be exported into the cytosol where it participates in fatty acid synthesis (FAS; light blue square). Fatty acids can be oxidized via FAO (dark blue

square) within the mitochondrial matrix thus generating acetyl-CoA to replenish the TCA cycle. PPP, pentose phosphate pathway; ETC, electron transport chain; TCA,

tricarboxylic acid; OXPHOS, oxidative phosphorylation; FAS, fatty acid synthesis; FAO, fatty acid oxidation; Glucose 6-P, glucose 6-phosphate; Fructose 6-P, fructose

6-phosphate; Fructose-1,6-BP, fructose 1-6-biphosphate; G3P, glyceraldeyde 3-phospate; Acetyl-CoA, acetyl-Coenzyme A; α-KG, alpha-ketoglutarate; e-, electrons;

CI, CII, CIII, CIV, CV, complex I, II, III, IV, V; UDP-GlcNAC, Uridine diphosphate N-acetylglucosamine.

of M1 macrophages as it facilitates rapid glucose uptake (29).
Additionally, HIF1α supports the conversion of pyruvate into
lactate by promoting the expression of two enzymes: the lactate
dehydrogenase (51), which produces lactate from pyruvate, and
the pyruvate dehydrogenase kinase (52, 53), which inactivates
pyruvate dehydrogenase thus limiting pyruvate entering into the
Krebs cycle. In M1 macrophages, in which OXPHOS is limited,
the conversion of pyruvate into lactate is essential to restore
NAD+ and maintain flux through the glycolytic pathway.

Two additional points of the glycolytic flux regulation
occur at the level of the 6-phosphofructo-2-kinase B (PFKFB)
and the pyruvate kinase M2 (PKM2). M1 macrophages
express predominantly the PFKFB3 isoform (53) which, if
compared to the other isoforms, less efficiently catalyzes
the conversion of fructose-2,6-bisphosphate in fructose 6-
phosphate, enhancing the glycolytic flux. Moreover, M1 cells
upregulate the isoform 2 of the pyruvate kinase (PKM2),
which plays multiple roles in macrophage metabolism and
polarization. Indeed, when highly expressed, PKM2 exists
in an equilibrium of enzymatically inactive monomers or
dimers and enzymatically active tetramers (53). The inactive
enzyme translocates into the nucleus and, by binding to
HIF1α, triggers the expression of HIF1α-regulated genes (53–
56), whereas the enzymatically active tetramers are retained
in the cytoplasm and promote glycolysis as well as M1
polarization (53).

As mentioned above, the oxidative steps of the PPP are
crucial for macrophages: oxidation of glucose leads to the
reduction of NADP+ to NADPH, which is fundamental not
only for NADPH oxidase and macrophage’s killing activity
but also for anti-oxidant defense mechanisms and fatty acid
biosynthesis, required for prostaglandin production. Indeed, the
oxidative PPP activity is prominent in M1 macrophages (31) and
the knockdown of 6-phosphogluconate dehydrogenase (PGD),
which converts 6-phosphogluconate into ribulose 5-P, generates
a deficient pro-inflammatory response in macrophages during
hypercholesterolemia (57). On the other hand, as expected, the
non-oxidative branch of PPP is repressed in M1 macrophages
(32). This occurs through the downregulation of sedoheptulose
kinase (CARKL), a carbohydrate kinase-like protein that is
involved in the conversion of sedoheptulose into sedoheptulose-
7-phosphate (58). In line with this finding, overexpression of
CARKL in macrophages results in defective M1 polarization and
dampened inflammatory response (57, 58).

The role of glycolysis in M2 macrophage functions is more
controversial. Several studies have shown that glycolysis is
active in M2 cells and that its blockade with 2-deoxyglucose
(2-DG), a well-established glycolysis inhibitor, may inhibit
M2 polarization and functions (19, 59). On the other hand,
more recent data suggest that glycolysis is not required for
M2 differentiation, as long as OXPHOS remains intact (60).
This suggests that M2 macrophages display a more flexible
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metabolic activity since they can supply OXPHOS even in
absence of glycolysis using glutamine (60). Another control
point of glycolysis in M2 macrophages is represented by the
selective expression of the glycolytic enzyme 6-phosphofructo-
2-kinase B1 (PFKFB1), which much more efficiently catabolizes
fructose-2,6-bisphosphate, an activator of glycolysis, to fructose-
6-phosphate, lowering the glycolytic rate (61, 62). Finally, in
the M2 phenotype, CARKL is upregulated, enhancing the non-
oxidative steps of PPP, which can lead to ribose-5P production,
necessary for nucleotide and UDP-GlcNAC synthesis (58). UDP-
GlcNAC is required for N-glycosylation, which is essential for
the modification of different cell surface proteins (i.e., CD206)
abundantly expressed in M2 macrophages (32).

The metabolic differences between M1 and M2 cells impact
on the ability of these cells to generate ROS. In a situation of
coupled and efficient respiration, the amount of ROS produced
by the electron transport chain (ETC) is kept under control
and at low levels. In conditions of OXPHOS dysfunction, a
significant leakage of electrons occurs, which, in the presence
of oxygen, produces ROS (63, 64). This is the case of pro-
inflammatory macrophages, in which polarization profoundly
modifies the OXPHOS, leading to ROS production. Although CI
and CIII are considered the main sites of mitochondrial ROS
production, recent studies suggest that ROS are generated by
reverse electron transport (RET) at CI of the ETC rather than
CIII, in a situation of impaired OXPHOS (65). The evolutionary
conserved signaling intermediate in Toll pathways (ECSIT),
a TRAF6 target for ubiquitination and CI-associated protein,
is a master regulator of ROS production and mitochondrial
quality control in macrophages. In particular, after phagocytosis
of bacteria, ECSIT triggers recruitment of mitochondria to the
phagosome to produce ROS that activate NADPH oxidase to
kill bacteria (63). Other than being a harmful byproduct of
metabolism, cellular ROS have emerged as master regulators of
cellular signaling through the activation of many redox-sensitive
pathways [extensively reviewed in (66)]. In macrophages, ROS
are known to regulate several functions, including phagocytosis,
bacterial killing, and polarization into specific phenotypes.
Mitochondrial ROS are known to sustain inflammation by
mediating IL-6, TNF-α, and IL-1β cytokine secretion, through
a mechanism involving mitochondrial ROS-dependent MAPK
activation (67).

THE KREBS CYCLE

Once pyruvate is generated, it becomes oxidized through a series
of reactions termed the Krebs or Tricarboxylic Acid (TCA) cycle
(Figure 2). The continuous flux through this cycle utilizes acetyl
CoA, deriving from the breakdown of carbon-based nutrients, to
reduce NAD+ and FAD to NADH and FADH2, which are then
oxidized leading to ATP production. M2-like macrophages are
known to display a functional and intact TCA cycle, which is
crucial to meet the ATP demand due to the high (UDP-GlcNAc
requiring) glycosylation levels of lectin and mannose receptors
necessary for M2 macrophage function (32). At variance with
M2 metabolism, the increased flux of glycolysis displayed by

M1macrophages is accompanied by metabolic changes involving
the Krebs cycle, which are not only important for anabolic or
energetic purposes, but also for sustaining the inflammatory
response (68–70). Indeed, in pro-inflammatory macrophages,
the Krebs cycle is interrupted at several key points allowing
signal metabolites citrate, succinate and itaconate to escape
mitochondria and exert their regulatory role.

Citrate
Citrate production and conversion connects mitochondrial and
cytosolic metabolism. It is produced in the Krebs cycle by
condensation of oxaloacetate and acetyl-CoA, the latter deriving
from glycolytic pyruvate or from the catabolism of fatty acids.
Citrate is converted to isocitrate and then to α-ketoglutarate
(αKG), through the activity of isocitrate dehydrogenase (IDH).
However, citrate can also be exported into the cytosol in
exchange with malate through the transport activity of the
mitochondrial citrate carrier (CIC), also known as solute
carrier family 25 member 1 (SLC25A1) (71, 72). Once in
the cytosol, citrate displays a plethora of regulatory roles. It
inhibits glycolysis, by acting directly on phosphofructokinase
(PFK) 1 and 2 and, indirectly, on pyruvate kinase (PK) (73);
it stimulates lipid synthesis, through the activation of acetyl-
CoA carboxylase (ACC) (74), and gluconeogenesis, through the
activation of fructose-1,6-bisphosphatase. Cytosolic citrate is also
a substrate of ATP-Citrate lyase (ACLY), producing acetyl-CoA
and oxaloacetate (72). Oxaloacetate can be converted to malate
by malate dehydrogenase (MDH). Malate can be transported
back into the mitochondrial matrix in exchange with citrate
through CIC (75) or can lead to pyruvate through the NADPH
producing-malic enzyme (76). Through ACLY activity, cytosolic
citrate positively regulates protein and histone acetylation (77).

Because of its major role in controlling cell metabolism, citrate
plays a crucial role in sustaining macrophage inflammatory
response (Figure 3). M1 macrophages are characterized by
accumulation of citrate due to two main transcriptional changes,
such as downregulation of IDH (32) and upregulation of
the mitochondrial citrate carrier CIC (71), leading to citrate
withdrawal from mitochondria. CIC upregulation occurs in
response to LPS, TNF-α, or IFN-γ stimulation. Both these events
are responsible for the first interruption of the Krebs cycle
and accumulation of citrate in the cytosol of M1 macrophages,
which is crucial for NO, ROS, and prostaglandin E2 (PGE2)
production (71, 78). Pharmacological or genetic targeting of
CIC in human macrophages results in decreased levels of these
inflammatory mediators (79), suggesting that citrate export
supports fatty acid synthesis (FAS) on which PGE2 synthesis
relies as well as the reduction of NADP+ to NADPH, necessary
for NO and ROS production, by means of the activity of
the malic enzyme. CIC acetylation is required to additionally
boost mitochondrial citrate export in macrophages activated in
conditions of glucose deprivation; in this manner, the NADPH
demand, that cannot rely on PPP, may be met through the
NADPH–producing conversion of citrate into 2-ketoglutarate,
catalyzed by the cytosolic NADP+-dependent IDH (IDH1) (80).

Another crucial role of citrate is in providing, through
conversion to acetyl-CoA, the acetyl moiety for the acetylation
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FIGURE 3 | Overview of macrophage metabolic pathways. This diagram depicts the main macrophage pathways during classical and alternative polarization and

their components. In red, proteins upregulated in pro-inflammatory (M1) activation; in blue, proteins upregulated during anti-inflammatory (M2) activation. α-KG,

alpha-ketoglutarate; ACLY, ATP citrate lyase; ARG1, arginase1; CARLK, carbohydrate kinase-like protein; CPT, carnitine palmitoyl transferase; ETC; Electron Transport

Chain; FAO Fatty acid oxidation; FAS, Fatty acid synthesis; GS, glutamine synthetase; GLUT1, glucose transporter 1; IDH, Isocitrate dehydrogenase; IDO, indoleamine

dioxygenase; iNOS, inducible nitric oxide synthase; LDH, lactate dehydrogenase; NO, nitric oxide; NOX, NADPH oxidase; ODC, ornithine decarboxylase; PGD,

phosphogluconate dehydrogenase; PHD, prolyl hydroxylase; PPP, Pentose phosphate pathway; PFKFB3, phosphofructokinase fructose 2,6-biphosphatase B3;

PKM2, pyruvate kinase M2; ROS, Reactive Oxygen Species; SDH, Succinate dehydrogenase; SUCNR1, succinate receptor 1; TCA, Tricarboxylic acid cycle or

Krebs cycle.

of proteins, which is known to regulate protein function at
multiple levels (81). Protein acetylation requires the presence
of acetyl-CoA in different cellular compartments and it relies
on the activity of ATP citrate lyase (ACLY), which converts
citrate in acetyl-CoA. Similarly to CIC, ACLY is upregulated in
M1 macrophages (78) and its activity regulates the expression
of many genes through histone acetylation (82). Although
no specific studies address the role of ACLY in regulating
epigenetic changes in M1 macrophages, many enzymes and
proteins are known to be affected by acetylation (83), among
which NF-κB (84), IL-6, and IL-10 (85, 86). In M2 macrophages
ACLY is regulated by the Akt-mTORC1 axis, leading to histone
acetylation and induction of some M2 genes (87). However, a
recent study has shown that polarization of human macrophages
toward an M2 phenotype does not require ACLY (88).

Itaconate
Itaconate is produced from cis-aconitate in the Krebs cycle in
classically activated macrophages (89, 90). This occurs through
a strong upregulation of the enzyme aconitate decarboxylase 1
(ACOD1), originally called immune-responsive gene 1 protein
(IRG1) (91). In this pathway, cis-aconitate is withdrawn from

the Krebs cycle to produce this metabolite. Interestingly,
upregulation of ACOD1 has been reported not only in cell lines
and murine M1 macrophages, but also in septic patients (92).

The well-known anti-bacterial properties of itaconate rely
on its ability to inhibit the bacterial isocitrate lyase and
its bactericidal properties against gram-positive and gram-
negative bacteria (93–95). In addition, itaconate may play a
role in immunomodulation, suppression of inflammation and
tolerance (96).

Itaconate was shown to inhibit SDH, leading to accumulation
of succinate in LPS activated macrophages [(27–35); Figure 3],
and this was associated to reduced mitochondrial respiration,
ROS production, proinflammatory cytokine release, and
inflammasome activation (96). The mechanism by which
itaconate induces these metabolic and functional changes in
macrophages was recently elucidated by Mills et al.: itaconate
contributes to stabilize the levels of the anti-inflammatory
transcription factor nuclear factor erythroid 2-related factor
2 (NRF2), which targets genes involved in anti-inflammatory
and anti-oxidant response (97). Itaconate mediates a post-
translational alkylatingmodification on –SH groups of Kelch-like
ECH-associated protein 1 (KEAP1), causing its fast degradation.
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Since KEPA1 targets NRF2 for proteasomal degradation (98),
its itaconate-mediated degradation allows NRF2 to translocate
to the nucleus, leading to transcription of genes involved in
protection against stress-induced cell death and oxidative
stress. Concomitantly, NRF2 suppresses the expression of genes
encoding IL-1β and IL-6 (99).

The chemical features of itaconate, particularly its
electrophilicity, make the molecule reactive toward the cysteine
groups of glutathione and proteins. It has been speculated that
itaconate could trigger the electrophilic stress response (ESR), by
modifying –SH residues of proteins and depauperating the cell
from glutathione (100). It is then conceivable that other targets,
besides the KEAP1–NRF2 axis, that are known to sense ESR,
could be influenced by itaconate.

With respect to M2 macrophages, the role of itaconate has not
been clearly elucidated. When M2 macrophage differentiation is
impaired, IRG1 expression increases and itaconate accumulates
in macrophages (101), probably as a compensatory effect.
Furthermore, itaconate has been identified as a key player in
the microRNA miR93, IRF9, IRG1 axis during macrophage
polarization. In particular reduction of itaconate levels favors
M2-like polarization in macrophages and this might be ascribed
to the release of the SDH brake improving OXPHOS flux (102).

Succinate
Succinate is an intermediate of the Krebs cycle produced
from succinyl-CoA. It is the substrate of SDH, which is part
of Complex II of the mitochondrial respiratory chain. SDH-
mediated oxidation of succinate into fumarate is coupled to
reduction of ubiquinone (UQ) to ubiquinol (UQH2). When high
amounts of succinate are oxidized to fumarate in conditions
of no ATP production, electrons flux in the opposite direction
toward complex I, leading to reverse electron transport (RET).
This associates to a significant release of ROS, which can activate
HIF1α in M1 macrophages (65, 103).

In addition to its role as metabolic intermediate, succinate
works as a signaling molecule in many ways. Succinate is
transported into the cytosol by the activity of the dicarboxylate
carrier (DIC), also known as solute carrier family 25 member
10 (SLC25A10) (72). Succinate influences HIF1α stability by
inhibiting prolyl hydroxylases (PHDs), a class of αKG-dependent
dioxygenases that regulate HIF1α stability in an oxygen-
dependent manner, thus blocking HIF1α degradation in the
presence of oxygen [(31); Figure 3].

High cytosolic succinate levels favor post-translational lysine
succinylation on proteins, a process that profoundly modifies
protein functions since it alters their charge and structure (104,
105). In the case of pyruvate kinase M2, succinylation promotes
its translocation into the nucleus, where it interacts with HIF1α
to boost IL-1β transcription (106). In sirtuin 5-deficient mice,
pyruvate kinase M2 hyper-succinylation has been described as
a strategy to sensitize mice to experimental colitis due to the
increased IL-1β production (106).

Succinate exerts signaling roles also acting at the
extracellular level. During inflammation, succinate is released
by inflammatory macrophages and can accumulate into the
extracellular milieu (107), as observed in murine ischemic or

hypoxic tissue (108–110), inflammation of the central nervous
system (111), as well as in biological fluids of rheumatoid arthritis
patients (112). Once outside the cell, it can bind to the succinate
receptor SUCNR1/GPR91, a G-protein–coupled cell surface
sensor for extracellular succinate (113) expressed in many cell
types, that is known to be activated in diabetic retinopathy
(108), diabetic renal disease (114), hypertension (113, 115), and
atherothrombosis (116). Interestingly, macrophages express
GPR91 and, in response to inflammatory signals like LPS,
they activate a GPR91-mediated signal transduction that
sustains the proinflammatory phenotype and leads to IL-1β
production [(117, 118); Figure 3]. This represents a novel
mechanism by which succinate fuels inflammation in a autocrine
manner to sustain and amplify the inflammatory response
(118). Interestingly, in an in vivo model of experimental
autoimmune encephalomyelitis (EAE), GPR91 expressed by
transplanted neural stem cells exerted a protective role against
neuroinflammation which was mainly due to their scavenging
effects and reduction of the succinate levels in the cerebrospinal
fluid (111).

AMINO ACID METABOLISM IN THE
INNATE IMMUNITY

Amino acid availability is essential to mount a proper immune
response. During inflammatory or immune reactions,
amino acid deficiency may result in defective immune
cell migration, division, maturation, and completion of
effector functions. Macrophage adaptation to rapidly changing
nutrient sources implicates exploiting amino acid catabolism to
sustain activation and maintenance of their immune activity.
Amino acid availability controls several pathways governing
macrophage responses, including mTOR signaling and NO
production. Moreover, altered amino acid metabolism can
influence macrophage responses by generating catabolites
with immunomodulatory properties. Finally, the metabolic
competition or cross talk between host immune cells and
pathogens may affect the evolution of an infection.

Arginine represents the best example of how a strict
metabolic regulation can drive opposite phenotypes, depending
on which metabolic pathway is engaged (Figure 3). Under pro-
inflammatory stimuli, such as LPS, TNF-α, or IFN-γ, iNOS
(also known as NOS2) is overexpressed, channeling arginine
catabolism toward NO and citrulline production. NO production
is functional to boost macrophage anti-microbial activity: NO
spontaneously reacts with oxygen or ROS to produce reactive
nitrogen and oxygen intermediates that lead to the formation
of a variety of antimicrobial species (119). Most importantly,
NO prevents M1 to M2 repolarization, since the blockade
of iNOS gives to M1 macrophages the ability to repolarize
into M2, when exposed to IL-4 after LPS + IFN-γ treatment
(120). On the other hand, citrulline produced by iNOS is used
by argininosuccinate synthase 1 to produce argininosuccinate,
which is promptly broken to recover arginine and sustain
NO production (121). In contrast to M1 macrophages, anti-
inflammatory M2 macrophages overexpress ARG1 that produces
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ornithine and urea from arginine catabolism. Ornithine is
transformed by ornithine decarboxylase (ODC) to polyamines
(putrescine, spermidine, and spermine) that control cell growth
and are important for tissue repair. Interestingly, it has
been recently reported that ODC limits M1 activation and
macrophage anti-microbial activities by chromatin modification
(122). Moreover, arginase competes with iNOS for arginine,
and many pathogens exploit this by increasing expression of
arginase and thus block NO production (123, 124). ARG1 activity
in macrophages triggers an anti-inflammatory phenotype and
reduces T-cell proliferation and cytokine production (117).

Although ARG1 and iNOS are competitively regulated by
Th1 and Th2 cytokines and complex intracellular biochemical
pathways, including negative feed-back loops and competition
for the same substrate (125), simultaneous activation of ARG
and NOS pathways occurs in myeloid cells licensed by the tumor
(126). In tumor-infiltrating myeloid cells, L-Arg is metabolized
by ARG1, ARG2, and iNOS. ARG and NOS co-activation within
the same environment leads to production of several ROS and
reactive nitrogen species (RNS) by the iNOS reductase domain
at low L-Arg concentrations (127–131). Peroxynitrite produced
by myeloid and tumor cells can nitrate tyrosine residues in the
TCR and CD8 receptors, resulting in decreased recognition of
peptide–MHC complexes (132) and T cell dysfunction (133);
moreover, RNS can induce post-transcriptional modifications
of chemokines and thus prevent intra-tumoral infiltration of
antigen-specific T cells (134).

Tryptophan metabolism is a major mechanism of peripheral
immune tolerance. In immune cells, the limiting step of
tryptophan catabolism is mediated by indoleamine 2,3-
dioxygenase (IDO) that converts tryptophan into kynurenine
(Figure 3). Although IDO expression is induced by IFN-γ,
TNF-α, or prostaglandins, macrophages are driven toward
an M2 phenotype when IDO is overexpressed, and IDO
silencing promotes a pro-inflammatory macrophage profile
(135). Macrophages that express high levels of IDO may deplete
extracellular tryptophan, thus affecting T-cell proliferation
and functions (136, 137). TAMs, and sometimes tumor cells
themselves, upregulate IDO and create an immunosuppressive
microenvironment via at least two mechanisms: tryptophan
depletion and accumulation of tryptophan catabolites, such
as kynurenine, 3-hydroxyanthranilate, and quinolinate (137–
139). From a mechanistic point of view, while tryptophan
depletion inhibits rapid expansion of activated T cells,
tryptophan-derived catabolites act as ligands of the aryl
hydrocarbon receptors (AHR) (140). Kynurenine is a potent
suppressor of T cell immunity: by stimulating AHR, it
skews the differentiation of naive T cells toward FoxP3+

regulatory T cells (Tregs), whereas it suppresses Th17 cells
differentiation (141).

In immune cells, glutamine is used for amino acid and
nucleotide synthesis, NADPH and energy production, and many
other biosynthetic pathways involved in cell proliferation and
functions. Macrophages utilize glutamine at high rates and are
dependent upon extracellular sources of the amino acid (76,
142). During macrophage activation, the different routes of
glutamine consumption direct its role to promote either the

M1 or M2 phenotype. Channeling of glutamine into the Krebs
cycle is the main route to promote succinate synthesis in M1
macrophages, with the GABA shunt (a bypass of the TCA cycle
in which glutamine is used for synthesis of glutamate, GABA,
succinic semialdehyde, and eventually succinate) also playing
a role (31). This is fundamental to stabilize HIF1α (33). On
the other hand, glutamine metabolism drives M2 polarization
by acting at multiple levels: (i) α-ketoglutarate generated from
glutaminolysis is essential for M2 OXPHOS and FAO; (ii) α-
ketoglutarate generated from glutaminolysis promotes an M2
phenotype by macrophage epigenetic reprogramming, involving
demethylation of H3K27 on the promoters ofM2-specificmarker
genes (143); (iii) α-ketoglutarate generated from glutaminolysis
favors PHD activity and thus inhibits HIF1α expression; (iv)
glutamine provides substrate for the UDP-GlcNAc synthesis
(Figure 3). Indeed, the pathway for UDP-GlcNAc synthesis
is upregulated in M2 macrophages and is essential for the
glycosylation of different proteins expressed abundantly in M2
macrophages (32). Tracing experiments in M2 cells with 13C-
and 15N-glutamine have shown that a third of all carbon in TCA
metabolites and more than half of the nitrogen in UDP-GlcNAc
derive from glutamine (32), providing further evidence for the
essential role of glutamine metabolism in M2 differentiation of
macrophages. Thus, M2 cells do not exclusively rely on glutamine
uptake for their metabolism, but they induce glutamine synthesis
from glutamate and ammonia via glutamine synthetase (GS).
While GS is barely detectable in M1 macrophages, highly GS
expression in M2 macrophages, particularly in response to IL-
10, is fundamental for the acquisition of a M2-like phenotype
(144). Indeed, GS inhibition skews IL-10 stimulatedmacrophages
to a M1-like state, through a mechanism involving metabolic
reprogramming (144, 145). Additionally, GS ablation in TAMs
reduces M2 markers, such as ARG1 and CD206, and decreases
tumor metastasis in mice (144, 145).

LIPID METABOLISM IN INNATE IMMUNITY

Cellular lipid metabolism comprehends several key enzymatic
processes that lead to the synthesis or the degradation of
lipids (cholesterol, fatty acids, and phospholipids, Figure 2).
As specialized phagocytic cells, macrophages are capable to
uptake different forms of lipids such as LDL, VLDL, and
oxidized lipoproteins from both engulfed dying cells and
microenvironment via phagocytosis, macropinocytosis, and
scavenger receptor-mediated pathways (146). After that, all
ingested lipids are processed by acid lipases within the lysosomes,
leading to the generation of free fatty acids and cholesterol (147).
Free fatty acids are subsequently transported into mitochondria,
where they are converted by the FAO pathway into different
products that continuously replenish the TCA cycle with acetyl-
coenzyme A, or the ETC through the generation of NADH and
FADH2 (148).

On the other side, if metabolically required, FAS is induced
through mTOR signaling within the cytosol. Notably, the FAS
pathway permits the generation of lipids by using different
precursors of TCA cycle, glycolysis and PPP pathway (149).
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Transcriptional regulation of lipid metabolism is tightly
controlled by sterol receptor element binding protein (SREBP)
and liver X receptor (LXR). In macrophages, SREBP-1a and
LXRα are highly expressed and regulate cytokine release and
cell responses (150, 151). LPS treatment increases macrophage
SREBP-1a activity via NF-κB, and macrophages deficient in
SREBP-1a fail to produce IL-1β upon LPS stimulation (152),
thus connecting lipid metabolism and inflammasome activation
in M1 macrophages (153). In contrast, M2 macrophages are
characterized by LXR activation, which regulates cholesterol
homeostasis and lipid synthesis (154). Overexpression or
activation of LXRα dampens M1 responses and inflammation by
inhibiting the activity of NF-κB and AP-1 (155, 156).

It is clear that differential induction of FAS and FAO
elicits macrophage polarization toward the M1 and M2 profiles,
respectively (Figure 3). FAS represents an important pathway
for energy production and prostaglandin biosynthesis in M1
cells; moreover, the accumulation of malonyl-CoA, product of
the first step of FAS, can induce post-translational modifications
(malonylation) that modulate responses of pro-inflammatory
macrophages. On the other side, the main sources of fatty
acids in M2 derive from uptake via the scavenger receptor-
mediated pathway (157) and through lysosomal lipolysis
mediated by lysosomal acid lipase, all these pathways being
up-regulated upon IL-4 stimulation (147). M2 macrophages
rely on fatty acid uptake and oxidation, which are supported
by STAT6, the PPARγ (158) and its co-activator 1 (PGC1)
(159). Indeed, M2 polarization could be prevented by inhibiting
FAO, using a pharmacological approach targeting the carnitine
palmitoyltransferase (CPT) system which mediates fatty acid
translocation within mitochondria (160, 161). However, it has
been recently reported that genetic ablation of CPT2 does not
prevent macrophage polarization toward M2 profile upon IL-
4 stimulation, both in vitro and in vivo (162). Interestingly,
a recent work highlights the involvement of glutaminolysis-
derived α-ketoglutarate as a positive metabolic regulator of FAO
(163), thus suggesting further connections between different
metabolic pathways.

MACROPHAGE METABOLISM
IN DISEASES

Alterations in macrophage polarization, function, and metabolic
signature are present in various human diseases. In inflammatory
diseases, such as sepsis, rheumatoid arthritis, and atherosclerosis,
as well as in metabolic diseases, including obesity and diabetes,
macrophages display prolonged or atypical M1 polarization; on
the other hand, cancer growth is often associated with “M2-
like” responses of TAMs (25, 164). A discussion of the role of
macrophage metabolic adaptations in human diseases is not the
focus of our review but here we briefly analyze some aspects
of macrophage metabolic pathways in two conditions: obesity
and cancer.

Among the immune cells that infiltrate obese adipose tissue,
macrophages are functionally and numerically dominant (165).
In the adipose tissue of lean mice, macrophages are 10–15% of

cells, whereas they represent 45–60% of cells in the adipose tissue
of obese animals (166). In addition to the difference in their
numbers, adipose tissue macrophages in lean and obese animals
exhibit distinct localizations and responses. Adipose tissue
macrophages in lean animals have an alternatively activated
(M2) phenotype, are anti-inflammatory and are uniformly
dispersed throughout the adipose tissue, whereas adipose tissue
macrophages of obese mice have a pro-inflammatory, classical
(M1) phenotype and are primarily found in “crown-like”
structures around dying adipocytes (167, 168). In lean adipose
tissue, M2 macrophages have a crucial role in maintaining the
insulin sensitivity of adipocytes via the secretion of interleukin-10
(IL-10) (158, 167), a regulatory cytokine that potentiates insulin
signaling in adipocytes (165). By contrast, classically activated
macrophages in obese adipose tissue secrete pro-inflammatory
cytokines, which induce insulin resistance (165).

Fatty acids and TNF-α have been shown to induce
M1 polarization in obesity (165) but also glucose, insulin,
and obesity-induced hypoxia trigger macrophages toward a
pro-inflammatory phenotype (169). Interestingly, in a study
analyzing the metabolic signature in obese and normal-weight
children, the serum concentration of glutamine was lower in
obese children than in normal-weight ones (170). Moreover,
a high ratio of glutamine to glutamate in the plasma is
associated with a lower risk of diabetes mellitus (171). Because
skeletal muscles participate in maintaining the concentration
of glutamine in serum, the reduction in muscle mass in obese
patients may account for reduced serum concentrations of
glutamine (172). In addition, in the subcutaneous adipose tissues
of obese patients there are higher concentrations of glutaminase
and lower concentrations of glutamine synthase, compared
with the lean subjects (173). Glutamine is known to promote
M2 macrophage polarization (see above) and thus glutamine
supplementation may represent a strategy to target macrophage
polarization in obesity. Although a few studies have shown that
therapeutic administration of glutamine is beneficial in obesity
and diabetes, the direct effects of this metabolic targeting on
macrophages is not proven (172).

As already discussed, the succinate receptor SUCNR1/GPR91
is known to play a role in several diseases including diabetic
retinopathy (108), diabetic renal disease (114), hypertension
(113, 115), atherothrombosis (116), neuroinflammation (111),
rheumatoid arthritis (114), and metabolic dysfunctions (174).
Interestingly, the concentration of succinate in plasma is
higher in patients with type 2 diabetes than in non-diabetic
individuals (174) and it is significantly associated with the
body mass index (BMI) (175). Thus, targeting succinate and its
receptors may represent an interesting therapeutic strategy to
modulate macrophage responses and inflammation in several
pathological contexts.

It is highly probable that the metabolic signature of TAMs
depends on the surrounding microenvironment and may thus
be different in different tissues. In general terms, and on the
basis of the recent publications, TAMs seem to depend on
glycolysis for their metabolic needs and produce lactate at high
concentration (79, 176). Lactate (177), in turn, induces VEGF
and ARG1, thus promoting a pro-angiogenic signature, and
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potentiates glycolysis by activating the Akt/mTOR pathway.
However, when cancer grows, hypoxia induces in TAMs up-
regulation of REDD1 (regulated in development and in DNA
damage response 1), which inhibits mTOR, and thus inhibits
glucose uptake by macrophages and glycolysis. This is associated
with an increased angiogenic response and formation of aberrant
leaky vessels due to enhanced glucose availability for endothelial
cells (178).

As mentioned above, TAM-produced lactate induces ARG1,
which depletes arginine and is directly involved in TAM-induced
immunosuppression. On the other hand, highly overexpressed
cyclooxygenase in TAMs induces IDO expression, which
depletes tryptophan thus suppressing T cell responses. Therefore,
macrophage functions in the tumor microenvironment are
regulated by a complex and interconnected reprogramming
involving glucose, amino acid, and lipid metabolism.

CONCLUSIONS

Macrophage metabolic adaptations have been deeply analyzed
during the last years and have emerged as critical factors
regulating a variety of cell responses. Pathogen or inflammatory
signals drive macrophage differentiation toward the acquisition
of new functions by rapidly modulating the expression of
key genes. Associated to this program is a remodeling of
the metabolic pathways that sustains, from an energetic,
biosynthetic, and regulatory point of view, its execution

(Figure 3). Information from studies on inflammation-linked
diseases is teaching us that pathological immune response
might be underpinned by aberrant metabolic rewiring (145,
179, 180). Several metabolic products play important roles
as signaling mediators, affecting not only macrophages but
also neighboring cells, thus representing interesting targets for
therapeutic strategies (181). To this aim, it is fundamental to
understand the interplay between metabolism and immunity
by dissecting the different metabolic reactions important
for the acquisition of specific functions. On the other
hand, it is becoming evident that the different metabolic
pathways are strongly interconnected and that positive and
negative feedback loops are involved in amplification or
dampening of immune responses. Thus, as growing literature
defines metabolic processes and pathways in macrophages, the
ultimate goal is an integrated view of the metabolic networks
regulating inflammation, immunity, and tissue responses to
homeostasis perturbations.
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Viral replication is a process that involves an extremely high turnover of cellular

molecules. Since viruses depend on the host cell to obtain the macromolecules needed

for their proper replication, they have evolved numerous strategies to shape cellular

metabolism and the biosynthesis machinery of the host according to their specific

needs. Technologies for the rigorous analysis of metabolic alterations in cells have

recently become widely available and have greatly expanded our knowledge of these

crucial host–pathogen interactions. We have learned that most viruses enhance specific

anabolic pathways and are highly dependent on these alterations. Since uninfected

cells are far more plastic in their metabolism, targeting of the virus-induced metabolic

alterations is a promising strategy for specific antiviral therapy and has gained great

interest recently. In this review, we summarize the current advances in our understanding

of metabolic adaptations during viral infections, with a particular focus on the utilization

of this information for therapeutic application.

Keywords: virus, metabolism, rhinovirus, host-pathogen interaction, metabolome

CELLULAR METABOLISM: THE NOVEL FRONTIER OF

HOST–PATHOGEN INTERACTION

Viruses depend on the host cell to obtain the macromolecules and biosynthesis machinery required
for their replication. In order to ensure the undisturbed supply of these elements, viruses have
evolved a plethora of strategies to shape host-cell metabolism according to their specific needs.
The simultaneous course of both the activation of host cell defense mechanisms and the high
biomolecular turnover associated with virion production results in a highly anabolic cellular state.
This is often accompanied by upregulation of the ingestion of an extracellular carbon source (e.g.,
glucose or glutamine) and a redirection of these carbon supplies to metabolic pathways crucial
for viral replication, such as lipogenesis and nucleotide synthesis. However, not only do viruses
shape host-cell metabolism in order to obtain supplies for virion production, but they also induce
a reorganization of the cellular membrane and biosynthesis machinery, which is accompanied by
alterations in lipid metabolism, as we shall explain later.

The first insights into the dependence of viruses on certain carbon sources were
gained decades ago, when researchers focused on investigating the consequences
of glucose or glutamine deprivation on viral replication (1–6). However, it was
the availability of mass spectrometry (MS)-based analysis of the metabolome that
enabled fast progress toward an in-depth understanding of the interaction between
viruses and host-cell metabolism. Munger et al. pioneered the field in 2006, when
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they showed that human cytomegalovirus (HCMV) not only
was highly dependent on extracellular carbon but also induced
a plethora of alterations in host-cell metabolism that are required
for proper replication (7). MS-based assessment of the host
cell metabolome and carbon flux has since then become widely
available and has enabled the investigation of host–pathogen
interactions in detail. Furthermore, the acquired knowledge on
these processes has enabled the establishment of several antiviral
strategies, and the exploitation of the novel metabolic insights
in terms of therapy has only just begun. Herein, we review
the recent progress made toward our understanding of the
interactions between viruses and host-cell metabolism, and we
will also elaborate on strategies that might result in targeted
antiviral therapy.

GLUCOSE AND GLUTAMINE:

VIRUS-INDUCED FEEDING OF THE

TRICARBOXYLIC ACID CYCLE

Under homeostatic and aerobic conditions, cells maintain their
energy productionmainly by aerobic glycolysis, which is followed
by feeding pyruvate into the tricarboxylic acid (TCA) cycle
and subsequent utilization of reduced molecules in oxidative
phosphorylation. However, under anaerobic conditions, pyruvate
is converted to lactate, which is then eliminated by efflux from
the cell. Aside from anaerobic conditions, this phenomenon
can often be observed even under normal oxygen conditions,
as was first described in cancer cells by Otto Warburg and
has thus been termed the Warburg effect (8). Under these
circumstances, the intermediates of the TCA cycle are mainly
fed into anabolic processes, such as lipogenesis. Cells infected
by certain viruses appear to adopt similar metabolic alterations
in order to cope with the high anabolic demands of virion
production. Nonetheless, there are highly unique patterns of
virus-induced reshaping of host cell metabolic processes and the
mode of manipulation appears to be different between DNA and
RNA viruses.

DNA Viruses
Members of the Herpesviridae are probably the best-studied
group of viruses in terms of their impact on cellular metabolism.
Herpes simplex virus-1 (HSV-1) was among the first viruses
for which a dependency on extracellular glucose was shown.
Deprivation of glucose from the medium had detrimental effects
on virion production, whereas glutamine appeared to be more
dispensable for the replication of this virus (2). Later studies
confirmed the dependency of HSV-1 on glucose, as the glycolysis
inhibitor 2-deoxyglucose (2-DG) also impaired viral replication
(4, 9). 2-DG is a glucose analog that impairs the function of
phosphoglucose isomerase and thus results in both an inhibition
of glycolysis and the processing of glucose toward the TCA
cycle (in contrast to the more downstream inhibitor oxamate
that inhibits only anaerobic glycolysis). Abrantes et al. found
that HSV-1 increased the glucose uptake, lactate efflux, and ATP
content of HSV-1 infected cells, which was accompanied by an
activation and enhanced expression of phosphofructokinase-1,

a rate-limiting enzyme in glycolysis (10). In contrast, using a
metabolomic screening, Vastag et al. found that glycolysis was
not markedly induced by HSV-1, and the virus instead triggered
anaplerotic (glutamine-dependent) feeding of the TCA cycle
and an enhancement of pyrimidine synthesis (11). A possible
explanation could be that the uptake of glucose mainly shifted
to nucleotide synthesis pathways rather than glycolysis or the
TCA cycle, which was further underlined by the increase in
pentose phosphate pathway intermediates in the metabolomic
analysis and would explain the high susceptibility of this virus
to nucleotide analog treatment (11).

HCMV, another important member of the Herpesviridae
family, causes significant morbidity in immunosuppressed
individuals (12–14). Since the metabolic alterations caused by
this virus have already been extensively reviewed recently (15),
we will only briefly discuss the main findings in order to better
delineate the concepts of differential metabolic alterations by
viruses. Early investigations had hinted toward a manipulation
of host-cell metabolism by HCMV, where it was shown that
glucose uptake was enhanced in infected cells (5). In the first
metabolomic study of virus-infected cells conducted by Munger
et al. the authors were able to show that metabolites from
glycolysis, TCA cycle, and pyrimidine pathways were increased
upon infection, which was accompanied by the upregulation
of enzymes involved in these pathways (7). Further carbon
flux analysis delineated how an increase in glucose uptake
results in a fast processing through glycolysis and the TCA
cycle toward fatty acid (FA) biosynthesis (16). The expansion
of pyrimidine metabolite pools was found to be of particular
importance for the correct glycosylation of viral proteins,
as pyrimidine feeds into glycosylation pathways via UDP-
sugars (17). Mechanistically, early HCMV gene expression was
shown to be responsible for the changes in glycolytic flux and
appeared to be dependent on Ca++ signaling, since calmodulin-
dependent kinase kinase (CaMKK) inhibition abolished the
HCMV-induced metabolic alterations (9). Subsequent research
has highlighted a role of AMP-activated protein kinase (AMPK)
in the replication cycle of HCMV, since this kinase is activated
upon infection and its inhibition has detrimental effects on viral
replication (18, 19). Since CaMKK is known to be upstream
of AMPK, and blocking of CaMKK abolished the HCMV-
induced AMPK activation, the authors proposed a CaMKK–
AMPK axis in the mediation of HCMV’s metabolic effects.
Other groups have investigated the role of glucose transporters
(GLUTs) in HCMV infection and found upregulation of GLUT4
expression, but downregulation of GLUT1, following infection
(20). These changes in GLUT expression were later shown to
be dependent on the carbohydrate-response element-binding
protein (ChREBP), which is targeted in HCMV infection (21).
Apart from the apparent need for adequate glucose supply,
HCMV also depends on extracellular glutamine as a carbon
source (22). Deprivation of glutamine from the extracellular
medium dampened high-titer virus replication, which could be
restored by the addition of TCA cycle metabolites, thus pointing
toward an anaplerotic utilization of glutamine in HCMV
infection (22). Recent research has additionally established a role
of the viral protein UL38 in the upregulation of both glucose
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and glutamine (and other amino acid) consumption, which was
mediated by the modulation of tuberous sclerosis complex 2
(TSC2) but was mTOR independent (23).

Epstein-Barr virus (EBV) causes infectious mononucleosis,
and its latent infection is associated with the development of
various malignant diseases. Latently infected cells were found
to enhance both glucose and glutamine uptake and to have
deregulated glycolysis (24, 25). These changes were described to
have been induced by EBV’s latent membrane protein 1 (LMP1)
and were associated with fibroblast growth factor receptor 1
(FGFR1) signaling (24, 25). Such metabolic alterations have
been speculated to play a role in the long-term cancerogenic
transformation of the latently infected cells (25).

Another virus of the Herpesviridae family, Kaposi’s sarcoma-
associated herpesvirus (KSHV), was also shown to broadly
interact with host-cell metabolism in a quite sophisticated
manner. Sanchez et al. found that glucose and glutamine
were important for early viral replication and gene translation,
respectively (26, 27). Furthermore, FA synthesis was shown
to be crucial for optimal virus assembly and maturation (27,
28). Yogev et al. found that viral-encoded microRNAs were
important for inducing the alterations in glucose metabolism,
by repressing the expression of the metabolic regulator
genes EGLN2 (encoding Egl nine homolog 2) and HSPA9
(encoding Stress-70 protein, mitochondrial), which then results
in increased glycolysis and GLUT1 expression (29). Additionally,
recent evidence suggests that KSHV-transformed cells critically
depend on extracellular glutamine and asparagine to enable
È-nitrogen synthesis that fuels nucleotide synthesis (30).
Accordingly, expression of enzymes engaged in glutamine
metabolism including glutaminase, glutamate dehydrogenase
1, and glutamic-oxaloacetic transaminase 2 were needed to
support cell proliferation in KSHV-transformed cancer cells (30).
Supporting this evidence, the research group of Chandran was
able to demonstrate that both de-novo and latent KSHV infection
of endothelial cells and B cells induces glutaminase expression,
which was found to be partly c-Myc dependent. Furthermore, the
virus triggers extracellular glutamate secretion, the breakdown
product of glutaminase-mediated enzymatic degradation of
glutamine (31). The authors proposed that glutamate may act
as an autocrine and paracrine growth factor during the course
of KSHV-induced oncogenic transformation, as blockade of
glutamate secretion or inhibition of metabotropic glutamate
receptors attenuated KSHV-infected cell proliferation (31). Other
important targets within the host cell that shape the KSHV anti-
viral response and/or KSHV-induced cell proliferation include
HECT domain and ankyrin repeat containing E3 ubiquitin
protein ligase 1 (HACE1) (32) and heme oxygenase-1 (33).

The group of Christofk has performed pioneering work
toward our better understanding of adenovirus-induced host
cell reprogramming and particularly in the mechanistic basis of
virus–metabolome interactions. They were able to show that the
viral product E4ORF1 localizes to the nucleus and binds the
transcription factor Myc to induce the transcription of a number
of glycolytic genes, resulting in enhanced glycolytic pathway
activity and nucleotide production (34). Later, they showed
howMyc regulated glutaminemetabolism in adenovirus-infected

cells and that glutaminase was a critical enzyme for adenovirus
replication, which was also true for HSV-1 and influenza A
(35). Coherently, inhibition of glutaminase by CB-839 impaired
adenovirus, HSV-1, and influenza A replication (35).

All DNA viruses discussed so far induce glycolysis and/or
increase glucose uptake in the course of infection. However, an
exception to this is the vaccinia virus (VACV). Metabolomic
studies have shown that although the virus does not affect
glycolytic flux, it is highly dependent on glutamine as a carbon
source for feeding into the TCA cycle (36, 37) (Figure 1). Further
studies showed that the viral protein C16might be responsible for
these effects through the stabilization of hypoxia-inducible factor
1-alpha (HIF-1α) (38).

RNA Viruses
In contrast to the large DNA viruses discussed above, we
found a markedly different mode of metabolism manipulation
by the small RNA virus rhinovirus (RV), which belongs
to the Picornaviridae family and is the causative agent of
the common cold. Similar to other viruses, we found an
enhancement of glucose uptake and the virus was dependent
on both extracellular glucose and glutamine for optimal viral
replication (39). However, the amplification of glucose uptake
was detectable as fast as 1.5 h upon infection, which ruled
out a transcriptional control of this process. Indeed, we found
the enhanced uptake to be reversible by phosphoinositide 3-
kinase (PI3K) inhibition, suggesting a role of this pathway in
mediating RV’s effects. In contrast to HCMV infection, we found
upregulation of GLUT1 expression upon RV infection, whereas
GLUT3 expression was unaffected (Figure 2). This is in line
with the concept of PI3K-driven upregulation of GLUT1, likely
to mediate RV effects. Metabolomic studies revealed increased
levels of metabolites associated with glycogenolysis, a process that
has not been described so far in the context of viral infections.
Furthermore, we found an enhancement of lipogenesis and
nucleotide synthesis. The deprivation of both glutamine and
glucose from the medium impaired high-titer RV replication,
and the early glycolysis inhibitor 2-DG potently inhibited viral
replication and reversed the RV-induced alterations of the host
cell metabolome. Thus, our findings underline the potential of
metabolism as a target of antiviral therapy (39).

As stated above, glutaminase is of pivotal importance for
influenza virus replication (35). Furthermore, the influenza
virus was shown to depend on extracellular glucose, and viral
replication could be impaired by treatment with the glycolysis
inhibitor 2-DG (6). In contrast, recent work has found that 2-
DG has detrimental effects on survival in an in vivo influenza
infection, which was attributed to an unregulated unfolded
protein response in the absence of glucose (40). These findings
are particularly intriguing, as they show how a metabolism-
targeting intervention that is effective on the cellular level
might still be detrimental when applied systemically and could
thus affect a plethora of different cell populations. These
considerations need to be taken into account when designing
metabolism-targeting antivirals and deciding on their route
of administration.
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FIGURE 1 | Schematic overview of metabolic targets of DNA viruses. Different DNA viruses activate specific anabolic metabolic programs in host cells to ultimately

support viral replication and virion maturation. Dashed arrows indicate a virus-mediated activation of the respective metabolic pathway or an activation of the

transcription factor, respectively. HCMV, human cytomegalovirus; HSV-1, herpes simplex virus-1; KSHV, Kaposi’s sarcoma-associated herpesvirus; VACV, vaccinia

virus; GLUT, glucose transporter; ChREBP, carbohydrate-response element-binding protein; SREBP, sterol regulatory element-binding protein; α-KG, α-ketoglutarate;

TCA, tricarboxylic acid cycle.

Several viruses of the Flaviviridae family were shown to
be potent modulators of host-cell metabolism. Zika virus
was shown to modulate metabolism differently in human
and mosquito cells; that is, whereas the infection resulted
in enhanced glucose utilization through the TCA cycle in
human cells, glucose utilization shifted toward the pentose
phosphate pathway in mosquito cells (41). These differences
resulted in a reduction of nucleotide triphosphates and AMPK-
dependent cell death in human cells (41). Dengue virus (DENV)
stimulates and requires glycolysis for optimal replication
(42), which was found to be mediated by the induction of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by the
virus’s non-structural protein NS1 (43). The distantly related
hepatitis C virus (HCV) was also shown to increase glucose
demand and enhance glycolysis in infected cells (44, 45).
Interestingly, HCV appears to have evolved several strategies
to target host cell glycolysis, where it was shown that the
NS5A protein interacts with hexokinase 2 to increase the
glycolytic flux (45), and the HCV-regulated microRNA 130a
enhances the activity of pyruvate kinase, another key enzyme in
glycolysis (46).

Recently, there has also been great progress in the elucidation
of the metabolic requirements for human immunodeficiency
virus (HIV) replication. Hollenbaugh et al. were among the first
to study the metabolic alterations in HIV-1-infected cells by
means of metabolomics (47). Intriguingly, they were able to show
that HIV-1 induced marked changes depending on the infected
cell type; that is, whereas CD4+ T cells exhibited increased
glucose uptake and metabolite pools in the TCA cycle, the
opposite was found for infected macrophages (47). Subsequent
investigations have confirmed the increase in glucose uptake by
infected CD4+ T cells (48–53). These alterations were shown to
be accompanied by increases in the expression of the glucose
transporters GLUT1 (51–53), GLUT3 (53), GLUT4 (53), and
GLUT6 (53), and also by increases in the expression of the
key glucose-processing enzyme hexokinase 1 (HK1) (53, 54).
Furthermore, phospholipase D1 (PLD1) was found to be a crucial
regulator of the HIV-1-induced metabolic alterations in CD4+

T cells (48). PLD1 further induced the activation of c-Myc,
resulting in the activation of a transcriptional program that
led to enhanced glucose uptake and nucleotide biosynthesis.
Consequently, the pharmacologic inhibition of PLD-1 led to
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FIGURE 2 | Post-transcriptional manipulation of the host cell metabolism by the RNA virus rhinovirus. Rhinovirus (RV) orchestrates an anabolic reprogramming of the

host cell metabolism: RV induces PI3K-dependent trafficking of GLUT1-containing vesicles to the cell membrane, ultimately leading to increased glucose uptake.

Subsequently, RV increases both glycolysis and glycogenolysis, providing TCA intermediates needed for anabolic lipogenesis. Additionally, RV infection activates the

pentose phosphate pathway, resulting in elevated nucleotide levels that support viral replication. GLUT, glucose transporter; PI3K, phosphatidylinositol 3-kinase; RV,

rhinovirus; TCA, tricarboxylic acid cycle.

a reduction in HIV-1 replication (48). Apart from glucose,
glutamine concentrations were found to be elevated as well
in HIV-1-infected CD4+ T cells, which was accompanied
by increases in the levels of glutaminase (55). Studying the
differences between the alterations induced by HIV-1 and HIV-
2, Hollenbaugh et al. found that although both viruses induced
similar changes in infected macrophages, there were differences
observed in the levels of quinolinate, a tryptophan pathway
component (56). In another important study, Hegedus et al.
found marked differences between primary T cells and cell lines
infected with HIV-1, thus underlining the importance of the cell
system when studying cellular metabolomics (49).

Taking these findings together, we can see that most
viruses have evolved strategies to alter central carbon supply
pathways, such as glucose or glutamine consumption, and
these manipulations were shown to be vital for high-titer virus
replication. Apart from this, virion production requires a re-
orchestration of the entire biosynthesis machinery, a process that
usually involves a reorganization of many parts of the cellular
lipidome, as we review in the next section.

VIRAL CONTROL OF FATTY ACID

METABOLISM

Apart from the alterations mentioned above, the FA synthesis
machinery of the host cell has proven vital for viral genome
replication, virion production and morphogenesis. Several
viruses induce the formation of phosphatidylinositol 4-
phosphate/cholesterol-enriched membranes to build viral
replication complexes (VRCs) at the interface of the host
endoplasmic reticulum (ER). Accumulation of sterols at
the VRCs of RNA viruses allows for the production of
secluded membranes that contain an optimal environment
for viral replication and shield virus nucleic acids from
immune surveillance (i.e., cytosolic pattern recognition
receptors) (57, 58). Formation of the VRCs critically depends
on reprogramming of the host’s sterol synthesis via recruitment
of the phosphatidylinositol-4 kinase III beta and oxysterol-
binding protein (PI4KB–OSBP) axis, and disruption of cellular
cholesterol homeostasis impairs viral replication (59–63). Apart
from this apparent need for an adequate sterol supply, viruses

Frontiers in Immunology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 153354

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Mayer et al. Viruses and Host Cell Metabolism

transactivate and co-opt enzymes engaged in de novo lipid
synthesis and in the enzymatic modification of intracellular FAs.

Generally, several carbon sources can be used as substrates
for FA or cholesterol synthesis, with the most important one
being citrate derived from the TCA cycle. Citrate is carried
across the mitochondrial membrane and cleaved into acetyl-CoA
in the cytosol. Acetyl-CoA is then carboxylated by acetyl-CoA
carboxylase (ACC) to yield malonyl-CoA. FA synthase (FASN)
catalyzes the production of palmitic acid (C16:0) from cytosolic
acetyl-CoA and malonyl-CoA in the presence of NADPH. The
palmitic acid can then be further processed by elongases and
desaturases into more complex FAs for use in the synthesis of
cell membranes, storage in lipid droplets, or the palmitoylation
of host and viral proteins. For sterol biosynthesis, two units of
acetyl-CoA are metabolized to form acetoacetyl-CoA, which then
enters the mevalonate pathway. On the other hand, FAs can be
metabolized by catabolic beta-oxidation to yield high amounts
of ATP.

Several key metabolic transcription factors activate the
transcriptional program of anabolic lipid and sterol metabolism.
Among those, sterol regulatory element-binding proteins
(SREBPs) represent the most important family of transcription
factors that transactivate lipogenic genes in order to increase
FA and cholesterol syntheses. Under homeostatic conditions,
SREBPs are synthesized in an inactive form and are attached to
the ER membrane. Upon intracellular sterol shortage, SREBPs
are proteolytically cleaved, whereupon they translocate to the
nucleus and bind to sterol response elements (SREs). This
binding of the activated SREBP to SRE DNA motifs governs the
transcriptional control of key lipogenic metabolic enzymes, such
as FASN and ACC (64–66).

DNA Viruses
As discussed above, the first evidence of metabolic
reprogramming upon HCMV infection was provided by Munger
et al. Metabolic flux and MS analyses revealed that HCMV
infection induces a glucose flux, which directly fuels FA synthesis
(7, 16). In 2011, Munger’s research group was able to show that
HCMV infection facilitates the mTOR-dependent proteolytic
cleavage of SREBP2 (67, 68). Other research groups provided
additional evidence that SREBP1 cleavage is also required for
optimal metabolic reprogramming toward lipogenesis to enable
high-titer HCMV replication (69, 70). In those studies, the
inhibition of SREBP proteolytic cleavage and of the downstream
targets of SREBP-induced lipogenesis (e.g., ACC and FASN)
impaired HCMV replication (16, 67, 69). Additionally, HCMV
infection induces the expression of FA elongases (ELOVLs),
which in turn leads to the accumulation of long-chain and
very-long-chain FAs (VLCFAs) (68, 71) that are shuttled toward
viral envelope production (71, 72). Among the family of FA
elongases, ELOVL7 is increased more than 150-fold upon
HCMV infection in an mTOR/SREBP-dependent manner (68).
Remarkably, inhibition of ELOVL7 impairs HCMV replication,
and this effect can be rescued upon ELOVL7 overexpression or
VLCFA supplementation (68, 71). Additionally, HCMV-infected
cells upregulate low-density lipoprotein receptor-related protein
1 (LRP1) in a SREBP-dependent manner, and interference with

LRP1 disturbs the intracellular cholesterol availability (73).
Besides this control of lipogenesis on a transcriptional level,
HCMV can also directly increase ACC activity (67).

As mentioned above, KSHV infection induces a
transformation of the host cell’s glucose, glutamine, and fatty
acid metabolism (27, 28). While infection-induced glycolysis and
glutaminolysis prove essential for early steps of KSHV infection
including genome replication, fatty acid synthesis appeared not
to be involved in those processes. Instead, fatty acid synthesis
is critical for virion assembly and the maturation of infectious
particles, since KSHV-infected cells cultured in the presence of
an ACC1 inhibitor produced only non-infectious intracellular
virions (27). Other evidence provided by the same research
group suggests that lipogenesis is required for KSHV survival
and latent infection (28) (Figure 1).

RNA Viruses
Likewise, perturbations of cellular lipid metabolism have proven
vital for the Flavivirus replication cycle. Both DENV and West
Nile virus (WNV) are known to be highly sensitive to the
inhibition of ACC or FASN (74–78) as well as to interferences
with cholesterol uptake (79), homeostasis (80), and biosynthesis
(81, 82). An urgent need for de novo lipogenesis as well as
changes in the intracellular lipid distribution and accumulation
of unsaturated FAs have also been proposed to be essential
prerequisites for DENV type 2 (DENV2) infection (75, 83).
Gullberg et al. identified stearoyl-CoA desaturase 1 (SCD1, which
catalyzes the rate-limiting step in the formation of unsaturated
FAs) as a critical target that regulates the composition of
intracellularmembranes to induce a favorablemicroenvironment
for optimal DENV2 replication and to sustain a high rate of
infectious particle release (83). The pharmacologic inhibition
of SCD1 interrupted the generation of monounsaturated FAs,
such as oleic acid (C18:1) or palmitoleic acid (C16:1) (69, 83,
84), which consequently affected an optimal lipid membrane
composition and membrane fluidity, leading to decreased viral
replication efficiency in DENV2-infected cells. This detrimental
effect of pharmacologic SCD1 inhibition on DENV2 replication
has been expanded to several other Flaviviridae members,
including four DENV serotypes, Yellow Fever Virus (YFV), Zika
virus, and Japanese encephalitis virus (JEV) (83, 85). Therefore,
the inhibition of ACC or FASN or that of more downstream
lipid-modifying enzymes such as SCD1 may guide future
therapies against Flavivirus infection (86, 87). Substantiating
these findings, several groups have observed temporal changes
in numerous lipid species, especially phospholipids, upon HCV
infection (44), and a critical need for de novo ACC- and FASN-
mediated FA synthesis to fuel viral replication (44, 88–90). More
recently, metabolomic profiling revealed that unsaturated long-
chain FAs, such as oleic acid (C18:1), specifically accumulated
upon HCV infection, and that the accumulation of unsaturated
FAs may influence the membrane composition and fluidity (84,
91, 92). Hofmann et al. demonstrated that the inhibition of
FA elongases or desaturases restricted HCV replication (91).
In their study, treatment with an inhibitor of 16-fatty acid
desaturase (FADS2) impaired HCV virion production possibly
through changes in the intracellular membrane composition,
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virion assembly, and morphogenesis (91, 92). Likewise, a liver-
specific SCD1 inhibitor has been proposed for anti-HCV therapy
following its proven efficacy in mice (84, 92–94). Similarly,
inhibition of FASN with C75 reduced HCV replication in
vitro (88). Other evidence suggests that currently used anti-
HCV agents like ribavirin inhibit lipogenesis as a side effect,
which may contribute to their antiviral properties (95, 96).
Mechanistically, ribavirin suppresses the expression of lipogenic
genes such as SREBP-1c, FASN, and SCD-1 in a retinoid X
receptor α- and CCAAT/enhancer-binding protein α-dependent
manner (95, 96). Statins, another class of drugs used in a wide
number of patients due to their cholesterol- and lipid-lowering
properties, exhibited an inhibitory effect on HCV replication
probably due to the inhibition of the rate-limiting step of the
mevalonate pathway, 3-hydroxy3-methyl-glutaryl coenzyme A
reductase (HMG-CoA reductase) (97, 98).

Lipidomic analysis has also broadened our understanding
regarding the metabolic reprogramming that ensues upon
human coronavirus (HCoV) (99) and Middle East respiratory
syndrome coronavirus (MERS-CoV) infections (99, 100). Yan
at al. observed a striking rearrangement of the cellular lipid
profile indicated by an accumulation of FAs (both saturated and
unsaturated FAs) and phospholipids upon HCoV infection. The
authors claimed that theCoronaviridae specifically fine-tuned the
host lipid profile to achieve optimal viral replication (99). These
findings were corroborated by a recent study that identified the
pharmacologic targeting of SREBP (with the specific inhibitor
AM580) as a promising means to inhibit MERS-CoV infection
in multiple cell types in vitro and in vivo (100). Inhibition of the
proteolytic processing of SREBP by AM580 caused the inhibition
of several post-viral-entry steps, including reduced intracellular
lipid droplet formation, reduced double membrane vesicle
formation, and reduced palmitoylation of viral proteins (100),
which potentially mirror the observations and conclusions made
earlier by Yan et al. (99). Importantly, treatment with AM580
also restricted SREBP-dependent lipogenesis in influenza H1N1-
infected cells, which resulted in the decreased palmitoylation of
the surface glycoprotein hemagglutinin and ultimately impaired
H1N1 replication (100).

Similarly, elevated levels of multiple long-chain mono- and
polyunsaturated FAs have been associated with RV infection
(39, 101). As discussed earlier, our group has recently shown
that RV induces PI3K-dependent glucose uptake that feeds
anabolic lipogenesis in primary human fibroblasts and HeLa
cells (39). Another group recently confirmed our findings, using
lipidomic technologies in primary human bronchial epithelial
cells at different time points during a single replicative cycle
of RV infection (i.e., ranging from 2–6 h post infection) (101).
In accordance with our data, Ngyuen et al. observed an
accumulation of FAs with long acyl chains in infected cells as
compared with uninfected controls, as well as dynamic changes
in the desaturation status of FA pools within the host cell. As a
proof of concept, they treated the cells with several inhibitors of
enzymes engaged in FA synthesis, elongation, and modification
(including C75, an inhibitor of FASN), which resulted in
a reduction in RV replication (101). Similarly, inhibition of
FASN with a novel potent inhibitor (TVB-3166) decreased the

replication of RV, respiratory syncytial virus (RSV), and human
parainfluenza virus 3 (HPIV 3) (102). Confirming the essential
need of FASN during viral replication, those observed effects
could be rescued upon addition of exogenous palmitic acid (102).
Altogether, both the upstream interference in the glucose flux
(using 2-DG) (39) and the downstream inhibition of lipogenesis
(101, 102) can serve as new therapeutic targets for treating RV- or
RSV-induced respiratory infections.

During Chikungunya virus (CHIKV) infection, the FASN-
mediated increase in the cellular lipid pool results in the
increased palmitoylation of the virus’s non-structural protein
NsP1 at three cysteine residues by zinc finger DHHC domain-
containing palmitoyltransferases (103). The palmitoylation of
NsP1 is critical for CHIKV replication since it orchestrates
capping of the virus’s RNA (104–106). Therefore, the CHIKV
induction of anabolic lipid synthesis via FASN in host
cells generates an adequate substrate supply for the proper
functioning of intracellular palmitoyltransferases. Confirming
these observations, the inhibition of FASN was shown to impair
CHIKV replication, which could be rescued upon exogenous
palmitic acid supply (103).

Last, an up to 5-fold induction of FASN was also observed

upon HIV-1 infection, translating into increased intracellular

palmitic, oleic, and stearic acid pools (107). Although the authors

were not able to delineate how those de novo-synthesized lipids
fuel HIV-1 replication, they did show that FASN was exclusively
required during the late stage of the viral replication cycle. This
indicates a role for FASN in HIV-1-mediated viral budding or
in post-translational modifications of HIV-1 structural proteins,
such as the Gag protein (107). In line with this, existing evidence
has proposed an essential role for several post-translational lipid
modifications of HIV-1 structural proteins (108–111).

Hence, the life cycle of most viruses is closely linked to
the composition of the cellular lipidome that defines the viral
and cellular membrane composition, macromolecule synthesis,
and post-transcriptional modification of viral proteins. In order
to ensure sufficient substrate supply to enable the optimal
replication of viral particles, viruses exploit host transcription
factors and co-opt several enzymes engaged in de novo lipid
synthesis and processing. The aforementioned lines of evidence
suggest that lipid-based antiviral strategies may guide future
antiviral therapies. In particular, the inhibition of SREBP cleavage
and the targeting of FA-modifying enzymes (e.g., FA elongases
and desaturases) represent promising targets for broad-spectrum
antiviral metabolic intervention. However, the in vivo relevance
of virus lipid interactions has yet to be determined, and further
studies are urgently needed to better understand these processes.

CONCLUSION AND OUTLOOK

We have elaborated on the various forms of virus interference
with the host cellular metabolome. We have seen that
although many of the induced changes follow similar patterns
between different viruses, a distinct virus-specific fingerprint can
nonetheless be found for each virus, which mirrors the needs of
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the respective pathogen for specific molecular compounds in the
process of its replication.

Notwithstanding, most of our knowledge on the field consists
of phenotypic characterizations of the impact of the infection
on central pathways in host-cell metabolism, whereas our
understanding of the mechanistic basis for these changes is
far more limited. As we have seen, viruses have developed
strategies as diverse as the activation of cytosolic signaling

[e.g., PI3K (39) and CaMKK1/AMPK (9, 18) activation] or
transcriptional regulation [e.g., activation of Myc (34, 35),
ChREBP (21), SREBP (67–70, 100)]. The current data point
toward a dichotomy between DNA and RNA viruses when
looking at their respective strategies for host cell manipulation;
that is, whereas the transcriptional control of key metabolic
pathways was found for several DNA viruses (21, 34, 35),
RNA viruses appeared to shape host-cell metabolism via

TABLE 1 | Strategies for metabolism-targeting interventions against different viruses.

Virus Compound Target Pathway References

HSV-1 2-DG Phosphoglucose-isomerase Glycolysis (4, 9)

STO-609 CaMKK Ca++-sensing (9)

CB-839 Glutaminase Glutamine metabolism (35)

HCMV STO-609 CaMKK Glycolysis (9, 19)

Compound C AMPK Broad metabolic alterations (18, 19)

AICAR AMPK Broad metabolic alterations (19, 112)

2-DG Phosphoglucose-isomerase Glycolysis (9)

KSHV Oxamate Lactat-dehydrogenase Anaerobic glycolysis (27)

BPTES Glutaminase Glutamine metabolism (27)

TOFA ACC1 Fatty acid metabolism (27, 28)

VACV BPTES Glutaminase Glutamine metabolism (36)

TOFA ACC1 Fatty acid metabolism (37)

C75 FASN Fatty acid metabolism (37)

RV 2-DG Phosphoglucose-isomerase Glycolysis (39)

C75 FASN Fatty acid metabolism (101)

TVB-3166 FASN Fatty acid metabolism (102)

RSV TVB-3166 FASN Fatty acid metabolism (102)

HCV MK8245 Stearoyl-CoA desaturase-1 Fatty acid metabolism (93)

SC-26196 Fatty acid 1-6-desaturase Fatty acid metabolism (91)

C75 FASN Fatty acid metabolism (88)

CP640186 ACC Fatty acid metabolism (93)

Ribavirin SREBP-1c, FASN, stearoyl-CoA desaturase-1 Fatty acid metabolism (95, 96)

Statins HMG-CoA reductase Cholesterol synthesis (97, 98)

DENV C75 FASN Fatty acid metabolism (76)

Cerulenin FASN Fatty acid metabolism (76)

MK8245 Stearoyl-CoA desaturase-1 Fatty acid metabolism (85)

A939572 Stearoyl-CoA desaturase-1 Fatty acid metabolism (83)

HPIV 3 TVB-3166 FASN Fatty acid metabolism (102)

ZIKA MK8245 Stearoyl-CoA desaturase-1 Fatty acid metabolism (85)

WNV C75 FASN Fatty acid metabolism (77)

Cerulenin FASN Fatty acid metabolism (77)

TOFA ACC Fatty acid metabolism (74)

JEV MK8245 Stearoyl-CoA desaturase-1 Fatty acid metabolism (85)

CHIKV C75 FASN Fatty acid metabolism (103)

Cerulenin FASN Fatty acid metabolism (103)

YFV A939572 Stearoyl-CoA desaturase-1 Fatty acid metabolism (83)

Adenovirus CB-839 Glutaminase Glutamine metabolism (35)

HIV VU0359595 PLD-1 Glucose metabolism, nucleotide synthesis (48)

Fasnall FASN Fatty acid metabolism (107)

MersCoV AM580 SREBP Fatty acid metabolism (100)

Influenza A AM580 SREBP Fatty acid metabolism (100)

CB-839 Glutaminase Glutamine metabolism (35)
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post-transcriptional modifications (39), which are in line with the
pace of the respective replication cycles.

As summarized in Table 1, our knowledge on the specific
alterations induced by a given virus has resulted in numerous
strategies to target viral replication with high efficacy in cell
culture and in vivo models. However, because many of the
established targets for metabolism-manipulating antivirals are
central enzymes in cellular metabolism, future research will
have to elaborate on whether the mentioned strategies can
be translated into clinical applicability without causing major
harm to unaffected host cells. Here, 2-DG in particular appears
to be a promising compound, given its very well-established
and favorable side-effect profile. Undoubtedly, further research
in this dynamic area will help deepen our understanding
of this interaction and might result in additional ways to
impair viral replication by means of metabolic intervention.
For instance, there are still major blind spots, particularly in
our understanding of the mechanistic basis of RNA virus-
induced alterations in cellular metabolism. Furthermore, there
has been little research on the role of pattern recognition in the
context of the above-mentioned adaptations. Additionally, many

of the findings reported herein were generated in the context
of highly specific cellular models, and differential modulations

in different target cells (e.g., proliferating T cells) might result
in adverse observations. We still have limited knowledge on
the role of metabolism in the pathogenesis of a plethora of
pathogenic viruses, which requires further research. Insights
into these and other questions will help us to greatly advance
our understanding of this crucial host–pathogen interaction
and might sharpen our therapeutic arsenal to target this viral
Achilles’ heel.
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INTRODUCTION

Over evolution, some amino-acid catabolic pathways have become critical checkpoints in immunity
(1–3). The associated immunoregulatory effects rely on the depletion of specific amino acids in
the microenvironment and/or generation of biologically active metabolites (4). Consumption of
L-arginine (Arg) by arginase 1 (ARG1) represents a well-known immunoregulatory mechanism
exploited by M2 macrophages (5) and myeloid-derived suppressor cells (MDSCs) (6–8) in
tumor settings. ARG1 is also expressed by human neutrophils (9). Indoleamine 2,3-dioxygenase
1 (IDO1)—a powerful immunosuppressive enzyme catalyzing the first, rate limiting step
in L-tryptophan (Trp) catabolism—depletes Trp and produces immunoregulatory molecules
collectively known as kynurenines (10–13). High IDO1 expression and catalytic activity occur in
dendritic cells (DCs)—professional antigen presenting cells—in response to interferon-γ (IFN-γ)
(8, 10, 11). Unlike ARG1, IDO1 is also endowed with non-enzymatic signaling activity in DCs that,
in the presence of transforming growth factor-β (TGF-β) in microenvironments, leads to durable
immunoregulatory effects (14, 15). In conventional DCs (cDCs), a relay pathway—marked by the
sequential activation of ARG1 and IDO1—promotes a potent immunoregulatory phenotype (8, 16,
17). In this setting, spermidine, i.e., a polyamine produced downstream of the ARG1-dependent
pathway (18), is capable of triggering IDO1 phosphorylation and signaling, and thus may
represent the critical molecular interconnection between the two enzymes (8, 16). Here, we
discuss the possible protective vs. pathogenetic roles of the interplay between IDO1 and ARG1
in reprogramming immune cell functions in neoplasia and autoimmune diseases.

THE ARG1 AND IDO1 INTERPLAY AS PHYSIOLOGIC IMMUNE

CHECKPOINT

As all biological processes, immune responses rely on both energy-consuming and
energy-producing pathways (19). The availability of specific substances and the immunological
signature of the microenvironment directly control immune cell fate and functions.
Pathogen-associated molecular pattern (PAMPs) and damage-associated molecular pattern
(DAMPs) molecules (recognized by pattern recognition receptors such as Toll-like receptors
or TLRs) as well as amino acids, glucose, and fatty acids drive T-cell proliferation. Indeed,
among immune cells, T lymphocytes are particularly dependent on nutrient availability and such
feature (known as auxotrophy) has evolved as biological containment strategy that promotes the
life-or-death decision (19).

By reducing the supply of indispensable amino acids, IDO1 and ARG1 directly suppress T cell
proliferation and differentiation. The inadequacy of Arg and Trp substrates promotes a state of
quiescence, whereby non-essential functions are temporarily quenched, including the cell cycle
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progression in the G0-G1 phase and the expression/activation
of the TCR ζ-chain (2, 20, 21). IDO1 and ARG1 are indeed
considered as physiological checkpoints ensuring a short-lived
immunosuppression in normal pregnancies. In the placenta,
DCs and extravillous trophoblasts highly expressing IDO1 and
ARG1 secure a reversible T cell hyporesponsiveness and thus the
survival of the fetus in utero (22, 23).

The activity of ARG1 and IDO1 translates not only into
amino acid deprivation, but also in the production of metabolites
endowed with several physiologic effects. L-kynurenine and
spermidine, derived from Trp and Arg, respectively, are clear
archetypes of non-inert byproducts that can influence immune
and non-immune cell functions. In particular, L-kynurenine,
by engagement of the aryl hydrocarbon receptor (AhR; a
ligand-activated transcription factor), favors the differentiation
of regulatory T (Treg) cells and induces IDO1 expression in
DCs (24). On the other hand, the polycationic spermidine
regulates cell growth and proliferation, and it affects several
signal transducing pathways by interacting with ion channels,
membrane receptors, and kinases (18).

Under specific conditions (as those dominated by TGF-
β), Arg and Trp metabolic pathways are co-activated, thus
potentiating the immunoregulatory phenotype of DCs and
MDSCs (8, 25). The intimate relationship between ARG1
and IDO1 is allowed by spermidine, which activates the
non-enzymatic functions of IDO1 and thus reprograms the
cDC toward a long-term, immunoregulatory phenotype. More
specifically, through Src kinase activation, spermidine induces
the phosphorylation of IDO1, which, in turn, behaves as
signaling molecule, promoting activation of the non-canonical
pathway of NF-κB and induction of TGF-β1 and IDO1
expressions (3, 8). Contrary to spermidine, the small molecule
nitric oxide (NO; derived from the Arg breakdown catalyzed
by NO synthase) negatively regulates Trp metabolism, as it
directly binds the heme prosthetic group and thus blunts
the enzymatic function of IDO1 (26). However, besides this
effect that would dampen IDO1-mediated immunosuppression,
high levels of NO can combine with superoxide anion thus
generating reactive nitrogen species that compromise both
the activity and migration of T cells at the tumor site
(27). Of note, it has been recently shown that AhR can
sustain intracellular polyamines production at least in neoplastic
conditions (28). However, whether such positive modulation
belongs to a physiologic, bi-directional regulation program,
where Trp metabolites and/or IDO1 itself affect ARG1 functions,
has not been investigated yet.

ARG1 AND IDO1 IN NEOPLASIA

Difference in the metabolism of normal and cancer cells underlie
the quest for more specific and less toxic therapies than
those currently used. Tumor development is conditioned by
genetic changes in malignant cells, immunological tolerance, and
immunosuppression (29). At the initial stages of carcinogenesis,
the immune system is capable of anti-tumor activity; however,
cancer progression compromises the action of T helper

type 1 (Th1)/Th2/Th17 lymphocytes via Treg cells, tumor-
associated macrophages (TAMs), and MDSCs, resulting in
immunosuppression and loss of reactivity to tumor antigens
(30, 31). Recently, much attention has been dedicated to the
influence of Arg and Trp metabolic pathways on both tumor cell
growth and host’s immune antitumor response. Arg is essential
for the maturation of the TCR ζ-chain, and its deprivation
impairs T cell ability to activate tumor immunity. MDSCs
deplete Arg because they express high levels of ARG1, and
their number increases 4–10 times depending on the type of
cancer. For these reasons, in cancer immunotherapy studies, the
effects of both deprivation and supplementation of Arg have
been tested, the former on the assumption that tumors may
be Arg auxotrophic, and the latter in an effort to counteract
the detrimental effect of ARG1-competent, tumor-associated
MDSCs on the host antitumor response. Overall, seemingly
contradictory results were found in such oncological therapies
based on the deprivation or supplementation of Arg, and those
results are not easily reconciled (29). In particular, the high
efficacy of subtracting Arg to Arg auxotrophic tumors may hardly
explain per se the global protective effect of this maneuver, in
that most tumors may ultimately activate the arginine-succinate
synthetase (ASS1) pathway that enables synthesis of Arg from
citrulline. The recent finding of a supportive influence of ARG1
on IDO1-dependent tolerogenesis (8)—which would impair host
antitumor responses—suggests that it is not the Arg subtraction
to the tumor that matters so much as the impairment of
ARG1’s supportive role in allowing full expression of the IDO1
mechanism in suppressing antitumor responses. In fact, ARG1+

MDSCs, obtained by cell incubation with medium derived from
mouse melanoma cells, can condition DCs to acquire an IDO1-
dependent, immunoregulatory phenotype in vivo via production
of polyamines (8, 16). Therefore, these data would sustain
the existence of an immunosuppressive cross-talk mechanism
between distinct cells present in tumor stroma and expressing
ARG1 and/or IDO1 (32). The mechanisms whereby IDO1 acts
as an immunosuppressant are multiple, and they are detailed
elsewhere (2, 10, 11, 33).

There are, however, clinical settings where pharmacological
administration of Arg resulted in cytoreductive effects in patients
with Arg non-auxotrophic tumors (29). Paradoxical as it seems,
this effect could again be explained by the relationship between
ARG1 and IDO1 in immune cells. Increased ARG1 activity might
lead to IDO1-dependent Trp starvation in cancer cells. Because
Trp is an essential and the rarest of all amino acids, this likely
results in an overall proteostatic action that affects fast-growing
tumors, as discussed elsewhere in detail (3).

With specific regard to Arg auxotrophy, this phenomenon
takes place in certain tumors and is caused by the silencing of
ASS1 or arginine lyase genes. Those tumors are characterized
by an intrinsic chemoresistance and thus a poor prognosis.
Nevertheless, on a positive note, Arg auxotrophy theoretically
favors the treatment of these tumors with Arg-degrading
enzymes. Among the most frequently applied Arg-degrading
agents are arginine deiminases (ADI) from bacteria. The
antitumor effects of ADI derived from different bacteria have
been extensively studied in vitro and in vivo [for review,
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see (34)]. Mycoplasma-derived ADI-PEG20 is the one most
commonly used and is under clinical investigation as a
single agent therapeutic as well as in combination with other
chemotherapeutic compounds. Mechanistically, ADI reduces
metabolic activity in tumor cells, contributing to autophagy,
senescence, and apoptosis in Arg auxotrophic cells (34).
Although clinical trials are promising, the development of
resistance after initial treatment is challenging, as illustrated
above. Furthermore, an ADI interference within the tumor
microenvironment is to be considered. Again, non-specific
subtraction of the substrate for ARG1 may indirectly affect the
host response to the tumor via effects on IDO1.

Another important issue in cancer is the expression of Arg
and Trp transporters in tumor and immune cells. Among
Arg carriers (cationic amino acid transporters or CATs), the
most important appear to be CAT1, which is constitutively
expressed in several tissues, and CAT2B, normally inducible
by inflammatory cytokines (35). CAT1 is often overexpressed
by tumor cells, and event that can favor tumor growth. In an
experimental model of prostate cancer, CAT2B, which allows
a rapid transport of Arg into the cell, is expressed at higher
levels in tumor-infiltrating as compared to peripheral MDSCs
(36). Moreover, the upregulation of CAT2 is coordinated with
the induction of both NOS2 and ARG1, thus further favoring
Arg uptake by MDSCs at the tumor site. Subsets of human
melanoma cells are also characterized by very high levels of
CAT2B expression, possibly due to the secretion of inflammatory
mediators by the tumor cells themselves (35). Overexpression of
Trp carriers (mainly, LAT1/CD98 and SLC6A14) is also involved
in the increased proliferation and chemoresistance of several
tumor cell types (37). Because SLC6A14 is a broad specific amino
acid transporter that can also transfer Arg and its expression
can be upregulated by IDO1 (by a mechanism not identified
yet) (38), the “doors” for the cell entrance of Arg and Trp may
represent suitable cancer drug targets capable of interfering with
both ARG1 and IDO1 pathways (39).

Therefore, new insight is definitely needed into the molecular
mechanisms underlying the antitumor effects of Arg starvation
in both host and tumor, which might facilitate the refinement of
IDO1 inhibitory approaches in cancer immunotherapy.

ARG1 AND IDO1 IN AUTOIMMUNITY

The use of checkpoint inhibitors in tumor immunotherapy is
frequently accompanied by the development of autoimmune
diseases (40), suggesting that the exploitation of immune
checkpoint molecules could be a valid therapeutic means in
autoimmunity (4, 41). Because both ARG1 and IDO1 act as
immune checkpoint mechanisms in neoplasia, their functional
“alliance” in specific immune cells could be remarkably effective
in controlling adaptive immunity toward auto-antigens.

IDO1 is defective in DCs of non-obese diabetic (NOD)
mice (42), an experimental model of human autoimmune
diabetes (type 1 diabetes or T1D), and maneuvers aimed at
enhancing its expression and activity will exert therapeutic effects
in prediabetic and also overtly diabetic animals (43, 44). In

T1D patients, a significantly reduced IDO1 expression can be
observed in peripheral blood mononuclear cells (PBMCs) (17)
and in pancreatic β cells (45), normally producing insulin.
In PBMCs, the defect can be corrected by tocilizumab, a
blocker of the interleukin 6 (IL-6) receptor, which inhibits
the IL-6–dependent, IDO1 proteasomal degradation (17).
In T1D, although its expression and function in immune
cells remains unclear, endothelial ARG1 induces the vascular
dysfunction associated with hyperglycemia (46). Moreover,
administration of difluoromethylornithine (DFMO), a potent
inhibitor of polyamine production, protects NOD mice from the
development of diabetes.

In experimental models of rheumatoid arthritis (RA), an
inflammatory/autoimmune disease of the capsule surrounding
joints, lack of IDO1 expression reduces the time to develop
a more severe disease (47). Moreover, the protective effects
of interferon-α rely on the activation of a TGF-β/IDO1 axis
in plasmacytoid DCs (48). Although ARG1+ M2 macrophages
contribute to resolve arthritis inflammation in mice (49),
ARG1 activity may be responsible for subclinical endothelial
dysfunction also in RA patients (50). Interestingly, methotrexate,
an immunosuppressive drug widely used in RA, greatly inhibits
the synthesis of polyamines in lymphocytes of RA patients (51).

A definitely clearer picture is emerging in autoimmune
neuroinflammation. Administration of 3-hydroxyanthranilic
acid (3-HAA; a Trp metabolite of the kynurenine pathway)
(52) or of an orally active synthetic derivative thereof (53)
ameliorates neuroinflammation and paralysis in mice with acute
experimental autoimmune encephalomyelitis (EAE), a model
for multiple sclerosis (MS). Moreover, 3-HAA–treated DCs
express higher levels of TGF-β and induce the generation of Treg
cells (52). Conversely, administration of 1-methyltryptophan
(1-MT), a standard inhibitor of IDO1, exacerbates the clinical
course of EAE (54, 55). In leukocytes infiltrating the spinal
cord of untreated mice, IDO1-expressing cells exhibit the
same morphology as activated macrophages/microglia (54).
VCE-004.8, a semisynthetic cannabinoid, protects from
EAE, possibly by upregulating ARG1 in macrophages and
microglia (56). A LewisX trisaccharide of schistosome eggs
reduces EAE severity by a TLR-mediated mechanism that
enhances both ARG1 and IDO1 expression in CD11b+Ly-
6Chi inflammatory monocytes (57). Expression and activity
of ARG1 and IDO1 are significantly reduced in PBMCs
from MS patients as compared to healthy control subjects
(58). Spermidine, the polyamine produced downstream
ARG1, protects from autoimmune-directed demyelination of
neurons in acute EAE (59). The effect appears to be related
to an immunosuppressive function acquired by ARG1+

macrophages, since (i) their depletion or the administration
of an ARG1 inhibitor abolishes spermidine therapeutic
activity in vivo and (ii) the polyamine induces ARG1 in
macrophages (59).

Therefore, although in both T1D and RA the pathways of Arg
and Trp metabolism do not seem to be properly interlinked (and
this may require cautions when attempting immunotherapies
potentiating both ARG1 and IDO1), in MS, the pieces of
evidence, when put together, would suggest that the induction
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FIGURE 1 | The role of ARG1 and IDO1 in neoplasia and autoimmunity. The up-regulation of ARG1 activity, induced by the cytokine TGF-β, transforms L-arginine

(L-Arg) into L-ornithine (L-Orn), which is further metabolized by ornithine decarboxylase (ODC) into polyamines (PUT, putrescine; SPD, spermidine; and SPM,

spermine). SPD, through the activation of the Src kinase, promotes the phosphorylation of IDO1 and thus favors the initiation of immunoregulatory signaling events in

DCs. Once phosphorylated, IDO1 recruits tyrosine phosphatases (SHPs) and promotes a signaling pathway that upregulates the expression of genes coding for IDO1

and TGF-β, thus creating a self-sustaining circuitry responsible for the maintenance of immune tolerance over the long-term. Moreover, IDO1 catalyzes the conversion

of L-tryptophan (L-Trp) into L-kynurenine (L-Kyn), which activates the aryl hydrocarbon receptor (AhR). AhR further induces IDO1 expression in DCs and sustains the

production of polyamines by up-regulating ODC. Whereas the pathogenetic and protective role of TGF-β, SPD, and IDO1 in neoplasia and autoimmunity, respectively,

have been demonstrated, the role of ARG1 has been unclear and would require further investigations. Gray arrows indicate the pathogenetic effects of IDO1, ARG1,

SPD, and TGF-β1 receptor signaling in neoplasia and brown arrows indicate the putative protective effects of IDO1, SPD, ARG1, and TGF-β1 receptor signaling in

autoimmune diseases. Dotted lines are for molecules whose role is still unclear.

of the immunosuppressive interplay between ARG1 and IDO1
would represent a valid therapeutic objective.

CONCLUSIONS AND PERSPECTIVES

In neoplasia, both ARG1 and IDO1 are often overexpressed,
either singly in tumor cells themselves (IDO1) or in association
(i.e., both enzymes) in MDSCs and DCs, and they contribute
to the impairment of the host anti-tumor immunity. However,
the effect of Arg starvation on tumor cells may dampen their
proliferation and therefore ARG1 inhibition as therapeutic
strategy may have some caveats (Figure 1). In the majority of
autoimmune disorders, the bulk of data would suggest that
IDO1, expressed by either DCs or macrophages, stands out as an
effective immune checkpoint molecule. In contrast, more often
than not, ARG1 appears to be more pathogenetic than protective,
possibly owing to the enzyme capacity to subtract Arg for NO
production, which can be necessary for the resolution of damages
induced by autoimmunity (4, 60). However, in autoimmune

neuroinflammation, the available cues would indicate that both
ARG1 and IDO1, expressed by macrophages and/or DCs, act
as immune checkpoint molecules in EAE and that spermidine,
i.e., the molecular connection between the two enzymes in a
physiologic setting (8), exerts significant therapeutic effects on
its own. Therefore, further investigations on Arg metabolism
in neoplasia and autoimmune disorders and its possible cross-
talk with IDO1 are needed for a full understanding of its role,
protective vs. pathogenetic.
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In the past years, there have been significant advances in the understanding of how

environmental conditions alone or in conjunction with pathogen invasion affect the

metabolism of T cells, thereby influencing their activation, differentiation, and longevity.

Detailed insights of the interlinked processes of activation and metabolism can contribute

to major advances in immunotherapies. Naive and memory T cells circulate the body.

In a quiescent state with low metabolic demands, they predominantly use oxidative

phosphorylation for their energy needs. Recognition of cognate antigen combined with

costimulatory signals results in a proliferative burst and effector molecule production,

requiring rapid release of energy, achieved via dynamically reprogramming metabolic

pathways. After activation, most T cells succumb to activation induced cell death, but

few differentiate into memory T cells. Of note, some memory T cells permanently occupy

tissues without circulating. These, tissue resident T cells are predominantly CD8T cells,

maintained in a metabolic state distinct from naïve and circulating memory CD8T cells

with elements similar to effector CD8T cells but without undergoing proliferative burst

or secreting immune mediators. They continually interact with tissue cells as part of an

immune surveillance network, are well-adapted to the tissues they have made their home

and where they may encounter different metabolic environments. In this review, we will

discuss recent insights in metabolic characteristics of CD8T cell biology, with emphasis

on tissue resident CD8T cells at the epithelial barriers.

Keywords: T cells, metabolism, tissue resident cells, CD8T cell, intraepithelial lymphocyte (IEL)

INTRODUCTION

T lymphocytes, especially CD8-expresssing cytotoxic T cells, play a critical role in immune
responses to intracellular microorganisms and cancer cells. Naive CD8T cells are present in
the circulation and secondary lymphoid organs (SLOs), where they encounter dendritic cells (DCs)
presenting antigens. Naïve T cells may survive for a significant time, only rarely undergoing cell
division. One of the underpinning concepts of immunity is the clonal expansion of T cells upon
activation. After recognition of cognate antigen via the T cell receptor (TCR) in the context of
appropriate co-stimulatory signals, CD8T cells undergo rapid expansion and traffic from SLOs to
the tissues. They differentiate into effector T cells, gaining cytotoxic activity characterized by the
ability to release perforin and granzymes. In addition, they can secret large amounts of cytokines,
such as TNF and IFN-γ (1). The majority of effector cells generated die by apoptosis, but a small
population remains and develops into memory CD8T cell subsets. Memory T cells were thought to
circulate and pass through SLOs, similar to naïve T cells, but in larger antigen-specific numbers and
with the intrinsic ability to respond more rapidly to reencountered antigens. These memory T cells
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are now referred to as central memory T cell (TCM) after the
recognition that effector memory T cells (TEM) circulate through
the SLOs as well as the tissues (2). Although initially all memory
T cells encountered in tissues were considered TEM cells, more
recent work has established a dedicated population of tissue
resident memory T cells (TRM), which do not circulate through
the SLOs and provide a first line of tissue defense at the place of
initial antigen encounter (3).

In the past few years it has become evident that CD8T
cell function, differentiation and numeric presence is dependent
on nutrient availability, uptake, and processing (4). During
different stages of CD8T cell activation, cells go through
dynamic alterations in their metabolic capacity and substrate
use. These metabolic changes impact the cells bioenergetic and
biosynthetic demands related to substrate uptake, mitochondrial
function, and protein and lipid synthesis, ultimately influencing
cell division, differentiation and effector capacity (5). In this
review, we will discuss the recent findings shedding light on
the intertwined relation between metabolic pathways and T cell
biology, with focus on CD8T cells, especially those that have
taken residence in peripheral tissues.

METABOLISM OF NAIVE CD8 T CELLS

Metabolic demands of antigen inexperienced naive T cell are low.
Their quiescent state needs to maintain the ability for base level
proliferation only and metabolic activity largely serves to support
cell migration and survival upon cells moving through the
blood stream, lymph, and SLOs. Antigen inexperienced T cells
use oxidative phosphorylation (OXPHOS), which generates an
estimated 96% of energy needs (6). OXPHOS is the main source
of energy in most eukaryotic cells, most efficiently obtaining
energy in the form of adenosine triphosphate (ATP) by oxidizing
nutrients using specialized enzymes in the mitochondria (7).
OXPHOS can use a variety of substrates such as glucose, amino
acids, and fatty acids, converted to acetyl-CoA, which enters the
tricarboxylic acid cycle (TCA) cycle.

The quiescent metabolic status of naive CD8T cells is not a
default setting due to the cells lack of receiving any activating
signals, but is actively maintained. Naïve T cells receive constant
signals from cytokines such as IL-7, critical in sustaining basal
levels of nutrient transporters, like GLUT1 for glucose uptake,
and expression of anti-apoptotic proteins (Bcl-2), required for
the long term survival of naïve T cells (8, 9). In addition to
obtaining energy from glucose, naive T cells can oxidize lipids,
such as oleate and palmitate (10).

GLYCOLYSIS IN EFFECTOR CD8 T CELLS

The activation of T cells rapidly switches the metabolic
programmes from OXPHOS toward aerobic glycolysis, PPP, and
glutaminolysis. The shift in metabolism is associated with a
change in metabolic transcriptome, with mammalian target of
rapamycin (mTOR), hypoxia-inducible factor 1 (HIF1), and c-
MYC amongst the most prominent factors with the ability to
rewire cell metabolism. In T cells, themTOR pathway upregulates

nutrient uptake (especially amino acids), activates glycolytic
pathways and promotes cap-dependent translation. Activated
CD8T cells deficient in mTOR, or CD8T cells treated with
mTOR inhibitor rapamycin, become anergic, cannot proliferate
and are incapable of metabolic reprogramming during activation
(11). Molecular mechanisms by which mTOR influences T
cell metabolism and differentiation are discussed elsewhere
(12). In activated CD8T cells, HIF1 upregulates aerobic
glycolysis by promoting the transcription of the enzyme pyruvate
dehydrogenase kinase 1 (Pdk1) and lactate dehydrogenase A
(Ldha) (13). Another transcription factor required for the
increase of glycolysis and glutaminolysis in activated CD8T cells
is the transcription factor c-Myc, transcriptionally regulating
GLUT1 expression levels. Deletion of Myc abrogates activation
induced proliferation and effector function of CD8T cells in vitro
and in vivo (14, 15).

Glycolysis is a highly conserved metabolic pathway that,
independent of oxygen, converts glucose via a series of
enzymatic reactions in the cytosol of cells into pyruvate (16).
Despite its name, glycolysis does not solely use glucose, most
monosaccharides can be converted into pyruvate. Pyruvate can
be transported into the mitochondria and oxidized to generate
acetyl-CoA. Alternatively, pyruvate remains in the cytosol and is
converted into lactate. Lactate production was thought to occur
as a consequence of anaerobic glycolysis, when the coenzyme
nicotinamide adenine dinucleotide (NAD) required for glycolysis
can be in short supply, but it can be produced as part of aerobic
glycolysis (Warburg effect). Lactate is produced upon high-
energy demands, such as T cell activation, possibly because of
limited availability of NAD. Limited NAD availability may result
in a switch to lactate production, which itself supplies additional
NAD for continued glycolytic flux. Importantly, the production
of lactate does not reduce the amount of pyruvate used for
OXPHOS and both aerobic glycolysis and OXPHOS pathways
are increased during cell activation (15, 17).

The importance of glycolysis for cytotoxic T cell function
was shown using the glycolysis inhibitor 2-deoxyglucose (2DG),
resulting in defective T cell cytotoxic capacity and selective
reduction of the expression of key effector molecules, including
IFN-γ and granzymes (18, 19). Of importance, enzymes involved
in glycolysis can make direct contributions to T cell function.
Increasing glycolysis capacity upon T cell activation result
in the engagement of cytosolic glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) in catalyzing the conversion of
glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate,
releasing it from binding to IFN-γ, thereby enabling its
translation by human and mouse CD8T cells (17, 20).

The reason for lactate production remains uncertain, but the
energy needs may be acutely high so that the ATP production
from rapid glycolysis alone is more efficient, possibly due to
limited amounts of NAD+ required in the respiratory chain
(21). Lactate can be oxidized back to pyruvate to be used for
OXPHOS in some organs, such as muscle and brain, or can
be converted to glucose via gluconeogenesis in the liver to be
release back into the circulation. The latter would have the
potential to sustain or control high-energy demand processes
such as immune responses via the liver and its systemic glucose
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level maintaining capacity (22). In addition, lactate can have
direct immune- and cell-modulating properties (23, 24). Lactate
can inhibit the motility of T cells, arresting them at the site
of inflammation, thereby focussing the T cell response (25).
The latter may contribute to chronic inflammatory disorders,
although CD8T cell cytolytic function is also inhibited by lactate,
possibly acting as a safeguard to prevent immunopathology.

Aerobic glycolysis rapidly generates biosynthetic precursor
molecules, can function under otherwise adverse hypoxic or
acidic microenvironments, entraps T cells at inflammatory sites
and may provide systemic control via blood glucose levels (22,
26). Hence, glycolysis may provide several advantages during
T cell activation and inflammation and even contribute to
immune resolution.

OXPHOS IN EFFECTOR CD8 T CELLS

Activation of CD8T cells does not result in a complete shift from
mitochondrial respiration to aerobic glycolysis. OXPHOS levels
increase and remain an important ATP contributor to provide
the full complement of factors needed for cell proliferation of
activated T cells. The increased emphasis on aerobic glycolysis
during CD8T cell activation and parallel increase of OXPHOS
may enable other substrates, such as fatty acids and glutamine,
to enter the mitochondria to fuel the TCA cycle (14, 15, 27)
(Figure 1). T cell activation in the absence of glucose significantly
weakens T cell proliferation and function, but this can be partly
rescued by supplying pyruvate or galactose. This highlights that
mitochondrial respiration remains important in the process of T
cell activation. Cells grown in galactose are forced to respire and
do not use aerobic glycolysis, generate ATP at a slower rate and
produce less IFN-γ compared with cells activated in the presence
of glucose (17).

OXPHOS is accompanied by a production of mitochondrial
reactive oxygen species (mROS), which increases during T
cell activation. mROS plays a role in the activation and
subsequent nuclear localization of nuclear factor of activated
T cells (NFAT), responsible for the transcription of the T
cell growth factor interleukin (IL)-2. In line with this, T
cells from Uqcrfs-deficient mice (complex III subunit 5) show
decreased activation and diminished clonal expansion upon in
vivo antigen encounter (28). Furthermore, increased expression
of lymphocyte expansion molecule (LEM), which positively
regulates the expression of the mitochondrial electron transport
chain complex, controlling the activity of OXPHOS proteins and
mROS production, resulted in increased CD8T cell proliferation
and function (29). The removal of LEM reduced CD8T cell
proliferation and reduced levels of mROS. Inhibition of mROS in
LEM protein overexpressing mice was sufficient to reduce CD8T
cell proliferation and cytotoxicity, confirming the importance of
mROS in CD8T cell activation.

METABOLISM OF CD8 MEMORY T CELLS

Although memory formation underpins immune protection
and is the basis for vaccination success, how memory T cells

are formed is not well-understood. However, their long-term
maintenance and ability to respond swiftly upon TCR ligation
is, at least in part, due to rewiring of their metabolic pathways.
Interestingly, memory formation and improved effector function
are often associated with suboptimal T cell activation or
metabolite availability, such as reducing mTOR activity and
decreased glucose or oxygen levels (12, 30–33). Adenosine
monophosphate-activated protein kinase (AMPK) restrains
mTOR activity, thereby reducing glycolysis and promoting
transition from CD8 effector to memory T cell (34, 35).

There are several different characteristics in metabolic make
up between CD8 memory T cells compared to naive and effector
CD8T cells (Table 1). CD8 memory T cells show an enhanced
mitochondrial OXPHOS capacity that can provide extra energy
required for the proliferative burst. CD8 memory T cells also
possess greater mitochondrial mass compared to CD8 effector
T cells (36). Although primarily found in non-lymphoid tissues
(37), CD8 TEM cells show increased uptake of blood glucose
through the glucose transporter-1 (Glut-1) and rely on glycolysis
as well as OXPHOS to meet their energy demands (36, 38). As
such, although basic energy requirements are reduced, CD8 TEM

cells seem metabolically wired in similar fashion as effector T
cells. CD8 TCM cells on the other hand, predominantly depend on
OXPHOS for both their differentiation and maintenance. They
take up lipids and glucose from blood, for lipid synthesis, and use
FAO as originally described for all memory CD8T cells (39, 40).

LIPID METABOLISM IN CIRCULATING CD8

MEMORY T CELLS

CD8 memory T cells depend less on glycolysis and mainly
rely on oxidative phosphorylation and lipid metabolism (36).
A role for fatty acid metabolism in CD8 memory T cells was
first suggested in mice that lack tumor necrosis factor (TNF)
receptor-associated factor 6 (TRAF6), which show similar CD8T
cell activation and expansion but defective CD8 memory T
cell generation (34). Although TRAF6 is implicated in several
pathways, in CD8T cells it stimulates AMPK while inhibiting
mTOR signaling, thereby increasing fatty acid oxidation (FAO)
(41). Upon activation T cells acquire extracellular glucose, which
is used to synthesize lipids, can be stored in lipid droplets
and subsequently used in FAO (39, 40, 42–44) (Figure 1).
Furthermore, memory CD8T cell development depends on cell
intrinsic activity of lysosomal acid lipase A (LIPA) to mobilize
fatty acids for FAO (39). The role of lipids stored in droplets
during the effector phase remains unknown. Processes of lipolysis
and autophagy can degrade lipids for substrate use in metabolic
processes (45). Under optimal conditions, such as in SLOs,
lipolysis may not be critical. The appearance of lipid droplets
in vitro takes place within the first 24 h after activation (44).
However, upon nutrient deprivation, such as encountered in
tissues during inflammation or in the tumor environment,
autophagy and lipolysis could become an important contributor
to energy demands.

Although FAO is important for memory formation,
established memory T cells contain few lipid droplets compared
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FIGURE 1 | Metabolism of CD8T cells in SLOs and small intestine. Subtypes of CD8T cells in different tissues display more or less dependence on particular

metabolic pathways and substrates to promote cell survival, activation ability and function. Colored arrows show pathways reported to be used in the cell type

indicated, pale text indicates pathways that might be used but have not been clearly defined. (A) Effector CD8T cells in SLOs engage OXPHOS and glycolysis.

Pyruvate is mainly converted to lactate, but remains an important metabolite for the TCA cycle. Metabolizing glucose through the PPP can benefit the generation of

nucleotides and NADPH, used for lipid synthesis. In addition, glutaminolysis may also be engaged. Memory CD8T cells use OXPHOS, but also use metabolites

provided by glycolysis. (B) Tissue resident CD8T cells (TRM) engage OXPHOS and glycolysis. There are increasing indications that OXPHOS is dependent on lipids,

either obtained from the local environment or released from internal lipid droplet stores. Furthermore, mitochondria of TRM cells at the epithelia have are more

numerous, but have an altered cardiolipon composition, contributing to a poised activation state curtailing OXPHOS potential. The importance of glycolysis for TRM
cells remains unknown.

with effector T cells (39, 44). Memory T cells are not known to
increase the uptake of lipids from their surroundings, but can
use alternative sources such as glycerol, to generate lipids (43, 46)
(Figure 1). This suggests that the increased potential of memory
T cells for OXPHOS is not explained by FAO, confirm recent
results using carnitine palmitoyltransferase I (CPT1)-deficient
cells, which cannot generate acetyl-CoA from long chain fatty
acids (47).

TISSUE RESIDENT CD8 T CELLS

In addition to circulating memory T cells, a more recent subtype
of memory T cells, called resident memory T cells (TRM) has
been described. TRM cells are memory T cells that do not
circulate and are predominantly found in non-lymphoid tissues
(48, 49), although they have been reported in SLOs (50). In
mice, the epidermis, forming the top layer of the skin, is
home to specialized T cells, expressing TCRγδ. This population
develops during embryogenesis and homes to the epidermis.
They have a type 1 immune profile with the ability to produce
IFN-γ. The small intestine are another tissue forming a large
interfaces between the environment and the body and endowed
with a specialized population of CD8T cells that occupying
the very top layer of the tissue, the intraepithelial lymphocyte
(IEL) compartment. Similar to the epidermal compartment,

innate-like CD8T cells occupy the murine small intestine early
in life, predominantly specialized TCRγδ CD8αα homodimer-
expressing T cells with a type 1 immune profile, which home
specifically to the IEL compartment. In humans, the IEL
compartment is mainly composed of TCRαβ T cells with γδ T
cells reported in the minority (51). Induced IELs or CD8 TRM

cells intercalate with innate-like small intestinal and skin IELs,
predominantly expressing TCRαβ and the CD8αβ heterodimer
(52, 53). The population of CD8 TRM possess a distinct genetic
signature compared with circulating CD8T cells and are often
defined by cell surface expression of CD69, CD103, and CD49a
(54). The expression of CD49a and CD103 is indicative of
cell interactions with collagen and E-cadherin epithelial tissues
(54). Expression of CD69 together with expression of NK cell
inhibitory receptors (CD244), and high levels of granzyme B
marks CD8 TRM cells as semi-activated T cells (53).

TRM cells are metabolically highly active, continuously
scanning the tissues for invasion using migration and long
dendrite-like protrusions (52, 55), in line with their semi-
activation status. Yet, their development is more in line with CD8
TCM cells than TEM cells (35). TRM cells protect the host through
rapid responses upon re-exposure to previously encounter
pathogen as well as contribute to immune responses against
newly encountered microorganisms via bystander activation
(3, 56). Activation of CD8 TRM cells influences the surrounding
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TABLE 1 | CD8T cells subset with their identifiable markers, effector, and metabolic status.

Subset of CD8T cells Naive Circulating memory

(Tcm/EM)

Effector Tissue resident

Identity markers CD441◦ CD62L+ CCR7+

CD103− CD69−
CD44hi CD62L+/−

CCR7+/− CD103− CD69−
CD44hi CD62L− CCR7−

CD103− CD69+ (early)

CD44hi CD62L− CCR7−

(CD49a+), CD103+, CD69+

Effector status

• Immune function Surveillance SLO Surveillance of SLO/SLO +

tissues

Search and kill infected or

tumorigenic cells of all

tissues

Surveillance of tissues previously

infected

• Cell status Quiescent Quiescent Active Poised

• Secretory vesicles (Grzm) Absent Low High High

• Cytotoxicity (TCR/CD28) TCR + CD28 TCR + CD28 TCR TCR or cytokines

Metabolic status

• Status Quiesent Primed Active Arrested

• Nutrient uptake Basal Basal High High(?)

• SRC High High Low Low(?)

• Glycolyisis Basal Basal High Basal(?)

• OXPHOS Basal Basal High Basal

• Lipid metabolism + ++ ++ ++

• Glutaminolysis – – + ?

• Biosynthesis Minimal, no net growth Synthesis/oxidation

balance, no cell proliferation

High, Cell growth,

proliferation

No net growth/cell proliferation

The table highlights the main characteristics, in common and setting apart, the CD8T cell subsets; naïve, effector, circulating memory, and tissue resident memory.

tissue cells, such as a number of broad acting antiviral and
antibacterial genes (57), increasing local defenses and decreasing
susceptibility to invasion. Release of inflammatory molecules
such as IFN-γ, results in the recruitment of additional myeloid
and lymphoid cells, maturation and migration of local dendritic
cells and activation of natural killer cells (58). In addition to
sentinels of microbial invasion, TRM cells bridge the adaptive
immune system with the innate immune system (57, 58).

The integration of CD8 TRM cells within tissues involves
adaptation to the local environment compatible with their role
in clearing potential pathogens, which necessitate changes in
T cell metabolism for their maintenance as well as functional
potential. A prime feature of TRM cells is their ability to deeply
penetrate tissues and their long-termmaintenance within it. TRM

have to adapt to the new environment of periphery, which can
differ in oxygen levels, nutrient availability, acidity, competition
for resources in comparison to the environment of lymphatic
organs (59, 60).

CD8 TRM cells, not circulating CD8T cells, express high
levels of the purinergic receptor P2RX7, triggered by extracellular
nucleotides, associated with tissue damage and exported by
activated T cells (35, 61, 62). P2RX7 is involved in the
establishment, maintenance and functional properties of CD8
TCM and TRM cells (35). Although tissue damage and stress
have been associated with the activation of tissue integrated
CD8T cells, engagement of P2RX7 can result in the selective
cell death of CD8 TRM cells. The balance between activation and
cell death is carefully orchestrated and context dependent, low
concentrations are able to activate T cell and high concentrations
result in cell dead (63). However, P2RX7 can be activated directly
by ATP, or indirectly via NAD-dependent ADP-ribosylation by

the ecto-ADP-ribosyltransferase ARTC2.2. The concentration of
NAD thereby lowering the threshold of ATP concentrations
required inducing apoptosis. This may be part of protecting
tissues from aberrant immunity in the absence of cognate antigen
reencounter since TCR stimulation of CD8 TRM cells reduces
P2RX7 expression and susceptibility to cell death. Recent data
highlight the importance of both receptors in studying tissue
resident T cells, the isolation process resulting in tissue damage
and release of ATP and NAD, can causing reduced TRM cell
viability and compromises functional assessment (62, 64).

Aberrant regulation of IELs can compromise barrier function
and increase susceptibility to infection and immunopathology
(44, 65), which can ultimately contribute to inflammatory bowel
disease and psoriasis (66, 67). These findings underscore the
physiological significance of tissue integrated CD8T cells in
tissue homeostasis and disease. Due to different environmental
conditions and their semi-activation status, the metabolic wiring
of TRM cells has to be adjusted, the details of which may depend
on the host tissue. TRM cells posse some similarities with TCM

and TEM cells. We will here discuss some of the recent finding
concerning TRM cells and their metabolism.

CD8 TRM CELLS AND LIPID METABOLISM

Lipids are, in comparison to SLOs, abundant at epithelial
barriers where TRM cells persist (59, 60). IELs, in skin and
intestine, have adapted to a lipid-rich microenvironment. Early
on, it was recognized that intestinal TRM cells express required
surface molecules to obtain lipids from the extracellular space,
including low density lipid receptor (LDLR), ApoE, scavenger
receptor CD36, and fatty acid biding proteins (FABP) 4 and 5
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(Figure 1), suggesting an important role for lipid metabolism
(68). FABP proteins are involved in FFAs fatty-acid influx and
transfer from cytosol to mitochondria for the purpose of β-
oxidation (69). In addition to regulating fatty acid influx, in
macrophages FABP4 is involved in the nuclear factor-κB (NF-
κB) pathway and stimulates pro-inflammatory effector function
such as production of cytokines and inducible nitric oxide
synthase (iNOS). Furthermore, FABP4 reduces cholesterol ester
accumulation via inhibition of peroxisome proliferator-activated
receptor-γ (PPAR-γ) pathways and is involved in integrating
lipid signals to organelle responses, especially the endoplasmic
reticulum (ER) (70). FABP5 is highly expressed in epidermal cells,
but is found in many organs. Its function is to enhance lipolysis
(71). Due to compensation mechanisms, combined deletion for
FABP4/5 show a much stronger phenotype. Adipocytes and
macrophages from double deficient mice have an altered lipid
profile, in favor of shorter-chain fatty acids (C14). These changes
result in higher glucose uptake, AMPK activity, and fatty-acid
oxidation (72).

How skin CD8 TRM persist and function in a lipid rich
environment remained elusive (59, 60). More recently, Pan et al.
(43), using a mouse model of cutaneous immunization with
Vaccina virus, showed that CD8 TRM cells in the skin adapt to
utilize lipid metabolism using free fatty acids (FFA) obtained
from the surrounding microenvironment for their endurance
as well as effector function. Activation of CD8 TRM cells
fosters a transcriptional program that features notable increased
expression of molecules facilitating exogenous FFA uptake and
storage. Compared with naïve and circulating memory CD8T
cell subsets, sCD8 TRM cells, in mouse and human, were able
to express high levels of FABP4/5 and CD36 and lipoprotein
lipase (LPL) (43). T cell specific deletion of FABP4/5 showed an
impairment in FFA uptake in CD8 TRM cells, limiting OXPHOS
potential and reducing the survival of skin CD8 TRM cells but not
circulating memory CD8T cells (43).

Intestinal CD8 TRM cells show a similar transcriptional
programme to skin TRM cells, with pathways involved in FFA
and cholesterol ester synthesis increased compared with naive
and memory CD8T cells (44, 68). Furthermore, intestinal IELs
store accumulated FFA in lipid droplets (44), from which FFA
can bemade available for FAO via autophagy or via mitochondria
tethered to the lipid droplet (73). These observations suggested a
reliance of IELs on FAO. However, the accumulation of lipids is
a characteristic of activated T cells and does not appear unique
to IEL (36, 39, 44). The conditions under which FFA are made
available and used for FAO remain unclear with IELs performing
basal OXPHOS without additional capacity upon mitochondrial
uncoupling (43, 44, 55). Yet, short-term culture of skin IELs
with FFA or intestinal infection with Salmonella does result in a
modest increase in OXPHOS (43, 55). The data suggests that the
trigger that makes available FFA from lipid droplets is likely the
same that releases additional OXPHOS potential in TRM cells.

Transcriptomic analysis of IEL during intestinal Salmonella
Typhirum challenge compared to steady state IELs revealed, once
more, increased expression of genes involved in metabolism
(55). Salmonella infection in the small intestine resulted in
increased aerobic glycolysis, glucose uptake, as well as OXPHOS

by IELs, similar to effector CD8T cells (17, 36). In addition,
IELs altered their immunosurveilance behavior upon infection,
suggesting that the IEL semi-activation status can be further
enhanced upon microbial encounter. In support of this, the
use of the glycolysis inhibitor 2DG as well as mTOR inhibitor
rapamycin resulted in increased salmonella burden and invasion.
Although 2DG treatment would target many cells involved in the
respond to enteric infection (74), GLUT1-deficient innate-IELs
revealed the requirement for glycolysis in IELs. However, upon
Salmonella infection a proliferative response was not detected
(55). Collectively, IELs store large amounts of energy in the form
of lipids, the signals resulting in the release of these remain
unknown, but in line with effector T cells, IELs require both
glycolysis and OXPHOS for their effector functions.

CD8 TRM CELLS AND MITOCHONDRIA

Lipid droplet associated mitochondria are biochemically distinct
from non-associated cytoplasmic mitochondria, with the later
primarily using pyruvate as a substrate (75). These recent data
could explain the observations that FAO and fatty acid synthesis
seem to take place at the same time within memory T cells (39),
but individual mitochondria can only perform one or the other.
Interestingly, mitochondria in brown fat associated with lipid
droplets, were shown to have reduced FAO capacity compared
with cytoplasmic mitochondria. This suggest they are involved in
lipid storage under steady state conditions and, upon exposure to
the environmental cue of cold, initiate FAO (75).

Mitochondria actively contribute to T cell activation and
circulating T cell memory formation, their fission and fusion
determining energy production (76). Furthermore, P2RX7 is
involved in metabolic function via stimulation of AMPK in
CD8 effector T cells, increasing glucose and fatty acid uptake
and OXPHOS, and by promoting mitochondrial fusion and
reorganization, affecting the development of CD8 TCM and
CD8 TRM cells (35). Unexpectedly, detection of mitochondria
using mitotracker dyes, often equated to represent mitochondrial
mass, or nonyl acridine orange, which binds to cardiolipins,
in T cells, suggested very low levels of mitochondria to be
present in IELs (innate-like as well as TRM cells) compared with
circulating CD8T cells, with reduced mitochondrial membrane
potential and ROS production (44). These observations were
at odds with the active scanning behavior of barrier IELs,
as well as their high expression level of P2RX7, the absence
of which results in reduced OXPHOS potential but similar
aerobic glycolysis (35, 77). Electron microscopy analysis revealed
increased numbers of mitochondria to be present in IELs
compared with circulating CD8T cells, albeit of a smaller average
size (44). Although the exact binding properties of dyes remains
elusive, it suggested marked changes in mitochondria of CD8
TRM cells at epithelial barriers.

IEL mitochondria were found to have an altered cardiolipin
make up, enriched in longer and more unsaturated species.
Additional experiments using T cells deficient in Tafazzin,
an enzyme involved in cardiolipin metabolism, indicated that
changes in cardiolipins in line with circulating T cells are
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required for IEL activation (44, 78). Failure to alter the cardiolipin
makeup restricts swift IEL proliferation and effector function,
reducing microbial containment capability resulting in an
increased microbial burden. In addition, the data also suggested
that other changes in IELs may contribute to the absence of
mitochondrial detection and possibly energy capacity, since
changes in cardiolipin composition did not explain the absence of
Mitotracker dye staining under steady state conditions. Whether
mitochondria in IELs directly associate with lipid droplets and if
their detection is masked by their subcellular location remains
to be determined. These findings uncovered an alternative
mechanism of mitochondria to control cellular activity, which
appear particular to epithelial-resident CD8 T cells.

CD8 TRM AND AhR METABOLISM

Lipid metabolism may involve a factor shared between epithelial
T cell subsets, critical for the maintenance of IELs but not
expressed in circulating T cells, the arylhydrocarbon receptor
(AhR) (52, 65, 79, 80). AhR has been linked with cholesterol
biosynthesis in hepatocytes as well as attenuating the expression
of key fatty acid synthesis genes (81). The transcriptional activity
of AhR is the result of ligand engagement in the cytosol
(82). The absence of AhR results in alterations in intestinal
microbial composition and acute sensitivity to intestinal injury,
in line with the role of IEL in controlling the microbiota
and regulating epithelial cell turnover and wound repair
(65). The identity of the ligand remains unknown, but can
include substances derived from food, light, and microorganism
(65, 83, 84). However, AhR ligands are lipophilic and likely
enriched in lipid-rich tissues. The transcriptional activity of
AhR involves the production of metabolic enzymes, cytochrome
P450 of the first family (Cyp1), including in T cells (85),
involved in the metabolism of polyunsaturated fatty acids and
arachidonic acid.

Although, the functional roles of FABP4/5 remain to be
defined, their activity may be juxtaposed to that of AhR, the
activity of which can dampen psoriasis-like symptoms (66). Since
lymphocytes expressing AhR are enriched in tissues, besides
CD8 TRM cells, ILC3 and TH17 cells, it is tempting to speculate
that the AhR system provides a specific advantage in the tissue
environment, not required in SLOs. Whether AhR is involved in
the assistance of specific metabolic pathways generating energy
or protection from metabolic factors encountered in tissues, or
generated because of specific metabolic pathways, remains to
be determined.

CD8 TRM AND SYSTEMIC METABOLISM

In addition to IELs primary role to provide a first line of
defense against invadingmicroorganisms and tissue homeostasis,
recent data suggests a potential role in systemic metabolism. In
mice deficient in integrin-β7, which can pair with integrin-α4
(forming CD49d) or αE (forming CD103), immune cell homing
to tissues is reduced. Intergin-β7-deficient mice lack natural
IEL and are metabolically hyperactive (86). Consequently, these

animals are resistant to obesity, hypertension, diabetes, and
atherosclerosis when fed a high fat and high sugar diet.
IELs express the glucagon-like peptide-1 receptor (GLP-1R)
(87). IEL function, release of cytokines and antimicrobial
factors, depends on the expression of GLP-1R, its absence
resulting in dysregulated intestinal gene expression, an altered
microbiota composition, and enhanced sensitivity to colitis,
similar to AhR-deficiency with a link to psoriasis (88). GLP-
1R, binding GLP-1, is known to be expressed on pancreatic
β-cells and brain, its stimulation controlling blood glucose
levels and appetite. Its stimulation converting ATP to cyclic
adenosine monophosphate (cAMP), reducing the activation
and function of IELs, but not that of circulating CD8T
cells (87).

Recent data indicates that the GLP-1R pathway in IELs
can determine systemic metabolic capacity, whereby GLP-1 is
released from enteroendocrine L-cells in gut epithelium (86).
GLP-1 release is increased by sugars and bile acids in the
intestinal lumen and in response to neuronal stimulation and
inflammation (89). These data suggest that IELs also function
as a metabolic and gut-health rheostat, their activity determined
by the nutritional and inflammatory state of the organism,
maintaining tolerance at the intestinal barrier when symbiotic
bacteria produce carbohydrates and bile acids. If GLP-1 levels
are limited to reach the blood stream, IEL capture will reduce
the availability to stimulate β-cells and the release of insulin,
increasing blood glucose levels and activity, as well as to
the brain, increasing appetite. The physiological role of this
process requires further scrutiny. Since inflammatory signals
stimulate L-cell GLP-1 release (89), this could inhibit IEL activity
and potentially aggravate intestinal inflammation. Although of
potential benefit in times of scarcity, current food composition
and ready availability may be detrimental to health.

CONCLUSIONS

In recent years, T cells metabolic characteristic in relation to their
activation stage, differentiation and function have been more
closely studied. In CD8T cells, there are clear differences between
themetabolic pathways used between naïve, memory and effector
cells (Table 1). In addition, between the three identified memory
T cell subsets, TEM, TCM, and TRM cells, there are communalities
and differences affecting cell development, maintenance and
function. How the development of these memory subsets are
fine-tuned, with initial differences between TRM cell development
compared to TEM and TCM cells reported, remains incompletely
understood. CD8 TRM cells have characteristics of effector T cells,
with increased expression of transcripts for proteins involved
in metabolism and effector proteins such as granzymes, active
cellular migration, as well as uptake of FFA and storage in lipid
droplets, but without active proliferation or secretion of effector
molecules such as IFN-γ. The positioning of TRM cells in diverse
tissues would suggest that tissue-specific adaptations might be
required for their long-term maintenance and specific function.
Yet, the transcriptional make up of CD8 TRM cells in different
tissues is largely similar (90, 91). Lipids are recognized to be
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an important substrate and FAO as important source of energy
for CD8 TRM cells, but the signals resulting the bioavailability
of FFA stored in lipid droplets remain to be discovered. Upon
activation, CD8 TRM cells appear to use similar metabolic
pathways compared with effector CD8T cells, using OXPHOS
and glycolysis. However, maintenance of T cells sets CD8 TRM

cell apart, with the high levels of P2RX7 increasing susceptibility
to cell death, the expression of AhR critical for survival and
the altered cardiolipin composition and mitochondria activity
of those CD8T cells residing at the top layers of the skin
and intestine.

The biochemical analysis of TRM cells has been hampered
due to the difficulties in harvesting sufficient cell numbers
and the inability to culture these cells, requiring constant
interactions with tissue cells. Their important role in providing
immediate protection against microbial invasion as well as
tissue homeostasis and their role in systemic metabolism and
pathological conditions, combined with technological advances
enabling more sensitive cellular and biochemical analysis, will
contribute important new discoveries in the coming years.
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Anna Aulicino 1, Simon Wigfield 3, Maria do Carmo Costa 4, Marie-Laëtitia Thézénas 5,

Henry Paulson 4, Roman Fischer 5, Benedikt M. Kessler 5 and Alison Simmons 1*
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The interplay between NOD2 and TLR2 following recognition of components of the

bacterial cell wall peptidoglycan is well-established, however their role in redirecting

metabolic pathways in myeloid cells to degrade pathogens and mount antigen

presentation remains unclear. We show NOD2 and TLR2 mediate phosphorylation of the

deubiquitinase ataxin-3 via RIPK2 and TBK1. In myeloid cells ataxin-3 associates with

the mitochondrial cristae protein MIC60, and is required for oxidative phosphorylation.

Depletion of ataxin-3 leads to impaired induction of mitochondrial reactive oxygen

species (mROS) and defective bacterial killing. A mass spectrometry analysis of

NOD2/TLR2 triggered ataxin-3 deubiquitination targets revealed immunometabolic

regulators, including HIF-1α and LAMTOR1 that may contribute to these effects. Thus,

we define how ataxin-3 plays an essential role in NOD2 and TLR2 sensing and effector

functions in myeloid cells.

Keywords: Nod2, TLR2, metabolism, innate immnuity, ataxin 3

INTRODUCTION

Pattern recognition receptors (PRRs) recognize foreign antigen to direct innate and adaptive
immune responses against invading pathogens (1). Polymorphisms in the PRR nucleotide-
binding oligomerization domain-containing protein 2 (NOD2) represent the strongest genetic
risk factor for the inflammatory bowel disease Crohn’s (CD), and thus this bacterial sensor is
the focus of particular research interest (2–4). NOD2 recognizes muramyl dipeptide (MDP),
the largest fraction of peptidoglycan, that is present in the cell walls of all bacteria (5).
Subsequent activation of NF-κB and MAPK pathways via interaction with receptor-interacting
protein kinase 2 (RIPK2) results in an array of immune responses, such as production and
regulation of pro-inflammatory cytokines (6), and modulation of T-cell function (7–9). NOD2
also directs autophagy, which is important both for bacterial clearance and MHC class II
antigen presentation (10). Importantly, NOD2 signaling is intimately linked with that of toll like
receptor TLR2, with both responding to ligands derived from the same bacterial component,
peptidoglycan. Although the precise mechanisms of cross-regulation are not well-understood,
both NOD2 and TLR2 activate separate upstream signaling cascades to recruit the same NF-
κB and MAPK pathways, and are typically thought to act in a synergistic fashion (11). CD
patients harboring NOD2 polymorphisms display loss-of-function for induction of NOD2
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and NOD2/TLR2 effector signaling factors (12, 13). In contrast,
gain-of-function mutations of NOD2 have been associated with
other inflammatory disease, such as Blau syndrome and early-
onset-sarcoidosis (EOS).

In recent years it has become clear that cross-talk between
metabolic and immune pathways is central to the regulation of
host defense (14). Immune cells undergo significant metabolic
reprogramming during the immune response, both as a
result of changes in the metabolic microenvironment induced
by inflammation, and in response to immune triggering.
This interplay appears of particular importance to dendritic
cells and macrophages and controls core processes including
differentiation (15). However, while the importance of PRR
activation in directing metabolic pathways that impact on
immune effector function is now well-established, how NOD2
and TLR2 influence myeloid metabolism is unclear. Here,
following a phosphoproteomic screen of NOD2 and TLR
signaling we identify a deubiquitinase essential for metabolic
reprogramming and innate effector function in myeloid cells.

RESULTS

NOD2 and TLR2 Stimulation Leads to
Ataxin-3 Phosphorylation Mediated by
RIPK2 and TBK1
We identified ataxin-3 as one of the most differentially
phosphorylated proteins on NOD2/TLR2 stimulation through a
quantitative phosphoproteomic screen in monocyte derived
dendritic cells (moDCs) from healthy human donors
(Supplementary Table 1). Ataxin-3 is a deubiquitinase (DUB)
(16) that is required for non-selective autophagy and that is
linked to neurodegenerative disease (17–19).

We first validated this result by immunoblotting phospho-
enriched samples for ataxin-3 (Figure 1A). Both NOD2 and
TLR2 stimulation alone led to ataxin-3 phosphorylation; this
effect was enhanced on dual stimulation of NOD2 and
TLR2. It was also observed to a lesser extent following
stimulation of TLR4, TLR7, and TLR8 (Figure 1A). NOD2
mediated phosphorylation of ataxin-3 was examined in greater
detail. A time course experiment demonstrated that ataxin-3
phosphorylation was maximal 30min after MDP stimulation
(Figure 1B). While NOD2 is the only known receptor for
MDP, the absolute requirement for NOD2 in the MDP
stimulated phosphorylation of ataxin-3 was investigated. We
downregulated expression of NOD2 in THP-1 cells using
short hairpin RNAs (shRNA) targeting NOD2 (Figure 1C).
Reduction of ataxin-3 phosphorylation on MDP exposure was
observed in NOD2 knockdown cells (Figure 1D). Next, given
the central importance of RIPK2 in NOD2 signaling (20, 21),
the requirement of RIPK2 for phosphorylation of ataxin-3 by
NOD2 was investigated. NOD2-RIPK2 inflammatory signaling
can be potently and selectively inhibited by the clinically
relevant kinase inhibitor Ponatinib, that functions by blocking
RIPK2 autophosphorylation and ubiquitination (22). moDCs
were treated with Ponatinib prior to stimulation with MDP
or PAM3CSK4 or both, with phosphorylation of p38 used as

a positive control for the inhibitor. As expected, inhibition of
RIPK2 blocked NOD2 induced phosphorylation of p38, but
had no effect on induction by TLR2, which signals to p38
via a MyD88 pathway which is independent of RIPK2 (23).
Inhibition of RIPK2 led to complete inhibition of NOD2 induced
phosphorylation of ataxin-3, and significant abrogation of the
synergistic NOD2/TLR2 signal in both cell types (Figure 1E).
Recent evidence suggests that tank binding kinase 1 (TBK1) may
represent a novel but important kinase in the NOD2/RIPK2
signaling cascade (24, 25) and MDP stimulation of the NOD2
receptor has been shown to induce TBK1 phosphorylation
at S172 (24). Consequently, the requirement for TBK1 in
NOD2/RIPK2 dependent phosphorylation of ataxin-3 was
examined. We downregulated expression of TBK1 in THP-1 cells
using short hairpin RNAs (shRNA) targeting TBK1 (Figure 1F).
Reduction of ataxin-3 phosphorylation on MDP exposure was
observed in TBK1 knockdown cells (Figure 1G). The possibility
that TBK1 might directly phosphorylate ataxin-3, as has been
described for a number of other proteins including optineurin
(26) and p62 (27), was explored using an in vitro kinase
assay (Figure 1H). The expected autophosphorylation of TBK1
was demonstrated by a marginally higher molecular weight of
the TBK1 band in samples containing both TBK1 and ATP.
Importantly, a significant proportion of the ataxin-3 band was
noted at a higher molecular weight in samples containing ataxin-
3, TBK1 and ATP, consistent with ataxin-3 phosphorylation
(Figure 1H). Notably, no change in migration of the ataxin-3
band was seen in samples containing ataxin-3 and TBK1 but
not ATP, confirming the ATP dependency of this shift, consistent
with phosphorylation. Finally, the phosphorylation site of ataxin-
3 was sought, using liquid chromatography mass spectrometry
analysis of endogenous ataxin-3 immunoprecipitated from THP-
1 cells. A significant shift in mass/charge ratio, consistent
with phosphorylation, was detected at a single peptide in the
MDP/PAM3CSK4 stimulated sample only, corresponding to
phosphorylation at serine 265 (Figure 1I). This residue has been
described as a phosphorylation site in 12 separate large scale
mass spectrometry (MS) screens of human primary cells and cell
lines (28), and is highly conserved in placental bearing mammals
(29), but there is no existing knowledge of its functional
relevance. It is located in close proximity to the second ubiquitin
interacting motif (UIM), suggesting that phosphorylation could
affect specificity of DUB target, as has been described for
neighboring serine residues 256/260/261 (30) (Figure 1J).

Taken together, this data shows that activation of NOD2/TLR2
signaling pathway induces phosphorylation of the DUB ataxin-3.
TBK1 is required for the direct phosphorylation of ataxin-3 at
serine 265 following NOD2/TLR2 activation.

Ataxin-3 Localizes With the Mitochondrial
Cristae Protein MIC60 and Regulates the
Expression of the Oxphos
Machinery Components
To identify novel interacting partners of ataxin-3 in innate
immune cells, endogenous ataxin-3 was immunoprecipitated
in moDCs from healthy human donors, and subjected to mass
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FIGURE 1 | NOD2/TLR2-mediated phosphorylation of ataxin-3. Immunoblot using antibodies against ataxin-3 and β-actin of whole cell lysates (WCL) and

phosphoprotein enriched lysates (PE) from moDCs either (A) unstimulated or stimulated with the NOD2 ligand MDP 10µg/ml, or the TLR2 ligand PAM3CSK4
1µg/ml, or both, or the TLR4 ligand LPS 100 ng/ml or the TLR7/8 ligand R848 (Resiquimod) 1µg/ml for 30min or (B) unstimulated or stimulated with the NOD2

ligand MDP for 15, 30, or 60min. (C) THP-1 cells were transduced with control or NOD2-targeting lentiviral shRNAs and analyzed for NOD2 expression by qPCR

analysis. (D) Immunoblot using antibodies against ataxin-3, p38, and β-actin of WCL and PE lysates from THP-1 cells expressing control or NOD2 shRNA and either

unstimulated or stimulated with the NOD2 ligand MDP or the TLR ligand PAM3CSK4, or both, for 60min. (E) Immunoblot using antibodies against ataxin-3, p38 and

β-actin of WCL and PE lysates from THP1 cells which were pre-treated with the RIPK2 inhibitor Ponatinib 50 nM for 60min and then left unstimulated or stimulated

with the NOD2 ligand MDP or the TLR2 ligand PAM3CSK4 or both. (F) THP-1 cells were transduced with control or TBK1-targeting lentiviral shRNAs and

immunoblotted to detect TBK1 expression (G) Immunoblot using antibodies against ataxin-3, p38 and b-actin of WCL and PE lysates from THP-1 cells expressing

control or TBK1 shRNA left unstimulated or stimulated with the NOD2 ligand MDP or the TLR2 ligand PAM3CSK4 or both for 60min. (H) Immunoblot using antibodies

against TBK1 and ataxin-3 following an in vitro kinase assay of GST-TBK1 protein or His-ataxin-3 protein with ATP, or both GST-TBK1 and His-ataxin-3 with or without

ATP which were incubated for 60min at 30◦C. (I,J) Identification of the phosphorylated serine residue (s265) in ataxin-3 with a characteristic increase in mass/charge

ratio in the stimulated sample. All immunoblots are representative of at least two independent experiments.

spectrometry analysis. One of the most abundant proteins
identified in the pull down was the mitochondrial cristae
protein MIC60 (Figures 2A,B). The association between
ataxin-3 and MIC60 was validated through immunoblot of

immunoprecipitated ataxin-3 (Figure 2C). There appeared to be
no change in abundance of MIC60 whenmoDCs were stimulated
with MDP + PAM3CSK4 prior to immunoprecipitation of
ataxin-3, suggesting that NOD2/TLR2 stimulation does not
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FIGURE 2 | Ataxin-3 associates with the mitochondrial protein MIC60 and regulates expression of the OXPHOS machinery components. (A) Silver stain of

immunoprecipitation of ataxin-3 in moDCs, using ataxin-3 antibody, isotype control antibody, or immunoprecipitation beads only. (B) The sequence coverage of

MIC60 identified following mass spectrometry analysis of the immunoprecipitation of ataxin-3 in moDCs, with the peptides in red indicating the identified peptides. (C)

Immunoblot using antibodies against MIC60 and ataxin-3 of lysates where ataxin-3 has been immunoprecipitated from moDCs either left unstimulated or stimulated

for 30 or 60min with MDP + PAM3CSK4. (D) Immunoblot using antibodies against MIC60 and ataxin-3 of lysates where MIC60 has been immunoprecipitated from

moDCs. (E) STED microscopy using antibodies against ataxin-3 and MIC60 in moDCs. (F) Immunoblot using antibodies against ataxin-3 and β-actin in moDCs

following transfection with control or ataxin-3 siRNA. (G) RT-qPCR analysis of selected mitochondrial genome encoded transcripts following ataxin-3 depletion by

siRNA in moDCs; n = 3, one way ANOVA **p < 0.01, ***p < 0.001, ****p < 0.0001 (H) RT-qPCR analysis of MT-ND1 mRNA expression following ataxin-3 depletion

by siRNA in moDCs subsequently left unstimulated or stimulated for 6 h with MDP + PAM3CSK4; n = 3, Student’s paired t-test *p < 0.05.

affect binding. To further confirm the association, MIC60
was pulled down, and an immunoblot for ataxin-3 performed
(Figure 2D). Here, ataxin-3 appeared at two molecular weights,
suggesting that either two separate isoforms bind to MIC60,

or it is post-translationally modified. Finally, super-resolution
assessment using stimulated emission depletion (STED)
microscopy confirmed that ataxin-3 was situated in close
proximity to MIC60 (Figure 2E).

Frontiers in Immunology | www.frontiersin.org 4 July 2019 | Volume 10 | Article 149581

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chapman et al. NOD2/TLR2-Mediated Control of Metabolism

MIC60 is the largest protein in the mitochondrial contact
site (MICOS) complex, which is embedded in the mitochondrial
inner membrane and acts as a key regulator of cristae junction

formation and assembly of respiratory chain complexes which
are required for oxidative phosphorylation (31). Additional

specific roles for MIC60 include the import of proteins (32, 33)

and regulation of mitochondrial DNA (mtDNA) transcription
(34, 35). Consequently, we examined the effect of ataxin-
3 knockdown in moDCS on expression of mtDNA genes
that encode components of the oxphos machinery. moDCS
from healthy human donors were found to express either
a single or double isoform of ataxin-3 with approximately
equal frequency, but all detectable isoforms could be efficiently
knocked down (Figure 2F). Ataxin-3 depletion led to a 2-
fold upregulation of NADH-ubiquinone oxidoreductase 1 (MT-
ND1), with a statistically significant upregulation observed for
mRNA expression of two other genes from Complex I, MT-
ND3 andMT-ND4L (Figure 2G). In comparison, genes encoding
components of Complex III, IV and V were broadly unaffected.
It is noteworthy that mtDNA transcription is tightly regulated
due to its close links to oxphos, and thus 1.5- to 2-fold changes
in mRNA expression level represent a potentially functionally
significant alteration (36). The effect of NOD2/TLR2 stimulation
was examined on MT-ND1, the most significantly affected gene.
Stimulation led to a significant upregulation inmRNA expression
in both the control and ataxin-3 depleted cells, but there was
significantly greater ND1 in the ataxin-3 depleted cells following
stimulation (Figure 2H). Finally, to understand if these effects
on Complex I genes correlate with modulation of cytokine
responses, we have assessed the expression of IL8, IL1β, TNF,
IL12B, and IL23A in response to TLR/NOD2 signaling in human
moDCS and found that ataxin-3 depletion using siRNA did not
affect the levels of these cytokines (data not shown).

These results indicate a novel association between ataxin-3
and MIC60, a component of the MICOS complex involved in the
regulation of mtDNA. We demonstrated that ataxin-3 regulates
mtDNA by downregulating the expression of Complex I genes,
an effect increased on NOD2/TLR2 sensing.

Ataxin-3 Is Important for Optimal
Mitochondrial Respiration Following NOD2
and TLR2 Stimulation
We next investigated the functional relevance of the observed
changes in the expression of Complex I genes. Using short
hairpin RNAs (shRNA) targeting the ataxin-3 gene (ATXN3),
we downregulated ataxin-3 protein expression in THP-1 cells
(Figure 3A). We next performed a real time analysis of oxidative
phosphorylation to address the function of ataxin-3. We
found that ataxin-3 depletion led to a significant reduction in
all the key parameters of mitochondrial respiration assessed
(Figures 3B–F).

We next determined whether NOD2/TLR2-mediated ataxin-
3 phosphorylation stimulation affects mitochondrial respiration.
Prolonged triggering of these PRRs led to an expected metabolic
shift (37) with downregulation of oxidative phosphorylation.
In the ataxin-3 depleted cells the level of oxphos remained

significantly lower than in the control cells following stimulation
(Figures 3G–J). Importantly, no significant difference in mtDNA
copy number was found between the control and ataxin-3
depleted THP-1 cell line (Supplementary Figure 1), suggesting
that there are no differences in mitochondrial mass or turnover
through mitophagy to explain the observed changes.

Taken together, this data shows that in innate immune
cells, ataxin-3 is required for optimal mitochondrial respiration
and this effect is enhanced following its phosphorylation on
NOD2/TLR2 stimulation.

Ataxin-3 Is Required for Mitochondrial ROS
Production, and Is Necessary for Optimal
Bacterial Killing
A key function of mitochondrial respiration in immune cells is
the generation of mROS. This results from leakage of electrons,
predominantly from Complex I and to a lesser extent from
Complex III, which partially reduce oxygen to form superoxide
(38). The effect of ataxin-3 depletion on mROS and total
cellular ROS was therefore examined. Ataxin-3 depletion led
to a significant reduction in mROS (Figure 4A). As expected,
there was a corresponding decrease in total cellular ROS, to
which mROS makes a significant contribution (Figure 4B).
The ability of immune cells to upregulate mROS production
on pathogen challenge is crucial to the immune response
(39); importantly, ataxin-3 depleted cells also produced less
mROS on NOD2/TLR2 stimulation (Figure 4C). mROS forms
an important component of antibacterial responses, and is
important for bacterial killing (39). To test the functional
significance of the observed impairment ofmitochondrial oxphos
and mROS generation on NOD2/TLR2 triggering, we assessed
the response of ataxin-3 depleted macrophages to Salmonella
Typhimurium, a Gram-negative intracellular bacterium that
is sensitive to ROS-dependent killing (39, 40). A gentamicin
survival assay was undertaken. While bacterial invasion was
unchanged, as evidenced by similar bacterial counts at 1 h post-
infection, there was subsequently significantly greater bacterial
survival in the ataxin-3 depleted cells that was maximal at
6 h (Figure 4D). There were no significant differences in cell
viability between the two groups at any of the infection
time points (Supplementary Figure 2), excluding differences
in cell survival as a contributing factor in the bacterial
killing deficit.

Taken together, this data shows that in macrophages ataxin-3
is required for mROS generation and this contributes to effective
intracellular bacterial killing.

An Unbiased Ubiquitome Screen Reveals
Novel DUB Targets of Ataxin-3 Following
NOD2 and TLR2 Activation
To further define the role of ataxin-3 in NOD2/TLR2 signaling,
we sought to define downstream DUB targets. Classically
the ubiquitinated proteome, also termed the ubiquitome,
was first enriched using His6-tagged ubiquitinated conjugates
under denaturing conditions. However, concerns exist over the
impact of overexpressed modified His6, which competes with
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FIGURE 3 | Ataxin-3 is required for mitochondrial respiration in immune cells. (A) Immunoblot using antibodies against ataxin-3 and β-actin in THP1 cells following

transfection with control or ataxin-3 shRNA. (B) Representative Seahorse sequential OCR measurements by Seahorse of control and ataxin-3 shRNA THP1 cells.

(C–F) Seahorse analysis of key mitochondrial respiration parameters in control shRNA cells and ataxin-3 shRNA THP1 cells. n = 3, Student’s paired t-test *p < 0.05,

**p < 0.01, ***p < 0.001. (G–J) Seahorse analysis of key mitochondrial respiration parameters in control shRNA cells and ataxin-3 shRNA THP1 cells either left

unstimulated or stimulated for 6, 16, or 24 h with MDP + PAM3CSK4. n = 3, one way ANOVA *p < 0.05, **p < 0.01, ***p < 0.001. All OCR measurements were

normalized to cell number.

endogenous ubiquitin, on the ubiquitome (41). An alternative
method of enrichment, using high affinity ubiquitin traps has
therefore been developed. These tandem ubiquitin binding
entities (TUBEs) specifically recognize, bind to, and stabilize
polyubiquitinated proteins, protecting them from degradation by
DUBs or the proteasome. The enriched ubiquitinated proteins
can then be analyzed by MS (41–43). The ability of TUBEs to
preferentially recognize either K48 or K63 linked polyubiquitin
provides a further advantage. Consequently, the use of a K63-
TUBEs1 system which shows a 10-fold higher affinity for K63
linked chains, allows the selective enrichment of the K63 linked
ubiquitome. This provides a specific means of purifying the
K63 chains favored by ataxin-3 (44), and thus was employed
as a strategy for defining novel DUB targets of ataxin-3 in
immune cells.

The TUBEs2 system was used to enrich ubiquitinated
proteins in ataxin-3 depleted and control THP-1 cells, either left
unstimulated or stimulated for 1 h with MDP + PAM3CSK4.
Samples from three biological replicates were then subjected to
mass spectrometry analysis (Figure 5A). As a quality control
prior to MS analysis, immunoblotting with an antibody against
K63-linkage specific polyubiquitin demonstrated a marked
increase in the levels of K63 ubiquitinated proteins in the ataxin-3

depleted cells, most notably at higher molecular weights, with
NOD2/TLR2 stimulation leading to a separate shift in staining
pattern (Figure 5B).

Mass spectrometry analysis identified 291 proteins as
changing significantly between any condition when averaged
across the three biological replicates. As ataxin-3 acts as a DUB,
ataxin-3 depletion would classically lead to an accumulation of
ubiquitinated targets and thus particular attention was paid to
those proteins that showed an increase in abundance in the
ataxin-3 depleted samples (Supplementary Table 2). However, as
deubiquitination can also regulate protein stability, it is likely
that a number of the proteins found to decrease in abundance
on ataxin-3 depletion are also direct DUB targets of ataxin-
3. Most notably, the immunometabolic regulator HIF1α (45)
was found to be more abundant in the ataxin-3 depleted cells,
suggesting that ataxin-3 may deubiquitinate HIF1α (Figure 5C).
To specifically interrogate the importance of NOD2/TLR2
phosphorylation of ataxin-3 on DUB activity, the abundance
of proteins in the ataxin-3 depleted cells was compared to the
control cells following stimulation with MDP + PAM3CSK4

(Supplementary Table 3). Strikingly, a cluster of proteins related
to metabolism were noted in the ataxin-3 depleted cells (marked
in red on Figure 5D).
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FIGURE 4 | Ataxin-3 is required for ROS production and bacterial killing. (A) FACS analysis of Mitosox to quantify mROS; n = 3 Student’s paired t-test, *p < 0.05.

(B) FACS analysis of Mitosox of DHR to quantify total cellular ROS in control and ataxin-3 shRNA THP-1 cells. n = 7, Student’s paired t-test, **p < 0.01. (C) Mitosox

to quantify mROS in control and ataxin-3 shRNA THP-1 cells either left unstimulated or following stimulation for 6 h with MDP + PAM3CSK4; n = 4, Student’s paired

t-test, *p < 0.05. (D) Gentamicin survival assay of Salmonella Typhimurium infected ataxin-3 shRNA THP-1 cells compared to control. n = 3, one way ANOVA,

**p < 0.01.

Ataxin-3 Deubiquitinates HIF, PLD3, and
LAMTOR1 Upon NOD2 and TLR2 Activation
A number of the proteins from the mass spectrometry analysis
were selected for further validation. HIF1α was of particular
interest given its central role in immunometabolism. Although

classically described as part of the family of hypoxia-inducible
factor regulators, mediating the cellular response to hypoxia

(46), more recent work has demonstrated a broader role in

regulation of the immune system. It is important for both the

survival and function of cells of the innate immune system,
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FIGURE 5 | Ubiquitome screen reveals novel DUB targets of ataxin-3. (A) Flow chart showing experimental protocol. Control and ataxin-3 shRNA THP-1 cells were

left unstimulated or stimulated for 60min with MDP + PAM3CSK4 prior to ubiquitin enrichment using TUBEs1 beads, with the lysates subsequently subjected to

LC-MS/MS analysis. (B) Immunoblot using antibody against K63 linked polyubiquitinated proteins of whole cell lysates (input) and TUBEs1 enriched fractions or beads

only control samples. Volcano plots comparing ubiquitinated protein expression in (C) unstimulated control and ataxin-3 shRNA THP-1 cells and (D) control and

ataxin-3 shRNA THP-1 cells following MDP + PAM3CSK4 stimulation. The dotted lines on the y-axes represents a p-value of 0.05 (t-test), and on the x-axes

represents fold change >2 or <-2.

through regulation of metabolic activation (47–49). HIF1αwas
validated as a DUB target of ataxin-3 through immunoblot, with
a significant increase in ubiquitinated HIF1α in the ataxin-3
depleted cells (Figure 6A). HIF1α was detected in the whole cell
lysates of both control and ataxin-3 depleted cells in normoxia, as
the proteasome inhibitor MG132 which reduces the degradation
of all ubiquitinated proteins was added to the cell suspension
30min before the end of all TUBEs experiments.

Phospholipase D3 (PLD3) was also intriguing as it has
recently been shown to regulate inflammatory cytokine responses
in response to TLR9 signaling by acting as an endonuclease
(50). In humans, mutations confer an increased risk for the
neurodegenerative diseases Alzheimer’s (51) and spinocerebellar
ataxia (52), with increasing evidence of the role of innate
immune dysfunction in neurodegeneration (53). Importantly,
polyglutamine repeat mutations in ataxin-3 are themselves
associated with the spinocerebellar ataxia Machado-Joseph
disease (18). Ragulator complex protein LAMTOR1 forms

part of the Ragulator complex essential for amino acid
sensing and activation of mTORC1 (54), but has also been
linked to independent roles in lysosomal maturation (55) and
M2 macrophage differentiation (56). PLD3 and LAMTOR1
were both validated by immunoblot (Figures 6B,C). Ataxin-
3 depletion led to accumulation of ubiquitinated forms of
both PLD3 and LAMTOR1. Notably, NOD2/TLR2 stimulation
increased LAMTOR1 ubiquitination in the control cells, but
there was markedly more LAMTOR1 ubiquitination in the
stimulated ataxin-3 depleted cells (Figure 6C). This suggests that
ataxin-3 modulates the ubiquitination of LAMTOR1 induced by
NOD2/TLR2 stimulation.

To further study the interaction between LAMTOR1 and
ataxin-3, an overexpression system was employed in the
human cell line HEK293. HA-ataxin-3 and GFP-LAMTOR1 was
overexpressed, together with a GFP-control and then IP of HA-
ataxin-3 performed using an antibody against theHA tag. Ataxin-
3 was found to bind directly to LAMTOR1 (Figure 6D). Next,
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FIGURE 6 | Validation of novel DUB targets of ataxin-3. (A) Immunoblot using antibody against HIF1a in whole cell lysate (input) and TUBEs1 enriched fractions from

control and ataxin-3 shRNA THP-1 cells left unstimulated or stimulated for 60min with MDP + PAM3CSK4. Immunoblot using antibodies against (B) PLD3 and

(Continued)
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FIGURE 6 | (C) LAMTOR1 in whole cell lysates (input) and TUBEs1 enriched fractions from control shRNA and ataxin-3 shRNA THP-1 cells left unstimulated or

stimulated for 60min with MDP + PAM3CSK4. (D) Immunoblot using antibodies against GFP, HA, and β-actin in input and HA-immunoprecipitated lysates, in

HEK293 cells where GFP and/or GFP-LAMTOR1 and/or HA-ataxin-3 were overexpressed. (E) Immunoblot using antibodies against ubiquitin, GFP, ataxin-3, and

β-actin in input and isotype control (iso) or GFP immunoprecipitated lysates where ubiquitin and GFP-LAMTOR1 were overexpressed with or without HA-ataxin-3. All

immunoblots are representative of at least two independent experiments.

the finding that LAMTOR1 is a direct DUB target of ataxin-
3 was confirmed. Ubiquitin, GFP-LAMTOR1 and HA-ataxin-3
were overexpressed in HEK293 cells and IP of GFP-LAMTOR1
performed using an antibody against the GFP tag. The level of
ubiquitinated GFP-LAMTOR1 was found to be significantly less
in cells where HA-ataxin-3 was co-expressed (Figure 6E).

Taken together, these results show that ataxin-3 modulates
the ubiquitination of previously unidentified targets related
to metabolism. This effect is enhanced on following
phosphorylation of ataxin-3 on NOD2/TLR2 triggering.

DISCUSSION

In this study we demonstrate that NOD2 and TLR2
phosphorylates the deubiquitinase ataxin-3 at serine 265
through a signaling cascade involving RIPK2 and TBK1.
Immunoprecipitation and MS analysis of interacting partners
established an association with a core component of the
mitochondrial MICOS complex MIC60. Ataxin-3 was
subsequently shown to be necessary for optimal mitochondrial
respiration and mitochondrial ROS generation in macrophages,
an effect enhanced by its phosphorylation on NOD2/TLR2
triggering. In line with this, we found that ataxin-3 is
required for optimal intracellular bacterial killing of Salmonella
Typhimurium. Finally, we dissected the specific DUB role of
ataxin-3 in an immune context through an unbiased MS screen
of the ubiquitome. A preponderance of metabolism related
proteins were discovered including HIF1α, phospholipase
D3 and LAMTOR1, underlining a central role of ataxin-3
in immunometabolism.

Deubiquitinating enzymes (DUBs) represent specialized
proteases which modify ubiquitin chains by cleaving the
isopeptide bonds linking the ubiquitin C-terminus to a lysine
side chain on the target protein. Modification of ubiquitination
may alter cellular responses through regulation of target protein
stability, ormediate signal transduction through non-degradative
pathways including mediation of protein-protein interactions
(57). Ataxin-3 is a small protein, consisting of 364 amino acids,
that is ubiquitously expressed (58). At the N-terminus there
is a catalytic Josephin domain, which acts as a protease that
hydrolyses ubiquitin linkages and allows ataxin-3 to function
as a DUB (59). A flexible C-terminal tail contains either two
or three ubiquitin-interacting motifs (UIMs), according to the
isoform (60). The UIMs mediate selective binding to ubiquitin
chains, determining the type of chain that can be cleaved by the
Josephin domain. Ataxin-3 shows a preference for cleavage of
K63-Ub chains, although it is able to bind both K63 and K48
chains (44).

Ataxin-3 has been linked to neurodegenerative disease after
unstable CAG repeat expansions in the ATXN3 gene were

identified as the cause of spinocerebellar ataxia Type 3 (SCA3),
also known as Machado-Joseph Disease, the most common
autosomal dominant ataxia (18). Importantly, the expanded
polyglutamine stretch results in more complex sequelae than
a simple loss of protein function, and likely leads to a toxic
gain of function through altered binding properties, aggregation
and subcellular localization (61). Accumulating evidence suggests
that ataxin-3 performs diverse cellular roles, including DNA
repair (62, 63) and transcriptional regulation (64), regulation of
protein quality through endoplasmic reticulum (ER) associated
degradation (65) and aggresome formation (66), and beclin-1
dependent autophagy (17). A recent study provided a first link
to immune regulation, demonstrating that ataxin-3 regulates
Type 1 interferon antiviral responses through interaction with
histone deacetylase 3 (HDAC 3) (67). The present study is
the first to link ataxin-3 to PRR signaling and demonstrate
its importance in mitochondrial respiration in macrophages,
following the discovery that ataxin-3 associates with the
mitochondrial protein MIC60.

MIC60 forms a core part of the MICOS complex, which
is embedded in the mitochondrial inner membrane. It acts as

a key regulator of mitochondrial inner membrane shape and

organization. This is essential for cristae junction formation and
assembly of respiratory chain complexes which are required

for oxidative phosphorylation (31). MIC60 also appears to act
independently of the MICOS complex, and has recently been
implicated in regulation of mtDNA transcription (35). The
mitochondrial genome encodes just 13 proteins, all essential
components of oxphos complexes I, III and IV. In keeping with

this known function ofMIC60, we found that depletion of ataxin-

3 led to specific upregulation of mtDNA transcripts encoding
proteins required for Complex I, and this was further upregulated
by NOD2/TLR2 stimulation. In addition, specific interrogation
of mitochondrial oxidative phosphorylation through use of the

Seahorse platform demonstrated that ataxin-3 depletion led

to a particularly striking impairment in maximal respiration
and spare respiratory capacity (SRC). SRC represents the

extra mitochondrial capacity available within a cell to produce
energy under conditions of increased work or stress and
is important for cellular function and survival (68–70).
Macrophages increase their SRC in response to bacterial infection

to drive anti-microbial responses, and this is coordinated in
part by modulation of the ETC Complexes I and II (71).
In M2 macrophages, SRC is critical for their activation and
prolonged survival, and clearance of the parasitic helminth
(72). We found that ataxin-3 depletion impaired mROS
production at both baseline and in response to NOD2/TLR2
stimulation, demonstrating the functional relevance of the
observed mitochondrial respiratory impairment. Finally, we
demonstrated the importance of ataxin-3 in intracellular killing
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of the pathogen Salmonella Typhimurium, with PRR mediated
mROS generation well-established as critical for destruction of
this bacterium (39).

Fewer than 100 DUBs are thought to be responsible for
regulating the ubiquitination of tens of thousands of proteins
in a tightly regulated and sophisticated manner (57, 73). Hence
defining the wide-ranging DUB targets of ataxin-3 is essential
to decipher its functions. Ubiquitin signaling represents an
indispensable mechanism of regulating both the innate and
adaptive immune response, and is central to the NOD2 cascade
(74). For the first time, this study undertook an unbiased
screen of the ubiquitome in ataxin-3 depleted cells. Notably, a
significant number of metabolism related proteins were found,
further reinforcing the potential importance of ataxin-3 in
cellular immunometabolism.

The discovery that HIF1α is a DUB target of ataxin-
3 in macrophages is noteworthy, given the emergency of
HIF1α as a key immunometabolic regulator. Work in a
conditional HIF1 α knockout mouse, targeting the myeloid
lineage, demonstrated the critical requirement of HIF1 α for
inflammatory responses (75). This correlated with defects in
glycolysis and metabolic activation, which is tightly regulated
by HIF1 α The endolysosomal protein PLD3 was also validated
as a further novel DUB target of ataxin-3. Although PLD3
contains two phosphodiesterase domains, and hence is classed as
a member of the phospholipase diesterase (PLD) family which
act to hydrolyse phospholipids, the phospholipase activity of
PLD3 has not been definitively established. The importance
of PLDS in immunity was recently demonstrated, with the
discovery that it acts as a single-stranded acid exonuclease
that breaks down ligands for the PRR TLR9, hence regulating
TLR9 mediated inflammatory responses in collaboration with
PLD4 (50).

The discovery in the present study that NOD2/TLR2
triggering leads to deubiquitination of LAMTOR1 by ataxin-3
is of particular interest. LAMTOR1, also known as p18, is a late
endosome/lysosome membrane adapter protein that localizes to
the lipid rafts of these organelles (76, 77). LAMTOR1 plays an
essential role in the activation of the mTORC kinase complex
in response to amino acid levels (54). Through a mechanism
involving the lysosomal v-ATPase in the presence of amino
acid sufficiency, LAMTOR1 forms a scaffold at the lysosomal
membrane with LAMTOR2,3,4 and 5 (the pentameric Ragulator
complex) for the Rag GTPase complex (RagAB/CD) (54, 78, 79).
This leads to the recruitment and activation of mTORC1 which
inhibits autophagy. The lysosomal v-ATPAse-Ragulator complex
also activates another critical metabolic sensor, AMP-activated
protein kinase (AMPK), which responds to falling energy levels
by driving cellular catabolism programmes and downregulating
anabolic pathways (80). Thus, this complex is able to respond
to both energy/nutrient sufficiency and deficiency. Strikingly,
of all cells, macrophages express the highest levels of the
five Ragulator components, suggesting their importance in the
immune response (81). Indeed, LAMTOR1 was recently found to
be essential for the polarization of M2 macrophages both in vitro
and in vivo in a knockout mouse model, by coupling metabolism
to immunity (56).

The physiological importance of NOD2 and TLR2 in both the
innate and adaptive immune response is well-established. The
interplay between NOD2 and TLR2 has been well-characterized
given the fact that they both respond to adjacent components
of PGN found in the bacterial cell walls. The NOD2 signaling
pathway amplifies TLR2 activation and both receptors synergize
in the induction of cytokine production. NOD2 variants confer
the greatest single genetic risk factor for Crohn’s disease disease
(2, 3), yet significant gaps remain in our knowledge of how
this receptor exerts its effects (82). Notably, despite the recent
explosion of interest in the field of immunometabolism, almost
nothing is known about how the synergistic effects of NOD2
and TLR2 signaling might intersect with metabolic pathways to
modulate the immune response. Here, we defined the molecular
and functional basis by which NOD2/TLR2 sensing links to
ataxin-3 and, consequently, other immunometabolic factors.
Future studies are required to provide novel prospects for
modulating these pathways as new therapeutic strategies for
inflammatory disorders.

MATERIALS AND METHODS

Cells
Human monocytes were purified from healthy donor peripheral
blood mononuclear cells (PBMCs) by positive immunoselection
with anti-CD14-conjugated MACS beads (Miltenyi Biotec).
moDCs were obtained by culturingmonocytes for 5 days with IL-
4 and GM-CSF (Peprotech). Immature moDCs were harvested
on day 5 of culture. The human THP-1 cell line was purchased
fromATCC. Prior to use, THP-1 were differentiated by treatment
with 25 ng/ml phorbol 12-myristate 13-acetate (PMA) (Sigma)
for 16 h.

Reagents and Antibodies
The following stains were used: MItosox Red M36008
(Invitrogen) and DHR 123 D23806 (Invitrogen). Antibodies
include mouse anti-human ataxin-3 65042 1H9-2 (BioLegend),
mouse anti-human MIC60 ab110329 (Abcam), mouse anti-
human MIC60 ab137057 (Abcam), rabbit anti-human TBK1
#3504 D1B4 (Cell Signaling), rabbit anti-human RIPK2 #4142
D10B11 (Cell Signaling), rabbit anti-human p38 #9212 (Cell
Signaling), rabbit anti-human LAMTOR1 #8975 D11H6 (Cell
Signaling), rabbit anti-human PLD3 HPA012800 (Sigma), rabbit
anti-human HA #3724 C29F4 (Cell Signaling). The secondary
antibodies included: anti-rabbit HRP conjugate #7074 (Cell
Signaling), anti-mouse HRP conjugate #7076 (Cell Signaling),
goat anti-rabbit Alexa fluor 488 A-11034 (Invitrogen), goat
anti-rabbit Alexa fluor 488 A-11029 (Invitrogen), goat anti-
mouse Alexa fluor 568 A-11036 (Invitrogen), goat anti-rabbit
Alexa fluor 568 A-11004 (Invitrogen). Beta actin HRP conjugate
#5125 (Cell Signaling). For qPCR, the following Taqman primers
were used (all ThermoFisher): NOD2 (Hs01550753_m1),
RPLP0 (Hs99999902_m1), MT-ND1 Hs02596873_s1,
MT-ND2, Hs02596874_g1, MT-ND3 Hs02596875_s1, MT-
ND4L Hs02596877_g1, MT-CYB Hs02596867_s1, MT-CO1
Hs02596864_g1, ATP6, Hs02596862_g1. For overexpression
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experiments, GFP-LAMTOR1 and HA-ataxin-3 were obtained
from the University of Dundee.

Cell Stimulation
moDCs and THP-1 cells were left unstimulated or
stimulated with 10µg/ml MDP or 1µg/ml PAM3CSK4

(Invivogen) or both at the indicated time points. In some
experiments, other PRR ligands were used including LPS
100 ng/ml, and R848 1µg/ml (Invivogen) or cells were
treated with the small molecule inhibitor Ponatinib (50 nM)
for 1 h.

Phosphoprotein Purification
Cells were harvested on ice and washed once with ice cold
modified Hanks Buffered Saline (HBS) (20mM HEPES pH
7.4, 150mM NaCl in ddH20). Cell pellets were lysed in
Qiagen “Phosphoprotein lysis buffer” containing 0.25% (v/v)
CHAPS with 1% (v/v) phosphatase inhibitor cocktail 3 (Sigma),
protease inhibitor tablet (Qiagen) and the nuclease 0.0002%
(v/v) Benzonase (Qiagen) at 4◦C for 40min, with vortexing
every 10min. Cell debris was removed by centrifugation of
the lysate at 13,300 rpm for 30min at 4◦C. The clarified
supernatant was then transferred to fresh pre-cooled tubes
and protein concentration determined by BCA assay. The
samples were then diluted in Qiagen “wash buffer” containing
0.25% (v/v) CHAPS to a concentration of 0.1 mg/ml. Aliquots
of whole cell lysate and diluted whole cell lysate were
kept for subsequent immunoblot. The phosphoenrichment
columns were washed with 6ml “wash buffer,” before the
diluted samples were loaded onto the columns. Following
two further washes of the columns with 6ml “wash buffer,”
the phosphoenriched fraction was eluted from the columns
using Qiagen “elution buffer” containing 0.25% (v/v) CHAPS.
Following concentration of the eluted fraction to a volume of
200–300 µl using 9 k molecular weight cut-off concentrator
columns (Thermo Fisher) with centrifugation 13,000 rpm
30min, protein concentration was measured by BCA. For mass
spectrometry (MS) experiments, phosphoenriched lysates were
stored at −80◦C. Otherwise, whole cell lysate, diluted whole
cell lysate and phosphoenriched lysates were processed for SDS-
PAGE with NuPage LDS Sample buffer (Life Technologies) and
100mM dithriothreitol (Sigma), followed by heating at 70◦C for
5min. Samples were then frozen at−80◦C until immunoblotting
was performed.

Immunoprecipitation
Samples were washed twice in ice cold HBS and then lysed
in 1,000 µl lysis buffer for 30min at 4◦C with end over end
mixing [Cell Signaling Lysis Buffer 20mM Tris-HCL pH7.5,
1mM Na2EDTA, 1mM EGTA, 1% Triton, 2.5mM sodium
pyrophosphate, 1mM beta-glycerophosphate, 1mM Na3O4,
1µg/ml leupeptin supplemented with 1% (v/v) HALT protease
inhibitor cocktail (Thermo Fisher) and 1% (v/v) Phosphatase
inhibitor cocktail 2 and 3 (Sigma) and 1mM PMSF (Cell
Signaling)]. Lysates were clarified by centrifugation at 14,000 g
for 15min at 4◦C, and the supernatant transferred to fresh
Eppendorfs. Protein concentrations were calculated by BCA.

Fifty µl of input lysate was heated with LDS/DTT and stored at
−80◦C for later immunoblot. Next, concentrations were adjusted
to 1 mg/ml and 7.5mg of protein was taken forward for IP
for each condition. The appropriate antibody or isotype control
antibody was added to the lysates followed by incubation with
gentle end over end mixing at 4◦C overnight.

The next morning, Protein G Dynabeads (Thermo Fisher)
were washed once in lysis buffer, using a DynaMag2 magnet
(Invitrogen) to separate the beads from solution, and 5 µl
of beads per 1 µg of antibody was added to each sample.
Samples were incubated with the beads with gentle end over
end mixing for 2 h at 4◦C. Following this, the supernatant was
removed using a magnet to separate the beads, with 50 µl of
the supernatant heated with LDS/DTT and stored at −80◦C
later immunoblot. The beads were washed 4 times in total with
lysis buffer containing all protease and phosphatase inhibitors,
with gentle end over end mixing for 5min at 4◦C for each
wash. Elution of the beads was then performed by incubating
the beads with pH 2.8 elution buffer (Pierce) with gentle end
over end mixing for 30min at 4◦C. The eluate was collected and
neutralized immediately with 1/10 volume of 1M Tris-HCL pH
9. Elution and neutralization was performed a further two times
to ensure complete elution. The eluate was stored at−80◦C until
used for downstream processing.

Tandem Ubiquitin Binding Entities (TUBEs)
Ubiquitin Immunoprecipitation
Typically 2.5 × 107 THP-1 cells were used per condition. Thirty
min before the end of the experimental conditions, samples
were incubated with 10µM MG132 (Sigma) for 30min at
37◦C before harvesting, washing once in ice cold PBS and
lysing in 1ml Ub-IP lysis buffer (50mM Tris-HCL (pH 8.0),
150mMNaCl, 5mMEDTA, 1%NP-40, 0.5%Deoxycholate, 0.1%
SDS, protease inhibitor cocktail (Roche), 1% (v/v) phosphatase
inhibitor cocktail 3 (Sigma), 20µM MG132, 50µM PR619
and 100mM N-ethylmaleimide (Sigma). Cells were lysed for
30min at 4◦C with gentle end over end mixing. The lysate was
clarified by centrifugation at 13,000 rpm for 20min at 4◦C,
and the supernatant transferred to fresh Eppendorfs. Protein
concentration was calculated by the Bradford assay and protein
concentrations normalized to 2 mg/ml. Typically 2mg of protein
was taken forward for TUBEs IP. Fifty ul of input fraction
was heated with LDS/DTT and stored at −80◦C for later
immunoblot. Samples were incubated with 40 µl TUBE1 agarose
beads (LifeSensors), or control agarose beads (LifeSensors) for
4 h at 4◦C with gentle end over end mixing. The beads were
then centrifuged at 3,000 g for 3min and washed with lysis buffer
containing all inhibitors three times (each wash was performed
for 5min at 4◦C with gentle end over end mixing), followed by
two final washes with lysis buffer without SDS and Deoxycholate.
Elution was then performed with 50 ul of pH 2.8 elution buffer
(Pierce) for 30min with gentle end over end mixing at 4◦C,
followed by immediate neutralization with 1/10 volume 1MTris-
HCL pH 9. Elution and neutralization was performed three times
in total. Samples prepared for later MS analysis were frozen at
−80◦C until further processing (100 of 150 µl total eluate). The
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remaining 50 µl, and all eluate from other experiments were
heated with 2 × LDS/DTT at 70◦C for 10min and stored at
−80◦C until immunoblot.

Liquid Chromatography Tandem Mass
Spectrometry (LC-MS/MS)
100 µl of lysate was adjusted to 175 µl with ddH20. All samples
were then successively reduced and alkylated for 30min with
5mM dithiothreitol and 20mM iodoacetamide, respectively.
The proteins were then precipitated using chloroform-methanol
precipitation and the pellet were solubilized in 6M urea, 0.1M
Tris pH 7.8. The sample were diluted to 1M Urea. The digestion
was performed overnight at 37◦C by adding 500 ng of trypsin.
The peptides were desalted using a C18 cartridge (Waters).
Briefly, the samples were conditioned with buffer A (1% (v/v)
acetonitrile, 0.1% (v/v) trifluoroacetic acid (TFA) in water) prior
to equilibration with buffer B (65% (v/v) acetonitrile, 0.1% (v/v)
TFA in water). The acidified peptides were loaded onto the
column, washed with buffer A and eluted with buffer B. The
solution containing the peptides was dried with a speedvac and
solubilised in 1% (v/v) acetonitrile, 0.1% (v/v) TFA in water for
mass spectrometry analysis.

Peptides were analyzed with nano ultra-high performance
liquid chromatography tandemmass spectrometry (nano-UPLC-
MS/MS) using a Dionex Ultimate 3000 nanoUPLC, coupled
to an Orbitrap Fusion Lumos mass spectrometer (Thermo
Scientific). MS analysis was performed essentially as described
previously (83). In brief, the data were acquired with a
resolution of 120,000 full-width half maximum at mass/charge
200 with EASY-IC using the reagent ion source (202 m/z) for
internal calibration enabled, Top speed precursor ion selection,
Dynamic Exclusion of 60 s and fragmentation performed in
Collision Induced dissociation (CID) mode with Collision
Energy of 35.

Analysis of Mass Spectrometry Data
Label-Free Quantitative Analysis
The rawMS data was analyzed using Progenesis QI (Waters) and
searched using Mascot 2.5 (Matrix Science). The search settings
were as follows: trypsin with 1 miscleavage allowed, oxidation
(M) and Deamidation (N, Q) were set as variable modifications
and carbamidomethylation (C) as fixed modification. The
data was searched against human protein sequences using
the UPR_homoSapiens_20141015 (85,889 sequences; 33,866,397
residues) allowing a peptide mass tolerance of 10 ppm and a
fragment mass tolerance of 0.05 Da.

Peaks Search for Phosphorylation
The raw MS data was analyzed in PEAKS Studio 7.5
(Bioinformatics Solutions Inc). The settings were the following:
The database used was the swissprot human database was used
for the proteins identification. The enzyme used for the search
was trypsin allowing a maximum of 2 miscleavages. Fixed
modifications: Carbamidomethyl (C); Variable modifications:
Deamidated (N), Deamidated (Q), Oxidation (M), Phospho
(STY). Ten ppm mass tolerance were allowed for the precursor
ions and 0.05 Da was allowed for the fragment ions.

Mascot Search for Phosphorylation
The raw MS data was searched using Mascot with
following settings. Enzyme: Trypsin; Fixed modifications:
Carbamidomethyl (C); Variable modifications: Deamidated (N),
Deamidated (Q), Oxidation (M), Phospho (ST), Phospho (Y);
Peptide mass tolerance: ± 10 ppm (# 13C = 1); Fragment mass
tolerance:± 0.5 Da; Max missed cleavages: 1.

shRNA Lentiviral Transduction and
siRNA Transfection
Short hairpin RNA lentiviral particles were produced and
transduced following the RNAi Consortium (TRC) protocols.
ShRNA containing pLKO.1 vectors targeting NOD2 (SHCLND-
NM_022162), ataxin-3 (SHCLND-NM_004993), TBK1
(SHCLND-NM_013254) or non-Target shRNA Control
Plasmid DNA were all obtained from Sigma (MISSION shRNA
Plasmid DNA). In brief, HEK293T packaging cells growing in
6 cm well plate were transfected with a mix of 1 µg packaging
vector (psPAX2), 0.4 µg envelope vector (pMD2.G) and 1.6
µg hairpin-pLKO.1 vector (SHC016 control or gene specific
shRNA. Fugene-6 (Promega) was used as transfection reagent.
Cell culture medium containing lentiviral particles (LVP)
was collected 48 h later and passed through a 0.45µm filter
(Sartorius). Virus preparations were then concentrated by
centrifugation at 30,000 rpm for 90min. Viral particles were
added to cultured THP-1 cells in R10 [Roswell Park Memorial
Institute medium (RPMI-1640) (Sigma) supplemented with
10% (v/v) heat-inactivated fetal calf serum (FCS) (Sigma),
2mM (1% v/v) L-glutamine (Sigma)] together with 8µg/ml
Polybrene (Sigma) to improve transfection efficiency. Following
incubation for 3 h at 37◦C, the cells were harvested, washed,
and resuspended at 1 × 106 cells/ml in R10 media with
antibiotics including puromycin (as selective antibiotic). After
10 days of continuous selection with puromycin, knockdown
efficiency was assessed by immunoblot. Transfection of
human dendritic cells was performed by electroporation of
SMARTpool ONTARGETplus human ataxin-3 (ATXN3) or
non-targeting siRNAs (Dharmacon). Cells were resuspended
in the solution provided with the kit (Invitrogen) followed by
electroporation with Neon System kit (Invitrogen) using the
following parameters: 1,475V, 20ms, 2 pulses. After 48 h, cells
were harvested for use in experiments and to check knockdown
by immunoblot.

Adherent Cell Transfection
Human HEK293/NOD2 Cells were seeded 24 h prior to
transfection in media without antibiotics. Transfection mixes
were made, comprising Fugene (Promega) at a ratio of 3:1 to
amount of DNA plasmid to be transfected, in the appropriate
volume of Opti-MEM (Gibco, Thermo Fisher) (10% of volume
of media in wells to be transfected). The transfection mixes
were incubated at room temperature for 20min and then
added dropwise to the wells to be transfected. Cells were
either cultured for a further 24 or 48 h before being used for
downstream applications.
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RNA Isolation
Typically 2–5 × 106 cells per condition were harvested and
washed once with cold PBS. Pellets were resuspended in
350 µl RLT buffer (Qiagen) containing 1% (v/v) Mercapto-
ethanol (Sigma) and stored at −80◦C. Samples were thawed
on ice and homogenized by adding to Qiashredder columns
(Qiagen) and centrifuged 2min 13,000 rpm. RNA isolation
was then peformed using RNeasy kits (Qiagen) according to
manufacturer’s instructions. The isolated RNA was eluted by
added 25 µl nuclease free water (Ambion) to the RNeasy
column membrane for 5min, followed by centrifugation into
fresh Eppendorfs 8,000 g 1min. RNA concentration and purity
were obtained using a Nanodrop 1000 spectrophotometer
(Thermo Fisher) and samples were stored at −20◦C until
further analysis.

Reverse Transcription
RNA was reverse transcribed using a high capacity RNA to
cDNA kit (Applied Biosystems). Five hundred ng to 2 µg of
RNA was normalized to the same concentration for each sample
using nuclease free water (Ambion) in polypropylene PCR tubes
(Starlab). Then an RT mix containing 2 µl 10× RT buffer, 0.8 µl
25× dNTP mix, 2 µl RT random primers, 1 µl multiscribe RT, 1
µl RNase inhibitor (Applied Biosystems) and 3.2 µl nuclease free
water was added to each PCR tube (10 µl total RT mix) (Starlab)
for a total volume of RNA sample and RT mix of 20 µl. This was
reverse transcribed using a Thermo Cycler (Applied Biosystems)
with the program: 25◦C 10min, 37◦C 120min, 85◦C 5min. The
cDNA was stored at−20◦C.

Quantitative Real Time Polymerase Chain
Reaction (qPCR)
qPCR was performed using TaqMan chemistry (Applied
Biosystems). cDNA was diluted 10-fold with nuclease free water.
4.5 µl of diluted cDNA was added in triplicate for each sample
to wells of a white 0.2ml 96 well PCR microplate (Starlab). 0.5 µl
of TaqMan FAM-MGB labeled primer (Applied Biosystems) and
5 µl TaqMan Universal PCR Mastermix (Applied Biosystems)
was added to each well, resulting in a 10 µl total reaction mix.
The plate was covered with a polyolefin optical film (Starlab)
and centrifuged at 400 g for 1min. qPCR was then performed
using the Bio-Rad C1000 Thermal cycler CFX Realtime system
(Bio-Rad) using the manufacturer’s recommended program:
50◦C 2min, 95◦C 10min, then 40 cycles of 95◦C 15 s, 60◦C
1min. Mean cycle threshold (Ct) number was calculated from
the triplicate values. Relative gene expression was calculated in
comparison to the housekeeping RPLP0 control. The difference
in gene expression between conditions was calculated using the
2−11Ct. This is derived from:

1CT = CT(targetgene)− CT(control gene)

11CT = 1CT(targetcondition)− CT(control condition).

Flow Cytometry
Typically 0.5 × 106 THP-1 cells per condition were plated in
1ml of media in 12 well plates and differentiated for 16 h with
25 ng/ml PMA (Sigma). Following differentiation, the indicated
treatments were applied. Cells were then harvested with gentle

scraping and transferred to a FACS tube. The following staining
protocols were then followed. Cytofluorometric evaluation was
by the LSRII flow cytometer (BD Biosciences) with analysis of
the data by FLOWJo.

MitoSOX Red Staining
The cells were pelleted by centrifugation and resuspended
in room temperature HBSS (Thermo Fisher) to wash, then
centrifuged. The cells were resuspended in 200 µl MitoSOX red
solution (final concentration 5µM MitoSOX red (Invitrogen)
in HBSS) and incubated for 15min in the 37◦C cell culture
incubator. Two hundred µl of HBSS was added, and the tube
centrifuged. The cells were resuspended in 250 µl HBSS and
cytofluorometric evaluation performed.

Dihydrorhodamine 123 (DHR) Staining
The cells were pelleted by centrifugation and resuspended in
room temperature PBS to wash, then centrifuged. The cells
were resuspended in 50 µl DHR solution (final concentration
2.5µg/ml DHR 123 (Invitrogen) in PBS) and incubated for
30min at 37◦C in a water bath. As a positive control, 50 µl of
PMA (final concentration 100 ng/ml (Sigma) in PBS) was added
to control samples for the final 15min. The cells were centrifuged
and then washed once with PBS, before resuspension in 200 µl
FACS staining buffer. Cells were fixed with the addition of 200 µl
1% PFA and cytofluorometric evaluation performed.

Seahorse Mitochondrial Stress Assay
The Seahorse XFe96 Extracellular Flux Analyser was used to
measure mitochondrial respiration and glycolysis (Seahorse
Bioscience). Seahorse 96 well assay plates (Seahorse Bioscience)
were coated with Cell-Tak suspension (Corning). THP-1 cells
were seeded at 1.5 × 105 cells/well. Next, the optimal working
concentrations of the compounds used for the mitochondrial
stress test (oligomycin, FCCP and antimycin/rotenone) and the
glycolysis stress test (oligomycin and 2-DG) were determined
for THP-1 cells. The aim was to maximize the response to each
compound with the lowest concentration possible. An XFe96
sensor cartridge (Seahorse) was hydrated overnight prior to
Seahorse assays by adding 200 µl of XF calibrant solution to
each well and incubating in a CO2 free incubator at 37◦C.
The sensor cartridge (Seahorse) was loaded with the test drug
compounds immediately prior to the assay and loaded on the
Seahorse Analyser. Twenty-four h before the assay was run,
cells were harvested, counted and resuspended at 1.88 × 106

cells/ml. Two ml of cell suspension was plated in 6 well plates
for each condition, with or without the appropriate ligand
stimulation for the required duration. On the day of the assay,
1ml of cell suspension from each condition was harvested into
1.5ml Eppendorf tubes. For the mito stress test, cells were
resuspended in mito stress test media with or without ligand(s)
(XF base media (Seahorse Bioscience) supplemented with 1mM
sodium pyruvate (Sigma), 5mM glucose (Life Technologies)
and 2% FCS (Sigma) adjusted to pH 7.4 at 37◦C and sterile
filtered). Eighty µl of cell suspension (1.5 × 105 cells) was then
seeded in quadruplicate for each condition and the plate was
centrifuged at 200 g for 1min. Following 30min in a CO2 free
incubator at 37◦C, 95 ul of fresh mito stress test media was
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added to each well, and after a further 15min in a CO2 free
incubator the assay was run. Final concentrations of injected
drugs were 1µM oligomycin, 1µM FCCP, 0.3µM rotenone and
0.3 µM antimycin.

STED Immunofluorescence Microscopy
Cells were plated in 8-well detachable tissue culture chambers on
a PCA slide (Sarstedt) coated with 0.01% poly-l-lysine (Sigma)—
cells were at a density of 1–2 × 105 cell per well in 250
ul of appropriate media. At the end of the experiment, cells
were washed twice with PBS, fixed with 4% paraformaldehyde
(Sigma) for 15min and permeabilized with 0.5% (v/v) Triton X-
100 (Sigma). Cells were blocked overnight at 4◦C with 150 µl
blocking solution per well (5% (v/v) human serum (Sigma), 5%
(v/v) goat serum (Sigma), 5% (v/v) FCS (Sigma). The following
day, cells were incubated with primary antibody diluted in
140 µl blocking solution at a pre-optimized or manufacturer
recommended concentration for 1 h at room temperature.
Following three washes with PBS (250 µl per well, 5min gentle
shaking), cells were incubated with the species appropriate
fluorescently labeled secondary antibody for 1 h at room
temperature. Cells were washed three further times with PBS, and
the detached slide was then mounted with Vectashield mounting
media containing DAPI (Vector Laboratories). Alternatively,
cells were incubated with 200 µl PBS containing 1:100 DAPI
(Thermo Fisher) for 15min at room temperature and the
detached slide was mounted with Vectashield mounting media
without DAPI (Vector Laboratories). A Leica SP8 STED system
was used for imaging. ImageJ was used for image processing
and analysis.

Bacterial Killing Assay
1 × 106 THP-1 cells were seeded per condition in 1ml R10
without antibiotics in a 24 well plate, and differentiated overnight
with 25 ng/ml PMA. After 16 h, the media was changed for 500
µl fresh R10 media without antibiotics. Two h later, Salmonella
enterica serovar Typhimurium strain LT2 (ATCC 700220) was
added at a multiplicity of infection (MOI) of 20:1. Thirty min
post-infection, wells were washed twice with PBS and 500 µl
fresh R10 supplemented with Gentamicin 100µg/ml was added.
After a further thirty min, wells were washed once with PBS and
500 µl fresh R10 supplemented with Gentamicin 30µg/ml was
added. At the end of the designated post-infection period, the
medium was removed (and stored at −80◦C until later analysis
by ELISA) and 500 µl of PBS with 1% (v/v) saponin was added to
the wells, followed by incubation for 5min at 37◦C. Five hundred
µl of PBS was added and serial dilutions plated on LB/agar
plates, incubated overnight at 37◦C, and colonies then counted.

Alternatively, when cell viability post-infection was assessed, cells
were detached by incubating with 500 µl of trypsin per well for
5min at 37◦C, then viability assessed by trypan blue staining
(Invitrogen) and counting of live/dead cells.

Statistical Analysis
Prism (GraphPad) was used to determine the statistical
significance. When making multiple comparisons on a data
set, analysis was by one-way ANOVA with post-hoc Bonferroni
analysis. For experiments with two sample groups (one
condition, one control) and a single comparison, analysis was by
paired, two-tailed Student’s t-test. Error bars represent Standard
Error of the Mean (SEM).
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Cancer cells, particularly in solid tumors, are surrounded by non-neoplastic elements,

including endothelial and stromal cells, as well as cells of immune origin, which can

support tumor growth by providing the right conditions. On the other hand, local

hypoxia, and lack of nutrients induce tumor cells to reprogram their metabolism in order

to survive, proliferate, and disseminate: the same conditions are also responsible for

building a tumor-suppressive microenvironment. In addition to tumor cells, it is now

well-recognized that metabolic rewiring occurs in all cellular components of the tumor

microenvironment, affecting epigenetic regulation of gene expression and influencing

differentiation/proliferation decisions of these cells. Nicotinamide adenine dinucleotide

(NAD) is an essential co-factor for energy transduction in metabolic processes. It is

also a key component of signaling pathways, through the regulation of NAD-consuming

enzymes, including sirtuins and PARPs, which can affect DNA plasticity and accessibility.

In addition, both NAD-biosynthetic and NAD-consuming enzymes can be present in the

extracellular environment, adding a new layer of complexity to the system. In this review

we will discuss the role of the “NADome” in the metabolic cross-talk between cancer and

infiltrating immune cells, contributing to cancer growth and immune evasion, with an eye

to therapeutic implications.

Keywords: immunometabolism,metabolic reprogramming, immune cell regulation, NAD, tumormicroenvironment

COMPOSITION OF THE TUMOR MICROENVIRONMENT:
SUPPORTIVE AND IMMUNOREGULATORY CELLS

The solid tumor microenvironment (TME), as well as the lymphoid niche, is a dynamic and
multicellular ecosystem with complex interactions (1, 2). Intercellular crosstalk within this
niche is driven by multiple receptor-ligand systems, as well as by locally synthesized soluble
proteins, including chemokines/cytokines, interleukins, interferons, growth, and angiogenic factors
(3, 4). This unique environment is essential for tumor growth, metastatic dissemination, and
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drug-resistance. Furthermore, the cellular and soluble
components of the TME have an important role in shaping
metabolic reprogramming of cancer cells, an established
hallmark of cancer, and in creating an immunosuppressive
environment (5–8), as showed in Figure 1.

The formation of the TME and the regulation of immune
responses are orchestrated by different types of host cells,
including endothelial cells (ECs), mesenchymal stem/stromal
cells [MSCs, including cancer-associated fibroblasts (CAFs)
and tumor-associated MSCs (TA-MSCs)], and tumor-infiltrating
immune cells [i.e., tumor-infiltrating lymphocytes (TILs), tumor-
associated macrophages (TAMs), myeloid-derived suppressor
cells (MDSCs), and tumor-associated neutrophils (TANs)].
Their concerted action promotes tumor growth and spreading
(1, 2, 9, 10) (Figure 1).

Endothelial Cells (ECs)
ECs support blood supply, nutrient transport, metabolic
homeostasis, and immune cell trafficking, and are involved in
inflammatory response (11).

To provide nutrients to the growing tumor, ECs form tumor-
associated (angiogenic) vessels originating from locally pre-
existing vessels or recruiting bone marrow-derived endothelial
progenitors. They also represent the first interface between
circulating blood cells, tumor cells, and the extracellular matrix,
thereby playing a central role in regulating leukocyte recruitment,
tumor cell features, and metastasis dissemination (12). Tumor-
associated EC are dysfunctional, partly as a consequence
of local hypoxia, which induces the production of soluble
factors promoting neo-angiogenesis and contributing to tumor
dissemination and chemoresistance (13, 14). Among these
factors, vascular endothelial growth factor A (VEGF-A) can also
play a critical role in the control of immune tolerance, linking
immune suppression with angiogenesis (15).

Mesenchymal Stem/Stromal Cells (MSCs)
MSCs strongly affect the development and progression of various
cancers (16). Stromal cells represent the main cell component
with both supportive and immunoregulatory functions; they
derived from multipotent cells of mesodermal origin which
virtually reside in all tissues with an important role in tissue
regeneration (16). MSCs have been found to migrate to tumors
and to evolve into TA-MSCs and CAFs with an active role
in tumor survival, proliferation, migration and drug resistance,
and therefore, recently emerged as attractive targets or tools for
anticancer approaches (17, 18).

CAFs are the most abundant resident cells of the TME.
Numerous studies have demonstrated that CAFs have prominent
roles in cancer pathogenesis (19, 20). Mechanistically, CAFs
shape the extracellular matrix (ECM) structure, which supports
the tumor cells (i) to invade and interact with stromal
cells through the secretion of growth factors, cytokines and
chemokines including interleukin-6 (IL-6), transforming growth
factor-β (TGF-β) and CC-chemokine ligand 2 (CCL2); (ii) to
amplify immune evasion recruiting immune cells, especially
immunosuppressive cells into the tumor stroma; (iii) to promote
the establishment of an intratumoral vascular network through

proinflammatory and proangiogenic mediators (21). CAFs also
activate epithelial-mesenchymal transition (EMT) in cancer cells,
conferring their pro-invasive and stem-like features (22). In
addition, CAFs are plastic cells that co-evolve with cancer cells
and acquire a pro-tumor phenotype, contributing to tumor
evolution (23). Due to the pro-tumor role of CAFs in support
cancer development they become promising therapeutic targets
for cancer therapy (21).

Tumor-Infiltrating Lymphocytes (TILs)
TILs are additional immune components, crucial in driving
immune responses within the TME, adding more complexity
in the composition of the TME (3). TILs are white blood
cells, including T and B cells, that have left the bloodstream
and migrated toward a tumor or tissue resident (1, 24).
Their abundance varies according to tumor type and stage
and in some cases relates to disease prognosis, tumor
progression, and response to anticancer therapy (1, 25, 26).
T cell differentiation status, survival, activation or “stemness
properties” are determining factors of antitumor potency (27)
and functions of TILs dynamically change within the TME
(28). Sometimes TILs, specifically cytotoxic CD8+ memory
T cells and CD4+ T helper 1 (Th1), which are normally
antigen “experienced,” kill tumor cells (29), and the presence
of lymphocytes in tumors is often associated with a better
prognosis during immunotherapy treatment, including the
adoptive transfer of naturally- TIL or genetically-engineered T
cells and the use of immune-checkpoint inhibitors (26, 30).
However, very often, during cancer progression and chronic
inflammation, T cells become exhausted due to the persistent
antigen exposure. T cell exhaustion is a state of T cell dysfunction
defined by poor effector function, sustained expression of
inhibitory receptors, such as programmed cell death protein
1 (PD1) and cytotoxic T lymphocyte antigen 4 (CTLA4),
and transcriptional programs altered compared with functional
effector or memory T cells (31).

Regulatory T (Treg) cells are another TME cell type that has
immunosuppressive functions in cancer, inhibiting recognition,
and clearance of tumor cells by the immune system (30, 32, 33).
Tregs are characterized by the expression of CD4, CD25, and
forkhead box P3 (FOXP3) as their master regulator. Foxp3þ Treg
can originate in the thymus (naturally occurring Treg) or can
be induced (iTreg) in the periphery by soluble cytokines and
cell-cell contact (34) and are essential for maintaining peripheral
tolerance and limiting auto-immune diseases. However, the
proportions of Tregs are much higher in the circulation
of patients with solid and hematologic malignancies and
accumulation of Tregs in the tumor microenvironment is
associated with disease progression and reduced survival (35, 36).
From a functional point of view, Tregs inhibit both cellular
and humoral immune responses by suppressing expansion and
activation of conventional CD4+ and cytotoxic CD8+ T cells, and
natural killer cells, mainly through the secretion of suppressive
cytokines, such as TGF-β and IL-10. The development of
agents that specifically inhibit Treg functions or remove them
from the TME will permit new approaches for anticancer
immunotherapy (37).
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FIGURE 1 | The tumor microenvironment. A schematic view of the tumor microenvironment components. Established cancers are usually surrounded by a wide array

of stromal cells and infiltrating immune cells of both innate and acquired immunity, such as MDSCs, macrophages, dendritic cells, neutrophils, NK cells, and

lymphocytes. They form a complex regulatory network that supports tumor growth by creating a tolerogenic environment that enables cancers to evade immune

surveillance and destruction. TAN, tumor-associated neutrophils; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells; CAF,

cancer-associated fibroblasts. Figure arrange using BioRender software https://biorender.com/.

Tumor-Associated Macrophages (TAMs)
TAMs are important mediators of tumorigenesis, resident in
the tissue or deriving from peripheral reservoirs such as the
bone marrow (BM) and spleen (2). Macrophages are functionally
plastic and can be polarized into the immune stimulating
and antitumor M1 subtype, or into “alternatively activated”
M2 macrophages producing type II cytokines, promoting anti-
inflammatory responses, and having pro-tumorigenic functions
(38, 39). Macrophage polarization is finely tuned in response to
different microenvironmental stimuli (40). For example, hypoxia
may mediate this transition from tumor suppressing to tumor
promoting macrophages (41). Furthermore, it has been shown
a reciprocal regulation between CAFs and M2 macrophages:
CAFs promote monocyte recruitment and polarization toward
the M2 phenotype, leading to the enhancement of proangiogenic
features, in parallel M2 macrophages are able to induce fibroblast
activation (42). It is well-known that TAMs have a clear
role in supporting multiple aspects of tumor progression (43).

For example, TAMs promote tumor cell invasion through a
paracrine loop that involves tumor-derived colony-stimulating
factor 1 (CSF-1) and macrophage-derived epidermal growth
factor (EGF) (43, 44). Moreover, TAMs induce immune
suppression [reviewed in (45)] mediated by (i) expression
of inhibitory receptors, including human leukocyte antigens
(HLA)-E and HLA-G and T cell immune checkpoint ligands,
such as PDL1, PDL2, CD80 and CD86, which directly
inhibit T cell functions and NK cells; (ii) release of several
cytokines, such as IL-10 and transforming growth factor-β
(TGFβ), that contribute to feed a strong immunosuppressive
microenvironment by inhibiting CD4+ (Th1 and Th2 cells)
and CD8+ T cells and inducing Treg cell expansion and
recruitment through CCL2, CCL3, and CCL20. Lastly, they
induce depletion of essential amminoacids for cytotoxic activity
of T cells including l-arginine and tryptophan, or production of
kynurenine by indoleamine 2,3-dioxygenase (IDO) that inhibits
T cell cytotoxicity.
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Reversion of TAMs back to an M1 phenotype has also been
reported (46), highlighting a potential therapeutic opportunity
in which re-education of TME-resident macrophages might have
beneficial anti-tumorigenic effects (45).

Myeloid-Derived Suppressor Cells
(MDSCs)
Along with TAMs, MDSCs are considered major promoters
of tumor immune evasion (47). This population of myeloid
cells, functionally defined as immunosuppressive, arises as a
consequence of aberrant myelopoiesis typical of cancer (48).
During tumorigenesis, MDSCs are mobilized from BM, via
CXCR4/CXCL12 axis (49) and infiltrate tumors, where they
promote tumor neoangiogenesis, producing endothelial growth
factors [e.g., VEGF, basic fibroblast growth factor (bFGF)] (47).
At the same time, they disrupt the major mechanisms of
immunosurveillance, including antigen presentation by dendritic
cells (DCs), T cell activation, M1 macrophage polarization and
NK cell cytotoxicity, as reviewed in Safari et al. (50) and
Wang et al. (51). Pharmacological inhibitors of CXCR4, are
now under clinical investigation for the mobilization of immune
and hematopoietic stem cells (52). Noteworthy, depletion
of MDSCs by chemotherapeutic agents (e.g., gemcitabine,
cyclophosphamide) can efficiently contribute to their anticancer
action (48, 50, 53).

Tumor-Associated Neutrophils (TANs)
More recently, a population of neutrophils, known as TANs,
has been identified as tumor supporter promoting growth,
invasion, and angiogenesis of cancer cells, although they have
been classically considered to exhibit a defensive response
against tumor cells. Like all other leukocytes, they migrate into
tissues under the effect of specific chemokines, cytokines and
cell adhesion molecules for example TGF-β and IL-8 induce
the formation of a pro-tumorigenic (N2) phenotype capable
of supporting tumor growth and suppressing the antitumor
immune responses (54, 55). Accordingly, TGF-β blocking results
in the recruitment and activation of TAN with an anti-tumor
phenotype (54). The main tumor-promoting mechanisms of
TANs include secretion of chemokines and/or cytokines, reactive
oxygen species (ROS), and matrix-degrading proteinases, among
others, conditioning tumor immune surveillance, metastasis,
invasion, angiogenesis, and cellular proliferation (55, 56).

TUMOR-STROMA METABOLIC
CROSS-TALK IN TME

It has been shown that the environment surrounding tumor
cells is characterized by low oxygen tension (i.e., hypoxia) due
to the abnormal blood vessel formation, defective blood
perfusion, and unlimited cancer cell proliferation (14).
The progression of hypoxia over time is a consequence of
increased oxygen consumption and high glycolytic rate of
aberrantly proliferating cancer cells (aerobic glycolysis or
Warburg metabolism), leading to lactate dehydrogenase (LDH)
activity, lactate excretion and TME acidosis, which alters the

tumor-stroma “metabolic cross-talk” (Figure 1). Vice versa,
hypoxia rapidly fosters energy production in tumor cells via
glycolysis through hypoxia-inducible factor 1-alpha (HIF-1α)-
mediated transcriptional control (57, 58). In addition, a hypoxic
environment also modulates tumor-associated immune and
stromal cells metabolism and fate. The rapid consumption of
extracellular glucose and glutamine by tumor cells, especially in
hypoxic conditions, leads to the accumulation of extracellular
lactate, which was shown to affect several cell types within the
TME (59). Increased lactate levels promote the insurance of
an immune-permissive microenvironment by attenuating DCs
and T cell activation, monocyte migration, and polarization
of resident macrophages to TAMs (60–63). Furthermore,
lactate accumulation promotes angiogenesis, stabilizes HIF-1α
and activates NF-kB and PI-3 kinase signaling in endothelial
cells, as well as inducing secretion of the proangiogenic
factor VEGF from tumor-associated stromal cells (64–66).
The secretion of lactate via the monocarboxylate transporter
(MCT3) is coupled to the cotransport of H+, which supports
acidification of the cellular microenvironment (59). The
surplus of CO2 generated in mitochondrial decarboxylation
reactions contributes to extracellular acidification as well (67).
Then, a class of extracellular carbonic anhydrases (CA) can
convert CO2 to H+ and HCO3−. Accordingly, expression
of CAIX isoforms is elevated during hypoxia and can be
considered a proxy for HIF-1α signaling (68). A consequence
of increased extracellular acidification is the stimulation of the
proteolytic activity of MMPs that promotes the degradation
of the extracellular matrix components enhancing tumor
invasion (69).

Lactate in TME can be also recycled, as occurs in the
Cori cycle in the liver. In this reciprocal metabolite changes
between cancer cells and immune/stromal cells, lactate produced
under hypoxic conditions by glycolytic cells can be re-uptaken
by aerobic cells, via MCT1, and utilized for mitochondrial
tricarboxylic acid (TCA) cycle and oxidative phosphorylation
(OXPHOS) (70, 71). This well characterized mechanism is
known as the “reverse Warburg effect” (70, 72). In a model
of epithelial cancer, tumor cells instruct the normal stroma to
transform into a wound-healing stroma, providing the necessary
energy-rich microenvironment for facilitating tumor growth and
angiogenesis (72, 73). This metabolic cross-talk is evident in
breast, prostate and ovarian cancer (74–76).

Both innate and adaptive immune cells increase their
metabolic capacity upon stimulation, promoting energy
generation, and biosynthesis supporting proliferation, effector
molecule production, and differentiation (77). The impact of
such altered metabolic state and levels of metabolites in TME on
immune cell function is emerging. For example, a competition
between tumor cells and T cells for the glucose pool in the
aerobic microenvironment is linked to suppressed effector T-cell
functions. In fact, activated T cells rely on glucose metabolism,
up-regulating GLUT1 transporter via T cell receptor (TCR) and
CD28-induced Akt activation (78, 79). Critical concentrations
and/or lack of two amino acids, glutamine and arginine,
necessary for T-cell activation, differentiation and proliferation,
are therefore inhibitory to T cell functions (79).
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The TME shows high levels of immunosuppressive metabolic
byproducts, including a turnover in the TME release of adenosine
triphosphate (ATP) and nicotinamide dinucleotide (NAD) which
are metabolized by the ectoenzymes CD39, CD73, and the
NADase CD38 to adenosine (80, 81). Adenosine binds to
the T-cell adenosine A2R receptor inhibiting effector T-cell
functions and stimulating Treg cells (82, 83). Furthermore,
the adenosinergic axis is over-functional in hypoxic conditions,
connecting adenosine-mediated immunesuppression to low
oxygen tension (84, 85).

Overall, a better understanding of the critical players within
the TME and their specific roles in immune regulation will
help design of metabolism-targeted therapeutic strategies for
improving immunotherapy regimens in cancer.

Recently, NAD pathway enzymes and metabolites were
shown to affect immune-cell functions and fate and alter
the cancer cell-TME crosstalk. The following paragraphs are
focused on describing these molecular circuits and their
therapeutic implications.

NAD HOMEOSTASIS: AN OVERVIEW

NAD is a vital molecule governing many metabolic processes.
It is used as a redox coenzyme by several dehydrogenases, and
as a co-substrate by various NAD-consuming enzymes (86, 87).
Among them are (i) mono- or poly-ADP ribosyltransferases
(including ARTs and PARPs), which transfer the ADP ribose
moiety to acceptor proteins resulting in their modification
and function regulation, (ii) sirtuins, which catalyze the NAD-
dependent deacetylation of metabolic enzymes and transcription
factors, thus controlling their activity; (iii) NAD glycohydrolase
that generates different NAD metabolites, including ADP
ribose (ADPR), cyclic ADP ribose (cADPR) and nicotinic acid
adenine dinucleotide phosphate (NAADP), with calcium (Ca+2)
mobilizing activity. These enzymes are involved in the control
of a wide range of biological processes, including transcription,
DNA repair, cell adaptation to stress signals, and immune
response (88). By catalyzing their reactions, they render NAD
continuous re-synthesis an indispensable process. Various NAD
biosynthetic routes guarantee the coenzyme regeneration, in
different combination and with different efficiency depending on
the cell-type and metabolic status (89, 90). A schematic overview
of NAD homeostasis is shown in Figure 2 and reviewed in Sharif
et al. (87), Magni et al. (91), and Houtkooper et al. (92).

The route which recycles nicotinamide (Nam), produced
by the breakage of the N-glyosidic bond in the various NAD-
consuming reactions, back to NAD that is considered the
major pathway ensuring NAD homeostasis. It involves the
phosphoribosylation of Nam to nicotinamide mononucleotide
(NMN) by the enzyme Nam phosphoribosyltransferase
(NAMPT) and the subsequent adenylation of NMN to NAD
by NMN adenylyltransferase (NMNATs). This same route also
salvages extracellular Nam that can be of dietary origin or can
be formed in the extracellular space by the NAD glycohydrolase
activity of the CD38 ectoenzyme acting on extracellular NAD
and/or NMN. NAD can also be synthetized from exogenous

nicotinamide riboside (NR) and nicotinic acid (NA) through
distinct routes that are initiated by NR kinase (NRK) and
NA phosphoribosyltransferase (NAPRT), respectively. The
former enzyme phosphorylates NR to NMN, whereas the latter
enzyme phosphoribosylates NA to nicotinate mononucleotide
(NAMN). NMNATs convert NMN to NAD, and NAMN to
nicotinate adenine dinucleotide (NAAD). NAAD is finally
amidated to NAD by the enzyme NAD synthetase. A de novo
biosynthetic route, which starts from tryptophan and enters
the amidated route from NA, is also operative in several
tissues and cell-types. The first and rate- limiting step in this
pathway is the conversion of tryptophan to N-formylkynurenine
by either IDO or tryptophan 2,3 -dioxygenase (TDO). Four
reactions are then required to transform N-formylkynurenine
to an unstable intermediate, α-amino-β-carboxymuconate-ε-
semialdehyde (ACMS), which undergoes either decarboxylation,
directed toward oxidation, or spontaneous cyclization to
quinolinic acid (QA) directed toward NAD formation. Indeed,
QA is phosphoribosylated to NAMN by the enzyme QA
phosphoribosyltransferase (QAPRT), and the formed NAMN
enters the NA salvage pathway. Among the enzymes involved
in NAD homeostasis, NAMPT, CD38, sirtuins, and IDO are
overexpressed in different types of cancer (93) and have been
shown to play a role in cancer immune tolerance (94, 95). In
the following sections, we will review what is known about their
expression and function in the TME.

NAMPT IN METABOLIC REGULATION AND
ACTIVATION OF MYELOID CELLS

As the first and rate-limiting enzyme, NAMPT plays a
pivotal role in the biosynthesis pathway of NAD from its
nicotinamide precursor. It converts Nam and 5-phosphoribosyl-
1-pyrophosphate (PRPP) into NMN in a complex reaction
that can be significantly improved by a non-stoichiometric
ATP hydrolysis (96). NAMPT is found both intracellularly
and extracellularly (97, 98). Intracellular NAMPT (iNAMPT) is
primarily located in the nucleus and cytosol. Previous studies
reported NAMPT in mitochondria as well (99), but this remains
a controversial finding (100, 101). As one of the main regulators
of NAD intracellular level, NAMPT plays a crucial role in
cellular metabolism (102). Conversely, the extracellular form
of NAMPT (eNAMPT) has emerged as an important mediator
of inflammatory programs (103). eNAMPT has been found in
plasma and other extracellular fluids, including the supernatants
of numerous cell types (103); however, while the mechanisms
behind eNAMPT secretion remain unknown, they do not seem
to rely on the classic pathway (104). Notably, the cytokine-like
functions appear independent of the protein catalytic activity
(105). In keeping with this view, NAMPT’s substrates PRPP
and ATP are apparently unavailable in the extracellular space to
sustain the enzymatic activity (106).

eNAMPT was originally found to be secreted by activated
lymphocytes and bone marrow stromal cells by Samal
et al. (107) and called pre-B-cell colony enhancing factor
[PBEF (107). In 2005, Fukuhara (108) identified eNAMPT
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FIGURE 2 | NAD metabolism overview. Schematic representation of mammalian NAD metabolism including biosynthetic (left side, in green) and consuming (right

side, in orange) pathways. Na, nicotinic acid; NAD, nicotinamide adenine dinucleotide; NAPRT, nicotinate phosphoribosyltransferase; NAMN, nicotinate

mononucleotide; NAAD, nicotinate adenine dinucleotide; Nam, nicotinamide; NAMPT, nicotinamide phosphoribosyltransferase; NADS, NAD synthetase; NMN,

nicotinamide mononucleotide; NMNAT, NMN adenylyltransferase; Nr, nicotinamide riboside; NRK, nicotinamide riboside kinase; QA, quinolinic acid; QAPRT,

quinolinate phosphoribosyltransferase; IDO, indoleamine 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; Trp, tryptophan; OAADPR, 2’-O-acetyl-ADP ribose;

ART, ADP-ribosyltransferases; PARP, poly-ADP-ribose polymerase; ADPR, ADP-ribose; cADPR, cyclic ADPR; NAADP, nicotinic acid adenine dinucleotide phosphate.

as an adipokine and called it visfatin. These different
names reflect its role in immune system and adipose
tissue regulation.

Independent studies have conclusively shown that NAMPT
expression and secretion can be induced by inflammatory signals
in immune cells, in particular neutrophils, monocytes and
macrophages (109). Both pathogen-derived lipopolysaccharide
(LPS) and host-derived inflammatory stimuli, including tumor
necrosis factor-α (TNF-α), IL-1β, IL-6, and leptin, can up-
regulate NAMPT transcription in macrophages and other several
types of cells (110–113). Several studies showed stimulation of
cytokine release after exposure of cells to exogenous NAMPT,
highlighting a role of eNAMPT as an inflammatory mediator as
reviewed in Garten et al. (103). Following NAMPT treatment,
IL-1β, IL-6, TNF-α, and IL-10 are up-regulated in peripheral
blood mononuclear cells (PBMCs) and CD14+ monocytes (114).
Co-stimulatory molecules such as CD54, CD40, and CD80 are
also up-regulated in response to NAMPT treatment, an effect
mediated through PI3-kinase and MAPKs p38, MEK1, and JNK
(114). Furthermore, in macrophages NAMPT increases MMPs
expression and activity (115). In vitro, eNAMPT promotes cell
survival in macrophages subjected to endoplasmic reticulum
(ER) stress, a frequent event in obesity and obesity-associated
diseases. eNAMPT induces IL-6 secretion, followed by IL-6-
mediated autocrine/paracrine activation of the prosurvival signal

transducer STAT3, with a mechanism that is independent of the
enzymatic activity (112).

Emerging evidence supports a role of NAMPT in regulating
the differentiation program and the metabolic adaptation of
myeloid cells. As described previously, activated macrophages
can be divided in two subgroups in vitro: those with pro-
inflammatory activity (M1) involved in first line of defense
against bacterial infection, and those with anti-inflammatory
activity (M2) that regulate tissue repair and wound healing (116),
even if this is an oversimplification of the functional diversity
occurring in vivo. Metabolic reprogramming of immune cells is
required for both pro- and anti-inflammatory responses and a
vast spectrum of metabolic statuses accompanies the complexity
of phenotypes [reviewed in (117, 118)]. In general, an increase
in glycolysis and in glucose uptake is typically associated to an
M1 phenotype (119), while M2 macrophages rely on intact TCA
cycle and OXPHOS asmajor source of ATP via electron transport
chain and ATP synthase (120, 121). However, in addition to
an augmented mitochondrial metabolism, alternatively activated
macrophages can also use glycolysis when OXPHOS is disrupted
(122). Another important pathway is the pentose phosphate
pathway (PPP), which generates pentoses, 5-ribose phosphate
and nicotinamide adenine dinucleotide phosphate (NADPH).
NADPH is essential in activated M1 macrophages because
it fuels ROS production by NADPH oxidase (123), even if
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other groups demonstrated that NADPH and NADPH oxidase
play a role even in M2 differentiation (124). Concerning lipid
metabolism, fatty acid synthesis is coupled to pro-inflammatory
activity of macrophages, while beta-oxidation is typical of anti-
inflammatory macrophages (117).

The increase of glycolysis associated with M1 activation of
macrophages is orchestrated by the transcription factor HIF-1α.
When cells experience low oxygen levels HIF-1α is stabilized and,
upon binding of the HIF-1β subunit, initiates the transcription
of genes such as glucose transporter and glycolytic enzymes
(125, 126). NF-kB is required for transcriptional activation of
HIF-1α (127); whereas, in M2 macrophages, genes involved in
metabolic reprogramming are largely controlled by STAT6 and
peroxisome proliferator-activated receptor gamma coactivator-1
beta (PGC-1β) (128).

Both iNAMPT and eNAMPT influence fundamental
monocyte/macrophages processes such as differentiation,
polarization and migration, even if the exact role of
iNAMPT/eNAMPT in the process of myelopoiesis is
incompletely elucidated so far (129–131) as summarized in
Figure 3. For example, NAMPT has a role in the induction of an
immunosuppressive and tumor-promoting microenvironment
in chronic lymphocytic leukemia, where eNAMPT is important
for the differentiation of monocytes toward tumor-supporting
immunosuppresive M2 macrophage, promoting their
differentiation, and polarization in tumor-supportive cells
including TAMs (130). Recently, it was demonstrated that
iNAMPT acts also on MDSCs, where NAMPT inhibits CXCR4
transcription, via NAD/SIRT1/HIF-1α axis, and this, in turn,
leads to a mobilization of MDSCs and enhances their production
of suppressive nitric oxide (132).

Changes in NAD levels characterize different stage of
macrophage polarization: in general, higher levels of NAD are
typical of classically activated pro-inflammatory macrophages
(M1), while NAD levels are lower in alternatively activated anti-
inflammatorymacrophages (M2). The NAMPT/NAD/SIRT1 axis
seems to play a relevant role in myeloid cell functions as shown
by the fact that efficient activation of M1 macrophages needs
an increase of both NAMPT expression and cytosolic NAD
(133). NAMPT-dependent generation of NAD is also crucial
in the metabolic switch characterizing the transition from the
early initiation phase of acute inflammation, which is anabolic
and primarily requires glycolysis, to the later adaptation phase
which is catabolic and relies on fatty acid oxidation (FAO)
for energy (134). During these processes, also NAD-consuming
deacetylases enzymes SIRT1 and SIRT6 have a role in regulating
metabolism, increasing fatty oxidation and reducing glycolysis,
respectively, coupling metabolic polarity with the inflammatory
response, as described with more details later (135, 136). These
data support the notion that NAD homeostasis has a crucial
role in connecting bioenergetics and inflammation (134). A
further feedback loop that links NAD to polarization of myeloid
component has been suggested in monocytes, where NAMPT
expression is induced by TNF-α via HIF-1α. In turn, NAMPT
signaling involving NF-kB pathway activates activating protein
1 (AP1), inducing IL6 and TNFA transcription modulating
myeloid cell activation (137).

In congenital neutropenia, a disorder in which patients
display accumulation of granulocytic progenitors and no
mature neutrophils in bone marrow, it has been shown that
granulocyte colony-stimulating factor (G-CSF) is effective as
it up-regulates NAMPT, which in turn triggers NAD/SIRT1
dependent granulopoiesis via CCAAT/enhancer-binding protein
α/β (C/EBPα/β) up-regulation (129). On the contrary, GM-
CSF is not effective in congenital neutropenia because it is
unable to activate iNAMPT upregulation and NAD/SIRT1 axis
(138). Following the induction of myeloid differentiation with G-
CSF, the NAD-consuming enzyme SIRT1 deacetylase C/EBPα at
position Lys 161 (129, 138). NAMPT inhibition with FK866 led to
the dramatic elevation of acetylated C/EBPα levels and reduced
amounts of total C/EBPα protein, accompanied by diminished
mRNA expression of C/EBPα target genes (G-CSF, G-CSFR, and
ELANE).Moreover, treatment of acutemyeloid leukemia cell line
HL-60 with recombinant NAMPT or transduction of HL-60 cells
with NAMPT-expressing lentiviral construct induced myeloid
differentiation of these cells per sé (138).

An open question is whether the cytokine-like actions that
eNAMPT exerts on myeloid cells are related to its enzymatic
activity or are mediated by the binding to a cell surface receptor.
The fact that treatment with low concentrations of recombinant
eNAMPT is sufficient to activate specific intracellular signaling
pathways suggests that eNAMPThas cytokine-like properties and
binds to and activates a cell surface receptor. In 2015, Camp et al.
identified eNAMPT as a new ligand of the Toll-like receptor 4
(TLR4) (105). The authors demonstrated that in human lung
endothelial cells, eNAMPT activates an inflammatory response
via activation of NF-kB signaling pathway by binding TLR4-MD2
(105). However, the fact that recombinant eNAMPT is often
produced in E. Coli strains renders the interpretation of these
results controversial for the possible contamination of LPS, the
natural ligand of TLR4, and activator of inflammatory programs.
New studies have to confirm the TLR4 engagement by eNAMPT
and correlate this with myeloid differentiation and plasticity.

The evidence linking myeloid cell fate and NAD/NAMPT
could open the way to pharmacological inhibition of either
iNAMPT and/or eNAMPT for re-education of myeloid cells.
This could be useful in the context of acute inflammation,
but also in cancer to force a reversion of immunosuppressive
microenvironment, in combination with immunotherapy, as
summarized in Figure 3.

For iNAMPT specific small molecules inhibitors exist, most
known FK866 (also known as APO866) and GMX1778 (also
known as CHS-828), among others (Table 1) (139–143, 159–
161). However, most of the data on these drugs describe
their effect on the tumor itself, and not on cells of the
microenvironment (141, 161). Whether these inhibitors could
also affect also eNAMPT activity is unknown, even if, as
mentioned before, the enzymatic activity of eNAMPT is
controversial. On the other hand, for eNAMPT, the group
of Garcia, in order to block only the cytokine-like activity
of eNAMPT, has devised a polyclonal eNAMPT neutralizing
antibody (130, 144), that could be useful in those condition in
which only the extracellular form of eNAMPT is detrimental and
intracellular enzymatic activity needs to be preserved.
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FIGURE 3 | NAMPT in regulating myeloid cell fate and immunometabolism. Role of iNAMPT/eNAMPT in skewing myeloid populations into tumor-supporting M2-like

macrophages and myeloid suppressive cells. Specifically, the iNAMPT/sirtuins axis regulates the metabolic reprogramming of cancer and myeloid cells in condition of

low oxygen tension; while eNAMPT/TLR4 axis activates intracellular signaling promoting differentiation of myeloid cells and secretion of anti-inflammatory and

pro-tumor cytokines creating an immunosuppressive microenvironment. The block of NAMPT functions, using iNAMPT pharmacological inhibitors and/or neutralizing

antibodies, can repolarize the myeloid populations and inhibit tumor growth. TLR4, Toll-like receptor 4; C/EBPα/β, CCAAT/enhancer-binding protein α/β; G-CSF,

Granulocyte Colony-Stimulating Factor; GM-CSF, Granulocytes-Macrophage Colony-Stimulating Factor; TAM, tumor-associated macrophages; MDSC,

myeloid-derived suppressive cells.

CD38 IN METABOLIC DYNAMICS OF T
CELLS ACTIVATION

Cluster of differentiation (CD) protein CD38, first identified
as a lymphocyte antigen, is a cell surface glycohydrolase that
cleaves a glycosidic bond within NAD to yield Nam, ADP-
ribose (ADPR), and cyclic ADPR (cADPR), and converts
NAD phosphate (NADP) to NAADP, all calcium (Ca2+)
mobilizing molecules (162, 163). These molecules bind specific
receptors, like the ryanodine receptor on endoplasmic reticulum,
the lysosomal two-pore channel and the plasma membrane
calcium channel transient receptor (TRPM2), activating calcium
signaling, which in turn affects gene expression, cell cycle

control, cell survival, energy metabolism, leukocyte trafficking,
and inflammation (87).

CD38 is a transmembrane protein with four different forms,
according to the cellular localization (164). The most common
form of CD38 has a type II membrane orientation, i.e., with
the catalytic domain facing the extracellular space. By contrast,
the less abundant type III transmembrane form has its catalytic
site facing the inside. Intriguingly, soluble intracellular and
extracellular forms of CD38 have also been ascribed (165,
166). CD38 is widely expressed both in immune cell types
(bone marrow progenitors, natural killer cells, monocytes, and
activated T- and B-lymphocytes) and in non-hematopoietic
cells (167).
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TABLE 1 | Pharmacologic tools currently undergoing pre- or clinical evaluation to block NADome enzymes.

Agent Mechanism of action Indication Trial Stage References

NAMPT INHIBITORS

APO866 (FK866) NAMPTi T/IC Clinical phase I (139)

CHS-828 (GMX 1778) NAMPTi T/IC Clinical phase I (140)

GNE-617, GNE-618 NAMPTi T Pre-clinical (141)

KPT-9274 Dual NAMPTi/PAX4i T Clinical phase I (142)

OT-82 NAMPTi T Clinical phase I (143)

Blocking antibody eNAMPT neutralization T/IC Pre-clinical (144)

CD38 INHIBITORS

Daratumumab Blocking antibody MM/ALL Clinical phase III (145)

Isatuximab Blocking antibody MM Clinical phase II-III (146)

MOR202 Blocking antibody MM Clinical phase II (147)

Apigenin CD38i MD Pre-clinical (148)

SIRTUINS INHIBITORS

Cambinol SIRT1/2i T/ND Pre-clinical (149)

Sirtinol SIRT1/2i T/ND Pre-clinical (150)

Selermide SIRT1/2i T/ND Pre-clinical (151)

Tenovins SIRT1i T/ND Pre-clinical (152)

EX-527 SIRT1i T/ND Pre-clinical (153)

Nicotinamide SIRTi/NAD precursor T/ND Pre-clinical, phase I-II (154)

IDO INHIBITORS

Indoximod IDOi T Clinical phase I-II (155)

Epacadostat (INCB024360) IDOi T Clinical phase II-III (156)

Navoximod IDOi T Clinical phase I (157)

BMS-986205 IDOi T Clinical phase I-II (158)

I, inhibitor; T, solid and/or hematological tumors; IC, inflammatory conditions; MM, multiple myeloma; ALL, acute lymphoblastic leukemia; MD, metabolic diseases; ND,

neurodegenerative diseases.

CD38 is also an unquestionable contributor to intracellular
NAD homeostasis (168, 169) and this apparent “paradox” has
been in part reconciled by recent reports demonstrating that
CD38 can also degrade circulating NAD precursors such as
NMN and NR, thus preventing their fueling of NAD biosynthesis
(170, 171). Notably, CD38 enzymatic activity mediates many
roles which include metabolism regulation and pathogenesis of
heart disease, obesity, aging and inflammation, among the others.
Nevertheless, it is well-established that CD38 overexpression
is correlated to different hematological malignances including
myelomas and leukemias (172). In this contest, a broad immune
regulatory role for NAD and CD38 on T cell behavior has
been reported (87, 145, 173) and summarized in Figure 4. In
order to elucidate the impact of CD38 modulation of NAD
homeostasis in T cell, a brief synthesis of T cell metabolism is
necessary, as metabolism drives T cell life (36, 174, 175). One
of the main challenges of the field in a translational perspective
is to manipulate T cell metabolism in order to improve
their immune response capacity. Defined metabolic pathways
orchestrate T cell development, differentiation, function and
persistence (176). TCA/OXPHOS-mediated ATP production is
instrumental for the maturation of Naïve T (TN) lymphocytes,
a population of quiescent non-proliferative cells, in primary
lymphoid organs (177). T cell activation is initiated after
antigen recognition and TCR ligation. This step, requiring

major histocompatibility complex, and co-stimulatorymolecules,
activates T lymphocytes inducing both a rapid proliferation
rate and a differentiation program toward effector functions
(176). To sustain both clonal expansion and active immune
response, T cells shift to an anabolic metabolism which
provides faster ATP production and nutrients supply. While
cytolytic CD8+ T (Tc) cells dominantly shift metabolism to
glycolysis, activated CD4+ T helper (Th) cells increase both
glycolysis and FAO (178). FAO also supports metabolism of
iTreg and long living memory T-cell (Tm) (178). All these
T cell subsets, to achieve their metabolic profile, require a
coordinated transcriptional program together with a specific
system of nutrient uptake. T cells depend on the import of
substrates such as glucose, amino-acids (especially glutamine),
and glycerol. In TN and Tm cells, increased expression of glucose
and glutamine transporters is controlled by the transcription
factor c-Myc (36) and regulated by a specific cytokine, IL-
7 (175). AKT-mTOR and TLR signaling, as well as the
transcription factors HIF-1α, c-Myc and FoxP3, have been
shown to directly regulate Treg metabolic programming and
development, while HIF-1α and mTOR control the glycolytic
phenotype and activation (IFN-γ production) of effector T-cells,
Th1, Th2, and Th17 lineages (36). Metabolism underpins T
cell cycle through quiescence and activation states and T-cells
failure to engage specific metabolic programs is a biological
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FIGURE 4 | CD38/NAD axis regulates T cell phenotype and responses. The ectoenzyme CD38, expressed by tumor cells and immune cells is involved in the

activation of calcium (Ca2+) signaling through the generated metabolite cADPR/ADPR/NAADP. Moreover, it metabolizes NAD, releasing Nam, rendering the substrate

of NAMPT available for continuous NAD regeneration. These reactions occur also in immune cells modifying NAD concentrations and affecting sirtuins activities. The

NAD/CD38/SIRTUINS axis regulates T cell immune cell fate, metabolism, and gene transcription. Evidence of high CD38 expressing immune suppressive cells have

been reported in several tumors. CD38 inhibition was sufficient to re-establish T cell proliferation, antitumor cytokine secretion, and killing capability. ADPR,

ADP-ribose; cADPR, cyclic ADPR; NADP, NAD phosphate; NAADP, nicotinic acid adenine dinucleotide phosphate; Ca2+, calcium; NR, nicotinamide riboside; NMN,

nicotinamide mononucleotide; Nam, nicotinamide; MDSC, myeloid-derived suppressive cells; PD-1, programmed cell death protein 1; PD-L1, PD-1 ligand.

phenomenon accompanying tumor aggressiveness and T cell
exhaustions (176). The crosstalk between cancer cell and tumor
TILs is played at different levels. As already mentioned, it has
been shown that the establishments of nutrients competition
between tumor cells and TILs has a primary role in influencing
T cell fate and dysfunctions (34, 179–181). Malignant cells push
their metabolism toward a Warburg phenotype. The consequent
induction of a hypoxic and nutrient-deprived environment
(low glucose, glutamine, glycine, and serine) shapes a tumor
sustaining microenvironment and immune tolerance (179).
Indeed, T cells migrating to tumors sites must adapt to both
(i) nutrient-depleted environments (182) and contemporarily
to (ii) the presence of hypoxic tumor-derived metabolites

including lactate, adenosine, cyclic adenosine monophosphate
(cAMP), IDO/kynurenine.

In this context, CD38-mediated Ca2+ mobilization can
directly affect T cell metabolism. In the physiology of a
T lymphocyte, Ca2+ controls T cell gene expression and
consequently differentiation, development and cytotoxicity
(183). Alteration of Ca2+ signaling affects immune deregulation
and consequently tumor initiation and progression (183–186).
A second level of T cell metabolic reprogramming control by
the CD38/NAD axis also involves sirtuins (173). Indeed, a lot
of literature has been produced on the role of SIRT1, as a key
modulator of immune cell functions, as described in a dedicated
section of this review (166, 187, 188). In this case, the inverse

Frontiers in Immunology | www.frontiersin.org 10 July 2019 | Volume 10 | Article 1720104

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Audrito et al. NAD-Dependent Enzymes in Immune Regulation

correlation between expression of CD38 and intracellular NAD
contents, act on SIRT1-mediated post-transcriptional control of
key genes involved in T cell functions (173). Furthermore, it
was recently shown that CD38 is highly expressed by specific
subsets of immunosuppressive TILs (i.e., Treg and Th17) (34,
36, 173, 189) and by MDSC, another key immunosuppressive
cellular component of tumor milieu represented (190). Both,
CD38highMDSC cells-mediated suppression of activated T-cells
and the concomitant expression of CD38 with exhaustion
markers on T cells, for example PD1, pointed to an active role
of CD38 in modulating T cell metabolism and fate toward the
generation of an immune tolerant landscape in tumor (173).
Evidence of high CD38 expressing Treg have been reported
for multiple myeloma and acute lymphoblastic leukemia, where
the use of mAbs against CD38 (daratumumab, isatuximab,
and MOR202, Table 1) is more than a promising therapeutic
option to reestablish a functional immune surveillance (145–
147, 189, 191, 192). In these tumor models, suppression of
CD38+ cancer cells associate with an increase in T-helper and
cytotoxic T lymphocytes, T-cell functional response and TCR
clonality (191, 192). A functional relationship between CD38
and Th17 has also been highlighted (173). Th17 is a CD4+

T cell subpopulation secreting IL17, which gained interest in
the field of immunotherapy due to their self-renewal, plasticity
and hematopoietic stem-like phenotype (173, 193). Adoptive T
cell transfer (ACT) therapy is a powerful strategy developed for
controlling cancer (194, 195). The emerged staminal potential
of Th17, together with their ability to persist for long times
at tumor sites, made of this T cell subset an ideal candidate
to improve ACT efficacy (173, 196, 197). Chatterjee et al.
recently demonstrated that, SIRT1-dependent deacetylation of
the transcription factor forkhead box O1 (FOXO1) drives the
functional homing in different organs of a hybrid Th1/Th17
population 24 h after ACT. Most importantly, they reported
that, the decrease of CD38 expression on Th17 cells leads to
the increase of intracellular NAD concentration, reinforcing the
SIRT1-dependent immune efficacy of this T cell population
(173). For these reasons, the inhibition of CD38 has been
proposed not only to specifically target CD38high immune
suppressive cell populations (MDSCs, Treg), but also to improve
tumor control via ACT therapy or using immunomodulatory
drugs (173, 191, 192).

Lastly, very recently CD38 was considered as major acquired
mechanism of resistance to PD-1/PD-L1 blockade, causing
CD8+ T cell suppression. Co-targeting of CD38 and PD-L1
improves anti-tumor immune response. CD38 manipulation
was sufficient to regulate CD8+ T cell proliferation, antitumor
cytokine secretion, and killing capability (198).

SIRTUINS AND EPIGENETIC REGULATION
OF IMMUNE RESPONSE

Sirtuins, initially described as transcriptional silencers in yeast
(199), represent a class of NAD-dependent enzymes with
deacetylase activity. So far, seven isoforms (SIRT1-7) constitute
the family of mammalian sirtuins, which differ in subcellular
compartmentation, enzymatic activity, and in vivo substrate

selectivity (200). As a primary cellular location, SIRT1, SIRT6,
and SIRT7 are found in the nucleus, SIRT2 in the cytoplasm, and
SIRT3-SIRT5 in mitochondria (201). However, recent reports
have shown that sirtuins are not anchored to precise subcellular
compartments, and may shuttle between them, depending on cell
type or physio-pathological conditions (202–205). The canonical
reaction catalyzed by sirtuins is the transfer of an acetyl group
from protein lysine residues to the ADPR moiety of NAD.
As a result, the reaction produces Nam, first released, the
deacetylated lysine, and 2’-O-acetyl-ADP ribose (206). Although
lysine deacetylation is the primary activity of sirtuins, recent
studies have shown that these enzymes can remove a variety
of other acyl-lysine groups (207). Some sirtuins act as ADP-
ribosyltransferases, although the biological relevance of such
activity is incompletely understood. Mammalian sirtuins target
different proteins in an isoform-specific fashion (207, 208),
allowing their regulation of multiple processes like energy
metabolism, epigenetic regulation of gene expression, DNA
repair, inflammation, cellular stress resistance, healthy aging,
tumorigenesis, autophagy, and apoptosis as reviewed in Haigis
and Sinclair (208), Finkel et al. (209), andHoutkooper et al. (210).

Emerging evidence demonstrated that sirtuins are key
regulators of inflammatory stress response in immune and
non-immune cells (95, 211–213). Sirtuins are involved in
epigenetic regulation, through deacetylation of histones
and/or non-histone proteins, of metabolic, phenotypic,
and bioenergetics reprogramming of immune cells
(immuno-metabolism) (210, 212–214).

SIRT1 is the most extensively studied sirtuins, especially for
its role in aging (210, 214). In addition, SIRT1 is involved
in controlling stem cell development, cell differentiation and
autophagy, metabolic reprogramming and inflammation (209,
215). SIRT1 is also the most studied among sirtuins involved
in immune regulation and here we summarized some SIRT1
activities in epigenetic regulation of metabolism and immune
response (Figure 5).

Epigenetic mechanisms are essential to the development and
differentiation of the immune system, as well as in related
pathologies (216–218). Epigenetic mechanisms include
multilevel intracellular events that influence chromatin
structure and gene expression such as histone methylation
and acetylation, as well as DNA methylation, non-coding
RNAs and chromatin remodeling (219). Further, numerous
signals (i.e., TCR, TLRs, inhibitory receptors, and cytokines)
drive changes in the epigenome that result in downstream
modulation of immune responses (77). TLR signaling
in macrophages regulates differentiation/polarization and
activation in response to pathogens affecting gene expression
and metabolic reprogramming (220, 221). In particular, TLR4
engagement by LPS in macrophages drives a shift toward a
glycolytic metabolism impairing mitochondrial respiration
(222), resulting in a marked shifts in NAD/NADH ratios,
which influence the activities of SIRT1, potentially altering
deacetylation of histone and non-histone substrates (134, 223).
Liu et al. found in TLR4-stimulated THP-1 promonocytes that
SIRT1 support a switch from increased glycolysis to increased
FAO as early inflammation converts to late inflammation (134).
The shift to late acute inflammation and elevated FAO required
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FIGURE 5 | Sirtuins and epigenetic regulation of immune cell functions. Sirtuins are a family of 7 members with different subcellular localization. These

NAD-dependent deacetylases are involved in epigenetic regulation of metabolic reprogramming of cancer and immune cells and in promoting T cell differentiation and

function. Particularly, in myeloid cells SIRT1 decreases inflammation negatively regulating NF-KB pathway, and inducing a metabolic rewiring mediated by its activity

on AMPK/PGC-1α and HIF-1α stabilization. In T cell populations, SIRT1 modifies the phenotypic plasticity of Thelper and Treg and induces T cell tolerance. The

manipulation of the Sirtuins/NAD axis is an important area of study for therapeutic implications in cancer research to repolarization of immune cell responses and to

block tumor progression. TLR4, Toll-like receptor 4; AMPK, AMP-activated protein kinase; HIF, Hypoxia-inducible factor; PD-1, programmed cell death protein 1;

CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells.

peroxisome proliferator-activated receptor gamma coactivator
(PGC-1α),a known target of SIRT1 (187, 224–227). A circuit
of AMP-activated protein kinase [(AMPK)/SIRT1/PGC-1α]
results in the deacetylation and modulation of the activity of
downstream SIRT1 targets that include the PGC-1α and the
FOXO1 and FOXO3a transcription factors. The AMPK-induced
SIRT1-mediated deacetylation of these targets explains many
of the convergent biological effects of these two energy sensors,
AMPK and SIRT1, on cellular metabolism (225, 226).

Recent studies have showed that the regulation of innate
immunity and energy metabolism are connected through
antagonistic crosstalk between NF-κB and SIRT1 signaling
pathways (228). NF-κB signaling has a major role in innate
immunity defense, while SIRT1 regulates the oxidative
respiration and cellular survival (229). However, NF-κB
activation can stimulate glycolysis during acute inflammation,
whereas SIRT1 activation inhibits NF-κB signaling and enhances
oxidative metabolism and the resolution of inflammation.

SIRT1 inhibits NF-κB signaling directly by deacetylating the p65
subunit of NF-κB complex (230). SIRT1 stimulates oxidative
energy production via the activation of AMPK, peroxisome
proliferator activated receptor (PPARα) and PGC-1α and
simultaneously, these factors inhibit NF-κB pathway and
suppress inflammation (225, 226, 231). Using a myeloid cell-
specific SIRT1 knockout (Mac-SIRT1 KO) mouse model, Schug
et al. show that ablation of SIRT1 in macrophages renders
NF-κB hyperacetylated, resulting in increased transcription
of proinflammatory target genes. Consistent with increased
proinflammatory gene expression, Mac-SIRT1 KO mice
challenged with a high-fat diet display high levels of activated
macrophages in liver and adipose tissue, predisposing the
animals to development of systemic insulin resistance and
metabolic derangement (232). In some cases, the effects of SIRT1
in regulating metabolism of immune cells are mediated by
HIF-1α (233). SIRT1 can bind and deacetylate HIF-1α resulting
in a stabilization or in an inhibition of the protein, depending on
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the cells and context (234, 235). The SIRT1-HIF-1α axis bridges
the innate immune signal to an adaptive immune response
by directing affecting metabolism, cytokines production, and
differentiation of immune cells (236). For example, (i) SIRT1
can limit the function and differentiation of MDSCs through
HIF-1α-induced glycolytic metabolic reprogramming (237), (ii)
SIRT1 can regulate T helper 9 (Th9) cell differentiation through
the mTOR/HIF-1α-dependent glycolytic pathway (238). The
interplay between HIFs and sirtuins may also extend to stress
settings such as hypoxic tumors, in which cellular redox balance
is perturbed (64, 239).

For adaptive immune cells, SIRT1 has a key role in mediating
the differentiation of T cell subsets in a NAD-dependent manner.
T cells exhibit remarkable phenotypic and functional plasticity
during immune responses (240). SIRT1 is involved in (i) Th
and Treg cell differentiation (238, 241); (ii) SIRT1 signals in
DCs can repress PPARγ activity and promote T helper 2
(Th2) cell responses in airway allergy through metabolism-
independent manners (242); (iii) SIRT1 interacts with c- Jun
and inhibits CD4T cells to mediate T cell tolerance (243);
(iv) SIRT1 regulates CD8 T-cell differentiation interacting with
basic leucine zipper transcription factor ATF-like (BATF) and
regulating both epigenetic remodeling and energy metabolism
of T cells (244). Furthermore, (v) SIRT1/FOXO1 axis regulates
metabolic reprogramming of terminally differentiated memory T
cells, as previously described (188).

Finally, SIRT1 has been shown to play also important roles in
physiological processes affecting organismal longevity as well as
stem cell function and self-renewal (245, 246). In macrophages,
SIRT1 is emerging as critical positive modulator of self-renewal,
regulating G1/S transition, cell cycle progression and a network
of self-renewal genes (247).

Similar functions in regulating inflammation and metabolism
are exerted also by SIRT2 and SIRT6 (134, 213, 248).

Interactions of cellular metabolic and epigenetic pathways and
how these two key biological processes interplay to feedback
modulate immune cell function is attracting in cancer therapy.
Sirtuins/NAD axis has proven to be a crucial link between
epigenetics and metabolism, and hence, it is an important area
of study for therapeutic implications (215). While there are only
specific activators or inhibitors for SIRT1 exist, drugs that affect
NAD levels or NAD precursors offer the possibility to regulate
all seven sirtuins coordinately (239). These compounds can be
used alone or in combination with existing cancer therapies. The
effects of SIRT1 inhibitors (e.g., cambinol, sirtinol, tenovins, Ex-
527,Table 1) are currently studiedmainly in the context of cancer
(239). Very recent data show the impact of SIRT1 inhibition
or genetic deletion on T cell responses, particularly on Treg
differentiation. Genetic deletion or pharmacologic inhibition of
SIRT1 through EX-527 improves Foxp3+ Treg number and
function through increased Foxp3 transcription its acetylation,
leading to decreased Foxp3 turnover from ubiquitination and
poly(ADP)ribosylation. As a result, targeting SIRT1 increases
both central and inducible Foxp3+ Tregs and promotes their
suppressive functions, as summarized in Chadha et al. (249).
SIRT1 inhibition is therefore useful in the context of graft-vs.-
host disease (GVHD), to extend allograft survival (249–251).
However, there are a number of studies in which SIRT1 deletion

or inhibition led to proinflammatory conditions, indicating that
regulation of the system is still incompletely understood (249,
252). Interestingly, the Nam generated in deacetylase reactions
by SIRTs acts as a negative feedback regulator of SIRT activity
(253, 254). This Nam is converted back to NAD by the action
of NAMPT and NMNATs. Hence, NAD-biosynthetic enzymes,
in particular NAMPT, also regulate sirtuins signaling (255)
providing the rational to use NAMPT inhibitors to interfere with
Sirtuins functions.

Overall these results indicate that sirtuins broadly coordinate
innate and adaptive immune reprogramming and represent
druggable immunometabolic enhancement targets, useful also to
repolarize immune cells in TME.

IMMUNOSUPPRESSION VIA
TRYPTOPHAN CATABOLISM: THE ROLE
OF KYNURENINE PATHWAY ENZYMES

Amino acid catabolism is a key effector in driving immune
tolerance. IDO is a cytosolic, heme-dependent enzyme
responsible for the rate-limiting step of de novo NAD synthesis
from tryptophan in extrahepatic tissues. The catalyzed-reaction
yields N-formylkynurenine and commits the aminoacid toward
its conversion to QA through the kynurenine pathway (90),
which accounts for >90% of tryptophan catabolism (256).
Tryptophan is an essential amino acid in protein metabolism, a
precursor for the synthesis of the neurotransmitter serotonin and
tryptamine, as well as for the synthesis of NAD and the hormone
melatonin (257, 258).

In recent years, IDO has drawn enormous attention due to
its immune regulatory functions (259–261) and summarized
in Figure 6. IDO is not constitutively expressed in immune
cells. Rather, various stimuli, and signaling pathways induce
transcription and translation ofmetabolically-active IDO enzyme
protein. Among them, TLRs, tumor necrosis factor superfamily
members (TNFRs), interferon beta receptor (IFNBR), the
interferon gamma receptor (IFNGR), transforming growth
factor beta receptors (TGFBRs) and the aryl hydrocarbon
receptor (AhR) all can activate signaling mechanisms that either
induce or maintain IDO expression. NF-KB activation is a
central downstream signal of these pathways regulating IDO
expression (262).

By catalyzing the initial and rate-limiting step of tryptophan
degradation, IDO reduces the local tryptophan concentration
and produces immunemodulatory tryptophanmetabolites (263).
In particular, cells expressing IDO and TDO produce the
tryptophan catabolite kynurenine that, by interacting with the
aryl hydrocarbon receptor expressed by T cells, Tregs and DCs,
regulates immunity (264). Additionally, inhibition of CD8+ T-
cell-mediated cytotoxic function was found to be an important
mechanism behind IDO’s immune-modulating property (264).
Due to the role in regulating T cell response and fate, IDO
function is critical in organ and tissue graft survival, in viral
infection, in tissue-specific autoimmunity and the promotion
of cancer cell survival (265). The biologic function of the IDO
pathway was originally described as both counter-regulatory
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FIGURE 6 | The role of IDO/kynurenine in cancer immunoediting. IDO1 is an enzyme involved in the catabolism of tryptophan (kynurenine pathway). IDO and

kynurenine can be secreted by tumor and tolerogenic immune cells in the microenvironment where exert an immunosuppressive function polarizing myeloid cell

toward M2 phenotype (TAM; MDSC) and suppressing effector T cell functions, while stimulating expansion and activation of permissive Treg population, increasing

immune escape mechanisms (PD-1/PD-L1; CTLA-4/B7-1 crosstalk). Moreover, in the extracellular space, IDO1 depletes the essential amino acid tryptophan from the

tumor microenvironment, favoring tumor growth. IDO1 inhibitors in combination with Immunotherapy aim to reverse immunoediting (backward arrow) by inhibiting and

activating local immunosuppressive and tumor eradication mechanisms, respectively. PD-1, programmed cell death protein 1; PD-L1, PD-1 ligand; CTLA-4, Cytotoxic

T-Lymphocyte Antigen 4; Foxp3, forkhead box P3; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells.

(controlling inflammation) and tolerogenic (creating acquired
antigen-specific tolerance in T cells) (257).

Escape from the immune response is essential for cancer
progression, however, mechanisms underlying this process
remain unclear. Kynurenine in the tumor microenvironment
was recently shown to favor immunosuppression (265, 266).
Tryptophan catabolism was shown to create an immuno-
suppressivemilieu in tumors and in tumor-draining lymph nodes
through accumulation and secretion of immunosuppressive
tryptophan catabolites that bind and activate AhR (267),
leading to induction of T-cell anergy, apoptosis, increased
conversion of naïve CD4+ T cells into Tregs and polarization
of DCs and macrophages toward an immunosuppressive
phenotype (190, 261, 265, 268).

Clinically, studies of ovarian, lung, colorectal, breast
cancer, brain tumors, melanoma, and others have shown
that increased expression of IDO was associated with poor
survival outcomes (258, 265, 269, 270). In most studies, the
ratio of kynurenine to tryptophan was measured in patient
plasma as a measure of IDO and TDO activity (156, 267).
Moreover, not only tumor can express IDO, but also immune
cells including both TAM and MDSC express high levels
of IDO, in response to inflammatory cytokines, of which
IFN-γ is the most potent inducer, amplifying the circuit of
immunosuppression (190, 271, 272).

According to the role of IDO in driving immunosuppression,
in the last years IDO became a valid target in cancer
therapy (273, 274). Competitive inhibitors of IDO are currently
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being tested in clinical trials in patients with solid cancer,
with the aim of enhancing the efficacy of conventional
chemotherapy, vaccine or checkpoint inhibitors (275). Agents
currently account for the majority of the trials: indoximod
(1-methyl-D-tryptophan), an inhibitor of the IDO pathway
(155, 276), epacadostat (INCB024360) (156) and BMS-986205
(158) (Table 1), with encouraging results. Importantly, the
use of IDO inhibitors can be also overcome the resistance
to immunotherapies targeting immune checkpoints, strongly
supporting the combination therapies with IDO inhibitors
irrespective of IDO expression by the tumor cells (277).
Additional IDO inhibitors are in the development pipeline, as
well as agents that may target TDO, or a second isoform of IDO
(IDO2) (275).

CONCLUDING REMARKS

Anticancer strategies targeting simultaneously oncogenic and
metabolic pathways, de-regulated in cancer cells, seem to be
ideal and have shown some promising results. Interestingly,
local conditions in the tumor microenvironment affect also
metabolic responses of immune cells, favoring immune-
tolerance, and immune-escape mechanisms. One of the goals of
immunotherapy could be to re-educate the immune system to
kill tumors, by reprogramming their metabolism. The network

of immunosuppressive mechanisms in the TME is complex,
multifactorial, and mutually reinforcing. A better knowledge
of the main players of this cross-talk can help in designing
more effective combination therapies. In this picture, NAD-
metabolizing enzymes are receiving increasing attention to due
to their role in conditioning several aspects of immune cell fate
and functions. It is foreseeable that modulators/inhibitors of the
NADome (summarized in Table 1) will become useful alone or
in combination with current anti-cancer therapeutic strategies to
regulate both tumor growth and immune populations of TME.
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Class 1 Phosphoinositide-3-Kinases (PI3Ks) have been widely studied and mediate

essential roles in cellular proliferation, chemotaxis, insulin sensitivity, and immunity.

Here, we provide a comprehensive overview of how macrophage expressed PI3Ks and

their downstream pathways orchestrate responses to metabolic stimuli and nutrients,

polarizing macrophages, shaping their cellular identity and function. Particular emphasis

will be given to adipose tissue macrophages, crucial players of insulin resistance and

chronic metabolically triggered inflammation during obesity. An understanding of PI3K

dependent wiring of macrophage responses is important as this is involved in various

diseases ranging from obesity, type 2 diabetes to chronic inflammatory disease.

Keywords: macrophage, PI3K, nutrient sensing, adipose tissue macrophages, metainflammation, insulin

INTRODUCTION

The PI3K family is a central metabolic regulator, responsible for phosphorylating inositol lipids
at the 3′ position of the inositol ring. PI3K generated phosphatidylinositol-3,4,5-trisphosphate
(PtdIns(3,4,5)P3) triggers the recruitment and activation of several signaling proteins to the
plasmamembrane, thereby relaying various extracellular stimuli including Toll-like receptor (TLR)
ligands, insulin and G-protein coupled receptor ligands (1, 2). Although there are three classes of
PI3K enzymes (3), this mini-review will focus on class I PI3Ks and their function in macrophages
in response to metabolic stimuli that are upregulated during obesity, including insulin, glucose,
cholesterol and free fatty acids (FFAs). Indeed, macrophages that reside in adipose tissue (ATMs)
are exposed to increased levels of these stimuli in the obese state and are significant players in
metabolically triggered inflammation (herein referred to as meta-inflammation), which is crucial in
the pathogenesis of type 2 diabetes (T2D) and atherosclerosis (4–7). Here, we present an overview
of how the aforementioned stimuli regulate macrophage function and propose that PI3Ks are
central integrators of these environmental cues.

THE PI3K PATHWAY AND ITS EFFECTS ON MACROPHAGE
POLARIZATION

In mammals, class I PI3Ks are subdivided into class IA and class IB. Class IA consists of three
catalytic (p110α/β/δ) and five regulatory subunits (p85α/β, p55α/p50α, and p55γ), in part generated
through splicing or alternative transcription (p55α/p50α), associated to mainly receptor tyrosine
kinases. Class IB only features one catalytic (p110γ) and two regulatory subunits (p84/p101)
associated to G-protein-coupled receptors. The catalytic subunit of PI3K heterodimerizes with a
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regulatory subunit that dictates localization and activity of the
complex leading to recruitment of signaling molecules that
bind PtdIns(3,4,5)P3 through their pleckstrin-homology (PH)
domains including protein kinase B (PKB, also known as AKT),
phosphoinositide-dependent kinase 1 (PDK-1), protein kinase
C (PKC) and Bruton’s tyrosine kinase (BTK). PI3K activation
further blocks degradation and increases synthesis of proteins
via mTOR signaling. AKT mediates effects involved in glucose
transport, glycogen synthesis, and protein synthesis. Some of
these metabolic effects are achieved through AKT mediated
phosphorylation of Forkhead (FOXO) transcription factors (8–
10). Given the crucial role of the PI3K pathway in cellular biology,
mechanisms exist to limit its activation. PtdIns(3,4,5)P3 turnover
is terminated by lipid phosphatases, such as phosphatase and
tensin homolog (PTEN), a prominent tumor suppressor (11).

In macrophages, the PI3K pathway regulates the response
to different metabolic and inflammatory signals and
modulates macrophage polarization. Briefly, based on their
microenvironment and the consequent functional programs
elicited, macrophage phenotypes are defined as M1 and M2.
Classically activated M1 macrophages adopt a pro-inflammatory
phenotype in response to interferon gamma (IFN-γ) and
lipopolysaccharide (LPS) and are critical for host defense
against pathogens. Alternatively activated M2 macrophages play
important roles in wound healing and resolving inflammation.
M2 macrophages can further be subdivided into M2a (activated
by interleukin (IL)-4 and IL-13), M2b (activated by immune
complexes and TLR ligands), and M2c (activated by IL-10 and
glucocorticoids). Importantly, these activation states are likely
dynamic and influenced by the changing local milieu, therefore
macrophages may not form clear cut activation subsets in vivo
(12). Indeed, as discussed later, recent evidence indicates that
ATMs adopt a unique metabolically activated state in response
to their microenvironment.

Numerous studies have implicated PI3Ks in limiting pro-
inflammatory responses in TLR stimulated macrophages,
especially upon LPS mediated TLR4 activation. The mechanisms
are diverse ranging from indirect effects such as suppression of
TLR4 induced signaling cascades (e.g., MAP kinase signaling)
to direct mechanisms, including AKT mediated modulation of
FOXO transcription factors or the promotion of M2 responses.
Indeed, LPS driven ERK, p38, and JNK pathways in monocytes
and macrophages are enhanced upon pharmacological blockage
of PI3K activity (13). Bone marrow macrophages (BMMs)
deficient in p110γ or p85α exhibit augmented IL-6, IL-12,
and TNF levels following LPS challenge, providing genetic
evidence that PI3Ks attenuate LPS induced inflammation
(14, 15). Further, PTEN deficient macrophages, which exhibit
sustained PI3K activity, display decreased LPS driven pro-
inflammatory cytokine expression and are skewed toward an
M2 phenotype compared to controls (15, 16). In addition,
downstream AKT signaling is required for the dampening effects
of PI3Ks on TLR4 signaling and might involve phosphorylation
and thereby termination of FOXO transcription factor activity.
This is particularly important as FOXO1, which when active
potentiates TLR4 expression (14, 17). Of note, three distinct
isoforms of AKT exist: AKT1, 2 and 3 and studies utilizing

AKT isoform-specific deficient mice suggest unique roles
for the isoforms in mediating pro and anti-inflammatory
signaling (18, 19). LPS stimulated Akt1−/− macrophages
express augmented levels of iNOS (inducible nitric oxide
synthase), NO (nitric oxide), TNFα, and IL-6, whereas LPS
treated Akt2−/− macrophages produce low levels of these
pro-inflammatory mediators suggesting deletion of Akt1
promotes M1 while deletion of Akt2 results in M2 responses
(20). In line, Akt2−/− macrophages express increased levels
of the M2 markers arginase 1 (Arg-1), FIZZ1, and exhibit
more IL-10 upon LPS treatment compared to controls, while
AKT1 deficiency results in enhanced bacterial clearance in vivo
(20, 21). Interestingly, similar to Akt2−/− macrophages the
M2 phenotype of Pten−/− macrophages is associated with
elevated Arg-1 levels that are mediated by binding of the
transcription factor CEBP-β to the Arg-1 promoter, suggesting
sustained PI3K activity impinges particularly upon AKT1 in the
context of macrophage polarization (16, 20). However, whether
specific AKT isoforms are regulated by specific PI3K classes
remains unknown.

ADIPOSE TISSUE MACROPHAGES

Although murine ATMs are a heterogeneous population of
cells, ATMs in the lean state can generally be described
as F4/80+CD11b+CD206+ cells. Physiological adipose tissue
growth is associated with minimal inflammation, while during
pathological fat expansion, characteristic of obesity, limited
angiogenesis of adipose tissue is associated with prevalent
adipocyte hypertrophy, fibrosis and death (22). Here, ATM
numbers dramatically increase due to local proliferation and
recruitment of monocytes into adipose tissue that occurs
partly through a monocyte chemoattractant protein 1/C-C
chemokine receptor type 2 (MCP-1/CCR2) dependent axis
and is influenced by adipose tissue lipolysis (23–26). Indeed,
recruited ATMs express CCR2, but also CD11c, CD64, and
CD9 (27). CD11c+ ATMs overexpress pro-inflammatory genes
and ablation of CD11c+ cells in adipose tissue of obese mice
leads to reduced inflammation and improved insulin sensitivity
(28). Nonetheless, while in obesity, recruited ATMs overexpress
several classic inflammatory (M1) markers e.g., Il6 and Nos2
(29), their phenotype is highly plastic and dependent on the
microenvironment. Here, saturated FFAs (e.g., palmitate) or
cholesterol, insulin and glucose that are prevalent in obese
adipose tissue induce a state of metabolic activation (MMe)
in ATMs, distinct from classic M1 activation. MMe activation
is associated with elevated cell surface expression of lipid
metabolism associated proteins including ATP binding cassette
transporter (ABCA1), cluster of differentiation 36 (CD36), and
perilipin 2 (PLIN2). This is related to augmented peroxisome
proliferator activated receptor gamma (PPAR-γ) binding to the
promoters of these genes. Further, autophagy and particularly
sequestome-1 (p62) are important as opposed to controls
attenuated levels of these lipid mediators occur in p62 null MMe
macrophages (30). MMe activation correlates with lysosomal
biogenesis as more active biogenesis occurs in newly recruited
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CD11c+ ATMs (27, 31). Recent work has corroborated that
ATMs represent a heterogeneous population of cells and that
irrespective of obesity, there are populations of lipid laden
ATMs associated with the vasculature of adipose tissue exhibiting
high endocytic capacity. This suggests active ATM reprograming
in response to diverse macromolecules and nutrients present
in the bloodstream (32). Together, ATMs respond to their
environment by upregulating lipid/lysosomal programs, which
is likely heighted during obesity, allowing them to fulfill their
main function of clearing up dying adipocytes, buffering lipids,
preventing ectopic lipid spill over, and ensuing insulin resistance
(25, 26, 33, 34). But how does PI3K activity within macrophages,
reconcile with the environmental cues that dictate ATM function
and metabolic health? Although cytokines or adipokines secreted
by adipose tissue can influence systemic inflammation as well as
local macrophage responses (31), here we will focus exclusively
on metabolic stimuli relevant to obesity and T2D and their
effects on myeloid cells, particularly macrophages (Figure 1). We
propose that during obesity, the metabolic milieu encountered
by macrophages modulates PI3K signaling driving changes in
macrophage function.

INSULIN STIMULATED PI3KS PROMOTE
CELL SURVIVAL AND ATTENUATES LIPID
LOADING IN MYELOID CELLS

Insulin represents an essential hormone for the maintenance of
whole-body glucose disposal, regulating carbohydrate, protein
and lipid metabolism in insulin-sensitive organs such as adipose
tissue, muscle and liver (10). Upon insulin binding, the insulin
receptor (IR) self-phosphorylates and activates insulin receptor
substrates (IRS) which mediate downstream effects through
engaging central signaling pathways including the PI3K/AKT,
mTOR, and MAPK pathways (9). In this complex network,
PI3Ks are a critical signaling node, mediating many of the
metabolic and mitogenic effects of insulin. Importantly, the
exact function of insulin signaling in immune cells remains
largely unknown, although recently it was shown that T cell
specific insulin signaling promotes a specific metabolic program,
inducing nutrient uptake to support optimal T cell effector
functions (35). Tissue resident macrophages, including ATMs,
liver and peritoneal macrophages (pMOs) express the INSR gene
with pMOs exhibiting highest expression. INSR upregulation in
pMOs is linked with obesity and M1 macrophages exhibit more
expression compared to unstimulated (M0) or M2 macrophages
(36). Further, macrophages mainly express IRS-2 but not
IRS-1 (37, 38). Although insulin stimulation of macrophages
engages the PI3K/AKT signaling cascade (39, 40), it does not
activate some important other nodes of the insulin signaling
network such as the c-Jun N-terminal kinase (JNK) and p38
pathways (36). Macrophage glucose transport is facilitated
mainly via glucose transporter 1 (GLUT1), which is rapidly
induced by insulin, an effect that has been described to be
more prominent in M1 vs. M0 or M2 macrophages, suggesting
possible anti-inflammatory actions of insulin (Figure 1) (36, 41).
In line, insulin promotes IL-10 expression dose dependently

in pMOs and RAW264.7 macrophages and insulin priming
attenuates TLR4 expression, LPS induced nuclear factor kappa
B (NF-κB), p38 MAPK activation, and IL-1β production
(42). Further, treatment of obese individuals with insulin
reverses the pro-inflammatory phenotype of macrophages,
eliciting anti-inflammatory effects (43). Concordant with a
potential role in resolving macrophage mediated inflammation,
insulin-stimulated macrophages exhibit increased expression of
phagocytosis associated NAPDH oxidase activity and decreased
apoptosis (44, 45). Nonetheless, insulin and PI3K signaling are
unlikely to solely promote anti-inflammatory effects. Insulin is
reported to increase TNF-α release in human monocytes (46).
LPS-stimulation of IR deficient macrophages failed to induce IL-
6 and IL-1β expression suggesting insulin signaling might be
required for inflammation (47).

In obesity, surprisingly, mice deficient for the IR specifically
in myeloid cells exhibit a protective phenotype associated
with decreased ATM accumulation and improved insulin
sensitivity (48). A recent report has reproduced these findings,
additionally suggesting that there are less pro-inflammatory
(F4/80+CD11c+CD206−) and more anti-inflammatory
(F4/80+CD11c−CD206+) ATMs present in obese mice
lacking the IR in myeloid cells, proposing myeloid cell specific IR
signaling modulates ATM phenotypes (38). The authors of this
study additionally demonstrated that in obesity, myeloid specific
Irs2−/− mice exhibit impaired insulin sensitivity, associated
with more pro-inflammatory (F4/80+CD11c+CD206−) and
less anti-inflammatory (F4/80+CD11c−CD206+) ATMs.
This suggests distinct differences between IRS2 and IR in
regulating ATM phenotypes. These differences were explained
by findings showing that IL-4 promotes M2 macrophage
polarization through IRS-2 and post obesity, hyperinsulinemia
through engagement of the IR, leads to macrophage IRS-2
downregulation (38). Further, several studies have identified
myeloid dysfunctions associated with macrophage cell intrinsic
insulin resistance. In this context, macrophages were rendered
insulin resistant through pre-incubation with high-dose insulin,
genetic deletion of the INSR or by pharmacologic inhibition of
insulin signaling. Pre-treatment of macrophages with high-dose
insulin leads to INSR downregulation and suppression of insulin
signaling, which is also observed in freshly isolated macrophages
from insulin-resistant mice, such as the leptin-deficient ob/ob
mouse (49). In line, monocytes isolated from diabetic subjects
show decreased surface expression and tyrosine kinase activity of
the IR and diminished insulin-stimulated PI3K/AKT signaling
(50). In response to free cholesterol (FC) loading, Insr−/−

macrophages exhibit attenuated AKT phosphorylation and
an augmented ER stress response, that is independent of the
degree of FC loading. This suggests macrophage PI3K signaling
through the IR is required to withstand stressful stimuli.
The functional consequences of this are increased apoptosis,
unconnected to obvious changes in pro/anti-apoptotic gene
expression. Indeed, western diet-fed mice with IR deficiency
on an Ldlr deficient background in hematopoietic cells develop
larger, more complex lesions with increased necrotic cores
and apoptotic cells (40, 51). Furthermore, insulin resistant
macrophages, post-transcriptionally upregulate CD36 and
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FIGURE 1 | The PI3K signaling cascade integrates signals from extracellular nutrients and influences cellular function. Depicted are the positive (plus) and negative

influences of PI3K on the cellular responses to insulin, glucose, TLR4, free cholesterol and adipose exosomes. Insulin signaling in macrophages has no direct impact

on JNK activation (cross). Dashed arrows indicate potential connections, see text for further details. ABCA1, ATP-binding cassette 1; CD36, cluster of differentiation

36; CD206, cluster of differentiation 206; ER, endoplasmic reticulum; FC, free cholesterol; FFA, free fatty acids; GLUT-1, glucose transporter 1; IL1β, interleukin 1β;

IRS2, insulin receptor substrate 2; JNK, c-Jun N-terminal kinase; LDLR, low-density lipoprotein receptor; LPS, lipopolysaccharide; NF-κB, nuclear factor

kappa-light-chain-enhancer of activated B cells; PI3K, phosphoinositide 3-kinase; Plin2, perilipin-2; PPAR-γ, peroxisome proliferator-activated receptors gamma;

TLR4, toll-like receptor 4; TNF, tumor necrosis factor.

scavenger receptor A (SR-A), with increased CD36 protein
levels dependent on defects in insulin stimulated PI3K signaling
and proteasomal and lysosomal catabolism (40, 49). SR-A
levels are coupled to increased ER stress as they are increased
upon treatment with ER stress inducers (40). In agreement,

primary Insr−/− macrophages exhibit enhanced binding and
uptake of modified LDL. Conversely, in vivo treatment of

ob/ob mice with rosiglitazone, an insulin sensitizing agent and

PPAR-γ activator, reverses this phenotype resulting in improved
insulin signaling and decreased modified LDL uptake (49).

Interestingly, in human macrophages, both CD36 and SR-A

basal levels are reported to depend on PI3K activity as selective
pharmacological inhibition of Class IA p110β or δ and Class IB
p110γ attenuates their expression and is associated with reduced
macropinocytosis and foam cell formation upon modified LDL
challenge (52). Thus, although there may be species-specific
differences, intrinsic murine myeloid cell insulin stimulated
PI3K dependent signaling promotes myeloid cell survival and
modulates lipid metabolism, decreasing foam cell formation.

Consequently, cell intrinsic macrophage insulin resistance
and associated downregulation of PI3K signaling results
in elevated macrophage lipid burden and death, impacting
ectopic lipid spillover, further contributing to pathogenesis
in obesity.

PI3KS PROMOTE GLUCOSE DEPENDENT
ALTERNATIVE MACROPHAGE ACTIVATION

Hyperglycemia is a hallmark of T2D and glucose levels modulate
intracellular macrophage metabolism through environmental
glucose uptake and subsequent pyruvate and fatty acid generation
and there are numerous excellent reviews on this topic (53, 54).
Stable overexpression of GLUT1 in RAW264.7 macrophages
promotes glucose uptake and metabolism (41). GLUT1, 3 and 5
expression increases asmonocytes differentiate intomacrophages
and high expression is observed in foamy macrophages, which
are typically found upon modified lipoprotein challenge and
are reminiscent of ATMs (55–57). Enhanced glucose uptake
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might promote macrophage survival as Insr−/− macrophages,
exhibit increased cell death upon glucose deprivation (Figure 1)
(40), an effect that could be particularly relevant in the
context of modified lipoprotein presence (58). Interestingly,
recent work indicates that GLUT1 and glucose transport is
critical for the uptake of apoptotic cells (also known as
efferocytosis), suggesting glycolysis may also promote anti-
inflammatory phenotypes in macrophages in part through
SLC16A1 mediated lactate release (Figure 1) (59). Other reports
demonstrate that glucose promotes BMM proliferation and
decreases LPS induced MHC-II expression, suggesting glucose
levels might impact macrophage polarization (60). In line, high
glucose levels have been described to induce the expression
of Arg-1 and CD206 in macrophages in a PI3K dependent
manner (61). Further, evidence of an importance for glucose
in M2 responses is provided by studies demonstrating that
PI3K-AKT dependent glucose utilization is critical for IL-4
responses (62, 63).

PI3KS CAN INFLUENCE FFA SIGNALING
AND ATM ACCUMULATION

While physiologically FFA release through adipose lipolysis
provides an important source of fuel, this process is dysregulated
in the obese and insulin resistant state. The general dogma,
particularly drawn from experimental murine studies, is that
while unsaturated FFAs are anti-inflammatory, saturated FFAs
are pro-inflammatory (64). Indeed, saturated FFAs such as
palmitate promote skeletal muscle insulin resistance in part by
blocking insulin mediated IRS-1 tyrosine phosphorylation and
PI3K activity (65, 66). Given IRS-2 is predominantly expressed in
macrophages (37), to our knowledge, no studies have addressed
whether saturated FFAs decrease IRS-2 phosphorylation and
render macrophages insulin resistant. Most studies utilizing
macrophages in conjunction with palmitate have focused on
its inflammation promoting effects. Indeed, palmitate triggered
inflammation is JNK dependent, which is negatively regulated
by PI3Ks (Figure 1) (67, 68). Although, palmitate has been
suggested to mediate its effects via TLR4 (53), recent data
indicates that JNK activation by palmitate is TLR4 independent
(Figure 1). While LPS induced TLR4 signaling rapidly activates
MAPK and NF-κB signaling and TLR4 endocytosis, palmitate
activates these pathways much later and does not induce
TLR4 endocytosis (54). The authors of this study demonstrated
that LPS priming of macrophages altered cellular metabolism,
gene expression and macrophage membrane lipid composition,
which were necessary for palmitate induced inflammation
(54). Notably, the effect of palmitate on inflammation might
also depend on macrophage differentiation status. In fully
differentiated macrophages, palmitate treatment elicits a pro-
inflammatory phenotype, that is dependent on ER stress, as
it is abrogated upon incubation with ER stress inhibitors
(60). This is consistent with studies demonstrating that
palmitate activates ER stress (64). However, during BMM
differentiation chronic palmitate exposure been described to
inhibit proliferation and promote an anti-inflammatory M2

phenotype, associated with increased PPAR-γ and CD206
expression (60).

Palmitate treatment of monocytes leads to macrophage
inflammatory protein 1-alpha and beta upregulation (MIP-
1α/β, also known as CCL3 and 4, respectively) and this
occurs in a MAPK, NF-κB, and PI3K dependent manner
indicating that PI3Ks can directly promote FFA mediated
inflammation (69, 70). Interestingly, both chemokines are
involved in neutrophil and monocyte recruitment, respectively
(71), suggesting FFA mediated PI3K dependent signaling
could promote increases in ATM number. Further evidence
that palmitate mediated PI3K activation within myeloid cells
regulates ATM content is provided by observations that
palmitate treatment of macrophages induces netrin-1 and its
receptor Unc5b, mediators that promote ATM retention and
accumulation (72). Interestingly, in other cellular systems,
netrin-1 acts in concert with its receptor in a PI3K dependent
manner (73), although the functional relevance of PI3Ks to
palmitate mediated ATM retention remains unexplored. These
studies suggest that PI3Ks integrate signals derived from FFAs
and thereby influences ATM accumulation and inflammatory
status. However, many of the studies cited are limited by their
exclusive use of in vitro models, disregarding the complexity of
signals present in vivo.

CHOLESTEROL ACTIVATES THE PI3K
PATHWAY

Cholesterol exists as free cholesterol (FC) or as cholesterol
esters. During obesity, adipose tissue accumulates FC and this
correlates with increased ATM content (74). Cholesterol and
modified lipoproteins are taken up by macrophages through
macropinocytosis, scavenger receptors (e.g., CD36, SRA-1) and
the low density lipoprotein receptor (LDLR), leading to foam
cell formation that impacts inflammation and viability (Figure 1)
(75). FC is reported to impact macrophage inflammation in a
concentration dependent manner, with lower and higher levels
promoting anti and pro-inflammatory phenotypes, respectively
(76). In macrophages, FC also induces AKT phosphorylation
indicating it activates the PI3K pathway (40). Macrophages
use cholesterol efflux pathways to maintain cellular lipid
homeostasis with ABCA1 mediating the transport of cholesterol
and phospholipids to lipid-free apolipoproteins such as apoA-
I (75). ABCA1 upregulation in turn selectively attenuates FC,
dampening inflammation by reducing TLR trafficking to lipid
rafts, indicating the presence of feedback loops that resolve
inflammation (77).

PI3K DEPENDENT UPTAKE OF ADIPOSE
EXOSOMES

Exosomes are small (30–150 nm) endosomal derived membrane
microvesicles secreted from cells that carry proteins, lipids,
nucleic acids, and can reprogram recipient cells (78). Recent
work demonstrates that the uptake of adipose exosomes
(AdExo), promotes BMM differentiation into ATM like
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FIGURE 2 | Nutrient accumulation during obesity is associated with rendering macrophage insulin resistant. In the lean state ATMs buffer lipids and insulin promotes

survival through PI3K. Insulin resistant ATMs display enhanced foam cell formation associated with increased lysosomal biogenesis, ER stress, apoptosis, and

exacerbated inflammation. See text for further details. ER, endoplasmic reticulum; FC, free cholesterol; FFA, free fatty acids; LPS, lipopolysaccharide.

cells by inducing lysosomal biogenesis (79). Interestingly,
AdExo do not carry FFAs but are particularly rich in FC and
triglycerides and are taken up by macrophages through
macropinocytosis, PI3K dependently, suggesting PI3Ks
might modulate macrophage lipid loading in response to
AdExos (Figure 1). They thus represent a novel intercellular
communication route for the transfer of these lipids to
macrophages (79).

PI3KS INTEGRATE THE ENVIRONMENTAL
CUES THAT DICTATE MACROPHAGE
PHENOTYPES IN OBESITY

Within adipose tissue during obesity, the metabolic stimuli
outlined above, although elevated, likely exist at differing
levels within the microenvironment and synergize their
signaling with other stimuli, notably, LPS. This poses the
question of how do myeloid cells respond to the combined
actions of these stimuli and where do PI3Ks fit into
this context during obesity? We propose a model where
attenuated PI3K signaling within myeloid cells is central
to meta-inflammation.

HOW MIGHT PI3KS AFFECT THE
SYNERGY BETWEEN METABOLIC
STIMULI IN MACROPHAGES IN OBESITY?

Obesity alters the gut microbiome and is associated with

increased circulating LPS, which initiates adipose tissue
inflammation and macrophage activation in a manner

dependent on intact TLR4 signaling, a phenomenon coined

“metabolic endotoxemia” (80, 81). Interestingly, TLR4 ligation

and palmitate presence synergistically augment macrophage

ceramide production through de novo synthesis in the ER and
this is implicated in augmenting IL-1β synthesis (82). This

might be especially relevant given TLR4-dependent priming

of macrophages is reported to be necessary for FFA induced

inflammation and thus might act as a initiating stimulus
promoting FFA mediated inflammation (Figure 2) (67, 83).
Numerous studies demonstrate that ceramides alter PI3K
signaling by promoting insulin resistance through either
dephosphorylating AKT or through blocking AKT translocation
to the plasma membrane (84–86). Together a potential synergy
between LPS and FFAs might impact macrophage intrinsic
insulin sensitivity through PI3Ks.
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As TLR4 dependent signaling is increased in obesity,
as outlined earlier, PI3Ks would presumably limit pro-
inflammatory responses through various mechanisms including
the promotion of M2 responses (13–16). Generation of
alternatively activated macrophages would also be favored by
prevalent hyperglycemia in obesity in a PI3K-AKT dependent
manner (61–63). However, high doses of insulin render
macrophages insulin resistant, decreasing PI3K signaling and
thus inhibiting insulin stimulated glucose uptake through
GLUT-1 (36). Together, decreased myeloid cell PI3K signaling
in the insulin resistant state would shift macrophage phenotypes
toward pro-inflammation through a synergistic effect of high
insulin, glucose, and LPS.

High glucose/insulin/palmitate stimulation of macrophages
leads to upregulation of lipid metabolism genes (ABCA1,
CD36, and PLIN2) and cellular programs associated
with lysosomal biogenesis and autophagy, mimicking the
effects of FC (30, 75). FC activates the PI3K pathway and
elevated AdExos in obesity are taken up by macrophages
through macropinocytosis, PI3K dependently (40, 79).
Decreased PI3K signaling in insulin resistant macrophages
would therefore contribute to enhanced systemic levels
of these metabolic stressors. Furthermore, attenuated
PI3K signaling in insulin resistant macrophages leads to
upregulation of scavenger receptors and compensatory
proteasomal and lysosomal catabolism (40, 49). This in
turn induces a vicious cycle of modified lipid uptake, further
promoting ER stress and apoptosis, which is aggravated
in insulin resistant macrophages (40, 58). Consequently,
we propose in obesity, cell intrinsic macrophage PI3K
signaling would be downregulated and result in elevated
lipid burden and death. This would impact the lipid
buffering capacity of ATMs, further promoting ectopic lipid
spillover and meta-inflammation (Figure 2). To sum up, the
different metabolic inputs outlined in this review affect the
degree/strength of PI3K signaling and together synergistically
determine macrophage cell survival, lipid metabolism, and
inflammatory phenotype.

CONCLUDING REMARKS

Slightly over 25 years ago, the concept of meta-inflammation
was born by the discovery that adipose expressed TNF reduced
adipose GLUT4 levels and neutralization of TNF in obese
rats improved insulin sensitivity (5). Supportive of the key
role of peripheral inflammation in obesity, obese myeloid-
specific IKKβ or JNK deficient mice exhibit improved systemic
insulin sensitivity (6, 7). Peripheral NF-κB activation is critical,
as inhibiting this pathway in hepatocytes prevents IL-1β and
insulin induced IR tyrosine phosphorylation and p85 association
with IRS-1 (7). Since then, the contribution of ATMs to
systemic inflammation has received much attention with the
dogma that inflammatory pathways attenuate downstream PI3K
signaling and initiate and exacerbate inflammatory responses,

particularly in peripheral metabolic tissues such as the liver.
However, only recently the importance of how environment
re-programs and wires tissue resident macrophages has been
appreciated (87).

We present an emerging paradigm where environmental
stimuli encountered by ATMs during obesity reprogram them
in a manner that is associated with macrophage intrinsic insulin
resistance and drastic changes in intracellular lipids leading
to oxidative and ER stress and upregulation of lysosomal and
proteasomal programs. We propose myeloid cell PI3K activation
integrates these environmental cues through its influences on
saturated FFA responses, ATM accumulation, cell survival and
the degree of lipid loading. This would presumably have
consequences on ectopic lipid spill over and peripheral insulin
sensitivity. While mice possessing global deletions of p85α/β
and p55α/p50α exhibit improved insulin sensitivity (88–90)
and mice with global deletions in p110α and p110β display
impaired insulin sensitivity (91, 92), given that these subunits
are deleted in all insulin sensitive tissues the exact function of
myeloid cell specific PI3Ks during obesity and insulin resistance
remains an enigma. To our knowledge, there is only one study
that conditionally deleted a PI3K subunit in myeloid cells.
By crossing floxed p110γ mice with mice expressing the Cre
recombinase under the control of the Tie2 promoter, Breasson
and colleagues demonstrated efficient deletion of p110γ in
endothelial cells and adipose associated immune cells. These
animals exhibited improved insulin sensitivity associated with
increased CD206 expression in adipose tissue, independent of
differences in ATM content, suggesting p110γ is dispensable
for ATM recruitment but promotes M1 responses in obesity
(93). Undoubtedly, myeloid cell specific deletions of class 1
PI3Ks in the context of obesity coupled to isolating primary
macrophages from these mice and challenging them with the
metabolic stimuli outlined in this review, will yield fruitful
insights into the contribution of class I PI3Ks to obesity and
ATM function.
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Metabolic Control of Innate
Lymphoid Cell Migration
Tim Willinger*

Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden

Innate lymphoid cells (ILCs) are specialized immune cells that rapidly respond to

environmental challenges, such as infection and tissue damage. ILCs play an important

role in organ homeostasis, tissue repair, and host defense in the mucosal tissues intestine

and lung. ILCs are sentinels of healthy tissue function, yet it is poorly understood how

ILCs are recruited, strategically positioned, and maintained within tissues. Accordingly,

ILC migration is an area that has recently come into focus and it is important to define

the signals that control ILC migration to and within tissues. In this context, signals from

the local tissue microenvironment are relevant. For example, ILCs in the intestine are

exposed to an environment that is rich in dietary, microbial, and endogenous metabolites.

It has been shown that the Vitamin A metabolite retinoic acid promotes ILC1 and

ILC3 homing to the intestine. In addition, recent studies have discovered cholesterol

metabolites (oxysterols) as a novel class of molecules that regulate ILC migration through

the receptor GPR183. ILCs are considered to be largely tissue-resident cells, yet recent

data indicate that ILCs actively migrate during inflammation. Furthermore, the discovery

of circulating ILC precursors in humans and their presence within tissues has fueled

the concept of local ILC-poiesis. However, it is unclear how circulating ILCs enter tissue

during embryogenesis and inflammation and how they are directed to local tissue niches.

In this review, I will discuss the metabolic signals that regulate ILC homing and their

strategic positioning in healthy and inflamed tissues. It is becoming increasingly clear

that ILC function is closely linked to their tissue localization. Therefore, understanding

the tissue signals that control ILC migration could open new avenues for the treatment

of chronic inflammatory diseases and cancer.

Keywords: innate lymphoid cells, migration, metabolism, oxysterol, inflammation, cancer

BACKGROUND

Innate lymphoid cells (ILCs) are immune cells of lymphoid origin that quickly respond to
perturbations of tissue homeostasis. Apart from their role in barrier immunity and host defense,
ILCs are also essential for organ homeostasis, recovery from tissue injury, andmetabolism (1–5). In
addition to cytotoxic natural killer (NK) cells, three different ILC types can be distinguished based
on signature transcription factors and effector cytokines, similar to CD4+ T helper lymphocytes:
(1) T-BET+ ILC1s produce interferon-gamma (IFNγ); (2) GATA3high ILC2s produce interleukin-5
(IL-5) and IL-13; (3) RORγt+ ILC3s produce IL-17 and/or IL-22. RORγt+ ILC3s include
fetal lymphoid tissue-inducer (LTi) cells and adult LTi-like cells that have a similar phenotype
(CCR6+NKp46−) and mainly reside in lymphoid tissues (6, 7). LTi cells are now considered a
separate ILC lineage due to their unique ontogeny (5, 8). α4β7+CXCR6+ ILC3 precursors (ILC3Ps)
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develop into LTi cells in the fetal liver (9). In contrast, adult
LTi-like ILC3s can derive from bone marrow precursors that
upregulate RORγt in peripheral tissues, such as the intestine,
in a Notch-dependent manner (9). Perinatal RORγt+ ILCs
give rise to long-lived ILC3s in the small intestine (10), yet
it is unclear whether and to what extent embryonic LTi cells
persist in the adult. Therefore, the developmental relationship
between fetal LTi cells and adult LTi-like ILC3s remains to be
defined. Adult mice also have T-BET-expressing CCR6−NKp46+

ILC3s that are derived from CCR6−NKp46− ILC3s (11). Dietary
phytochemicals acting through the aryl hydrocarbon receptor
(AHR) are required for the post-natal expansion of these CCR6−

adult ILC3s (12–14). Both fetal LTi cells (15) and adult ILC3s in
the intestine (16, 17) are dependent on the Vitamin A metabolite
retinoic acid.

Many features of ILCs are shared with T cells, but ILCs
also have unique, non-redundant, functions, such as the ability
to orchestrate the formation of lymphoid tissues, which is
carried out by ILC3s with LTi function (12, 13, 18–21). In
mice, the prenatal formation of lymphoid tissues (lymph nodes
and Peyer’s Patches) is carried out by CD4+ fetal LTi cells,
whereas adult ILC3s mediate the development of intestinal
cryptopatches and isolated lymphoid follicles that develop after
birth (22, 23). Besides their beneficial effects, ILCs have been
implicated in chronic inflammatory responses that underlie
human disease (24–26).

The main focus in the research on ILCs has been on
cell lineage relationships, transcription factors, and effector
function—mostly based on analogies with T lymphocytes.
ILC migration has only recently become an active area of
investigation. Their strategic position within tissues allows ILCs
to fulfill their role as sentinels of healthy tissue function.
Furthermore, local ILC clustering and rapid migration in
response to inflammatory signals may explain why ILCs
exert such powerful effects on tissue immunity (Figures 1–
3). However, much remains to be learned about the pathways
that regulate the migration and tissue localization of ILCs. In
this review, I mainly discuss the migration of ILCs other than
NK cells.

TISSUE DISTRIBUTION OF ILCs

ILCs are found in many organs, but are enriched in mucosal
tissues (intestine, lung) that are most exposed to the environment
(10, 16, 27–31). Furthermore, the relative abundance of ILC
subsets differs between tissues in mice (10, 16, 28) and humans
(30, 31), with ILCs perhaps less compartmentalized in humans
than in mice (31). For example, ILC3s are abundant in the small
intestine and ILC2s in the skin as well as in adipose tissue,
whereas NK cells predominate in bone marrow, spleen, liver,
and lung (32). In addition, there are regional differences in ILC
distribution within the same organ. For example, NKp46+ ILC3s
are enriched in the small intestine, whereas in the colon adult
LTi-like ILC3s are more prevalent. In addition, ILC2s are more
abundant in the colon than in the small intestine (32). Moreover,
ILC abundance differs between steady-state and inflamed tissue

(33–35). Finally, developmental age of the organism influences
ILC tissue distribution. For example, LTi-like ILC3s are present in
the fetal gut, whereas NKp46+ ILC3s are largely absent (10), only
expanding after birth in response to diet-derived AHR ligands
(12–14) and signals from the maternal microbiota (36). Similarly,
ILC2s seed the mouse lungs within the first 2 weeks of life (37).
The differential tissue distribution of ILCs is likely related to their
migratory behavior, e.g., due to temporal seeding of tissues during
embryogenesis (10, 38) and due to organ-specific expression of
integrins and chemokine receptors on ILCs (Figures 1–3).

Parabiosis studies in mice established the concept that, in
contrast to NK cells, ILCs in both lymphoid and non-lymphoid
tissues are largely tissue-resident cells (39). This implies that,
similar to tissue macrophages, ILCs are maintained within tissues
by local self-renewal. However, recent studies have challenged
this concept with the discovery of circulating CD117+ ILC
precursors (ILCPs) in humans (40) and the observation that
inflammatory ILC2s in the mouse can migrate from the intestine
to the lung during helminth infection (41). Circulating ILCs
might therefore constitute mobile a pool of cells that can be
activated and recruited to inflamed tissue on demand in order
to support host defense carried out by tissue-resident ILCs
(Figures 1, 3). Apart from ILCPs, human blood also contains
ILC2s (27), but no mature ILC1s and ILC3s (40). In addition to
more abundant NK cells, circulating putative ILCPs and mature
ILCs, mainly ILC1s, are also found in mice (42, 43).

Interestingly, ILCs occupying vascular vs. tissue
compartments seem to have distinct functions. A recent
study demonstrated that NK cells circulating between blood
and peripheral tissues have effector function, whereas NK cells
trafficking to lymph nodes are long-lived and proliferative
(44). This different migratory and functional behavior has
been associated with the differential expression of transcription
factors (44).

TISSUE NICHES AND ILC FUNCTION

Like other immune cells, ILCs occupy distinct niches within
tissue, which is important for their function and likely regulates
their homeostasis. For example, in the intestine, ILCs reside
in three main anatomical compartments: (i) LTi-like ILC3s
are clustered in lymphoid tissues, such as cryptopatches and
isolated lymphoid follicles (45, 46); (ii) NK cells/ILC1s, ILC2s,
NKp46+ ILC3s are dispersed in the lamina propria (47–49);
(iii) Intraepithelial ILC1s are located within the epithelium (30,
50). This anatomical compartmentalization corresponds to the
diversity of ILC function in the intestine (Figure 2). For example,
LTi-like ILC3s in Peyer’s Patches and isolated lymphoid follicles
interact with B cells to stimulate IgA production (51, 52), which
promotes host commensalism with the local microbiota (53).
Furthermore, lymphoid tissue-resident commensal bacteria are
contained by IL-22-producing ILC3s (54). In addition, ILC3s in
cryptopatches are in close proximity to the cypts, where intestinal
stem cells reside. Accordingly, IL-22 production by ILC3s has
been shown to maintain crypt stem cells after tissue damage (55–
57). In contrast, NKp46+ ILC3s are mostly resident in the small
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FIGURE 1 | Tissue homing and positioning of ILCPs and mature ILCs. ILCPs derived from fetal (liver) or adult (bone marrow) hematopoiesis enter the blood to home

to lymphoid and non-lymphoid organs. This process requires CXCR16 and α4β7 integrin, which bind to CXCL16 and MAdCAM-1, respectively. NK cells egress from

the bone marrow is mediated by S1PR5-S1P. Recent data support the concept that circulating ILCPs are a source of local ILC-poiesis after their migration into

tissues. ILCPs and ILC1s recirculate between lymph nodes and blood through the use of CD62L, CCR7, and S1P receptors. During embryogenesis, LTi cells are

essential for lymph node (LN) formation, which is initiated by their CXCR5-CXCL13-dependent clustering at lymph node anlagen. CCR6-CCL20 positions ILC3s to

hair follicles and recruits ILC3s during skin inflammation. In the liver, CXCR6 and its ligand CXCL16 are essential for NK cell memory responses. ILC2s promote

thermogenesis, but the signals regulating their migration in adipose tissue are unknown.

intestinal villi, located close to the epithelium, where theymediate
host defense against pathogens (58). Interestingly, NKp46+

ILC3s seem to produce IL-22 mainly in response to pathogen-
induced IL-23 secretion by myeloid cells, whereas lymphoid
tissue-resident LTi-like ILC3s produce IL-22 constitutively in
a microbiota-dependent manner (59). Finally, IFNγ-secreting
ILC1s within the intraepithelial compartment are involved in
colitis (50).

Although intestinal ILC3s are tissue-resident (39), they are
not completely sessile cells. For example, in the steady state,
there is a constant influx and egress of ILC3s to and from
cryptopatches and there is increased ILC3 mobilization from
cryptopatches during inflammation (21, 60). The significance
of steady-state ILC3 migration in and out of cryptopatches is
unknown, but could potentially serve the purpose of sampling
or sensing cues from the environment (such as crypt material) to
respond to perturbations of the intestinal stem cell compartment.
Accordingly, it has been suggested that cryptopatches act as a
platform to rapidly amplify ILC-mediated immune responses,
not only through cytokine production, but also through ILC
movement into surrounding tissue (60).

Interestingly, occupancy of tissues niches by ILCs is regulated
by quorum sensing-like mechanisms. Thus, it has recently
been shown that receptor activator of nuclear factor kappa

B (RANK)-RANK ligand (RANKL) interactions adjust the
numbers of mouse CCR6+ LTi-like ILC3s to the size of the niche,
likely within cryptopatches (61). Therefore, regardless of their
outer environment, clustering of CCR6+ ILC3s allows them to
keep one another in check. This mechanism likely operates also
in human tonsil, where CCR6+ ILC3s express both RANK and
RANKL (61).

In many tissue niches, ILCs have an intimate relationship
with non-hematopoietic cells, such as stromal cells. For example,
an ILC3-stromal cell niche in secondary lymphoid organs has
been reported in both mice and humans (62). Moreover, ILC2s
occupy a distinct perivascular localization close to stromal
cells in the lung (63, 64). In this specific niche, adventitial
stromal cells promote ILC2 homeostasis in steady-state and
in response to helminth infection through the production
of IL-33 and thymic stromal lymphopoietin (TSLP) (64). In
turn, ILC2-derived IL-13 supports the expansion and IL-33
production by adventitial stromal cells (64). The close proximity
of lung ILC2s to blood vessels has been proposed to allow
efficient recruitment of eosinophils from the blood (63), further
underscoring the importance of ILC intra-tissue localization
(Figure 3). Furthermore, ILC2s are strategically positioned
within the airways, near airway branch points (65), where inhaled
particles are thought to accumulate. This puts ILC2s in close
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FIGURE 2 | ILC trafficking and positioning in the intestine. ILC homing to the small intestine is mediated by α4β7 integrin and the chemokine receptor CCR9 and their

respective ligands MAdCAM-1 and CCL25. ILC2s in the bone marrow already express CCR9 and are therefore capable of homing to the small intestine directly. In

contrast, retinoic acid is required to induce CCR9 expression in ILC1s and ILC3s after their CCR7-dependent trafficking to mesenteric lymph nodes (mLN). After

homing to the intestine, ILC3s are positioned within different tissue niches by distinct signals: (i) CCR6+ LTi-like ILC3s localize to cryptopatches (CP) and isolated

lymphoid follicles (ILF) through the GPR183-mediated sensing of 7α,25-dihydroxycholesterol (7α,25-OHC). CP/ILF-resident ILC3s stimulate IgA production by

interacting with B cells and support crypt stem cells through the constitutive production of IL-22. (ii) NKp46+ ILC3s are positioned to intestinal villi through

CXCR6-CXCL16, which promotes host defense against intestinal pathogens via IL-22. (iii) Microbiota-produced butyrate regulates the regional residence of NKp46+

ILC3s in Peyer’s Patches (PP), which controls intestinal tolerance through GM-CSF secretion and regulatory T cells (Treg). (iv) GPR183 and its ligand 7α,25-OHC are

also essential for the localization of CCR6+ LTi-like ILC3s to the interfollicular region within mLNs, where they interact with T follicular helper cells (TFH) and B cells to

regulate IgA production.

contact with neuroendocrine cells that activate ILC2s through
the release of calcitonin gene-related peptide (65). ILC-neuron
interactions also occur in intestinal cryptopatches (66) and
accordingly neuronal circuits have been shown to regulate ILC
function in different contexts (66–71).

Furthermore, there is the emerging concept that different
tissue microenvironments specify ILC function, as has been
shown for ILC2s (72). Local tissue niches might also regulate
ILC function through stimulating ILC plasticity. In vitro, ILC
plasticity occurs through the exposure to polarizing cytokines,
such as IL-1β and IL-12, which induces the conversion of
ILC2s and ILC3s into ILC1s (35, 73–76). However, it is unclear
where these factors are produced in vivo and where ILC
trans-differentiation occurs within tissue. One possibility is
that migratory signals induced by inflammation guide ILCs to
specific niches, where they are exposed to polarizing cytokines.
Alternatively, the polarizing cytokines might be produced within
the same niche in response to inflammatory stimuli.

Overall, the signals and migratory receptors regulating the
co-localization and interaction of ILCs with stromal cells and
other immune cells, such as T cells, are largely unknown. Subsets

of ILCs interact with T cells through the expression of major
histocompatibility complex (MHC) class II, CD1d, OX40 ligand
(OX40L), and CD30 ligand (CD30L) (77). In the intestine, MHC
class II+ ILC3s suppress CD4T cell responses against the local
microbiota (78, 79), whereas the interaction of MHC class II+

ILC2s with CD4T cells promotes type 2 immunity in the lung
(80). Moreover, OX40L-expressing ILC2s stimulate Th2 and
regulatory T cell (Treg) responses in lung and adipose tissue
(81). Interestingly, adult LTi-like ILC3s constitutively express co-
stimulatory ligands (OX40L, CD30L), whereas fetal LTi cells do
not (82).

Another interesting area for future investigation is the
occupation of tissue niches by ILCs and their adaptive
counterparts, i.e., T cells. This is particularly relevant since both
ILCs and T cells largely dependent on the same factors (γc
cytokines) for their homeostasis and expansion, therefore likely
competing with each other. Accordingly, intestinal ILC2s and
ILC3s expand in T cell-deficient mice, e.g., in mice lacking Rag
genes (16), most likely due to increased availability of IL-2 and
IL-7. This notion is supported by the finding that intestinal ILC3s
outcompete T cells for IL-2 (79) and that IL-7 consumption by
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FIGURE 3 | ILC migration in the lung. Suppression of CXCR4 by IL-33 enables ILC2Ps to egress from the bone marrow and home to the lung, where they occupy a

perivascular niche. This strategic localization likely allows ILC2-mediated recruitment of eosinophils from the circulation into the lung. In addition, prostaglandin D2

stimulates ILC2 migration in the lung through the interaction with its receptor CRTH2 on ILC2s. ILC2s thereby promote type 2 barrier immunity, but also allergic

inflammation as in asthma. During helminth infection, IL-25-responsive inflammatory ILC2s (iILC2s) are capable of trafficking from the intestine to the lung, where they

support anti-helminth immunity. This inter-organ trafficking requires S1PR1-S1P. LTi-like ILC3s migrate in the lung using CXCR5-CXCL13 and likely

neuropilin-1-VEGF-A. LTi-like ILC3s mediate the formation of inducible bronchus-associated lymphoid tissue (iBALT), which is essential for the early control of

tuberculosis (TB) in the lung, but may also be involved in inflammatory responses occurring in chronic obstructive pulmonary disease (COPD).

ILCs regulates the amount of IL-7 that is available to T cells (83).
Finally, it has been suggested that IL-2 produced by proliferating
T cells maintains LTi-like ILC3s in lymphoid structures (77), in
accordance with the observation that mesenteric lymph node-
resident ILC3s are reduced in T cell-deficientmice (84). However,
in many tissues it has not been thoroughly investigated whether
ILCs and T cells occupy distinct or overlapping niches.

ILC TRAFFICKING TO TISSUES

Trafficking Receptors on ILCs
Mature ILCs are largely tissue-resident cells (39), yet the signals
that control the migration of ILCPs and mature ILCs into
tissues during embryogenesis, adult life, and inflammation are
still incompletely understood. Similar to T lymphocytes, ILC
trafficking to tissues is regulated by integrins and chemokine
receptors (Table 1) that are often expressed in an ILC subset-
specific manner with similar chemokine receptor expression as
the corresponding T helper subsets (32).

For example, LTi-like ILC3s express CCR6 and CXCR5
(10, 11), both transcriptional targets of RORγt, which are also
preferentially expressed on Th17 cells (CCR6) and T follicular
helper cells (CXCR5). CCR6 and CXCR5 are already expressed

on ILC3Ps that migrate to peripheral tissues from the fetal
liver and adult bone marrow (9). In contrast, NKp46+ ILC3s
express CXCR6 (29, 92), the receptor for CXCL16, which
mediates their localization to the lamina propria (58). ILC1s
also express CXCR6 (92). Furthermore, CXCR6 promotes the
homing of NK cells to the liver, which is important for NK cell
memory (93). Lymphoid tissue-resident human ILC3s with LTi
activity, as well as murine fetal CD4+ LTi cells, not only express
CCR6 and CXCR5, but also Neuropilin-1, which mediates their
migration toward vascular endothelial growth factor-A (VEGF-
A) (99). Finally, distinct subsets of intestinal ILC3s express
CD49a (integrin α1) (86). Moreover, similar to Th2 cells, both
mouse and human ILC2s express CCR4 (27, 29, 100) and other
skin-homing receptors, such as cutaneous leukocyte-associated
antigen (CLA) and CCR10 that bind to endothelial cell-leukocyte
adhesion molecule 1 (ELAM-1) and CCL27/CCL28, respectively
(32). It has been reported that ILC2s in broncho-alveolar lavage
fluid highly express CCR4 (and CCR7) after IL-33 administration
(101), suggesting a role for CCR4 and its ligands CCL17 and
CCL22 in ILC2 migration following activation, although this
prediction requires experimental validation. CCR8 is another
chemokine receptor that shows shared expression in ILC2s and
Th2 cells (29), which may mediate ILC homing to the skin
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TABLE 1 | Receptors involved in ILC migration.

Receptor Ligand Source Function References

INTEGRINS/SELECTINS

α4β7 integrin MAdCAM-1 Endothelial cells LTi cell entry into embryonic LNs; ILC trafficking to small intestine and colon (18, 85)

CD49a Collagen Tissue matrix ILC tissue retention? (30, 86)

αEβ7 integrin E-cadherin Epithelial cells ILC1 interaction with intestinal epithelium? (50)

CD69 NA NA Inhibition of ILC tissue egress by antagonizing S1P receptors (41)

CD62L

(L-selectin)

MAdCAM-1

GlyCAM-1

CD34

Endothelial cells LN entry and recirculation of ILCPs, ILC1s, NK cells (42, 43)

CHEMOKINE RECEPTORS

CCR6 CCL20 Epithelial cells ILC3 positioning to hair follicles; recruitment into inflamed skin (43, 87)

CCR7 CCL19/CCL21 Stromal cells LTi cell clustering at LN anlagen; ILC1/ILC3 migration from BM to mLNs;

ILC LN entry and recirculation; ILC3 trafficking from intestine to mLNs; ILC3

recruitment to tumors

(43, 84, 85, 88–90)

CCR9 CCL25 Epithelial cells ILC trafficking to small intestine (85)

CXCR4 CXCL12 Reticular cells? Inhibition of ILC2P egress from BM (37)

CXCR5 CXCL13 Stromal cells LTi cell clustering at LN anlagen; ILC3 recruitment to infected lung in

tuberculosis; ILC3 clustering with stromal cells in tumors

(88, 90, 91)

CXCR6 CXCL16 CX3CR1+ DCs

Other cells?

Positioning of NKp46+ ILC3s to small intestinal villi; NK cell homing to liver;

ILC3P migration from fetal liver to periphery; ILCP egress from BM

(58, 92, 93)

OTHER RECEPTORS

GPR109A Butyrate Microbiota Regional ILC3 distribution in PPs (94)

GPR183 7α,25-OHC Stromal cells ILC3 migration to cryptopatches; ILC3 recruitment to small intestine; ILC3

positioning within mLNs

(21, 95, 96)

S1P

receptors

S1P Red blood cells?

Endothelial cells?

NK cell egress from BM and LNs; ILC egress from LNs; ILC2 inter-organ

trafficking in helminth infection

(41, 42, 97)

CRTH2 Prostaglandin

D2

ILC2s? ILC2 recruitment to inflamed lung (98)

Neuropilin-1 VEGF-A Unknown LTi cell recruitment to iBALT? (99)

BM, bone marrow; iBALT, inducible bronchus-associated tissue; LN, lymph node; mLN, mesenteric lymph node; PP, Peyer’s Patch.

in response to CCL1. In contrast, ILC1s and NK cells share
preferential expression of CXCR3, the receptor for CXCL9,
CXCL10, and CXCL11, with Th1 cells (102). Furthermore,
expression of CD49a and CD49d (integrin α4) can be used to
distinguish subpopulations of intestinal ILC1s (86). NK cells also
express integrins, such as CD49a and CD49b (integrin α2) (32).
In addition to subset-specific expression, migratory receptors
are also expressed in a tissue-specific manner within the same
ILC subset. For example, ILC2s in adipose tissue have higher
expression of Itgae, Ccr6, and Cxcr4 than ILC2s from other
tissues (72).

Seeding of Tissues With ILCs During
Development
In mice, ILCs derived from fetal liver hematopoiesis are among
the first lymphocytes to seed barrier tissues, such as the
intestine before birth (10, 12, 38) (Figure 1). This tissue seeding
prepares the host for the colonization of the intestine with the
microbiota and the intake of food-derived antigens. Moreover,
LTi cells populate organs early to promote the formation of
lymphoid tissues (22). ILCPs express α4β7 integrin, whose ligand
MAdCAM-1 is widely expressed in the fetus, thereby allowing
ILCP migration to a variety of tissues (32). The entry of LTi
cells into embryonic lymph nodes is also dependent on α4β7

integrin (103). Furthermore, the interaction of CXCL13, induced
by retinoic acid in mesenchymal organizer cells, with CXCR5 on
LTi cells is required for the clustering of LTi cells at embryonic
lymph node anlagen and lymph node development, with a minor
contribution of CCL21 and its receptor CCR7 (88). Further work
showed that the amount of maternal retinoic acid regulates the
number of LTi cells and therefore the size of lymph nodes,
which determines anti-viral immunity later in life (15). Before
birth, LTi cells also cluster at embryonic anlagen to promote the
formation of Peyer’s Patches, which is dependent on expression
of RET, a tyrosine kinase receptor for neurotrophic factors,
on LTi cells (104). In addition, arginase 1-expressing ILCPs
accumulate at Peyer’s Patch anlagen, where they can give rise
to ILC1s, ILC2s, and ILC3s in the fetal intestine (38). This
ILCP clustering occurs in a CXCR5- and CCR7-independent
manner, since, in contrast to LTi cells, these Arginase 1+ ILCPs
do not express CXCR5 and CCR7 (38). In contrast to LTi
cells, Arginase 1+ ILCPs also lack lymphotoxin expression and
are therefore dispensable for Peyer’s Patch organogenesis (38).
Finally, fetal α4β7+CXCR6+CCR6+CXCR5+ ILC3Ps migrate
from fetal liver to lymphoid organs and intestine (9, 105) in a
CXCR6-dependent manner (92). ILCs are also found in human
fetal tissues (27), suggesting that early colonization of tissues with
ILCs is conserved between mice and humans.
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Overall, embryonic tissue seeding of ILCPs is reminiscent
of the colonization of tissues with embryonically-derived
macrophages (106, 107). In contrast to organs that are seeded
before birth (e.g., the intestine), other organs, such as the lung
and spleen, are colonized with ILCs after birth. Later, during adult
life, there is likely a second wave of ILCPs from bone marrow (or
other tissues) that enter the circulation and gain access to tissues
to contribute to the ILC pool found in peripheral organs. Again,
this might be in analogy to macrophages, where, in the adult
organism, circulating monocytes enter tissues and, under specific
conditions, can differentiate into tissue-resident macrophages.

ILC Trafficking to Lymph Nodes
In adult mice, ILCs use similar mechanisms as naïve T cells for
lymph node entry (Figure 1). For example, like NK cells, ILCs
(especially ILCPs and ILC1s) enter peripheral lymph nodes using
CD62L (L-selectin) and CCR7 (42, 43). In addition, LTi-like
ILC3s are capable of trafficking from the intestine to draining
mesenteric lymph nodes in a CCR7-dependent manner (84). In
contrast, ILC1s, ILC2s, and NKp46+ ILC3s do not migrate along
this route. Accordingly, LTi-like ILC3s migrate toward the CCR7
ligand CCL21 in vitro, whereas ILC2s are unable to do so (84).
Finally, the trafficking of LTi-like ILC3s to the spleen is not
critically dependent on CCR7 (84).

ILC Trafficking to the Intestine
Tissue-specific signals from the local microenvironment likely
play an important role in the trafficking of ILCs to the intestine,
including cues from the microbiota, which might be particularly
important for intestinal ILC3s (36, 86). In addition, metabolic
cues are essential as has been demonstrated in a few studies so far
(Figure 2). For example, it has been shown that the preferential
homing of ILCs to the small intestine is controlled by diet-
derived nutrients. ILCPs and mature ILC subsets express α4β7
integrin, CCR7, and CCR9 to varying degrees (85, 92) and,
similar to T lymphocytes, ILC1, and ILC3 trafficking to the small
and large intestine requires α4β7 integrin (85) that binds to
MAdCAM-1, abundantly expressed on endothelial cells in the
intestine. Furthermore, the Vitamin A metabolite retinoic acid
is essential for the homing of ILC1s and ILC3s, but not ILC2s,
to the small intestine (85). Specifically, it was found that ILC1s
and ILC3s migrate from the bone marrow to mesenteric lymph
nodes in a CCR7-dependent manner, where retinoic acid induces
expression of α4β7 integrin and CCR9 (85), whose ligand CCL25
is abundant in the small intestine. In contrast, CCR9 expression
is acquired by α4β7+ILC2Ps already in the bone marrow and
therefore retinoic acid-independent (85, 100). This feature likely
links the nutrient status of the host to the type of local immune
response through the preferential migration of specific ILC
subsets to the small intestine. This concept is consistent with the
observation that lack of Vitamin A, as it occurs in malnutrition,
causes a reduction of ILC3s and impaired protection against
bacterial pathogens in the intestine, whereas ILC2s and anti-
helminth responses are increased (16). This switch to type
2 barrier immunity likely ensures continued commensalism
with evolutionary partners (helminths, commensal bacteria) in
the small intestine during nutrient deficiency. In contrast, the
homing of ILC3s to the colon requires α4β7 integrin, but not

CCR9, and is therefore independent of retinoic acid (85). It has
not been explored whether other chemotactic receptors used by
T cells, such as GPR15 (108), enable ILC homing to the colon.

Circulating ILCPs
ILCPs are present within tissues, such as the intestine and other
organs, including blood, in mice and humans (9, 38, 40, 42, 109,
110). Despite the presence of ILCPs in both peripheral blood
and tissues, parabiosis studies in mice indicate that ILCs other
than NK cells in both lymphoid and non-lymphoid tissues are
mainly tissue-resident (39). Subsequently, this concept has been
challenged by the finding that human CD34−CD117+ ILCPs are
present not only in blood, but also in a variety of lymphoid
and non-lymphoid tissues (40), demonstrating that these ILCPs
can leave the circulation and migrate into tissues. Furthermore,
these circulating human CD117+ ILCPs can be considered the
equivalent of naïve T cells since they lack immediate effector
function, but have the ability to differentiate into mature ILC1s,
ILC2s, and ILC3s in vitro and upon adoptive transfer into mice.
ILCPs were therefore proposed to serve as cellular substrates
for local “on-demand” ILC-poiesis within tissue (111). Further
studies are needed to clarify potential species-specific differences
in ILCmigration/tissue residency between humans and mice and
to establish to what extent mature ILCs in tissues are replenished
by circulating ILCPs.

Progenitors upstream of human CD34−CD117+ ILCPs
express the adhesion/homing receptor CD34 and are found in
a variety of tissues, but not in blood (111). It is plausible that
loss of CD34 expression on CD34+ ILCPs triggers the entry of
CD34−CD117+ ILCPs into the circulation (111). Furthermore,
IL-1β (in combination with IL-2 and IL-7) acts as a growth factor
for CD117+ ILCPs in vitro (40) and it has been suggested that
production of IL-1β induced by disruption of tissue homeostasis
promotes the migration of ILCPs from blood into tissue (111).
However, as a cytokine, IL-1β lacks direct chemotactic activity
and therefore other, yet unknown, chemotactic guidance cues and
their corresponding receptors must be involved.

ILCP Egress From Bone Marrow
In mice, ILCPs and ILC2Ps, unlike common lymphoid
progenitors, express the chemokine receptor CXCR6 and
their egress from the bone marrow is partially dependent on
CXCR6, thereby regulating ILCP entry into the circulation (92).
In contrast, adult ILC3Ps migrate from the bone marrow to the
periphery in a CXCR6-independent manner (9). Furthermore,
a recent study demonstrated that IL-33 signaling is required for
the egress of ILC2Ps from the bone marrow during the perinatal
period by downregulating CXCR4 expression (37). Finally,
the bioactive lipid sphingosine-1 phosphate (S1P) promotes
lymphocyte egress from several organs (112) and S1P receptor 5
(S1PR5) is essential for the bone marrow egress of NK cells (97).
However, it has not been investigated whether S1P receptors also
regulate the egress of ILCPs from bone marrow.

ILC Recirculation
Both mouse and human ILCPs in the blood express CD62L,
which promotes lymph node entry of ILCPs, whereas lymph node
exit requires S1P receptors (42). The later possibility is further
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supported by the finding that treatment with the S1P agonist
FTY720, which disrupts S1P gradients and results in S1P receptor
internalization from the cell surface (112), causes ILC-penia,
while increasing the number of ILCs in lymph nodes (113). These
studies are consistent with the concept that, similar to naïve T
cells, ILCPs and some mature ILCs have the ability to re-circulate
between blood and lymphoid organs (Figure 1). This notion is
further supported by a recent study in mice, demonstrating that
ILC1s (similar to NK cells) recirculate between blood and lymph
nodes in a CD62L- and CCR7-dependent manner, whereas ILC3s
in lymph nodes are mainly tissue-resident (43). Furthermore,
among human ILCs, NKp44− ILC3s, likely representing ILCPs
(40), have higher expression of genes encoding surface receptors
involved in lymphocyte recirculation (CD62L, CCR7, S1PR1)
than NKp44+ ILC3s (114). Finally, compared to their circulating
counterparts, human lymphoid tissue-resident ILC3s express
CXCR5 and CCR7, known to regulate positioning within
lymphoid organs (114).

Tissue Retention of ILCs
Finally, less is known about the factors that retain ILCs
within tissues once they are recruited. This likely involves the
same receptors that are required for the tissue retention of T
lymphocytes (115) (Table 1). For example, intestinal and skin
ILCs express CD69 (41, 48, 92), which antagonizes the egress
receptor S1PR1 (116). In addition, ILC2s from human tissues
express the collagen-binding integrin CD49a (30) that has been
shown to promote T cell retention in tissues. Populations of
mouse ILC1s and ILC3s also express CD49a (86) as do human
intraepithelial ILC1s in the intestine (50). In addition, the latter
subset expresses CD103 (αE integrin) (50), which together with
β7 integrin binds to E-cadherin on epithelial cells. CD103+ ILC2s
have also been identified in mouse skin (117). Further studies
(such as genetic ablation in mice) are required to demonstrate
a direct role for specific receptors in the tissue retention of ILCs.

ILC POSITIONING WITHIN TISSUE

ILCs occupy strategic positions within tissues to perform their
organ-specific functions. Proper ILC positioning within tissue
is also critical for the spatial compartmentalization of tissue
immunity. For example, as discussed above, ILCs inhabit tissue-
specific niches, which facilitates the interaction with other
immune cells as well as with non-hematopoietic cells. However,
there is very limited knowledge regarding the signals and
receptors that direct ILCs to local tissue niches. Recent work
elucidated how metabolic signals ensure that ILCs are properly
positioned in the intestine to carry out their function. We found
that intestinal ILC3s lacking the G protein-coupled receptor
GPR183 (also known as EBI2) exhibit aberrant localization (21).
GPR183 recognizes hydroxylated metabolites of cholesterol, so-
called oxysterols, with 7α,25-dihydroxycholesterol as the main
GPR183 ligand (118, 119). We demonstrated that oxysterols
sensed through the receptor GPR183 function as guidance cues
to position ILC3s within intestinal cryptopatches, which is critical
for lymphoid tissue formation in the colon (21) (Figure 4).
Similar findings have been subsequently reported by two other

FIGURE 4 | The GPR183-oxysterol pathway positions ILC3s in the colon. In

steady-state, LTi-like ILC3s are recruited to cryptopatches by the receptor

GPR183 that senses locally produced cholesterol metabolites (oxysterols). The

GPR183 ligand 7α,25-dihydroxycholesterol (7α,25-OHC) is produced by

CD34+ fibroblastic stromal cells. The interaction of GPR183+ LTi-like ILC3s

with stromal cells leads to cryptopatch formation in steady-state. Inflammation

increases 7α,25-OHC production and promotes the migration of GPR183+

ILC3s and myeloid cells to inflammatory foci within the colon. Adapted from

reference (21).

labs (95, 120). Chu et al. found that GPR183 also regulates
ILC3 recruitment to the small intestine (but not to the colon),
possibly through promoting α4β7 integrin surface expression on
ILC3s (95). We further showed that oxysterols are produced by
specialized stromal cells located within cryptopatches/isolated
lymphoid follicles (21). The intriguing possibility that dietary
cholesterol in breast milk is a source of oxysterols required for
post-natal lymphoid organogenesis in the colon remains to be
explored (119).

This complements previous work showing that CXCL16
produced by CX3CR1+ dendritic cells guides the positioning of
CXCR6+ NKp46+ ILC3s to the villi of the small intestine, where
they contribute to epithelial defense through the production of
IL-22 (58). Notably, the chemokine receptors CCR6 and CXCR5
(and their respective ligands CCL20 and CXCL13), although
specifically expressed by LTi-like ILC3s, are not required for
ILC3 migration to cryptopatches, neither in the small nor large
intestine (121, 122). However, it has recently been reported
that skin ILC3s are positioned within hair follicles in a CCR6-
dependent manner (87). In mesenteric lymph nodes, ILC3s
are found in a specific anatomical location, the interfollicular
region (84), and GPR183 also promotes the proper positioning of
ILC3s to this region, whereas CCR6 and CXCR5 are dispensable
(95, 96).

Apart from NK cells that largely lack GPR183, ILC subsets
other than LTi-like ILC3s also express GPR183 to varying degrees
(21). However, the specific functions of GPR183 in other ILC
subsets is unknown. Overall, our recent work and that of others
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indicates an important role for local cholesterol metabolites in
directing ILC migration.

Other lipids, such as leukotrienes and prostaglandins, are
likely relevant for the intra-tissue localization of ILCs (Figure 3).
For example, human ILC2s are phenotypically defined by the
expression of CRTH2 (27), the prostaglandin D2 receptor, and
prostaglandin D2 induces the chemotaxis of ILC2s in vitro (123).
Accordingly, CRTH2 mediates accumulation of mouse ILC2s in
the inflamed lung (98). Moreover, human ILC2s found in asthma
are responsive to the lipid mediators prostaglandin D2 and
lipoxin A4 (124). As mentioned above, amino acid derivatives,
such as a tryptophan metabolites, can regulate ILC homeostasis
through AHR. However, it is currently unknown whether amino
acid-derived molecules can also act as chemotactic cues, guiding
ILC positioning.

Apart from host-derived signals, the gut microbiota also
likely regulates ILC migration and positioning through the
local production of metabolites. For example, lymphoid-tissue
resident commensal bacteria promote ILC3 localization
to mesenteric lymph nodes and Peyer’s Patches (125).
Furthermore, the short-chain fatty acid butyrate controls
the compartmentalization of ILC3s in Peyer’s Patches (94).
Specifically, it has been shown that butyrate, sensed through
the receptor GPR109A on ILC3s, is more abundant in ileal
than jejunal Peyer’s Patches, thereby inhibiting the residence of
CCR6−NKp46+ (and CCR6+NKp46−) ILC3s in ileal Peyer’s
Patches (94).

Overall, more metabolic signals remain to be identified that
promote proper ILC localization in healthy and inflamed tissue.
The use of lipid metabolites, rather than the exclusive use of
genome-encoded proteins (chemokines), as guidance cues for
ILCs within tissue might be advantageous for the host. Lipid
metabolites can be rapidly produced and inactivated through
enzymatic conversion, as exemplified by the GPR183 ligand
7α,25-dihydroxycholesterol since its synthesis from cholesterol is
controlled by two enzymes, cholesterol 25-hydroxylase (CH25H)
and 7α-hydroxylase (CYP7B1); and it can be further metabolized
into bile acid precursors that lack chemotactic activity by the
enzyme 3β-hydroxysteroid dehydrogenase type 7 (HSD3B7)
(118). This allows tight regulation of 7α,25-dihydroxycholesterol
abundance within tissue. Furthermore, lipid metabolites likely
easily diffuse within tissue, thereby facilitating the generation
of precise local chemotactic gradients. Finally, from the
same precursor molecule, two bioactive metabolites with
distinct functions can be generated: 25-hydroxycholesterol
generated by CH25H from cholesterol has anti-viral and
anti-inflammatory activity, whereas 7α,25-dihydroxycholesterol
synthesized from 25-hydroxycholesterol by CYP7B1 regulates
immune cell migration through GPR183 (118). This feature
likely allows coordinated regulation of tissue-resident immune
function by lipid metabolites.

ILC MIGRATION DURING INFLAMMATION

During infection and other tissue insults, ILCs must migrate
to local sites of inflammation within tissue. For example,

Neuropilin-1+ human LTi cells are present in inducible
bronchus-associated lymphoid tissue (iBALT) in the inflamed
lung in chronic obstructive pulmonary disease (COPD) (99).
A recent study showed that, in Mycobacterium tuberculosis
infection, ILC3s are recruited via the CXCL13-CXCR5 axis to
the lung, thereby mediating the formation of iBALT associated
with granulomas, which contributes to early control of infection
together with the production of IL-17 and IL-22 (91). In
addition, IL-17-producing ILC3s are present in the alveolar
space in asthma patients (126). Similarly, ILC2s are increased
in the broncho-alveolar lavage fluid of humans with idiopathic
pulmonary fibrosis (127). Furthermore, it has recently been
shown that ILCs are recruited into the inflamed skin in a CCR6-
dependent manner (43). Finally, the accumulation of LTi-like
ILC3s in mesenteric lymph nodes after helminth infection is
dependent on CCR7-mediated trafficking (84).

The GPR183-oxysterol pathway also plays an important
role in controlling ILC migration in inflamed tissue (119).
Mobilization of ILC3s from cryptopatches into the surrounding
tissue occurs during intestinal inflammation (60). We showed
that the recruitment of ILC3s (andmyeloid cells) to inflammatory
foci in the colon is dependent on GPR183 (21) (Figure 4). It is
reasonable to assume that increased oxysterol synthesis induced
by tissue injury conveys perturbation of tissue homeostasis
to the immune system, initiating ILC movement and the
inflammatory response (119). It is currently unknown whether
other metabolites produced in inflamed tissue regulate ILC
migration and localization.

An important feature of ILCs is their ability to contribute to
the repair of tissues damaged by infection, inflammation, and
irradiation, which is likely dependent on their local migration
and accumulation within damaged tissues. For example, LTi-like
ILC3s restore lymphoid tissue architecture after viral infection
(128), promote thymic regeneration after irradiation (129), and
protect the intestine from graft vs. host disease-induced damage
after hematopoietic stem cell transplantation (55). Similarly,
ILC2s alleviate virus-induced damage to the lung (33).

Moreover, a recent study established the new concept of ILC
inter-organ trafficking during inflammation. Specifically, it was
shown that inflammatory IL-25-responsive ILC2s can migrate
from the intestine to the lung during helminth infection to
support host defense (41). The exit of ILC2s from the intestine
into the blood via the lymphatic system was mediated by S1P
(41), the critical factor regulating lymphocyte egress from tissues
(112). CD69, expressed on tissue-resident ILCs, antagonizes
S1PR1 through downmodulation of S1PR1 from the cell surface
(116). In contrast, inflammatory ILC2s are CD69−, allowing
S1PR1-dependent egress into the circulation (41). A previous
study in mice had found that intestinal NK cells, ILC1s, and
ILC3s are CD69hi, whereas ILC2s are CD69lo, supporting the
concept that intestinal ILC2s might be “less tissue-resident”
than other intestinal ILC subsets (92). Finally, it has been
suggested that signals from the local microbiota promote S1P
receptor expression on ILC2s, thereby allowing them to exit the
intestine (130).

It remains to be tested whether inter-organ trafficking of
ILCs also occurs between other organs. In this context, it is

Frontiers in Immunology | www.frontiersin.org 9 August 2019 | Volume 10 | Article 2010135

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Willinger Innate Lymphoid Cell Migration

relevant that in various inflammatory conditions activated ILCs
are found in peripheral blood. For example, human NKp44+

ILC3s expressing homing receptors for skin and intestine
appear in the circulation after conditioning for hematopoietic
stem cell transplantation (131). Similarly, circulating ILC2s are
increased in humans with asthma (132). These observations
suggests that inter-organ trafficking might also occur in humans
after mobilization of ILCs into the blood in response to
inflammatory stimuli.

As outlined above, the recruitment of blood-borne ILCPs
during infection may contribute to ILC heterogeneity within
tissue. However, the signals activating blood-resident ILCs within
tissue and recruiting them into the inflamed tissue from the
circulation are unknown. This could involve tissue-derived
signals sensed within the local vasculature and/or intra-tissue
signals. Furthermore, the relative contribution of local expansion
of resident ILCs vs. the recruitment of ILCPs to inflamed tissue is
still unclear and may vary between tissues and the type of insult.
For example, inflammatory signals could disrupt RANKL-RANK
interactions, thereby allowing the local proliferation of CCR6+

ILC3s (61).

ILC MIGRATION IN CANCER

Another largely unexplored area that warrants further
investigation is ILC migration in cancer. The tumor
microenvironment constitutes a unique metabolic milieu,
resembling inflamed tissue. Among ILCs, NK cells are often the
predominant population found in the tumor microenvironment,
e.g., in human lung and colon cancer (30). Due to their
cytotoxic activity, NK cells are a promising target for anti-cancer
immunotherapy (133). However, in many human cancers, e.g.,
lung adenocarcinoma, NK cells are under-represented within the
tumor compared to healthy tissue (134), especially the cytotoxic
CD56dim subset (135). This suggests that NK cell recruitment to
tumors is suboptimal and targeting NK cell migration could be a
valuable strategy in cancer immunotherapy. Several chemokines
and their respective receptors mediating NK cell migration to
tumors have been identified, such as CXCL8-CXCR1/CXCR2,
CXCL10-CXCR3, CXCL12-CXCR4, and they are being explored
as clinical targets (136).

Whereas, a role for NK cells in controlling cancer growth and
metastasis has been well-established, the function of other ILC
subsets in cancer, especially in regards to migration, is poorly
understood (133). In several hematological malignancies, human
ILC1s, ILC2s, and ILC3s are increased in the blood compared to
healthy individuals (133), supporting the notion that ILCs can be
mobilized into the circulation during malignancy. There is also
some evidence that circulating human ILC2s could contribute to
immunosuppression in gastric cancer (137).

Furthermore, ILC3s with likely LTi function are enriched in
solid tumors both in mice and humans. For example, NKp46+

ILC3s invade B16 mouse melanoma expressing IL-12 (138). It
was shown in the same model that lymphoid tissue-resident
(splenic) Rorcfate−map+ ILCs have superior anti-tumor activity

than intestinal or hepatic Rorcfate−map+ ILCs and Rorcfate−map−

ILC1s/NK cells (139). NKp46+CCR6+CXCR5+ ILC3s with
LTi properties are also enriched in tumor-associated tertiary
lymphoid structures in human non-small cell lung cancer (140).
Both studies showed that tumor-associated ILC3s upregulate
adhesion molecules on the tumor vasculature, which likely
promotes anti-tumor immunity through the recruitment of T
cells. These tertiary lymphoid structures are of interest because
of their importance for T cell-mediated anti-tumor immunity
and their general positive prognostic value for cancer outcome,
e.g., in lung cancer (141). However, tumor-associated lymphoid
structures may also promote cancer growth. For example, one
study reported that high amounts of CCL21 recruit CD4+

LTi cells to tumors in a CCR7-dependent manner, which is
associated with the formation of tumor-promoting lymphoid-
like stroma in melanoma (89). In a mouse model of breast
cancer, it was also shown that CCL21 recruits CCR7-expressing
ILC3s with an LTi phenotype (CD4+CCR6+) to the tumor
environment (90). Furthermore, CXCL13 was required for the
clustering of CXCR5+ ILC3s with mesenchymal stromal cells
in the tumor microenvironment, which supported lymph node
metastasis (90).

Interestingly, complementary to our findings in the intestine,
it has recently been shown that oxysterol recognition through
GPR183 is required for the development of iBALT (142), a
common feature of active lung inflammation. However, this
study did not determine the role of GPR183-expressing ILCs
in this process. Overall, it seems plausible that the oxysterol-
GPR183 pathway could also be involved in the formation of
tertiary lymphoid structures in cancer.

CONCLUDING REMARKS

ILCs maintain healthy organ function and it is increasingly
recognized that ILC function is critically dependent on their
trafficking to and localization within tissues. Accordingly, ILC
migration and the mechanisms of ILC tissue recruitment are
areas that are beginning to be explored in more depth. It is
important to comprehensively identify the guidance cues and
receptors that control ILC localization and motility in tissues.
In the long-term, cell surface receptors regulating ILC migration
to inflamed or malignant tissues could serve as new therapeutic
targets for human diseases.
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In the last decades, immunologists have started to consider intracellular metabolism in

relation with the dynamics and functions of immune cells, especially when it became

clear that microenvironmental alterations were associated with immune dysfunctions.

Regulatory T cells (Tregs) are equipped with a variety of immunological and metabolic

sensors, and encompass circulating as well as tissue-resident cells, being therefore

particularly susceptible to microenvironmental cues. Moreover, Tregs undergo metabolic

reprogramming over the course of an immune response, allowing the use of alternate

substrates and engaging different metabolic pathways for energetic demands. The study

of metabolic mechanisms supporting Treg dynamics has led to puzzling results, due to

several limitations, including the heterogeneity of population in the same tissues and

between different tissues, the difficulty in considering all the interconnected metabolic

pathways during a cellular process, and the differences between in vitro and in vivo

conditions. Therefore, Treg reliance on different metabolic routes (oxidation rather than

glycolysis) has been a matter of controversy in recent years. Metabolic reprogramming

and altered bioenergetics are now identified as hallmarks in cancer, and are employed

by cancer cells to determine the availability of metabolites and molecules, thus affecting

the fate of tumor-infiltrating immune cells. In particular, the tumor microenvironment

forces a metabolic restriction and a plethora of synergistic intrinsic and extrinsic stresses,

leading to an impaired anti-tumor immunity and favoring Treg generation, expansion, and

suppressive function. This leads to the understanding that Tregs and conventional T cells

have different capability to adapt to metabolic hurdles. Considering the role of Tregs in

dictating the outcome of tumor-specific responses, it would be important to understand

the specific Treg metabolic profile that provides an advantage at the tumor site, to finally

identify new targets for therapy. In this review, we will report and discuss the major

recent findings about the metabolic pathways required for Treg development, expansion,
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migration and functions, in relation to tissue-derived signals. We will focus on the adipose

tissue and the liver, where Tregs are exposed to a variety of metabolites, and on the

tumor microenvironment as the context where Tregs develop the ability to adapt to

perturbations in nutrient accessibility.

Keywords: Treg, glycolysis, cancer, proliferation, mitochondria, oxydation

INTRODUCTION

Regulatory T cells (Tregs) are now recognized as a
specialized CD4T cell subset essential for immune homeostasis,
as well as for protection from autoimmunity and excessive
inflammation. In several mouse models, transient Treg depletion
early in life, or congenital Treg deficiency, leads to the
spontaneous development of lethal multiorgan autoimmune
disorders (1, 2). In humans, a wide array of Treg defects, ranging
from frequency to function to proliferative potential, have been
reported in several autoimmune diseases, and therapies aiming
at recovering physiological Treg activities (such as adoptive
Treg cell therapy) are under development for these conditions
(3). Conversely, increased Treg proportions can be found in
the tumor microenvironment in many tumor types in both
mouse models and human patients, correlating with a poor
prognosis [with a few exceptions like colorectal cancer (4)].
Therefore, Treg depletion or blockade is now considered as
a necessary step to elicit effective anti-tumor immunity (5).
Recent data have revealed that CTLA-4, the first “immune
checkpoint” to enter the clinic as cancer immunotherapeutic
agent, is more expressed by Tregs than effector T cells in
peripheral lymphoid organs and in blood and even more
at the tumor site, and that anti-CTLA-4 antibodies may
work through antibody-dependent cell-mediated cytotoxicity
and Treg depletion (6–9); this finding proves the key role
of Tregs as a non-redundant and even dominant immune
checkpoint in the tumor microenvironment. Therefore, a deeper
understanding of the most important pathways and molecules
involved in Treg expansion, survival and contraction is urgently
needed in order to design better therapies aiming at Treg
manipulation in vivo.

We have recently started to appreciate the complexity of Treg
dynamics, from their development to their rapid adaptation to
microenvironmental and systemic changes. More importantly,
in the last decades, we have started to take into consideration
intracellular metabolism of T cells in relation to their dynamics
and functions during immune responses, a concept known as
cellular “immunometabolism” (10). Tregs can be considered
a very peculiar CD4T cell subset, since they physiologically
reside in virtually all tissues and organs, and constitutively
express a wide array of immune as well as metabolic sensors.
Therefore, Tregs are equipped to promptly respond to any
immune and metabolic signal in an “innate-like” fashion, even
though we have not completely elucidated the consequences
of immunometabolic signals in Treg activities. Based on their
high sensitivity to external cues and on their fundamental role
in switching between tolerance and immunity, Tregs can be
considered as one of the key links between nutrient sensing

and immune response, a mechanism selected by evolution to
optimize energetic resources (11).

TREGS SWITCH BETWEEN QUIESCENCE

AND PROLIFERATION IN MANY PHASES

OF THEIR DEVELOPMENT AND

FUNCTIONS

When CD25+ Tregs were discovered, they were originally
described as anergic cells, based on their inability to proliferate
in vitro in response to T cell receptor (TCR) stimulation and
in the absence of exogenous IL-2 (12). What is more, anergy
appeared as a prerequisite for suppressive function, since Tregs
seemed to lose their suppression in condition of anergy reversal
(12). Not only was anergy thought to be required for Treg
function, but it seemed also involved in Treg differentiation.
Indeed, since the very first experiments in vitro, the conversion
of conventional T cells (Tconvs) into Tregs was favored in
conditions of tolerogenic or sub-immunogenic stimulation that
induced suboptimal levels of proliferation (13, 14). All these
data contributed to consolidate the idea of anergy as a key
component of the Treg identity. However, the observations that
de novo induced Tregs can massively proliferate and that Tregs
could preserve their suppressive function while proliferating have
challenged this notion (14, 15). It is now recognized that, in many
contexts, proliferation is not only involved but even required to
ensure a full suppressive function by Tregs.

In the last decades, a large amount of data have clarified
the requirement of active proliferation throughout the stages of
Treg development and activation in mice, whilst the knowledge
of these events remains still elusive in humans. A subset
of Tregs, probably accounting for the majority of Tregs in
lymphoid organs of naïve animals, develop in the thymus
upon encountering self-antigens, and are called thymic Tregs
(tTregs). A certain proportion of Tregs can develop in peripheral
organs in response to non-self-molecules such as commensal
and food antigens, are thus highly represented in the intestine,
and are called peripheral Tregs (pTregs) (16). To date, no
reliable markers are available to dissect the actual contribution
of thymic vs. peripheral developmental routes to the Treg pool;
however, several protocols have been developed to induce Treg
differentiation in vitro (of so-called iTregs) from Tconvs, which
recapitulate some features of Treg induction in vivo.

In the neonatal life, early after development, tTregs undergo
a massive wave of proliferation that is probably their first
proliferative burst. In mice, a distinct pool of Tregs largely
expands in the perinatal life, persists longtime, and plays a vital
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role in suppressing autoimmunity (17) through the induction
of T cell anergy (18). These perinatal Tregs presented very
high proportions of Ki67-positive and EdU-incorporating cells,
and DNA replication was one of the top pathways emerging
from their transcriptomic profile. A similar expansion of Tregs
has been detected in the human peripheral blood during early
neonatal life, probably in response to the immediate exposure to
commensals (19). Tregs display a phenotype that is compatible
with recent activation in healthy human neonates, while during
neonatal sepsis they may play a role in controlling the clinical
manifestations of the disease (20).

Following development, Tregs recirculate throughout the
blood and populate lymphoid as well as non-lymphoid organs; in
the latter, tissue-resident Tregs acquire a tissue-specificmolecular
profile and specialized functions (21). This polarization from a
central (cTreg) into an effector (eTreg) status occurs in response
to antigen stimulation as well as local inflammatory stimuli, and
follows the activation of specific molecular programs driven by
transcription factors like NFkB, Blimp and IRF4 (22). Tissue-
resident Tregs are thought to play not only the well-known
immunosuppressive functions, but also to exert some non-
immune activities such as maintenance of tissue homeostasis
and promotion of tissue regeneration upon injury (23). Whether
Tregs undergo further rounds of division within tissues, and
whether this event is required to become specialized resident
cells or to ensure their long-term persistence, is still unclear.
Some tissues are characterized by relatively high frequencies and
numbers of Tregs in physiological conditions, such as the bone
marrow (24) and the visceral adipose tissue (VAT) of lean adult
mice; at least in the latter case, it has been clearly demonstrated
that active proliferation, coupled with enhanced survival, sustains
the physiological Treg expansion in this tissue (25, 26). Several
data confirm the idea that human circulating Tregs contain a very
high proportion of cycling cells (27, 28) even though the role of
proliferation in the physiological homeostasis of human Tregs
remains to be clarified.

In pathological conditions, for instance following acute
tissue injury, the Treg population may expand thanks to the
concomitant recruitment of cTregs that are locally differentiated
into eTregs, to the local development of pTregs, and to the
proliferation of resident and recruited Tregs (29). Thanks to
their proliferative response and effector polarization, Tregs can
promote the resolution of the injury through the suppression
of inflammatory processes and the release of tissue-repairing
molecules. However, when the source of damage is not
eradicated, such as in the case of viruses establishing chronic
infections or in the case of cancer, the Treg pool may continue to
expand in a chronic fashion, until it even subverts the protective
anti-viral or anti-tumor immunity (30).

All these pieces of evidence demonstrate that, during their
life time, Tregs may continuously switch between quiescent
survival and active replication and back; this switch may occur
when Tregs are in a naïve status without compromising their
“naiveness” as in the case of perinatal Treg expansion, or
may occur during the physiological specialization of tissue-
resident Tregs or the pathological polarization of effector Tregs
in damaged tissues (Figure 1). Such highly dynamic behavior

implies that Tregs may be particularly able to switch their
metabolism depending on the immune signals that they receive
and the nutrient availability in different contexts.

THE METABOLISM OF CONVENTIONAL T

CELLS: HOW DO TREGS FIT WITH THIS

MODEL?

Thanks to advances in the field in recent years, we have now
recognized that T cells, probably the cells in the body capable of
the largest clonal proliferation, strictly rely on metabolic switches
to sustain their immune functions. Three main metabolic profiles
can be generally assigned to the main stages of T cell activation:
first, mature naïve T cells are thought to survive in a quiescent
state thanks to a low level of oxidative phosphorylation and
mitochondrial respiration; second, T cell stimulation through the
TCR and costimulatory receptors primes a strong switch from
an oxidative to a glycolytic-lipogenic metabolism, characterized
by increased uptake of glucose (and other nutrients) from the
extracellular environment, generation of ATP from substrate-
level phosphorylation during glycolysis, conversion of pyruvate
into lactate, and biosynthesis of macromolecules for cell growth
and division; third, memory T cells are mostly oxidative cells,
yet they are “metabolically primed” for a glycolytic switch, a
combination that ensures both long-term survival and prompt
response to an antigen recall (31, 32).

The glycolytic-lipogenic and the lipolytic-oxidative pathways
are generally viewed as mutually exclusive, thanks to the
reciprocal regulation operated at several checkpoints along
the metabolic flux. As an example, in poor nutrient supply
conditions and other stress conditions, the AMP-activated
protein kinase (AMPK) is activated and negatively regulates
the mammalian target of rapamycin (mTOR), thus inhibiting
a variety of biosynthetic pathways such as fatty acid synthesis
(mediated by acetyl-CoA carboxylase or ACC) and cholesterol
synthesis. A reciprocal regulation also exists between fatty acid
synthesis and oxidation, since malonyl-coA (the product of ACC
reaction) is a major inhibitor of carnitine palmitoyltransferase
1a (or CPT1a, the key enzyme of fatty acid oxidation).
Therefore, cells are thought to oscillate between an mTOR-
driven anabolic metabolism and an AMPK-driven catabolic
metabolism. However, the two programs have been found to
coexist in selected conditions. Memory T cells, indeed, maintain
the ability to uptake and convert glucose into fatty acids, and then
perform cell-intrinsic lipolysis to fuel mitochondrial oxidation,
in an apparently “futile” cycle whose implications have not been
completely understood (33).

A correspondence between the immune status and the
intracellular metabolism can be achieved thanks to many
immune-metabolic links in signaling pathways in T cells: to
mention just a few examples, TCR and CD28 stimulation
directly activates mTOR, a major orchestrator of the glycolytic
switch (34); CD28 primes mitochondrial fatty acid oxidation,
thus driving proper memory development (35); the enzyme
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), when not
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FIGURE 1 | Tregs switch between quiescence and replication in different developmental and activation phases. Following tTreg development, a perinatal wave of Treg

replication occurs, which is thought to suppress T cell responses in neonatal life. Later in life, in physiological conditions, Tregs colonize both lymphoid organs,

becoming cTregs, and non-lymphoid organs, becoming resident Tregs and acquiring eTreg phenotype: in the latter case, extensive Treg proliferation has been

reported, for instance in adipose tissue. Finally, in pathological conditions such as in the case of acute tissue damage, Tregs are locally expanded, thanks to the

proliferation of resident eTregs, to the differentiation of cTregs, and to the conversion of pTregs.

engaged in glycolysis, represses post-transcriptionally IFN-γ
expression (36); and the tumor necrosis factor receptor-
associated factor 6 (TRAF6), an adaptor that can be activated
by some receptors of the tumor necrosis factor receptor
(TNFR) superfamily, fosters memory development through
mitochondrial fatty acid oxidation (37).

How can Tregs be categorized according to this scheme?
The answer is still unclear: indeed, some data describe Tregs as
mostly oxidative cells, while other data demonstrate the need
of glycolysis for some Treg activities. One of the main reasons
explaining these conflicting results may be the type of Tregs
(tTregs vs. pTregs) that is analyzed in different studies: on the one
side, pTregs seem to differentiate when effector T cell activation,
which relies on the glycolysis-lipogenesis pathway, is blocked.
Conversely, tTregs seem to depend on this pathway for their
proliferation and fitness, resembling effectors (38); however, both
tTregs and pTregs can either remain quiescent or enter cell cycle
depending on the surrounding signals, and this can profoundly
affect their metabolism. Therefore, probably the most important
reason dictating their metabolic requirements is the stage of
development and/or activity at which Tregs are analyzed; indeed,
opposite results can be obtained when analyzing iTregs/pTregs
during their differentiation from Tconvs, or when analyzing
already established Tregs (irrespective of their peripheral or
thymic origin) during their active proliferation. In turn, Tregs
can be studied directly ex vivo from many different tissues
and sources, or after many different types of stimulation and
culture in vitro; this experimental heterogeneity may profoundly
affect the outcome of metabolic analyses. Finally, the CD25high
or Forkhead Box P3 (Foxp3) + compartment is actually a
heterogeneousmixture of different subsets, which include cycling
as well as resting Tregs, and also cells with an unstable
regulatory phenotype.

Here we will report and discuss the main findings regarding
Treg metabolism, classified according to whether they refer
to de novo Treg induction, to the proliferation of previously
established Tregs, or to different Treg activities.

TREG INDUCTION, PROLIFERATION AND

FUNCTION RELY ON DISTINCT

METABOLIC PATHWAYS

Metabolic Pathways Involved in Treg

Induction
The first evidence connecting Treg induction to an oxidative
metabolism came from the study of Michalek et al., where
iTregs were differentiated through the classical protocol based
on transforming growth factor β (TGFβ) exposure, or through
mTOR inhibition with rapamycin; in both settings, etomoxir
(at 200µM), known as an inhibitor of fatty acid oxidation,
could suppress iTreg polarization (39). Compared to T helper
subsets polarized in vitro with specific cytokine cocktails,
TGFβ-induced iTregs expressed lower levels of the glucose
transporter 1 (GLUT1), performed less glycolysis and more fatty
acid oxidation, and were not affected by supplementation of
exogenous fatty acids (39). Both iTregs and so-called “natural”
Tregs contained higher levels of phosphorylated AMPK, and
metformin administration increased Treg frequency in vivo (39).

Subsequently, several studies have contributed to generate
the hypothesis that Treg differentiation relies on a switch from
glycolytic-lipogenic to oxidative metabolism. A large amount
of data derive from the analysis of iTreg polarization in vitro,
induced through standard protocols of anti-CD3/anti-CD28
stimulation in the presence of TGFβ. In this setting, iTregs
display lower glycolytic rates and higher oxygen consumption
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compared to T helper (Th) 1 and Th17, and their metabolic
and transcriptional profile is suggestive of higher fatty acid
oxidation (40–44). In these cultures (actually containing Foxp3+
and Foxp3- cells in some studies), the differentiation of
iTregs was reduced in the presence of the electron transport
inhibitor rotenone (irrespective of their proliferation) (43);
conversely, the glycolysis inhibitor 2-deoxy-D-glucose (2-DG)
or the mTOR inhibitor rapamycin (45), or the AMPK agonist
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) (46,
47), enhanced iTreg differentiation. On the side of lipogenesis,
the genetic or pharmacological blockade of fatty acid synthesis
enhanced iTreg polarization at the expense of Th17 cells (42).

Key metabolic “checkpoints” have been identified that affect
iTreg differentiation by tipping the balance between glycolytic
and oxidative metabolism. The first step of this axis is represented
by glucose uptake, operated by several glucose transporters and
in particular by GLUT1. When its expression was ablated in
the T cell lineage, effector T cells displayed defective growth,
proliferation and survival; however, Treg numbers were not
affected, either in naïve mice or under inflammatory conditions
(48). Downstream glucose capture, mTOR is a major sensor
of environmental cues including immune signals and nutrient
availability, and is also a major orchestrator of the glycolytic-
lipogenic switch required for cell growth and proliferation;
not only mTOR inhibition enhances iTreg differentiation (49,
50), but also mice carrying T cell-restricted mTOR deficiency
show impaired T helper cell expansion, with enhanced Treg
induction, in vitro and in vivo, in a model of viral infection (51).
Downstream mTOR, the transcription factor HIF1α is activated
and initiates a glycolytic program in T cells that is required for
Th17 polarization at the expense of iTreg induction (45, 52).
Pyruvate dehydrogenase (PDH), whose activity is negatively
regulated by the pyruvate dehydrogenase kinase 1 (PDK1),
dictates the fate of pyruvate between conversion into lactate or
into acetyl-CoA; this axis was identified as a key regulatory node
for Th17 and iTreg alternative polarization in vitro (43). Finally,
the acetyl-coA carboxylase 1 (ACC1), a key enzyme for fatty
acid synthesis, was shown to switch the polarization fate between
iTregs and Th17 (42).

These findings strengthened the notion that iTreg/pTreg
differentiation was favored in conditions of oxidative metabolism
and was antagonized when the glycolytic-lipogenic pathway
was fueled. However, some considerations should be made
when interpreting these results, especially the studies performed
in mouse models. First, most data come from mice carrying
genetic ablation of key genes in the entire T cell lineage,
thus effector T cell development, homeostasis and activation
may be suboptimal or defective. In these settings, some of
the Treg alterations, especially those observed in vivo, may
be a consequence of impaired effector T cell homeostasis
or activation, rather than regarding selectively iTreg/pTreg
induction. Second, most data have been obtained in contexts of
antigen immunization, autoimmune or inflammatory diseases:
for instance, Foxp3+ cells (probably a mixture of tTregs and
pTregs) did not upregulate proteins related to glycolysis, contrary
to Th17 cells, in lymphoid organs of mice with experimental
autoimmune encephalomyelitis (EAE) (43). Other examples

are that administration of 2-DG and metformin increased the
frequency of Foxp3+ cells in splenocytes of mice immunized
with a model antigen (53), and that mice lacking HIF1α or
ACC1 in the CD4T cell lineage showed higher Treg frequencies
and were more resistant to EAE (42, 52). These inflammatory
conditions generally do not favor massive induction of expansion
of Tregs, and thus do not allow studying Treg metabolism
in a dynamic context. Third, discriminating the metabolic
requirements of newly induced pTregs, compared to preexisting
tTregs undergoing activation during disease, may be quite
difficult in vivo.

Regarding the in vitro studies, most conclusions have been
drawn from experiments based on the classical protocol of TGFβ
culture. In this setting, iTreg induction appears as a “backup
plan” when other differentiation programs are not allowed. Since
T helper polarization usually requires T cell growth supported
by a glycolytic-lipogenic switch, T cells may sense metabolic
restriction as a signal of functional anergy, which consequently
leads to Foxp3 induction and initiates a regulatory program.
Supporting this idea, the increase of iTreg polarization induced
by some metabolic inhibitors like the ACC1 inhibitor soraphen
A, the mitochondrial blocker rotenone (41–43), or appearing
in mTOR-deficient cells (51), was coupled to a suppression of
T cell proliferation; conversely, higher T cell proliferation was
induced by the AMPK agonist AICAR along with lower iTreg
induction (46). Therefore, these results suggest the existence of
a link between metabolic and immune anergy, of which Foxp3
induction may be an early consequence (54). At later stages,
Foxp3may stabilize this profile; indeed, ectopic Foxp3 expression
is necessary and sufficient to induce a switch from glycolysis to
oxidation (40, 43, 44) (Figure 2).

Recent data have clearly demonstrated that TGFβ has
the intrinsic property of suppressing glycolytic metabolism
in Tconvs undergoing transition into iTregs, as well as in
tTregs, which would be otherwise highly glycolytic cells (56).
Therefore, TGFβ-based protocols for iTreg polarization may
provide limited information on the physiological mechanisms
of iTreg differentiation. Indeed, strikingly different results have
been obtained when human iTregs have been differentiated
in vitro in a TGFβ-independent fashion, under conditions
of suboptimal (weak and short) CD3/CD28 stimulation (55).
In this setting, a population of CD25high cells developed,
enriched in Ki67+ and FOXP3+ cells, in which the induction
of high levels of FOXP3 was suppressed by 2-DG and enhanced
by etomoxir. Two splicing isoforms of the human FOXP3
protein exist differing for the presence of the exon 2 and
conferring different suppressive properties and lineage stability:
the glycolytic enzyme enolase-1 was found recruited to the
FOXP3 locus to repress FOXP3 expression, especially when 2-
DG treatment inhibited glycolysis thus disengaging glycolytic
enzymes. Impaired glycolysis and diminished expression of the
FOXP3 isoform containing exon 2 were observed in Tconvs
obtained frommultiple sclerosis patients in correlation with their
lower rates of conversion into iTregs (55). This study challenged
the idea that iTreg differentiation was antagonized in conditions
of high glycolytic rates; rather, it demonstrated that a proper
metabolic activation of Tconvs, which included competence for
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FIGURE 2 | Glycolysis and oxidation may be involved in different phases of iTreg development. Tconvs show a basal metabolism that is based on fatty acid oxidation

(FAO) and the usage of acetyl CoA (acCoA) to fuel the TCA cycle and oxidative phosphorylation (OxPhos). Human Tregs can be differentiated in vitro from Tconvs

following suboptimal antigen stimulation. This challenge induces a shift from the basal oxidative (light red) to the glycolytic (blue) metabolism: as a consequence, the

glycolytic enzyme enolase-1 (ENO1) is engaged in the glycolytic cascade and thus displaced from the FOXP3 locus, where the FOXP3 gene can be transcribed. If

glycolysis is blocked by a pharmacological inhibitor, or is impeded in conditions of glucose restriction, enolase-1 continues to repress FOXP3 transcription and iTreg

development cannot occur (55). At later stages, FOXP3 itself can induce a stabilization of the iTreg program and a rescue of a quiescent state, through the

enforcement of mitochondrial metabolism (red) that is mediated by an upregulation of mitochondrial proteins (44). A proper mitochondrial function is under the control

of the ANT transporter and is required for iTreg induction (47).

glycolysis, was a prerequisite for proper iTreg development and
that the metabolic requirements for iTreg differentiation were
not antagonistic but rather parallel to the metabolic requirements
for effector T cell activation. Based on this view, it could be
hypothesized that regulation is allowed to develop along with
immunity in conditions of optimal nutrient availability and
competence for nutrient usage (Figure 2). Also in mouse models,
weak TCR signal strength has been proven to preferentially
promote Treg induction and/or expansion (13, 14, 57); however,
one study has shown that low-dose antigen stimulation was
not associated with strong mTOR activation (57). Therefore,
differences in mTOR involvement and metabolic requirements
may exist between human andmouse Treg induction under weak
antigen stimulation.

Some compounds that have been used in many
immunometabolism studies, such as 2-DG and etomoxir,
have displayed some “off-target” effects that were not recognized
before. In macrophages, 2-DG has been shown to block not
only glycolysis but also oxidative phosphorylation and ATP
production (58). Etomoxir, when used at low doses, blocks the
oxidation of long-chain fatty acids through the inhibition of
CPT1a, the rate-limiting enzyme for this process. However,
when used at high doses, it can block mitochondrial respiration
directly, irrespective of the nutrient (glucose, glutamine or fatty
acids) fueling oxidative phosphorylation in T cells (47). Also
in macrophages, high concentrations of etomoxir can display
CPT1a-independent effects that are mediated by the depletion of

intracellular free coenzyme A (59). Therefore, results obtained
with the use of these pharmacological inhibitors in vitro should
be interpreted with caution, while approaches based on the
genetic ablation of key metabolic enzymes may probably shed
light on the exact metabolic requirement for Treg differentiation
(60). Accordingly, when CPT1a was genetically abolished
selectively in the T cell lineage, TGFβ-driven iTreg polarization
in vitro was not affected, and Treg frequency was found to
be normal in vivo in these mice in physiological conditions.
Instead, etomoxir at high doses suppressed iTreg polarization
through the inhibition of adenine nuclear translocator (ANT), a
transporter that affects ATP concentration in the mitochondrial
matrix, the mitochondrial membrane potential, and the activity
of the electron transport chain (47). These data questioned the
assumption that fatty acid oxidation was a driving force for
iTreg/pTreg differentiation. Together with data from De Rosa
et al. (55), these results support the idea that Treg development
from converting T cells may require the optimal activation of
multiple routes, which may not involve long chain fatty acid
oxidation but does include mitochondrial respiration.

Metabolic Pathways Involved in Treg

Homeostasis and Proliferation
As summarized above, several findings indicate that Tregs
actively proliferate during their lifetime and that the Treg
population may comprise a high proportion of cycling cells, from
many districts, in physiological and pathological conditions.
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Their hyporesponsiveness in vitro, which has been interpreted
as a functional and metabolic “anergy,” may rather derive
from a functional and metabolic activated status, making
them refractory to strong stimulation in culture (11). Thus,
it is reasonable to suppose that Tregs rely on a glycolytic-
lipogenic metabolism for their fitness and their proliferative
bursts (Figure 3).

Several data regarding freshly isolated human and mouse
Tregs (likely comprising a mixture of tTregs and pTregs) confirm
this hypothesis. Procaccini et al. have shown that, contrary to
conventional T cells, Tregs show constitutively active mTOR
directly ex vivo: a transient mTOR inhibition, achieved through
rapamycin administration or through nutrient starvation and
interruption of the leptin/leptin receptor signal, turns these cells
from anergic into highly proliferative cells both in vitro and
in vivo. Thus, it has been proposed that an “oscillatory” mode
of mTOR activity is responsible for the exit of Tregs from a
hyporesponsive into a proliferative status (61). These findings
have been confirmed also by Gerriets at al. who showed that Ki67
high Tregs from the spleen of naïve mice express higher levels of
GLUT1 and mTOR activity (62). A proteomic and biochemical
profile of freshly extracted human Tregs has revealed that these
cells are highly glycolytic ex vivo and utilize both glycolysis and
fatty acid oxidation for their proliferation in vitro (as assessed
with the use of 2-DG or etomoxir). In contrast, effector T cells
are mostly oxidative ex vivo but rely on glycolysis when cultured
in vitro (72). In line with these findings, others have found that
freshly extracted human Tregs express high levels of genes related
to glycolysis and lipid metabolism, and capture glucose at high
efficiency (73, 74).

The pivotal role played by mTOR in Treg expansion has been
demonstrated in several models. Mice carrying the Treg-intrinsic
ablation of mTORC1 or mTOR spontaneously developed a severe
scurfy-like autoimmune and inflammatory systemic disease (63,
67). Even if Treg numbers appear normal in mice with Treg-
restricted mTORC1 deficiency, these cells displayed a severely
impaired competitive fitness in vivo, which was accompanied by
a decreased glycolytic rate, and which explained their defective
suppression at the systemic level (63). Notably, the cholesterol
synthesis was the most affected pathway by mTORC1 deficiency,
and mTORC1-deficient Tregs failed to incorporate efficiently
glucose-derived carbons into lipids; these findings demonstrate
that Tregs utilize an mTOR-dependent glycolysis-lipogenesis for
their expansion (63).

Much effort has been made to elucidate the role of fatty acid
oxidation and mitochondrial metabolism in Treg expansion and
homeostasis. Liver kinase B 1 (LKB1) is a bioenergetic sensor that
phosphorylates AMPK and thus triggers oxidative catabolism,
thus allowing cell survival under stress conditions. Mice
lacking LKB1 specifically in Tregs display spontaneous type-
2 inflammatory disease caused by defective Treg development
and survival (64, 65, 71). Notably, LKB1-deficient Tregs
display transcriptomic and metabolomic profiles compatible
with impairment in tricarboxylic acid cycle, mitochondrial
function and fatty acid oxidation (64, 65). The activity of
LKB1 was not mediated by AMPK, since the Treg-restricted
deficiency of AMPKα1 andAMPKα2 did not affect Treg numbers

and did not induce any spontaneous inflammatory disorder
(64, 65). Fatty acid oxidation was also not required for the
physiological Treg development; according to data obtained in
mice bearing a genetic CPT1a deficiency specifically in Tregs,
CPT1a was dispensable for Treg development, Foxp3 expression,
and suppressive function (47). Therefore, the AMPK-driven fatty
acid oxidation does not seem to be involved in Treg homeostasis
in physiological conditions.

When the mitochondrial complex III was genetically ablated
in Tregs, a scurfy-like disease was observed, characterized by
apparently normal Treg numbers but defective Treg competitive
fitness and Treg suppression at the systemic level (66). Similar
findings have been obtained in mice bearing a Treg-specific
deletion of mitochondrial transcription factor A (TFAM), which
is essential for electron transport chain activity: here a specific
defect in eTreg development was identified (67). In complex III-
deficient mice, the Treg defect was accompanied by diminished
oxygen consumption, concomitantly increased glycolysis, and
lower NAD+/NADH ratio (an index of the electron transport
chain activity). However, the metabolic alterations observed
in these mice might affect Tregs indirectly, through a novel
metabolic-epigenetic circuitry; loss of mitochondrial complex III
results in higher content of two metabolites, 2-hydroxyglutarate
and succinate, known to inhibit DNA demethylases, and indeed
complex III-deficient Tregs show DNA hypermethylation and
altered gene expression (66).

Metabolic Pathways Involved in Treg

Activities: Migration, Suppression, and

Stability
In both physiological and pathological conditions, circulating
or lymphoid Tregs can undergo further functional and
metabolic reprogramming while accomplishing their functions:
indeed, Tregs can be attracted into specific tissues where
they can experience further rounds of proliferation and/or
functional specialization, can exert specific activities such as
immune regulation and tissue repair, and can corroborate or
instead destabilize their regulatory program, depending on the
microenvironmental signals (29, 75, 76). Whether Tregs need to
activate specific metabolic pathways to accomplish each of these
tasks has not been completely elucidated. However, many studies
(mentioned below) suggest that some “division of labor” may
exist between different metabolic pathways in Tregs: on the one
side, glucose usage and glycolysis are required for migration and
rather antagonize Treg stability and suppressive function; on the
other side, oxidative phosphorylation may be needed for Treg
immune suppressive function (Figure 3).

The role of glycolysis in Treg migration has been
demonstrated in several settings. Compared to wild-type
Tregs, HIF1α-deficient Tregs show lower glycolysis and higher
oxidative phosphorylation of both fatty acids and glucose,
when cultured in normoxic or hypoxic conditions; functionally,
HIF1α-KO Tregs suppress CD8T cell proliferation in vitro with
higher potency under hypoxia but display impaired migratory
ability in vitro and in vivo. In mice with a Treg-restricted
HIF1α deficiency, the reduced Treg recruitment to the site of
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FIGURE 3 | Specific metabolic pathways and key molecules are involved in distinct Treg activities. Several data indicate that Tregs rely on a combination of glycolytic

(blue) and mitochondrial (red) metabolism for their homeostasis and expansion. Proliferative Tregs express GLUT1 and constitutive mTOR (61, 62), and Tregs require

an mTOR-dependent glycolysis-lipogenesis for their expansion (63). Indeed, fatty acid synthesis (FAS) and cholesterol synthesis occur. LKB1 is required for Treg

development and survival through the support of mitochondrial function (64, 65). Evidence that mitochondrial activities are required for Treg fitness comes from

experimental models of deficiency of mitochondrial complex III (RISP) (66) or mitochondrial transcription factor A (TFAM) (67). However, FAO may not be required for

Treg development (47). The key role of glycolysis (blue) in Treg migration is demonstrated by the evidence that HIF1α-deficient Tregs show lower glycolysis and display

impaired migratory ability in vitro and in vivo (68), and by the observation that pro-migratory stimuli, like LFA1 or CD28, enhanced glucose uptake and glycolytic rate

while promoting migration, through the induction of the glycolytic enzyme GCK (69). Regarding Treg suppressive function and stability, some data indicate a glycolytic

boost may compromise Treg suppressive function and stability in vivo: this event occurs in mice lacking PTEN selectively in the Treg lineage (70) and in transgenic

mice overexpressing GLUT1 (62). Other studies support the idea that mitochondrial activity (red) is required for Treg suppressive function: key molecules involved in

this regulation are SIRT3/PGC1α (41) the kinase LKB1 (64, 71), and mTOR, which promotes the transition from cTregs into eTregs via mitochondrial activation (67).

a growing glioma leads to significantly delayed tumor growth
and longer survival (68). This study suggests that HIF1α, and
thus oxygen tension in the microenvironment, may dictate
the balance between migration, relaying on glycolysis, and
Treg suppressive function, at least in vitro. However, it does
not seem to affect the physiological Treg development in the
thymus, Treg peripheral fitness, or Treg proliferation in vitro
or in vivo, probably because these processes occur in normoxic
microenvironments. Kishore et al. have demonstrated the role
of glycolysis in Treg migration and dissected the underlying
molecular mechanisms: pro-migratory stimuli, like engagement
of Lymphocyte function-associated antigen 1 (LFA-1) or of
the costimulatory molecule CD28, enhanced glucose uptake
and glycolytic rate while promoting migration. These events
were mediated by mTORC2 and culminated in the induction
of glucokinase (GCK), a hexokinase isoenzyme that interacts
with actin and acts as a glycolytic ATP supplier for cytoskeletal
rearrangements and cell migration (69). Notably, GCK-silenced
Tregs did not show any defect in proliferation or suppression
in vitro, and their compromised suppressive function in vivo
could be ascribed to defective recruitment to the inflamed
site. These results support the hypothesis of a dichotomy
between glycolysis and oxidative phosphorylation being required
for distinct activities of Tregs, migration and suppressive
function, respectively.

Some pieces of information support the idea that a
glycolytic boost may selectively compromise Treg suppressive
function and stability in vivo, apparently without affecting their
development. Mice lacking Phosphatase and tensin homolog

(PTEN) selectively in the Treg lineage spontaneously develop
systemic lymphoproliferation and lupus-like disease with age,
despite increased Treg frequencies. Indeed, PTEN-deficient
Tregs lost their suppressive function in vivo in the EAE model
and displayed signs of functional instability, i.e., the release of
pro-inflammatory cytokines in the inflamed site (70). Notably,
this “fragile” phenotype correlated with higher glycolytic rates
(but normal oxidative profile) of PTEN-KO Tregs compared
to control Tregs, at short time (70) but not at later time
points (56) after in vitro activation. Similar conclusions have
been drawn from the analysis of Tregs in transgenic mice
overexpressing GLUT1: also in this model, which develops again
spontaneous autoimmunity, Tregs were more glycolytic, were
expanded in numbers, but were less suppressive and more fragile
in vivo (62). It may be speculated that glycolysis may promote
the proliferation of Tregs that, instead of performing classical
immune suppressive functions, are skewed toward a tissue-repair
program, which may become relevant in specific conditions and
microenvironments in vivo. It is important to consider that
Treg uptake of glucose may induce T cell suppression by itself,
irrespective of the Treg-intrinsic metabolic pathways. Indeed,
competition for glucose is a key element for T cell activation
especially under glucose restriction, and the proficiency of
Tregs to internalize glucose leads to an induced senescence in
surrounding T cells (74).

Conversely, other studies support the idea that mitochondrial
activity may be required for Treg suppressive function. Tregs
have greater mitochondrial mass and reactive oxygen species
(ROS) production than conventional T cells, and Tregs
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lacking sirtuin 3 (SIRT3) or peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC1α), both essential for
mitochondrial activities, display weakened suppressive functions
in vitro and in vivo (41). The deletion of histone deacetylase
9 (HDAC9) increases in Tregs the expression of genes related
to oxidative phosphorylation (including SIRT3 or PGC1α),
enhancing mitochondrial respiration; these cells also display
increased suppressive function in vitro (41). Further studies
have identified the complex I of the electron transport chain
as an important element for Treg suppressive function (40).
The kinase LKB1, which induces a transcriptional program
oriented to mitochondrial metabolism (64, 65), is not only
required for proper Treg development and survival, but also
implicated inmaintaining Treg stability and suppressive function
(64, 71), further supporting the idea that proficiency for oxidative
phosphorylation may be a prerequisite for Treg suppression.
Recent data have revealed that mTOR not only drives Treg
expansion through a glycolytic-lipogenic program (63), but may
also support Treg suppressive function promoting the transition
from cTregs into eTregs, via mitochondrial activation (67).
In vitro, Treg suppressive function was reduced if Tregs were
preactivated under acute pharmacological mTOR inhibition;
in vivo, the acute deletion of mTOR in Tregs led to spontaneous
loss of immune tolerance (67). Notably, mTOR activation was
required for the acquisition of an eTreg phenotype through
the post-transcriptional regulation of Interferon regulatory
factor 4 (IRF4) expression. Following in vitro activation, Tregs
significantly upregulated genes associated with mitochondrial
metabolic pathways such as the tricarboxylic acid (TCA) cycle
and the electron transport chain, in anmTOR-dependent fashion.
It should be noted that, in many experimental systems including
the mTOR-deficient mouse models, it might be quite difficult
to discriminate between metabolic pathways involved in Treg
expansion/fitness and in Treg effector function, since these two
events are often coupled. Therefore, functional links between
metabolic deficiencies and Treg alterations should be interpreted
with caution.

MAIN IMMUNE SIGNALS AND FACTORS

CONTROLLING TREG METABOLISM

Foxp3 is recognized as the major transcription factor underlying
Treg identity; however, Foxp3 expression alone may not be
sufficient for a stable and complete Treg differentiation and
function, which also require continuous TCR stimulation and
epigenetic reprogramming (77). Some metabolic pathways have
been selectively linked to Foxp3 activity. Indeed, it has been
shown that ectopic Foxp3 expression is necessary and sufficient
to increase the expression of genes involved in mitochondrial
respiration and to enhance fatty acid oxidation; in turn, the
ability to catabolize fatty acids protects Foxp3-expressing cells
from lipotoxicity, an event that may promote the selection of this
population in mixed cultures and in stressed microenvironments
(44). Foxp3 expression not only promotes oxidative metabolism
but also suppresses glycolysis through the inhibition of MYC, a
key factor of T cell metabolism (78), and also favors the oxidation

of L-lactate to pyruvate through the modulation of lactate
dehydrogenase (LDH) (40, 62). Therefore, Foxp3 expression may
prime a default metabolic program that is shifted from glycolysis
to oxidation.

Contrary to conventional T cells, Tregs constitutively express
a variety of costimulatory, inhibitory, and cytokine receptors,
playing diverse roles in Treg maintenance and functions and
also impacting on Treg metabolism (Figure 4). The IL-2 receptor
conveys indispensable signals for Treg thymic expansion and
maturation and for Treg peripheral homeostasis (79). Together
with the TCR, IL-2 represents one of the predominant signals that
promote mTORC1 activity (63); accordingly, peripheral Tregs
lacking the high affinity IL-2 receptor displayed a transcriptional
program compatible with reduced cholesterol biosynthesis and
also disrupted mitochondrial activity (79). Several receptors
belonging to the TNFR superfamily, like TNFR2 and OX40, are
also constitutively expressed by Tregs, are massively upregulated
following Treg activation, and convey key signals for the NFkB-
mediated acquisition of an eTreg phenotype (22). A key role
for mTOR-driven activation of mitochondrial metabolism has
been identified in eTreg differentiation (67). Whether the TNFR-
NFkB axis promotes the conversion of cTregs into eTregs
through the priming of mitochondrial functions, similarly to the
pathway described for another costimulatory molecule, CD28
(35), remains to be understood.

Tregs express a series of Toll-like receptors (TLR), and
their stimulation may subvert or promote Treg suppressive and
stability depending on the TLR type (80). Gerriets et al. showed
that TLR1/TLR2 ligation on murine activated iTregs boosted
their proliferation and their glycolysis, but also compromised
their suppressive ability (62). This event may explain the
destabilization of Tregs occurring at inflamed sites where TLR
ligands are abundant, and further corroborates the idea that
certain strong inflammatory signals may uncouple glycolysis-
related proliferation and oxidation-related immune suppression.
Opposite results have been obtained when TLR8 was stimulated
in human Tregs: this treatment subverted their suppressive
functions, however this event was accompanied by a loss, and
not a gain, of GLUT-mediated glucose uptake and mTOR-
dependent glycolytic activities (73). Therefore, different TLRs
may operate completely divergent functions in Treg expansion
and suppression, whichmay involve opposite metabolic rewiring.

EXTRACELLULAR FATTY ACIDS:

NUTRIENTS OR SIGNALING MOLECULES?

Beside internalizing glucose from the outer environment and
oxidizing intracellular lipids, T cells can capture and catabolize
other molecules as a source of energy and biosynthetic
precursors, such as the amino acid glutamine that is processed
through glutaminolysis and fuels the TCA cycle, and plays
a role in the reciprocal regulation of Th17 and iTreg
differentiation (81).

Free long-chain fatty acids represent another potential
extracellular nutrient for T cells, following their internalization
via specific translocators, such as CD36. Several studies have
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FIGURE 4 | Different signals can promote or antagonize Treg exit from quiescence. In quiescent Tregs, Foxp3 maintains Treg survival through the promotion of fatty

acid oxidation and mitochondrial metabolism (red) (44), and the suppression of glycolysis through the inhibition of MYC and the modulation of LDH (40, 62). Effector

Tregs, undergoing cell division, can receive multiple signals through the TCR, costimulatory and cytokine receptors, and mostly display a combination of glycolytic

(blue) and mitochondrial (red) metabolism. IL-2 receptor and the TCR can directly promote mTORC1 activity (63), and IL-2 signal supports cholesterol biosynthesis

and mitochondrial activity through mTOR (79). A key role for mTOR-driven activation of mitochondrial metabolism has been identified in eTreg differentiation (67).

However, FAO may not be required for Treg activation (47). Receptors of the TNFR superfamily activate NFkB thus inducing the eTreg phenotype (22), and this may

occur also through the priming of mitochondrial functions, similarly to CD28 (35). Finally, different TLRs can have opposite functions on Treg glycolytic activities and

proliferation (73, 80).

reported that Tregs can capture fatty acids in culture (39, 42, 44)
and also in vivo, especially in the tumor microenvironment in a
mouse model of glioma (82). Notably, palmitate internalization
and glucose uptake occurred in two distinct subpopulations of
Tregs, with only minor overlap (82). In the VAT, Tregs acquire
a tissue-specific program driven by the transcription factor
peroxisome proliferator-activated receptor gamma (PPARγ)
(83). This factor controls the expression of genes related to fatty
acid translocation, biosynthesis, and oxidation; treatment with a
PPARγ-agonist induced CD36 upregulation and fatty acid uptake
in adipose tissue Tregs, and this event was associated with Treg
expansion (83).

The relevance of long-chain fatty acid uptake in Treg
differentiation and functions is still unclear. In vitro, exogenous
BSA-conjugated palmitate was incorporated at high levels
into endogenous fatty acids in iTregs, and the inhibition of
cellular synthesis enhanced the extracellular fatty acid uptake
(42). Supplemented palmitate enhanced oxidation rates in cells
ectopically expressing Foxp3 (44) and iTregs in vitro, leading
to a skewed iTreg development at the expense of Th17 cells
(39, 84). Of note, the Foxp3-driven oxidative machinery may
protect Tregs from the risk of lipotoxicity induced by high rates of
fatty acid internalization (44). Based on these findings, exogenous
fatty acids seem to promote iTreg polarization even though
BSA-conjugated fatty acids may be internalized irrespective of

physiological translocation that is mostly mediated by CD36 and
other transporters.

Other data indicate that fatty acid uptake may also
favor Treg suppressive function; indeed, the inhibitor of
fatty acid translocation, sulfo-N-succinimidyl oleate (SSO),
altered the expression of key suppressive molecules of Tregs
and their inhibitory activity in vitro (68). As a general
interpretation, high concentration of free fatty acids in a
certain microenvironment may tip the balance toward immune
regulation, even though the exact role of this metabolic-
immune crosstalk in modulating immune responses deserves
further studies.

Extracellular short-chain fatty acids (acetate, butyrate and
propionate) exert a well-established role in Treg differentiation
and expansion in the intestine; several studies [reviewed in
Zeng and Chi (85)] have demonstrated that bacterial species
colonizing the gut can break down dietary fibers, thus leading
to the production of short-chain fatty acids. These metabolites
bind specific G protein-coupled receptors on the cell surface
and can promote the conversion of conventional T cells into
pTregs or induce the proliferation of colonic tTregs. Therefore,
short-chain fatty acids act as a bridge between microbial/dietary
metabolism and immune regulation by working as signaling
molecules, and less likely by directly affecting intracellular
metabolic routes.
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TREG EXPANSION IN TISSUES DEVOTED

TO METABOLIC FUNCTIONS: THE

ADIPOSE TISSUE AND THE LIVER

Since nutrient availability and signaling molecules can impact
on Treg cell-intrinsic metabolism, which in turn can dictate
Treg expansion and function, it could be predicted that the
metabolic context of specific tissue microenvironments may
affect immune regulation. This event may become particularly
true in those tissues that are devoted to the control of systemic
metabolism, such as the VAT and the liver. Presumably, in
these tissues, the concentration of particular nutrients in the
extracellular environment may vary depending on systemic and
local metabolic processes.

Several groups have observed a prominent Treg accumulation
in the VAT of healthy lean mice, have characterized the main
mechanisms driving their expansion and suppressive function,
and have reported a causal link between VAT-Treg deficiencies
and metabolic inflammation (26, 83, 86–88). Among the signals
driving VAT-Treg accumulation in mice, the TCR, Foxp3, and
cytokines like IL-33 seem to play key roles (25, 26, 87). While
these studies have demonstrated that Tregs can shape systemic
metabolism through the suppression of metabolic inflammation
in the VAT, it is not clear whether the local metabolism can
affect Treg behavior. As already mentioned above, in the healthy
VAT, PPARγ promotes the accumulation of intracellular lipids
in Tregs; in obese mice fed with a high-fat diet, the reduction
of Treg frequency corresponds to lower lipid content in Tregs
(83). This result suggests that intracellular lipid accumulation
may occur in alternate conditions in adipocytes (under dietary fat
overload) and in Tregs (in healthy conditions), and also indicates
that Tregs may not accumulate lipids as a simple consequence of
extracellular or systemic lipid abundance. Less is known about
Treg accumulation in the VAT of lean or obese humans and of
patients with metabolic inflammation or cancer. According to
recent data, Tregs express PPARγ also in the omental adipose
tissue of humans, and Treg frequency is moderately increased
in that tissue compared to the peripheral blood; however, no
significant variation was observed in obese subjects or in type-2
diabetes patients compared to healthy controls (89).We observed
even an expansion of Tregs in the VAT of obese compared
to control subjects, and a mild positive correlation between
VAT-Treg frequency and body mass index (90). Therefore, the
mechanisms that regulate Treg accumulation in VAT may be
completely distinct in mice and humans. Interestingly, we could
observe a positive correlation between VAT-Treg percentage
and the amount of the polyunsaturated ω6 arachidonic acid in
the adipose tissue (90). Whether Tregs and generally immune
cells can somehow shape the lipid composition of the tissue,
and whether, conversely, different types of fatty acids can have
an impact on Tregs and immune populations, remain open
questions. It is worth noting that, in mice, VAT-Tregs utilize
a catabolite of prostaglandin-E2 (which is synthetized from
arachidonic acid) to suppress metabolic inflammation (88),
therefore, the local availability of certain lipidic precursors may
impact on Treg-mediated control of metabolic inflammation.

The liver is the main organ regulating systemic lipid
metabolism and is susceptible to the development of abnormal
lipid accumulation and inflammation (steatohepatitis) in
pathological conditions induced for instance by high dietary fat
intake. Less is known about liver-resident and liver-infiltrating
Tregs compared to other tissues. In the early post-natal life of
mice, a wave of hepatic Treg colonization occurs that seems
dependent on microbiome (91). Of note, the transcriptomic
profile of these hepatic neonatal Tregs reveals a high expression
of PPARγ and the involvement of lipid handling machinery
and oxidative phosphorylation (92). Interestingly, we have
observed that such post-natal hepatic Treg expansion was
higher in the Mdr2−/− mouse model (spontaneously developing
cholangitis and chronic liver disease with time) and was
accompanied by an intracellular lipid accumulation in Tregs
(93). In adult mice, the identity of liver-resident Tregs remains
more elusive with respect to other tissues (94), also because
of the significant proportion of Tregs entering this highly
vascularized tissue through the blood vessels (95). Like in
the adipose tissue, also in the liver Tregs control metabolic
inflammation and therefore systemic metabolism. Indeed, post-
natal Treg depletion provokes the spontaneous development
of steatohepatitis (92); if genetically susceptible adult mice are
deprived of Tregs, the hepatic catabolism of lipoproteins is
impaired, resulting in hypercholesterolemia and exacerbated
atherosclerotic disease (96),

Taken together, the findings in VAT and in liver speak in
favor of an inverse relation between external lipid overload
and Treg cell-intrinsic lipid accumulation. Indeed, Tregs seem
to accumulate lipids, under a PPARγ-driven program and as
a consequence of synthesis and/or capture, concomitantly to
their own expansion and thus to the control of metabolic
inflammation. Conversely, Tregs show impaired lipid
metabolism and proliferation in conditions of systemic and
local lipid overload. The exact connections between Treg cell-
extrinsic and -intrinsic lipid metabolism, and their consequences
for Treg suppression and metabolic diseases, have not been
clarified. Since Tregs exert several non-immune functions
involved in tissue homeostasis, regeneration and repair (97), we
cannot exclude that Tregs directly instruct tissue cells for specific
metabolic activities, and that the bidirectional crosstalk may be
mediated by conventional signaling molecules like amphiregulin
(98) or by metabolites, stress signals, and nutrients derived from
tissue cells and systemic circulation.

TREG EXPANSION UNDER METABOLIC

RESTRICTION: THE TUMOR

MICROENVIRONMENT

A hallmark of the tumor identity is represented by the ability
evolved by tumor cells to escape immune recognition, and
especially to suppress T cell response. Among the mechanisms
concurring to this outcome, the local accumulation of Tregs
plays an essential role. It is well-established that Treg frequency
increases markedly at the tumor site in most solid malignancies
and in both experimental models and cancer patients. Several
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mechanisms may be involved in this local expansion, including
the proliferation of preexisting tissue-resident Tregs, the
recruitment of Tregs from the circulation, and the conversion
of conventional T cells into pTregs (5). Therefore, the pool of
tumor-infiltrating Tregs consists of a mixed population of tTregs
and pTregs, possibly recognizing different antigen repertoires,
performing specific activities, and showing diverse susceptibility
to local signals of proliferation and stabilization (99). Most Tregs
at the tumor site display an effector phenotype characterized
by high expression of molecules related to their suppressive
function and heightened inhibitory activities ex vivo. The
transcriptomic profile of tumor-infiltrating Tregs results from
the combination of tissue-associated signatures with a tumor-
specific signature that is shared among different cancer types,
and includes costimulatory molecules and chemokine receptors
(100). Since the pioneer studies of North and Bursuker on the so-
called at that time “suppressor cells” (101), many other studies
have clearly demonstrated that Tregs could suppress anti-tumor
immunity in experimental models, especially in immunogenic
tumors and in certain therapeutic windows. Indeed, CD25+
T cell depletion by means of a specific monoclonal antibody
(102), or the inducible genetic ablation of Foxp3+ Tregs (103),
could evoke anti-tumor immunity that controlled tumor growth.
In the majority of human cancers, a high density of Tregs at
the tumor site correlates with a poor prognosis, a finding that
confirms the detrimental role of these cells in the battle between
host immunity and tumor cells (4). A growing amount of data
demonstrate that Tregs play a range of non-immune, tissue-
repairing functions that involve the release of amphiregulin, a
ligand of epidermal growth factor receptor. Recent work has
demonstrated that tissue-infiltrating activated Tregs promote
malignancy also through the direct stimulation of epithelial
cell growth via amphiregulin (98). Several strategies have been
proposed, and have also been tested in some cases, to achieve
Treg depletion or functional inactivation in the context of cancer
immunotherapy. While CD25-targeted approaches have shown
limited success (5), recent studies have highlighted that Tregs are
major off-targets of the classical immune checkpoint blockers,
being especially sensitive to anti-CTLA-4 antibodies capable of
inducing antibody-dependent cell-mediated cytotoxicity (6).

From a metabolic point of view, the tumor microenvironment
represents a peculiar and extremely complex context, when
multiple metabolic interactions between tumor cells and stromal
cells can be established that have not been completely elucidated.
The idea that tumor cells evolve the ability to support their
proliferative burst by pushing glycolysis was described by Otto
Warburg and coworkers in the 1920s and was thus called the
Warburg effect. Since then, researchers have accumulated a
huge amount of information about the numerous metabolic
routes that, together with glycolysis, characterize tumor cell
proliferation and survival (104, 105). Besides tumor cells, several
stromal and immune cells in the tumor microenvironment are
able to reprogram their cellular metabolismwhen adapting to this
peculiar context: for instance, a metabolic crosstalk is established
between tumor cells and tumor-associated macrophages, which
shapes macrophage functions and finally leads to tumor
promotion (106).

This microenvironment poses a series of metabolic hurdles for
T cells: (i) hypoxia in poorly vascularized tumor areas can affect T
cell functions also through HIF1α induction; (ii) lactate released
by both tumor and stromal cells, and the consequent extracellular
acidity, can profoundly suppress the effector functions of T cells
and compromise anti-tumor immunity; and (iii) the capture
of nutrients (glucose, amino acids, and fatty acids) by tumor
and stromal cells generates a status of metabolic restriction
that ultimately leads to T cell starvation (107). In more detail,
competition for glucose between T cells and tumor cells has been
identified as a key event in determining the success of anti-tumor
T cell activation, through the activity of a glycolytic intermediate,
phosphoenolpyruvate, that directly modulates calcium flux
downstream TCR signaling (108, 109). Not only glycolysis, but
also mitochondrial metabolism is crucial for optimal anti-tumor
T cell functions; indeed, a defective mitochondrial biogenesis and
oxidative metabolism correlated with a functionally exhausted
phenotype (110).

Based on this evidence, the selection of Tregs in the tumor
microenvironment may derive from their ability to evolve
a metabolic reprogramming that allows their survival and
proliferation in such a hostile setting. Several studies have
addressed this possibility and have tried to characterize those
metabolic pathways that were responsible for tumor-associated
Treg expansion and function (Figure 5).

Some data point to a key role of glycolysis in Treg
proliferation in the tumor setting. First, intra-tumoral Tregs
display particularly high glucose uptake compared to other cell
types in a mouse model of melanoma (109), and we have shown
that Tregs were able to efficiently compete for glucose with
effector T cells in another mouse tumor model (93). Our data
also indicate that, compared to effector T cells, tumor-infiltrating
Tregs display higher levels of GLUT1 on the cell surface, express
higher levels of glycolysis-related genes, and engage a higher
glycolytic flux as measured in terms of extracellular acidification
rate directly ex vivo; in human hepatocellular carcinoma, the
gene expression profile of effector Tregs (selected as OX40-
positive cells) is significantly enriched in glycolysis-related genes
(93). Others have shown that pretreatment of human Tregs
with a TLR8 agonist (that inhibits glycolysis), or 2-DG, reversed
their ability to control anti-tumor T cell response in vivo, in
a humanized mouse model (73). Of note, the pretreatment
impaired Treg ability to induce senescence in responder CD8T
cells. Indeed, competition for glucose is a major trigger for T
cell senescence, and Tregs may cooperate with tumor cells in
consuming glucose and starving effector T cells in the tumor
microenvironment (74). It has been proposed that, in low-
glucose contexts such as the tumor site, Tregs may utilize
glucokinase instead of hexokinase to perform glycolysis, having
the former a much lower affinity for glucose (69). Altogether,
these results suggest that Tregs possess the machineries needed
for capturing and utilizing glucose in the tumor context, and
that glycolysis may be involved in the maintenance of the tumor-
associated Treg population in vivo.

More elusive is the role of oxidative phosphorylation in
proliferation and survival of tumor-infiltrating Tregs. We have
observed that Tregs freshly extracted from murine tumors
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FIGURE 5 | Several metabolic mechanisms may provide an advantage to Tregs in the tumor microenvironment. The tumor microenvironment poses several hurdles to

T cells, like hypoxia, glucose restriction, and acidosis. Tregs resist to these obstacles through several mechanisms, which involve both glycolysis (blue) and/or

mitochondrial metabolism (red). First, intratumoral Tregs capture glucose at high rates (93, 109), thanks to GLUT1 upregulation, and display a glycolytic program and

activity ex vivo (93): thus, Tregs may suppress the glycolytic metabolism in effector T cells (light blue) in the tumor microenvironment also through glucose

sequestration (74). The usage of GCK instead of hexokinase in glycolysis may endow Tregs to resist in a low-glucose environment (69). Hypoxia triggers HIF1α

activation in Tregs, which promotes glycolysis and thus indirectly fosters the oxidation of fatty acids captured through CD36 and other translocators (68). Tregs are

more resistant to lactate overload, based on their ability to convert lactate into pyruvate thanks to the modulation of LDH by Foxp3 (40). Mitochondrial metabolism

plays a key role in tumor-Treg expansion and function: indeed, mitochondrial complex III (RISP) dictates the ability of Tregs to suppress anti-tumor immunity (66). We

have found that intratumoral effector Tregs, expressing TNFR superfamily members, performed fatty acid synthesis through ACC and this pathway was involved in

their expansion and function (93). Whether TNFRSF signals can impact on glycolytic and/or mitochondrial metabolism in Tregs remains to be elucidated.

consume oxygen at similar rates as effector T cells (93). Others
have shown that mice, where mitochondrial complex III is
ablated specifically in Tregs, are protected from tumor growth;
however, this effect may be ascribed also to the epigenetic effect
of mitochondrial metabolites, besides the defect in mitochondrial
respiration (66).

Foxp3 has been shown to directly shift the glycolytic
into oxidative metabolism: this program also includes the
peculiar ability of Tregs to oxidize lactate into pyruvate also
in normal conditions, whereas Tconvs show this activity only
in low-glucose, high-lactate conditions. However, Tconvs and
Tregs are differentially susceptible to lactate overload and
the consequent oxidation through the enzyme LDH: Tconvs
rely primarily on glycolysis for their activation, and NAD
depletion during lactate oxidation prevents GAPDH activity
and suppresses their proliferation; conversely, Tregs are more
resistant to the suppressive effect of lactate, possibly being
less glycolysis-dependent for their activation, and containing
higher levels of NAD continuously regenerated during oxidative
phosphorylation (40). These data suggest that in low-glucose,

high-lactate conditions, like in the tumor microenvironment,
Tregs may have a selective metabolic advantage.

Fatty acids can become a major substrate for oxidative
phosphorylation in some conditions. It has been shown that,
in hypoxic settings, HIF1α activation diverts glucose away
from mitochondria, leaving fatty acids as the main oxidative
substrate for Tregs. Therefore, in hypoxic areas of the tumor
microenvironment, Tregs may capture and utilize lipids to
perform their metabolic functions: accordingly, intra-tumoral
Tregs were found to express high levels of the fatty acid
transporters CD36, SLC27A1, and SLC27A4, and to perform
fatty acid uptake in vivo, in a mouse model of glioma (68).
In this model, fatty acid oxidation seemed required for Treg
suppression: indeed, etomoxir administration to tumor-bearing
mice reduced tumor growth while reducing Treg frequencies
(68). It has been proposed that the ability of Tregs to oxidize fatty
acids may protect them from lipotoxicity (44), thus endowing
Tregs with a further metabolic advantage over effector T cells.

In a different mouse tumor model, we have observed that
intra-tumoral Tregs accumulated neutral fatty acids, an event
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that was not related to fatty acid capture but rather derived from
fatty acid synthesis (93). The expression of genes related to this
pathway, the metabolite profile, the sensitivity of Treg to specific
inhibitors of fatty acid synthesis, and the observation that 2-
DG prevents fatty acid accumulation in vitro corroborate the
hypothesis that tumor-infiltrating Tregs utilize glucose not only
as a supply of energy but also as a source of precursors to build
macromolecules like fatty acids. We have started to appreciate
that many macromolecules can exert several non-energetic and
non-structural activities. For instance, fatty acids represent a
preferential source of acetyl groups for histone acetylation (111),
and thus fatty acid supply or biosynthesis may impact the
epigenetic profile of the cells.

CONCLUDING REMARKS

Even though some controversies still remain regarding the
metabolic requirements of specific events during the life of
a Treg, some general conclusions can be drawn from the
existing data. First of all, the view that Tregs are oxidative
cells need to be carefully revised; indeed, this assumption
mostly comes from studies addressing the development of
Tregs in vitro, rather than the in vivo dynamics of established
Tregs. Moreover, many studies are also affected by experimental
limitations such as the usage of TGFβ-based protocols and of
pharmacological inhibitors with many off-target effects. Based
on pieces of evidence coming from many studies, it is clear that
Tregs can use different metabolic pathways, including glycolysis,
in different phases of their life and in different activities.
Generally speaking, while mTOR-driven glycolysis-lipogenesis
seems required for Treg development and migration, Foxp3-
driven lipolytic-oxidative metabolism is more strictly related to
Treg suppressive function. Whether the two axes must coexist in
the same Treg cell to achieve a full immune regulatory activity or
can be segregated into distinct Treg subtypes or distinct phases of
Treg activities, remains to be clarified.

The capacity of Tregs to switch through different metabolic
programs may render them particularly able to adapt to hostile
microenvironments, and the tumor may represent a prototypical
context where Treg adaptation occurs: here, Tregs may be
positively selected based on their ability to compete efficiently
for glucose, to use alternative glycolytic enzymes, to capture and
catabolize lipids thus avoiding incidental lipotoxicity, to better

resist to high lactate exposure, and many other mechanisms
still to be discovered. Among the signals in the tumor
microenvironment supporting metabolic activation in Tregs, the
TNFR-related signals may play key roles that have been only
incompletely appreciated; these receptors are highly expressed by
Tregs at the tumor site frommany different tumor histotypes and
may drive a switch toward an effector phenotype that includes
immunological as well as metabolic features.

Targeting metabolism is considered a promising therapeutic
approach for cancer therapy. However, it is now well-
established that appropriately designed metabolic interventions
can profoundly reshape immune cell functions and rescue anti-
tumor immunity (112). Therefore, a holistic assessment of the
metabolism of stromal and immune cells, together with tumor
cells, would allow a more accurate design of future therapeutic
strategies for cancer treatment (112). It should be considered
that “metabolic drugs” targeting specific cell types in tumor-
bearing hosts are not currently available, thus we are still far
from a cell-directed metabolic intervention that would selectively
inhibit detrimental immune cells and tumor cells while sparing
normal cells. However, it could be predicted that some of these
drugs could, at least preferentially, target metabolically active
cells at the tumor site. According to this view, Tregs may be
preferentially susceptible to metabolic interventions in tumors
because of their relative abundance at the tumor site and of
their stronger metabolic activation compared to other infiltrating
T cells.
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Distinct metabolic pathways are known to regulate growth, differentiation, survival, and

activation of immune cells by providing energy and specific biosynthetic precursors.

Compelling experimental evidence demonstrates that effector T cell functions are

coupled with profound changes in cellular metabolism. Importantly, the effector

T cell-dependent “anti-self” response characterizing the autoimmune diseases is

accompanied by significant metabolic alterations. MicroRNAs (miRNAs), evolutionary

conserved small non-coding RNA molecules that affect gene expression by binding to

target messenger RNAs, are now known to regulate multiple functions of effector T cells,

including the strength of their activation, thus contributing to immune homeostasis. In this

review, we will examine the most recent studies that describe miRNA direct involvement

in the metabolic reprogramming that marks effector T cell functions. In particular, we

will focus on the work showing a connection between miRNA regulatory function and

the molecular network dysregulation that leads to metabolic pathway derangement in

autoimmunity. Finally, we will also speculate on the possibility that the interplay between

miRNAs and metabolism in T cells may help identify novel miRNA-based therapeutic

strategies to treat effector T cell immunometabolic alterations in pathological conditions

such as autoimmunity and chronic inflammation.

Keywords: T cells, metabolic regulation, immunometabolism, miRNAs, autoimmune diseases

INTRODUCTION

The immune system encompasses a variety of cellular subsets that are highly dynamic and
specialized in several activities essential for host defense and tissue homeostasis (1–4). T cells are a
crucial component of the adaptive immune system, with a unique nature that makes them able to
respond rapidly to environmental changes (5–7). T cell activation and function are deeply related
to specific metabolic programs necessary to regulate T cell signaling and support their growth,
differentiation, and effector function. Indeed, the ability of intracellular metabolism to integrate
signals and nutrients to produce energy is fundamental to determine a specific T cell fate (8–10).
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Over the past decade, increasing studies have highlighted the
role of microRNAs (miRNAs) in the metabolic control of
immune cells. miRNAs are a class of small non-coding RNAs
involved in the fine-tune regulation of gene expression. Several
mechanisms have been uncovered by which miRNAs control
T cell function, including regulation of intracellular metabolic
pathways. Under specific conditions, such as inflammation, the
biogenesis of miRNAs may be modified. Aberrant expression of
miRNAs may influence T cell metabolic reprogramming, leading
to pathological phenomena, including chronic inflammatory
disorders and autoimmune conditions.

In this review, we discuss recent literature reporting
the involvement of miRNAs in the metabolic control of
immune responses, with particular emphasis on those impacting
on T lymphocyte differentiation and function, in health
and autoimmunity.

METABOLIC REGULATION OF T CELL

RESPONSE

T lymphocytes play a crucial role in host defense and
coordination of immune response (11). Upon antigen
recognition via the T cell receptor (TCR) in the presence
of co-stimulatory signals, T lymphocytes clonally expand and
produce cytokines to eliminate infected or transformed cells
(12, 13). In particular, during an acute infection, antigen-specific
T cells proliferate and differentiate into effector T (Teff) cells:
CD8+ cytotoxic T lymphocytes (CTLs) that rapidly mediate
the clearance of infected cells and CD4+ Teff cells that became
functional specialized in distinct T helper (Th) cell subset [Th1,
Th2, Th17, follicular Th (Tfh), and regulatory T (Treg) cells]
(14, 15). Their dysregulated activation leads to a wide spectrum
of autoimmune and inflammatory conditions (16–19).

Compelling evidence indicate that intracellular metabolic
programs adopted by T cells finely regulate immune response
(20, 21). T cell activation determines an increased biosynthetic
demand, which requires rapid changes to generate metabolic
intermediates for T cell growth, proliferation, and function (20–
22). Both quiescent naïve and memory T cells are characterized
by metabolic pathways that supply energy for survival and
migration, including oxidative phosphorylation (OXPHOS),
fatty acid oxidation (FAO), and amino acid oxidation [Figure 1;
(10, 23)]. Conversely, activation of T cells drives transcriptional
changes, causing downregulation of oxidative metabolism and
upregulation of biosynthetic pathways, such as aerobic glycolysis
that promotes an increase in biochemical intermediates,
necessary for nucleotide, amino acid, and fatty acid synthesis
(24). This anabolic program increases nutrient uptake at the
expense of ATP production (25, 26). Teff cells require high levels
of glucose to proliferate and differentiate in distinct T cell subsets
(27). The increased glucose metabolism is controlled by glucose
transporters, glycolytic enzymes, multi-protein complexes, and
transcriptional factors that coordinate glucose utilization to
generate pyruvate (28, 29). Under hypoxic conditions, pyruvate
can be converted to lactate by the lactate dehydrogenase
(LDH) (anaerobic glycolysis); on the other hand, higher oxygen

levels promote pyruvate transfer into the mitochondria to
supply intermediates of the tricarboxylic (TCA) cycle (30).
TCA cycle starts from acetyl-CoA to generate citrate, which
is consumed and regenerated throughout multiple biochemical
reactions; nicotinamide adenine dinucleotide (NADH), flavin
adenine dinucleotide (FADH2), and one GTP or ATP molecule
are produced in each cycle [Figure 1; (31)]. Subsequently,
NADH and FADH2 provide electrons to generate ATP via
OXPHOS [Figure 1; (31)]. Alternatively, glucose-6-phosphate
(G6P), derived from the first enzymatic step of glycolysis, can be
directed into the pentose phosphate pathway (PPP) that provides
ribose for the synthesis of nucleotides and reducing equivalents,
such as nicotinamide adenine dinucleotide phosphate (NADPH),
for lipid and cholesterol biogenesis [Figure 1; (32)].

The increased glucose flow into the pentose phosphate
pathway is also accompanied by an increase in glutamine
metabolism (glutaminolysis), an energy-producing process
required for fast biosynthesis of macromolecules necessary
for lipid production (33, 34). Lipids play an important role
in the regulation and maintenance of membrane properties,
bioenergetic demands, and cell signaling (35). Upon TCR
activation, T cells must increase their lipid content at each
cell division for new plasma membrane generation; moreover,
lipids, especially long fatty acids, are necessary to generate
energy through the FAO [Figure 1; (36)]. Long-lived memory
T cells preferentially use FAO to fuel the TCA cycle and
OXPHOS, andmaintain ATP production (37). Distinctmetabolic
and nutrient sensors, including the phosphatidylinositol 3-
kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)
pathway, hypoxia-inducible factor 1α (HIF1α), c-Myc, and
AMP-activated kinase (AMPK), integrate external stimuli and
nutrient availability with intracellular metabolic processes (38–
42). mTOR is a serine/threonine kinase with a key role in the
regulation of T cell metabolism; it integrates multiple signals
in response to nutrients, growth factors, energy, and stress to
coordinate immune response upon TCR activation (43, 44).
mTOR acts through two main signaling complexes, mTORC1
and mTORC2, which differ for their structure and sensitivity
to the inhibitor rapamycin (43–46). PI3K/AKT/mTOR signaling
pathway activation induced by TCR engagement, CD28 co-
stimulation, or IL-2 receptor leads to an increase of glucose
uptake via upregulation of Glucose transporter 1 (Glut1) levels,
mediated by mTORC1 complex (45, 47). Instead, mTORC2,
which mainly responds to growth signals, controls T cell
proliferation and survival by AKT phosphorylation that affects
glycogen synthase kinase-3 β (GSK-3β) (48, 49). Moreover,
mTORC1 activates glycolytic program in T cells also thanks to
the downstream transcription factors HIF1α and its target genes
(50). HIF1α is an oxygen sensor rapidly activated under hypoxic
conditions, which determines the transcription of target genes
including erythropoietin (EPO), vascular endothelial growth
factor (VEGF), and glycolytic enzymes (51, 52). HIF1α in turn
induces the expression of intermediates required for glycolysis,
such as Glut1, in the presence of low oxygen availability (53).
HIF1α can also increase glycolysis by inducing the expression
of pyruvate dehydrogenase kinase 1 (PDK1), a key metabolic
enzyme that favors the conversion of pyruvate to lactate (53).
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FIGURE 1 | miRNAs orchestrate T cell metabolic reprogramming. Schematic representation of the main metabolic programs controlled by miRNAs in T cells:

Glycolysis, pentose phosphate pathway (PPP), fatty acid oxidation (FAO), tricarboxylic acid (TCA) cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS).

mTORC1 is also responsible for the activation of c-Myc, another
transcription factor with pleiotropic effects involved in cell
proliferation, growth, and metabolism (38, 54). As a metabolic
checkpoint, c-Myc is rapidly activated after TCR engagement
and induces the transcription of enzymatic mediators of
glycolysis, such as lactate dehydrogenase A (LDHA), pyruvate
kinase isoenzyme type M2 (PKM2), hexokinase 2 (HK2), and
Glut1 (55). c-Myc also induces the expression of transcription
factor activating enhancer binding protein 4 (AP-4) which in
turn upregulates the abovementioned glycolytic enzymes (56).
Conversely, AMPK drives activated T cells to engage OXPHOS
and maintain ATP levels under low glucose concentration (57).
AMPK is activated in response to energy deprivation and under
stress conditions, such as infections, inflammation, and DNA
damage (58). AMPK is also a sensor of energy homeostasis
and inhibits energy-consumingmetabolism by increasing cellular
AMP levels during energy deprivation, favoring ATP production
(57, 59). Furthermore, AMPK controls catabolic metabolism
through the inhibition of acetyl-CoA carboxylase (ACC), a

crucial metabolic enzyme of fatty acid biosynthesis, promoting
FAO (59). Under nutrient deprivation, AMPK also inhibits
mTORC1 complex activity in T cells (57). Indeed, it has been
observed that AMPK loss in naïve T cells upregulates mTOR
activity and induces glycolysis (57). In all, these findings suggest
that metabolism represents a critical checkpoint for T cell
activation and function. Distinct levels of regulation (epigenetic,
transcriptional, and translational) control and coordinate this
cross-talk to ensure the appropriate energetic status underlying
the specific immune cell function.

miRNA BIOGENESIS AND BIOLOGICAL

FUNCTION

miRNAs are a class of small, non-coding RNAs of 21–25
nucleotides involved in post-transcriptional control of gene
expression, through base pairing with complementary sequences
in the 3′ untranslated regions (3′UTR) (58). miRNAs are
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FIGURE 2 | miRNA biogenesis and function. Schematic representation of miRNA biogenesis pathway and biological function. Di George syndrome Critical Region 8

(DGCR8), exportin-5 (XPO5), GTP-binding nuclear protein Ran (RanGTP), trans-activator RNA binding protein (TRBP), Argonaute protein 2 (Ago2), and RNA-induced

silencing complex (RISC).

transcribed by RNA polymerase II or III as long variable-length
transcripts named primary miRNA transcripts (pri-miRNAs),
with a 5′cap and a 3′poly (A) tail [Figure 2; (60)]. Pri-miRNAs
are processed by Drosha ribonuclease III and its partner named
Di George syndrome Critical Region 8 (DGCR8), to produce
a hairpin RNA of about 65 nucleotides known as pre-miRNA
molecule [Figure 2; (61)]. After nuclear processing, the pre-
miRNAs are exported from the nucleus to the cytoplasm by
the GTP-binding nuclear protein Ran (RanGTP)/exportin-5
(XPO5) complex and cleaved into a miRNA duplex of about 21
nucleotides (ds-miRNAs) by a second endoribonucleolytic Dicer
and its cofactor TRBP (trans-activator RNA binding protein)
[Figure 2; (62)]. ds-miRNAs are loaded into the Argonaute
protein (Ago2), which facilitates incorporation of the guide
strand into the RNA-induced silencing complex (RISC), while
the passenger strand is degraded [Figure 2; (63)]. The guide
strand binds target messenger RNA (mRNA) based on sequence
complementarity; base pairing match induces degradation of
target mRNA, while the imperfect complementarity results in
suppression of translation [Figure 2; (64)].

The biological relevance of miRNAs is highlighted by the
discovery that a single miRNA could interact with hundreds
of target mRNAs, and each gene transcript may have several
sites of miRNA recognition (65, 66). The finely tuned control
of gene expression requires the production of the appropriate
level of specific miRNAs in a well-defined time frame (65, 66).
Since miRNAs are involved in post-transcriptional regulation of

several cellular processes, dysregulation or dysfunction of their
biogenesis leads to a wide range of human diseases, ranging
from cancer to autoimmune disorders (67–69). Specific miRNAs
have been described to regulate the function and homeostasis
of several immune cell populations (70). Compelling evidence
has demonstrated that deletion of Drosha or Dicer within T
cell compartment affects T cell development, differentiation and
function (71, 72). In this context, it has been shown that Dicer
deletion at an early stage of T cell differentiation compromises
the survival of TCR alphabeta (α/β) chain cells while it is
dispensable for CD4 or CD8T cell lineage commitment (73,
74). Furthermore, Chong et al. highlighted the essential role of
Drosha and Dicer in Treg cells, as specific deletion of one or
both of them results in impaired expression of the transcription
factor forkhead box P3 (FoxP3), the master gene of Treg cell
development and function (71). Among all the miRNAs involved
in the control of T cell fate, miR-125b has been shown to
restrain the expression of genes encoding molecules important
for differentiation of naïve into effector and memory T cells,
targeting interferon-γ (IFN-γ), interleukin 2 receptor β (IL-2Rβ),
interleukin 10 receptor α (IL-10RA), and Blimp-1 (PRDM1)
genes (75).

miR-214 and miR-182 act through different mechanisms to
control T lymphocyte activation (76). Specifically, up-regulation
of miR-124 in T cells, after TCR stimulation, promotes T cell
activation through the inhibition of phosphatase and tensin
homolog (PTEN), a negative regulator of T cell activation.
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Mechanistically, activation via CD28 induces upregulation of
miR-214, which targets the 3′UTR of Pten, causing a reduction
in PTEN levels promoting T cell activation (76). Constitutive
overexpression of miR-182 by IL-2 supports clonal expansion of
Th cells, by reducing the transcription factor Foxo1, a suppressor
of resting Th cell proliferation (77).

Compelling experimental evidence reports that several
miRNAs can also influence T cell differentiation (78–80). In
more detail, miR-155, expressed at high levels in Treg cells,
is involved in the modulation of the suppressor of cytokine
signaling 1 (SOCS1) and the signal transducers and activators
of transcription 5 (STAT5) activity, key molecules for Treg cell
differentiation and function (81). Data from animal models
revealed that mice lacking miR-146a are more susceptible to
chronic inflammation and autoimmune disorders secondarily to
the loss of peripheral T cell tolerance. These findings suggest
that miR-146 may be considered a key regulator of T cell
response (82). In all, miRNA network can be considered as a
crucial regulator of cell biology and, although studies focusing
on miRNAs are progressively increasing, their impact on T cell
function is still only partially explored.

ROLE OF miRNAS IN T CELL METABOLIC

REPROGRAMMING

The role of miRNAs in the regulation of metabolic
reprogramming in cancer cells has been largely investigated, thus
opening the study of their potential role in the modulation of
T cell metabolism (83–85). Several studies have suggested that
miRNAs mainly act on key metabolic enzymes or transporters of
energetic nutrients, thus impacting on T cell proliferation and
differentiation (86, 87). In this context, Zhang et al. identified
miR-143 as a regulator of T cell metabolism that reduces glucose
uptake through the inhibition of glucose receptor Glut1. The
authors found that, by specifically reducing glycolysis during
TCR-dependent activation, miR-143 promotes memory T
cell differentiation and metabolic reprogramming (88). In
addition, miR-143 stimulates T cell memory differentiation
also through the control of two enzymes, hexokinase II and
carnitine palmitoyltransferase 1a (Cpt1a), which regulate glucose
oxidation and oxidative phosphorylation, respectively [Figure 1;
(88)]. miR-150 is an additional miRNA that finely tunes T cell
glycolytic reprogramming, secondarily to co-stimulatory signals.
Recent findings suggest that CD46 signaling, which is activated
downstream of CD28 co-stimulation during T cell activation,
leads to a rapid downregulation of miR-150 expression,
which targets solute carrier family 2 member 1 (SLC2A1) gene,
encoding the glucose transporter Glut1 [Figure 1; (89)]. Through
a direct interference with Glut1-dependent glycolysis, miR-150
profoundly impacts on T cell activation in the absence of a
proper co-stimulatory signal (89). On the contrary, metabolic
reprogramming of activated T cells seems to be associated
with the upregulation of miRNAs promoting glucose uptake
and downregulation of those stimulating catabolic pathways.
In this context, Liu et al. have studied the role of miR-125b,
overexpressed in T cell acute lymphoblastic leukemia (T-ALL)

(90). The authors revealed that miR-125b regulates glucose
uptake in T cell via Glut1 by reducing the expression of TNF-
α-induced protein 3 (TNFAIP3), which inhibits the activation
of nuclear factor k B (NF-kB) [Figure 1; (90)]. These findings
suggest that, through the enhancement of glucose metabolism
and oxygen consumption, deregulation of miR-125b contributes
to abnormal differentiation of T cell in T cell leukemia (90).

It has been reported that CD28 engagement during T cell
activation promotes the expression of Cpt1a, a key enzyme for
mitochondrial FAO. This process is finely regulated by miR-33
that, in the absence of CD28 signal, attenuates Cpt1a expression,
interfering with the metabolic demand central for future recall
of memory T cells [Figure 1; (91)]. Several studies have also
reported that miRNAs control T cell metabolic reprogramming
by targeting important metabolic checkpoints, such as AMPK,
mTOR, and c-Myc (92–94). Ouimet et al. unveiled that miR-33
targets AMPK, inducing an unbalance between aerobic glycolysis
and mitochondrial OXPHOS (92). miR-33 affects oxidative
phosphorylation and induces macrophages M2 polarization
through direct targeting of AMPK [Figure 1; (92)]. The same
authors revealed that miR-33 inhibition increased macrophage
expression of the retinoic acid (RA)-producing enzyme aldehyde
dehydrogenase family 1, subfamily A2 (ALDH1A2), and of
retinal dehydrogenase enzyme, with subsequent production
of RA, which favors differentiation of FoxP3+ CD4+

T cells (92).
Several other miRNAs are involved in the control of mTOR

pathway; in particular, an increased activation of mTOR, leading
to S6 and AKT phosphorylation, has been observed in the
absence of co-stimulatory signals in CD4+ T cells deficient for
RNaseIII enzyme Dicer, a key component of miRNAs biogenesis
(93). Two miRNAs are involved in the fine regulation of mTOR
and Rictor mRNA expression. Specifically, the downregulation of
let-7c miRNA andmiR-16 in Dicer-deficient CD4+ T cells causes
TCR signaling amplification and increased IL-2 production, due
to overexpression of mTOR and Rictor mRNAs [Figure 1; (93)].
Subsequently, restoration of mTOR and Rictor expression by
genetic manipulation determines reduction of IL-2 production at
levels sufficient to avoid anergy in response to TCR engagement
(93, 94). Thus, let-7c miRNA and miR-16 control the balance
between activation and anergy through post-transcriptional
control of mTOR components in T cells [Figure 1; (93, 94)].

mTOR pathway is also regulated by miR-150 expressed at high
levels during differentiation of naive CD4+ T cells into Treg
cells; miR-150 efficiently represses mTOR in cooperation with
miR-99a, and this promotes Treg cell differentiation [Figure 1;
(87)]. In addition, a recent report showed that miR-451a directly
targets c-Myc in Jurkat T cells; indeed, miR-451a negatively
correlated with c-Myc expression in CD4+ T cells from dilated
cardiomyopathy subjects. These results suggest a role of the miR-
451/c-Myc pathway in CD4+ T cell proliferation and activation
[Figure 1; (95)].

These data support the idea that, through the modulation of
intracellular metabolic programs, miRNAs are able to influence T
cell fate and differentiation (96). Understanding the mechanism
by which miRNAs target metabolism in T cells may lead to
therapeutic strategies for immune-related diseases.
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T CELL METABOLIC ALTERATION IN

AUTOIMMUNITY: THE miRNA

CONNECTION

Given the impact of miRNAs in the regulation of T cell metabolic
programs, aberrant miRNA expression could interfere with T
cell fate with consequent loss of immune homeostasis and
autoimmunity (97–100). Autoimmune diseases afflict about 7–
9% of the worldwide population; in particular, type 1 diabetes
(T1D), systemic lupus erythematosus (SLE), and multiple
sclerosis (MS) have been increasing in the last few years (101–
104). The role of T cell metabolism in the control of immune
function and how its alteration could influence immune response
during autoimmunity have been well-characterized (24, 105–
111). Naïve T lymphocytes are metabolically inactive, and
their differentiation is controlled by metabolic reprogramming,
involving glycolysis, FAO, and OXPHOS (10, 112–115). It
is well-known that activated T cells require high levels of
metabolic compounds to maintain their viability and function
(57). In particular, it has been shown that glycolysis sustains
cytokine production in Teff cells (57); moreover, FAO and
OXPHOS play an important role to increase the inflammatory
capacity of memory T cells, and this allows a rapid response
upon antigen recall (116, 117). Thus, an aberrant metabolic
environment could influence the development of inflammation
and autoimmune disorder by fueling the differentiation and
activation of pathogenic T cells.

miRNAs were shown to regulate metabolism-related genes
in T1D, an autoimmune disease characterized by persistent
hyperglycemia secondarily to pancreatic β-cell destruction
and insulin deficiency (118, 119). Increased glucose levels
in the extracellular microenvironment determine a metabolic
reprogramming that fuels autoreactive Teff cell activation and
IFN-γ secretion (57, 114, 116). Glucose-activated Teff cells
upregulate Glut4 and insulin receptor substrate (IRS)-1 on their
surface to sustain glycolytic rate and produce pro-inflammatory
cytokines and reactive oxygen species (ROS) that promote
the autoimmune response (120). In this context, let-7 family
of miRNAs, which control several genes involved in glucose
homeostasis, insulin resistance, and cell differentiation, has been
reported to control important reguatory mechanisms in T1D
subjects [Table 1; (121–123)]. Let-7miRNAs are one of the largest
and highly conserved family of miRNAs expressed in T cells,
present in multiple copies in the genome; the number of let-7
miRNAs differs between species; for example, in humans, there
are 10 mature let-7 miRNAs (124). It has been shown that let-7
miRNAs target multiple genes related to glucose response and
the insulin-PI3K-mTOR pathway, such as insulin-like growth
factor 1 receptor (IGF1R), insulin receptor (INSR), and IRS-2
but also regulate genes involved in the effector functions of CTLs
(i.e., granzyme A, granzyme B, perforin 1, and eomesodermin)
(121, 122, 125). In particular, it has been shown that four
members of the let-7 miRNAs family (let-7a, let-7e, let-7f,
and let-7g) were higher in PBMCs from T1D subjects (126);
however, how these miRNAs are involved in T1D pathogenesis is
poorly understood. Together, these results suggest that an altered

TABLE 1 | miRNAs involved in T cell metabolic reprogramming, during

autoimmune diseases: type 1 diabetes (T1D), systemic lupus erythematosus

(SLE), and multiple sclerosis (MS).

miRNAs Diseases Targets References

let-7 family T1D IGF1R; INSR; IRS-2 (121–123, 126)

miR-378 T1D GDP; DDAH1; LDHA; CRAT (127–129)

miR-16-2 T1D CD28 (130)

miR-551b T1D FasL (130)

miR-877 T1D AIRE (130)

miR-26a SLE EZH2 (131–134)

miR-633 SLE AKT1 (135)

miR-766-3p SLE IRS-2; PI3K receptor 1 (136)

NovelmiRNA-25 SLE AMPD-2 (137)

miR-19b MS PTEN (138)

miR-99b-5p MS IGF1R; mTOR; AKT1 (138–142)

miR-21 MS SMAD7 (143–146)

insulin–PI3K–mTOR pathway in T cells of T1D individuals may
determine an aberrant glucose uptake as a consequence of a
defective regulation of insulin receptor genes. This impaired
metabolism could favor the differentiation and activation of
pathological Teff cells in T1D patients. Furthermore, serummiR-
378 negatively correlates with insulinoma-associated protein 2
(IA2A) and the Zinc transporter 8 (Znt8) autoantibodies in T1D
subjects (127). This miRNA is involved in the control of several
metabolic processes, such as glycolysis, mitochondrial oxidation,
and fatty acid metabolism, through the interference with the
expression of mannose-1-phosphate guanylyltransferase (GDP),
dimethylarginine dimethylaminohydrolase 1 (DDAH1), LDHA,
and carnitine O-acetyltransferase (CRAT) enzymes [Table 1;
(127–129)]. One hypothesis is that serum levels of miR-378
could reflect metabolic alteration that promotes differentiation
of pathogenic T cells in T1D subjects (Table 1). In this context,

Zhou et al. have investigated by in silico analysis that 27
miRNAs out of 530 are located in nine human insulin-dependent

diabetes mellitus (IDDM) loci associated with T1D susceptibility

(130). Among them, miR-16-2, miR-551b, and miR-877 target
specific genes involved in the activation of Teff cells, such as

CD28, Fas ligand (FasL), and the autoimmune regulator (AIRE),

respectively [Table 1; (130)].
miR-26a is an additional miRNA associated with T cell

dysfunction, glucose metabolism, and autoimmune disease
development (131, 132). Its expression in T cells is regulated
by glucose availability, and it is able to target the epigenetic
regulator enhancer of zeste homolog 2 (EZH2), a histone-
lysine-N-methyltransferase, well-known to improve effector T
cell function by inhibiting Notch signaling repressors [Table 1;
(133, 147)]. In SLE subjects, the levels of miR-26a in CD4+

T cells negatively correlate with disease severity; this suggests
that the reduced miRNA regulation of EZH2, secondarily to
an increased glycolytic activity in CD4+ T cells, sustains their
activation (134, 148). Several defects in metabolic pathways
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of T cells from SLE subjects have been described, especially
those related to mitochondrial dysfunction (149–151). SLE is
a complex multifactorial autoimmune disease where loss of
tolerance determines the generation of antinuclear antibodies
produced by B lymphocytes and tissue damage by autoreactive
Teff cells (150, 152). Mitochondrial membrane hyperpolarization
occurs in CD4+ T cells from SLE subjects, leading to increase
of ROS and depletion of ATP and glutathione, determining an
impaired T cell activation and cell death (149, 153, 154). Of
note, mounting evidence show a role for mTOR as a sensor of
mitochondrial dysfunction in Teff cell differentiation during
SLE (155, 156). It has been recently reported that miR-633
that targets the AKT/mTOR pathway is significantly reduced
in CD4+ T cells from SLE-affected subjects, and its expression
negatively correlates with disease activity [Table 1; (135)]. In
more detail, miR-633 inhibits the AKT/mTOR signaling and
increases the induction of several cytokines, such as IL-4,
IL-17, and IFN-γ, thus contributing to disease pathogenesis
[Table 1; (135)]. Together with the abovementioned study,
others reported an increase of miR-766-3p in CD4+ T cells from
SLE subjects. Potential target genes of this miRNA are IRS-2
and PI3K receptor 1, both involved in the PI3K/AKT/mTOR
pathway [Table 1; (136)]. These data suggest that CD4+

T cells of SLE subjects have an impaired PI3K signaling,
which could affect their differentiation and function, leading
to the development of autoimmunity. Recently, Guo et al.
reported the upregulation of several miRNAs associated to
metabolic pathways in PBMCs from SLE patients, such as
NovelmiRNA-25 and miR-1273h-5p (137). NovelmiRNA-25
targets the enzyme adenosine monophosphate deaminase
(AMPD)-2 involved in purine nucleobase or nucleotide
metabolism by converting AMP to inosine monophosphate
(IMP) [Table 1; (137)]. The overexpression of NovelmiRNA-
25 associates with a downregulation of AMPD-2 protein in
PBMCs from SLE subjects, contributing to AMP accumulation
that improved the activation of pro-inflammatory pathways
[Table 1; (137, 157)]. Moreover, increased levels of AMP
contribute to activate AMPK, a key enzyme for cellular metabolic
reprogramming (42). Of note, NovelmiRNA-25 positively
correlates with disease activity, suggesting an important role
for this miRNA as a biomarker to predict the activation of
pathogenic T cells.

The role of miRNAs in the regulation of autoreactive T
cell function has been reported also in MS (158–160). MS
is the most common chronic inflammatory demyelinating
disease of the central nervous system (CNS), characterized
by autoreactive T cells able to target myelin-based antigens,
leading to demyelinating lesions and neuronal degeneration
(161). During MS, the demyelinating process associates with
metabolic reprogramming in neuronal cell bodies sustaining
chronic inflammation through the release of pro-inflammatory
cytokines (162, 163). These events promote the activation
of CD4+ T cells, which further increase neuronal damage
(162). Mounting evidence highlights the close relationship
between T cell metabolic alterations and neurodegeneration
in MS (105, 164, 165). Impaired glycolytic engagement
has been described in Tconv cells from naïve-to-treatment

relapsing remitting (RR)-MS subjects during the generation
of induced (i) Treg cells, which contributes to loss of immune
tolerance (105). In more detail, the glycolytic enzyme enolase-
1 accumulates in the nuclei—secondarily to the reduced
engagement in the glycolytic cascade—and constrains the
induction of FoxP3 expression during the generation of
Treg cells (105). Moreover, other key enzymes involved in
glycolysis and mitochondrial respiration are reduced in CD4+

T cells from RR-MS subjects, such as aldolase, hexokinase
1, Glut1, dihydrolipoamide S-acetyltransferase (DLAT), and
dihydrolipoamide S-succinyltransferase (DLST); interestingly,
restoration of these enzymes after IFN-β-1a treatment correlates
with disease amelioration (165). Several studies also reported that
alterations in the PI3K/AKT/mTOR pathway, which controls T
cell activation and metabolism, ameliorate the clinical course
of MS (166–169). Also, rapamycin—an immunosuppressant
drug that inhibits mTOR by destabilizing the mTOR–Raptor
complex—controls disease progression in experimental
autoimmune encephalomyelitis (EAE) mice by suppressing
Teff cell functions (170, 171). In this context, miR-19b and
the miR-99 family are associated with the mTOR pathway,
affecting effector T cell activation during MS [Table 1; (138)]. By
targeting PTEN, the negative regulator of the PI3K/AKT/mTOR
signaling pathway, miR-19b enhances mTOR activity sustaining
pathogenic Th17 cell development [Table 1; (138)]. Other
reports revealed also that the miR-99 family modulates the
PI3K/AKT/mTOR signaling pathways. In particular, the miR-
99b-5p, a member of this miRNA family, is significantly higher
in splenocytes of EAE mice; in silico analysis confirmed that it
may target multiple genes, such as IGF1R, mTOR, and AKT1
[Table 1; (139–141)]. Combined miRNA and mRNA expression
analysis confirmed these data also in human disease; indeed,
miR-99b-5p levels are upregulated in PBMCs from pediatric
MS subjects (142). These results suggest an important role for
miR-99 family, in particular the miR-99b-5p, in T cell activation
during MS through a hyper-activation of the mTOR pathway in
pathogenic lymphocytes.

Furthermore, recent reports suggest that fumaric acid ester
(FAE)—aKrebs cycle intermediate used forMS therapy—induces
hypermethylation of the miR-21 locus in CD4+ T cells, and
this constrains Th17 cell differentiation and function [Table 1;
(143)]. In more detail, FAE treatment reduces Th17 cells, by
direct hypermethylation of CpG sites spanning the MIR-21
promoter. Several studies have shown that miR-21 is upregulated
in PBMCs from MS subjects and also in CNS-infiltrating T
cells of EAE mice (144, 145). As a therapeutic tool in MS
subjects, FAE selectively reduces miR-21 transcripts in Th17 cells
and indirectly increases its target—the small mothers against
decapentaplegic homolog 7 (SMAD7)—an inhibitor of their
differentiation [Table 1; (144, 146)].

Taken together, these findings support the existence of a cross-
talk between metabolic programs and miRNA network in T
cells. Through a strong impact on the intracellular molecular
pathways that control T cell differentiation and function, miRNA
dysregulation leads to an imbalance between autoreactive T
cell activation and regulatory function with consequent loss of
immunological tolerance.
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CONCLUDING REMARKS

Our understanding of the link between T cell metabolism
and miRNA expression has substantially increased in the
past decade. The ability of several miRNAs to regulate and
reprogram metabolic pathways that drive T cell function
and differentiation may represent a hallmark to improve
the comprehension of the molecular processes underlying
the pathogenesis of autoimmune disorders. However, further
studies are required to better understand the connection
among miRNAs, T cell metabolism, and loss of immunological
tolerance. The precise mechanisms by which miRNAs target
the genes encoding for enzymes, multi-protein complex, and
transcription factors related to T cell metabolism and how
their alteration associates with the development of autoimmune
disorders remain to be dissected. Considering the increasing
important role of miRNAs in the immune homeostasis,
therapeutic approaches could represent an innovative way to
control the aberrant metabolism sustaining autoreactive T
cell clones.
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Upon activation, naïve CD4+ T cells differentiate into a number of specialized T helper

(Th) cell subsets. Th2 cells are central players in immunity to helminths and are implicated

in mediating the inflammatory pathology associated with allergies. The differentiation of

Th2 cells is dependent on transcription factors such as GATA3 and STAT6, which prime

Th2 cells for the secretion of interleukin- (IL-) 4, IL-5, and IL-13. Several lines of work

now suggest that differentiating Th2 cells in the lymph node are potent IL-4 cytokine

producers, but do not become competent IL-5- and IL-13-producing cells until after

receiving cues from non-lymphoid tissue. It is evident that Th2 cells that enter tissues

undergo considerable changes in chromatin architecture and gene expression, and that

over this time, the metabolic requirements of these cells change considerably. Herein, we

discuss the metabolic requirements of Th2 cells during their early and late differentiation,

focusing on the impact of glucose and lipid metabolism, mTOR activation, the nuclear

receptor PPAR-γ and several metabolites.

Keywords: Th2, PPAR-γ, lipid metabolism, glycolysis, mTOR

INTRODUCTION

CD4T cells are central mediators of immunity to infections and cancers. Pioneering studies by
Mosmann and Coffman identified mouse CD4T cell clones with distinct functional properties that
they termed T helper (Th) 1 and Th2 cells (1). Over 30 years of research has since defined several
additional subsets of CD4T cells including Th17, Tfh, and T regulatory (Treg) cells. Th2 cells are
defined by the expression of lineage-defining transcription factors including GATA3 and STAT6,
surface molecules such as IL-33R and CCR8 and the effector cytokines IL-4, IL-5, and IL-13 (2).
Through the secretion of IL-4, IL-5, and IL-13, Th2 cells promote B cell isotype class switching to
IgG1 and IgE (3), induce the alternative activation (M2) phenotype in macrophages (4, 5), induce
eosinophil recruitment and promote mucus secretion through the process of goblet cell metaplasia
(6, 7). These effector functions have been shown to support immunity to helminths, venoms, certain
bacterial infections, and are also beneficial in tissue healing (8, 9). However, Th2 cell-mediated
immune responses are also implicated in allergic disorders including asthma, atopic dermatitis,
chronic rhinitis, and some forms of gut disorders including ulcerative colitis (10–12). The rise in
Th2 cell-mediated disorders has become especially apparent in the past 50 years and represents a
significant and growing health and economic challenge.

THE PROCESS OF TH2 CELL DIFFERENTIATION

Th2 cell differentiation from naïve CD4T cells is typically dependent on the presence
of interleukin-4 (IL-4) in the local cytokine milieu. Ligation of the IL-4R induces
JAK1/3 mediated phosphorylation and dimerization of Signal Transducer and Activator
of Transcription-6 (STAT6) (13). pSTAT6 dimers then translocate to the nucleus and
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induce expression of GATA3; the so-called “master” regulator
of the Th2 cell lineage. GATA3 is sufficient to induce the Th2
cell phenotype, since for instance, enforced retroviral expression
of GATA3 results in IL-4 production in Th1 cells (14, 15).
Furthermore, GATA3-deficient T helper cells have impaired Th2
cell differentiation as shown in in vitro and in vivo studies (16–
19). Expression of GATA3 results in profound modifications to
the chromatin landscape across the Il4/Il5/Rad50/Il13 locus at
a number of well-characterized sites including several enhancer
sites and a locus control region located in Rad50 (20–23).
Together with STAT6, this creates an “active” chromatin hub that
allows co-ordinated expression of Th2 cell effector cytokines and
a positive feedback loop through which GATA3-induced IL-4
maintains Th2 cell identity (24–26). Other genes important in the
later stages of Th2 cell differentiation are also bound by GATA3
including the Il1rl1 gene encoding a subunit of the IL-33R known
as ST2, and the chemokine receptor Ccr8 (27, 28).

Although the canonical pathway of Th2 cell differentiation is
thought to proceed through GATA3 and STAT6, a number of
non-classical pathways are also thought to be important during
the early stages of Th2 cell differentiation, exemplified by the
presence of IL-4+ and IL-13+ Th2 cells in STAT6-deficient mice
(29). IL-2, induced upon TCR activation, has been shown to
be capable of driving IL-4 production in T helper cells in an
IL-4R-independent manner (30, 31). Triggering of the IL-2R
results in activation of STAT5, with STAT5A being the most
dominant isoform inducing downstream IL-4 expression (16).
Support for the role of STAT5A in Th2 cell differentiation comes
from studies of double STAT5A/STAT6-deficient mice that have
further impairments in Th2 cell responses when compared to
single STAT6-deficient mice (31, 32). STAT3 was also shown
to be important for Th2 cell differentiation by guiding STAT6
to critical Th2 cell gene loci (33). Other studies have shown
roles for a number of transcription factors in type 2 cytokine
production including c-Maf, NF-κB, and IRF4 during the early
stages of Th2 cell differentiation (34–36). Therefore, Th2 cell fate
is determined by a complex network of transcription factors that
together shape and promote naïve cells to adopt andmaintain the
Th2 cell phenotype.

TIMED CYTOKINE EXPRESSION IN TH2
CELLS

The Th2 cell effector cytokine genes Il4, Il13, and Il5 are
positioned together with Rad50 (Chromosome 5 in humans;
Chromosome 11 in mice), which contains a locus control region
that co-ordinates at least Il4 and Il13 expression (24, 37). Despite
the close proximity of these genes, their expression is exquisitely
timed and not always concomitant. IL-4 expression is clearly
detected in activated CD4T cells in the lymph node, although
several studies have shown that these cytokine-secreting cells are
a mixed population of Th2 cells and Tfh cells, which require
only low levels of GATA3 expression together with c-Maf (38–
40). Meanwhile, IL-5 and IL-13 expression is a feature of Th2
cells only once these cells enter inflamed tissues such as the
lungs (39, 41, 42). In response to house dust mite (HDM)

allergens, airway Th2 cells tended to express less Il4 mRNA
than their lymph node counterparts, suggesting that IL-4 is the
dominant cytokine in the lymph node, while IL-5 and IL-13 are
the dominant Th2 cell-derived cytokines in tissues. This distinct
timing means that the absence of IL-4 or IL-13 has distinct
functional consequences (37, 39, 41, 42). For instance, IL-4-
deficient mice were found to clear the helminth Nippostrongylus
brasiliensis more rapidly despite reduced IgE titers (43). In
contrast, IL-13-deficient mice had significantly higher worm
counts and took longer to clear infections despite no defect in
IgE production. Similar responses were observed in models of
Trichuris muris and Heligmosomoides polygyrus infection (44–
46). Hence, the quality of Th2 cells changes over time and their
function depends on the tissue context.

METABOLIC PATHWAYS IMPORTANT TO T
HELPER CELLS

Generation of energy and biosynthesis of metabolites is critical
to the activation, proliferation and differentiation of T helper
cells (47). Naïve CD4T cells favor the generation of energy
via mitochondrial pathways (48). The tricarboxylic acid (TCA)
cycle is a highly efficient means of converting acetyl-CoA into
carbon dioxide and ATP and leads to the generation of NADH
and FADH2 in the inner membrane of the mitochondria (47).
These two products are vital for the transfer of electrons in
the electron transfer chain (ETC) via complexes I–IV. Given
its greater efficiency in terms of ATP generation compared to
glycolysis, the TCA cycle is able to meet the energy needs of long
lived cells such as naïve CD4T cells (49, 50).

Fatty acid oxidation is a means by which T helper cells can
convert fatty acids for the generation of significant amounts
of energy. The initial steps occur in the cytosol using ATP
to generate fatty acid acyl-CoA, which is transported into the
mitochondria via carnitine palmitoyltransferase I (CPT-1). Beta
oxidation of fatty acids then produces acetyl-CoA, NADH and
FADH2 (47), which all help to fuel the TCA cycle.

During initial activation, glycolysis becomes the dominant
metabolic pathway in T helper cells (51). Under the control of
transcription factors such as c-Myc and HIF-1α, extracellular
glucose is taken up and catabolized to pyruvate, which yields
2 ATP per molecule of glucose (52–54) and provides a source
of acetyl-CoA for the TCA cycle. Glycolysis also rapidly
provides NADH and a range of intermediates, which are
useful in anabolic pathways including nucleotide, amino acid
and fatty acid biosynthesis (47). Reduction of pyruvate to
lactate is also important to replenish NAD+ levels within
the cell.

In addition to oxidation of lipids, de novo fatty acid synthesis
needs to take place and is controlled by enzymes including sterol
regulatory element-binding protein (SREBP), fatty acid synthase
(FAS) and Acetyl-CoA carboxylase (ACC) (55). Straight chain
and branched fatty acids are produced from products generated
during glycolysis, the TCA cycle and the pentose phosphate
pathway (47). For straight chain fatty acids, citrate is exported
from the mitochondria and converted into acetyl-CoA in the
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cytosol. Following carboxylation by ACC, it can be further
extended by FAS in a NADPH-dependent mechanism to varying
chain lengths. In order to produce branched forms, amino acids
such as leucine or valine are required while fatty acids may
also be combined with glycerol to form triacylglycerides and
phospholipids (56).

All metabolic pathways are highly intertwined since products
and intermediates from one pathway can function as key
synthetic precursors in other pathways. These pathways not only
promote cell division, survival and expansion, but metabolites
and co-factors can also directly influence gene expression
by modifying chromatin, acting as ligands for transcription
factors and influencing the stability of cytokine mRNAs in
the cytosol.

Below, we review the literature on the metabolic demands
of CD4T cells, in particular as they relate to Th2 cells. We
address what is known of early Th2 cell differentiation, which
primarily occurs in the context of the lymph node and then
address metabolic adaptations of Th2 cells in the context of
tissue immunity.

METABOLIC CHANGES DURING EARLY
ACTIVATION OF TH2 CELLS

Promotion of Th2 Cell Differentiation by
Mammalian Target of Rapamycin (mTOR)
In early and probably also later differentiation of T helper
cells, coordination of cell growth, proliferation and metabolism
is mediated by the kinase mTOR (57) (Figure 1). The mTOR
complex monitors nutrient availability and integrates signals
from growth factors and cytokine receptors to regulate glucose,
amino acid and lipid metabolism. mTOR complex1 (mTORc1)
is formed with the scaffolding protein regulatory associated
protein of mTOR (RAPTOR) while mTOR complex 2 (mTORc2)
uses Rapamycin-insensitive companion of mammalian target
of rapamycin (RICTOR) as a scaffold (58). Differentiation
toward the effector Th cell lineages Th1, Th2, and Th17 is
known to be reliant on mTOR activity, while inhibition of
mTOR with rapamycin has been shown to favor Treg cell
differentiation (59–61). All effector lineages including Th2 cells
have been shown to require mTORc1 activation, since deletion
of RAPTOR and thereby mTORc1 potently inhibits effector
differentiation (62).

A number of studies have also highlighted a specific role for
mTORc2 in Th2 cell differentiation. mTORc2 inhibits suppressor
of cytokine signaling-5 (SOCS5) (63), which in turn suppresses
IL-4-dependent STAT6 signaling to block Th2 cell differentiation
(64). SGK1, a downstream target of mTORc2, promotes Th2
cell lineage commitment while blocking Th1 cell development
(65). Furthermore, deletion of the GTPase RhoA, another
mTORc2 target leads to decreased glycolysis and IL-4 production
(66). Thus, while there is a clear requirement for mTORc1 in
early Th2 cell development, signals downstream of mTORc2
seems to have distinct positive effects on the differentiation of
Th2 cells.

Early Induction of Glycolysis in T helper
Cells
Naïve T cells rely primarily on oxidative lipid metabolism as
they recirculate among lymph nodes (51, 52). However, naïve T
cells are poised for a rapid switch to effector cell metabolism by
accumulating untranslated mRNAs required for glycolysis and
fatty acid synthesis (67). Activation of T cells through the T
cell receptor, co-stimulatory ligands and cytokine receptors is
followed by expansion, differentiation and production of effector
cytokines; processes which place a great metabolic pressure
on cells.

Cells can upregulate glycolysis at faster rates than oxidative
phosphorylation, as glycolysis requires no mitochondrial growth
(47). The high rate of glycolysis in effector T cells requires
activation of mTOR, HIF-1α and increased expression of
glucose transporters like Glut1, which is essential for CD4
but not for CD8T cells (68, 69). Glut1 is translocated to the
cell surface upon activation, a process mediated through the
phosphatidylinositol 3-kinase (PI3K)-AKT pathway (70) and
Myc expression (53). Glycolysis supports T cell activation in
many ways; for instance by supporting epigenetic modifications
through lactate dehydrogenase A (54) and by supplying dividing
cells with many side products required for division and growth.
Effector T helper cell subsets including Th1, Th2, and Th17
are all highly dependent on glycolysis for growth and function,
and a small subset of Treg cells has also been shown to be
highly glycolytic (61). Effector T helper cells have been shown
to undergo various levels of glycolysis in in vitro assays and Th2
cells express the most Glut1 and appear the most glycolytic, when
analyzed via Seahorse Analyzer (41, 51), suggestive of a more
prominent role for the glycolytic machinery in these cells.

Fatty Acid Metabolism in Early T helper
Cell Activation
A critical aspect of early T cell activation is the upregulation
of lipid metabolism, especially lipid synthesis pathways, which
enables cells to grow and divide. Typically, mTORc1 promotes
lipid synthesis pathways by activating SREBP transcription
factors (71). One of many targets of SREBPs is an enzyme
essential in de novo synthesis of fatty acids, ACC1. In studies
by Berod et al. (72), inhibition of ACC1 genetically or
pharmaceutically prevented the differentiation of all effector
lineages, while Treg cells preferentially differentiated from
cultures of Th17 cells. This demonstrates that fatty acid synthesis
is an essential feature of early T helper cell differentiation. In a
separate study, it was suggested that early T helper cell activation,
proliferation and growth may also rely on fatty acid uptake,
orchestrated by the nuclear receptor, peroxisome proliferator
activated receptor gamma (PPAR-γ) (73). However, the early
division and proliferation of T helper cells was shown to be
unaffected by genetic loss of PPAR-γ in another study (74) and
the increase in PPAR-γ expression under neutral conditions is
minor (73, 74). PPAR-γ becomes highly expressed specifically in
Th2 cells and likely regulates fatty acid metabolism later in the
Th2 cell differentiation program.
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FIGURE 1 | Th2 cell differentiation requires extensive metabolic reprogramming. Upon encountering cognate antigen in the lymph node, naive CD4T helper cells

differentiate into Th2 cells under the influence of the IL-4-STAT6-GATA3 axis. Concurrently, changes in energy requirements occur as a Th2 cell differentiates, which

requires an increase in glucose uptake via GLUT1 and marked upregulation of glycolysis. mTORc1 senses nutrient availability and co-ordinates metabolism in T helper

cells, and mTORc2 promotes Th2 cell differentiation through several mechanisms. As Th2 cells enter inflamed tissue sites such as the lung, they continue to

differentiate through exposure to a range of inflammatory cytokines including TSLP, IL-25, and IL-33 that promote production of effector cytokines such as IL-5, IL-9,

and IL-13. In addition, PPAR-γ drives expression of lipid metabolic genes such as Fabp4 and Vdlr as well as genes critical to Th2 cell effector functions, such as ST2

(Il1rl1) and Il5. Extracellular metabolites present in the tissues including SCFA, ATP, and TRP can further promote Th2 cell differentiation and/or function. On the other

hand, glutamine obtained from the diet potentiates Th1 cells at the expense of Th2 cells.

METABOLIC CHANGES DURING LATER
ACTIVATION OF TH2 CELLS

Inflammatory Cytokines in the Tissue
Potentiate Th2 Cell Differentiation
Priming of CD4T cells toward the Th2 cell subset in the lymph
node induces the production of IL-4. However, several studies
in the context of infection to N. brasiliensis and H. polygyrus,
or to the allergen house dust mite (HDM) have shown that a
large portion of IL-4-producing cells in these settings are Tfh cells
(38, 75, 76). Full Th2 cell effector functions in the N. brasiliensis
and HDM models, are not observed until T helper cells reach the
lung tissue.

It is increasingly appreciated that the activation of epithelial
and innate cells at the site of allergen, venom or pathogen

entry plays an important role in shaping Th2 cell responses
(77). Impaired barrier function, exposure to damage associated
molecular patterns (DAMPs) and microbial products can trigger
receptors like Toll Like Receptor-4 (TLR4) and Protease
Activated Receptor-2 (PAR2) in epithelial and tuft cells that
line the surface of the airways (78, 79). These cells as well
as innate lymphoid cells (ILCs), macrophages and dendritic
cells (DCs), in turn secrete a range of potent inflammatory
cytokines including IL-1, IL-18, IL-25, IL-33, GM-CSF, M-
CSF, and thymic stromal lymphopoietin (TSLP) (42, 77).
In the case of DCs, cytokines such as TLSP and IL-
33 can promote expression of OX40L and suppression of
IL-12 which further promotes Th2 cell differentiation and
function (80–85). These signals from epithelial cells and
innate cells in the lung have been shown to contribute
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significantly to the final identity of Th2 cells in the tissue
environment (41, 42).

Studies of infection with the helminth N. brasiliensis suggest
that cytokines such as IL-25, IL-33, and TSLP are not required for
the initial stages of Th2 cell differentiation within the lymph node
but function to shape those “primed” Th2 effector cells upon
entry to the inflamed sites such as the lung (42). Furthermore, our
recent work depicted that activated T cells entering the lung were
exposed to type I interferons in the context of HDM challenge,
although how this cytokine may impact on Th2 cell functions
remains unclear (41).

Comparison of the transcriptional and chromatin landscapes
of lung Th2 cells to Th2 cells or naïve CD4T cells from the lymph
nodes demonstrated stark differences in lung Th2 cells (41, 42),
suggesting that these cells more closely aligned with type 2 ILC
(ILC2) from the lung than their lymph node counterparts (86).
Thus, striking changes in cellular identity occur when T helper
cells reach inflammatory tissues, and this is likely coupled with
important metabolic changes.

Activation of Lipid Metabolism Pathways Is
a Prominent Feature of Tissue Th2 Cells
A distinguishing feature of Th2 cells in the airways of mice
administered HDM antigens was a striking upregulation in the
expression of genes related to lipid oxidation and synthesis
(41) (Figure 1). Comparison of DNA accessibility by ATAC-
Sequencing also revealed more open chromatin at many gene
loci associated with lipid metabolism in Th2 cells, compared with
other T helper cell subsets in the lung, or naïve CD4T cells in the
lymph node (41). This feature of Th2 cells appears to be shared by
ILC2 in the gut and lungs (87, 88). Using etomoxir and orlistat in
vivo to block fatty acid oxidation, synthesis and uptake, Wilhelm
and colleagues demonstrated that ILC2 were highly dependent
on fatty acid metabolism both for their expansion and function
(88). Similarly, blockade of these pathways in Th2 cell-mediated
inflammation of the airways reduced Th2 cell pathologies such as
airway eosinophilia and goblet cell metaplasia, and appeared to
reduce T helper cell expansion and the production of IL-5 and
IL-13 by Th2 cells to some extent (41).

PPAR-γ: Linking Th2 Cell Function and
Cellular Metabolism
A feature of Th2 cells, ILC2, and alternatively activated M2
macrophages is the expression of PPAR-γ, a master regulator of
adipocyte differentiation and regulator of lipid metabolism in
various cell types (89–93). PPAR-γ belongs to a superfamily of
nuclear receptors whose transcriptional effects are regulated by
many natural ligands and dependent on co-factors such as CEBP,
RXRα and other transcription factors (94). In macrophages and
dendritic cells, PPAR-γ expression is induced by IL-4R ligation
and STAT6 activation and it is likely the same mechanism at
play in Th2 cells (95–97). The absence of PPAR-γ prevents the
acquisition of the M2 phenotype, with impaired fatty acid uptake
and mitochondria biogenesis (96, 98). The absence of PPAR-γ in
CD4T cells ameliorated Th2 cell-associated pathology in airway
inflammation models and impaired Th2 cell-mediated immunity

to H. polygyrus (91, 93). An important facet of this phenotype
was that PPAR-γ appeared to be particularly important for the
pathogenic phenotype of Th2 cells in the lung (91, 93). Early
activation of Th2 cells in lung-draining lymph nodes did not
appear to be greatly affected (91). This suggests that PPAR-
γ becomes important in sensing ligands in inflamed tissue. It
remains unclear how the loss of PPAR-γ impacts on ILC2,
although its high expression specifically in this subset of ILC, and
its important role in M2 macrophages and Th2 cells implies that
it could be important for ILC2 functions.

PPAR-γ Directly Promotes Th2 Cell
Functions
The impact of PPAR-γ on the expression of the early Th2 cell
effector cytokine IL-4 is ambiguous. Studies have characterized
that the absence of PPAR-γ reduces (93), increases (74) or
has no effect (91) on CD4T cell-derived IL-4, thus making it
apparent that the impact of PPAR-γ on IL-4 production is context
and assay dependent. A clearer impact of PPAR-γ has been
demonstrated for features of Th2 cells in lung tissue. For instance,
the absence of PPAR-γ in CD4T cells impairs the expression of
ST2 in lung and airway Th2 cells, and significantly impairs the
expression of IL-5 and IL-13 by CD4T cells (91). In humans,
PPAR-γ is highly expressed in CRTH2+ Th2 cells thought to
harbor the pathogenic Th2 cell subset (93). It has also been linked
to IL-9 production by a subset of pathogenic Th2 cells, which
are prevalent in lesions taken from the skin of contact dermatitis
patients (99). Inhibition of PPAR-γ profoundly suppressed the
frequency of IL-9+ Th2 cell clones.

Mechanistic studies have pinpointed an enrichment for PPAR-
γ binding sites at open chromatin regions in Th2 cells (41),
and chromatin immunoprecipitation-sequencing (CHIP-Seq)
has identified a number of critical target genes for PPAR-γ
binding including Ap1, Ets1, Runx1, Gata3, Stat5, Il5, and Il13
(100). Since PPAR-γ is a potent repressor as well as activator
of gene transcription, it is difficult to predict the impact of this
nuclear receptor through CHIP-Seq and ATAC-Seq analysis. Our
own work demonstrated that the addition of PPAR-γ ligands
to in vitro cultures had little direct impact on effector cytokine
production by Th2 cells, but potently upregulated ST2 expression
(91). For instance, the prostaglandin derivative 15d112,14- PGJ2
(15d-PGJ2) was able to induce ST2 expression, as did synthetic
agonists such as pioglitazone (101, 102), a member of the class
of clinically-approved compounds known as thiazoldinediones
(TZDs). Thus, PPAR-γ plays an important role in shaping the
chromatin architecture of Th2 cells and appears particularly
important for late stage effector functions of Th2 cells.

A Role for PPAR-γ in Modulating Th2 Cell
Metabolism
While PPAR-γ is a well-characterized regulator of cellular
metabolism in macrophages, dendritic cells, tumor cells and
adipocytes (103–105), its impact on Th2 cell metabolism is less
well-understood. In co-operation with STAT6, PPAR-γ is thought
to regulate lipid metabolism in DC andmacrophages through the
regulation of genes including Fabp4 (97).
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In Th2 cells, arrays of PPAR-γ-deficient ST2+ T helper
cells suggested that a range of metabolic pathways may be
affected by the absence of PPAR-γ including carbohydrate
synthesis, metabolite transport, lipid storage and lipolysis (91).
However, these gene expression arrays are complicated by
the fact that ST2+ Th2 cells have difficulty differentiating
into fully pathogenic Th2 cells. In the study by Angela and
colleagues, PPAR-γ was shown to be induced by mTORc1
activation and particular important for the expression of
genes associated with fatty acid uptake and lipolysis including
Ldlr, Scrab2, Vdlr, Plin2, and Fabp5 (73). In this study,
silencing of PPAR-γ impaired oxidative metabolism and
glycolysis suggesting that PPAR-γ may not only promote
lipid metabolism.

Thus, PPAR-γ plays important roles in promoting the
expression of critical Th2 cell-associated factors such as ST2,
but also likely contributes to regulating the lipid metabolism in
these cells, especially in the tissue context. More mechanistic
studies are required to dissect the impact of PPAR-γ on
cellular metabolism in T cells, potentially in the context of
overexpression systems.

Glycolysis and Th2 Effector Cell Function
in situ
Glycolysis is not only important in the early phases of T
cell activation but may also play a direct role in shaping T
cell effector functions in inflamed tissues such as the lung.
Active glycolysis has been shown to promote production
of IFN-γ by Th1 cells and CD8T cells in vitro and in
the tumor microenvironment (106, 107). In the absence
of active glycolysis, the enzyme glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) bound the 3’UTR of Ifng mRNA,
impeding its translation (106). Our own recent studies depicted
that following in vivo or in vitro blockade of glycolysis, the
expression of IL-13 and IL-5 was significantly reduced (41).
Whether this is also mediated through GAPDH remains to
be determined.

High concentrations of extracellular lactate, a byproduct
of glycolysis, has also been shown to reduce the CCL5-
induced motility of CD4T cells. This effect is mediated
by the sodium lactate transporter Slc5a12 and has been
proposed as a mechanism retaining effector cells at sites of
inflammation (108). It has also been shown to potentiate CD8T
cell function (109). Whether these mechanisms play a role
in Th2 cell function and the pathology of asthma remains
to be shown.

In summary, while glycolysis appears to be important for
effector cytokine production by T helper cells, Th2 cells in tissues
appear enriched for pathways associated with lipid metabolism
compared to other T helper cell subsets and naïve cells. This
is typified by the expression of genes associated with fatty
acid metabolism, the open chromatin state of Th2 cells at
several key genes associated with lipid metabolism, and the
requirement for PPAR-γ in mediating robust Th2 cell-mediated
immune responses.

THE ROLE OF EXTRA CELLULAR
METABOLITES ON TH2 CELL
DIFFERENTIATION AND FUNCTION

In addition to the activation of PPAR-γ by derivatives of
prostaglandins and medium chain fatty acids, a range of
other metabolites have been postulated to regulate Th2 cell
differentiation and function.

Extracellular ATP
ATP found in the extracellular environment operates as a potent
DAMP due to its almost complete absence from healthy tissues
and its quick release following cell damage (110). It is sensed
via P2X and P2Y receptors, expressed throughout the immune
system. It has been widely shown that levels of extracellular
ATP are elevated in the bronchoalveolar lavage fluid (BALF) of
asthmatic patients in comparison to healthy controls (111) and
it is thought to induce migration of eosinophils and activation of
mast cells in the lung and airways (112). Unlike Treg cells, Th2
cells appear to be relatively insensitive to cell death induced by
extracellular ATP (113). Exposure of mice to inhaled allergens
such as ovalbumin (OVA) results in an increase of ATP in
the airways (111). Non-degradable forms of ATP, which cannot
be metabolized by ectonucleases CD39 and CD73, are capable
of breaking tolerance and inducing type 2 responses to inert
antigens such as OVA (111). It can also be induced in airway
epithelium in response to allergens such as the Cockroach
allergen, Per a 10, or aeroallergens derived from Alternaria
alternata. It can drive IL-33 release which further supports Th2
cell differentiation and metabolic reprogramming in situ (114,
115). Autocrine ATP is sensed via the P2Y2 receptor, which
increases intracellular Ca2+ concentrations that in turn increase
IL-33 release. Blockade of the P2Y2 receptor is sufficient to halt
Th2 cell induction (115). ATP has also been shown to induce DCs
that promote Th2 cell responses. Interestingly, CD39-deficient
mice have defective Th2 cell responses to both OVA and HDM
(116). In the absence of CD39, DCs in these mice have impaired
purinergic receptor activity, appear less able to upregulate co-
stimulatory molecules and exhibit defects in chemotaxis. These
studies suggest an important inflammatory role for ATP in
driving Th2 cell responses to a range of allergens.

Short Chain Fatty Acids (SCFAs)
The gut microbiome greatly influences the composition of
metabolites that is in our circulation. One important immune
regulatory product of fermenting bacteria in the intestines
are SCFAs. SCFAs can be transported into cells via various
receptors and have been shown to contribute to epigenetic
modifications (117). SCFAs also bind to G-Protein Coupled
Receptor 41 (GPR41, also known as FFAR3) and GPR43
(FFAR2) (118) and can modulate immune cell functions through
these receptors. Typically, SCFAs have been shown to suppress
inflammation and promote tolerance by various mechanisms.
In line with this, mice fed a high fiber diet and hence with
high circulating levels of SCFAs, have been shown to develop
reduced airway inflammation in OVA/alum and HDMmodels of
allergic airway disease. In one study, SCFAs appeared to suppress
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dendritic cell activation and migration through GPR41 (118). In
another study, GPR41 was proposed to promote Treg cell IL-
10 production, thereby suppressing allergic airway inflammation
(119). Administration of a high-fiber or high-acetate diet in
pregnant mice was also shown to reduce allergic airway disease
in progeny, by promoting acetylation of the Foxp3 locus in
Treg cells, highlighting the potent immune modulatory effects
of these molecules (120). Studies of ILC2 have also shown
that type 2 cytokine production and GATA3 expression may
be dampened by SCFAs (121, 122). Despite the known anti-
inflammatory function of SCFAs, a recent study of Th2 cells in
people with eosinophilic esophagitis and in a mouse model of
fungal infection revealed that SCFAs may also potentiate Th2 cell
cytokine production (123). Thus, the impact of SCFAs on Th2 cell
differentiation and function requires further investigation.

Glutamine
The conditionally essential amino acid glutamine is found at
relatively high concentrations in the plasma and is capable of
providing cells with a potential source of energy. However,
under conditions of catabolic stress such as tissue damage
or infection demand for glutamine rises with immune cells
consuming particular high levels (124). Upon activation, T
cells increase their uptake of glutamine 5–10-fold through the
glutamine specific transporters SNAT-1/2 (124, 125). It serves
as an important source of nitrogen and as an anapleurotic
substrate for the TCA cycle and production of ribose in T
cells (126–128). A lack of glutamine results in a failure for
sustained proliferation and impairs cytokine release from T
cells (125). Although glutamine plays an essential role in
T cell activation, the addition of glutamine to the diet has
been shown to favor Th1 cell responses over Th2 cells (129).
Similarly, addition of high concentrations in vitro impairs Th2
cell differentiation in human PBMC cultures (130). This is at least
in part due to the ability of high concentrations of glutamine
to inhibit cytosolic phospholipase A2 (cPLA2), a key enzyme
in releasing arachidonic acid from glycerophospholipids (131).
This in turn provides the precursor molecules for a number
of eicosanoids including well-known inflammatory mediators
such as leukotrienes (LTs), prostaglandins and platelet-activating
factor (PAF), which are important for Th2 cell functions. Thus,
glutamine has the ability to regulate Th2 cell responses.

Indoamine 2,3-dioxygenase (IDO)
IDO is the rate-limiting enzyme required for tryptophan
(TRP) metabolism (132). Within tissues such as the lung,
IDO expression is high on epithelial cells and certain DC
subpopulations (133). Given its constitutively high expression on
Treg cells and cancer, IDO has been widely linked to immune
suppression although some studies have indicated that it can in
fact promote Th2 cell function. For instance it has been observed
that 3-hyrdroxyanthranilic and quinolinic acids, metabolites of
the KYN pathway, are capable of inducing apoptosis in Th1 cells
without affecting Th2 cells (134). IDO expression by eosinophils
is capable of inhibiting IFN-γ production by Th1 cells with no
effect on Th2 cell function (135).

It has also been shown that IDO can potentiate Th2 cell
cytokine production during in vitro differentiation of Th2 cells
(133). In the context of airway inflammation, IDO-deficient
mice appeared to have reduced Th2 cell responses and reduced
levels of circulating IgE. Thus, IDO may aid in potentiating
the polarization of Th2 cells and possibly inhibit bystander Th1
cells. Reduced expression of IDO during pregnancy results in
enhanced ratios of Th1:Th2 cells (136). Interestingly, KYN-TRP
levels are profoundly influenced by the composition of the gut
microbiota via activation of AhR and TLRs in the host (137).
Thus, regulation of TRP metabolism by IDO appears to promote
Th2 cell responses.

METABOLIC INTERVENTIONS TARGETING
TYPE 2 INFLAMMATION

Clinical and epidemiological studies have long indicated that
type 2 inflammation, allergies and metabolic disorders are highly
linked. For instance, a strong link between obesity and asthma
has been reported in many studies (138, 139). In addition to BMI,
other abnormalities in metabolism are also thought to predispose
children and adults to asthma (138, 139). One obvious solution to
reducing asthma linked to obesity is weight loss through exercise,
although it can be difficult for asthmatics due to exercise-induced
exacerbations. Nonetheless, aerobic exercise is known to reduce
lung and airway inflammation, and reduce pathogenic cytokine
secretion (140), which suggests that the right form of exercise
could alleviate symptoms of asthma, in some patients.

Despite recent evidence that PPAR-γ promotes Th2 cell
functions in mice and humans (91, 93), preclinical studies
had repeatedly shown that PPAR-γ agonists reduced goblet cell
metaplasia, alarmin release and airway hyperresonsiveness in
mouse models of asthma (141–144). For this reason, several trials
of TZDs were initiated in asthma and COPD. However, one
recent trial using pioglitazone resulted in exacerbations in 14%
of severe asthmatics. No patients experienced improvements in
their disease symptoms, resulting in a premature cessation of this
trial (145, 146).

In the last few years, a number of trials of putative anti-
inflammatory dietary compounds has been initiated. A recent
trial of polyunsaturated fatty acids conducted in pregnant women
in Denmark showed that infants born to mothers on this
supplement had a reduced absolute risk of developing wheeze
and asthma in the first 3 years of life (147). Thus, modulating
inflammation through the diet of mothers shows promise as
a way to prevent allergy in infants. Furthermore, the anti-
inflammatory effects of high fiber diets in preclinical studies have
led to the commencement of trials in various disease settings
including diabetes and asthma (148, 149). The results of these
trials are eagerly anticipated.

CONCLUDING REMARKS

As Th2 cells differentiate, their metabolic requirements and
exposure to nutrients changes dramatically. In the early
activation of CD4T cells, strong induction of glycolysis and
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lipid metabolism is required to kick start the differentiation of
effector T helper cell lineages including Th2 cells, seemingly at
the expense of Treg cell differentiation. These pathways drive cell
division and proliferation in essentially all T helper cell subsets,
although mTORc2 appears to promote Th2 cell differentiation
via several specific mechanisms. The extracellular environment
changes profoundly when Th2 cells move from the draining
lymph node to inflamed tissues via the vasculature. In the blood
and in non-lymphoid tissues, T helper cells become exposed to
levels of glucose, lipids, SCFAs and amino acids that are known
to vary highly between individuals, and can have an important
impact on Th2 cell differentiation. Important sensors for these
factors include solute carrier proteins, ectonucleotidases, G-
protein coupled receptors and nuclear receptors like PPAR-γ. In
tissues, Th2 cells appear insensitive to death induced by ATP-
sensing receptors, rely on lipids either as a source of energy or as
ligands for PPAR-γ, and are susceptible to regulation by SCFAs
released by the microbiota. Hence, sensors of the extracellular

environment influence the metabolism and function of T helper
cell subsets in peripheral tissues and can have a strong bearing on
the cytokine balance of an individual.

A major challenge going forward is whether we can
understand precisely how all of the metabolic components
in our blood and tissues work together to regulate T helper
cell responses in humans. An issue with current studies in
metabolomics is that they are conducted in patients with disease,
who can have metabolic disruptions for multiple reasons. An
important goal for the future is to conduct prospective cohort
studies of healthy individuals, in order to understand how the
metabolome shapes the T helper cell balance and impacts on the
development of allergic diseases.
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Upon activation naïve T cells undergo metabolic changes to support the differentiation

into subsets of effector or regulatory cells, and enable subsequent metabolic adaptations

to form memory. Interfering with these metabolic alterations leads to abrogation or

reprogramming of T cell differentiation, demonstrating the importance of these pathways

in T cell development. It has long been appreciated that the conversion of a healthy cell

to a cancerous cell is accompanied by metabolic changes, which support uncontrolled

proliferation. Especially in solid tumors these metabolic changes significantly influence

the tumor microenvironment (TME) and affect tumor infiltrating immune cells. The TME

is often hypoxic and nutrient depleted, additionally tumor cells produce co-inhibitory

signals, together suppressing the immune response. Interestingly, viruses can stimulate a

metabolism akin to that seen in tumor cells in their host cells and even in neighboring cells

(e.g., via transfer of virally modified extracellular vesicles). Thus, viruses create their own

niche which favors viral persistence and propagation, while again keeping the immune

response at bay. In this review we will focus on the mechanisms employed by tumor cells

and viruses influencing T cell metabolic regulation and the impact they have on shaping

T cell fate.

Keywords: metabolism, tumor, T cell, virus, hypoxia

INTRODUCTION

In recent years the fundamental importance of energy regulation in immune cells has been
appreciated and has created the research field of “Immunometabolism.” Since there are excellent
current reviews discussing themetabolic regulation of T cells in detail (1–3), we will here only give a
short overview and then focus on the role of the tumor or virally infected target cell in manipulating
T cell fate. The readermight also findTable 1 helpful, summarizing themainmechanisms discussed
for a quick overview. Naïve T cells are relatively quiescent cells that have a low energetic demand.
They predominantly make use of mitochondrial oxidative phosphorylation (OXPHOS). Upon
antigen encounter and activation by professional antigen presenting cells, T cells increase the
expression of nutrient transporters, especially glucose transporters 1 and 3 (GLUT1 and 3) (26)
and start utilizing glycolysis even in the presence of sufficient oxygen. Glycolysis provides fast
energy and biological building blocks required for cell division and effector function. Alongside,
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mitochondrial biogenesis is also activated and mitochondrial
mass increased, allowing for increased respiration. Furthermore,
a recent study highlights the important role of distinct
mitochondrial metabolic pathways in regulating T cell
proliferation and effector differentiation (27). Mitochondrial
function is critical, and its disruption seems to be an underlying
mechanism of T cell exhaustion (28–30). Upon the resolution
of an acute insult (such as an acute viral infection) a proportion
of the effector T cell pool differentiates into memory cells.
This conversion is accompanied by the cell’s metabolism
refocussing on OXPHOS and fatty acid metabolism, while
reducing glycolysis. Memory T cells have an increased
mitochondrial mass and contain mitochondria with densely
packed cristae linked to more efficient OXPHOS (31), poised
to mount a fast recall response. In the situation where the
immune response fails to deal with the insult effectively
and T cells are subjected to persisting antigenic challenge
like in cancer and chronic viral infection, effector responses
become less vigorous and instead of developing into classical
memory cells, formation is skewed toward exhaustion. Here
we will discuss aspects of how the metabolic profile and
signaling by target cells shapes their microenvironment
and the impacts on T cell function, differentiation and
fate decision.

THE INCREASED GLYCOLYSIS IN CANCER
CELLS IMPACTS ON T CELLS

Reprogramming of energy metabolism has been recognized as
one of the hallmarks of cancer cells (32). It is well established that
cancer cells have increased glucose uptake, which is fermented
to lactate even in the presence of oxygen, a process known as
aerobic glycolysis (or Warburg effect). Of note, glucose can also
be further metabolized through the mitochondrial tricarbolyxic
acid (TCA) cycle in tumors (33).

Glucose is an important source of carbon for the production
of amino acids, nucleotides, and fatty acids. Oncogenic
mutations of the phosphatase and tensin homolog (PTEN)
and the phosphoinositide 3-kinase (PI3K) pathway lead to the
reprogramming of glucose metabolism and increased glucose
uptake via stimulation of glucose transporters in cancer cells
[recently reviewed by Marbaniang et al. (34)]. Increased
transcription of glycolysis genes in KRAS mutated colorectal
cancer cell lines (35) is another example of the impact of
oncogenic mutations on the cellular metabolic state. Mutations
in the tumor suppressor gene p53 was shown to play a role
in glucose metabolism, and interestingly also in mitochondrial
activity and lipid metabolism (36).

The sustained consumption of glucose by tumor cells
eventually leads to a decrease of glucose levels in the TME.
Competition for glucose between tumor and T cells has been
shown to decrease IFN-γ production by CD8+ T cells and to
limit T cell antitumor functions (4, 5). Conversion of glycolysis
intermediates by the pentose phosphate pathway generates
NADPH (that can serve as an electron acceptor), which is
needed for tumor cells to scavenge reactive oxygen species (ROS)

TABLE 1 | Table summarizing metabolic pathways and their role in tumors/TME

and viral infection.

Mechanism Tumor Virus

Glycolysis (i) Glucose depleted TME

(ii) Inhibition of effector T

cells (4, 5)

Stimulation of increased

glycolysis in host cell for viral

production and in

neighboring cells via

exosomes e.g., HTLV, HIV,

KSHV, EBV (6, 7)

Hypoxia/

pseudohypoxia

Stabilization of HIF1-α:

(i) Enhances glycolysis and

acidosis of TME (8)

(ii) Expression of

ectoenzymes

CD39/CD73 increasing

extracellular adenosine

levels (9)

(iii) Upregulation of

PD-L1 (10)

Stabilization of HIF1-α

mimicking the effect of

hypoxia (termed:

pseudohypoxia)

e.g., KSHV, EBV, HCV,

HCMV, HPV (11, 12)

Lactate production (i) Acidification of TME

(ii) Inhibition of effector T

cells (13, 14)

(iii) Inhibition of CD4+ Th1 T

cells (15)

(iv) Promotion of Treg (15)

(v) Induction of regulatory

macrophages (16)

(vi) Upregulation of

PD-L1 (17)

Lactate secretion from

(i) infected cells and

(ii) neighboring cells

stimulated by virally

infected cells, creates

microenvironment

supporting viral

propagation (e.g.,

KSHV)? (4, 18)

Amino acid

depletion

(i) Increased glutaminolysis

leads to glutamine

depletion in TME (19)

(ii) Expression of

indoleamine

2,3-dioxygenase leads to

depletion of

tryptophan (20)

(iii) Recruitment/induction of

MDSC, which can

deplete the essential

amino acids cysteine

and arginine

Recruitment of MDSC e.g.,

to HBV infected liver (21)

Inhibition of amino acid

uptake mediated by HIV

Vpu protein (22)

Inhibition of effector T cells

Induction of Treg (23)

Lipid metabolism Induction of increased

release of fatty acids by

adipocytes to fuel tumor (24)

Induction/modulation of

fatty acid production e.g.,

CMV, KSHV, HCV, Zika,

Dengue (25)

and maintain redox homeostasis. ROS produced by tumor cells
participate in the oxidative stress T cells encounter in the TME,
and interestingly, Tregs are more resistant than conventional
CD4+ T cells to oxidative stress-induced cell death (37).

THE INFLUENCE OF HYPOXIA ON T CELL
FUNCTION

Reduced blood flow in some tumor areas results in low oxygen
levels (hypoxia) and acidification as discussed below and shown
in Figure 1. Hypoxia leads to the stabilization of the transcription
factor hypoxia-inducible factor 1-α (HIF1-α). HIF1-α in cancer
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FIGURE 1 | Metabolic changes in tumor and virally infected cells can create a suppressive microenvironment leading to inhibition of effector T cells. The architecture

of the tumor microenvironment (TME) can create hypoxic areas, leading to stabilization of HIF1-α in tumor cells and increase of glycolysis, depleting the TME of

glucose. Increased glycolysis and production of lactate leads to acidification of the TME. Lactate inhibits effector T cells, while promoting Treg. Tumor cells convert

ATP to immune suppressive adenosine by expressing the ectoenzymes CD39/CD73. The recruitment and induction of myeloid derived suppressor cells (MDSC) to

the TME and to virally infected organs increases immune inhibition. Viruses also induce glycolysis and lactate production in infected and neighboring cells through the

transfer of viral signaling molecules to their target cells via exosomes.

cells promotes glucose uptake by upregulation of GLUT1,
GLUT3, and increased expression of glycolytic enzymes further
promoting glycolysis and acidosis (8). In an elegant studyWalton
et al. have demonstrated that high acidity in the context of
hypoxia results in inhibition of mTOR signaling in T cells and
induction of T cell anergy. mTOR is a key sensor of nutrients
and a major regulator of cellular metabolism and effector T
cell function (38). Earlier studies had demonstrated that mTOR
inhibition in the presence of TCR triggering drives T cell anergy
(39), while promoting Treg development (40). Taken together
these mechanisms might conceivably play a role in the tumor
microenvironment in vivo, with both T effector cell inhibition
and increased Treg numbers detrimental to tumor control.
Various viruses (e.g., HCV and human papillomaviruses) have
also been shown to manipulate the host cell’s metabolism by
promoting through different mechanisms HIF1-α stability and
activity (11, 12) in the absence of hypoxia leading to subsequent
increased glycolysis. In a recent report, influenza A (H1N1) virus
led to proteasome inhibition and in turn stabilization of HIF1-α
in normoxic conditions, however the impact on viral replication
remains to be determined (41).

Apart from driving increased glycolysis HIF1-α induces
expression of the ectoenzyme CD73 (9) and the expression by

cancer cells and Tregs of the tandem ectoenzymes CD39/CD73
which generate extracellular adenosine from the degradation
of extracellular ATP. The binding of adenosine to the 2A2-
adenosine receptor (A2AR) expressed by many immune cells
including T cells, inhibits anti-tumor T cells (42). Finally, HIF1-α
is also involved in the upregulation of PD-L1 by tumor cells (10).
Interestingly, a deregulated oxidative metabolism in tumors and
the associated hypoxia in the TME, correlated with resistance to
PD-1 treatment (43).

A recent publication shows that hypoxia and glucose
deprivation lead to down-regulation of MHC class I molecules
on tumor cells facilitating immune escape. This finding was
accompanied by tumor cells losing their sensitivity to IFN-γ
mediated induction of MHC upregulation (44). Consequently,
tumor cells evade killing by activated IFN-γ producing T cells
creating another hurdle for T cell therapies.

TUMOR CELLS PRODUCE LACTATE THAT
PROMOTES IMMUNE SUPPRESSION

In addition, the lactate secreted by glycolytic tumor cells into
the TME adversely impacts on effector T cells. Lactate inhibits
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CD8+T cell proliferation, cytokine (IL-2 and IFN-γ) production,
and cytotoxicity (13, 14), but also induces T cell apoptosis (45).
These effects on activated CD8+ T cells by increased lactate
levels are mediated through inhibition of NFAT upregulation
and inhibition of phosphorylation of p38 MAP kinase and JNK
(14, 45). A recent report demonstrated that exogenous lactate
can reduce the frequency of Th1 CD4+ T cells and their IFN-
γ production, while increasing the expression of FoxP3 and the
frequency of regulatory CD4+ T cells (Tregs) (15). Expression
of cell surface GLUT1 is lower in Tregs as compared to other
CD4+ T cell subsets, and Tregs appear not to rely on glycolysis
but rather lipid oxidation and OXPHOS (46). FoxP3 was shown
to play a role in inducing resistance to the suppressive effects
of lactate by mediating distinct metabolic adaptation in Tregs
(18). The accumulation of lactate in the TME leads to TME
acidification known to decrease T cell proliferative capacity
and inducing anergy (47) (Figure 1). Interestingly, expression
of the lactate receptor GPR81 by macrophages was shown to
play a role in inducing immune regulatory genes and regulating
inflammation (16).

Lactate was also shown to upregulate programmed cell
death ligand-1 (PD-L1) expression in lung cancer cells (17).
Interestingly, PD-L1 blockade on tumor cells inhibited their
mTOR kinase activity and decreased the expression of glycolytic
enzymes (4), whichmight contribute to the success of anti-PD-L1
checkpoint blockade.

Finally, the increased concentration of lactate in the TME
seems to be advantageous to some tumors, as lactate can be
converted to pyruvate to fuel the TCA cycle. Glycolytic tumor
cells can therefore produce the fuel for neighboring cells in
heterogenous tumors (48), while at the same time suppressing the
immune response.

TUMOR CELLS DO NOT SOLELY RELY ON
GLUCOSE AS A SOURCE OF ENERGY BUT
UTILIZE AMINO ACIDS LEAVING THE TME
DEPLETED

TCA activity can be replenished by mitochondrial metabolism of
various amino acids such as alanine, cysteine, leucine, and fatty
acids (33). Recent data shows that at least some tumors depend
on the non-essential amino acid glutamine (in humans, the most
abundant amino acid in the circulation), as a source of nitrogen
needed for nucleotide biosynthesis, and of carbon to fuel the
TCA cycle (49). Metanalysis of studies assessing the metabolic
profile in patients with cancer have revealed that in addition to
the expected increase in lactate in tumor tissues, other metabolic
changes can be identified (50, 51). Glutamate and kynurenine
were the twomost frequently elevatedmetabolites when 343 pairs
of tumor/normal samples were compared.

Glutamine metabolism is upregulated by many oncogenic
mutations (52). TheMYC oncogene is one of the most frequently
amplified genes in human tumors. MYC upregulates glutamine
transporters, and MYC-transformed cells are dependent on
glutamine metabolism (19). This can lead to reduced levels of
glutamine in the TME, compared to normal tissues, resulting in

limited availability for T cells. In order to sustain the energetic
demands of cell proliferation and differentiation following
T cells activation, T cells upregulate glutamine uptake, and
enzymes for glutamine metabolism. Interestingly, extracellular
glutamine deprivation and subsequent decreased intracellular
pool of the glutamine-derived α-ketoglutarate promotes a shift
in murine CD4+ T cells toward Treg differentiation (53). This
was supported by data using human T cells where inhibition
of glutaminolysis (conversion of glutamine into TCA cycle
metabolites) promoted Treg differentiation (54).

Competition for glutamine may therefore represent an
additional mechanism of immunosuppression in the TME.

Furthermore, many tumors constitutively express
indoleamine 2,3-dioxygenase (IDO) which catabolizes the
essential amino acid tryptophan depleting it from the TME
inhibiting T cell proliferation (20). Depletion of tryptophan
suppresses CD8+ effector T cell proliferation but again promotes
Treg differentiation via activation of the GCN2 kinase (55).
Tryptophan metabolism also releases the immunosuppressive
catabolite kynurenine that activates the aryl hydrocarbon
receptor which also promotes Treg differentiation (56). IDO
inhibitors have been tested in clinical trials, but responses were
overall disappointing either as single agents, or in combination
with anti-PD1 therapy leading to a halt of some combination
therapy phase III trials (57).

Tumors are well known to induce and attract myeloid
derived suppressor cells (MDSC), which crucially can suppress
both innate and adaptive immune responses (Figure 1). One
mechanism being nutrient depletion by the sequestration of
cysteine and the production of arginase-1, an enzyme leading to
the break down of arginine, both amino acids being essential for T
cells. In contrast to other cells T cells cannot convert the oxidized
precursor cystine to the reduced amino acid cysteine and are
dependent on extracellular levels (23). The depletion of arginine
which has been demonstrated to contribute to suppression of T
cell responses in cancer (58) is also operative in chronic viral
infection. The HIV protein Vpu antagonizes amino acid uptake
into CD4+ T cells (22), while in chronic hepatitis B virus (HBV)
increased numbers of MDSC found in the infected liver correlate
with low levels of arginine (21). As a consequence of the above
combined mechanisms T cells in the TME and in chronic viral
infections can find themselves depleted of essential amino acids,
leaving them little ability to function effectively.

THE ROLE OF LIPID METABOLISM IN THE
REGULATION OF T CELL RESPONSES

An enhanced lipid metabolism is crucially required for the
synthesis of cell membranes in blasting and proliferating T cells
(59) and highly organized lipid rafts in the membrane of effector
T cells which enable the organization of the immunological
synapse (12). A perturbation of the cholesterol and fatty acid
homeostasis leads to a reduction in effector T cells. Furthermore,
the development of T cell memory has been shown to be
dependent on increased mitochondrial fatty acid oxidation
(60, 61). Like proliferating T cells, proliferating cancer cells
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require fatty acids for the synthesis of membranes and other
molecules. Many tumor cells acquire fatty acids through de
novo synthesis, however some ovarian, prostate and breast
cancers rely on the uptake of exogenous fatty acids (62).
Tumor cells have been shown to communicate with adipocytes
to enhance provision of fatty acids (24), establishing a link
between obesity and increased risk of cancer. Viruses likewise
manipulate their host cell’s lipid metabolism, for example
human cytomegalovirus (CMV) induces an increase in fatty
acid production to synthesize lipids for incorporation into the
viral envelope (63). Hepatocytes infected by Hepatitis C virus
(HCV) are forced to increase lipogenesis and gluconeogenesis to
support viral particle production via sophisticated mechanisms
involving viral proteins and interference with host miRNAs
(64, 65). Since hepatocytes are vital in regulating systemic
glucose and lipid homeostasis these manipulations by HCV
lead to a significantly increased risk for patients to develop
metabolic disorders. Pathogenic Flaviviruses, such as Zika
and Dengue virus also rely on their host’s lipid metabolism
to complete their life cycle and thus interfere with this
pathway to remodel intracellular membranes to allow virion
biogenesis (25).

The importance of lipid metabolism in both cancer and
viral infection make these pathways interesting candidates for
therapeutic intervention.

TUMORS, TME AND T CELLS ARE
HETEROGENOUS

One should keep in mind that tumor cells are proliferating,
rapidly evolving cells, and metabolic changes are very
heterogenous across different cancers, between patients with the
same type of cancer, and within the same patient since spatial and
temporal tumor cell heterogeneity also occur (66). In addition to
intrinsic tumor cell differences, the heterogeneity of the tumor
microenvironment (including oxygen levels/perfusion levels)
influences the metabolic changes in tumor cells, which in turn as
well shows heterogeneity. Tumor metabolomic analysis provides
important information, however more efforts for instance in
standardization of sampling, data analysis, choice of sample
(cell lines, tissues, or blood), to ensure that only cancer specific
changes are detected, are needed. These caveats are also true
for the study of many chronic viral infections, especially where
culture models are hard to establish and/or in vivo studies are
limited to humanized models or primates where humans are the
exclusive natural host of a virus as in HIV, HBV, HCV, and EBV.

As discussed above, metabolic suppression in the TME is
important in inhibiting effector T cells andmany solid tumors are
devoid of much T cell infiltrate. Since T cell memory formation
is equally dependent on metabolic programs, this can also be
inhibited and skewed toward T cell deletion or dysfunction.
Indeed, T cell exhaustion or Treg development occur in the TME
instead of classical memory differentiation. It could be argued
that exhaustion is a distinct type of memory, since exhausted
T cells can be long lived, do retain limited effector functions
and exert control over persistent viral infections (67–69).

Thus, anti-viral CD8+ T cells with exhausted phenotype(PD-
1 intermediate/high, low IFN-γ/effector cytokine production)
can for example maintain a low viral load in patients with
untreated chronic HBV (70). Furthermore exhausted T cells can
be reinvigorated by stimulation with cytokines such as IL-12 (71)
and are targeted in immune checkpoint inhibitor therapy (69).

VIRUSES MANIPULATE THE METABOLISM
OF BOTH THEIR HOST CELL AND CELLS
IN THEIR MICROENVIRONMENT

Viruses acquire both the energy and the building blocks needed
to synthesize progeny virions from their host. For this reason,
it is not surprising that many viruses manipulate their host cell
metabolic pathways and associated signaling cascades [reviewed
in (6, 7)]. Interestingly, many of these metabolic changes mimic
those found in cancer. This suggests that in the case of oncogenic
viruses, these metabolic alterations also contribute to cellular
transformation. An example of shared metabolic alteration
between viruses and cancer is the induction of theWarburg effect.
Similar to many cancer types, different viruses were shown to
shift glucose metabolism and redirect the glycolysis end product,
pyruvate, away from mitochondrial OXPHOS. Interestingly
different viruses developed diverse mechanisms to manipulate
glucose metabolism in their host cells. Moreover, increased
glycolysis and reduced OXPHOS were shown to support both
viral replication and latency, by activating biosynthetic pathways
supporting viral propagation.

In the last decade, there is accumulating evidence that viruses
not only manipulate the infected cells but also communicate and
manipulate other cells in their microenvironment. One method
viruses use for this is manipulation of extracellular vesicle (EV)
secretion from the host cell (Figure 1). An increasing number
of viruses has been shown to manipulate EV-secretion and
cargo(72–84).

The field of EV has been extensively studied in the last
years, mainly in cancer. Tumor-derived EVs were shown to have
a dramatic effect on tumor growth and metastasis [reviewed
in (85–87)]. Interestingly, it was shown that both cancer cells
and viruses use EV to alter the metabolism of cells in their
microenvironment. A fascinating example of this phenomenon
comes from the two oncogenic gammaherpesviruses Epstein
Barr Virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV).
Both viruses establish latency quickly after primary infection.
Though during latency, these viruses express only a small
subset of their genome, both viruses were shown to have
a complex effect on their host metabolism (88). KSHV was
shown to shift glucosemetabolism frommitochondrial OXPHOS
to aerobic glycolysis and to induce fatty acid synthesis and
glutaminolysis (89–94). One of the driving forces for these
metabolic alterations is the virally encoded microRNAs, which
are thought to downregulate different genes which are involved
in the regulation of OXPHOS and by that shift cells to more
glycolytic metabolism (94). Importantly it was shown that these
microRNAs are also transferred from infected cells to non-
infected cells in the microenvironment using EVs (95–97) and
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that the viral microRNAs are active in these cells to induce
similar metabolic phenotype (97) Similar to KSHV, EBV was
also shown to alter its host cell metabolism (98). Specifically, the
latent protein LMP1was shown to shift host cell metabolism from
OXPHOS to aerobic glycolysis (98, 99) by inducing expression of
multiple genes, such as GLUT1. In EBV-induced carcinomas this
increased glycolysis promotes MDSC expansion (100) leading
to tumor immunosuppression as discussed. Additionally, LMP1,
which is expressed in around 30% of EBV-driven Hodgkin
Lymphomas, is also involved in stimulating regulatory T cell
responses (101). LMP1 can be transferred in EV secreted
from infected cells and thus manipulate EV-recipient cells (2,
102, 103). This suggests that similarly to KSHV, EBV can
use EV to manipulate neighboring cells and thereby modulate
its microenvironment.

Why do viruses alter their host’s metabolism? One clear
advantage is the activation of biosynthetic pathways to support
viral replication. Redirecting pyruvate away from mitochondria
and reducing OXPHOS can free different carbon molecules
for the synthesis of nucleotides, amino acids and lipids or for
protein glycosylation. Permissiveness of CD4+ T cells to HIV
has been shown to be strongly influenced by the metabolic
activation status of the T cells. CD4+ T cells with high rates
of OXPHOS and glutaminolysis where the most susceptible
(104, 105). Indeed, HIV infection could be significantly reduced
by blocking glutaminolysis (105). In the case of latent viruses,
the advantage of altering their host cell’s metabolism is less
obvious. Since during latency, there is a minimal expression
of viral proteins, these viruses are completely dependent on
cellular replication to maintain and replicate their genome.
Adopting a “cancer-like”metabolismmight support uncontrolled
cell division, which results in maintenance and amplification of
the viral genome.

Altering the metabolic state of cells in the microenvironment
might suggest other advantages for infected cells. For example,
in KSHV infection, it was shown that altering the metabolism
of non-infected cells leads to the secretion of high-energy
metabolites. These metabolites are being taken up by infected
cells supporting their growth. Therefore, it is suggested that
viruses can use EVs to create a specific niche which supports
infected host cell growth (97).

Moreover, altering the metabolic phenotype of the niche
could also allow viruses to escape the immune system. Since,
T cells as part of their differentiation and activation need to
undergo dramatic reprogramming of their cellular metabolism
(3, 106) a low glucose high lactate microenvironment restricts
T cells, dampening their effector function (4, 18). This raises
the intriguing hypothesis that by manipulating their host cell’s
metabolism viruses attenuate T cell function by creating a
suppressive microenvironment.

OUTLOOK AND THERAPEUTIC
IMPLICATIONS

A better understanding of tumor metabolism is obviously
important in order to target tumor cells as well as to counteract

their immunosuppressive impact on anti-tumor T cell responses.
As described below different strategies are therefore being
explored. One approach consists in the intratumor delivery
by nanoparticles of RNA interference that silences lactate
dehydrogenase A (LDHA) (107). The observation in preclinical
models that the effect of anti-PD1 treatment in a model of
melanoma, was improved in mice with LDH-A deficient tumors
(108), and that, the deletion of LDHA in myeloid cells was shown
to induce T cell antitumor immunity against lung carcinoma
(109), further validates the targeting of LDHA. Expression of
catalase by chimeric antigen receptor (CAR) T cells improved
the protection of CAR T cells against oxidative stress induced
in part by ROS in the TME (110). A recent report showed
that acetate could be used as an alternative carbone source
and rescue the functions (e.g., IFN-γ production) of exhausted
tumor infiltrating T cells, and glucose-restricted CD8+
T cells (111).

Autophagy is a catabolic process that allows cell survival
and maintenance of cell metabolism in face of stressful
conditions such as nutrient starvation. In tumor cells,
autophagy appears to play different roles by promoting
tumor suppression but also tumor initiation (112). A better
understanding of autophagy in tumors could therefore
potentially be exploited to develop novel anticancer treatments.
Note that in the context of viral infections, autophagy
can again play a dual role by promoting or limiting viral
replication (113).

Despite viruses amending the immune response, as discussed
above, anti-viral responses often successfully eliminate the
infecting agents or keep them life-long under control as
evidenced by the rare occurrence of CMV or EBV-mediated
disease in healthy individuals despite up to 90% of the human
population being persistently infected (12). This has led to
the interesting idea of repurposing anti-viral T cells against
(114). In a recent study Rosato et al. demonstrated that
anti-viral T cells can target tumors when these were loaded
with exogenous viral peptide. This strategy was made even
more efficient when combined with check-point blockade (114)
potentially opening up new therapeutic avenues. It remains
to be determined if such a strategy impacts on anti-viral
control. An important question will be whether utilizing
anti-viral T cells could over time lead to their exhaustion
and/or reprogramming into Treg in the suppressive TME.
Thus, the choice of viral peptide targets and combination
with other strategies will be critical; especially considering
that a persistent common virus such as EBV is oncogenic if
uncontrolled (115).

Altering cell metabolism is one of the hallmarks of cancer.
However, it is becoming clear that this effect is not limited to
the tumor cells, and as part of tumor development, the metabolic
phenotype of the TME is also dramatically changed. Additionally,
viruses can mimic this phenotype, affecting the metabolism
of both their host cells and cells in their microenvironment.
Despite considerable advances, we still have some way to go
in understanding how these metabolic alterations affect T cell
response and how they could successfully be used to target
cancer and chronic viral infection. However, it is clear that
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the metabolic profiling of antigen specific T cells and their
target cells should now be part of the development of new
therapeutic strategies.
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Metabolic reprogramming is rapidly gaining appreciation in the etiology of immune cell

dysfunction in a variety of diseases. Tuberculosis, schistosomiasis, and sarcoidosis

represent an important class of diseases characterized by the formation of granulomas,

where macrophages are causatively implicated in disease pathogenesis. Recent studies

support the incidence of macrophage metabolic reprogramming in granulomas of both

infectious and non-infectious origin. These publications identify the mechanistic target

of rapamycin (mTOR), as well as the major regulators of lipid metabolism and cellular

energy balance, peroxisome proliferator receptor gamma (PPAR-γ) and adenosine

monophosphate-activated protein kinase (AMPK), respectively, as key players in the

pathological progression of granulomas. In this review, we present a comprehensive

breakdown of emerging research on the link between macrophage cell metabolism and

granulomas of different etiology, and how parallels can be drawn between different forms

of granulomatous disease. In particular, we discuss the role of PPAR-γ signaling and

lipid metabolism, which are currently the best-represented metabolic pathways in this

context, and we highlight dysregulated lipid metabolism as a common denominator in

granulomatous disease progression. This review therefore aims to highlight metabolic

mechanisms of granuloma immune cell fate and open up research questions for the

identification of potential therapeutic targets in the future.

Keywords: macrophage, immunometabolism, granuloma, tuberculosis, schistosomiasis, sarcoidosis

INTRODUCTION

At its core, a granuloma is a compact and organized structure formed by the initial aggregation
of macrophages in response to a persistent stimulus (1, 2). A multitude of stimuli have been
reported to evoke a granulomatous reaction, including infectious agents, the best studied of which
are Mycobacterium tuberculosis and the parasitic trematode genus Schistosoma, non-infectious
foreign bodies such as silica, pollutants, dust and biomedical implants (3, 4), as well as autoimmune
or inflammatory diseases of unknown etiology, including sarcoidosis and Crohn’s disease. It has
also been suggested, particularly in the case of sarcoidosis, that a combination of infectious and
non-infectious factors could be responsible for disease pathogenesis, with evidence suggesting
Propionibacterium acnes or mycobacterial infection as potential environmental triggers (5).
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Depending on the nature and persistence of the inciting
stimulus, the macrophages at the core of the granuloma can
undergo a series of distinct morphological changes, the most
prominent involving epithelioid cell differentiation; an enigmatic
process for which the exact trigger and molecular mechanisms
have yet to be elucidated. The resultant macrophages, termed
“epithelioid,” are characterized by a hypertrophic, flattened
appearance, diffuse cytoplasm and elongated nuclei, as well as
epithelial-like interdigitated cell membranes, enabling the cells to
interlace and form an epithelioid barrier to wall off the persistent
antigen (1, 6, 7). These epithelioid macrophages can further
develop into multinucleated giant cells via as yet undefined
mechanisms; however, cell-cell fusion (8, 9) and cytokinesis
failure (10) have been proposed. Furthermore, in the case of
tuberculosis granulomas, macrophages can transform into foam
cells as a result of their enhanced accumulation of lipids as the
infection progresses (11).

As the granuloma matures, a number of additional cells can
be recruited to the structure—a process that depends heavily on
the nature of the inciting agent. Such cells include granulocytes,
monocytes, dendritic cells, B and T cells, NK cells and fibroblasts
(1, 12, 13), which surround the macrophage core resulting in
a complex and highly organized structure. A subsequent and
final stage of granuloma maturation involves the development of
pathological structures as a result of dysregulated inflammation,
which are associated with tissue damage andmorbidity. One such
feature is the formation of a fibrotic outer capsule that occurs
in granulomas of diverse etiology, including sarcoidosis and
schistosomiasis. Another pathological feature, which develops
primarily in granulomas of infectious origin, is the formation of
necrotic regions within the central core of the granuloma. This
is a characteristic that is well-studied in the case of tuberculosis,
during which necrosis is associated with a failure of the immune
response and results in bacterial dissemination and patient
morbidity (14).

Due to the major clinical role of granulomas in an
array of disease pathologies, the morphological properties of
granuloma formation have been extensively studied. However,
the fundamental and molecular core mechanisms involved
in the granulomatous immune response are only starting to
emerge. Our group recently identified the mechanistic target of
rapamycin (mTOR) complex 1 (mTORC1) signaling pathway
as a molecular mechanism in the initiation and maintenance
of granulomas in mice, as well as its activation in sarcoidosis
patients suffering from a progressive form of the disease
(15). mTOR is well-known to sense and integrate a range of
environmental signals to regulate cellular metabolism and cell
growth inmany cell types (16, 17). However, our work specifically
revealed an involvement of macrophage mTORC1 signaling in
the context of granuloma formation and development (15),
thus highlighting the potential importance of macrophage
immunometabolic responses in granulomatous disease. While
mTORC1 was also recently identified as a driver of foam
cell biogenesis in tuberculosis (18), the relevance of mTOR
signaling in schistosomiasis remains to be elucidated. Likewise,
adenosine monophosphate-activated protein kinase (AMPK) has
been reported to orchestrate lipid catabolism and oxidative

phosphorylation (OXHPOS) in tuberculosis (19, 20); however, an
involvement of this metabolic regulator in schistosomiasis and
sarcoidosis has barely been defined. Interestingly, peroxisome
proliferator receptor gamma (PPAR-γ)-signaling has been
implicated in the progression of all three diseases. As PPAR-
γ is a master regulator of lipid homeostasis (21), this strongly
suggests an involvement of lipid metabolism in the pathogenesis
of granulomas.

Indeed, the significance of macrophage metabolic plasticity
dependent on disease pathology is now widely accepted and
the field of immunometabolism has gained momentum in
recent years. New findings have emerged that shed light on
the complex molecular mechanisms underpinning macrophage
function across numerous diseases states; however, at present,
such responses are exquisitely linked to the current M1/M2
framework of macrophage polarization. In this review, we focus
on the current literature describing the immunometabolic
programming of macrophages—as the workhorses at
the forefront of granuloma formation, development and
maintenance (1, 13)—in the best characterized examples
of granulomatous disease: tuberculosis, schistosomiasis and
sarcoidosis. In particular, we highlight literature pertaining to
the role of PPAR-γ and lipid metabolism in the pathogenesis of
these diseases, which suggests dysregulated lipid metabolism as a
key contributor to granuloma fate.

A PRELUDE TO M1/M2 POLARIZATION
AND ITS IMMUNOMETABOLIC NATURE

At present, the concept of M1/M2 macrophage polarization,
albeit oversimplified and based primarily on in vitro data, still
remains one of the best means by which macrophage activation
can be described. Classically activated M1 macrophages function
at the crux of host defense by eliciting essential pro-inflammatory
responses and bridging innate and adaptive immunity. In
contrast, alternatively activated M2 macrophages are crucial to
immune regulation by promoting the resolution of inflammation
and preventing an exacerbated, chronic inflammatory state, as
well as the maintenance of tissue homeostasis by inducing tissue
healing and remodeling (22–24). M1 and M2 polarization states
are additionally defined by distinct metabolic profiles that are
crucial in driving the differential activation of macrophages (25).
It is important to note, however, that while the scheme of M1/M2
polarization has been very useful in furthering our understanding
of macrophage function and biology, in vivo and human studies
point toward a larger, less distinct spectrum of polarization
states (26, 27). Accordingly, it is becoming more common to
refer to the subcategories, which include M1a, M1b, and M2a-
c that are, in part, defined by their differential expression of
chemokine receptors (28). Transcriptomic analyses have revealed
that there are six main polarization states in humans that are
highly sensitive to certain stimuli, and thus the nomenclature
has also been adapted to “M(LPS),” “M(IL-4)” and others (29).
In addition, there is significant evidence to suggest that these
polarization states have a high plasticity and do not represent a
terminal differentiation (30).
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Nevertheless, the pathological consequences of the
immunometabolic nature of macrophage polarization in
granulomas are only just starting to emerge, with the tubercle
granuloma currently constituting the best-studied example.
Thus, while the metabolic landscape of granuloma macrophages
in a human disease scenario will be much more complex, the
simplified M1/M2 dogma and the use of in vivomodels currently
comprise the primary framework for discussing macrophage
metabolism in the context of granulomatous disease. Below, we
therefore provide a brief overview of the key immunometabolic
features of M1/M2 macrophage polarization as an introduction
to the subsequent discussion on their contributing roles in the
pathology of tuberculosis, schistosomiasis and sarcoidosis.

Classically Activated (M1) Macrophages
M1 macrophage polarization is typically stimulated by
inflammatory cytokines including interferon-gamma (IFN-
γ) and/or tumor necrosis factor (TNF) in combination with
Toll-like receptor (TLR) ligation (31). This leads to NF-κB
signaling via the phosphorylation of Inhibitor of (I)κB kinase,
and the activation of several interferon-regulatory factors
(IRFs) (32), which are signature genes of the M1 macrophage
phenotype. Although both TLR ligation and IFN-γ signaling
can individually and redundantly induce the phenotype (31),
it was recently shown in tumor-associated macrophages
that both mechanisms may need to work synergistically to
produce an effective, highly pro-inflammatory M1 switch (33).
Metabolically, M1 macrophage activation classically involves
the Warburg effect. This metabolic switch is well-known in
oncology and refers to a distinct metabolic profile in tumor
cells undergoing uncontrolled division, during which cells
utilize glycolysis for rapid ATP generation in the presence
of oxygen, termed “aerobic glycolysis” (34). In macrophages,
this switch drives the essential increase in ATP production
required to support the innate immune response to infectious
insult and/or tissue injury, supporting the rapid production of
inflammatory cytokines and enhancing phagocytosis (25). Both
TLR ligation and LPS-induced increased hypoxia-inducible
factor 1-α (HIF-1α) expression are associated with the Warburg
effect in macrophages (35, 36). Specifically, HIF-1α links
the effector functions of M1 macrophages to their metabolic
profile by both activating glycolytic enzymes and directly
promoting transcription of the inflammatory mediator IL-1β
(36). Moreover, when HIF-1α is overexpressed in macrophages,
mitochondrial OXPHOS is suppressed and the cells enter
a highly glycolytic and inflammatory state with a clear M1
phenotype (37). It must be noted, however, that the Warburg
effect has almost exclusively been observed in vitro and in cancer
cells, and it has been proposed that M1 macrophages only exhibit
a “Warburg-like” phenotype (38).

Alternatively Activated (M2) Macrophages
M2 macrophage polarization is brought about by the cytokines
IL-4 and IL-13 released from CD4+ Th2 cells (39, 40). The
IL-4/13 receptor activates insulin receptor substrate 2 (IRS2),
leading to the upregulation of key M2 markers: Arg-1, RELMα,
and Ym1. The IL-4/13 receptors signal via signal transducer and

activator of transcription 6 (STAT6) to activate phospholipases
andGATAbinding protein 3 (GATA3), which are required for the
production of chemokines and the anti-inflammatory cytokine
IL-10 (41, 42). There is also evidence that IL-10 can produce
an M2 or M2-like phenotype via the phosphorylation of STAT3,
leading to the production of IL-10 in an autocrine manner
(43, 44). Unlike their M1 counterparts, M2 macrophages are
defined by their intact TCA cycle, which allows for the generation
of FADH2 and NADH and the production of high ATP yields
through OXPHOS. Concomitantly, M2 macrophages display
increased glycolysis as a carbon source (15, 45). Importantly,
an intact TCA cycle allows for the glycosylation of M2-specific
mannose and lectin receptors by UDP-GlcNAc (46). OXPHOS
in M2 macrophages is supported by fatty acid oxidation (FAO),
and M2 polarization is marked by increased expression of the
lipid scavenger receptor CD36, as well as a dependence on cell-
intrinsic lysosomal lipolysis (38, 45, 47). M2 macrophages are
also known to consume more glutamine than other macrophage
phenotypes (48). Glutamine augments the production of UDP-
GlcNAc (46) and glutaminolysis has been shown to produce α-
ketoglutarate, a major metabolite and component of the TCA
cycle (49). Glutamine-derived α-ketoglutarate promotes specific
histone demethylation and transcription of M2 genes (49, 50).

TUBERCULOSIS AND THE
IMMUNOMETABOLIC RESPONSE: A
BALANCING ACT

Tuberculosis is an infectious disease caused by the bacillus
Mycobacterium tuberculosis (Mtb) and is one of the most
frequent etiological triggers of granuloma formation. It is the
leading cause of mortality from a single infectious agent and
was responsible for an estimated 1.7 million deaths worldwide
in 2017 (51). However, only a small proportion (5–10%) of
the infected population will develop active tuberculosis, with a
greater incidence in individuals infected with HIV or suffering
from malnutrition or diabetes (51). It has therefore long been
established that the outcome of Mtb infection depends upon a
complex and dynamic interplay between host and pathogen (52–
54), with the degree of bacterial virulence and host resistance
defining the pathogenesis of disease (55–57).

Initial Host Responses to Mtb Infection
Tuberculosis is typically a disease of the lungs initiated upon
inhalation of airborne droplets containing the tubercle bacilli at
an estimated infectious dose of just a single bacterium (58, 59).
The bacteria are subsequently deposited in the airways where
they are phagocytosed by resident alveolar macrophages and
transported into the lung parenchyma (60, 61). The generation
of TNF-α and inflammatory chemokines by the infected
macrophages then drives a localized inflammatory response
involving the recruitment of additional mononuclear cells (52),
including interstitial macrophages, monocytes, neutrophils, and
dendritic cells, many of which Mtb subsequently infects (54).
Dendritic cells transfer Mtb from the lungs to the local draining
lymph nodes (62) for subsequent priming of naive T cells and
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the adaptive immune response (63), the development of which
is unusually delayed during Mtb infection, taking up to 5–6
weeks in humans (64, 65). The latter has been attributed to
successful immune evasion by the bacteria, which is thought to
seek refuge within lung phagocytes (54). Thus, although Mtb is
known to infect multiple immune cells in the lung, macrophages
are considered to be the key players in the balance between
bacterial containment and disease progression (66). Moreover,
increasing evidence from non-human primate and/or human
patient granulomas suggests that mycobacterial burden, as well
as advancement to active disease, is associated with an increased
proportion of alternatively activated M2 to classically activated
M1 macrophages (67–69). We will explore this further in the
following subsections, with a particular focus on the emerging
importance of the immunometabolic characteristics of M1- vs.
M2-like macrophages on the outcome of mycobacterial infection.

Distinct Immunometabolic Responses of
Pulmonary Macrophages to Mtb
Tissue resident alveolar macrophages are the first cells to
encounter invading mycobacteria after aerosol infection
(54). Several studies in diverse model systems, encompassing
mycobacterial infection of human alveolar macrophages
(70–72), mouse models (73, 74) and zebrafish larvae (75),
demonstrate an initial mycobactericidal role that is conserved in
multiple tissue resident macrophages across species. However,
these reports contend with numerous contradictory studies
that render the alveolar macrophage as a favorable niche
for the growth and survival of mycobacteria, acting as
a shield against the bactericidal activity of subsequently
recruited immune cells, as well as activation of the Th1
response (54).

At steady state, alveolar macrophages do not conform to
the classical definition of M1 or M2 polarization, but instead
exhibit a hybrid phenotype that affords a degree plasticity in
keeping with their critical role in maintaining lung homeostasis
(76, 77). It is logical that as sentinels of the lung, alveolar
macrophages would mount an initial pro-inflammatory response
to invading pathogens. Taking into account their potential to
switch between activation states, it may not be surprising if
they then re-polarize to a more M2-like status in response to a
persistent pathogen to protect against hyperinflammation and
exacerbated lung immunopathology. Such a switch toward an
M2 state is particularly pertinent in the case of Mtb infection,
considering the ability of mycobacteria to manipulate host
immune responses to favor their own survival (52). Recent
data suggesting alveolar macrophages are more permissive to
Mtb replication than recruited monocyte-derived interstitial
macrophages (78) highlight distinct metabolic programming as
a critical factor in the differential antimycobacterial capacity
of these two macrophage populations. This study utilized
transcriptomic and subsequent pathway enrichment analyses, as
well as functional in vivo and in vitro experiments employing
inhibitors of differentmetabolic pathways, to reveal themetabolic
preferences of Mtb-infected alveolar vs. interstitial macrophages.
This work demonstrated that Mtb-infected alveolar macrophages

preferentially utilize FAO and exhibit enhanced fatty acid
uptake, as well as higher bacterial replication rates, than
interstitial macrophages. As it is well-known that Mtb accesses
host-derived fatty acids and cholesterol as a primary carbon
source (79–82), the fact that alveolar macrophages exhibit
enhanced fatty acid uptake may explain why they are more
permissive to Mtb replication. Furthermore, Huang et al.
(78) showed that a FAO inhibitor, etomoxir, almost entirely
abolished the production of IFN-β in Mtb-infected BMDMs.
As type I interferon responses have been shown in multiple
studies to be detrimental during tuberculosis [reviewed by
(83)], this may explain how FAO can also contribute to Mtb
survival. Conversely, interstitial macrophages were primarily
glycolytic, which was shown to restrict mycobacterial growth
(78), presumably due to the pro-inflammatory cytokine signals
associated with glycolysis as well as the comparatively lower
uptake of fatty acids by these cells. This is in agreement with
several studies that demonstrate the requirement of glycolysis
for Mtb growth control (84–86). Huang et al. (78) also showed
that depletion of alveolar macrophages in Mtb-infected mice
reduced bacterial burden, whereas depletion of the interstitial
macrophage population was detrimental, resulting in enhanced
bacterial survival. Thus, in this setting, alveolar macrophages
appear to function as M2-like nutritionally permissive hosts
in which mycobacteria can evade pro-inflammatory action and
replicate relatively unperturbed, which is in contrast to the
more growth-restrictive environment within pro-inflammatory
interstitial macrophages. These data are supported by additional
studies of alveolar or M2 macrophage depletion in animal
models of pulmonary tuberculosis, which was associated with
an enhanced Th1 response, reduced bacterial burden in the
lung and protection against tuberculosis-induced lethality (87,
88). Granuloma formation was also found to be defective in
mice deficient in alveolar macrophages, while the attraction
and activation of T cells in the lung, as well as the numbers
of polymorphonuclear cells, were enhanced (87). This is in
contrast to the depletion of activated M1-like macrophages,
which was detrimental and resulted in enhanced bacterial
survival (88).

Such immunometabolic divergence of the two pulmonary
macrophage populations in response to Mtb infection suggests
that the developmental origin of granuloma macrophages plays
a role in disease progression. Indeed, the role of ontogeny
in macrophage functionality and metabolism during infectious
insult has been discussed in a recent review (89). Furthermore,
it should be noted that while the Warburg effect is considered
to be primarily an in vitro phenomenon, the in vivo relevance
of this bioenergetic phenotype is starting to emerge in the
literature. Specifically, during the establishment of chronic
Mtb infection in mice (up to 30 days after low-dose aerosol
infection), transcriptomic and histological analysis of Mtb-
infected lung tissue revealed a HIF-1α-dependent enhancement
of glucose uptake and glycolysis, as well as lactate formation
and export (84). This was coupled with a concomitant down-
regulation of pyruvate dehydrogenase complex (PDC), TCA
cycle enzymes and OXPHOS. Moreover, defects in macrophage
glycolytic capacity have been associated with the enhanced
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susceptibility of cigarette smokers to Mtb infection (86). In
this study, extracellular flux analysis of Mtb-infected human
alveolar macrophages isolated from the bronchoalveolar lavage
(BAL) fluid of smokers and non-smokers revealed an impairment
of metabolic activity in the alveolar macrophages of the
smokers, including reduced glycolytic response and spare
respiratory capacity, which was accompanied by a weakened
inflammatory response.

Biphasic Immunometabolic Response of
Individual Mtb-Infected Macrophages
Further to the immunometabolic distinction between pulmonary
macrophages of different lineages, increasing evidence points
toward a time-dependent blend of M1 and M2 responses
to Mtb infection within individual granuloma macrophages
(90–92), which may further explain the paradox of alveolar
macrophage functionality during infection. One such study
utilized high-throughput capped analysis of gene expression
(deepCAGE) technology to investigate the promoter-based
transcriptional landscape of Mtb-infected macrophages (91).
This work revealed drastic gene expression alterations that
included up-regulation of genes involved in M1-related immune
response and inflammation, as well as M2-related cell wounding
and apoptosis. Furthermore, to delineate macrophage responses
toMtb infection, authors of a recent review (92) comprehensively
analyzed the metabolic patterns reported in transcriptome
databases and supplementary data files from studies of primary
macrophage Mtb infection in the literature. The authors
report on a biphasic response marked by a defensive M1
phenotype during the early phase of in vitro infection (up
to 8 h post-infection), followed by a switch to an M2-driven
adaptation/resolution phase as the infection progresses (24–
48 h after infection). The early pro-inflammatory phase was
characterized by upregulation of genes indicating a classical
Warburg shift in metabolism, including Hif1α, as well as
genes encoding glucose uptake transporters (GLUT1 and
GLUT6), hexokinases (HK1 and HK2), phosphofructokinase
liver (PFKL; from the phosphofructokinase-1 (PFK-1) family), 6-
phosphofructo-2-kinase/fructose-2,6 biphosphatase 3 (PFKFB3;
an essential enzyme from the PFK-2 family that is responsible
for elevated glycolytic flux), and the major lactate secretion
transporter member 4 (MCT4). Consistent with the profile of
M1 macrophage polarization, this up-regulation of Warburg-
associated genes was coupled with the downregulation of genes
encoding mitochondrial enzymes and proteins, including the
PDC, TCA cycle enzymes (aconitase 2 [ACO2], isocitrate
dehydrogenase 2 [IDH2] and subunits of the succinate
dehydrogenase [SDH] complex), as well as multiple components
of respiratory chain complexes.

These findings are consistent with the current knowledge of
the molecular mechanisms underpinning the metabolic switch
in M1 macrophages, which are brought about by two distinct
“breakpoints” in the TCA cycle (25). The first breakpoint
occurs at the conversion of citrate to α-ketoglutarate, which
is catalyzed by isocitrate dehydrogenase 1 (IDH1). IDH1
is downregulated 7-fold in M1 macrophages compared to

non-polarized macrophages, while the ratio of citrate to α-
ketoglutarate is tripled (46). Itaconate, generated from the citrate
accumulated as a result of this metabolic break (93), is a powerful
bactericidal agent produced by M1 macrophages that functions
as a potent inhibitor of bacterial isocitrate lyase (ICL). ICL, an
enzyme that facilitates retention of carbon from fatty acids via
the glyoxylate shunt (94), has been implicated in the control
of Mtb infection (95, 96) due to its requirement for fatty acid
catabolism by the bacteria (96). In this study, Muñoz-Elías and
McKinney show that deletion of the genes that encode two ICL
isoforms in Mtb (icl1 and icl2) reduced growth and survival of
the bacteria in murine macrophages and in human monocyte-
derivedmacrophages, as well as the bacterial load inmouse lungs.

The second breakpoint in the TCA cycle occurs at the
succinate-fumarate conversion step, which is catalyzed by SDH,
as demonstrated by the accumulation of mitochondrial succinate
in LPS-stimulated macrophages (36). Succinate accumulation
occurs partially as a result of the aforementioned citrate-
induced generation of itaconate, which downregulates SDH
directly (97). Succinate can also be produced directly from
glutamine in a TCA cycle-independent, γ-aminobutyric acid
(GABA)-dependent manner via the GABA shunt (36, 46, 49,
50). Increasing evidence supports the role of succinate as an
important metabolic signal linking metabolism and immunity
(92, 98), as succinate has been shown to stabilize HIF-1α and
its proinflammatory effects, in particular its induction of IL-
1β expression (99, 100). In addition to the identification of
genes involved in these classical pathways, Shi et al. (92) report
the modulation of a diverse array of genes associated with a
number of pro-inflammatory processes affected as a result of
these TCA cycle breaks. Such processes include an augmented
oxidative stress response coupled with an increase in antioxidant
defense, as well as the synthesis of pro-inflammatory bioactive
lipids (including long chain fatty acyl-CoAs, phospholipids and
prostaglandins), and arginine uptake and metabolism.

Consistent with the metabolic profile of alternative
macrophage activation, the adaptation/resolution phase
transition in Mtb-infected macrophages was marked by gene
expression changes signifying a reduction in glucose uptake and
dampened glycolytic metabolism, with a concomitant recovery
of the TCA cycle and OXPHOS (92). The latter coincided with
induction of Pgc1b (92), which encodes PPAR-γ coactivator-
1β (PGC-1β), a key player in mitochondrial biogenesis and
oxidative metabolism that has been implicated in alternative
macrophage activation (47). The PPAR-γ coactivator family
of transcription factors (PGC-1) are potent anti-inflammatory
regulators and enhancers of OXPHOS in various cell types,
including macrophages, where retroviral transfection with PGC-
1β drives non-polarized cells toward an anti-inflammatory M2
phenotype characterized by enhanced OXPHOS and arginase-I
expression (47).

Studies focusing on the behavior of Mtb during its infection
cycle are also suggestive of a biphasic immunometabolic
response of individual macrophages to Mtb infection. Following
macrophage invasion, Mtb undergoes a series of physiological
adaptations that accompany distinct phases of its infection
process, from initial infection to intra-macrophage adaptation
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and eventual establishment of successful, productive disease.
Transcriptional profiling of Mtb, in conjunction with the use of
a clock plasmid to measure bacterial replication and death rates,
revealed a clear distinction in bacterial survival and response to
host phagocyte function in a 2-week in vitro infection model
encompassing this multi-phasic infection process (101). For the
first 2 days post-infection of primary BMDMs, the bacteria
encountered a “bottleneck” during whichMtb killing outweighed
its relatively high replication rate (101); a finding that is emulated
in vivo by rapid bacterial growth and pronounced bacterial killing
in the mouse lung during the first 2 weeks of infection (102).
Reduced survival of Mtb during early in vitro infection was
attributed to Mtb stress due to the initial macrophage arsenal,
inferred by up-regulation of Mtb genes involved in general stress
response, carbon metabolism, oxidative stress, iron storage, as
well as hypoxia and nitrosative stress (101). These findings are
in accordance with an earlier transcriptomic dataset that was also
acquired 2-day after Mtb infection of murine BMDMs (103).

The bottleneck observed by Rohde et al. (101) was followed
by a period of reduced replication but enhanced bacterial
survival (intracellular adaptation phase), which progressed over
time to a period of extended growth resulting in established
macrophage infection. Interestingly, only a subset of Mtb genes
were upregulated early (by day 2 post-infection) and remained
elevated over the remaining 2-week infection period, including
genes involved in fatty acid and cholesterol metabolism, secreted
antigens and regulators. Furthermore, many of the general stress
response genes observed during early infection were markedly
down-regulated during the adaptation and establishment phases.
Such modifications of the Mtb response over time are consistent
with an M1-M2 switch in macrophage activation, and suggest
that Mtb exploits the proposed biphasic response of host
macrophages in order to establish productive infection.

Foamy Macrophages and Lipid Metabolism
in Tuberculosis
A characteristic feature of tuberculosis pathogenesis is the
formation of foam cells (lipid-laden macrophages) that are
associated with tubercle granuloma necrosis (11) due to
their contribution to caseum formation, which is defined
as an accumulation of necrotic debris at the core of the
granuloma. The latter promotes inflammation, tissue injury,
and the eventual cavitation of the granulomatous structure,
resulting in transmission of live bacilli and tuberculosis disease
[reviewed by (104)]. Although the role of foamy macrophages
in the progression of tuberculosis is clear, the mechanisms
controlling foam cell biogenesis remain ill-defined for this
disease. However, a recent study using multiple Mtb-infection
models has shed light on these mechanisms, as well as
the lipid composition of tuberculosis foam cells (18). This
work demonstrated that foamy macrophages in necrotizing
granulomas in tuberculosis lung lesions accumulate triglycerides
(TAG), and exhibit a multispecies TAG profile that is conserved
in rabbits, non-human primates and humans. Elevated levels
of TAG were also detected in Mtb-infected human monocyte-
derived macrophages, and were accompanied by higher lipid

content and enhanced expression of TAG biosynthesis genes.
Mechanistically, this TAG accumulation was mediated by TNFR
signaling via downstream activation of the caspase cascade
and mTORC1. Inhibition of these pathways was shown to
significantly reduce lipid content in these cells, and up-regulation
of the pathways was also observed in transcriptomic data
from human tuberculosis lung tissue (18). Interestingly, an
involvement of mTORC1 was previously implied by histological
analysis of a human tuberculosis lung sample, which revealed
mTORC1 activation in foamy macrophages (105). Furthermore,
this key metabolic sensor has been shown to promote lipogenesis,
in particular TAG biosynthesis, in obesity, diabetes, cancer and
neurodegenerative disorders, while blocking lipolysis and β-
oxidation (106). Indeed, Mtb and other mycobacterial species
induce mTOR in macrophages (107, 108), and rapamycin
inhibition of mTOR has been shown to decrease mycobacterial
viability (107).

It is also interesting to note that mycobacterial infection of
macrophages induces the expression and activation of PPAR-
γ (109), a hallmark of alternative macrophage activation and
a master regulator of lipid metabolism that controls fatty
acid uptake, storage and lipogenesis (21). PPAR-γ has been
implicated in mycobacterial disease progression by modulating
host cell metabolism toward lipid droplet formation, as well
as diminishing the pro-inflammatory immune response to
favor bacterial survival (109–113). Moreover, a link between
mycobacterial virulence and host PPAR-γ expression and
activation during infection has been proposed. For instance,
the virulent H37Rv strain of Mtb was shown to induce PPAR-
γ expression, and attenuated growth of virulent Mtb was
observed in human macrophages following PPAR-γ deletion
(111), as well as in the lungs of macrophage-specific PPAR-γ-
deficient mice (113). In contrast, attenuated M. bovis bacillus
Calmette-Guerin (BCG) up-regulated PPAR-γ to a lesser extent
(111) and M. smegmatis, an avirulent mycobacterial strain,
failed to induce PPAR-γ expression (110, 111). Taken together,
these findings suggest that PPAR-γ may also contribute to
foam cell biogenesis in tuberculosis granulomas. This may
additionally explain the link between PPAR-γ and tuberculosis
pathogenesis, which is suggested by the correlation between
Mtb virulence and PPAR-γ activity. Furthermore, enhanced
expression of PPAR-γ has been reported in adipogenesis,
and this was shown to be mTOR-dependent (114, 115),
which raises the question as to whether PPAR-γ plays a role
in mTORC1-mediated foam cell formation in tuberculosis.
Interestingly, PPAR-α, one of the three PPAR isoforms alongside
PPAR-γ and PPAR-β and a key driver of fatty acid β-
oxidation (116), was recently reported to play an essential
role in host innate immune defense against Mtb and BCG
(117). In this study, the PPAR-α-mediated antimycobacterial
response of BMDMs was attributed to enhanced autophagy,
lysosomal biogenesis and phagosome maturation, as well as
suppression of exacerbated inflammation via activation of
transcription factor EB (TFEB). Moreover, PPAR-α promoted
lipid catabolism, mitochondrial respiration and fatty acid β-
oxidation in mycobacteria-infected macrophages (117). Thus, it
appears that PPAR-γ and PPAR-α play opposing roles during
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mycobacterial infection, which is due, in part, to their distinct
effects on host lipid homeostasis.

AMPK is another key metabolic regulator that has gained
traction in tuberculosis research, although the literature on its
role in other granulomatous diseases is sparse. AMPK is an
important coordinator of M2 polarization and lipid catabolism,
and its effects can overlap, enhance or antagonize those of
mTOR and the PPAR family [reviewed by (118)]. During
Mtb infection, AMPK activation increases OXPHOS, FAO and
also antimicrobial autophagy by interacting with PGC-1α, as
well as inhibiting Mtb-induced mTOR activation (19, 20).
It is well-established that autophagy constitutes a successful
antimycobacterial host response (119), therefore it is no surprise
that Mtb has developed mechanisms to protect itself against this
process. One such mechanism is the induction of microRNA
expression in macrophages that directly silence AMPK (20). A
second mechanism could be the activation of mTOR (19, 120),
which is a well-known inhibitor of autophagy (121, 122). Indeed,
mTORC1 has been reported to inhibit PPAR-α (123), which may
constitute a mechanism by which mTORC1 inhibits autophagy
in Mtb-infected cells. In comparison, mTORC1 is known to
enhance the expression of PPAR-γ (114, 115), which supports
an interplay between mTORC1 and PPAR-γ in the formation of
foamy macrophages during Mtb infection.

These findings highlight not only the importance of
macrophage lipidmetabolism in the pathogenesis of tuberculosis,
but also the critical involvement of mTORC1 and PPAR-γ in the
survival andmaintenance ofMtb during disease progression. The
additional identification of AMPK and PPAR- α as host protective
metabolic signaling pathways further accentuates the important
link between immunometabolic signaling and the outcome of
granulomatous disease. An overview of the Mtb-macrophage
interactions described in this section is provided in Figure 1.

SCHISTOSOMIASIS: A STORY OF EGGS
AND FATS

The second major cause of infectious granulomas,
schistosomiasis (or bilharzia), is an endemic tropical disease
of significant morbidity, mortality and socioeconomic impact.
Like other helminth-borne infections, schistosomiasis occurs
mainly in the southern hemisphere, where it is considered
endemic in over 50 countries and affects over 200 million
people, making it the most significant parasitic infection after
malaria (124). Schistosomiasis is transmitted to humans via
the aquatic larvae of several geographically distinct species of
the Schistosoma trematodes. The most prominent causative
agents of human schistosomiasis are S. mansoni, S. japonicum,
and S. haematobium, all of which employ freshwater snails
as intermediate hosts. Upon subcutaneous infection with the
swimming larval stage, known as cercariae, the worms mature
in the lung over the course of a month. During this time, the
infection elicits an acute type-1 inflammatory response, which, in
the case of S. mansoni and S. japonicum, subsides when the adult
schistosomes travel to the hepatic and mesenteric vasculature
to mate and lay eggs (125). S. haematobium instead colonizes

the urogenital tract. Egg deposition into perivascular tissues is
accompanied by an acute type-2 response about 2 months post-
infection, which finally becomes a lower-grade chronic disease
marked by chronic pain, anemia, diarrhea, hepatomegaly and
malnutrition (126). During this type-2 antihelminthic response,
schistosome egg antigens induce rapid periovular granuloma
formation that encases the eggs. Periovular granulomas protect
the host from continuous exposure to toxic egg antigens and
reduce immunopathology, but hepatic granulomas frequently
become fibrotic if untreated, leading to portal hypertension
and eventually liver cirrhosis with significant morbidity
(127). Schistosome granulomas therefore have advantages and
disadvantages for the host and their usefulness as a containment
strategy has been discussed at length (128–130).

Cellular Composition of Schistosome
Granulomas
Typically, periovular granulomas consist of alternatively
activated M2 macrophages, Th2 CD4+ T cells and eosinophils
(128). Although M2 macrophages are considered the key
component of schistosome granulomas (131), granuloma
composition is variable, with hepatic granulomas showing a
higher cell heterogeneity and intestinal granulomas containing
largely macrophages (132). Based on inverse proportions of
eosinophils, macrophage numbers also appear to be higher in
the granulomas of naturally-infected wild water rats (Nectomys
squamipes) than in chronic granulomas of experimentally-
infected mice (133), indicating that there may be significant
differences between experimental and natural granuloma
formation that must be taken into account. Schistosome egg-
derived antigens such as omega-1 play a major role in driving
a highly Th2-skewed antihelminthic immune response at 5–6
weeks after the initial infection, causing local CD4+ T helper
cells to release IL-4 and IL-13 (134, 135). At the same time,
intercellular adhesion molecule 1 (ICAM-1) is upregulated on
sinusoidal endothelial cells surrounding newly deposited eggs
(136). This milieu of cytokines and chemokines results in the
T cell and STAT6-dependent recruitment of Ly6Chi monocytes
to the periovular space, where they differentiate into granuloma
macrophages with only a minor contribution from resident
hepatic macrophages (131, 137–139). In the case of S. japonicum
infection, parasite antigens can also signal via TLR2 to promote
M2 polarization (140). Contrastingly, Tundup et al. (141)
showed that the TLR co-receptor CD14 is highly upregulated
in hepatic macrophages upon S. mansoni infection and acts
as a crucial negative regulator of M2 polarization, possibly
as part of a parasitic defense mechanism against granuloma
formation (141). CD14, in turn, induces uptake of oxidized
low-density lipoproteins (oxLDL), cholesterol and lipids into
macrophages (142).

Lipid Metabolism and PPAR-γ-Signaling in
Schistosomiasis
S. mansoni infection was recently linked to specific metabolic
changes in hepatic macrophages, where granuloma formation
around schistosome eggs was associated with differential lipid
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FIGURE 1 | Mycobacterium tuberculosis elicits a biphasic immunometabolic response in host macrophages. (A) Monocyte-derived interstitial macrophages, and

macrophages during the acute phase response to Mtb infection, adopt an M1-like phenotype characterized by a Warburg-like switch in metabolism. Enhanced

HIF-1α-mediated glycolytic activity and glucose uptake results in the rapid generation of ATP to support the pro-inflammatory reaction, which occurs simultaneous to

the increased generation and export of lactate. Concomitant reductions in OXPHOS, PDC, and FAO occur as result of two consecutive breaks in the TCA cycle at the

conversion of citrate to α-ketoglutarate (α-KG) and succinate to fumarate, as well as the down-regulation of the TCA cycle enzymes involved in these reactions: IDH

and SDH, respectively. Accumulation of the TCA intermediate citrate as a result of the first breakpoint in the cycle (citrate to α-KG) leads to the generation of itaconate,

which inhibits SDH directly as well as Mtb survival by blocking bacterial isocitrate lyase and consequently fatty acid catabolism by the bacteria. Accumulation of

succinate as a result of the second break in the TCA cycle (succinate to fumarate), as well as direct inhibition of SDH by itaconate, stabilizes HIF-1α and its

pro-inflammatory activity. The uptake and metabolism of arginine are additionally increased, promoting the production of NO via iNOS/NOS2. Together, these events

culminate in the generation of a potent antimycobacterial response marked by the generation of pro-inflammatory cytokines, ROS/RNS and bioactive lipids, which in

parallel with increased glycolysis and reduced FAO, result in Mtb growth control. (B) Tissue-resident alveolar macrophages, and macrophages entering an

adaptation/resolution phase during chronic Mtb infection, adopt an M2-like phenotype characterized by an intact TCA cycle and enhanced FAO-driven OXPHOS, with

a concomitant reduction in glycolytic activity and glucose uptake. This coincides with increased expression and activity of Pgc1β, which promotes mitochondrial

biogenesis and oxidative metabolism. During the infection process, Mtb augments PPAR-γ expression, resulting in a weakened inflammatory response, as well the

formation and accumulation of lipid droplets within the cell, thus providing a favorable niche for the growth and survival of Mtb. PPAR-α can also be activated in

macrophages during Mtb infection, which enhances autophagic, lysosomal and phagosomal processes that contribute to Mtb growth control. Likewise, cytosolic

AMPK, while enhancing OXPHOS and FAO, also promotes antimycobacterial autophagy, and is therefore directly inhibited by Mtb. mTORC1, induced by Mtb,

supports bacterial survival by promoting lipogenesis and blocking autophagy, potentially due to its interactions with PPAR-γ and PPAR-α, respectively. Dotted lines

represent interactions inferred from the literature. Up- and downregulation are indicated by blue and red, respectively. Acetyl-CoA, acetyl coenzyme A; AMPK,

adenosine monophosphate activated protein kinase; ATP, adenosine triphosphate; FAO, fatty acid oxidation; GLUT, glucose transporter; HIF-1α, hypoxia-inducible

factor 1-alpha; IDH, isocitrate dehydrogenase; IFN-γ, interferon gamma; IL, interleukin; iNOS, inducible nitric oxide synthase; MCT, monocarboxylate transporter; Mtb,

Mycobacterium tuberculosis; mTORC1, mammalian/mechanistic target of rapamycin complex 1; NF-κB, nuclear factor ‘kappa-light-chain-enhancer’ of activated

B-cells; NO, nitric oxide; NOS2, NO synthase 2; OXPHOS, oxidative phosphorylation; PDC, pyruvate dehydrogenase complex; Pgc1β, peroxisome

proliferator-activated receptor gamma coactivator 1-beta; PPAR, peroxisome proliferator-activated receptor; ROS, reactive oxygen species; RNS, reactive nitrogen

species; SDH, succinate dehydrogenase; TCA, tricarboxylic acid.

and cholesterol metabolism (143). This is supported by multiple
studies that have highlighted the significance of PPAR-γ in
the context of schistosomiasis. PPAR-γ is a hallmark of M2
polarization and globally regulates lipid uptake and metabolism
(144, 145). It is activated by a multitude of immunometabolic
ligands, including various unsaturated fatty acids, lipoproteins,
eicosanoids, flavonoids and the amino acids glutamine and
arginine (146). Although the precise role of PPAR-γ in

macrophages depends on their lineage, polarization state and
post-translational modifications (145, 147), PPAR-γ is generally
considered to be an anti-inflammatory receptor known to limit
M1 activation, for instance by transrepression and ubiquitination
of NF-κB (145, 148). Importantly, lipids secreted from the
tegument of S. mansoni adults were shown to directly activate
PPAR-γ in macrophages, leading to upregulation of arginase-1
expression and other M2 markers in vitro (149). This study did
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not clarify whether this effect is only achieved in the presence
of adult worms, or whether similar PPAR-γ-activating lipids are
also found on the eggs. However, both live and inactivated S.
mansoni eggs have been reported to induce a 7-fold increase in
PPAR-γ expression in human liver cell cultures (150). PPAR-
γ activation is a classical M2 macrophage marker and M2
macrophages are known to preferentially utilize FAO. While
mice with a macrophage-specific PPAR-γ knockout show a
downregulation of genes for both synthesis and oxidation of
fatty acids in non-infectious settings (144), S. mansoni-infected
human liver biopsies revealed a specific downregulation of FAO-
related genes, including acetyl-CoA acyltransferase 2 (ACAA2)
and acyl-CoA synthetase long-chain family member 1 (ACSL1)
(151). Additionally, a secretory protein of S. japonicum inhibited
PPAR-α, a key promoter of FAO, in a colitis mouse model (152),
indicating that downregulation of FAO may be directed by the
parasite itself. These findings support the notion thatmacrophage
polarization during schistosomiasis is complex, with a potential
decrease in FAO despite many classical M2 signatures (153).

It is now well-established that infection with S. mansoni alters
host lipid metabolism globally by reducing total cholesterol,
low-density lipoprotein (LDL) and triglycerides in the plasma
of humans and apolipoprotein E (apoE)-deficient or high-fat
diet-fed mice (154–156). In particular, PPAR-γ activation during
schistosomiasis has been shown to counteract atherosclerosis
and other high-fat diet-induced pathologies (157, 158). PPAR-γ
has been strongly linked to these conditions, and mice with
macrophage-specific PPAR-γ knockouts become susceptible to
diet-induced obesity and insulin resistance (144). Peritoneal
macrophages with a conditional PPAR-γ knockout have
markedly reduced expression of cholesterol transport genes, such
as the ATP-binding cassette transporters (ABC) A1 and G1, as
well as reduced cholesterol efflux (157, 159, 160). Similar effects
were shown in hepatic macrophages during schistosomiasis,
where a recent study reports downregulation of a number of
genes involved in cholesterol metabolism, including APOC1 and
APOC3 (143), which are known contributors to inflammatory
atherosclerosis (161, 162). A recent RNA interference study
revealed that ApoC1 in particular is a key promoter of oxLDL
cholesterol uptake into macrophages via the lectin-like oxLDL
receptor-1 (LOX-1), which is in turn inhibited by PPAR-γ
(163, 164). Thus, S. mansoni infection blocks macrophage
oxLDL cholesterol uptake by inhibiting ApoC1 and ApoC3
and may at the same time facilitate cholesterol efflux via
ABCA1 and ABCG1. This suggests that unlike in tuberculosis,
schistosomiasis macrophages do not accumulate lipids (see
Figure 2). In accordance with this, there are no reports to date
of S. mansoni or S. japonicum leading to foam cell formation.
The rarer S. mekongi, which does not promote fibrosis, appears
to be the only member of its genus to induce foam cells,
although this phenomenon has not yet been investigated
further (165).

Mechanistically, S. mansoni infection leads to significant
upregulation of CD14, which induces macrophage uptake of
oxLDL cholesterol and lipids (141, 142). Additionally, PPAR-γ is
known to mediate transcription of the Cd36 scavenger receptor
gene in macrophages (166), which promotes uptake of oxLDL

cholesterol and provides a stepping stone for the development
of atherosclerosis (158). A PPAR-γ response element in the Cd36
gene means that PPAR-γ directly promotes CD36 transcription
following PPAR-γ activation by oxLDL, constituting a positive
feedback loop for cholesterol accumulation (158, 167, 168). In
mice infected with S. mansoni while on an atherogenic high-
fat diet, significant lipid uptake was found to be induced in
the outermost cell layers of hepatic periovular granulomas;
however, the plasma ratio of HDL to LDL was still improved
(156). Unfortunately, this study did not determine which cells
were responsible for the increased lipid uptake. However, as
the experiments were performed only 7 weeks after S. mansoni
infection, when granulomas are still somewhat immature and
not yet associated with additional leukocytes (128), it is
likely that the responsible cells were either eosinophils or
macrophages. Another study showed that S. mansoni infection
can induce lipid uptake and retention in hepatic stellate cells
(150). Therefore, the lipid droplet-positive cells identified by
Stanley et al. (156) could be non-granulomatous hepatic cells,
although this would not account for their circular distribution
around the granulomas. Since lipid uptake was only induced
in the outermost cell layers of granulomas (156), there may
be an as-of-yet unknown significance of physical proximity
between the egg and the surrounding macrophages. While
it is known that female schistosomes take up large amounts
of fatty acids in order to produce eggs, it is not established
whether eggs, which themselves contain large amounts of
fatty acids, could extract and ingest lipids from surrounding
macrophages (169, 170). It may be the case that CD36-induced
oxLDL uptake, while pro-atherogenic in arterial walls, allows
some sequestration of oxLDL cholesterol in non-migratory
macrophages, thus contributing to the anti-atherogenic effect of
schistosomiasis (171).

Overall, S. mansoni is characterized by modifications in the
PPAR-γ network of lipid metabolism, during which oxLDL
cholesterol uptake via ApoC1 and ApoC3 is directly suppressed,
while uptake via CD14 and CD36 may be enhanced due to
PPAR-γ signaling. Since PPAR-γ can directly activate multiple
HDL cholesterol efflux channels, and there appears to be
limited lipid accumulation and no evidence of foam cell
formation in schistosome macrophages, this suggests that there
may be a significant efflux of cholesterol from granuloma
macrophages during schistosomiasis. The expulsion of HDL
cholesterol could explain the anti-diabetic and anti-atherogenic
effects observed in response to PPAR-γ agonists such as
rosiglitazone (172–174).

PPAR-γ in Schistosoma-Induced Fibrosis
Macrophage lipid metabolism may also be involved in
the formation of fibrosis, the major pathology of chronic
schistosomiasis, as suggested by several studies using
pharmacological PPAR-γ induction. For instance, in a mouse
model of S. japonicum-induced liver fibrosis, the PPAR-γ agonist
rosiglitazone was able to reduce liver fibrosis and extracellular
matrix (ECM) deposition, which was attributed to decreased
inflammatory signaling (175). Although this study did not link
these effects to granuloma macrophages, but rather to hepatic
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FIGURE 2 | Periovular granuloma macrophages in schistosomiasis assume an M2-like phenotype with altered lipid metabolism. Antigens from Schistosoma mansoni

eggs (and adults) activate PPAR-γ signaling. Some Schistosoma products have also been shown to inhibit signaling by the FAO inducer, PPAR-α. PPAR-γ contributes

to an M2 phenotype by upregulating M2 markers including arginase-1. It also promotes expression of the scavenger receptor CD36, which takes up free fatty acids

and oxidized LDL cholesterol. In contrast, PPAR-γ inhibits oxLDL cholesterol uptake via the LOX-1 receptor. S. mansoni itself also attenuates LOX-1 by decreasing

ApoC1 and ApoC3 via an unknown mechanism. Additionally, S. mansoni infection also leads to an upregulation of CD14, which has in turn been shown to promote

uptake of oxLDL and other lipids in macrophages. HDL cholesterol efflux may also be increased through the PPAR-γ-mediated upregulation of ABCA1 and ABCG1,

contributing to an anti-atherogenic phenotype. Up- and downregulation are indicated by blue and red, respectively. ABC, adenosine triphosphate-binding cassette

transporter; Apo, apolipoprotein; CD, cluster of differentiation; FAO, fatty acid oxidation; HDL, high-density lipoprotein; LOX-1, lectin-like oxidized low-density

lipoprotein receptor 1; oxLDL, oxidized low-density lipoprotein; PPAR, peroxisome proliferator-activated receptor.

stellate cells and myofibroblasts, ECM deposition and local
synthesis have been described as key components in both sarcoid
and infectious lung granulomas (176). Similar to the effects of
rosiglitazone, the PPAR-γ agonist pioglitazone reduced hepatic
and splenic histopathology in a mouse model of S. japonicum
infection by increasing the proportion of regulatory T cells
and inducing the polarization of mannose receptor-positive
M2 macrophages (177). Another PPAR-γ agonist, telmisartan,
reduced both hepatic fibrosis and granuloma diameter in S.
mansoni-infected mice, although it did not synergistically
increase the efficacy of praziquantel treatment, an antihelminthic
drug commonly used to treat schistosomiasis (178). These
findings may seem contradictory, seeing as PPAR-γ is known
to induce M2 polarization, which is necessary for host survival
during initial infection (179, 180), and also contributes to
fibrosis by promoting fibroblast hyperactivity through TGF-
β signaling (181, 182). At the same time, pharmacological
activation of PPAR-γ has been shown multiple times to decrease
histopathology and fibrosis in schistosomiasis and some renal

pathologies (183). Where PPAR-γ agonists have failed to
ameliorate fibrosis, this has been speculatively attributed to
the simultaneous activation of pro-fibrotic M2 macrophages
(184, 185). It is therefore likely that this dual role of PPAR-γ is
due to its activity in various cell types. For instance, activation
and overexpression of PPAR-γ has been shown to act directly
on both human and mouse fibroblasts to decrease fibrosis by
reducing growth factor expression, mitosis, collagen secretion,
and responsiveness to TGF-β (186, 187).

While these studies do not explicitly link the anti-fibrotic
effects of different PPAR-γ agonists to immune cell lipid
metabolism, it is clear that PPAR-γ plays a significant role
in schistosomiasis pathogenesis and future work investigating
how macrophage lipid metabolism affects fibrosis should prove
interesting. Taken together, it is becoming apparent that
Schistosoma infection has highly complex consequences for lipid
metabolism, at both the cellular and global level (summarized
in Figure 2), and more work is required to elucidate the exact
metabolic pathways that characterize schistosome granulomas.
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SARCOIDOSIS: A DISEASE LACKING AN
IMMUNOMETABOLIC SWITCH?

Unlike tuberculosis and schistosomiasis, which are triggered by
known pathogens and are typically organ-specific, sarcoidosis
is an enigmatic multi-systemic disease of unknown origin.
It is characterized by the development and accumulation of
epithelioid, non-caseating (non-necrotic) granulomas typically
found in the lungs; however, sarcoid granulomas can present
almost anywhere in the body, with other notable sites
including the eyes, skin and lymph nodes (188). The disease
is increasingly difficult to treat once it develops from a self-
limiting to progressive state, with pulmonary and cardiac
involvement representing the most frequent causes of patient
morbidity and mortality (189). Due to the unknown etiology
of sarcoidosis, there is currently no therapeutic approach
targeting the pathogenetic mechanisms (190). However, the
occurrence of familial forms of the disease (191, 192) suggests
that a genetic background may play a pathological role, and
pine pollen (193), microbial infection (specifically P. acnes
and mycobacteria) (5) as well as air pollutants (comprising
mineral, micro or nanoparticles) (3) are increasingly regarded
as strong environmental trigger candidates (188, 194, 195).
Pollution, in particular, gained momentum among clinicians and
biologists when a recrudescence of sarcoidosis was observed in
the aftermath of the World Trade Center tragedy in subjects
exposed to particulate matter (3). Although the exact relative
contributions of genetic and environmental factors are unknown,
it has been suggested that genetic factors account for 66% of
disease susceptibility in monozygotic twins (191).

Immunological Profile of Sarcoidosis
At the cellular level, sarcoid granulomas are characterized by
a strong Th1/Th17 phenotype (196). Once again, this sets
sarcoidosis apart from tuberculosis and schistosomiasis, which
are both marked by an acute Th1 and M1 phase that later
progresses to a predominantly M2 phenotype. It has long
been known that the pro-inflammatory milieu of IL-12, IL-17,
TNFα, and IFNγ upregulate adhesionmolecules onmacrophages
to promote aggregation, cell-to-cell contact and fusion (197,
198). In 2011, however, macrophages and multinucleated giant
cells from granulomas of patients with systemic neuromuscular
sarcoidosis were shown for the first time to be M2-polarized
with high CCL18 expression and resistance to conversion
by Th1 cytokines (199). More recently, immunohistochemical
analysis also revealed M2 macrophage activation in lung and
lymph node samples from pulmonary sarcoidosis patients (200).
Advanced sequencing techniques confirmed that a CD163-
positive macrophage fraction of peripheral blood mononuclear
cells (PBMCs), isolated from sarcoidosis patients and treated
with purified protein derivative (PPD), exhibits a partial M2
profile with upregulation of IL-13 downstream pathways (201,
202). Furthermore, the pro-inflammatory cytokine IL-17, well-
established in sarcoidosis pathology, has also been shown to
induce an M2-like phenotype in macrophages (203, 204). It is
important to note that sarcoidosis is frequently linked to clinical
anergy, which presents as the loss of skin test reactivity to

PPD and other antigens in sarcoidosis patients. While CD4+

T cells and dendritic cells have been implicated in this anergic
response [reviewed by (205)], the findings described above
suggest that anti-inflammatory macrophages may also contribute
to the paradoxical diminished immunity often observed in
sarcoidosis patients.

Dysregulation of Lipid Metabolism in
Sarcoidosis
The M2 profile of macrophages reported for some sarcoid
granulomas may also be associated with the expression and
activity of PPAR-γ, as PPAR-γ deficiency was observed in
alveolar macrophages of pulmonary sarcoidosis patients (206)
and its expression was shown to negatively correlate with disease
severity (207). Furthermore, polymorphisms in the Pparg gene
and the gene encoding its transcriptional coactivator PPAR-γ
coactivator 1-α (Ppargc1a) were identified at a higher frequency
in sarcoidosis patients compared with healthy subjects (208).
Thus, a genetic defect in PPAR-γ signaling may be a predisposing
factor for the development of severe sarcoidosis. Additional work
utilizing diverse mouse models supports the role of PPAR-γ
in lung immunopathology (157, 159, 209–212). In one such
study employing a multiwall carbon nanoparticle (MWCNT)
model, which recapitulates the chronicity of human granulomas
(211), PPAR-γ expression and activity was significantly reduced
in alveolar macrophages following oropharyngeal instillation
of MWCNT in wild type animals. Accordingly, increased
pulmonary granuloma formation, as well as expression of
pro-inflammatory markers in granulomatous lung tissue and
BAL, were observed in macrophage-specific PPAR-γ-deficient
mice (termed PPAR-γ fl/fl, Lyz2-Cre) (153). Moreover, increased
numbers of Th1 lymphocytes were observed in BAL fluid
extracted from PPAR-γ fl/fl, Lyz2-Cre mice compared to wild
type controls. PPAR-γ deficient BAL cells also displayed elevated
expression of inducible nitric oxide synthase (iNOS) and IFN-
γ, as well as Th1-associated cytokines (209). Reconstitution of
PPAR-γ by lentiviral transduction in the same study significantly
reduced the expression of pro-inflammatory mediators and
decreased the number of BAL lymphocytes by 90%. Taken
together, these data suggest an important role of PPAR-γ in
the regulation of pulmonary inflammation and maintenance of
lung homeostasis.

As mentioned earlier, chronic inflammation typically
triggers a heightened activation state in fibroblasts, lending
to substantial deposition of ECM components at the site of
injury and consequent development of fibrosis (213, 214).
Thus, PPAR-γ deficiency in sarcoid granulomas of patients
presenting severe forms of the disease may play a role
in the characteristic Th1/M1 bias, and consequently the
development of fibrosis that is typically associated with disease
pathogenesis. This notion correlates with the observation
that NF-κB activation is increased in BAL samples from
sarcoidosis patients (215). As described previously in this
review, transrepression of NF-κB by PPAR-γ is well-established,
thus increased and/or uncontrolled activation of NF-κB as
a result of PPAR-γ deficiency could be one mechanism by
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which continuous inflammation occurs. Indeed, in a study
coupling a computational model of granuloma formation and
function, termed GranSim (216), with macrophage polarization
data from non-human primate tuberculosis granulomas,
continuous or increased NF-κB signaling was shown to
exacerbate inflammation, resulting in uncontrolled bacterial
growth and dissemination (68).

Mechanistically, PPAR-γ maintains pulmonary lipid
homeostasis via alveolar macrophage liver X receptor-alpha
(LXR-α) and ABCG1 (217), which, alongside ABCA1, is critical
for macrophage efflux of cholesterol and phospholipids (218).
Alveolar macrophages from sarcoidosis patients and mice
following MWCNT instillation show diminished expression of
ABCG1 and ABCA1, and the deficiency of these transporters
in MWCNT-instilled mice correlates with increased alveolar
macrophage lipid accumulation (210). In accordance with
these findings, activation of the PPARγ-ABCG1 pathway by
the PPARγ agonist rosiglitazone tempers MWCNT-induced
granulomatous inflammation by significantly attenuating
alveolar macrophage activation, pulmonary granuloma
formation and pulmonary lipid dysregulation (212). Thus,
the consequence of PPAR-γ deficiency in sarcoid granuloma
macrophages appears to be manifold, resulting in both an
uncontrolled inflammatory response and dysregulation of
macrophage lipid metabolism.

Indeed, a number of proteins involved in lipid metabolism
have been identified as contributing factors in the pathogenesis
of sarcoidosis, including apoA1, fatty acid-binding protein
4/perilipin 2, 8-isoprostane, zinc-α2 glycoprotein and serum
amyloid A (SAA) (219). In particular, SAA, a highly inducible
acute-phase reactant and amyloid precursor protein (220),
is a well-known modulator of the innate immune response,
inflammation and apolipoprotein metabolism (221), and it
has been suggested as a potential biomarker for sarcoidosis
due to its significantly higher serum concentrations in patients
vs. healthy subjects (222). However, SAA is not a diagnostic
gold standard as it is also elevated in a number of other
inflammatory conditions, namely arthritis and systemic lupus
erythematosus (223). In tissue samples from sarcoidosis
patients, SAA was shown to localize to macrophages and
giant cells within granulomas, but it also correlated with the
number of CD3+ cells and a local Th1 response (224). In
this study, SAA was shown to promote chronic inflammation
in sarcoid granulomas via TLR2 signaling and activation of
NF-κB, as well as cytokine production (224). Contrastingly,
recent evidence suggests that during inflammation, SAA
acts synergistically with secretory phospholipase-A to
remove cell membrane debris, which suggests a partial
involvement in anti-inflammatory repair processes (225).
Interestingly, SAA has also been suggested to be responsible
for the low HDL cholesterol and apoA1 levels observed in
patients with active sarcoidosis (226, 227), which has been
linked to an increased risk of atherosclerosis in sarcoidosis
patients (219). This is in contrast to schistosomiasis, which
has been reported to counteract atherosclerosis by altering
global host lipid metabolism and reducing serum cholesterol
levels (154).

Metabolic Signaling as a Driver of
Sarcoidosis Disease Progression
Asmentioned previously in this review, Linke et al. (15) identified

an involvement of macrophage-specific mTORC1 signaling in

the initiation and maintenance of granulomas. In this study,
constitutive activation of mTORC1 in murine macrophages was

achieved via myeloid-specific deletion of the gene encoding its

upstream inhibitor tuberous sclerosis complex 2 (Tsc2) (termed

Tsc2fl/fl, Lyz2-Cre mice). This genotype induced hypertrophy

and enhanced cell proliferation in macrophages while reducing

their apoptotic capacity. As a result, the Tsc2fl/fl, Lyz2-Cre

mice exhibited spontaneous formation of non-caseating (non-

necrotic), epithelioid granulomas that were observed in multiple

organs. In the lung specifically, the granuloma macrophages

were shown to consist of M2-like alveolar macrophages.
Thus, the disease pathology seen in the Tsc2fl/fl,Lyz2-Cre mice
strongly resembles the histological phenotype of sarcoidosis.
Mechanistically, genes involved in both glycolysis and OXPHOS

were enriched in transcriptomic datasets from Tsc2fl/fl,Lyz2-Cre
BMDMs compared with Tsc2 floxed control (termed Tsc2fl/fl)
BMDMs, and the enhancement of both metabolic pathways
was confirmed by extracellular flux analysis. Furthermore, the
uptake of glucose was higher in Tsc2fl/fl,Lyz2-Cre BMDMs
and absolute glucose levels were decreased in both Tsc2-
deficient macrophages as well as in the lungs of Tsc2-deficient
animals, while mitochondrial mass and mitochondrial spare
respiratory capacity were elevated (15). These findings are in
accordance with the identification of increased levels of pyruvate
in sarcoidosis patient sera, which is indicative of enhanced
glycolytic activity (228). This study also reported an increase in
serum metabolites that indicate enhanced mitochondrial FAO,
as well as a decrease in serum levels of the key TCA cycle
intermediate succinate (228). RNA-Seq data from sarcoidosis
patient monocytes further revealed a dysregulation of OXPHOS
and FAO pathways (229). Interestingly, the metabolic alterations
described by Linke et al. were shown to be CDK4-dependent
and crucial for the enhanced proliferation and reduced apoptosis

of Tsc2-deficient macrophages. This study additionally identified
mTORC1 activation, macrophage proliferation and glycolysis

as hallmarks of disease progression in human sarcoidosis

patients (15). Clinical involvement of mTORC1 has since been

substantiated by its recent identification in RNA-Seq gene set
enrichment data from cutaneous sarcoidosis patients (230), as

well as whole exome sequencing and pathogenicity network
analysis of familial cases of sarcoidosis (231). It should also be
noted that successful treatment of a sarcoidosis patient with
the mTOR inhibitor rapamycin has previously been reported
(232). However, the molecular mechanisms underpinningmTOR
involvement in human sarcoidosis remain to be elucidated.

Among other pathways, the involvement of mTORC1
points to a role of glycolytic metabolism in sarcoidosis
pathogenesis. Importantly, the PI3K/Akt/mTOR axis, and
mTORC1 specifically, have been shown to promote the
production of the key glycolytic regulator HIF-1α irrespective
of oxygen concentrations (233–235). In accordance with this,
a recent study demonstrated elevated protein levels of HIF-1α,
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as well as HIF-1α signaling pathway components such as HIF-
1β, HIF-2α, and p300, in alveolar macrophages from sarcoidosis
patients cultured under normoxic conditions (236). HIF-1α
protein expression was further confirmed in granulomatous lung
tissue from sarcoidosis patients, and was found to be localized
to alveolar macrophages and multinucleated giant cells (236).
As described previously, HIF-1α promotes pro-inflammatory
macrophage functions by activating glycolytic enzymes and
stimulating the production of IL-1β (36). Indeed, Talreja
et al. (236) demonstrated that in alveolar macrophages from
sarcoidosis patients, increased levels of HIF-1α correlated with
augmented Glut1 protein expression and elevated levels of IL-
1β. Furthermore, siRNA inhibition of HIF-1α in patient PBMCs
significantly diminished the production of IL-1β, IL-17 and IL-6
(236). Thus, HIF-1α signaling appears to play a critical role in the
pro-inflammatory milieu that defines sarcoidosis pathology, and
provides an explanation for the enhanced glycolysis reported in
the aforementioned studies.

These findings highlight the complexity of the metabolic
landscape of granuloma macrophages both in vivo and in human
disease. In particular, they emphasize the oversimplification of
Warburg metabolism in M1 macrophages, which is classically
defined by a simultaneous increase in glycolysis and decrease
in OXPHOS. This accentuates the importance of future work
that examines more closely the complexity of macrophage
metabolism in vivo and in the context of individual human
diseases. This is, however, in contrast to Mtb infection, during
which the Warburg-like immune response has been documented
and supported by in vivo data (84). However, this difference
may simply be due to the infectious nature of Mtb and a
typical pro-inflammatory reaction to initial infection, which
is absent in sarcoidosis. It is also important to note that
some of the sarcoidosis studies mentioned in this section
utilized either patient PBMCs or patient sera, and therefore
describe the peripheral/global metabolic alterations associated
with sarcoidosis. The role of each of the identified metabolic
pathways within the sarcoid granuloma environment, and
their contribution to sarcoid granuloma macrophage function
specifically, still has to be assessed. Nevertheless, the observations
that glycolysis, OXPHOS and FAO may all occur simultaneously
during sarcoidosis disease progression, and that these pathways
are associated with both pro- and anti-inflammatory functions,
may somewhat explain the paradoxical immunoregulation and
anergy that are frequently associated with sarcoidosis.

An overview of the findings described in this section is
provided in Figure 3.

COMMON AND DISTINCT METABOLIC
FEATURES OF TUBERCULOSIS,
SCHISTOSOMIASIS, AND SARCOIDOSIS

PPAR-γ signaling and dysregulated lipid metabolism are the
overriding common features of each disease discussed in this
review. However, these pathways are distinctly modulated
depending on the disease, as well as disease severity. Such
differences may be due to the granuloma-inciting agent and, in

particular, the ability of mycobacteria and Schistosoma species
to manipulate host macrophage responses to promote their own
survival. For instance, both tuberculosis and schistosomiasis are
defined by an acute inflammatory phase followed by a pathogen-
induced shift toward M2-like macrophage polarization,
marked by the activation of PPAR-γ. In tuberculosis, PPAR-γ
activation appears to be virulence-dependent, leading to lipid
droplet accumulation and consequent foam cell formation
that are associated with the development of necrosis, which
is characteristic of tuberculosis pathogenesis. However, in
schistosomiasis there appears to be only minor CD14/CD36-
driven lipid accumulation that is confined to certain areas
of the granuloma, with a potential efflux of cholesterol from
macrophages and no reports of foam cell formation or a
correlation with pathogenicity for the major Schistosoma species.
This is further compounded by the up-regulation of FAO in
Mtb-infected macrophages compared to its down-regulation
in Schistosoma-infected livers, which may, in part, constitute a
protective mechanism in tuberculosis foamy macrophages to
counteract some of the lipid accumulation that occurs during
infection. In contrast to tuberculosis and schistosomiasis,
sarcoidosis exhibits defective or deficient PPAR-γ signaling
that is associated with disease severity. However, this is not
surprising considering the critical role of PPAR-γ in the
M1-M2 metabolic switch in macrophages, and the chronic
inflammatory nature of sarcoid granulomas in comparison to
tuberculosis and schistosomiasis. Furthermore, the expression
of SAA, which contributes to chronic inflammation, is greater
in sarcoidosis than in other granulomatous diseases (224).
SAA has also been associated with the increased prevalence of
atherosclerosis in sarcoidosis patients by lowering serum levels
of HDL and apoA1. This is again in contrast to schistosomiasis,
which has been shown to reduce atherogenesis potentially
due to the expulsion of HDL cholesterol from schistosome
granuloma macrophages. This may be linked to enhanced
PPAR-γ expression during Schistosoma infection that will, in
turn, lead to increased expression of the cholesterol transporters
ABCA1 and ABCG1, thus enabling HDL cholesterol efflux.
Whereas, down-regulation of PPAR-γ, and accordingly ABCA1
and ABCG1, in macrophages from sarcoidosis patients and
mice imply a decrease in the efflux of HDL cholesterol from
these macrophages. Interestingly, FAO is also up-regulated in
sarcoidosis (228), which may again constitute a homeostatic
response of sarcoid granuloma macrophages to the increased
lipid accumulation that occurs due to PPAR-γ deficiency. These
findings highlight the importance of PPAR-γ in the control of
lipid homeostasis, and how its dysregulation in a disease scenario
can have immunometabolic consequences that directly impact
macrophage effector functions and disease outcome.

In further support of the involvement of macrophage
metabolic signaling in granulomatous disease progression,
macrophage mTORC1 has recently been implicated in
tuberculosis and sarcoidosis pathogenesis. However, the
metabolic consequences of mTORC1 activation in each case
appears to be distinct. During Mtb infection, this key metabolic
sensor plays a role in foamy macrophage formation, whereas
in sarcoidosis mTORC1 promotes OXPHOS and glycolysis. As
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FIGURE 3 | Metabolic signaling and chronic inflammation in sarcoidosis disease progression. The etiological trigger of sarcoidosis remains unknown; however,

environmental and genetic factors have been proposed. Deficiency of PPAR-γ and its transcriptional coactivator Ppargc1α in alveolar macrophages has been

implicated in disease severity, resulting in the alleviation of NF-κB transrepression and enhancement of a pro-inflammatory phenotype. Reduced expression of the

cholesterol and lipid transporters ABCG1 and ABCA1 and disruption of LXR-α signaling, which are involved in the maintenance of lipid homeostasis by PPAR-γ, leads

to lipid accumulation in macrophages. NF-κB can also be activated via TLR2 signaling in response to increased levels of SAA, leading to the generation of

pro-inflammatory molecules. SAA can reduce serum HDL cholesterol and ApoA1, increasing the risk of atherosclerosis in sarcoidosis patients. However, SAA can also

work with sPLA to promote the enzymatic digestion and removal of cell debris, which contributes to the anti-inflammatory processes of wound healing and tissue

repair. In sarcoid-like granuloma macrophages, mTORC1 promotes cell proliferation and inhibits apoptosis via CDK4-dependent enhancement of glycolysis and

OXPHOS. mTORC1 also directly promotes the function of HIF-1α, which in turn contributes to glycolysis and inflammation. An M2-like phenotype in sarcoid

granulomas has additionally been reported, involving CCL18, IL-13, and IL-17. Up- and downregulation are indicated by blue and red, respectively. Dotted lines

represent interactions inferred from the literature. ABC, adenosine triphosphate-binding cassette transporter; Apo, apolipoprotein; CCL18, chemokine (C-C motif)

ligand 18; CDK, cyclin-dependent kinase; HDL, high-density lipoprotein; HIF-1α, hypoxia-inducible factor 1-alpha; IL, interleukin; GLUT, glucose transporter; LXR, liver

X receptor; mTORC1, mammalian/mechanistic target of rapamycin complex 1; NF-κB, nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells; OXPHOS,

oxidative phosphorylation; PPAR, peroxisome proliferator-activated receptor; SAA, serum amyloid A; sPLA, secretory phospholipase A; TLR, toll-like receptor.

mTOR is a key intracellular nutrient sensor, these differences
suggest that macrophages in tubercle and sarcoid granulomas
may have a distinct nutritional content, which may again be
due to the ability of Mtb to manipulate host cells to promote
its own survival. On that note, Mtb-induced dysregulation of
autophagy in macrophages is an established mechanism by
which Mtb evades the host immune response. Interestingly,
a link between mTOR and autophagy was recently proposed
in familial cases of sarcoidosis (231). Therefore, the role of
mTOR in these diseases may in fact be manifold, and the
connection between mTOR and autophagy in both tuberculosis
and sarcoidosis suggests that this could be a key molecular
pathway in the pathogenesis of granulomatous diseases. In

schistosomiasis, however, very little is known about the function
of mTOR. In dendritic cells, which play a major role in Th2
priming, mTOR inhibition by both rapamycin and torin-1
has been shown to increase IL-4 expression (237). However,
while schistosome infection leads to an M2/Th2 profile shift
in dendritic cells, the parasite antigens appear to do so in an
mTOR-independent manner (237). One study reports that
90 % of mTOR pathway genes were downregulated in liver
biopsies from human schistosomiasis japonica patients (151),
even though in vitro work suggests that IL-13 induced by
parasitic infections may enhance the expression of the mTORC2
protein Rictor (238). mTOR expression is also enhanced in S.
haematobium-associated bladder cancer, although this may be a
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general feature of malignancy rather than schistosomiasis (239).
Recently, mTOR signaling in myeloid cells has also emerged
as an attractive target for the treatment of hepatic fibrosis
(240, 241).

FUTURE PERSPECTIVES

While research on the immunometabolic features of the
pathogenesis of granulomatous diseases is developing,
particularly in the case of tuberculosis, much more work is
required to further our understanding of the exact roles of the
different metabolic pathways in each disease. As this review
highlights, the metabolic plasticity of macrophages allows for
distinct metabolic phenotypes of individual granulomas that
are highly dependent on the inciting agent. Identifying the key
common and distinct features will not only be critical in defining
potential therapeutic targets in the future, but may also provide
an insight into howwe could control themore enigmatic forms of
granulomatous disease, such as sarcoidosis and Crohn’s disease,
for which the etiological triggers remain elusive. In tuberculosis
and schistosomiasis, for example, the up-regulation of PPAR-γ
results in a controlled immune response that prevents against
exacerbated tissue damage by inducing an M2-like macrophage
polarization state. While this role of PPAR-γ can be detrimental
for pathogen clearance by the host in the case of infectious
granulomas, it points toward a potential mechanism by which
the chronic inflammation in sarcoidosis could be alleviated.
Evidence for a role of the other PPAR isoforms (PPAR-α and
PPAR-β) in granulomas of schistosomiasis and sarcoidosis is
sparse in the literature and needs to be assessed in more detail.
This is especially relevant considering that in tuberculosis the
observed antimycobacterial function of PPAR-α is in direct
contrast to the implicated function of PPAR-γ in mycobacterial
disease progression, as well as the role of PPAR-α in promoting
autophagy in Mtb-infected cells. While the specific significance
of PPAR-α has not yet been studied in schistosomiasis, Sj16,
an S. japonicum secretory protein, has been shown to inhibit
PPAR-α (152). This lends weight to the notion that PPAR-α may
play a role in schistosomiasis, and one that may also contrast
with PPAR-γ. Future research should aim to examine the
precise role(s) of the different PPARs in granulomatous disease,
which may further our understanding of the complex lipid
metabolism that is observed in each of the diseases discussed
in this review. Because of the emerging significance of PPAR-γ
in particular, it is also important to reiterate its well-established
link with mTOR [e.g., (242, 243)]. This connection suggests that
research directed at determining the precise role of mTOR in
schistosomiasis should prove fruitful in the future and could
highlight pathways of potential significance to tuberculosis
and sarcoidosis.

AMPK could, unfortunately, not be assessed for a comparison
between the granulomatous diseases discussed in this review,
as it has been described almost exclusively for tuberculosis.
However, while there is no research to date on the role of AMPK
in sarcoidosis, IL-7-induced AMPK signaling in schistosomiasis
japonicum has been shown to counteract macrophage autophagy

and potentiate liver damage (244). This is in direct contrast with
themultiple reports of AMPK promotingmacrophage autophagy
during mycobacterial infection (20). Nevertheless, AMPK could
prove a valuable component of granuloma immunometabolism
as it has been linked to both PPAR-γ (245) and mTOR (118, 246).
In cancer cell lines, for instance, AMPK and AMPK activators
such as metformin have an inhibitory effect on PPAR-γ activity
(247). In rat liver samples, AMPK activation was shown not
only to suppress PPAR-γ activity, but also to decrease fatty acid
synthesis while enhancing the beta-oxidation enzyme carnitine
palmitoyltransferase (248). While it remains to be seen whether
these findings are translatable into granuloma research, AMPK
should prove an interesting target for future research.

The comparison between schistosomiasis and tuberculosis
highlights an additional key difference relating to the structure
of their respective granulomas and the ontogeny of the
participating macrophages, which are likely influenced by the
respective pathogens. For instance, tuberculous granulomas
differ greatly based on the stage of disease, whereas the
composition of schistosome granulomas depends on where the
eggs are deposited. Additionally, in tuberculosis, granulomas
appear to involve more tissue-resident pulmonary macrophages,
while schistosome granulomas consist almost exclusively of
monocyte-derived macrophages. Therefore, it will be interesting
to investigate the activation and metabolic programming of
macrophages dependent on the local environment of the
granuloma vs. macrophage ontogeny. Metabolic differences have
also been shown within the layers of individual granulomas,
so the metabolic profiles of macrophages and/or the additional
immune cells of the granuloma dependent on their spatial
orientation within the granulomatous structure will also require
characterization. This can also be applied to the different
pathological structures of granulomas, particularly fibrotic,
foam cell-containing and necrotic granulomas. Deciphering the
metabolic pathways underlying the formation of these distinct
structures will allow us to determine why some granulomas
are more effective than others, and perhaps how to redirect
granulomas toward a less harmful phenotype.

Finally, it is important to note that there is a significant
epidemiological overlap between tuberculosis, HIV, malaria
and schistosomiasis (249). It would therefore be interesting
for future research to consider a schistosomaiasis-tuberculosis
co-infection approach. Even in urban settings of the southern
hemisphere, studies report that over 60% of Mtb-exposed
children also suffer from a helminth infection, the vast
majority of which are caused by Schistosoma species (250).
Furthermore, it was recently shown that infection with
S. haematobium induces long-term, persistent epigenetic
alterations resulting in a weakened inflammatory response
and increased susceptibility to tuberculosis (251). Hence,
research on tuberculosis therapies and vaccine candidates
has made a point to assess the effect of Schistosoma species
on tuberculosis disease progression (252). As both pathogens
form granulomas but affect macrophage metabolism in a vastly
different manner, it would be interesting to analyze granuloma
formation in co-infection settings, particularly with regard to
lipid metabolism.
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Overall, the findings highlighted in this review demonstrate
the importance and complexity of immunometabolic signaling
in granulomatous diseases of different etiology. This emphasizes
the need for future research that deciphers more closely the
contribution of different metabolic pathways to each individual
disease, as we all as the regulation of these pathways by PPARs,
mTOR, and AMPK. Furthermore, it is paramount that the role of
key metabolic pathways and regulators are then verified in vivo,
and where possible, by human studies. Building comprehensive
metabolic networks that define granuloma macrophage function
will enable us to identify novel therapeutic targets in the future.
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Epigenetic programs that control posttranslational modifications of histone proteins and

DNA itself tightly regulate transcriptional networks determining the identity and function

of CD8+ T cells. Chromatin-modifying enzymes such as histone acetyltransferases

and deacetylases, represent key molecular determinants of the epigenetic imprinting

of CD8+ T cells. The functions of these enzymes highly depend on the availability of

key products of cellular metabolism pathways such as acetyl-CoA, NAD (Nicotinamide

adenine dinucleotide) and SEM (S-adenosylmethionine), suggesting that there is a close

crosstalk between the metabolic and the epigenetic regulation of CD8+ T cells. In

this review, we will discuss the metabolic regulation of CD8+ T cell epigenetics during

activation and differentiation. We will furthermore summarize how metabolic signals from

the tumor microenvironment (TME) shape the epigenetic landscape of CD8+ T cells

to better understand the mechanism underlying CD8+ T cell exhaustion in anti-tumor

and anti-viral immunity, which might help to overcome limitations of current CD8+ T

cell-based therapies.

Keywords: epigenetics, metabolism, CD8T cell, exhaustion, anti-tumor immunity, anti-viral immunity

CROSSTALK BETWEEN EPIGENETICS AND METABOLISM

In order to adapt to shifting environments, CD8+ T cells dynamically modulate their
transcriptional programs, which not only influence their differentiation but also alter their
function and metabolic setup (1). Epigenetic changes are heritable and consist of post-translational
modifications of DNA and surrounding histone proteins rather than alterations of primary DNA
sequences. In changing external conditions, external stimuli like growth hormones and cytokines
activate classical pathways such as mitogen activated protein kinase (MAPK) and nuclear factor of
activated T cell (NFAT) signaling resulting in the recruitment, activation or induction of epigenetic
modifying enzymes that promote epigenetic alterations in CD8+ T cells (2). Similarly, nutrient
levels and the metabolic status of CD8+ T cells also interfere with the epigenetic programming
and subsequently with the function of CD8+ T cells (3). Given the fact that epigenetic modifiers
harness intermediates or products of key cellular metabolic processes as their cofactors/substrates,
regulation of epigenetics by cellular metabolism represents a common biological process (Figure 1)
(3), which can disrupt adequate immune responses by CD8+ T cells during anti-viral and
anti-tumor immune responses (3).

While a wide range of epigenetic mechanisms exists that interfere with the accessibility
of the genome by specific transcriptional programs, we will here recapitulate key epigenetic
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FIGURE 1 | Crosstalk between cellular metabolism and epigenetic changes. The function of epigenetic modifier enzymes depends on the intermediates or the

products of cellular metabolism pathways resulting in epigenetic changes and therefore the transcriptional programs of the cells. Acetyl-CoA is the main source for

histone acetylation leading to open and permissive chromatin structure. SAM is used by histone methyltransferases and demethylases. The function of sirtuin

deacetylases depend on the availability of NAD. TCR-induced activation of pathways such as AMPK, mTOR, and AKT also contributes to the metabolic

reprogramming of CD8+ T cells.

mechanisms and their modifiers as well as their dependency on
specific metabolic substrates. Subsequently, we will summarize
recent insights into CD8+ T cell specific aspects of metabolism-
regulated epigenetics in anti-viral and anti-tumor immunity
and discuss possible implications of T cell epigenetics for the
development of better immunotherapies of cancer.

HISTONE MODIFICATIONS

Eukaryotic DNA is packed in the form of chromatin. Thereby,
nucleosomes, the basic unit of the chromatin, consist of 147 bp
of DNA, which wraps around the histone octamer composed
of two H2A and H2B dimers as well as a tetramer of H3
and H4 proteins. N- and C-terminus of histone tails, which
protrude from the nucleosome, represent the main sites for
posttranscriptional modifications (PTMs) including acetylation,
methylation, phosphorylation and ubiquitination (4). PTMs of
histone tails can either directly regulate the chromatin structure,
resulting in altered DNA accessibility (5), or can act as platforms
for the binding or recruitment of non-histone proteins, known
as writers (histone-modifying), readers (histone-modification-
recognizing) or erasers (histone modification-erasing) (6). This
combination of PTMs on histone tails constitutes the “histone
code” that regulates the eukaryotic transcription (5). Histone
chaperons are also critical regulators of DNA accessibility since
the association of histones with specific chaperons regulates
their folding, oligomerization, PTMs or stabilities (5). Therefore,

different histone variants contribute to the regulation of DNA
accessibility and epigenetic memory (7).

Histone Acetylation and Deacetylation
Acetylation and deacetylation of histones are among the best-
studied epigenetic modifications. Acetylation of lysine residues is
catalyzed by histone acetyltransferases (HATs) and reduces their
positive charge, therefore the strength of electrostatic interaction
between negatively charged DNA, resulting in relaxation
of histone-DNA interactions, which leads to an increased
accessibility of the DNA for transcription or transcription factors
(TFs), respectively (8). Deacetylation reverses this permissive
state via condensation of the chromatin structure (9). HATs
are classified according to their localization. Cytoplasmic B-
type HATs for example participate in the transport of newly
synthesized histones from the cytoplasm to the nucleus, while
nuclear A-type HATs take control of acetylation events related
to the transcription (10). HATs can be further grouped
according to their functional motifs consisting of Gcn5-
related N-acetyltransferase (GNAT), Moz, Ybf2/Sas3, Sas2, Tip60
(MYST), Creb-binding protein/P300 (CBP/P300) and Rtt109
HAT families (10, 11).

HATs use acetyl-CoA as their primary source for histone
acetylation. Acetyl-CoA is a central metabolite and the only
source of acetyl groups in the cell (12). Most commonly, acetyl-
CoA is produced in the mitochondrial matrix through glycolysis,
β-oxidation or the catabolism of branched amino acids (12). As a
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central metabolite and important signal transducer, acetyl-CoA
regulates several cellular processes by controlling the balance
between anabolic and catabolic reactions. Therefore, fluctuations
in cellular acetyl-CoA levels can also affect the acetylation
patterns of histones resulting in varying gene expression and
function as well as distinct differentiation programs of cells (12).

Histone deacetylases (HDACs) are responsible for removing
acetyl groups from acetylated histones resulting in chromatin
condensation and a repressive chromatin structure. Depending
on their homology and functions, HDACs are grouped into
four different classes: class-I (HDAC1, HDAC2, HDAC3,
HDAC8), class-IIa (HDAC4, HDAC5, HDAC7, HDAC9), class-
IIb (HDAC6, HDAC10), class-III (Sirt1-Sirt7) as well as class-
IV (HDAC11) (13). Although the diversity of the HDAC
classes challenge the design of HDAC-inhibitors, several HDAC
inhibitors are in clinical use or are under clinical investigation
(14). While Vorinostat (SAHA) and Romidepsin (FK288)
have been approved for the treatment of cutaneous T-cell
lymphoma, Panobinostat (LBH589) and Belinostat (PXD101)
are currently used for treating peripheral T-cell lymphoma and
multiple myeloma, respectively (14). However, these inhibitors
are pan-HDAC inhibitors, therefore studies attempting to design
specific HDAC-inhibitors are active areas of research. According
to clinical and experimental studies, inhibition of HDACs
results in anti-neoplastic effects mostly via cytotoxic and pro-
apoptotic mechanisms (15) [e.g., via stabilization of acetylated
p53 (16)]. There are also accumulating data proving that
inhibition of HDACs in non-oncological settings has important
anti-inflammatory effects depending on the cell, tissue and
context (15, 17, 18). For example, the gut microbiota-derived
short-chain fatty acid butyrate modulates the transcriptional
program of CTLs resulting in increased expression of IFNγ

and granzyme B (19). However, the effects of butyrate are
not mediated by the interaction with its receptors GPR41 and
GPR43, but rather through HDAC inhibition resulting in a
differential gene expression of CTL effector molecules, which
was further validated by pan-HDAC inhibitor treatments (19).
HDAC7, which is a Class-IIa HDAC, plays a pivotal role in
the regulation of positive and negative selection of thymocytes
and immune tolerance as well as their survival (20–22). Serine-
threonine phosphoproteome analysis of CTLs by high resolution
mass spectrometry revealed that HDAC7 is phosphorylated
independently of T-cell receptor (TCR) activation and signaling,
leading to its constitutive cytosolic localization (23). The
exclusion of HDAC7 from the nucleus is critical for maintaining
normal CTL function since the ectopic expression of the nuclear-
trapped mutant phosphorylation-defective HDAC7 resulted in
lower CD25 expression and subsequently reduced proliferation
of CTLs in response to IL-2 (23). However, the role of HDAC7 in
adult CD4+ and CD8+ T cells is still poorly understood. HDAC5,
another class-IIa HDAC, has been described as amodulator of the
inhibitory functions of Foxp3+ regulatory CD4+ T cells (Treg)
(24), but inoculation of Hdac5 knockout mice with congenic
TC61 lung adeno-carcinoma cells did not result in decreased
tumor growth compared to wild type littermates despite a
defective immune suppressive capacity of Hdac5-deficient Treg,
which can be explained by a simultaneous impairment of

IFNγ production in Hdac5-deficient CD8+ T cells (24). The
inhibition of HDAC6 (Class-IIb) with its specific inhibitor (ACY-
1215) results in impaired proliferation and activation as well
as impaired pro-inflammatory cytokine production of CD8+

T cells during mouse models of skin inflammation, suggesting
that HDAC6 represents a key regulator of TCR-signaling and
function, therefore might serve as a new drug target for the
treatment of CD8+ T cell-related skin disorders (25). On the
other hand, the inhibition of HDAC6 in T cells of melanoma
patients results in improved anti-tumor capacities of T cells
(26). HDAC6 also takes role in the dynamics, transport and
secretion of lytic granules to the immune synapse in CD8+ T
cells, further proving its significance for CD8+ T cell function
(27). In addition, HDAC3 (Class-I) is required for the proper
T cell development in the thymus since its lymphocyte specific
deletion resulted in reduced immature CD8 single-positive as
well as CD4/CD8 double positive populations (28). Similarly,
Class-I HDACs, HDAC1, and HDAC2, also participate in the
proper thymic development of T cells (29, 30). Tschismarov
et al. further confirm the critical role of HDAC1 during the
development of T cells in the thymus. Additionally, they prove
that T-cell specific deletion of HDAC1 results in impaired anti-
viral responses upon LCMV infection and impaired expansion of
LCMV-specific CD8+ T cells (31).

Among other HDAC isoforms, Sirtuins (HDAC class-III) were
intensively studied in terms of their metabolic functions. They
participate in different cellular processes including the regulation
of metabolism, DNA repair and mitochondrial function (32).
For their deacetylation functions, sirtuins require NAD+, which
is an essential coenzyme and participating in many redox
reactions as in glycolysis, TCA cycle and fatty acid oxidation.
Thereby, the provision of NAD+ depends on its intracellular
compartmentalization, synthesis as well as on metabolic and
other pathways that use NAD+. For instance, SIRTs were found
to be an indirect target of the compound resveratrol leading
to histone deacetylation due to increased NAD+ availability
suggesting that the level of NAD+ is critical for the regulation
of the epigenome of CD4+ T cells through sirtuins (33, 34).
Interestingly, human CD8+CD28− T cells, which represent a
highly cytotoxic population of terminally differentiated memory
T cells (Tmem), display an increased glycolytic capacity, which
could be linked to a decreased expression of SIRT1 through a
forkhead box protein (FOXO1)-dependent manner suggesting
that the evolutionary conserved FOXO1-SIRT1 axis is critical for
the metabolic reprogramming of human CD8+ Tmem (35).

Histone Methylation
Unlike histone acetylation and deacetylation, which mark the
chromatin for either transcriptional activation or repression,
the effects of histone methylation on transcription are
context dependent. For instance, while tri-methylation of
lysine 4 on histone 3 (H3K4me3) triggers transcription, tri-
methylation of histone 3 on lysine 27 (H3K27me3) is a sign
for condensed chromatin and repressed gene transcription.
Depending on the degree of methylation, different groups of
histone methyltransferases catalyze the methylation of lysine
residues. For example, H3K4 methylation is catalyzed by Set1
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methyltransferases, whereas H3K9 methylation is catalyzed by
KMT1 methyltransferases as well as H3K27 methylation by
enhancer-of-zest homolog-2 (EZH2) (6).

Histone methyltransferases use S-adenosyl-methionine
(SAM) as their source for methyl groups (36). Thereby, SAM
is produced from methionine via one-carbon metabolism. In
immune cells, one-carbon metabolism plays important roles
especially in the regulation of proliferation. For instance, Ma
et al. showed that once CD4+ or CD8+ T cells are activated, the
expression of genes coding for one-carbon metabolism-related
enzymes such as Shtm1 and Shmt2, that are essential regulators
of the entry of serine-dependent carbon into the cytosolic and
mitochondrial tetrahydrofolate cycle, are up-regulated. Serine
that is metabolized through this pathway is required for proper
T cell proliferation both in vitro and in vivo (37).

ATP-Dependent Chromatin Remodeling

Complexes
The formation of higher order chromatin structures is pivotal
for the transcriptional programming by regulating or limiting
the access of TFs to their binding sites. This structure can be
modulated by either PTMs of histone tails or via nucleosome-
and chromatin-remodeling complexes. These complexes are
capable of removing histones, changing the path of DNA around
the nucleosome and hence altering their position. Nucleosome
remodeling complexes use the energy generated from ATP
hydrolysis (38). Since the activity of these complexes is ATP-
dependent, it is expected that fluctuations in cellular ATP levels
affect their function, therefore the remodeling of nucleosomes
and chromatin structure. However, cellular ATP levels are
saturating for their catalytic sites and the activities of chromatin
remodeling complexes are not influenced by changes in ATP in
the cell. Nevertheless, gene expression states can still be regulated
by AMPK signaling which can sense ADP/ATP ratios and induce
transcriptional regulation (39). Previously, Blagih et al. showed
that both CD4+ and CD8+ T cells are metabolically adapting in
response to limited nutrient levels mediated by AMPK regulated
mRNA translation as well as glutamine dependent mitochondrial
metabolism. This is a key mechanism for the maintenance of
T cell bioenergetics and survival. Their data equally indicated
that AMPK signaling is mandatory for primary T cell responses
to both, bacterial and viral infections, thus driving adaptive
immunity (40). Interestingly, T cell specific deletion of AMPK in
mice resulted in increased tumor growth, caused by an impaired
tumor killing of CD8+ T cells. Deletion of AMPK in T cells
resulted in a decreased production of IFNγ and granzyme B
as well as an elevated serine/protein phosphatase activity upon
activation, resulting in decreased survival rates and anti-tumor
functions of CD8+ T cells, which could be reversed by inhibition
of phosphatase activity (41).

METABOLIC REPROGRAMMING OF CD8+

T CELL DIFFERENTIATION AND FUNCTION

In order to adapt to dynamic environments and to meet the
demands of cells for their different functions, cellular metabolism

is tightly controlled. Cells are capable of performing catabolic and
anabolic processes to break down or synthesize macromolecules,
which supply either energy in the form of ATP to meet their
energy demands, or metabolic intermediate products that are
essential for cellular growth (Figure 2A). Via the glycolysis
pathway, two molecules of ATP per glucose molecule and
pyruvate are produced. In oxygen-rich conditions, pyruvate can
enter into tricarboxylic acid (TCA) cycle where it is further
processed to generate 38 ATP (maximal number) molecules
via oxidative phosphorylation (OXPHOS) (42). Catabolism of
pyruvate is not the only mechanism providing substrates for
TCA. While fatty acids are converted into acetyl-CoA through
fatty acid oxidation (FAO), amino acids are catabolized into 3-,
4-, and 5- carbon substrates that are fed into the TCA cycle (42).

Different metabolic requirements for different cell states are
also valid for CD8+ T cells. CD8+ T cells mainly have three
phases as naïve, effector (Teff) and memory T cells. When naïve
T cells encounter their antigens, this results in their activation
leading to rapid proliferation, growth and differentiation (43).
CD8+ T cells mostly differentiate into CTLs, producing cytotoxic
molecules such as granzyme B, perforin, and pro-inflammatory
cytokines including IFNγ and TNFα. Following this effector
phase, the effector cell population contracts and a small
population of memory T cells (Tmem) persists, which will
turn again into CTLs in case of antigen re-challenge and
which can persist in the body for years (43). While naïve
T cells are metabolically quiescent and depend on OXPHOS,
their activation results in a switch into glycolysis pathway to
meet the demand for anabolic intermediates necessary for their
rapid growth, proliferation and effector functions (Figure 2A).
Recently, Store-Operated Calcium Entry (SOCE) signaling,
which is the main calcium influx pathway in T cells in response
to TCR activation and is mediated by stromal interaction
molecule (STIM) 1 and STIM2 as well as ORAI proteins, was
shown to control clonal expansion of both, CD4+ and CD8+

T cells, via controlling glycolysis and OXPHOS through the
transcriptional regulation of glycolysis related gene expression
(44). It was also shown that these effects are mediated by
calcineurin and NFAT, which are the downstream regulators of
SOCE (44). Metabolically, Tmem depend mostly on FAO and
have a higher spare respiratory capacity (SRC) which supplies
the high energy levels needed for their rapid function in case
of antigen re-encounter (45–48). However, during most of these
studies CPT1α, the rate-limiting enzyme of long-chain FAO
was targeted by the drug etomoxir (49, 50). Interestingly, T
cell specific deletion of Cpt1α in vivo proved that CPT1α is
dispensable for Teff or Tmem responses as well as CD4+ Treg
suppressive function, differentiation and hemostasis (50). As
the use of the CPT1α inhibitor etomoxir at a concentration
higher than 3µM causes off-target effects, it appears that other
metabolic pathways than long-chain FAO are involved in Teff
and Tmem differentiation (49, 50).

In conditions of continuous antigen exposure like chronic
infections and tumors, T cells fail to differentiate into functional
memory cells, but enter a state in which they are hypo-responsive
(51). This so-called exhausted cells are incapable of cytokine
secretion, proliferation or lysing target cells, paralleled by a
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FIGURE 2 | Comparison of CD8+ T cell differentiation and metabolism as well as epigenetic landscapes during infection and tumorigenesis. (A) Virus infection results

in the activation of naïve CD8+ T cells triggering the differentiation into effector cells, which induce viral clearance. Subsequently, effector T cells contract and leave

behind a small population of memory CD8+ T cells. During this differentiation process, CD8+ T cell subsets use the indicated cellular metabolism pathways and

acquire different epigenetic landscapes specific to each phase. (B) In tumors, the presence of immunosupressive environments due to metabolic alterations in tumor

cells results in an exhausted phenotype, in which tumor infiltrating T cells are not able to compete with tumor cells for metabolic products and they become

non-functional resulting in increasing tumor growth. Exhausted T cells also acquire an exhaustion-specific epigenetic landscape.

sustained expression of co-inhibitory molecules such as PD-1,
LAG3 and TIM3 (51). There are several studies, which link the
expression of co-inhibitorymolecules in T cells with disturbances
of metabolic pathways including the PI3K/Akt/mTOR pathway.
Thus, Staron et al. recently demonstrated in a mouse model
of chronic lymphocytic choriomeningitis mammarenavirus
(LCMV) infection, that AKT and mTOR activation are impaired
in virus antigen-specific CTLs resulting in a defective anabolic
metabolism and enhanced activity of the TF FOXO1 due to its
defective phosphorylation and subsequent nuclear trapping (52).
Additionally, FOXO1 acts as a direct transcriptional activator
of PD-1 as the nuclear localization of FOXO1 promotes the
differentiation of terminally exhausted PD-1hiEomeshi CTLs. In
contrast, during chronic LCMV infection in mice blockage of
PD-1 improves mTOR activity in antigen-specific CTLs while
anti-PD-1 treatment was ineffective if mTOR was inhibited by
rapamycin (52). Remarkably, the glycolytic metabolism of CD8+

T cells is already affected during the acute phase of viral infection
in LCMV-infected mice and precedes further dysfunction of
antigen-specific T cells suggesting that antigen-specific CD8+ T
cells are unable tomeet themetabolic demands needed for proper
cytotoxic function (53). PD-1 is also an early regulator of genes
related to glycolysis and mitochondrial function and represses
peroxisome proliferator-activated receptor gamma coactivator 1-
alpha (PGC1α), whose overexpression is able to improve the
metabolism of exhausted T cells and hence, partially restoring
their functions (53). These studies suggest that metabolic

impairments, which are regulated by PD-1, are early drivers of
CD8+ T cell exhaustion (53).

The expression of the pro-inflammatory cytokine IFNγ by

activated T cells is regulated through 3
′

-untranslated region
(UTR)-dependent mechanisms (54). Peng et al. showed that
in activated T cells the expression of lactate dehydrogenase A
(LDHA) is induced in order to support high levels of aerobic
glycolysis, but also regulates the expression of IFNγ through 3′-
UTR-independent mechanisms. Interestingly, high LDHA levels
in activated T cells result in the maintenance of increased acetyl-
CoA concentrations leading to increased histone acetylation and
facilitating H3K9Ac accumulation on the IFNγ locus, therefore
resulting in its increased transcription (55).

Upon TCR-activation, S-2-hydroxyglutarate (S-2-HG)
accumulates in murine CD8+ T cells up to millimolar
concentrations under physiological oxygen conditions through
hypoxia inducible factor 1 alpha (HIF-1α) predominating over
R-2-hydrooxyglutarate, which is an oncometabolite, produced
via mutant isocitrate hydrogenase (IDH) (56). The accumulation
of this metabolite results in changes in T cell differentiation,
especially resulting in a central memory (Tcm) like phenotype
that is stable after transfer into wild-type host mice. The
accumulation of S-2-HG also resulted in higher proliferation,
maintenance and anti-tumor functions of CD8+ T cells in vivo
following their adoptive transfer into mice (56). Interestingly,
these effects were mediated by the modulation of histone and
DNA methylation. S-2-HG is an immunometabolite, thus
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further supporting a metabolism-dependent regulation of T cell
epigenetics and functions (56).

EPIGENETIC LANDSCAPES DURING CD8+

T CELL DIFFERENTIATION

Enabled by Assay for Transposase-Accessible Chromatin with
high-throughput sequencing (ATAC-seq), which allows the
identification of accessible regions of chromatin, the dynamic
changes of chromatin as well as accessible TF binding sites were
identified in response to acute and chronic LCMV infection
during naïve, activated, effector, and memory states of polyclonal
or antigen-specific CD8+ T cells (57, 58). In these studies, more
than 70,000 regions were identified as open (accessible) at least
in one of the differentiation state and half of these regions
were shared among all states suggesting a CD8+ T cell-specific
chromatin state. Thus, it was shown that in Tmem cells many
regulatory sites are in the open configuration, demonstrating
that these cells keep a memory-primed gene expression program
that can readily and rapidly be activated in case of a secondary
infection (57, 58).

Several TFs were identified to control the fate of CD8+ T
cells during the differentiation of these cells. For instance, T-
box expressed in T cells (Tbet), inhibitor of DNA-bing 2 (ID2),
interferon regulatory factor 4 (IRF4), B lypmphocyte induced
maturation protein 2 (BLIMP-2), and zinc finger E-box-binding
homeobox 2 (ZEB2) are required for the differentiation of Teff
cells, whereas T-cell factor 1 (TCF1), eomesodermin (EOMES),
inhibitor of DNA-binding protein 3 (ID3), B- cell lymphoma
protein 6 (BCL6), and FOXO1 control for memory formation
in CD8+ T cells (59). However, some of these TFs are not
differentially expressed in Teff and Tmem subsets, suggesting
that additional mechanisms are involved in controlling the fate
decision of T cells. By using a model of bacterial infection
in mice, Yu et al. have recently characterized the epigenetic
landscapes of naïve, effector, memory precursor and memory
CD8+ T cells, followed by the prediction of putative TF-binding
to accessible chromatin regions in each cell subset (59). In
addition, the importance of TFs was ranked in each cell subset
via bioinformatic analysis. With this approach, the authors
identified and experimentally validated two TFs, Yin Yang 1
(YY1) as well as nuclear receptor subfamily3 group C member
1 (NR3C1) as promoters of effector and memory precursor
phenotypes (59).

Other studies applying the ATAC-seq technology
demonstrated that also exhausted T cells possess a unique
chromatin state (60). During acute models of viral infection
in mice, exhausted T cells and effector cells share common
accessible chromatin sites. However, additional sites on
chromatin open or close during the exhaustion of T cells
leading to the expression of PD-1. The treatment of exhausted
T cells with anti-PD-1 antibodies resulted in the rescue of
gene expression associated with effector functions. However,
this treatment failed to fully rescue or reverse the exhaustion-
specific chromatin signature as well as the exhaustion specific
transcriptional program of exhausted T cells (60).

Although it is now known that exhausted CD8+ T cells have a
unique chromatin state compared to effector or memory subsets,
the mechanisms driving their transcriptional and epigenetic
development are poorly understood. Recently, three studies
identified the transcription factor thymocyte selection associated
high mobility box (TOX) as the main factor promoting CD8+

T cell exhaustion by regulating early epigenetic events (61–63).
These include decreased accessibility of genes associated with
effector T cell differentiation as well as increased accessibility
of memory and exhausted phenotype associated genes (62). The
expression of TOX is a robust hallmark of exhausted T cells.
However, it is transiently expressed at low levels during acute
viral infections. In addition, the expression of TOX is essential
and sufficient to induce the exhausted T cell phenotype as defined
by the marker proteins PD-1, TIM3, LAG3, TIGIT as well as
EOMES. Interestingly, initial TOX expression requires NFATc2
and calcineurin signaling, however, the sustained expression of
TOX in exhausted CD8+ T cells is calcineurin-independent
(62). This study suggests that among others, TOX expression-
related mechanisms, can force exhausted cells into an irreversible
exhaustion-specific and developmentally fixed chromatin state,
which cannot be remodeled by anti-PD-1 treatment.

Further studies also provide information on the dynamic
regulation of methylation patterns during virus-induced T
cell differentiation (64, 65). For instance, in naïve CD8+ T
cells, genes associated with effector functions are marked with
H3K4me3 indicating that effector function related genes are
repressed in naïve CD8+ T cells. Upon activation, the same
genes acquire chromatin marks that are related to an active
transcription (64, 65).

In addition to the regulation of chromatin marks of
promoters or enhancers, which are characterized by H3K4me1
and H3K27ac, are also differentially remodeled during T cell
activation and differentiation (59, 66). In studies by Kakaradov
et al., around 50,000 enhancers were identified and about 50%
of them were found to be shared between all stages of T cell
activation and differentiation, whereas the other half of enhancers
was either gained or lost depending on the state of the cells
suggesting that there is a dynamic regulation of enhancers
similar to the other epigenetic modifications of T cells during
differentiation (66). According to single-cell sequencing studies,
in which individual CD8+ T cells were analyzed during an acute
LCMV infection in mice, the differentiation of terminal effector
cells was initiated by an early burst of transcriptional activity
followed by a refinement of epigenetic silencing of transcripts
related to memory lymphocytes through H3K27me3 and Ezh2,
which is the catalytic subunit of polycomb repressive complex 2
(PRC2) (67).

THE EFFECTS OF TUMOR

MICROENVIRONMENT ON T CELL

METABOLISM AND EPIGENETICS

Chronic infections and cancer share common properties in terms
of CD8+ T cell functions. In both cases, antigen specific CD8+ T
cells progress into the so-called exhausted state due to continuous
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antigen exposure resulting in increased expression of exhaustion
markers. Therefore, research on chronic infectionmodels in mice
as well as patient samples contributed to the development of anti-
cancer therapies, which target T cell exhaustion such as anti-PD-1
or adoptive T cell therapies (68). Although the reprogramming
of cellular metabolism and changes of the epigenetic landscape
of CD8+ T cells have been intensively studied during chronic
infections, these mechanisms are still poorly understood in
tumor infiltrating lymphocytes (TILs). Although overlapping
features of exhausted CD8+ T cells can be observed both in
chronic infection and cancer models, the specific metabolic
environment in tumors represents an additional, unique factor
shaping T cell activation and differentiation via the specific
supply provision of metabolites and various secreted signaling
molecules (Figure 2B).

The metabolism of tumor cells is altered compared to
normal cells, which metabolize glucose through OXPHOS.
Instead, highly proliferating tumor cells use glycolysis pathway
to metabolize glucose in order to supply the anabolic products
needed for rapid cell growth and division. This metabolic
alteration of tumor cells was characterized by Otto Warburg
almost a century ago and is now considered as a hallmark
of cancer (69). However, this phenomenon is only a portion
of the unique tumor cell metabolism. In addition to glucose
metabolism, lipid, amino acid, and adenosine metabolism are
also altered in tumor cells to meet their high-energy demands
(70). For instance, HIF1α in tumor cells upregulates the
expression of CD73, which is located on the surface of many
tumor cells and which is responsible for the conversion of
adenosine monophosphate to adenosine resulting in increased
adenosine concentrations in TME (71). Similarly, HIF1α also
regulates genes critical for the lipid metabolism such as COX2
whose overexpression is associated with poor prognosis in several
solid tumor cancers (72). Glutamine metabolism is also altered in
tumor cells, that are known as glutamine traps since they have
higher levels of glutamine uptake (70).

TILs are mostly non-functional or exhausted due to the
highly immunosuppressive TME. The depletion of glucose in
TME by tumor cells represents one “exhausting” mechanism
and results in a decrease of aerobic glycolysis in TILs and
decreased phosphoenolpyruvic acid (PEP) production that is a
crucial metabolite participating in TCR-dependent activation of
calcium pathways like SOCE and NFAT signaling in T cells
(73, 74), which is critical for proper anti-tumor functions (73).
Additionally, due to high lactate production of tumor cells, the
acidity of TME increases, resulting in the inhibition of key T
cell responses such as proliferation after activation and effector
cytokine production by CD8+ T cells (70, 75). Similarly, due to
the hypoxic environment of the tumors, HIF1α upregulates the
expression of PD-1-ligand leading to inhibition of CD8+ T-cell
mediated cytotoxicity (76).

The epigenetic landscapes of tumor infiltrating CD8+ T
cells are not well understood. In a recent study, Philipp et al.
defined the chromatin dynamics of tumor-specific dysfunctional
cells over the course of tumorigenesis (77). They observed

that naïve tumor-specific T cells that encounter their antigen
firstly acquire a plastic, dysfunctional chromatin state that can
be remodeled. Later, the same cells differentiate into a fixed
dysfunctional chromatin state, which cannot be remodeled or
rescued anymore during the progression of large established
tumors. In addition, human dysfunctional tumor specific T cells
with high PD-1 expression share many core elements with these
mouse models (77). Interestingly, tumor-specific memory T cells
also differentiate into the same fixed dysfunctional chromatin
state suggesting that regardless of the initial chromatin states of
the cells, continuous antigen exposure in tumors can overwrite
this fixed dysfunctional chromatin state (77).

CONCLUSION

Since the manipulation of metabolic pathways in vivo is very
challenging, so far mostly in vitro systems served in this field,
to provide mechanistic information to reveal the regulation of T
cell metabolism in a controlled environment. However, the field is
still in need of experimental models that are able to better provide
the physiological context of changing T cell environments such as
nutrient availability, interaction between different cell types and
cytokine milieu to fully investigate the role of metabolism during
T cell activation and differentiation.

The link between epigenetic changes and cellular metabolism
has been intensively studied in cancer cells. However, the role
of metabolism on T cell function and differentiation has only
recently been characterized despite growing knowledge about
the connection of T cell epigenetics during differentiation and
function by using genome-wide mapping of accessible chromatin
sites. However, it still remains elusive how metabolites regulate
the epigenome of T cells in a gene-specific manner.

Although this interplay between tumor cells and the
epigenetic regulation of TILs remains elusive, a better
understanding of the epigenetic regulation of exhaustion
and the metabolic fitness of TILs might hold potential
to improve current cancer therapies such as checkpoint
blockade and adoptive T cell therapies. The relationship
between the unique metabolism in TME and how it
affects the epigenome of TILs might help to find ways to
rescue their exhausted phenotype via epigenome-targeting
pharmacological drugs to boost immune responses against
tumor cells.
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