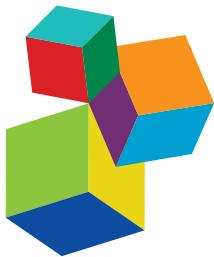


ROLE OF METABOLISM IN REGULATING IMMUNE CELL FATE DECISIONS


EDITED BY: Anna Ohradanova-Repic, Marianne Boes and Hannes Stockinger
PUBLISHED IN: *Frontiers in Immunology*

IUIS

frontiers Research Topics

Frontiers eBook Copyright Statement

The copyright in the text of individual articles in this eBook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers.

The compilation of articles constituting this eBook is the property of Frontiers.

Each article within this eBook, and the eBook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this eBook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version.

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or eBook, as applicable.

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with.

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question.

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers' Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88963-721-8
DOI 10.3389/978-2-88963-721-8

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers Journal Series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world's best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view. By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

ROLE OF METABOLISM IN REGULATING IMMUNE CELL FATE DECISIONS

Topic Editors:

Anna Ohradanova-Repic, Medical University of Vienna, Austria

Marianne Boes, Utrecht University, Netherlands

Hannes Stockinger, Medical University of Vienna, Austria

We acknowledge the initiation and support of this Research Topic by the International Union of Immunological Societies (IUIS). We hereby state publicly that the IUIS has had no editorial input in articles included in this Research Topic, thus ensuring that all aspects of this Research Topic are evaluated objectively, unbiased by any specific policy or opinion of the IUIS.

Citation: Ohradanova-Repic, A., Boes, M., Stockinger, H., eds. (2020). Role of Metabolism in Regulating Immune Cell Fate Decisions. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88963-721-8

Table of Contents

- 05 Editorial: Role of Metabolism in Regulating Immune Cell Fate Decisions**
Anna Ohradanova-Repic, Marianne Boes and Hannes Stockinger
- 08 Pyruvate Dehydrogenase Kinase is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype**
Byong-Keol Min, Sungmi Park, Hyeyon-Ji Kang, Dong Wook Kim, Hye Jin Ham, Chae-Myeong Ha, Byung-Jun Choi, Jung Yi Lee, Chang Joo Oh, Eun Kyung Yoo, Hui Eon Kim, Byung-Gyu Kim, Jae-Han Jeon, Do Young Hyeon, Daehee Hwang, Yong-Hoon Kim, Chul-Ho Lee, Taeho Lee, Jung-Whan Kim, Yeon-Kyung Choi, Keun-Gyu Park, Ajay Chawla, Jongsoon Lee, Robert A. Harris and In-Kyu Lee
- 22 What Defines NK Cell Functional Fate: Phenotype or Metabolism?**
Sophie M. Poznanski and Ali A. Ashkar
- 34 The Metabolic Signature of Macrophage Responses**
Antonella Viola, Fabio Munari, Ricardo Sánchez-Rodríguez, Tommaso Scolaro and Alessandra Castegna
- 50 Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction**
Katharina A. Mayer, Johannes Stöckl, Gerhard J. Zlabinger and Guido A. Gualdoni
- 62 Immunoregulatory Interplay Between Arginine and Tryptophan Metabolism in Health and Disease**
Giada Mondanelli, Alberta Iacono, Massimo Allegrucci, Paolo Puccetti and Ursula Grohmann
- 68 Dynamic Metabolic State of Tissue Resident CD8 T Cells**
Špela Konjar and Marc Veldhoen
- 78 Ataxin-3 Links NOD2 and TLR2 Mediated Innate Immune Sensing and Metabolism in Myeloid Cells**
Thomas P. Chapman, Daniele Corridoni, Seiji Shiraishi, Sumeet Pandey, Anna Aulicino, Simon Wigfield, Maria do Carmo Costa, Marie-Laëtitia Thézénas, Henry Paulson, Roman Fischer, Benedikt M. Kessler and Alison Simmons
- 95 NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer**
Valentina Audrito, Antonella Managò, Federica Gaudino, Leonardo Sorci, Vincenzo Gianluca Messana, Nadia Raffaelli and Silvia Deaglio
- 117 Macrophage Rewiring by Nutrient Associated PI3K Dependent Pathways**
Omar Sharif, Julia Stefanie Brunner, Andrea Vogel and Gernot Schabbauer
- 127 Metabolic Control of Innate Lymphoid Cell Migration**
Tim Willinger
- 141 Immunometabolic Checkpoints of Treg Dynamics: Adaptation to Microenvironmental Opportunities and Challenges**
Ilenia Pacella and Silvia Piconese

158 *Metabolism and Autoimmune Responses: The microRNA Connection*

Alessandra Colamatteo, Teresa Micillo, Sara Bruzzaniti, Clorinda Fusco, Silvia Garavelli, Veronica De Rosa, Mario Galgani, Maria Immacolata Spagnuolo, Francesca Di Rella, Annibale A. Puca, Paola de Candia and Giuseppe Matarese

170 *The Metabolic Requirements of Th2 Cell Differentiation*

Julian M. Stark, Christopher A. Tibbitt and Jonathan M. Coquet

182 *The Metabolic Profile of Tumor and Virally Infected Cells Shapes Their Microenvironment Counteracting T Cell Immunity*

Isabelle Magalhaes, Ohad Yogeved, Jonas Mattsson and Anna Schurich

192 *Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease*

Jayne Louise Wilson, Hannah Katharina Mayr and Thomas Weichhart

214 *Metabolic Control of Epigenetics and Its Role in CD8⁺ T Cell Differentiation and Function*

Cansu Yerinde, Britta Siegmund, Rainer Glauben and Carl Weidinger

Editorial: Role of Metabolism in Regulating Immune Cell Fate Decisions

Anna Ohradanova-Repic^{1*}, Marianne Boes² and Hannes Stockinger¹

¹ Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria, ² Department of Pediatrics and Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands

Keywords: immunometabolism, metabolic reprogramming, immune cell regulation, cell fate decisions, T cells, myeloid cells, innate lymphoid cells

Editorial on the Research Topic

Role of Metabolism in Regulating Immune Cell Fate Decisions

Immunometabolism, an interplay between immunological and metabolic processes, describes not only the stepwise adaptation of intracellular metabolic pathways to sustain the bioenergetic demand of an immune response, but also how these metabolic adaptations directly affect immune cell functions and cell fate by controlling transcriptional, post-transcriptional and epigenetic events. The first concepts of immunometabolism date back to the 1930s, when Kempner and Peschel formulated their metabolic concepts of the physiology of inflammation using experiments they performed in a cantharidin-induced skin blister model [as described in Nagy and Haschemi (1)]. Immunometabolism was rediscovered in the twenty-first century, when on one hand, it had emerged that certain chronic, supposedly non-immune, pathologies including obesity contribute to mobilization of the immune system that drives metabolic abnormalities, leading to increased susceptibility to type 2 diabetes, cardiovascular and liver diseases, neurodegeneration and cancer. On the other hand, it was proposed that well-known cellular nutrient sensors, serine/theonine kinases AKT, APMK, LKB1, mTOR, and the transcriptional factor aryl hydrocarbon receptor (AhR) control a fate switch of T cells (2–5). The field has seen a tremendous development since then. This Research Topic contains 16 (Mini)Review, Opinion, and Original Research articles that review and expand our current understanding of the molecular underpinnings of immunological/metabolic cross-talk and metabolism-guided fate decisions of different immune cells during an immune response.

In one of the first articles of the Research Topic, Viola et al. provide a comprehensive overview of the main metabolic pathways in macrophages, and how these pathways are rewired to support the particular functions of the pro-inflammatory (M1) vs. anti-inflammatory (M2) macrophages. Special attention is given to the Krebs cycle metabolites citrate, itaconate and succinate, due to their non-metabolic roles in specific events during macrophage activation, and to disease-associated macrophage metabolic abnormalities. Wilson et al. continue to review the role of macrophage metabolic reprogramming and immune functions in the context of granulomatous diseases. Three examples of granulomatous disease are presented (tuberculosis, schistosomiasis, and sarcoidosis), with important similarities and differences critically discussed, highlighting dysregulated lipid metabolism as a common denominator in granulomatous disease progression. In their Mini Review, Sharif et al. focus on the role of the class I phosphoinositide-3-kinase (PI3K) signaling in sensing nutrients increased in obesity and subsequent rewiring of the metabolism and responses of adipose tissue macrophages, linking metabolically triggered

OPEN ACCESS

Edited and reviewed by:

Francesca Granucci,
University of Milano-Bicocca, Italy

*Correspondence:

Anna Ohradanova-Repic
anna.repic@meduniwien.ac.at

Specialty section:

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

Received: 28 February 2020

Accepted: 09 March 2020

Published: 24 March 2020

Citation:

Ohradanova-Repic A, Boes M and Stockinger H (2020) Editorial: Role of Metabolism in Regulating Immune Cell Fate Decisions. *Front. Immunol.* 11:527. doi: 10.3389/fimmu.2020.00527

inflammation (meta-inflammation) to insulin resistance and diabetes. Meta-inflammation is also studied in the Original Research article by Min et al. who demonstrate that pyruvate dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, is a metabolic checkpoint for polarization of macrophages to the M1 phenotype. Combined PDK2 and PDK4 deficiency (both global and hematopoietic cell-specific), or alternatively, pharmacological inhibition using a novel PDK inhibitor KPLH1130 prevents M1 macrophage polarization, reduces obesity-associated insulin resistance, and ameliorates adipose tissue inflammation, introducing a viable strategy for the treatment of inflammatory metabolic disorders. In the second Original Research article of this collection, Chapman et al. link proinflammatory stimulation of myeloid cells with ligands of the pattern recognition receptors Toll-like receptor 2 (TLR2) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) to metabolic rewiring needed for effector functions by identification of the deubiquitinating enzyme ataxin-3 downstream from TLR2 and NOD2, and demonstrate that ataxin-3 is necessary for optimal mitochondrial respiration and reactive oxygen species production, as well as for intracellular bacterial killing.

Given the particular importance of metabolic remodeling in regulation of T cell development, activation, function, differentiation, and survival, several Review articles within this collection tackle the metabolic control of T cell fate, each from a different angle. Konjar and Veldhoen thoroughly discuss recent insights in metabolic characteristics and phenotypes of CD8 T cell subsets, by side-by-side comparison of naive, circulating memory, effector and tissue resident CD8 T cells. Emphasis is given on tissue resident memory CD8 T cells at the epithelial barriers that show unique metabolic rewiring adapted to their niche in order to fulfill their roles—tissue homeostasis and immediate protection against microbial invasion. The review by Pacella and Piconese addresses the roles and regulation of cellular bioenergetic metabolic pathways in regulatory T cells (Treg) compared to conventional CD4 T cells. By critical analysis of metabolic and functional differences of the two cell types in metabolite-rich (liver, adipose tissue) vs. nutrient-restricted (tumor microenvironment) tissues, they highlight the higher capability of Tregs to adapt to metabolic hurdles, that could be explored for therapeutic purposes. Stark et al. review the metabolic requirements of Th2 cells during their early and late differentiation, focusing on the impact of glucose and lipid metabolism, mTOR activation, the nuclear receptor PPAR γ and several extracellular metabolites that directly promote Th2 functions, as well as on metabolic interventions targeting type 2 inflammation. Colamatteo et al. provide a comprehensive review of the role of microRNAs (miRNAs) in regulating T cell metabolism and how the dysregulation of this control can lead to autoimmunity. They also speculate on the possibility that the interplay between miRNAs and metabolism in T cells may help identifying novel miRNA-based therapeutic strategies to treat effector T cell immunometabolic alterations in autoimmune and chronic inflammatory diseases. In their Opinion article, Mondanelli et al. discuss the immunoregulatory interplay

between arginine and tryptophan metabolism, connecting deregulated expression of the catabolising enzymes for these amino acids [arginase 1 (ARG1) or indoleamine 2,3-dioxygenase 1 (IDO1), respectively] in neoplasia and autoimmune diseases to functional reprogramming of immune cells, dendritic cells, and T cells in particular. At the cellular level, Audrito et al. give a comprehensive overview on the crosstalk between tumor cells, stromal cells, and infiltrating immune cells (tumor infiltrating lymphocytes, tumor-associated macrophages and neutrophils, myeloid-derived suppressor cells) in tumor microenvironment with specific focus on nicotinamide adenine dinucleotide (NAD) metabolism. The role of the entire “NADome” (NAD metabolites, NAD-biosynthetic and -consuming enzymes) in cancer growth and immune evasion and currently pursued therapeutic strategies for NADome blockade are critically reviewed.

In a Mini Review, Yerinde et al. discuss a crosstalk between the metabolic and the epigenetic regulation of CD8 T cell differentiation and function and also briefly summarize how metabolic signals from the tumor microenvironment (or virus-infected cells) shape the epigenetic landscape of CD8 T cells. Similarly, Magalhaes et al. draw parallels between mechanisms employed by tumor cells and viruses to influence T cell metabolic regulation and propose an emerging view that metabolic changes in tumors and virally infected cells uniformly create a suppressive microenvironment leading to inhibition of effector CD4 and CD8 T cells. Therefore, these reviews provide an important insight into mechanisms that underlie T cell exhaustion in anti-tumor and anti-viral immunity, which could inspire development of effective therapeutic interventions against it. This view is well-complemented by the Review article of Mayer et al. detailing crucial cellular metabolic pathways that are being utilized by several DNA and RNA viruses for their replication and survival. The dichotomy between the strategy for host cell manipulation—DNA viruses preferentially employ the transcriptional control of key metabolic pathways, while RNA viruses rely on post-transcriptional modifications—is noted and in this view, currently pursued strategies for metabolism-targeting interventions against different viruses are clearly summarized.

Innate lymphoid cells (ILCs), are relatively recently discovered lymphocytes lacking diversified adaptive antigen receptors. These largely tissue-resident cells play an important role in tissue homeostasis, host defense at mucosal barriers and tissue repair (6). There is increasing evidence linking ILCs with metabolic homeostasis, and immunometabolic regulation of ILCs is an emerging frontier. At a cellular level, Poznanski and Ashkar critically review recent literature to answer the question whether metabolism—or phenotype—can define the functional fate of human natural killer (NK) cells, and provide evidence that indeed differences in metabolism (especially in glucose metabolism) better discriminate between cytotoxic, regulatory and memory NK cells than surface markers. At the whole organ level, Willinger takes a systemic approach, and in his Review thoroughly discusses metabolic signals that regulate ILC homing to the particular tissues and their strategic positioning in healthy and inflamed tissues. Trafficking of both ILC precursors and mature ILCs (NK cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue-inducer, LTi cells), including

species-specific differences between humans and mice, are comprehensively covered.

In conclusion, this collection of Review and Original Research articles critically summarizes current understanding of intertwining of metabolic and signaling pathways as ways to determine immune cell fates and ultimately, the ensuing immune response. We anticipate that the articles in the present collection will serve as an inspiration for future research, that will lead to deeper knowledge of cell-intrinsic and -extrinsic metabolic cues regulating cell fate decisions in different immune cell types, and subsequently to a development of novel medicines for immune-mediated diseases.

REFERENCES

1. Nagy C, Haschemi A. Time and demand are two critical dimensions of immunometabolism: the process of macrophage activation and the pentose phosphate pathway. *Front Immunol.* (2015) 6:164. doi: 10.3389/fimmu.2015.00164
2. Mathis D, Shoelson SE. Immunometabolism: an emerging frontier. *Nat Rev Immunol.* (2011) 11:81. doi: 10.1038/nr12922
3. Hotamisligil GS. Foundations of immunometabolism and implications for metabolic health and disease. *Immunity.* (2017) 47:406–20. doi: 10.1016/j.immuni.2017.08.009
4. Finlay D, Cantrell DA. Metabolism, migration and memory in cytotoxic T cells. *Nat Rev Immunol.* (2011) 11:109–17. doi: 10.1038/nr12888
5. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenone and the aryl

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

This work was supported by the European Union's Horizon 2020 Research and Innovation Program under grant agreement No 683356 - FOLSMART (AO-R and HS).

We would like to thank all the authors who have participated in this Research Topic, the reviewers for their invaluable comments and the Frontiers staff for their assistance.

hydrocarbon receptor can generate regulatory T cells. *J Immunol.* (2010) 185:3190–8. doi: 10.4049/jimmunol.0903670

6. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells: 10 years on. *Cell.* (2018) 174:1054–66. doi: 10.1016/j.cell.2018.07.017

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Ohradanova-Repic, Boes and Stockinger. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype

Byong-Keol Min^{1,2†}, Sungmi Park^{3†}, Hyeon-Ji Kang^{2†}, Dong Wook Kim³, Hye Jin Ham³, Chae-Myeong Ha¹, Byung-Jun Choi¹, Jung Yi Lee³, Chang Joo Oh², Eun Kyung Yoo³, Hui Eon Kim³, Byung-Gyu Kim³, Jae-Han Jeon⁴, Do Young Hyeon⁵, Daehee Hwang^{5,6}, Yong-Hoon Kim⁷, Chul-Ho Lee⁷, Taeho Lee⁸, Jung-Whan Kim⁹, Yeon-Kyung Choi⁴, Keun-Gyu Park⁴, Ajay Chawla¹⁰, Jongsoon Lee¹¹, Robert A. Harris^{12*} and In-Kyu Lee^{1,2,3,4*}

OPEN ACCESS

Edited by:

Marianne Boes,
Utrecht University, Netherlands

Reviewed by:

Paola Italiani,
Italian National Research Council
(CNR), Italy
Amiram Ariel,
University of Haifa, Israel

*Correspondence:

Robert A. Harris
raharris@iu.edu
In-Kyu Lee
leei@knu.ac.kr

[†]These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

Received: 19 January 2019

Accepted: 12 April 2019

Published: 07 May 2019

Citation:

Min B-K, Park S, Kang H-J, Kim DW, Ham HJ, Ha C-M, Choi B-J, Lee JY, Oh CJ, Yoo EK, Kim HE, Kim B-G, Jeon J-H, Hyeon DY, Hwang D, Kim Y-H, Lee C-H, Lee T, Kim J, Choi Y-K, Park K-G, Chawla A, Lee J, Harris RA and Lee I-K (2019) Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype. *Front. Immunol.* 10:944. doi: 10.3389/fimmu.2019.00944

¹BK21 Plus KNU Biomedical Convergence Programs, Department of Biomedical Science, Kyungpook National University, Daegu, South Korea, ²Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, South Korea,

³Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea, ⁴Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea, ⁵Department of Biological Sciences, Seoul National University, Seoul, South Korea, ⁶Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea, ⁷Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea, ⁸College of Pharmacy, Kyungpook National University, Daegu, South Korea, ⁹Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States, ¹⁰Department of Medicine, University of California, San Francisco, San Francisco, CA, United States, ¹¹Soonchunhyang Institute of Medi-Bio Science, Soon Chun Hyang University, Cheonan, South Korea, ¹²Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States

Metabolic reprogramming during macrophage polarization supports the effector functions of these cells in health and disease. Here, we demonstrate that pyruvate dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a metabolic checkpoint in M1 macrophages. Polarization was not prevented by PDK2 or PDK4 deletion but was fully prevented by the combined deletion of PDK2 and PDK4; this lack of polarization was correlated with improved mitochondrial respiration and rewiring of metabolic breaks that are characterized by increased glycolytic intermediates and reduced metabolites in the TCA cycle. Genetic deletion or pharmacological inhibition of PDK2/4 prevents polarization of macrophages to the M1 phenotype in response to inflammatory stimuli (lipopolysaccharide plus IFN- γ). Transplantation of PDK2/4-deficient bone marrow into irradiated wild-type mice to produce mice with PDK2/4-deficient myeloid cells prevented M1 polarization, reduced obesity-associated insulin resistance, and ameliorated adipose tissue inflammation. A novel, pharmacological PDK inhibitor, KPLH1130, improved high-fat diet-induced insulin resistance; this was correlated with a reduction in the levels of pro-inflammatory markers and improved mitochondrial function. These studies identify PDK2/4 as a metabolic checkpoint for M1 phenotype polarization of macrophages, which could potentially be exploited as a novel therapeutic target for obesity-associated metabolic disorders and other inflammatory conditions.

Keywords: dichloroacetate, high-fat diet, inflammation, insulin resistance, macrophage polarization, metabolic reprogramming, pyruvate dehydrogenase kinase

INTRODUCTION

Macrophage polarization (M1/M2) requires metabolic reprogramming that enhances glycolysis and repurposes mitochondrial function (1–3). Although the importance of these metabolic pathway differences between M1 and M2 macrophages is well-established, our knowledge of the checkpoints in affected metabolic pathways is limited primarily to HIF-1 α and pyruvate kinase M2 (PKM2) (4). Obesity-induced insulin resistance is a disease process in which M1 macrophages contribute to adipose tissue (AT) inflammation and insulin resistance. Chronic low-grade inflammation in multiple organs increases the risk of developing obesity, diabetes, cardiovascular diseases, and cancers, indicating a major role for the immune system in the etiology of metabolic disorders (5). Recruitment of M1 macrophages, IFN- γ -secreting Th1 cells, CD8 $^{+}$ T cells, and B cells in the adipose tissue drives the inflammatory response, locally promoting systemic inflammation and impaired insulin action as a result of over-nutrition (6, 7). The phenotypic changes in macrophages that occur in response to over consumption of energy are considered potential therapeutic targets for managing chronic metabolic diseases.

Pyruvate dehydrogenase kinase (PDK) provides a therapeutic target for the Warburg effect in malignant cancers (8) and has been suggested to serve this function during macrophage polarization (9). PDK1 participates in M1 macrophage polarization via HIF-1 α -mediated aerobic glycolysis, accounting for the proinflammatory responses (9). In contrast, among the four PDK isozymes, PDK2 and PDK4 are the most strongly associated with metabolic diseases, especially type 2-diabetes (10). Recent work from our laboratory has indicated that dual deficiency of *Pdk2* and *Pdk4* (PDK2/4 DKO) attenuates the lactic acid surge, the proinflammatory markers, and the pain hypersensitivity suggesting a key role for the PDK-PDH-lactic acid axis in the pathogenesis of inflammatory pain mediated by macrophage functional regulation (11). This finding suggests a novel therapeutic approach for many inflammatory conditions but is seemingly at odds with conclusions of others who have addressed the role of the PDKs in macrophage polarization (12–14); we have, therefore, examined this phenomenon in greater depth in the present study.

Here we provide additional evidence for PDK4 induction in macrophages in response to LPS and IFN- γ . We also show that genetic and pharmacological blockage of PDK activity in mice fed a high-fat diet (HFD) represses macrophage M1 polarization, which is correlated with amelioration of adipose tissue inflammation as well as insulin resistance. These findings support the hypothesis that the PDKs are therapeutic targets for inflammatory diseases.

MATERIALS AND METHODS

Animals

All experiments were approved by the Institutional Animal Care and Use Committee of Kyungpook National University and were conducted according to recommendations in the National Institutes of Health Guide for the Care and Use of Laboratory

Animals. Eight-week-old male WT (C57BL/6J) and PDK2/4 DKO mice (15) were either fed a HFD 20% of the calories derived from carbohydrates and 60% from fat (Research Diets; D12492 pellets) for use as a diet-induced obesity (DIO) model or fed an isocaloric control diet (CD) in which 70% of the calories were derived from carbohydrates and 10% from fat (Research Diets; D12450B pellets). The mice were housed and maintained on a 12 h light/dark cycle at 22 \pm 2°C. After the mice were sacrificed, the tissues were rapidly collected and freeze-clamped with liquid nitrogen-cooled Wollenberger tongs and stored at –80°C prior to analysis.

Isolation of Peritoneal Macrophages (PMs)

Eight- to ten-week-old WT, PDK2 KO (2KO), PDK4 KO (4KO), and PDK2/4 DKO mice (15–17) were injected with 3% thioglycollate broth, i.p., and then sacrificed 4 days later. Peritoneal lavage was performed twice using 4 mL of 1X PBS, and the harvested cells were then cultured in RPMI1640 (Gibco; 11875-093) supplemented with antibiotics. After 1 h of culture, the suspended cells were discarded, and the adherent cells were used for experiments.

Isolation and Differentiation of Bone Marrow-Derived Macrophages (BMDMs)

Bone marrow cells were collected from the femurs and tibias of 8- to 10-week-old mice. The cells were cultured at 2 \times 10 7 cells/plate in α -MEM medium (WELGENE; LM 008-02) containing 30% L929-conditioned media and 10% FBS for 9 days to allow the differentiation. The established BMDMs were then used for experiments.

Isolation of Peritoneal Macrophages (PMs) by Zymosan a or LPS Treatment

Zymosan-elicited peritoneal macrophages (ZEPMs) and LPS-elicited peritoneal macrophages (LEPMs) were isolated as previously reported (18). Briefly, zymosan A (1 mg/mouse) or LPS (1 mg/kg) were i.p. injected into 8-week-old C57BL/6J mice. One day after the injection, peritoneal fluid was harvested and cells were cultured in RPMI1640 supplemented with antibiotics. After 1 h of culture, the suspended cells were discarded and the adherent cells were used for experiments.

Western Blot Analysis

The tissue cells were lysed using a lysis buffer [20 mM Tris (pH 7.4), 10 mM Na₄P₂OH, 100 mM NaF, 2 mM Na₃VO₄, 5 mM EDTA (pH 8.0), 0.1 mM PMSF, and 1% NP-40] containing protease inhibitors (aprotinin 7 μ g/mL and leupeptin 7 μ g/mL) and phosphatase inhibitor cocktail. Protein concentrations were measured using BCA protein assay reagent (Thermo Fisher Scientific; 23225). Cell lysates were separated on 10% SDS-polyacrylamide gels and then transferred to polyvinylidene difluoride membranes (Merck Millipore; IPVH00010). The transferred proteins on the membrane were immunoblotted with the following primary antibodies: anti-HIF-1 α (1:1,000), anti-iNOS (1:1,000), anti-Arg-1 (1:1,000), anti-PDK2 (1:1,000), anti-PDK4 (1:500), and anti- β -actin (1:5,000). All antibodies were diluted in TBST containing 5% BSA.

Measurement of Oxygen Consumption Rate (OCR)

The OCR was measured using a Seahorse XF-24 Flux Analyzer (Seahorse Biosciences, Billerica, MA, USA). BMDMs were seeded in XF-24 tissue culture plates (24-well) at a density of 1×10^5 cells/well and incubated overnight. The cells were treated with M1 stimulants (LPS 100 ng/mL + IFN- γ 10 ng/mL) with or without dichloroacetate (DCA 10 mM, Sigma; 47795) for 3 h. The assay medium used consisted of XF base medium (Seahorse Biosciences) supplemented with 5.5 mM D-glucose (Sigma-Aldrich; G7528), 1 mM sodium pyruvate (Sigma-Aldrich; S8636), and 1X GlutaMAXTM (Gibco; 35050) and adjusted to pH 7.4. The inhibitors and uncouplers used in this study were as follows: oligomycin A (2 μ M, Sigma-Aldrich; 75351), CCCP (carbonyl cyanide 3-chlorophenylhydrazone, 7.5 μ M, Sigma-Aldrich; C2759), rotenone (1 μ M, Sigma-Aldrich; R8875), and antimycin A (2.5 μ M, Sigma-Aldrich; A8674). OCR was normalized to protein concentration.

Metabolite Extraction

Isolated cells were cultured overnight in 10% dialyzed FBS media. The medium was replaced with fresh 10% dialyzed FBS medium and cells were then stimulated with LPS (100 ng/mL) and IFN- γ (10 ng/mL) for 12 h. Cells were washed with 3 mL ice-cold 0.9% NaCl twice and then collected in Eppendorf tubes. Cells were resuspended in 200 μ L of ice-cold metabolite extraction solution (chloroform:methanol:water 1:3:1, v/v) and then sonicated. After incubation on ice for 1 h, the metabolite samples were collected by centrifugation at 13,000 rpm for 5 min. All the samples were lyophilized and re-suspended in 300 μ L of water containing 0.1% formic acid, prior to LC-MS/MS analysis.

Data Presentation and Statistical Analysis

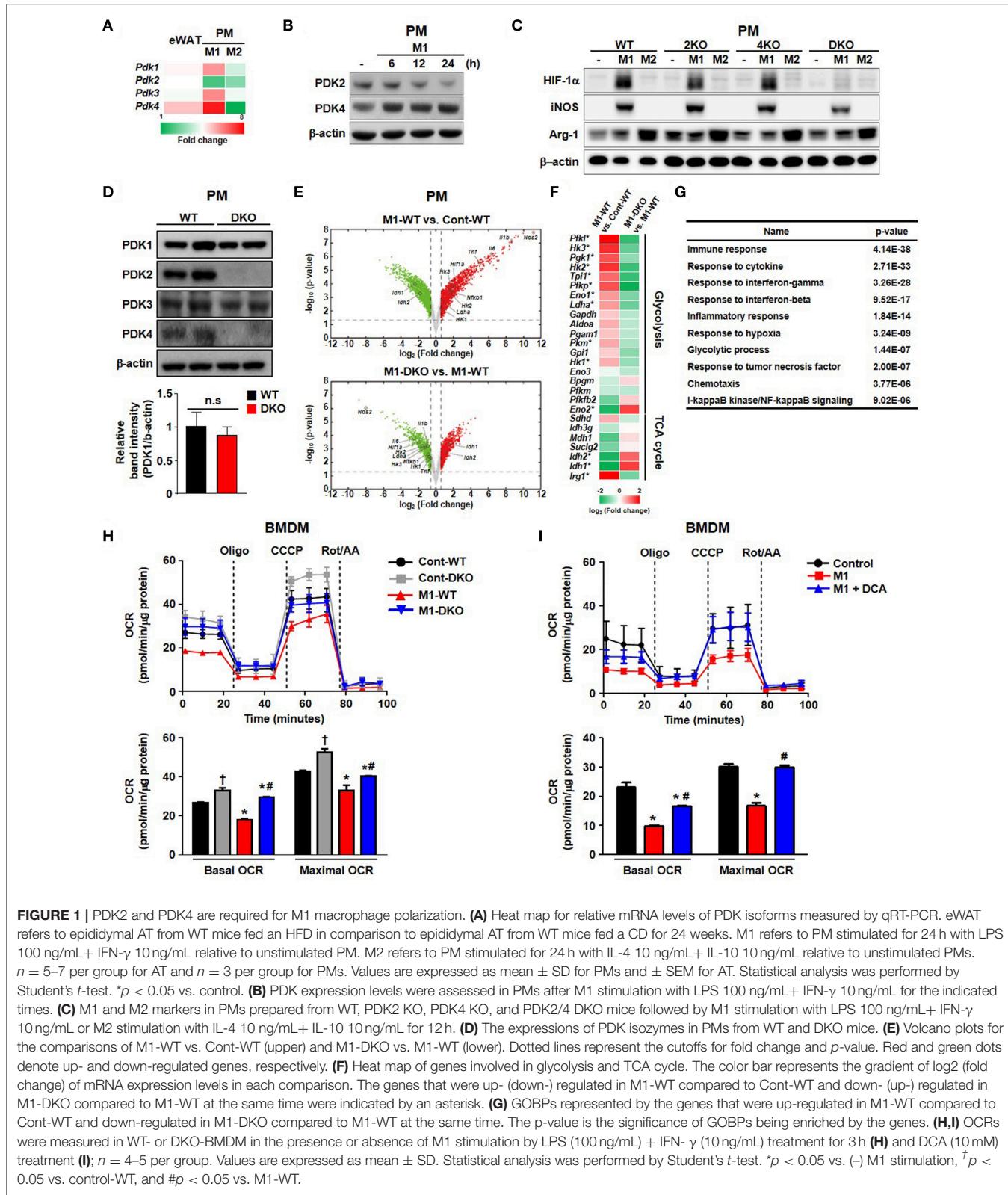
Data were presented using the GraphPad Prism software and statistical analysis was performed using IBM SPSS Statistics (version 21). Statistically significant differences were measured by Student's *t*-test for normally distributed data. Statistical analysis of group comparison was performed by one-way or two-way ANOVA followed by Tukey's HSD (honestly significant difference) *post hoc* test. *p*-values < 0.05 were considered statistically significant. Detailed procedures are included as part of **Supplemental Materials**.

Detailed Procedures

See the **Supplemental Materials**.

RESULTS

PDK2 and PDK4 Are Required for M1 Macrophage Polarization


We explored the role of PDKs in overnutrition-induced AT inflammation. Among the 4 different isoforms of PDK, the mRNA expression of only *Pdk4* was significantly upregulated in the AT of mice fed an HFD compared to those fed a CD (**Figure 1A**). Furthermore, *Pdk4* was more responsive to specific M1 stimulation, which was correlated with the upregulation of *Pdk4*, and M2 stimulation, correlated with *pdk4* downregulation

in macrophages (**Figures 1A,B** and **Figures S1A–D**). The induction of HIF-1 α and iNOS by M1-only stimulation and M1+M2 stimulation, respectively, to mimic *in vivo* wild-type (WT) conditions, was completely suppressed in PDK2/4 DKO mice but only slightly suppressed in PDK2 or PDK4 KO-peritoneal macrophages (PMs) and bone marrow-derived macrophages (BMDMs) (**Figure 1C**), suggesting that PDK2 and PDK4 can functionally compensate for each other. And we confirmed no change of PDK1 expression in DKO mice (**Figure 1D** and **Figures S1E,F**). Conversely, M2 stimulation with IL-4 caused a greater increase in arginase-1 expression in a time-dependent manner in PMs from PDK2/4 DKO mice compared to those from WT mice (**Figure S1G**). Since HIF-1 α is essential for the upregulation of glycolytic genes and, therefore, the activation of inflammatory macrophages, suppression of the increase in HIF-1 α by PDK2/4 deficiency in response to LPS + IFN- γ stimulation is especially noteworthy.

RNA-seq analysis revealed increased aerobic glycolysis in response to M1 stimulation; this was indicated by increased expression of glycolysis-related genes and decreased expression of TCA cycle-related genes. This response was practically absent in LPS + IFN- γ -stimulated PMs from PDK2/4 DKO mice (**Figures 1E–G**). Consistently, the decrease in isocitrate dehydrogenase (*Idh*1 and *Idh*2 mRNA expression levels that normally occur in response to LPS + IFN- γ stimulation was prevented (**Figure 1F**). The expression of *Irg1* required for the production of itaconic acid, an important factor in the antimicrobial response of macrophages was less affected, yet significantly suppressed in the PMs from PDK2/4 DKO mice (**Figure 1F**). To evaluate the mitochondrial function in response to reduced PDK activity, we measured the oxygen consumption rate (OCR) in both PDK2/4-deficient BMDMs and dichloroacetate (DCA; pan PDK inhibitor)-treated BMDMs. M1 polarization significantly reduced basal and maximal OCR in WT-BMDMs; however, the OCR in LPS + IFN- γ treated PDK2/4 DKO-BMDMs was still comparable to that in WT-BMDMs (M0) (**Figure 1H**). Likewise, DCA treatment was found to largely prevent the reduction in basal and maximal OCR in LPS + IFN- γ -treated WT-BMDMs, which are known, otherwise, to have a broken TCA cycle (evidenced by the accumulation of succinate) during M1 polarization (**Figure 1I**) (19). Elevated extracellular lactate and intracellular succinate levels were also significantly attenuated in PDK2/4 DKO-BMDMs compared to that in WT-BMDMs (**Figures S2A,B**). Overall, our data are indicative that genetic as well as pharmacological inhibition of PDK2/4 can block the metabolic reprogramming of aerobic glycolysis and mitochondrial respiration under conditions that normally induce M1 macrophage polarization.

PDK2/4 Deficiency Prevents the Increase in Glycolytic Intermediates and the Decrease in TCA Cycle Intermediates Normally Induced by Treating Macrophages With Inflammatory Stimuli

Based on our finding that mitochondrial respiration is enhanced when M1 polarization is prevented by PDK2/4-deficiency,

we hypothesized that acetyl-CoA (generated by conversion of pyruvate to acetyl-CoA by PDH) might be utilized efficiently by the intermediates of TCA cycle, resulting in increased OXPHOS with less lactate production. To test our hypothesis,

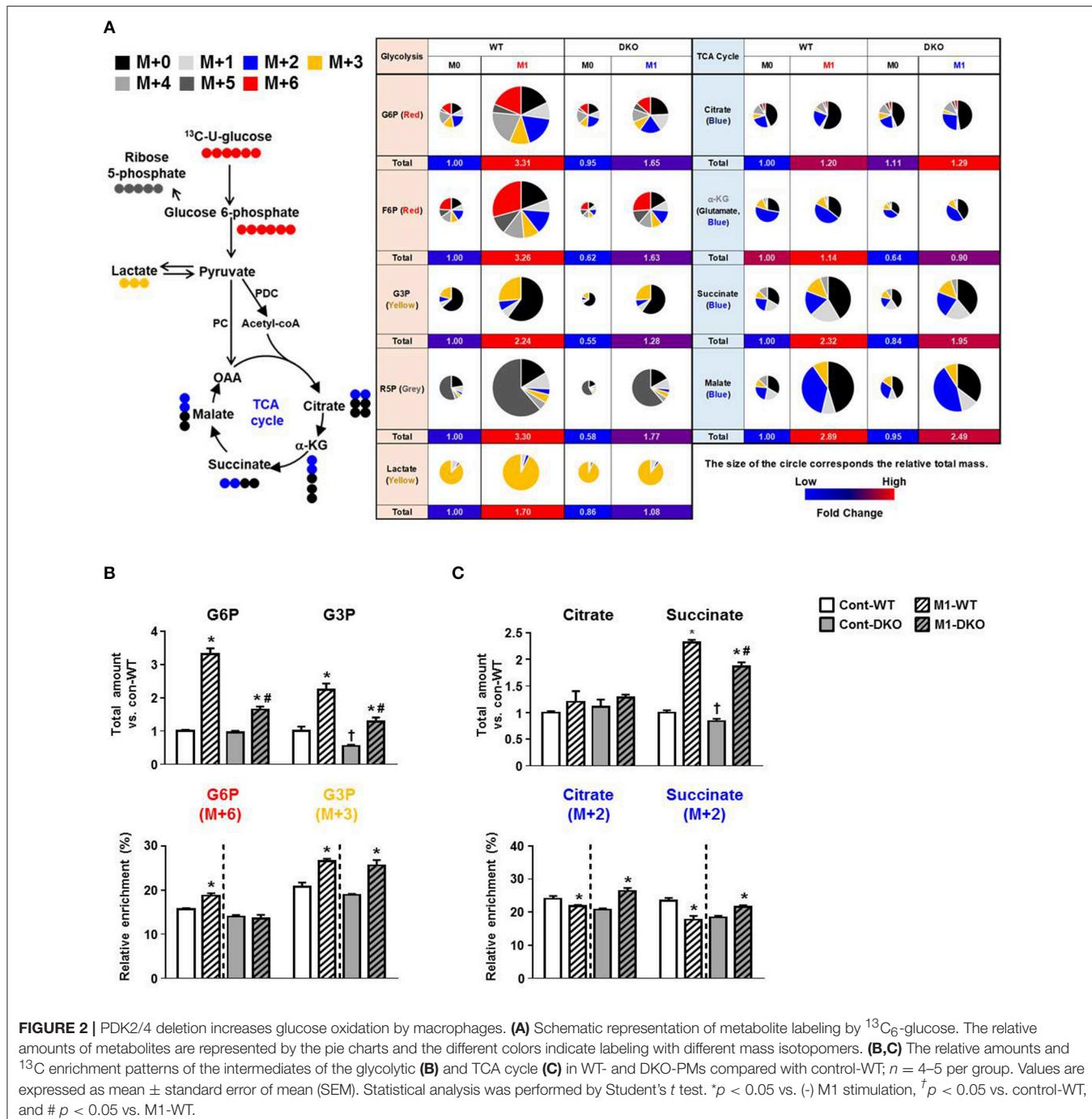
we performed ¹³C₆-glucose trace analysis (a schematic representation of metabolite labeling with ¹³C₆-glucose is given in Figure 2A) and assessed the relative mass distribution vector represented by the metabolites derived from ¹³C₆-glucose

directly, as well as the total amount of metabolites from glucose metabolism during PDK2/4 deficiency (**Figures 2B,C**) (20). As assessed by two different methods and consistent with the altered expression of glycolytic enzymes (**Figure 1F**), the steady state amounts of metabolites between glucose to lactate were significantly increased in M1-polarized WT-PMs, while PDK2/4 deficiency was found to prevent increases in these intermediates (**Figure 2B**, **Figure S2C**). Although the mass of citrate was not significantly affected, formation of M+2 citrate (blue in the pie chart) from M+6 glucose was reduced in M1-polarized WT-PM but increased by PDK2/4 deficiency, consistent with decreased flux in the former and increased flux in the latter (**Figure 2C**). Although total amounts of succinate and malate were significantly increased, M+2 succinate and M+2 malate levels (blue in the pie chart) were significantly reduced in M1-polarized WT-PM. Interestingly, metabolic flux analysis of these intermediates displayed enhanced enrichments in PDK2/4-deficient conditions (**Figure 2C**; **Figures S2D,E**). These data suggest that increased provision of acetyl-CoA for the maintenance of the TCA cycle by PDK2/4 deficiency prevents the decrease in cellular respiration characteristic of M1-polarized WT macrophages.

Global PDK 2/4 Deficiency in HFD-Fed Mice Reduces Insulin Resistance and AT Inflammation

Greater PDH activity caused by global PDK 2/4 deficiency improves insulin sensitivity (15), suggesting PDKs are involved in the development of whole-body insulin resistance. To determine whether DKO mice show reduced HFD-induced AT inflammation which may contribute to the healthier metabolic phenotype of these mice, WT and DKO mice were fed CD or HFD. As reported previously (15), HFD-fed-PDK2/4 ablated mice displayed lower body weight gain, lower fasting blood glucose levels, improved glucose tolerance, and increased insulin sensitivity along with reduced fat accumulation in the AT and liver (**Figures 3A–E**). Furthermore, the number of infiltrated epididymal AT macrophages was reduced, as indicated by reduction in crown-like structures and the levels of proinflammatory markers Emr1, Cd68, Itgax, and Tnf (**Figures 3F–H**). These data show that global PDK2/4 deficiency attenuates HFD-induced macrophage infiltration and thereby reduces AT inflammation, suggesting that inhibition of PDH activity by the PDKs is involved in the AT inflammation caused by obesity.

Bone Marrow-Specific PDK2/4 Deletion Interferes With HFD-Induced AT Macrophage Infiltration


To investigate the potential effects of innate immune cells on chronic inflammation, a bone-marrow (BM) transplantation mouse model was used to evaluate the direct contribution of BM-derived immune cells from PDK2/4 DKO mice. The method involved irradiation of recipient WT mice to ablate BM cells followed by transplantation via intravenous infusion of donor BM obtained from WT mice or PDK2/4 DKO mice (21); donor

as well as recipient mice were maintained on a CD for this study. Four weeks after maintaining all of the mice on a CD, the mice were divided into four groups: 1) WT mice with WT BM that were continued on the CD; 2) WT mice with WT BM that were placed on the HFD; 3) WT mice with DKO BM that were continued on the CD; and 4) WT mice with DKO BM that were placed on the HFD. No differences in any subsequent measurements were observed between the two groups of mice (1 and 3) that were continued on the CD (**Figure 4**). Likewise, no differences in body weight, body size, and food consumption were observed between the two groups of mice (2 and 4) that were maintained on the HFD (**Figures 4A–C**). However, remarkable differences in markers of metabolic dysfunction were observed between the latter two groups of mice. The HFD-fed mice transplanted with WT-BM displayed an increase in fasting blood glucose, AT, and liver fat, while the glucose tolerance and insulin sensitivity was found to be reduced. All of these expected negative consequences of HFD feeding were attenuated in mice transplanted with DKO-BM (**Figures 4D–H**). These findings along with reduced inflammatory responses and no additional anti-inflammatory cytokine production such as IL-10 and TGF- β by PDK2/4 deficiency under sterile inflammatory condition (**Figure 5** and **Figure S3**) are consistent with other reports that have demonstrated improved insulin sensitivity in response to global PDK 2/4 deficiency and, consequently, greater PDH activity (22).

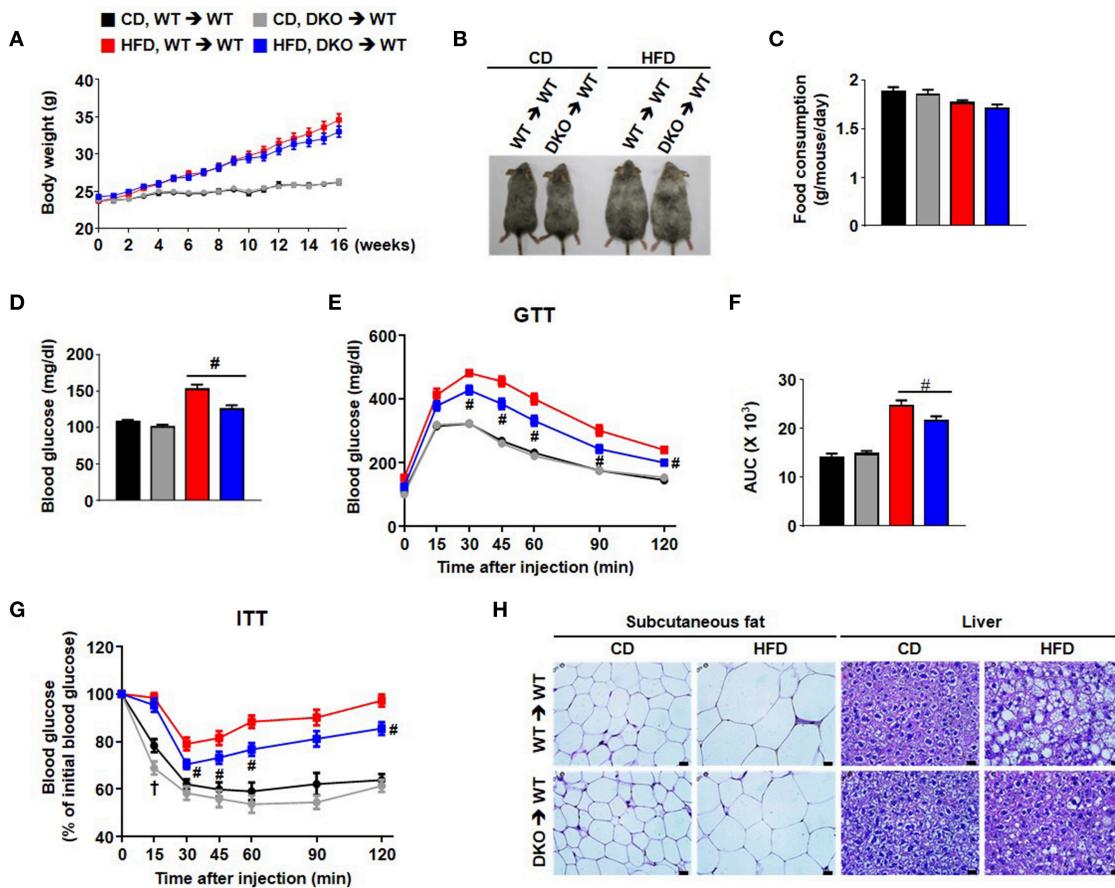
Furthermore, the number of crown-like structures was dramatically increased in the AT of mice with WT BM but not in the mice with DKO-BM (**Figures 6A,B**). To confirm the reduced migrating capacity of PDK2/4 ablated monocyte to fat tissue *in vivo*, we assessed that the PKH26-positive stained macrophage (F4/80 $^{+}$ CD11b $^{+}$ PKH26 $^{+}$) population derived from DKO monocyte was significantly reduced in the stromal vascular fractions of 4 week HFD mice compared to WT monocyte (**Figure 6C**). Pharmacological inhibition of PDK activity with DCA was found to significantly attenuate MCP-1-induced migration (**Figure 6D**). To mimic the *in vivo* physiological effect of HFD, BMDMs were incubated with palmitate-treated, 3T3-L1-conditioned medium. Interestingly, DCA treatment was found to significantly reduce the migration induced by an unknown chemoattractant in palmitate-treated 3T3-L1 cells (**Figure 6E**). We also confirmed that the increase in M1/M2 ratio as well as levels of proinflammatory markers was significantly blocked in the epididymal AT from WT mice with DKO-BM (**Figures 6F,G** and **Figure S4**). These results are indicative that PDK2/4 deletion and PDK inhibition prevent macrophage polarization and infiltration, thereby preventing inflammation of adipose tissue in response to over consumption of dietary energy.

A Novel PDK Inhibitor Prevents Polarization of Macrophages to the M1 Phenotype and Attenuates Adipose Tissue Inflammation in Obesity

We used a series of previously established, highly specific PDK inhibitors that target structurally conserved ATP-binding pockets in the PDKs (23, 24) to perform an efficacy

test against the inflammatory response (Figures S5A–C). In contrast to the high DCA concentrations (0.5~2 mM) required for the inhibition of PDKs, a novel PDK inhibitor, KPLH1130, was found to significantly inhibit expression of proinflammatory cytokines including TNF α , IL-6, and IL-1 β in various types of macrophages at much lower (5–10 μM) concentrations (Figures 7A–D, 8A–E; Figures S5D–F). In addition to reduced migration capacity by KPLH1130 treatment, iNOS, nitric oxide, and HIF-1 α levels were

significantly reduced by pharmacological PDK inhibition in various types of macrophages (Figures 7E–G, 8F–H; Figures S5G–M). KPLH1130 also prevented the decrease in basal and maximal OCR caused by M1 polarizing conditions in BMDMs (Figure 7H). We also found that KPLH1130 administration improved the glucose tolerance of HFD-fed mice (Figure 7I). Similarly, these effects were not mediated by induced anti-inflammatory cytokines (Figures 8I–K). Taken together, our results are indicative that KPLH1130 can effectively


FIGURE 3 | PDK2/4 deficiency ameliorates adipose tissue inflammation and insulin resistance in mice fed a high fat diet. **(A–D)** Measurements of body weights **(A)**, fasting blood glucose levels **(B)**, glucose tolerance test (1.5 g/kg, i.p.) after 16 h fasting **(C)** and insulin tolerance test (0.75 U/kg, i.p.) after 6 h fasting **(D)** were performed in CD or HFD-fed mice; $n = 8–14$ per group. **(E)** Representative morphology of the subcutaneous AT and liver from mice fed CD or HFD for 24 weeks, as shown by H&E staining; magnification: 400X; scale bar: 20 μ m. **(F,G)** Representative morphology of the epididymal AT, as shown by H&E staining or IHC staining for F4/80; magnification: 400X; scale bar: 20 μ m **(F)**. Quantification of crown-like structures in the epididymal AT; $n = 6–9$ per group **(G)**. **(H)** mRNA expression levels of inflammatory genes in the epididymal AT; $n = 7–12$ per group. Values are expressed as mean \pm SEM. Statistical analysis was performed by Student's *t*-test. * $p < 0.05$ vs. CD-WT, and # $p < 0.05$ vs. HFD-WT.

attenuate inflammatory responses induced by obesity-associated metabolic dysfunction.

DISCUSSION

This study shows that PDK2/4 deficiency blocks polarization of resting macrophages to the M1 phenotype in response to LPS and INF- γ . Our findings establish that the regulation of PDH activity by the PDKs plays an important role in M1 macrophage polarization. The evidence for this includes

a) dramatically induced PDK4 expression by LPS + INF- γ ; b) reduced HIF-1 α levels and suppression of the Warburg effect (phenomenon characterized by upregulation of glycolytic enzymes and down regulation of TCA cycle enzymes) in response to PDK2/4 deficiency; c) PDK2/4 deficiency-mediated check on the pool size of glycolytic intermediates that would, otherwise, feed into anabolic pathways required for proliferation of macrophages; and d) significantly reduced levels of NO and proinflammatory cytokines including TNF α , IL-6, and IL-1 β in response to PDK2/4 deficiency. These findings suggest that sterile

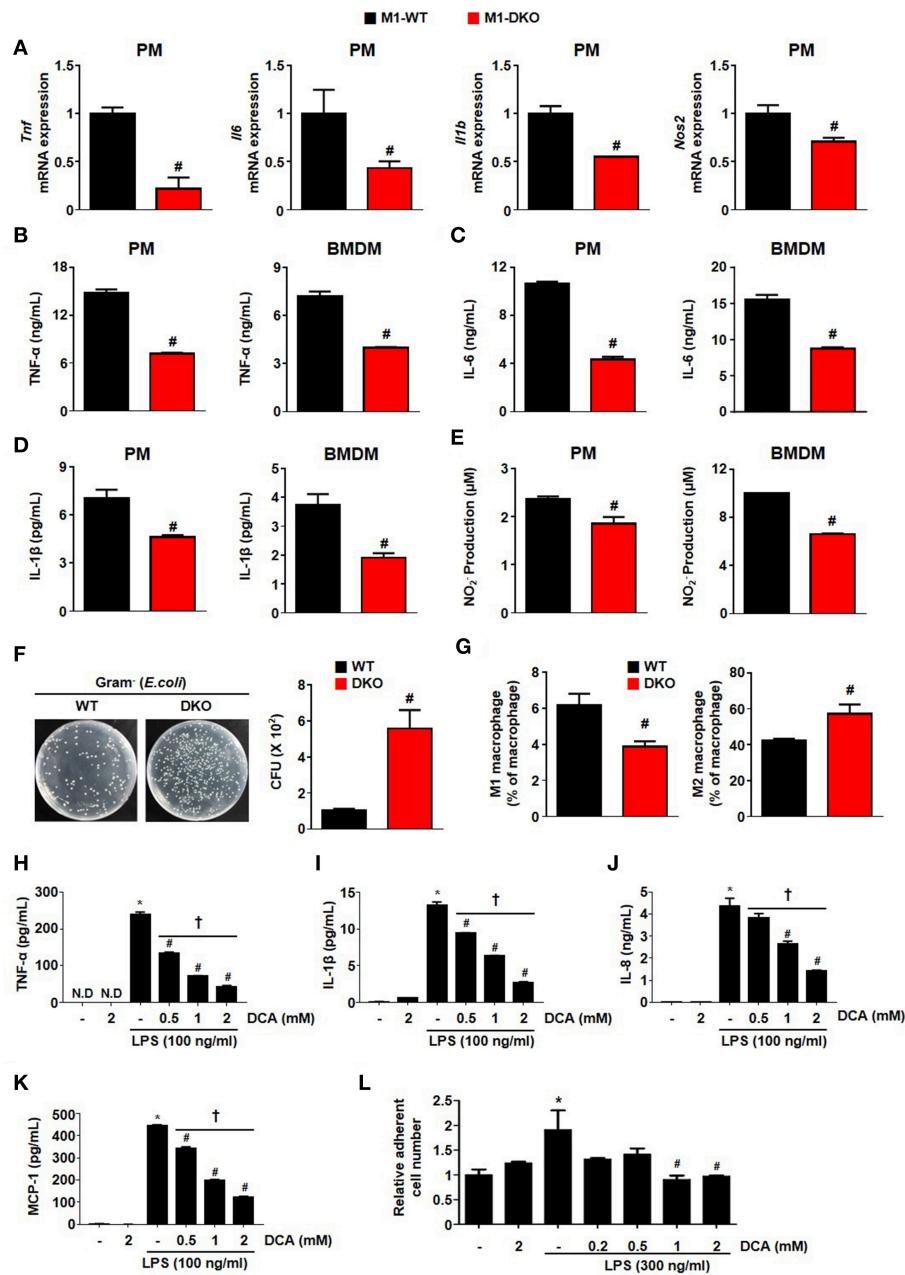


FIGURE 4 | Hematopoietic cell-specific PDK2/4 deficiency attenuates insulin resistance in mice fed a high-fat diet. **(A)** Body weights were measured during feeding of the different diets; $n = 12\text{--}26$ per group. **(B)** Representative mice of each group. **(C)** Food consumption was measured per day in each group; $n = 7$ per group. **(D-G)** Measurement of fasting blood glucose levels **(D)**, glucose tolerance test (1.5 g/kg, i.p.) after 16 h fasting **(E,F)**, and insulin tolerance test (0.75 U/kg, i.p.) after 6 h fasting **(G)** was performed in both CD and HFD-fed mice; $n = 11\text{--}26$ per group. Values are expressed as mean \pm SEM. Statistical analysis was performed by one-way or two-way ANOVA followed by Tukey's HSD. $\# p < 0.05$ vs. HFD-WT-BMT. **(H)** Representative morphology of the subcutaneous AT and liver from WT- and DKO-BMT mice as shown by H&E staining; magnification: 400X; scale bar: 20 μm .

inflammatory conditions, such as neuroinflammatory diseases, obesity, and steatohepatitis may be amendable to therapeutic intervention with PDK inhibitors.

Markers of AT inflammation including the number of infiltrated AT macrophages in response to over-nutrition, M1 macrophage population, presence of crown-like structures, and the levels of proinflammatory markers were found to be significantly reduced in the global PDK2/4 DKO mice compared to that in WT mice. These indicators of AT inflammation are associated with the metabolic dysfunctions characteristic of obesity including hyperglycemia, glucose intolerance, and insulin resistance. These findings clearly establish an important role for PDKs and, therefore, the regulation of the activity of the PDH complex in obesity-induced AT inflammation and metabolic dysfunction. To directly determine if these effects could be due to prevention of M1 macrophage polarization by PDK deficiency, macrophage-specific PDK deficiency was induced by transplanting PDK2/4-deficient myeloid cells into

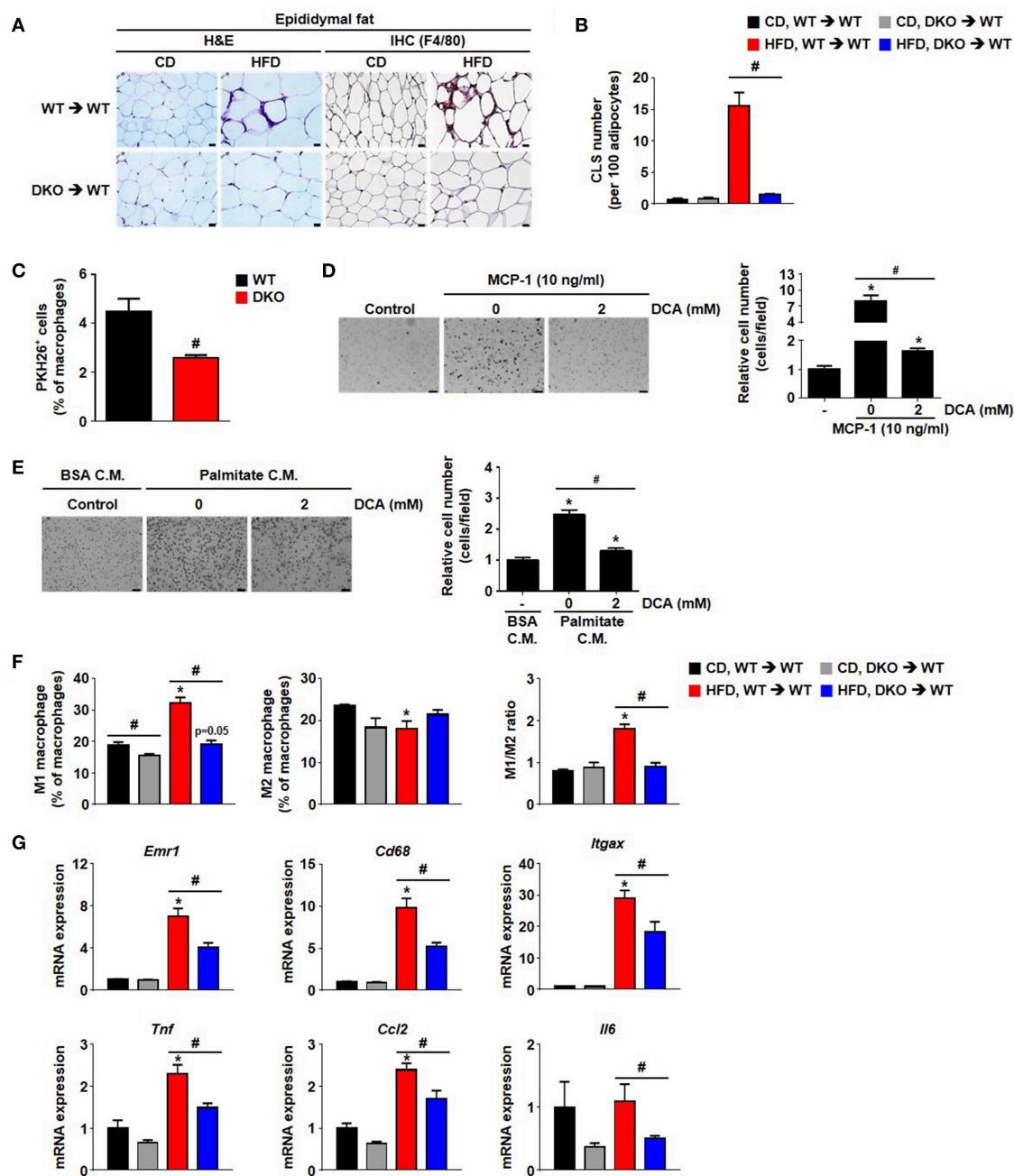

irradiated WT mice that were subsequently fed an HFD to induce obesity. Whereas, the AT of obese mice transplanted with normal myeloid cells became inflamed as evidenced by the accumulation of crown-like structures and protein markers for M1 macrophages, the AT of mice transplanted with PDK2/4-deficient cells remained free of inflammation; additionally, the negative effects on blood glucose levels, glucose tolerance, and insulin sensitivity were partially ablated. The observation that glucose tolerance and insulin sensitivity in HFD-fed DKO-BMT mice is only partially improved in contrast to the almost complete protection from HFD-induced glucose intolerance, insulin insensitivity, obesity, and macrophage infiltration observed in the organs of PDK2/4 DKO mice is suggestive that the beneficial effects of PDK deficiency are not totally due to inhibition of macrophage polarization. In other words, increased PDH activity in tissue other than myeloid cells plays a role in the beneficial effects of global PDK2/4 deficiency in HFD-fed mice.

FIGURE 5 | Suppression of PDK2/4 in macrophages attenuates the secretion of proinflammatory effectors in response to inflammatory stimuli. **(A–E)** The levels of mRNA expression **(A)** and secreted proinflammatory effectors **(B–E)** were measured after treatment of WT- and DKO-PMs or -BMDMs with LPS 100 ng/mL+ IFN- γ 10 ng/mL for 12 h; $n = 3$ –4 per group. **(F)** Bactericidal effect was assessed by counting the colony numbers in WT- and DKO-PMs; $n = 5$ per group. **(G)** Effect on PDK2/4 deficiency on the *in vivo* macrophage population in LPS (1 mg/kg)-injected mice; $n = 5$ per group. Values are expressed as mean \pm SEM. Statistical analysis was performed using Student's *t*-test. # $p < 0.05$ vs. WT. **(H–K)** Secreted proinflammatory cytokine levels were determined at different DCA concentrations in THP-1 cells treated with LPS 100 ng/mL for 24 h; $n = 3$ per group. **(L)** Adhesion assay was performed in collagen (10 μ g/mL)-coated wells with DCA-treated THP-1 cells incubated with LPS (300 ng/mL) for 24 h; $n = 3$ per group. Values are expressed as mean \pm SD. Statistical analysis was performed using Student's *t*-test. * $p < 0.05$ vs. (–) LPS, # $p < 0.05$ vs. only LPS, and † $p < 0.05$ vs. 2 mM DCA. N.D., not detected.

The present study also shows that KPLH1130, a novel PDK-specific inhibitor, blocks M1 polarization and attenuates proinflammatory responses. Additionally, we have observed that M2-polarized PDK2/4 DKO macrophages express elevated levels

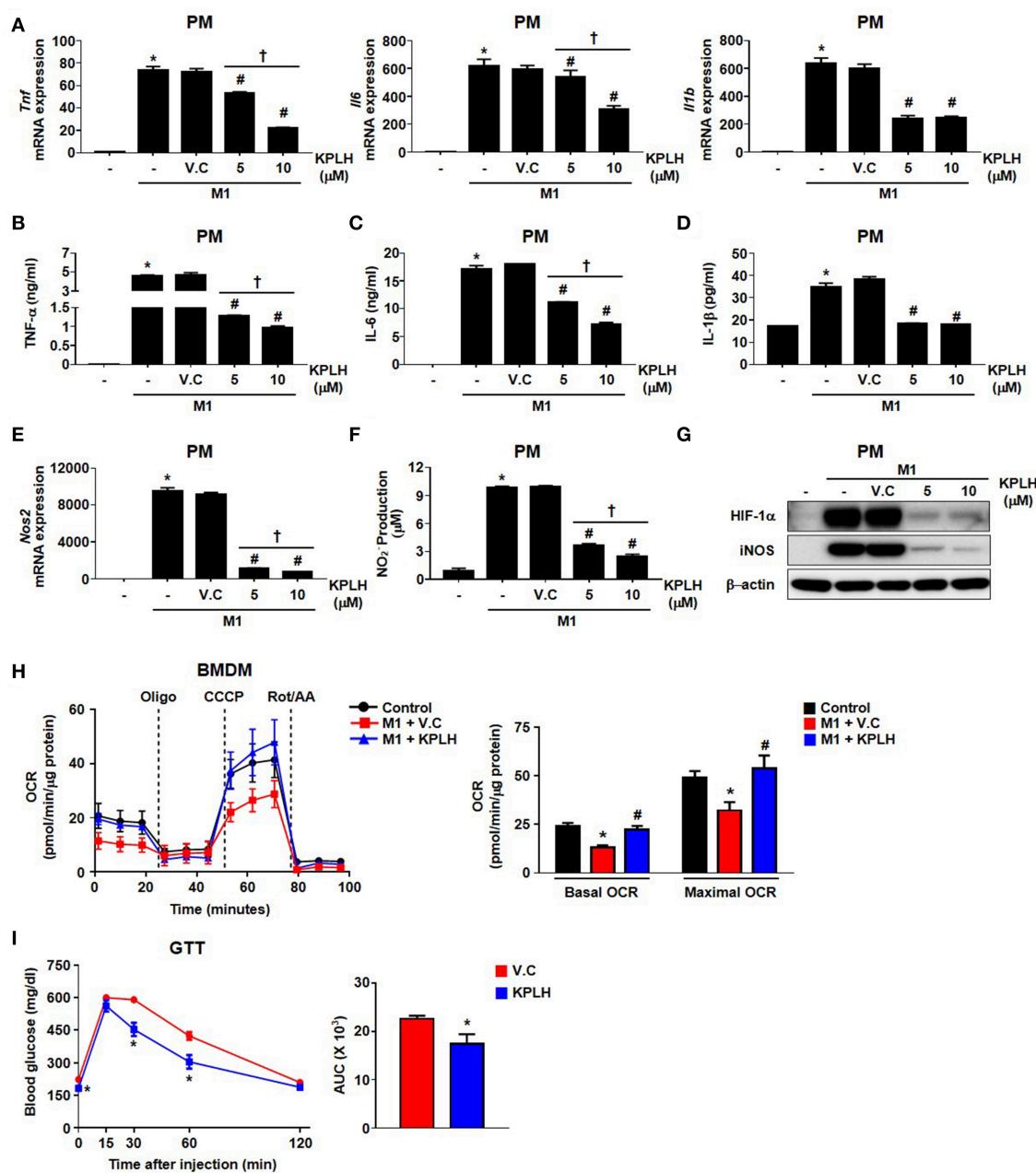

of arginase-1—a superior competitor to iNOS for the substrate arginine—which has anti-inflammatory functions. The metabolic activation of macrophages triggered by glucose, insulin, and palmitate plays a key role in adipose-driven inflammation

FIGURE 6 | Hematopoietic cell-specific PDK2/4 deficiency attenuates adipose tissue inflammation by preventing the recruitment of M1 macrophages. **(A,B)**

Representative morphology of the epididymal AT by H&E staining or IHC staining for F4/80; magnification: 400X; scale bar: 20 μ m **(A)**. The numbers of crown-like structures in the epididymal AT were determined; $n = 8$ per group **(B)**. Values are expressed as mean \pm SEM. Statistical analysis was performed by one-way ANOVA followed by Tukey's HSD. $\#p < 0.05$ vs. HFD-WT-BMT. **(C)** PKH26⁺ cell population was measured by FACS analysis; $n = 4$ per group. Values are expressed as mean \pm SEM. Statistical analysis was performed by Student's *t*-test. $\#p < 0.05$ vs. WT monocyte donor group. **(D)** MCP-1-induced migration was evaluated in DCA-treated BMDMs using a trans-well migration assay; $n = 3$ per group; magnification: 200X; scale bar: 50 μ m. The relative number of migrated cells per field was counted. Values are expressed as mean \pm SEM. Statistical analysis was performed by Student's *t*-test. $*p < 0.05$ vs. control, $\#p < 0.05$ vs. MCP-1 induction.

(E) 3T3-L1-conditioned medium (C.M.)-induced migration was evaluated in DCA-treated BMDMs using a trans-well migration assay; $n = 3$ per group; magnification: 200X; scale bar: 50 μ m. The relative number of migrated cells per field was counted. Values are expressed as mean \pm SEM. Statistical analysis was performed by Student's *t*-test. $*p < 0.05$ vs. control, $\#p < 0.05$ vs. palmitate C.M. **(F)** M1 and M2 macrophage populations and their ratios were determined in the stromal vascular fraction of WT- and DKO-BMT; $n = 3$ per group. Values are expressed as mean \pm SEM. Statistical analysis was performed by Student's *t*-test. $*p < 0.05$ vs. corresponding CD-fed group, $\#p < 0.05$ compared with WT- and DKO-BM donor group. **(G)** mRNA expression levels of inflammatory genes in the epididymal AT; $n = 7$ –12 per group. Values are expressed as mean \pm SEM. Statistical analysis was performed by Student's *t*-test. $*p < 0.05$ vs. CD, $\#p < 0.05$ vs. WT-BMT.

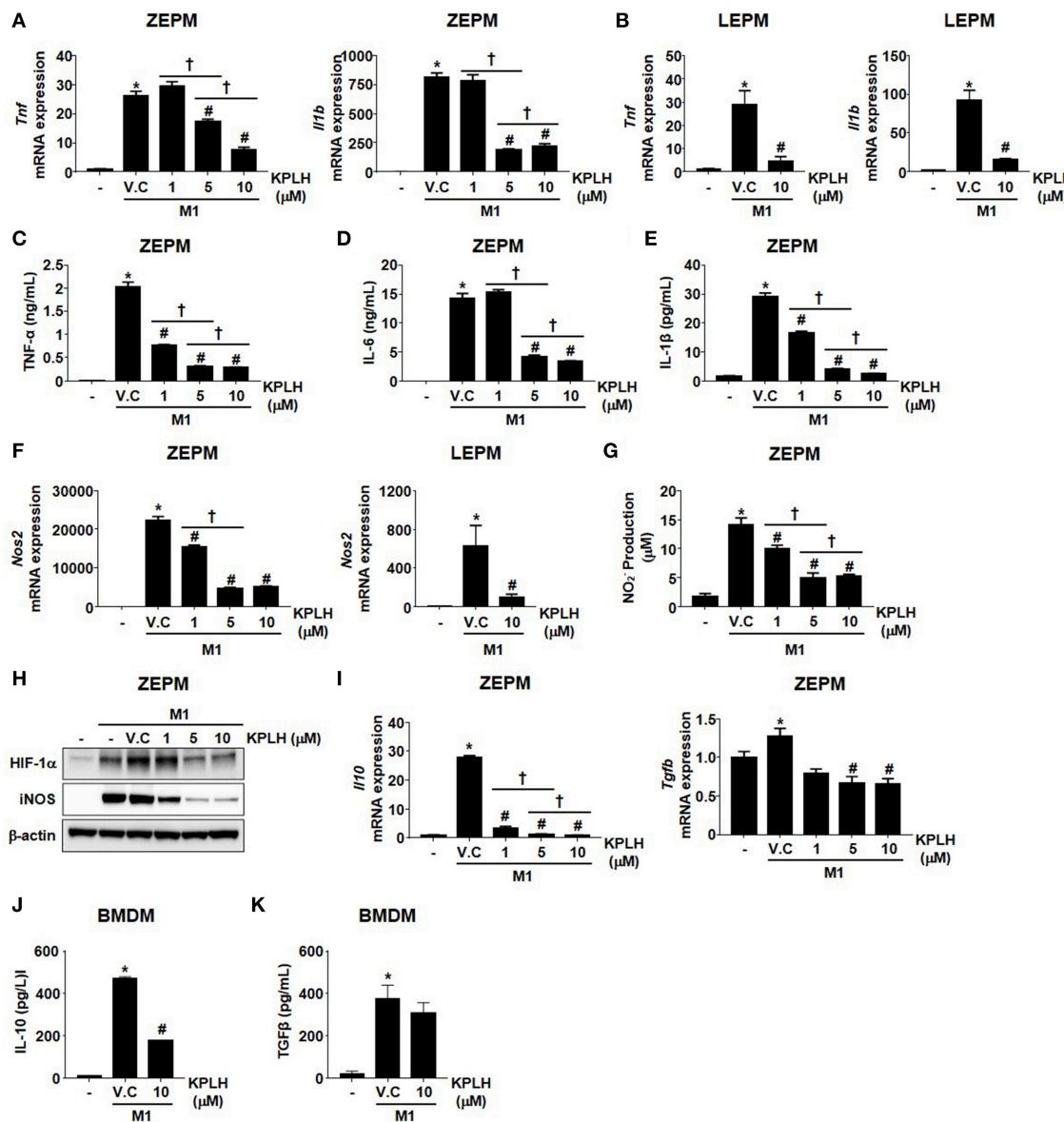


FIGURE 7 | A new PDK inhibitor, KPLH1130, attenuates the secretion of pro-inflammatory effectors by stimulated macrophages and improves glucose tolerance in HFD-fed mice. **(A–F)** The levels of mRNA expression **(A,E)** and secreted proinflammatory effectors **(B–D,F)** were measured with different KPLH1130 concentrations in PMs treated for 12 h with LPS (100 ng/mL) + IFN- γ (10 ng/mL); $n = 3$ –6 per group. **(G)** M1 markers were assessed with different KPLH1130 concentrations in PMs treated with LPS (100 ng/mL) + IFN- γ (10 ng/mL) for 12 h. **(H)** OCRs were measured in KPLH1130 (10 μ M) \pm M1 stimulation by LPS (100 ng/mL) + IFN- γ (10 ng/mL) for 3 h; $n = 4$ –5 per group. Values are expressed as mean \pm SD. Statistical analysis was performed by Student's *t*-test. * $p < 0.05$ vs. control, # $p < 0.05$ vs. M1 only, and † $p < 0.05$ vs. KPLH1130 (10 μ M). **(I)** Glucose tolerance test (1.5 g/kg, i.p.) after 6 h fasting was measured after HFD for 14 weeks with KPLH1130 (70 mg/kg, 4 weeks); $n = 6$ per group. Values are expressed as mean \pm SEM. Statistical analysis was performed by one-way followed by Tukey's HSD. * $p < 0.05$ vs. vehicle control.

which results in insulin resistance—a process distinct from classical activation (25). Both genetic and pharmacological inhibition of PDK in macrophages significantly suppressed proinflammatory responses including M1 polarization markers, bactericidal activity, adherence, and migration. These findings

support the notion that PDKs are potential targets for the treatment of inflammation as well as the negative metabolic repercussions of inflammatory conditions.

Gene set enrichment analysis identified the signaling pathways associated with inflammatory responses. Interestingly, the

FIGURE 8 | Macrophage activation is suppressed by the novel PDK inhibitor, KPLH1130 using Zymosan-elicited PMs and LPS-elicited PMs. **(A–G)** mRNA expression (**A,B,F**) and secreted proinflammatory effectors (**C–E,G**) were measured following KPLH1130 (10 μM) treatment of ZEPMs or LEPMs incubated with LPS (100 ng/mL) + IFN-γ (10 ng/mL) for 12 h; $n = 3$ per group. **(H)** M1 markers were assessed following KPLH1130 (10 μM) treatment of ZEPMs incubated with LPS (100 ng/mL) + IFN-γ (10 ng/mL) for 12 h. **(I–J)** mRNA expression of IL-10 and TGFβ (**I**) and secreted IL-10 (**J**) and TGFβ (**K**) were measured following KPLH1130 (10 μM) treatment of ZEPMs and BMDMs, respectively incubated with LPS (100 ng/mL) + IFN-γ (10 ng/mL) for 12 h; $n = 3$ per group. Values are expressed as mean \pm SD. Statistical analysis was performed using Student's *t*-test. * $p < 0.05$ vs. control, # $p < 0.05$ vs. M1+V.C and $†$ $p < 0.05$ vs. different doses of KPLH1130.

decrease in *Idh* expression, indicating a metabolic break in the TCA cycle of M1-polarized macrophages (26), was significantly attenuated after PDK2/4 deletion. PDK2/4 deletion prevented the reduction in mitochondrial OXPHOS that normally occurs in response to M1 stimulation. A metabolic switch from OXPHOS to aerobic glycolysis is followed by increased production of lactate and the accumulation of citrate and succinate by TLR4 activation (27, 28). According to our stable isotope flux study,

PDK 2/4 ablation prevented the metabolic breaks associated with citrate and succinate accumulation as well as the increased lactate production in M1-polarized macrophages. In the case of PDK2 deficiency in hepatocytes, ¹³C-glucose tracer analysis has suggested that PDC flux increases but TCA cycle intermediate flux decreases due to shunted ketogenesis (29).

Although the same effects induced by PDK2/4 deficiency on macrophage polarization are also induced by PDK1 deficiency

(9), PDK1 is not sensitive to induction by LPS stimulation (13), and PDK1 deficiency is less effective in preventing the expression of the glycolytic enzymes (9). Nevertheless, the finding that deficiencies of PDK1 and PDK2/4 block macrophage polarization to the proinflammatory phenotype indicates that reducing PDH activity by phosphorylation is required for LPS-induced macrophage polarization. Surprisingly, it has been reported that LPS-induced macrophage polarization is also prevented by a number of manipulations that strongly inhibit PDH flux. These include knockdown of pyruvate dehydrogenase phosphatase 1 (12), pharmacological inhibition of pyruvate import into the mitochondria (13), and upregulation of PDK2 by VSIG4 (14). These findings suggest that complete inhibition of PDH is not compatible with proinflammatory macrophage polarization. Indeed, pyruvate oxidation through PDH is necessary for the synthesis of the antimicrobial metabolite itaconate, an important product of mature proinflammatory macrophages (13). The finding that macrophage polarization is prevented by both inhibition of PDH and PDK deficiency suggests that LPS-induced polarization of macrophages is extremely sensitive to PDH flux. This is consistent with the evidence that reprogramming of the mitochondrial processes, particularly glutaminolysis, is also necessary for the inflammatory responses of M1 macrophages (30). If flux through PDH is too high or too low, changes in gene expression, reprogramming of glycolysis and the TCA cycle, and polarization to the M1 phenotype are prevented. Perhaps changes in the levels of metabolites transmit information to the nucleus when conditions are right for the reprogramming of gene expression necessary for polarization. The location of PDH allows it to precisely control the relationship between glycolysis and the TCA cycle and therefore serves as a sensitive checkpoint of bioenergetic reprogramming. In spite of the complexity, this makes PDH a sensitive target for therapeutic intervention in inflammatory conditions, suggesting that PDK2 and PDK4 in immune cells are potential targets for the treatment of inflammatory metabolic disorders.

REFERENCES

- Mcgettrick AF, O'Neill LA. How metabolism generates signals during innate immunity and inflammation. *J Biol Chem.* (2013) 288:22893–8. doi: 10.1074/jbc.R113.486464
- Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. *J Biol Chem.* (2014) 289:7884–96. doi: 10.1074/jbc.M113.522037
- Van Den Bossche J, O'Neill LA, Menon D. Macrophage Immunometabolism: where are we (Going)? *Trends Immunol.* (2017) 38:395–406. doi: 10.1016/j.it.2017.03.001
- Palsson-Mcdermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, et al. Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. *Cell Metabol.* (2015) 21:65–80. doi: 10.1016/j.cmet.2014.12.005
- Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. *Nature.* (2017) 542:177–85. doi: 10.1038/nature21363

ETHICS STATEMENT

All experiments were approved by the Institutional Animal Care and Use Committee of Kyungpook National University and were conducted according to recommendations in the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

AUTHOR CONTRIBUTIONS

B-KM, SP, DK, RAH, and I-KL conceived and designed research. B-KM, H-JK, HH, C-MH, B-JC, JYL, CO, EY, HK, and DYH performed experiments. B-KM, SP, B-GK, DH, Y-HK, TL, and C-HL analyzed data. B-KM, SP, J-HJ, RAH, and I-KL interpreted results of experiments. B-KM and SP prepared figures. B-KM, SP, RAH, and I-KL drafted manuscript. B-KM, SP, JK, Y-KC, K-GP, AC, JL, RAH, and I-KL edited and revised the manuscript. B-KM, SP, H-JK, RAH, and I-KL approved final version of manuscript.

FUNDING

This work was supported by a grant of Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health and Welfare, the Republic of Korea (HI16C1501) & Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2B3006406), and Bio & Medical Technology Development Program of the National Research Foundation (NRF) & funded by the Korean government (MSIP&MOHW) (No. NRF-2016M3A9B6902872).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: <https://www.frontiersin.org/articles/10.3389/fimmu.2019.00944/full#supplementary-material>

- Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. *Science.* (2013) 339:172–7. doi: 10.1126/science.1230721
- McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. *J Clin Invest.* (2017) 127:5–13. doi: 10.1172/JCI88876
- Zhang W, Zhang SL, Hu X, Tam KY. Targeting tumor metabolism for cancer treatment: is Pyruvate Dehydrogenase Kinases (PDKs) a viable anticancer target? *Int J Biol Sci.* (2015) 11:1390–400. doi: 10.7150/ijbs.13325
- Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. *J Immunol.* (2015) 194:6082–9. doi: 10.4049/jimmunol.1402469
- Lee IK. The role of pyruvate dehydrogenase kinase in diabetes and obesity. *Diabetes Metab J.* (2014) 38:181–6. doi: 10.4093/dmj.2014.38.3.181
- Jha MK, Song GJ, Lee MG, Jeoung NH, Go Y, Harris RA, et al. Metabolic connection of inflammatory pain: pivotal role of a pyruvate dehydrogenase kinase-pyruvate dehydrogenase-lactic acid axis. *J Neurosci.* (2015) 35:14353–69. doi: 10.1523/JNEUROSCI.1910-15.2015

12. Xu J, Chi F, Guo T, Punj V, Lee WN, French SW, et al. NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. *J Clin Invest.* (2015) 125:1579–90. doi: 10.1172/JCI76468
13. Meiser J, Kramer L, Sapcariu SC, Battello N, Ghelfi J, D'herouel AF, et al. Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. *J Biol Chem.* (2016) 291:3932–46. doi: 10.1074/jbc.M115.676817
14. Li J, Diao B, Guo S, Huang X, Yang C, Feng Z, et al. VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. *Nat Commun.* (2017) 8:1322. doi: 10.1038/s41467-017-01327-4
15. Jeoung NH, Rahimi Y, Wu P, Lee WN, Harris RA. Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice. *Biochem J.* (2012) 443:829–39. doi: 10.1042/BJ20112197
16. Jeoung NH, Wu P, Joshi MA, Jaskiewicz J, Bock CB, Depaoli-Roach AA, et al. Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homeostasis during starvation. *Biochem J.* (2006) 397:417–25. doi: 10.1042/BJ20060125
17. Dunford EC, Herbst EA, Jeoung NH, Gittings W, Inglis JG, Vandenboom R, et al. PDH activation during *in vitro* muscle contractions in PDH kinase 2 knockout mice: effect of PDH kinase 1 compensation. *Am J Physiol Regulatory Integr Compar Physiol.* (2011) 300:R1487–93. doi: 10.1152/ajpregu.00498.2010
18. Ajuebor MN, Das AM, Virag L, Flower RJ, Szabo C, Perretti M. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. *J Immunol.* (1999) 162:1685–91.
19. O'neill LA. A broken krebs cycle in macrophages. *Immunity.* (2015) 42:393–4. doi: 10.1016/j.immuni.2015.02.017
20. Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, et al. A roadmap for interpreting (13)C metabolite labeling patterns from cells. *Curr Opin Biotechnol.* (2015) 34:189–201. doi: 10.1016/j.copbio.2015.02.003
21. de Winther MPJ, Heeringa P. Bone marrow transplants to study gene function in hematopoietic cells. In: Hofker MH, van Deursen J, editors. *Transgenic Mouse. Methods in Molecular Biology*™, Vol. 209. Humana Press (2003).
22. Jeoung NH, Harris RA. Pyruvate dehydrogenase kinase-4 deficiency lowers blood glucose and improves glucose tolerance in diet-induced obese mice. *Am J Physiol Endocrinol Metab.* (2008) 295:E46–54. doi: 10.1152/ajpendo.00536.2007
23. Eggeneieler H.-M., and Michael W. *Preparation of o-(s-triazol-3-yl)phenols as HSP90 Inhibitors PCT International Patent Application.* (2006).
24. Lee TL, Liu, I. -K., Kim, K. -H., Lee ND, Yoo D, Kyung, E, et al. *Preparation of 3-aryl-1,2,4-Triazole Derivatives as Pyruvate Dehydrogenase Kinase Inhibitors PCT International Patent Application.* (2015).
25. Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. *Cell Metabol.* (2014) 20:614–25. doi: 10.1016/j.cmet.2014.08.010
26. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. *Immunity.* (2015) 42:419–30. doi: 10.1016/j.immuni.2015.02.005
27. Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. *Science.* (2013) 342:1242454. doi: 10.1126/science.1242454
28. Tannahill GM, Curtis AM, Adamik J, Palsson-Mcdermott EM, Mcgettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1 β through HIF-1alpha. *Nature.* (2013) 496:238–42. doi: 10.1038/nature11986
29. Go Y, Jeong JY, Jeoung NH, Jeon JH, Park BY, Kang HJ, et al. Inhibition of pyruvate dehydrogenase kinase 2 protects against hepatic steatosis through modulation of tricarboxylic acid cycle anaplerosis and ketogenesis. *Diabetes.* (2016) 65:2876–87. doi: 10.2337/db16-0223
30. Ganeshan K, Chawla A. Metabolic regulation of immune responses. *Ann Rev Immunol.* (2014) 32:609–34. doi: 10.1146/annurev-immunol-032713-120236

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Min, Park, Kang, Kim, Ham, Ha, Choi, Lee, Oh, Yoo, Kim, Kim, Jeon, Hyeon, Hwang, Kim, Lee, Lee, Kim, Choi, Park, Chawla, Lee, Harris and Lee. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

What Defines NK Cell Functional Fate: Phenotype or Metabolism?

Sophie M. Poznanski and Ali A. Ashkar*

Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada

NK cells are capable of an array of functions that range widely from their classic anti-tumor and anti-viral cytotoxic effector functions, to their critical regulatory roles in controlling inflammatory immune responses and promoting tissue growth. However, the mechanisms that polarize NK cells to these distinct and opposing functions are incompletely understood. NK cell functional subsets are primarily identified and studied based on phenotype, which has served as an accessible means for profiling NK cells and does offer information on NK cell activation state. However, inconsistencies have emerged in using classic phenotypes to inform function, which raise the questions: Can phenotype in fact define NK cell functional fate? What factors do profile and drive NK cell fate? In other immune cells, cell metabolism has been shown to critically determine subset polarization. There is a growing body of evidence that cell metabolism is integral to NK cell effector functions. Glucose-driven glycolysis and oxidative metabolism have been shown to drive classic NK cell anti-tumor and anti-viral effector functions. Recent studies have uncovered a critical role for metabolism in NK cell development, education, and memory generation. In this review, we will draw on the evidence to date to investigate the relationship between NK cell phenotype, metabolism, and functional fate. We explore a paradigm in which the differential activity of metabolic pathways within NK cells produce distinct metabolic fingerprints that comprehensively distinguish and drive the range of NK cell functional abilities. We will discuss future areas of study that are needed to develop and test this paradigm and suggest strategies to efficiently profile NK cells based on metabolism. Given the emerging role of metabolism in driving NK cell fates, profiling and modulating NK cell metabolism holds profound therapeutic potential to tune inflammatory and regulatory NK cell responses to treat disease.

OPEN ACCESS

Edited by:

Marianne Boes,
Utrecht University, Netherlands

Reviewed by:

Stephen Nutt,
Walter and Eliza Hall Institute of
Medical Research, Australia
Francisco Borrego,
BioCruces Health Research
Institute, Spain

*Correspondence:

Ali A. Ashkar
ashkara@mcmaster.ca

Specialty section:

This article was submitted to
NK and Innate Lymphoid Cell Biology,
a section of the journal
Frontiers in Immunology

Received: 15 April 2019

Accepted: 04 June 2019

Published: 19 June 2019

Citation:

Poznanski SM and Ashkar AA (2019)
What Defines NK Cell Functional Fate:
Phenotype or Metabolism?
Front. Immunol. 10:1414.
doi: 10.3389/fimmu.2019.01414

Keywords: NK cell, cell metabolism, phenotype, NK cell subsets, glycolysis, mitochondria, CD56, innate immunity

INTRODUCTION

Natural Killer (NK) immune cells are capable of an array of functions that range widely from their classic innate anti-tumor and anti-viral effector functions, to their regulatory roles in modulating other immune cells and promoting tissue growth (1). These distinct functions play critical yet paradoxical roles in a host of diseases. Cytotoxic NK cells are known to have an imperative role in the clearance of virally-infected and malignant cells (2); however, signals in the tumor environment polarize NK cells to regulatory subsets that support tumor progression and suppress other cytotoxic immune cells (3–5). While pathogenic in the context of cancer, regulatory NK cells have critical homeostatic roles in tissue growth and immune tolerance in contexts such as placental development

and fetal tolerance in pregnancy (6–8), and regulating fibrosis and immune cells in the liver (9–11). Despite the critical importance of mounting the appropriate NK cell response in different disease contexts, the mechanisms that polarize NK cells to these distinct and opposing functional fates are incompletely understood.

To date, NK cell functional subsets have been primarily identified and studied based on phenotypic markers. In their most classic definition, human NK cells are broadly dichotomized into $CD56^{\text{bright}}CD16^-$ regulatory NK cells with greater cytokine-producing capabilities, and $CD56^{\text{dim}}CD16^+$ anti-tumor/anti-viral NK cells with greater cytotoxic functions (12, 13). Additional receptor families function to tune NK cell activation and effector responses; these include activating Natural Cytotoxicity Receptors (NKp30, NKp44, and NKp46), activating and inhibitory CD94/NKG2 receptors that recognize non-classical MHC, and inhibitory KIR receptors that recognize classical MHC. The differential expression of these receptors is used to further specify NK cell developmental stages, effector subsets, and memory populations (14). Although phenotype is an accessible means by which to profile NK cells and provides information on NK cell activation state, reports are increasingly emerging that highlight discrepancies between NK cell phenotypic classification and their effector functions. These discrepancies present the questions: Can phenotype in fact define NK cell functional fate? What factors do define and drive NK cell fate?

A cell's ability to generate energy through metabolism enables its functional capacities. Indeed, there is a growing body of evidence that cell metabolism is integral to NK cell effector functions. It has been established that glucose-driven glycolysis and oxidative metabolism are required for classic NK cell anti-tumor and anti-viral effector functions (15–18). Recent studies have also emerged that point to critical roles of metabolism in NK cell development, education, and memory responses (19–23). In other immune cell subsets including T cells and macrophages, cell metabolism critically determines subset polarization. Up-regulation of glycolytic metabolism drives the polarization of pro-inflammatory T cells and macrophages (24–27). In contrast, a shift to respiration-derived ATP drives the polarization and functions of regulatory macrophages and T cells (24–26, 28). The generation of memory in T cells is marked by an increase in mitochondrial respiratory capacity, which enables a more rapid and robust secondary immune response (29, 30). Even within a terminally polarized subset, the activation of different metabolic pathways leads to distinct functional outcomes (31). While metabolism has been shown to regulate certain NK cell effector functions, the role of metabolism in broadly determining and defining different NK cell functional fates remains to be fully characterized.

Herein, we explore the relationship between NK cell phenotype, metabolism, and functional fate. Drawing on the evidence to date, we investigate the utility and roles of NK cell phenotype and metabolic activity in identifying and determining NK cell effector fate. We propose that differential activity in NK cell metabolic pathways, but not phenotype, produces distinct and subset-defining fingerprints

that comprehensively distinguish and drive the range of possible NK cell functional abilities.

NK CELL FATE BASED ON PHENOTYPE: CAN WE JUDGE A BOOK BY ITS COVER?

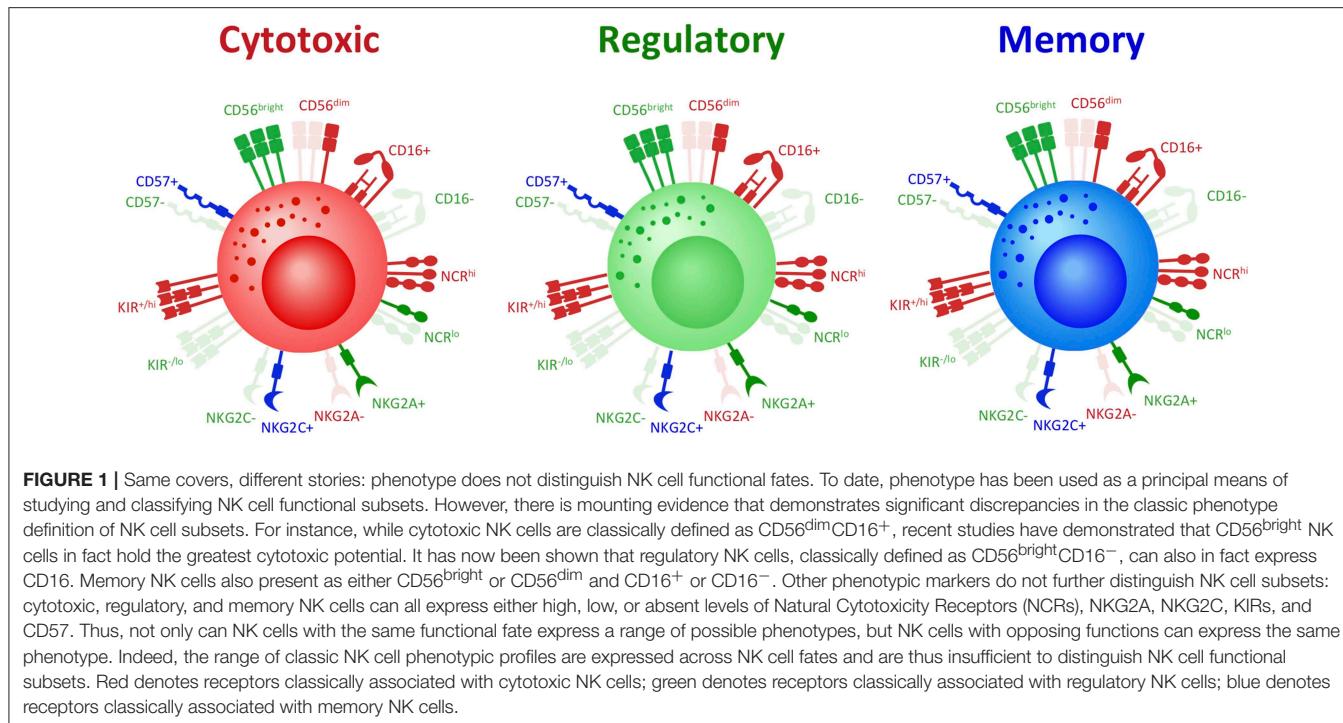
For decades, NK cell phenotype has been integrally conflated with effector function and used as the principle means of classifying NK cells into distinct subsets. For instance, the stages of NK cell maturation are demarcated by the expression of specific phenotypic markers. Less mature human peripheral blood (pb)NK cells are defined as $CD56^{\text{bright}}CD16^-$ and express CD94 and the NKG2A inhibitory receptor (32, 33). As NK cells mature, they down-regulate CD56 expression and up-regulate CD16, becoming $CD56^{\text{dim}}CD16^+$ (34). These lose expression of NKG2A and acquire expression of KIR inhibitory receptors. A final step of NK cell maturation is marked by the acquisition of CD57. $CD56^{\text{dim}}CD57^+$ NK cells are considered to be the most mature and terminally differentiated subset (32).

Contrary to this classic maturation paradigm, it is now understood that $CD56^{\text{dim}}$ NK cells can in fact up-regulate CD56 expression upon cytokine activation and become $CD56^{\text{bright}}$ (35). Thus, high CD56 expression does not necessarily differentiate less mature from mature NK cells, as it can also indicate mature, activated NK cells. Other recent studies provided evidence that $CD57^+$ NK cells are not terminally differentiated. It was found that upon single cell expansion with K562 feeder cells, some clones derived from originally $CD56^{\text{dim}}CD57^+$ NK cells had lost CD57 expression. Moreover, clones from NKG2A $^-$ populations were capable of reacquiring NKG2A expression (36). Following autologous stem cell transplant in patients with lymphoma or myeloma, a unique $CD56^{\text{bright}}$ NK cell population was found to be the predominant NK cell subset following leukocyte regeneration. These young $CD56^{\text{bright}}$ NK cells had high expression of CD57 and KIRs and potent degranulation (37). These studies demonstrate that unless NK cells are capable of regressing through maturation, classic NK cell development markers cannot definitively specify the stage of NK cell maturation.

Recent studies have also introduced discrepancies in the $CD56^{\text{bright}}/CD56^{\text{dim}}$ phenotypic dichotomization of regulatory and cytotoxic NK cells. Wagner et al. demonstrated that following priming with IL-15, $CD56^{\text{bright}}$ pbNK cells not only had greater cytokine production compared to $CD56^{\text{dim}}$ pbNK cells, but also displayed greater degranulation and killing in response to tumor cell targets. Importantly, they negated the possibility that this was due to up-regulation of CD56 on $CD56^{\text{dim}}$ NK cells, as they observed this effect even with pre-sorted $CD56^{\text{bright}}$ NK cells (38). In addition, evidence has emerged to suggest that $CD56^{\text{bright}}$ does not unanimously define NK cells with the strongest cytokine-producing capabilities. The hepatic NK cell population is highly enriched in $CD56^{\text{bright}}$ cells compared to pbNK cells; yet, these have recently been shown to have reduced IFN- γ and TNF α production in response to stimulation compared to pbNK cells, despite the majority of pbNK cells being $CD56^{\text{dim}}$ (39). Building further on this phenomenon, $CD56^{\text{superbright}}$

NK cells are considered highly immunoregulatory. Notably, CD56^{superbright}CD16⁻ uterine NK cells are instrumental in promoting angiogenesis and tissue remodeling required for healthy placental development in pregnancy. These regulatory functions lend themselves as well to enhancing, rather than inhibiting, tumor progression (7). However, in stark contrast to their characteristic regulatory functions, highly cytotoxic CD56^{superbright} NK cells produced following NK cell expansion with K562-based feeder cells were recently described. These CD56^{superbright} expanded NK cells eliminated large ovarian tumors in xenograft models. What's more, within the expanded NK cell population, degranulation, cytotoxicity, and IFN- γ , increased with increasing CD56 brightness (40). Together, these studies indicate that CD56 expression cannot distinguish regulatory from cytotoxic NK cells. Indeed, CD56^{bright} NK cells can be any combination of mature or less mature, and cytotoxic or regulatory.

Since CD56^{bright} NK cells can be either cytotoxic or regulatory, the question that pursuantly arises is whether another phenotypic marker may better define these functional subsets. CD16 expression is classically used in conjunction with CD56, with CD16⁺ NK cells considered cytotoxic and CD16⁻ NK cells categorized as regulatory (13). It has been demonstrated that upon activation, CD56^{dim}CD16⁺ NK cells up-regulate CD56, culminating in a CD56^{bright}CD16⁺ cytotoxic NK cell population (35). Thus, it could be postulated that CD16 expression distinguishes CD56^{bright} cytotoxic and regulatory NK cells. However, highly cytotoxic IL-15-primed CD56^{bright} NK cells remained predominantly CD16⁻ (38). Moreover, Siewiera et al. have demonstrated regulatory capacities in CD16⁺ NK cells. They reported that following culture in TGF- β /IL15/IL18, pbNK cells acquired regulatory functions, as they produced high levels of VEGF and had reduced cytotoxicity and production of IFN- γ and TNF α , but retained high expression of CD16 (41). These studies call into question the relevance of CD16 for determining cytotoxic and regulatory NK cell subsets.


Turning to other NK cell markers does not seem to address the above discrepancies. Both regulatory and cytotoxic NK cells can express high levels of activating receptors including NKG2D, NKp30, NKp44, and NKp46, but stimulation through these receptors instigates distinct functions in regulatory and cytotoxic NK cells (7, 41, 42). While it has been reported that expression of different splice variants in these receptors partly contributes to determining downstream function (41), the fundamental mechanisms that determine the receptor isoform expressed remain unknown. Inhibitory receptor expression is equally uninformative, as both regulatory and cytotoxic NK cells can express high or low levels of NKG2A and/or KIRs (32, 38, 40, 43, 44). In all, a specific combination of NK cell phenotypic markers that consistently distinguishes regulatory from cytotoxic NK cells remains elusive (**Figure 1**).

A similar challenge arises in phenotypically defining memory NK cells. Memory NK cells are generated in response to a number of stimuli, including hapten-induced contact hypersensitivity, infections, cytokine activation, and pregnancy (6, 45–47). Secondary responses of memory NK cells are variegated and depend on the sensitizing stimulus. Some memory NK cells have

adaptive-like antigen-specific secondary responses, while others have an innate-like non-antigen-specific recall response (46, 47). What's more, memory responses have now been identified in both cytotoxic and regulatory NK cells (6, 45). However, what does remain consistent and broadly defines memory subsets is their functional capacity to have a rapid and enhanced response upon re-stimulation.

Studies have largely used phenotypic markers to define memory NK cells. Extensively studied memory NK cells include those generated in response to cytomegalovirus (CMV) infection. In humans, these have been predominantly defined as CD56^{dim}NKG2C⁺ NK cells, which preferentially expand in response to acute infection. These NKG2C⁺ NK cells undergo contraction following acute infection, but persist long-term and specifically increase in response to human CMV (HCMV) re-activation and produce high levels of IFN- γ (48). Certainly, NKG2C plays a direct role in shaping HCMV adaptive NK cell responses. NKG2C on HCMV-adaptive NK cells has been shown to display fine peptide specificity through differential recognition of polymorphic UL40-encoded peptides. These UL40 polymorphisms enabled selective recognition of distinct strains of HCMV and selective activation, proliferation, and differentiation of NKG2C⁺ adaptive NK cells (49). HCMV memory NK cells are considered to have a mature phenotype, as they lack NKG2A, have lower levels of NKp30 and NKp46, and have high KIR and CD57 expression (22, 48, 50). Although NKG2C is principally used to identify HCMV-memory NK cells, recent studies have challenged the requirement for NKG2C in generating HCMV-memory NK cells. Memory NK cell responses to HCMV have been reported in NKG2C-deficient humans and upon HCMV re-activation in patients transplanted with NKG2C-deficient cord blood (51, 52). Therefore, expression of NKG2C is not necessary to define HCMV-memory NK cells.

In addition, memory NK cells do not unanimously express a classically mature phenotype. Cytokine-induced memory-like (CIML) NK cells generated by IL-12/IL-15/IL-18 pre-activation are primarily CD56^{dim}, but express CD25, NKG2A, CD94, and CD69, and lack expression of KIRs and CD57 (53, 54). Memory NK cells are also not limited to the CD56^{dim} compartment. Frequencies of long-lived BCG-reactive CD56^{bright} and CD56^{dim} NK cells were shown to be elevated for up to 1 year after BCG re-vaccination in adults and were predominantly KIR2DL2/DL3⁻ and CD57⁻. BCG re-vaccination induced greater IFN- γ expression in both CD56^{bright} and CD56^{dim} NK cells for up to 1 year compared to NK cells prior to BCG re-vaccination. Furthermore, perforin expression was also enhanced upon BCG stimulation in CD56^{bright} NK cells 1 year following BCG-revaccination, compared to CD56^{bright} NK cells pre-BCG-revaccination (55). Recently, memory NK cells have been described in the context of pregnancy. Pregnancy-trained memory uterine NK cells (PTuNKs) were reported in the deciduae of multigravid women. PTuNK cells have enhanced regulatory function including VEGF production, relative to uNK cells from primigravid deciduae, which supported enhanced vascularization and tissue growth. Given their tissue-residency, it is perhaps not surprising that PTuNK cells have a unique phenotype relative to other memory subsets, as they

were predominantly CD56^{bright}CD16⁻, expressed high levels of NKG2C, but unchanged levels of NKp30 and NKp46 (6). It is possible that certain phenotypic traits may distinguish antigen-specific from non-specific memory NK cells. Nevertheless, there remains no unifying phenotype to identify NK cells with memory capacity (Figure 1). Furthermore, the mechanisms within NK cells that ultimately drive and identify the capacity for an enhanced secondary response are not fully elucidated.

If phenotype is unable to consistently identify NK cell subsets and functional fate (Figures 1, 2A), what other factors might achievably distinguish NK cell fate? Such identifying features likely lie at the heart of mechanisms that drive NK cell function.

IF AN NK CELL CANNOT BE DEFINED BY HOW IT LOOKS, COULD IT BE DEFINED BY HOW IT IS FUELED?

As highly plastic innate responders, NK cell effector fate is molded by its environment. NK cells integrate a number of environmental cues which determine downstream function. In the absence of activating signals, naïve NK cells remain in a resting quiescent state. In response to inflammatory signals, cytotoxic effector NK cell responses are marked by robust proliferation and synthesis of proinflammatory cytokines and cytotoxic machinery. Upon resolution of inflammation, NK cells curb their response, returning to a quiescent state. It is noteworthy that this shifting functional profile represents a profound shift in energy dynamics from a low-energy quiescent state to one with substantial energetic and biosynthetic requirements. Further, NK cells exert distinct functions across

different tissue sites that vary greatly in nutrient types and availability. From these factors arises a parallel between NK cell energetics and functional fates.

Indeed, the capacity of a cell to generate energy through metabolism has emerged as an important factor in enabling immune cell effector functions. The burgeoning field of NK cell metabolism has uncovered the involvement of cell metabolism throughout different steps of NK cell fate determination, including development, cytotoxic effector responses, and generation of long-lived memory populations. Thus, could distinct metabolic profiles comprehensively identify and drive NK cell functional fates?

At Their Inception, NK Cell Development Is Enabled by Metabolic Signals

NK cell development is an energy-intensive process as it requires high levels of proliferation of NK cells in the bone marrow. As NK cells progress through development, their proliferation slows and they progress to state of quiescence in the periphery (56, 57). In line with this, gene expression analysis has demonstrated that metabolic pathways associated with cell growth are up-regulated in developing NK cells whereas gene signatures associated with metabolic quiescence, such as fatty acid catabolism and aerobic metabolism, are predominant in resting NK cells in the periphery (56). While studies have yet to comprehensively measure the metabolic activity of NK cells at different stages of development, key metabolic regulators have emerged as pivotal drivers of NK cell maturation.

The mechanistic target of rapamycin (mTOR) is a major energy sensor in the cell that integrates signals for nutrient availability, growth, and activation. In response to such signals,

mTOR up-regulates glycolytic metabolism and biosynthetic processes (58). A seminal study by Marçais et al. revealed the critical role for mTOR in murine NK cell development. They found that mice with an NK cell-specific deletion of mTOR had normal levels of developing NK cells in the bone marrow, but only trace levels of NK cells in the periphery (56). Other studies have further demonstrated that mTOR signaling is required for the early stages of NK cell development (19, 20). The protein E4BP4 plays an indispensable role in the commitment to the NK cell lineage by promoting the transcription of Eomes (59). Downstream of IL-15 signaling, mTOR activation by the kinase PDK1 was found to be required for E4BP4 expression in bone marrow NK cells. Indeed, knock-out of PDK1 in NK cells arrested NK cell development in early stages by inhibiting mTOR activation and reducing expression of the transferrin receptor CD71 and the amino acid transporter CD98 (20). Tight regulation of mTOR activity is critical for NK cell development, as the expression of *Tsc1*, a repressor of mTOR, is required to prevent deregulated proliferation and resulting exhaustion in response to IL-15 in developing NK cells (19). Together, these studies present mTOR-mediated metabolic signaling as a central node in NK cell development.

The evidence to date has demonstrated the requirement for metabolic regulators in NK cell development and that a shifting metabolic expression profile parallels development. These studies portray a baseline energy-intensive, biosynthetic metabolic fingerprint for developing NK cells in the bone marrow, which shifts to a more energy-conservative fingerprint as NK cells progress to the periphery. Further developing and characterizing the metabolic fingerprints of NK cells throughout development may more broadly define the maturation stages of NK cells, particularly for later stages in which phenotype fails to do so and for NK cells at different tissue sites. Assessing the baseline metabolic fingerprint in such instances holds potential to more comprehensively define the degree of NK cell maturity.

Greater Glucose-Driven Metabolic Fitness Identifies NK Cells With the Greatest Cytotoxic Capacity

Although metabolically quiescent at baseline, mature cytotoxic NK cells up-regulate the rate of glucose-driven glycolysis and oxidative phosphorylation (OxPhos) upon stimulation (15–17, 60, 61). Increases in these metabolic pathways are accompanied by increased expression of the nutrient receptors Glut1, CD71, and CD98 (16, 56, 60). Activated cytotoxic NK cells primarily rely on glucose to fuel mitochondrial ATP production, as inhibition of glycolysis via the competitive inhibitor 2-deoxyglucose (2DG) impaired ATP production comparably to direct inhibition of OxPhos by the ATP synthase inhibitor oligomycin (61). The activation-induced increase in NK cell glucose metabolism has been shown to be regulated by mTOR, glutamine, and transcription factors cMyc and Srebp. mTOR activity is highly up-regulated in NK cells in response to stimulation (16, 56, 60, 62). In murine NK cells, knock-out or inhibition of mTOR has been shown to prevent the increases in glycolysis, glycolytic enzymes, and nutrient receptor expression upon activation (16,

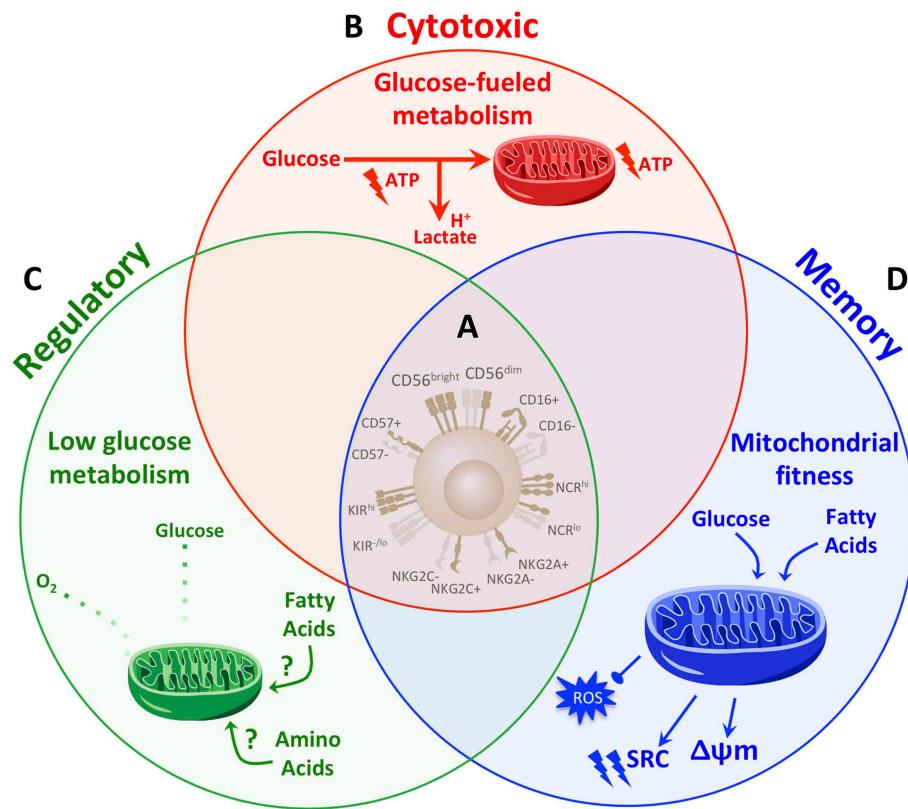
56, 63). Similarly in human NK cells, the up-regulation of glycolysis in response to IL-15 and IL-2 is dependent upon mTOR, although independent from mTOR in response to IL-15/IL-12 stimulation (60). cMyc is another key driver of glucose metabolism in immune cells (64). In response to IL-2/IL-12 stimulation, glutamine uptake by NK cells was found to drive the expression of cMyc which in turn was required for the activation-induced increase in glycolysis and OxPhos by up-regulating glycolytic machinery and mitochondrial biogenesis (17). Srebp transcription factors promote the catabolism of glucose to cytosolic citrate in NK cells by supporting the activity of the citrate-malate shuttle which shuttles glucose-derived citrate from the mitochondria to the cytosol. Activity of the shuttle in turn produces mitochondrial NADH which fuels elevated OxPhos in NK cells (15).

This up-regulation in glucose-driven glycolysis and OxPhos is critical for NK cell cytotoxicity and IFN- γ production. Direct inhibition of glycolysis in murine NK cells, by 2DG or by substituting glucose with galactose in culture, inhibited IFN- γ and granzyme B expression in response to various modes of stimulation including TLR-, cytokine-, or activation receptor-mediated stimulation (16, 61). In line with the evidence that glucose is the primary fuel driving OxPhos in cytotoxic NK cells, inhibition of OxPhos by glucose-depleted media or the ATP synthase inhibitor oligomycin also potently inhibited receptor-mediated IFN- γ production (61). Mah et al. demonstrated the pivotal role for NK cell glucose metabolism in the defense against infection: inhibition of glycolysis with 2DG impaired NK cell clearance of MCMV-infected cells in mice and compromised control of viremia and resulting survival of the mice (18). Arrest of NK cell glucose metabolism has also been shown to play a critical role in obesity-induced NK cell dysfunction. The increased presence of fatty acids in obesity led to lipid accumulation in NK cells, resulting in a PPAR-mediated increase in NK cell lipid metabolism and abrogation of glycolysis and OxPhos. These metabolic changes impaired polarization of cytotoxic machinery and resulting anti-tumor NK cell functions (65). Consistent with its effects on glucose metabolism, mTOR inhibition broadly impaired cytotoxic NK cell functions, including IFN- γ , perforin, and granzyme B expression and degranulation and cytotoxicity in response to tumor cell targets (56, 63). Moreover, inhibition of either cMyc expression, Srebp activity, or the citrate-malate shuttle all critically impaired NK cell IFN- γ production and cytotoxicity (15, 17). In human NK cells, elevated OxPhos is essential for NK cell cytotoxicity and IFN- γ production in response to IL-2 and IL-15/IL-12 stimulation. Heightened glycolysis was also shown to be required for NK cell cytotoxicity following 24 h IL-15 stimulation and for a robust IFN- γ response to IL-15/IL-12, particularly in CD56^{bright} NK cells (18, 60). Keating et al. demonstrated metabolic differences between CD56^{bright} and CD56^{dim} human pbNK cells (60). In line with their greater cytotoxic functions following cytokine priming, CD56^{bright} pbNK cells had enhanced mTOR-mediated expression of nutrient receptors and glucose uptake in response to cytokine stimulation as compared to CD56^{dim} pbNK cells. Thus, up-regulation of glucose-driven glycolysis and OxPhos

characterizes and enables the activation of cytotoxic NK cell functions.

Accumulating evidence is demonstrating that the most highly cytotoxic NK cells are endowed with greater glucose-driven metabolic fitness. Extended pre-activation of NK cells for 3–5 days with IL-15 induces greater IFN- γ production in response to receptor-mediated activation as compared to short-term (4–24 h) IL-15 pre-activation (56, 61). During extended IL-15 stimulation, NK cells undergo profound metabolic reprogramming as compared to short-term stimulation, as they greatly increase both their rate and overall capacity for glycolysis and OxPhos (56, 61). Following such metabolic reprogramming, NK cell IFN- γ production was no longer susceptible to the inhibition of OxPhos alone; rather, aggressive inhibition of both glycolysis and OxPhos by treating NK cells with oligomycin in glucose-free media was required to suppress IFN- γ (61). Such metabolic reprogramming has demonstrated improved outcomes in the context of infection. Pre-treatment of mice with the IL-15 super-agonist complex ALT-803 for 3 days prior to MCMV infection increased basal and maximal glycolytic and oxidative metabolism and rescued impaired viral clearance in response to 2-DG treatment (18). Similar metabolic reprogramming also underpins the enhanced cytotoxic functions of licensed NK cells. The process of licensing during NK cell development requires that inhibitory KIRs expressed by the NK cell recognize self-MHC, the result of which lowers the threshold required for activation and enables greater effector potential in licensed NK cells compared to their unlicensed counterparts (66). Schafer et al. demonstrated that glycolytic metabolism is a critical regulator of NK cell licensing (21). In NK cells expanded with IL-21-expressing K562 feeder cells, highly functional licensed NK cells had greater glycolysis and glycolytic reserve compared to less functional unlicensed NK cells. Despite this increased conversion of glucose to lactate, expanded licensed NK cells sustained comparable levels of mitochondrial respiration as unlicensed NK cells, indicating a greater net level of glucose-derived energy production. While unlicensed NK cell cytotoxicity was highly sensitive to inhibition of OxPhos with oligomycin, the cytotoxicity of licensed NK cells was more resistant to metabolic inhibition. Similar to following extended IL-15 stimulation, the cytotoxicity of licensed NK cells was only inhibited upon aggressive abrogation of glucose metabolism by overnight incubation in glucose-free media, 2DG and oligomycin (21). Together, these findings demonstrate that a greater capacity for glucose-fueled energy production identifies NK cells with enhanced cytotoxic functions (**Figure 2B**). Moreover, greater metabolic fitness in these highly functional NK cells imparts greater flexibility in using either glycolysis or OxPhos to fuel their cytotoxic functions, rendering them more resistant to metabolic stressors.

A parallel emerges when considering the phenotype and metabolism of highly cytotoxic NK cells. It is known that upon extended cytokine stimulation including IL-15, in addition to increasing their capacity for glucose metabolism, NK cells also up-regulate CD56 expression and become predominantly CD56^{bright} (35). Indeed, evidence has separately demonstrated that 1) CD56^{bright} pbNK cells have a greater propensity for glucose metabolism compared to CD56^{dim} NK cells (67),


and 2) CD56^{bright} pbNK cells have superior cytotoxicity and IFN- γ production compared to CD56^{dim} NK cells following priming with IL-15 (38). Moreover, a recent report suggests that highly functional licensed expanded NK cells have greater CD56 expression than their less functional unlicensed counterparts. Following the same feeder cell expansion with IL-21-expressing K562 cells, expanded NK cell degranulation and IFN- γ production increased with CD56 expression: the most cytotoxic and thus licensed NK cells were CD56^{superbright} whereas the least cytotoxic were CD56^{dim} (40). Together these studies expose an inextricable tie between heightened cytotoxic potential, capacity for glucose metabolism, and degree of CD56 expression. Thus, in the context of cytotoxic NK cells, both CD56 expression and heightened glucose metabolism are indicative of subsets with the greatest functional capacity. However, highly functional regulatory NK cells are also CD56^{bright}, which raises the question: can distinct metabolic programs differentiate highly cytotoxic CD56^{bright} NK cells from highly regulatory CD56^{bright} NK cells?

Glucose Metabolism—The Weight That Tips the Balance Between Cytotoxic and Regulatory NK Cells?

Research on NK cell metabolism has largely focused on the metabolic pathways that generate anti-viral and anti-tumor effector NK cells and it is clear that enhanced glucose metabolism is critical for such functions. On the other hand, while regulatory NK cells have critical homeostatic anti-inflammatory roles in the body, there is a dearth of knowledge about the role of metabolism in driving regulatory NK cell polarization and functions. In order to more fully understand the role of metabolism in the polarization of NK cell functions, it will be critical for future studies to investigate the metabolic profile of regulatory NK cells. For instance, is the metabolism of highly functional NK cells similar irrespective of whether the downstream functions are cytotoxic or regulatory? Or do regulatory NK cells predominantly utilize distinct, non-glucose-driven metabolic pathways which determine their regulatory functional fate?

The metabolism of a cell is largely dictated by its microenvironment, including factors such as nutrient and oxygen availability. Thus, in considering the above questions, it is worthwhile to examine microenvironments that favor regulatory NK cell polarization, such as the uterus, tumors, and the liver, and the metabolic profile these may shape:

Following implantation in the uterine endometrium, the early growth of the embryo occurs in hypoxic conditions in the uterus (68). Hypoxia in turn stimulates the secretion of VEGF and other angiogenic factors from uNK cells to support the demands for increased vascularization (69, 70). In addition, TGF β plays an important role in inducing regulatory uNK cell functions (41, 69–71). Many parallels are evident between regulatory uNK cells and tumor-associated (TA-)NK cells. As a result of rapid tumor cell proliferation, tumors have aberrant vascularization resulting in large pockets of hypoxia (72, 73). In addition, high levels of anti-inflammatory cytokines such as TGF β are produced by other tumor-associated immune cells and are known to impair

FIGURE 2 | Distinct metabolic fingerprints, but not phenotype, underpin NK cell functional fates. **(A)** Though widely used to define NK cell subsets, classic NK cell phenotypic markers are proving insufficient to comprehensively identify NK cell fates. The range of archetypal NK cell phenotypes are in fact expressed across NK cells with different functional fates. In the absence of distinguishable phenotypes to reliably determine NK cell fate and functional potential, determining what drives and identifies NK cell fate will be instrumental. **(B–D)** Studies so far have demonstrated that distinct metabolic profiles drive NK cell functions. **(B)** Cytotoxic NK cells are fueled primarily by glucose. Upon activation, cytotoxic NK cells increase rates of glucose-driven glycolysis and OxPhos which in turn drive cytotoxic functions. A greater capacity for glucose metabolism through glycolysis and OxPhos identifies NK cells with the greatest cytotoxic abilities. **(C)** NK cells are polarized to a regulatory fate under hypoxic and glycolysis-limiting conditions. Thus, regulatory functions are promoted under low levels of glycolysis and OxPhos and may rely on fuels other than glucose, such as fatty acids or amino acids. **(D)** Memory NK cells exhibit enhanced mitochondrial fitness. During the contraction phase of an immune response, NK cells undergo autophagy to clear dysfunctional mitochondria, which is required for the generation of a memory NK cell pool. Memory NK cells exhibit an increased spare respiratory capacity (SRC) and membrane potential ($\Delta\psi_m$) and reduced levels of reactive oxygen species (ROS). While memory NK cells maintain an enhanced capacity for glucose metabolism, they also up-regulate genes involved in lipid metabolism. Such a diversification in fuels in memory NK cells may provide metabolic adaptability to support longevity and the greater energy demands for enhanced function upon re-activation. Taken together, a paradigm in which distinct metabolic fingerprints comprehensively distinguish and drive the range of NK cell functional fates warrants further exploration.

NK cell anti-tumor functions (67). Similar to uterine NK cells, TA-NK cells in a number of cancers have been shown to have poor cytotoxicity, but secrete the angiogenic factors VEGF and PIGF and, through a mechanism involving TGF β , acquire a uNK-like CD56^{bright}CD16[−] phenotype (4, 5, 74). The liver is another site enriched in regulatory NK cells and anti-inflammatory cytokines including TGF β and IL-10 (75, 76). Liver-resident NK cells have been shown to suppress the proliferation of T cells and B cells through their secretion of IL-10, and to inhibit the anti-viral activity of T cells through PD1/PDL1 engagement (77, 78). Moreover, the liver is predominantly hypoxic, with oxygen levels dipping as low as 1.3% in the healthy liver, which can be further exacerbated by infection and fibrosis (79–82). Hypoxia has been shown to be an important factor in limiting the anti-viral activity of NK cells in HCV+

patients, but does not affect their regulatory activity against liver fibrosis (82).

Hypoxia and anti-inflammatory cytokines stand out as hallmarks across environments that foster regulatory NK cell functions. The critical role of hypoxia and TGF β in directly polarizing NK cells to a regulatory state was highlighted by a study that demonstrated that *in vitro* culture of cytotoxic pbNK cells in TGF β +IL-15 under hypoxic conditions was sufficient to convert pbNK cells to regulatory NK cells that secreted high levels of VEGF and had poor cytotoxicity (69). The induction of regulatory NK cells by hypoxia and TGF β suggests that there are vastly different metabolic requirements for regulatory NK cell functions compared to the glucose-driven glycolytic and respiratory requirements for cytotoxic functions. In contrast to the ability of regulatory NK cells to thrive in hypoxic

conditions and in line with the reliance of cytotoxic NK cells on glucose-driven OxPhos, hypoxia suppresses NK cell anti-tumor and anti-viral effector functions (82, 83). Studies have also demonstrated that TGF β inhibits NK cell cytotoxic functions by suppressing glucose-driven glycolysis and OxPhos (63, 84). It follows then, that regulatory NK cell functions induced by TGF β are not reliant on, and perhaps even inhibited by, elevated glucose metabolism. Further supporting this notion is a recent study which demonstrated that the tumor environment directly limits glycolysis in NK cells. The lung tumor microenvironment increased NK cell expression of fructose-1,6-bisphosphatase (FBP1), a rate-limiting enzyme in gluconeogenesis, which reduced glucose flux through glycolysis (85); thus, regulatory functions such as VEGF and PIGF production by TA-NK cells are unlikely to rely on elevated glucose metabolism. Another recent study demonstrated that in response to cytokine stimulation, regulatory liver-resident CD56^{bright} NK cells had lower expression of the glucose transporter Glut1, but higher expression of the amino acid transporter CD98 and the CD71 transferrin receptor compared to pbNK cells (86). These findings support a model in which regulatory NK cells are less reliant on glucose metabolism compared to cytotoxic NK cells, and may utilize other fuels, such as amino acids and/or fatty acids, to support their functions (Figure 2C).

Indeed, the evidence to date indicates that dependence on glucose-driven glycolysis and OxPhos may be a central node in tipping the balance between cytotoxic and regulatory NK cell fate. If this proves true, these distinct metabolic fingerprints would consistently distinguish cytotoxic from regulatory NK cells, addressing the drawbacks encountered in phenotypically defining these subsets. Future studies investigating the metabolic parameters that govern regulatory NK cell functions will be imperative to establishing this paradigm.

Deep Breaths Bring Longevity—Mitochondrial Respiration at the Core of NK Cell Memory

The generation of memory NK cells requires a shift from the energy-intensive effector phase of the immune response to a contraction phase, characterized by a curtailment in proliferation and effector functions, resulting in the generation of resting long-lived memory NK cells. The ability of memory NK cells to mount a more robust and rapid effector response upon re-stimulation compared to naïve activated NK cells suggests an enhanced ability to draw upon energy reserves upon re-activation. Given the fundamental shifts between energy expenditure and quiescence between effector, contraction, and recall phases of an immune response, it is perhaps not surprising that metabolic changes have been found to be both necessary and sufficient to drive the formation and enhanced recall responses of other memory immune cells (29, 30, 87, 88).

In NK cells, restoring mitochondrial function following an effector response has been shown to be critical in the generation of memory NK cells during murine CMV infection. O'Sullivan et al. demonstrated that during the peak of the effector phase in response to MCMV, virus-specific NK cells

developed reduced mitochondrial fitness, marked by a decrease in mitochondrial membrane potential and increase in ROS production. In contrast, the contraction phase was marked by the clearance of dysfunctional mitochondria in NK cells through autophagy, resulting in the restoration of mitochondrial membrane potential and reduced ROS. The clearance of dysfunctional mitochondria through autophagy was required for the generation and survival of MCMV-memory NK cells, as the inhibition of autophagy impaired the formation of the memory NK cell pool, while treatment with an ROS scavenger restored memory formation. Further, enhancement of autophagic activity through the inhibition of mTOR or activation of the metabolic regulator AMPK enriched the memory-NK cell population (23).

Enhanced mitochondrial fitness has emerged as a defining characteristic of HCMV-adaptive NK cells in humans (Figure 2D). NK cells from HCMV-seropositive donors had greater levels of maximal respiration, but not glycolysis, compared to NK cells from seronegative donors. Further, sorted CD56^{dim}NKG2C⁺ HCMV-adaptive NK cells had comparable basal levels of glycolysis and OxPhos, but an increased capacity for these pathways, compared to donor-matched CD56^{dim}NKG2C⁻ canonical NK cells. These findings indicate that adaptive NK cells have a greater ability to up-regulate glycolysis and OxPhos upon activation. The enhanced respiratory capacity of adaptive compared to canonical NK cells was supported by greater mitochondrial membrane potential and expression of genes involved in the electron-transport chain. The increased mitochondrial fitness of adaptive NK cells was found to be regulated by the chromatin-modifying protein ARID5B, and necessary for enhanced NK cell survival and effector function (22).

A question that remains to be addressed is which metabolic fuel(s) is/are primarily used by adaptive NK cells. The greater glycolytic capacity in HCMV-adaptive NK cells points to greater glucose metabolism. However, gene expression analysis of HCMV-adaptive NK cells also revealed an increase in genes involved in lipid catabolism (22). Interestingly, autophagy is a key regulator of lipid catabolism (89); thus, it is plausible that a diversification and flexibility in fuel sources contributes to the resilient longevity and recall effector response in HCMV-adaptive NK cells (Figure 2D).

Although the above studies have demonstrated a metabolic basis for the generation and function of memory NK cells, these have been limited to assessing adaptive NK cells in the context of CMV infection. While phenotypic variations span different memory NK cell subsets, the memory-trait of extended survival and enhanced recall effector responses, for which the metabolic adaptations are necessary in the context of CMV, are traits that remain consistent across memory NK cells. Thus it is likely that across memory NK cell subsets, increased mitochondrial fitness and fuel flexibility are broadly required to support longevity and that an enhanced respiratory capacity is necessary to derive the energy required for enhanced function upon re-activation. An important area of future study will be to verify that similar metabolic reprogramming

broadly drives the formation and function of other memory-NK cell subsets, including cytokine-induced memory-like NK cells, BCG-memory NK cells, and pregnancy-trained uterine NK cells.

CONCLUDING REMARKS

Research on NK cell biology is continuing to evolve and uncover a wider scope of NK cell functional fates. However, as knowledge on the complexity and plasticity of NK cells has grown, so too have incongruities in the classic phenotypic definitions of NK cell subsets. Classic NK cell phenotypes have undoubtedly served as an accessible measure for profiling NK cells and provide indications on NK cell activation state. Nevertheless, in many instances phenotype in fact confounds functional fates, as NK cells that express the same phenotype can have divergent functions, and NK cells with similar functional potential can express a range of phenotypic possibilities. Indeed, identifiable phenotypes that are sufficient to profile NK cell functional fates are lacking (Figure 2A). The shortcomings of phenotype in informing function expose a need to further search for what identifies NK cell fate and develop strategies to efficiently profile NK cells by these factors. Turning to a central hub that governs NK cell fate holds promise to address these drawbacks.

Metabolism has emerged as an intriguing factor to distinguish NK cell functional fates. The field of NK cell metabolism is still in early stages, but studies so far point to distinct metabolic profiles as drivers of NK cell functional potential which may thus serve as reliable fingerprints to identify functional fates (Figures 2B–D). A heightened capacity for glucose metabolism through glycolysis and OxPhos identifies NK cells with the greatest cytotoxic capacity. In contrast, regulatory NK cells thrive in hypoxic and glycolysis-limiting conditions, suggesting that regulatory functions can be effected with minimal levels of OxPhos and glycolysis. Longevity in its essence requires adaptability and endurance—memory NK cells are marked by enhanced mitochondrial fitness, achieved by the clearance of dysfunctional mitochondria, increased mitochondrial respiratory capacity and membrane potential, and reduced levels of damaging reactive oxygen species. Collectively, the evidence to date suggests a paradigm in which distinct metabolic fingerprints, but not phenotype, comprehensively distinguish and drive the range of NK cell functional fates (Figure 2).

Certainly, significant questions remain to fully delineate and validate this paradigm. For instance, what metabolic fuels and pathways are principally used by regulatory NK cells? Are low levels of glucose metabolism sufficient to support regulatory functions or do regulatory NK cells use an alternate fuel, such as fatty acids, as a more efficient means of energy generation in low oxygen conditions? Does enhanced mitochondrial fitness span all memory NK cell types? Are there metabolic pathways that further distinguish memory cytotoxic from memory regulatory NK cells?

Are other factors, such as transcription markers and epigenetic modifications, required in conjunction with metabolism to determine NK cell fate? Such questions present exciting avenues for future research and will provide a more comprehensive understanding of the mechanisms and role of metabolism in tuning the spectrum of NK cell functions.

While metabolism is a promising means by which to identify NK cell fates, another critical question is whether it is achievable to efficiently profile NK cells based on metabolism. In this regard, similar to assessing classic phenotypic markers, a number of metabolic measures are frequently assessed via cytometry or microscopy, allowing for multiplex analyses that comprehensively measure a number of metabolic features. These include functional mitochondrial measures, such as mitochondrial mass, structure, membrane potential, ROS production, and oxidative stress (22, 29). Further, the relative activity of major metabolic regulators such as mTOR and AMPK are routinely measured by the phosphorylation status of these and their downstream targets (16, 56, 60, 90). Although not a direct measure of metabolic activity, the expression of cell surface nutrient receptors such as Glut1, CD71, and CD98 have been shown to reflect certain metabolic states in NK cells (16, 60). Finally, measuring the activities of key metabolic enzymes through cytometry has shown to be a valid and reliable means of assessing the metabolic configurations of immune cells and can additionally be accomplished *in situ* (91). With these applicable and efficient methods at hand, it will be imperative that future work characterize and validate combinations of metabolic measures that comprehensively indicate and discern the metabolic fingerprints of NK cell fates.

Given the critical and distinct roles that NK cells play in a host of diseases, therapeutically modulating NK cell function is garnering increasing attention. With distinct metabolic fingerprints at the heart of NK cell functional fates, profiling and modulating metabolism hold promise as powerful therapeutic strategies to predict and control NK cell fate.

AUTHOR CONTRIBUTIONS

SP designed and wrote the manuscript. AA designed and edited the manuscript.

FUNDING

This review was supported by grants awarded to AA from the Canadian Institutes of Health Research (CIHR) and the Juravinski Hospital and Cancer Center Foundation. AA holds a Tier 1 Canada Research Chair. SP is a recipient of a CIHR Vanier Scholarship, an Ontario Women's Health Scholars Award funded by the Ontario Ministry of Health and Long-Term Care and an Ontario Graduate Scholarship funded by the government of Ontario.

REFERENCES

1. Vivier E, Tomasello E, Baratin T, Walzer T, Ugolini S. Functions of natural killer cells. *Nat Immunol.* (2008) 9:503–10. doi: 10.1038/ni1582
2. Bodduluru LN, Kasala ER, Madhana RM, Sriram CS. Natural killer cells: The journey from puzzles in biology to treatment of cancer. *Cancer Lett.* (2015) 357:454–67. doi: 10.1016/j.canlet.2014.12.020
3. Crome SQ, Nguyen LT, Lopez-Verges S, Yang SY, Martin B, Yam JY, et al. A distinct innate lymphoid cell population regulates tumor-associated T cells. *Nat Med.* (2017) 23:368–75. doi: 10.1038/nm.4278
4. Bruno A, Focaccetti C, Pagani A, Imperatori AS, Spagnoletti M, Rotolo N, et al. The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. *Neoplasia.* (2013) 15:133–42. doi: 10.1593/neo.121758
5. Levi I, Amsalem H, Nissan A, Darash-Yahana M, Peretz T, Mandelboim O, et al. Characterization of tumor infiltrating natural killer cell subset. *Oncotarget.* (2015) 6:13835–43. doi: 10.18632/oncotarget.3453
6. Gamliel M, Goldman-Wohl D, Isaacson B, Gur C, Stein N, Yamin R, et al. Trained memory of human uterine NK cells enhances their function in subsequent pregnancies. *Immunity.* (2018) 48:951–62.e5. doi: 10.1016/j.immuni.2018.03.030
7. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. *Nat Med.* (2006) 12:1065–74. doi: 10.1038/nm1452
8. Ashkar AA, Di Santo JP, Croy BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. *J Exp Med.* (2000) 192:259–70. doi: 10.1084/jem.192.2.259
9. Gur C, Doron S, Kfir-Erenfeld S, Horwitz E, Abu-Tair L, Safadi R, et al. NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. *Gut.* (2012) 61:885–93. doi: 10.1136/gutjnl-2011-301400
10. Jinushi M, Takehara T, Tatsumi T, Kanto T, Miyagi T, Suzuki T, et al. Negative regulation of NK cell activities by inhibitory receptor CD94/NKG2A leads to altered NK cell-induced modulation of dendritic cell functions in chronic hepatitis C virus infection. *J Immunol.* (2004) 173:6072–81. doi: 10.4049/jimmunol.173.10.6072
11. Jinushi M, Takehara T, Tatsumi T, Yamaguchi S, Sakamori R, Hiramatsu N, et al. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4 CD25 T cells with PD-1-dependent regulatory activities. *Immunology.* (2007) 120:73–82. doi: 10.1111/j.1365-2567.2006.02479.x
12. Fehniger TA, Shah MH, Turner MJ, VanDeusen JB, Whitman SP, Cooper MA, et al. Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. *J Immunol.* (1999) 162:4511–20.
13. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. *Trends Immunol.* (2001) 22:633–40. doi: 10.1016/S1471-4906(01)02060-9
14. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. *Immunity.* (2017) 47:820–33. doi: 10.1016/j.immuni.2017.10.008
15. Assmann N, O'Brien KL, Donnelly RP, Dyck L, Zaitatz-Bittencourt V, Loftus RM, et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. *Nat Immunol.* (2017) 18:1197–206. doi: 10.1038/ni.3838
16. Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM, et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. *J Immunol.* (2014) 193:4477–84. doi: 10.4049/jimmunol.1401558
17. Loftus RM, Assmann N, Kedia-Mehta N, O'Brien KL, Garcia A, Gillespie C, et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. *Nat Commun.* (2018) 9:2341. doi: 10.1038/s41467-018-04719-2
18. Mah AY, Rashidi A, Keppel MP, Saucier N, Moore EK, Alinger JB, et al. Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control. *JCI Insight.* (2017) 2:95128. doi: 10.1172/jci.insight.95128
19. Yang M, Chen S, Du J, He J, Wang Y, Li Z, et al. NK cell development requires Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation. *Nat Commun.* (2016) 7:12730. doi: 10.1038/ncomms12730
20. Yang M, Li D, Chang Z, Yang Z, Tian Z, Dong Z. PDK1 orchestrates early NK cell development through induction of E4BP4 expression and maintenance of IL-15 responsiveness. *J Exp Med.* (2015) 212:253–65. doi: 10.1084/jem.20141703
21. Schafer JR, Salzillo TC, Chakravarti N, Kararoudi MN, Trikha P, Foltz JA, et al. Education-dependent activation of glycolysis promotes the cytolytic potency of licensed human natural killer cells. *J Allergy Clin Immunol.* (2019) 143:346–58.e6. doi: 10.1016/j.jaci.2018.06.047
22. Cichocki F, Wu C-Y, Zhang B, Felices M, Tesi B, Tuininga K, et al. ARID5B regulates metabolic programming in human adaptive NK cells. *J Exp Med.* (2018) 215:2379–95. doi: 10.1084/jem.20172168
23. O'Sullivan TE, Johnson LR, Kang HH, Sun JC, BNIP3- and BNIP1-mediated mitophagy promotes the generation of natural killer cell memory. *Immunity.* (2015) 43:331–42. doi: 10.1016/j.immuni.2015.07.012
24. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, NJ, M, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. *J Immunol.* (2011) 186:3299–303. doi: 10.4049/jimmunol.1003613
25. Jha Abhishek K, Huang Stanley C-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. *Immunity.* (2015) 42:419–30. doi: 10.1016/j.immuni.2015.02.005
26. Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. *J Immunol.* (2010) 185:605–14. doi: 10.4049/jimmunol.0901698
27. Chang CH, Curtis JD, Maggi LB, Faubert B, Villarino AV, O'Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. *Cell.* (2013) 153:1239–51. doi: 10.1016/j.cell.2013.05.016
28. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. *Cell Metab.* (2006) 4:13–24. doi: 10.1016/j.cmet.2006.05.011
29. Buck MD, O'Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. *Cell.* (2016) 166:63–76. doi: 10.1016/j.cell.2016.05.035
30. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. *Immunity.* (2012) 31:68–78. doi: 10.1016/j.immuni.2011.12.007
31. Gerriets VA, Kishton RJ, Johnson MO, Cohen S, Siska PJ, Nichols AG, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. *Nat Immunol.* (2016) 17:1459–66. doi: 10.1038/ni.3577
32. Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. *Blood.* (2010) 116:3853–64. doi: 10.1182/blood-2010-04-281675
33. Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK, et al. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. *Blood.* (2010) 115:274–81. doi: 10.1182/blood-2009-04-215491
34. Bézat V, Duffy D, Quoc SN, Le Garff-Tavernier M, Decocq J, Combadière B, et al. CD56brightCD16+ NK cells: a functional intermediate stage of NK cell differentiation. *J Immunol.* (2011) 186:6753–61. doi: 10.4049/jimmunol.1100330
35. Takahashi E, Kuranaga N, Satoh K, Habu Y, Shinomiya N, Asano T, et al. Induction of CD16+ CD56bright NK cells with antitumour cytotoxicity not only from CD16- CD56bright NK Cells but also from CD16- CD56dim NK cells. *Scand J Immunol.* (2007) 65:126–38. doi: 10.1111/j.1365-3083.2006.01883.x
36. Streltsova MA, Erokhina SA, Kanevskiy LM, Lee DA, Telford WG, Sapozhnikov AM, et al. Analysis of NK cell clones obtained using interleukin-2 and gene-modified K562 cells revealed the ability of “senescent” NK cells to lose CD57 expression and start expressing NKG2A. *PLoS ONE.* (2018) 13:e0208469. doi: 10.1371/journal.pone.0208469
37. Jacobs B, Tognarelli S, Poller K, Bader P, Mackensen A, Ullrich E. NK cell subgroups, phenotype, and functions after autologous stem cell transplantation. *Front Immunol.* (2015) 6:583. doi: 10.3389/fimmu.2015.00583

38. Wagner JA, Rosario M, Romee R, Berrien-Elliott MM, Schneider SE, Leong JW, et al. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. *J Clin Invest.* (2017) 127:4042–58. doi: 10.1172/JCI90387
39. Lunemann S, Langeneckert AE, Martrus G, Hess LU, Salzberger W, Ziegler AE, et al. Human liver-derived CXCR6(+) NK cells are predominantly educated through NKG2A and show reduced cytokine production. *J Leukoc Biol.* (2019) 2015:1331–40. doi: 10.1002/JLB.1MA118-428R
40. Poznanski SM, Nham T, Chew MV, Lee AJ, Hammill JA, Fan IY, et al. Expanded CD56superbrightCD16+ NK cells from ovarian cancer patients are cytotoxic against autologous tumor in a patient-derived xenograft murine model. *Cancer Immunol Res.* (2018) 6:1174–85. doi: 10.1158/2326-6066.CIR-18-0144
41. Siewiera J, Goulli J, Hocine HR, Cartron G, Levy C, Al-Daccak R, et al. Natural cytotoxicity receptor splice variants orchestrate the distinct functions of human natural killer cell subtypes. *Nat Commun.* (2015) 6:10183. doi: 10.1038/ncomms10183
42. Gaynor LM, Colucci F. Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice. *Front Immunol.* (2017) 8:467. doi: 10.3389/fimmu.2017.00467
43. Verma S, King A, Loke YW. Expression of killer cell inhibitory receptors on human uterine natural killer cells. *Eur J Immunol.* (1997) 27:979–83. doi: 10.1002/eji.1830270426
44. King A, Allan DS, Bowen M, Powis SJ, Joseph S, Verma S, et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. *Eur J Immunol.* (2000) 30:1623–31. doi: 10.1002/1521-4141(200006)30:6<1623::AID-IMMU1623>3.0.CO;2-M
45. Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. *Nature.* (2009) 457:557–61. doi: 10.1038/nature07665
46. O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. *Nat Immunol.* (2006) 7:507–16. doi: 10.1038/ni1332
47. Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM. Cytokine-induced memory-like natural killer cells. *Proc Natl Acad Sci USA.* (2009) 106:1915–9. doi: 10.1073/pnas.0813192106
48. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C⁺ natural killer cells with potent function. *Blood.* (2012) 119:2665–74. doi: 10.1182/blood-2011-10-386995
49. Hammer Q, Ruckert T, Borst EM, Dunst J, Haubner A, Durek P, et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. *Nat Immunol.* (2018) 19:453–63. doi: 10.1038/s41590-018-0082-6
50. Guma M, Angulo A, Vilches C, Gomez-Lozano N, Malats N, Lopez-Botet M. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. *Blood.* (2004) 104:3664–71. doi: 10.1182/blood-2004-05-2058
51. Della Chiesa M, Falco M, Bertaina A, Muccio L, Alicata C, Frassoni F, et al. Human cytomegalovirus infection promotes rapid maturation of NK cells expressing activating killer Ig-like receptor in patients transplanted with NKG2C-/- umbilical cord blood. *J Immunol.* (2014) 192:1471–9. doi: 10.4049/jimmunol.1302053
52. Liu LL, Landskron J, Ask EH, Enqvist M, Sohlberg E, Traherne JA, et al. Critical role of CD2 co-stimulation in adaptive natural killer cell responses revealed in NKG2C-deficient humans. *Cell Rep.* (2016) 15:1088–99. doi: 10.1016/j.celrep.2016.04.005
53. Romee R, Schneider SE, Leong JW, Chase JM, Keppel CR, Sullivan RP, et al. Cytokine activation induces human memory-like NK cells. *Blood.* (2012) 120:4751–60. doi: 10.1182/blood-2012-04-419283
54. Leong JW, Chase JM, Romee R, Schneider SE, Sullivan RP, Cooper MA, et al. Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells. *Biol Blood Marrow Transplant.* (2014) 20:463–73. doi: 10.1016/j.bbmt.2014.01.006
55. Suliman S, Geldenhuys H, Johnson JL, Hughes JE, Smit E, Murphy M, et al. Bacillus Calmette-Guerin (BCG) revaccination of adults with latent mycobacterium tuberculosis infection induces long-lived BCG-reactive NK cell responses. *J Immunol.* (2016) 197:1100–10. doi: 10.4049/jimmunol.1501996
56. Marcais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenix A, et al. The metabolic checkpoint kinase mTOR is essential for interleukin-15 signaling during NK cell development and activation. *Nat Immunol.* (2014) 15:749–57. doi: 10.1038/ni.2936
57. Chiassone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T. Maturation of mouse NK cells is a 4-stage developmental program. *Blood.* (2009) 113:5488–96. doi: 10.1182/blood-2008-10-187179
58. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. *Cell.* (2006) 124:471–84. doi: 10.1016/j.cell.2006.01.016
59. Male V, Nisoli I, Kostrzewski T, Allan DS, Carlyle JR, Lord GM, et al. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. *J Exp Med.* (2014) 211:635–42. doi: 10.1084/jem.20132398
60. Keating SE, Zaitz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK, et al. Metabolic reprogramming supports IFN- γ production by CD56bright NK cells. *J Immunol.* (2016) 196:2552–60. doi: 10.4049/jimmunol.1501783
61. Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA. Activation-specific metabolic requirements for NK cell IFN- γ production. *J Immunol.* (2015) 194:1954–62. doi: 10.4049/jimmunol.1402099
62. Mao Y, van Hoef V, Zhang X, Wennerberg E, Lorent J, Witt K, et al. IL-15 activates mTOR and primes stress-activated gene-expression leading to prolonged anti-tumor capacity of NK cells. *Blood.* (2016) 128:1475–89. doi: 10.1182/blood-2016-02-698027
63. Viel S, Marcais A, Guimaraes FS, Loftus R, Rabilloud J, Grau M, et al. TGF- β inhibits the activation and functions of NK cells by repressing the mTOR pathway. *Sci Signal.* (2016) 9:ra19. doi: 10.1126/scisignal.aad1884
64. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. *Immunity.* (2011) 35:871–82. doi: 10.1016/j.jimmuni.2011.09.021
65. Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. *Nat Immunol.* (2018) 19:1330–40. doi: 10.1038/s41590-018-0251-7
66. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. *Nature.* (2005) 436:709–13. doi: 10.1038/nature03847
67. Krneta T, Gillgrass A, Poznanski S, Chew M, Lee AJ, Kolb M, et al. M2-polarized and tumor-associated macrophages alter NK cell phenotype and function in a contact-dependent manner. *J Leukoc Biol.* (2017) 101:285–95. doi: 10.1189/jlb.3A1215-552R
68. Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. *Obstet Gynecol.* (1992) 80:283–5.
69. Cerdeira AS, Rajakumar A, Royle CM, Lo A, Husain Z, Thadhani RI, et al. Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors. *J Immunol.* (2013) 190:3939–48. doi: 10.4049/jimmunol.1202582
70. Cavalli RC, Cerdeira AS, Pernicone E, Korkes HA, Burke SD, Rajakumar A, et al. Induced human decidual NK-like cells improve utero-placental perfusion in mice. *PLoS ONE.* (2016) 11:e0164353. doi: 10.1371/journal.pone.0164353
71. Keskin DB, Allan DS, Rybalov B, Andzelm MM, Stern JN, Kopcow HD, et al. TGF β promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. *Proc Natl Acad Sci USA.* (2007) 104:3378–83. doi: 10.1073/pnas.0611098104
72. Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO₂ gradients in solid tumors *in vivo*: high-resolution measurements reveal a lack of correlation. *Nat Med.* (1997) 3:177–82. doi: 10.1038/nm0297-177
73. Michiels C, Tellier C, Feron O. Cycling hypoxia: a key feature of the tumor microenvironment. *Biochim et Biophys Acta.* (2016) 1866:76–86. doi: 10.1016/j.bbcan.2016.06.004
74. Nham T, Poznanski SM, Fan IY, Shenouda MM, Chew MV, Lee AJ, et al. *Ex vivo*-expanded NK cells from blood and ascites of ovarian cancer patients are cytotoxic against autologous primary ovarian cancer cells. *Cancer Immunol Immunother.* (2018) 67:575–87. doi: 10.1007/s00262-017-2112-x

75. Tu Z, Bozorgzadeh A, Pierce RH, Kurtis J, Crispe IN, Orloff MS. TLR-dependent cross talk between human Kupffer cells and NK cells. *J Exp Med.* (2008) 205:233–44. doi: 10.1084/jem.20072195
76. Schon HT, Weiskirchen R. Immunomodulatory effects of transforming growth factor-beta in the liver. *Hepatob Surg Nutrit.* (2014) 3:386–406. doi: 10.3978/j.issn.2304-3881.2014.11.06
77. Yoshida O, Akbar SM, Chen S, Miyake T, Abe M, Murakami H, et al. Regulatory natural killer cells in murine liver and their immunosuppressive capacity. *Liver Int.* (2010) 30:906–12. doi: 10.1111/j.1478-3231.2010.02253.x
78. Zhou J, Peng H, Li K, Qu K, Wang B, Wu Y, et al. Liver-resident NK cells control antiviral activity of hepatic T cells via the PD-1-PD-L1 axis. *Immunity.* (2019) 50:403–17.e4. doi: 10.1016/j.jimmuni.2018.12.024
79. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. *J Cell Mol Med.* (2011) 15:1239–53. doi: 10.1111/j.1582-4934.2011.01258.x
80. Kessler M, Hoper J, Krumme BA. Monitoring of tissue perfusion and cellular function. *Anesthesiology.* (1976) 45:184–97. doi: 10.1097/00000542-197608000-00007
81. Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. *Hepatology.* (2002) 35:1010–21. doi: 10.1053/jhep.2002.32524
82. Wolter F, Glassner A, Kramer B, Kokordelis P, Finnemann C, Kaczmarek DJ, et al. Hypoxia impairs anti-viral activity of natural killer (NK) cells but has little effect on anti-fibrotic NK cell functions in hepatitis C virus infection. *J Hepatol.* (2015) 63:1334–44. doi: 10.1016/j.jhep.2015.08.008
83. Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, et al. Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. *Eur J Immunol.* (2013) 43:2756–64. doi: 10.1002/eji.201343448
84. Zaiatz-Bittencourt V, Finlay DK, Gardiner CM. Canonical TGF-beta signaling pathway represses human NK cell metabolism. *J Immunol.* (2018) 200:3934–41. doi: 10.4049/jimmunol.1701461
85. Cong J, Wang X, Zheng X, Wang D, Fu B, Sun R, et al. Dysfunction of Natural Killer cells by FBPI-induced inhibition of glycolysis during lungcancer progression. *Cell Metab.* (2018) 28:243–55.e5. doi: 10.1016/j.cmet.2018.06.021
86. Salzberger W, Martrus G, Bachmann K, Goebels H, Hess L, Koch M, et al. Tissue-resident NK cells differ in their expression profile of the nutrient transporters Glut1, CD98 and CD71. *PLoS ONE.* (2018) 13:e0201170. doi: 10.1371/journal.pone.0201170
87. Gubser PM, Bantug GR, Razik L, Fischer M, Dimeloe S, Hoenger G, et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. *Nat Immunol.* (2013) 14:1064–72. doi: 10.1038/nature12687
88. O’Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck MD, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. *Immunity.* (2014) 41:75–88. doi: 10.1016/j.jimmuni.2014.06.005
89. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. *Nature.* (2009) 458:1131–5. doi: 10.1038/nature07976
90. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vazquez G, Yurchenko E, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses *in vivo*. *Immunity.* (2015) 42:41–54. doi: 10.1016/j.jimmuni.2014.12.030
91. Miller A, Nagy C, Knapp B, Laengle J, Ponweiser E, Groeger M, et al. Exploring metabolic configurations of single cells within complex tissue microenvironments. *Cell Metab.* (2017) 26:788–800.e6. doi: 10.1016/j.cmet.2017.08.014

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Poznanski and Ashkar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The Metabolic Signature of Macrophage Responses

Antonella Viola^{1*}, **Fabio Munari**¹, **Ricardo Sánchez-Rodríguez**¹, **Tommaso Scolaro**¹ and **Alessandra Castegna**^{2,3*}

¹ Department of Biomedical Sciences, Istituto di Ricerca Pediatrica, University of Padova, Fondazione Città della Speranza, Padova, Italy, ² Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy,

³ IBIM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy

OPEN ACCESS

Edited by:

Anna Ohradanova-Repic,
Medical University of Vienna, Austria

Reviewed by:

Amir M. Ghaemmaghami,
University of Nottingham,
United Kingdom
Alexandre M. Carmo,
University of Porto, Portugal

*Correspondence:

Antonella Viola
antonella.viola@unipd.it
Alessandra Castegna
alessandra.castegna@uniba.it

Specialty section:

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

Received: 16 April 2019

Accepted: 10 June 2019

Published: 03 July 2019

Citation:

Viola A, Munari F,
Sánchez-Rodríguez R, Scolaro T and
Castegna A (2019) The Metabolic
Signature of Macrophage Responses.
Front. Immunol. 10:1462.
doi: 10.3389/fimmu.2019.01462

Macrophages are a heterogeneous population of immune cells playing several and diverse functions in homeostatic and immune responses. The broad spectrum of macrophage functions depends on both heterogeneity and plasticity of these cells, which are highly specialized in sensing the microenvironment and modify their properties accordingly. Although it is clear that macrophage phenotypes are difficult to categorize and should be seen as plastic and adaptable, they can be simplified into two extremes: a pro-inflammatory (M1) and an anti-inflammatory/pro-resolving (M2) profile. Based on this definition, M1 macrophages are able to start and sustain inflammatory responses, secreting pro-inflammatory cytokines, activating endothelial cells, and inducing the recruitment of other immune cells into the inflamed tissue; on the other hand, M2 macrophages promote the resolution of inflammation, phagocytose apoptotic cells, drive collagen deposition, coordinate tissue integrity, and release anti-inflammatory mediators. Dramatic switches in cell metabolism accompany these phenotypic and functional changes of macrophages. In particular, M1 macrophages rely mainly on glycolysis and present two breaks on the TCA cycle that result in accumulation of itaconate (a microbicide compound) and succinate. Excess of succinate leads to Hypoxia Inducible Factor 1 α (HIF1 α) stabilization that, in turn, activates the transcription of glycolytic genes, thus sustaining the glycolytic metabolism of M1 macrophages. On the contrary, M2 cells are more dependent on oxidative phosphorylation (OXPHOS), their TCA cycle is intact and provides the substrates for the complexes of the electron transport chain (ETC). Moreover, pro- and anti-inflammatory macrophages are characterized by specific pathways that regulate the metabolism of lipids and amino acids and affect their responses. All these metabolic adaptations are functional to support macrophage activities as well as to sustain their polarization in specific contexts. The aim of this review is to discuss recent findings linking macrophage functions and metabolism.

Keywords: macrophage, metabolism, inflammation, metabolic rewiring, immune cross-talk

INTRODUCTION

From a historical perspective, macrophages (“*makros*” = big, “*phagein*” = to eat) were discovered in the 19th century by the Russian zoologist Metchnikoff, in a seminal study on starfish larvae. Metchnikoff observed that few hours after pinning them with small thorns of a tangerine tree, the thorns were surrounded by cells that he supposed to have origin from blood in response

to injury (1). Macrophages were found in tissues as resident cells patrolling their surroundings and removing invading pathogens, apoptotic cells, and debris, thus maintaining tissue integrity. The first hypothesis was that tissue macrophages may differentiate from monocytes that exit the bloodstream during inflammation. However, it is now established that while monocyte-derived macrophages have origin in the bone marrow by definitive haematopoiesis, tissue macrophage progenitors derive from yolk sac and fetal liver, during primitive and definitive haematopoiesis (2). Interestingly, embryo-derived macrophages retain self-renewal potential, whereas monocyte-derived cells are terminally differentiated (3).

Despite of these differences, it is clear that both monocyte-derived and tissue-resident macrophages play a pivotal role in the maintenance of tissue homeostasis and in tissue regeneration after injury. In humans for example, the tissue cellular turnover rate has been estimated to be more or less 1 million cells per second each day (4): the removal of apoptotic cells is constantly provided mainly by macrophages that reside in tissues, through an immunologically silent process known as efferocytosis. One of the hallmarks of this process is represented by the release of anti-inflammatory cytokines that prevent the development of inflammation, such as interleukin (IL) 10 and transforming growth factor beta (TGF- β) (5, 6). Indeed, defects in the clearance of apoptotic cells are directly linked to the development of inflammation and autoimmune diseases (4).

On the other hand, when an inflammatory process is triggered by the perturbation of tissue homeostasis, bone-marrow derived monocytes that circulate in the blood-stream are attracted to the site of inflammation, through a specific milieu of pro-inflammatory chemokines secreted by resident macrophages, stromal and endothelial cells. At the site of inflammation, monocytes differentiate into macrophages, which cooperate with resident cells for sustaining immunity or promoting resolution of inflammation and tissue regeneration (7).

THE TWO POLES OF MACROPHAGES ACTIVATION

Macrophages are extremely plastic cells being able to change rapidly their functional profile through a process defined as polarization. Macrophage polarization is indeed the process by which macrophages respond to stimuli coming from the local microenvironment and acquire a specific functional phenotype.

Based on specific programs of gene expression leading to the acquisition of different markers on the cellular surface, the secretion of certain cytokines as well as to metabolic adaptations, macrophages are usually classified into classically activated, pro-inflammatory or M1 macrophages (8, 9), and alternatively activated, anti-inflammatory, or M2 macrophages (10, 11). A classification of the different phenotypes is reported in **Table 1**.

Pro-inflammatory macrophages are induced by microbial products, such as the lipopolysaccharide (LPS) and other Toll-like receptors (TLRs) ligands, or by cytokines secreted by T_{H-1} lymphocytes, such as interferon gamma (IFN- γ) and tumor

necrosis factor alpha (TNF- α). From the functional point of view, M1 macrophages are characterized by their ability to kill pathogens and present their antigens to T lymphocytes for initiation of adaptive responses. Thus, they express CD80, CD86, CIITA, major histocompatibility complex class II receptor (MHC-II), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS) and they produce high levels of pro-inflammatory cytokines, such as TNF- α , IL1- β , IL-6, IL-12, and IL-23, and promote T_{H-1} responses [extensively reviewed in (12, 13)]. The expression of these cytokines is mainly controlled by the activation and nuclear translocation of the transcription factor NF- κ B (nuclear factor kappa-light-chain enhancer of B-cell) (14, 15), together with STAT1 (Signal transducer and activator of transcription) (16, 17), STAT3 (18), IRF4 (IFN- γ regulatory factor) (19), HIF1 α (Hypoxia induced factor 1 alpha), and AP1 (activator protein 1) (20).

M2 or anti-inflammatory macrophages are induced by IL-4 or IL-13 secreted by innate and adaptive immune cells, such as mast cells, basophils, and T_{H-2} lymphocytes (10, 11). Alternatively-activated macrophages are characterized by an anti-inflammatory profile, which permits resolution of inflammation and tissue repair. They express high levels of mannose receptor (CD206), the decoy receptor IL-1R as well as the IL-1R antagonist, and produce pro-fibrotic factors such as the transforming growth factor beta (TGF- β) and insulin-like growth factor 1 (IGF-1), thus actively suppressing inflammation and promoting repair (21). In addition, markers and effectors associated with M2 polarization include STAT6, GATA3 (GATA binding protein 3), SOCS1 (suppressor of cytokine signaling 1), PPAR γ (peroxisome proliferator-activated receptor gamma), CD163, CD36, FIZZ1 (found in inflammatory zone 1), matrix metalloproteases (MMPs), and arginase 1 (ARG1) (22). The increased arginase activity results in production of polyamines and collagen and favors tissue remodeling and wound healing (21). Finally, M2 macrophages induce angiogenesis and lymphangiogenesis by producing vascular endothelial growth factor A (VEGF-A), endothelial growth factor (EGF), platelet-derived growth factor (PDGF), and IL-8 (23).

In addition to this phenotype induced by IL-4/IL-13 (also known as M2a), specific profiles of M2 macrophages may be induced by different stimuli, including TGF β , IL-10, immune complexes, or glucocorticoids (24). Thus, M2b or regulatory macrophages-induced by stimulation with immune complexes and TLR ligands or by IL-1R agonists-produce both pro- and anti-inflammatory cytokines, such as IL-10, IL-1 β , and TNF- α , and regulate both immune and inflammatory reactions; on the other hand, the M2c subset is activated by glucocorticoids or IL-10 and exhibits a strong anti-inflammatory profile by releasing IL-10 and TGF- β . Finally, M2d macrophages, also known as tumor-associated macrophages (TAMs), are induced by TLR ligands and A2 adenosine receptor (A2R) agonists, or by IL-6; they secrete high levels of IL-10, TGF- β , and VEGF and low IL-12, TNF- α , and IL-1 β , and contribute to tumor angiogenesis, growth and metastasis (25).

Considering the complexity of the tissue microenvironment and the plasticity of macrophages, it is clear that a static vision of M1–M2 polarization adopted from *in vitro* experiments may not

TABLE 1 | A schematic summary of macrophage polarization.

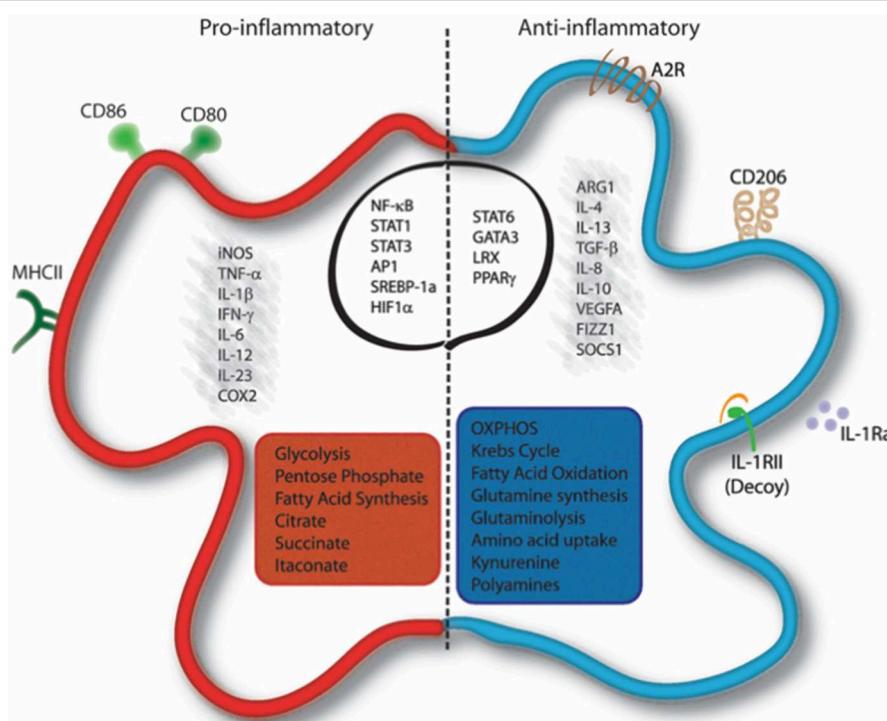
Polarization	Stimuli	Released cytokines	Surface markers	Metabolic enzymes	Transcription factors	Functions
M1	LPS + IFN- γ	TNF- α , IL-1 β , IL-6, IL-12, IL-23	CD80, CD86, CIITA, MHC-II	INOS, PFKFB3, PKM2, ACOD1	NF- κ B (p65), STAT1, STAT3, IRF-4, HIF1 α , AP1	Bacterial killing, tumor resistance, Th1 response
M2a	IL-4/IL-13	IL-10, TGF- β	CD206, CD36, IL1Ra, CD163	ARG1, CARKL	STAT6, GATA3, SOCS1, PPAR γ	Anti-inflammatory response, tissue remodeling, wound healing
M2b	IC, TLR ligands/IL-1Ra	IL-10, IL-1 β , IL-6, TNF- α	CD86, MHC II	ARG1, CARKL	STAT3, IRF4, NF- κ B (p50)	Tumor progression, immunoregulation, Th2 response
M2c	Glucocorticoids/IL-10	IL-10, TGF- β	CD163, TLR1, TLR8	ARG1, GS	STAT3, STAT6, IRF4, NF- κ B (p50)	Phagocytosis of apoptotic bodies, tissue remodeling, immunosuppression
M2d (TAM)	TLR ligands + A2R/IL-6	IL-10, VEGF	CD206, CD204, CD163	ARG1, IDO	STAT1, IRF3, NF- κ B (p50)	Angiogenesis, tumor progression

A2R, adenosine receptor 2; ACOD1, aconitase decarboxylase 1; AP-1, Activator protein 1; ARG1, Arginase 1; CARKL, carbohydrate kinase-like; IC, immunocomplexes; IDO, indoleamine dioxygenase; iNOS, inducible Nitric Oxide Synthase; GATA3, GATA binding protein 3; GS, glutamine synthetase; HIF1 α , Hypoxia-inducible factor 1-alpha; IFN- γ , Interferon gamma; IL, interleukin; IRF, interferon regulatory factor; MHC-II, major histocompatibility complex class 2; NF- κ B, nuclear factor kappa-light-chain-enhancer of activated B cells; PPAR γ , Peroxisome proliferator-activated receptor gamma; SOCS1, Suppressor of cytokine signaling 1; STAT, Signal transducer and activator of transcription; TNF- α , Tumor necrosis factor alpha; TGF- β , transforming growth factor beta; TLR, toll like receptor; VEGF, Vascular endothelial growth factor.

fully describe macrophage polarization *in vivo*, which has to be considered as an extremely dynamic and tissue-specific process.

MACROPHAGE METABOLISM

In addition to the functional properties mentioned above, macrophage polarization involves also metabolic reprogramming (Figure 1). Thus, depending on the stimuli received by the microenvironment, macrophages can switch from an aerobic profile, based on oxidative phosphorylation, to an anaerobic one, based on glycolysis, and vice versa.


The first studies in the field of immune cell metabolism appeared in the 1950s, with the discovery that neutrophils depend on aerobic glycolysis, a process defined as “Warburg effect” (26). Indeed, this metabolic pathway was first recognized by Otto Warburg, during his research on tumor cells, which are characterized by increased glucose uptake, high rate of glycolysis, followed by lactic acid fermentation in conjunction with a reduced level of oxidative phosphorylation (OXPHOS), even in the presence of abundant oxygen. In this setting, aerobic glycolysis occurs to produce energy and to generate biosynthetic intermediates (26, 27). In 1970, Hard et al. observed that M1 macrophages display enhanced glycolysis accompanied by decreased oxygen consumption (28, 29). Almost 20 years later, Newsholme et al. demonstrated that the rate of glycolysis increased dramatically during phagocytosis or upon macrophage activation by inflammatory stimuli. Indeed, now we know that pro-inflammatory macrophages utilize glycolysis (29, 30) and the pentose phosphate pathway (PPP) (31, 32) to meet their ATP requirements, whereas the Krebs cycle is broken at two points (32, 33), and OXPHOS as well as the fatty acid oxidation (FAO) are downregulated (32, 34, 35). In contrast, in M2

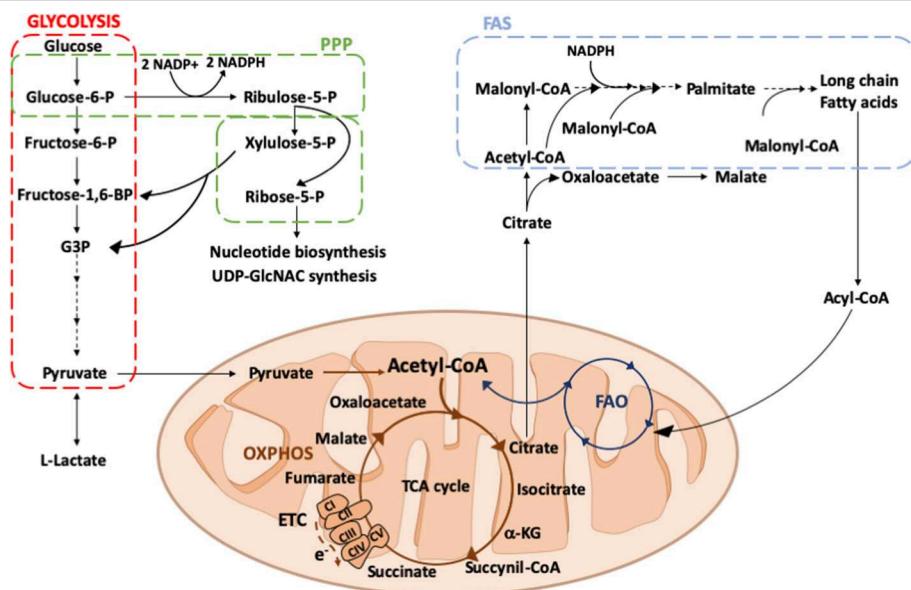
macrophages the Krebs cycle is intact and their metabolic activity is characterized by enhanced FAO and OXPHOS (32).

Starting from these and other observations, the concept of “immunometabolism” has been introduced to indicate that, in addition to provide energy supporting immune activity in specific contexts, these metabolic adaptations directly affect immune cell functions by controlling transcriptional and post-transcriptional events. In the next paragraph we will describe the main metabolic blocks and the modulation of their fluxes for sustaining the different functional states of macrophages.

GLYCOLYSIS AND THE PENTOSE PHOSPHATE PATHWAY (PPP)

Glycolysis is one of the simplest ways to generate energy within the cell (Figure 2). The glycolytic metabolic pathway takes place in the cytosol and it converts glucose to pyruvate, thus generating two molecules of ATP per unit of glucose. Although glycolysis is relatively inefficient in ATP production, it provides metabolic intermediates for biosynthetic pathways to support the synthesis of ribose, amino acids, and fatty acids that are crucial for metabolic adaptation of the cell. Furthermore, glycolysis supplies the PPP, allowing the production of NADPH and ribose-5-phosphate. In parallel to glycolysis, PPP occurs in the cytosol and consists of two distinct phases. In the oxidative phase, the energy from metabolic conversion of glucose-6-phosphate into ribulose-5-phosphate is used for the reduction of NADP $^{+}$ into NADPH. NADPH is then used by several enzymes, including the NADPH oxidase, which generates reactive oxygen species (ROS) to kill pathogens and plays a crucial role in macrophage responses (36, 37). Moreover, high levels of NADPH offer protection against oxidative stress, by providing reducing power for generation of

FIGURE 1 | Molecular and metabolic signatures of macrophage activation. Pro-inflammatory stimuli induce the activation of specific pathways through the activation of transcription factors such as NF-κB, STAT1, STAT3, AP-1, SREBP-1, and HIF1α, which trigger the expression of markers like iNOS, COX-2, CD80, CD86, and MHC-II and the release of IL-1β, TNF-α, IFN-γ, IL-6, IL-12, and IL-23. Cells undergo a metabolic reprogramming toward glycolysis, the pentose-phosphate pathway, and fatty acid synthesis. This associates to interruption of the Krebs cycle, ROS formation and efflux of citrate, which supports NADPH and PGE2 synthesis, and succinate, which stabilizes HIF1α. Itaconate is produced from citrate and displays antibacterial function. Anti-inflammatory macrophages are characterized by the expression of ARG1, FIZZ1, SOCS1, CD206, Adenosine receptor (A2R), and the decoy IL1RII and by the production of cytokines such as TGF-β, IL-10, IL-4, IL-13, IL-8, IL-1Ra, and VEGFA. Their profile is mainly controlled by the activity of the transcription factors STAT6, GATA3, PPARγ, and LXR. Metabolically, these cells display enhanced OXPHOS metabolism, fatty acid oxidation, glutaminolysis, tryptophan catabolism with release of kynurenine, and synthesis of polyamines. AP-1, Activator protein 1; ARG1, Arginase 1; COX2, cyclooxygenase 2; FIZZ1, Found in inflammatory zone 1; iNOS, inducible Nitric Oxide Synthase; GATA3, GATA binding protein 3; HIF1α, Hypoxia-inducible factor 1-alpha; IFN-γ, Interferon gamma; LXR, Liver X receptor; MHC-II, major histocompatibility complex class 2; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PPARγ, Peroxisome proliferator-activated receptor gamma; SOCS1, Suppressor of cytokine signaling 1; SREBP-1, Sterol regulatory element binding protein 1; STAT, Signal transducer and activator of transcription; TNF-α, Tumor necrosis factor alpha; TGF-β, transforming growth factor beta; VEGFA, Vascular endothelial growth factor A.


the antioxidant glutathione (38). In the non-oxidative phase, intermediates from glycolysis are diverted for the synthesis of ribose-5-phosphate, a precursor of nucleotides, and amino acids.

Glycolysis is a crucial metabolic event for M1 macrophages and its inhibition affects many functions typical of their inflammatory phenotype, including phagocytosis, ROS production, and secretion of pro-inflammatory cytokines (29, 39, 40). Glycolytic metabolic adaptation relies on the activation of several transcription factors, among which HIF1α plays a key role in the commitment to glycolysis also under normoxic conditions (41).

In macrophages, two main signaling pathways culminate in oxygen-independent regulation of HIF1α transcription: the TLR/NF-κB (42) and AKT/mTOR (43–45) pathways. Several inflammatory signals, such as pathogen recognition through pattern recognition receptors (PRRs) or pro-inflammatory cytokines, converge in NF-κB activation, the master regulator of macrophage functions that regulates the expression of several

genes, including HIF1α (46, 47). On the other hand, the AKT/mTOR pathway is triggered by growth factors, such as GM-CSF, and pathogen-sensing receptors, such as Dectin-1 or TLR4 (45, 48, 49). Interestingly, mTORC1 also increases the expression of genes involved in mitochondria biogenesis and oxidative metabolism, such as PPAR-γ and Yin Yang 1 (YY-1) (50). On this line, Akt kinases seem to regulate macrophage polarization in an isoform-specific manner: while Akt1 deletion promotes the M1 profile, deletion of Akt2 has opposite effects, resulting in amplification of M2 responses (44). In addition to these signaling pathways, in M1 cells HIF1α expression may also be stabilized by succinate coming from the TCA breakpoint at succinate dehydrogenase (SDH) (31) (see “Krebs cycle” section).

In macrophages, HIF1α acts as a metabolic and functional regulator of cell responses, regulating the expression of genes encoding for glycolytic enzymes, the glucose transporter GLUT1, as well as inflammatory mediators (41, 42, 47). The upregulation of GLUT1 is important for the glycolytic activity

FIGURE 2 | Overview of glucose and fatty acid metabolism. Glucose is converted into pyruvate by glycolysis (red square), in the cytosol. Among the glycolytic intermediates, glucose-6P can be diverted into PPP (green square) sustaining NADPH and ribose-5P production that, in turn, are used for fatty acid or nucleotide and UDP-GlcNAc synthesis. In hypoxic conditions, pyruvate is preferentially reduced to lactate, whereas in normoxic conditions it is decarboxylated into acetyl-CoA within the mitochondria. Here, acetyl-CoA enters into the TCA cycle, providing reducing agents to the ETC to generate energy. Citrate, an intermediate of the TCA cycle, can be exported into the cytosol where it participates in fatty acid synthesis (FAS; light blue square). Fatty acids can be oxidized via FAO (dark blue square) within the mitochondrial matrix thus generating acetyl-CoA to replenish the TCA cycle. PPP, pentose phosphate pathway; ETC, electron transport chain; TCA, tricarboxylic acid; OXPHOS, oxidative phosphorylation; FAS, fatty acid synthesis; FAO, fatty acid oxidation; Glucose 6-P, glucose 6-phosphate; Fructose 6-P, fructose 6-phosphate; Fructose-1,6-BP, fructose 1,6-biphosphate; G3P, glyceraldehyde 3-phosphate; Acetyl-CoA, acetyl-Coenzyme A; α-KG, alpha-ketoglutarate; e-, electrons; CI, CII, CIII, CIV, CV, complex I, II, III, IV, V; UDP-GlcNAc, Uridine diphosphate N-acetylglucosamine.

of M1 macrophages as it facilitates rapid glucose uptake (29). Additionally, HIF1 α supports the conversion of pyruvate into lactate by promoting the expression of two enzymes: the lactate dehydrogenase (51), which produces lactate from pyruvate, and the pyruvate dehydrogenase kinase (52, 53), which inactivates pyruvate dehydrogenase thus limiting pyruvate entering into the Krebs cycle. In M1 macrophages, in which OXPHOS is limited, the conversion of pyruvate into lactate is essential to restore NAD $^+$ and maintain flux through the glycolytic pathway.

Two additional points of the glycolytic flux regulation occur at the level of the 6-phosphofructo-2-kinase B (PFKFB) and the pyruvate kinase M2 (PKM2). M1 macrophages express predominantly the PFKFB3 isoform (53) which, if compared to the other isoforms, less efficiently catalyzes the conversion of fructose-2,6-bisphosphate in fructose 6-phosphate, enhancing the glycolytic flux. Moreover, M1 cells upregulate the isoform 2 of the pyruvate kinase (PKM2), which plays multiple roles in macrophage metabolism and polarization. Indeed, when highly expressed, PKM2 exists in an equilibrium of enzymatically inactive monomers or dimers and enzymatically active tetramers (53). The inactive enzyme translocates into the nucleus and, by binding to HIF1 α , triggers the expression of HIF1 α -regulated genes (53–56), whereas the enzymatically active tetramers are retained in the cytoplasm and promote glycolysis as well as M1 polarization (53).

As mentioned above, the oxidative steps of the PPP are crucial for macrophages: oxidation of glucose leads to the reduction of NADP $^+$ to NADPH, which is fundamental not only for NADPH oxidase and macrophage's killing activity but also for anti-oxidant defense mechanisms and fatty acid biosynthesis, required for prostaglandin production. Indeed, the oxidative PPP activity is prominent in M1 macrophages (31) and the knockdown of 6-phosphogluconate dehydrogenase (PGD), which converts 6-phosphogluconate into ribulose 5-P, generates a deficient pro-inflammatory response in macrophages during hypercholesterolemia (57). On the other hand, as expected, the non-oxidative branch of PPP is repressed in M1 macrophages (32). This occurs through the downregulation of sedoheptulose kinase (CARKL), a carbohydrate kinase-like protein that is involved in the conversion of sedoheptulose into sedoheptulose-7-phosphate (58). In line with this finding, overexpression of CARKL in macrophages results in defective M1 polarization and dampened inflammatory response (57, 58).

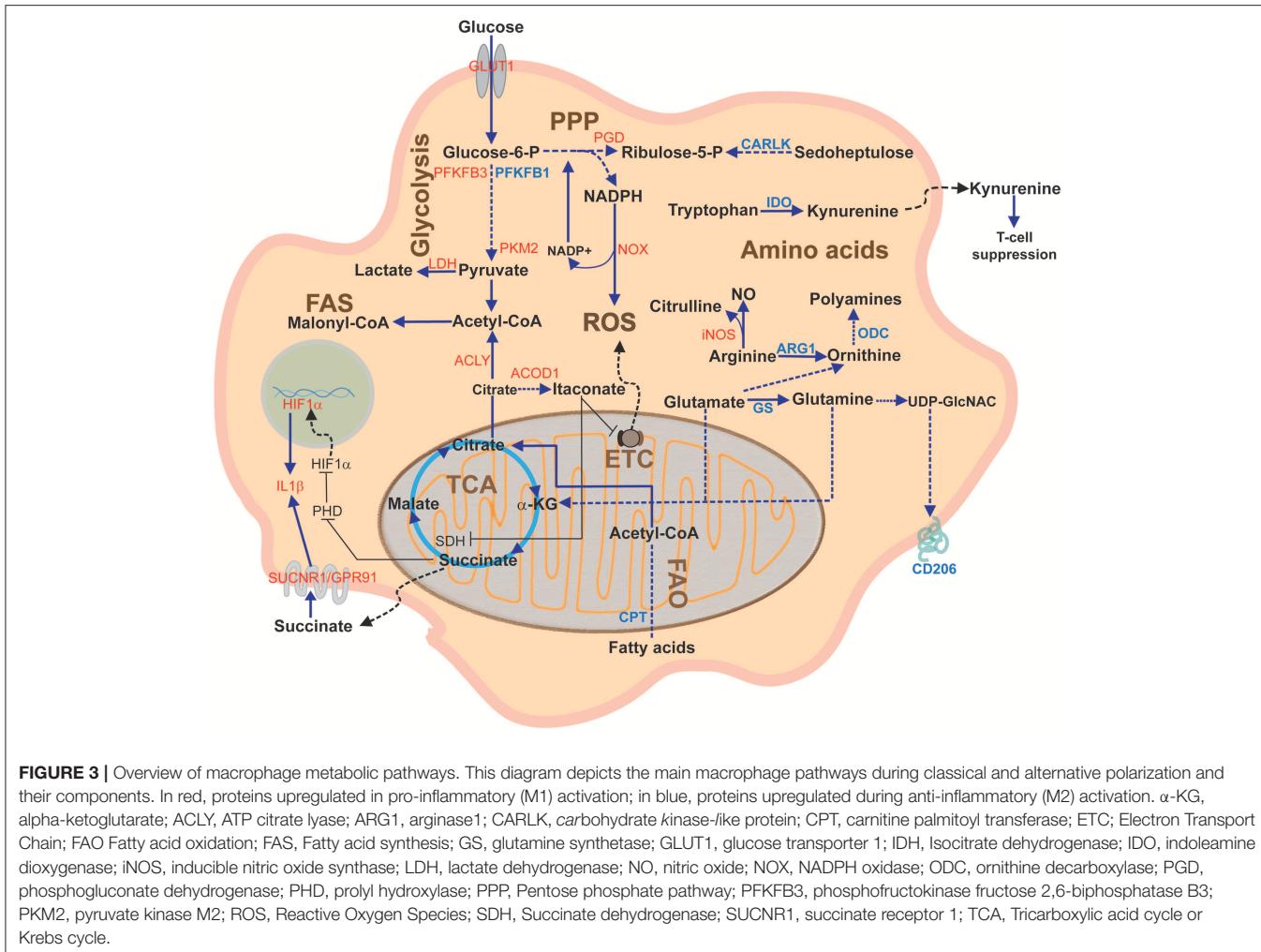
The role of glycolysis in M2 macrophage functions is more controversial. Several studies have shown that glycolysis is active in M2 cells and that its blockade with 2-deoxyglucose (2-DG), a well-established glycolysis inhibitor, may inhibit M2 polarization and functions (19, 59). On the other hand, more recent data suggest that glycolysis is not required for M2 differentiation, as long as OXPHOS remains intact (60). This suggests that M2 macrophages display a more flexible

metabolic activity since they can supply OXPHOS even in absence of glycolysis using glutamine (60). Another control point of glycolysis in M2 macrophages is represented by the selective expression of the glycolytic enzyme 6-phosphofructo-2-kinase B1 (PFKFB1), which much more efficiently catabolizes fructose-2,6-bisphosphate, an activator of glycolysis, to fructose-6-phosphate, lowering the glycolytic rate (61, 62). Finally, in the M2 phenotype, CARKL is upregulated, enhancing the non-oxidative steps of PPP, which can lead to ribose-5P production, necessary for nucleotide and UDP-GlcNAc synthesis (58). UDP-GlcNAc is required for N-glycosylation, which is essential for the modification of different cell surface proteins (i.e., CD206) abundantly expressed in M2 macrophages (32).

The metabolic differences between M1 and M2 cells impact on the ability of these cells to generate ROS. In a situation of coupled and efficient respiration, the amount of ROS produced by the electron transport chain (ETC) is kept under control and at low levels. In conditions of OXPHOS dysfunction, a significant leakage of electrons occurs, which, in the presence of oxygen, produces ROS (63, 64). This is the case of pro-inflammatory macrophages, in which polarization profoundly modifies the OXPHOS, leading to ROS production. Although CI and CIII are considered the main sites of mitochondrial ROS production, recent studies suggest that ROS are generated by reverse electron transport (RET) at CI of the ETC rather than CIII, in a situation of impaired OXPHOS (65). The evolutionary conserved signaling intermediate in Toll pathways (ECSIT), a TRAF6 target for ubiquitination and CI-associated protein, is a master regulator of ROS production and mitochondrial quality control in macrophages. In particular, after phagocytosis of bacteria, ECSIT triggers recruitment of mitochondria to the phagosome to produce ROS that activate NADPH oxidase to kill bacteria (63). Other than being a harmful byproduct of metabolism, cellular ROS have emerged as master regulators of cellular signaling through the activation of many redox-sensitive pathways [extensively reviewed in (66)]. In macrophages, ROS are known to regulate several functions, including phagocytosis, bacterial killing, and polarization into specific phenotypes. Mitochondrial ROS are known to sustain inflammation by mediating IL-6, TNF- α , and IL-1 β cytokine secretion, through a mechanism involving mitochondrial ROS-dependent MAPK activation (67).

THE KREBS CYCLE

Once pyruvate is generated, it becomes oxidized through a series of reactions termed the Krebs or Tricarboxylic Acid (TCA) cycle (Figure 2). The continuous flux through this cycle utilizes acetyl CoA, deriving from the breakdown of carbon-based nutrients, to reduce NAD $^{+}$ and FAD to NADH and FADH $_{2}$, which are then oxidized leading to ATP production. M2-like macrophages are known to display a functional and intact TCA cycle, which is crucial to meet the ATP demand due to the high (UDP-GlcNAc requiring) glycosylation levels of lectin and mannose receptors necessary for M2 macrophage function (32). At variance with M2 metabolism, the increased flux of glycolysis displayed by


M1 macrophages is accompanied by metabolic changes involving the Krebs cycle, which are not only important for anabolic or energetic purposes, but also for sustaining the inflammatory response (68–70). Indeed, in pro-inflammatory macrophages, the Krebs cycle is interrupted at several key points allowing signal metabolites citrate, succinate and itaconate to escape mitochondria and exert their regulatory role.

Citrate

Citrate production and conversion connects mitochondrial and cytosolic metabolism. It is produced in the Krebs cycle by condensation of oxaloacetate and acetyl-CoA, the latter deriving from glycolytic pyruvate or from the catabolism of fatty acids. Citrate is converted to isocitrate and then to α -ketoglutarate (α KG), through the activity of isocitrate dehydrogenase (IDH). However, citrate can also be exported into the cytosol in exchange with malate through the transport activity of the mitochondrial citrate carrier (CIC), also known as solute carrier family 25 member 1 (SLC25A1) (71, 72). Once in the cytosol, citrate displays a plethora of regulatory roles. It inhibits glycolysis, by acting directly on phosphofructokinase (PFK) 1 and 2 and, indirectly, on pyruvate kinase (PK) (73); it stimulates lipid synthesis, through the activation of acetyl-CoA carboxylase (ACC) (74), and gluconeogenesis, through the activation of fructose-1,6-bisphosphatase. Cytosolic citrate is also a substrate of ATP-Citrate lyase (ACLY), producing acetyl-CoA and oxaloacetate (72). Oxaloacetate can be converted to malate by malate dehydrogenase (MDH). Malate can be transported back into the mitochondrial matrix in exchange with citrate through CIC (75) or can lead to pyruvate through the NADPH producing-malic enzyme (76). Through ACLY activity, cytosolic citrate positively regulates protein and histone acetylation (77).

Because of its major role in controlling cell metabolism, citrate plays a crucial role in sustaining macrophage inflammatory response (Figure 3). M1 macrophages are characterized by accumulation of citrate due to two main transcriptional changes, such as downregulation of IDH (32) and upregulation of the mitochondrial citrate carrier CIC (71), leading to citrate withdrawal from mitochondria. CIC upregulation occurs in response to LPS, TNF- α , or IFN- γ stimulation. Both these events are responsible for the first interruption of the Krebs cycle and accumulation of citrate in the cytosol of M1 macrophages, which is crucial for NO, ROS, and prostaglandin E2 (PGE2) production (71, 78). Pharmacological or genetic targeting of CIC in human macrophages results in decreased levels of these inflammatory mediators (79), suggesting that citrate export supports fatty acid synthesis (FAS) on which PGE2 synthesis relies as well as the reduction of NADP $^{+}$ to NADPH, necessary for NO and ROS production, by means of the activity of the malic enzyme. CIC acetylation is required to additionally boost mitochondrial citrate export in macrophages activated in conditions of glucose deprivation; in this manner, the NADPH demand, that cannot rely on PPP, may be met through the NADPH-producing conversion of citrate into 2-ketoglutarate, catalyzed by the cytosolic NADP $^{+}$ -dependent IDH (IDH1) (80).

Another crucial role of citrate is in providing, through conversion to acetyl-CoA, the acetyl moiety for the acetylation

of proteins, which is known to regulate protein function at multiple levels (81). Protein acetylation requires the presence of acetyl-CoA in different cellular compartments and it relies on the activity of ATP citrate lyase (ACLY), which converts citrate in acetyl-CoA. Similarly to CIC, ACLY is upregulated in M1 macrophages (78) and its activity regulates the expression of many genes through histone acetylation (82). Although no specific studies address the role of ACLY in regulating epigenetic changes in M1 macrophages, many enzymes and proteins are known to be affected by acetylation (83), among which NF- κ B (84), IL-6, and IL-10 (85, 86). In M2 macrophages ACLY is regulated by the Akt-mTORC1 axis, leading to histone acetylation and induction of some M2 genes (87). However, a recent study has shown that polarization of human macrophages toward an M2 phenotype does not require ACLY (88).

Itaconate

Itaconate is produced from cis-aconitate in the Krebs cycle in classically activated macrophages (89, 90). This occurs through a strong upregulation of the enzyme aconitate decarboxylase 1 (ACOD1), originally called immune-responsive gene 1 protein (IRG1) (91). In this pathway, cis-aconitate is withdrawn from

the Krebs cycle to produce this metabolite. Interestingly, upregulation of ACOD1 has been reported not only in cell lines and murine M1 macrophages, but also in septic patients (92).

The well-known anti-bacterial properties of itaconate rely on its ability to inhibit the bacterial isocitrate lyase and its bactericidal properties against gram-positive and gram-negative bacteria (93–95). In addition, itaconate may play a role in immunomodulation, suppression of inflammation and tolerance (96).

Itaconate was shown to inhibit SDH, leading to accumulation of succinate in LPS activated macrophages [(27–35); Figure 3], and this was associated to reduced mitochondrial respiration, ROS production, proinflammatory cytokine release, and inflammasome activation (96). The mechanism by which itaconate induces these metabolic and functional changes in macrophages was recently elucidated by Mills et al.: itaconate contributes to stabilize the levels of the anti-inflammatory transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), which targets genes involved in anti-inflammatory and anti-oxidant response (97). Itaconate mediates a post-translational alkylating modification on –SH groups of Kelch-like ECH-associated protein 1 (KEAP1), causing its fast degradation.

Since KEPA1 targets NRF2 for proteasomal degradation (98), its itaconate-mediated degradation allows NRF2 to translocate to the nucleus, leading to transcription of genes involved in protection against stress-induced cell death and oxidative stress. Concomitantly, NRF2 suppresses the expression of genes encoding IL-1 β and IL-6 (99).

The chemical features of itaconate, particularly its electrophilicity, make the molecule reactive toward the cysteine groups of glutathione and proteins. It has been speculated that itaconate could trigger the electrophilic stress response (ESR), by modifying –SH residues of proteins and depauperating the cell from glutathione (100). It is then conceivable that other targets, besides the KEAP1–NRF2 axis, that are known to sense ESR, could be influenced by itaconate.

With respect to M2 macrophages, the role of itaconate has not been clearly elucidated. When M2 macrophage differentiation is impaired, IRG1 expression increases and itaconate accumulates in macrophages (101), probably as a compensatory effect. Furthermore, itaconate has been identified as a key player in the microRNA miR93, IRF9, IRG1 axis during macrophage polarization. In particular reduction of itaconate levels favors M2-like polarization in macrophages and this might be ascribed to the release of the SDH brake improving OXPHOS flux (102).

Succinate

Succinate is an intermediate of the Krebs cycle produced from succinyl-CoA. It is the substrate of SDH, which is part of Complex II of the mitochondrial respiratory chain. SDH-mediated oxidation of succinate into fumarate is coupled to reduction of ubiquinone (UQ) to ubiquinol (UQH₂). When high amounts of succinate are oxidized to fumarate in conditions of no ATP production, electrons flux in the opposite direction toward complex I, leading to reverse electron transport (RET). This associates to a significant release of ROS, which can activate HIF1 α in M1 macrophages (65, 103).

In addition to its role as metabolic intermediate, succinate works as a signaling molecule in many ways. Succinate is transported into the cytosol by the activity of the dicarboxylate carrier (DIC), also known as solute carrier family 25 member 10 (SLC25A10) (72). Succinate influences HIF1 α stability by inhibiting prolyl hydroxylases (PHDs), a class of α KG-dependent dioxygenases that regulate HIF1 α stability in an oxygen-dependent manner, thus blocking HIF1 α degradation in the presence of oxygen [(31); **Figure 3**].

High cytosolic succinate levels favor post-translational lysine succinylation on proteins, a process that profoundly modifies protein functions since it alters their charge and structure (104, 105). In the case of pyruvate kinase M2, succinylation promotes its translocation into the nucleus, where it interacts with HIF1 α to boost IL-1 β transcription (106). In sirtuin 5-deficient mice, pyruvate kinase M2 hyper-succinylation has been described as a strategy to sensitize mice to experimental colitis due to the increased IL-1 β production (106).

Succinate exerts signaling roles also acting at the extracellular level. During inflammation, succinate is released by inflammatory macrophages and can accumulate into the extracellular milieu (107), as observed in murine ischemic or

hypoxic tissue (108–110), inflammation of the central nervous system (111), as well as in biological fluids of rheumatoid arthritis patients (112). Once outside the cell, it can bind to the succinate receptor SUCNR1/GPR91, a G-protein-coupled cell surface sensor for extracellular succinate (113) expressed in many cell types, that is known to be activated in diabetic retinopathy (108), diabetic renal disease (114), hypertension (113, 115), and atherosclerosis (116). Interestingly, macrophages express GPR91 and, in response to inflammatory signals like LPS, they activate a GPR91-mediated signal transduction that sustains the proinflammatory phenotype and leads to IL-1 β production [(117, 118); **Figure 3**]. This represents a novel mechanism by which succinate fuels inflammation in an autocrine manner to sustain and amplify the inflammatory response (118). Interestingly, in an *in vivo* model of experimental autoimmune encephalomyelitis (EAE), GPR91 expressed by transplanted neural stem cells exerted a protective role against neuroinflammation which was mainly due to their scavenging effects and reduction of the succinate levels in the cerebrospinal fluid (111).

AMINO ACID METABOLISM IN THE INNATE IMMUNITY

Amino acid availability is essential to mount a proper immune response. During inflammatory or immune reactions, amino acid deficiency may result in defective immune cell migration, division, maturation, and completion of effector functions. Macrophage adaptation to rapidly changing nutrient sources implicates exploiting amino acid catabolism to sustain activation and maintenance of their immune activity. Amino acid availability controls several pathways governing macrophage responses, including mTOR signaling and NO production. Moreover, altered amino acid metabolism can influence macrophage responses by generating catabolites with immunomodulatory properties. Finally, the metabolic competition or cross talk between host immune cells and pathogens may affect the evolution of an infection.

Arginine represents the best example of how a strict metabolic regulation can drive opposite phenotypes, depending on which metabolic pathway is engaged (**Figure 3**). Under pro-inflammatory stimuli, such as LPS, TNF- α , or IFN- γ , iNOS (also known as NOS2) is overexpressed, channeling arginine catabolism toward NO and citrulline production. NO production is functional to boost macrophage anti-microbial activity: NO spontaneously reacts with oxygen or ROS to produce reactive nitrogen and oxygen intermediates that lead to the formation of a variety of antimicrobial species (119). Most importantly, NO prevents M1 to M2 repolarization, since the blockade of iNOS gives to M1 macrophages the ability to repolarize into M2, when exposed to IL-4 after LPS + IFN- γ treatment (120). On the other hand, citrulline produced by iNOS is used by arginosuccinate synthase 1 to produce arginosuccinate, which is promptly broken to recover arginine and sustain NO production (121). In contrast to M1 macrophages, anti-inflammatory M2 macrophages overexpress ARG1 that produces

ornithine and urea from arginine catabolism. Ornithine is transformed by ornithine decarboxylase (ODC) to polyamines (putrescine, spermidine, and spermine) that control cell growth and are important for tissue repair. Interestingly, it has been recently reported that ODC limits M1 activation and macrophage anti-microbial activities by chromatin modification (122). Moreover, arginase competes with iNOS for arginine, and many pathogens exploit this by increasing expression of arginase and thus block NO production (123, 124). ARG1 activity in macrophages triggers an anti-inflammatory phenotype and reduces T-cell proliferation and cytokine production (117).

Although ARG1 and iNOS are competitively regulated by Th1 and Th2 cytokines and complex intracellular biochemical pathways, including negative feed-back loops and competition for the same substrate (125), simultaneous activation of ARG and NOS pathways occurs in myeloid cells licensed by the tumor (126). In tumor-infiltrating myeloid cells, L-Arg is metabolized by ARG1, ARG2, and iNOS. ARG and NOS co-activation within the same environment leads to production of several ROS and reactive nitrogen species (RNS) by the iNOS reductase domain at low L-Arg concentrations (127–131). Peroxynitrite produced by myeloid and tumor cells can nitrate tyrosine residues in the TCR and CD8 receptors, resulting in decreased recognition of peptide–MHC complexes (132) and T cell dysfunction (133); moreover, RNS can induce post-transcriptional modifications of chemokines and thus prevent intra-tumoral infiltration of antigen-specific T cells (134).

Tryptophan metabolism is a major mechanism of peripheral immune tolerance. In immune cells, the limiting step of tryptophan catabolism is mediated by indoleamine 2,3-dioxygenase (IDO) that converts tryptophan into kynurenine (Figure 3). Although IDO expression is induced by IFN- γ , TNF- α , or prostaglandins, macrophages are driven toward an M2 phenotype when IDO is overexpressed, and IDO silencing promotes a pro-inflammatory macrophage profile (135). Macrophages that express high levels of IDO may deplete extracellular tryptophan, thus affecting T-cell proliferation and functions (136, 137). TAMs, and sometimes tumor cells themselves, upregulate IDO and create an immunosuppressive microenvironment via at least two mechanisms: tryptophan depletion and accumulation of tryptophan catabolites, such as kynurenine, 3-hydroxyanthranilate, and quinolinate (137–139). From a mechanistic point of view, while tryptophan depletion inhibits rapid expansion of activated T cells, tryptophan-derived catabolites act as ligands of the aryl hydrocarbon receptors (AHR) (140). Kynurenine is a potent suppressor of T cell immunity: by stimulating AHR, it skews the differentiation of naive T cells toward FoxP3 $^{+}$ regulatory T cells (Tregs), whereas it suppresses Th17 cells differentiation (141).

In immune cells, glutamine is used for amino acid and nucleotide synthesis, NADPH and energy production, and many other biosynthetic pathways involved in cell proliferation and functions. Macrophages utilize glutamine at high rates and are dependent upon extracellular sources of the amino acid (76, 142). During macrophage activation, the different routes of glutamine consumption direct its role to promote either the

M1 or M2 phenotype. Channeling of glutamine into the Krebs cycle is the main route to promote succinate synthesis in M1 macrophages, with the GABA shunt (a bypass of the TCA cycle in which glutamine is used for synthesis of glutamate, GABA, succinic semialdehyde, and eventually succinate) also playing a role (31). This is fundamental to stabilize HIF1 α (33). On the other hand, glutamine metabolism drives M2 polarization by acting at multiple levels: (i) α -ketoglutarate generated from glutaminolysis is essential for M2 OXPHOS and FAO; (ii) α -ketoglutarate generated from glutaminolysis promotes an M2 phenotype by macrophage epigenetic reprogramming, involving demethylation of H3K27 on the promoters of M2-specific marker genes (143); (iii) α -ketoglutarate generated from glutaminolysis favors PHD activity and thus inhibits HIF1 α expression; (iv) glutamine provides substrate for the UDP-GlcNAc synthesis (Figure 3). Indeed, the pathway for UDP-GlcNAc synthesis is upregulated in M2 macrophages and is essential for the glycosylation of different proteins expressed abundantly in M2 macrophages (32). Tracing experiments in M2 cells with ^{13}C - and ^{15}N -glutamine have shown that a third of all carbon in TCA metabolites and more than half of the nitrogen in UDP-GlcNAc derive from glutamine (32), providing further evidence for the essential role of glutamine metabolism in M2 differentiation of macrophages. Thus, M2 cells do not exclusively rely on glutamine uptake for their metabolism, but they induce glutamine synthesis from glutamate and ammonia via glutamine synthetase (GS). While GS is barely detectable in M1 macrophages, highly GS expression in M2 macrophages, particularly in response to IL-10, is fundamental for the acquisition of a M2-like phenotype (144). Indeed, GS inhibition skews IL-10 stimulated macrophages to a M1-like state, through a mechanism involving metabolic reprogramming (144, 145). Additionally, GS ablation in TAMs reduces M2 markers, such as ARG1 and CD206, and decreases tumor metastasis in mice (144, 145).

LIPID METABOLISM IN INNATE IMMUNITY

Cellular lipid metabolism comprehends several key enzymatic processes that lead to the synthesis or the degradation of lipids (cholesterol, fatty acids, and phospholipids, Figure 2). As specialized phagocytic cells, macrophages are capable to uptake different forms of lipids such as LDL, VLDL, and oxidized lipoproteins from both engulfed dying cells and microenvironment via phagocytosis, macropinocytosis, and scavenger receptor-mediated pathways (146). After that, all ingested lipids are processed by acid lipases within the lysosomes, leading to the generation of free fatty acids and cholesterol (147). Free fatty acids are subsequently transported into mitochondria, where they are converted by the FAO pathway into different products that continuously replenish the TCA cycle with acetyl-coenzyme A, or the ETC through the generation of NADH and FADH2 (148).

On the other side, if metabolically required, FAS is induced through mTOR signaling within the cytosol. Notably, the FAS pathway permits the generation of lipids by using different precursors of TCA cycle, glycolysis and PPP pathway (149).

Transcriptional regulation of lipid metabolism is tightly controlled by sterol receptor element binding protein (SREBP) and liver X receptor (LXR). In macrophages, SREBP-1a and LXR α are highly expressed and regulate cytokine release and cell responses (150, 151). LPS treatment increases macrophage SREBP-1a activity via NF- κ B, and macrophages deficient in SREBP-1a fail to produce IL-1 β upon LPS stimulation (152), thus connecting lipid metabolism and inflammasome activation in M1 macrophages (153). In contrast, M2 macrophages are characterized by LXR activation, which regulates cholesterol homeostasis and lipid synthesis (154). Overexpression or activation of LXR α dampens M1 responses and inflammation by inhibiting the activity of NF- κ B and AP-1 (155, 156).

It is clear that differential induction of FAS and FAO elicits macrophage polarization toward the M1 and M2 profiles, respectively (Figure 3). FAS represents an important pathway for energy production and prostaglandin biosynthesis in M1 cells; moreover, the accumulation of malonyl-CoA, product of the first step of FAS, can induce post-translational modifications (malonylation) that modulate responses of pro-inflammatory macrophages. On the other side, the main sources of fatty acids in M2 derive from uptake via the scavenger receptor-mediated pathway (157) and through lysosomal lipolysis mediated by lysosomal acid lipase, all these pathways being up-regulated upon IL-4 stimulation (147). M2 macrophages rely on fatty acid uptake and oxidation, which are supported by STAT6, the PPAR γ (158) and its co-activator 1 (PGC1) (159). Indeed, M2 polarization could be prevented by inhibiting FAO, using a pharmacological approach targeting the carnitine palmitoyltransferase (CPT) system which mediates fatty acid translocation within mitochondria (160, 161). However, it has been recently reported that genetic ablation of CPT2 does not prevent macrophage polarization toward M2 profile upon IL-4 stimulation, both *in vitro* and *in vivo* (162). Interestingly, a recent work highlights the involvement of glutaminolysis-derived α -ketoglutarate as a positive metabolic regulator of FAO (163), thus suggesting further connections between different metabolic pathways.

MACROPHAGE METABOLISM IN DISEASES

Alterations in macrophage polarization, function, and metabolic signature are present in various human diseases. In inflammatory diseases, such as sepsis, rheumatoid arthritis, and atherosclerosis, as well as in metabolic diseases, including obesity and diabetes, macrophages display prolonged or atypical M1 polarization; on the other hand, cancer growth is often associated with “M2-like” responses of TAMs (25, 164). A discussion of the role of macrophage metabolic adaptations in human diseases is not the focus of our review but here we briefly analyze some aspects of macrophage metabolic pathways in two conditions: obesity and cancer.

Among the immune cells that infiltrate obese adipose tissue, macrophages are functionally and numerically dominant (165). In the adipose tissue of lean mice, macrophages are 10–15% of

cells, whereas they represent 45–60% of cells in the adipose tissue of obese animals (166). In addition to the difference in their numbers, adipose tissue macrophages in lean and obese animals exhibit distinct localizations and responses. Adipose tissue macrophages in lean animals have an alternatively activated (M2) phenotype, are anti-inflammatory and are uniformly dispersed throughout the adipose tissue, whereas adipose tissue macrophages of obese mice have a pro-inflammatory, classical (M1) phenotype and are primarily found in “crown-like” structures around dying adipocytes (167, 168). In lean adipose tissue, M2 macrophages have a crucial role in maintaining the insulin sensitivity of adipocytes via the secretion of interleukin-10 (IL-10) (158, 167), a regulatory cytokine that potentiates insulin signaling in adipocytes (165). By contrast, classically activated macrophages in obese adipose tissue secrete pro-inflammatory cytokines, which induce insulin resistance (165).

Fatty acids and TNF- α have been shown to induce M1 polarization in obesity (165) but also glucose, insulin, and obesity-induced hypoxia trigger macrophages toward a pro-inflammatory phenotype (169). Interestingly, in a study analyzing the metabolic signature in obese and normal-weight children, the serum concentration of glutamine was lower in obese children than in normal-weight ones (170). Moreover, a high ratio of glutamine to glutamate in the plasma is associated with a lower risk of diabetes mellitus (171). Because skeletal muscles participate in maintaining the concentration of glutamine in serum, the reduction in muscle mass in obese patients may account for reduced serum concentrations of glutamine (172). In addition, in the subcutaneous adipose tissues of obese patients there are higher concentrations of glutaminase and lower concentrations of glutamine synthase, compared with the lean subjects (173). Glutamine is known to promote M2 macrophage polarization (see above) and thus glutamine supplementation may represent a strategy to target macrophage polarization in obesity. Although a few studies have shown that therapeutic administration of glutamine is beneficial in obesity and diabetes, the direct effects of this metabolic targeting on macrophages is not proven (172).

As already discussed, the succinate receptor SUCNR1/GPR91 is known to play a role in several diseases including diabetic retinopathy (108), diabetic renal disease (114), hypertension (113, 115), atherothrombosis (116), neuroinflammation (111), rheumatoid arthritis (114), and metabolic dysfunctions (174). Interestingly, the concentration of succinate in plasma is higher in patients with type 2 diabetes than in non-diabetic individuals (174) and it is significantly associated with the body mass index (BMI) (175). Thus, targeting succinate and its receptors may represent an interesting therapeutic strategy to modulate macrophage responses and inflammation in several pathological contexts.

It is highly probable that the metabolic signature of TAMs depends on the surrounding microenvironment and may thus be different in different tissues. In general terms, and on the basis of the recent publications, TAMs seem to depend on glycolysis for their metabolic needs and produce lactate at high concentration (79, 176). Lactate (177), in turn, induces VEGF and ARG1, thus promoting a pro-angiogenic signature, and

potentiates glycolysis by activating the Akt/mTOR pathway. However, when cancer grows, hypoxia induces in TAMs up-regulation of REDD1 (regulated in development and in DNA damage response 1), which inhibits mTOR, and thus inhibits glucose uptake by macrophages and glycolysis. This is associated with an increased angiogenic response and formation of aberrant leaky vessels due to enhanced glucose availability for endothelial cells (178).

As mentioned above, TAM-produced lactate induces ARG1, which depletes arginine and is directly involved in TAM-induced immunosuppression. On the other hand, highly overexpressed cyclooxygenase in TAMs induces IDO expression, which depletes tryptophan thus suppressing T cell responses. Therefore, macrophage functions in the tumor microenvironment are regulated by a complex and interconnected reprogramming involving glucose, amino acid, and lipid metabolism.

CONCLUSIONS

Macrophage metabolic adaptations have been deeply analyzed during the last years and have emerged as critical factors regulating a variety of cell responses. Pathogen or inflammatory signals drive macrophage differentiation toward the acquisition of new functions by rapidly modulating the expression of key genes. Associated to this program is a remodeling of the metabolic pathways that sustains, from an energetic, biosynthetic, and regulatory point of view, its execution

(Figure 3). Information from studies on inflammation-linked diseases is teaching us that pathological immune response might be underpinned by aberrant metabolic rewiring (145, 179, 180). Several metabolic products play important roles as signaling mediators, affecting not only macrophages but also neighboring cells, thus representing interesting targets for therapeutic strategies (181). To this aim, it is fundamental to understand the interplay between metabolism and immunity by dissecting the different metabolic reactions important for the acquisition of specific functions. On the other hand, it is becoming evident that the different metabolic pathways are strongly interconnected and that positive and negative feedback loops are involved in amplification or dampening of immune responses. Thus, as growing literature defines metabolic processes and pathways in macrophages, the ultimate goal is an integrated view of the metabolic networks regulating inflammation, immunity, and tissue responses to homeostasis perturbations.

AUTHOR CONTRIBUTIONS

FM, RS-R, TS, and AC wrote the manuscript. AV and AC reviewed the manuscript.

FUNDING

This work was supported by ERC (grant number 322823).

REFERENCES

1. Tauber AI. Immunity: how elie metchnikoff changed the course of modern medicine by luba vikhanski. *Bull Hist Med.* (2017) 91:140–2. doi: 10.1353/bhm.2017.0015
2. Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. *J Exp Med.* (2012) 209:1167–81. doi: 10.1084/jem.20120340
3. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. *Immunity.* (2013) 38:792–804. doi: 10.1016/j.jimmuni.2013.04.004
4. Han CZ, Ravichandran KS. Metabolic connections during apoptotic cell engulfment. *Cell.* (2011) 147:1442–5. doi: 10.1016/j.cell.2011.12.006
5. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells *in vitro* inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. *J Clin Invest.* (1998) 101:890–8. doi: 10.1172/JCI1112
6. Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. *Nature.* (1997) 390:350–1. doi: 10.1038/37022
7. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. *Nat Rev Immunol.* (2007) 7:678–89. doi: 10.1038/nri2156
8. Pace JL, Russell SW, Schreiber RD, Altman A, Katz DH. Macrophage activation: priming activity from a T-cell hybridoma is attributable to interferon-gamma. *Proc Natl Acad Sci USA.* (1983) 80:3782–6. doi: 10.1073/pnas.80.12.3782
9. Nathan CF. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. *J Exp Med.* (1983) 158:670–89. doi: 10.1084/jem.158.3.670
10. Stein M. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. *J Exp Med.* (1992) 176:287–92. doi: 10.1084/jem.176.1.287
11. Doyle AG, Herbein G, Montaner LJ, Minty AJ, Caput D, Ferrara P, et al. Interleukin-13 alters the activation state of murine macrophages *in vitro*: Comparison with interleukin-4 and interferon- γ . *Eur J Immunol.* (1994) 24:1441–5. doi: 10.1002/eji.1830240630
12. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. *F1000Prime Rep.* (2014) 6:1–13. doi: 10.12703/P6-13
13. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. *Nat Rev Immunol.* (2008) 8:958–69. doi: 10.1038/nri2448
14. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. *Genes Dev.* (1995) 9:1586–97. doi: 10.1101/gad.9.13.1586
15. Chen ZJ, Parent L, Maniatis T. Site-Specific phosphorylation of I κ B α by a novel ubiquitination-dependent protein kinase activity. *Cell.* (1996) 84:853–62. doi: 10.1016/S0092-8674(00)81064-8
16. Darnell J, Kerr I, Stark G. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. *Science.* (1994) 264:1415–21. doi: 10.1126/science.8197455
17. Shuai K, Ziemiczki A, Wilks AF, Harpur AG, Sadowski HB, Gilman MZ, et al. Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. *Nature.* (1993) 366:580–3. doi: 10.1038/366580a0
18. Bode JG, Ehling C, Häussinger D. The macrophage response towards LPS and its control through the p38MAPK-STAT3 axis. *Cell Signal.* (2012) 24:1185–94. doi: 10.1016/j.cellsig.2012.01.018
19. Huang SC-C, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. *Immunity.* (2016) 45:817–30. doi: 10.1016/j.jimmuni.2016.09.016

20. von Knethen A, Callsen D, Brüne B. NF- κ B and AP-1 activation by nitric oxide attenuated apoptotic cell death in RAW 264.7 macrophages. *Mol Biol Cell*. (1999) 10:361–72. doi: 10.1091/mbc.10.2.361
21. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. *J Pathol*. (2013) 229:176–85. doi: 10.1002/path.4133
22. de Groot AE, Pienta KJ. Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. *Oncotarget*. (2018) 9:20908–27 doi: 10.18632/oncotarget.24556
23. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. *Microcirculation*. (2016) 23:95–121. doi: 10.1111/micc.12259
24. Roszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. *Mediators Inflamm*. (2015) 2015:1–16. doi: 10.1155/2015/816460
25. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili S-A, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. *J Cell Physiol*. (2018) 233:6425–40. doi: 10.1002/jcp.26429
26. Racker E. Bioenergetics and the problem of tumor growth. *Am Sci*. (1972) 60:56–63.
27. Warburn O, Dickens F. The metabolism of tumors. *Am J Med Sci*. (1931) 182:123. doi: 10.1097/00000441-193107000-00022
28. Hard GC. Some biochemical aspects of the immune macrophage. *Br J Exp Pathol*. (1970) 51:97–105
29. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages. *J Biol Chem*. (2014) 289:7884–96. doi: 10.1074/jbc.M113.522037
30. Fukuzumi M, Shinomiya H, Shimizu Y, Ohishi K, Utsumi S. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT 1. *Infect Immun*. (1996) 64:108–12.
31. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1 β through HIF-1 α . *Nature*. (2013) 496:238–42. doi: 10.1038/nature11986
32. Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. *Immunity*. (2015) 42:419–30. doi: 10.1016/j.immuni.2015.02.005
33. Meiser J, Krämer L, Sapcariu SC, Battello N, Ghelfi J, D'Herouel AF, et al. Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. *J Biol Chem*. (2016) 291:3932–46. doi: 10.1074/jbc.M115.676817
34. Funk JL, Feingold KR, Moser AH, Grunfeld C. Lipopolysaccharide stimulation of RAW 264.7 macrophages induces lipid accumulation and foam cell formation. *Atherosclerosis*. (1993) 98:67–82. doi: 10.1016/0021-9150(93)90224-I
35. Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, et al. Mechanisms of triglyceride accumulation in activated macrophages. *J Leukoc Biol*. (2012) 92:829–39. doi: 10.1189/jlb.1111537
36. Jackson SH, Gallin JL, Holland SM. The p47phox mouse knock-out model of chronic granulomatous disease. *J Exp Med*. (1995) 182:751–8. doi: 10.1084/jem.182.3.751
37. Yi L, Liu Q, Orandle MS, Sadiq-Ali S, Koontz SM, Choi U, et al. p47phox directs murine macrophage cell fate decisions. *Am J Pathol*. (2012) 180:1049–58. doi: 10.1016/j.ajpath.2011.11.019
38. Winkler BS, DeSantis N, Solomon F. Multiple NADPH-producing pathways control glutathione (GSH) content in retina. *Exp Eye Res*. (1986) 43:829–47. doi: 10.1016/S0014-4835(86)80013-6
39. Michl J. 2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages II. Dissociation of the inhibitory effects of 2-deoxyglucose on phagocytosis and ATP generation. *J Exp Med*. (1976) 144:1484–93. doi: 10.1084/jem.144.6.1484
40. Pavlou S, Wang L, Xu H, Chen M. Higher phagocytic activity of thioglycollate-elicited peritoneal macrophages is related to metabolic status of the cells. *J Inflamm*. (2017) 14:4. doi: 10.1186/s12950-017-0151-x
41. Wang T, Liu H, Lian G, Zhang S-Y, Wang X, Jiang C. HIF1 α -induced glycolysis metabolism is essential to the activation of inflammatory macrophages. *Mediators Inflamm*. (2017) 2017:1–10. doi: 10.1155/2017/9029327
42. van Uden P, Kenneth NS, Rocha S. Regulation of hypoxia-inducible factor-1 α by NF- κ B. *Biochem J*. (2008) 412:477–84. doi: 10.1042/BJ20080476
43. Joshi S, Singh AR, Zulcic M, Durden DL. A macrophage-dominant PI3K isoform controls hypoxia-induced HIF1 α and HIF2 α stability and tumor growth, angiogenesis, and metastasis. *Mol Cancer Res*. (2014) 12:1520–31. doi: 10.1158/1541-7786.MCR-13-0682
44. Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. *Proc Natl Acad Sci USA*. (2012) 109:9517–22. doi: 10.1073/pnas.1119038109
45. Cheng S-C, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. mTOR- and HIF-1-mediated aerobic glycolysis as metabolic basis for trained immunity. *Science*. (2014) 345:1250684. doi: 10.1126/science.1250684
46. Blouin CC. Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1. *Blood*. (2003) 103:1124–30. doi: 10.1182/blood-2003-07-2427
47. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF- κ B links innate immunity to the hypoxic response through transcriptional regulation of HIF-1 α . *Nature*. (2008) 453:807–11. doi: 10.1038/nature06905
48. Kelley TW, Graham MM, Doseff AI, Pomerantz RW, Lau SM, Ostrowski MC, et al. Macrophage colony-stimulating factor promotes cell survival through Akt/protein kinase B. *J Biol Chem*. (1999) 274:26393–8. doi: 10.1074/jbc.274.37.26393
49. Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. *J Immunol*. (2017) 198:1006–14. doi: 10.4049/jimmunol.1601515
50. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1 α transcriptional complex. *Nature*. (2007) 450:736–40. doi: 10.1038/nature06322
51. Semenza GL, Jiang B-H, Leung SW, Passantino R, Concodet J-P, Maire P, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. *J Biol Chem*. (1996) 271:32529–37. doi: 10.1074/jbc.271.51.32529
52. Kim J, Tchernyshyov I, Semenza GL, Dang C V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. *Cell Metab*. (2006) 3:177–85. doi: 10.1016/j.cmet.2006.02.002
53. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, et al. Pyruvate kinase M2 regulates Hif-1 α activity and IL-1 β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. *Cell Metab*. (2015) 21:65–80. doi: 10.1016/j.cmet.2014.12.005
54. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. *Nature*. (2008) 452:230–3. doi: 10.1038/nature06734
55. Hitosugi T, Kang S, Vander Heiden MG, Chung T-W, Elf S, Lythgoe K, et al. Tyrosine phosphorylation inhibits PKM2 to promote the warburg effect and tumor growth. *Sci Signal*. (2009) 2:ra73. doi: 10.1126/scisignal.2004431
56. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. *Semin Cancer Biol*. (2005) 15:300–8. doi: 10.1016/j.semcan.2005.04.009
57. Baardman J, Verberk SGS, Prange KHM, van Weeghel M, van der Velden S, Ryan DG, et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. *Cell Rep*. (2018) 25:2044–52.e5. doi: 10.1016/j.celrep.2018.10.092
58. Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. *Cell Metab*. (2012) 15:813–26. doi: 10.1016/j.cmet.2012.04.023

59. Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ, et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. *J Immunol.* (2015) 194:6082–9. doi: 10.4049/jimmunol.1402469
60. Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A, Folmes CD, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. *Cell Metab.* (2018) 28:463–75.e4. doi: 10.1016/j.cmet.2018.08.012
61. Mills EL, O'Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. *Eur J Immunol.* (2016) 46:13–21. doi: 10.1002/eji.201445427
62. Rodriguez-Prados J-C, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. *J Immunol.* (2010) 185:605–14. doi: 10.4049/jimmunol.0901698
63. Carneiro FRG, Lepelley A, Seeley JJ, Hayden MS, Ghosh S. An essential role for ECSIT in mitochondrial complex I assembly and mitophagy in macrophages. *Cell Rep.* (2018) 22:2654–66. doi: 10.1016/j.celrep.2018.02.051
64. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. *Nature.* (2011) 472:476–80. doi: 10.1038/nature09973
65. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. *Cell.* (2016) 167:457–70.e13. doi: 10.1016/j.cell.2016.08.064
66. Ray PD, Huang B-W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. *Cell Signal.* (2012) 24:981–90. doi: 10.1016/j.cellsig.2012.01.008
67. Huizinga T, Nigrovic P, Ruderman E, Schulze-Koops H. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS): commentary. *Int J Adv Rheumatol.* (2011) 208:519–33. doi: 10.1084/jemr.20102049
68. Kietzmann T, Görlich A. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. *Semin Cell Dev Biol.* (2005) 16:474–86. doi: 10.1016/j.semcd.2005.03.010
69. McGettrick AF, O'Neill LAJ. How metabolism generates signals during innate immunity and inflammation. *J Biol Chem.* (2013) 288:22893–8. doi: 10.1074/jbc.R113.486464
70. Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT. Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. *Mol Cell Biol.* (2008) 28:718–31. doi: 10.1128/MCB.01338–07
71. Infantino V, Iacobazzi V, Menga A, Avantaggiati ML, Palmieri F. A key role of the mitochondrial citrate carrier (SLC25A1) in TNF α - and IFN γ -triggered inflammation. *Biochim Biophys Acta–Gene Regul Mech.* (2014) 1839:1217–25. doi: 10.1016/j.bbagr.2014.07.013
72. Palmieri F. The mitochondrial transporter family (SLC25): physiological and pathological implications. *Pflügers Arch Eur J Physiol.* (2004) 447:689–709. doi: 10.1007/s00424-003-1099-7
73. Yalcin A, Telang S, Clem B, Chesney J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. *Exp Mol Pathol.* (2009) 86:174–9. doi: 10.1016/j.yexmp.2009.01.003
74. Martin DB, Vagelos PR. The mechanism of tricarboxylic acid cycle regulation of fatty acid. *J Biol Chem.* (1962) 237:1787–92.
75. Iacobazzi V, Infantino V, Castegna A, Menga A, Palmieri EM, Convertini P, et al. Mitochondrial carriers in inflammation induced by bacterial endotoxin and cytokines. *Biol Chem.* (2017) 398:303–17. doi: 10.1515/hsz-2016-0260
76. Newsholme P, Gordon S, Newsholme EA. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. *Biochem J.* (1987) 242:631–6. doi: 10.1042/bj2420631
77. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: A central metabolite and second messenger. *Cell Metab.* (2015) 21:805–21. doi: 10.1016/j.cmet.2015.05.014
78. Infantino V, Iacobazzi V, Palmieri F, Menga A. ATP-citrate lyase is essential for macrophage inflammatory response. *Biochim Biophys Res Commun.* (2013) 440:105–11. doi: 10.1016/j.bbrc.2013.09.037
79. Infantino V, Convertini P, Cucci L, Panaro MA, Di Noia MA, Calvello R, et al. The mitochondrial citrate carrier: a new player in inflammation. *Biochem J.* (2011) 438:433–6. doi: 10.1042/BJ20111275
80. Palmieri EM, Spera I, Menga A, Infantino V, Porcelli V, Iacobazzi V, et al. Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation. *Biochim Biophys Acta - Bioenerg.* (2015) 1847:729–38. doi: 10.1016/j.bbabi.2015.04.009
81. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. *Nat Rev Mol Cell Biol.* (2014) 15:536–50. doi: 10.1038/nrm3841
82. Weller KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. *Science.* (2009) 324:1076–80. doi: 10.1126/science.1164097
83. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. *Science.* (2010) 327:1004–7. doi: 10.1126/science.1179687
84. Greene WC, Chen L-F. Regulation of NF- κ B action by reversible acetylation. In: *Reversible Protein Acetylation*. Vol. 259, Novartis Foundation, p. 208–22. doi: 10.1002/0470862637.ch15
85. Wang B, Rao Y-H, Inoue M, Hao R, Lai C-H, Chen D, et al. Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. *Nat Commun.* (2014) 5:3479. doi: 10.1038/ncomms4479
86. Hu L, Yu Y, Huang H, Fan H, Hu L, Yin C, et al. Epigenetic regulation of interleukin 6 by histone acetylation in macrophages and its role in paraquat-induced pulmonary fibrosis. *Front Immunol.* (2017) 7:696. doi: 10.3389/fimmu.2016.00696
87. Covarrubias AJ, Aksoyler HI, Yu J, Snyder NW, Worth AJ, Iyer SS, et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. *Elife.* (2016) 5:e11612 doi: 10.7554/elife.11612
88. Namgaladze D, Zukunft S, Schnütgen F, Kurrel N, Fleming I, Fuhrmann D, et al. Polarization of human macrophages by interleukin-4 Does Not Require ATP-citrate lyase. *Front Immunol.* (2018) 9:2858 doi: 10.3389/fimmu.2018.02858
89. Strelko CL, Lu W, Dufort FJ, Seyfried TN, Chiles TC, Rabinowitz JD, et al. Itaconic acid is a mammalian metabolite induced during macrophage activation. *J Am Chem Soc.* (2011) 133:16386–9. doi: 10.1021/ja2070889
90. Sugimoto M, Sakagami H, Yokote Y, Onuma H, Kaneko M, Mori M, et al. Non-targeted metabolite profiling in activated macrophage secretion. *Metabolomics.* (2012) 8:624–33. doi: 10.1007/s11306-011-0353-9
91. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. *Proc Natl Acad Sci USA.* (2013) 110:7820–5. doi: 10.1073/pnas.1218599110
92. Li Y, Zhang P, Wang C, Han C, Meng J, Liu X, Xu S, Li N, Wang Q, Shi X, et al. Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species. *J Biol Chem.* (2013) 288:16225–34. doi: 10.1074/jbc.M113.454538
93. Naujoks J, Tabeling C, Dill BD, Hoffmann C, Brown AS, Kunze M, et al. IFNs modify the proteome of legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid. *PLoS Pathog.* (2016) 12:e1005408. doi: 10.1371/journal.ppat.1005408
94. McFadden BA, Purohit S. Itaconate, an isocitrate lyase directed inhibitor in *Pseudomonas* indigofera. *J Bacteriol.* (1977) 131:136–44.
95. Berg I. Inhibition of acetate and propionate assimilation by itaconate via propionyl-CoA carboxylase in isocitrate lyase-negative purple bacterium *Rhodospirillum rubrum*. *FEMS Microbiol Lett.* (2002) 216:49–54. doi: 10.1016/S0378-1097(02)00969-2
96. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. *Cell Metab.* (2016) 24:158–66. doi: 10.1016/j.cmet.2016.06.004
97. Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. *Nature.* (2018) 556:113–7. doi: 10.1038/nature25986

98. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. *Biochim Biophys Acta*. (2017) 1863:585–97. doi: 10.1016/j.bbadi.2016.11.005
99. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. *Nat Commun*. (2016) 7:11624. doi: 10.1038/ncomms11624
100. Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, et al. Electrophilic properties of itaconate and derivatives regulate the $\text{I}\kappa\text{B}\zeta$ -ATF3 inflammatory axis. *Nature*. (2018) 556:501–4. doi: 10.1038/s41586-018-0052-z
101. Ganta VC, Choi MH, Kutateladze A, Fox TE, Farber CR, Annex BH. A microRNA93-interferon regulatory factor-9-immunoresponsive Gene-1-itaconic acid pathway modulates M2-like macrophage polarization to revascularize ischemic muscle. *Circulation*. (2017) 135:2403–25. doi: 10.1161/CIRCULATIONAHA.116.025490
102. Puchalska P, Huang X, Martin SE, Han X, Patti GJ, Crawford PA. Isotope tracing untargeted metabolomics reveals macrophage polarization-state-specific metabolic coordination across intracellular compartments. *iScience*. (2018) 9:298–313. doi: 10.1016/j.isci.2018.10.029
103. Benmoussa K, Garaude J, Acín-Pérez R. How mitochondrial metabolism contributes to macrophage phenotype and functions. *J Mol Biol*. (2018) 430:3906–21. doi: 10.1016/j.jmb.2018.07.003
104. Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y, et al. Lysine succinylation and lysine malonylation in histones. *Mol Cell Proteomics*. (2012) 11:100–7. doi: 10.1074/mcp.M111.015875
105. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. *Mol Cell*. (2013) 50:919–30. doi: 10.1016/j.molcel.2013.06.001
106. Wang F, Wang K, Xu W, Zhao S, Ye D, Wang Y, et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1 β production and to prevent DSS-induced colitis in mice. *Cell Rep*. (2017) 19:2331–44. doi: 10.1016/j.celrep.2017.05.065
107. Rubic T, Lametschwandner G, Jost S, Hinteregger S, Kund J, Carballido-Perrig N, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. *Nat Immunol*. (2008) 9:1261–9. doi: 10.1038/ni.1657
108. Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, ET AL. Succinate receptor GPR91 provides a direct link between high glucose levels and rennin release in murine and rabbit kidney. *J Clin Invest*. (2008) 118:2526–34. doi: 10.1172/JC133293
109. Correa PRAV, Kruglov EA, Thompson M, Leite MF, Dranoff JA, Nathanson MH. Succinate is a paracrine signal for liver damage. *J Hepatol*. (2007) 47:262–9. doi: 10.1016/j.jhep.2007.03.016
110. Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. *Nature*. (2014) 515:431–5. doi: 10.1038/nature13909
111. Peruzzotti-Jametti L, Bernstock JD, Vicario N, Costa ASH, Kwok CK, Leonardi T, et al. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation. *Cell Stem Cell*. (2018) 22:355–68.e13. doi: 10.1016/j.stem.2018.01.020
112. Kim S, Hwang J, Xuan J, Jung YH, Cha H-S, Kim KH. Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. *PLoS ONE*. (2014) 9:e97501. doi: 10.1371/journal.pone.0097501
113. He W, Miao FJP, Lin DCH, Schwandner RT, Wang Z, Gao J, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. *Nature*. (2004) 429:188–93. doi: 10.1038/nature02488
114. Peti-Peterdi J, Kang JJ, Toma I. Activation of the renal renin-angiotensin system in diabetes—new concepts. *Nephrol Dial Transplant*. (2008) 23:3047–9. doi: 10.1093/ndt/gfn377
115. Sadagopan N, Li W, Roberds SL, Major T, Preston GM, Yu Y, et al. Circulating succinate is elevated in rodent models of hypertension and metabolic disease. *Am J Hypertens*. (2007) 20:1209–15. doi: 10.1016/j.amjhyper.2007.05.010
116. Macaulay IC, Tijssen MR, Thijssen-Timmer DC, Gusnanto A, Steward M, Burns P, et al. Comparative gene expression profiling of *in vitro* differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins. *Blood*. (2007) 109:3260–9. doi: 10.1182/blood-2006-07-036269
117. Kelly B, O'Neill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. *Cell Res*. (2015) 25:771–84. doi: 10.1038/cr.2015.68
118. Littlewood-Evans A, Sarret S, Apfel V, Loesle P, Dawson J, Zhang J, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. *J Exp Med*. (2016) 213:1655–62. doi: 10.1084/jem.20160061
119. Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial agents. *Virulence*. (2012) 3:271–9. doi: 10.4161/viru.20328
120. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. *Cell Rep*. (2016) 17:684–96. doi: 10.1016/j.celrep.2016.09.008
121. Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L, DeFreitas AA, et al. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. *Cell Host Microbe*. (2012) 12:313–23. doi: 10.1016/j.chom.2012.07.012
122. Hardbower DM, Asim M, Luis PB, Singh K, Barry DP, Yang C, et al. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. *Proc Natl Acad Sci USA*. (2017) 114:E751–60. doi: 10.1073/pnas.1614958114
123. Iniesta V, Gómez-Nieto LC, Corraliza I. The inhibition of arginase by N ω -hydroxy-l-arginine controls the growth of leishmania inside macrophages. *J Exp Med*. (2001) 193:777–84. doi: 10.1084/jem.193.6.777
124. Das P, Lahiri A, Lahiri A, Chakravortty D. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. *PLoS Pathog*. (2010) 6:e1000899. doi: 10.1371/journal.ppat.1000899
125. Wu G, Morris SM. Arginine metabolism: nitric oxide and beyond. *Biochem J*. (1998) 336:1–17. doi: 10.1042/bj3360001
126. Viola A, Bronte V. Metabolic mechanisms of cancer-induced inhibition of immune responses. *Semin Cancer Biol*. (2007) 17:309–16. doi: 10.1016/j.semcan.2007.06.005
127. Xia Y, Roman LJ, Masters BSS, Zweier JL. Inducible nitric-oxide synthase generates superoxide from the reductase domain. *J Biol Chem*. (1998) 273:22635–9. doi: 10.1074/jbc.273.35.22635
128. Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. *Nat Rev Immunol*. (2005) 5:641–54. doi: 10.1038/nri1668
129. Andrew P. Enzymatic function of nitric oxide synthases. *Cardiovasc Res*. (1999) 43:521–31. doi: 10.1016/S0008-6363(99)00115-7
130. Nathan C, Ding A. Snapshot: reactive oxygen intermediates (ROI). *Cell*. (2010) 140:951. doi: 10.1016/j.cell.2010.03.008
131. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. *J Immunol*. (2003) 170:270–8. doi: 10.4049/jimmunol.170.1.270
132. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. *Nat Med*. (2007) 13:828–35. doi: 10.1038/nm1609
133. Bronte V, Kasic T, Gri G, Gallana K, Borsiglino G, Marigo I, et al. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. *J Exp Med*. (2005) 201:1257–68. doi: 10.1084/jem.20042028
134. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. *J Exp Med*. (2011) 208:1949–62. doi: 10.1084/jem.20101956
135. Wang H-S, Guo Q, Zhang F, Cai S-H, Zhang G, Wang X-F, et al. The role of indoleamine 2,3-dioxygenase (IDO) in immune tolerance: focus on macrophage polarization of THP-1 cells. *Cell Immunol*. (2014) 289:42–8. doi: 10.1016/j.cellimm.2014.02.005
136. Yue Y, Huang W, Liang J, Guo J, Ji J, Yao Y, et al. IL4I1 is a novel regulator of M2 macrophage polarization that can inhibit T cell activation via L-tryptophan and arginine depletion and IL-10 production. *PLoS ONE*. (2015) 10:e0142979. doi: 10.1371/journal.pone.0142979
137. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. *J Exp Med*. (1999) 189:1363–72. doi: 10.1084/jem.189.9.1363

138. Moffett JR, Namboodiri MA. Tryptophan and the immune response. *Immunol Cell Biol*. (2003) 81:247–65. doi: 10.1046/j.1440-1711.2003.t01-1-01177.x
139. Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. *Cancer Res*. (2012) 72:5435–40. doi: 10.1158/0008-5472.CAN-12-0569
140. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. *Nature*. (2011) 478:197–203. doi: 10.1038/nature10491
141. Stephens GL, Wang Q, Swerdlow B, Bhat G, Kolbeck R, Fung M. Kynurenone 3-monoxygenase mediates inhibition of Th17 differentiation via catabolism of endogenous aryl hydrocarbon receptor ligands. *Eur J Immunol*. (2013) 43:1727–34. doi: 10.1002/eji.201242779
142. Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, et al. The TSC-mTOR pathway regulates macrophage polarization. *Nat Commun*. (2013) 4:2834. doi: 10.1038/ncomms3834
143. Liu P-S, Wang H, Li X, Chao T, Teav T, Christen S, et al. α -ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. *Nat Immunol*. (2017) 18:985–94. doi: 10.1038/ni.3796
144. Palmieri EM, Menga A, Martín-Pérez R, Quinto A, Riera-Domingo C, De Tullio G, et al. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. *Cell Rep*. (2017) 20:1654–66. doi: 10.1016/j.celrep.2017.07.054
145. Mazzone M, Menga A, Castegna A. Metabolism and TAM functions—it takes two to tango. *FEBS J*. (2018) 285:700–16. doi: 10.1111/febs.14295
146. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. *Circ Res*. (2016) 118:653–67. doi: 10.1161/CIRCRESAHA.115.306256
147. Huang SC-C, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. *Nat Immunol*. (2014) 15:846–55. doi: 10.1038/ni.2956
148. Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP. *Nat Rev Immunol*. (2017) 17:608–20. doi: 10.1038/nri.2017.66
149. O’Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. *Nat Rev Immunol*. (2016) 16:553–65. doi: 10.1038/nri.2016.70
150. Im S-S, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG, et al. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. *Cell Metab*. (2011) 13:540–9. doi: 10.1016/j.cmet.2011.04.001
151. Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, Pei L, et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. *Cell*. (2004) 119:299–309. doi: 10.1016/j.cell.2004.09.032
152. Posokhova EN, Khoshchenko OM, Chasovskikh MI, Pivovarova EN, Dushkin MI. Lipid synthesis in macrophages during inflammation *in vivo*: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors. *Biochemistry (Moscow)*. (2008) 73:296–304. doi: 10.1134/S0006297908030097
153. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. *Nat Immunol*. (2009) 10:241–7. doi: 10.1038/ni.1703
154. Zelcer N. Liver X receptors as integrators of metabolic and inflammatory signaling. *J Clin Invest*. (2006) 116:607–14. doi: 10.1172/JCI27883
155. Hong C, Walczak R, Dhamko H, Bradley MN, Marathe C, Boyadjian R, et al. Constitutive activation of LXR in macrophages regulates metabolic and inflammatory gene expression: identification of ARL7 as a direct target. *J Lipid Res*. (2011) 52:531–9. doi: 10.1194/jlr.M010686
156. Spann NJ, Glass CK. Sterols and oxysterols in immune cell function. *Nat Immunol*. (2013) 14:893–900. doi: 10.1038/ni.2681
157. Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. *Sci Signal*. (2009) 2:re3. doi: 10.1126/scisignal.272re3
158. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPAR γ controls alternative activation and improves insulin resistance. *Nature*. (2007) 447:1116–20. doi: 10.1038/nature05894
159. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1 β attenuate macrophage-mediated inflammation. *Cell Metab*. (2006) 4:13–24. doi: 10.1016/j.cmet.2006.05.011
160. Kerner J, Hoppel C. Fatty acid import into mitochondria. *Biochim Biophys Acta Mol Cell Biol Lipids*. (2000) 1486:1–17. doi: 10.1016/S1388-1981(00)00044-5
161. Malandriño MI, Fucho R, Weber M, Calderon-Dominguez M, Mir JE, Valcarcel L, et al. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. *Am J Physiol Metab*. (2015) 308:E756–69. doi: 10.1152/ajpendo.00362.2014
162. Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, Wolfgang MJ, et al. Fatty acid oxidation in macrophage polarization. *Nat Immunol*. (2016) 17:216–7. doi: 10.1038/ni.3366
163. Goetzman ES, Prochownik E V. The role for Myc in coordinating glycolysis, oxidative phosphorylation, glutaminolysis, and fatty acid metabolism in normal and neoplastic tissues. *Front Endocrinol (Lausanne)*. (2018) 9:129. doi: 10.3389/fendo.2018.00129
164. Na YR, Je S, Seok SH. Metabolic features of macrophages in inflammatory diseases and cancer. *Cancer Lett*. (2018) 413:46–58. doi: 10.1016/j.canlet.2017.10.044
165. Chawla A, Nguyen KD, Goh YPS. Macrophage-mediated inflammation in metabolic disease. *Nat Rev Immunol*. (2011) 11:738–49. doi: 10.1038/nri3071
166. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. *J Clin Invest*. (2003) 112:1796–808. doi: 10.1172/JCI200319246
167. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. *J Clin Invest*. (2007) 117:175–84. doi: 10.1172/JCI29881
168. Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. *Diabetes*. (2008) 57:3239–46. doi: 10.2337/db08-0872
169. Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. *Cell Metab*. (2014) 20:614–25. doi: 10.1016/j.cmet.2014.08.010
170. Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y, Mittelstrass K, Polonikov A, Prehn C, Römisch-Margl W, et al. Childhood Obesity Is Associated with Changes in the Serum Metabolite Profile. *Obes Facts*. (2012) 5:660–670. doi: 10.1159/000343204
171. Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. *Circulation*. (2012) 125:2222–31. doi: 10.1161/CIRCULATIONAHA.111.067827
172. Ren W, Xia Y, Chen S, Wu G, Bazer FW, Zhou B, et al. Glutamine metabolism in macrophages: a novel target for obesity/Type 2 diabetes. *Adv Nutr*. (2019) 10:321–30. doi: 10.1093/advances/nmy084
173. Mardinoglu A, Kampf C, Asplund A, Fagerberg L, Hallström BM, Edlund K, et al. Defining the human adipose tissue proteome to reveal metabolic alterations in obesity. *J Proteome Res*. (2014) 13:5106–19. doi: 10.1021/pr500586e
174. van Diepen JA, Robben JH, Hooiveld GJ, Carmone C, Alsady M, Boutens L, et al. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. *Diabetologia*. (2017) 60:1304–13. doi: 10.1007/s00125-017-4261-z
175. Elliott P, Posma JM, Chan Q, Garcia-Perez I, Wijeyesekera A, Bictash MD, et al. Urinary metabolic signatures of human adiposity. *Sci Transl Med*. (2015) 7:285ra62. doi: 10.1126/scitranslmed.aaa5680
176. Liu D, Chang C, Lu N, Wang X, Lu Q, Ren X, et al. Comprehensive proteomics analysis reveals metabolic reprogramming of tumor-associated macrophages stimulated by the tumor microenvironment. *J Proteome Res*. (2017) 16:288–97. doi: 10.1021/acs.jproteome.6b00604
177. Arts RJW, Plantinga TS, Tuit S, Ulas T, Heinrichs B, Tesselaar M, et al. Transcriptional and metabolic reprogramming induce an inflammatory phenotype in non-medullary thyroid carcinoma-induced macrophages. *Oncotarget*. (2016) 5:e1229725. doi: 10.1080/2162402X.2016.1229725

178. Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. *Cell Metab.* (2016) 24:701–15. doi: 10.1016/j.cmet.2016.09.008
179. Guzik TJ, Cosentino F. Epigenetics and immunometabolism in diabetes and aging. *Antioxid Redox Signal.* (2018) 29:257–74. doi: 10.1089/ars.2017.7299
180. Hotamisligil GS. Foundations of immunometabolism and implications for metabolic health and disease. *Immunity.* (2017) 47:406–20. doi: 10.1016/j.immuni.2017.08.009
181. Singer K, Cheng W-C, Kreutz M, Ho P-C, Siska PJ. Immunometabolism in cancer at a glance. *Dis Model Mech.* (2018) 11:dmm034272. doi: 10.1242/dmm.034272

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Viola, Munari, Sánchez-Rodríguez, Scolaro and Castegna. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction

Katharina A. Mayer¹, Johannes Stöckl¹, Gerhard J. Zlabinger¹ and Guido A. Gualdoni^{2*}

¹ Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria, ² Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria

Viral replication is a process that involves an extremely high turnover of cellular molecules. Since viruses depend on the host cell to obtain the macromolecules needed for their proper replication, they have evolved numerous strategies to shape cellular metabolism and the biosynthesis machinery of the host according to their specific needs. Technologies for the rigorous analysis of metabolic alterations in cells have recently become widely available and have greatly expanded our knowledge of these crucial host-pathogen interactions. We have learned that most viruses enhance specific anabolic pathways and are highly dependent on these alterations. Since uninfected cells are far more plastic in their metabolism, targeting of the virus-induced metabolic alterations is a promising strategy for specific antiviral therapy and has gained great interest recently. In this review, we summarize the current advances in our understanding of metabolic adaptations during viral infections, with a particular focus on the utilization of this information for therapeutic application.

OPEN ACCESS

Edited by:

Marianne Boes,
Utrecht University, Netherlands

Reviewed by:

Binod Kumar,

Rosalind Franklin University of
Medicine and Science, United States
Philippe Georgel,
Université de Strasbourg, France

*Correspondence:

Guido A. Gualdoni
guido.gualdoni@meduniwien.ac.at

Specialty section:

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

Received: 14 May 2019

Accepted: 19 June 2019

Published: 03 July 2019

Citation:

Mayer KA, Stöckl J, Zlabinger GJ and Gualdoni GA (2019) Hijacking the Supplies: Metabolism as a Novel Facet of Virus-Host Interaction. *Front. Immunol.* 10:1533.
doi: 10.3389/fimmu.2019.01533

CELLULAR METABOLISM: THE NOVEL FRONTIER OF HOST-PATHOGEN INTERACTION

Viruses depend on the host cell to obtain the macromolecules and biosynthesis machinery required for their replication. In order to ensure the undisturbed supply of these elements, viruses have evolved a plethora of strategies to shape host-cell metabolism according to their specific needs. The simultaneous course of both the activation of host cell defense mechanisms and the high biomolecular turnover associated with virion production results in a highly anabolic cellular state. This is often accompanied by upregulation of the ingestion of an extracellular carbon source (e.g., glucose or glutamine) and a redirection of these carbon supplies to metabolic pathways crucial for viral replication, such as lipogenesis and nucleotide synthesis. However, not only do viruses shape host-cell metabolism in order to obtain supplies for virion production, but they also induce a reorganization of the cellular membrane and biosynthesis machinery, which is accompanied by alterations in lipid metabolism, as we shall explain later.

The first insights into the dependence of viruses on certain carbon sources were gained decades ago, when researchers focused on investigating the consequences of glucose or glutamine deprivation on viral replication (1–6). However, it was the availability of mass spectrometry (MS)-based analysis of the metabolome that enabled fast progress toward an in-depth understanding of the interaction between viruses and host-cell metabolism. Munger et al. pioneered the field in 2006, when

they showed that human cytomegalovirus (HCMV) not only was highly dependent on extracellular carbon but also induced a plethora of alterations in host-cell metabolism that are required for proper replication (7). MS-based assessment of the host cell metabolome and carbon flux has since then become widely available and has enabled the investigation of host-pathogen interactions in detail. Furthermore, the acquired knowledge on these processes has enabled the establishment of several antiviral strategies, and the exploitation of the novel metabolic insights in terms of therapy has only just begun. Herein, we review the recent progress made toward our understanding of the interactions between viruses and host-cell metabolism, and we will also elaborate on strategies that might result in targeted antiviral therapy.

GLUCOSE AND GLUTAMINE: VIRUS-INDUCED FEEDING OF THE TRICARBOXYLIC ACID CYCLE

Under homeostatic and aerobic conditions, cells maintain their energy production mainly by aerobic glycolysis, which is followed by feeding pyruvate into the tricarboxylic acid (TCA) cycle and subsequent utilization of reduced molecules in oxidative phosphorylation. However, under anaerobic conditions, pyruvate is converted to lactate, which is then eliminated by efflux from the cell. Aside from anaerobic conditions, this phenomenon can often be observed even under normal oxygen conditions, as was first described in cancer cells by Otto Warburg and has thus been termed the Warburg effect (8). Under these circumstances, the intermediates of the TCA cycle are mainly fed into anabolic processes, such as lipogenesis. Cells infected by certain viruses appear to adopt similar metabolic alterations in order to cope with the high anabolic demands of virion production. Nonetheless, there are highly unique patterns of virus-induced reshaping of host cell metabolic processes and the mode of manipulation appears to be different between DNA and RNA viruses.

DNA Viruses

Members of the *Herpesviridae* are probably the best-studied group of viruses in terms of their impact on cellular metabolism. Herpes simplex virus-1 (HSV-1) was among the first viruses for which a dependency on extracellular glucose was shown. Deprivation of glucose from the medium had detrimental effects on virion production, whereas glutamine appeared to be more dispensable for the replication of this virus (2). Later studies confirmed the dependency of HSV-1 on glucose, as the glycolysis inhibitor 2-deoxyglucose (2-DG) also impaired viral replication (4, 9). 2-DG is a glucose analog that impairs the function of phosphoglucose isomerase and thus results in both an inhibition of glycolysis and the processing of glucose toward the TCA cycle (in contrast to the more downstream inhibitor oxamate that inhibits only anaerobic glycolysis). Abrantes et al. found that HSV-1 increased the glucose uptake, lactate efflux, and ATP content of HSV-1 infected cells, which was accompanied by an activation and enhanced expression of phosphofructokinase-1,

a rate-limiting enzyme in glycolysis (10). In contrast, using a metabolomic screening, Vastag et al. found that glycolysis was not markedly induced by HSV-1, and the virus instead triggered anaplerotic (glutamine-dependent) feeding of the TCA cycle and an enhancement of pyrimidine synthesis (11). A possible explanation could be that the uptake of glucose mainly shifted to nucleotide synthesis pathways rather than glycolysis or the TCA cycle, which was further underlined by the increase in pentose phosphate pathway intermediates in the metabolomic analysis and would explain the high susceptibility of this virus to nucleotide analog treatment (11).

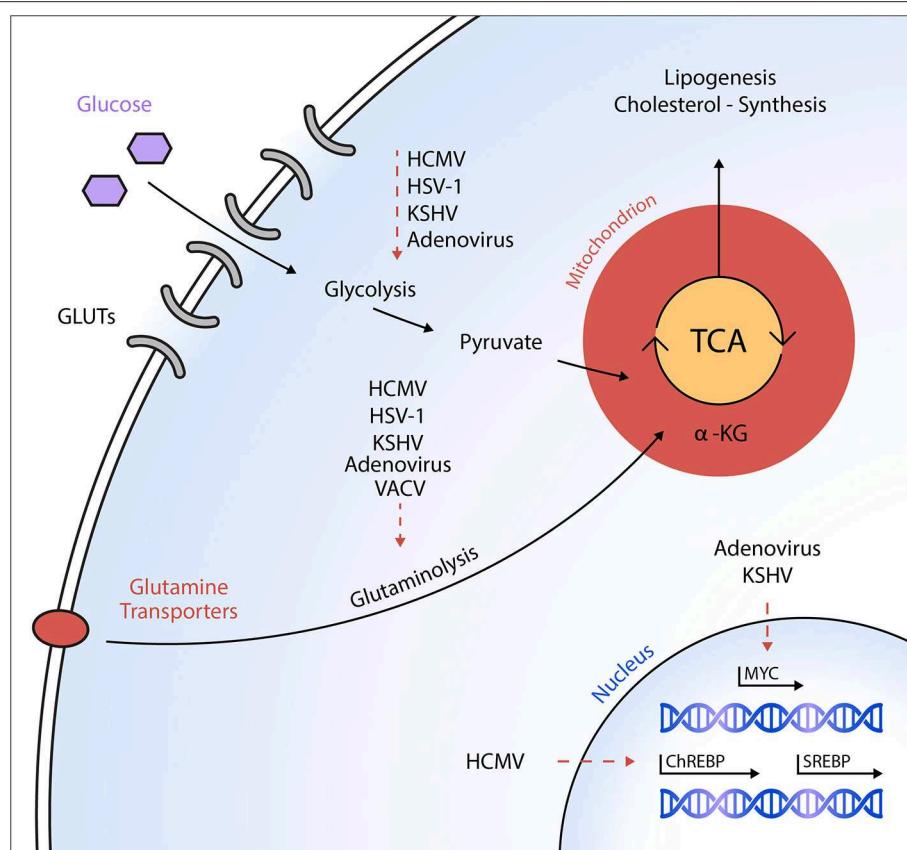
HCMV, another important member of the *Herpesviridae* family, causes significant morbidity in immunosuppressed individuals (12–14). Since the metabolic alterations caused by this virus have already been extensively reviewed recently (15), we will only briefly discuss the main findings in order to better delineate the concepts of differential metabolic alterations by viruses. Early investigations had hinted toward a manipulation of host-cell metabolism by HCMV, where it was shown that glucose uptake was enhanced in infected cells (5). In the first metabolomic study of virus-infected cells conducted by Munger et al. the authors were able to show that metabolites from glycolysis, TCA cycle, and pyrimidine pathways were increased upon infection, which was accompanied by the upregulation of enzymes involved in these pathways (7). Further carbon flux analysis delineated how an increase in glucose uptake results in a fast processing through glycolysis and the TCA cycle toward fatty acid (FA) biosynthesis (16). The expansion of pyrimidine metabolite pools was found to be of particular importance for the correct glycosylation of viral proteins, as pyrimidine feeds into glycosylation pathways via UDP-sugars (17). Mechanistically, early HCMV gene expression was shown to be responsible for the changes in glycolytic flux and appeared to be dependent on Ca^{++} signaling, since calmodulin-dependent kinase kinase (CaMKK) inhibition abolished the HCMV-induced metabolic alterations (9). Subsequent research has highlighted a role of AMP-activated protein kinase (AMPK) in the replication cycle of HCMV, since this kinase is activated upon infection and its inhibition has detrimental effects on viral replication (18, 19). Since CaMKK is known to be upstream of AMPK, and blocking of CaMKK abolished the HCMV-induced AMPK activation, the authors proposed a CaMKK-AMPK axis in the mediation of HCMV's metabolic effects. Other groups have investigated the role of glucose transporters (GLUTs) in HCMV infection and found upregulation of GLUT4 expression, but downregulation of GLUT1, following infection (20). These changes in GLUT expression were later shown to be dependent on the carbohydrate-response element-binding protein (ChREBP), which is targeted in HCMV infection (21). Apart from the apparent need for adequate glucose supply, HCMV also depends on extracellular glutamine as a carbon source (22). Deprivation of glutamine from the extracellular medium dampened high-titer virus replication, which could be restored by the addition of TCA cycle metabolites, thus pointing toward an anaplerotic utilization of glutamine in HCMV infection (22). Recent research has additionally established a role of the viral protein UL38 in the upregulation of both glucose

and glutamine (and other amino acid) consumption, which was mediated by the modulation of tuberous sclerosis complex 2 (TSC2) but was mTOR independent (23).

Epstein-Barr virus (EBV) causes infectious mononucleosis, and its latent infection is associated with the development of various malignant diseases. Latently infected cells were found to enhance both glucose and glutamine uptake and to have deregulated glycolysis (24, 25). These changes were described to have been induced by EBV's latent membrane protein 1 (LMP1) and were associated with fibroblast growth factor receptor 1 (FGFR1) signaling (24, 25). Such metabolic alterations have been speculated to play a role in the long-term cancerogenic transformation of the latently infected cells (25).

Another virus of the *Herpesviridae* family, Kaposi's sarcoma-associated herpesvirus (KSHV), was also shown to broadly interact with host-cell metabolism in a quite sophisticated manner. Sanchez et al. found that glucose and glutamine were important for early viral replication and gene translation, respectively (26, 27). Furthermore, FA synthesis was shown to be crucial for optimal virus assembly and maturation (27, 28). Yogeve et al. found that viral-encoded microRNAs were important for inducing the alterations in glucose metabolism, by repressing the expression of the metabolic regulator genes *EGLN2* (encoding Egl nine homolog 2) and *HSPA9* (encoding Stress-70 protein, mitochondrial), which then results in increased glycolysis and GLUT1 expression (29). Additionally, recent evidence suggests that KSHV-transformed cells critically depend on extracellular glutamine and asparagine to enable α -nitrogen synthesis that fuels nucleotide synthesis (30). Accordingly, expression of enzymes engaged in glutamine metabolism including glutaminase, glutamate dehydrogenase 1, and glutamic-oxaloacetic transaminase 2 were needed to support cell proliferation in KSHV-transformed cancer cells (30). Supporting this evidence, the research group of Chandran was able to demonstrate that both *de-novo* and latent KSHV infection of endothelial cells and B cells induces glutaminase expression, which was found to be partly c-Myc dependent. Furthermore, the virus triggers extracellular glutamate secretion, the breakdown product of glutaminase-mediated enzymatic degradation of glutamine (31). The authors proposed that glutamate may act as an autocrine and paracrine growth factor during the course of KSHV-induced oncogenic transformation, as blockade of glutamate secretion or inhibition of metabotropic glutamate receptors attenuated KSHV-infected cell proliferation (31). Other important targets within the host cell that shape the KSHV anti-viral response and/or KSHV-induced cell proliferation include HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1) (32) and heme oxygenase-1 (33).

The group of Christofk has performed pioneering work toward our better understanding of adenovirus-induced host cell reprogramming and particularly in the mechanistic basis of virus-metabolome interactions. They were able to show that the viral product E4ORF1 localizes to the nucleus and binds the transcription factor Myc to induce the transcription of a number of glycolytic genes, resulting in enhanced glycolytic pathway activity and nucleotide production (34). Later, they showed how Myc regulated glutamine metabolism in adenovirus-infected


cells and that glutaminase was a critical enzyme for adenovirus replication, which was also true for HSV-1 and influenza A (35). Coherently, inhibition of glutaminase by CB-839 impaired adenovirus, HSV-1, and influenza A replication (35).

All DNA viruses discussed so far induce glycolysis and/or increase glucose uptake in the course of infection. However, an exception to this is the vaccinia virus (VACV). Metabolomic studies have shown that although the virus does not affect glycolytic flux, it is highly dependent on glutamine as a carbon source for feeding into the TCA cycle (36, 37) (Figure 1). Further studies showed that the viral protein C16 might be responsible for these effects through the stabilization of hypoxia-inducible factor 1-alpha (HIF-1 α) (38).

RNA Viruses

In contrast to the large DNA viruses discussed above, we found a markedly different mode of metabolism manipulation by the small RNA virus rhinovirus (RV), which belongs to the *Picornaviridae* family and is the causative agent of the common cold. Similar to other viruses, we found an enhancement of glucose uptake and the virus was dependent on both extracellular glucose and glutamine for optimal viral replication (39). However, the amplification of glucose uptake was detectable as fast as 1.5 h upon infection, which ruled out a transcriptional control of this process. Indeed, we found the enhanced uptake to be reversible by phosphoinositide 3-kinase (PI3K) inhibition, suggesting a role of this pathway in mediating RV's effects. In contrast to HCMV infection, we found upregulation of GLUT1 expression upon RV infection, whereas GLUT3 expression was unaffected (Figure 2). This is in line with the concept of PI3K-driven upregulation of GLUT1, likely to mediate RV effects. Metabolomic studies revealed increased levels of metabolites associated with glycogenolysis, a process that has not been described so far in the context of viral infections. Furthermore, we found an enhancement of lipogenesis and nucleotide synthesis. The deprivation of both glutamine and glucose from the medium impaired high-titer RV replication, and the early glycolysis inhibitor 2-DG potently inhibited viral replication and reversed the RV-induced alterations of the host cell metabolome. Thus, our findings underline the potential of metabolism as a target of antiviral therapy (39).

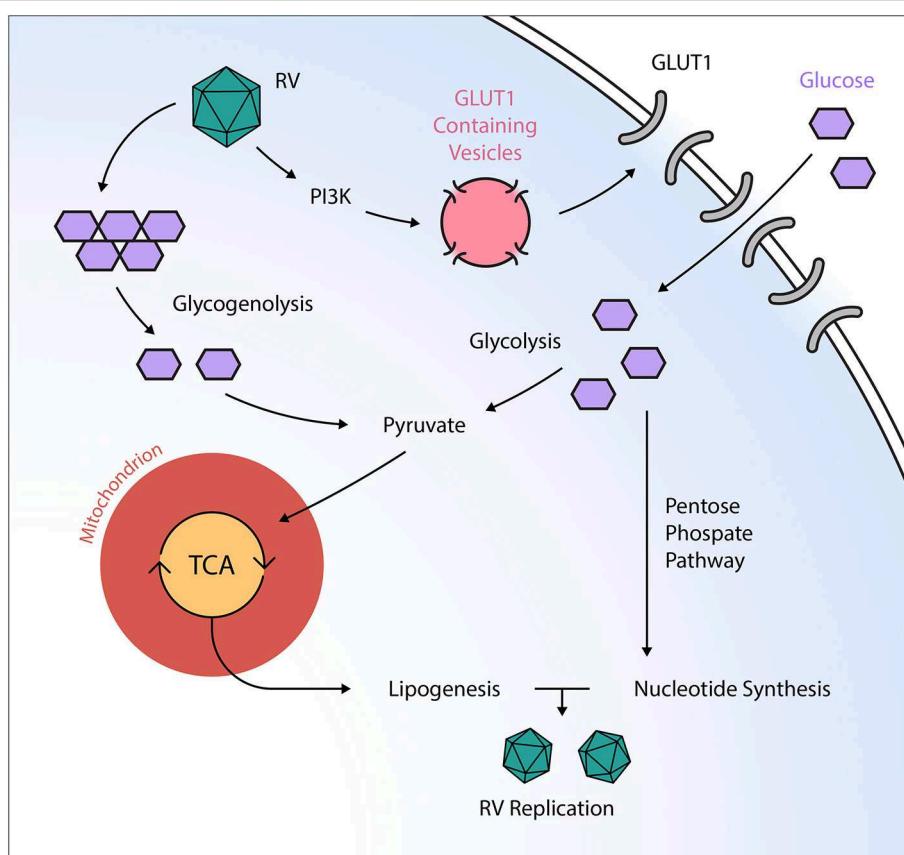

As stated above, glutaminase is of pivotal importance for influenza virus replication (35). Furthermore, the influenza virus was shown to depend on extracellular glucose, and viral replication could be impaired by treatment with the glycolysis inhibitor 2-DG (6). In contrast, recent work has found that 2-DG has detrimental effects on survival in an *in vivo* influenza infection, which was attributed to an unregulated unfolded protein response in the absence of glucose (40). These findings are particularly intriguing, as they show how a metabolism-targeting intervention that is effective on the cellular level might still be detrimental when applied systemically and could thus affect a plethora of different cell populations. These considerations need to be taken into account when designing metabolism-targeting antivirals and deciding on their route of administration.

FIGURE 1 | Schematic overview of metabolic targets of DNA viruses. Different DNA viruses activate specific anabolic metabolic programs in host cells to ultimately support viral replication and virion maturation. Dashed arrows indicate a virus-mediated activation of the respective metabolic pathway or an activation of the transcription factor, respectively. HCMV, human cytomegalovirus; HSV-1, herpes simplex virus-1; KSHV, Kaposi's sarcoma-associated herpesvirus; VACV, vaccinia virus; GLUT, glucose transporter; ChREBP, carbohydrate-response element-binding protein; SREBP, sterol regulatory element-binding protein; α -KG, α -ketoglutarate; TCA, tricarboxylic acid cycle.

Several viruses of the *Flaviviridae* family were shown to be potent modulators of host-cell metabolism. Zika virus was shown to modulate metabolism differently in human and mosquito cells; that is, whereas the infection resulted in enhanced glucose utilization through the TCA cycle in human cells, glucose utilization shifted toward the pentose phosphate pathway in mosquito cells (41). These differences resulted in a reduction of nucleotide triphosphates and AMPK-dependent cell death in human cells (41). Dengue virus (DENV) stimulates and requires glycolysis for optimal replication (42), which was found to be mediated by the induction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by the virus's non-structural protein NS1 (43). The distantly related hepatitis C virus (HCV) was also shown to increase glucose demand and enhance glycolysis in infected cells (44, 45). Interestingly, HCV appears to have evolved several strategies to target host cell glycolysis, where it was shown that the NS5A protein interacts with hexokinase 2 to increase the glycolytic flux (45), and the HCV-regulated microRNA 130a enhances the activity of pyruvate kinase, another key enzyme in glycolysis (46).

Recently, there has also been great progress in the elucidation of the metabolic requirements for human immunodeficiency virus (HIV) replication. Hollenbaugh et al. were among the first to study the metabolic alterations in HIV-1-infected cells by means of metabolomics (47). Intriguingly, they were able to show that HIV-1 induced marked changes depending on the infected cell type; that is, whereas CD4⁺ T cells exhibited increased glucose uptake and metabolite pools in the TCA cycle, the opposite was found for infected macrophages (47). Subsequent investigations have confirmed the increase in glucose uptake by infected CD4⁺ T cells (48–53). These alterations were shown to be accompanied by increases in the expression of the glucose transporters GLUT1 (51–53), GLUT3 (53), GLUT4 (53), and GLUT6 (53), and also by increases in the expression of the key glucose-processing enzyme hexokinase 1 (HK1) (53, 54). Furthermore, phospholipase D1 (PLD1) was found to be a crucial regulator of the HIV-1-induced metabolic alterations in CD4⁺ T cells (48). PLD1 further induced the activation of c-Myc, resulting in the activation of a transcriptional program that led to enhanced glucose uptake and nucleotide biosynthesis. Consequently, the pharmacologic inhibition of PLD-1 led to

FIGURE 2 | Post-transcriptional manipulation of the host cell metabolism by the RNA virus rhinovirus. Rhinovirus (RV) orchestrates an anabolic reprogramming of the host cell metabolism: RV induces PI3K-dependent trafficking of GLUT1-containing vesicles to the cell membrane, ultimately leading to increased glucose uptake. Subsequently, RV increases both glycolysis and glycogenolysis, providing TCA intermediates needed for anabolic lipogenesis. Additionally, RV infection activates the pentose phosphate pathway, resulting in elevated nucleotide levels that support viral replication. GLUT, glucose transporter; PI3K, phosphatidylinositol 3-kinase; RV, rhinovirus; TCA, tricarboxylic acid cycle.

a reduction in HIV-1 replication (48). Apart from glucose, glutamine concentrations were found to be elevated as well in HIV-1-infected CD4⁺ T cells, which was accompanied by increases in the levels of glutaminase (55). Studying the differences between the alterations induced by HIV-1 and HIV-2, Hollenbaugh et al. found that although both viruses induced similar changes in infected macrophages, there were differences observed in the levels of quinolinate, a tryptophan pathway component (56). In another important study, Hegedus et al. found marked differences between primary T cells and cell lines infected with HIV-1, thus underlining the importance of the cell system when studying cellular metabolomics (49).

Taking these findings together, we can see that most viruses have evolved strategies to alter central carbon supply pathways, such as glucose or glutamine consumption, and these manipulations were shown to be vital for high-titer virus replication. Apart from this, virion production requires a reorchestration of the entire biosynthesis machinery, a process that usually involves a reorganization of many parts of the cellular lipidome, as we review in the next section.

VIRAL CONTROL OF FATTY ACID METABOLISM

Apart from the alterations mentioned above, the FA synthesis machinery of the host cell has proven vital for viral genome replication, virion production and morphogenesis. Several viruses induce the formation of phosphatidylinositol 4-phosphate/cholesterol-enriched membranes to build viral replication complexes (VRCs) at the interface of the host endoplasmic reticulum (ER). Accumulation of sterols at the VRCs of RNA viruses allows for the production of secluded membranes that contain an optimal environment for viral replication and shield virus nucleic acids from immune surveillance (i.e., cytosolic pattern recognition receptors) (57, 58). Formation of the VRCs critically depends on reprogramming of the host's sterol synthesis via recruitment of the phosphatidylinositol-4 kinase III beta and oxysterol-binding protein (PI4KB-OSBP) axis, and disruption of cellular cholesterol homeostasis impairs viral replication (59–63). Apart from this apparent need for an adequate sterol supply, viruses

transactivate and co-opt enzymes engaged in *de novo* lipid synthesis and in the enzymatic modification of intracellular FAs.

Generally, several carbon sources can be used as substrates for FA or cholesterol synthesis, with the most important one being citrate derived from the TCA cycle. Citrate is carried across the mitochondrial membrane and cleaved into acetyl-CoA in the cytosol. Acetyl-CoA is then carboxylated by acetyl-CoA carboxylase (ACC) to yield malonyl-CoA. FA synthase (FASN) catalyzes the production of palmitic acid (C16:0) from cytosolic acetyl-CoA and malonyl-CoA in the presence of NADPH. The palmitic acid can then be further processed by elongases and desaturases into more complex FAs for use in the synthesis of cell membranes, storage in lipid droplets, or the palmitoylation of host and viral proteins. For sterol biosynthesis, two units of acetyl-CoA are metabolized to form acetoacetyl-CoA, which then enters the mevalonate pathway. On the other hand, FAs can be metabolized by catabolic beta-oxidation to yield high amounts of ATP.

Several key metabolic transcription factors activate the transcriptional program of anabolic lipid and sterol metabolism. Among those, sterol regulatory element-binding proteins (SREBPs) represent the most important family of transcription factors that transactivate lipogenic genes in order to increase FA and cholesterol syntheses. Under homeostatic conditions, SREBPs are synthesized in an inactive form and are attached to the ER membrane. Upon intracellular sterol shortage, SREBPs are proteolytically cleaved, whereupon they translocate to the nucleus and bind to sterol response elements (SREs). This binding of the activated SREBP to SRE DNA motifs governs the transcriptional control of key lipogenic metabolic enzymes, such as FASN and ACC (64–66).

DNA Viruses

As discussed above, the first evidence of metabolic reprogramming upon HCMV infection was provided by Munger et al. Metabolic flux and MS analyses revealed that HCMV infection induces a glucose flux, which directly fuels FA synthesis (7, 16). In 2011, Munger's research group was able to show that HCMV infection facilitates the mTOR-dependent proteolytic cleavage of SREBP2 (67, 68). Other research groups provided additional evidence that SREBP1 cleavage is also required for optimal metabolic reprogramming toward lipogenesis to enable high-titer HCMV replication (69, 70). In those studies, the inhibition of SREBP proteolytic cleavage and of the downstream targets of SREBP-induced lipogenesis (e.g., ACC and FASN) impaired HCMV replication (16, 67, 69). Additionally, HCMV infection induces the expression of FA elongases (ELOVLs), which in turn leads to the accumulation of long-chain and very-long-chain FAs (VLCFAs) (68, 71) that are shuttled toward viral envelope production (71, 72). Among the family of FA elongases, ELOVL7 is increased more than 150-fold upon HCMV infection in an mTOR/SREBP-dependent manner (68). Remarkably, inhibition of ELOVL7 impairs HCMV replication, and this effect can be rescued upon ELOVL7 overexpression or VLCFA supplementation (68, 71). Additionally, HCMV-infected cells upregulate low-density lipoprotein receptor-related protein 1 (LRP1) in a SREBP-dependent manner, and interference with

LRP1 disturbs the intracellular cholesterol availability (73). Besides this control of lipogenesis on a transcriptional level, HCMV can also directly increase ACC activity (67).

As mentioned above, KSHV infection induces a transformation of the host cell's glucose, glutamine, and fatty acid metabolism (27, 28). While infection-induced glycolysis and glutaminolysis prove essential for early steps of KSHV infection including genome replication, fatty acid synthesis appeared not to be involved in those processes. Instead, fatty acid synthesis is critical for virion assembly and the maturation of infectious particles, since KSHV-infected cells cultured in the presence of an ACC1 inhibitor produced only non-infectious intracellular virions (27). Other evidence provided by the same research group suggests that lipogenesis is required for KSHV survival and latent infection (28) (Figure 1).

RNA Viruses

Likewise, perturbations of cellular lipid metabolism have proven vital for the *Flavivirus* replication cycle. Both DENV and West Nile virus (WNV) are known to be highly sensitive to the inhibition of ACC or FASN (74–78) as well as to interferences with cholesterol uptake (79), homeostasis (80), and biosynthesis (81, 82). An urgent need for *de novo* lipogenesis as well as changes in the intracellular lipid distribution and accumulation of unsaturated FAs have also been proposed to be essential prerequisites for DENV type 2 (DENV2) infection (75, 83). Gullberg et al. identified stearoyl-CoA desaturase 1 (SCD1, which catalyzes the rate-limiting step in the formation of unsaturated FAs) as a critical target that regulates the composition of intracellular membranes to induce a favorable microenvironment for optimal DENV2 replication and to sustain a high rate of infectious particle release (83). The pharmacologic inhibition of SCD1 interrupted the generation of monounsaturated FAs, such as oleic acid (C18:1) or palmitoleic acid (C16:1) (69, 83, 84), which consequently affected an optimal lipid membrane composition and membrane fluidity, leading to decreased viral replication efficiency in DENV2-infected cells. This detrimental effect of pharmacologic SCD1 inhibition on DENV2 replication has been expanded to several other *Flaviviridae* members, including four DENV serotypes, Yellow Fever Virus (YFV), Zika virus, and Japanese encephalitis virus (JEV) (83, 85). Therefore, the inhibition of ACC or FASN or that of more downstream lipid-modifying enzymes such as SCD1 may guide future therapies against *Flavivirus* infection (86, 87). Substantiating these findings, several groups have observed temporal changes in numerous lipid species, especially phospholipids, upon HCV infection (44), and a critical need for *de novo* ACC- and FASN-mediated FA synthesis to fuel viral replication (44, 88–90). More recently, metabolomic profiling revealed that unsaturated long-chain FAs, such as oleic acid (C18:1), specifically accumulated upon HCV infection, and that the accumulation of unsaturated FAs may influence the membrane composition and fluidity (84, 91, 92). Hofmann et al. demonstrated that the inhibition of FA elongases or desaturases restricted HCV replication (91). In their study, treatment with an inhibitor of $\Delta 6$ -fatty acid desaturase (FADS2) impaired HCV virion production possibly through changes in the intracellular membrane composition,

virion assembly, and morphogenesis (91, 92). Likewise, a liver-specific SCD1 inhibitor has been proposed for anti-HCV therapy following its proven efficacy in mice (84, 92–94). Similarly, inhibition of FASN with C75 reduced HCV replication *in vitro* (88). Other evidence suggests that currently used anti-HCV agents like ribavirin inhibit lipogenesis as a side effect, which may contribute to their antiviral properties (95, 96). Mechanistically, ribavirin suppresses the expression of lipogenic genes such as SREBP-1c, FASN, and SCD-1 in a retinoid X receptor α - and CCAAT/enhancer-binding protein α -dependent manner (95, 96). Statins, another class of drugs used in a wide number of patients due to their cholesterol- and lipid-lowering properties, exhibited an inhibitory effect on HCV replication probably due to the inhibition of the rate-limiting step of the mevalonate pathway, 3-hydroxy3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase) (97, 98).

Lipidomic analysis has also broadened our understanding regarding the metabolic reprogramming that ensues upon human coronavirus (HCoV) (99) and Middle East respiratory syndrome coronavirus (MERS-CoV) infections (99, 100). Yan et al. observed a striking rearrangement of the cellular lipid profile indicated by an accumulation of FAs (both saturated and unsaturated FAs) and phospholipids upon HCoV infection. The authors claimed that the *Coronaviridae* specifically fine-tuned the host lipid profile to achieve optimal viral replication (99). These findings were corroborated by a recent study that identified the pharmacologic targeting of SREBP (with the specific inhibitor AM580) as a promising means to inhibit MERS-CoV infection in multiple cell types *in vitro* and *in vivo* (100). Inhibition of the proteolytic processing of SREBP by AM580 caused the inhibition of several post-viral-entry steps, including reduced intracellular lipid droplet formation, reduced double membrane vesicle formation, and reduced palmitoylation of viral proteins (100), which potentially mirror the observations and conclusions made earlier by Yan et al. (99). Importantly, treatment with AM580 also restricted SREBP-dependent lipogenesis in influenza H1N1-infected cells, which resulted in the decreased palmitoylation of the surface glycoprotein hemagglutinin and ultimately impaired H1N1 replication (100).

Similarly, elevated levels of multiple long-chain mono- and polyunsaturated FAs have been associated with RV infection (39, 101). As discussed earlier, our group has recently shown that RV induces PI3K-dependent glucose uptake that feeds anabolic lipogenesis in primary human fibroblasts and HeLa cells (39). Another group recently confirmed our findings, using lipidomic technologies in primary human bronchial epithelial cells at different time points during a single replicative cycle of RV infection (i.e., ranging from 2–6 h post infection) (101). In accordance with our data, Ngyuen et al. observed an accumulation of FAs with long acyl chains in infected cells as compared with uninfected controls, as well as dynamic changes in the desaturation status of FA pools within the host cell. As a proof of concept, they treated the cells with several inhibitors of enzymes engaged in FA synthesis, elongation, and modification (including C75, an inhibitor of FASN), which resulted in a reduction in RV replication (101). Similarly, inhibition of FASN with a novel potent inhibitor (TVB-3166) decreased the

replication of RV, respiratory syncytial virus (RSV), and human parainfluenza virus 3 (HPIV 3) (102). Confirming the essential need of FASN during viral replication, those observed effects could be rescued upon addition of exogenous palmitic acid (102). Altogether, both the upstream interference in the glucose flux (using 2-DG) (39) and the downstream inhibition of lipogenesis (101, 102) can serve as new therapeutic targets for treating RV- or RSV-induced respiratory infections.

During Chikungunya virus (CHIKV) infection, the FASN-mediated increase in the cellular lipid pool results in the increased palmitoylation of the virus's non-structural protein NsP1 at three cysteine residues by zinc finger DHHC domain-containing palmitoyltransferases (103). The palmitoylation of NsP1 is critical for CHIKV replication since it orchestrates capping of the virus's RNA (104–106). Therefore, the CHIKV induction of anabolic lipid synthesis via FASN in host cells generates an adequate substrate supply for the proper functioning of intracellular palmitoyltransferases. Confirming these observations, the inhibition of FASN was shown to impair CHIKV replication, which could be rescued upon exogenous palmitic acid supply (103).

Last, an up to 5-fold induction of FASN was also observed upon HIV-1 infection, translating into increased intracellular palmitic, oleic, and stearic acid pools (107). Although the authors were not able to delineate how those *de novo*-synthesized lipids fuel HIV-1 replication, they did show that FASN was exclusively required during the late stage of the viral replication cycle. This indicates a role for FASN in HIV-1-mediated viral budding or in post-translational modifications of HIV-1 structural proteins, such as the Gag protein (107). In line with this, existing evidence has proposed an essential role for several post-translational lipid modifications of HIV-1 structural proteins (108–111).

Hence, the life cycle of most viruses is closely linked to the composition of the cellular lipidome that defines the viral and cellular membrane composition, macromolecule synthesis, and post-transcriptional modification of viral proteins. In order to ensure sufficient substrate supply to enable the optimal replication of viral particles, viruses exploit host transcription factors and co-opt several enzymes engaged in *de novo* lipid synthesis and processing. The aforementioned lines of evidence suggest that lipid-based antiviral strategies may guide future antiviral therapies. In particular, the inhibition of SREBP cleavage and the targeting of FA-modifying enzymes (e.g., FA elongases and desaturases) represent promising targets for broad-spectrum antiviral metabolic intervention. However, the *in vivo* relevance of virus lipid interactions has yet to be determined, and further studies are urgently needed to better understand these processes.

CONCLUSION AND OUTLOOK

We have elaborated on the various forms of virus interference with the host cellular metabolome. We have seen that although many of the induced changes follow similar patterns between different viruses, a distinct virus-specific fingerprint can nonetheless be found for each virus, which mirrors the needs of

the respective pathogen for specific molecular compounds in the process of its replication.

Notwithstanding, most of our knowledge on the field consists of phenotypic characterizations of the impact of the infection on central pathways in host-cell metabolism, whereas our understanding of the mechanistic basis for these changes is far more limited. As we have seen, viruses have developed strategies as diverse as the activation of cytosolic signaling

[e.g., PI3K (39) and CaMKK1/AMPK (9, 18) activation] or transcriptional regulation [e.g., activation of Myc (34, 35), ChREBP (21), SREBP (67–70, 100)]. The current data point toward a dichotomy between DNA and RNA viruses when looking at their respective strategies for host cell manipulation; that is, whereas the transcriptional control of key metabolic pathways was found for several DNA viruses (21, 34, 35), RNA viruses appeared to shape host-cell metabolism via

TABLE 1 | Strategies for metabolism-targeting interventions against different viruses.

Virus	Compound	Target	Pathway	References
HSV-1	2-DG	Phosphoglucose-isomerase	Glycolysis	(4, 9)
	STO-609	CaMKK	Ca ⁺⁺ -sensing	(9)
	CB-839	Glutaminase	Glutamine metabolism	(35)
HCMV	STO-609	CaMKK	Glycolysis	(9, 19)
	Compound C	AMPK	Broad metabolic alterations	(18, 19)
	AICAR	AMPK	Broad metabolic alterations	(19, 112)
KSHV	2-DG	Phosphoglucose-isomerase	Glycolysis	(9)
	Oxamate	Lactat-dehydrogenase	Anaerobic glycolysis	(27)
	BPTES	Glutaminase	Glutamine metabolism	(27)
VACV	TOFA	ACC1	Fatty acid metabolism	(27, 28)
	BPTES	Glutaminase	Glutamine metabolism	(36)
	TOFA	ACC1	Fatty acid metabolism	(37)
RV	C75	FASN	Fatty acid metabolism	(37)
	2-DG	Phosphoglucose-isomerase	Glycolysis	(39)
	C75	FASN	Fatty acid metabolism	(101)
RSV	TVB-3166	FASN	Fatty acid metabolism	(102)
	TVB-3166	FASN	Fatty acid metabolism	(102)
	MK8245	Stearoyl-CoA desaturase-1	Fatty acid metabolism	(93)
HCV	SC-26196	Fatty acid Δ-6-desaturase	Fatty acid metabolism	(91)
	C75	FASN	Fatty acid metabolism	(88)
	CP640186	ACC	Fatty acid metabolism	(93)
DENV	Ribavirin	SREBP-1c, FASN, stearoyl-CoA desaturase-1	Fatty acid metabolism	(95, 96)
	Statins	HMG-CoA reductase	Cholesterol synthesis	(97, 98)
	C75	FASN	Fatty acid metabolism	(76)
HPIV 3	Cerulenin	FASN	Fatty acid metabolism	(76)
	MK8245	Stearoyl-CoA desaturase-1	Fatty acid metabolism	(85)
	TVB-3166	FASN	Fatty acid metabolism	(102)
ZIKA	A939572	Stearoyl-CoA desaturase-1	Fatty acid metabolism	(83)
	WNV	FASN	Fatty acid metabolism	(77)
	Cerulenin	FASN	Fatty acid metabolism	(77)
JEV	TOFA	ACC	Fatty acid metabolism	(74)
	MK8245	Stearoyl-CoA desaturase-1	Fatty acid metabolism	(85)
	C75	FASN	Fatty acid metabolism	(103)
CHIKV	Cerulenin	FASN	Fatty acid metabolism	(103)
	YFV	A939572	Fatty acid metabolism	(83)
	Adenovirus	Stearoyl-CoA desaturase-1	Fatty acid metabolism	(83)
HIV	CB-839	Glutaminase	Glutamine metabolism	(35)
	VU0359595	PLD-1	Glucose metabolism, nucleotide synthesis	(48)
	Fasnall	FASN	Fatty acid metabolism	(107)
MersCoV	AM580	SREBP	Fatty acid metabolism	(100)
	Influenza A	AM580	Fatty acid metabolism	(100)
	CB-839	Glutaminase	Glutamine metabolism	(35)

post-transcriptional modifications (39), which are in line with the pace of the respective replication cycles.

As summarized in **Table 1**, our knowledge on the specific alterations induced by a given virus has resulted in numerous strategies to target viral replication with high efficacy in cell culture and *in vivo* models. However, because many of the established targets for metabolism-manipulating antivirals are central enzymes in cellular metabolism, future research will have to elaborate on whether the mentioned strategies can be translated into clinical applicability without causing major harm to unaffected host cells. Here, 2-DG in particular appears to be a promising compound, given its very well-established and favorable side-effect profile. Undoubtedly, further research in this dynamic area will help deepen our understanding of this interaction and might result in additional ways to impair viral replication by means of metabolic intervention. For instance, there are still major blind spots, particularly in our understanding of the mechanistic basis of RNA virus-induced alterations in cellular metabolism. Furthermore, there has been little research on the role of pattern recognition in the context of the above-mentioned adaptations. Additionally, many

of the findings reported herein were generated in the context of highly specific cellular models, and differential modulations in different target cells (e.g., proliferating T cells) might result in adverse observations. We still have limited knowledge on the role of metabolism in the pathogenesis of a plethora of pathogenic viruses, which requires further research. Insights into these and other questions will help us to greatly advance our understanding of this crucial host-pathogen interaction and might sharpen our therapeutic arsenal to target this viral Achilles' heel.

AUTHOR CONTRIBUTIONS

KM and GG wrote the article. JS and GZ carefully revised the manuscript and provided critical intellectual input. All authors agreed to the final version of the article.

ACKNOWLEDGMENTS

We thank Mariano Lampacresia, M.Sc., for excellent graphical assistance.

REFERENCES

1. Eagle H, Habel K. The nutritional requirements for the propagation of poliomyelitis virus by the hela cell. *J Exp Med.* (1956) 104:271–87. doi: 10.1084/jem.104.2.271
2. Lewis VJ, Scott LV. Nutritional requirements for the production of herpes simplex virus. I. Influence of glucose and glutamine of herpes simplex virus production by HeLa cells. *J Bacteriol.* (1962) 83:475–82.
3. Levy HB, Baron S. The effect of animal viruses on host cell metabolism II. Effect of poliomyelitis virus on glycolysis and uptake of glycine by monkey kidney tissue cultures. *J Infect Dis.* (1957) 100:109–18. doi: 10.1093/infdis/100.2.109
4. Courtney RJ, Steiner SM, Benyesh-Melnick M. Effects of 2-deoxy-D-glucose on herpes simplex virus replication. *Virology.* (1973) 52:447–55. doi: 10.1016/0042-6822(73)90340-1
5. Landini MP. Early enhanced glucose uptake in human cytomegalovirus-infected cells. *J Gen Virol.* (1984) 65(Pt 7):1229–32. doi: 10.1099/0022-1317-65-7-1229
6. Kilbourne ED. Inhibition of influenza virus multiplication with a glucose antimetabolite (2-deoxy-D-glucose). *Nature.* (1959) 183:271–2. doi: 10.1038/183271b0
7. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD. Dynamics of the cellular metabolome during human cytomegalovirus infection. *PLoS Pathog.* (2006) 2:e132. doi: 10.1371/journal.ppat.0020132
8. Warburg O. On the origin of cancer cells. *Science.* (1956) 123:309–14. doi: 10.1126/science.123.3191.309
9. McArdle J, Schafer XL, Munger J. Inhibition of calmodulin-dependent kinase kinase blocks human cytomegalovirus-induced glycolytic activation and severely attenuates production of viral progeny. *J Virol.* (2011) 85:705–14. doi: 10.1128/JVI.01557-10
10. Abrantes JL, Alves CM, Costa J, Almeida FCL, Sola-Penna M, Fontes CFL, et al. Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1). *Biochim Biophys Acta.* (2012) 1822:1198–206. doi: 10.1016/j.bbapap.2012.04.011
11. Vastag L, Koyuncu E, Grady SL, Shenk TE, Rabinowitz JD. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. *PLoS Pathog.* (2011) 7:e1002124. doi: 10.1371/journal.ppat.1002124
12. Herman D, Han H. Cytomegalovirus in liver transplant recipients. *Curr Opin Organ Transplant.* (2017) 22:345–50. doi: 10.1097/MOT.0000000000000433
13. Almaghrabi RS, Omrani AS, Memish ZA. Cytomegalovirus infection in lung transplant recipients. *Expert Rev Respir Med.* (2017) 11:377–83. doi: 10.1080/17476348.2017.1317596
14. Marchesi F, Pimpinelli F, Ensoli F, Mengarelli A. Cytomegalovirus infection in hematologic malignancy settings other than the allogeneic transplant. *Hematol Oncol.* (2018) 36:381–91. doi: 10.1002/hon.2453
15. Rodríguez-Sánchez I, Munger J. Meal for two: human cytomegalovirus-induced activation of cellular metabolism. *Viruses.* (2019) 11:E273. doi: 10.3390/v11030273
16. Munger J, Bennett BD, Parikh A, Feng X-J, McArdle J, Rabitz HA, et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. *Nat Biotechnol.* (2008) 26:1179–86. doi: 10.1038/nbt.1500
17. DeVito SR, Ortiz-Riaño E, Martínez-Sobrido L, Munger J. Cytomegalovirus-mediated activation of pyrimidine biosynthesis drives UDP-sugar synthesis to support viral protein glycosylation. *Proc Natl Acad Sci USA.* (2014) 111:18019–24. doi: 10.1073/pnas.1415864111
18. McArdle J, Moorman NJ, Munger J. HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. *PLoS Pathog.* (2012) 8:e1002502. doi: 10.1371/journal.ppat.1002502
19. Terry LJ, Vastag L, Rabinowitz JD, Shenk T. Human kinome profiling identifies a requirement for AMP-activated protein kinase during human cytomegalovirus infection. *Proc Natl Acad Sci USA.* (2012) 109:3071–6. doi: 10.1073/pnas.1200494109
20. Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus activates glucose transporter 4 expression to increase glucose uptake during infection. *J Virol.* (2011) 85:1573–80. doi: 10.1128/JVI.01967-10
21. Yu Y, Maguire TG, Alwine JC. ChREBP, a glucose-responsive transcriptional factor, enhances glucose metabolism to support biosynthesis in human cytomegalovirus-infected cells. *Proc Natl Acad Sci USA.* (2014) 111:1951–6. doi: 10.1073/pnas.1310779111
22. Chambers JW, Maguire TG, Alwine JC. Glutamine metabolism is essential for human cytomegalovirus infection. *J Virol.* (2010) 84:1867–73. doi: 10.1128/JVI.02123-09
23. Rodríguez-Sánchez I, Schafer XL, Monaghan M, Munger J. The human Cytomegalovirus UL38 protein drives mTOR-independent metabolic flux reprogramming by inhibiting TSC2. *PLoS Pathog.* (2019) 15:e1007569. doi: 10.1371/journal.ppat.1007569

24. Xiao L, Hu Z-Y, Dong X, Tan Z, Li W, Tang M, et al. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. *Oncogene*. (2014) 33:4568–78. doi: 10.1038/onc.2014.32
25. Lo AK-F, Dawson CW, Young LS, Ko C-W, Hau P-M, Lo K-W. Activation of the FGFR1 signalling pathway by the Epstein-Barr virus-encoded LMP1 promotes aerobic glycolysis and transformation of human nasopharyngeal epithelial cells. *J Pathol.* (2015) 237:238–48. doi: 10.1002/path.4575
26. Sanchez EL, Carroll PA, Thalhofer AB, Lagunoff M. Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival. *PLoS Pathog.* (2015) 11:e1005052. doi: 10.1371/journal.ppat.1005052
27. Sanchez EL, Pulliam TH, Dimaio TA, Thalhofer AB, Delgado T, Lagunoff M. Glycolysis, glutaminolysis, and fatty acid synthesis are required for distinct stages of Kaposi's sarcoma-associated herpesvirus lytic replication. *J Virol.* (2017) 91:e02237-16. doi: 10.1128/JVI.02237-16
28. Delgado T, Sanchez EL, Camarda R, Lagunoff M. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. *PLoS Pathog.* (2012) 8:e1002866. doi: 10.1371/journal.ppat.1002866
29. Yoge O, Lagos D, Enver T, Boshoff C. Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. *PLoS Pathog.* (2014) 10:e1004400. doi: 10.1371/journal.ppat.1004400
30. Zhu Y, Li T, Ramos da Silva S, Lee J-J, Lu C, Eoh H, et al. A critical role of glutamine and asparagine γ -nitrogen in nucleotide biosynthesis in cancer cells hijacked by an oncogenic virus. *mBio*. (2017) 8:e01179-17. doi: 10.1128/mBio.01179-17
31. Valiya Veettil M, Dutta D, Bottero V, Bandyopadhyay C, Gjyshi O, Sharma-Walia N, et al. Glutamate secretion and metabotropic glutamate receptor 1 expression during Kaposi's sarcoma-associated herpesvirus infection promotes cell proliferation. *PLoS Pathog.* (2014) 10:e1004389. doi: 10.1371/journal.ppat.1004389
32. Kumar B, Roy A, Asha K, Sharma-Walia N, Ansari MA, Chandran B. HACE1, an E3 ubiquitin protein ligase, mitigates Kaposi's sarcoma-associated herpesvirus infection-induced oxidative stress by promoting Nrf2 activity. *J Virol.* (2019) 93:e01812-18. doi: 10.1128/JVI.01812-18
33. McAllister SC, Hansen SG, Ruhl RA, Raggio CM, DeFilippis VR, Greenspan D, et al. Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. *Blood*. (2004) 103:3465–73. doi: 10.1182/blood-2003-08-2781
34. Thai M, Graham NA, Braas D, Nehil M, Komisopoulou E, Kurdistani SK, et al. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. *Cell Metab.* (2014) 19:694–701. doi: 10.1016/j.cmet.2014.03.009
35. Thai M, Thaker SK, Feng J, Du Y, Hu H, Ting Wu T, et al. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. *Nat Commun.* (2015) 6:8873. doi: 10.1038/ncomms9873
36. Fontaine KA, Camarda R, Lagunoff M. Vaccinia virus requires glutamine but not glucose for efficient replication. *J Virol.* (2014) 88:4366–74. doi: 10.1128/JVI.03134-13
37. Greseth MD, Traktman P. *De novo* fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection. *PLoS Pathog.* (2014) 10:e1004021. doi: 10.1371/journal.ppat.1004021
38. Mazzon M, Castro C, Roberts LD, Griffin JL, Smith GL. A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism. *J Gen Virol.* (2015) 96:395–407. doi: 10.1099/vir.0.069591-0
39. Gualdoni GA, Mayer KA, Kapsch A-M, Kreuzberg K, Puck A, Kienzl P, et al. Rhinovirus induces an anabolic reprogramming in host cell metabolism essential for viral replication. *Proc Natl Acad Sci USA.* (2018) 115:E7158–65. doi: 10.1073/pnas.1800525115
40. Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot J-D, et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. *Cell.* (2016) 166:1512–25 e12. doi: 10.1016/j.cell.2016.07.026
41. Thaker SK, Chapa T, Garcia G, Gong D, Schmid EW, Arumugaswami V, et al. Differential metabolic reprogramming by Zika virus promotes cell death in human versus mosquito cells. *Cell Metab.* (2019) 29:1206–16 e4. doi: 10.1016/j.cmet.2019.01.024
42. Fontaine KA, Sanchez EL, Camarda R, Lagunoff M. Dengue virus induces and requires glycolysis for optimal replication. *J Virol.* (2015) 89:2358–66. doi: 10.1128/JVI.02309-14
43. Allonso D, Andrade IS, Conde JN, Coelho DR, Rocha DCP, da Silva ML, et al. Dengue virus NS1 protein modulates cellular energy metabolism by increasing glyceraldehyde-3-phosphate dehydrogenase activity. *J Virol.* (2015) 89:11871–83. doi: 10.1128/JVI.01342-15
44. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters K-A, Proll SC, et al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. *PLoS Pathog.* (2010) 6:e1000719. doi: 10.1371/journal.ppat.1000719
45. Ramière C, Rodriguez J, Enache LS, Lotteau V, André P, Diaz O. Activity of hexokinase is increased by its interaction with hepatitis C virus protein NS5A. *J Virol.* (2014) 88:3246–54. doi: 10.1128/JVI.02862-13
46. Duan X, Li S, Holmes JA, Tu Z, Li Y, Cai D, et al. MicroRNA 130a regulates both Hepatitis C virus and Hepatitis B virus replication through a central metabolic pathway. *J Virol.* 92:e02009-17. doi: 10.1128/JVI.02009-17
47. Hollenbaugh JA, Munger J, Kim B. Metabolite profiles of human immunodeficiency virus infected CD4 $^{+}$ T cells and macrophages using LC-MS/MS analysis. *Virology*. (2011) 415:153–9. doi: 10.1016/j.virol.2011.04.007
48. Taylor HE, Simmons GE, Mathews TP, Khatua AK, Popik W, Lindsley CW, et al. Phospholipase D1 couples CD4 $^{+}$ T cell activation to c-Myc-dependent deoxyribonucleotide pool expansion and HIV-1 replication. *PLoS Pathog.* (2015) 11:e1004864. doi: 10.1371/journal.ppat.1004864
49. Hegedus A, Kavanagh Williamson M, Huthoff H. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4 $^{+}$ T cells. *Retrovirology*. (2014) 11:98. doi: 10.1186/s12977-014-0098-4
50. Datta PK, Deshmankar S, Khalili K, Merali S, Gordon JC, Fecchio C, et al. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr. *Cell Cycle Georget Tex.* (2016) 15:2288–98. doi: 10.1080/15384101.2016.1190054
51. Palmer CS, Duette GA, Wagner MCE, Henstridge DC, Saleh S, Pereira C, et al. Metabolically active CD4 $^{+}$ T cells expressing Glut1 and OX40 preferentially harbor HIV during *in vitro* infection. *FEBS Lett.* (2017) 591:3319–32. doi: 10.1002/1873-3468.12843
52. Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J, et al. Increased glucose metabolic activity is associated with CD4 $^{+}$ T-cell activation and depletion during chronic HIV infection. *AIDS Lond Engl.* (2014) 28:297–309. doi: 10.1097/QAD.0000000000000128
53. Kavanagh Williamson M, Coombes N, Juszczak F, Athanasopoulos M, Khan MB, Eykyn TR, et al. Upregulation of glucose uptake and hexokinase activity of primary human CD4 $^{+}$ T cells in response to infection with HIV-1. *Viruses*. (2018) 10:114. doi: 10.3390/v10030114
54. Sen S, Kaminiski R, Deshmankar S, Langford D, Khalili K, Amini S, et al. Role of Hexokinase-1 in the survival of HIV-1-infected macrophages. *Cell Cycle*. (2015) 14:980–9. doi: 10.1080/15384101.2015.1006971
55. Hegedus A, Kavanagh Williamson M, Khan MB, Dias Zeidler J, Da Poian AT, El-Bacha T, et al. Evidence for altered glutamine metabolism in human immunodeficiency Virus Type 1 infected primary human CD4 $^{+}$ T cells. *AIDS Res Hum Retroviruses*. (2017) 33:1236–47. doi: 10.1089/aid.2017.0165
56. Hollenbaugh JA, Montero C, Schinazi RF, Munger J, Kim B. Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages. *Virology*. (2016) 491:106–14. doi: 10.1016/j.virol.2016.01.023
57. Neufeldt CJ, Joyce MA, Van Buuren N, Levin A, Kirkegaard K, Gale M, et al. The Hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites. *PLoS Pathog.* (2016) 12:e1005428. doi: 10.1371/journal.ppat.1005428
58. Overby AK, Popov VL, Niedrig M, Weber F. Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. *J Virol.* (2010) 84:8470–83. doi: 10.1128/JVI.00176-10
59. Arita M. Phosphatidylinositol-4 kinase III beta and oxysterol-binding protein accumulate unesterified cholesterol on poliovirus-induced membrane structure: PI4KB/OSBP pathway in virus replication. *Microbiol Immunol.* (2014) 58:239–56. doi: 10.1111/1348-0421.12144

60. Dorobantu CM, Albulescu L, Harak C, Feng Q, van Kampen M, Strating JRPM, et al. Modulation of the host lipid landscape to promote RNA virus replication: the Picornavirus Encephalomyocarditis virus converges on the pathway used by Hepatitis C virus. *PLoS Pathog.* (2015) 11:e1005185. doi: 10.1371/journal.ppat.1005185
61. Roulin PS, Lötzerich M, Torta F, Tanner LB, van Kuppeveld FJM, Wenk MR, et al. Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-golgi interface. *Cell Host Microbe.* (2014) 16:677–90. doi: 10.1016/j.chom.2014.10.003
62. Strating JRPM, van der Linden L, Albulescu L, Bigay J, Arita M, Delang L, et al. Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein. *Cell Rep.* (2015) 10:600–15. doi: 10.1016/j.celrep.2014.12.054
63. Wang H, Perry JW, Lauring AS, Nedermann P, De Francesco R, Tai AW. Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking. *Gastroenterology.* (2014) 146:1373–85 e11. doi: 10.1053/j.gastro.2014.02.002
64. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. *Proc Natl Acad Sci USA.* (2003) 100:12027–32. doi: 10.1073/pnas.1534923100
65. Bengoechea-Alonso MT, Ericsson J. SREBP in signal transduction: cholesterol metabolism and beyond. *Curr Opin Cell Biol.* (2007) 19:215–22. doi: 10.1016/j.ceb.2007.02.004
66. Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. *Nat Rev Endocrinol.* (2017) 13:710–30. doi: 10.1038/nrendo.2017.91
67. Spencer CM, Schafer XL, Moorman NJ, Munger J. Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication. *J Virol.* (2011) 85:5814–24. doi: 10.1128/JVI.02630-10
68. Purdy JG, Shenk T, Rabinowitz JD. Fatty acid elongase 7 catalyzes lipidome remodeling essential for human cytomegalovirus replication. *Cell Rep.* (2015) 10:1375–85. doi: 10.1016/j.celrep.2015.02.003
69. Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus infection induces adipocyte-like lipogenesis through activation of sterol regulatory element binding protein 1. *J Virol.* (2012) 86:2942–9. doi: 10.1128/JVI.06467-11
70. Yu Y, Piercley FJ, Maguire TG, Alwine JC. PKR-like endoplasmic reticulum kinase is necessary for lipogenic activation during HCMV infection. *PLoS Pathog.* (2013) 9:e1003266. doi: 10.1371/journal.ppat.1003266
71. Koyuncu E, Purdy JG, Rabinowitz JD, Shenk T. Saturated very long chain fatty acids are required for the production of infectious human cytomegalovirus progeny. *PLoS Pathog.* (2013) 9:e1003333. doi: 10.1371/journal.ppat.1003333
72. Heaton NS, Randall G. Multifaceted roles for lipids in viral infection. *Trends Microbiol.* (2011) 19:368–75. doi: 10.1016/j.tim.2011.03.007
73. Gudleski-O'Regan N, Greco TM, Cristea IM, Shenk T. Increased expression of LDL receptor-related protein 1 during human cytomegalovirus infection reduces virion cholesterol and infectivity. *Cell Host Microbe.* (2012) 12:86–96. doi: 10.1016/j.chom.2012.05.012
74. Merino-Ramos T, Vázquez-Calvo Á, Casas J, Sobrino F, Saiz J-C, Martín-Acebes MA. Modification of the host cell lipid metabolism induced by hypolipidemic drugs targeting the acetyl coenzyme A carboxylase impairs West Nile virus replication. *Antimicrob Agents Chemother.* (2016) 60:307–15. doi: 10.1128/AAC.01578-15
75. Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ, Weitz KW, et al. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. *PLoS Pathog.* (2012) 8:e1002584. doi: 10.1371/journal.ppat.1002584
76. Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. *Proc Natl Acad Sci USA.* (2010) 107:17345–50. doi: 10.1073/pnas.1010811107
77. Martín-Acebes MA, Blázquez A-B, Jiménez de Oya N, Escrivano-Romero E, Saiz J-C. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids. *PLoS ONE.* (2011) 6:e24970. doi: 10.1371/journal.pone.0024970
78. Tang W-C, Lin R-J, Liao C-L, Lin Y-L. Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. *J Virol.* (2014) 88:6793–804. doi: 10.1128/JVI.00045-14
79. Soto-Acosta R, Mosso C, Cervantes-Salazar M, Puerta-Guardo H, Medina F, Favari L, et al. The increase in cholesterol levels at early stages after dengue virus infection correlates with an augment in LDL particle uptake and HMG-CoA reductase activity. *Virology.* (2013) 442:132–47. doi: 10.1016/j.virol.2013.04.003
80. Poh MK, Shui G, Xie X, Shi P-Y, Wenk MR, Gu F, U18666A, an intracellular cholesterol transport inhibitor, inhibits dengue virus entry and replication. *Antiviral Res.* (2012) 93:191–8. doi: 10.1016/j.antiviral.2011.11.014
81. Rothwell C, Lebreton A, Young Ng C, Lim JYH, Liu W, Vasudevan S, et al. Cholesterol biosynthesis modulation regulates dengue viral replication. *Virology.* (2009) 389:8–19. doi: 10.1016/j.virol.2009.03.025
82. Mackenzie JM, Khromykh AA, Parton RG. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. *Cell Host Microbe.* (2007) 2:229–39. doi: 10.1016/j.chom.2007.09.003
83. Gullberg RC, Steel JJ, Pujari V, Rovnak J, Crick DC, Perera R. Stearoyl-CoA desaturase 1 differentiates early and advanced dengue virus infections and determines virus particle infectivity. *PLoS Pathog.* (2018) 14:e1007261. doi: 10.1371/journal.ppat.1007261
84. Nguyen LN, Lim Y-S, Pham LV, Shin H-Y, Kim Y-S, Hwang SB. Stearoyl coenzyme A desaturase 1 is associated with hepatitis C virus replication complex and regulates viral replication. *J Virol.* (2014) 88:12311–25. doi: 10.1128/JVI.01678-14
85. Hishiki T, Kato F, Nio Y, Watanabe S, Wen Tan NW, Yamane D, et al. Stearoyl-CoA desaturase-1 is required for flavivirus RNA replication. *Antiviral Res.* (2019) 165:42–6. doi: 10.1016/j.antiviral.2019.03.002
86. Martín-Acebes MA, Vázquez-Calvo Á, Saiz J-C. Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses. *Prog Lipid Res.* (2016) 64:123–37. doi: 10.1016/j.plipres.2016.09.005
87. Villareal VA, Rodgers MA, Costello DA, Yang PL. Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. *Antiviral Res.* (2015) 124:110–21. doi: 10.1016/j.antiviral.2015.10.013
88. Yang W, Hood BL, Chadwick SL, Liu S, Watkins SC, Luo G, et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. *Hepatology.* (2008) 48:1396–403. doi: 10.1002/hep.22508
89. Kim J-H, Sung PS, Lee EB, Hur W, Park DJ, Shin E-C, et al. GRIM-19 restricts HCV replication by attenuating intracellular lipid accumulation. *Front Microbiol.* (2017) 8:576. doi: 10.3389/fmicb.2017.00576
90. Narayanan S, Nieh AH, Kenwood BM, Davis CA, Tosello-Trampont A-C, Elich TD, et al. Distinct roles for intracellular and extracellular lipids in Hepatitis C virus infection. *PLoS ONE.* (2016) 11:e0156996. doi: 10.1371/journal.pone.0156996
91. Hofmann S, Krajewski M, Scherer C, Scholz V, Mordhorst V, Truschow P, et al. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. *Biochim Biophys Acta Mol Cell Biol Lipids.* (2018) 1863:1041–56. doi: 10.1016/j.bbalip.2018.06.002
92. Lyn RK, Singaravelu R, Kargman S, O'Hara S, Chan H, Oballa R, et al. Stearoyl-CoA desaturase inhibition blocks formation of hepatitis C virus-induced specialized membranes. *Sci Rep.* (2015) 4:4549. doi: 10.1038/srep04549
93. Nio Y, Hasegawa H, Okamura H, Miyayama Y, Akahori Y, Hijikata M. Liver-specific mono-unsaturated fatty acid synthase-1 inhibitor for anti-hepatitis C treatment. *Antiviral Res.* (2016) 132:262–7. doi: 10.1016/j.antiviral.2016.07.003
94. Uto Y. Recent progress in the discovery and development of stearoyl CoA desaturase inhibitors. *Chem Phys Lipids.* (2016) 197:3–12. doi: 10.1016/j.chmplyslip.2015.08.018
95. Satoh S, Mori K, Onomura D, Ueda Y, Dansako H, Honda M, et al. Ribavirin suppresses hepatic lipogenesis through inosine monophosphate dehydrogenase inhibition: Involvement of adenosine monophosphate-activated protein kinase-related kinases and retinoid X receptor α . *Hepatol Commun.* (2017) 1:550–63. doi: 10.1002/hep4.1065

96. Satoh S, Onomura D, Ueda Y, Dansako H, Honda M, Kaneko S, et al. Ribavirin-induced down-regulation of CCAAT/enhancer-binding protein α leads to suppression of lipogenesis. *Biochem J.* (2019) 476:137–49. doi: 10.1042/BCJ20180680
97. Ikeda M, Abe K, Yamada M, Dansako H, Naka K, Kato N. Different anti-HCV profiles of statins and their potential for combination therapy with interferon. *Hepatology.* (2006) 44:117–25. doi: 10.1002/hep.21232
98. Ye J, Wang C, Sumpter R, Brown MS, Goldstein JL, Gale M. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. *Proc Natl Acad Sci USA.* (2003) 100:15865–70. doi: 10.1073/pnas.2237238100
99. Yan B, Chu H, Yang D, Sze K-H, Lai P-M, Yuan S, et al. Characterization of the lipidomic profile of human coronavirus-infected cells: implications for lipid metabolism remodeling upon coronavirus replication. *Viruses.* (2019) 11:73. doi: 10.3390/v11010073
100. Yuan S, Chu H, Chan JF-W, Ye Z-W, Wen L, Yan B, et al. SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target. *Nat Commun.* (2019) 10:120. doi: 10.1038/s41467-018-08015-x
101. Nguyen A, Guedán A, Mousnier A, Swieboda D, Zhang Q, Horkai D, et al. Host lipidome analysis during rhinovirus replication in HBECs identifies potential therapeutic targets. *J Lipid Res.* (2018) 59:1671–84. doi: 10.1194/jlr.M085910
102. Ohl YM, Wang Z, Kemble G, Duke G. Direct inhibition of cellular fatty acid synthase impairs replication of respiratory syncytial virus and other respiratory viruses. *PLoS ONE.* (2015) 10:e0144648. doi: 10.1371/journal.pone.0144648
103. Zhang N, Zhao H, Zhang L. Fatty acid synthase promotes the palmitoylation of Chikungunya virus nsP1. *J Virol.* (2019) 93:e01747–18. doi: 10.1128/JVI.01747-18
104. Delang L, Li C, Tas A, Quérat G, Albulescu IC, De Burghgraeve T, et al. The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection. *Sci Rep.* (2016) 6:31819. doi: 10.1038/srep31819
105. Gigante A, Gómez-SanJuan A, Delang L, Li C, Bueno O, Gamo A-M, et al. Antiviral activity of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones against chikungunya virus targeting the viral capping nsP1. *Antiviral Res.* (2017) 144:216–22. doi: 10.1016/j.antiviral.2017.06.003
106. Ahola T, Kujala P, Tuittila M, Blom T, Laakkonen P, Hinkkanen A, et al. Effects of palmitoylation of replicase protein nsP1 on alphavirus infection. *J Virol.* (2000) 74:6725–33. doi: 10.1128/JVI.74.15.6725-6733.2000
107. Kulkarni MM, Ratcliff AN, Bhat M, Alwarawrah Y, Hughes P, Arcos J, et al. Cellular fatty acid synthase is required for late stages of HIV-1 replication. *Retrovirology.* (2017) 14:45. doi: 10.1186/s12977-017-0368-z
108. Bryant M, Ratner L. Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. *Proc Natl Acad Sci USA.* (1990) 87:523–7. doi: 10.1073/pnas.87.2.523
109. Li H, Dou J, Ding L, Spearman P. Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells. *J Virol.* (2007) 81:12899–910. doi: 10.1128/JVI.01280-07
110. Lindwasser OW, Resh MD. Myristoylation as a target for inhibiting HIV assembly: unsaturated fatty acids block viral budding. *Proc Natl Acad Sci USA.* (2002) 99:13037–42. doi: 10.1073/pnas.212409999
111. Roussou I, Mixon MB, Chen BK, Kim PS. Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. *Proc Natl Acad Sci USA.* (2000) 97:13523–5. doi: 10.1073/pnas.240459697
112. Kudchodkar SB, Del Prete GQ, Maguire TG, Alwine JC. AMPK-mediated inhibition of mTOR kinase is circumvented during immediate-early times of human cytomegalovirus infection. *J Virol.* (2007) 81:3649–51. doi: 10.1128/JVI.02079-06

Conflict of Interest Statement: GG and JS are listed as inventors on a patent concerning 2-DG as an antiviral agent against rhinovirus infection.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Mayer, Stöckl, Zlabinger and Gualdoni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Immunoregulatory Interplay Between Arginine and Tryptophan Metabolism in Health and Disease

Giada Mondanelli, Alberta Iacono, Massimo Allegrucci, Paolo Puccetti and Ursula Grohmann*

Department of Experimental Medicine, University of Perugia, Perugia, Italy

Keywords: arginase 1, indoleamine 2, 3 dioxygenase 1, polyamine, dendritic cells, autoimmunity, neoplasia

INTRODUCTION

Over evolution, some amino-acid catabolic pathways have become critical checkpoints in immunity (1–3). The associated immunoregulatory effects rely on the depletion of specific amino acids in the microenvironment and/or generation of biologically active metabolites (4). Consumption of L-arginine (Arg) by arginase 1 (ARG1) represents a well-known immunoregulatory mechanism exploited by M2 macrophages (5) and myeloid-derived suppressor cells (MDSCs) (6–8) in tumor settings. ARG1 is also expressed by human neutrophils (9). Indoleamine 2,3-dioxygenase 1 (IDO1)—a powerful immunosuppressive enzyme catalyzing the first, rate limiting step in L-tryptophan (Trp) catabolism—depletes Trp and produces immunoregulatory molecules collectively known as kynurenes (10–13). High IDO1 expression and catalytic activity occur in dendritic cells (DCs)—professional antigen presenting cells—in response to interferon- γ (IFN- γ) (8, 10, 11). Unlike ARG1, IDO1 is also endowed with non-enzymatic signaling activity in DCs that, in the presence of transforming growth factor- β (TGF- β) in microenvironments, leads to durable immunoregulatory effects (14, 15). In conventional DCs (cDCs), a relay pathway—marked by the sequential activation of ARG1 and IDO1—promotes a potent immunoregulatory phenotype (8, 16, 17). In this setting, spermidine, i.e., a polyamine produced downstream of the ARG1-dependent pathway (18), is capable of triggering IDO1 phosphorylation and signaling, and thus may represent the critical molecular interconnection between the two enzymes (8, 16). Here, we discuss the possible protective vs. pathogenetic roles of the interplay between IDO1 and ARG1 in reprogramming immune cell functions in neoplasia and autoimmune diseases.

OPEN ACCESS

Edited by:

Marianne Boes,
Utrecht University, Netherlands

Reviewed by:

Henk Schipper,
University Medical Center
Utrecht, Netherlands
Sandra Marcia Muxel,
University of São Paulo, Brazil

*Correspondence:

Ursula Grohmann
ursula.grohmann@unipg.it

Specialty section:

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

Received: 15 April 2019

Accepted: 24 June 2019

Published: 09 July 2019

Citation:

Mondanelli G, Iacono A, Allegrucci M, Puccetti P and Grohmann U (2019) Immunoregulatory Interplay Between Arginine and Tryptophan Metabolism in Health and Disease. *Front. Immunol.* 10:1565. doi: 10.3389/fimmu.2019.01565

THE ARG1 AND IDO1 INTERPLAY AS PHYSIOLOGIC IMMUNE CHECKPOINT

As all biological processes, immune responses rely on both energy-consuming and energy-producing pathways (19). The availability of specific substances and the immunological signature of the microenvironment directly control immune cell fate and functions. Pathogen-associated molecular pattern (PAMPs) and damage-associated molecular pattern (DAMPs) molecules (recognized by pattern recognition receptors such as Toll-like receptors or TLRs) as well as amino acids, glucose, and fatty acids drive T-cell proliferation. Indeed, among immune cells, T lymphocytes are particularly dependent on nutrient availability and such feature (known as auxotrophy) has evolved as biological containment strategy that promotes the life-or-death decision (19).

By reducing the supply of indispensable amino acids, IDO1 and ARG1 directly suppress T cell proliferation and differentiation. The inadequacy of Arg and Trp substrates promotes a state of quiescence, whereby non-essential functions are temporarily quenched, including the cell cycle

progression in the G₀-G₁ phase and the expression/activation of the TCR ζ -chain (2, 20, 21). IDO1 and ARG1 are indeed considered as physiological checkpoints ensuring a short-lived immunosuppression in normal pregnancies. In the placenta, DCs and extravillous trophoblasts highly expressing IDO1 and ARG1 secure a reversible T cell hyporesponsiveness and thus the survival of the fetus *in utero* (22, 23).

The activity of ARG1 and IDO1 translates not only into amino acid deprivation, but also in the production of metabolites endowed with several physiologic effects. L-kynurenine and spermidine, derived from Trp and Arg, respectively, are clear archetypes of non-inert byproducts that can influence immune and non-immune cell functions. In particular, L-kynurenine, by engagement of the aryl hydrocarbon receptor (AhR; a ligand-activated transcription factor), favors the differentiation of regulatory T (Treg) cells and induces IDO1 expression in DCs (24). On the other hand, the polycationic spermidine regulates cell growth and proliferation, and it affects several signal transducing pathways by interacting with ion channels, membrane receptors, and kinases (18).

Under specific conditions (as those dominated by TGF- β), Arg and Trp metabolic pathways are co-activated, thus potentiating the immunoregulatory phenotype of DCs and MDSCs (8, 25). The intimate relationship between ARG1 and IDO1 is allowed by spermidine, which activates the non-enzymatic functions of IDO1 and thus reprograms the cDC toward a long-term, immunoregulatory phenotype. More specifically, through Src kinase activation, spermidine induces the phosphorylation of IDO1, which, in turn, behaves as signaling molecule, promoting activation of the non-canonical pathway of NF- κ B and induction of TGF- β 1 and IDO1 expressions (3, 8). Contrary to spermidine, the small molecule nitric oxide (NO; derived from the Arg breakdown catalyzed by NO synthase) negatively regulates Trp metabolism, as it directly binds the heme prosthetic group and thus blunts the enzymatic function of IDO1 (26). However, besides this effect that would dampen IDO1-mediated immunosuppression, high levels of NO can combine with superoxide anion thus generating reactive nitrogen species that compromise both the activity and migration of T cells at the tumor site (27). Of note, it has been recently shown that AhR can sustain intracellular polyamines production at least in neoplastic conditions (28). However, whether such positive modulation belongs to a physiologic, bi-directional regulation program, where Trp metabolites and/or IDO1 itself affect ARG1 functions, has not been investigated yet.

ARG1 AND IDO1 IN NEOPLASIA

Difference in the metabolism of normal and cancer cells underlie the quest for more specific and less toxic therapies than those currently used. Tumor development is conditioned by genetic changes in malignant cells, immunological tolerance, and immunosuppression (29). At the initial stages of carcinogenesis, the immune system is capable of anti-tumor activity; however, cancer progression compromises the action of T helper

type 1 (Th1)/Th2/Th17 lymphocytes via Treg cells, tumor-associated macrophages (TAMs), and MDSCs, resulting in immunosuppression and loss of reactivity to tumor antigens (30, 31). Recently, much attention has been dedicated to the influence of Arg and Trp metabolic pathways on both tumor cell growth and host's immune antitumor response. Arg is essential for the maturation of the TCR ζ -chain, and its deprivation impairs T cell ability to activate tumor immunity. MDSCs deplete Arg because they express high levels of ARG1, and their number increases 4–10 times depending on the type of cancer. For these reasons, in cancer immunotherapy studies, the effects of both deprivation and supplementation of Arg have been tested, the former on the assumption that tumors may be Arg auxotrophic, and the latter in an effort to counteract the detrimental effect of ARG1-competent, tumor-associated MDSCs on the host antitumor response. Overall, seemingly contradictory results were found in such oncological therapies based on the deprivation or supplementation of Arg, and those results are not easily reconciled (29). In particular, the high efficacy of subtracting Arg to Arg auxotrophic tumors may hardly explain *per se* the global protective effect of this maneuver, in that most tumors may ultimately activate the arginine-succinate synthetase (ASS1) pathway that enables synthesis of Arg from citrulline. The recent finding of a supportive influence of ARG1 on IDO1-dependent tolerogenesis (8)—which would impair host antitumor responses—suggests that it is not the Arg subtraction to the tumor that matters so much as the impairment of ARG1's supportive role in allowing full expression of the IDO1 mechanism in suppressing antitumor responses. In fact, ARG1⁺ MDSCs, obtained by cell incubation with medium derived from mouse melanoma cells, can condition DCs to acquire an IDO1-dependent, immunoregulatory phenotype *in vivo* via production of polyamines (8, 16). Therefore, these data would sustain the existence of an immunosuppressive cross-talk mechanism between distinct cells present in tumor stroma and expressing ARG1 and/or IDO1 (32). The mechanisms whereby IDO1 acts as an immunosuppressant are multiple, and they are detailed elsewhere (2, 10, 11, 33).

There are, however, clinical settings where pharmacological administration of Arg resulted in cytoreductive effects in patients with Arg non-auxotrophic tumors (29). Paradoxical as it seems, this effect could again be explained by the relationship between ARG1 and IDO1 in immune cells. Increased ARG1 activity might lead to IDO1-dependent Trp starvation in cancer cells. Because Trp is an essential and the rarest of all amino acids, this likely results in an overall proteostatic action that affects fast-growing tumors, as discussed elsewhere in detail (3).

With specific regard to Arg auxotrophy, this phenomenon takes place in certain tumors and is caused by the silencing of ASS1 or arginine lyase genes. Those tumors are characterized by an intrinsic chemoresistance and thus a poor prognosis. Nevertheless, on a positive note, Arg auxotrophy theoretically favors the treatment of these tumors with Arg-degrading enzymes. Among the most frequently applied Arg-degrading agents are arginine deiminases (ADI) from bacteria. The antitumor effects of ADI derived from different bacteria have been extensively studied *in vitro* and *in vivo* [for review,

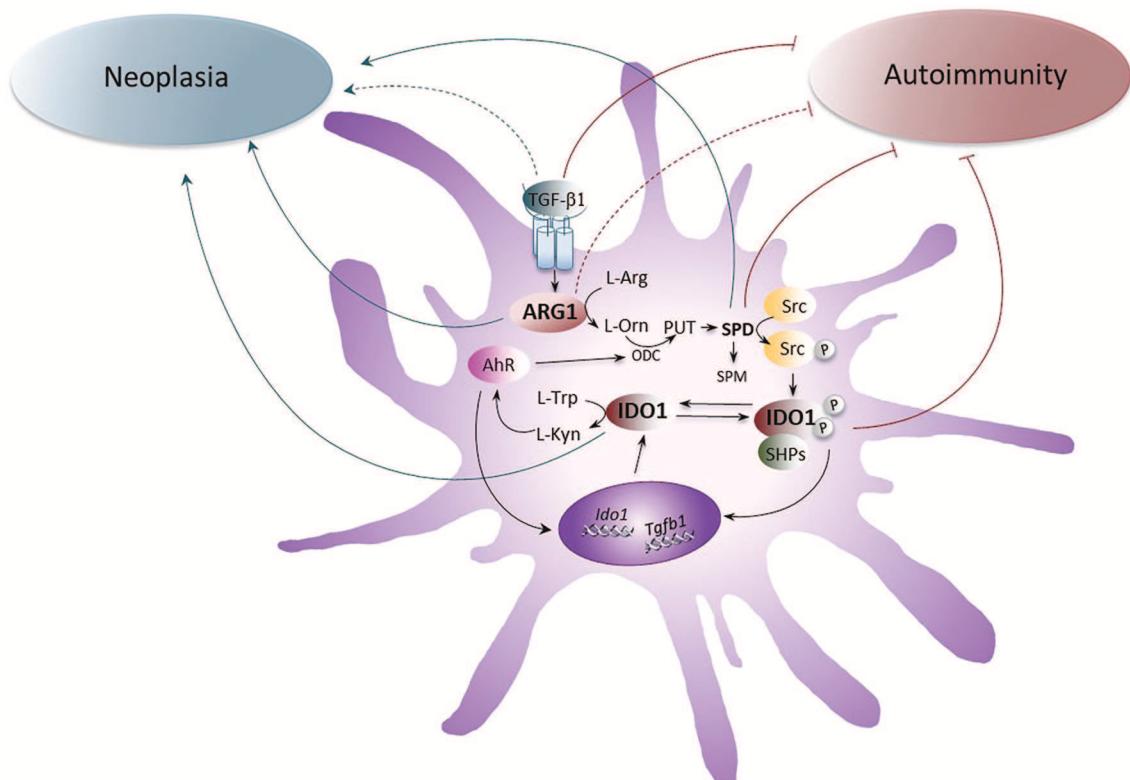
see (34)]. Mycoplasma-derived ADI-PEG20 is the one most commonly used and is under clinical investigation as a single agent therapeutic as well as in combination with other chemotherapeutic compounds. Mechanistically, ADI reduces metabolic activity in tumor cells, contributing to autophagy, senescence, and apoptosis in Arg auxotrophic cells (34). Although clinical trials are promising, the development of resistance after initial treatment is challenging, as illustrated above. Furthermore, an ADI interference within the tumor microenvironment is to be considered. Again, non-specific subtraction of the substrate for ARG1 may indirectly affect the host response to the tumor via effects on IDO1.

Another important issue in cancer is the expression of Arg and Trp transporters in tumor and immune cells. Among Arg carriers (cationic amino acid transporters or CATs), the most important appear to be CAT1, which is constitutively expressed in several tissues, and CAT2B, normally inducible by inflammatory cytokines (35). CAT1 is often overexpressed by tumor cells, and event that can favor tumor growth. In an experimental model of prostate cancer, CAT2B, which allows a rapid transport of Arg into the cell, is expressed at higher levels in tumor-infiltrating as compared to peripheral MDSCs (36). Moreover, the upregulation of CAT2 is coordinated with the induction of both NOS2 and ARG1, thus further favoring Arg uptake by MDSCs at the tumor site. Subsets of human melanoma cells are also characterized by very high levels of CAT2B expression, possibly due to the secretion of inflammatory mediators by the tumor cells themselves (35). Overexpression of Trp carriers (mainly, LAT1/CD98 and SLC6A14) is also involved in the increased proliferation and chemoresistance of several tumor cell types (37). Because SLC6A14 is a broad specific amino acid transporter that can also transfer Arg and its expression can be upregulated by IDO1 (by a mechanism not identified yet) (38), the “doors” for the cell entrance of Arg and Trp may represent suitable cancer drug targets capable of interfering with both ARG1 and IDO1 pathways (39).

Therefore, new insight is definitely needed into the molecular mechanisms underlying the antitumor effects of Arg starvation in both host and tumor, which might facilitate the refinement of IDO1 inhibitory approaches in cancer immunotherapy.

ARG1 AND IDO1 IN AUTOIMMUNITY

The use of checkpoint inhibitors in tumor immunotherapy is frequently accompanied by the development of autoimmune diseases (40), suggesting that the exploitation of immune checkpoint molecules could be a valid therapeutic means in autoimmunity (4, 41). Because both ARG1 and IDO1 act as immune checkpoint mechanisms in neoplasia, their functional “alliance” in specific immune cells could be remarkably effective in controlling adaptive immunity toward auto-antigens.


IDO1 is defective in DCs of non-obese diabetic (NOD) mice (42), an experimental model of human autoimmune diabetes (type 1 diabetes or T1D), and maneuvers aimed at enhancing its expression and activity will exert therapeutic effects in prediabetic and also overtly diabetic animals (43, 44). In

T1D patients, a significantly reduced IDO1 expression can be observed in peripheral blood mononuclear cells (PBMCs) (17) and in pancreatic β cells (45), normally producing insulin. In PBMCs, the defect can be corrected by tocilizumab, a blocker of the interleukin 6 (IL-6) receptor, which inhibits the IL-6-dependent, IDO1 proteasomal degradation (17). In T1D, although its expression and function in immune cells remains unclear, endothelial ARG1 induces the vascular dysfunction associated with hyperglycemia (46). Moreover, administration of difluoromethylornithine (DFMO), a potent inhibitor of polyamine production, protects NOD mice from the development of diabetes.

In experimental models of rheumatoid arthritis (RA), an inflammatory/autoimmune disease of the capsule surrounding joints, lack of IDO1 expression reduces the time to develop a more severe disease (47). Moreover, the protective effects of interferon- α rely on the activation of a TGF- β /IDO1 axis in plasmacytoid DCs (48). Although ARG1 $^+$ M2 macrophages contribute to resolve arthritis inflammation in mice (49), ARG1 activity may be responsible for subclinical endothelial dysfunction also in RA patients (50). Interestingly, methotrexate, an immunosuppressive drug widely used in RA, greatly inhibits the synthesis of polyamines in lymphocytes of RA patients (51).

A definitely clearer picture is emerging in autoimmune neuroinflammation. Administration of 3-hydroxyanthranilic acid (3-HAA; a Trp metabolite of the kynurenine pathway) (52) or of an orally active synthetic derivative thereof (53) ameliorates neuroinflammation and paralysis in mice with acute experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS). Moreover, 3-HAA-treated DCs express higher levels of TGF- β and induce the generation of Treg cells (52). Conversely, administration of 1-methyltryptophan (1-MT), a standard inhibitor of IDO1, exacerbates the clinical course of EAE (54, 55). In leukocytes infiltrating the spinal cord of untreated mice, IDO1-expressing cells exhibit the same morphology as activated macrophages/microglia (54). VCE-004.8, a semisynthetic cannabinoid, protects from EAE, possibly by upregulating ARG1 in macrophages and microglia (56). A Lewis X trisaccharide of schistosome eggs reduces EAE severity by a TLR-mediated mechanism that enhances both ARG1 and IDO1 expression in CD11b $^+$ Ly-6C hi inflammatory monocytes (57). Expression and activity of ARG1 and IDO1 are significantly reduced in PBMCs from MS patients as compared to healthy control subjects (58). Spermidine, the polyamine produced downstream ARG1, protects from autoimmune-directed demyelination of neurons in acute EAE (59). The effect appears to be related to an immunosuppressive function acquired by ARG1 $^+$ macrophages, since (i) their depletion or the administration of an ARG1 inhibitor abolishes spermidine therapeutic activity *in vivo* and (ii) the polyamine induces ARG1 in macrophages (59).

Therefore, although in both T1D and RA the pathways of Arg and Trp metabolism do not seem to be properly interlinked (and this may require cautions when attempting immunotherapies potentiating both ARG1 and IDO1), in MS, the pieces of evidence, when put together, would suggest that the induction

FIGURE 1 | The role of ARG1 and IDO1 in neoplasia and autoimmunity. The up-regulation of ARG1 activity, induced by the cytokine TGF- β , transforms L-arginine (L-Arg) into L-ornithine (L-Orn), which is further metabolized by ornithine decarboxylase (ODC) into polyamines (PUT, putrescine; SPD, spermidine; and SPM, spermine). SPD, through the activation of the Src kinase, promotes the phosphorylation of IDO1 and thus favors the initiation of immunoregulatory signaling events in DCs. Once phosphorylated, IDO1 recruits tyrosine phosphatases (SHPs) and promotes a signaling pathway that upregulates the expression of genes coding for IDO1 and TGF- β , thus creating a self-sustaining circuitry responsible for the maintenance of immune tolerance over the long-term. Moreover, IDO1 catalyzes the conversion of L-tryptophan (L-Trp) into L-kynurenine (L-Kyn), which activates the aryl hydrocarbon receptor (AhR). AhR further induces IDO1 expression in DCs and sustains the production of polyamines by up-regulating ODC. Whereas the pathogenetic and protective role of TGF- β , SPD, and IDO1 in neoplasia and autoimmunity, respectively, have been demonstrated, the role of ARG1 has been unclear and would require further investigations. Gray arrows indicate the pathogenetic effects of IDO1, ARG1, SPD, and TGF- β receptor signaling in neoplasia and brown arrows indicate the putative protective effects of IDO1, SPD, ARG1, and TGF- β receptor signaling in autoimmune diseases. Dotted lines are for molecules whose role is still unclear.

of the immunosuppressive interplay between ARG1 and IDO1 would represent a valid therapeutic objective.

CONCLUSIONS AND PERSPECTIVES

In neoplasia, both ARG1 and IDO1 are often overexpressed, either singly in tumor cells themselves (IDO1) or in association (i.e., both enzymes) in MDSCs and DCs, and they contribute to the impairment of the host anti-tumor immunity. However, the effect of Arg starvation on tumor cells may dampen their proliferation and therefore ARG1 inhibition as therapeutic strategy may have some caveats (Figure 1). In the majority of autoimmune disorders, the bulk of data would suggest that IDO1, expressed by either DCs or macrophages, stands out as an effective immune checkpoint molecule. In contrast, more often than not, ARG1 appears to be more pathogenetic than protective, possibly owing to the enzyme capacity to subtract Arg for NO production, which can be necessary for the resolution of damages induced by autoimmunity (4, 60). However, in autoimmune

neuroinflammation, the available cues would indicate that both ARG1 and IDO1, expressed by macrophages and/or DCs, act as immune checkpoint molecules in EAE and that spermidine, i.e., the molecular connection between the two enzymes in a physiologic setting (8), exerts significant therapeutic effects on its own. Therefore, further investigations on Arg metabolism in neoplasia and autoimmune disorders and its possible cross-talk with IDO1 are needed for a full understanding of its role, protective vs. pathogenetic.

AUTHOR CONTRIBUTIONS

GM, AI, MA, PP, and UG equally contributed in writing the manuscript. UG supervised the final form.

FUNDING

This work was supported by the European Research Council (338954-DIDO and 780807-DIDO-MS, both to UG).

REFERENCES

- Murray PJ. Amino acid auxotrophy as a system of immunological control nodes. *Nat Immunol.* (2016) 17:132–9. doi: 10.1038/ni.3323
- Grohmann U, Bronte V. Control of immune response by amino acid metabolism. *Immunol Rev.* (2010) 236:243–64. doi: 10.1111/j.1600-065X.2010.00915.x
- Grohmann U, Mondanelli G, Belladonna ML, Orabona C, Pallotta MT, Iacono A, et al. Amino-acid sensing and degrading pathways in immune regulation. *Cytokine Growth Factor Rev.* (2017) 35:37–45. doi: 10.1016/j.cytogfr.2017.05.004
- Mondanelli G, Iacono A, Carvalho A, Orabona C, Volpi C, Pallotta MT, et al. Amino acid metabolism as drug target in autoimmune diseases. *Autoimmun Rev.* (2019) 18:334–8. doi: 10.1016/j.autrev.2019.02.004
- Sica A, Mantovani A. Macrophage plasticity and polarization: *in vivo veritas*. *J Clin Investig.* (2012) 122:787–95. doi: 10.1172/JCI59643
- Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. *Nat Rev Immunol.* (2009) 9:162–74. doi: 10.1038/nri2506
- Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. *Immunol Rev.* (2008) 222:162–79. doi: 10.1111/j.1600-065X.2008.00602.x
- Mondanelli G, Bianchi R, Pallotta MT, Orabona C, Albini E, Iacono A, et al. A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. *Immunity.* (2017) 46:233–44. doi: 10.1016/j.jimmuni.2017.01.005
- Munder M. Arginase: an emerging key player in the mammalian immune system. *Br J Pharmacol.* (2009) 158:638–51. doi: 10.1111/j.1476-5381.2009.00291.x
- Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. *Trends Immunol.* (2003) 24:242–8. doi: 10.1016/S1471-4906(03)00072-3
- Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. *Nat Rev Immunol.* (2004) 4:762–74. doi: 10.1038/nri1457
- Puccetti P, Grohmann U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF- κ B activation. *Nat Rev Immunol.* (2007) 7:817–23. doi: 10.1038/nri2163
- Wang J, McGuire TR, Britton HC, Schwarz JK, Loberiza FR, Meza JL, et al. Lenalidomide and cyclophosphamide immunoregulation in patients with metastatic, castration-resistant prostate cancer. *Clin Exp Metastasis.* (2015) 32:111–24. doi: 10.1007/s10585-015-9696-3
- Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R, et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. *Nat Immunol.* (2011) 12:870–8. doi: 10.1038/ni.2077
- Mondanelli G, Volpi C. Differentiation of myeloid-derived suppressor cells from murine bone marrow and their co-culture with splenic dendritic cells. *Bio Protoc.* (2017) 7:e2558. doi: 10.21769/BioProtoc.2558
- Mondanelli G, Ugel S, Grohmann U, Bronte V. The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO. *Curr Opin Pharmacol.* (2017) 35:30–9. doi: 10.1016/j.coph.2017.05.002
- Orabona C, Mondanelli G, Pallotta MT, Carvalho A, Albini E, Fallarino F, et al. Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in juvenile diabetes. *JCI Insight.* (2018) 3:96244. doi: 10.1172/jci.insight.96244
- Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. *Science.* (2018) 359:eaan2788. doi: 10.1126/science.aan2788
- Wang A, Luan HH, Medzhitov R. An evolutionary perspective on immunometabolism. *Science.* (2019) 363:ear3932. doi: 10.1126/science.aar3932
- Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. *Cell.* (2016) 167:829–42.e13. doi: 10.1016/j.cell.2016.09.031
- Fallarino F, Grohmann U, You S, McGrath BC, Caverer DR, Vacca C, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naïve T cells. *J Immunol.* (2006) 176:6752–61. doi: 10.4049/jimmunol.176.11.6752
- Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. *Science.* (1998) 281:1191–3. doi: 10.1126/science.281.5380.1191
- Kropf P, Baud D, Marshall SE, Munder M, Mosley A, Fuentes JM, et al. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. *Eur J Immunol.* (2007) 37:935–45. doi: 10.1002/eji.200636542
- Gutiérrez-Vázquez C, Quintana FJ. Regulation of the immune response by the Aryl hydrocarbon receptor. *Immunity.* (2018) 48:19–33. doi: 10.1016/j.immuni.2017.12.012
- Yu J, Du W, Yan F, Wang Y, Li H, Cao S, et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. *J Immunol.* (2013) 190:3783–97. doi: 10.4049/jimmunol.1201449
- Thomas SR, Mohr D, Stocker R. Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. *J Biol Chem.* (1994) 269:14457–64.
- De Sanctis F, Sandri S, Ferrarini G, Pagliarello I, Sartoris S, Ugel S, et al. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. *Front Immunol.* (2014) 5:69. doi: 10.3389/fimmu.2014.00069
- Bianchi-Smiraglia A, Bagati A, Fink EE, Affronti HC, Lipchick BC, Moparthi S, et al. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. *J Clin Investig.* (2018) 128:4682–96. doi: 10.1172/JCI70712
- Szefel J, Danielak A, Kruszewski WJ. Metabolic pathways of L-arginine and therapeutic consequences in tumors. *Adv Med Sci.* (2018) 64:104–10. doi: 10.1016/j.advms.2018.08.018
- Yu YR, Ho PC. Sculpting tumor microenvironment with immune system: from immunometabolism to immunoediting. *Clin Exp Immunol.* (2019). doi: 10.1111/cei.13293. [Epub ahead of print].
- Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. *Science.* (2011) 331:1565–70. doi: 10.1126/science.1203486
- Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. *Sem Cancer Biol.* (2012) 22:275–81. doi: 10.1016/j.semcan.2012.01.011
- Orabona C, Pallotta MT, Grohmann U. Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2,3-dioxygenase. *Mol Med.* (2012) 18:834–42. doi: 10.2119/molmed.2012.00029
- Riess C, Shokraie F, Classen CF, Kreikemeyer B, Fiedler T, Junghanss C, et al. Arginine-depleting enzymes - an increasingly recognized treatment strategy for therapy-refractory malignancies. *Cell Physiol Biochem.* (2018) 51:854–70. doi: 10.1159/000495382
- Kim SH, Roszik J, Grimm EA, Ekmekcioglu S. Impact of l-arginine metabolism on immune response and anticancer immunotherapy. *Front Oncol.* (2018) 8:67. doi: 10.3389/fonc.2018.00067
- Cimen Bozkus C, Elzey BD, Crist SA, Ellies LG, Ratliff TL. Expression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of T cell immunity. *J Immunol.* (2015) 195:5237–50. doi: 10.4049/jimmunol.1500959
- Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. *Cancer Res.* (2015) 75:1782–8. doi: 10.1158/0008-5472.CAN-14-3745
- McCracken AN, Edinger AL. Targeting cancer metabolism at the plasma membrane by limiting amino acid access through SLC6A14. *Biochem J.* (2015) 470:e17–9. doi: 10.1042/BJ20150721
- Badawy AA. Targeting tryptophan availability to tumors: the answer to immune escape? *Immunol Cell Biol.* (2018) 96:1026–34. doi: 10.1111/imcb.12168
- Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy - immune checkpoint blockade and associated endocrinopathies. *Nat Rev Endocrinol.* (2017) 13:195–207. doi: 10.1038/nrendo.2016.205
- Orabona C, Mondanelli G, Puccetti P, Grohmann U. Immune checkpoint molecules, personalized immunotherapy, and autoimmune diabetes. *Trends Mol Med.* (2018) 24:931–41. doi: 10.1016/j.molmed.2018.08.005
- Grohmann U, Fallarino F, Bianchi R, Orabona C, Vacca C, Fioretti MC, et al. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. *J Exp Med.* (2003) 198:153–60. doi: 10.1084/jem.20030633

43. Pallotta MT, Orabona C, Bianchi R, Vacca C, Fallarino F, Belladonna ML, et al. Forced IDO1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes. *J Cell Mol Med.* (2014) 18:2082–91. doi: 10.1111/jcmm.12360
44. Mondanelli G, Albini E, Pallotta MT, Volpi C, Chatenoud L, Kuhn C, et al. The proteasome inhibitor bortezomib controls indoleamine 2,3-dioxygenase 1 breakdown and restores immune regulation in autoimmune diabetes. *Front Immunol.* (2017) 8:428. doi: 10.3389/fimmu.2017.00428
45. Anquetil F, Mondanelli G, Gonzalez N, Rodriguez Calvo T, Zapardiel Gonzalo J, Krogvold L, et al. Loss of IDO1 expression from human pancreatic beta-cells precedes their destruction during the development of type 1 diabetes. *Diabetes.* (2018) 67:1858–66. doi: 10.2337/db17-1281
46. Pernow J, Jung C. The emerging role of arginase in endothelial dysfunction in diabetes. *Curr Vasc Pharmacol.* (2016) 14:155–62. doi: 10.2174/1570161114666151202205617
47. Criado G, Simelyte E, Inglis JJ, Essex D, Williams RO. Indoleamine 2,3 dioxygenase-mediated tryptophan catabolism regulates accumulation of Th1/Th17 cells in the joint in collagen-induced arthritis. *Arthr Rheumatism.* (2009) 60:1342–51. doi: 10.1002/art.24446
48. Chalise JP, Pallotta MT, Narendra SC, Carlsson B, Iacono A, Namale J, et al. IDO1 and TGF-beta Mediate protective effects of IFN-alpha in antigen-induced arthritis. *J Immunol.* (2016) 197:3142–51. doi: 10.4049/jimmunol.1502125
49. Chen Z, Andreev D, Oeser K, Krljanac B, Hueber A, Kleyer A, et al. Th2 and eosinophil responses suppress inflammatory arthritis. *Nat Commun.* (2016) 7:11596. doi: 10.1038/ncomms11596
50. Chandrasekharan UM, Wang Z, Wu Y, Wilson Tang WH, Hazen SL, Wang S, et al. Elevated levels of plasma symmetric dimethylarginine and increased arginase activity as potential indicators of cardiovascular comorbidity in rheumatoid arthritis. *Arthr Res Ther.* (2018) 20:123. doi: 10.1186/s13075-018-1616-x
51. Nesher G, Osborn TG, Moore TL. *In vitro* effects of methotrexate on polyamine levels in lymphocytes from rheumatoid arthritis patients. *Clin Exp Rheumatol.* (1996) 14:395–9.
52. Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. *J Immunol.* (2010) 185:5953–61. doi: 10.4049/jimmunol.1001628
53. Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. *Science.* (2005) 310:850–5. doi: 10.1126/science.1117634
54. Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, et al. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. *FASEB J.* (2005) 19:1347–9. doi: 10.1096/fj.04-228fje
55. Sakurai K, Zou JP, Tschetter JR, Ward JM, Shearer GM. Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. *J Neuroimmunol.* (2002) 129:186–96. doi: 10.1016/S0165-5728(02)00176-5
56. Navarrete C, Carrillo-Salinas F, Palomares B, Mecha M, Jiménez-Jiménez C, Mestre L, et al. Hypoxia mimetic activity of VCE-0048, a cannabidiol quinone derivative: implications for multiple sclerosis therapy. *J Neuroinflamm.* (2018) 15:64. doi: 10.1186/s12974-018-1103-y
57. Zhu B, Trikudanathan S, Zozulya AL, Sandoval-Garcia C, Kennedy JK, Atochina O, et al. Immune modulation by Lacto-N-fucopentaose III in experimental autoimmune encephalomyelitis. *Clin Immunol.* (2012) 142:351–61. doi: 10.1016/j.clim.2011.12.006
58. Negrotto L, Correale J. Amino acid catabolism in multiple sclerosis affects immune homeostasis. *J Immunol.* (2017) 198:1900–9. doi: 10.4049/jimmunol.1601139
59. Yang Q, Zheng C, Cao J, Cao G, Shou P, Lin L, et al. Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. *Cell Death Different.* (2016) 23:1850–61. doi: 10.1038/cdd.2016.71
60. Krischel V, Bruch-Gerharz D, Suschek C, Kröncke KD, Ruzicka T, Kolb-Bachofen V. Biphasic effect of exogenous nitric oxide on proliferation and differentiation in skin derived keratinocytes but not fibroblasts. *J Investig Dermatol.* (1998) 111:286–91. doi: 10.1046/j.1523-1747.1998.00268.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Mondanelli, Iacono, Allegrucci, Puccetti and Grohmann. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Dynamic Metabolic State of Tissue Resident CD8 T Cells

Špela Konjar* and Marc Veldhoen*

Instituto de Medicina Molecular, João Lobo Atunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal

In the past years, there have been significant advances in the understanding of how environmental conditions alone or in conjunction with pathogen invasion affect the metabolism of T cells, thereby influencing their activation, differentiation, and longevity. Detailed insights of the interlinked processes of activation and metabolism can contribute to major advances in immunotherapies. Naive and memory T cells circulate the body. In a quiescent state with low metabolic demands, they predominantly use oxidative phosphorylation for their energy needs. Recognition of cognate antigen combined with costimulatory signals results in a proliferative burst and effector molecule production, requiring rapid release of energy, achieved via dynamically reprogramming metabolic pathways. After activation, most T cells succumb to activation induced cell death, but few differentiate into memory T cells. Of note, some memory T cells permanently occupy tissues without circulating. These, tissue resident T cells are predominantly CD8 T cells, maintained in a metabolic state distinct from naïve and circulating memory CD8 T cells with elements similar to effector CD8 T cells but without undergoing proliferative burst or secreting immune mediators. They continually interact with tissue cells as part of an immune surveillance network, are well-adapted to the tissues they have made their home and where they may encounter different metabolic environments. In this review, we will discuss recent insights in metabolic characteristics of CD8 T cell biology, with emphasis on tissue resident CD8 T cells at the epithelial barriers.

OPEN ACCESS

Edited by:

Marianne Boes,
Utrecht University, Netherlands

Reviewed by:

Jon D. Piganelli,
University of Pittsburgh, United States
Femke Van Wijk,
University Medical Center Utrecht, Netherlands

*Correspondence:

Špela Konjar
spelakonjar@medicina.ulisboa.pt
Marc Veldhoen
marc.veldhoen@medicina.ulisboa.pt

Specialty section:

This article was submitted to
T Cell Biology,
a section of the journal
Frontiers in Immunology

Received: 13 April 2019

Accepted: 04 July 2019

Published: 17 July 2019

Citation:

Konjar Š and Veldhoen M (2019)
Dynamic Metabolic State of Tissue
Resident CD8 T Cells.
Front. Immunol. 10:1683.
doi: 10.3389/fimmu.2019.01683

Keywords: T cells, metabolism, tissue resident cells, CD8 T cell, intraepithelial lymphocyte (IEL)

INTRODUCTION

T lymphocytes, especially CD8-expressing cytotoxic T cells, play a critical role in immune responses to intracellular microorganisms and cancer cells. Naive CD8 T cells are present in the circulation and secondary lymphoid organs (SLOs), where they encounter dendritic cells (DCs) presenting antigens. Naïve T cells may survive for a significant time, only rarely undergoing cell division. One of the underpinning concepts of immunity is the clonal expansion of T cells upon activation. After recognition of cognate antigen via the T cell receptor (TCR) in the context of appropriate co-stimulatory signals, CD8 T cells undergo rapid expansion and traffic from SLOs to the tissues. They differentiate into effector T cells, gaining cytotoxic activity characterized by the ability to release perforin and granzymes. In addition, they can secrete large amounts of cytokines, such as TNF and IFN- γ (1). The majority of effector cells generated die by apoptosis, but a small population remains and develops into memory CD8 T cell subsets. Memory T cells were thought to circulate and pass through SLOs, similar to naïve T cells, but in larger antigen-specific numbers and with the intrinsic ability to respond more rapidly to reencountered antigens. These memory T cells

are now referred to as central memory T cell (T_{CM}) after the recognition that effector memory T cells (T_{EM}) circulate through the SLOs as well as the tissues (2). Although initially all memory T cells encountered in tissues were considered T_{EM} cells, more recent work has established a dedicated population of tissue resident memory T cells (T_{RM}), which do not circulate through the SLOs and provide a first line of tissue defense at the place of initial antigen encounter (3).

In the past few years it has become evident that CD8 T cell function, differentiation and numeric presence is dependent on nutrient availability, uptake, and processing (4). During different stages of CD8 T cell activation, cells go through dynamic alterations in their metabolic capacity and substrate use. These metabolic changes impact the cells bioenergetic and biosynthetic demands related to substrate uptake, mitochondrial function, and protein and lipid synthesis, ultimately influencing cell division, differentiation and effector capacity (5). In this review, we will discuss the recent findings shedding light on the intertwined relation between metabolic pathways and T cell biology, with focus on CD8 T cells, especially those that have taken residence in peripheral tissues.

METABOLISM OF NAIVE CD8 T CELLS

Metabolic demands of antigen inexperienced naive T cell are low. Their quiescent state needs to maintain the ability for base level proliferation only and metabolic activity largely serves to support cell migration and survival upon cells moving through the blood stream, lymph, and SLOs. Antigen inexperienced T cells use oxidative phosphorylation (OXPHOS), which generates an estimated 96% of energy needs (6). OXPHOS is the main source of energy in most eukaryotic cells, most efficiently obtaining energy in the form of adenosine triphosphate (ATP) by oxidizing nutrients using specialized enzymes in the mitochondria (7). OXPHOS can use a variety of substrates such as glucose, amino acids, and fatty acids, converted to acetyl-CoA, which enters the tricarboxylic acid cycle (TCA) cycle.

The quiescent metabolic status of naive CD8 T cells is not a default setting due to the cells lack of receiving any activating signals, but is actively maintained. Naïve T cells receive constant signals from cytokines such as IL-7, critical in sustaining basal levels of nutrient transporters, like GLUT1 for glucose uptake, and expression of anti-apoptotic proteins (Bcl-2), required for the long term survival of naïve T cells (8, 9). In addition to obtaining energy from glucose, naive T cells can oxidize lipids, such as oleate and palmitate (10).

GLYCOLYSIS IN EFFECTOR CD8 T CELLS

The activation of T cells rapidly switches the metabolic programmes from OXPHOS toward aerobic glycolysis, PPP, and glutaminolysis. The shift in metabolism is associated with a change in metabolic transcriptome, with mammalian target of rapamycin (mTOR), hypoxia-inducible factor 1 (HIF1), and c-MYC amongst the most prominent factors with the ability to rewire cell metabolism. In T cells, the mTOR pathway upregulates

nutrient uptake (especially amino acids), activates glycolytic pathways and promotes cap-dependent translation. Activated CD8 T cells deficient in mTOR, or CD8 T cells treated with mTOR inhibitor rapamycin, become anergic, cannot proliferate and are incapable of metabolic reprogramming during activation (11). Molecular mechanisms by which mTOR influences T cell metabolism and differentiation are discussed elsewhere (12). In activated CD8 T cells, HIF1 upregulates aerobic glycolysis by promoting the transcription of the enzyme pyruvate dehydrogenase kinase 1 (Pdk1) and lactate dehydrogenase A (Ldha) (13). Another transcription factor required for the increase of glycolysis and glutaminolysis in activated CD8 T cells is the transcription factor c-Myc, transcriptionally regulating GLUT1 expression levels. Deletion of Myc abrogates activation induced proliferation and effector function of CD8 T cells *in vitro* and *in vivo* (14, 15).

Glycolysis is a highly conserved metabolic pathway that, independent of oxygen, converts glucose via a series of enzymatic reactions in the cytosol of cells into pyruvate (16). Despite its name, glycolysis does not solely use glucose, most monosaccharides can be converted into pyruvate. Pyruvate can be transported into the mitochondria and oxidized to generate acetyl-CoA. Alternatively, pyruvate remains in the cytosol and is converted into lactate. Lactate production was thought to occur as a consequence of anaerobic glycolysis, when the coenzyme nicotinamide adenine dinucleotide (NAD) required for glycolysis can be in short supply, but it can be produced as part of aerobic glycolysis (Warburg effect). Lactate is produced upon high-energy demands, such as T cell activation, possibly because of limited availability of NAD. Limited NAD availability may result in a switch to lactate production, which itself supplies additional NAD for continued glycolytic flux. Importantly, the production of lactate does not reduce the amount of pyruvate used for OXPHOS and both aerobic glycolysis and OXPHOS pathways are increased during cell activation (15, 17).

The importance of glycolysis for cytotoxic T cell function was shown using the glycolysis inhibitor 2-deoxyglucose (2DG), resulting in defective T cell cytotoxic capacity and selective reduction of the expression of key effector molecules, including IFN- γ and granzymes (18, 19). Of importance, enzymes involved in glycolysis can make direct contributions to T cell function. Increasing glycolysis capacity upon T cell activation result in the engagement of cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in catalyzing the conversion of glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate, releasing it from binding to IFN- γ , thereby enabling its translation by human and mouse CD8 T cells (17, 20).

The reason for lactate production remains uncertain, but the energy needs may be acutely high so that the ATP production from rapid glycolysis alone is more efficient, possibly due to limited amounts of NAD⁺ required in the respiratory chain (21). Lactate can be oxidized back to pyruvate to be used for OXPHOS in some organs, such as muscle and brain, or can be converted to glucose via gluconeogenesis in the liver to be released back into the circulation. The latter would have the potential to sustain or control high-energy demand processes such as immune responses via the liver and its systemic glucose

level maintaining capacity (22). In addition, lactate can have direct immune- and cell-modulating properties (23, 24). Lactate can inhibit the motility of T cells, arresting them at the site of inflammation, thereby focussing the T cell response (25). The latter may contribute to chronic inflammatory disorders, although CD8 T cell cytolytic function is also inhibited by lactate, possibly acting as a safeguard to prevent immunopathology.

Aerobic glycolysis rapidly generates biosynthetic precursor molecules, can function under otherwise adverse hypoxic or acidic microenvironments, entraps T cells at inflammatory sites and may provide systemic control via blood glucose levels (22, 26). Hence, glycolysis may provide several advantages during T cell activation and inflammation and even contribute to immune resolution.

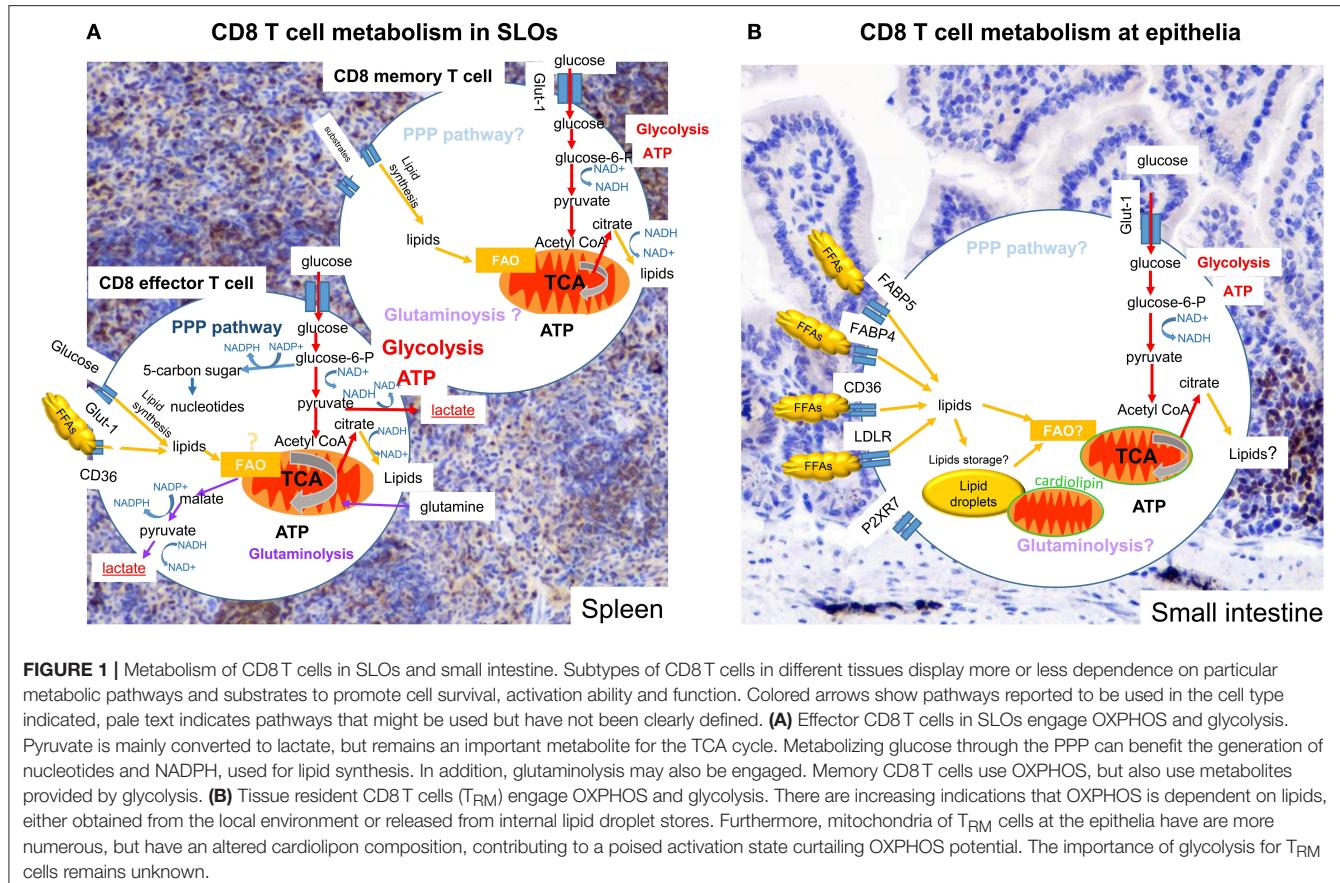
OXPHOS IN EFFECTOR CD8 T CELLS

Activation of CD8 T cells does not result in a complete shift from mitochondrial respiration to aerobic glycolysis. OXPHOS levels increase and remain an important ATP contributor to provide the full complement of factors needed for cell proliferation of activated T cells. The increased emphasis on aerobic glycolysis during CD8 T cell activation and parallel increase of OXPHOS may enable other substrates, such as fatty acids and glutamine, to enter the mitochondria to fuel the TCA cycle (14, 15, 27) (Figure 1). T cell activation in the absence of glucose significantly weakens T cell proliferation and function, but this can be partly rescued by supplying pyruvate or galactose. This highlights that mitochondrial respiration remains important in the process of T cell activation. Cells grown in galactose are forced to respire and do not use aerobic glycolysis, generate ATP at a slower rate and produce less IFN- γ compared with cells activated in the presence of glucose (17).

OXPHOS is accompanied by a production of mitochondrial reactive oxygen species (mROS), which increases during T cell activation. mROS plays a role in the activation and subsequent nuclear localization of nuclear factor of activated T cells (NFAT), responsible for the transcription of the T cell growth factor interleukin (IL)-2. In line with this, T cells from Uqcrfs-deficient mice (complex III subunit 5) show decreased activation and diminished clonal expansion upon *in vivo* antigen encounter (28). Furthermore, increased expression of lymphocyte expansion molecule (LEM), which positively regulates the expression of the mitochondrial electron transport chain complex, controlling the activity of OXPHOS proteins and mROS production, resulted in increased CD8 T cell proliferation and function (29). The removal of LEM reduced CD8 T cell proliferation and reduced levels of mROS. Inhibition of mROS in LEM protein overexpressing mice was sufficient to reduce CD8 T cell proliferation and cytotoxicity, confirming the importance of mROS in CD8 T cell activation.

METABOLISM OF CD8 MEMORY T CELLS

Although memory formation underpins immune protection and is the basis for vaccination success, how memory T cells


are formed is not well-understood. However, their long-term maintenance and ability to respond swiftly upon TCR ligation is, at least in part, due to rewiring of their metabolic pathways. Interestingly, memory formation and improved effector function are often associated with suboptimal T cell activation or metabolite availability, such as reducing mTOR activity and decreased glucose or oxygen levels (12, 30–33). Adenosine monophosphate-activated protein kinase (AMPK) restrains mTOR activity, thereby reducing glycolysis and promoting transition from CD8 effector to memory T cell (34, 35).

There are several different characteristics in metabolic make up between CD8 memory T cells compared to naive and effector CD8 T cells (Table 1). CD8 memory T cells show an enhanced mitochondrial OXPHOS capacity that can provide extra energy required for the proliferative burst. CD8 memory T cells also possess greater mitochondrial mass compared to CD8 effector T cells (36). Although primarily found in non-lymphoid tissues (37), CD8 T_{EM} cells show increased uptake of blood glucose through the glucose transporter-1 (Glut-1) and rely on glycolysis as well as OXPHOS to meet their energy demands (36, 38). As such, although basic energy requirements are reduced, CD8 T_{EM} cells seem metabolically wired in similar fashion as effector T cells. CD8 T_{CM} cells on the other hand, predominantly depend on OXPHOS for both their differentiation and maintenance. They take up lipids and glucose from blood, for lipid synthesis, and use FAO as originally described for all memory CD8 T cells (39, 40).

LIPID METABOLISM IN CIRCULATING CD8 MEMORY T CELLS

CD8 memory T cells depend less on glycolysis and mainly rely on oxidative phosphorylation and lipid metabolism (36). A role for fatty acid metabolism in CD8 memory T cells was first suggested in mice that lack tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), which show similar CD8 T cell activation and expansion but defective CD8 memory T cell generation (34). Although TRAF6 is implicated in several pathways, in CD8 T cells it stimulates AMPK while inhibiting mTOR signaling, thereby increasing fatty acid oxidation (FAO) (41). Upon activation T cells acquire extracellular glucose, which is used to synthesize lipids, can be stored in lipid droplets and subsequently used in FAO (39, 40, 42–44) (Figure 1). Furthermore, memory CD8 T cell development depends on cell intrinsic activity of lysosomal acid lipase A (LIPA) to mobilize fatty acids for FAO (39). The role of lipids stored in droplets during the effector phase remains unknown. Processes of lipolysis and autophagy can degrade lipids for substrate use in metabolic processes (45). Under optimal conditions, such as in SLOs, lipolysis may not be critical. The appearance of lipid droplets *in vitro* takes place within the first 24 h after activation (44). However, upon nutrient deprivation, such as encountered in tissues during inflammation or in the tumor environment, autophagy and lipolysis could become an important contributor to energy demands.

Although FAO is important for memory formation, established memory T cells contain few lipid droplets compared

with effector T cells (39, 44). Memory T cells are not known to increase the uptake of lipids from their surroundings, but can use alternative sources such as glycerol, to generate lipids (43, 46) (Figure 1). This suggests that the increased potential of memory T cells for OXPHOS is not explained by FAO, confirm recent results using carnitine palmitoyltransferase I (CPT1)-deficient cells, which cannot generate acetyl-CoA from long chain fatty acids (47).

TISSUE RESIDENT CD8 T CELLS

In addition to circulating memory T cells, a more recent subtype of memory T cells, called resident memory T cells (TRM) has been described. TRM cells are memory T cells that do not circulate and are predominantly found in non-lymphoid tissues (48, 49), although they have been reported in SLOs (50). In mice, the epidermis, forming the top layer of the skin, is home to specialized T cells, expressing TCR $\gamma\delta$. This population develops during embryogenesis and homes to the epidermis. They have a type 1 immune profile with the ability to produce IFN- γ . The small intestine are another tissue forming a large interfaces between the environment and the body and endowed with a specialized population of CD8 T cells that occupying the very top layer of the tissue, the intraepithelial lymphocyte (IEL) compartment. Similar to the epidermal compartment,

innate-like CD8 T cells occupy the murine small intestine early in life, predominantly specialized TCR $\gamma\delta$ CD8 $\alpha\alpha$ homodimer-expressing T cells with a type 1 immune profile, which home specifically to the IEL compartment. In humans, the IEL compartment is mainly composed of TCR $\alpha\beta$ T cells with $\gamma\delta$ T cells reported in the minority (51). Induced IELs or CD8 TRM cells intercalate with innate-like small intestinal and skin IELs, predominantly expressing TCR $\alpha\beta$ and the CD8 $\alpha\beta$ heterodimer (52, 53). The population of CD8 TRM possess a distinct genetic signature compared with circulating CD8 T cells and are often defined by cell surface expression of CD69, CD103, and CD49a (54). The expression of CD49a and CD103 is indicative of cell interactions with collagen and E-cadherin epithelial tissues (54). Expression of CD69 together with expression of NK cell inhibitory receptors (CD244), and high levels of granzyme B marks CD8 TRM cells as semi-activated T cells (53).

TRM cells are metabolically highly active, continuously scanning the tissues for invasion using migration and long dendrite-like protrusions (52, 55), in line with their semi-activation status. Yet, their development is more in line with CD8 TCM cells than TEM cells (35). TRM cells protect the host through rapid responses upon re-exposure to previously encounter pathogen as well as contribute to immune responses against newly encountered microorganisms via bystander activation (3, 56). Activation of CD8 TRM cells influences the surrounding

TABLE 1 | CD8 T cells subset with their identifiable markers, effector, and metabolic status.

Subset of CD8 T cells	Naive	Circulating memory (T _{CM} /EM)	Effector	Tissue resident
Identity markers	CD44 ¹ CD62L ⁺ CCR7 ⁺ CD103 ⁻ CD69 ⁻	CD44 ^{hi} CD62L ⁺⁻ CCR7 ⁺⁻ CD103 ⁻ CD69 ⁻	CD44 ^{hi} CD62L ⁻ CCR7 ⁻ CD103 ⁻ CD69 ⁺ (early)	CD44 ^{hi} CD62L ⁻ CCR7 ⁻ (CD49a ⁺), CD103 ⁺ , CD69 ⁺
Effector status				
• Immune function	Surveillance SLO	Surveillance of SLO/SLO + tissues	Search and kill infected or tumorigenic cells of all tissues	Surveillance of tissues previously infected
• Cell status	Quiescent	Quiescent	Active	Poised
• Secretory vesicles (Grzm)	Absent	Low	High	High
• Cytotoxicity (TCR/CD28)	TCR + CD28	TCR + CD28	TCR	TCR or cytokines
Metabolic status				
• Status	Quiescent	Primed	Active	Arrested
• Nutrient uptake	Basal	Basal	High	High(?)
• SRC	High	High	Low	Low(?)
• Glycolysis	Basal	Basal	High	Basal(?)
• OXPHOS	Basal	Basal	High	Basal
• Lipid metabolism	+	++	++	++
• Glutaminolysis	-	-	+	?
• Biosynthesis	Minimal, no net growth	Synthesis/oxidation balance, no cell proliferation	High, Cell growth, proliferation	No net growth/cell proliferation

The table highlights the main characteristics, in common and setting apart, the CD8 T cell subsets; naive, effector, circulating memory, and tissue resident memory.

tissue cells, such as a number of broad acting antiviral and antibacterial genes (57), increasing local defenses and decreasing susceptibility to invasion. Release of inflammatory molecules such as IFN- γ , results in the recruitment of additional myeloid and lymphoid cells, maturation and migration of local dendritic cells and activation of natural killer cells (58). In addition to sentinels of microbial invasion, T_{RM} cells bridge the adaptive immune system with the innate immune system (57, 58).

The integration of CD8 T_{RM} cells within tissues involves adaptation to the local environment compatible with their role in clearing potential pathogens, which necessitate changes in T cell metabolism for their maintenance as well as functional potential. A prime feature of T_{RM} cells is their ability to deeply penetrate tissues and their long-term maintenance within it. T_{RM} have to adapt to the new environment of periphery, which can differ in oxygen levels, nutrient availability, acidity, competition for resources in comparison to the environment of lymphatic organs (59, 60).

CD8 T_{RM} cells, not circulating CD8 T cells, express high levels of the purinergic receptor P2RX7, triggered by extracellular nucleotides, associated with tissue damage and exported by activated T cells (35, 61, 62). P2RX7 is involved in the establishment, maintenance and functional properties of CD8 T_{CM} and T_{RM} cells (35). Although tissue damage and stress have been associated with the activation of tissue integrated CD8 T cells, engagement of P2RX7 can result in the selective cell death of CD8 T_{RM} cells. The balance between activation and cell death is carefully orchestrated and context dependent, low concentrations are able to activate T cell and high concentrations result in cell dead (63). However, P2RX7 can be activated directly by ATP, or indirectly via NAD-dependent ADP-ribosylation by

the ecto-ADP-ribosyltransferase ARTC2.2. The concentration of NAD thereby lowering the threshold of ATP concentrations required inducing apoptosis. This may be part of protecting tissues from aberrant immunity in the absence of cognate antigen reencounter since TCR stimulation of CD8 T_{RM} cells reduces P2RX7 expression and susceptibility to cell death. Recent data highlight the importance of both receptors in studying tissue resident T cells, the isolation process resulting in tissue damage and release of ATP and NAD, can causing reduced T_{RM} cell viability and compromises functional assessment (62, 64).

Aberrant regulation of IELs can compromise barrier function and increase susceptibility to infection and immunopathology (44, 65), which can ultimately contribute to inflammatory bowel disease and psoriasis (66, 67). These findings underscore the physiological significance of tissue integrated CD8 T cells in tissue homeostasis and disease. Due to different environmental conditions and their semi-activation status, the metabolic wiring of T_{RM} cells has to be adjusted, the details of which may depend on the host tissue. T_{RM} cells posse some similarities with T_{CM} and T_{EM} cells. We will here discuss some of the recent finding concerning T_{RM} cells and their metabolism.

CD8 T_{RM} CELLS AND LIPID METABOLISM

Lipids are, in comparison to SLOs, abundant at epithelial barriers where T_{RM} cells persist (59, 60). IELs, in skin and intestine, have adapted to a lipid-rich microenvironment. Early on, it was recognized that intestinal T_{RM} cells express required surface molecules to obtain lipids from the extracellular space, including low density lipid receptor (LDLR), ApoE, scavenger receptor CD36, and fatty acid biding proteins (FABP) 4 and 5

(Figure 1), suggesting an important role for lipid metabolism (68). FABP proteins are involved in FFAs fatty-acid influx and transfer from cytosol to mitochondria for the purpose of β -oxidation (69). In addition to regulating fatty acid influx, in macrophages FABP4 is involved in the nuclear factor- κ B (NF- κ B) pathway and stimulates pro-inflammatory effector function such as production of cytokines and inducible nitric oxide synthase (iNOS). Furthermore, FABP4 reduces cholesterol ester accumulation via inhibition of peroxisome proliferator-activated receptor- γ (PPAR- γ) pathways and is involved in integrating lipid signals to organelle responses, especially the endoplasmic reticulum (ER) (70). FABP5 is highly expressed in epidermal cells, but is found in many organs. Its function is to enhance lipolysis (71). Due to compensation mechanisms, combined deletion for FABP4/5 show a much stronger phenotype. Adipocytes and macrophages from double deficient mice have an altered lipid profile, in favor of shorter-chain fatty acids (C14). These changes result in higher glucose uptake, AMPK activity, and fatty-acid oxidation (72).

How skin CD8 T_{RM} persist and function in a lipid rich environment remained elusive (59, 60). More recently, Pan et al. (43), using a mouse model of cutaneous immunization with *Vaccinia* virus, showed that CD8 T_{RM} cells in the skin adapt to utilize lipid metabolism using free fatty acids (FFA) obtained from the surrounding microenvironment for their endurance as well as effector function. Activation of CD8 T_{RM} cells fosters a transcriptional program that features notable increased expression of molecules facilitating exogenous FFA uptake and storage. Compared with naïve and circulating memory CD8 T cell subsets, sCD8 T_{RM} cells, in mouse and human, were able to express high levels of FABP4/5 and CD36 and lipoprotein lipase (LPL) (43). T cell specific deletion of FABP4/5 showed an impairment in FFA uptake in CD8 T_{RM} cells, limiting OXPHOS potential and reducing the survival of skin CD8 T_{RM} cells but not circulating memory CD8 T cells (43).

Intestinal CD8 T_{RM} cells show a similar transcriptional programme to skin T_{RM} cells, with pathways involved in FFA and cholesterol ester synthesis increased compared with naïve and memory CD8 T cells (44, 68). Furthermore, intestinal IELs store accumulated FFA in lipid droplets (44), from which FFA can be made available for FAO via autophagy or via mitochondria tethered to the lipid droplet (73). These observations suggested a reliance of IELs on FAO. However, the accumulation of lipids is a characteristic of activated T cells and does not appear unique to IEL (36, 39, 44). The conditions under which FFA are made available and used for FAO remain unclear with IELs performing basal OXPHOS without additional capacity upon mitochondrial uncoupling (43, 44, 55). Yet, short-term culture of skin IELs with FFA or intestinal infection with *Salmonella* does result in a modest increase in OXPHOS (43, 55). The data suggests that the trigger that makes available FFA from lipid droplets is likely the same that releases additional OXPHOS potential in T_{RM} cells.

Transcriptomic analysis of IEL during intestinal *Salmonella* *Typhimurium* challenge compared to steady state IELs revealed, once more, increased expression of genes involved in metabolism (55). *Salmonella* infection in the small intestine resulted in increased aerobic glycolysis, glucose uptake, as well as OXPHOS

by IELs, similar to effector CD8 T cells (17, 36). In addition, IELs altered their immunosurveillance behavior upon infection, suggesting that the IEL semi-activation status can be further enhanced upon microbial encounter. In support of this, the use of the glycolysis inhibitor 2DG as well as mTOR inhibitor rapamycin resulted in increased *salmonella* burden and invasion. Although 2DG treatment would target many cells involved in the respond to enteric infection (74), GLUT1-deficient innate-IELs revealed the requirement for glycolysis in IELs. However, upon *Salmonella* infection a proliferative response was not detected (55). Collectively, IELs store large amounts of energy in the form of lipids, the signals resulting in the release of these remain unknown, but in line with effector T cells, IELs require both glycolysis and OXPHOS for their effector functions.

CD8 T_{RM} CELLS AND MITOCHONDRIA

Lipid droplet associated mitochondria are biochemically distinct from non-associated cytoplasmic mitochondria, with the later primarily using pyruvate as a substrate (75). These recent data could explain the observations that FAO and fatty acid synthesis seem to take place at the same time within memory T cells (39), but individual mitochondria can only perform one or the other. Interestingly, mitochondria in brown fat associated with lipid droplets, were shown to have reduced FAO capacity compared with cytoplasmic mitochondria. This suggest they are involved in lipid storage under steady state conditions and, upon exposure to the environmental cue of cold, initiate FAO (75).

Mitochondria actively contribute to T cell activation and circulating T cell memory formation, their fission and fusion determining energy production (76). Furthermore, P2RX7 is involved in metabolic function via stimulation of AMPK in CD8 effector T cells, increasing glucose and fatty acid uptake and OXPHOS, and by promoting mitochondrial fusion and reorganization, affecting the development of CD8 T_{CM} and CD8 T_{RM} cells (35). Unexpectedly, detection of mitochondria using mitotracker dyes, often equated to represent mitochondrial mass, or nonyl acridine orange, which binds to cardiolipins, in T cells, suggested very low levels of mitochondria to be present in IELs (innate-like as well as T_{RM} cells) compared with circulating CD8 T cells, with reduced mitochondrial membrane potential and ROS production (44). These observations were at odds with the active scanning behavior of barrier IELs, as well as their high expression level of P2RX7, the absence of which results in reduced OXPHOS potential but similar aerobic glycolysis (35, 77). Electron microscopy analysis revealed increased numbers of mitochondria to be present in IELs compared with circulating CD8 T cells, albeit of a smaller average size (44). Although the exact binding properties of dyes remains elusive, it suggested marked changes in mitochondria of CD8 T_{RM} cells at epithelial barriers.

IEL mitochondria were found to have an altered cardiolipin make up, enriched in longer and more unsaturated species. Additional experiments using T cells deficient in Tafazzin, an enzyme involved in cardiolipin metabolism, indicated that changes in cardiolipins in line with circulating T cells are

required for IEL activation (44, 78). Failure to alter the cardiolipin makeup restricts swift IEL proliferation and effector function, reducing microbial containment capability resulting in an increased microbial burden. In addition, the data also suggested that other changes in IELs may contribute to the absence of mitochondrial detection and possibly energy capacity, since changes in cardiolipin composition did not explain the absence of Mitotracker dye staining under steady state conditions. Whether mitochondria in IELs directly associate with lipid droplets and if their detection is masked by their subcellular location remains to be determined. These findings uncovered an alternative mechanism of mitochondria to control cellular activity, which appear particular to epithelial-resident CD8 T cells.

CD8 T_{RM} AND AhR METABOLISM

Lipid metabolism may involve a factor shared between epithelial T cell subsets, critical for the maintenance of IELs but not expressed in circulating T cells, the arylhydrocarbon receptor (AhR) (52, 65, 79, 80). AhR has been linked with cholesterol biosynthesis in hepatocytes as well as attenuating the expression of key fatty acid synthesis genes (81). The transcriptional activity of AhR is the result of ligand engagement in the cytosol (82). The absence of AhR results in alterations in intestinal microbial composition and acute sensitivity to intestinal injury, in line with the role of IEL in controlling the microbiota and regulating epithelial cell turnover and wound repair (65). The identity of the ligand remains unknown, but can include substances derived from food, light, and microorganism (65, 83, 84). However, AhR ligands are lipophilic and likely enriched in lipid-rich tissues. The transcriptional activity of AhR involves the production of metabolic enzymes, cytochrome P450 of the first family (Cyp1), including in T cells (85), involved in the metabolism of polyunsaturated fatty acids and arachidonic acid.

Although, the functional roles of FABP4/5 remain to be defined, their activity may be juxtaposed to that of AhR, the activity of which can dampen psoriasis-like symptoms (66). Since lymphocytes expressing AhR are enriched in tissues, besides CD8 T_{RM} cells, ILC3 and T_H17 cells, it is tempting to speculate that the AhR system provides a specific advantage in the tissue environment, not required in SLOs. Whether AhR is involved in the assistance of specific metabolic pathways generating energy or protection from metabolic factors encountered in tissues, or generated because of specific metabolic pathways, remains to be determined.

CD8 T_{RM} AND SYSTEMIC METABOLISM

In addition to IELs primary role to provide a first line of defense against invading microorganisms and tissue homeostasis, recent data suggests a potential role in systemic metabolism. In mice deficient in integrin- β 7, which can pair with integrin- α 4 (forming CD49d) or α E (forming CD103), immune cell homing to tissues is reduced. Integrin- β 7-deficient mice lack natural IEL and are metabolically hyperactive (86). Consequently, these

animals are resistant to obesity, hypertension, diabetes, and atherosclerosis when fed a high fat and high sugar diet. IELs express the glucagon-like peptide-1 receptor (GLP-1R) (87). IEL function, release of cytokines and antimicrobial factors, depends on the expression of GLP-1R, its absence resulting in dysregulated intestinal gene expression, an altered microbiota composition, and enhanced sensitivity to colitis, similar to AhR-deficiency with a link to psoriasis (88). GLP-1R, binding GLP-1, is known to be expressed on pancreatic β -cells and brain, its stimulation controlling blood glucose levels and appetite. Its stimulation converting ATP to cyclic adenosine monophosphate (cAMP), reducing the activation and function of IELs, but not that of circulating CD8 T cells (87).

Recent data indicates that the GLP-1R pathway in IELs can determine systemic metabolic capacity, whereby GLP-1 is released from enteroendocrine L-cells in gut epithelium (86). GLP-1 release is increased by sugars and bile acids in the intestinal lumen and in response to neuronal stimulation and inflammation (89). These data suggest that IELs also function as a metabolic and gut-health rheostat, their activity determined by the nutritional and inflammatory state of the organism, maintaining tolerance at the intestinal barrier when symbiotic bacteria produce carbohydrates and bile acids. If GLP-1 levels are limited to reach the blood stream, IEL capture will reduce the availability to stimulate β -cells and the release of insulin, increasing blood glucose levels and activity, as well as to the brain, increasing appetite. The physiological role of this process requires further scrutiny. Since inflammatory signals stimulate L-cell GLP-1 release (89), this could inhibit IEL activity and potentially aggravate intestinal inflammation. Although of potential benefit in times of scarcity, current food composition and ready availability may be detrimental to health.

CONCLUSIONS

In recent years, T cells metabolic characteristic in relation to their activation stage, differentiation and function have been more closely studied. In CD8 T cells, there are clear differences between the metabolic pathways used between naïve, memory and effector cells (Table 1). In addition, between the three identified memory T cell subsets, T_{EM}, T_{CM}, and T_{RM} cells, there are communalities and differences affecting cell development, maintenance and function. How the development of these memory subsets are fine-tuned, with initial differences between T_{RM} cell development compared to T_{EM} and T_{CM} cells reported, remains incompletely understood. CD8 T_{RM} cells have characteristics of effector T cells, with increased expression of transcripts for proteins involved in metabolism and effector proteins such as granzymes, active cellular migration, as well as uptake of FFA and storage in lipid droplets, but without active proliferation or secretion of effector molecules such as IFN- γ . The positioning of T_{RM} cells in diverse tissues would suggest that tissue-specific adaptations might be required for their long-term maintenance and specific function. Yet, the transcriptional make up of CD8 T_{RM} cells in different tissues is largely similar (90, 91). Lipids are recognized to be

an important substrate and FAO as important source of energy for CD8 T_{RM} cells, but the signals resulting the bioavailability of FFA stored in lipid droplets remain to be discovered. Upon activation, CD8 T_{RM} cells appear to use similar metabolic pathways compared with effector CD8 T cells, using OXPHOS and glycolysis. However, maintenance of T cells sets CD8 T_{RM} cell apart, with the high levels of P2RX7 increasing susceptibility to cell death, the expression of AhR critical for survival and the altered cardiolipin composition and mitochondria activity of those CD8 T cells residing at the top layers of the skin and intestine.

The biochemical analysis of T_{RM} cells has been hampered due to the difficulties in harvesting sufficient cell numbers and the inability to culture these cells, requiring constant interactions with tissue cells. Their important role in providing immediate protection against microbial invasion as well as tissue homeostasis and their role in systemic metabolism and pathological conditions, combined with technological advances enabling more sensitive cellular and biochemical analysis, will contribute important new discoveries in the coming years.

REFERENCES

- Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR, Hendricks RL. Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. *Science*. (2008) 322:268–71. doi: 10.1126/science.1164164
- Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. *Nature*. (1999) 401:708–12. doi: 10.1038/44385
- Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. *Nat Rev Immunol*. (2016) 16:79–89. doi: 10.1038/nri.2015.3
- Buck MD, O’Sullivan D, Pearce EL. T cell metabolism drives immunity. *J Exp Med*. (2015) 212:1345–60. doi: 10.1084/jem.20151159
- Dimeloe S, Burgener AV, Grahert J, Hess C. T-cell metabolism governing activation, proliferation and differentiation: a modular view. *Immunology*. (2017) 150:35–44. doi: 10.1111/imm.12655
- Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. *Nat Rev Immunol*. (2005) 5:844–52. doi: 10.1038/nri1710
- Guppy M, Greiner E, Brand K. The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. *Eur J Biochem*. (1993) 212:95–9. doi: 10.1111/j.1432-1033.1993.tb17637.x
- Rathmell JC, Farkash EA, Gao W, Thompson CB. IL-7 enhances the survival and maintains the size of naïve T cells. *J Immunol*. (2001) 167:6869–76. doi: 10.4049/jimmunol.167.12.6869
- Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, et al. IL-7 is critical for homeostatic proliferation and survival of naïve T cells. *Proc Natl Acad Sci USA*. (2001) 98:8732–7. doi: 10.1073/pnas.161126098
- Ardawi MS, Newsholme EA. Metabolism of ketone bodies, oleate and glucose in lymphocytes of the rat. *Biochem J*. (1984) 221:255–60. doi: 10.1042/bj2210255
- Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. *Immunity*. (2010) 33:301–11. doi: 10.1016/j.jimmuni.2010.09.002
- Pollizzi KN, Powell JD. Regulation of T cells by mTOR: the known knowns and the known unknowns. *Trends Immunol*. (2015) 36:13–20. doi: 10.1016/j.it.2014.11.005
- Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E, et al. Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. *Nat Immunol*. (2013) 14:1173–82. doi: 10.1038/ni.2714
- Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM, Tamas P, et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. *Immunity*. (2011) 34:224–36. doi: 10.1016/j.jimmuni.2011.01.012
- Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. *Immunity*. (2011) 35:871–82. doi: 10.1016/j.jimmuni.2011.09.021
- Romano AH, Conway T. Evolution of carbohydrate metabolic pathways. *Res Microbiol*. (1996) 147:448–55. doi: 10.1016/0923-2508(96)83998-2
- Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. *Cell*. (2013) 153:1239–51. doi: 10.1016/j.cell.2013.05.016
- MacDonald HR, Cerottini JC. Inhibition of T cell-mediated cytotoxicity by 2-deoxy-D-glucose (2-DG): differential effect of 2-DG on effector cells isolated early or late after alloantigenic stimulation *in vitro*. *J Immunol*. (1979) 122:1067–72.
- Cham CM, Driessens G, O’Keefe JP, Gajewski TF. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. *Eur J Immunol*. (2008) 38:2438–50. doi: 10.1002/eji.200838289
- Gubser PM, Bantug GR, Razik L, Fischer M, Dimeloe S, Hoenger G, et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. *Nat Immunol*. (2013) 14:1064–72. doi: 10.1038/ni.2687
- Hamanaka RB, Chandel NS. Targeting glucose metabolism for cancer therapy. *J Exp Med*. (2012) 209:211–5. doi: 10.1084/jem.20120162
- Weis S, Carlos AR, Moita MR, Singh S, Blankenhaus B, Cardoso S, et al. Metabolic adaptation establishes disease tolerance to sepsis. *Cell*. (2017) 169:1263–75 e1214. doi: 10.1016/j.cell.2017.05.031
- Okada T, Fukuda S, Hase K, Nishiumi S, Izumi Y, Yoshida M, et al. Microbiota-derived lactate accelerates colon epithelial cell turnover in starvation-refed mice. *Nat Commun*. (2013) 4:1654. doi: 10.1038/ncomms2668
- Lee YS, Kim TY, Kim Y, Lee SH, Kim S, Kang SW, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. *Cell Host Microbe*. (2018) 24:833–46 e836. doi: 10.1016/j.chom.2018.11.002
- Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D’Acquisto F, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. *PLoS Biol*. (2015) 13:e1002202. doi: 10.1371/journal.pbio.1002202
- Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. *Nat Rev Cancer*. (2011) 11:85–95. doi: 10.1038/nrc2981

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This work was supported by the European Union H2020 ERA project (No 667824 – EXCELLtoINNOV) for work in the Veldhoen laboratory.

ACKNOWLEDGMENTS

The authors like to acknowledge Tania Gilot Mendes Carvalho, iMM histology department, who kindly provided the immunohistochemistry pictures used in **Figure 1**. We also acknowledge publishing support, UID/BIM/50005/2019, project funded by Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through Fundos do Orçamento de Estado.

27. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. The CD28 signaling pathway regulates glucose metabolism. *Immunity*. (2002) 16:769–77. doi: 10.1016/S1074-7613(02)00323-0
28. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. *Immunity*. (2013) 38:225–36. doi: 10.1016/j.jimmuni.2012.10.020
29. Okoye I, Wang L, Pallmer K, Richter K, Ichimura T, Haas R, et al. T cell metabolism. The protein LEM promotes CD8(+) T cell immunity through effects on mitochondrial respiration. *Science*. (2015) 348:995–1001. doi: 10.1126/science.aaa7516
30. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, et al. mTOR regulates memory CD8 T-cell differentiation. *Nature*. (2009) 460:108–12. doi: 10.1038/nature08155
31. Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. *Immunity*. (2010) 32:67–78. doi: 10.1016/j.jimmuni.2009.10.010
32. Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. *J Clin Invest*. (2013) 123:4479–88. doi: 10.1172/JCI69589
33. Konjar Š, Blankenhaus B, Veldhoen M. Oxygen starvation during T cell priming boosts cancer-killing potential. *Transl Cancer Res*. (2018) 7:S34–S37. doi: 10.21037/tcr.2017.12.07
34. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. *Nature*. (2009) 460:103–7. doi: 10.1038/nature08097
35. Borges da Silva H, Beura LK, Wang H, Hanse EA, Gore R, Scott MC, et al. The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8(+) T cells. *Nature*. (2018) 559:264–8. doi: 10.1038/s41586-018-0282-0
36. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. *Immunity*. (2012) 36:68–78. doi: 10.1016/j.jimmuni.2011.12.007
37. Masopust D, Veyz V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. *Science*. (2001) 291:2413–7. doi: 10.1126/science.1058867
38. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. *Cell Metab*. (2014) 20:61–72. doi: 10.1016/j.cmet.2014.05.004
39. O'Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck MD, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. *Immunity*. (2014) 41:75–88. doi: 10.1016/j.jimmuni.2014.06.005
40. Maekawa Y, Ishifune C, Tsukumo S, Hozumi K, Yagita H, Yasutomo K. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. *Nat Med*. (2015) 21:55–61. doi: 10.1038/nm.3758
41. Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor-associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. *Immunol Rev*. (2015) 266:72–92. doi: 10.1111/imr.12302
42. Angela M, Endo Y, Asou HK, Yamamoto T, Tumes DJ, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARgamma directs early activation of T cells. *Nat Commun*. (2016) 7:13683. doi: 10.1038/ncomms13683
43. Pan Y, Tian T, Park CO, Lofftus SY, Mei S, Liu X, et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. *Nature*. (2017) 543:252–6. doi: 10.1038/nature21379
44. Konjar S, Frising UC, Ferreira C, Hinterleitner R, Mayassi T, Zhang Q, et al. Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. *Sci Immunol*. (2018) 3:eaan2543. doi: 10.1126/sciimmunol.aan2543
45. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. *Nature*. (2009) 458:1131–5. doi: 10.1038/nature07976
46. Cui G, Staron MM, Gray SM, Ho PC, Amezquita RA, Wu J, et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. *Cell*. (2015) 161:750–61. doi: 10.1016/j.cell.2015.03.021
47. Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. *Cell Metab*. (2018) 28:504–15 e507. doi: 10.1016/j.cmet.2018.06.002
48. Steinert EM, Schenkel JM, Fraser KA, Beura LK, Manlove LS, Iggyarto BZ, et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. *Cell*. (2015) 161:737–49. doi: 10.1016/j.cell.2015.03.031
49. Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. *Sci Transl Med*. (2015) 7:279ra239. doi: 10.1126/scitranslmed.3010302
50. Beura LK, Wijeyesinghe S, Thompson EA, Macchietto MG, Rosato PC, Pierson MJ, et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. *Immunity*. (2018) 48:327–38 e325. doi: 10.1016/j.jimmuni.2018.01.015
51. Mayassi T, Jabri B. Human intraepithelial lymphocytes. *Mucosal Immunol*. (2018) 11:1281–9. doi: 10.1038/s41385-018-0016-5
52. Zaid A, Mackay LK, Rahimpour A, Braun A, Veldhoen M, Carbone FR, et al. Persistence of skin-resident memory T cells within an epidermal niche. *Proc Natl Acad Sci USA*. (2014) 111:5307–12. doi: 10.1073/pnas.1322292111
53. Konjar S, Ferreira C, Blankenhaus B, Veldhoen M. Intestinal barrier interactions with specialized CD8 T cells. *Front Immunol*. (2017) 8:1281. doi: 10.3389/fimmu.2017.01281
54. Topham DJ, Reilly EC. Tissue-resident memory CD8(+) T cells: from phenotype to function. *Front Immunol*. (2018) 9:515. doi: 10.3389/fimmu.2018.00515
55. Hoytema van Konijnenburg DP, Reis BS, Pedicord VA, Farache J, Victora GD, Mucida D. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. *Cell*. (2017) 171:783–94 e713. doi: 10.1016/j.cell.2017.08.046
56. Park CO, Kupper TS. The emerging role of resident memory T cells in protective immunity and inflammatory disease. *Nat Med*. (2015) 21:688–97. doi: 10.1038/nm.3883
57. Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME, Song JY, et al. T cell memory. Skin-resident memory CD8(+) T cells trigger a state of tissue-wide pathogen alert. *Science*. (2014) 346:101–5. doi: 10.1126/science.1254803
58. Schenkel JM, Fraser KA, Beura LK, Pauken KE, Veyz V, Masopust D. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. *Science*. (2014) 346:98–101. doi: 10.1126/science.1254536
59. Khnykin D, Miner JH, Jahnse F. Role of fatty acid transporters in epidermis: implications for health and disease. *Dermatoendocrinol*. (2011) 3:53–61. doi: 10.4161/derm.3.2.14816
60. Zhang Y, Li Q, Rao E, Sun Y, Grossmann ME, Morris RJ, et al. Epidermal Fatty Acid binding protein promotes skin inflammation induced by high-fat diet. *Immunity*. (2015) 42:953–64. doi: 10.1016/j.jimmuni.2015.04.016
61. Stark R, Wesselink TH, Behr FM, Kragten NAM, Arens R, Koch-Nolte F, et al. T RM maintenance is regulated by tissue damage via P2RX7. *Sci Immunol*. (2018) 3:eaau1022. doi: 10.1126/sciimmunol.aau1022
62. Borges da Silva H, Wang H, Qian LJ, Hogquist KA, Jameson SC. ARTC2.2/P2RX7 signaling during cell isolation distorts function and quantification of tissue-resident CD8(+) T cell and invariant NKT subsets. *J Immunol*. (2019) 202:2153–63. doi: 10.4049/jimmunol.1801613
63. Rissiek B, Haag F, Boyer O, Koch-Nolte F, Adriouch S. P2X7 on mouse T cells: one channel, many functions. *Front Immunol*. (2015) 6:204. doi: 10.3389/fimmu.2015.00204
64. Rissiek B, Lukowiak M, Raczkowski F, Magnus T, Mittrucker HW, Koch-Nolte F. In vivo blockade of murine ARTC2.2 during cell preparation preserves the vitality and function of liver tissue-resident memory T cells. *Front Immunol*. (2018) 9:1580. doi: 10.3389/fimmu.2018.01580
65. Li Y, Innocent S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. *Cell*. (2011) 147:629–40. doi: 10.1016/j.cell.2011.09.025
66. Di Meglio P, Duarte JH, Ahlfors H, Owens ND, Li Y, Villanova F, et al. Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. *Immunity*. (2014) 40:989–1001. doi: 10.1016/j.jimmuni.2014.04.019

67. McDonald BD, Jabri B, Bendelac A. Diverse developmental pathways of intestinal intraepithelial lymphocytes. *Nat Rev Immunol.* (2018) 18:514–25. doi: 10.1038/s41577-018-0013-7
68. Fahrer AM, Konigshofer Y, Kerr EM, Ghandour G, Mack DH, Davis MM, et al. Attributes of gammadelta intraepithelial lymphocytes as suggested by their transcriptional profile. *Proc Natl Acad Sci USA.* (2001) 98:10261–6. doi: 10.1073/pnas.171320798
69. Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs—mechanisms and therapeutic implications. *Nat Rev Endocrinol.* (2015) 11:592–605. doi: 10.1038/nrendo.2015.122
70. Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. *Nat Rev Drug Discov.* (2008) 7:489–503. doi: 10.1038/nrd2589
71. Hertzel AV, Bennaars-Eiden A, Bernlohr DA. Increased lipolysis in transgenic animals overexpressing the epithelial fatty acid binding protein in adipose cells. *J Lipid Res.* (2002) 43:2105–11. doi: 10.1194/jlr.M200227-JLR200
72. Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, et al. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. *Cell Metab.* (2005) 1:107–19. doi: 10.1016/j.cmet.2004.12.008
73. Benador IY, Veliova M, Liesa M, Shirihai OS. Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization. *Cell Metab.* (2019) 29:827–35. doi: 10.1016/j.cmet.2019.02.011
74. Chieppa M, Rescigno M, Huang AY, Germain RN. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. *J Exp Med.* (2006) 203:2841–52. doi: 10.1084/jem.20061884
75. Benador IY, Veliova M, Mahdaviani K, Petcherski A, Wikstrom JD, Assali EA, et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. *Cell Metab.* (2018) 27:869–85 e866. doi: 10.1016/j.cmet.2018.03.003
76. Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. *Cell.* (2016) 166:63–76. doi: 10.1016/j.cell.2016.05.035
77. Schenk U, Westendorf AM, Radaelli E, Casati A, Ferro M, Fumagalli M, et al. Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. *Sci Signal.* (2008) 1:ra6. doi: 10.1126/scisignal.1160583
78. Veldhoen M, Blankenhaus B, Konjar S, Ferreira C. Metabolic wiring of murine T cell and intraepithelial lymphocyte maintenance and activation. *Eur J Immunol.* (2018) 48:1430–40. doi: 10.1002/eji.201646745
79. Kadow S, Jux B, Zahner SP, Wingerath B, Chmill S, Clausen BE, et al. Aryl hydrocarbon receptor is critical for homeostasis of invariant gammadelta T cells in the murine epidermis. *J Immunol.* (2011) 187:3104–10. doi: 10.4049/jimmunol.1100912
80. Stange J, Veldhoen M. The aryl hydrocarbon receptor in innate T cell immunity. *Semin Immunopathol.* (2013) 35:645–55. doi: 10.1007/s00281-013-0389-1
81. Tanos R, Murray IA, Smith PB, Patterson A, Perdew GH. Role of the Ah receptor in homeostatic control of fatty acid synthesis in the liver. *Toxicol Sci.* (2012) 129:372–9. doi: 10.1093/toxsci/kfs204
82. Stockinger B, Veldhoen M, Hirota K. Modulation of Th17 development and function by activation of the aryl hydrocarbon receptor—the role of endogenous ligands. *Eur J Immunol.* (2009) 39:652–4. doi: 10.1002/eji.200839134
83. Moura-Alves P, Fae K, Houthuys E, Dorhoi A, Kreuchwig A, Farkert J, et al. AhR sensing of bacterial pigments regulates antibacterial defence. *Nature.* (2014) 512:387–92. doi: 10.1038/nature13684
84. Veldhoen M, Ferreira C. Influence of nutrient-derived metabolites on lymphocyte immunity. *Nat Med.* (2015) 21:709–18. doi: 10.1038/nm.3894
85. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renaud JC, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. *Nature.* (2008) 453:106–9. doi: 10.1038/nature06881
86. He S, Kahles F, Rattik S, Nairz M, McAlpine CS, Anzai A, et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. *Nature.* (2019) 566:115–9. doi: 10.1038/s41586-018-0849-9
87. Yusta B, Baggio LL, Koehler J, Holland D, Cao X, Pinnell LJ, et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. *Diabetes.* (2015) 64:2537–49. doi: 10.2337/db14-1577
88. Drucker DJ, Rosen CF. Glucagon-like peptide-1 (GLP-1) receptor agonists, obesity and psoriasis: diabetes meets dermatology. *Diabetologia.* (2011) 54:2741–4. doi: 10.1007/s00125-011-2297-z
89. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. *Nat Med.* (2011) 17:1481–9. doi: 10.1038/nm.2513
90. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. *Nat Immunol.* (2013) 14:1294–301. doi: 10.1038/ni.2744
91. Kumar BV, Ma W, Miron M, Granot T, Guyer RS, Carpenter DJ, et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. *Cell Rep.* (2017) 20:2921–34. doi: 10.1016/j.celrep.2017.08.078

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Konjar and Veldhoen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Ataxin-3 Links NOD2 and TLR2 Mediated Innate Immune Sensing and Metabolism in Myeloid Cells

Thomas P. Chapman ^{1†}, Daniele Corridoni ^{1†}, Seiji Shiraishi ¹, Sumeet Pandey ², Anna Aulicino ¹, Simon Wigfield ³, Maria do Carmo Costa ⁴, Marie-Laëtitia Thézénas ⁵, Henry Paulson ⁴, Roman Fischer ⁵, Benedikt M. Kessler ⁵ and Alison Simmons ^{1*}

¹ MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom, ² Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom, ³ Department of Oncology, University of Oxford, Oxford, United Kingdom, ⁴ Department of Neurology, University of Michigan, Ann Arbor, MI, United States, ⁵ Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom

OPEN ACCESS

Edited by:

Hannes Stockinger,
Medical University of Vienna, Austria

Reviewed by:

Jaya Talreja,
Wayne State University, United States
Guntram A. Grassl,
Hannover Medical School, Germany

*Correspondence:

Alison Simmons
alison.simmons@imm.ox.ac.uk

[†]These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

Received: 02 April 2019

Accepted: 14 June 2019

Published: 19 July 2019

Citation:

Chapman TP, Corridoni D, Shiraishi S, Pandey S, Aulicino A, Wigfield S, do Carmo Costa M, Thézénas M-L, Paulson H, Fischer R, Kessler BM and Simmons A (2019) Ataxin-3 Links NOD2 and TLR2 Mediated Innate Immune Sensing and Metabolism in Myeloid Cells. *Front. Immunol.* 10:1495. doi: 10.3389/fimmu.2019.01495

The interplay between NOD2 and TLR2 following recognition of components of the bacterial cell wall peptidoglycan is well-established, however their role in redirecting metabolic pathways in myeloid cells to degrade pathogens and mount antigen presentation remains unclear. We show NOD2 and TLR2 mediate phosphorylation of the deubiquitinase ataxin-3 via RIPK2 and TBK1. In myeloid cells ataxin-3 associates with the mitochondrial cristae protein MIC60, and is required for oxidative phosphorylation. Depletion of ataxin-3 leads to impaired induction of mitochondrial reactive oxygen species (mROS) and defective bacterial killing. A mass spectrometry analysis of NOD2/TLR2 triggered ataxin-3 deubiquitination targets revealed immunometabolic regulators, including HIF-1 α and LAMTOR1 that may contribute to these effects. Thus, we define how ataxin-3 plays an essential role in NOD2 and TLR2 sensing and effector functions in myeloid cells.

Keywords: Nod2, TLR2, metabolism, innate immunity, ataxin 3

INTRODUCTION

Pattern recognition receptors (PRRs) recognize foreign antigen to direct innate and adaptive immune responses against invading pathogens (1). Polymorphisms in the PRR nucleotide-binding oligomerization domain-containing protein 2 (NOD2) represent the strongest genetic risk factor for the inflammatory bowel disease Crohn's (CD), and thus this bacterial sensor is the focus of particular research interest (2–4). NOD2 recognizes muramyl dipeptide (MDP), the largest fraction of peptidoglycan, that is present in the cell walls of all bacteria (5). Subsequent activation of NF- κ B and MAPK pathways via interaction with receptor-interacting protein kinase 2 (RIPK2) results in an array of immune responses, such as production and regulation of pro-inflammatory cytokines (6), and modulation of T-cell function (7–9). NOD2 also directs autophagy, which is important both for bacterial clearance and MHC class II antigen presentation (10). Importantly, NOD2 signaling is intimately linked with that of toll like receptor TLR2, with both responding to ligands derived from the same bacterial component, peptidoglycan. Although the precise mechanisms of cross-regulation are not well-understood, both NOD2 and TLR2 activate separate upstream signaling cascades to recruit the same NF- κ B and MAPK pathways, and are typically thought to act in a synergistic fashion (11). CD patients harboring NOD2 polymorphisms display loss-of-function for induction of NOD2

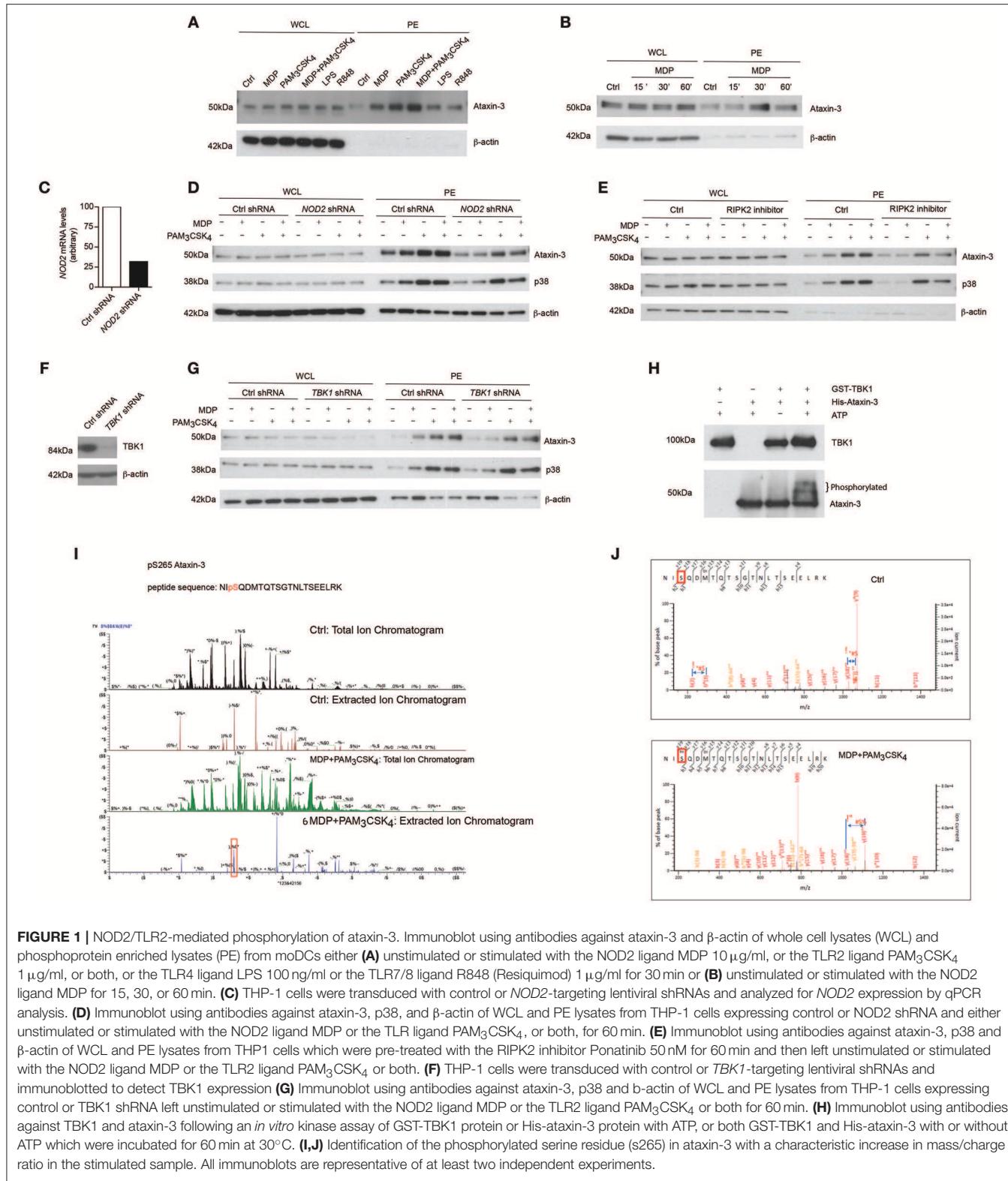
and NOD2/TLR2 effector signaling factors (12, 13). In contrast, gain-of-function mutations of NOD2 have been associated with other inflammatory disease, such as Blau syndrome and early-onset-sarcoidosis (EOS).

In recent years it has become clear that cross-talk between metabolic and immune pathways is central to the regulation of host defense (14). Immune cells undergo significant metabolic reprogramming during the immune response, both as a result of changes in the metabolic microenvironment induced by inflammation, and in response to immune triggering. This interplay appears of particular importance to dendritic cells and macrophages and controls core processes including differentiation (15). However, while the importance of PRR activation in directing metabolic pathways that impact on immune effector function is now well-established, how NOD2 and TLR2 influence myeloid metabolism is unclear. Here, following a phosphoproteomic screen of NOD2 and TLR signaling we identify a deubiquitinase essential for metabolic reprogramming and innate effector function in myeloid cells.

RESULTS

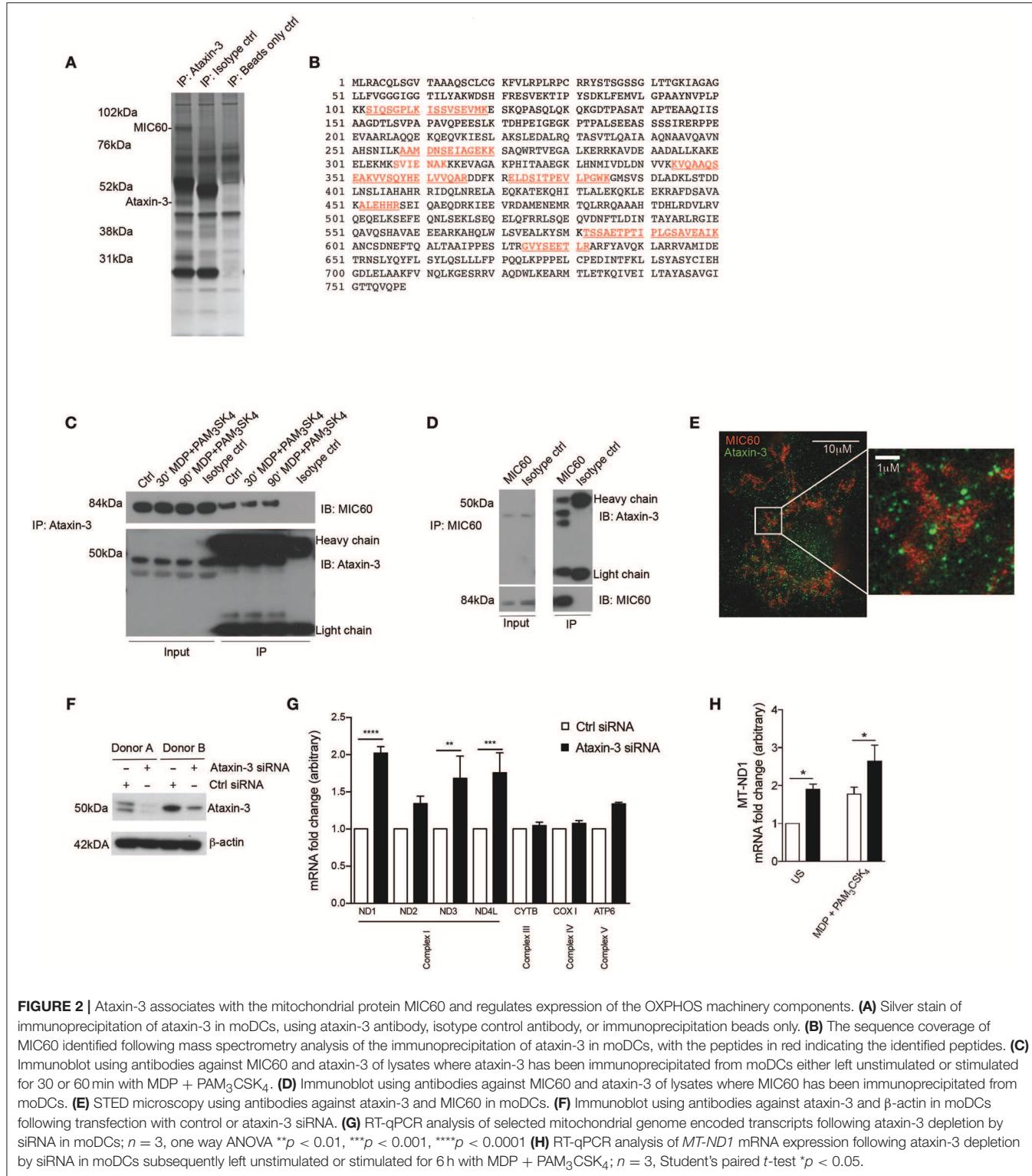
NOD2 and TLR2 Stimulation Leads to Ataxin-3 Phosphorylation Mediated by RIPK2 and TBK1

We identified ataxin-3 as one of the most differentially phosphorylated proteins on NOD2/TLR2 stimulation through a quantitative phosphoproteomic screen in monocyte derived dendritic cells (moDCs) from healthy human donors (**Supplementary Table 1**). Ataxin-3 is a deubiquitinase (DUB) (16) that is required for non-selective autophagy and that is linked to neurodegenerative disease (17–19).


We first validated this result by immunoblotting phospho-enriched samples for ataxin-3 (**Figure 1A**). Both NOD2 and TLR2 stimulation alone led to ataxin-3 phosphorylation; this effect was enhanced on dual stimulation of NOD2 and TLR2. It was also observed to a lesser extent following stimulation of TLR4, TLR7, and TLR8 (**Figure 1A**). NOD2 mediated phosphorylation of ataxin-3 was examined in greater detail. A time course experiment demonstrated that ataxin-3 phosphorylation was maximal 30 min after MDP stimulation (**Figure 1B**). While NOD2 is the only known receptor for MDP, the absolute requirement for NOD2 in the MDP stimulated phosphorylation of ataxin-3 was investigated. We downregulated expression of NOD2 in THP-1 cells using short hairpin RNAs (shRNA) targeting NOD2 (**Figure 1C**). Reduction of ataxin-3 phosphorylation on MDP exposure was observed in NOD2 knockdown cells (**Figure 1D**). Next, given the central importance of RIPK2 in NOD2 signaling (20, 21), the requirement of RIPK2 for phosphorylation of ataxin-3 by NOD2 was investigated. NOD2-RIPK2 inflammatory signaling can be potently and selectively inhibited by the clinically relevant kinase inhibitor Ponatinib, that functions by blocking RIPK2 autophosphorylation and ubiquitination (22). moDCs were treated with Ponatinib prior to stimulation with MDP or PAM₃CSK₄ or both, with phosphorylation of p38 used as

a positive control for the inhibitor. As expected, inhibition of RIPK2 blocked NOD2 induced phosphorylation of p38, but had no effect on induction by TLR2, which signals to p38 via a MyD88 pathway which is independent of RIPK2 (23). Inhibition of RIPK2 led to complete inhibition of NOD2 induced phosphorylation of ataxin-3, and significant abrogation of the synergistic NOD2/TLR2 signal in both cell types (**Figure 1E**). Recent evidence suggests that tank binding kinase 1 (TBK1) may represent a novel but important kinase in the NOD2/RIPK2 signaling cascade (24, 25) and MDP stimulation of the NOD2 receptor has been shown to induce TBK1 phosphorylation at S172 (24). Consequently, the requirement for TBK1 in NOD2/RIPK2 dependent phosphorylation of ataxin-3 was examined. We downregulated expression of TBK1 in THP-1 cells using short hairpin RNAs (shRNA) targeting TBK1 (**Figure 1F**). Reduction of ataxin-3 phosphorylation on MDP exposure was observed in TBK1 knockdown cells (**Figure 1G**). The possibility that TBK1 might directly phosphorylate ataxin-3, as has been described for a number of other proteins including optineurin (26) and p62 (27), was explored using an *in vitro* kinase assay (**Figure 1H**). The expected autophosphorylation of TBK1 was demonstrated by a marginally higher molecular weight of the TBK1 band in samples containing both TBK1 and ATP. Importantly, a significant proportion of the ataxin-3 band was noted at a higher molecular weight in samples containing ataxin-3, TBK1 and ATP, consistent with ataxin-3 phosphorylation (**Figure 1H**). Notably, no change in migration of the ataxin-3 band was seen in samples containing ataxin-3 and TBK1 but not ATP, confirming the ATP dependency of this shift, consistent with phosphorylation. Finally, the phosphorylation site of ataxin-3 was sought, using liquid chromatography mass spectrometry analysis of endogenous ataxin-3 immunoprecipitated from THP-1 cells. A significant shift in mass/charge ratio, consistent with phosphorylation, was detected at a single peptide in the MDP/PAM₃CSK₄ stimulated sample only, corresponding to phosphorylation at serine 265 (**Figure 1I**). This residue has been described as a phosphorylation site in 12 separate large scale mass spectrometry (MS) screens of human primary cells and cell lines (28), and is highly conserved in placental bearing mammals (29), but there is no existing knowledge of its functional relevance. It is located in close proximity to the second ubiquitin interacting motif (UIM), suggesting that phosphorylation could affect specificity of DUB target, as has been described for neighboring serine residues 256/260/261 (30) (**Figure 1J**).

Taken together, this data shows that activation of NOD2/TLR2 signaling pathway induces phosphorylation of the DUB ataxin-3. TBK1 is required for the direct phosphorylation of ataxin-3 at serine 265 following NOD2/TLR2 activation.


Ataxin-3 Localizes With the Mitochondrial Cristae Protein MIC60 and Regulates the Expression of the Oxphos Machinery Components

To identify novel interacting partners of ataxin-3 in innate immune cells, endogenous ataxin-3 was immunoprecipitated in moDCs from healthy human donors, and subjected to mass

spectrometry analysis. One of the most abundant proteins identified in the pull down was the mitochondrial cristae protein MIC60 (Figures 2A,B). The association between ataxin-3 and MIC60 was validated through immunoblot of

immunoprecipitated ataxin-3 (Figure 2C). There appeared to be no change in abundance of MIC60 when moDCs were stimulated with MDP + PAM₃CSK₄ prior to immunoprecipitation of ataxin-3, suggesting that NOD2/TLR2 stimulation does not

affect binding. To further confirm the association, MIC60 was pulled down, and an immunoblot for ataxin-3 performed (Figure 2D). Here, ataxin-3 appeared at two molecular weights, suggesting that either two separate isoforms bind to MIC60,

or it is post-translationally modified. Finally, super-resolution assessment using stimulated emission depletion (STED) microscopy confirmed that ataxin-3 was situated in close proximity to MIC60 (Figure 2E).

MIC60 is the largest protein in the mitochondrial contact site (MICOS) complex, which is embedded in the mitochondrial inner membrane and acts as a key regulator of cristae junction formation and assembly of respiratory chain complexes which are required for oxidative phosphorylation (31). Additional specific roles for MIC60 include the import of proteins (32, 33) and regulation of mitochondrial DNA (mtDNA) transcription (34, 35). Consequently, we examined the effect of ataxin-3 knockdown in moDCS on expression of mtDNA genes that encode components of the ophox machinery. moDCS from healthy human donors were found to express either a single or double isoform of ataxin-3 with approximately equal frequency, but all detectable isoforms could be efficiently knocked down (Figure 2F). Ataxin-3 depletion led to a 2-fold upregulation of NADH-ubiquinone oxidoreductase 1 (*MT-ND1*), with a statistically significant upregulation observed for mRNA expression of two other genes from Complex I, *MT-ND3* and *MT-ND4L* (Figure 2G). In comparison, genes encoding components of Complex III, IV and V were broadly unaffected. It is noteworthy that mtDNA transcription is tightly regulated due to its close links to ophox, and thus 1.5- to 2-fold changes in mRNA expression level represent a potentially functionally significant alteration (36). The effect of NOD2/TLR2 stimulation was examined on *MT-ND1*, the most significantly affected gene. Stimulation led to a significant upregulation in mRNA expression in both the control and ataxin-3 depleted cells, but there was significantly greater ND1 in the ataxin-3 depleted cells following stimulation (Figure 2H). Finally, to understand if these effects on Complex I genes correlate with modulation of cytokine responses, we have assessed the expression of *IL8*, *IL1β*, *TNF*, *IL12B*, and *IL23A* in response to TLR/NOD2 signaling in human moDCS and found that ataxin-3 depletion using siRNA did not affect the levels of these cytokines (data not shown).

These results indicate a novel association between ataxin-3 and MIC60, a component of the MICOS complex involved in the regulation of mtDNA. We demonstrated that ataxin-3 regulates mtDNA by downregulating the expression of Complex I genes, an effect increased on NOD2/TLR2 sensing.

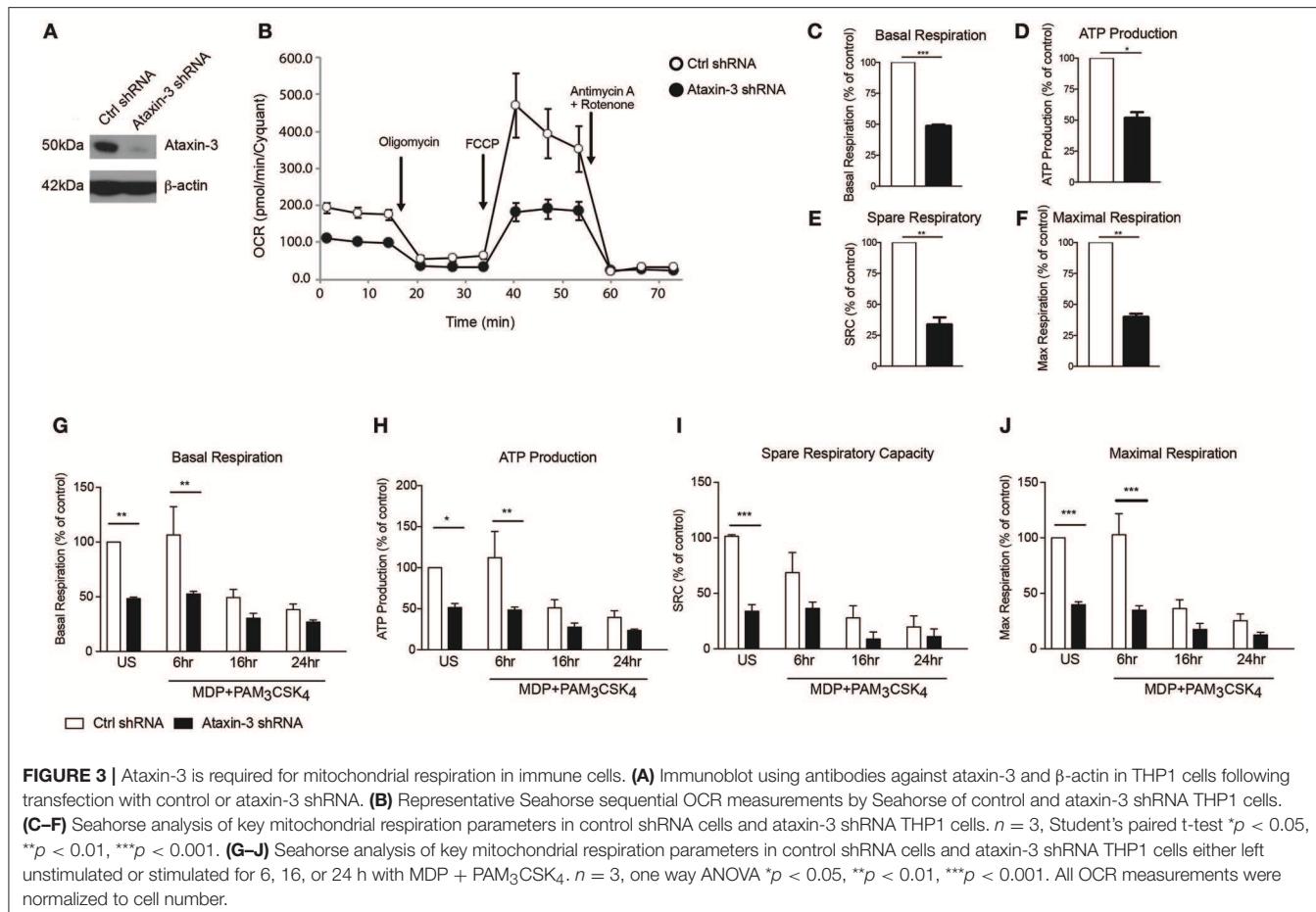
Ataxin-3 Is Important for Optimal Mitochondrial Respiration Following NOD2 and TLR2 Stimulation

We next investigated the functional relevance of the observed changes in the expression of Complex I genes. Using short hairpin RNAs (shRNA) targeting the ataxin-3 gene (*ATXN3*), we downregulated ataxin-3 protein expression in THP-1 cells (Figure 3A). We next performed a real time analysis of oxidative phosphorylation to address the function of ataxin-3. We found that ataxin-3 depletion led to a significant reduction in all the key parameters of mitochondrial respiration assessed (Figures 3B–F).

We next determined whether NOD2/TLR2-mediated ataxin-3 phosphorylation stimulation affects mitochondrial respiration. Prolonged triggering of these PRRs led to an expected metabolic shift (37) with downregulation of oxidative phosphorylation. In the ataxin-3 depleted cells the level of ophox remained

significantly lower than in the control cells following stimulation (Figures 3G–J). Importantly, no significant difference in mtDNA copy number was found between the control and ataxin-3 depleted THP-1 cell line (Supplementary Figure 1), suggesting that there are no differences in mitochondrial mass or turnover through mitophagy to explain the observed changes.

Taken together, this data shows that in innate immune cells, ataxin-3 is required for optimal mitochondrial respiration and this effect is enhanced following its phosphorylation on NOD2/TLR2 stimulation.

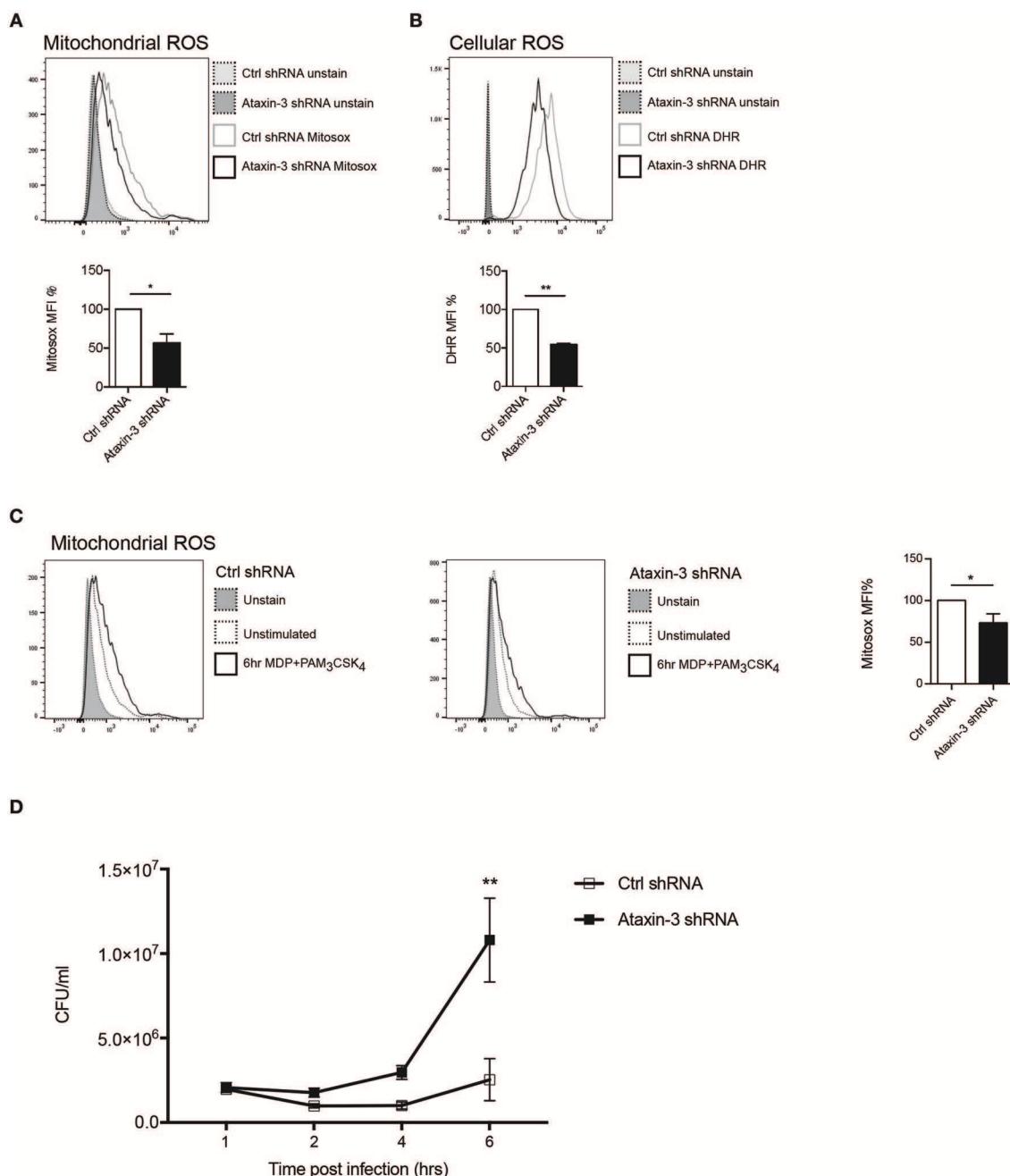

Ataxin-3 Is Required for Mitochondrial ROS Production, and Is Necessary for Optimal Bacterial Killing

A key function of mitochondrial respiration in immune cells is the generation of mROS. This results from leakage of electrons, predominantly from Complex I and to a lesser extent from Complex III, which partially reduce oxygen to form superoxide (38). The effect of ataxin-3 depletion on mROS and total cellular ROS was therefore examined. Ataxin-3 depletion led to a significant reduction in mROS (Figure 4A). As expected, there was a corresponding decrease in total cellular ROS, to which mROS makes a significant contribution (Figure 4B). The ability of immune cells to upregulate mROS production on pathogen challenge is crucial to the immune response (39); importantly, ataxin-3 depleted cells also produced less mROS on NOD2/TLR2 stimulation (Figure 4C). mROS forms an important component of antibacterial responses, and is important for bacterial killing (39). To test the functional significance of the observed impairment of mitochondrial ophox and mROS generation on NOD2/TLR2 triggering, we assessed the response of ataxin-3 depleted macrophages to *Salmonella* Typhimurium, a Gram-negative intracellular bacterium that is sensitive to ROS-dependent killing (39, 40). A gentamicin survival assay was undertaken. While bacterial invasion was unchanged, as evidenced by similar bacterial counts at 1 h post-infection, there was subsequently significantly greater bacterial survival in the ataxin-3 depleted cells that was maximal at 6 h (Figure 4D). There were no significant differences in cell viability between the two groups at any of the infection time points (Supplementary Figure 2), excluding differences in cell survival as a contributing factor in the bacterial killing deficit.

Taken together, this data shows that in macrophages ataxin-3 is required for mROS generation and this contributes to effective intracellular bacterial killing.

An Unbiased Ubiquitome Screen Reveals Novel DUB Targets of Ataxin-3 Following NOD2 and TLR2 Activation

To further define the role of ataxin-3 in NOD2/TLR2 signaling, we sought to define downstream DUB targets. Classically the ubiquitinated proteome, also termed the ubiquitome, was first enriched using His₆-tagged ubiquitinated conjugates under denaturing conditions. However, concerns exist over the impact of overexpressed modified His₆, which competes with



endogenous ubiquitin, on the ubiquitome (41). An alternative method of enrichment, using high affinity ubiquitin traps has therefore been developed. These tandem ubiquitin binding entities (TUBEs) specifically recognize, bind to, and stabilize polyubiquitinated proteins, protecting them from degradation by DUBs or the proteasome. The enriched ubiquitinated proteins can then be analyzed by MS (41–43). The ability of TUBEs to preferentially recognize either K48 or K63 linked polyubiquitin provides a further advantage. Consequently, the use of a K63-TUBE system which shows a 10-fold higher affinity for K63 linked chains, allows the selective enrichment of the K63 linked ubiquitome. This provides a specific means of purifying the K63 chains favored by ataxin-3 (44), and thus was employed as a strategy for defining novel DUB targets of ataxin-3 in immune cells.

The TUBE system was used to enrich ubiquitinated proteins in ataxin-3 depleted and control THP-1 cells, either left unstimulated or stimulated for 1 h with MDP + PAM₃CSK4. Samples from three biological replicates were then subjected to mass spectrometry analysis (Figure 5A). As a quality control prior to MS analysis, immunoblotting with an antibody against K63-linkage specific polyubiquitin demonstrated a marked increase in the levels of K63 ubiquitinated proteins in the ataxin-3

depleted cells, most notably at higher molecular weights, with NOD2/TLR2 stimulation leading to a separate shift in staining pattern (Figure 5B).

Mass spectrometry analysis identified 291 proteins as changing significantly between any condition when averaged across the three biological replicates. As ataxin-3 acts as a DUB, ataxin-3 depletion would classically lead to an accumulation of ubiquitinated targets and thus particular attention was paid to those proteins that showed an increase in abundance in the ataxin-3 depleted samples (Supplementary Table 2). However, as deubiquitination can also regulate protein stability, it is likely that a number of the proteins found to decrease in abundance on ataxin-3 depletion are also direct DUB targets of ataxin-3. Most notably, the immunometabolic regulator HIF1 α (45) was found to be more abundant in the ataxin-3 depleted cells, suggesting that ataxin-3 may deubiquitinate HIF1 α (Figure 5C). To specifically interrogate the importance of NOD2/TLR2 phosphorylation of ataxin-3 on DUB activity, the abundance of proteins in the ataxin-3 depleted cells was compared to the control cells following stimulation with MDP + PAM₃CSK4 (Supplementary Table 3). Strikingly, a cluster of proteins related to metabolism were noted in the ataxin-3 depleted cells (marked in red on Figure 5D).

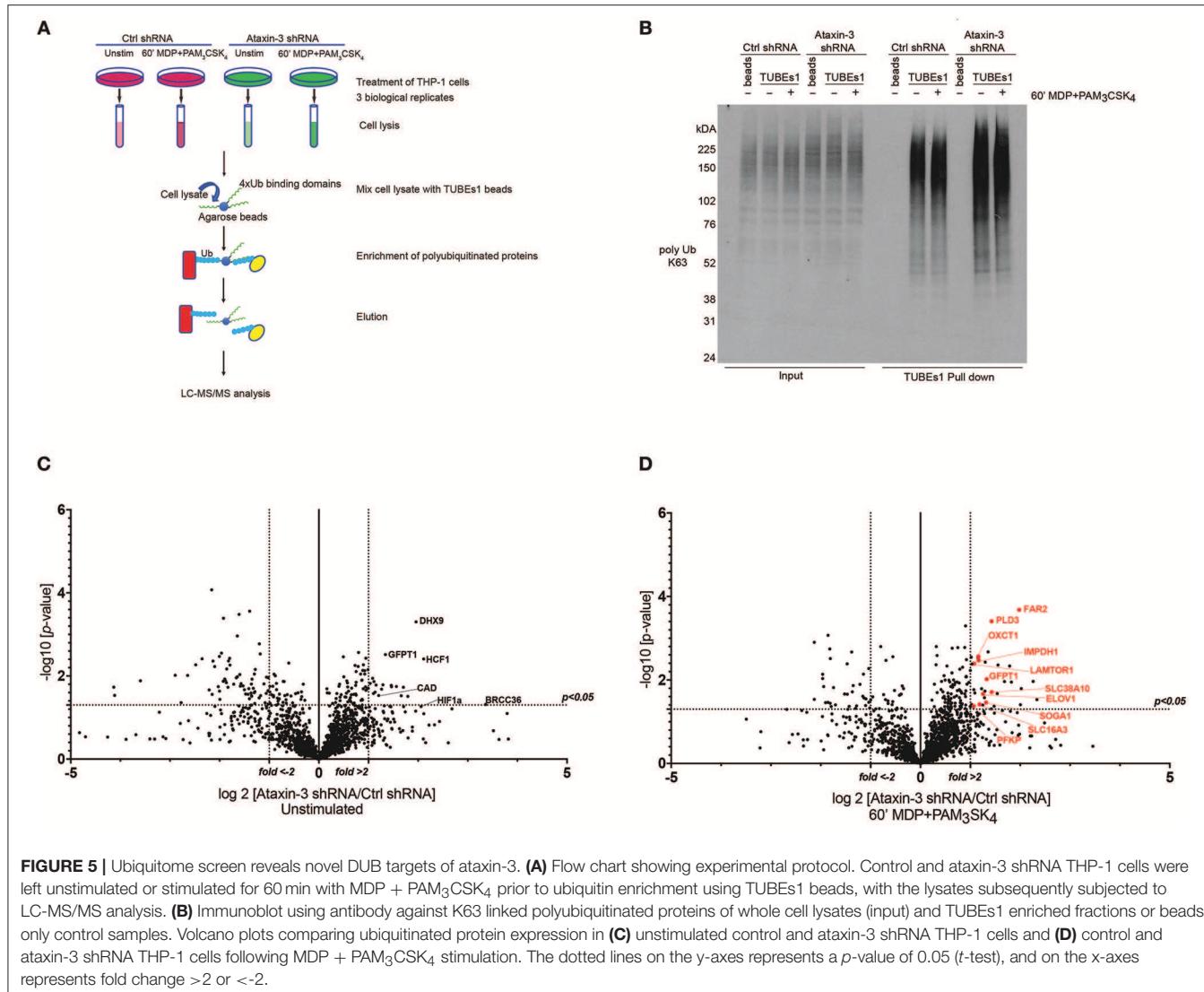
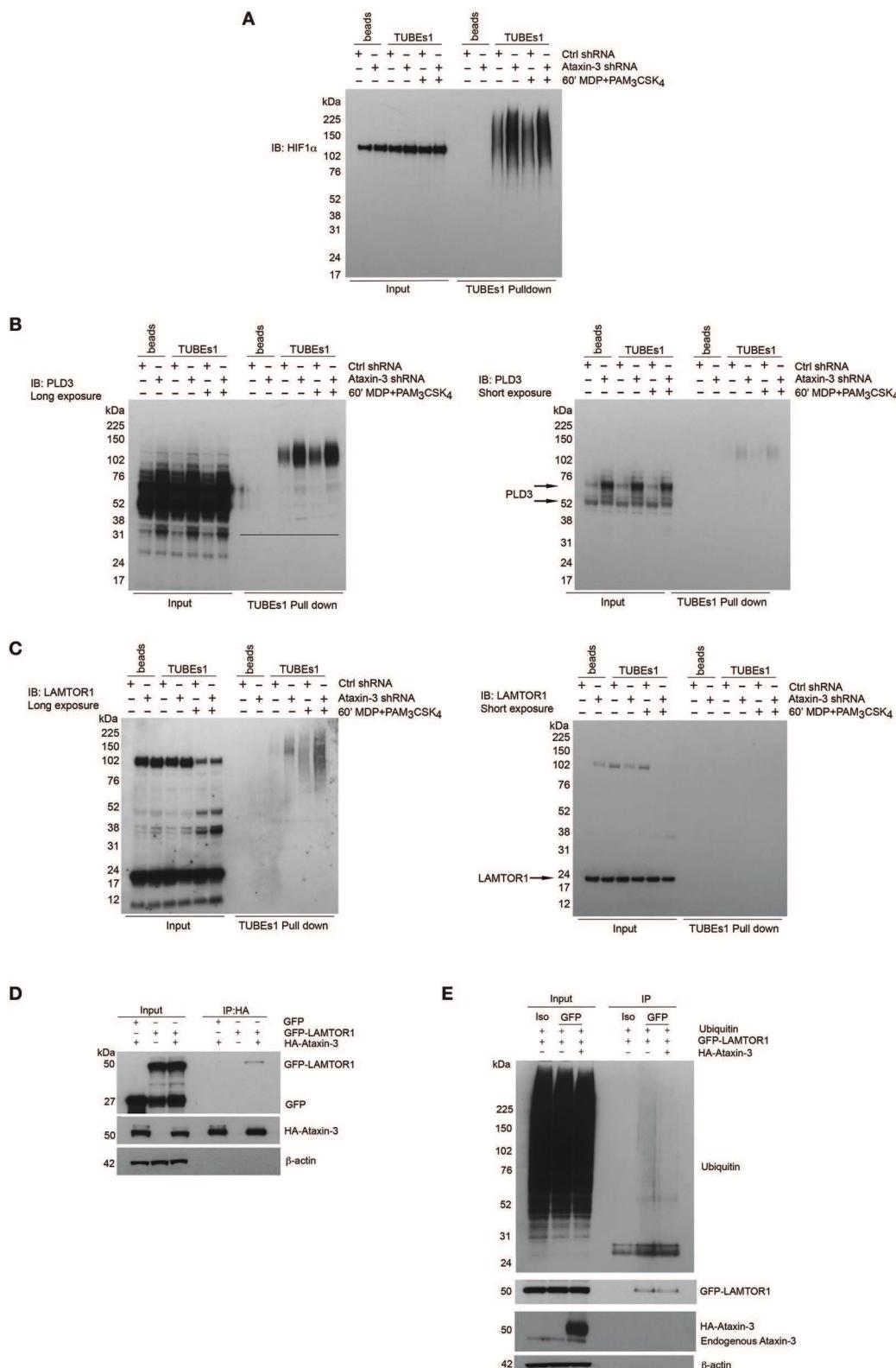


FIGURE 4 | Ataxin-3 is required for ROS production and bacterial killing. **(A)** FACS analysis of Mitosox to quantify mROS; $n = 3$ Student's paired *t*-test, $*p < 0.05$. **(B)** FACS analysis of Mitosox of DHR to quantify total cellular ROS in control and ataxin-3 shRNA THP-1 cells. $n = 7$, Student's paired *t*-test, $**p < 0.01$. **(C)** Mitosox to quantify mROS in control and ataxin-3 shRNA THP-1 cells either left unstimulated or following stimulation for 6 h with MDP + PAM₃CSK4; $n = 4$, Student's paired *t*-test, $*p < 0.05$. **(D)** Gentamicin survival assay of *Salmonella* Typhimurium infected ataxin-3 shRNA THP-1 cells compared to control. $n = 3$, one way ANOVA, $**p < 0.01$.

Ataxin-3 Deubiquitinates HIF, PLD3, and LAMTOR1 Upon NOD2 and TLR2 Activation

A number of the proteins from the mass spectrometry analysis were selected for further validation. HIF1 α was of particular interest given its central role in immunometabolism. Although

classically described as part of the family of hypoxia-inducible factor regulators, mediating the cellular response to hypoxia (46), more recent work has demonstrated a broader role in regulation of the immune system. It is important for both the survival and function of cells of the innate immune system,


FIGURE 5 | Ubiquitome screen reveals novel DUB targets of ataxin-3. **(A)** Flow chart showing experimental protocol. Control and ataxin-3 shRNA THP-1 cells were left unstimulated or stimulated for 60 min with MDP + PAM₃CSK₄ prior to ubiquitin enrichment using TUBEs1 beads, with the lysates subsequently subjected to LC-MS/MS analysis. **(B)** Immunoblot using antibody against K63 linked polyubiquitinated proteins of whole cell lysates (input) and TUBEs1 enriched fractions or beads only control samples. Volcano plots comparing ubiquitinated protein expression in **(C)** unstimulated control and ataxin-3 shRNA THP-1 cells and **(D)** control and ataxin-3 shRNA THP-1 cells following MDP + PAM₃CSK₄ stimulation. The dotted lines on the y-axes represents a *p*-value of 0.05 (t-test), and on the x-axes represents fold change >2 or <-2.

through regulation of metabolic activation (47–49). HIF1 α was validated as a DUB target of ataxin-3 through immunoblot, with a significant increase in ubiquitinated HIF1 α in the ataxin-3 depleted cells (Figure 6A). HIF1 α was detected in the whole cell lysates of both control and ataxin-3 depleted cells in normoxia, as the proteasome inhibitor MG132 which reduces the degradation of all ubiquitinated proteins was added to the cell suspension 30 min before the end of all TUBEs experiments.

Phospholipase D3 (PLD3) was also intriguing as it has recently been shown to regulate inflammatory cytokine responses in response to TLR9 signaling by acting as an endonuclease (50). In humans, mutations confer an increased risk for the neurodegenerative diseases Alzheimer's (51) and spinocerebellar ataxia (52), with increasing evidence of the role of innate immune dysfunction in neurodegeneration (53). Importantly, polyglutamine repeat mutations in ataxin-3 are themselves associated with the spinocerebellar ataxia Machado-Joseph disease (18). Ragulator complex protein LAMTOR1 forms

part of the Ragulator complex essential for amino acid sensing and activation of mTORC1 (54), but has also been linked to independent roles in lysosomal maturation (55) and M2 macrophage differentiation (56). PLD3 and LAMTOR1 were both validated by immunoblot (Figures 6B,C). Ataxin-3 depletion led to accumulation of ubiquitinated forms of both PLD3 and LAMTOR1. Notably, NOD2/TLR2 stimulation increased LAMTOR1 ubiquitination in the control cells, but there was markedly more LAMTOR1 ubiquitination in the stimulated ataxin-3 depleted cells (Figure 6C). This suggests that ataxin-3 modulates the ubiquitination of LAMTOR1 induced by NOD2/TLR2 stimulation.

To further study the interaction between LAMTOR1 and ataxin-3, an overexpression system was employed in the human cell line HEK293. HA-ataxin-3 and GFP-LAMTOR1 was overexpressed, together with a GFP-control and then IP of HA-ataxin-3 performed using an antibody against the HA tag. Ataxin-3 was found to bind directly to LAMTOR1 (Figure 6D). Next,

FIGURE 6 | Validation of novel DUB targets of ataxin-3. **(A)** Immunoblot using antibody against HIF1 α in whole cell lysate (input) and TUBEs1 enriched fractions from control and ataxin-3 shRNA THP-1 cells left unstimulated or stimulated for 60 min with MDP + PAM₃CSK4. Immunoblot using antibodies against **(B)** PLD3 and **(Continued)**

FIGURE 6 | (C) LAMTOR1 in whole cell lysates (input) and TUBEs1 enriched fractions from control shRNA and ataxin-3 shRNA THP-1 cells left unstimulated or stimulated for 60 min with MDP + PAM₃CSK₄. **(D)** Immunoblot using antibodies against GFP, HA, and β-actin in input and HA-immunoprecipitated lysates, in HEK293 cells where GFP and/or GFP-LAMTOR1 and/or HA-ataxin-3 were overexpressed. **(E)** Immunoblot using antibodies against ubiquitin, GFP, ataxin-3, and β-actin in input and isotype control (iso) or GFP immunoprecipitated lysates where ubiquitin and GFP-LAMTOR1 were overexpressed with or without HA-ataxin-3. All immunoblots are representative of at least two independent experiments.

the finding that LAMTOR1 is a direct DUB target of ataxin-3 was confirmed. Ubiquitin, GFP-LAMTOR1 and HA-ataxin-3 were overexpressed in HEK293 cells and IP of GFP-LAMTOR1 performed using an antibody against the GFP tag. The level of ubiquitinated GFP-LAMTOR1 was found to be significantly less in cells where HA-ataxin-3 was co-expressed (Figure 6E).

Taken together, these results show that ataxin-3 modulates the ubiquitination of previously unidentified targets related to metabolism. This effect is enhanced on following phosphorylation of ataxin-3 on NOD2/TLR2 triggering.

DISCUSSION

In this study we demonstrate that NOD2 and TLR2 phosphorylates the deubiquitinase ataxin-3 at serine 265 through a signaling cascade involving RIPK2 and TBK1. Immunoprecipitation and MS analysis of interacting partners established an association with a core component of the mitochondrial MICOS complex MIC60. Ataxin-3 was subsequently shown to be necessary for optimal mitochondrial respiration and mitochondrial ROS generation in macrophages, an effect enhanced by its phosphorylation on NOD2/TLR2 triggering. In line with this, we found that ataxin-3 is required for optimal intracellular bacterial killing of *Salmonella* Typhimurium. Finally, we dissected the specific DUB role of ataxin-3 in an immune context through an unbiased MS screen of the ubiquitome. A preponderance of metabolism related proteins were discovered including HIF1α, phospholipase D3 and LAMTOR1, underlining a central role of ataxin-3 in immunometabolism.

Deubiquitinating enzymes (DUBs) represent specialized proteases which modify ubiquitin chains by cleaving the isopeptide bonds linking the ubiquitin C-terminus to a lysine side chain on the target protein. Modification of ubiquitination may alter cellular responses through regulation of target protein stability, or mediate signal transduction through non-degradative pathways including mediation of protein-protein interactions (57). Ataxin-3 is a small protein, consisting of 364 amino acids, that is ubiquitously expressed (58). At the N-terminus there is a catalytic Josephin domain, which acts as a protease that hydrolyses ubiquitin linkages and allows ataxin-3 to function as a DUB (59). A flexible C-terminal tail contains either two or three ubiquitin-interacting motifs (UIMs), according to the isoform (60). The UIMs mediate selective binding to ubiquitin chains, determining the type of chain that can be cleaved by the Josephin domain. Ataxin-3 shows a preference for cleavage of K63-Ub chains, although it is able to bind both K63 and K48 chains (44).

Ataxin-3 has been linked to neurodegenerative disease after unstable CAG repeat expansions in the ATXN3 gene were

identified as the cause of spinocerebellar ataxia Type 3 (SCA3), also known as Machado-Joseph Disease, the most common autosomal dominant ataxia (18). Importantly, the expanded polyglutamine stretch results in more complex sequelae than a simple loss of protein function, and likely leads to a toxic gain of function through altered binding properties, aggregation and subcellular localization (61). Accumulating evidence suggests that ataxin-3 performs diverse cellular roles, including DNA repair (62, 63) and transcriptional regulation (64), regulation of protein quality through endoplasmic reticulum (ER) associated degradation (65) and aggresome formation (66), and beclin-1 dependent autophagy (17). A recent study provided a first link to immune regulation, demonstrating that ataxin-3 regulates Type 1 interferon antiviral responses through interaction with histone deacetylase 3 (HDAC 3) (67). The present study is the first to link ataxin-3 to PRR signaling and demonstrate its importance in mitochondrial respiration in macrophages, following the discovery that ataxin-3 associates with the mitochondrial protein MIC60.

MIC60 forms a core part of the MICOS complex, which is embedded in the mitochondrial inner membrane. It acts as a key regulator of mitochondrial inner membrane shape and organization. This is essential for cristae junction formation and assembly of respiratory chain complexes which are required for oxidative phosphorylation (31). MIC60 also appears to act independently of the MICOS complex, and has recently been implicated in regulation of mtDNA transcription (35). The mitochondrial genome encodes just 13 proteins, all essential components of ophox complexes I, III and IV. In keeping with this known function of MIC60, we found that depletion of ataxin-3 led to specific upregulation of mtDNA transcripts encoding proteins required for Complex I, and this was further upregulated by NOD2/TLR2 stimulation. In addition, specific interrogation of mitochondrial oxidative phosphorylation through use of the Seahorse platform demonstrated that ataxin-3 depletion led to a particularly striking impairment in maximal respiration and spare respiratory capacity (SRC). SRC represents the extra mitochondrial capacity available within a cell to produce energy under conditions of increased work or stress and is important for cellular function and survival (68–70). Macrophages increase their SRC in response to bacterial infection to drive anti-microbial responses, and this is coordinated in part by modulation of the ETC Complexes I and II (71). In M2 macrophages, SRC is critical for their activation and prolonged survival, and clearance of the parasitic helminth (72). We found that ataxin-3 depletion impaired mROS production at both baseline and in response to NOD2/TLR2 stimulation, demonstrating the functional relevance of the observed mitochondrial respiratory impairment. Finally, we demonstrated the importance of ataxin-3 in intracellular killing

of the pathogen *Salmonella* Typhimurium, with PRR mediated mROS generation well-established as critical for destruction of this bacterium (39).

Fewer than 100 DUBs are thought to be responsible for regulating the ubiquitination of tens of thousands of proteins in a tightly regulated and sophisticated manner (57, 73). Hence defining the wide-ranging DUB targets of ataxin-3 is essential to decipher its functions. Ubiquitin signaling represents an indispensable mechanism of regulating both the innate and adaptive immune response, and is central to the NOD2 cascade (74). For the first time, this study undertook an unbiased screen of the ubiquitome in ataxin-3 depleted cells. Notably, a significant number of metabolism related proteins were found, further reinforcing the potential importance of ataxin-3 in cellular immunometabolism.

The discovery that HIF1 α is a DUB target of ataxin-3 in macrophages is noteworthy, given the emergence of HIF1 α as a key immunometabolic regulator. Work in a conditional HIF1 α knockout mouse, targeting the myeloid lineage, demonstrated the critical requirement of HIF1 α for inflammatory responses (75). This correlated with defects in glycolysis and metabolic activation, which is tightly regulated by HIF1 α . The endolysosomal protein PLD3 was also validated as a further novel DUB target of ataxin-3. Although PLD3 contains two phosphodiesterase domains, and hence is classed as a member of the phospholipase diesterase (PLD) family which act to hydrolyse phospholipids, the phospholipase activity of PLD3 has not been definitively established. The importance of PLD3 in immunity was recently demonstrated, with the discovery that it acts as a single-stranded acid exonuclease that breaks down ligands for the PRR TLR9, hence regulating TLR9 mediated inflammatory responses in collaboration with PLD4 (50).

The discovery in the present study that NOD2/TLR2 triggering leads to deubiquitination of LAMTOR1 by ataxin-3 is of particular interest. LAMTOR1, also known as p18, is a late endosome/lysosome membrane adapter protein that localizes to the lipid rafts of these organelles (76, 77). LAMTOR1 plays an essential role in the activation of the mTORC kinase complex in response to amino acid levels (54). Through a mechanism involving the lysosomal v-ATPase in the presence of amino acid sufficiency, LAMTOR1 forms a scaffold at the lysosomal membrane with LAMTOR2,3,4 and 5 (the pentameric Ragulator complex) for the Rag GTPase complex (RagAB/CD) (54, 78, 79). This leads to the recruitment and activation of mTORC1 which inhibits autophagy. The lysosomal v-ATPase-Ragulator complex also activates another critical metabolic sensor, AMP-activated protein kinase (AMPK), which responds to falling energy levels by driving cellular catabolism programmes and downregulating anabolic pathways (80). Thus, this complex is able to respond to both energy/nutrient sufficiency and deficiency. Strikingly, of all cells, macrophages express the highest levels of the five Ragulator components, suggesting their importance in the immune response (81). Indeed, LAMTOR1 was recently found to be essential for the polarization of M2 macrophages both *in vitro* and *in vivo* in a knockout mouse model, by coupling metabolism to immunity (56).

The physiological importance of NOD2 and TLR2 in both the innate and adaptive immune response is well-established. The interplay between NOD2 and TLR2 has been well-characterized given the fact that they both respond to adjacent components of PGN found in the bacterial cell walls. The NOD2 signaling pathway amplifies TLR2 activation and both receptors synergize in the induction of cytokine production. NOD2 variants confer the greatest single genetic risk factor for Crohn's disease disease (2, 3), yet significant gaps remain in our knowledge of how this receptor exerts its effects (82). Notably, despite the recent explosion of interest in the field of immunometabolism, almost nothing is known about how the synergistic effects of NOD2 and TLR2 signaling might intersect with metabolic pathways to modulate the immune response. Here, we defined the molecular and functional basis by which NOD2/TLR2 sensing links to ataxin-3 and, consequently, other immunometabolic factors. Future studies are required to provide novel prospects for modulating these pathways as new therapeutic strategies for inflammatory disorders.

MATERIALS AND METHODS

Cells

Human monocytes were purified from healthy donor peripheral blood mononuclear cells (PBMCs) by positive immunoselection with anti-CD14-conjugated MACS beads (Miltenyi Biotec). moDCs were obtained by culturing monocytes for 5 days with IL-4 and GM-CSF (Peprotech). Immature moDCs were harvested on day 5 of culture. The human THP-1 cell line was purchased from ATCC. Prior to use, THP-1 were differentiated by treatment with 25 ng/ml phorbol 12-myristate 13-acetate (PMA) (Sigma) for 16 h.

Reagents and Antibodies

The following stains were used: MItosox Red M36008 (Invitrogen) and DHR 123 D23806 (Invitrogen). Antibodies include mouse anti-human ataxin-3 65042 1H9-2 (BioLegend), mouse anti-human MIC60 ab110329 (Abcam), mouse anti-human MIC60 ab137057 (Abcam), rabbit anti-human TBK1 #3504 D1B4 (Cell Signaling), rabbit anti-human RIPK2 #4142 D10B11 (Cell Signaling), rabbit anti-human p38 #9212 (Cell Signaling), rabbit anti-human LAMTOR1 #8975 D11H6 (Cell Signaling), rabbit anti-human PLD3 HPA012800 (Sigma), rabbit anti-human HA #3724 C29F4 (Cell Signaling). The secondary antibodies included: anti-rabbit HRP conjugate #7074 (Cell Signaling), anti-mouse HRP conjugate #7076 (Cell Signaling), goat anti-rabbit Alexa fluor 488 A-11034 (Invitrogen), goat anti-rabbit Alexa fluor 488 A-11029 (Invitrogen), goat anti-mouse Alexa fluor 568 A-11036 (Invitrogen), goat anti-rabbit Alexa fluor 568 A-11004 (Invitrogen). Beta actin HRP conjugate #5125 (Cell Signaling). For qPCR, the following Taqman primers were used (all ThermoFisher): NOD2 (Hs01550753_m1), RPLP0 (Hs99999902_m1), MT-ND1 Hs02596873_s1, MT-ND2, Hs02596874_g1, MT-ND3 Hs02596875_s1, MT-ND4L Hs02596877_g1, MT-CYB Hs02596867_s1, MT-CO1 Hs02596864_g1, ATP6, Hs02596862_g1. For overexpression

experiments, GFP-LAMTOR1 and HA-ataxin-3 were obtained from the University of Dundee.

Cell Stimulation

moDCs and THP-1 cells were left unstimulated or stimulated with 10 µg/ml MDP or 1 µg/ml PAM₃CSK₄ (Invivogen) or both at the indicated time points. In some experiments, other PRR ligands were used including LPS 100 ng/ml, and R848 1 µg/ml (Invivogen) or cells were treated with the small molecule inhibitor Ponatinib (50 nM) for 1 h.

Phosphoprotein Purification

Cells were harvested on ice and washed once with ice cold modified Hanks Buffered Saline (HBS) (20 mM HEPES pH 7.4, 150 mM NaCl in ddH₂O). Cell pellets were lysed in Qiagen “Phosphoprotein lysis buffer” containing 0.25% (v/v) CHAPS with 1% (v/v) phosphatase inhibitor cocktail 3 (Sigma), protease inhibitor tablet (Qiagen) and the nuclease 0.0002% (v/v) Benzonase (Qiagen) at 4°C for 40 min, with vortexing every 10 min. Cell debris was removed by centrifugation of the lysate at 13,300 rpm for 30 min at 4°C. The clarified supernatant was then transferred to fresh pre-cooled tubes and protein concentration determined by BCA assay. The samples were then diluted in Qiagen “wash buffer” containing 0.25% (v/v) CHAPS to a concentration of 0.1 mg/ml. Aliquots of whole cell lysate and diluted whole cell lysate were kept for subsequent immunoblot. The phosphoenrichment columns were washed with 6 ml “wash buffer,” before the diluted samples were loaded onto the columns. Following two further washes of the columns with 6 ml “wash buffer,” the phosphoenriched fraction was eluted from the columns using Qiagen “elution buffer” containing 0.25% (v/v) CHAPS. Following concentration of the eluted fraction to a volume of 200–300 µl using 9 k molecular weight cut-off concentrator columns (Thermo Fisher) with centrifugation 13,000 rpm 30 min, protein concentration was measured by BCA. For mass spectrometry (MS) experiments, phosphoenriched lysates were stored at –80°C. Otherwise, whole cell lysate, diluted whole cell lysate and phosphoenriched lysates were processed for SDS-PAGE with NuPage LDS Sample buffer (Life Technologies) and 100 mM dithiothreitol (Sigma), followed by heating at 70°C for 5 min. Samples were then frozen at –80°C until immunoblotting was performed.

Immunoprecipitation

Samples were washed twice in ice cold HBS and then lysed in 1,000 µl lysis buffer for 30 min at 4°C with end over end mixing [Cell Signaling Lysis Buffer 20 mM Tris-HCL pH7.5, 1 mM Na₂EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na₃O₄, 1 µg/ml leupeptin supplemented with 1% (v/v) HALT protease inhibitor cocktail (Thermo Fisher) and 1% (v/v) Phosphatase inhibitor cocktail 2 and 3 (Sigma) and 1 mM PMSF (Cell Signaling)]. Lysates were clarified by centrifugation at 14,000 g for 15 min at 4°C, and the supernatant transferred to fresh Eppendorfs. Protein concentrations were calculated by BCA.

Fifty µl of input lysate was heated with LDS/DTT and stored at –80°C for later immunoblot. Next, concentrations were adjusted to 1 mg/ml and 7.5 µg of protein was taken forward for IP for each condition. The appropriate antibody or isotype control antibody was added to the lysates followed by incubation with gentle end over end mixing at 4°C overnight.

The next morning, Protein G Dynabeads (Thermo Fisher) were washed once in lysis buffer, using a DynaMag2 magnet (Invitrogen) to separate the beads from solution, and 5 µl of beads per 1 µg of antibody was added to each sample. Samples were incubated with the beads with gentle end over end mixing for 2 h at 4°C. Following this, the supernatant was removed using a magnet to separate the beads, with 50 µl of the supernatant heated with LDS/DTT and stored at –80°C later immunoblot. The beads were washed 4 times in total with lysis buffer containing all protease and phosphatase inhibitors, with gentle end over end mixing for 5 min at 4°C for each wash. Elution of the beads was then performed by incubating the beads with pH 2.8 elution buffer (Pierce) with gentle end over end mixing for 30 min at 4°C. The eluate was collected and neutralized immediately with 1/10 volume of 1 M Tris-HCL pH 9. Elution and neutralization was performed a further two times to ensure complete elution. The eluate was stored at –80°C until used for downstream processing.

Tandem Ubiquitin Binding Entities (TUBEs) Ubiquitin Immunoprecipitation

Typically 2.5 × 10⁷ THP-1 cells were used per condition. Thirty min before the end of the experimental conditions, samples were incubated with 10 µM MG132 (Sigma) for 30 min at 37°C before harvesting, washing once in ice cold PBS and lysing in 1 ml Ub-IP lysis buffer (50 mM Tris-HCL (pH 8.0), 150 mM NaCl, 5 mM EDTA, 1% NP-40, 0.5% Deoxycholate, 0.1% SDS, protease inhibitor cocktail (Roche), 1% (v/v) phosphatase inhibitor cocktail 3 (Sigma), 20 µM MG132, 50 µM PR619 and 100 mM N-ethylmaleimide (Sigma). Cells were lysed for 30 min at 4°C with gentle end over end mixing. The lysate was clarified by centrifugation at 13,000 rpm for 20 min at 4°C, and the supernatant transferred to fresh Eppendorfs. Protein concentration was calculated by the Bradford assay and protein concentrations normalized to 2 mg/ml. Typically 2 mg of protein was taken forward for TUBEs IP. Fifty µl of input fraction was heated with LDS/DTT and stored at –80°C for later immunoblot. Samples were incubated with 40 µl TUBE1 agarose beads (LifeSensors), or control agarose beads (LifeSensors) for 4 h at 4°C with gentle end over end mixing. The beads were then centrifuged at 3,000 g for 3 min and washed with lysis buffer containing all inhibitors three times (each wash was performed for 5 min at 4°C with gentle end over end mixing), followed by two final washes with lysis buffer without SDS and Deoxycholate. Elution was then performed with 50 µl of pH 2.8 elution buffer (Pierce) for 30 min with gentle end over end mixing at 4°C, followed by immediate neutralization with 1/10 volume 1 M Tris-HCL pH 9. Elution and neutralization was performed three times in total. Samples prepared for later MS analysis were frozen at –80°C until further processing (100 of 150 µl total eluate). The

remaining 50 μ l, and all eluate from other experiments were heated with 2 \times LDS/DTT at 70°C for 10 min and stored at –80°C until immunoblot.

Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

100 μ l of lysate was adjusted to 175 μ l with ddH₂O. All samples were then successively reduced and alkylated for 30 min with 5 mM dithiothreitol and 20 mM iodoacetamide, respectively. The proteins were then precipitated using chloroform-methanol precipitation and the pellet were solubilized in 6 M urea, 0.1 M Tris pH 7.8. The sample were diluted to 1 M Urea. The digestion was performed overnight at 37°C by adding 500 ng of trypsin. The peptides were desalted using a C18 cartridge (Waters). Briefly, the samples were conditioned with buffer A (1% (v/v) acetonitrile, 0.1% (v/v) trifluoroacetic acid (TFA) in water) prior to equilibration with buffer B (65% (v/v) acetonitrile, 0.1% (v/v) TFA in water). The acidified peptides were loaded onto the column, washed with buffer A and eluted with buffer B. The solution containing the peptides was dried with a speedvac and solubilised in 1% (v/v) acetonitrile, 0.1% (v/v) TFA in water for mass spectrometry analysis.

Peptides were analyzed with nano ultra-high performance liquid chromatography tandem mass spectrometry (nano-UPLC-MS/MS) using a Dionex Ultimate 3000 nanoUPLC, coupled to an Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific). MS analysis was performed essentially as described previously (83). In brief, the data were acquired with a resolution of 120,000 full-width half maximum at mass/charge 200 with EASY-IC using the reagent ion source (202 m/z) for internal calibration enabled, Top speed precursor ion selection, Dynamic Exclusion of 60 s and fragmentation performed in Collision Induced dissociation (CID) mode with Collision Energy of 35.

Analysis of Mass Spectrometry Data

Label-Free Quantitative Analysis

The raw MS data was analyzed using Progenesis QI (Waters) and searched using Mascot 2.5 (Matrix Science). The search settings were as follows: trypsin with 1 miscleavage allowed, oxidation (M) and Deamidation (N, Q) were set as variable modifications and carbamidomethylation (C) as fixed modification. The data was searched against human protein sequences using the UPR_homoSapiens_20141015 (85,889 sequences; 33,866,397 residues) allowing a peptide mass tolerance of 10 ppm and a fragment mass tolerance of 0.05 Da.

Peaks Search for Phosphorylation

The raw MS data was analyzed in PEAKS Studio 7.5 (Bioinformatics Solutions Inc). The settings were the following: The database used was the swissprot human database was used for the proteins identification. The enzyme used for the search was trypsin allowing a maximum of 2 miscleavages. Fixed modifications: Carbamidomethyl (C); Variable modifications: Deamidated (N), Deamidated (Q), Oxidation (M), Phospho (STY). Ten ppm mass tolerance were allowed for the precursor ions and 0.05 Da was allowed for the fragment ions.

Mascot Search for Phosphorylation

The raw MS data was searched using Mascot with following settings. Enzyme: Trypsin; Fixed modifications: Carbamidomethyl (C); Variable modifications: Deamidated (N), Deamidated (Q), Oxidation (M), Phospho (ST), Phospho (Y); Peptide mass tolerance: \pm 10 ppm (# 13C = 1); Fragment mass tolerance: \pm 0.5 Da; Max missed cleavages: 1.

shRNA Lentiviral Transduction and siRNA Transfection

Short hairpin RNA lentiviral particles were produced and transduced following the RNAi Consortium (TRC) protocols. shRNA containing pLKO.1 vectors targeting NOD2 (SHCLND-NM_022162), ataxin-3 (SHCLND-NM_004993), TBK1 (SHCLND-NM_013254) or non-Target shRNA Control Plasmid DNA were all obtained from Sigma (MISSION shRNA Plasmid DNA). In brief, HEK293T packaging cells growing in 6 cm well plate were transfected with a mix of 1 μ g packaging vector (psPAX2), 0.4 μ g envelope vector (pMD2.G) and 1.6 μ g hairpin-pLKO.1 vector (SHC016 control or gene specific shRNA. Fugene-6 (Promega) was used as transfection reagent. Cell culture medium containing lentiviral particles (LVP) was collected 48 h later and passed through a 0.45 μ m filter (Sartorius). Virus preparations were then concentrated by centrifugation at 30,000 rpm for 90 min. Viral particles were added to cultured THP-1 cells in R10 [Roswell Park Memorial Institute medium (RPMI-1640) (Sigma) supplemented with 10% (v/v) heat-inactivated fetal calf serum (FCS) (Sigma), 2 mM (1% v/v) L-glutamine (Sigma)] together with 8 μ g/ml Polybrene (Sigma) to improve transfection efficiency. Following incubation for 3 h at 37°C, the cells were harvested, washed, and resuspended at 1 \times 10⁶ cells/ml in R10 media with antibiotics including puromycin (as selective antibiotic). After 10 days of continuous selection with puromycin, knockdown efficiency was assessed by immunoblot. Transfection of human dendritic cells was performed by electroporation of SMARTpool ONTARGETplus human ataxin-3 (ATXN3) or non-targeting siRNAs (Dharmacon). Cells were resuspended in the solution provided with the kit (Invitrogen) followed by electroporation with Neon System kit (Invitrogen) using the following parameters: 1,475 V, 20 ms, 2 pulses. After 48 h, cells were harvested for use in experiments and to check knockdown by immunoblot.

Adherent Cell Transfection

Human HEK293/NOD2 Cells were seeded 24 h prior to transfection in media without antibiotics. Transfection mixes were made, comprising Fugene (Promega) at a ratio of 3:1 to amount of DNA plasmid to be transfected, in the appropriate volume of Opti-MEM (Gibco, Thermo Fisher) (10% of volume of media in wells to be transfected). The transfection mixes were incubated at room temperature for 20 min and then added dropwise to the wells to be transfected. Cells were either cultured for a further 24 or 48 h before being used for downstream applications.

RNA Isolation

Typically $2-5 \times 10^6$ cells per condition were harvested and washed once with cold PBS. Pellets were resuspended in 350 μl RLT buffer (Qiagen) containing 1% (v/v) Mercaptoethanol (Sigma) and stored at -80°C . Samples were thawed on ice and homogenized by adding to QiaShredder columns (Qiagen) and centrifuged 2 min 13,000 rpm. RNA isolation was then performed using RNeasy kits (Qiagen) according to manufacturer's instructions. The isolated RNA was eluted by added 25 μl nuclease free water (Ambion) to the RNeasy column membrane for 5 min, followed by centrifugation into fresh Eppendorfs 8,000 g 1 min. RNA concentration and purity were obtained using a Nanodrop 1000 spectrophotometer (Thermo Fisher) and samples were stored at -20°C until further analysis.

Reverse Transcription

RNA was reverse transcribed using a high capacity RNA to cDNA kit (Applied Biosystems). Five hundred ng to 2 μg of RNA was normalized to the same concentration for each sample using nuclease free water (Ambion) in polypropylene PCR tubes (Starlab). Then an RT mix containing 2 μl 10 \times RT buffer, 0.8 μl 25 \times dNTP mix, 2 μl RT random primers, 1 μl multiscribe RT, 1 μl RNase inhibitor (Applied Biosystems) and 3.2 μl nuclease free water was added to each PCR tube (10 μl total RT mix) (Starlab) for a total volume of RNA sample and RT mix of 20 μl . This was reverse transcribed using a Thermo Cycler (Applied Biosystems) with the program: 25 $^{\circ}\text{C}$ 10 min, 37 $^{\circ}\text{C}$ 120 min, 85 $^{\circ}\text{C}$ 5 min. The cDNA was stored at -20°C .

Quantitative Real Time Polymerase Chain Reaction (qPCR)

qPCR was performed using TaqMan chemistry (Applied Biosystems). cDNA was diluted 10-fold with nuclease free water. 4.5 μl of diluted cDNA was added in triplicate for each sample to wells of a white 0.2 ml 96 well PCR microplate (Starlab). 0.5 μl of TaqMan FAM-MGB labeled primer (Applied Biosystems) and 5 μl TaqMan Universal PCR Mastermix (Applied Biosystems) was added to each well, resulting in a 10 μl total reaction mix. The plate was covered with a polyolefin optical film (Starlab) and centrifuged at 400 g for 1 min. qPCR was then performed using the Bio-Rad C1000 Thermal cycler CFX Realtime system (Bio-Rad) using the manufacturer's recommended program: 50 $^{\circ}\text{C}$ 2 min, 95 $^{\circ}\text{C}$ 10 min, then 40 cycles of 95 $^{\circ}\text{C}$ 15 s, 60 $^{\circ}\text{C}$ 1 min. Mean cycle threshold (Ct) number was calculated from the triplicate values. Relative gene expression was calculated in comparison to the housekeeping RPLP0 control. The difference in gene expression between conditions was calculated using the $2^{-\Delta\Delta\text{Ct}}$. This is derived from:

$$\Delta\text{CT} = \text{CT}(\text{targetgene}) - \text{CT}(\text{control gene})$$

$$\Delta\Delta\text{CT} = \Delta\text{CT}(\text{targetcondition}) - \text{CT}(\text{control condition}).$$

Flow Cytometry

Typically 0.5×10^6 THP-1 cells per condition were plated in 1 ml of media in 12 well plates and differentiated for 16 h with 25 ng/ml PMA (Sigma). Following differentiation, the indicated treatments were applied. Cells were then harvested with gentle

scraping and transferred to a FACS tube. The following staining protocols were then followed. Cytofluorometric evaluation was by the LSRII flow cytometer (BD Biosciences) with analysis of the data by FLOWJo.

MitoSOX Red Staining

The cells were pelleted by centrifugation and resuspended in room temperature HBSS (Thermo Fisher) to wash, then centrifuged. The cells were resuspended in 200 μl MitoSOX red solution (final concentration 5 μM MitoSOX red (Invitrogen) in HBSS) and incubated for 15 min in the 37 $^{\circ}\text{C}$ cell culture incubator. Two hundred μl of HBSS was added, and the tube centrifuged. The cells were resuspended in 250 μl HBSS and cytofluorometric evaluation performed.

Dihydrorhodamine 123 (DHR) Staining

The cells were pelleted by centrifugation and resuspended in room temperature PBS to wash, then centrifuged. The cells were resuspended in 50 μl DHR solution (final concentration 2.5 $\mu\text{g}/\text{ml}$ DHR 123 (Invitrogen) in PBS) and incubated for 30 min at 37 $^{\circ}\text{C}$ in a water bath. As a positive control, 50 μl of PMA (final concentration 100 ng/ml (Sigma) in PBS) was added to control samples for the final 15 min. The cells were centrifuged and then washed once with PBS, before resuspension in 200 μl FACS staining buffer. Cells were fixed with the addition of 200 μl 1% PFA and cytofluorometric evaluation performed.

Seahorse Mitochondrial Stress Assay

The Seahorse XFe96 Extracellular Flux Analyser was used to measure mitochondrial respiration and glycolysis (Seahorse Bioscience). Seahorse 96 well assay plates (Seahorse Bioscience) were coated with Cell-Tak suspension (Corning). THP-1 cells were seeded at 1.5×10^5 cells/well. Next, the optimal working concentrations of the compounds used for the mitochondrial stress test (oligomycin, FCCP and antimycin/rotenone) and the glycolysis stress test (oligomycin and 2-DG) were determined for THP-1 cells. The aim was to maximize the response to each compound with the lowest concentration possible. An XFe96 sensor cartridge (Seahorse) was hydrated overnight prior to Seahorse assays by adding 200 μl of XF calibrant solution to each well and incubating in a CO₂ free incubator at 37 $^{\circ}\text{C}$. The sensor cartridge (Seahorse) was loaded with the test drug compounds immediately prior to the assay and loaded on the Seahorse Analyser. Twenty-four h before the assay was run, cells were harvested, counted and resuspended at 1.88×10^6 cells/ml. Two ml of cell suspension was plated in 6 well plates for each condition, with or without the appropriate ligand stimulation for the required duration. On the day of the assay, 1 ml of cell suspension from each condition was harvested into 1.5 ml Eppendorf tubes. For the mito stress test, cells were resuspended in mito stress test media with or without ligand(s) (XF base media (Seahorse Bioscience) supplemented with 1 mM sodium pyruvate (Sigma), 5 mM glucose (Life Technologies) and 2% FCS (Sigma) adjusted to pH 7.4 at 37 $^{\circ}\text{C}$ and sterile filtered). Eighty μl of cell suspension (1.5×10^5 cells) was then seeded in quadruplicate for each condition and the plate was centrifuged at 200 g for 1 min. Following 30 min in a CO₂ free incubator at 37 $^{\circ}\text{C}$, 95 μl of fresh mito stress test media was

added to each well, and after a further 15 min in a CO₂ free incubator the assay was run. Final concentrations of injected drugs were 1 μM oligomycin, 1 μM FCCP, 0.3 μM rotenone and 0.3 μM antimycin.

STED Immunofluorescence Microscopy

Cells were plated in 8-well detachable tissue culture chambers on a PCA slide (Sarstedt) coated with 0.01% poly-l-lysine (Sigma)—cells were at a density of 1–2 × 10⁵ cell per well in 250 μl of appropriate media. At the end of the experiment, cells were washed twice with PBS, fixed with 4% paraformaldehyde (Sigma) for 15 min and permeabilized with 0.5% (v/v) Triton X-100 (Sigma). Cells were blocked overnight at 4°C with 150 μl blocking solution per well (5% (v/v) human serum (Sigma), 5% (v/v) goat serum (Sigma), 5% (v/v) FCS (Sigma)). The following day, cells were incubated with primary antibody diluted in 140 μl blocking solution at a pre-optimized or manufacturer recommended concentration for 1 h at room temperature. Following three washes with PBS (250 μl per well, 5 min gentle shaking), cells were incubated with the species appropriate fluorescently labeled secondary antibody for 1 h at room temperature. Cells were washed three further times with PBS, and the detached slide was then mounted with Vectashield mounting media containing DAPI (Vector Laboratories). Alternatively, cells were incubated with 200 μl PBS containing 1:100 DAPI (Thermo Fisher) for 15 min at room temperature and the detached slide was mounted with Vectashield mounting media without DAPI (Vector Laboratories). A Leica SP8 STED system was used for imaging. ImageJ was used for image processing and analysis.

Bacterial Killing Assay

1 × 10⁶ THP-1 cells were seeded per condition in 1 ml R10 without antibiotics in a 24 well plate, and differentiated overnight with 25 ng/ml PMA. After 16 h, the media was changed for 500 μl fresh R10 media without antibiotics. Two h later, *Salmonella enterica* serovar Typhimurium strain LT2 (ATCC 700220) was added at a multiplicity of infection (MOI) of 20:1. Thirty min post-infection, wells were washed twice with PBS and 500 μl fresh R10 supplemented with Gentamicin 100 μg/ml was added. After a further thirty min, wells were washed once with PBS and 500 μl fresh R10 supplemented with Gentamicin 30 μg/ml was added. At the end of the designated post-infection period, the medium was removed (and stored at –80°C until later analysis by ELISA) and 500 μl of PBS with 1% (v/v) saponin was added to the wells, followed by incubation for 5 min at 37°C. Five hundred μl of PBS was added and serial dilutions plated on LB/agar plates, incubated overnight at 37°C, and colonies then counted.

REFERENCES

1. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. *Cell*. (2010) 140:805–20. doi: 10.1016/j.cell.2010.01.022
2. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. *Nature*. (2001) 411:603–6. doi: 10.1038/35079114
3. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaïche J. Association of NOD2 leucine-rich repeat variants with susceptibility

Alternatively, when cell viability post-infection was assessed, cells were detached by incubating with 500 μl of trypsin per well for 5 min at 37°C, then viability assessed by trypan blue staining (Invitrogen) and counting of live/dead cells.

Statistical Analysis

Prism (GraphPad) was used to determine the statistical significance. When making multiple comparisons on a data set, analysis was by one-way ANOVA with *post-hoc* Bonferroni analysis. For experiments with two sample groups (one condition, one control) and a single comparison, analysis was by paired, two-tailed Student's *t*-test. Error bars represent Standard Error of the Mean (SEM).

DATA AVAILABILITY

The MS proteomics data is available upon request from the authors.

ETHICS STATEMENT

Ethical approval for the study was obtained from National Research Ethics Service (NRES) Sheffield Research Ethics Committee (REC reference: 16/YH/0247) and from West Midlands - The Black Country Research Ethics Committee (REC reference: 09/H1204/30).

AUTHOR CONTRIBUTIONS

TC, DC, and AS designed experimental studies, interpreted the data, and wrote the manuscript. TC, DC, SS, SP, AA, SW, MdC, M-LT, RF, and BK performed experiments, acquired, and analyzed data. HP and BK provided critical reagents, helped interpret data. AS supervised and obtained funding.

FUNDING

This work was supported by the UK MRC and by a Wellcome Investigator Award to AS, an NIHR Research Professorship to AS, and a Wellcome Clinical Training fellowship to TC. TC was also supported by the NIHR Biomedical Research Center, based at Oxford University Hospitals Trust, Oxford.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: <https://www.frontiersin.org/articles/10.3389/fimmu.2019.01495/full#supplementary-material>

- to Crohn's disease. *Nature*. (2001) 411:599–603. doi: 10.1038/35079107
4. Corridoni D, Arseneau KO, Cominelli F. Functional defects in NOD2 signaling in experimental and human Crohn disease. *Gut Microbes*. (2014) 5:340–4. doi: 10.4161/gmic.28404
5. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. *J Biol Chem*. (2003) 278:8869–72. doi: 10.1074/jbc.C200651200

6. Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. *Nat Rev Immunol.* (2014) 14:9–23. doi: 10.1038/nri3565
7. Brain O, Owens BM, Pichulik T, Allan P, Khatamzas E, Leslie A, et al. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. *Immunity.* (2013) 39:521–36. doi: 10.1016/j.jimmuni.2013.08.035
8. Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging mechanisms of innate immunity and their translational potential in inflammatory bowel disease. *Front Med.* (2018) 5:32. doi: 10.3389/fmed.2018.00032
9. Corridoni D, Simmons A. Innate immune receptors for cross-presentation: the expanding role of NLRs. *Mol Immunol.* (2017). doi: 10.1016/j.molimm.2017.11.028. [Epub ahead of print].
10. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. *Nat Med.* (2010) 16:90–7. doi: 10.1038/nm.2069
11. Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. *Nat Rev Immunol.* (2016) 16:35–50. doi: 10.1038/nri.2015.8
12. Netea MG, Ferwerda G, de Jong DJ, Jansen T, Jacobs L, Kramer M, et al. Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release. *J Immunol.* (2005) 174:6518–23. doi: 10.4049/jimmunol.174.10.6518
13. van Heel DA, Ghosh S, Butler M, Hunt KA, Lundberg AM, Ahmad T, et al. Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn's disease. *Lancet.* (2005) 365:1794–6 doi: 10.1016/S0140-6736(05)66582-8
14. O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. *Nat Rev Immunol.* (2016) 16:553–65. doi: 10.1038/nri.2016.70
15. O'Neill LA, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. *J Exp Med.* (2016) 213:15–23. doi: 10.1084/jem.20151570
16. Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. *Ann Rev Biochem.* (2009) 78:363–97. doi: 10.1146/annurev.biochem.78.082307.091526
17. Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. *Nature.* (2017) 545:108–11. doi: 10.1038/15548627.2017.1336278
18. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. *Nat Genet.* (1994) 8:221–8. doi: 10.1038/ng1194-221
19. Paulson H. Machado-Joseph disease/spinocerebellar ataxia type 3. *Handb Clin Neurol.* (2012) 103:437–49. doi: 10.1016/B978-0-444-51892-7.00027-9
20. Kobayashi K, Inohara N, Hernandez LD, Galán JE, Núñez G, Janeway CA, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. *Nature.* (2002) 416:194–9. doi: 10.1038/416194a
21. Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Núñez G, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. *EMBO J.* (2008) 27:373–83. doi: 10.1038/sj.emboj.7601962
22. Canning P, Ruan Q, Schwerd T, Hrdinka M, Maki JL, Saleh D, et al. Inflammatory signaling by NOD-RIPK2 is inhibited by clinically relevant type II kinase inhibitors. *Chem Biol.* (2015) 22:1174–84. doi: 10.1016/j.chembiol.2015.07.017
23. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. *Front Immunol.* (2014) 5:461. doi: 10.3389/fimmu.2014.00461
24. Kapoor A, Fan YH, Arav-Boger R. Bacterial Muramyl Dipeptide (MDP) restricts human cytomegalovirus replication via an IFN-β-dependent pathway. *Scient Rep.* (2016) 6:20295. doi: 10.1038/srep20295
25. Xu J, Jiang C, Zhu W, Wang B, Yan J, Min Z, et al. NOD2 pathway via RIPK2 and TBK1 is involved in the aberrant catabolism induced by T-2 toxin in chondrocytes. *Osteoarthr Cartilage.* (2015) 23:1575–85. doi: 10.1016/j.joca.2015.04.016
26. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. *Science.* (2011) 333:228–33. doi: 10.1126/science.1205405
27. Matsumoto G, Shimogori T, Hattori N, Nukina N. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. *Hum Mol Genet.* (2015) 24:4429–42. doi: 10.1093/hmg/ddv179
28. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E, et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. *Nucleic Acids Res.* (2015) 43:D512–20. doi: 10.1093/nar/gku1267
29. Niu S, Wang Z, Ge D, Zhang G, Li Y. Prediction of functional phosphorylation sites by incorporating evolutionary information. *Protein Cell.* (2012) 3:675–90. doi: 10.1007/s13238-012-2048-z
30. Mao Y, Senic-Matuglia F, Di Fiore PP, Polo S, Hodsdon ME, De Camilli P. Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. *Proc Natl Acad Sci USA.* (2005) 102:12700–5. doi: 10.1073/pnas.0506344102
31. Harner M, Körner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, et al. The mitochondrial contact site complex, a determinant of mitochondrial architecture. *EMBO J.* (2011) 30:4356–70. doi: 10.1038/embj.2011.379
32. von der Malsburg K, Müller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, et al. Dual role of mitoflin in mitochondrial membrane organization and protein biogenesis. *Dev Cell.* (2011) 21:694–707. doi: 10.1016/j.devcel.2011.08.026
33. Bohnert M, Wenz LS, Zerbes RM, Horvath SE, Stroud DA, von der Malsburg K, et al. Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane. *Mol Biol Cell.* (2012) 23:3948–56. doi: 10.1091/mbc.e12-04-0295
34. Li H, Ruan Y, Zhang K, Jian F, Hu C, Miao L, et al. Mic60/Mitoflin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization. *Cell Death Differ.* (2016) 23:380–92. doi: 10.1038/cdd.2015.102
35. Yang RF, Sun LH, Zhang R, Zhang Y, Luo YX, Zheng W, et al. Suppression of Mic60 compromises mitochondrial transcription and oxidative phosphorylation. *Scient Rep.* (2015) 5:7990. doi: 10.1038/srep07990
36. Rebelo AP, Dillon LM, Moraes CT. Mitochondrial DNA transcription regulation and nucleoid organization. *J Inher Metab Dis.* (2011) 34:941–51. doi: 10.1007/s10545-011-9330-8
37. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. *Blood.* (2010) 115:4742–9. doi: 10.1182/blood-2009-10-249540
38. Murphy MP. How mitochondria produce reactive oxygen species. *Biochem J.* (2009) 417:1–13. doi: 10.1042/BJ20081386
39. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. *Nature.* (2011) 472:476–80. doi: 10.1038/nature09973
40. Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. *Immunity.* (1999) 10:29–38. doi: 10.1016/S1074-7613(00)80004-7
41. Azkargorta M, Escobes I, Elortza F, Matthiesen R, Rodríguez MS. TUBE-mass spectrometry for identification and analysis of the ubiquitin-proteome. *Methods Mol Biol.* (2016) 1449:177–92. doi: 10.1007/978-1-4939-3756-1_9
42. Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, England P, Rodriguez MS. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. *EMBO Rep.* (2009) 10:1250–8. doi: 10.1038/embor.2009.192
43. Xolalpa W, Mata-Cantero L, Aillet F, Rodriguez MS. Isolation of the ubiquitin-proteome from tumor cell lines and primary cells using TUBEs. *Proteostasis.* (2016) 1449:161–75. doi: 10.1007/978-1-4939-3756-1_8
44. Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, Williams AJ, et al. The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. *J Biol Chem.* (2008) 283:26436–43. doi: 10.1074/jbc.M803692200
45. Halligan DN, Murphy SJ, Taylor CT. The hypoxia-inducible factor (HIF) couples immunity with metabolism. *Semin Immunol.* (2016) 28:469–77. doi: 10.1016/j.smim.2016.09.004
46. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. *Immunity.* (2014) 41:518–28. doi: 10.1016/j.jimmuni.2014.09.008
47. Cramer T, Johnson RS. A novel role for the hypoxia inducible transcription factor HIF-1α: critical regulation of inflammatory cell function. *Cell Cycle.* (2003) 2:192–3. doi: 10.4161/cc.2.3.402
48. Peyronnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V. Cutting edge: essential role of hypoxia inducible factor-1α

- in development of lipopolysaccharide-induced sepsis. *J Immunol.* (2007) 178:7516–9. doi: 10.4049/jimmunol.178.12.7516
49. Peysonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. *J Clin Invest.* (2005) 115:1806–15. doi: 10.1172/JCI23865
50. Gavin AL, Huang D, Huber C, Mårtensson A, Tardif V, Skog PD, et al. PLD3 and PLD4 are single-stranded acid exonucleases that regulate endosomal nucleic-acid sensing. *Nat Immunol.* (2018) 19:942–53. doi: 10.1038/s41590-018-0179-y
51. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. *Nature.* (2014) 505:550–4. doi: 10.1038/nature12825
52. Nibbeling EAR, Duarri A, Verschueren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets CJLM, et al. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. *Brain.* (2017) 140:2860–78. doi: 10.1093/brain/awx251
53. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. *Nat Rev Immunol.* (2014) 14:463–77. doi: 10.1038/nri3705
54. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. *Cell.* (2010) 141:290–303. doi: 10.1016/j.cell.2010.02.024
55. Takahashi Y, Nada S, Mori S, Soma-Nagae T, Oneyama C, Okada M. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes. *Biochem Biophys Res Commun.* (2012) 417:1151–7. doi: 10.1016/j.bbrc.2011.12.082
56. Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. *Nat Commun.* (2016) 7:13130. doi: 10.1038/ncomms13130
57. Swatek KN, Komander D. Ubiquitin modifications. *Cell Res.* (2016) 26:399–422. doi: 10.1038/cr.2016.39
58. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A. Proteomics. Tissue-based map of the human proteome. *Science.* (2015) 347:1260419. doi: 10.1126/science.1260419
59. Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A. The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. *Proc Natl Acad Sci USA.* (2005) 102:10493–8. doi: 10.1073/pnas.0501732102
60. Nicastro G, Masino L, Esposito V, Menon RP, De Simone A, Frernali F, et al. Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. *Biopolymers.* (2009) 91:1203–14. doi: 10.1002/bip.21210
61. Evers MM, Toonen LJ, van Roon-Mom WM. Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. *Mol Neurobiol.* (2014) 49:1513–31. doi: 10.1007/s12035-013-8596-2
62. Chatterjee A, Saha S, Chakraborty A, Silva-Fernandes A, Mandal SM, Neves-Carvalho A, et al. The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3'-phosphatase in spinocerebellar ataxia type 3 pathogenesis. *PLoS Genet.* (2015) 11:e1004749. doi: 10.1371/journal.pgen.1004749
63. Gao R, Liu Y, Silva-Fernandes A, Fang X, Paulucci-Holthausen A, Chatterjee A, et al. Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. *PLoS Genet.* (2015) 11:e1004834. doi: 10.1371/journal.pgen.1004834
64. Li F, Macfarlan T, Pittman RN, Chakravarti D. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. *J Biol Chem.* (2002) 277:45004–12. doi: 10.1074/jbc.M205259200
65. Zhong X, Pittman RN. Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. *Hum Mol Genet.* (2006) 15:2409–20. doi: 10.1093/hmg/ddl164
66. Burnett BG, Pittman RN. The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. *Proc Natl Acad Sci USA.* (2005) 102:4330–5. doi: 10.1073/pnas.0407252102
67. Feng Q, Miao Y, Ge J, Yuan Y, Zuo Y, Qian L, et al. ATXN3 Positively regulates type I IFN antiviral response by deubiquitinating and stabilizing HDAC3. *J Immunol.* (2018) 201:675–87. doi: 10.4049/jimmunol.1800285
68. Yadava N, Nicholls DG. Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. *J Neurosci.* (2007) 27:7310–7. doi: 10.1523/JNEUROSCI.0212-07.2007
69. Ferrick DA, Neilson A, Beeson C. Advances in measuring cellular bioenergetics using extracellular flux. *Drug Discov Today.* (2008) 13:268–74. doi: 10.1016/j.drudis.2007.12.008
70. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8(+) T cell memory development. *Immunity.* (2012) 36:68–78. doi: 10.1016/j.jimmuni.2011.12.007
71. Garaude J, Acín-Pérez R, Martínez-Cano S, Enamorado M, Ugolini M, Nistal-Villán E, et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. *Nat Immunol.* (2016) 17:1037–45. doi: 10.1038/ni.3509
72. Huang SC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. *Nat Immunol.* (2014) 15:846–55. doi: 10.1038/ni.2956
73. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possematto A, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. *Mol Cell.* (2011) 44:325–40. doi: 10.1016/j.molcel.2011.08.025
74. Hu H, Sun SC. Ubiquitin signaling in immune responses. *Cell Res.* (2016) 26:457–83. doi: 10.1038/cr.2016.40
75. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. *Cell.* (2003) 112:645–57. doi: 10.1016/S0092-8674(03)00154-5
76. Nada S, Hondo A, Kasai A, Koike M, Saito K, Uchiyama Y, et al. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. *EMBO J.* (2009) 28:477–89. doi: 10.1038/embj.2008.308
77. Guillaumot P, Luquain C, Malek M, Huber AL, Brugiére S, Garin J, et al. Pdro, a protein associated with late endosomes and lysosomes and implicated in cellular cholesterol homeostasis. *PLoS ONE.* (2010) 5:e10977. doi: 10.1371/journal.pone.0010977
78. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. *Science.* (2011) 334:678–83. doi: 10.1126/science.1207056
79. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. *Cell.* (2012) 150:1196–208. doi: 10.1016/j.cell.2012.07.032
80. Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, et al. The lysosomal v-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. *Cell Metab.* (2014) 20:526–40. doi: 10.1016/j.cmet.2014.06.014
81. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. *Genome Biol.* (2009) 10:R130. doi: 10.1186/gb-2009-10-11-r130
82. Corridoni D, Arseneau KO, Cifone MG, Cominelli F. The dual role of nod-like receptors in mucosal innate immunity and chronic intestinal inflammation. *Front Immunol.* (2014) 5:317. doi: 10.3389/fimmu.2014.00317
83. Davis S, Charles PD, He L, Mowlds P, Kessler BM, Fischer R. Expanding proteome coverage with charge ordered parallel ion analysis (CHOPIN) combined with broad specificity proteolysis. *J Prot Res.* (2017) 16:1288–99. doi: 10.1021/acs.jproteome.6b00915

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Chapman, Corridoni, Shiraishi, Pandey, Aulicino, Wigfield, do Carmo Costa, Thézénas, Paulson, Fischer, Kessler and Simmons. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer

Valentina Audrito ^{1,2*}, Antonella Managò ^{1,2}, Federica Gaudino ^{1,2}, Leonardo Sorci ³, Vincenzo Gianluca Messana ^{1,2}, Nadia Raffaelli ⁴ and Silvia Deaglio ^{1,2*}

¹ Department of Medical Sciences, University of Turin, Turin, Italy, ² Italian Institute for Genomic Medicine, Turin, Italy, ³ Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy, ⁴ Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy

OPEN ACCESS

Edited by:

Anna Ohradanova-Repic,
Medical University of Vienna, Austria

Reviewed by:

Armando A. Genazzani,
University of Eastern Piedmont, Italy
Antje Garten,
Leipzig University, Germany

*Correspondence:

Valentina Audrito
valentina.audrito@unito.it
Silvia Deaglio
silvia.deaglio@unito.it

Specialty section:

This article was submitted to
Cancer Immunity and Immunotherapy,
a section of the journal
Frontiers in Immunology

Received: 25 April 2019

Accepted: 09 July 2019

Published: 25 July 2019

Citation:

Audrito V, Managò A, Gaudino F, Sorci L, Messana VG, Raffaelli N and Deaglio S (2019) NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer. *Front. Immunol.* 10:1720.
doi: 10.3389/fimmu.2019.01720

Cancer cells, particularly in solid tumors, are surrounded by non-neoplastic elements, including endothelial and stromal cells, as well as cells of immune origin, which can support tumor growth by providing the right conditions. On the other hand, local hypoxia, and lack of nutrients induce tumor cells to reprogram their metabolism in order to survive, proliferate, and disseminate: the same conditions are also responsible for building a tumor-suppressive microenvironment. In addition to tumor cells, it is now well-recognized that metabolic rewiring occurs in all cellular components of the tumor microenvironment, affecting epigenetic regulation of gene expression and influencing differentiation/proliferation decisions of these cells. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor for energy transduction in metabolic processes. It is also a key component of signaling pathways, through the regulation of NAD-consuming enzymes, including sirtuins and PARPs, which can affect DNA plasticity and accessibility. In addition, both NAD-biosynthetic and NAD-consuming enzymes can be present in the extracellular environment, adding a new layer of complexity to the system. In this review we will discuss the role of the “NADome” in the metabolic cross-talk between cancer and infiltrating immune cells, contributing to cancer growth and immune evasion, with an eye to therapeutic implications.

Keywords: immunometabolism, metabolic reprogramming, immune cell regulation, NAD, tumor microenvironment

COMPOSITION OF THE TUMOR MICROENVIRONMENT: SUPPORTIVE AND IMMUNOREGULATORY CELLS

The solid tumor microenvironment (TME), as well as the lymphoid niche, is a dynamic and multicellular ecosystem with complex interactions (1, 2). Intercellular crosstalk within this niche is driven by multiple receptor-ligand systems, as well as by locally synthesized soluble proteins, including chemokines/cytokines, interleukins, interferons, growth, and angiogenic factors (3, 4). This unique environment is essential for tumor growth, metastatic dissemination, and

drug-resistance. Furthermore, the cellular and soluble components of the TME have an important role in shaping metabolic reprogramming of cancer cells, an established hallmark of cancer, and in creating an immunosuppressive environment (5–8), as showed in **Figure 1**.

The formation of the TME and the regulation of immune responses are orchestrated by different types of host cells, including endothelial cells (ECs), mesenchymal stem/stromal cells [MSCs, including cancer-associated fibroblasts (CAFs) and tumor-associated MSCs (TA-MSCs)], and tumor-infiltrating immune cells [i.e., tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and tumor-associated neutrophils (TANs)]. Their concerted action promotes tumor growth and spreading (1, 2, 9, 10) (**Figure 1**).

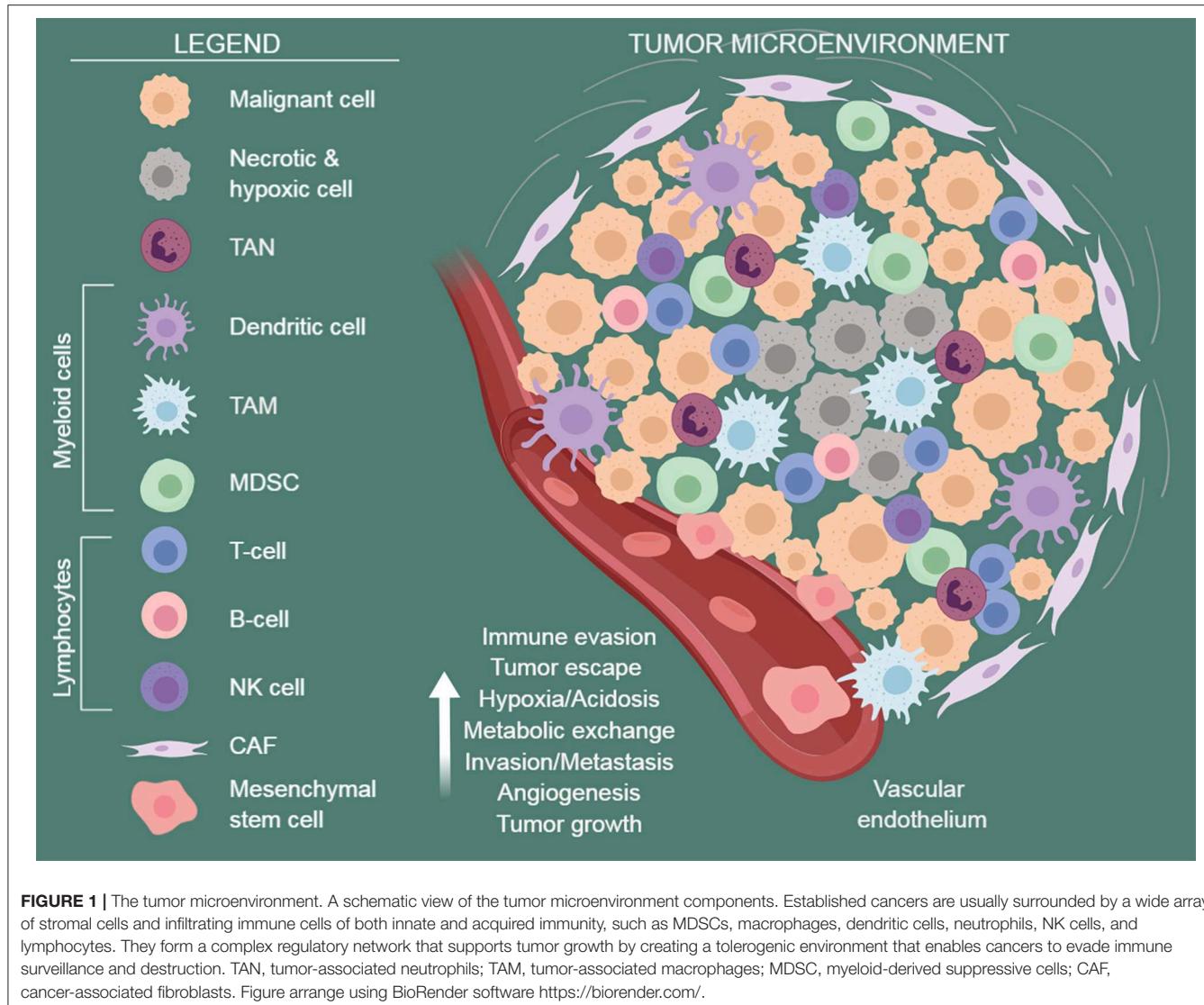
Endothelial Cells (ECs)

ECs support blood supply, nutrient transport, metabolic homeostasis, and immune cell trafficking, and are involved in inflammatory response (11).

To provide nutrients to the growing tumor, ECs form tumor-associated (angiogenic) vessels originating from locally pre-existing vessels or recruiting bone marrow-derived endothelial progenitors. They also represent the first interface between circulating blood cells, tumor cells, and the extracellular matrix, thereby playing a central role in regulating leukocyte recruitment, tumor cell features, and metastasis dissemination (12). Tumor-associated EC are dysfunctional, partly as a consequence of local hypoxia, which induces the production of soluble factors promoting neo-angiogenesis and contributing to tumor dissemination and chemoresistance (13, 14). Among these factors, vascular endothelial growth factor A (VEGF-A) can also play a critical role in the control of immune tolerance, linking immune suppression with angiogenesis (15).

Mesenchymal Stem/Stromal Cells (MSCs)

MSCs strongly affect the development and progression of various cancers (16). Stromal cells represent the main cell component with both supportive and immunoregulatory functions; they derived from multipotent cells of mesodermal origin which virtually reside in all tissues with an important role in tissue regeneration (16). MSCs have been found to migrate to tumors and to evolve into TA-MSCs and CAFs with an active role in tumor survival, proliferation, migration and drug resistance, and therefore, recently emerged as attractive targets or tools for anticancer approaches (17, 18).


CAFs are the most abundant resident cells of the TME. Numerous studies have demonstrated that CAFs have prominent roles in cancer pathogenesis (19, 20). Mechanistically, CAFs shape the extracellular matrix (ECM) structure, which supports the tumor cells (i) to invade and interact with stromal cells through the secretion of growth factors, cytokines and chemokines including interleukin-6 (IL-6), transforming growth factor- β (TGF- β) and CC-chemokine ligand 2 (CCL2); (ii) to amplify immune evasion recruiting immune cells, especially immunosuppressive cells into the tumor stroma; (iii) to promote the establishment of an intratumoral vascular network through

proinflammatory and proangiogenic mediators (21). CAFs also activate epithelial-mesenchymal transition (EMT) in cancer cells, conferring their pro-invasive and stem-like features (22). In addition, CAFs are plastic cells that co-evolve with cancer cells and acquire a pro-tumor phenotype, contributing to tumor evolution (23). Due to the pro-tumor role of CAFs in support cancer development they become promising therapeutic targets for cancer therapy (21).

Tumor-Infiltrating Lymphocytes (TILs)

TILs are additional immune components, crucial in driving immune responses within the TME, adding more complexity in the composition of the TME (3). TILs are white blood cells, including T and B cells, that have left the bloodstream and migrated toward a tumor or tissue resident (1, 24). Their abundance varies according to tumor type and stage and in some cases relates to disease prognosis, tumor progression, and response to anticancer therapy (1, 25, 26). T cell differentiation status, survival, activation or “stemness properties” are determining factors of antitumor potency (27) and functions of TILs dynamically change within the TME (28). Sometimes TILs, specifically cytotoxic CD8 $^{+}$ memory T cells and CD4 $^{+}$ T helper 1 (Th1), which are normally antigen “experienced,” kill tumor cells (29), and the presence of lymphocytes in tumors is often associated with a better prognosis during immunotherapy treatment, including the adoptive transfer of naturally- TIL or genetically-engineered T cells and the use of immune-checkpoint inhibitors (26, 30). However, very often, during cancer progression and chronic inflammation, T cells become exhausted due to the persistent antigen exposure. T cell exhaustion is a state of T cell dysfunction defined by poor effector function, sustained expression of inhibitory receptors, such as programmed cell death protein 1 (PD1) and cytotoxic T lymphocyte antigen 4 (CTLA4), and transcriptional programs altered compared with functional effector or memory T cells (31).

Regulatory T (Treg) cells are another TME cell type that has immunosuppressive functions in cancer, inhibiting recognition, and clearance of tumor cells by the immune system (30, 32, 33). Tregs are characterized by the expression of CD4, CD25, and forkhead box P3 (FOXP3) as their master regulator. Foxp3 $^{+}$ Treg can originate in the thymus (naturally occurring Treg) or can be induced (iTreg) in the periphery by soluble cytokines and cell-cell contact (34) and are essential for maintaining peripheral tolerance and limiting auto-immune diseases. However, the proportions of Tregs are much higher in the circulation of patients with solid and hematologic malignancies and accumulation of Tregs in the tumor microenvironment is associated with disease progression and reduced survival (35, 36). From a functional point of view, Tregs inhibit both cellular and humoral immune responses by suppressing expansion and activation of conventional CD4 $^{+}$ and cytotoxic CD8 $^{+}$ T cells, and natural killer cells, mainly through the secretion of suppressive cytokines, such as TGF- β and IL-10. The development of agents that specifically inhibit Treg functions or remove them from the TME will permit new approaches for anticancer immunotherapy (37).

FIGURE 1 | The tumor microenvironment. A schematic view of the tumor microenvironment components. Established cancers are usually surrounded by a wide array of stromal cells and infiltrating immune cells of both innate and acquired immunity, such as MDSCs, macrophages, dendritic cells, neutrophils, NK cells, and lymphocytes. They form a complex regulatory network that supports tumor growth by creating a tolerogenic environment that enables cancers to evade immune surveillance and destruction. TAN, tumor-associated neutrophils; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells; CAF, cancer-associated fibroblasts. Figure arranged using BioRender software <https://biorender.com/>.

Tumor-Associated Macrophages (TAMs)

TAMs are important mediators of tumorigenesis, resident in the tissue or deriving from peripheral reservoirs such as the bone marrow (BM) and spleen (2). Macrophages are functionally plastic and can be polarized into the immune stimulating and antitumor M1 subtype, or into “alternatively activated” M2 macrophages producing type II cytokines, promoting anti-inflammatory responses, and having pro-tumorigenic functions (38, 39). Macrophage polarization is finely tuned in response to different microenvironmental stimuli (40). For example, hypoxia may mediate this transition from tumor suppressing to tumor promoting macrophages (41). Furthermore, it has been shown a reciprocal regulation between CAFs and M2 macrophages: CAFs promote monocyte recruitment and polarization toward the M2 phenotype, leading to the enhancement of proangiogenic features, in parallel M2 macrophages are able to induce fibroblast activation (42). It is well-known that TAMs have a clear role in supporting multiple aspects of tumor progression (43).

For example, TAMs promote tumor cell invasion through a paracrine loop that involves tumor-derived colony-stimulating factor 1 (CSF-1) and macrophage-derived epidermal growth factor (EGF) (43, 44). Moreover, TAMs induce immune suppression [reviewed in (45)] mediated by (i) expression of inhibitory receptors, including human leukocyte antigens (HLA)-E and HLA-G and T cell immune checkpoint ligands, such as PDL1, PDL2, CD80 and CD86, which directly inhibit T cell functions and NK cells; (ii) release of several cytokines, such as IL-10 and transforming growth factor- β (TGF β), that contribute to feed a strong immunosuppressive microenvironment by inhibiting CD4 $^{+}$ (Th1 and Th2 cells) and CD8 $^{+}$ T cells and inducing Treg cell expansion and recruitment through CCL2, CCL3, and CCL20. Lastly, they induce depletion of essential aminoacids for cytotoxic activity of T cells including l-arginine and tryptophan, or production of kynurene by indoleamine 2,3-dioxygenase (IDO) that inhibits T cell cytotoxicity.

Reversion of TAMs back to an M1 phenotype has also been reported (46), highlighting a potential therapeutic opportunity in which re-education of TME-resident macrophages might have beneficial anti-tumorigenic effects (45).

Myeloid-Derived Suppressor Cells (MDSCs)

Along with TAMs, MDSCs are considered major promoters of tumor immune evasion (47). This population of myeloid cells, functionally defined as immunosuppressive, arises as a consequence of aberrant myelopoiesis typical of cancer (48). During tumorigenesis, MDSCs are mobilized from BM, via CXCR4/CXCL12 axis (49) and infiltrate tumors, where they promote tumor neoangiogenesis, producing endothelial growth factors [e.g., VEGF, basic fibroblast growth factor (bFGF)] (47). At the same time, they disrupt the major mechanisms of immunosurveillance, including antigen presentation by dendritic cells (DCs), T cell activation, M1 macrophage polarization and NK cell cytotoxicity, as reviewed in Safari et al. (50) and Wang et al. (51). Pharmacological inhibitors of CXCR4, are now under clinical investigation for the mobilization of immune and hematopoietic stem cells (52). Noteworthy, depletion of MDSCs by chemotherapeutic agents (e.g., gemcitabine, cyclophosphamide) can efficiently contribute to their anticancer action (48, 50, 53).

Tumor-Associated Neutrophils (TANs)

More recently, a population of neutrophils, known as TANs, has been identified as tumor supporter promoting growth, invasion, and angiogenesis of cancer cells, although they have been classically considered to exhibit a defensive response against tumor cells. Like all other leukocytes, they migrate into tissues under the effect of specific chemokines, cytokines and cell adhesion molecules for example TGF- β and IL-8 induce the formation of a pro-tumorigenic (N2) phenotype capable of supporting tumor growth and suppressing the antitumor immune responses (54, 55). Accordingly, TGF- β blocking results in the recruitment and activation of TAN with an anti-tumor phenotype (54). The main tumor-promoting mechanisms of TANs include secretion of chemokines and/or cytokines, reactive oxygen species (ROS), and matrix-degrading proteinases, among others, conditioning tumor immune surveillance, metastasis, invasion, angiogenesis, and cellular proliferation (55, 56).

TUMOR-STROMA METABOLIC CROSS-TALK IN TME

It has been shown that the environment surrounding tumor cells is characterized by low oxygen tension (i.e., hypoxia) due to the abnormal blood vessel formation, defective blood perfusion, and unlimited cancer cell proliferation (14). The progression of hypoxia over time is a consequence of increased oxygen consumption and high glycolytic rate of aberrantly proliferating cancer cells (aerobic glycolysis or Warburg metabolism), leading to lactate dehydrogenase (LDH) activity, lactate excretion and TME acidosis, which alters the

tumor-stroma “metabolic cross-talk” (Figure 1). *Vice versa*, hypoxia rapidly fosters energy production in tumor cells via glycolysis through hypoxia-inducible factor 1-alpha (HIF-1 α)-mediated transcriptional control (57, 58). In addition, a hypoxic environment also modulates tumor-associated immune and stromal cells metabolism and fate. The rapid consumption of extracellular glucose and glutamine by tumor cells, especially in hypoxic conditions, leads to the accumulation of extracellular lactate, which was shown to affect several cell types within the TME (59). Increased lactate levels promote the insurance of an immune-permissive microenvironment by attenuating DCs and T cell activation, monocyte migration, and polarization of resident macrophages to TAMs (60–63). Furthermore, lactate accumulation promotes angiogenesis, stabilizes HIF-1 α and activates NF- κ B and PI-3 kinase signaling in endothelial cells, as well as inducing secretion of the proangiogenic factor VEGF from tumor-associated stromal cells (64–66). The secretion of lactate via the monocarboxylate transporter (MCT3) is coupled to the cotransport of H $^{+}$, which supports acidification of the cellular microenvironment (59). The surplus of CO₂ generated in mitochondrial decarboxylation reactions contributes to extracellular acidification as well (67). Then, a class of extracellular carbonic anhydrases (CA) can convert CO₂ to H $^{+}$ and HCO₃ $^{-}$. Accordingly, expression of CAIX isoforms is elevated during hypoxia and can be considered a proxy for HIF-1 α signaling (68). A consequence of increased extracellular acidification is the stimulation of the proteolytic activity of MMPs that promotes the degradation of the extracellular matrix components enhancing tumor invasion (69).

Lactate in TME can be also recycled, as occurs in the Cori cycle in the liver. In this reciprocal metabolite changes between cancer cells and immune/stromal cells, lactate produced under hypoxic conditions by glycolytic cells can be re-uptaken by aerobic cells, via MCT1, and utilized for mitochondrial tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) (70, 71). This well characterized mechanism is known as the “reverse Warburg effect” (70, 72). In a model of epithelial cancer, tumor cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich microenvironment for facilitating tumor growth and angiogenesis (72, 73). This metabolic cross-talk is evident in breast, prostate and ovarian cancer (74–76).

Both innate and adaptive immune cells increase their metabolic capacity upon stimulation, promoting energy generation, and biosynthesis supporting proliferation, effector molecule production, and differentiation (77). The impact of such altered metabolic state and levels of metabolites in TME on immune cell function is emerging. For example, a competition between tumor cells and T cells for the glucose pool in the aerobic microenvironment is linked to suppressed effector T-cell functions. In fact, activated T cells rely on glucose metabolism, up-regulating GLUT1 transporter via T cell receptor (TCR) and CD28-induced Akt activation (78, 79). Critical concentrations and/or lack of two amino acids, glutamine and arginine, necessary for T-cell activation, differentiation and proliferation, are therefore inhibitory to T cell functions (79).

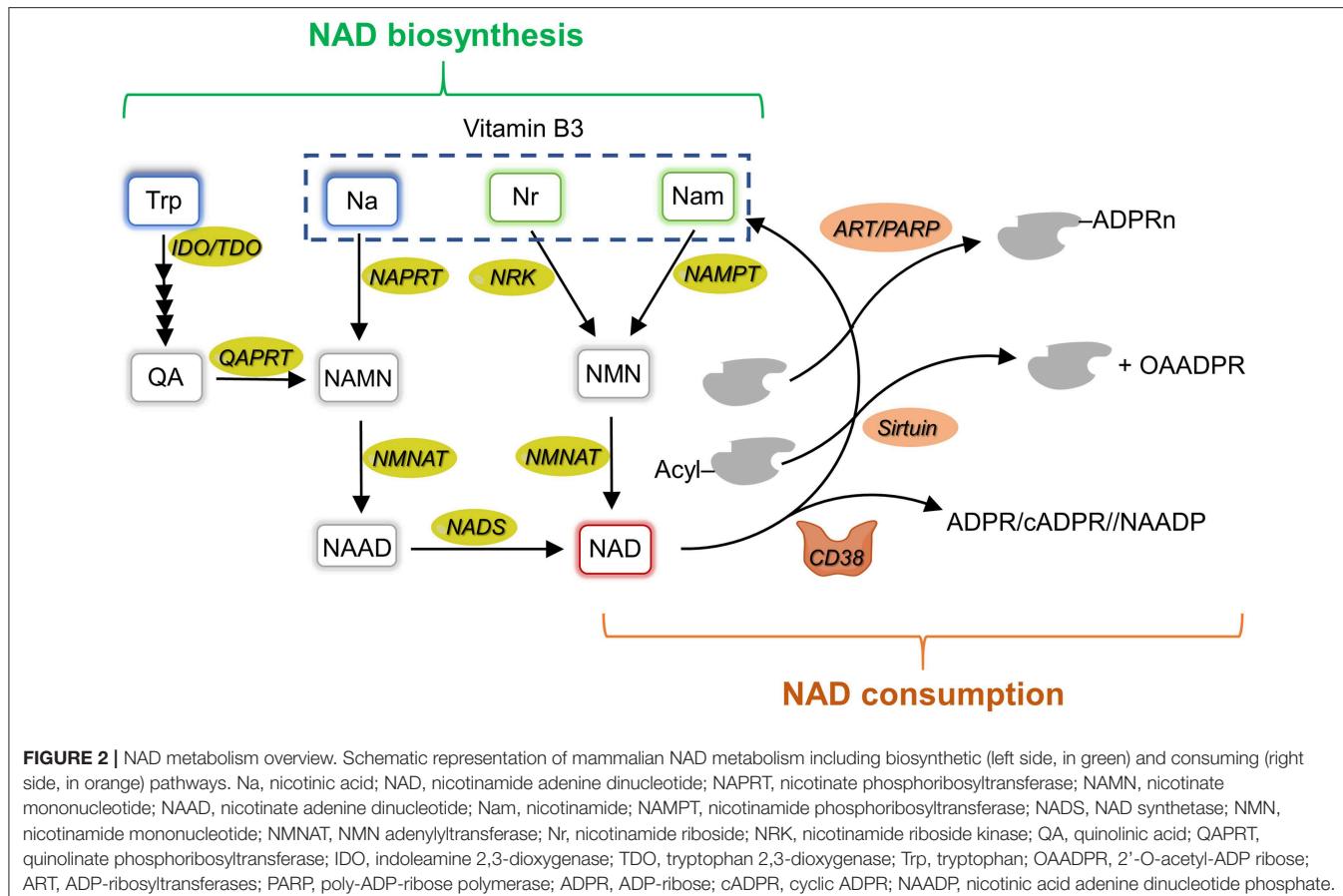
The TME shows high levels of immunosuppressive metabolic byproducts, including a turnover in the TME release of adenosine triphosphate (ATP) and nicotinamide dinucleotide (NAD) which are metabolized by the ectoenzymes CD39, CD73, and the NADase CD38 to adenosine (80, 81). Adenosine binds to the T-cell adenosine A2R receptor inhibiting effector T-cell functions and stimulating Treg cells (82, 83). Furthermore, the adenosinergic axis is over-functional in hypoxic conditions, connecting adenosine-mediated immunosuppression to low oxygen tension (84, 85).

Overall, a better understanding of the critical players within the TME and their specific roles in immune regulation will help design of metabolism-targeted therapeutic strategies for improving immunotherapy regimens in cancer.

Recently, NAD pathway enzymes and metabolites were shown to affect immune-cell functions and fate and alter the cancer cell-TME crosstalk. The following paragraphs are focused on describing these molecular circuits and their therapeutic implications.

NAD HOMEOSTASIS: AN OVERVIEW

NAD is a vital molecule governing many metabolic processes. It is used as a redox coenzyme by several dehydrogenases, and as a co-substrate by various NAD-consuming enzymes (86, 87). Among them are (i) mono- or poly-ADP ribosyltransferases (including ARTs and PARPs), which transfer the ADP ribose moiety to acceptor proteins resulting in their modification and function regulation, (ii) sirtuins, which catalyze the NAD-dependent deacetylation of metabolic enzymes and transcription factors, thus controlling their activity; (iii) NAD glycohydrolase that generates different NAD metabolites, including ADP ribose (ADPR), cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), with calcium (Ca^{2+}) mobilizing activity. These enzymes are involved in the control of a wide range of biological processes, including transcription, DNA repair, cell adaptation to stress signals, and immune response (88). By catalyzing their reactions, they render NAD continuous re-synthesis an indispensable process. Various NAD biosynthetic routes guarantee the coenzyme regeneration, in different combination and with different efficiency depending on the cell-type and metabolic status (89, 90). A schematic overview of NAD homeostasis is shown in **Figure 2** and reviewed in Sharif et al. (87), Magni et al. (91), and Houtkooper et al. (92).


The route which recycles nicotinamide (Nam), produced by the breakage of the N-glycosidic bond in the various NAD-consuming reactions, back to NAD that is considered the major pathway ensuring NAD homeostasis. It involves the phosphoribosylation of Nam to nicotinamide mononucleotide (NMN) by the enzyme Nam phosphoribosyltransferase (NAMPT) and the subsequent adenylation of NMN to NAD by NMN adenylyltransferase (NMNATs). This same route also salvages extracellular Nam that can be of dietary origin or can be formed in the extracellular space by the NAD glycohydrolase activity of the CD38 ectoenzyme acting on extracellular NAD and/or NMN. NAD can also be synthetized from exogenous

nicotinamide riboside (NR) and nicotinic acid (NA) through distinct routes that are initiated by NR kinase (NRK) and NA phosphoribosyltransferase (NAPRT), respectively. The former enzyme phosphorylates NR to NMN, whereas the latter enzyme phosphoribosylates NA to nicotinate mononucleotide (NAMN). NMNATs convert NMN to NAD, and NAMN to nicotinate adenine dinucleotide (NAAD). NAAD is finally amidated to NAD by the enzyme NAD synthetase. A *de novo* biosynthetic route, which starts from tryptophan and enters the amidated route from NA, is also operative in several tissues and cell-types. The first and rate-limiting step in this pathway is the conversion of tryptophan to N-formylkynurenine by either IDO or tryptophan 2,3-dioxygenase (TDO). Four reactions are then required to transform N-formylkynurenine to an unstable intermediate, α -amino- β -carboxymuconate- ϵ -semialdehyde (ACMS), which undergoes either decarboxylation, directed toward oxidation, or spontaneous cyclization to quinolinic acid (QA) directed toward NAD formation. Indeed, QA is phosphoribosylated to NAMN by the enzyme QA phosphoribosyltransferase (QAPRT), and the formed NAMN enters the NA salvage pathway. Among the enzymes involved in NAD homeostasis, NAMPT, CD38, sirtuins, and IDO are overexpressed in different types of cancer (93) and have been shown to play a role in cancer immune tolerance (94, 95). In the following sections, we will review what is known about their expression and function in the TME.

NAMPT IN METABOLIC REGULATION AND ACTIVATION OF MYELOID CELLS

As the first and rate-limiting enzyme, NAMPT plays a pivotal role in the biosynthesis pathway of NAD from its nicotinamide precursor. It converts Nam and 5-phosphoribosyl-1-pyrophosphate (PRPP) into NMN in a complex reaction that can be significantly improved by a non-stoichiometric ATP hydrolysis (96). NAMPT is found both intracellularly and extracellularly (97, 98). Intracellular NAMPT (iNAMPT) is primarily located in the nucleus and cytosol. Previous studies reported NAMPT in mitochondria as well (99), but this remains a controversial finding (100, 101). As one of the main regulators of NAD intracellular level, NAMPT plays a crucial role in cellular metabolism (102). Conversely, the extracellular form of NAMPT (eNAMPT) has emerged as an important mediator of inflammatory programs (103). eNAMPT has been found in plasma and other extracellular fluids, including the supernatants of numerous cell types (103); however, while the mechanisms behind eNAMPT secretion remain unknown, they do not seem to rely on the classic pathway (104). Notably, the cytokine-like functions appear independent of the protein catalytic activity (105). In keeping with this view, NAMPT's substrates PRPP and ATP are apparently unavailable in the extracellular space to sustain the enzymatic activity (106).

eNAMPT was originally found to be secreted by activated lymphocytes and bone marrow stromal cells by Samal et al. (107) and called pre-B-cell colony enhancing factor [PBEF (107)]. In 2005, Fukuura (108) identified eNAMPT

FIGURE 2 | NAD metabolism overview. Schematic representation of mammalian NAD metabolism including biosynthetic (left side, in green) and consuming (right side, in orange) pathways. Na, nicotinic acid; NAD, nicotinamide adenine dinucleotide; NAPRT, nicotinate phosphoribosyltransferase; NAMN, nicotinate mononucleotide; NAAD, nicotinate adenine dinucleotide; Nam, nicotinamide; NAMPT, nicotinamide phosphoribosyltransferase; NADS, NAD synthetase; NMN, nicotinamide mononucleotide; NMNAT, NMN adenyllyltransferase; Nr, nicotinamide riboside; NRK, nicotinamide riboside kinase; QA, quinolinic acid; QAPRT, quinolinate phosphoribosyltransferase; IDO, indoleamine 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; Trp, tryptophan; OAADPR, 2'-O-acetyl-ADP ribose; ART, ADP-ribosyltransferases; PARP, poly-ADP-ribose polymerase; ADPR, ADP-ribose; cADPR, cyclic ADPR; NAADP, nicotinic acid adenine dinucleotide phosphate.

as an adipokine and called it visfatin. These different names reflect its role in immune system and adipose tissue regulation.

Independent studies have conclusively shown that NAMPT expression and secretion can be induced by inflammatory signals in immune cells, in particular neutrophils, monocytes and macrophages (109). Both pathogen-derived lipopolysaccharide (LPS) and host-derived inflammatory stimuli, including tumor necrosis factor- α (TNF- α), IL-1 β , IL-6, and leptin, can up-regulate NAMPT transcription in macrophages and other several types of cells (110–113). Several studies showed stimulation of cytokine release after exposure of cells to exogenous NAMPT, highlighting a role of eNAMPT as an inflammatory mediator as reviewed in Garten et al. (103). Following NAMPT treatment, IL-1 β , IL-6, TNF- α , and IL-10 are up-regulated in peripheral blood mononuclear cells (PBMCs) and CD14 $^{+}$ monocytes (114). Co-stimulatory molecules such as CD54, CD40, and CD80 are also up-regulated in response to NAMPT treatment, an effect mediated through PI3-kinase and MAPKs p38, MEK1, and JNK (114). Furthermore, in macrophages NAMPT increases MMPs expression and activity (115). *In vitro*, eNAMPT promotes cell survival in macrophages subjected to endoplasmic reticulum (ER) stress, a frequent event in obesity and obesity-associated diseases. eNAMPT induces IL-6 secretion, followed by IL-6-mediated autocrine/paracrine activation of the prosurvival signal

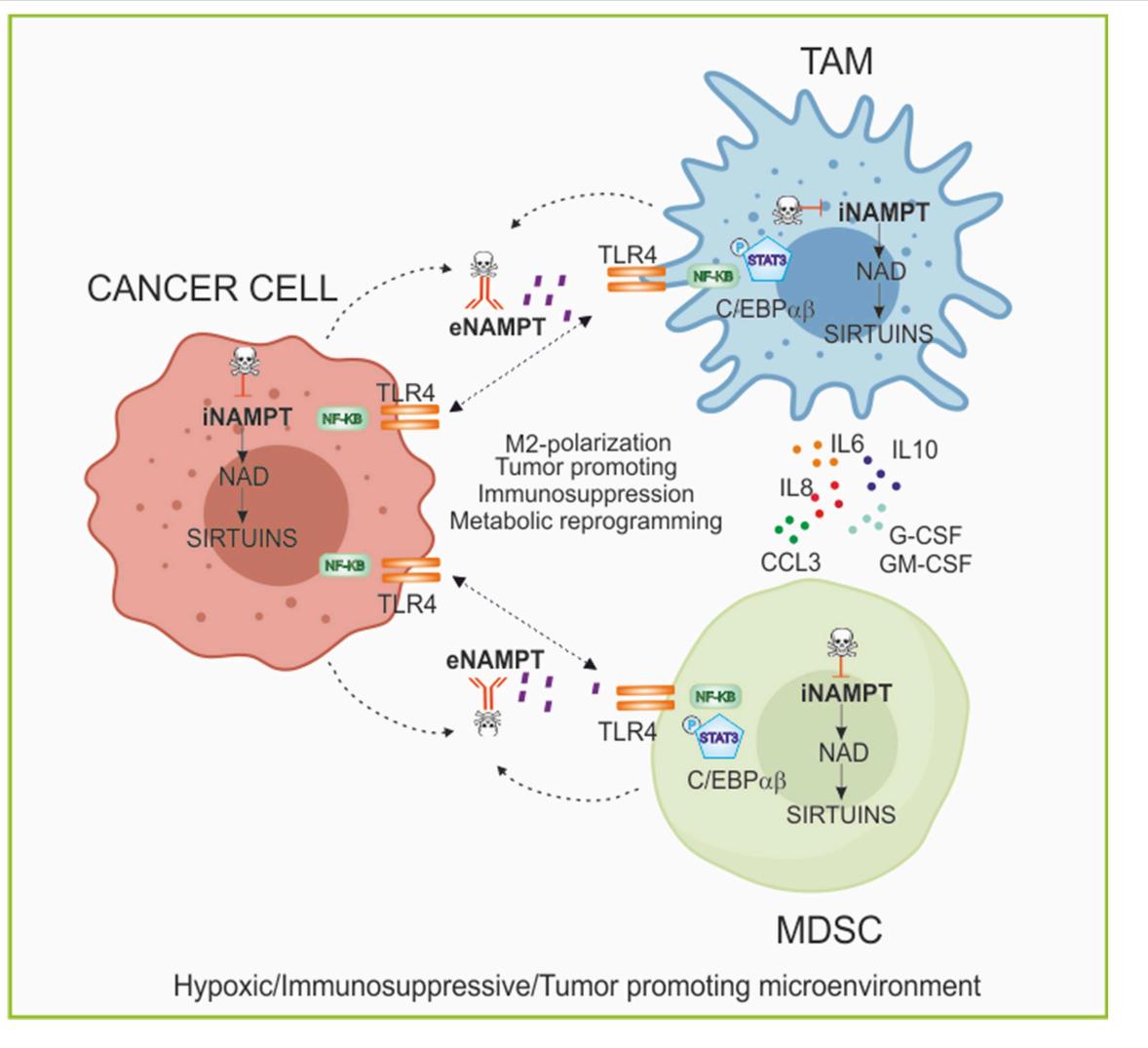
transducer STAT3, with a mechanism that is independent of the enzymatic activity (112).

Emerging evidence supports a role of NAMPT in regulating the differentiation program and the metabolic adaptation of myeloid cells. As described previously, activated macrophages can be divided in two subgroups *in vitro*: those with pro-inflammatory activity (M1) involved in first line of defense against bacterial infection, and those with anti-inflammatory activity (M2) that regulate tissue repair and wound healing (116), even if this is an oversimplification of the functional diversity occurring *in vivo*. Metabolic reprogramming of immune cells is required for both pro- and anti-inflammatory responses and a vast spectrum of metabolic statuses accompanies the complexity of phenotypes [reviewed in (117, 118)]. In general, an increase in glycolysis and in glucose uptake is typically associated to an M1 phenotype (119), while M2 macrophages rely on intact TCA cycle and OXPHOS as major source of ATP via electron transport chain and ATP synthase (120, 121). However, in addition to an augmented mitochondrial metabolism, alternatively activated macrophages can also use glycolysis when OXPHOS is disrupted (122). Another important pathway is the pentose phosphate pathway (PPP), which generates pentoses, 5-ribose phosphate and nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is essential in activated M1 macrophages because it fuels ROS production by NADPH oxidase (123), even if

other groups demonstrated that NADPH and NADPH oxidase play a role even in M2 differentiation (124). Concerning lipid metabolism, fatty acid synthesis is coupled to pro-inflammatory activity of macrophages, while beta-oxidation is typical of anti-inflammatory macrophages (117).

The increase of glycolysis associated with M1 activation of macrophages is orchestrated by the transcription factor HIF-1 α . When cells experience low oxygen levels HIF-1 α is stabilized and, upon binding of the HIF-1 β subunit, initiates the transcription of genes such as glucose transporter and glycolytic enzymes (125, 126). NF- κ B is required for transcriptional activation of HIF-1 α (127); whereas, in M2 macrophages, genes involved in metabolic reprogramming are largely controlled by STAT6 and peroxisome proliferator-activated receptor gamma coactivator-1 beta (PGC-1 β) (128).

Both iNAMPT and eNAMPT influence fundamental monocyte/macrophages processes such as differentiation, polarization and migration, even if the exact role of iNAMPT/eNAMPT in the process of myelopoiesis is incompletely elucidated so far (129–131) as summarized in **Figure 3**. For example, NAMPT has a role in the induction of an immunosuppressive and tumor-promoting microenvironment in chronic lymphocytic leukemia, where eNAMPT is important for the differentiation of monocytes toward tumor-supporting immunosuppressive M2 macrophage, promoting their differentiation, and polarization in tumor-supportive cells including TAMs (130). Recently, it was demonstrated that iNAMPT acts also on MDSCs, where NAMPT inhibits CXCR4 transcription, via NAD/SIRT1/HIF-1 α axis, and this, in turn, leads to a mobilization of MDSCs and enhances their production of suppressive nitric oxide (132).


Changes in NAD levels characterize different stage of macrophage polarization: in general, higher levels of NAD are typical of classically activated pro-inflammatory macrophages (M1), while NAD levels are lower in alternatively activated anti-inflammatory macrophages (M2). The NAMPT/NAD/SIRT1 axis seems to play a relevant role in myeloid cell functions as shown by the fact that efficient activation of M1 macrophages needs an increase of both NAMPT expression and cytosolic NAD (133). NAMPT-dependent generation of NAD is also crucial in the metabolic switch characterizing the transition from the early initiation phase of acute inflammation, which is anabolic and primarily requires glycolysis, to the later adaptation phase which is catabolic and relies on fatty acid oxidation (FAO) for energy (134). During these processes, also NAD-consuming deacetylases enzymes SIRT1 and SIRT6 have a role in regulating metabolism, increasing fatty oxidation and reducing glycolysis, respectively, coupling metabolic polarity with the inflammatory response, as described with more details later (135, 136). These data support the notion that NAD homeostasis has a crucial role in connecting bioenergetics and inflammation (134). A further feedback loop that links NAD to polarization of myeloid component has been suggested in monocytes, where NAMPT expression is induced by TNF- α via HIF-1 α . In turn, NAMPT signaling involving NF- κ B pathway activates activating protein 1 (AP1), inducing *IL6* and *TNFA* transcription modulating myeloid cell activation (137).

In congenital neutropenia, a disorder in which patients display accumulation of granulocytic progenitors and no mature neutrophils in bone marrow, it has been shown that granulocyte colony-stimulating factor (G-CSF) is effective as it up-regulates NAMPT, which in turn triggers NAD/SIRT1 dependent granulopoiesis via CCAAT/enhancer-binding protein α/β (C/EBP α/β) up-regulation (129). On the contrary, GM-CSF is not effective in congenital neutropenia because it is unable to activate iNAMPT upregulation and NAD/SIRT1 axis (138). Following the induction of myeloid differentiation with G-CSF, the NAD-consuming enzyme SIRT1 deacetylase C/EBP α at position Lys 161 (129, 138). NAMPT inhibition with FK866 led to the dramatic elevation of acetylated C/EBP α levels and reduced amounts of total C/EBP α protein, accompanied by diminished mRNA expression of C/EBP α target genes (G-CSF, G-CSFR, and ELANE). Moreover, treatment of acute myeloid leukemia cell line HL-60 with recombinant NAMPT or transduction of HL-60 cells with NAMPT-expressing lentiviral construct induced myeloid differentiation of these cells *per sé* (138).

An open question is whether the cytokine-like actions that eNAMPT exerts on myeloid cells are related to its enzymatic activity or are mediated by the binding to a cell surface receptor. The fact that treatment with low concentrations of recombinant eNAMPT is sufficient to activate specific intracellular signaling pathways suggests that eNAMPT has cytokine-like properties and binds to and activates a cell surface receptor. In 2015, Camp et al. identified eNAMPT as a new ligand of the Toll-like receptor 4 (TLR4) (105). The authors demonstrated that in human lung endothelial cells, eNAMPT activates an inflammatory response via activation of NF- κ B signaling pathway by binding TLR4-MD2 (105). However, the fact that recombinant eNAMPT is often produced in *E. Coli* strains renders the interpretation of these results controversial for the possible contamination of LPS, the natural ligand of TLR4, and activator of inflammatory programs. New studies have to confirm the TLR4 engagement by eNAMPT and correlate this with myeloid differentiation and plasticity.

The evidence linking myeloid cell fate and NAD/NAMPT could open the way to pharmacological inhibition of either iNAMPT and/or eNAMPT for re-education of myeloid cells. This could be useful in the context of acute inflammation, but also in cancer to force a reversion of immunosuppressive microenvironment, in combination with immunotherapy, as summarized in **Figure 3**.

For iNAMPT specific small molecules inhibitors exist, most known FK866 (also known as APO866) and GMX1778 (also known as CHS-828), among others (**Table 1**) (139–143, 159–161). However, most of the data on these drugs describe their effect on the tumor itself, and not on cells of the microenvironment (141, 161). Whether these inhibitors could also affect also eNAMPT activity is unknown, even if, as mentioned before, the enzymatic activity of eNAMPT is controversial. On the other hand, for eNAMPT, the group of Garcia, in order to block only the cytokine-like activity of eNAMPT, has devised a polyclonal eNAMPT neutralizing antibody (130, 144), that could be useful in those condition in which only the extracellular form of eNAMPT is detrimental and intracellular enzymatic activity needs to be preserved.

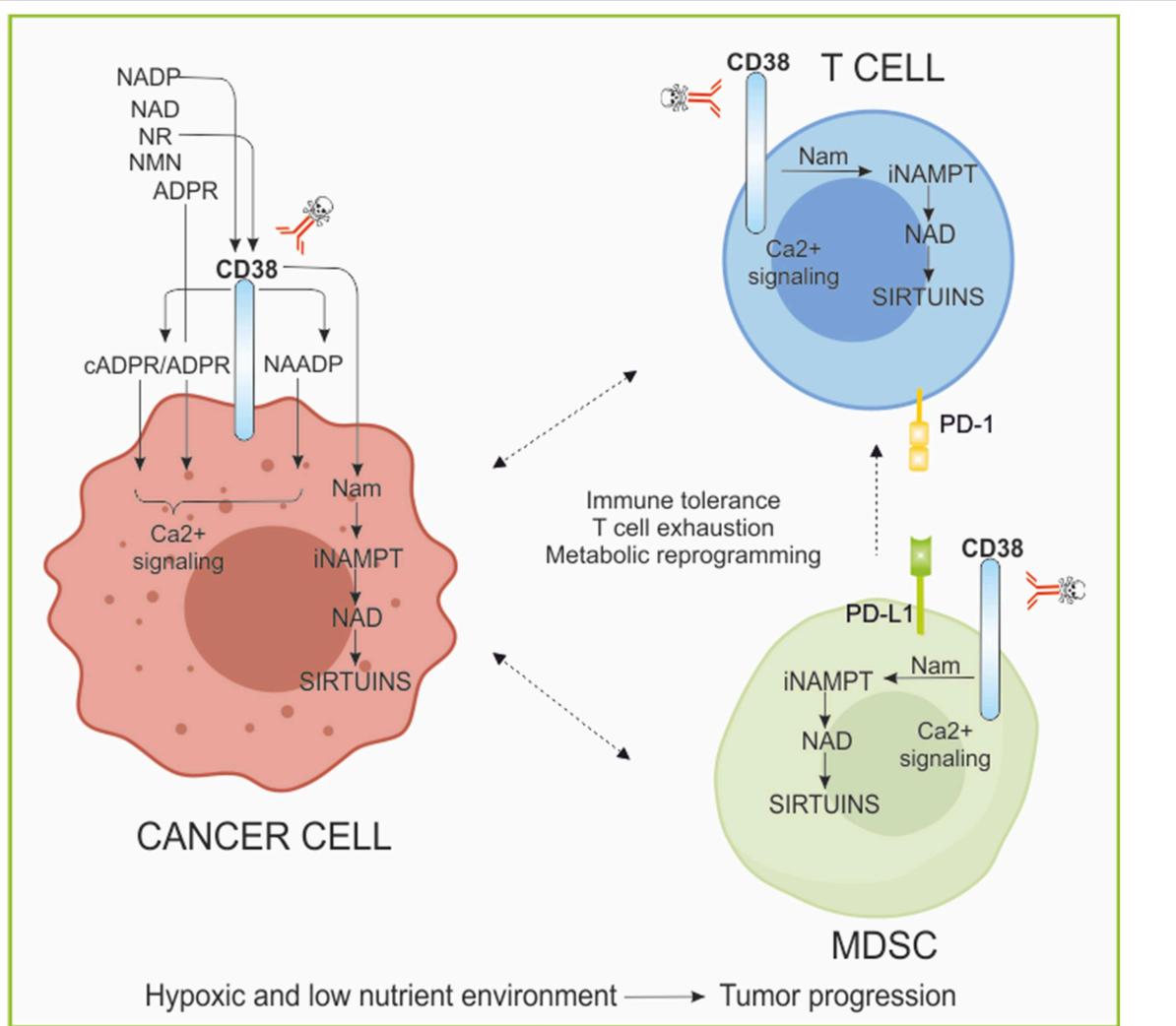
FIGURE 3 | NAMPT in regulating myeloid cell fate and immunometabolism. Role of iNAMPT/eNAMPT in skewing myeloid populations into tumor-supporting M2-like macrophages and myeloid suppressive cells. Specifically, the iNAMPT/sirtuins axis regulates the metabolic reprogramming of cancer and myeloid cells in condition of low oxygen tension; while eNAMPT/TLR4 axis activates intracellular signaling promoting differentiation of myeloid cells and secretion of anti-inflammatory and pro-tumor cytokines creating an immunosuppressive microenvironment. The block of NAMPT functions, using iNAMPT pharmacological inhibitors and/or neutralizing antibodies, can repolarize the myeloid populations and inhibit tumor growth. TLR4, Toll-like receptor 4; C/EBP α / β , CCAAT/enhancer-binding protein α / β ; G-CSF, Granulocyte Colony-Stimulating Factor; GM-CSF, Granulocytes-Macrophage Colony-Stimulating Factor; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells.

CD38 IN METABOLIC DYNAMICS OF T CELLS ACTIVATION

Cluster of differentiation (CD) protein CD38, first identified as a lymphocyte antigen, is a cell surface glycohydrolase that cleaves a glycosidic bond within NAD to yield Nam, ADP-ribose (ADPR), and cyclic ADPR (cADPR), and converts NAD phosphate (NADP) to NAADP, all calcium (Ca^{2+}) mobilizing molecules (162, 163). These molecules bind specific receptors, like the ryanodine receptor on endoplasmic reticulum, the lysosomal two-pore channel and the plasma membrane calcium channel transient receptor (TRPM2), activating calcium signaling, which in turn affects gene expression, cell cycle

control, cell survival, energy metabolism, leukocyte trafficking, and inflammation (87).

CD38 is a transmembrane protein with four different forms, according to the cellular localization (164). The most common form of CD38 has a type II membrane orientation, i.e., with the catalytic domain facing the extracellular space. By contrast, the less abundant type III transmembrane form has its catalytic site facing the inside. Intriguingly, soluble intracellular and extracellular forms of CD38 have also been ascribed (165, 166). CD38 is widely expressed both in immune cell types (bone marrow progenitors, natural killer cells, monocytes, and activated T- and B-lymphocytes) and in non-hematopoietic cells (167).


TABLE 1 | Pharmacologic tools currently undergoing pre- or clinical evaluation to block NADome enzymes.

Agent	Mechanism of action	Indication	Trial Stage	References
NAMPT INHIBITORS				
APO866 (FK866)	NAMPTi	T/IC	Clinical phase I	(139)
CHS-828 (GMX 1778)	NAMPTi	T/IC	Clinical phase I	(140)
GNE-617, GNE-618	NAMPTi	T	Pre-clinical	(141)
KPT-9274	Dual NAMPTi/PAX4i	T	Clinical phase I	(142)
OT-82	NAMPTi	T	Clinical phase I	(143)
Blocking antibody	eNAMPT neutralization	T/IC	Pre-clinical	(144)
CD38 INHIBITORS				
Daratumumab	Blocking antibody	MM/ALL	Clinical phase III	(145)
Isatuximab	Blocking antibody	MM	Clinical phase II-III	(146)
MOR202	Blocking antibody	MM	Clinical phase II	(147)
Apigenin	CD38i	MD	Pre-clinical	(148)
SIRTUINS INHIBITORS				
Cambinol	SIRT1/2i	T/ND	Pre-clinical	(149)
Sirtinol	SIRT1/2i	T/ND	Pre-clinical	(150)
Selermide	SIRT1/2i	T/ND	Pre-clinical	(151)
Tenovins	SIRT1i	T/ND	Pre-clinical	(152)
EX-527	SIRT1i	T/ND	Pre-clinical	(153)
Nicotinamide	SIRTi/NAD precursor	T/ND	Pre-clinical, phase I-II	(154)
IDO INHIBITORS				
Indoximod	IDOi	T	Clinical phase I-II	(155)
Epacadostat (INCB024360)	IDOi	T	Clinical phase II-III	(156)
Navoximod	IDOi	T	Clinical phase I	(157)
BMS-986205	IDOi	T	Clinical phase I-II	(158)

I, inhibitor; *T*, solid and/or hematological tumors; *IC*, inflammatory conditions; *MM*, multiple myeloma; *ALL*, acute lymphoblastic leukemia; *MD*, metabolic diseases; *ND*, neurodegenerative diseases.

CD38 is also an unquestionable contributor to intracellular NAD homeostasis (168, 169) and this apparent “paradox” has been in part reconciled by recent reports demonstrating that CD38 can also degrade circulating NAD precursors such as NMN and NR, thus preventing their fueling of NAD biosynthesis (170, 171). Notably, CD38 enzymatic activity mediates many roles which include metabolism regulation and pathogenesis of heart disease, obesity, aging and inflammation, among the others. Nevertheless, it is well-established that CD38 overexpression is correlated to different hematological malignancies including myelomas and leukemias (172). In this context, a broad immune regulatory role for NAD and CD38 on T cell behavior has been reported (87, 145, 173) and summarized in **Figure 4**. In order to elucidate the impact of CD38 modulation of NAD homeostasis in T cell, a brief synthesis of T cell metabolism is necessary, as metabolism drives T cell life (36, 174, 175). One of the main challenges of the field in a translational perspective is to manipulate T cell metabolism in order to improve their immune response capacity. Defined metabolic pathways orchestrate T cell development, differentiation, function and persistence (176). TCA/OXPHOS-mediated ATP production is instrumental for the maturation of Naïve T (T_N) lymphocytes, a population of quiescent non-proliferative cells, in primary lymphoid organs (177). T cell activation is initiated after antigen recognition and TCR ligation. This step, requiring

major histocompatibility complex, and co-stimulatory molecules, activates T lymphocytes inducing both a rapid proliferation rate and a differentiation program toward effector functions (176). To sustain both clonal expansion and active immune response, T cells shift to an anabolic metabolism which provides faster ATP production and nutrients supply. While cytolytic $CD8^+$ T (Tc) cells dominantly shift metabolism to glycolysis, activated $CD4^+$ T helper (Th) cells increase both glycolysis and FAO (178). FAO also supports metabolism of iTreg and long living memory T-cell (Tm) (178). All these T cell subsets, to achieve their metabolic profile, require a coordinated transcriptional program together with a specific system of nutrient uptake. T cells depend on the import of substrates such as glucose, amino-acids (especially glutamine), and glycerol. In T_N and Tm cells, increased expression of glucose and glutamine transporters is controlled by the transcription factor c-Myc (36) and regulated by a specific cytokine, IL-7 (175). AKT-mTOR and TLR signaling, as well as the transcription factors HIF-1 α , c-Myc and FoxP3, have been shown to directly regulate Treg metabolic programming and development, while HIF-1 α and mTOR control the glycolytic phenotype and activation (IFN- γ production) of effector T-cells, Th1, Th2, and Th17 lineages (36). Metabolism underpins T cell cycle through quiescence and activation states and T-cells failure to engage specific metabolic programs is a biological

FIGURE 4 | CD38/NAD axis regulates T cell phenotype and responses. The ectoenzyme CD38, expressed by tumor cells and immune cells is involved in the activation of calcium (Ca^{2+}) signaling through the generated metabolite cADPR/ADPR/NAADP. Moreover, it metabolizes NAD, releasing Nam, rendering the substrate of NAMPT available for continuous NAD regeneration. These reactions occur also in immune cells modifying NAD concentrations and affecting sirtuins activities. The NAD/CD38/SIRTUINS axis regulates T cell immune cell fate, metabolism, and gene transcription. Evidence of high CD38 expressing immune suppressive cells have been reported in several tumors. CD38 inhibition was sufficient to re-establish T cell proliferation, antitumor cytokine secretion, and killing capability. ADPR, ADP-ribose; cADPR, cyclic ADPR; NADP, NAD phosphate; NAADP, nicotinic acid adenine dinucleotide phosphate; Ca^{2+} , calcium; NR, nicotinamide riboside; NMN, nicotinamide mononucleotide; Nam, nicotinamide; MDSC, myeloid-derived suppressive cells; PD-1, programmed cell death protein 1; PD-L1, PD-1 ligand.

phenomenon accompanying tumor aggressiveness and T cell exhaustions (176). The crosstalk between cancer cell and tumor TILs is played at different levels. As already mentioned, it has been shown that the establishments of nutrients competition between tumor cells and TILs has a primary role in influencing T cell fate and dysfunctions (34, 179–181). Malignant cells push their metabolism toward a Warburg phenotype. The consequent induction of a hypoxic and nutrient-deprived environment (low glucose, glutamine, glycine, and serine) shapes a tumor sustaining microenvironment and immune tolerance (179). Indeed, T cells migrating to tumors sites must adapt to both (i) nutrient-depleted environments (182) and contemporarily to (ii) the presence of hypoxic tumor-derived metabolites

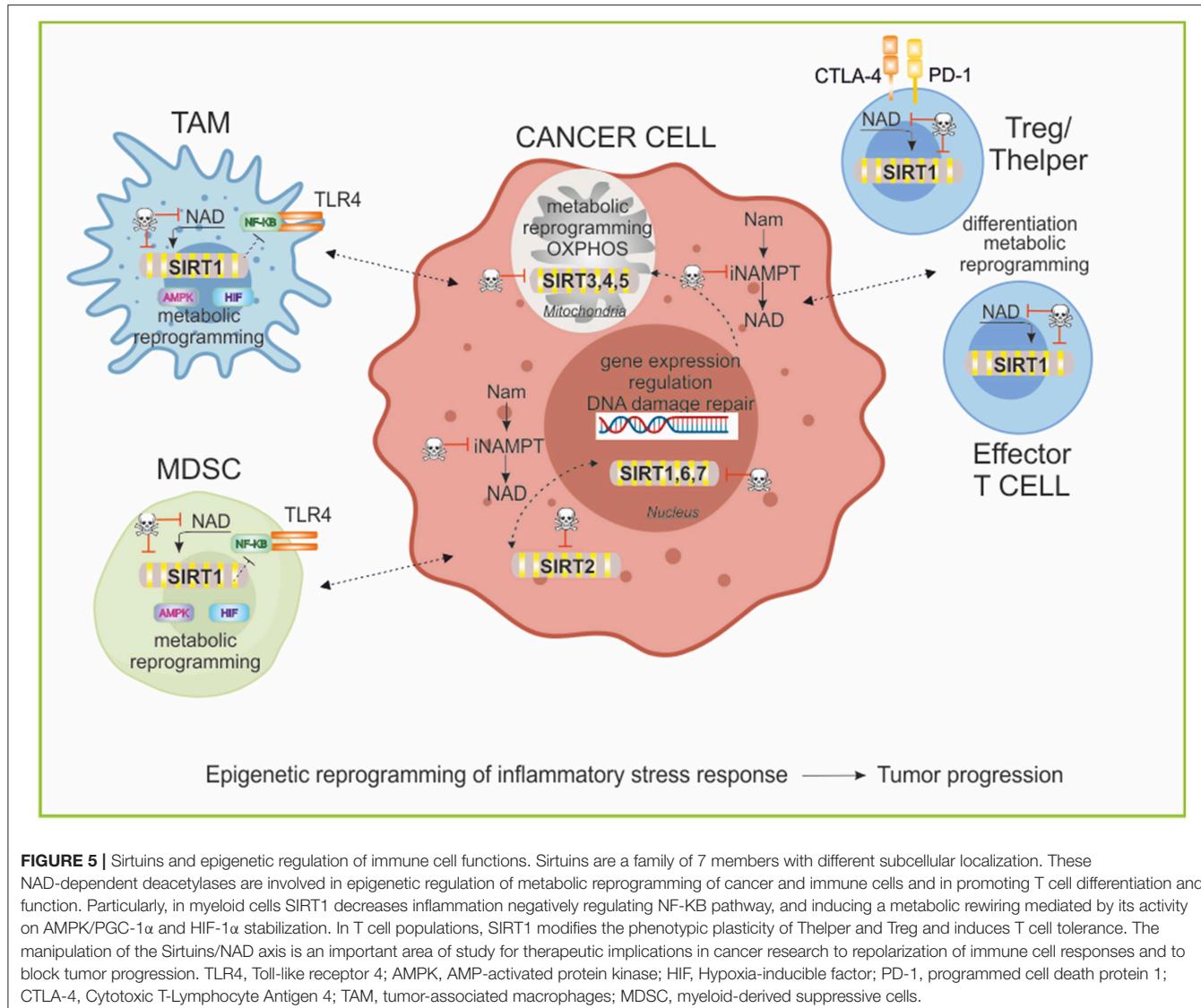
including lactate, adenosine, cyclic adenosine monophosphate (cAMP), IDO/kynurenine.

In this context, CD38-mediated Ca^{2+} mobilization can directly affect T cell metabolism. In the physiology of a T lymphocyte, Ca^{2+} controls T cell gene expression and consequently differentiation, development and cytotoxicity (183). Alteration of Ca^{2+} signaling affects immune deregulation and consequently tumor initiation and progression (183–186). A second level of T cell metabolic reprogramming control by the CD38/NAD axis also involves sirtuins (173). Indeed, a lot of literature has been produced on the role of SIRT1, as a key modulator of immune cell functions, as described in a dedicated section of this review (166, 187, 188). In this case, the inverse

correlation between expression of CD38 and intracellular NAD contents, act on SIRT1-mediated post-transcriptional control of key genes involved in T cell functions (173). Furthermore, it was recently shown that CD38 is highly expressed by specific subsets of immunosuppressive TILs (i.e., Treg and Th17) (34, 36, 173, 189) and by MDSC, another key immunosuppressive cellular component of tumor milieus represented (190). Both, CD38^{high} MDSC cells-mediated suppression of activated T-cells and the concomitant expression of CD38 with exhaustion markers on T cells, for example PD1, pointed to an active role of CD38 in modulating T cell metabolism and fate toward the generation of an immune tolerant landscape in tumor (173). Evidence of high CD38 expressing Treg have been reported for multiple myeloma and acute lymphoblastic leukemia, where the use of mAbs against CD38 (daratumumab, isatuximab, and MOR202, **Table 1**) is more than a promising therapeutic option to reestablish a functional immune surveillance (145–147, 189, 191, 192). In these tumor models, suppression of CD38⁺ cancer cells associate with an increase in T-helper and cytotoxic T lymphocytes, T-cell functional response and TCR clonality (191, 192). A functional relationship between CD38 and Th17 has also been highlighted (173). Th17 is a CD4⁺ T cell subpopulation secreting IL17, which gained interest in the field of immunotherapy due to their self-renewal, plasticity and hematopoietic stem-like phenotype (173, 193). Adoptive T cell transfer (ACT) therapy is a powerful strategy developed for controlling cancer (194, 195). The emerged staminal potential of Th17, together with their ability to persist for long times at tumor sites, made of this T cell subset an ideal candidate to improve ACT efficacy (173, 196, 197). Chatterjee et al. recently demonstrated that, SIRT1-dependent deacetylation of the transcription factor forkhead box O1 (FOXO1) drives the functional homing in different organs of a hybrid Th1/Th17 population 24 h after ACT. Most importantly, they reported that, the decrease of CD38 expression on Th17 cells leads to the increase of intracellular NAD concentration, reinforcing the SIRT1-dependent immune efficacy of this T cell population (173). For these reasons, the inhibition of CD38 has been proposed not only to specifically target CD38^{high} immune suppressive cell populations (MDSCs, Treg), but also to improve tumor control via ACT therapy or using immunomodulatory drugs (173, 191, 192).

Lastly, very recently CD38 was considered as major acquired mechanism of resistance to PD-1/PD-L1 blockade, causing CD8⁺ T cell suppression. Co-targeting of CD38 and PD-L1 improves anti-tumor immune response. CD38 manipulation was sufficient to regulate CD8⁺ T cell proliferation, antitumor cytokine secretion, and killing capability (198).

SIRTUINS AND EPIGENETIC REGULATION OF IMMUNE RESPONSE


Sirtuins, initially described as transcriptional silencers in yeast (199), represent a class of NAD-dependent enzymes with deacetylase activity. So far, seven isoforms (SIRT1-7) constitute the family of mammalian sirtuins, which differ in subcellular compartmentation, enzymatic activity, and *in vivo* substrate

selectivity (200). As a primary cellular location, SIRT1, SIRT6, and SIRT7 are found in the nucleus, SIRT2 in the cytoplasm, and SIRT3-SIRT5 in mitochondria (201). However, recent reports have shown that sirtuins are not anchored to precise subcellular compartments, and may shuttle between them, depending on cell type or physio-pathological conditions (202–205). The canonical reaction catalyzed by sirtuins is the transfer of an acetyl group from protein lysine residues to the ADPR moiety of NAD. As a result, the reaction produces Nam, first released, the deacetylated lysine, and 2'-O-acetyl-ADP ribose (206). Although lysine deacetylation is the primary activity of sirtuins, recent studies have shown that these enzymes can remove a variety of other acyl-lysine groups (207). Some sirtuins act as ADP-ribosyltransferases, although the biological relevance of such activity is incompletely understood. Mammalian sirtuins target different proteins in an isoform-specific fashion (207, 208), allowing their regulation of multiple processes like energy metabolism, epigenetic regulation of gene expression, DNA repair, inflammation, cellular stress resistance, healthy aging, tumorigenesis, autophagy, and apoptosis as reviewed in Haigis and Sinclair (208), Finkel et al. (209), and Houtkooper et al. (210).

Emerging evidence demonstrated that sirtuins are key regulators of inflammatory stress response in immune and non-immune cells (95, 211–213). Sirtuins are involved in epigenetic regulation, through deacetylation of histones and/or non-histone proteins, of metabolic, phenotypic, and bioenergetics reprogramming of immune cells (immuno-metabolism) (210, 212–214).

SIRT1 is the most extensively studied sirtuins, especially for its role in aging (210, 214). In addition, SIRT1 is involved in controlling stem cell development, cell differentiation and autophagy, metabolic reprogramming and inflammation (209, 215). SIRT1 is also the most studied among sirtuins involved in immune regulation and here we summarized some SIRT1 activities in epigenetic regulation of metabolism and immune response (**Figure 5**).

Epigenetic mechanisms are essential to the development and differentiation of the immune system, as well as in related pathologies (216–218). Epigenetic mechanisms include multilevel intracellular events that influence chromatin structure and gene expression such as histone methylation and acetylation, as well as DNA methylation, non-coding RNAs and chromatin remodeling (219). Further, numerous signals (i.e., TCR, TLRs, inhibitory receptors, and cytokines) drive changes in the epigenome that result in downstream modulation of immune responses (77). TLR signaling in macrophages regulates differentiation/polarization and activation in response to pathogens affecting gene expression and metabolic reprogramming (220, 221). In particular, TLR4 engagement by LPS in macrophages drives a shift toward a glycolytic metabolism impairing mitochondrial respiration (222), resulting in a marked shifts in NAD/NADH ratios, which influence the activities of SIRT1, potentially altering deacetylation of histone and non-histone substrates (134, 223). Liu et al. found in TLR4-stimulated THP-1 promonocytes that SIRT1 support a switch from increased glycolysis to increased FAO as early inflammation converts to late inflammation (134). The shift to late acute inflammation and elevated FAO required

FIGURE 5 | Sirtuins and epigenetic regulation of immune cell functions. Sirtuins are a family of 7 members with different subcellular localization. These NAD-dependent deacetylases are involved in epigenetic regulation of metabolic reprogramming of cancer and immune cells and in promoting T cell differentiation and function. Particularly, in myeloid cells SIRT1 decreases inflammation negatively regulating NF-κB pathway, and inducing a metabolic rewiring mediated by its activity on AMPK/PGC-1 α and HIF-1 α stabilization. In T cell populations, SIRT1 modifies the phenotypic plasticity of Thelper and Treg and induces T cell tolerance. The manipulation of the Sirtuins/NAD axis is an important area of study for therapeutic implications in cancer research to repolarization of immune cell responses and to block tumor progression. TLR4, Toll-like receptor 4; AMPK, AMP-activated protein kinase; HIF, Hypoxia-inducible factor; PD-1, programmed cell death protein 1; CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells.

peroxisome proliferator-activated receptor gamma coactivator (PGC-1 α), a known target of SIRT1 (187, 224–227). A circuit of AMP-activated protein kinase [(AMPK)/SIRT1/PGC-1 α] results in the deacetylation and modulation of the activity of downstream SIRT1 targets that include the PGC-1 α and the FOXO1 and FOXO3a transcription factors. The AMPK-induced SIRT1-mediated deacetylation of these targets explains many of the convergent biological effects of these two energy sensors, AMPK and SIRT1, on cellular metabolism (225, 226).

Recent studies have showed that the regulation of innate immunity and energy metabolism are connected through antagonistic crosstalk between NF-κB and SIRT1 signaling pathways (228). NF-κB signaling has a major role in innate immunity defense, while SIRT1 regulates the oxidative respiration and cellular survival (229). However, NF-κB activation can stimulate glycolysis during acute inflammation, whereas SIRT1 activation inhibits NF-κB signaling and enhances oxidative metabolism and the resolution of inflammation.

SIRT1 inhibits NF-κB signaling directly by deacetylating the p65 subunit of NF-κB complex (230). SIRT1 stimulates oxidative energy production via the activation of AMPK, peroxisome proliferator activated receptor (PPAR α) and PGC-1 α and simultaneously, these factors inhibit NF-κB pathway and suppress inflammation (225, 226, 231). Using a myeloid cell-specific SIRT1 knockout (Mac-SIRT1 KO) mouse model, Schug et al. show that ablation of SIRT1 in macrophages renders NF-κB hyperacetylated, resulting in increased transcription of proinflammatory target genes. Consistent with increased proinflammatory gene expression, Mac-SIRT1 KO mice challenged with a high-fat diet display high levels of activated macrophages in liver and adipose tissue, predisposing the animals to development of systemic insulin resistance and metabolic derangement (232). In some cases, the effects of SIRT1 in regulating metabolism of immune cells are mediated by HIF-1 α (233). SIRT1 can bind and deacetylate HIF-1 α resulting in a stabilization or in an inhibition of the protein, depending on

the cells and context (234, 235). The SIRT1-HIF-1 α axis bridges the innate immune signal to an adaptive immune response by directing affecting metabolism, cytokines production, and differentiation of immune cells (236). For example, (i) SIRT1 can limit the function and differentiation of MDSCs through HIF-1 α -induced glycolytic metabolic reprogramming (237), (ii) SIRT1 can regulate T helper 9 (Th9) cell differentiation through the mTOR/HIF-1 α -dependent glycolytic pathway (238). The interplay between HIFs and sirtuins may also extend to stress settings such as hypoxic tumors, in which cellular redox balance is perturbed (64, 239).

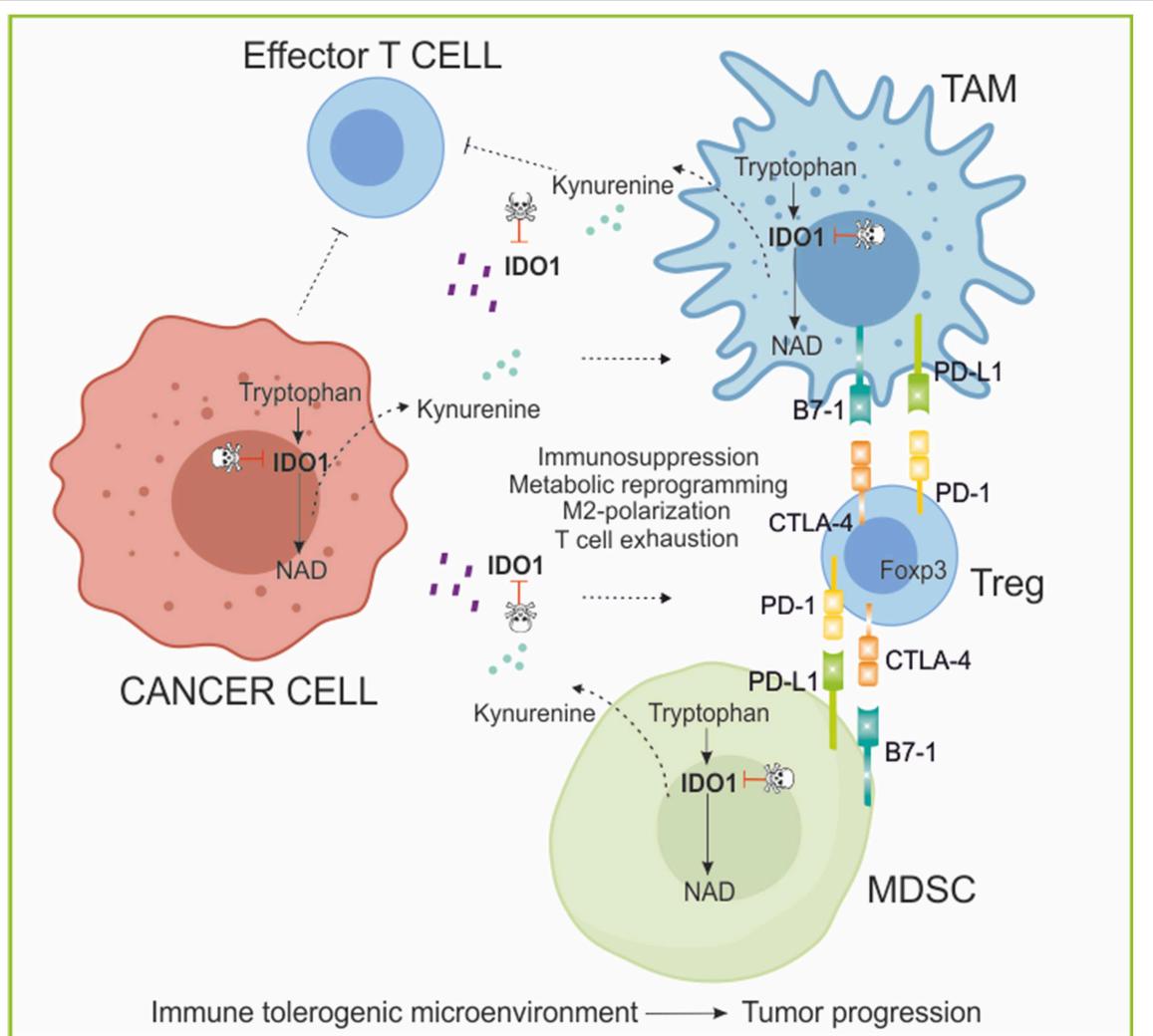
For adaptive immune cells, SIRT1 has a key role in mediating the differentiation of T cell subsets in a NAD-dependent manner. T cells exhibit remarkable phenotypic and functional plasticity during immune responses (240). SIRT1 is involved in (i) Th and Treg cell differentiation (238, 241); (ii) SIRT1 signals in DCs can repress PPAR γ activity and promote T helper 2 (Th2) cell responses in airway allergy through metabolism-independent manners (242); (iii) SIRT1 interacts with c-Jun and inhibits CD4 T cells to mediate T cell tolerance (243); (iv) SIRT1 regulates CD8 T-cell differentiation interacting with basic leucine zipper transcription factor ATF-like (BATF) and regulating both epigenetic remodeling and energy metabolism of T cells (244). Furthermore, (v) SIRT1/FOXO1 axis regulates metabolic reprogramming of terminally differentiated memory T cells, as previously described (188).

Finally, SIRT1 has been shown to play also important roles in physiological processes affecting organismal longevity as well as stem cell function and self-renewal (245, 246). In macrophages, SIRT1 is emerging as critical positive modulator of self-renewal, regulating G1/S transition, cell cycle progression and a network of self-renewal genes (247).

Similar functions in regulating inflammation and metabolism are exerted also by SIRT2 and SIRT6 (134, 213, 248).

Interactions of cellular metabolic and epigenetic pathways and how these two key biological processes interplay to feedback modulate immune cell function is attracting in cancer therapy. Sirtuins/NAD axis has proven to be a crucial link between epigenetics and metabolism, and hence, it is an important area of study for therapeutic implications (215). While there are only specific activators or inhibitors for SIRT1 exist, drugs that affect NAD levels or NAD precursors offer the possibility to regulate all seven sirtuins coordinately (239). These compounds can be used alone or in combination with existing cancer therapies. The effects of SIRT1 inhibitors (e.g., cambinol, sirtinol, tenovins, EX-527, **Table 1**) are currently studied mainly in the context of cancer (239). Very recent data show the impact of SIRT1 inhibition or genetic deletion on T cell responses, particularly on Treg differentiation. Genetic deletion or pharmacologic inhibition of SIRT1 through EX-527 improves Foxp3 $^{+}$ Treg number and function through increased Foxp3 transcription its acetylation, leading to decreased Foxp3 turnover from ubiquitination and poly(ADP)ribosylation. As a result, targeting SIRT1 increases both central and inducible Foxp3 $^{+}$ Tregs and promotes their suppressive functions, as summarized in Chadha et al. (249). SIRT1 inhibition is therefore useful in the context of graft-vs.-host disease (GVHD), to extend allograft survival (249–251). However, there are a number of studies in which SIRT1 deletion

or inhibition led to proinflammatory conditions, indicating that regulation of the system is still incompletely understood (249, 252). Interestingly, the Nam generated in deacetylase reactions by SIRTs acts as a negative feedback regulator of SIRT activity (253, 254). This Nam is converted back to NAD by the action of NAMPT and NMNATs. Hence, NAD-biosynthetic enzymes, in particular NAMPT, also regulate sirtuins signaling (255) providing the rational to use NAMPT inhibitors to interfere with Sirtuins functions.


Overall these results indicate that sirtuins broadly coordinate innate and adaptive immune reprogramming and represent druggable immunometabolic enhancement targets, useful also to repolarize immune cells in TME.

IMMUNOSUPPRESSION VIA TRYPTOPHAN CATABOLISM: THE ROLE OF KYNURENINE PATHWAY ENZYMES

Amino acid catabolism is a key effector in driving immune tolerance. IDO is a cytosolic, heme-dependent enzyme responsible for the rate-limiting step of *de novo* NAD synthesis from tryptophan in extrahepatic tissues. The catalyzed-reaction yields N-formylkynurenone and commits the aminoacid toward its conversion to QA through the kynurenone pathway (90), which accounts for >90% of tryptophan catabolism (256). Tryptophan is an essential amino acid in protein metabolism, a precursor for the synthesis of the neurotransmitter serotonin and tryptamine, as well as for the synthesis of NAD and the hormone melatonin (257, 258).

In recent years, IDO has drawn enormous attention due to its immune regulatory functions (259–261) and summarized in **Figure 6**. IDO is not constitutively expressed in immune cells. Rather, various stimuli, and signaling pathways induce transcription and translation of metabolically-active IDO enzyme protein. Among them, TLRs, tumor necrosis factor superfamily members (TNFRs), interferon beta receptor (IFNBR), the interferon gamma receptor (IFNGR), transforming growth factor beta receptors (TGFBRs) and the aryl hydrocarbon receptor (AhR) all can activate signaling mechanisms that either induce or maintain IDO expression. NF-KB activation is a central downstream signal of these pathways regulating IDO expression (262).

By catalyzing the initial and rate-limiting step of tryptophan degradation, IDO reduces the local tryptophan concentration and produces immune modulatory tryptophan metabolites (263). In particular, cells expressing IDO and TDO produce the tryptophan catabolite kynurenone that, by interacting with the aryl hydrocarbon receptor expressed by T cells, Tregs and DCs, regulates immunity (264). Additionally, inhibition of CD8 $^{+}$ T-cell-mediated cytotoxic function was found to be an important mechanism behind IDO's immune-modulating property (264). Due to the role in regulating T cell response and fate, IDO function is critical in organ and tissue graft survival, in viral infection, in tissue-specific autoimmunity and the promotion of cancer cell survival (265). The biologic function of the IDO pathway was originally described as both counter-regulatory

FIGURE 6 | The role of IDO/kynurenine in cancer immunoediting. IDO1 is an enzyme involved in the catabolism of tryptophan (kynurenine pathway). IDO and kynurenine can be secreted by tumor and tolerogenic immune cells in the microenvironment where exert an immunosuppressive function polarizing myeloid cell toward M2 phenotype (TAM; MDSC) and suppressing effector T cell functions, while stimulating expansion and activation of permissive Treg population, increasing immune escape mechanisms (PD-1/PD-L1; CTLA-4/B7-1 crosstalk). Moreover, in the extracellular space, IDO1 depletes the essential amino acid tryptophan from the tumor microenvironment, favoring tumor growth. IDO1 inhibitors in combination with Immunotherapy aim to reverse immunoediting (backward arrow) by inhibiting and activating local immunosuppressive and tumor eradication mechanisms, respectively. PD-1, programmed cell death protein 1; PD-L1, PD-1 ligand; CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; Foxp3, forkhead box P3; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells.

(controlling inflammation) and tolerogenic (creating acquired antigen-specific tolerance in T cells) (257).

Escape from the immune response is essential for cancer progression, however, mechanisms underlying this process remain unclear. Kynurenine in the tumor microenvironment was recently shown to favor immunosuppression (265, 266). Tryptophan catabolism was shown to create an immunosuppressive milieu in tumors and in tumor-draining lymph nodes through accumulation and secretion of immunosuppressive tryptophan catabolites that bind and activate AhR (267), leading to induction of T-cell anergy, apoptosis, increased conversion of naïve CD4⁺ T cells into Tregs and polarization of DCs and macrophages toward an immunosuppressive phenotype (190, 261, 265, 268).

Clinically, studies of ovarian, lung, colorectal, breast cancer, brain tumors, melanoma, and others have shown that increased expression of IDO was associated with poor survival outcomes (258, 265, 269, 270). In most studies, the ratio of kynurenine to tryptophan was measured in patient plasma as a measure of IDO and TDO activity (156, 267). Moreover, not only tumor can express IDO, but also immune cells including both TAM and MDSC express high levels of IDO, in response to inflammatory cytokines, of which IFN- γ is the most potent inducer, amplifying the circuit of immunosuppression (190, 271, 272).

According to the role of IDO in driving immunosuppression, in the last years IDO became a valid target in cancer therapy (273, 274). Competitive inhibitors of IDO are currently

being tested in clinical trials in patients with solid cancer, with the aim of enhancing the efficacy of conventional chemotherapy, vaccine or checkpoint inhibitors (275). Agents currently account for the majority of the trials: indoximod (1-methyl-D-tryptophan), an inhibitor of the IDO pathway (155, 276), epacadostat (INCB024360) (156) and BMS-986205 (158) (Table 1), with encouraging results. Importantly, the use of IDO inhibitors can be also overcome the resistance to immunotherapies targeting immune checkpoints, strongly supporting the combination therapies with IDO inhibitors irrespective of IDO expression by the tumor cells (277). Additional IDO inhibitors are in the development pipeline, as well as agents that may target TDO, or a second isoform of IDO (IDO2) (275).

CONCLUDING REMARKS

Anticancer strategies targeting simultaneously oncogenic and metabolic pathways, de-regulated in cancer cells, seem to be ideal and have shown some promising results. Interestingly, local conditions in the tumor microenvironment affect also metabolic responses of immune cells, favoring immune-tolerance, and immune-escape mechanisms. One of the goals of immunotherapy could be to re-educate the immune system to kill tumors, by reprogramming their metabolism. The network

of immunosuppressive mechanisms in the TME is complex, multifactorial, and mutually reinforcing. A better knowledge of the main players of this cross-talk can help in designing more effective combination therapies. In this picture, NAD-metabolizing enzymes are receiving increasing attention to due to their role in conditioning several aspects of immune cell fate and functions. It is foreseeable that modulators/inhibitors of the NADome (summarized in Table 1) will become useful alone or in combination with current anti-cancer therapeutic strategies to regulate both tumor growth and immune populations of TME.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This work was supported by the Italian Institute for Genomic Medicine Institutional funds, by Gilead Fellowship program 2018, by the Ministry of Education University and Research-MIUR, PRIN Project 2017CBNCYT and Progetto strategico di Eccellenza Dipartimentale #D15D18000410001 (the latter awarded to the Dept. of Medical Sciences, University of Turin) and ITN INTEGRATA program (grant agreement 813284).

REFERENCES

1. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. *Cancer Cell.* (2012) 21:309–22. doi: 10.1016/j.ccr.2012.02.022
2. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. *Nat Med.* (2013) 19:1423–37. doi: 10.1038/nm.3394
3. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. *Nat Rev Cancer.* (2012) 12:298–306. doi: 10.1038/nrc3245
4. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. *Nat Rev Immunol.* (2017) 17:559–72. doi: 10.1038/nri.2017.49
5. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. *Nat Rev Cancer.* (2011) 11:85–95. doi: 10.1038/nrc2981
6. Kareva I, Hahnfeldt P. The emerging “hallmarks” of metabolic reprogramming and immune evasion: distinct or linked? *Cancer Res.* (2013) 73:2737–42. doi: 10.1158/0008-5472.CAN-12-3696
7. Boroughs LK, Deberardinis RJ. Metabolic pathways promoting cancer cell survival and growth. *Nat Cell Biol.* (2015) 17:351–9. doi: 10.1038/ncb3124
8. Morandi A, Giannoni E, Chiarugi P. Nutrient exploitation within the tumor-stroma metabolic crosstalk. *Trends Cancer.* (2016) 2:736–46. doi: 10.1016/j.trecan.2016.11.001
9. Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. *Cancer Res.* (2012) 72:3125–30. doi: 10.1158/0008-5472.CAN-11-4094
10. Schiavoni G, Gabriele L, Mattei F. The tumor microenvironment: a pitch for multiple players. *Front Oncol.* (2013) 3:90. doi: 10.3389/fonc.2013.00090
11. Armulik A, Abramson A, Betsholtz C. Endothelial/pericyte interactions. *Circ Res.* (2005) 97:512–23. doi: 10.1161/01.RES.0000182903.16652.d7
12. Chouaib S, Kieda C, Benlalam H, Noman MZ, Mami-Chouaib F, Ruegg C. Endothelial cells as key determinants of the tumor microenvironment: interaction with tumor cells, extracellular matrix and immune killer cells. *Crit Rev Immunol.* (2010) 30:529–45. doi: 10.1615/CritRevImmunol.v30.i6.30
13. Cao Z, Ding BS, Guo P, Lee SB, Butler JM, Casey SC, et al. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. *Cancer Cell.* (2014) 25:350–65. doi: 10.1016/j.ccr.2014.02.005
14. Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumor microenvironment. *Oncogenesis.* (2018) 7:10. doi: 10.1038/s41389-017-0011-9
15. Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. *Semin Cancer Biol.* (2018) 52:117–24. doi: 10.1016/j.semcancer.2017.12.002
16. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. *Nat Rev Immunol.* (2008) 8:726–36. doi: 10.1038/nri2395
17. Shah K. Mesenchymal stem cells engineered for cancer therapy. *Adv Drug Deliv Rev.* (2012) 64:739–48. doi: 10.1016/j.addr.2011.06.010
18. Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. *Nat Rev Drug Discov.* (2017) 16:35–52. doi: 10.1038/nrd.2016.193
19. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. *Cancer Cell.* (2011) 19:257–72. doi: 10.1016/j.ccr.2011.01.020
20. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10(+)GPR77(+) Cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. *Cell.* (2018) 172:841–56.e816. doi: 10.1016/j.cell.2018.01.009
21. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. *Nat Rev Drug Discov.* (2019) 18:99–115. doi: 10.1038/s41573-018-0004-1
22. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. *Cancer Res.* (2010) 70:6945–56. doi: 10.1158/0008-5472.CAN-10-0785
23. Ohlund D, Elyada E, Tuvesson D. Fibroblast heterogeneity in the cancer wound. *J Exp Med.* (2014) 211:1503–23. doi: 10.1084/jem.20140692

24. Molodtsov A, Turk MJ. Tissue resident CD8 memory T cell responses in cancer and autoimmunity. *Front Immunol.* (2018) 9:2810. doi: 10.3389/fimmu.2018.02810
25. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. *Nat Med.* (2015) 21:938–45. doi: 10.1038/nm.3909
26. Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell function in cancer. *Nat Rev Immunol.* (2016) 16:599–611. doi: 10.1038/nri.2016.80
27. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, et al. Regulation of cellular metabolism by protein lysine acetylation. *Science.* (2010) 327:1000–4. doi: 10.1126/science.1179689
28. Gooden MJ, De Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. *Br J Cancer.* (2011) 105:93–103. doi: 10.1038/bjc.2011.189
29. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. *Proc Natl Acad Sci USA.* (2005) 102:9571–6. doi: 10.1073/pnas.0503726102
30. Whiteside TL. Disarming suppressor cells to improve immunotherapy. *Cancer Immunol Immunother.* (2012) 61:283–8. doi: 10.1007/s00262-011-1171-7
31. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. *Nat Rev Immunol.* (2015) 15:486–99. doi: 10.1038/nri3862
32. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. *Cell.* (2008) 133:775–87. doi: 10.1016/j.cell.2008.05.009
33. Hsieh CS, Lee HM, Lio CW. Selection of regulatory T cells in the thymus. *Nat Rev Immunol.* (2012) 12:157–67. doi: 10.1038/nri3155
34. Newton R, Priyadarshini B, Turka LA. Immunometabolism of regulatory T cells. *Nat Immunol.* (2016) 17:618–25. doi: 10.1038/ni.3466
35. Shang B, Liu Y, Jiang SJ, Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. *Sci Rep.* (2015) 5:15179. doi: 10.1038/srep15179
36. Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. *Cell Mol Immunol.* (2018) 15:428–37. doi: 10.1038/cmi.2018.4
37. Von Boehmer H, Daniel C. Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. *Nat Rev Drug Discov.* (2013) 12:51–63. doi: 10.1038/nrd3683
38. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. Macrophage polarization in tumour progression. *Semin Cancer Biol.* (2008) 18:349–55. doi: 10.1016/j.semcan.2008.03.004
39. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. *Cell.* (2010) 141:39–51. doi: 10.1016/j.cell.2010.03.014
40. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. *Nat Immunol.* (2010) 11:889–96. doi: 10.1038/ni.1937
41. Escribese MM, Casas M, Corbi AL. Influence of low oxygen tensions on macrophage polarization. *Immunobiology.* (2012) 217:1233–40. doi: 10.1016/j.imbio.2012.07.002
42. Comito G, Giannoni E, Segura CP, Barcellos-De-Souza P, Raspollini MR, Baroni G, et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. *Oncogene.* (2014) 33:2423–31. doi: 10.1038/onc.2013.191
43. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. *Cell.* (2006) 124:263–6. doi: 10.1016/j.cell.2006.01.007
44. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. *Cancer Res.* (2005) 65:5278–83. doi: 10.1158/0008-5472.CAN-04-1853
45. Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. *Nat Rev Drug Discov.* (2018) 17:887–904. doi: 10.1038/nrd.2018.169
46. Motz GT, Coukos G. Deciphering and reversing tumor immune suppression. *Immunity.* (2013) 39:61–73. doi: 10.1016/j.immuni.2013.07.005
47. Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. *Nat Rev Cancer.* (2013) 13:739–52. doi: 10.1038/nrc3581
48. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. *Nat Rev Immunol.* (2012) 12:253–68. doi: 10.1038/nri3175
49. Foudi A, Jarrier P, Zhang Y, Wittner M, Geay JF, Lecluse Y, et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4-/- chimeric mice. *Blood.* (2006) 107:2243–51. doi: 10.1182/blood-2005-02-0581
50. Safari E, Ghorghani S, Ahmadi-Khiavi H, Mehranfar S, Rezaei R, Motallebnezhad M. Myeloid-derived suppressor cells and tumor: current knowledge and future perspectives. *J Cell Physiol.* (2018) 234:9966–81. doi: 10.1002/jcp.27923
51. Wang Y, Ding Y, Guo N, Wang S. MDSCs: key criminals of tumor pre-metastatic niche formation. *Front Immunol.* (2019) 10:172. doi: 10.3389/fimmu.2019.00172
52. Peled A, Abraham M, Avivi I, Rowe JM, Beider K, Wald H, et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma. *Clin Cancer Res.* (2014) 20:469–79. doi: 10.1158/1078-0432.CCR-13-1302
53. Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. *Semin Cancer Biol.* (2006) 16:53–65. doi: 10.1016/j.semcan.2005.07.005
54. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. *Cancer Cell.* (2009) 16:183–94. doi: 10.1016/j.ccr.2009.06.017
55. Gregory AD, Houghton AM. Tumor-associated neutrophils: new targets for cancer therapy. *Cancer Res.* (2011) 71:2411–6. doi: 10.1158/0008-5472.CAN-10-2583
56. Hurt B, Schulick R, Edil B, El Kasmi KC, Barnett C Jr. Cancer-promoting mechanisms of tumor-associated neutrophils. *Am J Surg.* (2017) 214:938–44. doi: 10.1016/j.amjsurg.2017.08.003
57. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. *J Clin Invest.* (2013) 123:3664–71. doi: 10.1172/JCI67230
58. Sormendi S, Wielockx B. Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment. *Front Immunol.* (2018) 9:40. doi: 10.3389/fimmu.2018.00040
59. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. *Cell Metab.* (2016) 23:27–47. doi: 10.1016/j.cmet.2015.12.006
60. Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. *Blood.* (2006) 107:2013–21. doi: 10.1182/blood-2005-05-1795
61. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. *Blood.* (2007) 109:3812–9. doi: 10.1182/blood-2006-07-035972
62. Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W. Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. *Int J Oncol.* (2011) 39:453–63. doi: 10.3892/ijo.2011.1055
63. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. *Nature.* (2014) 513:559–63. doi: 10.1038/nature13490
64. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. *Mol Cell.* (2010) 40:294–309. doi: 10.1016/j.molcel.2010.09.022
65. Belaiba RS, Bonello S, Zahringer C, Schmidt S, Hess J, Kietzmann T, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. *Mol Biol Cell.* (2007) 18:4691–7. doi: 10.1091/mbc.e07-04-0391
66. Porporato PE, Payen VL, De Saedeleer CJ, Preat V, Thissen JP, Feron O, et al. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. *Angiogenesis.* (2012) 15:581–92. doi: 10.1007/s10456-012-9282-0
67. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, et al. Acidic extracellular microenvironment and cancer. *Cancer Cell Int.* (2013) 13:89. doi: 10.1186/1475-2867-13-89

68. Swietach P, Hulikova A, Vaughan-Jones RD, Harris AL. New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. *Oncogene*. (2010) 29:6509–21. doi: 10.1038/onc.2010.455
69. Chiche J, Brahimi-Horn MC, Pouyssegur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. *J Cell Mol Med*. (2010) 14:771–94. doi: 10.1111/j.1582-4934.2009.00994.x
70. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. *Cell Cycle*. (2009) 8:3984–4001. doi: 10.4161/cc.8.23.10238
71. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. *J Physiol.* (2004) 558:5–30. doi: 10.1113/jphysiol.2003.058701
72. Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA. Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. *Cells*. (2018) 7:21. doi: 10.3390/cells7030021
73. Fu Y, Liu S, Yin S, Niu W, Xiong W, Tan M, et al. The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy. *Oncotarget*. (2017) 8:57813–25. doi: 10.18632/oncotarget.18175
74. Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. *Cancer Res.* (2012) 72:5130–40. doi: 10.1158/0008-5472.CAN-12-1949
75. Suh DH, Kim HS, Kim B, Song YS. Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication. *Biochem Pharmacol.* (2014) 92:43–54. doi: 10.1016/j.bcp.2014.08.011
76. Penkert J, Ripperger T, Schieck M, Schlegelberger B, Steinemann D, Illig T. On metabolic reprogramming and tumor biology: a comprehensive survey of metabolism in breast cancer. *Oncotarget*. (2016) 7:67626–49. doi: 10.18632/oncotarget.11759
77. Phan AT, Goldrath AW, Glass CK. Metabolic and epigenetic coordination of T cell and macrophage *Immunity*. (2017) 46:714–29. doi: 10.1016/j.immuni.2017.04.016
78. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. *Cell*. (2015) 162:1217–28. doi: 10.1016/j.cell.2015.08.012
79. Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. *Immunity*. (2016) 45:701–3. doi: 10.1016/j.immuni.2016.08.009
80. Beckermann KE, Dudzinski SO, Rathmell JC. Dysfunctional T cell metabolism in the tumor microenvironment. *Cytokine Growth Factor Rev*. (2017) 35:7–14. doi: 10.1016/j.cytoogr.2017.04.003
81. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. *Nat Rev Cancer*. (2018) 18:601–18. doi: 10.1038/s41568-018-0037-0
82. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. *J Exp Med.* (2007) 204:1257–65. doi: 10.1084/jem.20062512
83. Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. *Nat Rev Cancer*. (2017) 17:765. doi: 10.1038/nrc.2017.86
84. Serra S, Vaisitti T, Audrito V, Bologna C, Buonincontri R, Chen SS, et al. Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. *Blood Adv.* (2016) 1:47–61. doi: 10.1182/bloodadvances.2016000984
85. Vaupel P, Multhoff G. Accomplices of the hypoxic tumor microenvironment compromising antitumor immunity: adenosine, lactate, acidosis, vascular endothelial growth factor, potassium ions, and phosphatidylserine. *Front Immunol.* (2017) 8:1887. doi: 10.3389/fimmu.2017.01887
86. Gossmann TI, Ziegler M, Puntervoll P, De Figueiredo LF, Schuster S, Heiland I. NAD(+) biosynthesis and salvage—a phylogenetic perspective. *Febs J.* (2012) 279:3355–63. doi: 10.1111/j.1742-4658.2012.08559.x
87. Sharif T, Martell E, Dai C, Ghassemi-Rad MS, Kennedy BE, Lee PWK, et al. Regulation of cancer and cancer-related genes via NAD(). *Antioxid Redox Signal*. (2018) 30:906–23. doi: 10.1089/ars.2017.7478
88. Canto C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. *Cell Metab.* (2015) 22:31–53. doi: 10.1016/j.cmet.2015.05.023
89. Nikiforov A, Kulikova V, Ziegler M. The human NAD metabolome: functions, metabolism and compartmentalization. *Crit Rev Biochem Mol Biol.* (2015) 50:284–97. doi: 10.3109/10409238.2015.1028612
90. Ruggieri S, Orsomando G, Sorci L, Raffaelli N. Regulation of NAD biosynthetic enzymes modulates NAD-sensing processes to shape mammalian cell physiology under varying biological cues. *Biochim Biophys Acta*. (2015) 1854:1138–49. doi: 10.1016/j.bbapap.2015.02.021
91. Magni G, Orsomando G, Raffaelli N, Ruggieri S. Enzymology of mammalian NAD metabolism in health and disease. *Front Biosci.* (2008) 13:6135–54. doi: 10.2741/3143
92. Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. *Endocr Rev.* (2010) 31:194–223. doi: 10.1210/er.2009-0026
93. Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome—a key determinant of cancer cell biology. *Nat Rev Cancer*. (2012) 12:741–52. doi: 10.1038/nrc3340
94. Haag F, Adriouch S, Brass A, Jung C, Moller S, Scheuplein F, et al. Extracellular NAD and ATP: partners in immune cell modulation. *Purinergic Signal*. (2007) 3:71–81. doi: 10.1007/s11302-006-9038-7
95. Grahnert A, Klein C, Schilling E, Wehrhahn J, Hauschmidt S. Review: NAD+: a modulator of immune functions. *Innate Immun.* (2011) 17:212–33. doi: 10.1177/1753425910361989
96. Burgos ES, Schramm VL. Weak coupling of ATP hydrolysis to the chemical equilibrium of human nicotinamide phosphoribosyltransferase. *Biochemistry*. (2008) 47:11086–96. doi: 10.1021/bi801198m
97. Kitani T, Okuno S, Fujisawa H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. *FEBS Lett.* (2003) 544:74–8. doi: 10.1016/S0014-5793(03)00476-9
98. Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. *Cell Metab.* (2007) 6:363–75. doi: 10.1016/j.cmet.2007.09.003
99. Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. *Cell*. (2007) 130:1095–107. doi: 10.1016/j.cell.2007.07.035
100. Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F, et al. Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. *J Biol Chem.* (2010) 285:34106–14. doi: 10.1074/jbc.M110.136739
101. Davila A, Liu L, Chellappa K, Redpath P, Nakamaru-Ogiso E, Paoletti LM, et al. Nicotinamide adenine dinucleotide is transported into mammalian mitochondria. *Elife*. (2018) 7. doi: 10.7554/elife.33246
102. Kennedy BE, Sharif T, Martell E, Dai C, Kim Y, Lee PW, et al. NAD(+) salvage pathway in cancer metabolism and therapy. *Pharmacol Res.* (2016) 114:274–83. doi: 10.1016/j.phrs.2016.10.027
103. Garten A, Schuster S, Penke M, Gorski T, De Giorgis T, Kiess W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. *Nat Rev Endocrinol.* (2015) 11:535–46. doi: 10.1038/nrendo.2015.117
104. Tanaka M, Nozaki M, Fukuhara A, Segawa K, Aoki N, Matsuda M, et al. Visfatin is released from 3T3-L1 adipocytes via a non-classical pathway. *Biochem Biophys Res Commun.* (2007) 359:194–201. doi: 10.1016/j.bbrc.2007.05.096
105. Camp SM, Ceco E, Evenoski CL, Danilov SM, Zhou T, Chiang ET, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFκB signaling and inflammatory lung injury. *Sci Rep.* (2015) 5:13135. doi: 10.1038/srep13135
106. Hara N, Yamada K, Shibata T, Osago H, Tsuchiya M. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma. *PLoS ONE*. (2011) 6:e22781. doi: 10.1371/journal.pone.0022781
107. Samal B, Sun Y, Stearns G, Xie C, Suggs S, Mcniece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. *Mol Cell Biol.* (1994) 14:1431–7. doi: 10.1128/MCB.14.2.1431

108. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. *Science*. (2005) 307:426–30. doi: 10.1126/science.1097243
109. Sun Z, Lei H, Zhang Z. Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. *Cytokine Growth Factor Rev.* (2013) 24:433–42. doi: 10.1016/j.cytogfr.2013.05.006
110. Ognjanovic S, Bao S, Yamamoto SY, Garibay-Tupas J, Samal B, Bryant-Greenwood GD. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. *J Mol Endocrinol.* (2001) 26:107–17. doi: 10.1677/jme.0.0260107
111. Iqbal J, Zaidi M. TNF regulates cellular NAD⁺ metabolism in primary macrophages. *Biochem Biophys Res Commun.* (2006) 342:1312–8. doi: 10.1016/j.bbrc.2006.02.109
112. Nowell MA, Richards PJ, Fielding CA, Ognjanovic S, Topley N, Williams AS, et al. Regulation of pre-B cell colony-enhancing factor by STAT-3-dependent interleukin-6 trans-signaling: implications in the pathogenesis of rheumatoid arthritis. *Arthritis Rheum.* (2006) 54:2084–95. doi: 10.1002/art.21942
113. Gosset M, Berenbaum F, Salvat C, Sautet A, Pigenet A, Tahiri K, et al. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes: possible influence on osteoarthritis. *Arthritis Rheum.* (2008) 58:1399–409. doi: 10.1002/art.23431
114. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. *J Immunol.* (2007) 178:1748–58. doi: 10.4049/jimmunol.178.3.1748
115. Fan Y, Meng S, Wang Y, Cao J, Wang C. Visfatin/PBEF/Nampt induces EMMPRIN and MMP-9 production in macrophages via the NAMPT-MAPK. (p38, ERK1/2)-NF-κB signaling pathway. *Int J Mol Med.* (2011) 27:607–15. doi: 10.3892/ijmm.2011.621
116. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. *Immunity*. (2014) 41:14–20. doi: 10.1016/j.jimuni.2014.06.008
117. Diskin C, Palsson-Mcdermott EM. Metabolic modulation in macrophage effector function. *Front Immunol.* (2018) 9:270. doi: 10.3389/fimmu.2018.00270
118. Stunault MI, Bories G, Guinamard RR, Ivanov S. Metabolism plays a key role during macrophage activation. *Mediators Inflamm.* (2018) 2018:2426138. doi: 10.1155/2018/2426138
119. Suzuki H, Hisamatsu T, Chiba S, Mori K, Kitazume MT, Shimamura K, et al. Glycolytic pathway affects differentiation of human monocytes to regulatory macrophages. *Immunol Lett.* (2016) 176:18–27. doi: 10.1016/j.imlet.2016.05.009
120. Kelly B, O’neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. *Cell Res.* (2015) 25:771–84. doi: 10.1038/cr.2015.68
121. Van Den Bossche J, Baardman J, De Winther MP. Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis. *J Vis Exp.* (2015) 53424. doi: 10.3791/53424
122. Hamers AJ, Pillai AB. A sweet alternative: maintaining M2 macrophage polarization. *Sci Immunol.* (2018) 3:eaav7759. doi: 10.1126/sciimmunol.aav7759
123. Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. *Immunity*. (2015) 42:419–30. doi: 10.1016/j.jimuni.2015.02.005
124. Xu Q, Choksi S, Qu J, Jang J, Choe M, Banfi B, et al. NADPH oxidases are essential for macrophage differentiation. *J Biol Chem.* (2016) 291:20030–41. doi: 10.1074/jbc.M116.731216
125. Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. *J Biol Chem.* (1996) 271:32253–9. doi: 10.1074/jbc.271.50.32253
126. Kim JW, Tchernyshov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. *Cell Metab.* (2006) 3:177–85. doi: 10.1016/j.cmet.2006.02.002
127. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. *Nature*. (2008) 453:807–11. doi: 10.1038/nature06905
128. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. *Cell Metab.* (2006) 4:13–24. doi: 10.1016/j.cmet.2006.05.011
129. Skokowa J, Lan D, Thakur BK, Wang F, Gupta K, Cario G, et al. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)–sirtuin-1-dependent pathway. *Nat Med.* (2009) 15:151–8. doi: 10.1038/nm.1913
130. Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, et al. Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. *Blood*. (2015) 125:111–23. doi: 10.1182/blood-2014-07-589069
131. Travelli C, Colombo G, Mola S, Genazzani AA, Porta C. NAMPT: a pleiotropic modulator of monocytes and macrophages. *Pharmacol Res.* (2018) 135:25–36. doi: 10.1016/j.phrs.2018.06.022
132. Travelli C, Consonni FM, Sangaletti S, Storto M, Morlacchi S, Grolla AA, et al. Nicotinamide phosphoribosyltransferase (NAMPT) acts as a metabolic gate for mobilization of myeloid-derived suppressor cells. *Cancer Res.* (2019) 79:1938–51. doi: 10.1158/0008-5472.CAN-18-1544
133. Fernandes CA, Fievez L, Neyrinck AM, Delzenne NM, Bureau F, Vanbever R. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages. *Biochem Biophys Res Commun.* (2012) 420:857–61. doi: 10.1016/j.bbrc.2012.03.088
134. Liu TF, Vachharajani VT, Yoza BK, McCall CE. NAD⁺-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. *J Biol Chem.* (2012) 287:25758–69. doi: 10.1074/jbc.M112.362343
135. Weidemann A, Johnson RS. Biology of HIF-1α. *Cell Death Differ.* (2008) 15:621–7. doi: 10.1038/cdd.2008.12
136. Gleyzer N, Scarpulla RC. PGC-1-related coactivator (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression. *J Biol Chem.* (2011) 286:39715–25. doi: 10.1074/jbc.M111.291575
137. Li Y, Zhang Y, Dorweiler B, Cui D, Wang T, Woo CW, et al. Extracellular Nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism. *J Biol Chem.* (2008) 283:34833–43. doi: 10.1074/jbc.M805866200
138. Koch C, Samareh B, Morishima T, Mir P, Kanz L, Zeidler C, et al. GM-CSF treatment is not effective in congenital neutropenia patients due to its inability to activate NAMPT signaling. *Ann Hematol.* (2017) 96:345–53. doi: 10.1007/s00277-016-2894-5
139. Galli U, Travelli C, Massarotti A, Fakhfouri G, Rahimian R, Tron GC, et al. Medicinal chemistry of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. *J Med Chem.* (2013) 56:6279–96. doi: 10.1021/jm4001049
140. Watson M, Roulston A, Belec L, Billot X, Marcellus R, Bedard D, et al. The small molecule GMX1778 is a potent inhibitor of NAD⁺ biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. *Mol Cell Biol.* (2009) 29:5872–88. doi: 10.1128/MCB.00112-09
141. Dalamaga M, Christodoulou GS, Mantzoros CS. The role of extracellular and intracellular Nicotinamide phosphoribosyltransferase in cancer: diagnostic and therapeutic perspectives and challenges. *Metabolism*. (2018) 82:72–87. doi: 10.1016/j.metabol.2018.01.001
142. Abu Aboud O, Chen CH, Senapedis W, Baloglu E, Argueta C, Weiss RH. Dual and specific inhibition of NAMPT and PAK4 By KPT-9274 decreases kidney cancer growth. *Mol Cancer Ther.* (2016) 15:2119–29. doi: 10.1158/1535-7163.MCT-16-0197
143. Gibson AE, Mendoza A, Korotchkina L, Chernova O, Heste CM. Targeting nicotinamide phosphoribosyltransferase (NAMPT) with OT-82 in Ewing sarcoma [abstract]. In: *Proceedings of the American Association for Cancer Research Annual Meeting 2018*; 2018 Apr 14–18. Chicago, IL; Philadelphia (PA): AACR. *Cancer Res.* (2018) 78(13 Suppl.):5477. doi: 10.1158/1538-7445.AM2018-5477

144. Pillai VB, Sundaresan NR, Kim G, Samant S, Moreno-Vinasco L, Garcia JG, et al. Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. *Am J Physiol Heart Circ Physiol.* (2013) 304:H415–26. doi: 10.1152/ajpheart.00468.2012
145. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. *Blood.* (2016) 128:384–94. doi: 10.1182/blood-2015-12-687749
146. Martin T, Baz R, Benson DM, Lendvai N, Wolf J, Munster P, et al. A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma. *Blood.* (2017) 129:3294–303. doi: 10.1182/blood-2016-09-740787
147. Boxhammer R, Weirather J, Steidl S, Endell J. MOR202, a human anti-CD38 monoclonal antibody, mediates potent tumoricidal activity in vivo and shows synergistic efficacy in combination with different antineoplastic compounds. *Blood.* (2015) 126:3015.
148. Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT, et al. Flavonoid apigenin is an inhibitor of the NAD⁺ase CD38: implications for cellular NAD⁺ metabolism, protein acetylation, and treatment of metabolic syndrome. *Diabetes.* (2013) 62:1084–93. doi: 10.2337/db12-1139
149. Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. *Cancer Res.* (2006) 66:4368–77. doi: 10.1158/0008-5472.CAN-05-3617
150. Wang J, Kim TH, Ahn MY, Lee J, Jung JH, Choi WS, et al. Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells. *Int J Oncol.* (2012) 41:1101–9. doi: 10.3892/ijo.2012.1534
151. Lara E, Mai A, Calvanese V, Altucci L, Lopez-Nieva P, Martinez-Chantar ML, et al. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. *Oncogene.* (2009) 28:781–91. doi: 10.1038/onc.2008.436
152. Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. *Cancer Cell.* (2008) 13:454–63. doi: 10.1016/j.ccr.2008.03.004
153. Peck B, Chen CY, Ho KK, Di Fruscia P, Myatt SS, Coombes RC, et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. *Mol Cancer Ther.* (2010) 9:844–55. doi: 10.1158/1535-7163.MCT-09-0971
154. Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD⁽⁺⁾ cosubstrate specificity of a Sir2 enzyme. *Mol Cell.* (2005) 17:855–68. doi: 10.1016/j.molcel.2005.02.022
155. Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. *Clin Cancer Res.* (2014) 20:5290–301. doi: 10.1158/1078-0432.CCR-14-0514
156. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. *Blood.* (2010) 115:3520–30. doi: 10.1182/blood-2009-09-246124
157. Prendergast GC, Malachowski WJ, Mondal A, Scherle P, Muller AJ. Indoleamine 2,3-Dioxygenase and its therapeutic inhibition in cancer. *Int Rev Cell Mol Biol.* (2018) 336:175–203. doi: 10.1016/bs.ircmb.2017.07.004
158. Tabernero J, Luke JJ, Joshua AM, Varga AI, Moreno V, Desai J. BMS-986205, an indoleamine 2,3-dioxygenase 1 inhibitor (IDO1), in combination with nivolumab (NIVO): Updated safety across all tumor cohorts and efficacy in pts with advanced bladder cancer (advBC). *J Clin Oncol.* (2018) 36(15_suppl):4512. doi: 10.1200/JCO.2018.36.15_suppl4512
159. Hasmann M, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. *Cancer Res.* (2003) 63:7436–42.
160. Olesen UH, Christensen MK, Bjorkling F, Jaattela M, Jensen PB, Sehested M, et al. Anticancer agent CHS-828 inhibits cellular synthesis of NAD. *Biochem Biophys Res Commun.* (2008) 367:799–804. doi: 10.1016/j.bbrc.2008.01.019
161. Audrito V, Manago A, Gaudino F, Deaglio S. Targeting metabolic reprogramming in metastatic melanoma: the key role of nicotinamide phosphoribosyltransferase. (NAMPT). *Semin Cell Dev Biol.* (2019). doi: 10.1016/j.semcd.2019.05.001. [Epub ahead of print].
162. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, et al. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. *Science.* (1993) 262:1056–9. doi: 10.1126/science.8235624
163. Sauve AA, Munshi C, Lee HC, Schramm VL. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. *Biochemistry.* (1998) 37:13239–49. doi: 10.1021/bi981248s
164. Chini EN, Chini CCS, Espindola Netto JM, De Oliveira GC, Van Schooten W. The pharmacology of CD38/NADase: an emerging target in cancer and diseases of aging. *Trends Pharmacol Sci.* (2018) 39:424–36. doi: 10.1016/j.tips.2018.02.001
165. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. *Physiol Rev.* (2008) 88:841–86. doi: 10.1152/physrev.00035.2007
166. Chini EN. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. *Curr Pharm Des.* (2009) 15:57–63. doi: 10.2174/138161209787185788
167. Hartman WR, Pelleymounter LL, Moon I, Kalari K, Liu M, Wu TY, et al. CD38 expression, function, and gene resequencing in a human lymphoblastoid cell line-based model system. *Leuk Lymphoma.* (2010) 51:1315–25. doi: 10.3109/10428194.2010.483299
168. Aksoy P, White TA, Thompson M, Chini EN. Regulation of intracellular levels of NAD: a novel role for CD38. *Biochem Biophys Res Commun.* (2006) 345:1386–92. doi: 10.1016/j.bbrc.2006.05.042
169. Young GS, Choleris E, Lund FE, Kirkland JB. Decreased cADPR and increased NAD⁺ in the Cd38-/- mouse. *Biochem Biophys Res Commun.* (2006) 346:188–92. doi: 10.1016/j.bbrc.2006.05.100
170. Grozio A, Sociali G, Sturla L, Caffa I, Soncini D, Salis A, et al. CD73 protein as a source of extracellular precursors for sustained NAD⁺ biosynthesis in FK866-treated tumor cells. *J Biol Chem.* (2013) 288:25938–49. doi: 10.1074/jbc.M113.470435
171. Camacho-Pereira J, Tarrago MG, Chini CCS, Nin V, Escande C, Warner GM, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. *Cell Metab.* (2016) 23:1127–39. doi: 10.1016/j.cmet.2016.05.006
172. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. *Blood.* (2011) 118:3470–8. doi: 10.1182/blood-2011-06-275610
173. Chatterjee S, Daenthanasanmak A, Chakraborty P, Wyatt MW, Dhar P, Selvam SP, et al. CD38-NAD(+)axis regulates immunotherapeutic anti-tumor T cell response. *Cell Metab.* (2018) 27:85–100.e108. doi: 10.1016/j.cmet.2017.10.006
174. Kaelin WG Jr., McKnight SL. Influence of metabolism on epigenetics and disease. *Cell.* (2013) 153:56–69. doi: 10.1016/j.cell.2013.03.004
175. Dugnani E, Pasquale V, Bordignon C, Canu A, Piemonti L, Monti P. Integrating T cell metabolism in cancer immunotherapy. *Cancer Lett.* (2017) 411:12–8. doi: 10.1016/j.canlet.2017.09.039
176. Buck MD, O'sullivan D, Pearce EL. T cell metabolism drives immunity. *J Exp Med.* (2015) 212:1345–60. doi: 10.1084/jem.20151159
177. Williams MA, Bevan MJ. Effector and memory CTL differentiation. *Annu Rev Immunol.* (2007) 25:171–92. doi: 10.1146/annurev.immunol.25.022106.141548
178. Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. *Nat Immunol.* (2013) 14:500–8. doi: 10.1038/ni.2556
179. Chang CH, Qiu J, O'sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. *Cell.* (2015) 162:1229–41. doi: 10.1016/j.cell.2015.08.016
180. Sukumar M, Roychoudhuri R, Restifo NP. Nutrient competition: a new axis of tumor immunosuppression. *Cell.* (2015) 162:1206–8. doi: 10.1016/j.cell.2015.08.064
181. Chang CH, Pearce EL. Emerging concepts of T cell metabolism as a target of immunotherapy. *Nat Immunol.* (2016) 17:364–8. doi: 10.1038/ni.3415

182. Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. *Science*. (2013) 342:1242454. doi: 10.1126/science.1242454
183. Feske S. Calcium signalling in lymphocyte activation and disease. *Nat Rev Immunol*. (2007) 7:690–702. doi: 10.1038/nri2152
184. Clapham DE. Calcium signaling. *Cell*. (2007) 131:1047–58. doi: 10.1016/j.cell.2007.11.028
185. Ouyang K, Leandro Gomez-Amaro R, Stachura DL, Tang H, Peng X, Fang X, et al. Loss of IP3R-dependent Ca²⁺ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia. *Nat Commun*. (2014) 5:4814. doi: 10.1038/ncomms5814
186. Cui C, Merritt R, Fu L, Pan Z. Targeting calcium signaling in cancer therapy. *Acta Pharm Sin B*. (2017) 7:3–17. doi: 10.1016/j.apsb.2016.11.001
187. Zhang T, Kraus WL. SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions. *Biochim Biophys Acta*. (2010) 1804:1666–75. doi: 10.1016/j.bbapap.2009.10.022
188. Jeng MY, Hull PA, Fei M, Kwon HS, Tsou CL, Kasler H, et al. Metabolic reprogramming of human CD8(+) memory T cells through loss of SIRT1. *J Exp Med*. (2018) 215:51–62. doi: 10.1084/jem.20161066
189. Feng X, Zhang L, Acharya C, An G, Wen K, Qiu L, et al. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. *Clin Cancer Res*. (2017) 23:4290–300. doi: 10.1158/1078-0432.CCR-16-3192
190. Sica A, Strauss L, Consolni FM, Travelli C, Genazzani A, Porta C. Metabolic regulation of suppressive myeloid cells in cancer. *Cytokine Growth Factor Rev*. (2017) 35:27–35. doi: 10.1016/j.cytogfr.2017.05.002
191. Franssen LE, Mutis T, Lokhorst HM, Van De Donk N. Immunotherapy in myeloma: how far have we come? *Ther Adv Hematol*. (2019) 10:2040620718822660. doi: 10.1177/2040620718822660
192. Naik J, Themeli M, De Jong-Korlaar R, Ruiter RWJ, Poddighe PJ, Yuan H, et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. *Haematologica*. (2019) 104:e100–103. doi: 10.3324/haematol.2018.192757
193. Bailey SM, Udoch US, Young ME. Circadian regulation of metabolism. *J Endocrinol*. (2014) 222:R75–96. doi: 10.1530/JOE-14-0200
194. Al-Khami AA, Mehrotra S, Nishimura MI. Adoptive immunotherapy of cancer: gene transfer of T cell specificity. *Self Nonself*. (2011) 2:80–4. doi: 10.4161/sel.2.2.15832
195. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. *Science*. (2015) 348:62–8. doi: 10.1126/science.aaa4967
196. Paulos CM, Carpenito C, Plesa G, Suhoski MM, Varela-Rohena A, Golovina TN, et al. The inducible costimulator. (ICOS) is critical for the development of human T(H)17 cells. *Sci Transl Med*. (2010) 2:55ra78. doi: 10.1126/scitranslmed.3000448
197. Muranski P, Borman ZA, Kerkar SP, Klebanoff CA, Ji Y, Sanchez-Perez L, et al. Th17 cells are long lived and retain a stem cell-like molecular signature. *Immunity*. (2011) 35:972–85. doi: 10.1016/j.immuni.2011.09.019
198. Chen L, Diao L, Yang Y, Yi X, Rodriguez BL, Li Y, et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. *Cancer Discov*. (2018) 8:1156–75. doi: 10.1158/2159-8290.CD-17-1033
199. Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in *Saccharomyces cerevisiae*. *Genetics*. (1987) 116:9–22.
200. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. *Biochem Biophys Res Commun*. (2000) 273:793–8. doi: 10.1006/bbrc.2000.3000
201. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. *Mol Biol Cell*. (2005) 16:4623–35. doi: 10.1091/mbc.e05-01-0033
202. North BJ, Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. *PLoS ONE*. (2007) 2:e784. doi: 10.1371/journal.pone.0000784
203. Tanno M, Kuno A, Yano T, Miura T, Hisahara S, Ishikawa S, et al. Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. *J Biol Chem*. (2010) 285:8375–82. doi: 10.1074/jbc.M109.090266
204. Iwahara T, Bonasio R, Narendra V, Reinberg D. SIRT3 functions in the nucleus in the control of stress-related gene expression. *Mol Cell Biol*. (2012) 32:5022–34. doi: 10.1128/MCB.00822-12
205. Yanagisawa S, Baker JR, Vuppusetty C, Koga T, Colley T, Fenwick P, et al. The dynamic shuttling of SIRT1 between cytoplasm and nuclei in bronchial epithelial cells by single and repeated cigarette smoke exposure. *PLoS ONE*. (2018) 13:e0193921. doi: 10.1371/journal.pone.0193921
206. Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. *Annu Rev Biochem*. (2006) 75:435–65. doi: 10.1146/annurev.biochem.74.082803.133500
207. Bheda P, Jing H, Wolberger C, Lin H. The substrate specificity of sirtuins. *Annu Rev Biochem*. (2016) 85:405–29. doi: 10.1146/annurev-biochem-060815-014537
208. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. *Annu Rev Pathol*. (2010) 5:253–95. doi: 10.1146/annurev.pathol.4.110807.092250
209. Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. *Nature*. (2009) 460:587–91. doi: 10.1038/nature08197
210. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. *Nat Rev Mol Cell Biol*. (2012) 13:225–38. doi: 10.1038/nrm3293
211. Natoli G. When sirtuins and NF-κappaB collide. *Cell*. (2009) 136:19–21. doi: 10.1016/j.cell.2008.12.034
212. Preyat N, Leo O. Sirtuin deacylases: a molecular link between metabolism and immunity. *J Leukoc Biol*. (2013) 93:669–80. doi: 10.1189/jlb.1112557
213. Vachharajani VT, Liu T, Wang X, Hoth JJ, Yoza BK, Mccall CE. Sirtuins link inflammation and metabolism. *J Immunol Res*. (2016) 2016:8167273. doi: 10.1155/2016/8167273
214. Verdin E. The many faces of sirtuins: Coupling of NAD metabolism, sirtuins and lifespan. *Nat Med*. (2014) 20:25–7. doi: 10.1038/nm.3447
215. Chen X, Lu Y, Zhang Z, Wang J, Yang H, Liu G. Intercellular interplay between Sirt1 signalling and cell metabolism in immune cell biology. *Immunology*. (2015) 145:455–67. doi: 10.1111/imm.12473
216. Reiner SL. Epigenetic control in the immune response. *Hum Mol Genet*. (2005) 14 Spec 1:R41–6. doi: 10.1093/hmg/ddi15
217. Busslinger M, Tarakhovsky A. Epigenetic control of immunity. *Cold Spring Harb Perspect Biol*. (2014) 6:a024174. doi: 10.1101/cshperspect.a024174
218. Jasiulionis MG. Abnormal epigenetic regulation of immune system during aging. *Front Immunol*. (2018) 9:197. doi: 10.3389/fimmu.2018.00197
219. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. *Nat Genet*. (2003) 33:245–54. doi: 10.1038/ng1089
220. Glass CK, Natoli G. Molecular control of activation and priming in macrophages. *Nat Immunol*. (2016) 17:26–33. doi: 10.1038/ni.3306
221. O’Neill LA, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. *J Exp Med*. (2016) 213:15–23. doi: 10.1084/jem.20151570
222. Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. *J Immunol*. (2010) 185:605–14. doi: 10.4049/jimmunol.0901698
223. Wang X, Buechler NL, Woodruff AG, Long DL, Zabalawi M, Yoza BK, et al. Sirtuins and immuno-metabolism of sepsis. *Int J Mol Sci*. (2018) 19:2738. doi: 10.3390/ijms19092738
224. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. *Nature*. (2005) 434:113–8. doi: 10.1038/nature03354
225. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. *Curr Opin Lipidol*. (2009) 20:98–105. doi: 10.1097/MOL.0b013e328328d0a4
226. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD⁺ metabolism and SIRT1 activity. *Nature*. (2009) 458:1056–60. doi: 10.1038/nature07813
227. Simmons GE, Pruitt WM, Pruitt K. Diverse roles of SIRT1 in cancer biology and lipid metabolism. *Int J Mol Sci*. (2015) 16:950–65. doi: 10.3390/ijms1610950

228. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A. Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. *Cell Signal.* (2013) 25:1939–48. doi: 10.1016/j.cellsig.2013.06.007
229. Salminen A, Kaarniranta K, Kauppinen A. Crosstalk between oxidative stress and SIRT1: impact on the aging process. *Int J Mol Sci.* (2013) 14:3834–59. doi: 10.3390/ijms14023834
230. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. *EMBO J.* (2004) 23:2369–80. doi: 10.1038/sj.emboj.7600244
231. Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, et al. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-kappaB activity. *PLoS ONE.* (2012) 7:e46364. doi: 10.1371/journal.pone.0046364
232. Schug TT, Xu Q, Gao H, Peres-Da-Silva A, Draper DW, Fessler MB, et al. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. *Mol Cell Biol.* (2010) 30:4712–21. doi: 10.1128/MCB.00657-10
233. Leiser SF, Kaeberlein M. A role for SIRT1 in the hypoxic response. *Mol Cell.* (2010) 38:779–80. doi: 10.1016/j.molcel.2010.06.015
234. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. *Mol Cell.* (2010) 38:864–78. doi: 10.1016/j.molcel.2010.05.023
235. Joo HY, Yun M, Jeong J, Park ER, Shin HJ, Woo SR, et al. SIRT1 deacetylates and stabilizes hypoxia-inducible factor- α (HIF-1 α) via direct interactions during hypoxia. *Biochem Biophys Res Commun.* (2015) 462:294–300. doi: 10.1016/j.bbrc.2015.04.119
236. Yu Q, Dong L, Li Y, Liu G. SIRT1 and HIF1 α signaling in metabolism and immune responses. *Cancer Lett.* (2018) 418:20–6. doi: 10.1016/j.canlet.2017.12.035
237. Liu G, Bi Y, Shen B, Yang H, Zhang Y, Wang X, et al. SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1 α -dependent glycolysis. *Cancer Res.* (2014) 74:727–37. doi: 10.1158/0008-5472.CAN-13-2584
238. Wang Y, Bi Y, Chen X, Li C, Li Y, Zhang Z, et al. Histone deacetylase SIRT1 negatively regulates the differentiation of interleukin-9-producing CD4(+) T cells. *Immunity.* (2016) 44:1337–49. doi: 10.1016/j.immuni.2016.05.009
239. Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer. *Nat Rev Cancer.* (2015) 15:608–24. doi: 10.1038/nrc3985
240. Henning AN, Roychoudhuri R, Restifo NP. Epigenetic control of CD8(+) T cell differentiation. *Nat Rev Immunol.* (2018) 18:340–56. doi: 10.1038/nri.2017.146
241. Zhang X, Liu J, Cao X. Metabolic control of T-cell immunity via epigenetic mechanisms. *Cell Mol Immunol.* (2018) 15:203–5. doi: 10.1038/cmi.2017.115
242. Legutko A, Marichal T, Fievez L, Bedoret D, Mayer A, De Vries H, et al. Sirtuin 1 promotes Th2 responses and airway allergy by repressing peroxisome proliferator-activated receptor- γ activity in dendritic cells. *J Immunol.* (2011) 187:4517–29. doi: 10.4049/jimmunol.1101493
243. Zhang J, Lee SM, Shannon S, Gao B, Chen W, Chen A, et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. *J Clin Invest.* (2009) 119:3048–58. doi: 10.1172/JCI38902
244. Kuroda S, Yamazaki M, Abe M, Sakimura K, Takayanagi H, Iwai Y. Basic leucine zipper transcription factor, ATF-like, (BATF) regulates epigenetically and energetically effector CD8 T-cell differentiation via Sirt1 expression. *Proc Natl Acad Sci USA.* (2011) 108:14885–9. doi: 10.1073/pnas.1105133108
245. Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. *Cell Stem Cell.* (2008) 2:241–51. doi: 10.1016/j.stem.2008.01.002
246. Boutant M, Canto C. SIRT1 metabolic actions: integrating recent advances from mouse models. *Mol Metab.* (2014) 3:5–18. doi: 10.1016/j.molmet.2013.10.006
247. Imperatore F, Maurizio J, Vargas Aguilar S, Busch CJ, Favre J, Kowenz-Leutz E, et al. SIRT1 regulates macrophage self-renewal. *EMBO J.* (2017) 36:2353–72. doi: 10.15252/embj.201695737
248. Gomes P, Fleming Outeiro T, Cavadas C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism. *Trends Pharmacol Sci.* (2015) 36:756–68. doi: 10.1016/j.tips.2015.08.001
249. Chadha S, Wang L, Hancock WW, Beier UH. Sirtuin-1 in immunotherapy: a Janus-headed target. *J Leukoc Biol.* (2019). doi: 10.1002/JLB.2RU1118-422R
250. Beier UH, Wang L, Bhatti TR, Liu Y, Han R, Ge G, et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. *Mol Cell Biol.* (2011) 31:1022–9. doi: 10.1128/MCB.01206-10
251. Daenthanasanmak A, Iamsawat S, Chakraborty P, Nguyen HD, Bastian D, Liu C, et al. Targeting Sirt-1 controls GVHD by inhibiting T-cell allo-response and promoting Treg stability in mice. *Blood.* (2019) 133:266–79. doi: 10.1182/blood-2018-07-863233
252. Liu TF, McCall CE. Deacetylation by SIRT1 reprograms inflammation and cancer. *Genes Cancer.* (2013) 4:135–47. doi: 10.1177/1947601913476948
253. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. *J Biol Chem.* (2002) 277:45099–107. doi: 10.1074/jbc.M205670200
254. Audrito V, Vaisitti T, Rossi D, Gottardi D, D'arena G, Laurenti L, et al. Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. *Cancer Res.* (2011) 71:4473–83. doi: 10.1158/0008-5472.CAN-10-4452
255. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. *J Biol Chem.* (2004) 279:50754–63. doi: 10.1074/jbc.M408388200
256. Geng J, Liu A. Heme-dependent dioxygenases in tryptophan oxidation. *Arch Biochem Biophys.* (2014) 544:18–26. doi: 10.1016/j.abb.2013.11.009
257. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. *Science.* (1998) 281:1191–3. doi: 10.1126/science.281.5380.1191
258. Mbongue JC, Nicholas DA, Torrez TW, Kim NS, Firek AF, Langridge WH. The role of indoleamine 2,3-dioxygenase in immune suppression and autoimmunity. *Vaccines.* (2015) 3:703–29. doi: 10.3390/vaccines3030703
259. Takikawa O. Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. *Biochem Biophys Res Commun.* (2005) 338:12–9. doi: 10.1016/j.bbrc.2005.09.032
260. King NJ, Thomas SR. Molecules in focus: indoleamine 2,3-dioxygenase. *Int J Biochem Cell Biol.* (2007) 39:2167–72. doi: 10.1016/j.biocel.2007.01.004
261. Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. *Immunol Rev.* (2008) 222:206–21. doi: 10.1111/j.1600-065X.2008.00610.x
262. Puccetti P, Grohmann U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. *Nat Rev Immunol.* (2007) 7:817–23. doi: 10.1038/nri2163
263. Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. *Nat Rev Immunol.* (2004) 4:762–74. doi: 10.1038/nri1457
264. Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. *Trends Immunol.* (2013) 34:137–43. doi: 10.1016/j.it.2012.10.001
265. Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. *Trends Immunol.* (2016) 37:193–207. doi: 10.1016/j.it.2016.01.002
266. Platten M, Wick W, Van Den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. *Cancer Res.* (2012) 72:5435–40. doi: 10.1158/0008-5472.CAN-12-0569
267. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. *Nature.* (2011) 478:197–203. doi: 10.1038/nature10491
268. Uyttenhove C, Pilote L, Theate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. *Nat Med.* (2003) 9:1269–74. doi: 10.1038/nm934

269. Hornyak L, Dobos N, Koncz G, Karanyi Z, Pall D, Szabo Z, et al. The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. *Front Immunol.* (2018) 9:151. doi: 10.3389/fimmu.2018.00151
270. Yu CP, Fu SF, Chen X, Ye J, Ye Y, Kong LD, et al. The clinicopathological and prognostic significance of IDO1 expression in human solid tumors: evidence from a systematic review and meta-analysis. *Cell Physiol Biochem.* (2018) 49:134–43. doi: 10.1159/000492849
271. Zhao Q, Kuang DM, Wu Y, Xiao X, Li XF, Li TJ, et al. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. *J Immunol.* (2012) 188:1117–24. doi: 10.4049/jimmunol.1100164
272. Pinton L, Solito S, Damuzzo V, Francescato S, Pozzuoli A, Berizzi A, et al. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression. *Oncotarget.* (2016) 7:1168–84. doi: 10.18632/oncotarget.6662
273. Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? *Nat Rev Cancer.* (2009) 9:445–52. doi: 10.1038/nrc2639
274. Brochez L, Chevret I, Kruse V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. *Eur J Cancer.* (2017) 76:167–82. doi: 10.1016/j.ejca.2017.01.011
275. Prendergast GC, Malachowski WP, Duhadaway JB, Muller AJ. Discovery of IDO1 inhibitors: from bench to bedside. *Cancer Res.* (2017) 77:6795–811. doi: 10.1158/0008-5472.CAN-17-2285
276. Hou DY, Muller AJ, Sharma MD, Duhadaway J, Banerjee T, Johnson M, et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. *Cancer Res.* (2007) 67:792–801. doi: 10.1158/0008-5472.CAN-06-2925
277. Holmgard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. *J Exp Med.* (2013) 210:1389–402. doi: 10.1084/jem.20130066

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Audrito, Managò, Gaudino, Sorci, Messana, Raffaelli and Deaglio. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Macrophage Rewiring by Nutrient Associated PI3K Dependent Pathways

Omar Sharif^{1,2*}, Julia Stefanie Brunner^{1,2}, Andrea Vogel^{1,2} and Gernot Schabbauer^{1,2*}

¹ Centre for Physiology and Pharmacology, Institute for Vascular Biology, Medical University Vienna, Vienna, Austria,

² Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria

OPEN ACCESS

Edited by:

Marianne Boes,
Utrecht University, Netherlands

Reviewed by:

Carrie E. McCurdy,
University of Oregon, United States
Marcus Saemann,
Wilhelminen Hospital, Austria

Guy Roukens,
University Medical Center
Utrecht, Netherlands

*Correspondence:

Omar Sharif
omar.sharif@meduniwien.ac.at
Gernot Schabbauer
gernot.schabbauer@meduniwien.ac.at

Specialty section:

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

Received: 18 March 2019

Accepted: 07 August 2019

Published: 21 August 2019

Citation:

Sharif O, Brunner JS, Vogel A and
Schabbauer G (2019) Macrophage
Rewiring by Nutrient Associated PI3K
Dependent Pathways.
Front. Immunol. 10:2002.
doi: 10.3389/fimmu.2019.02002

Class 1 Phosphoinositide-3-Kinases (PI3Ks) have been widely studied and mediate essential roles in cellular proliferation, chemotaxis, insulin sensitivity, and immunity. Here, we provide a comprehensive overview of how macrophage expressed PI3Ks and their downstream pathways orchestrate responses to metabolic stimuli and nutrients, polarizing macrophages, shaping their cellular identity and function. Particular emphasis will be given to adipose tissue macrophages, crucial players of insulin resistance and chronic metabolically triggered inflammation during obesity. An understanding of PI3K dependent wiring of macrophage responses is important as this is involved in various diseases ranging from obesity, type 2 diabetes to chronic inflammatory disease.

Keywords: macrophage, PI3K, nutrient sensing, adipose tissue macrophages, metainflammation, insulin

INTRODUCTION

The PI3K family is a central metabolic regulator, responsible for phosphorylating inositol lipids at the 3' position of the inositol ring. PI3K generated phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) triggers the recruitment and activation of several signaling proteins to the plasma membrane, thereby relaying various extracellular stimuli including Toll-like receptor (TLR) ligands, insulin and G-protein coupled receptor ligands (1, 2). Although there are three classes of PI3K enzymes (3), this mini-review will focus on class I PI3Ks and their function in macrophages in response to metabolic stimuli that are upregulated during obesity, including insulin, glucose, cholesterol and free fatty acids (FFAs). Indeed, macrophages that reside in adipose tissue (ATMs) are exposed to increased levels of these stimuli in the obese state and are significant players in metabolically triggered inflammation (herein referred to as meta-inflammation), which is crucial in the pathogenesis of type 2 diabetes (T2D) and atherosclerosis (4–7). Here, we present an overview of how the aforementioned stimuli regulate macrophage function and propose that PI3Ks are central integrators of these environmental cues.

THE PI3K PATHWAY AND ITS EFFECTS ON MACROPHAGE POLARIZATION

In mammals, class I PI3Ks are subdivided into class IA and class IB. Class IA consists of three catalytic (p110 α /p110 β /p110 γ) and five regulatory subunits (p85 α /p85 β , p55 α /p55 β , and p55 γ), in part generated through splicing or alternative transcription (p55 α /p55 β), associated to mainly receptor tyrosine kinases. Class IB only features one catalytic (p110 γ) and two regulatory subunits (p84/p101) associated to G-protein-coupled receptors. The catalytic subunit of PI3K heterodimerizes with a

regulatory subunit that dictates localization and activity of the complex leading to recruitment of signaling molecules that bind PtdIns(3,4,5)P3 through their pleckstrin-homology (PH) domains including protein kinase B (PKB, also known as AKT), phosphoinositide-dependent kinase 1 (PDK-1), protein kinase C (PKC) and Bruton's tyrosine kinase (BTK). PI3K activation further blocks degradation and increases synthesis of proteins via mTOR signaling. AKT mediates effects involved in glucose transport, glycogen synthesis, and protein synthesis. Some of these metabolic effects are achieved through AKT mediated phosphorylation of Forkhead (FOXO) transcription factors (8–10). Given the crucial role of the PI3K pathway in cellular biology, mechanisms exist to limit its activation. PtdIns(3,4,5)P3 turnover is terminated by lipid phosphatases, such as phosphatase and tensin homolog (PTEN), a prominent tumor suppressor (11).

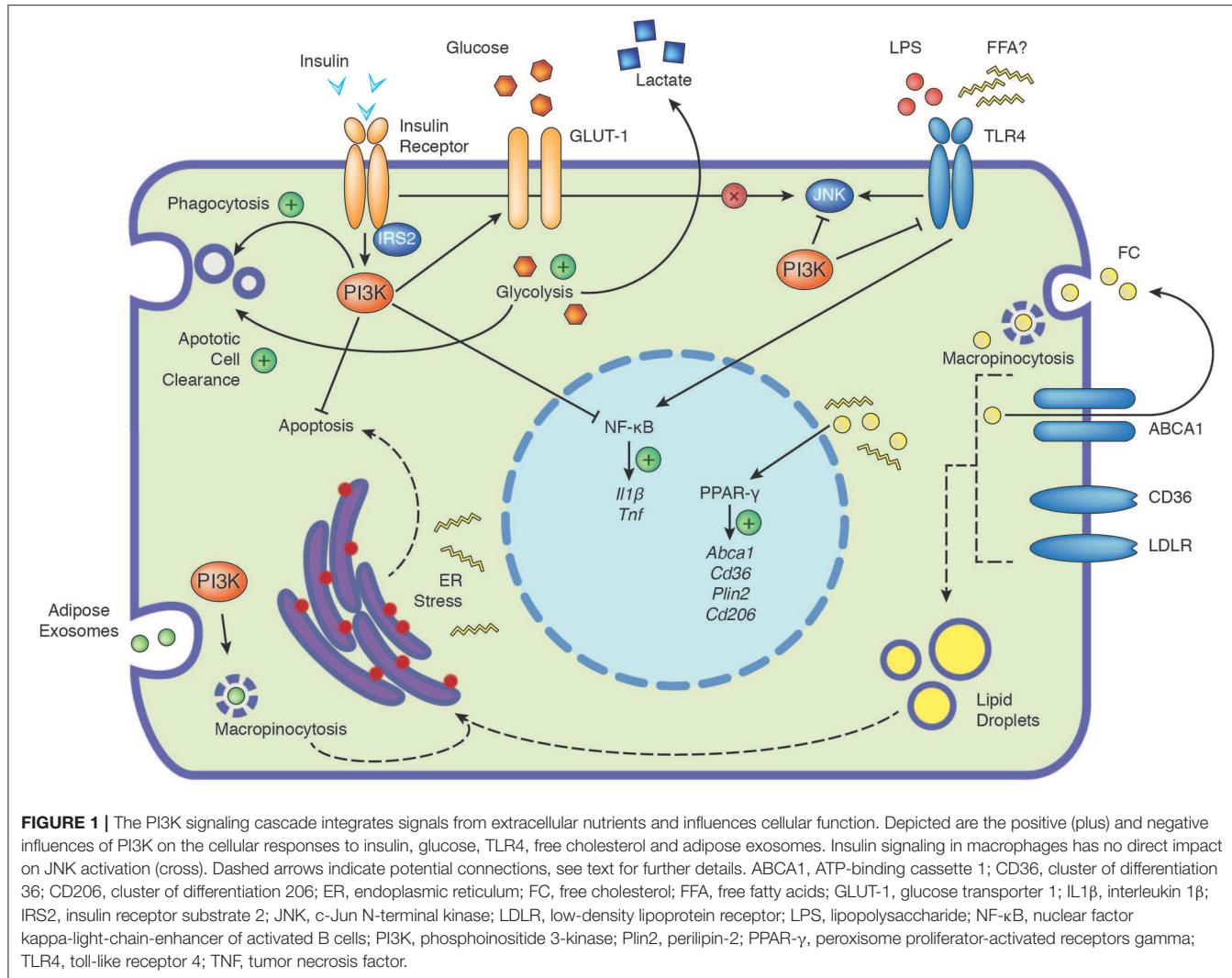
In macrophages, the PI3K pathway regulates the response to different metabolic and inflammatory signals and modulates macrophage polarization. Briefly, based on their microenvironment and the consequent functional programs elicited, macrophage phenotypes are defined as M1 and M2. Classically activated M1 macrophages adopt a pro-inflammatory phenotype in response to interferon gamma (IFN- γ) and lipopolysaccharide (LPS) and are critical for host defense against pathogens. Alternatively activated M2 macrophages play important roles in wound healing and resolving inflammation. M2 macrophages can further be subdivided into M2a (activated by interleukin (IL)-4 and IL-13), M2b (activated by immune complexes and TLR ligands), and M2c (activated by IL-10 and glucocorticoids). Importantly, these activation states are likely dynamic and influenced by the changing local milieu, therefore macrophages may not form clear cut activation subsets *in vivo* (12). Indeed, as discussed later, recent evidence indicates that ATMs adopt a unique metabolically activated state in response to their microenvironment.

Numerous studies have implicated PI3Ks in limiting pro-inflammatory responses in TLR stimulated macrophages, especially upon LPS mediated TLR4 activation. The mechanisms are diverse ranging from indirect effects such as suppression of TLR4 induced signaling cascades (e.g., MAP kinase signaling) to direct mechanisms, including AKT mediated modulation of FOXO transcription factors or the promotion of M2 responses. Indeed, LPS driven ERK, p38, and JNK pathways in monocytes and macrophages are enhanced upon pharmacological blockage of PI3K activity (13). Bone marrow macrophages (BMMs) deficient in p110 γ or p85 α exhibit augmented IL-6, IL-12, and TNF levels following LPS challenge, providing genetic evidence that PI3Ks attenuate LPS induced inflammation (14, 15). Further, PTEN deficient macrophages, which exhibit sustained PI3K activity, display decreased LPS driven pro-inflammatory cytokine expression and are skewed toward an M2 phenotype compared to controls (15, 16). In addition, downstream AKT signaling is required for the dampening effects of PI3Ks on TLR4 signaling and might involve phosphorylation and thereby termination of FOXO transcription factor activity. This is particularly important as FOXO1, which when active potentiates TLR4 expression (14, 17). Of note, three distinct isoforms of AKT exist: AKT1, 2 and 3 and studies utilizing

AKT isoform-specific deficient mice suggest unique roles for the isoforms in mediating pro and anti-inflammatory signaling (18, 19). LPS stimulated *Akt1*^{−/−} macrophages express augmented levels of iNOS (inducible nitric oxide synthase), NO (nitric oxide), TNF α , and IL-6, whereas LPS treated *Akt2*^{−/−} macrophages produce low levels of these pro-inflammatory mediators suggesting deletion of *Akt1* promotes M1 while deletion of *Akt2* results in M2 responses (20). In line, *Akt2*^{−/−} macrophages express increased levels of the M2 markers arginase 1 (Arg-1), FIZZ1, and exhibit more IL-10 upon LPS treatment compared to controls, while AKT1 deficiency results in enhanced bacterial clearance *in vivo* (20, 21). Interestingly, similar to *Akt2*^{−/−} macrophages the M2 phenotype of *Pten*^{−/−} macrophages is associated with elevated Arg-1 levels that are mediated by binding of the transcription factor CEBP- β to the Arg-1 promoter, suggesting sustained PI3K activity impinges particularly upon AKT1 in the context of macrophage polarization (16, 20). However, whether specific AKT isoforms are regulated by specific PI3K classes remains unknown.

ADIPOSE TISSUE MACROPHAGES

Although murine ATMs are a heterogeneous population of cells, ATMs in the lean state can generally be described as F4/80 $^{+}$ CD11b $^{+}$ CD206 $^{+}$ cells. Physiological adipose tissue growth is associated with minimal inflammation, while during pathological fat expansion, characteristic of obesity, limited angiogenesis of adipose tissue is associated with prevalent adipocyte hypertrophy, fibrosis and death (22). Here, ATM numbers dramatically increase due to local proliferation and recruitment of monocytes into adipose tissue that occurs partly through a monocyte chemoattractant protein 1/C-C chemokine receptor type 2 (MCP-1/CCR2) dependent axis and is influenced by adipose tissue lipolysis (23–26). Indeed, recruited ATMs express CCR2, but also CD11c, CD64, and CD9 (27). CD11c $^{+}$ ATMs overexpress pro-inflammatory genes and ablation of CD11c $^{+}$ cells in adipose tissue of obese mice leads to reduced inflammation and improved insulin sensitivity (28). Nonetheless, while in obesity, recruited ATMs overexpress several classic inflammatory (M1) markers e.g., *Il6* and *Nos2* (29), their phenotype is highly plastic and dependent on the microenvironment. Here, saturated FFAs (e.g., palmitate) or cholesterol, insulin and glucose that are prevalent in obese adipose tissue induce a state of metabolic activation (MMe) in ATMs, distinct from classic M1 activation. MMe activation is associated with elevated cell surface expression of lipid metabolism associated proteins including ATP binding cassette transporter (ABCA1), cluster of differentiation 36 (CD36), and perilipin 2 (PLIN2). This is related to augmented peroxisome proliferator activated receptor gamma (PPAR- γ) binding to the promoters of these genes. Further, autophagy and particularly sequestome-1 (p62) are important as opposed to controls attenuated levels of these lipid mediators occur in p62 null MMe macrophages (30). MMe activation correlates with lysosomal biogenesis as more active biogenesis occurs in newly recruited


CD11c⁺ ATMs (27, 31). Recent work has corroborated that ATMs represent a heterogeneous population of cells and that irrespective of obesity, there are populations of lipid laden ATMs associated with the vasculature of adipose tissue exhibiting high endocytic capacity. This suggests active ATM reprogramming in response to diverse macromolecules and nutrients present in the bloodstream (32). Together, ATMs respond to their environment by upregulating lipid/lysosomal programs, which is likely heightened during obesity, allowing them to fulfill their main function of clearing up dying adipocytes, buffering lipids, preventing ectopic lipid spill over, and ensuing insulin resistance (25, 26, 33, 34). But how does PI3K activity within macrophages, reconcile with the environmental cues that dictate ATM function and metabolic health? Although cytokines or adipokines secreted by adipose tissue can influence systemic inflammation as well as local macrophage responses (31), here we will focus exclusively on metabolic stimuli relevant to obesity and T2D and their effects on myeloid cells, particularly macrophages (Figure 1). We propose that during obesity, the metabolic milieu encountered by macrophages modulates PI3K signaling driving changes in macrophage function.

INSULIN STIMULATED PI3KS PROMOTE CELL SURVIVAL AND ATTENUATES LIPID LOADING IN MYELOID CELLS

Insulin represents an essential hormone for the maintenance of whole-body glucose disposal, regulating carbohydrate, protein and lipid metabolism in insulin-sensitive organs such as adipose tissue, muscle and liver (10). Upon insulin binding, the insulin receptor (IR) self-phosphorylates and activates insulin receptor substrates (IRS) which mediate downstream effects through engaging central signaling pathways including the PI3K/AKT, mTOR, and MAPK pathways (9). In this complex network, PI3Ks are a critical signaling node, mediating many of the metabolic and mitogenic effects of insulin. Importantly, the exact function of insulin signaling in immune cells remains largely unknown, although recently it was shown that T cell specific insulin signaling promotes a specific metabolic program, inducing nutrient uptake to support optimal T cell effector functions (35). Tissue resident macrophages, including ATMs, liver and peritoneal macrophages (pMOs) express the *INSR* gene with pMOs exhibiting highest expression. *INSR* upregulation in pMOs is linked with obesity and M1 macrophages exhibit more expression compared to unstimulated (M0) or M2 macrophages (36). Further, macrophages mainly express IRS-2 but not IRS-1 (37, 38). Although insulin stimulation of macrophages engages the PI3K/AKT signaling cascade (39, 40), it does not activate some important other nodes of the insulin signaling network such as the c-Jun N-terminal kinase (JNK) and p38 pathways (36). Macrophage glucose transport is facilitated mainly via glucose transporter 1 (GLUT1), which is rapidly induced by insulin, an effect that has been described to be more prominent in M1 vs. M0 or M2 macrophages, suggesting possible anti-inflammatory actions of insulin (Figure 1) (36, 41). In line, insulin promotes IL-10 expression dose dependently

in pMOs and RAW264.7 macrophages and insulin priming attenuates TLR4 expression, LPS induced nuclear factor kappa B (NF- κ B), p38 MAPK activation, and IL-1 β production (42). Further, treatment of obese individuals with insulin reverses the pro-inflammatory phenotype of macrophages, eliciting anti-inflammatory effects (43). Concordant with a potential role in resolving macrophage mediated inflammation, insulin-stimulated macrophages exhibit increased expression of phagocytosis associated NAPDH oxidase activity and decreased apoptosis (44, 45). Nonetheless, insulin and PI3K signaling are unlikely to solely promote anti-inflammatory effects. Insulin is reported to increase TNF- α release in human monocytes (46). LPS-stimulation of IR deficient macrophages failed to induce IL-6 and IL-1 β expression suggesting insulin signaling might be required for inflammation (47).

In obesity, surprisingly, mice deficient for the IR specifically in myeloid cells exhibit a protective phenotype associated with decreased ATM accumulation and improved insulin sensitivity (48). A recent report has reproduced these findings, additionally suggesting that there are less pro-inflammatory (F4/80⁺CD11c⁺CD206⁻) and more anti-inflammatory (F4/80⁺CD11c⁻CD206⁺) ATMs present in obese mice lacking the IR in myeloid cells, proposing myeloid cell specific IR signaling modulates ATM phenotypes (38). The authors of this study additionally demonstrated that in obesity, myeloid specific *Irs2*^{-/-} mice exhibit impaired insulin sensitivity, associated with more pro-inflammatory (F4/80⁺CD11c⁺CD206⁻) and less anti-inflammatory (F4/80⁺CD11c⁻CD206⁺) ATMs. This suggests distinct differences between IRS2 and IR in regulating ATM phenotypes. These differences were explained by findings showing that IL-4 promotes M2 macrophage polarization through IRS-2 and post obesity, hyperinsulinemia through engagement of the IR, leads to macrophage IRS-2 downregulation (38). Further, several studies have identified myeloid dysfunctions associated with macrophage cell intrinsic insulin resistance. In this context, macrophages were rendered insulin resistant through pre-incubation with high-dose insulin, genetic deletion of the *INSR* or by pharmacologic inhibition of insulin signaling. Pre-treatment of macrophages with high-dose insulin leads to *INSR* downregulation and suppression of insulin signaling, which is also observed in freshly isolated macrophages from insulin-resistant mice, such as the leptin-deficient *ob/ob* mouse (49). In line, monocytes isolated from diabetic subjects show decreased surface expression and tyrosine kinase activity of the IR and diminished insulin-stimulated PI3K/AKT signaling (50). In response to free cholesterol (FC) loading, *Insr*^{-/-} macrophages exhibit attenuated AKT phosphorylation and an augmented ER stress response, that is independent of the degree of FC loading. This suggests macrophage PI3K signaling through the IR is required to withstand stressful stimuli. The functional consequences of this are increased apoptosis, unconnected to obvious changes in pro/anti-apoptotic gene expression. Indeed, western diet-fed mice with IR deficiency on an *Ldlr* deficient background in hematopoietic cells develop larger, more complex lesions with increased necrotic cores and apoptotic cells (40, 51). Furthermore, insulin resistant macrophages, post-transcriptionally upregulate CD36 and

scavenger receptor A (SR-A), with increased CD36 protein levels dependent on defects in insulin stimulated PI3K signaling and proteasomal and lysosomal catabolism (40, 49). SR-A levels are coupled to increased ER stress as they are increased upon treatment with ER stress inducers (40). In agreement, primary *Insr*^{-/-} macrophages exhibit enhanced binding and uptake of modified LDL. Conversely, *in vivo* treatment of *ob/ob* mice with rosiglitazone, an insulin sensitizing agent and PPAR- γ activator, reverses this phenotype resulting in improved insulin signaling and decreased modified LDL uptake (49). Interestingly, in human macrophages, both CD36 and SR-A basal levels are reported to depend on PI3K activity as selective pharmacological inhibition of Class IA p110 β or δ and Class IB p110 γ attenuates their expression and is associated with reduced macropinocytosis and foam cell formation upon modified LDL challenge (52). Thus, although there may be species-specific differences, intrinsic murine myeloid cell insulin stimulated PI3K dependent signaling promotes myeloid cell survival and modulates lipid metabolism, decreasing foam cell formation.

Consequently, cell intrinsic macrophage insulin resistance and associated downregulation of PI3K signaling results in elevated macrophage lipid burden and death, impacting ectopic lipid spillover, further contributing to pathogenesis in obesity.

PI3KS PROMOTE GLUCOSE DEPENDENT ALTERNATIVE MACROPHAGE ACTIVATION

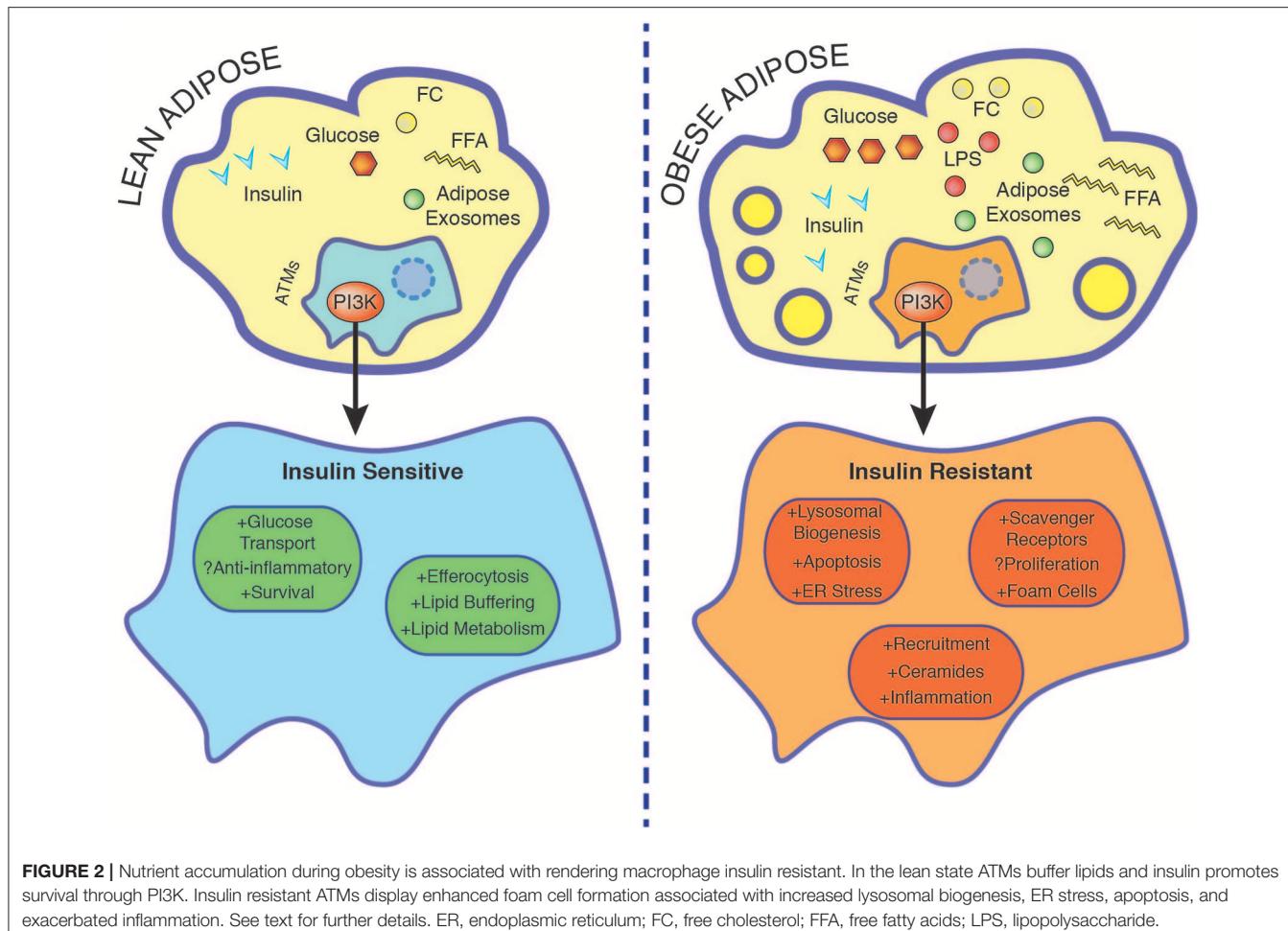
Hyperglycemia is a hallmark of T2D and glucose levels modulate intracellular macrophage metabolism through environmental glucose uptake and subsequent pyruvate and fatty acid generation and there are numerous excellent reviews on this topic (53, 54). Stable overexpression of GLUT1 in RAW264.7 macrophages promotes glucose uptake and metabolism (41). GLUT1, 3 and 5 expression increases as monocytes differentiate into macrophages and high expression is observed in foamy macrophages, which are typically found upon modified lipoprotein challenge and are reminiscent of ATMs (55–57). Enhanced glucose uptake

might promote macrophage survival as *Insr*^{-/-} macrophages, exhibit increased cell death upon glucose deprivation (**Figure 1**) (40), an effect that could be particularly relevant in the context of modified lipoprotein presence (58). Interestingly, recent work indicates that GLUT1 and glucose transport is critical for the uptake of apoptotic cells (also known as efferocytosis), suggesting glycolysis may also promote anti-inflammatory phenotypes in macrophages in part through SLC16A1 mediated lactate release (**Figure 1**) (59). Other reports demonstrate that glucose promotes BMM proliferation and decreases LPS induced MHC-II expression, suggesting glucose levels might impact macrophage polarization (60). In line, high glucose levels have been described to induce the expression of Arg-1 and CD206 in macrophages in a PI3K dependent manner (61). Further, evidence of an importance for glucose in M2 responses is provided by studies demonstrating that PI3K-AKT dependent glucose utilization is critical for IL-4 responses (62, 63).

PI3KS CAN INFLUENCE FFA SIGNALING AND ATM ACCUMULATION

While physiologically FFA release through adipose lipolysis provides an important source of fuel, this process is dysregulated in the obese and insulin resistant state. The general dogma, particularly drawn from experimental murine studies, is that while unsaturated FFAs are anti-inflammatory, saturated FFAs are pro-inflammatory (64). Indeed, saturated FFAs such as palmitate promote skeletal muscle insulin resistance in part by blocking insulin mediated IRS-1 tyrosine phosphorylation and PI3K activity (65, 66). Given IRS-2 is predominantly expressed in macrophages (37), to our knowledge, no studies have addressed whether saturated FFAs decrease IRS-2 phosphorylation and render macrophages insulin resistant. Most studies utilizing macrophages in conjunction with palmitate have focused on its inflammation promoting effects. Indeed, palmitate triggered inflammation is JNK dependent, which is negatively regulated by PI3Ks (**Figure 1**) (67, 68). Although, palmitate has been suggested to mediate its effects via TLR4 (53), recent data indicates that JNK activation by palmitate is TLR4 independent (**Figure 1**). While LPS induced TLR4 signaling rapidly activates MAPK and NF-κB signaling and TLR4 endocytosis, palmitate activates these pathways much later and does not induce TLR4 endocytosis (54). The authors of this study demonstrated that LPS priming of macrophages altered cellular metabolism, gene expression and macrophage membrane lipid composition, which were necessary for palmitate induced inflammation (54). Notably, the effect of palmitate on inflammation might also depend on macrophage differentiation status. In fully differentiated macrophages, palmitate treatment elicits a pro-inflammatory phenotype, that is dependent on ER stress, as it is abrogated upon incubation with ER stress inhibitors (60). This is consistent with studies demonstrating that palmitate activates ER stress (64). However, during BMM differentiation chronic palmitate exposure been described to inhibit proliferation and promote an anti-inflammatory M2

phenotype, associated with increased PPAR-γ and CD206 expression (60).


Palmitate treatment of monocytes leads to macrophage inflammatory protein 1-alpha and beta upregulation (MIP-1 α/β , also known as CCL3 and 4, respectively) and this occurs in a MAPK, NF-κB, and PI3K dependent manner indicating that PI3Ks can directly promote FFA mediated inflammation (69, 70). Interestingly, both chemokines are involved in neutrophil and monocyte recruitment, respectively (71), suggesting FFA mediated PI3K dependent signaling could promote increases in ATM number. Further evidence that palmitate mediated PI3K activation within myeloid cells regulates ATM content is provided by observations that palmitate treatment of macrophages induces netrin-1 and its receptor Unc5b, mediators that promote ATM retention and accumulation (72). Interestingly, in other cellular systems, netrin-1 acts in concert with its receptor in a PI3K dependent manner (73), although the functional relevance of PI3Ks to palmitate mediated ATM retention remains unexplored. These studies suggest that PI3Ks integrate signals derived from FFAs and thereby influences ATM accumulation and inflammatory status. However, many of the studies cited are limited by their exclusive use of *in vitro* models, disregarding the complexity of signals present *in vivo*.

CHOLESTEROL ACTIVATES THE PI3K PATHWAY

Cholesterol exists as free cholesterol (FC) or as cholesterol esters. During obesity, adipose tissue accumulates FC and this correlates with increased ATM content (74). Cholesterol and modified lipoproteins are taken up by macrophages through macropinocytosis, scavenger receptors (e.g., CD36, SRA-1) and the low density lipoprotein receptor (LDLR), leading to foam cell formation that impacts inflammation and viability (**Figure 1**) (75). FC is reported to impact macrophage inflammation in a concentration dependent manner, with lower and higher levels promoting anti and pro-inflammatory phenotypes, respectively (76). In macrophages, FC also induces AKT phosphorylation indicating it activates the PI3K pathway (40). Macrophages use cholesterol efflux pathways to maintain cellular lipid homeostasis with ABCA1 mediating the transport of cholesterol and phospholipids to lipid-free apolipoproteins such as apoA-I (75). ABCA1 upregulation in turn selectively attenuates FC, dampening inflammation by reducing TLR trafficking to lipid rafts, indicating the presence of feedback loops that resolve inflammation (77).

PI3K DEPENDENT UPTAKE OF ADIPOSE EXOSOMES

Exosomes are small (30–150 nm) endosomal derived membrane microvesicles secreted from cells that carry proteins, lipids, nucleic acids, and can reprogram recipient cells (78). Recent work demonstrates that the uptake of adipose exosomes (AdExo), promotes BMM differentiation into ATM like

FIGURE 2 | Nutrient accumulation during obesity is associated with rendering macrophage insulin resistant. In the lean state ATMs buffer lipids and insulin promotes survival through PI3K. Insulin resistant ATMs display enhanced foam cell formation associated with increased lysosomal biogenesis, ER stress, apoptosis, and exacerbated inflammation. See text for further details. ER, endoplasmic reticulum; FC, free cholesterol; FFA, free fatty acids; LPS, lipopolysaccharide.

cells by inducing lysosomal biogenesis (79). Interestingly, AdExo do not carry FFAs but are particularly rich in FC and triglycerides and are taken up by macrophages through macropinocytosis, PI3K dependently, suggesting PI3Ks might modulate macrophage lipid loading in response to AdExos (Figure 1). They thus represent a novel intercellular communication route for the transfer of these lipids to macrophages (79).

PI3KS INTEGRATE THE ENVIRONMENTAL CUES THAT DICTATE MACROPHAGE PHENOTYPES IN OBESITY

Within adipose tissue during obesity, the metabolic stimuli outlined above, although elevated, likely exist at differing levels within the microenvironment and synergize their signaling with other stimuli, notably, LPS. This poses the question of how do myeloid cells respond to the combined actions of these stimuli and where do PI3Ks fit into this context during obesity? We propose a model where attenuated PI3K signaling within myeloid cells is central to meta-inflammation.

HOW MIGHT PI3KS AFFECT THE SYNERGY BETWEEN METABOLIC STIMULI IN MACROPHAGES IN OBESITY?

Obesity alters the gut microbiome and is associated with increased circulating LPS, which initiates adipose tissue inflammation and macrophage activation in a manner dependent on intact TLR4 signaling, a phenomenon coined “metabolic endotoxemia” (80, 81). Interestingly, TLR4 ligation and palmitate presence synergistically augment macrophage ceramide production through *de novo* synthesis in the ER and this is implicated in augmenting IL-1 β synthesis (82). This might be especially relevant given TLR4-dependent priming of macrophages is reported to be necessary for FFA induced inflammation and thus might act as a initiating stimulus promoting FFA mediated inflammation (Figure 2) (67, 83). Numerous studies demonstrate that ceramides alter PI3K signaling by promoting insulin resistance through either dephosphorylating AKT or through blocking AKT translocation to the plasma membrane (84–86). Together a potential synergy between LPS and FFAs might impact macrophage intrinsic insulin sensitivity through PI3Ks.

As TLR4 dependent signaling is increased in obesity, as outlined earlier, PI3Ks would presumably limit pro-inflammatory responses through various mechanisms including the promotion of M2 responses (13–16). Generation of alternatively activated macrophages would also be favored by prevalent hyperglycemia in obesity in a PI3K-AKT dependent manner (61–63). However, high doses of insulin render macrophages insulin resistant, decreasing PI3K signaling and thus inhibiting insulin stimulated glucose uptake through GLUT-1 (36). Together, decreased myeloid cell PI3K signaling in the insulin resistant state would shift macrophage phenotypes toward pro-inflammation through a synergistic effect of high insulin, glucose, and LPS.

High glucose/insulin/palmitate stimulation of macrophages leads to upregulation of lipid metabolism genes (ABCA1, CD36, and PLIN2) and cellular programs associated with lysosomal biogenesis and autophagy, mimicking the effects of FC (30, 75). FC activates the PI3K pathway and elevated AdExos in obesity are taken up by macrophages through macropinocytosis, PI3K dependently (40, 79). Decreased PI3K signaling in insulin resistant macrophages would therefore contribute to enhanced systemic levels of these metabolic stressors. Furthermore, attenuated PI3K signaling in insulin resistant macrophages leads to upregulation of scavenger receptors and compensatory proteasomal and lysosomal catabolism (40, 49). This in turn induces a vicious cycle of modified lipid uptake, further promoting ER stress and apoptosis, which is aggravated in insulin resistant macrophages (40, 58). Consequently, we propose in obesity, cell intrinsic macrophage PI3K signaling would be downregulated and result in elevated lipid burden and death. This would impact the lipid buffering capacity of ATMs, further promoting ectopic lipid spillover and meta-inflammation (Figure 2). To sum up, the different metabolic inputs outlined in this review affect the degree/strength of PI3K signaling and together synergistically determine macrophage cell survival, lipid metabolism, and inflammatory phenotype.

CONCLUDING REMARKS

Slightly over 25 years ago, the concept of meta-inflammation was born by the discovery that adipose expressed TNF reduced adipose GLUT4 levels and neutralization of TNF in obese rats improved insulin sensitivity (5). Supportive of the key role of peripheral inflammation in obesity, obese myeloid-specific IKK β or JNK deficient mice exhibit improved systemic insulin sensitivity (6, 7). Peripheral NF- κ B activation is critical, as inhibiting this pathway in hepatocytes prevents IL-1 β and insulin induced IR tyrosine phosphorylation and p85 association with IRS-1 (7). Since then, the contribution of ATMs to systemic inflammation has received much attention with the dogma that inflammatory pathways attenuate downstream PI3K signaling and initiate and exacerbate inflammatory responses,

particularly in peripheral metabolic tissues such as the liver. However, only recently the importance of how environment re-programs and wires tissue resident macrophages has been appreciated (87).

We present an emerging paradigm where environmental stimuli encountered by ATMs during obesity reprogram them in a manner that is associated with macrophage intrinsic insulin resistance and drastic changes in intracellular lipids leading to oxidative and ER stress and upregulation of lysosomal and proteasomal programs. We propose myeloid cell PI3K activation integrates these environmental cues through its influences on saturated FFA responses, ATM accumulation, cell survival and the degree of lipid loading. This would presumably have consequences on ectopic lipid spill over and peripheral insulin sensitivity. While mice possessing global deletions of p85 α/β and p55 $\alpha/p50\alpha$ exhibit improved insulin sensitivity (88–90) and mice with global deletions in p110 α and p110 β display impaired insulin sensitivity (91, 92), given that these subunits are deleted in all insulin sensitive tissues the exact function of myeloid cell specific PI3Ks during obesity and insulin resistance remains an enigma. To our knowledge, there is only one study that conditionally deleted a PI3K subunit in myeloid cells. By crossing floxed p110 γ mice with mice expressing the Cre recombinase under the control of the *Tie2* promoter, Breasson and colleagues demonstrated efficient deletion of p110 γ in endothelial cells and adipose associated immune cells. These animals exhibited improved insulin sensitivity associated with increased CD206 expression in adipose tissue, independent of differences in ATM content, suggesting p110 γ is dispensable for ATM recruitment but promotes M1 responses in obesity (93). Undoubtedly, myeloid cell specific deletions of class I PI3Ks in the context of obesity coupled to isolating primary macrophages from these mice and challenging them with the metabolic stimuli outlined in this review, will yield fruitful insights into the contribution of class I PI3Ks to obesity and ATM function.

AUTHOR CONTRIBUTIONS

OS, JB, AV, and GS has conceived and written this manuscript. JB designed the figures as presented.

FUNDING

This work was supported by funds from the Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis (to GS) and from the Austrian Science Fund (FWF P30026 to GS and FWF P35168 to OS). JB and AV have been awarded a DOC fellowship of the Austrian Academy of Sciences.

ACKNOWLEDGMENTS

We apologize to colleagues whose work could not be cited due to space constraints.

REFERENCES

- Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. *Cell.* (1989) 57:167–75. doi: 10.1016/0092-8674(89)90182-7
- Cantley LC. The phosphoinositide 3-kinase pathway. *Science.* (2002) 296:1655–7. doi: 10.1126/science.296.5573.1655
- Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. *J Clin Oncol.* (2010) 28:1075–83. doi: 10.1200/JCO.2009.25.3641
- Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. *Nat Rev Immunol.* (2011) 11:738–49. doi: 10.1038/nri3071
- Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor- α : direct role in obesity-linked insulin resistance. *Science.* (1993) 259:87–91. doi: 10.1126/science.7678183
- Han MS, Jung DY, Morel C, Lakhani SA, Kim JK, Flavell RA, et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. *Science.* (2013) 339:218–22. doi: 10.1126/science.1227568
- Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK- β links inflammation to obesity-induced insulin resistance. *Nat Med.* (2005) 11:191–8. doi: 10.1038/nm1185
- Leto D, Saltiel AR. Regulation of glucose transport by insulin: traffic control of GLUT4. *Nat Rev Mol Cell Biol.* (2012) 13:383–96. doi: 10.1038/nrm3351
- Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. *Nat Rev Mol Cell Biol.* (2006) 7:85–96. doi: 10.1038/nrm1837
- Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. *Nature.* (2001) 414:799–806. doi: 10.1038/414799a
- Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. *Cell.* (2017) 170:605–35. doi: 10.1016/j.cell.2017.07.029
- Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. *F1000Prime Rep.* (2014) 6:13. doi: 10.12703/P6-13
- Guha M, Mackman N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. *J Biol Chem.* (2002) 277:32124–32. doi: 10.1074/jbc.M203298200
- Luo L, Wall AA, Yeo JC, Condon ND, Norwood SJ, Schoenwaelder S, et al. Rab8a interacts directly with PI3Kgamma to modulate TLR4-driven PI3K and mTOR signalling. *Nat Commun.* (2014) 5:4407. doi: 10.1038/ncomms5407
- Luyendyk JP, Schabbauer GA, Tencati M, Holscher T, Pawlinski R, Mackman N. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. *J Immunol.* (2008) 180:4218–26. doi: 10.4049/jimmunol.180.6.4218
- Sahin E, Haubenwallner S, Kuttke M, Kollmann I, Halfmann A, Dohnal AM, et al. Macrophage PTEN regulates expression and secretion of arginase 1 modulating innate and adaptive immune responses. *J Immunol.* (2014) 193:1717–27. doi: 10.4049/jimmunol.1302167
- Fan W, Morinaga H, Kim JJ, Bae E, Spann NJ, Heinz S, et al. FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. *EMBO J.* (2010) 29:4223–36. doi: 10.1038/embj.2010.268
- Gonzalez E, McGraw TE. The Akt kinases: isoform specificity in metabolism and cancer. *Cell Cycle.* (2009) 8:2502–8. doi: 10.4161/cc.8.16.9335
- Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. *J Immunol.* (2017) 198:1006–14. doi: 10.4049/jimmunol.1601515
- Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. *Proc Natl Acad Sci USA.* (2012) 109:9517–22. doi: 10.1073/pnas.1119038109
- Xu F, Kang Y, Zhang H, Piao Z, Yin H, Diao R, et al. Akt1-mediated regulation of macrophage polarization in a murine model of *Staphylococcus aureus* pulmonary infection. *J Infect Dis.* (2013) 208:528–38. doi: 10.1093/infdis/jit177
- Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. *J Cell Biol.* (2015) 208:501–12. doi: 10.1083/jcb.201409063
- Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. *J Clin Invest.* (2006) 116:1494–505. doi: 10.1172/JCI26498
- Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawer JC, et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. *Cell Metab.* (2014) 19:162–71. doi: 10.1016/j.cmet.2013.11.017
- Kosteli A, Suguru E, Haemmerle G, Martin JF, Lei J, Zechner R, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. *J Clin Invest.* (2010) 120:3466–79. doi: 10.1172/JCI42845
- Odegaard JJ, Ganeshan K, Chawla A. Adipose tissue macrophages: amicus adipem? *Cell Metab.* (2013) 18:767–8. doi: 10.1016/j.cmet.2013.11.011
- Hill DA, Lim HW, Kim YH, Ho WY, Foong YH, Nelson VL, et al. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. *Proc Natl Acad Sci USA.* (2018) 115:E5096–E105. doi: 10.1073/pnas.1802611115
- Patouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. *Cell Metab.* (2008) 8:301–9. doi: 10.1016/j.cmet.2008.08.015
- Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. *J Clin Invest.* (2007) 117:175–84. doi: 10.1172/JCI29881
- Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. *Cell Metab.* (2014) 20:614–25. doi: 10.1016/j.cmet.2014.08.010
- Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW Jr. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. *Cell Metab.* (2013) 18:816–30. doi: 10.1016/j.cmet.2013.11.001
- Silva HM, Bafica A, Rodrigues-Luiz GF, Chi J, Santos PDA, Reis BS, et al. Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges. *J Exp Med.* (2019) 216:786–806. doi: 10.1101/336032
- Coats BR, Schoenfelt KQ, Barbosa-Lorenzi VC, Peris E, Cui C, Hoffman A, et al. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. *Cell Rep.* (2017) 20:3149–61. doi: 10.1016/j.celrep.2017.08.096
- Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Falò E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. *J Lipid Res.* (2005) 46:2347–55. doi: 10.1194/jlr.M500294-JLR200
- Tsai S, Clemente-Casares X, Zhou AC, Lei H, Ahn JJ, Chan YT, et al. Insulin receptor-mediated stimulation boosts T cell immunity during inflammation and infection. *Cell Metab.* (2018) 28:922–34 e4. doi: 10.1016/j.cmet.2018.08.003
- Dror E, Dalmas E, Meier DT, Wueest S, Thevenet J, Thienel C, et al. Postprandial macrophage-derived IL-1 β stimulates insulin, and both synergistically promote glucose disposal and inflammation. *Nat Immunol.* (2017) 18:283–92. doi: 10.1038/ni.3659
- Welham MJ, Bone H, Levings M, Learmonth L, Wang LM, Leslie KB, et al. Insulin receptor substrate-2 is the major 170-kDa protein phosphorylated on tyrosine in response to cytokines in murine lymphohemopoietic cells. *J Biol Chem.* (1997) 272:1377–81. doi: 10.1074/jbc.272.2.1377
- Kubota T, Inoue M, Kubota N, Takamoto I, Mineyama T, Iwayama K, et al. Downregulation of macrophage Irs2 by hyperinsulinemia impairs IL-4-induced M2a-subtype macrophage activation in obesity. *Nat Commun.* (2018) 9:4863. doi: 10.1038/s41467-018-07358-9
- Hartman ME, O'Connor JC, Godbout JP, Minor KD, Mazzocco VR, Freund GG. Insulin receptor substrate-2-dependent interleukin-4 signaling in macrophages is impaired in two models of type 2 diabetes mellitus. *J Biol Chem.* (2004) 279:28045–50. doi: 10.1074/jbc.M404368200

40. Han S, Liang CP, DeVries-Seimon T, Ranalletta M, Welch CL, Collins-Fletcher K, et al. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. *Cell Metab.* (2006) 3:257–66. doi: 10.1016/j.cmet.2006.02.008
41. Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. *J Biol Chem.* (2014) 289:7884–96. doi: 10.1074/jbc.M113.522037
42. Pal S, Nath P, Das D, Hajra S, Maitra S. Cross-talk between insulin signalling and LPS responses in mouse macrophages. *Mol Cell Endocrinol.* (2018) 476:57–69. doi: 10.1016/j.mce.2018.04.009
43. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? *J Clin Endocrinol Metab.* (2001) 86:3 257–65. doi: 10.1210/jcem.86.7.7623
44. Iida KT, Suzuki H, Sone H, Shimano H, Toyoshima H, Yatoh S, et al. Insulin inhibits apoptosis of macrophage cell line, THP-1 cells, via phosphatidylinositol-3-kinase-dependent pathway. *Arterioscler Thromb Vasc Biol.* (2002) 22:380–6. doi: 10.1161/hq0302.105272
45. Fortuno A, San Jose G, Moreno MU, Beloqui O, Diez J, Zalba G. Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome. *Diabetes.* (2006) 55:209–15. doi: 10.2337/diabetes.55.01.06.db05-0751
46. Iida KT, Shimano H, Kawakami Y, Sone H, Toyoshima H, Suzuki S, et al. Insulin up-regulates tumor necrosis factor-alpha production in macrophages through an extracellular-regulated kinase-dependent pathway. *J Biol Chem.* (2001) 276:32531–7. doi: 10.1074/jbc.M009894200
47. Baumgartl J, Baudler S, Scherner M, Babaev V, Makowski L, Suttles J, et al. Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis. *Cell Metab.* (2006) 3:247–56. doi: 10.1016/j.cmet.2006.02.010
48. Mauer J, Chaurasia B, Plum L, Quast T, Hampel B, Bluher M, et al. Myeloid cell-restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance. *PLoS Genet.* (2010) 6:e1000938. doi: 10.1371/journal.pgen.1000938
49. Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. *J Clin Invest.* (2004) 113:764–73. doi: 10.1172/JCI19528
50. Comi RJ, Grunberger G, Gorden P. Relationship of insulin binding and insulin-stimulated tyrosine kinase activity is altered in type II diabetes. *J Clin Invest.* (1987) 79:453–62. doi: 10.1172/JCI112833
51. Senokuchi T, Liang CP, Seimon TA, Han S, Matsumoto M, Banks AS, et al. Forkhead transcription factors (FoxOs) promote apoptosis of insulin-resistant macrophages during cholesterol-induced endoplasmic reticulum stress. *Diabetes.* (2008) 57:2967–76. doi: 10.2337/db08-0520
52. Michael DR, Davies TS, Laubertova L, Gallagher H, Ramji DP. The phosphoinositide 3-kinase signaling pathway is involved in the control of modified low-density lipoprotein uptake by human macrophages. *Lipids.* (2015) 50:253–60. doi: 10.1007/s11745-015-3993-0
53. O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. *Nat Rev Immunol.* (2016) 16:553–65. doi: 10.1038/nri.2016.70
54. Russell DG, Huang L, VanderVen BC. Immunometabolism at the interface between macrophages and pathogens. *Nat Rev Immunol.* (2019) 19:291–304. doi: 10.1038/s41577-019-0124-9
55. Malide D, Davies-Hill TM, Levine M, Simpson IA. Distinct localization of GLUT-1, -3, and -5 in human monocyte-derived macrophages: effects of cell activation. *Am J Physiol.* (1998) 274(3 Pt 1):E516–26. doi: 10.1152/ajpendo.1998.274.3.E516
56. Fu Y, Maianu L, Melbert BR, Garvey WT. Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. *Blood Cells Mol Dis.* (2004) 32:182–90. doi: 10.1016/j.bcmd.2003.09.002
57. Shapiro H, Pecht T, Shaco-Levy R, Harman-Boehm I, Kirshtein B, Kuperman Y, et al. Adipose tissue foam cells are present in human obesity. *J Clin Endocrinol Metab.* (2013) 98:1173–81. doi: 10.1210/jc.2012-2745
58. Elsegood CL, Chang M, Jessup W, Scholz GM, Hamilton JA. Glucose metabolism is required for oxidized LDL-induced macrophage survival: role of PI3K and Bcl-2 family proteins. *Arterioscler Thromb Vasc Biol.* (2009) 29:1283–9. doi: 10.1161/ATVBAHA.108.180778
59. Morioka S, Perry JS, Raymond MH, Medina CB, Zhu Y, Zhao L, et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. *Nature.* (2018) 563:714–8. doi: 10.1038/s41586-018-0735-5
60. Xiu F, Diao L, Qi P, Catapano M, Jeschke MG. Palmitate differentially regulates the polarization of differentiating and differentiated macrophages. *Immunology.* (2016) 147:82–96. doi: 10.1111/imm.12543
61. Wang J, Liu J, Wang Y, Lin M, Tian W, Zhou L, et al. High glucose induces alternative activation of macrophages via PI3K/Akt signaling pathway. *J Recept Signal Transduct Res.* (2017) 37:409–15. doi: 10.1080/10799893.2017.1298131
62. Huang SC, Smith AM, Evertz B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. *Immunity.* (2016) 45:817–30. doi: 10.1016/j.jimmuni.2016.09.016
63. Covarrubias AJ, Aksoylar HI, Yu J, Snyder NW, Worth AJ, Iyer SS, et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. *Elife.* (2016) 5:11612. doi: 10.7554/eLife.11612
64. Robblee MM, Kim CC, Porter Abate J, Valdearcos M, Sandlund KL, Shenoy MK, et al. Saturated fatty acids engage an IRE1alpha-dependent pathway to activate the NLRP3 inflammasome in myeloid cells. *Cell Rep.* (2016) 14:2611–23. doi: 10.1016/j.celrep.2016.02.053
65. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. *J Biol Chem.* (2002) 277:50230–6. doi: 10.1074/jbc.M2009 58200
66. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. *J Clin Invest.* (1999) 103:253–9. doi: 10.1172/JCI5001
67. Riera-Borrull M, Cuevas VD, Alonso B, Vega MA, Joven J, Izquierdo E, et al. Palmitate conditions macrophages for enhanced responses toward inflammatory stimuli via JNK activation. *J Immunol.* (2017) 199:3858–69. doi: 10.4049/jimmunol.1700845
68. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. *J Clin Invest.* (2006) 116:3015–25. doi: 10.1172/JCI28898
69. Ahmad R, Akhter N, Al-Roub A, Kochumon S, Wilson A, Thomas R, et al. MIP-1alpha induction by palmitate in the human monocytic cells implicates TLR4 signaling mechanism. *Cell Physiol Biochem.* (2019) 52:212–24. doi: 10.33594/000000015
70. Kochumon S, Wilson A, Chandy B, Shenouda S, Tuomilehto J, Sindhu S, et al. Palmitate activates CCL4 expression in human monocytic cells via TLR4/MyD88 dependent activation of NF-kappaB/MAPK/PI3K signaling systems. *Cell Physiol Biochem.* (2018) 46:953–64. doi: 10.1159/000488824
71. Xu L, Kitade H, Ni Y, Ota T. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. *Biomolecules.* (2015) 5:1563–79. doi: 10.3390/biom5031563
72. Ramkhelawon B, Hennessy EJ, Menager M, Ray TD, Sheedy FJ, Hutchison S, et al. Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. *Nat Med.* (2014) 20:377–84. doi: 10.1038/nm.3467
73. Tang X, Jang SW, Okada M, Chan CB, Feng Y, Liu Y, et al. Netrin-1 mediates neuronal survival through PIKE-L interaction with the dependence receptor UNC5B. *Nat Cell Biol.* (2008) 10:698–706. doi: 10.1038/ncb1732
74. Subramanian S, Han CY, Chiba T, McMillen TS, Wang SA, Haw A 3rd, et al. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice. *Arterioscler Thromb Vasc Biol.* (2008) 28:685–91. doi: 10.1161/ATVBAHA.107.157685
75. Pennings M, Meurs I, Ye D, Out R, Hoekstra M, Van Berkel TJ, et al. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. *FEBS Lett.* (2006) 580:5588–96. doi: 10.1016/j.febslet.2006.08.022
76. Xu X, Zhang A, Li N, Li PL, Zhang F. Concentration-dependent diversification effects of free cholesterol loading on macrophage viability and polarization. *Cell Physiol Biochem.* (2015) 37:419–31. doi: 10.1159/000430365

77. Zhu X, Owen JS, Wilson MD, Li H, Griffiths GL, Thomas MJ, et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. *J Lipid Res.* (2010) 51:3196–206. doi: 10.1194/jlr.M006486
78. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. *Cell Biosci.* (2019) 9:19. doi: 10.1186/s13578-019-0282-2
79. Flaherty SE 3rd, Grijalva A, Xu X, Ables E, Nomani A, Ferrante AW Jr. A lipase-independent pathway of lipid release and immune modulation by adipocytes. *Science.* (2019) 363:989–93. doi: 10.1126/science.aaw2586
80. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. *Cell Metab.* (2015) 22:658–68. doi: 10.1016/j.cmet.2015.07.026
81. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. *Diabetes.* (2007) 56:1761–72. doi: 10.2337/db06-1491
82. Schilling JD, Machkovech HM, He L, Sidhu R, Fujiwara H, Weber K, et al. Palmitate and lipopolysaccharide trigger synergistic ceramide production in primary macrophages. *J Biol Chem.* (2013) 288:2923–32. doi: 10.1074/jbc.M112.419978
83. Lancaster GI, Langley KG, Berglund NA, Kammoun HL, Reibe S, Estevez E, et al. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. *Cell Metab.* (2018) 27:1096–110 e5. doi: 10.1016/j.cmet.2018.03.014
84. Stratford S, Hoehn KL, Liu F, Summers SA. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. *J Biol Chem.* (2004) 279:36608–15. doi: 10.1074/jbc.M406499200
85. Stratford S, DeWald DB, Summers SA. Ceramide dissociates 3'-phosphoinositide production from pleckstrin homology domain translocation. *Biochem J.* (2001) 354(Pt 2):359–68. doi: 10.1042/bj3540359
86. Chaurasia B, Summers SA. Ceramides - lipotoxic inducers of metabolic disorders. *Trends Endocrinol Metab.* (2015) 26:538–50. doi: 10.1016/j.tem.2015.07.006
87. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. *Cell.* (2014) 159:1312–26. doi: 10.1016/j.cell.2014.11.018
88. Terauchi Y, Tsuji Y, Satoh S, Minoura H, Murakami K, Okuno A, et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. *Nat Genet.* (1999) 21:230–5. doi: 10.1038/6023
89. Chen D, Mauvais-Jarvis F, Bluher M, Fisher SJ, Jozsi A, Goodyear LJ, et al. p50alpha/p55alpha phosphoinositide 3-kinase knockout mice exhibit enhanced insulin sensitivity. *Mol Cell Biol.* (2004) 24:320–9. doi: 10.1128/MCB.24.1.320-329.2004
90. Ueki K, Yballe CM, Brachmann SM, Vicent D, Watt JM, Kahn CR, et al. Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide 3-kinase. *Proc Natl Acad Sci USA.* (2002) 99:419–24. doi: 10.1073/pnas.012581799
91. Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E, et al. Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. *Nature.* (2006) 441:366–70. doi: 10.1038/nature04694
92. Ciraolo E, Iezzi M, Marone R, Marengo S, Curcio C, Costa C, et al. Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development. *Sci Signal.* (2008) 1:ra3. doi: 10.1126/scisignal.11161577
93. Breasson L, Becattini B, Sardi C, Molinaro A, Zani F, Marone R, et al. PI3Kgamma activity in leukocytes promotes adipose tissue inflammation and early-onset insulin resistance during obesity. *Sci Signal.* (2017) 10:eaaf2969. doi: 10.1126/scisignal.aaf2969

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Sharif, Brunner, Vogel and Schabbauer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Metabolic Control of Innate Lymphoid Cell Migration

Tim Willinger*

Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden

Innate lymphoid cells (ILCs) are specialized immune cells that rapidly respond to environmental challenges, such as infection and tissue damage. ILCs play an important role in organ homeostasis, tissue repair, and host defense in the mucosal tissues intestine and lung. ILCs are sentinels of healthy tissue function, yet it is poorly understood how ILCs are recruited, strategically positioned, and maintained within tissues. Accordingly, ILC migration is an area that has recently come into focus and it is important to define the signals that control ILC migration to and within tissues. In this context, signals from the local tissue microenvironment are relevant. For example, ILCs in the intestine are exposed to an environment that is rich in dietary, microbial, and endogenous metabolites. It has been shown that the Vitamin A metabolite retinoic acid promotes ILC1 and ILC3 homing to the intestine. In addition, recent studies have discovered cholesterol metabolites (oxysterols) as a novel class of molecules that regulate ILC migration through the receptor GPR183. ILCs are considered to be largely tissue-resident cells, yet recent data indicate that ILCs actively migrate during inflammation. Furthermore, the discovery of circulating ILC precursors in humans and their presence within tissues has fueled the concept of local ILC-poiesis. However, it is unclear how circulating ILCs enter tissue during embryogenesis and inflammation and how they are directed to local tissue niches. In this review, I will discuss the metabolic signals that regulate ILC homing and their strategic positioning in healthy and inflamed tissues. It is becoming increasingly clear that ILC function is closely linked to their tissue localization. Therefore, understanding the tissue signals that control ILC migration could open new avenues for the treatment of chronic inflammatory diseases and cancer.

OPEN ACCESS

Edited by:

Anna Ohradanova-Repic,
Medical University of Vienna, Austria

Reviewed by:

Andreas Diefenbach,
Charité University Medicine, Germany
Arthur Mortha,
University of Toronto, Canada

*Correspondence:

Tim Willinger
tim.willinger@ki.se

Specialty section:

This article was submitted to
NK and Innate Lymphoid Cell Biology,
a section of the journal
Frontiers in Immunology

Received: 22 March 2019

Accepted: 08 August 2019

Published: 22 August 2019

Citation:

Willinger T (2019) Metabolic Control of Innate Lymphoid Cell Migration.
Front. Immunol. 10:2010.
doi: 10.3389/fimmu.2019.02010

BACKGROUND

Innate lymphoid cells (ILCs) are immune cells of lymphoid origin that quickly respond to perturbations of tissue homeostasis. Apart from their role in barrier immunity and host defense, ILCs are also essential for organ homeostasis, recovery from tissue injury, and metabolism (1–5). In addition to cytotoxic natural killer (NK) cells, three different ILC types can be distinguished based on signature transcription factors and effector cytokines, similar to CD4⁺ T helper lymphocytes: (1) T-BET⁺ ILC1s produce interferon-gamma (IFN γ); (2) GATA3^{high} ILC2s produce interleukin-5 (IL-5) and IL-13; (3) ROR γ t⁺ ILC3s produce IL-17 and/or IL-22. ROR γ t⁺ ILC3s include fetal lymphoid tissue-inducer (LTi) cells and adult LTi-like cells that have a similar phenotype (CCR6⁺NKp46[−]) and mainly reside in lymphoid tissues (6, 7). LTi cells are now considered a separate ILC lineage due to their unique ontogeny (5, 8). α 4 β 7⁺CXCR6⁺ ILC3 precursors (ILC3Ps)

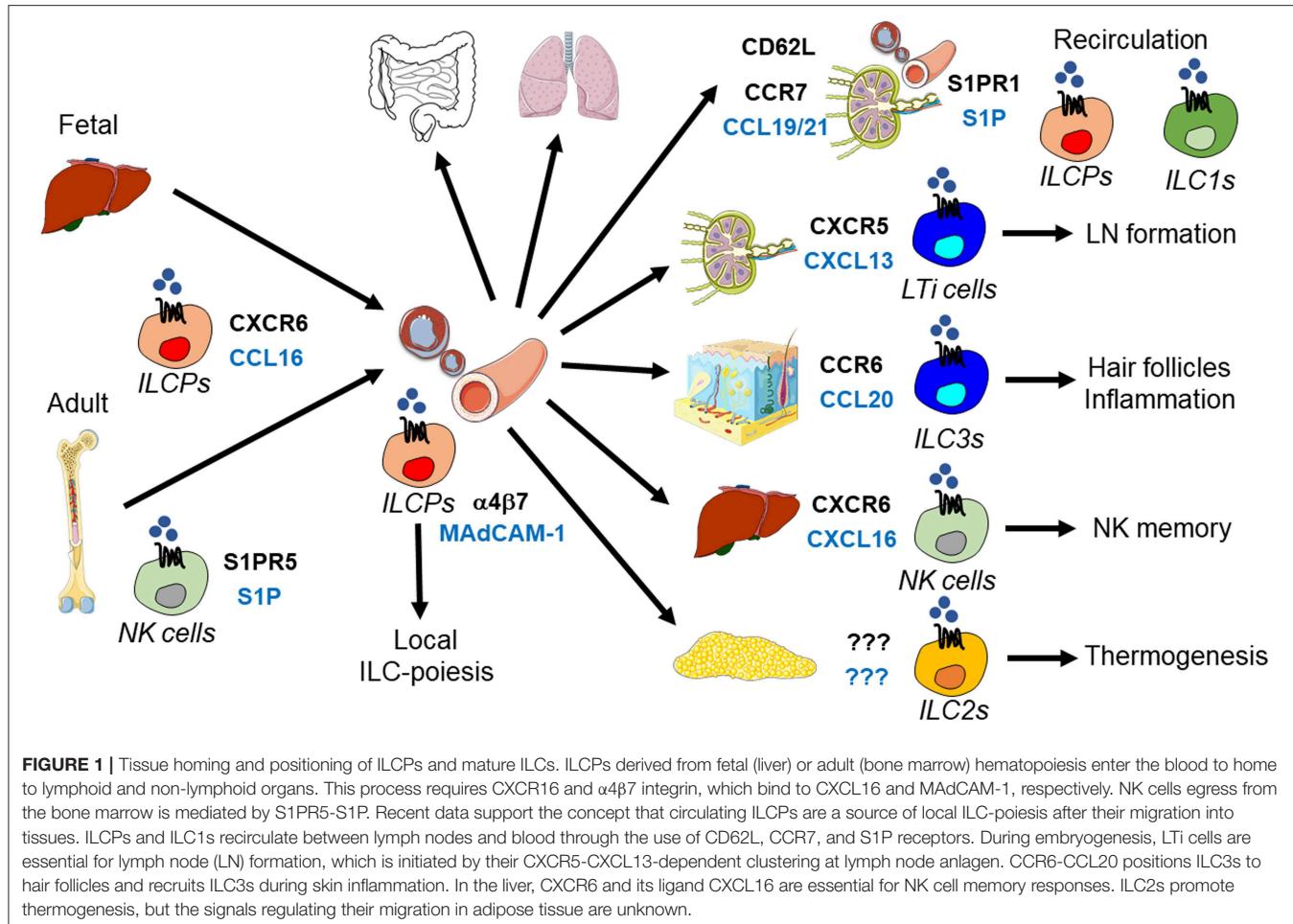
develop into LTi cells in the fetal liver (9). In contrast, adult LTi-like ILC3s can derive from bone marrow precursors that upregulate ROR γ t in peripheral tissues, such as the intestine, in a Notch-dependent manner (9). Perinatal ROR γ t $^{+}$ ILCs give rise to long-lived ILC3s in the small intestine (10), yet it is unclear whether and to what extent embryonic LTi cells persist in the adult. Therefore, the developmental relationship between fetal LTi cells and adult LTi-like ILC3s remains to be defined. Adult mice also have T-BET-expressing CCR6 $^{-}$ NKp46 $^{+}$ ILC3s that are derived from CCR6 $^{-}$ NKp46 $^{-}$ ILC3s (11). Dietary phytochemicals acting through the aryl hydrocarbon receptor (AHR) are required for the post-natal expansion of these CCR6 $^{-}$ adult ILC3s (12–14). Both fetal LTi cells (15) and adult ILC3s in the intestine (16, 17) are dependent on the Vitamin A metabolite retinoic acid.

Many features of ILCs are shared with T cells, but ILCs also have unique, non-redundant, functions, such as the ability to orchestrate the formation of lymphoid tissues, which is carried out by ILC3s with LTi function (12, 13, 18–21). In mice, the prenatal formation of lymphoid tissues (lymph nodes and Peyer's Patches) is carried out by CD4 $^{+}$ fetal LTi cells, whereas adult ILC3s mediate the development of intestinal cryptopatches and isolated lymphoid follicles that develop after birth (22, 23). Besides their beneficial effects, ILCs have been implicated in chronic inflammatory responses that underlie human disease (24–26).

The main focus in the research on ILCs has been on cell lineage relationships, transcription factors, and effector function—mostly based on analogies with T lymphocytes. ILC migration has only recently become an active area of investigation. Their strategic position within tissues allows ILCs to fulfill their role as sentinels of healthy tissue function. Furthermore, local ILC clustering and rapid migration in response to inflammatory signals may explain why ILCs exert such powerful effects on tissue immunity (Figures 1–3). However, much remains to be learned about the pathways that regulate the migration and tissue localization of ILCs. In this review, I mainly discuss the migration of ILCs other than NK cells.

TISSUE DISTRIBUTION OF ILCs

ILCs are found in many organs, but are enriched in mucosal tissues (intestine, lung) that are most exposed to the environment (10, 16, 27–31). Furthermore, the relative abundance of ILC subsets differs between tissues in mice (10, 16, 28) and humans (30, 31), with ILCs perhaps less compartmentalized in humans than in mice (31). For example, ILC3s are abundant in the small intestine and ILC2s in the skin as well as in adipose tissue, whereas NK cells predominate in bone marrow, spleen, liver, and lung (32). In addition, there are regional differences in ILC distribution within the same organ. For example, NKp46 $^{+}$ ILC3s are enriched in the small intestine, whereas in the colon adult LTi-like ILC3s are more prevalent. In addition, ILC2s are more abundant in the colon than in the small intestine (32). Moreover, ILC abundance differs between steady-state and inflamed tissue

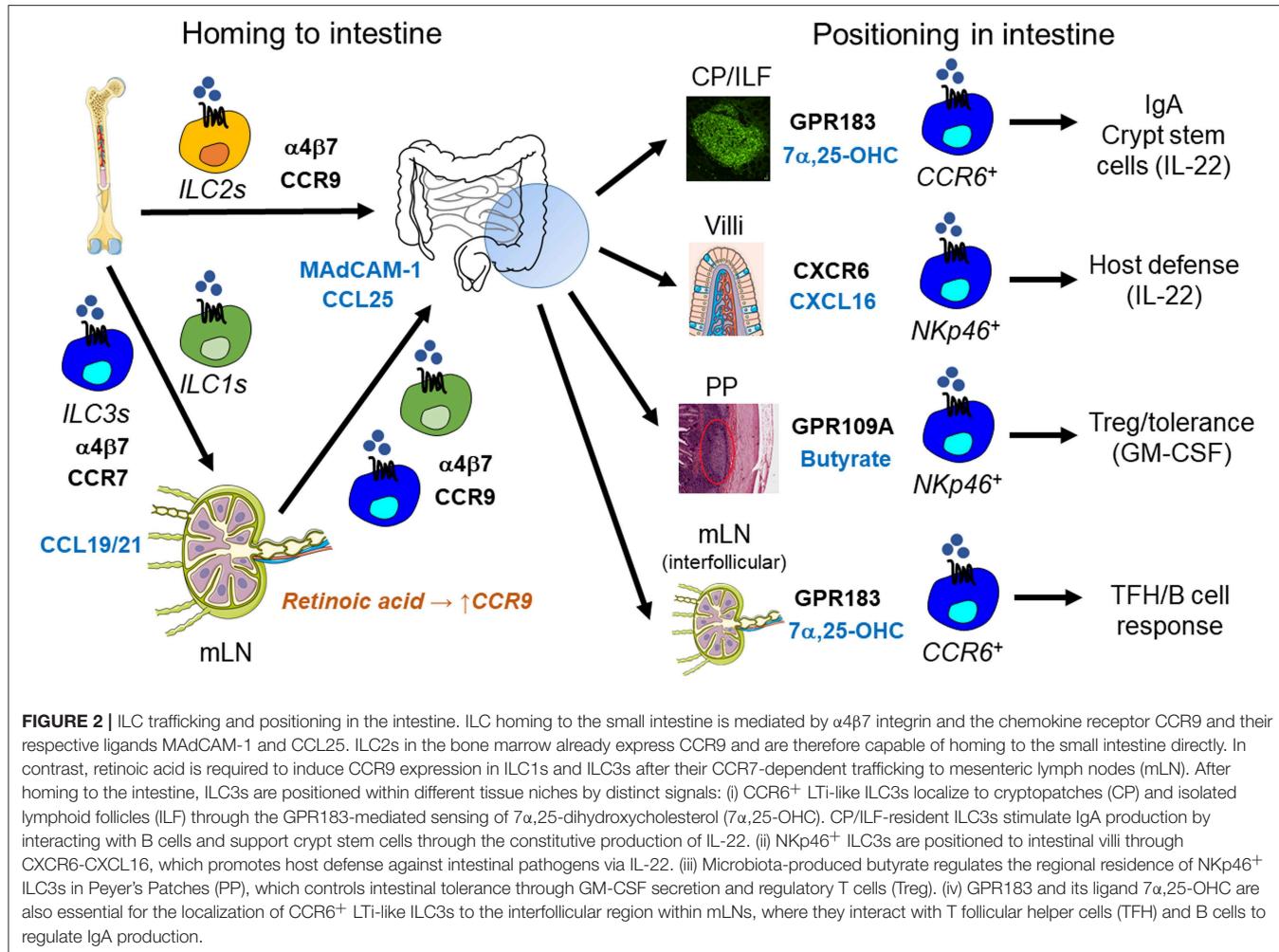

(33–35). Finally, developmental age of the organism influences ILC tissue distribution. For example, LTi-like ILC3s are present in the fetal gut, whereas NKp46 $^{+}$ ILC3s are largely absent (10), only expanding after birth in response to diet-derived AHR ligands (12–14) and signals from the maternal microbiota (36). Similarly, ILC2s seed the mouse lungs within the first 2 weeks of life (37). The differential tissue distribution of ILCs is likely related to their migratory behavior, e.g., due to temporal seeding of tissues during embryogenesis (10, 38) and due to organ-specific expression of integrins and chemokine receptors on ILCs (Figures 1–3).

Parabiosis studies in mice established the concept that, in contrast to NK cells, ILCs in both lymphoid and non-lymphoid tissues are largely tissue-resident cells (39). This implies that, similar to tissue macrophages, ILCs are maintained within tissues by local self-renewal. However, recent studies have challenged this concept with the discovery of circulating CD117 $^{+}$ ILC precursors (ILCPs) in humans (40) and the observation that inflammatory ILC2s in the mouse can migrate from the intestine to the lung during helminth infection (41). Circulating ILCs might therefore constitute mobile a pool of cells that can be activated and recruited to inflamed tissue on demand in order to support host defense carried out by tissue-resident ILCs (Figures 1, 3). Apart from ILCPs, human blood also contains ILC2s (27), but no mature ILC1s and ILC3s (40). In addition to more abundant NK cells, circulating putative ILCPs and mature ILCs, mainly ILC1s, are also found in mice (42, 43).

Interestingly, ILCs occupying vascular vs. tissue compartments seem to have distinct functions. A recent study demonstrated that NK cells circulating between blood and peripheral tissues have effector function, whereas NK cells trafficking to lymph nodes are long-lived and proliferative (44). This different migratory and functional behavior has been associated with the differential expression of transcription factors (44).

TISSUE NICHES AND ILC FUNCTION

Like other immune cells, ILCs occupy distinct niches within tissue, which is important for their function and likely regulates their homeostasis. For example, in the intestine, ILCs reside in three main anatomical compartments: (i) LTi-like ILC3s are clustered in lymphoid tissues, such as cryptopatches and isolated lymphoid follicles (45, 46); (ii) NK cells/ILC1s, ILC2s, NKp46 $^{+}$ ILC3s are dispersed in the lamina propria (47–49); (iii) Intraepithelial ILC1s are located within the epithelium (30, 50). This anatomical compartmentalization corresponds to the diversity of ILC function in the intestine (Figure 2). For example, LTi-like ILC3s in Peyer's Patches and isolated lymphoid follicles interact with B cells to stimulate IgA production (51, 52), which promotes host commensalism with the local microbiota (53). Furthermore, lymphoid tissue-resident commensal bacteria are contained by IL-22-producing ILC3s (54). In addition, ILC3s in cryptopatches are in close proximity to the crypts, where intestinal stem cells reside. Accordingly, IL-22 production by ILC3s has been shown to maintain crypt stem cells after tissue damage (55–57). In contrast, NKp46 $^{+}$ ILC3s are mostly resident in the small


intestinal villi, located close to the epithelium, where they mediate host defense against pathogens (58). Interestingly, NKp46⁺ ILC3s seem to produce IL-22 mainly in response to pathogen-induced IL-23 secretion by myeloid cells, whereas lymphoid tissue-resident LTi-like ILC3s produce IL-22 constitutively in a microbiota-dependent manner (59). Finally, IFN γ -secreting ILC1s within the intraepithelial compartment are involved in colitis (50).

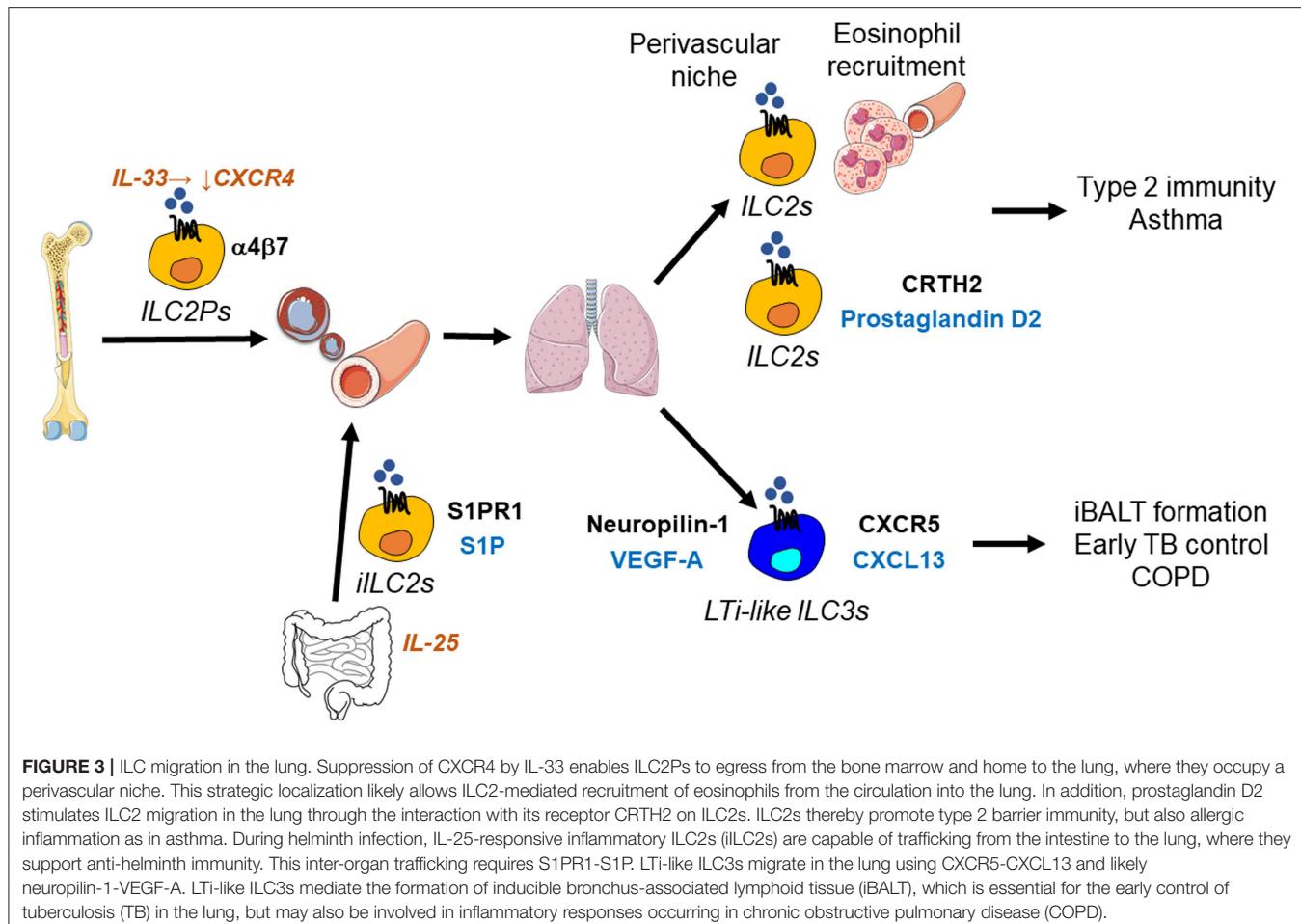
Although intestinal ILC3s are tissue-resident (39), they are not completely sessile cells. For example, in the steady state, there is a constant influx and egress of ILC3s to and from cryptopatches and there is increased ILC3 mobilization from cryptopatches during inflammation (21, 60). The significance of steady-state ILC3 migration in and out of cryptopatches is unknown, but could potentially serve the purpose of sampling or sensing cues from the environment (such as crypt material) to respond to perturbations of the intestinal stem cell compartment. Accordingly, it has been suggested that cryptopatches act as a platform to rapidly amplify ILC-mediated immune responses, not only through cytokine production, but also through ILC movement into surrounding tissue (60).

Interestingly, occupancy of tissues niches by ILCs is regulated by quorum sensing-like mechanisms. Thus, it has recently been shown that receptor activator of nuclear factor kappa

B (RANK)-RANK ligand (RANKL) interactions adjust the numbers of mouse CCR6⁺ LTi-like ILC3s to the size of the niche, likely within cryptopatches (61). Therefore, regardless of their outer environment, clustering of CCR6⁺ ILC3s allows them to keep one another in check. This mechanism likely operates also in human tonsil, where CCR6⁺ ILC3s express both RANK and RANKL (61).

In many tissue niches, ILCs have an intimate relationship with non-hematopoietic cells, such as stromal cells. For example, an ILC3-stromal cell niche in secondary lymphoid organs has been reported in both mice and humans (62). Moreover, ILC2s occupy a distinct perivascular localization close to stromal cells in the lung (63, 64). In this specific niche, adventitial stromal cells promote ILC2 homeostasis in steady-state and in response to helminth infection through the production of IL-33 and thymic stromal lymphopoietin (TSLP) (64). In turn, ILC2-derived IL-13 supports the expansion and IL-33 production by adventitial stromal cells (64). The close proximity of lung ILC2s to blood vessels has been proposed to allow efficient recruitment of eosinophils from the blood (63), further underscoring the importance of ILC intra-tissue localization (Figure 3). Furthermore, ILC2s are strategically positioned within the airways, near airway branch points (65), where inhaled particles are thought to accumulate. This puts ILC2s in close

FIGURE 2 | ILC trafficking and positioning in the intestine. ILC homing to the small intestine is mediated by $\alpha 4\beta 7$ integrin and the chemokine receptor CCR9 and their respective ligands MAdCAM-1 and CCL25. ILC2s in the bone marrow already express CCR9 and are therefore capable of homing to the small intestine directly. In contrast, retinoic acid is required to induce CCR9 expression in ILC1s and ILC3s after their CCR7-dependent trafficking to mesenteric lymph nodes (mLN). After homing to the intestine, ILC3s are positioned within different tissue niches by distinct signals: (i) CCR6 $^{+}$ LTi-like ILC3s localize to cryptopatches (CP) and isolated lymphoid follicles (ILF) through the GPR183-mediated sensing of 7 α ,25-dihydroxycholesterol (7 α ,25-OHC). CP/ILF-resident ILC3s stimulate IgA production by interacting with B cells and support crypt stem cells through the constitutive production of IL-22. (ii) NKp46 $^{+}$ ILC3s are positioned to intestinal villi through CXCR6-CXCL16, which promotes host defense against intestinal pathogens via IL-22. (iii) Microbiota-produced butyrate regulates the regional residence of NKp46 $^{+}$ ILC3s in Peyer's Patches (PP), which controls intestinal tolerance through GM-CSF secretion and regulatory T cells (Treg). (iv) GPR183 and its ligand 7 α ,25-OHC are also essential for the localization of CCR6 $^{+}$ LTi-like ILC3s to the interfollicular region within mLN, where they interact with T follicular helper cells (TFH) and B cells to regulate IgA production.


contact with neuroendocrine cells that activate ILC2s through the release of calcitonin gene-related peptide (65). ILC-neuron interactions also occur in intestinal cryptopatches (66) and accordingly neuronal circuits have been shown to regulate ILC function in different contexts (66–71).

Furthermore, there is the emerging concept that different tissue microenvironments specify ILC function, as has been shown for ILC2s (72). Local tissue niches might also regulate ILC function through stimulating ILC plasticity. *In vitro*, ILC plasticity occurs through the exposure to polarizing cytokines, such as IL-1 β and IL-12, which induces the conversion of ILC2s and ILC3s into ILC1s (35, 73–76). However, it is unclear where these factors are produced *in vivo* and where ILC trans-differentiation occurs within tissue. One possibility is that migratory signals induced by inflammation guide ILCs to specific niches, where they are exposed to polarizing cytokines. Alternatively, the polarizing cytokines might be produced within the same niche in response to inflammatory stimuli.

Overall, the signals and migratory receptors regulating the co-localization and interaction of ILCs with stromal cells and other immune cells, such as T cells, are largely unknown. Subsets

of ILCs interact with T cells through the expression of major histocompatibility complex (MHC) class II, CD1d, OX40 ligand (OX40L), and CD30 ligand (CD30L) (77). In the intestine, MHC class II $^{+}$ ILC3s suppress CD4 T cell responses against the local microbiota (78, 79), whereas the interaction of MHC class II $^{+}$ ILC2s with CD4 T cells promotes type 2 immunity in the lung (80). Moreover, OX40L-expressing ILC2s stimulate Th2 and regulatory T cell (Treg) responses in lung and adipose tissue (81). Interestingly, adult LTi-like ILC3s constitutively express co-stimulatory ligands (OX40L, CD30L), whereas fetal LTi cells do not (82).

Another interesting area for future investigation is the occupation of tissue niches by ILCs and their adaptive counterparts, i.e., T cells. This is particularly relevant since both ILCs and T cells largely depend on the same factors (γ_c cytokines) for their homeostasis and expansion, therefore likely competing with each other. Accordingly, intestinal ILC2s and ILC3s expand in T cell-deficient mice, e.g., in mice lacking *Rag* genes (16), most likely due to increased availability of IL-2 and IL-7. This notion is supported by the finding that intestinal ILC3s outcompete T cells for IL-2 (79) and that IL-7 consumption by

ILCs regulates the amount of IL-7 that is available to T cells (83). Finally, it has been suggested that IL-2 produced by proliferating T cells maintains LTi-like ILC3s in lymphoid structures (77), in accordance with the observation that mesenteric lymph node-resident ILC3s are reduced in T cell-deficient mice (84). However, in many tissues it has not been thoroughly investigated whether ILCs and T cells occupy distinct or overlapping niches.

ILC TRAFFICKING TO TISSUES

Trafficking Receptors on ILCs

Mature ILCs are largely tissue-resident cells (39), yet the signals that control the migration of ILCPs and mature ILCs into tissues during embryogenesis, adult life, and inflammation are still incompletely understood. Similar to T lymphocytes, ILC trafficking to tissues is regulated by integrins and chemokine receptors (Table 1) that are often expressed in an ILC subset-specific manner with similar chemokine receptor expression as the corresponding T helper subsets (32).

For example, LTi-like ILC3s express CCR6 and CXCR5 (10, 11), both transcriptional targets of ROR γ t, which are also preferentially expressed on Th17 cells (CCR6) and T follicular helper cells (CXCR5). CCR6 and CXCR5 are already expressed

on ILC3Ps that migrate to peripheral tissues from the fetal liver and adult bone marrow (9). In contrast, NKP46 $^{+}$ ILC3s express CXCR6 (29, 92), the receptor for CXCL16, which mediates their localization to the lamina propria (58). ILC1s also express CXCR6 (92). Furthermore, CXCR6 promotes the homing of NK cells to the liver, which is important for NK cell memory (93). Lymphoid tissue-resident human ILC3s with LTi activity, as well as murine fetal CD4 $^{+}$ LTi cells, not only express CCR6 and CXCR5, but also Neuropilin-1, which mediates their migration toward vascular endothelial growth factor-A (VEGFA) (99). Finally, distinct subsets of intestinal ILC3s express CD49a (integrin α 1) (86). Moreover, similar to Th2 cells, both mouse and human ILC2s express CCR4 (27, 29, 100) and other skin-homing receptors, such as cutaneous leukocyte-associated antigen (CLA) and CCR10 that bind to endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) and CCL27/CCL28, respectively (32). It has been reported that ILC2s in broncho-alveolar lavage fluid highly express CCR4 (and CCR7) after IL-33 administration (101), suggesting a role for CCR4 and its ligands CCL17 and CCL22 in ILC2 migration following activation, although this prediction requires experimental validation. CCR8 is another chemokine receptor that shows shared expression in ILC2s and Th2 cells (29), which may mediate ILC homing to the skin

TABLE 1 | Receptors involved in ILC migration.

Receptor	Ligand	Source	Function	References
INTEGRINS/SELECTINS				
$\alpha 4\beta 7$ integrin	MAdCAM-1	Endothelial cells	LTi cell entry into embryonic LNs; ILC trafficking to small intestine and colon	(18, 85)
CD49a	Collagen	Tissue matrix	ILC tissue retention?	(30, 86)
$\alpha E\beta 7$ integrin	E-cadherin	Epithelial cells	ILC1 interaction with intestinal epithelium?	(50)
CD69	NA	NA	Inhibition of ILC tissue egress by antagonizing S1P receptors	(41)
CD62L (L-selectin)	MAdCAM-1	Endothelial cells	LN entry and recirculation of ILCPs, ILC1s, NK cells	(42, 43)
	GlyCAM-1			
	CD34			
CHEMOKINE RECEPTORS				
CCR6	CCL20	Epithelial cells	ILC3 positioning to hair follicles; recruitment into inflamed skin	(43, 87)
CCR7	CCL19/CCL21	Stromal cells	LTi cell clustering at LN anlagen; ILC1/ILC3 migration from BM to mLNs; ILC LN entry and recirculation; ILC3 trafficking from intestine to mLNs; ILC3 recruitment to tumors	(43, 84, 85, 88–90)
CCR9	CCL25	Epithelial cells	ILC trafficking to small intestine	(85)
CXCR4	CXCL12	Reticular cells?	Inhibition of ILC2P egress from BM	(37)
CXCR5	CXCL13	Stromal cells	LTi cell clustering at LN anlagen; ILC3 recruitment to infected lung in tuberculosis; ILC3 clustering with stromal cells in tumors	(88, 90, 91)
CXCR6	CXCL16	$CX3CR1^+$ DCs Other cells?	Positioning of NKp46 $^+$ ILC3s to small intestinal villi; NK cell homing to liver; ILC3P migration from fetal liver to periphery; ILCP egress from BM	(58, 92, 93)
OTHER RECEPTORS				
GPR109A	Butyrate	Microbiota	Regional ILC3 distribution in PPs	(94)
GPR183	$7\alpha,25$ -OHC	Stromal cells	ILC3 migration to cryptopatches; ILC3 recruitment to small intestine; ILC3 positioning within mLNs	(21, 95, 96)
S1P receptors	S1P	Red blood cells? Endothelial cells?	NK cell egress from BM and LNs; ILC egress from LNs; ILC2 inter-organ trafficking in helminth infection	(41, 42, 97)
CRTH2	Prostaglandin D2	ILC2s?	ILC2 recruitment to inflamed lung	(98)
Neuropilin-1	VEGF-A	Unknown	LTi cell recruitment to iBALT?	(99)

BM, bone marrow; iBALT, inducible bronchus-associated tissue; LN, lymph node; mLNs, mesenteric lymph node; PP, Peyer's Patch.

in response to CCL1. In contrast, ILC1s and NK cells share preferential expression of CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, with Th1 cells (102). Furthermore, expression of CD49a and CD49d (integrin $\alpha 4$) can be used to distinguish subpopulations of intestinal ILC1s (86). NK cells also express integrins, such as CD49a and CD49b (integrin $\alpha 2$) (32). In addition to subset-specific expression, migratory receptors are also expressed in a tissue-specific manner within the same ILC subset. For example, ILC2s in adipose tissue have higher expression of *Itgae*, *Ccr6*, and *Cxcr4* than ILC2s from other tissues (72).

Seeding of Tissues With ILCs During Development

In mice, ILCs derived from fetal liver hematopoiesis are among the first lymphocytes to seed barrier tissues, such as the intestine before birth (10, 12, 38) (Figure 1). This tissue seeding prepares the host for the colonization of the intestine with the microbiota and the intake of food-derived antigens. Moreover, LTi cells populate organs early to promote the formation of lymphoid tissues (22). ILCPs express $\alpha 4\beta 7$ integrin, whose ligand MAdCAM-1 is widely expressed in the fetus, thereby allowing ILCP migration to a variety of tissues (32). The entry of LTi cells into embryonic lymph nodes is also dependent on $\alpha 4\beta$

integrin (103). Furthermore, the interaction of CXCL13, induced by retinoic acid in mesenchymal organizer cells, with CXCR5 on LTi cells is required for the clustering of LTi cells at embryonic lymph node anlagen and lymph node development, with a minor contribution of CCL21 and its receptor CCR7 (88). Further work showed that the amount of maternal retinoic acid regulates the number of LTi cells and therefore the size of lymph nodes, which determines anti-viral immunity later in life (15). Before birth, LTi cells also cluster at embryonic anlagen to promote the formation of Peyer's Patches, which is dependent on expression of RET, a tyrosine kinase receptor for neurotrophic factors, on LTi cells (104). In addition, arginase 1-expressing ILCPs accumulate at Peyer's Patch anlagen, where they can give rise to ILC1s, ILC2s, and ILC3s in the fetal intestine (38). This ILCP clustering occurs in a CXCR5- and CCR7-independent manner, since, in contrast to LTi cells, these Arginase 1 $^+$ ILCPs do not express CXCR5 and CCR7 (38). In contrast to LTi cells, Arginase 1 $^+$ ILCPs also lack lymphotxin expression and are therefore dispensable for Peyer's Patch organogenesis (38). Finally, fetal $\alpha 4\beta 7^+$ CXCR6 $^+$ CCR6 $^+$ CXCR5 $^+$ ILC3Ps migrate from fetal liver to lymphoid organs and intestine (9, 105) in a CXCR6-dependent manner (92). ILCs are also found in human fetal tissues (27), suggesting that early colonization of tissues with ILCs is conserved between mice and humans.

Overall, embryonic tissue seeding of ILCs is reminiscent of the colonization of tissues with embryonically-derived macrophages (106, 107). In contrast to organs that are seeded before birth (e.g., the intestine), other organs, such as the lung and spleen, are colonized with ILCs after birth. Later, during adult life, there is likely a second wave of ILCs from bone marrow (or other tissues) that enter the circulation and gain access to tissues to contribute to the ILC pool found in peripheral organs. Again, this might be in analogy to macrophages, where, in the adult organism, circulating monocytes enter tissues and, under specific conditions, can differentiate into tissue-resident macrophages.

ILC Trafficking to Lymph Nodes

In adult mice, ILCs use similar mechanisms as naïve T cells for lymph node entry (Figure 1). For example, like NK cells, ILCs (especially ILC3s and ILC1s) enter peripheral lymph nodes using CD62L (L-selectin) and CCR7 (42, 43). In addition, LTi-like ILC3s are capable of trafficking from the intestine to draining mesenteric lymph nodes in a CCR7-dependent manner (84). In contrast, ILC1s, ILC2s, and NKp46⁺ ILC3s do not migrate along this route. Accordingly, LTi-like ILC3s migrate toward the CCR7 ligand CCL21 *in vitro*, whereas ILC2s are unable to do so (84). Finally, the trafficking of LTi-like ILC3s to the spleen is not critically dependent on CCR7 (84).

ILC Trafficking to the Intestine

Tissue-specific signals from the local microenvironment likely play an important role in the trafficking of ILCs to the intestine, including cues from the microbiota, which might be particularly important for intestinal ILC3s (36, 86). In addition, metabolic cues are essential as has been demonstrated in a few studies so far (Figure 2). For example, it has been shown that the preferential homing of ILCs to the small intestine is controlled by diet-derived nutrients. ILCs and mature ILC subsets express $\alpha 4\beta 7$ integrin, CCR7, and CCR9 to varying degrees (85, 92) and, similar to T lymphocytes, ILC1, and ILC3 trafficking to the small and large intestine requires $\alpha 4\beta 7$ integrin (85) that binds to MAdCAM-1, abundantly expressed on endothelial cells in the intestine. Furthermore, the Vitamin A metabolite retinoic acid is essential for the homing of ILC1s and ILC3s, but not ILC2s, to the small intestine (85). Specifically, it was found that ILC1s and ILC3s migrate from the bone marrow to mesenteric lymph nodes in a CCR7-dependent manner, where retinoic acid induces expression of $\alpha 4\beta 7$ integrin and CCR9 (85), whose ligand CCL25 is abundant in the small intestine. In contrast, CCR9 expression is acquired by $\alpha 4\beta 7^+$ ILC2Ps already in the bone marrow and therefore retinoic acid-independent (85, 100). This feature likely links the nutrient status of the host to the type of local immune response through the preferential migration of specific ILC subsets to the small intestine. This concept is consistent with the observation that lack of Vitamin A, as it occurs in malnutrition, causes a reduction of ILC3s and impaired protection against bacterial pathogens in the intestine, whereas ILC2s and anti-helminth responses are increased (16). This switch to type 2 barrier immunity likely ensures continued commensalism with evolutionary partners (helminths, commensal bacteria) in the small intestine during nutrient deficiency. In contrast, the homing of ILC3s to the colon requires $\alpha 4\beta 7$ integrin, but not

CCR9, and is therefore independent of retinoic acid (85). It has not been explored whether other chemotactic receptors used by T cells, such as GPR15 (108), enable ILC homing to the colon.

Circulating ILCs

ILCPs are present within tissues, such as the intestine and other organs, including blood, in mice and humans (9, 38, 40, 42, 109, 110). Despite the presence of ILCPs in both peripheral blood and tissues, parabiosis studies in mice indicate that ILCs other than NK cells in both lymphoid and non-lymphoid tissues are mainly tissue-resident (39). Subsequently, this concept has been challenged by the finding that human CD34⁻CD117⁺ ILCPs are present not only in blood, but also in a variety of lymphoid and non-lymphoid tissues (40), demonstrating that these ILCPs can leave the circulation and migrate into tissues. Furthermore, these circulating human CD117⁺ ILCPs can be considered the equivalent of naïve T cells since they lack immediate effector function, but have the ability to differentiate into mature ILC1s, ILC2s, and ILC3s *in vitro* and upon adoptive transfer into mice. ILCPs were therefore proposed to serve as cellular substrates for local “on-demand” ILC-poiesis within tissue (111). Further studies are needed to clarify potential species-specific differences in ILC migration/tissue residency between humans and mice and to establish to what extent mature ILCs in tissues are replenished by circulating ILCPs.

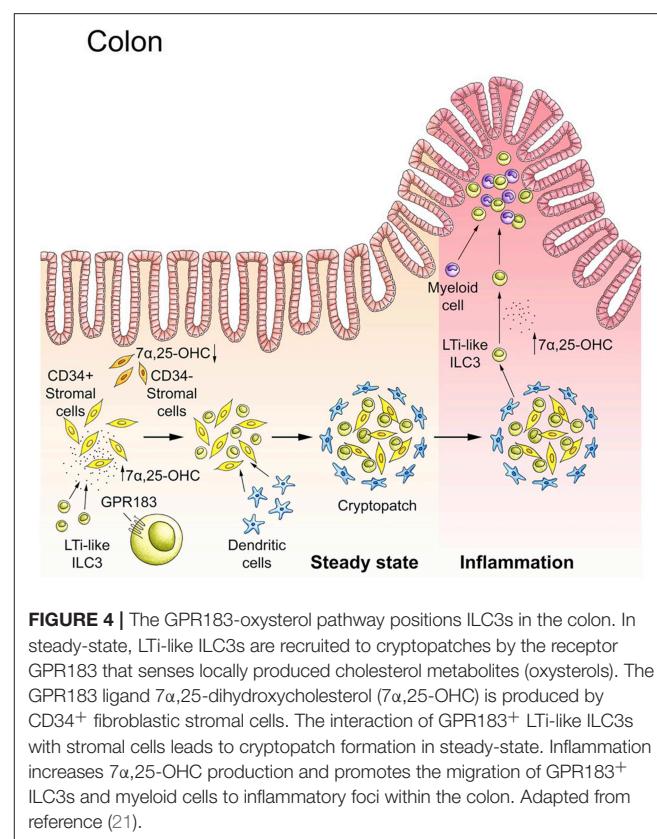
Progenitors upstream of human CD34⁻CD117⁺ ILCPs express the adhesion/homing receptor CD34 and are found in a variety of tissues, but not in blood (111). It is plausible that loss of CD34 expression on CD34⁺ ILCPs triggers the entry of CD34⁻CD117⁺ ILCPs into the circulation (111). Furthermore, IL-1 β (in combination with IL-2 and IL-7) acts as a growth factor for CD117⁺ ILCPs *in vitro* (40) and it has been suggested that production of IL-1 β induced by disruption of tissue homeostasis promotes the migration of ILCPs from blood into tissue (111). However, as a cytokine, IL-1 β lacks direct chemotactic activity and therefore other, yet unknown, chemotactic guidance cues and their corresponding receptors must be involved.

ILCP Egress From Bone Marrow

In mice, ILCPs and ILC2Ps, unlike common lymphoid progenitors, express the chemokine receptor CXCR6 and their egress from the bone marrow is partially dependent on CXCR6, thereby regulating ILCP entry into the circulation (92). In contrast, adult ILC3Ps migrate from the bone marrow to the periphery in a CXCR6-independent manner (9). Furthermore, a recent study demonstrated that IL-33 signaling is required for the egress of ILC2Ps from the bone marrow during the perinatal period by downregulating CXCR4 expression (37). Finally, the bioactive lipid sphingosine-1 phosphate (S1P) promotes lymphocyte egress from several organs (112) and S1P receptor 5 (S1PR5) is essential for the bone marrow egress of NK cells (97). However, it has not been investigated whether S1P receptors also regulate the egress of ILCPs from bone marrow.

ILC Recirculation

Both mouse and human ILCPs in the blood express CD62L, which promotes lymph node entry of ILCPs, whereas lymph node exit requires S1P receptors (42). The later possibility is further


supported by the finding that treatment with the S1P agonist FTY720, which disrupts S1P gradients and results in S1P receptor internalization from the cell surface (112), causes ILC-penia, while increasing the number of ILCs in lymph nodes (113). These studies are consistent with the concept that, similar to naïve T cells, ILCPs and some mature ILCs have the ability to re-circulate between blood and lymphoid organs (Figure 1). This notion is further supported by a recent study in mice, demonstrating that ILC1s (similar to NK cells) recirculate between blood and lymph nodes in a CD62L- and CCR7-dependent manner, whereas ILC3s in lymph nodes are mainly tissue-resident (43). Furthermore, among human ILCs, NKp44[−] ILC3s, likely representing ILCPs (40), have higher expression of genes encoding surface receptors involved in lymphocyte recirculation (CD62L, CCR7, S1PR1) than NKp44⁺ ILC3s (114). Finally, compared to their circulating counterparts, human lymphoid tissue-resident ILC3s express CXCR5 and CCR7, known to regulate positioning within lymphoid organs (114).

Tissue Retention of ILCs

Finally, less is known about the factors that retain ILCs within tissues once they are recruited. This likely involves the same receptors that are required for the tissue retention of T lymphocytes (115) (Table 1). For example, intestinal and skin ILCs express CD69 (41, 48, 92), which antagonizes the egress receptor S1PR1 (116). In addition, ILC2s from human tissues express the collagen-binding integrin CD49a (30) that has been shown to promote T cell retention in tissues. Populations of mouse ILC1s and ILC3s also express CD49a (86) as do human intraepithelial ILC1s in the intestine (50). In addition, the latter subset expresses CD103 (α E integrin) (50), which together with β 7 integrin binds to E-cadherin on epithelial cells. CD103⁺ ILC2s have also been identified in mouse skin (117). Further studies (such as genetic ablation in mice) are required to demonstrate a direct role for specific receptors in the tissue retention of ILCs.

ILC POSITIONING WITHIN TISSUE

ILCs occupy strategic positions within tissues to perform their organ-specific functions. Proper ILC positioning within tissue is also critical for the spatial compartmentalization of tissue immunity. For example, as discussed above, ILCs inhabit tissue-specific niches, which facilitates the interaction with other immune cells as well as with non-hematopoietic cells. However, there is very limited knowledge regarding the signals and receptors that direct ILCs to local tissue niches. Recent work elucidated how metabolic signals ensure that ILCs are properly positioned in the intestine to carry out their function. We found that intestinal ILC3s lacking the G protein-coupled receptor GPR183 (also known as EBI2) exhibit aberrant localization (21). GPR183 recognizes hydroxylated metabolites of cholesterol, so-called oxysterols, with 7 α ,25-dihydroxycholesterol as the main GPR183 ligand (118, 119). We demonstrated that oxysterols sensed through the receptor GPR183 function as guidance cues to position ILC3s within intestinal cryptopatches, which is critical for lymphoid tissue formation in the colon (21) (Figure 4). Similar findings have been subsequently reported by two other

FIGURE 4 | The GPR183-oxysterol pathway positions ILC3s in the colon. In steady-state, LTI-like ILC3s are recruited to cryptopatches by the receptor GPR183 that senses locally produced cholesterol metabolites (oxysterols). The GPR183 ligand 7 α ,25-dihydroxycholesterol (7 α ,25-OHC) is produced by CD34⁺ fibroblastic stromal cells. The interaction of GPR183⁺ LTI-like ILC3s with stromal cells leads to cryptopatch formation in steady-state. Inflammation increases 7 α ,25-OHC production and promotes the migration of GPR183⁺ ILC3s and myeloid cells to inflammatory foci within the colon. Adapted from reference (21).

labs (95, 120). Chu et al. found that GPR183 also regulates ILC3 recruitment to the small intestine (but not to the colon), possibly through promoting α 4 β 7 integrin surface expression on ILC3s (95). We further showed that oxysterols are produced by specialized stromal cells located within cryptopatches/isolated lymphoid follicles (21). The intriguing possibility that dietary cholesterol in breast milk is a source of oxysterols required for post-natal lymphoid organogenesis in the colon remains to be explored (119).

This complements previous work showing that CXCL16 produced by CX3CR1⁺ dendritic cells guides the positioning of CXCR6⁺ NKp46⁺ ILC3s to the villi of the small intestine, where they contribute to epithelial defense through the production of IL-22 (58). Notably, the chemokine receptors CCR6 and CXCR5 (and their respective ligands CCL20 and CXCL13), although specifically expressed by LTI-like ILC3s, are not required for ILC3 migration to cryptopatches, neither in the small nor large intestine (121, 122). However, it has recently been reported that skin ILC3s are positioned within hair follicles in a CCR6-dependent manner (87). In mesenteric lymph nodes, ILC3s are found in a specific anatomical location, the interfollicular region (84), and GPR183 also promotes the proper positioning of ILC3s to this region, whereas CCR6 and CXCR5 are dispensable (95, 96).

Apart from NK cells that largely lack GPR183, ILC subsets other than LTI-like ILC3s also express GPR183 to varying degrees (21). However, the specific functions of GPR183 in other ILC subsets is unknown. Overall, our recent work and that of others

indicates an important role for local cholesterol metabolites in directing ILC migration.

Other lipids, such as leukotrienes and prostaglandins, are likely relevant for the intra-tissue localization of ILCs (**Figure 3**). For example, human ILC2s are phenotypically defined by the expression of CRTH2 (27), the prostaglandin D2 receptor, and prostaglandin D2 induces the chemotaxis of ILC2s *in vitro* (123). Accordingly, CRTH2 mediates accumulation of mouse ILC2s in the inflamed lung (98). Moreover, human ILC2s found in asthma are responsive to the lipid mediators prostaglandin D2 and lipoxin A4 (124). As mentioned above, amino acid derivatives, such as a tryptophan metabolites, can regulate ILC homeostasis through AHR. However, it is currently unknown whether amino acid-derived molecules can also act as chemotactic cues, guiding ILC positioning.

Apart from host-derived signals, the gut microbiota also likely regulates ILC migration and positioning through the local production of metabolites. For example, lymphoid-tissue resident commensal bacteria promote ILC3 localization to mesenteric lymph nodes and Peyer's Patches (125). Furthermore, the short-chain fatty acid butyrate controls the compartmentalization of ILC3s in Peyer's Patches (94). Specifically, it has been shown that butyrate, sensed through the receptor GPR109A on ILC3s, is more abundant in ileal than jejunal Peyer's Patches, thereby inhibiting the residence of CCR6⁻NKp46⁺ (and CCR6⁺NKp46⁻) ILC3s in ileal Peyer's Patches (94).

Overall, more metabolic signals remain to be identified that promote proper ILC localization in healthy and inflamed tissue. The use of lipid metabolites, rather than the exclusive use of genome-encoded proteins (chemokines), as guidance cues for ILCs within tissue might be advantageous for the host. Lipid metabolites can be rapidly produced and inactivated through enzymatic conversion, as exemplified by the GPR183 ligand 7 α ,25-dihydroxycholesterol since its synthesis from cholesterol is controlled by two enzymes, cholesterol 25-hydroxylase (CH25H) and 7 α -hydroxylase (CYP7B1); and it can be further metabolized into bile acid precursors that lack chemotactic activity by the enzyme 3 β -hydroxysteroid dehydrogenase type 7 (HSD3B7) (118). This allows tight regulation of 7 α ,25-dihydroxycholesterol abundance within tissue. Furthermore, lipid metabolites likely easily diffuse within tissue, thereby facilitating the generation of precise local chemotactic gradients. Finally, from the same precursor molecule, two bioactive metabolites with distinct functions can be generated: 25-hydroxycholesterol generated by CH25H from cholesterol has anti-viral and anti-inflammatory activity, whereas 7 α ,25-dihydroxycholesterol synthesized from 25-hydroxycholesterol by CYP7B1 regulates immune cell migration through GPR183 (118). This feature likely allows coordinated regulation of tissue-resident immune function by lipid metabolites.

ILC MIGRATION DURING INFLAMMATION

During infection and other tissue insults, ILCs must migrate to local sites of inflammation within tissue. For example,

Neuropilin-1⁺ human LTi cells are present in inducible bronchus-associated lymphoid tissue (iBALT) in the inflamed lung in chronic obstructive pulmonary disease (COPD) (99). A recent study showed that, in *Mycobacterium tuberculosis* infection, ILC3s are recruited via the CXCL13-CXCR5 axis to the lung, thereby mediating the formation of iBALT associated with granulomas, which contributes to early control of infection together with the production of IL-17 and IL-22 (91). In addition, IL-17-producing ILC3s are present in the alveolar space in asthma patients (126). Similarly, ILC2s are increased in the broncho-alveolar lavage fluid of humans with idiopathic pulmonary fibrosis (127). Furthermore, it has recently been shown that ILCs are recruited into the inflamed skin in a CCR6-dependent manner (43). Finally, the accumulation of LTi-like ILC3s in mesenteric lymph nodes after helminth infection is dependent on CCR7-mediated trafficking (84).

The GPR183-oxysterol pathway also plays an important role in controlling ILC migration in inflamed tissue (119). Mobilization of ILC3s from cryptopatches into the surrounding tissue occurs during intestinal inflammation (60). We showed that the recruitment of ILC3s (and myeloid cells) to inflammatory foci in the colon is dependent on GPR183 (21) (**Figure 4**). It is reasonable to assume that increased oxysterol synthesis induced by tissue injury conveys perturbation of tissue homeostasis to the immune system, initiating ILC movement and the inflammatory response (119). It is currently unknown whether other metabolites produced in inflamed tissue regulate ILC migration and localization.

An important feature of ILCs is their ability to contribute to the repair of tissues damaged by infection, inflammation, and irradiation, which is likely dependent on their local migration and accumulation within damaged tissues. For example, LTi-like ILC3s restore lymphoid tissue architecture after viral infection (128), promote thymic regeneration after irradiation (129), and protect the intestine from graft vs. host disease-induced damage after hematopoietic stem cell transplantation (55). Similarly, ILC2s alleviate virus-induced damage to the lung (33).

Moreover, a recent study established the new concept of ILC inter-organ trafficking during inflammation. Specifically, it was shown that inflammatory IL-25-responsive ILC2s can migrate from the intestine to the lung during helminth infection to support host defense (41). The exit of ILC2s from the intestine into the blood via the lymphatic system was mediated by S1P (41), the critical factor regulating lymphocyte egress from tissues (112). CD69, expressed on tissue-resident ILCs, antagonizes S1PR1 through downmodulation of S1PR1 from the cell surface (116). In contrast, inflammatory ILC2s are CD69⁻, allowing S1PR1-dependent egress into the circulation (41). A previous study in mice had found that intestinal NK cells, ILC1s, and ILC3s are CD69^{hi}, whereas ILC2s are CD69^{lo}, supporting the concept that intestinal ILC2s might be "less tissue-resident" than other intestinal ILC subsets (92). Finally, it has been suggested that signals from the local microbiota promote S1P receptor expression on ILC2s, thereby allowing them to exit the intestine (130).

It remains to be tested whether inter-organ trafficking of ILCs also occurs between other organs. In this context, it is

relevant that in various inflammatory conditions activated ILCs are found in peripheral blood. For example, human NKp44⁺ ILC3s expressing homing receptors for skin and intestine appear in the circulation after conditioning for hematopoietic stem cell transplantation (131). Similarly, circulating ILC2s are increased in humans with asthma (132). These observations suggests that inter-organ trafficking might also occur in humans after mobilization of ILCs into the blood in response to inflammatory stimuli.

As outlined above, the recruitment of blood-borne ILCPs during infection may contribute to ILC heterogeneity within tissue. However, the signals activating blood-resident ILCs within tissue and recruiting them into the inflamed tissue from the circulation are unknown. This could involve tissue-derived signals sensed within the local vasculature and/or intra-tissue signals. Furthermore, the relative contribution of local expansion of resident ILCs vs. the recruitment of ILCPs to inflamed tissue is still unclear and may vary between tissues and the type of insult. For example, inflammatory signals could disrupt RANKL-RANK interactions, thereby allowing the local proliferation of CCR6⁺ ILC3s (61).

ILC MIGRATION IN CANCER

Another largely unexplored area that warrants further investigation is ILC migration in cancer. The tumor microenvironment constitutes a unique metabolic milieu, resembling inflamed tissue. Among ILCs, NK cells are often the predominant population found in the tumor microenvironment, e.g., in human lung and colon cancer (30). Due to their cytotoxic activity, NK cells are a promising target for anti-cancer immunotherapy (133). However, in many human cancers, e.g., lung adenocarcinoma, NK cells are under-represented within the tumor compared to healthy tissue (134), especially the cytotoxic CD56^{dim} subset (135). This suggests that NK cell recruitment to tumors is suboptimal and targeting NK cell migration could be a valuable strategy in cancer immunotherapy. Several chemokines and their respective receptors mediating NK cell migration to tumors have been identified, such as CXCL8-CXCR1/CXCR2, CXCL10-CXCR3, CXCL12-CXCR4, and they are being explored as clinical targets (136).

Whereas, a role for NK cells in controlling cancer growth and metastasis has been well-established, the function of other ILC subsets in cancer, especially in regards to migration, is poorly understood (133). In several hematological malignancies, human ILC1s, ILC2s, and ILC3s are increased in the blood compared to healthy individuals (133), supporting the notion that ILCs can be mobilized into the circulation during malignancy. There is also some evidence that circulating human ILC2s could contribute to immunosuppression in gastric cancer (137).

Furthermore, ILC3s with likely LTi function are enriched in solid tumors both in mice and humans. For example, NKp46⁺ ILC3s invade B16 mouse melanoma expressing IL-12 (138). It was shown in the same model that lymphoid tissue-resident (splenic) Rorc^{fate-map+} ILCs have superior anti-tumor activity

than intestinal or hepatic Rorc^{fate-map+} ILCs and Rorc^{fate-map-} ILC1s/NK cells (139). NKp46⁺CCR6⁺CXCR5⁺ ILC3s with LTi properties are also enriched in tumor-associated tertiary lymphoid structures in human non-small cell lung cancer (140). Both studies showed that tumor-associated ILC3s upregulate adhesion molecules on the tumor vasculature, which likely promotes anti-tumor immunity through the recruitment of T cells. These tertiary lymphoid structures are of interest because of their importance for T cell-mediated anti-tumor immunity and their general positive prognostic value for cancer outcome, e.g., in lung cancer (141). However, tumor-associated lymphoid structures may also promote cancer growth. For example, one study reported that high amounts of CCL21 recruit CD4⁺ LTi cells to tumors in a CCR7-dependent manner, which is associated with the formation of tumor-promoting lymphoid-like stroma in melanoma (89). In a mouse model of breast cancer, it was also shown that CCL21 recruits CCR7-expressing ILC3s with an LTi phenotype (CD4⁺CCR6⁺) to the tumor environment (90). Furthermore, CXCL13 was required for the clustering of CXCR5⁺ ILC3s with mesenchymal stromal cells in the tumor microenvironment, which supported lymph node metastasis (90).

Interestingly, complementary to our findings in the intestine, it has recently been shown that oxysterol recognition through GPR183 is required for the development of iBALT (142), a common feature of active lung inflammation. However, this study did not determine the role of GPR183-expressing ILCs in this process. Overall, it seems plausible that the oxysterol-GPR183 pathway could also be involved in the formation of tertiary lymphoid structures in cancer.

CONCLUDING REMARKS

ILCs maintain healthy organ function and it is increasingly recognized that ILC function is critically dependent on their trafficking to and localization within tissues. Accordingly, ILC migration and the mechanisms of ILC tissue recruitment are areas that are beginning to be explored in more depth. It is important to comprehensively identify the guidance cues and receptors that control ILC localization and motility in tissues. In the long-term, cell surface receptors regulating ILC migration to inflamed or malignant tissues could serve as new therapeutic targets for human diseases.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

FUNDING

TW was supported by a Junior Investigator Grant from the Center for Innovative Medicine and a faculty-funded career position at Karolinska Institutet as well as a grant from the Swedish Research Council.

REFERENCES

- Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. *Immunity*. (2014) 41:354–65. doi: 10.1016/j.jimmuni.2014.09.005
- Artis D, Spits H. The biology of innate lymphoid cells. *Nature*. (2015) 517:293–301. doi: 10.1038/nature14189
- Eberl G, Colonna M, Di Santo JP, McKenzie AN. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. *Science*. (2015) 348:aaa6566. doi: 10.1126/science.aaa6566
- Serafini N, Vosshenrich CA, Di Santo JP. Transcriptional regulation of innate lymphoid cell fate. *Nat Rev Immunol*. (2015) 15:415–28. doi: 10.1038/nri3855
- Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells: 10 years on. *Cell*. (2018) 174:1054–66. doi: 10.1016/j.cell.2018.07.017
- van de Pavert SA, Vivier E. Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. *Int Immunol*. (2016) 28:35–42. doi: 10.1093/intimm/dxv052
- Melo-Gonzalez F, Hepworth MR. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells. *Immunology*. (2017) 150:265–75. doi: 10.1111/imm.12697
- Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. *Nature*. (2014) 508:397–401. doi: 10.1038/nature13047
- Possot C, Schmutz S, Chea S, Boucontet L, Louise A, Cumano A, et al. Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. *Nat Immunol*. (2011) 12:949–58. doi: 10.1038/ni.2105
- Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F, et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. *Science*. (2010) 330:665–9. doi: 10.1126/science.1194597
- Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d'Hargues Y, et al. A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. *Nature*. (2013) 494:261–5. doi: 10.1038/nature1813
- Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. *Science*. (2011) 334:1561–5. doi: 10.1126/science.1214914
- Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. *Nat Immunol*. (2011) 13:144–51. doi: 10.1038/ni.2187
- Qiu J, Heller JJ, Guo X, Chen ZM, Fish K, Fu YX, et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. *Immunity*. (2012) 36:92–104. doi: 10.1016/j.jimmuni.2011.11.011
- van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R, Moreira-Santos L, et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. *Nature*. (2014) 508:123–7. doi: 10.1038/nature13158
- Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N, Boyd A, et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. *Science*. (2014) 343:432–7. doi: 10.1126/science.1247606
- Goverse G, Labao-Almeida C, Ferreira M, Molenaar R, Wahlen S, Konijn T, et al. Vitamin A controls the presence of RORgamma+ innate lymphoid cells and lymphoid tissue in the small intestine. *J Immunol*. (2016) 196:5148–55. doi: 10.4049/jimmunol.1501106
- Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. *Immunity*. (1997) 7:493–504. doi: 10.1016/S1074-7613(00)80371-4
- Eberl G, Littman DR. Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells. *Science*. (2004) 305:248–51. doi: 10.1126/science.1096472
- Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. *Nat Immunol*. (2004) 5:64–73. doi: 10.1038/ni1022
- Emgard J, Kammoun H, Garcia-Cassani B, Chesne J, Parigi SM, Jacob JM, et al. Oxysterol sensing through the receptor GPR183 promotes the lymphoid-tissue-inducing function of innate lymphoid cells and colonic inflammation. *Immunity*. (2018) 48:120–32 e128. doi: 10.1016/j.jimmuni.2017.11.020
- van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. *Nat Rev Immunol*. (2010) 10:664–74. doi: 10.1038/nri2832
- Randall TD, Mebius RE. The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. *Mucosal Immunol*. (2014) 7:455–66. doi: 10.1038/mi.2014.11
- McKenzie ANJ, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. *Immunity*. (2014) 41:366–74. doi: 10.1016/j.jimmuni.2014.09.006
- Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. *Nat Med*. (2015) 21:698–708. doi: 10.1038/nm.3892
- Ebbo M, Crinier A, Vely F, Vivier E. Innate lymphoid cells: major players in inflammatory diseases. *Nat Rev Immunol*. (2017) 17:665–78. doi: 10.1038/nri.2017.86
- Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. *Nat Immunol*. (2011) 12:1055–62. doi: 10.1038/ni.2104
- Klose CSN, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. *Cell*. (2014) 157:340–56. doi: 10.1016/j.cell.2014.03.030
- Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. *Nat Immunol*. (2015) 16:306–17. doi: 10.1038/ni.3094
- Simoni Y, Fehlings M, Kloverpris HN, McGovern N, Koo SL, Loh CY, et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. *Immunity*. (2017) 46:148–61. doi: 10.1016/j.jimmuni.2016.11.005
- Yudanin NA, Schmitz F, Flamar AL, Thome JJC, Tait Wojno E, Moeller JB, et al. Spatial and temporal mapping of human innate lymphoid cells reveals elements of tissue specificity. *Immunity*. (2019) 50:505–19 e504. doi: 10.1016/j.jimmuni.2019.01.012
- Kim CH, Hashimoto-Hill S, Kim M. Migration and tissue tropism of innate lymphoid cells. *Trends Immunol*. (2016) 37:68–79. doi: 10.1016/j.it.2015.11.003
- Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. *Nat Immunol*. (2011) 12:1045–54. doi: 10.1038/ni.2131
- Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Berard M, Kleinschek M, et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. *Nat Immunol*. (2011) 12:320–6. doi: 10.1038/ni.2002
- Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. *Nat Immunol*. (2013) 14:221–9. doi: 10.1038/ni.2534
- Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. *Science*. (2016) 351:1296–302. doi: 10.1126/science.aad2571
- Stier MT, Zhang J, Goleniewska K, Cephus JY, Rusznak M, Wu L, et al. IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow. *J Exp Med*. (2018) 215:263–81. doi: 10.1084/jem.20170449
- Bando JK, Liang HE, Locksley RM. Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. *Nat Immunol*. (2015) 16:153–60. doi: 10.1038/ni.3057
- Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. *Science*. (2015) 350:981–5. doi: 10.1126/science.aac9593
- Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. *Cell*. (2017) 168:1086–100 e1010. doi: 10.1016/j.cell.2017.02.021

41. Huang Y, Mao K, Chen X, Sun MA, Kawabe T, Li W, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. *Science*. (2018) 359:114–9. doi: 10.1126/science.aam5809
42. Bar-Ephraim YE, Koning JJ, Burniol Ruiz E, Konijn T, Mourits VP, Lakeman KA, et al. CD62L Is a Functional and phenotypic marker for circulating innate lymphoid cell precursors. *J Immunol*. (2019) 202:171–82. doi: 10.4049/jimmunol.1701153
43. Dutton EE, Gajdasik DW, Willis C, Fiancette R, Bishop EL, Camelo A, et al. Peripheral lymph nodes contain migratory and resident innate lymphoid cell populations. *Sci Immunol*. (2019) 4:eaau8082. doi: 10.1126/sciimmunol.aau8082
44. Collins PL, Cella M, Porter SI, Li S, Gurewitz GL, Hong HS, et al. Gene regulatory programs conferring phenotypic identities to human NK cells. *Cell*. (2019) 176:348–60 e312. doi: 10.1016/j.cell.2018.11.045
45. Kanamori Y, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. *J Exp Med*. (1996) 184:1449–59. doi: 10.1084/jem.184.4.1449
46. Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. *J Immunol*. (2002) 168:57–64. doi: 10.4049/jimmunol.168.1.57
47. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. *Immunity*. (2008) 29:958–70. doi: 10.1016/j.immuni.2008.11.001
48. Luci C, Reynders A, Ivanov II, Cognet C, Chiche L, Chasson L, et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. *Nat Immunol*. (2009) 10:75–82. doi: 10.1038/ni.1681
49. Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. *Nat Immunol*. (2009) 10:83–91. doi: 10.1038/ni.1684
50. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. *Immunity*. (2013) 38:769–81. doi: 10.1016/j.immuni.2013.02.010
51. Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, Ivanov II, et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. *Immunity*. (2008) 29:261–71. doi: 10.1016/j.immuni.2008.05.014
52. Kruglov AA, Grivennikov SI, Kuprash DV, Winsauer C, Prepens S, Seleznyk GM, et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. *Science*. (2013) 342:1243–6. doi: 10.1126/science.1243364
53. Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC. IgA function in relation to the intestinal microbiota. *Annu Rev Immunol*. (2018) 36:359–81. doi: 10.1146/annurev-immunol-042617-053238
54. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. *Science*. (2012) 336:1321–5. doi: 10.1126/science.1222551
55. Hanash AM, Dudakov JA, Hua G, O'Connor MH, Young LF, Singer NV, et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. *Immunity*. (2012) 37:339–50. doi: 10.1016/j.immuni.2012.05.028
56. Aparicio-Domingo P, Romera-Hernandez M, Karrich JJ, Cornelissen F, Papazian N, Lindenbergh-Kortleve DJ, et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. *J Exp Med*. (2015) 212:1783–91. doi: 10.1084/jem.20150318
57. Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA, Jenq RR, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. *Nature*. (2015) 528:560–4. doi: 10.1038/nature16460
58. Satoh-Takayama N, Serafini N, Verrier T, Rekiki A, Renaud JC, Frankel G, et al. The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells. *Immunity*. (2014) 41:776–88. doi: 10.1016/j.immuni.2014.10.007
59. Savage AK, Liang HE, Locksley RM. The development of steady-state activation hubs between adult LTi ILC3s and primed macrophages in small intestine. *J Immunol*. (2017) 199:1912–22. doi: 10.4049/jimmunol.1700155
60. Pearson C, Thornton EE, McKenzie B, Schaupp AL, Huskens N, Griseri T, et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. *Elife*. (2016) 5:e10066. doi: 10.7554/elife.10066
61. Bando JK, Gilfillan S, Song C, McDonald KG, Huang SC, Newberry RD, et al. The tumor necrosis factor superfamily member RANKL suppresses effector cytokine production in group 3 innate lymphoid cells. *Immunity*. (2018) 48:1208–19 e1204. doi: 10.1016/j.immuni.2018.04.012
62. Hoorweg K, Narang P, Li Z, Thuery A, Papazian N, Withers DR, et al. A stromal cell niche for human and mouse type 3 innate lymphoid cells. *J Immunol*. (2015) 195:4257–63. doi: 10.4049/jimmunol.1402584
63. Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. *Nature*. (2013) 502:245–8. doi: 10.1038/nature12526
64. Dahlgren MW, Jones SW, Cautivo KM, Dubinin A, Ortiz-Carpenea JF, Farhat S, et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. *Immunity*. (2019). doi: 10.1016/j.immuni.2019.02.002
65. Sui P, Wiesner DL, Xu J, Zhang Y, Lee J, Van Dyken S, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. *Science*. (2018) 360:eaan8546. doi: 10.1126/science.aan8546
66. Ibiza S, Garcia-Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. *Nature*. (2016) 535:440–3. doi: 10.1038/nature18644
67. Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T, Bouchery T, et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. *Nature*. (2017) 549:277–81. doi: 10.1038/nature23469
68. Dalli J, Colas RA, Arnardottir H, Serhan CN. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. *Immunity*. (2017) 46:92–105. doi: 10.1016/j.immuni.2016.12.009
69. Klose CSN, Mahlakoiv T, Moeller JB, Rankin LC, Flamar AL, Kabata H, et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. *Nature*. (2017) 549:282–6. doi: 10.1038/nature23676
70. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. *Nature*. (2017) 549:351–6. doi: 10.1038/nature24029
71. Moriyama S, Brestoff JR, Flamar AL, Moeller JB, Klose CSN, Rankin LC, et al. beta2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. *Science*. (2018) 359:1056–61. doi: 10.1126/science.aan4829
72. Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, Lee J, Nussbaum JC, Liang HE, et al. Tissue signals imprint ILC2 identity with anticipatory function. *Nat Immunol*. (2018) 19:1093–9. doi: 10.1038/s41590-018-0201-4
73. Bernink JH, Krabbenbamp L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, et al. Interleukin-12 and –23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. *Immunity*. (2015) 43:146–60. doi: 10.1016/j.immuni.2015.06.019
74. Bal SM, Bernink JH, Nagasawa M, Groot J, Shikhagaie MM, Golebski K, et al. IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. *Nat Immunol*. (2016) 17:636–45. doi: 10.1038/ni.3444
75. Ohne Y, Silver JS, Thompson-Snipes L, Collet MA, Blanck JP, Cantarel BL, et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. *Nat Immunol*. (2016) 17:646–55. doi: 10.1038/ni.3447
76. Silver JS, Kearley J, Copenhagen AM, Sanden C, Mori M, Yu L, et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. *Nat Immunol*. (2016) 17:626–35. doi: 10.1038/ni.3443
77. Withers DR, Hepworth MR. Group 3 innate lymphoid cells: communications hubs of the intestinal immune system. *Front Immunol*. (2017) 8:1298. doi: 10.3389/fimmu.2017.01298
78. Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S, Sinha R, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. *Nature*. (2013) 498:113–7. doi: 10.1038/nature12240
79. Hepworth MR, Fung TC, Masur SH, Kelsen JR, McConnell FM, Dubrot J, et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal

- selection of commensal bacteria-specific CD4(+) T cells. *Science*. (2015) 348:1031–5. doi: 10.1126/science.aaa4812
80. Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, Brewer JM, et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. *Immunity*. (2014) 41:283–95. doi: 10.1016/j.jimmuni.2014.06.016
81. Halim TYF, Rana BMJ, Walker JA, Kerscher B, Knolle MD, Jolin HE, et al. Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells. *Immunity*. (2018) 48:1195–207 e1196. doi: 10.1016/j.jimmuni.2018.05.003
82. Kim MY, Toellner KM, White A, McConnell FM, Gaspal FM, Parnell SM, et al. Neonatal and adult CD4+ CD3- cells share similar gene expression profile, and neonatal cells up-regulate OX40 ligand in response to TL1A. (TNFSF15). *J Immunol*. (2006) 177:3074–81. doi: 10.4049/jimmunol.177.5.3074
83. Martin CE, Spasova DS, Frimpong-Boateng K, Kim HO, Lee M, Kim KS, et al. Interleukin-7 availability is maintained by a hematopoietic cytokine sink comprising innate lymphoid cells and T cells. *Immunity*. (2017) 47:171–82 e174. doi: 10.1016/j.jimmuni.2017.07.005
84. Mackley EC, Houston S, Marriott CL, Halford EE, Lucas B, Cerovic V, et al. CCR7-dependent trafficking of RORgamma(+) ILCs creates a unique microenvironment within mucosal draining lymph nodes. *Nat Commun*. (2015) 6:5862. doi: 10.1038/ncomms6862
85. Kim MH, Taparowsky EJ, Kim CH. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. *Immunity*. (2015) 43:107–19. doi: 10.1016/j.jimmuni.2015.06.009
86. Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A, Lara-Astiaso D, et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. *Cell*. (2016) 166:1231–46 e1213. doi: 10.1016/j.cell.2016.07.043
87. Kobayashi T, Voisin B, Kim DY, Kennedy EA, Jo JH, Shih HY, et al. Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. *Cell*. (2019) 176:982–97 e916. doi: 10.1016/j.cell.2018.12.031
88. van de Pavert SA, Olivier BJ, Goverse G, Vondenhoff MF, Greuter M, Beke P, et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. *Nat Immunol*. (2009) 10:1193–9. doi: 10.1038/ni.1789
89. Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. *Science*. (2010) 328:749–52. doi: 10.1126/science.1185837
90. Irshad S, Flores-Borja F, Lawler K, Monypenny J, Evans R, Male V, et al. RORgammat(+) innate lymphoid cells promote lymph node metastasis of breast cancers. *Cancer Res*. (2017) 77:1083–96. doi: 10.1158/0008-5472.CAN-16-0598
91. Ardaín A, Domingo-González R, Das S, Kazer SW, Howard NC, Singh A, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. *Nature*. (2019) 570:528–32. doi: 10.1038/s41586-019-1276-2
92. Chea S, Possot C, Perchet T, Petit M, Cumano A, Golub R. CXCR6 expression is important for retention and circulation of ILC precursors. *Mediat Inflamm*. (2015) 2015:368427. doi: 10.1155/2015/368427
93. Paust S, Gill HS, Wang BZ, Flynn MP, Moseman EA, Senman B, et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. *Nat Immunol*. (2010) 11:1127–35. doi: 10.1038/ni.1953
94. Kim SH, Cho BH, Kiyono H, Jang YS. Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer's patches. *Sci Rep*. (2017) 7:3980. doi: 10.1038/s41598-017-02729-6
95. Chu C, Moriyama S, Li Z, Zhou L, Flamar AL, Klose CSN, et al. Anti-microbial functions of group 3 innate lymphoid cells in gut-associated lymphoid tissues are regulated by G-protein-coupled receptor 183. *Cell Rep*. (2018) 23:3750–8. doi: 10.1016/j.celrep.2018.05.099
96. Melo-Gonzalez F, Kammoun H, Evren E, Dutton EE, Papadopoulou M, Bradford BM, et al. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. *J Exp Med*. (2019) 216, 728–42. doi: 10.1084/jem.20180871
97. Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, et al. Natural killer cell trafficking *in vivo* requires a dedicated sphingosine 1-phosphate receptor. *Nat Immunol*. (2007) 8:1337–44. doi: 10.1038/ni1523
98. Wojno ED, Monticelli LA, Tran SV, Alenghat T, Osborne LC, Thome JJ, et al. The prostaglandin D(2) receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. *Mucosal Immunol*. (2015) 8:1313–23. doi: 10.1038/mi.2015.21
99. Shikhagaie MM, Bjorklund AK, Mjosberg J, Erjefalt JS, Cornelissen AS, Ros XR, et al. Neuropilin-1 is expressed on lymphoid tissue residing LTi-like group 3 innate lymphoid cells and associated with ectopic lymphoid aggregates. *Cell Rep*. (2017) 18:1761–73. doi: 10.1016/j.celrep.2017.01.063
100. Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. *Immunity*. (2012) 37:634–48. doi: 10.1016/j.jimmuni.2012.06.020
101. Li BWS, Stadhouders R, de Brujin MJW, Lukkes M, Beerens D, Brem MD, et al. Group 2 innate lymphoid cells exhibit a dynamic phenotype in allergic airway inflammation. *Front Immunol*. (2017) 8:1684. doi: 10.3389/fimmu.2017.01684
102. Bjorklund AK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D, et al. The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing. *Nat Immunol*. (2016) 17:451–60. doi: 10.1038/ni.3368
103. Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3- cells to colonize lymph nodes. *Proc Natl Acad Sci USA*. (1996) 93:11019–24. doi: 10.1073/pnas.93.20.11019
104. Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D, et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. *Nature*. (2007) 446:547–51. doi: 10.1038/nature05597
105. Cherrier M, Sawa S, Eberl G, Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. *J Exp Med*. (2012) 209:729–40. doi: 10.1084/jem.20111594
106. Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. *Immunity*. (2016) 44:439–49. doi: 10.1016/j.jimmuni.2016.02.024
107. Perdigero EG, Geissmann F. The development and maintenance of resident macrophages. *Nat Immunol*. (2016) 17:2–8. doi: 10.1038/ni.3341
108. Kim SV, Xiang WV, Kwak C, Yang Y, Lin XW, Ota M, et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. *Science*. (2013) 340:1456–9. doi: 10.1126/science.1237013
109. Montaldo E, Teixeira-Alves LG, Glatzer T, Durek P, Stervbo U, Hamann W, et al. Human RORgammat(+)CD34(+) cells are lineage-specified progenitors of group 3 RORgammat(+) innate lymphoid cells. *Immunity*. (2014) 41:988–1000. doi: 10.1016/j.jimmuni.2014.11.010
110. Scoville SD, Mundy-Bosse BL, Zhang MH, Chen L, Zhang X, Keller KA, et al. A progenitor cell expressing transcription factor RORgammat generates all human innate lymphoid cell subsets. *Immunity*. (2016) 44:1140–50. doi: 10.1016/j.jimmuni.2016.04.007
111. Lim AI, Di Santo JP. ILC-poiesis: ensuring tissue ILC differentiation at the right place and time. *Eur J Immunol*. (2019) 49:11–8. doi: 10.1002/eji.201747294
112. Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. *Annu Rev Immunol*. (2012) 30:69–94. doi: 10.1146/annurev-immunol-020711-075011
113. Eken A, Yetkin MF, Vural A, Okus FZ, Erdem S, Azizoglu ZB, et al. Fingolimod alters tissue distribution and cytokine production of human and murine innate lymphoid cells. *Front Immunol*. (2019) 10:217. doi: 10.3389/fimmu.2019.00217
114. Bar-Ephraim YE, Cornelissen F, Papazian N, Konijn T, Hoogenboezem RM, Sanders MA, et al. Cross-tissue transcriptomic analysis of human secondary lymphoid organ-residing ILC3s reveals a quiescent state in the absence of inflammation. *Cell Rep*. (2017) 21:823–33. doi: 10.1016/j.celrep.2017.09.070
115. Szabo PA, Miron M, Farber DL. Location, location, location: tissue resident memory T cells in mice and humans. *Sci Immunol*. (2019) 4:eaas9673. doi: 10.1126/sciimmunol.aas9673

116. Shioi LR, Rosen DB, Brdickova N, Xu Y, An J, Lanier LL, et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. *Nature*. (2006) 440:540–4. doi: 10.1038/nature04606
117. Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS, et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. *Nat Immunol*. (2013) 14:564–73. doi: 10.1038/ni.2584
118. Cyster JG, Dang EV, Rebaldi A, Yi T. 25-Hydroxycholesterols in innate and adaptive immunity. *Nat Rev Immunol*. (2014) 14:731–43. doi: 10.1038/nri3755
119. Willinger T. Oxysterols in intestinal immunity and inflammation. *J Intern Med*. (2019) 285:367–80. doi: 10.1111/joim.12855
120. Wyss A, Raselli T, Perkins N, Ruiz F, Schmelzner G, Klinke G, et al. The EBI2-oxysterol axis promotes the development of intestinal lymphoid structures and colitis. *Mucosal Immunol*. (2019) 12:733–45. doi: 10.1038/s41385-019-0140-x
121. McDonald KG, McDonough JS, Wang C, Kucharzik T, Williams IR, Newberry RD. CC chemokine receptor 6 expression by B lymphocytes is essential for the development of isolated lymphoid follicles. *Am J Pathol*. (2007) 170:1229–40. doi: 10.2353/ajpath.2007.060817
122. Baptista AP, Olivier BJ, Goverse G, Greuter M, Knippenberg M, Kusser K, et al. Colonic patch and colonic SILT development are independent and differentially regulated events. *Mucosal Immunol*. (2013) 6:511–21. doi: 10.1038/mi.2012.90
123. Xue L, Salimi M, Panse I, Mjosberg JM, McKenzie AN, Spits H, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. *J Allergy Clin Immunol*. (2014) 133:1184–94. doi: 10.1016/j.jaci.2013.10.056
124. Barnig C, Cernadas M, Dutile S, Liu X, Perrella MA, Kazani S, et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. *Sci Transl Med*. (2013) 5:174ra126. doi: 10.1126/scitranslmed.3004812
125. Fung TC, Bessman NJ, Hepworth MR, Kumar N, Shibata N, Kobuley D, et al. Lymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism. *Immunity*. (2016) 44:634–46. doi: 10.1016/j.immuni.2016.02.019
126. Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. *Nat Med*. (2014) 20:54–61. doi: 10.1038/nm.3423
127. Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C, Cooke G, et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. *Proc Natl Acad Sci USA*. (2014) 111:367–72. doi: 10.1073/pnas.1315854111
128. Scandella E, Bolinger B, Littmann E, Miller S, Favre S, Littman DR, et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. *Nat Immunol*. (2008) 9:667–75. doi: 10.1038/ni.1605
129. Dudakov JA, Hanash AM, Jenq RR, Young LF, Ghosh A, Singer NV, et al. Interleukin-22 drives endogenous thymic regeneration in mice. *Science*. (2012) 336:91–5. doi: 10.1126/science.1218004
130. Mjosberg J, Rao A. Lung inflammation originating in the gut. *Science*. (2018) 359:36–7. doi: 10.1126/science.aar4301
131. Munneke JM, Bjorklund AT, Mjosberg JM, Garming-Legert K, Bernink JH, Blom B, et al. Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. *Blood*. (2014) 124:812–21. doi: 10.1182/blood-2013-11-536888
132. Bartemes KR, Kephart GM, Fox SJ, Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. *J Allergy Clin Immunol*. (2014) 134:671–8 e674. doi: 10.1016/j.jaci.2014.06.024
133. Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. *Nat Rev Immunol*. (2018) 18:671–88. doi: 10.1038/s41577-018-0061-z
134. Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. *Cell*. (2017) 169:750–65 e717. doi: 10.1016/j.cell.2017.04.014
135. Castriconi R, Carrega P, Dondero A, Bellora F, Casu B, Regis S, et al. Molecular mechanisms directing migration and retention of natural killer cells in human tissues. *Front Immunol*. (2018) 9:2324. doi: 10.3389/fimmu.2018.02324
136. Susek KH, Karvouni M, Alici E, Lundqvist A. The role of CXC chemokine receptors 1–4 on immune cells in the tumor microenvironment. *Front Immunol*. (2018) 9:2159. doi: 10.3389/fimmu.2018.02159
137. Bie Q, Zhang P, Su Z, Zheng D, Ying X, Wu Y, et al. Polarization of ILC2s in peripheral blood might contribute to immunosuppressive microenvironment in patients with gastric cancer. *J Immunol Res*. (2014) 2014:923135. doi: 10.1155/2014/923135
138. Eisenring M, vom Berg J, Kristiansen G, Saller E, Becher B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. *Nat Immunol*. (2010) 11:1030–8. doi: 10.1038/ni.1947
139. Nussbaum K, Burkhard SH, Ohs I, Mair F, Klose CSN, Arnold SJ, et al. Tissue microenvironment dictates the fate and tumor-suppressive function of type 3 ILCs. *J Exp Med*. (2017) 214:2331–47. doi: 10.1084/jem.20162031
140. Carrega P, Loiacono F, Di Carlo E, Scaramuccia A, Mora M, Conte R, et al. NCR(+)ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. *Nat Commun*. (2015) 6:8280. doi: 10.1038/ncomms9280
141. Colbeck EJ, Ager A, Gallimore A, Jones GW. Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? *Front Immunol*. (2017) 8:1830. doi: 10.3389/fimmu.2017.01830
142. Jia J, Conlon TM, Sarker RS, Tasdemir D, Smirnova NF, Srivastava B, et al. Cholesterol metabolism promotes B-cell positioning during immune pathogenesis of chronic obstructive pulmonary disease. *EMBO Mol Med*. (2018) 10:e8349. doi: 10.15252/emmm.201708349

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Willinger. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Immunometabolic Checkpoints of Treg Dynamics: Adaptation to Microenvironmental Opportunities and Challenges

Ilenia Pacella¹ and Silvia Piconese^{1,2*}

¹ Laboratory of Cellular and Molecular Immunology, Department of Internal Medicine and Medical Specialties, Sapienza Università di Roma, Rome, Italy, ² Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy

OPEN ACCESS

Edited by:

Hannes Stockinger,
Medical University of Vienna, Austria

Reviewed by:

Paolo Dellabona,
San Raffaele Scientific Institute
(IRCCS), Italy
Lawrence Kane,
University of Pittsburgh, United States

*Correspondence:

Silvia Piconese
silvia.piconese@uniroma1.it

Specialty section:

This article was submitted to
T Cell Biology,
a section of the journal
Frontiers in Immunology

Received: 13 June 2019

Accepted: 26 July 2019

Published: 27 August 2019

Citation:

Pacella I and Piconese S (2019)
Immunometabolic Checkpoints of
Treg Dynamics: Adaptation to
Microenvironmental Opportunities and
Challenges. *Front. Immunol.* 10:1889.
doi: 10.3389/fimmu.2019.01889

In the last decades, immunologists have started to consider intracellular metabolism in relation with the dynamics and functions of immune cells, especially when it became clear that microenvironmental alterations were associated with immune dysfunctions. Regulatory T cells (Tregs) are equipped with a variety of immunological and metabolic sensors, and encompass circulating as well as tissue-resident cells, being therefore particularly susceptible to microenvironmental cues. Moreover, Tregs undergo metabolic reprogramming over the course of an immune response, allowing the use of alternate substrates and engaging different metabolic pathways for energetic demands. The study of metabolic mechanisms supporting Treg dynamics has led to puzzling results, due to several limitations, including the heterogeneity of population in the same tissues and between different tissues, the difficulty in considering all the interconnected metabolic pathways during a cellular process, and the differences between *in vitro* and *in vivo* conditions. Therefore, Treg reliance on different metabolic routes (oxidation rather than glycolysis) has been a matter of controversy in recent years. Metabolic reprogramming and altered bioenergetics are now identified as hallmarks in cancer, and are employed by cancer cells to determine the availability of metabolites and molecules, thus affecting the fate of tumor-infiltrating immune cells. In particular, the tumor microenvironment forces a metabolic restriction and a plethora of synergistic intrinsic and extrinsic stresses, leading to an impaired anti-tumor immunity and favoring Treg generation, expansion, and suppressive function. This leads to the understanding that Tregs and conventional T cells have different capability to adapt to metabolic hurdles. Considering the role of Tregs in dictating the outcome of tumor-specific responses, it would be important to understand the specific Treg metabolic profile that provides an advantage at the tumor site, to finally identify new targets for therapy. In this review, we will report and discuss the major recent findings about the metabolic pathways required for Treg development, expansion,

migration and functions, in relation to tissue-derived signals. We will focus on the adipose tissue and the liver, where Tregs are exposed to a variety of metabolites, and on the tumor microenvironment as the context where Tregs develop the ability to adapt to perturbations in nutrient accessibility.

Keywords: Treg, glycolysis, cancer, proliferation, mitochondria, oxydation

INTRODUCTION

Regulatory T cells (Tregs) are now recognized as a specialized CD4 T cell subset essential for immune homeostasis, as well as for protection from autoimmunity and excessive inflammation. In several mouse models, transient Treg depletion early in life, or congenital Treg deficiency, leads to the spontaneous development of lethal multiorgan autoimmune disorders (1, 2). In humans, a wide array of Treg defects, ranging from frequency to function to proliferative potential, have been reported in several autoimmune diseases, and therapies aiming at recovering physiological Treg activities (such as adoptive Treg cell therapy) are under development for these conditions (3). Conversely, increased Treg proportions can be found in the tumor microenvironment in many tumor types in both mouse models and human patients, correlating with a poor prognosis [with a few exceptions like colorectal cancer (4)]. Therefore, Treg depletion or blockade is now considered as a necessary step to elicit effective anti-tumor immunity (5). Recent data have revealed that CTLA-4, the first “immune checkpoint” to enter the clinic as cancer immunotherapeutic agent, is more expressed by Tregs than effector T cells in peripheral lymphoid organs and in blood and even more at the tumor site, and that anti-CTLA-4 antibodies may work through antibody-dependent cell-mediated cytotoxicity and Treg depletion (6–9); this finding proves the key role of Tregs as a non-redundant and even dominant immune checkpoint in the tumor microenvironment. Therefore, a deeper understanding of the most important pathways and molecules involved in Treg expansion, survival and contraction is urgently needed in order to design better therapies aiming at Treg manipulation *in vivo*.

We have recently started to appreciate the complexity of Treg dynamics, from their development to their rapid adaptation to microenvironmental and systemic changes. More importantly, in the last decades, we have started to take into consideration intracellular metabolism of T cells in relation to their dynamics and functions during immune responses, a concept known as cellular “immunometabolism” (10). Tregs can be considered a very peculiar CD4 T cell subset, since they physiologically reside in virtually all tissues and organs, and constitutively express a wide array of immune as well as metabolic sensors. Therefore, Tregs are equipped to promptly respond to any immune and metabolic signal in an “innate-like” fashion, even though we have not completely elucidated the consequences of immunometabolic signals in Treg activities. Based on their high sensitivity to external cues and on their fundamental role in switching between tolerance and immunity, Tregs can be considered as one of the key links between nutrient sensing

and immune response, a mechanism selected by evolution to optimize energetic resources (11).

TREGS SWITCH BETWEEN QUIESCEENCE AND PROLIFERATION IN MANY PHASES OF THEIR DEVELOPMENT AND FUNCTIONS

When CD25+ Tregs were discovered, they were originally described as anergic cells, based on their inability to proliferate *in vitro* in response to T cell receptor (TCR) stimulation and in the absence of exogenous IL-2 (12). What is more, anergy appeared as a prerequisite for suppressive function, since Tregs seemed to lose their suppression in condition of anergy reversal (12). Not only was anergy thought to be required for Treg function, but it seemed also involved in Treg differentiation. Indeed, since the very first experiments *in vitro*, the conversion of conventional T cells (Tconvs) into Tregs was favored in conditions of tolerogenic or sub-immunogenic stimulation that induced suboptimal levels of proliferation (13, 14). All these data contributed to consolidate the idea of anergy as a key component of the Treg identity. However, the observations that *de novo* induced Tregs can massively proliferate and that Tregs could preserve their suppressive function while proliferating have challenged this notion (14, 15). It is now recognized that, in many contexts, proliferation is not only involved but even required to ensure a full suppressive function by Tregs.

In the last decades, a large amount of data have clarified the requirement of active proliferation throughout the stages of Treg development and activation in mice, whilst the knowledge of these events remains still elusive in humans. A subset of Tregs, probably accounting for the majority of Tregs in lymphoid organs of naïve animals, develop in the thymus upon encountering self-antigens, and are called thymic Tregs (tTregs). A certain proportion of Tregs can develop in peripheral organs in response to non-self-molecules such as commensal and food antigens, are thus highly represented in the intestine, and are called peripheral Tregs (pTregs) (16). To date, no reliable markers are available to dissect the actual contribution of thymic vs. peripheral developmental routes to the Treg pool; however, several protocols have been developed to induce Treg differentiation *in vitro* (of so-called iTregs) from Tconvs, which recapitulate some features of Treg induction *in vivo*.

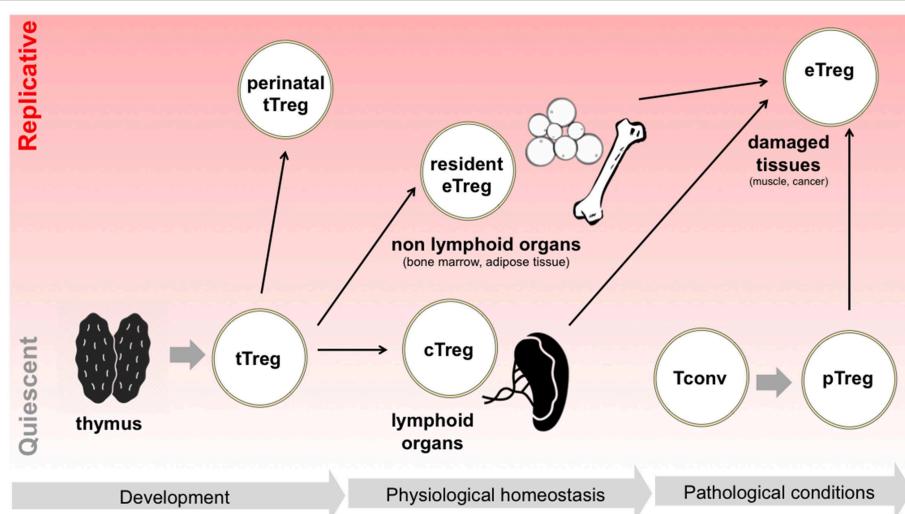
In the neonatal life, early after development, tTregs undergo a massive wave of proliferation that is probably their first proliferative burst. In mice, a distinct pool of Tregs largely expands in the perinatal life, persists longtime, and plays a vital

role in suppressing autoimmunity (17) through the induction of T cell anergy (18). These perinatal Tregs presented very high proportions of Ki67-positive and EdU-incorporating cells, and DNA replication was one of the top pathways emerging from their transcriptomic profile. A similar expansion of Tregs has been detected in the human peripheral blood during early neonatal life, probably in response to the immediate exposure to commensals (19). Tregs display a phenotype that is compatible with recent activation in healthy human neonates, while during neonatal sepsis they may play a role in controlling the clinical manifestations of the disease (20).

Following development, Tregs recirculate throughout the blood and populate lymphoid as well as non-lymphoid organs; in the latter, tissue-resident Tregs acquire a tissue-specific molecular profile and specialized functions (21). This polarization from a central (cTreg) into an effector (eTreg) status occurs in response to antigen stimulation as well as local inflammatory stimuli, and follows the activation of specific molecular programs driven by transcription factors like NFkB, Blimp and IRF4 (22). Tissue-resident Tregs are thought to play not only the well-known immunosuppressive functions, but also to exert some non-immune activities such as maintenance of tissue homeostasis and promotion of tissue regeneration upon injury (23). Whether Tregs undergo further rounds of division within tissues, and whether this event is required to become specialized resident cells or to ensure their long-term persistence, is still unclear. Some tissues are characterized by relatively high frequencies and numbers of Tregs in physiological conditions, such as the bone marrow (24) and the visceral adipose tissue (VAT) of lean adult mice; at least in the latter case, it has been clearly demonstrated that active proliferation, coupled with enhanced survival, sustains the physiological Treg expansion in this tissue (25, 26). Several data confirm the idea that human circulating Tregs contain a very high proportion of cycling cells (27, 28) even though the role of proliferation in the physiological homeostasis of human Tregs remains to be clarified.

In pathological conditions, for instance following acute tissue injury, the Treg population may expand thanks to the concomitant recruitment of cTregs that are locally differentiated into eTregs, to the local development of pTregs, and to the proliferation of resident and recruited Tregs (29). Thanks to their proliferative response and effector polarization, Tregs can promote the resolution of the injury through the suppression of inflammatory processes and the release of tissue-repairing molecules. However, when the source of damage is not eradicated, such as in the case of viruses establishing chronic infections or in the case of cancer, the Treg pool may continue to expand in a chronic fashion, until it even subverts the protective anti-viral or anti-tumor immunity (30).

All these pieces of evidence demonstrate that, during their life time, Tregs may continuously switch between quiescent survival and active replication and back; this switch may occur when Tregs are in a naïve status without compromising their “naïveness” as in the case of perinatal Treg expansion, or may occur during the physiological specialization of tissue-resident Tregs or the pathological polarization of effector Tregs in damaged tissues (Figure 1). Such highly dynamic behavior


implies that Tregs may be particularly able to switch their metabolism depending on the immune signals that they receive and the nutrient availability in different contexts.

THE METABOLISM OF CONVENTIONAL T CELLS: HOW DO TREGS FIT WITH THIS MODEL?

Thanks to advances in the field in recent years, we have now recognized that T cells, probably the cells in the body capable of the largest clonal proliferation, strictly rely on metabolic switches to sustain their immune functions. Three main metabolic profiles can be generally assigned to the main stages of T cell activation: first, mature naïve T cells are thought to survive in a quiescent state thanks to a low level of oxidative phosphorylation and mitochondrial respiration; second, T cell stimulation through the TCR and costimulatory receptors primes a strong switch from an oxidative to a glycolytic-lipogenic metabolism, characterized by increased uptake of glucose (and other nutrients) from the extracellular environment, generation of ATP from substrate-level phosphorylation during glycolysis, conversion of pyruvate into lactate, and biosynthesis of macromolecules for cell growth and division; third, memory T cells are mostly oxidative cells, yet they are “metabolically primed” for a glycolytic switch, a combination that ensures both long-term survival and prompt response to an antigen recall (31, 32).

The glycolytic-lipogenic and the lipolytic-oxidative pathways are generally viewed as mutually exclusive, thanks to the reciprocal regulation operated at several checkpoints along the metabolic flux. As an example, in poor nutrient supply conditions and other stress conditions, the AMP-activated protein kinase (AMPK) is activated and negatively regulates the mammalian target of rapamycin (mTOR), thus inhibiting a variety of biosynthetic pathways such as fatty acid synthesis (mediated by acetyl-CoA carboxylase or ACC) and cholesterol synthesis. A reciprocal regulation also exists between fatty acid synthesis and oxidation, since malonyl-coA (the product of ACC reaction) is a major inhibitor of carnitine palmitoyltransferase 1a (or CPT1a, the key enzyme of fatty acid oxidation). Therefore, cells are thought to oscillate between an mTOR-driven anabolic metabolism and an AMPK-driven catabolic metabolism. However, the two programs have been found to coexist in selected conditions. Memory T cells, indeed, maintain the ability to uptake and convert glucose into fatty acids, and then perform cell-intrinsic lipolysis to fuel mitochondrial oxidation, in an apparently “futile” cycle whose implications have not been completely understood (33).

A correspondence between the immune status and the intracellular metabolism can be achieved thanks to many immune-metabolic links in signaling pathways in T cells: to mention just a few examples, TCR and CD28 stimulation directly activates mTOR, a major orchestrator of the glycolytic switch (34); CD28 primes mitochondrial fatty acid oxidation, thus driving proper memory development (35); the enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), when not

FIGURE 1 | Tregs switch between quiescence and replication in different developmental and activation phases. Following tTreg development, a perinatal wave of Treg replication occurs, which is thought to suppress T cell responses in neonatal life. Later in life, in physiological conditions, Tregs colonize both lymphoid organs, becoming cTregs, and non-lymphoid organs, becoming resident Tregs and acquiring eTreg phenotype: in the latter case, extensive Treg proliferation has been reported, for instance in adipose tissue. Finally, in pathological conditions such as in the case of acute tissue damage, Tregs are locally expanded, thanks to the proliferation of resident eTregs, to the differentiation of cTregs, and to the conversion of pTregs.

engaged in glycolysis, represses post-transcriptionally IFN- γ expression (36); and the tumor necrosis factor receptor-associated factor 6 (TRAF6), an adaptor that can be activated by some receptors of the tumor necrosis factor receptor (TNFR) superfamily, fosters memory development through mitochondrial fatty acid oxidation (37).

How can Tregs be categorized according to this scheme? The answer is still unclear: indeed, some data describe Tregs as mostly oxidative cells, while other data demonstrate the need of glycolysis for some Treg activities. One of the main reasons explaining these conflicting results may be the type of Tregs (tTregs vs. pTregs) that is analyzed in different studies: on the one side, pTregs seem to differentiate when effector T cell activation, which relies on the glycolysis-lipogenesis pathway, is blocked. Conversely, tTregs seem to depend on this pathway for their proliferation and fitness, resembling effectors (38); however, both tTregs and pTregs can either remain quiescent or enter cell cycle depending on the surrounding signals, and this can profoundly affect their metabolism. Therefore, probably the most important reason dictating their metabolic requirements is the stage of development and/or activity at which Tregs are analyzed; indeed, opposite results can be obtained when analyzing iTregs/pTregs during their differentiation from Tconvs, or when analyzing already established Tregs (irrespective of their peripheral or thymic origin) during their active proliferation. In turn, Tregs can be studied directly *ex vivo* from many different tissues and sources, or after many different types of stimulation and culture *in vitro*; this experimental heterogeneity may profoundly affect the outcome of metabolic analyses. Finally, the CD25^{high} or Forkhead Box P3 (Foxp3) + compartment is actually a heterogeneous mixture of different subsets, which include cycling as well as resting Tregs, and also cells with an unstable regulatory phenotype.

Here we will report and discuss the main findings regarding Treg metabolism, classified according to whether they refer to *de novo* Treg induction, to the proliferation of previously established Tregs, or to different Treg activities.

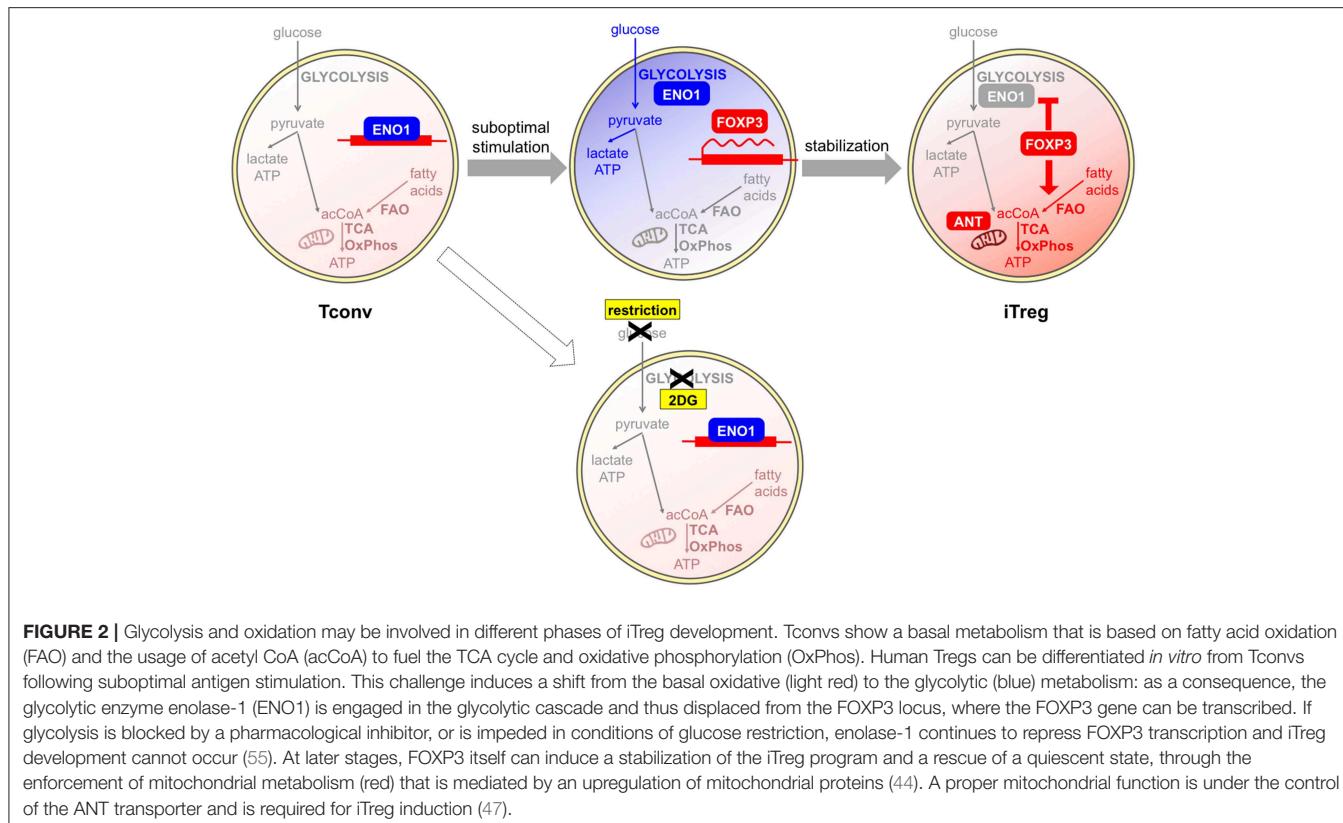
TREG INDUCTION, PROLIFERATION AND FUNCTION RELY ON DISTINCT METABOLIC PATHWAYS

Metabolic Pathways Involved in Treg Induction

The first evidence connecting Treg induction to an oxidative metabolism came from the study of Michalek et al., where iTregs were differentiated through the classical protocol based on transforming growth factor β (TGF β) exposure, or through mTOR inhibition with rapamycin; in both settings, etomoxir (at 200 μ M), known as an inhibitor of fatty acid oxidation, could suppress iTreg polarization (39). Compared to T helper subsets polarized *in vitro* with specific cytokine cocktails, TGF β -induced iTregs expressed lower levels of the glucose transporter 1 (GLUT1), performed less glycolysis and more fatty acid oxidation, and were not affected by supplementation of exogenous fatty acids (39). Both iTregs and so-called “natural” Tregs contained higher levels of phosphorylated AMPK, and metformin administration increased Treg frequency *in vivo* (39).

Subsequently, several studies have contributed to generate the hypothesis that Treg differentiation relies on a switch from glycolytic-lipogenic to oxidative metabolism. A large amount of data derive from the analysis of iTreg polarization *in vitro*, induced through standard protocols of anti-CD3/anti-CD28 stimulation in the presence of TGF β . In this setting, iTregs display lower glycolytic rates and higher oxygen consumption

compared to T helper (Th) 1 and Th17, and their metabolic and transcriptional profile is suggestive of higher fatty acid oxidation (40–44). In these cultures (actually containing Foxp3+ and Foxp3- cells in some studies), the differentiation of iTregs was reduced in the presence of the electron transport inhibitor rotenone (irrespective of their proliferation) (43); conversely, the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) or the mTOR inhibitor rapamycin (45), or the AMPK agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) (46, 47), enhanced iTreg differentiation. On the side of lipogenesis, the genetic or pharmacological blockade of fatty acid synthesis enhanced iTreg polarization at the expense of Th17 cells (42).


Key metabolic “checkpoints” have been identified that affect iTreg differentiation by tipping the balance between glycolytic and oxidative metabolism. The first step of this axis is represented by glucose uptake, operated by several glucose transporters and in particular by GLUT1. When its expression was ablated in the T cell lineage, effector T cells displayed defective growth, proliferation and survival; however, Treg numbers were not affected, either in naïve mice or under inflammatory conditions (48). Downstream glucose capture, mTOR is a major sensor of environmental cues including immune signals and nutrient availability, and is also a major orchestrator of the glycolytic-lipogenic switch required for cell growth and proliferation; not only mTOR inhibition enhances iTreg differentiation (49, 50), but also mice carrying T cell-restricted mTOR deficiency show impaired T helper cell expansion, with enhanced Treg induction, *in vitro* and *in vivo*, in a model of viral infection (51). Downstream mTOR, the transcription factor HIF1α is activated and initiates a glycolytic program in T cells that is required for Th17 polarization at the expense of iTreg induction (45, 52). Pyruvate dehydrogenase (PDH), whose activity is negatively regulated by the pyruvate dehydrogenase kinase 1 (PDK1), dictates the fate of pyruvate between conversion into lactate or into acetyl-CoA; this axis was identified as a key regulatory node for Th17 and iTreg alternative polarization *in vitro* (43). Finally, the acetyl-coA carboxylase 1 (ACC1), a key enzyme for fatty acid synthesis, was shown to switch the polarization fate between iTregs and Th17 (42).

These findings strengthened the notion that iTreg/pTreg differentiation was favored in conditions of oxidative metabolism and was antagonized when the glycolytic-lipogenic pathway was fueled. However, some considerations should be made when interpreting these results, especially the studies performed in mouse models. First, most data come from mice carrying genetic ablation of key genes in the entire T cell lineage, thus effector T cell development, homeostasis and activation may be suboptimal or defective. In these settings, some of the Treg alterations, especially those observed *in vivo*, may be a consequence of impaired effector T cell homeostasis or activation, rather than regarding selectively iTreg/pTreg induction. Second, most data have been obtained in contexts of antigen immunization, autoimmune or inflammatory diseases: for instance, Foxp3+ cells (probably a mixture of tTregs and pTregs) did not upregulate proteins related to glycolysis, contrary to Th17 cells, in lymphoid organs of mice with experimental autoimmune encephalomyelitis (EAE) (43). Other examples

are that administration of 2-DG and metformin increased the frequency of Foxp3+ cells in splenocytes of mice immunized with a model antigen (53), and that mice lacking HIF1α or ACC1 in the CD4 T cell lineage showed higher Treg frequencies and were more resistant to EAE (42, 52). These inflammatory conditions generally do not favor massive induction of expansion of Tregs, and thus do not allow studying Treg metabolism in a dynamic context. Third, discriminating the metabolic requirements of newly induced pTregs, compared to preexisting tTregs undergoing activation during disease, may be quite difficult *in vivo*.

Regarding the *in vitro* studies, most conclusions have been drawn from experiments based on the classical protocol of TGFβ culture. In this setting, iTreg induction appears as a “backup plan” when other differentiation programs are not allowed. Since T helper polarization usually requires T cell growth supported by a glycolytic-lipogenic switch, T cells may sense metabolic restriction as a signal of functional anergy, which consequently leads to Foxp3 induction and initiates a regulatory program. Supporting this idea, the increase of iTreg polarization induced by some metabolic inhibitors like the ACC1 inhibitor soraphen A, the mitochondrial blocker rotenone (41–43), or appearing in mTOR-deficient cells (51), was coupled to a suppression of T cell proliferation; conversely, higher T cell proliferation was induced by the AMPK agonist AICAR along with lower iTreg induction (46). Therefore, these results suggest the existence of a link between metabolic and immune anergy, of which Foxp3 induction may be an early consequence (54). At later stages, Foxp3 may stabilize this profile; indeed, ectopic Foxp3 expression is necessary and sufficient to induce a switch from glycolysis to oxidation (40, 43, 44) (Figure 2).

Recent data have clearly demonstrated that TGFβ has the intrinsic property of suppressing glycolytic metabolism in Tconvs undergoing transition into iTregs, as well as in tTregs, which would be otherwise highly glycolytic cells (56). Therefore, TGFβ-based protocols for iTreg polarization may provide limited information on the physiological mechanisms of iTreg differentiation. Indeed, strikingly different results have been obtained when human iTregs have been differentiated *in vitro* in a TGFβ-independent fashion, under conditions of suboptimal (weak and short) CD3/CD28 stimulation (55). In this setting, a population of CD25high cells developed, enriched in Ki67+ and FOXP3+ cells, in which the induction of high levels of FOXP3 was suppressed by 2-DG and enhanced by etomoxir. Two splicing isoforms of the human FOXP3 protein exist differing for the presence of the exon 2 and conferring different suppressive properties and lineage stability: the glycolytic enzyme enolase-1 was found recruited to the FOXP3 locus to repress FOXP3 expression, especially when 2-DG treatment inhibited glycolysis thus disengaging glycolytic enzymes. Impaired glycolysis and diminished expression of the FOXP3 isoform containing exon 2 were observed in Tconvs obtained from multiple sclerosis patients in correlation with their lower rates of conversion into iTregs (55). This study challenged the idea that iTreg differentiation was antagonized in conditions of high glycolytic rates; rather, it demonstrated that a proper metabolic activation of Tconvs, which included competence for

FIGURE 2 | Glycolysis and oxidation may be involved in different phases of iTreg development. Tconv show a basal metabolism that is based on fatty acid oxidation (FAO) and the usage of acetyl CoA (acCoA) to fuel the TCA cycle and oxidative phosphorylation (OxPhos). Human Tregs can be differentiated *in vitro* from Tconv following suboptimal antigen stimulation. This challenge induces a shift from the basal oxidative (light red) to the glycolytic (blue) metabolism: as a consequence, the glycolytic enzyme enolase-1 (ENO1) is engaged in the glycolytic cascade and thus displaced from the FOXP3 locus, where the FOXP3 gene can be transcribed. If glycolysis is blocked by a pharmacological inhibitor, or is impeded in conditions of glucose restriction, enolase-1 continues to repress FOXP3 transcription and iTreg development cannot occur (55). At later stages, FOXP3 itself can induce a stabilization of the iTreg program and a rescue of a quiescent state, through the enforcement of mitochondrial metabolism (red) that is mediated by an upregulation of mitochondrial proteins (44). A proper mitochondrial function is under the control of the ANT transporter and is required for iTreg induction (47).

glycolysis, was a prerequisite for proper iTreg development and that the metabolic requirements for iTreg differentiation were not antagonistic but rather parallel to the metabolic requirements for effector T cell activation. Based on this view, it could be hypothesized that regulation is allowed to develop along with immunity in conditions of optimal nutrient availability and competence for nutrient usage (Figure 2). Also in mouse models, weak TCR signal strength has been proven to preferentially promote Treg induction and/or expansion (13, 14, 57); however, one study has shown that low-dose antigen stimulation was not associated with strong mTOR activation (57). Therefore, differences in mTOR involvement and metabolic requirements may exist between human and mouse Treg induction under weak antigen stimulation.

Some compounds that have been used in many immunometabolism studies, such as 2-DG and etomoxir, have displayed some “off-target” effects that were not recognized before. In macrophages, 2-DG has been shown to block not only glycolysis but also oxidative phosphorylation and ATP production (58). Etomoxir, when used at low doses, blocks the oxidation of long-chain fatty acids through the inhibition of CPT1a, the rate-limiting enzyme for this process. However, when used at high doses, it can block mitochondrial respiration directly, irrespective of the nutrient (glucose, glutamine or fatty acids) fueling oxidative phosphorylation in T cells (47). Also in macrophages, high concentrations of etomoxir can display CPT1a-independent effects that are mediated by the depletion of

intracellular free coenzyme A (59). Therefore, results obtained with the use of these pharmacological inhibitors *in vitro* should be interpreted with caution, while approaches based on the genetic ablation of key metabolic enzymes may probably shed light on the exact metabolic requirement for Treg differentiation (60). Accordingly, when CPT1a was genetically abolished selectively in the T cell lineage, TGF β -driven iTreg polarization *in vitro* was not affected, and Treg frequency was found to be normal *in vivo* in these mice in physiological conditions. Instead, etomoxir at high doses suppressed iTreg polarization through the inhibition of adenine nuclear translocator (ANT), a transporter that affects ATP concentration in the mitochondrial matrix, the mitochondrial membrane potential, and the activity of the electron transport chain (47). These data questioned the assumption that fatty acid oxidation was a driving force for iTreg/pTreg differentiation. Together with data from De Rosa et al. (55), these results support the idea that Treg development from converting T cells may require the optimal activation of multiple routes, which may not involve long chain fatty acid oxidation but does include mitochondrial respiration.

Metabolic Pathways Involved in Treg Homeostasis and Proliferation

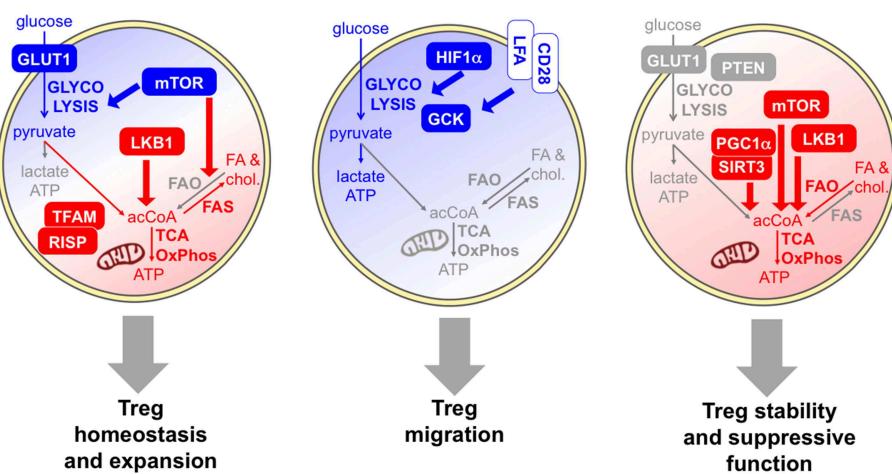
As summarized above, several findings indicate that Tregs actively proliferate during their lifetime and that the Treg population may comprise a high proportion of cycling cells, from many districts, in physiological and pathological conditions.

Their hyporesponsiveness *in vitro*, which has been interpreted as a functional and metabolic “anergy,” may rather derive from a functional and metabolic activated status, making them refractory to strong stimulation in culture (11). Thus, it is reasonable to suppose that Tregs rely on a glycolytic-lipogenic metabolism for their fitness and their proliferative bursts (Figure 3).

Several data regarding freshly isolated human and mouse Tregs (likely comprising a mixture of tTregs and pTregs) confirm this hypothesis. Procaccini et al. have shown that, contrary to conventional T cells, Tregs show constitutively active mTOR directly *ex vivo*: a transient mTOR inhibition, achieved through rapamycin administration or through nutrient starvation and interruption of the leptin/leptin receptor signal, turns these cells from anergic into highly proliferative cells both *in vitro* and *in vivo*. Thus, it has been proposed that an “oscillatory” mode of mTOR activity is responsible for the exit of Tregs from a hyporesponsive into a proliferative status (61). These findings have been confirmed also by Gerriets et al. who showed that Ki67 high Tregs from the spleen of naïve mice express higher levels of GLUT1 and mTOR activity (62). A proteomic and biochemical profile of freshly extracted human Tregs has revealed that these cells are highly glycolytic *ex vivo* and utilize both glycolysis and fatty acid oxidation for their proliferation *in vitro* (as assessed with the use of 2-DG or etomoxir). In contrast, effector T cells are mostly oxidative *ex vivo* but rely on glycolysis when cultured *in vitro* (72). In line with these findings, others have found that freshly extracted human Tregs express high levels of genes related to glycolysis and lipid metabolism, and capture glucose at high efficiency (73, 74).

The pivotal role played by mTOR in Treg expansion has been demonstrated in several models. Mice carrying the Treg-intrinsic ablation of mTORC1 or mTOR spontaneously developed a severe scurfy-like autoimmune and inflammatory systemic disease (63, 67). Even if Treg numbers appear normal in mice with Treg-restricted mTORC1 deficiency, these cells displayed a severely impaired competitive fitness *in vivo*, which was accompanied by a decreased glycolytic rate, and which explained their defective suppression at the systemic level (63). Notably, the cholesterol synthesis was the most affected pathway by mTORC1 deficiency, and mTORC1-deficient Tregs failed to incorporate efficiently glucose-derived carbons into lipids; these findings demonstrate that Tregs utilize an mTOR-dependent glycolysis-lipogenesis for their expansion (63).

Much effort has been made to elucidate the role of fatty acid oxidation and mitochondrial metabolism in Treg expansion and homeostasis. Liver kinase B 1 (LKB1) is a bioenergetic sensor that phosphorylates AMPK and thus triggers oxidative catabolism, thus allowing cell survival under stress conditions. Mice lacking LKB1 specifically in Tregs display spontaneous type-2 inflammatory disease caused by defective Treg development and survival (64, 65, 71). Notably, LKB1-deficient Tregs display transcriptomic and metabolomic profiles compatible with impairment in tricarboxylic acid cycle, mitochondrial function and fatty acid oxidation (64, 65). The activity of LKB1 was not mediated by AMPK, since the Treg-restricted deficiency of AMPK α 1 and AMPK α 2 did not affect Treg numbers


and did not induce any spontaneous inflammatory disorder (64, 65). Fatty acid oxidation was also not required for the physiological Treg development; according to data obtained in mice bearing a genetic CPT1a deficiency specifically in Tregs, CPT1a was dispensable for Treg development, Foxp3 expression, and suppressive function (47). Therefore, the AMPK-driven fatty acid oxidation does not seem to be involved in Treg homeostasis in physiological conditions.

When the mitochondrial complex III was genetically ablated in Tregs, a scurfy-like disease was observed, characterized by apparently normal Treg numbers but defective Treg competitive fitness and Treg suppression at the systemic level (66). Similar findings have been obtained in mice bearing a Treg-specific deletion of mitochondrial transcription factor A (TFAM), which is essential for electron transport chain activity: here a specific defect in eTreg development was identified (67). In complex III-deficient mice, the Treg defect was accompanied by diminished oxygen consumption, concomitantly increased glycolysis, and lower NAD+/NADH ratio (an index of the electron transport chain activity). However, the metabolic alterations observed in these mice might affect Tregs indirectly, through a novel metabolic-epigenetic circuitry; loss of mitochondrial complex III results in higher content of two metabolites, 2-hydroxyglutarate and succinate, known to inhibit DNA demethylases, and indeed complex III-deficient Tregs show DNA hypermethylation and altered gene expression (66).

Metabolic Pathways Involved in Treg Activities: Migration, Suppression, and Stability

In both physiological and pathological conditions, circulating or lymphoid Tregs can undergo further functional and metabolic reprogramming while accomplishing their functions: indeed, Tregs can be attracted into specific tissues where they can experience further rounds of proliferation and/or functional specialization, can exert specific activities such as immune regulation and tissue repair, and can corroborate or instead destabilize their regulatory program, depending on the microenvironmental signals (29, 75, 76). Whether Tregs need to activate specific metabolic pathways to accomplish each of these tasks has not been completely elucidated. However, many studies (mentioned below) suggest that some “division of labor” may exist between different metabolic pathways in Tregs: on the one side, glucose usage and glycolysis are required for migration and rather antagonize Treg stability and suppressive function; on the other side, oxidative phosphorylation may be needed for Treg immune suppressive function (Figure 3).

The role of glycolysis in Treg migration has been demonstrated in several settings. Compared to wild-type Tregs, HIF1 α -deficient Tregs show lower glycolysis and higher oxidative phosphorylation of both fatty acids and glucose, when cultured in normoxic or hypoxic conditions; functionally, HIF1 α -KO Tregs suppress CD8 T cell proliferation *in vitro* with higher potency under hypoxia but display impaired migratory ability *in vitro* and *in vivo*. In mice with a Treg-restricted HIF1 α deficiency, the reduced Treg recruitment to the site of

FIGURE 3 | Specific metabolic pathways and key molecules are involved in distinct Treg activities. Several data indicate that Tregs rely on a combination of glycolytic (blue) and mitochondrial (red) metabolism for their homeostasis and expansion. Proliferative Tregs express GLUT1 and constitutive mTOR (61, 62), and Tregs require an mTOR-dependent glycolysis-lipogenesis for their expansion (63). Indeed, fatty acid synthesis (FAS) and cholesterol synthesis occur. LKB1 is required for Treg development and survival through the support of mitochondrial function (64, 65). Evidence that mitochondrial activities are required for Treg fitness comes from experimental models of deficiency of mitochondrial complex III (RISP) (66) or mitochondrial transcription factor A (TFAM) (67). However, FAO may not be required for Treg development (47). The key role of glycolysis (blue) in Treg migration is demonstrated by the evidence that HIF1 α -deficient Tregs show lower glycolysis and display impaired migratory ability *in vitro* and *in vivo* (68), and by the observation that pro-migratory stimuli, like LFA1 or CD28, enhanced glucose uptake and glycolytic rate while promoting migration, through the induction of the glycolytic enzyme GCK (69). Regarding Treg suppressive function and stability, some data indicate a glycolytic boost may compromise Treg suppressive function and stability *in vivo*: this event occurs in mice lacking PTEN selectively in the Treg lineage (70) and in transgenic mice overexpressing GLUT1 (62). Other studies support the idea that mitochondrial activity (red) is required for Treg suppressive function: key molecules involved in this regulation are SIRT3/PGC1 α (41) the kinase LKB1 (64, 71), and mTOR, which promotes the transition from cTregs into eTregs via mitochondrial activation (67).

a growing glioma leads to significantly delayed tumor growth and longer survival (68). This study suggests that HIF1 α , and thus oxygen tension in the microenvironment, may dictate the balance between migration, relying on glycolysis, and Treg suppressive function, at least *in vitro*. However, it does not seem to affect the physiological Treg development in the thymus, Treg peripheral fitness, or Treg proliferation *in vitro* or *in vivo*, probably because these processes occur in normoxic microenvironments. Kishore et al. have demonstrated the role of glycolysis in Treg migration and dissected the underlying molecular mechanisms: pro-migratory stimuli, like engagement of Lymphocyte function-associated antigen 1 (LFA-1) or of the costimulatory molecule CD28, enhanced glucose uptake and glycolytic rate while promoting migration. These events were mediated by mTORC2 and culminated in the induction of glucokinase (GCK), a hexokinase isoenzyme that interacts with actin and acts as a glycolytic ATP supplier for cytoskeletal rearrangements and cell migration (69). Notably, GCK-silenced Tregs did not show any defect in proliferation or suppression *in vitro*, and their compromised suppressive function *in vivo* could be ascribed to defective recruitment to the inflamed site. These results support the hypothesis of a dichotomy between glycolysis and oxidative phosphorylation being required for distinct activities of Tregs, migration and suppressive function, respectively.

Some pieces of information support the idea that a glycolytic boost may selectively compromise Treg suppressive function and stability *in vivo*, apparently without affecting their development. Mice lacking Phosphatase and tensin homolog

(PTEN) selectively in the Treg lineage spontaneously develop systemic lymphoproliferation and lupus-like disease with age, despite increased Treg frequencies. Indeed, PTEN-deficient Tregs lost their suppressive function *in vivo* in the EAE model and displayed signs of functional instability, i.e., the release of pro-inflammatory cytokines in the inflamed site (70). Notably, this “fragile” phenotype correlated with higher glycolytic rates (but normal oxidative profile) of PTEN-KO Tregs compared to control Tregs, at short time (70) but not at later time points (56) after *in vitro* activation. Similar conclusions have been drawn from the analysis of Tregs in transgenic mice overexpressing GLUT1: also in this model, which develops again spontaneous autoimmunity, Tregs were more glycolytic, were expanded in numbers, but were less suppressive and more fragile *in vivo* (62). It may be speculated that glycolysis may promote the proliferation of Tregs that, instead of performing classical immune suppressive functions, are skewed toward a tissue-repair program, which may become relevant in specific conditions and microenvironments *in vivo*. It is important to consider that Treg uptake of glucose may induce T cell suppression by itself, irrespective of the Treg-intrinsic metabolic pathways. Indeed, competition for glucose is a key element for T cell activation especially under glucose restriction, and the proficiency of Tregs to internalize glucose leads to an induced senescence in surrounding T cells (74).

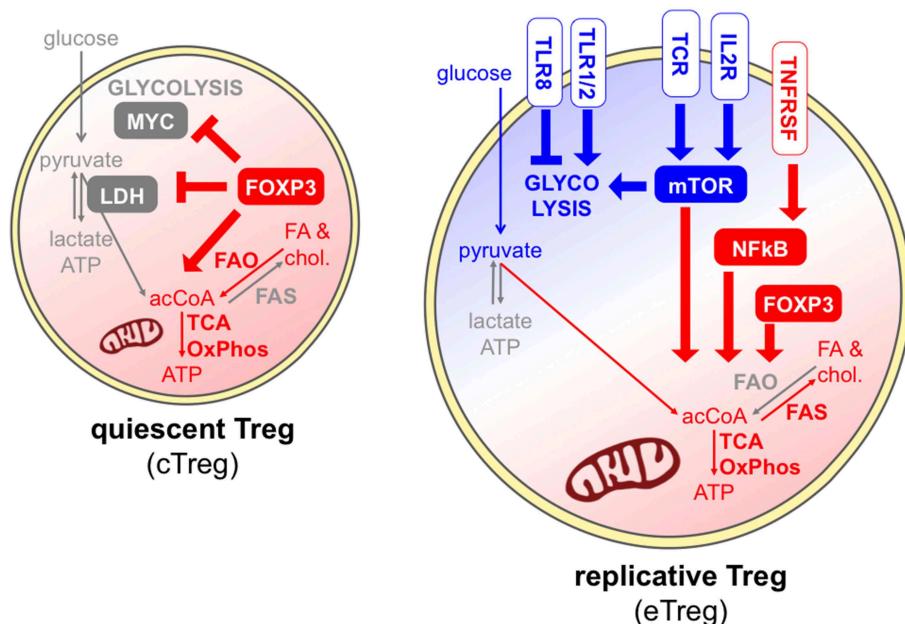
Conversely, other studies support the idea that mitochondrial activity may be required for Treg suppressive function. Tregs have greater mitochondrial mass and reactive oxygen species (ROS) production than conventional T cells, and Tregs

lacking sirtuin 3 (SIRT3) or peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1 α), both essential for mitochondrial activities, display weakened suppressive functions *in vitro* and *in vivo* (41). The deletion of histone deacetylase 9 (HDAC9) increases in Tregs the expression of genes related to oxidative phosphorylation (including SIRT3 or PGC1 α), enhancing mitochondrial respiration; these cells also display increased suppressive function *in vitro* (41). Further studies have identified the complex I of the electron transport chain as an important element for Treg suppressive function (40). The kinase LKB1, which induces a transcriptional program oriented to mitochondrial metabolism (64, 65), is not only required for proper Treg development and survival, but also implicated in maintaining Treg stability and suppressive function (64, 71), further supporting the idea that proficiency for oxidative phosphorylation may be a prerequisite for Treg suppression. Recent data have revealed that mTOR not only drives Treg expansion through a glycolytic-lipogenic program (63), but may also support Treg suppressive function promoting the transition from cTregs into eTregs, via mitochondrial activation (67). *In vitro*, Treg suppressive function was reduced if Tregs were preactivated under acute pharmacological mTOR inhibition; *in vivo*, the acute deletion of mTOR in Tregs led to spontaneous loss of immune tolerance (67). Notably, mTOR activation was required for the acquisition of an eTreg phenotype through the post-transcriptional regulation of Interferon regulatory factor 4 (IRF4) expression. Following *in vitro* activation, Tregs significantly upregulated genes associated with mitochondrial metabolic pathways such as the tricarboxylic acid (TCA) cycle and the electron transport chain, in an mTOR-dependent fashion. It should be noted that, in many experimental systems including the mTOR-deficient mouse models, it might be quite difficult to discriminate between metabolic pathways involved in Treg expansion/fitness and in Treg effector function, since these two events are often coupled. Therefore, functional links between metabolic deficiencies and Treg alterations should be interpreted with caution.

MAIN IMMUNE SIGNALS AND FACTORS CONTROLLING TREG METABOLISM

Foxp3 is recognized as the major transcription factor underlying Treg identity; however, Foxp3 expression alone may not be sufficient for a stable and complete Treg differentiation and function, which also require continuous TCR stimulation and epigenetic reprogramming (77). Some metabolic pathways have been selectively linked to Foxp3 activity. Indeed, it has been shown that ectopic Foxp3 expression is necessary and sufficient to increase the expression of genes involved in mitochondrial respiration and to enhance fatty acid oxidation; in turn, the ability to catabolize fatty acids protects Foxp3-expressing cells from lipotoxicity, an event that may promote the selection of this population in mixed cultures and in stressed microenvironments (44). Foxp3 expression not only promotes oxidative metabolism but also suppresses glycolysis through the inhibition of MYC, a key factor of T cell metabolism (78), and also favors the oxidation

of L-lactate to pyruvate through the modulation of lactate dehydrogenase (LDH) (40, 62). Therefore, Foxp3 expression may prime a default metabolic program that is shifted from glycolysis to oxidation.


Contrary to conventional T cells, Tregs constitutively express a variety of costimulatory, inhibitory, and cytokine receptors, playing diverse roles in Treg maintenance and functions and also impacting on Treg metabolism (Figure 4). The IL-2 receptor conveys indispensable signals for Treg thymic expansion and maturation and for Treg peripheral homeostasis (79). Together with the TCR, IL-2 represents one of the predominant signals that promote mTORC1 activity (63); accordingly, peripheral Tregs lacking the high affinity IL-2 receptor displayed a transcriptional program compatible with reduced cholesterol biosynthesis and also disrupted mitochondrial activity (79). Several receptors belonging to the TNFR superfamily, like TNFR2 and OX40, are also constitutively expressed by Tregs, are massively upregulated following Treg activation, and convey key signals for the NF κ B-mediated acquisition of an eTreg phenotype (22). A key role for mTOR-driven activation of mitochondrial metabolism has been identified in eTreg differentiation (67). Whether the TNFR-NF κ B axis promotes the conversion of cTregs into eTregs through the priming of mitochondrial functions, similarly to the pathway described for another costimulatory molecule, CD28 (35), remains to be understood.

Tregs express a series of Toll-like receptors (TLR), and their stimulation may subvert or promote Treg suppressive and stability depending on the TLR type (80). Gerriets et al. showed that TLR1/TLR2 ligation on murine activated iTregs boosted their proliferation and their glycolysis, but also compromised their suppressive ability (62). This event may explain the destabilization of Tregs occurring at inflamed sites where TLR ligands are abundant, and further corroborates the idea that certain strong inflammatory signals may uncouple glycolysis-related proliferation and oxidation-related immune suppression. Opposite results have been obtained when TLR8 was stimulated in human Tregs: this treatment subverted their suppressive functions, however this event was accompanied by a loss, and not a gain, of GLUT-mediated glucose uptake and mTOR-dependent glycolytic activities (73). Therefore, different TLRs may operate completely divergent functions in Treg expansion and suppression, which may involve opposite metabolic rewiring.

EXTRACELLULAR FATTY ACIDS: NUTRIENTS OR SIGNALING MOLECULES?

Beside internalizing glucose from the outer environment and oxidizing intracellular lipids, T cells can capture and catabolize other molecules as a source of energy and biosynthetic precursors, such as the amino acid glutamine that is processed through glutaminolysis and fuels the TCA cycle, and plays a role in the reciprocal regulation of Th17 and iTreg differentiation (81).

Free long-chain fatty acids represent another potential extracellular nutrient for T cells, following their internalization via specific translocators, such as CD36. Several studies have

FIGURE 4 | Different signals can promote or antagonize Treg exit from quiescence. In quiescent Tregs, Foxp3 maintains Treg survival through the promotion of fatty acid oxidation and mitochondrial metabolism (red) (44), and the suppression of glycolysis through the inhibition of MYC and the modulation of LDH (40, 62). Effector Tregs, undergoing cell division, can receive multiple signals through the TCR, costimulatory and cytokine receptors, and mostly display a combination of glycolytic (blue) and mitochondrial (red) metabolism. IL-2 receptor and the TCR can directly promote mTORC1 activity (63), and IL-2 signal supports cholesterol biosynthesis and mitochondrial activity through mTOR (79). A key role for mTOR-driven activation of mitochondrial metabolism has been identified in eTreg differentiation (67). However, FAO may not be required for Treg activation (47). Receptors of the TNFR superfamily activate NFkB thus inducing the eTreg phenotype (22), and this may occur also through the priming of mitochondrial functions, similarly to CD28 (35). Finally, different TLRs can have opposite functions on Treg glycolytic activities and proliferation (73, 80).

reported that Tregs can capture fatty acids in culture (39, 42, 44) and also *in vivo*, especially in the tumor microenvironment in a mouse model of glioma (82). Notably, palmitate internalization and glucose uptake occurred in two distinct subpopulations of Tregs, with only minor overlap (82). In the VAT, Tregs acquire a tissue-specific program driven by the transcription factor peroxisome proliferator-activated receptor gamma (PPAR γ) (83). This factor controls the expression of genes related to fatty acid translocation, biosynthesis, and oxidation; treatment with a PPAR γ -agonist induced CD36 upregulation and fatty acid uptake in adipose tissue Tregs, and this event was associated with Treg expansion (83).

The relevance of long-chain fatty acid uptake in Treg differentiation and functions is still unclear. *In vitro*, exogenous BSA-conjugated palmitate was incorporated at high levels into endogenous fatty acids in iTregs, and the inhibition of cellular synthesis enhanced the extracellular fatty acid uptake (42). Supplemented palmitate enhanced oxidation rates in cells ectopically expressing Foxp3 (44) and iTregs *in vitro*, leading to a skewed iTreg development at the expense of Th17 cells (39, 84). Of note, the Foxp3-driven oxidative machinery may protect Tregs from the risk of lipotoxicity induced by high rates of fatty acid internalization (44). Based on these findings, exogenous fatty acids seem to promote iTreg polarization even though BSA-conjugated fatty acids may be internalized irrespective of

physiological translocation that is mostly mediated by CD36 and other transporters.

Other data indicate that fatty acid uptake may also favor Treg suppressive function; indeed, the inhibitor of fatty acid translocation, sulfo-N-succinimidyl oleate (SSO), altered the expression of key suppressive molecules of Tregs and their inhibitory activity *in vitro* (68). As a general interpretation, high concentration of free fatty acids in a certain microenvironment may tip the balance toward immune regulation, even though the exact role of this metabolic-immune crosstalk in modulating immune responses deserves further studies.

Extracellular short-chain fatty acids (acetate, butyrate and propionate) exert a well-established role in Treg differentiation and expansion in the intestine; several studies [reviewed in Zeng and Chi (85)] have demonstrated that bacterial species colonizing the gut can break down dietary fibers, thus leading to the production of short-chain fatty acids. These metabolites bind specific G protein-coupled receptors on the cell surface and can promote the conversion of conventional T cells into pTregs or induce the proliferation of colonic tTregs. Therefore, short-chain fatty acids act as a bridge between microbial/dietary metabolism and immune regulation by working as signaling molecules, and less likely by directly affecting intracellular metabolic routes.

TREG EXPANSION IN TISSUES DEVOTED TO METABOLIC FUNCTIONS: THE ADIPOSE TISSUE AND THE LIVER

Since nutrient availability and signaling molecules can impact on Treg cell-intrinsic metabolism, which in turn can dictate Treg expansion and function, it could be predicted that the metabolic context of specific tissue microenvironments may affect immune regulation. This event may become particularly true in those tissues that are devoted to the control of systemic metabolism, such as the VAT and the liver. Presumably, in these tissues, the concentration of particular nutrients in the extracellular environment may vary depending on systemic and local metabolic processes.

Several groups have observed a prominent Treg accumulation in the VAT of healthy lean mice, have characterized the main mechanisms driving their expansion and suppressive function, and have reported a causal link between VAT-Treg deficiencies and metabolic inflammation (26, 83, 86–88). Among the signals driving VAT-Treg accumulation in mice, the TCR, Foxp3, and cytokines like IL-33 seem to play key roles (25, 26, 87). While these studies have demonstrated that Tregs can shape systemic metabolism through the suppression of metabolic inflammation in the VAT, it is not clear whether the local metabolism can affect Treg behavior. As already mentioned above, in the healthy VAT, PPAR γ promotes the accumulation of intracellular lipids in Tregs; in obese mice fed with a high-fat diet, the reduction of Treg frequency corresponds to lower lipid content in Tregs (83). This result suggests that intracellular lipid accumulation may occur in alternate conditions in adipocytes (under dietary fat overload) and in Tregs (in healthy conditions), and also indicates that Tregs may not accumulate lipids as a simple consequence of extracellular or systemic lipid abundance. Less is known about Treg accumulation in the VAT of lean or obese humans and of patients with metabolic inflammation or cancer. According to recent data, Tregs express PPAR γ also in the omental adipose tissue of humans, and Treg frequency is moderately increased in that tissue compared to the peripheral blood; however, no significant variation was observed in obese subjects or in type-2 diabetes patients compared to healthy controls (89). We observed even an expansion of Tregs in the VAT of obese compared to control subjects, and a mild positive correlation between VAT-Treg frequency and body mass index (90). Therefore, the mechanisms that regulate Treg accumulation in VAT may be completely distinct in mice and humans. Interestingly, we could observe a positive correlation between VAT-Treg percentage and the amount of the polyunsaturated ω 6 arachidonic acid in the adipose tissue (90). Whether Tregs and generally immune cells can somehow shape the lipid composition of the tissue, and whether, conversely, different types of fatty acids can have an impact on Tregs and immune populations, remain open questions. It is worth noting that, in mice, VAT-Tregs utilize a catabolite of prostaglandin-E2 (which is synthesized from arachidonic acid) to suppress metabolic inflammation (88), therefore, the local availability of certain lipidic precursors may impact on Treg-mediated control of metabolic inflammation.

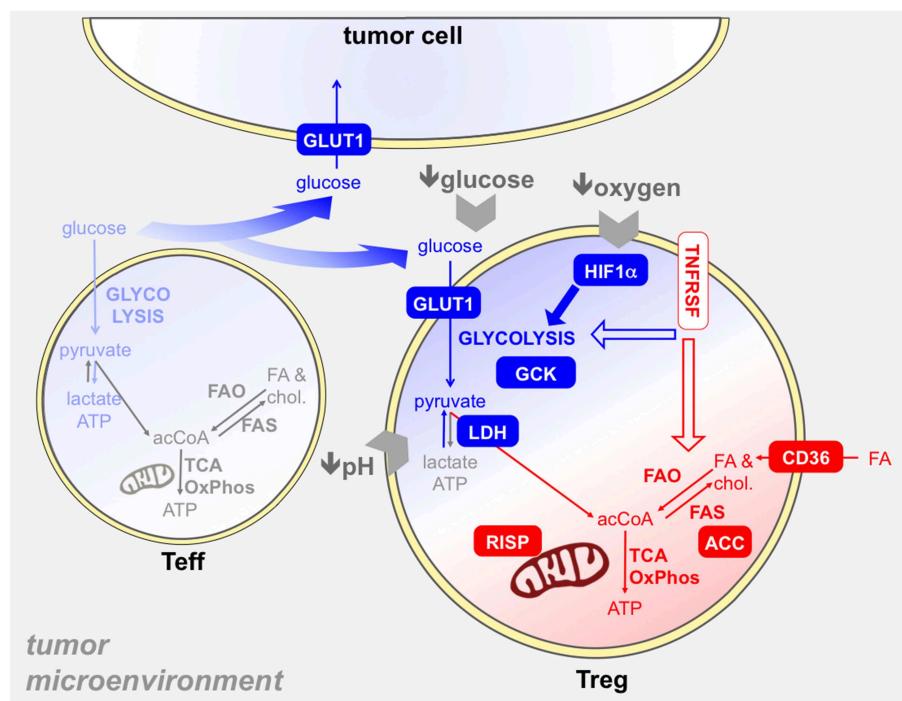
The liver is the main organ regulating systemic lipid metabolism and is susceptible to the development of abnormal lipid accumulation and inflammation (steatohepatitis) in pathological conditions induced for instance by high dietary fat intake. Less is known about liver-resident and liver-infiltrating Tregs compared to other tissues. In the early post-natal life of mice, a wave of hepatic Treg colonization occurs that seems dependent on microbiome (91). Of note, the transcriptomic profile of these hepatic neonatal Tregs reveals a high expression of PPAR γ and the involvement of lipid handling machinery and oxidative phosphorylation (92). Interestingly, we have observed that such post-natal hepatic Treg expansion was higher in the Mdr2 $^{-/-}$ mouse model (spontaneously developing cholangitis and chronic liver disease with time) and was accompanied by an intracellular lipid accumulation in Tregs (93). In adult mice, the identity of liver-resident Tregs remains more elusive with respect to other tissues (94), also because of the significant proportion of Tregs entering this highly vascularized tissue through the blood vessels (95). Like in the adipose tissue, also in the liver Tregs control metabolic inflammation and therefore systemic metabolism. Indeed, post-natal Treg depletion provokes the spontaneous development of steatohepatitis (92); if genetically susceptible adult mice are deprived of Tregs, the hepatic catabolism of lipoproteins is impaired, resulting in hypercholesterolemia and exacerbated atherosclerotic disease (96).

Taken together, the findings in VAT and in liver speak in favor of an inverse relation between external lipid overload and Treg cell-intrinsic lipid accumulation. Indeed, Tregs seem to accumulate lipids, under a PPAR γ -driven program and as a consequence of synthesis and/or capture, concomitantly to their own expansion and thus to the control of metabolic inflammation. Conversely, Tregs show impaired lipid metabolism and proliferation in conditions of systemic and local lipid overload. The exact connections between Treg cell-extrinsic and -intrinsic lipid metabolism, and their consequences for Treg suppression and metabolic diseases, have not been clarified. Since Tregs exert several non-immune functions involved in tissue homeostasis, regeneration and repair (97), we cannot exclude that Tregs directly instruct tissue cells for specific metabolic activities, and that the bidirectional crosstalk may be mediated by conventional signaling molecules like amphiregulin (98) or by metabolites, stress signals, and nutrients derived from tissue cells and systemic circulation.

TREG EXPANSION UNDER METABOLIC RESTRICTION: THE TUMOR MICROENVIRONMENT

A hallmark of the tumor identity is represented by the ability evolved by tumor cells to escape immune recognition, and especially to suppress T cell response. Among the mechanisms concurring to this outcome, the local accumulation of Tregs plays an essential role. It is well-established that Treg frequency increases markedly at the tumor site in most solid malignancies and in both experimental models and cancer patients. Several

mechanisms may be involved in this local expansion, including the proliferation of preexisting tissue-resident Tregs, the recruitment of Tregs from the circulation, and the conversion of conventional T cells into pTregs (5). Therefore, the pool of tumor-infiltrating Tregs consists of a mixed population of tTregs and pTregs, possibly recognizing different antigen repertoires, performing specific activities, and showing diverse susceptibility to local signals of proliferation and stabilization (99). Most Tregs at the tumor site display an effector phenotype characterized by high expression of molecules related to their suppressive function and heightened inhibitory activities *ex vivo*. The transcriptomic profile of tumor-infiltrating Tregs results from the combination of tissue-associated signatures with a tumor-specific signature that is shared among different cancer types, and includes costimulatory molecules and chemokine receptors (100). Since the pioneer studies of North and Bursuker on the so-called at that time “suppressor cells” (101), many other studies have clearly demonstrated that Tregs could suppress anti-tumor immunity in experimental models, especially in immunogenic tumors and in certain therapeutic windows. Indeed, CD25+ T cell depletion by means of a specific monoclonal antibody (102), or the inducible genetic ablation of Foxp3+ Tregs (103), could evoke anti-tumor immunity that controlled tumor growth. In the majority of human cancers, a high density of Tregs at the tumor site correlates with a poor prognosis, a finding that confirms the detrimental role of these cells in the battle between host immunity and tumor cells (4). A growing amount of data demonstrate that Tregs play a range of non-immune, tissue-repairing functions that involve the release of amphiregulin, a ligand of epidermal growth factor receptor. Recent work has demonstrated that tissue-infiltrating activated Tregs promote malignancy also through the direct stimulation of epithelial cell growth via amphiregulin (98). Several strategies have been proposed, and have also been tested in some cases, to achieve Treg depletion or functional inactivation in the context of cancer immunotherapy. While CD25-targeted approaches have shown limited success (5), recent studies have highlighted that Tregs are major off-targets of the classical immune checkpoint blockers, being especially sensitive to anti-CTLA-4 antibodies capable of inducing antibody-dependent cell-mediated cytotoxicity (6).


From a metabolic point of view, the tumor microenvironment represents a peculiar and extremely complex context, when multiple metabolic interactions between tumor cells and stromal cells can be established that have not been completely elucidated. The idea that tumor cells evolve the ability to support their proliferative burst by pushing glycolysis was described by Otto Warburg and coworkers in the 1920s and was thus called the Warburg effect. Since then, researchers have accumulated a huge amount of information about the numerous metabolic routes that, together with glycolysis, characterize tumor cell proliferation and survival (104, 105). Besides tumor cells, several stromal and immune cells in the tumor microenvironment are able to reprogram their cellular metabolism when adapting to this peculiar context: for instance, a metabolic crosstalk is established between tumor cells and tumor-associated macrophages, which shapes macrophage functions and finally leads to tumor promotion (106).

This microenvironment poses a series of metabolic hurdles for T cells: (i) hypoxia in poorly vascularized tumor areas can affect T cell functions also through HIF1 α induction; (ii) lactate released by both tumor and stromal cells, and the consequent extracellular acidity, can profoundly suppress the effector functions of T cells and compromise anti-tumor immunity; and (iii) the capture of nutrients (glucose, amino acids, and fatty acids) by tumor and stromal cells generates a status of metabolic restriction that ultimately leads to T cell starvation (107). In more detail, competition for glucose between T cells and tumor cells has been identified as a key event in determining the success of anti-tumor T cell activation, through the activity of a glycolytic intermediate, phosphoenolpyruvate, that directly modulates calcium flux downstream TCR signaling (108, 109). Not only glycolysis, but also mitochondrial metabolism is crucial for optimal anti-tumor T cell functions; indeed, a defective mitochondrial biogenesis and oxidative metabolism correlated with a functionally exhausted phenotype (110).

Based on this evidence, the selection of Tregs in the tumor microenvironment may derive from their ability to evolve a metabolic reprogramming that allows their survival and proliferation in such a hostile setting. Several studies have addressed this possibility and have tried to characterize those metabolic pathways that were responsible for tumor-associated Treg expansion and function (Figure 5).

Some data point to a key role of glycolysis in Treg proliferation in the tumor setting. First, intra-tumoral Tregs display particularly high glucose uptake compared to other cell types in a mouse model of melanoma (109), and we have shown that Tregs were able to efficiently compete for glucose with effector T cells in another mouse tumor model (93). Our data also indicate that, compared to effector T cells, tumor-infiltrating Tregs display higher levels of GLUT1 on the cell surface, express higher levels of glycolysis-related genes, and engage a higher glycolytic flux as measured in terms of extracellular acidification rate directly *ex vivo*; in human hepatocellular carcinoma, the gene expression profile of effector Tregs (selected as OX40-positive cells) is significantly enriched in glycolysis-related genes (93). Others have shown that pretreatment of human Tregs with a TLR8 agonist (that inhibits glycolysis), or 2-DG, reversed their ability to control anti-tumor T cell response *in vivo*, in a humanized mouse model (73). Of note, the pretreatment impaired Treg ability to induce senescence in responder CD8 T cells. Indeed, competition for glucose is a major trigger for T cell senescence, and Tregs may cooperate with tumor cells in consuming glucose and starving effector T cells in the tumor microenvironment (74). It has been proposed that, in low-glucose contexts such as the tumor site, Tregs may utilize glucokinase instead of hexokinase to perform glycolysis, having the former a much lower affinity for glucose (69). Altogether, these results suggest that Tregs possess the machineries needed for capturing and utilizing glucose in the tumor context, and that glycolysis may be involved in the maintenance of the tumor-associated Treg population *in vivo*.

More elusive is the role of oxidative phosphorylation in proliferation and survival of tumor-infiltrating Tregs. We have observed that Tregs freshly extracted from murine tumors

FIGURE 5 | Several metabolic mechanisms may provide an advantage to Tregs in the tumor microenvironment. The tumor microenvironment poses several hurdles to T cells, like hypoxia, glucose restriction, and acidosis. Tregs resist to these obstacles through several mechanisms, which involve both glycolysis (blue) and/or mitochondrial metabolism (red). First, intratumoral Tregs capture glucose at high rates (93, 109), thanks to GLUT1 upregulation, and display a glycolytic program and activity *ex vivo* (93): thus, Tregs may suppress the glycolytic metabolism in effector T cells (light blue) in the tumor microenvironment also through glucose sequestration (74). The usage of GCK instead of hexokinase in glycolysis may endow Tregs to resist in a low-glucose environment (69). Hypoxia triggers HIF1 α activation in Tregs, which promotes glycolysis and thus indirectly fosters the oxidation of fatty acids captured through CD36 and other translocators (68). Tregs are more resistant to lactate overload, based on their ability to convert lactate into pyruvate thanks to the modulation of LDH by Foxp3 (40). Mitochondrial metabolism plays a key role in tumor-Treg expansion and function: indeed, mitochondrial complex III (RISP) dictates the ability of Tregs to suppress anti-tumor immunity (66). We have found that intratumoral effector Tregs, expressing TNFR superfamily members, performed fatty acid synthesis through ACC and this pathway was involved in their expansion and function (93). Whether TNFRSF signals can impact on glycolytic and/or mitochondrial metabolism in Tregs remains to be elucidated.

consume oxygen at similar rates as effector T cells (93). Others have shown that mice, where mitochondrial complex III is ablated specifically in Tregs, are protected from tumor growth; however, this effect may be ascribed also to the epigenetic effect of mitochondrial metabolites, besides the defect in mitochondrial respiration (66).

Foxp3 has been shown to directly shift the glycolytic into oxidative metabolism: this program also includes the peculiar ability of Tregs to oxidize lactate into pyruvate also in normal conditions, whereas Tconvs show this activity only in low-glucose, high-lactate conditions. However, Tconvs and Tregs are differentially susceptible to lactate overload and the consequent oxidation through the enzyme LDH: Tconvs rely primarily on glycolysis for their activation, and NAD depletion during lactate oxidation prevents GAPDH activity and suppresses their proliferation; conversely, Tregs are more resistant to the suppressive effect of lactate, possibly being less glycolysis-dependent for their activation, and containing higher levels of NAD continuously regenerated during oxidative phosphorylation (40). These data suggest that in low-glucose,

high-lactate conditions, like in the tumor microenvironment, Tregs may have a selective metabolic advantage.

Fatty acids can become a major substrate for oxidative phosphorylation in some conditions. It has been shown that, in hypoxic settings, HIF1 α activation diverts glucose away from mitochondria, leaving fatty acids as the main oxidative substrate for Tregs. Therefore, in hypoxic areas of the tumor microenvironment, Tregs may capture and utilize lipids to perform their metabolic functions: accordingly, intra-tumoral Tregs were found to express high levels of the fatty acid transporters CD36, SLC27A1, and SLC27A4, and to perform fatty acid uptake *in vivo*, in a mouse model of glioma (68). In this model, fatty acid oxidation seemed required for Treg suppression: indeed, etomoxir administration to tumor-bearing mice reduced tumor growth while reducing Treg frequencies (68). It has been proposed that the ability of Tregs to oxidize fatty acids may protect them from lipotoxicity (44), thus endowing Tregs with a further metabolic advantage over effector T cells.

In a different mouse tumor model, we have observed that intra-tumoral Tregs accumulated neutral fatty acids, an event

that was not related to fatty acid capture but rather derived from fatty acid synthesis (93). The expression of genes related to this pathway, the metabolite profile, the sensitivity of Treg to specific inhibitors of fatty acid synthesis, and the observation that 2-DG prevents fatty acid accumulation *in vitro* corroborate the hypothesis that tumor-infiltrating Tregs utilize glucose not only as a supply of energy but also as a source of precursors to build macromolecules like fatty acids. We have started to appreciate that many macromolecules can exert several non-energetic and non-structural activities. For instance, fatty acids represent a preferential source of acetyl groups for histone acetylation (111), and thus fatty acid supply or biosynthesis may impact the epigenetic profile of the cells.

CONCLUDING REMARKS

Even though some controversies still remain regarding the metabolic requirements of specific events during the life of a Treg, some general conclusions can be drawn from the existing data. First of all, the view that Tregs are oxidative cells need to be carefully revised; indeed, this assumption mostly comes from studies addressing the development of Tregs *in vitro*, rather than the *in vivo* dynamics of established Tregs. Moreover, many studies are also affected by experimental limitations such as the usage of TGF β -based protocols and of pharmacological inhibitors with many off-target effects. Based on pieces of evidence coming from many studies, it is clear that Tregs can use different metabolic pathways, including glycolysis, in different phases of their life and in different activities. Generally speaking, while mTOR-driven glycolysis-lipogenesis seems required for Treg development and migration, Foxp3 $^{+}$ -driven lipolytic-oxidative metabolism is more strictly related to Treg suppressive function. Whether the two axes must coexist in the same Treg cell to achieve a full immune regulatory activity or can be segregated into distinct Treg subtypes or distinct phases of Treg activities, remains to be clarified.

The capacity of Tregs to switch through different metabolic programs may render them particularly able to adapt to hostile microenvironments, and the tumor may represent a prototypical context where Treg adaptation occurs: here, Tregs may be positively selected based on their ability to compete efficiently for glucose, to use alternative glycolytic enzymes, to capture and catabolize lipids thus avoiding incidental lipotoxicity, to better

resist to high lactate exposure, and many other mechanisms still to be discovered. Among the signals in the tumor microenvironment supporting metabolic activation in Tregs, the TNFR-related signals may play key roles that have been only incompletely appreciated; these receptors are highly expressed by Tregs at the tumor site from many different tumor histotypes and may drive a switch toward an effector phenotype that includes immunological as well as metabolic features.

Targeting metabolism is considered a promising therapeutic approach for cancer therapy. However, it is now well-established that appropriately designed metabolic interventions can profoundly reshape immune cell functions and rescue anti-tumor immunity (112). Therefore, a holistic assessment of the metabolism of stromal and immune cells, together with tumor cells, would allow a more accurate design of future therapeutic strategies for cancer treatment (112). It should be considered that “metabolic drugs” targeting specific cell types in tumor-bearing hosts are not currently available, thus we are still far from a cell-directed metabolic intervention that would selectively inhibit detrimental immune cells and tumor cells while sparing normal cells. However, it could be predicted that some of these drugs could, at least preferentially, target metabolically active cells at the tumor site. According to this view, Tregs may be preferentially susceptible to metabolic interventions in tumors because of their relative abundance at the tumor site and of their stronger metabolic activation compared to other infiltrating T cells.

AUTHOR CONTRIBUTIONS

IP and SP conceived the concepts behind this review, wrote the manuscript, and prepared the figures.

FUNDING

SP and IP are supported by the following grants: Associazione Italiana per la Ricerca sul Cancro Grant IG-2017 19784; Ministry of Education, University and Research (MIUR) Progetti di Ricerca di Interesse Nazionale (PRIN) Grant 2017 Prot. 2017K7FSYB; Institut Pasteur International Network Programmes Transversaux de Recherche (PTR) Grant 20-16; Istituto Pasteur Italia-Fondazione Cenci Bolognetti Call 2019 under 45.

REFERENCES

1. Lahli K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, et al. Selective depletion of Foxp3 $^{+}$ regulatory T cells induces a scurfy-like disease. *J Exp Med.* (2007) 204:57–63. doi: 10.1084/jem.20061852
2. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. *Nat Genet.* (2001) 27:68–73. doi: 10.1038/83784
3. Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z. Human FoxP3 $^{+}$ regulatory T cells in systemic autoimmune diseases. *Autoimmun Rev.* (2011) 10:744–55. doi: 10.1016/j.autrev.2011.05.004
4. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. *Nat Rev Clin Oncol.* (2017) 14:717–34. doi: 10.1038/nrclinonc.2017.101
5. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. *Nat Rev Clin Oncol.* (2019) 16:356–71. doi: 10.1038/s41571-019-0175-7
6. Arce Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal R, Ghorani E, et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. *Cancer Cell.* (2018) 33:649–63.e4. doi: 10.1016/j.ccr.2018.02.010
7. Bulliard Y, Jolicoeur R, Windman M, Rue SM, Ettenberg S, Knee DA, et al. Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. *J Exp Med.* (2013) 210:1685–93. doi: 10.1084/jem.20130573

8. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. *Cancer Immunol Res.* (2013) 1:32–42. doi: 10.1158/2326-6066.CIR-13-0013
9. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. *J Exp Med.* (2013) 210:1695–710. doi: 10.1084/jem.20130579
10. O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. *Nat Rev Immunol.* (2016) 16:553–65. doi: 10.1038/nri.2016.70
11. De Rosa V, La Cava A, Matarese G. Metabolic pressure and the breach of immunological self-tolerance. *Nat Immunol.* (2017) 18:1190–6. doi: 10.1038/ni.3851
12. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. *Int Immunol.* (1998) 10:1969–80. doi: 10.1093/intimm/10.12.1969
13. Apostolou I, von Boehmer H. *In vivo* instruction of suppressor commitment in naive T cells. *J Exp Med.* (2004) 199:1401–8. doi: 10.1084/jem.20040249
14. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. *Nat Immunol.* (2005) 6:1219–27. doi: 10.1038/ni1265
15. Attridge K, Walker LS. Homeostasis and function of regulatory T cells (Tregs) *in vivo*: lessons from TCR-transgenic Tregs. *Immunol Rev.* (2014) 259:23–39. doi: 10.1111/imr.12165
16. Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, et al. Regulatory T cells: recommendations to simplify the nomenclature. *Nat Immunol.* (2013) 14:307–8. doi: 10.1038/ni.2554
17. Yang S, Fujikado N, Kolodkin D, Benoist C, Mathis D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. *Science.* (2015) 348:589–94. doi: 10.1126/science.aaa7017
18. Tunel J, Benoist C, Mathis D. T cell anergy in perinatal mice is promoted by T reg cells and prevented by IL-33. *J Exp Med.* (2019) 216:1328–44. doi: 10.1084/jem.20182002
19. Hayakawa S, Ohno N, Okada S, Kobayashi M. Significant augmentation of regulatory T cell numbers occurs during the early neonatal period. *Clin Exp Immunol.* (2017) 190:268–79. doi: 10.1111/cei.13008
20. Timperi E, Folgori L, Amodio D, De Luca M, Chiurchiu S, Piconese S, et al. Expansion of activated regulatory T cells inversely correlates with clinical severity in septic neonates. *J Allergy Clin Immunol.* (2016) 137:1617–20 e6. doi: 10.1016/j.jaci.2015.10.048
21. Panduro M, Benoist C, Mathis D. Tissue Tregs. *Annu Rev Immunol.* (2016) 34:609–33. doi: 10.1146/annurev-immunol-032712-095948
22. Vasanthakumar A, Liao Y, Teh P, Pascutti MF, Oja AE, Garnham AL, et al. The TNF receptor superfamily-NF-κappaB axis is critical to maintain effector regulatory T cells in lymphoid and non-lymphoid tissues. *Cell Rep.* (2017) 20:2906–20. doi: 10.1016/j.celrep.2017.08.068
23. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, et al. A distinct function of regulatory T cells in tissue protection. *Cell.* (2015) 162:1078–89. doi: 10.1016/j.cell.2015.08.021
24. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. *Cancer Res.* (2004) 64:8451–5. doi: 10.1158/0008-5472.CAN-04-1987
25. Kolodkin D, van Panhuys N, Li C, Magnuson AM, Cipolletta D, Miller CM, et al. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. *Cell Metab.* (2015) 21:543–57. doi: 10.1016/j.cmet.2015.03.005
26. Vasanthakumar A, Moro K, Xin A, Liao Y, Gloury R, Kawamoto S, et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. *Nat Immunol.* (2015) 16:276–85. doi: 10.1038/ni.3085
27. Vukmanovic-Stojic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations *in vivo*. *J Clin Invest.* (2006) 116:2423–33. doi: 10.1172/JCI28941
28. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. *Immunity.* (2009) 30:899–911. doi: 10.1016/j.immuni.2009.03.019
29. Burzyn D, Benoist C, Mathis D. Regulatory T cells in nonlymphoid tissues. *Nat Immunol.* (2013) 14:1007–13. doi: 10.1038/ni.2683
30. Piconese S, Cammarata I, Barnaba V. Viral hepatitis, inflammation, and cancer: a lesson for autoimmunity. *J Autoimmun.* (2018) 95:58–68. doi: 10.1016/j.jaut.2018.10.021
31. Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. *Science.* (2013) 342:1242454. doi: 10.1126/science.1242454
32. van der Windt GJ, O'Sullivan D, Everts B, Huang SC, Buck MD, Curtis JD, et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. *Proc Natl Acad Sci USA.* (2013) 110:14336–41. doi: 10.1073/pnas.1221740110
33. O'Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck MD, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. *Immunity.* (2014) 41:75–88. doi: 10.1016/j.immuni.2014.06.005
34. Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. *Immunity.* (2010) 33:301–11. doi: 10.1016/j.immuni.2010.09.002
35. Klein Geltink RI, O'Sullivan D, Corrado M, Bremser A, Buck MD, Buescher JM, et al. Mitochondrial priming by CD28. *Cell.* (2017) 171:385–97 e11. doi: 10.1016/j.cell.2017.08.018
36. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. *Cell.* (2013) 153:1239–51. doi: 10.1016/j.cell.2013.05.016
37. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. *Nature.* (2009) 460:103–7. doi: 10.1038/nature08097
38. Newton R, Priyadarshini B, Turka LA. Immunometabolism of regulatory T cells. *Nat Immunol.* (2016) 17:618–25. doi: 10.1038/ni.3466
39. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. *J Immunol.* (2011) 186:3299–303. doi: 10.4049/jimmunol.1003613
40. Angelin A, Gil-de-Gomez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. *Cell Metab.* (2017) 25:1282–93 e7. doi: 10.1016/j.cmet.2016.12.018
41. Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, et al. Essential role of mitochondrial energy metabolism in Foxp3(+) T-regulatory cell function and allograft survival. *FASEB J.* (2015) 29:2315–26. doi: 10.1096/fj.14-268409
42. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmolfs K, et al. *De novo* fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. *Nat Med.* (2014) 20:1327–33. doi: 10.1038/nm.3704
43. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. *J Clin Invest.* (2015) 125:194–207. doi: 10.1172/JCI76012
44. Howie D, Cobbold SP, Adams E, Ten Bokum A, Necula AS, Zhang W, et al. Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. *JCI Insight.* (2017) 2:e89160. doi: 10.1172/jci.insight.89160
45. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. *J Exp Med.* (2011) 208:1367–76. doi: 10.1084/jem.20110278
46. Gualdoni GA, Mayer KA, Goschl L, Boucheron N, Ellmeier W, Zlabinger GJ. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. *FASEB J.* (2016) 30:3800–9. doi: 10.1096/fj.201600522R
47. Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. *Cell Metab.* (2018) 28:504–15 e7. doi: 10.1016/j.cmet.2018.06.002
48. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential

- for CD4 T cell activation and effector function. *Cell Metab.* (2014) 20:61–72. doi: 10.1016/j.cmet.2014.05.004
49. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. *Proc Natl Acad Sci USA.* (2008) 105:7797–802. doi: 10.1073/pnas.0800928105
50. Haxhinasto S, Mathis D, Benoit C. The AKT-mTOR axis regulates *de novo* differentiation of CD4+Foxp3+ cells. *J Exp Med.* (2008) 205:565–74. doi: 10.1084/jem.20071477
51. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. *Immunity.* (2009) 30:832–44. doi: 10.1016/j.immuni.2009.04.014
52. Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. *Cell.* (2011) 146:772–84. doi: 10.1016/j.cell.2011.07.033
53. Lee CF, Lo YC, Cheng CH, Furtmuller GJ, Oh B, Andrade-Oliveira V, et al. Preventing allograft rejection by targeting immune metabolism. *Cell Rep.* (2015) 13:760–70. doi: 10.1016/j.celrep.2015.09.036
54. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD. Anergic T cells are metabolically anergic. *J Immunol.* (2009) 183:6095–101. doi: 10.4049/jimmunol.0803510
55. De Rosa V, Galgani M, Porcellini A, Colamatteo A, Santopaolo M, Zuchegna C, et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. *Nat Immunol.* (2015) 16:1174–84. doi: 10.1038/ni.3269
56. Priyadarshini B, Loschi M, Newton RH, Zhang JW, Finn KK, Gerriets VA, et al. Cutting edge: TGF-beta and phosphatidylinositol 3-kinase signals modulate distinct metabolism of regulatory T cell subsets. *J Immunol.* (2018) 201:2215–9. doi: 10.4049/jimmunol.1800311
57. Turner MS, Kane LP, Morel PA. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. *J Immunol.* (2009) 183:4895–903. doi: 10.4049/jimmunol.0901459
58. Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A, Folmes CD, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation. *Cell Metab.* (2018) 28:463–75 e4. doi: 10.1016/j.cmet.2018.08.012
59. Divakaruni A, Hsieh WY, Minarrieta L, Duong TN, Kim KKO, Desousa BR, et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. *Cell Metab.* (2018) 28:490–503 e7. doi: 10.1016/j.cmet.2018.06.001
60. Van den Bossche J, van der Windt GJW. Fatty acid oxidation in macrophages and T cells: time for reassessment? *Cell Metab.* (2018) 28:538–40. doi: 10.1016/j.cmet.2018.09.018
61. Procaccini C, De Rosa V, Galgani M, Abanni L, Cali G, Porcellini A, et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. *Immunity.* (2010) 33:929–41. doi: 10.1016/j.immuni.2010.11.024
62. Gerriets VA, Kishton RJ, Johnson MO, Cohen S, Siska PJ, Nichols AG, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. *Nat Immunol.* (2016) 17:1459–66. doi: 10.1038/ni.3577
63. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. *Nature.* (2013) 499:485–90. doi: 10.1038/nature12297
64. He N, Fan W, Henriquez B, Yu RT, Atkins AR, Liddle C, et al. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. *Proc Natl Acad Sci USA.* (2017) 114:12542–7. doi: 10.1073/pnas.1715363114
65. Yang K, Blanco DB, Neale G, Vogel P, Avila J, Clish CB, et al. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. *Nature.* (2017) 548:602–6. doi: 10.1038/nature23665
66. Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martinez-Reyes I, et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. *Nature.* (2019) 565:495–9. doi: 10.1038/s41586-018-0846-z
67. Chapman NM, Zeng H, Nguyen TM, Wang Y, Vogel P, Dhungana Y, et al. mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. *Nat Commun.* (2018) 9:2095. doi: 10.1038/s41467-018-04392-5
68. Miska J, Lee-Chang C, Rashidi A, Murosaki ME, Chang AL, Lopez-Rosas A, et al. HIF-1alpha is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of Tregs in glioblastoma. *Cell Rep.* (2019) 27:226–37 e4. doi: 10.1016/j.celrep.2019.03.029
69. Kishore M, Cheung KCP, Fu H, Bonacina F, Wang G, Coe D, et al. Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. *Immunity.* (2017) 47:875–89 e10. doi: 10.1016/j.immuni.2017.10.017
70. Huynh A, DuPage M, Priyadarshini B, Sage PT, Quiros J, Borges CM, et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. *Nat Immunol.* (2015) 16:188–96. doi: 10.1038/ni.3077
71. Wu D, Luo Y, Guo W, Niu Q, Xue T, Yang F, et al. Lkb1 maintains Treg cell lineage identity. *Nat Commun.* (2017) 8:15876. doi: 10.1038/ncomms15876
72. Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, et al. The proteomic landscape of human *ex vivo* regulatory and conventional T cells reveals specific metabolic requirements. *Immunity.* (2016) 44:406–21. doi: 10.1016/j.immuni.2016.01.028
73. Li L, Liu X, Sanders KL, Edwards JL, Ye J, Si F, et al. TLR8-mediated metabolic control of human Treg function: a mechanistic target for cancer immunotherapy. *Cell Metab.* (2019) 29:103–23 e5. doi: 10.1016/j.cmet.2018.09.020
74. Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh EC, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. *Nat Commun.* (2018) 9:249. doi: 10.1038/s41467-017-02689-5
75. Overacre AE, Vignali DA. T(reg) stability: to be or not to be. *Curr Opin Immunol.* (2016) 39:39–43. doi: 10.1016/j.co.2015.12.009
76. Vasanthakumar A, Kallies A. The regulatory T cell: jack-of-all-trades. *Trends Immunol.* (2015) 36:756–8. doi: 10.1016/j.it.2015.10.002
77. Li MO, Rudensky AY. T cell receptor signalling in the control of regulatory T cell differentiation and function. *Nat Rev Immunol.* (2016) 16:220–33. doi: 10.1038/nri.2016.26
78. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. *Immunity.* (2011) 35:871–82. doi: 10.1016/j.immuni.2011.09.021
79. Toomer KH, Lui JB, Altman NH, Ban Y, Chen X, Malek TR. Essential and non-overlapping IL-2Ralpha-dependent processes for thymic development and peripheral homeostasis of regulatory T cells. *Nat Commun.* (2019) 10:1037. doi: 10.1038/s41467-019-08960-1
80. Dai J, Liu B, Li Z. Regulatory T cells and Toll-like receptors: what is the missing link? *Int Immunopharmacol.* (2009) 9:528–33. doi: 10.1016/j.intimp.2009.01.027
81. Araujo L, Khim P, Mkhikian H, Mortales CL, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. *Elife.* (2017) 6:e21330. doi: 10.7554/eLife.21330
82. Murosaki ME, Miska J, Chang AL, Zhang P, Rashidi A, Moore H, et al. Fatty acid uptake in T cell subsets using a quantum dot fatty acid conjugate. *Sci Rep.* (2017) 7:5790. doi: 10.1038/s41598-017-05556-x
83. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. *Nature.* (2012) 486:549–53. doi: 10.1038/nature11132
84. Cluxton D, Petrasca A, Moran B, Fletcher JM. Differential regulation of human Treg and Th17 cells by fatty acid synthesis and glycolysis. *Front Immunol.* (2019) 10:115. doi: 10.3389/fimmu.2019.00115
85. Zeng H, Chi H. Metabolic control of regulatory T cell development and function. *Trends Immunol.* (2015) 36:3–12. doi: 10.1016/j.it.2014.08.003
86. Feuerer M, Herrero L, Cipolletta D, Naaaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. *Nat Med.* (2009) 15:930–9. doi: 10.1038/nm.2002
87. Li C, DiSpirito JR, Zemmour D, Spallanzani RG, Kuswanto W, Benoit C, et al. TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-Treg phenotype. *Cell.* (2018) 174:285–99 e12. doi: 10.1016/j.cell.2018.05.004
88. Schmidleinher L, Thabet Y, Schonfeld E, Kohnen M, Sommer D, Abdulla Z, et al. Enzymatic activity of HPGD in Treg cells suppresses tconv cells to maintain adipose tissue homeostasis and prevent metabolic dysfunction. *Immunity.* (2019) 50:1232–48 e14. doi: 10.1016/j.immuni.2019.03.014

89. Wu D, Han JM, Yu X, Lam AJ, Hoeppli RE, Pesenacker AM, et al. Characterization of regulatory T cells in obese omental adipose tissue in humans. *Eur J Immunol.* (2019) 49:336–47. doi: 10.1002/eji.201847570
90. Donninielli G, Del Corno M, Pierdominici M, Scazzocchio B, Vari R, Varano B, et al. Distinct blood and visceral adipose tissue regulatory T cell and innate lymphocyte profiles characterize obesity and colorectal cancer. *Front Immunol.* (2017) 8:643. doi: 10.3389/fimmu.2017.00643
91. Maria A, English KA, Gorham JD. Appropriate development of the liver Treg compartment is modulated by the microbiota and requires TGF-beta and MyD88. *J Immunol Res.* (2014) 2014:279736. doi: 10.1155/2014/279736
92. Li M, Zhao W, Wang Y, Jin L, Jin G, Sun X, et al. A wave of Foxp3(+) regulatory T cell accumulation in the neonatal liver plays unique roles in maintaining self-tolerance. *Cell Mol Immunol.* (2019). doi: 10.1038/s41423-019-0246-9
93. Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D, et al. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. *Proc Natl Acad Sci USA.* (2018) 115:E6546–55. doi: 10.1073/pnas.1720113115
94. Delacher M, Imbusch CD, Weichenhan D, Breiling A, Hotz-Wagenblatt A, Trager U, et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. *Nat Immunol.* (2017) 18:1160–72. doi: 10.1038/ni.3799
95. Fan X, Molledo B, Mendoza A, Davydov AN, Faire MB, Mazutis L, et al. CD49b defines functionally mature Treg cells that survey skin and vascular tissues. *J Exp Med.* (2018) 215:2796–814. doi: 10.1084/jem.20181442
96. Klingenberg R, Gerdés N, Badeau RM, Gistera A, Strothoff D, Ketelhuth DF, et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. *J Clin Invest.* (2013) 123:1323–34. doi: 10.1172/JCI63891
97. Zhang C, Li L, Feng K, Fan D, Xue W, Lu J. ‘Repair’ Treg cells in tissue injury. *Cell Physiol Biochem.* (2017) 43:2155–69. doi: 10.1159/000484295
98. Green JA, Arpaia N, Schizas M, Dobrin A, Rudensky AY. A nonimmune function of T cells in promoting lung tumor progression. *J Exp Med.* (2017) 214:3565–75. doi: 10.1084/jem.20170356
99. Burocchi A, Colombo MP, Piconese S. Convergences and divergences of thymus- and peripherally derived regulatory T cells in cancer. *Front Immunol.* (2013) 4:247. doi: 10.3389/fimmu.2013.00247
100. Chao JL, Savage PA. Unlocking the complexities of tumor-associated regulatory T cells. *J Immunol.* (2018) 200:415–21. doi: 10.4049/jimmunol.1701188
101. North RJ, Bursuker I. Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells. *J Exp Med.* (1984) 159:1295–311. doi: 10.1084/jem.159.5.1295
102. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by *in vivo* administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. *Cancer Res.* (1999) 59:3128–33.
103. Klages K, Mayer CT, Lahl K, Loddenkemper C, Teng MW, Ngiow SF, et al. Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma. *Cancer Res.* (2010) 70:7788–99. doi: 10.1158/0008-5472.CAN-10-1736
104. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation. *Science.* (2009) 324:1029–33. doi: 10.1126/science.1160809
105. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. *Sci Adv.* (2016) 2:e1600200. doi: 10.1126/sciadv.1600200
106. Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: a mutual relationship. *Cancer Lett.* (2018) 413:102–9. doi: 10.1016/j.canlet.2017.10.037
107. Rivadeneira DB, Delgoffe GM. Antitumor T-cell reconditioning: improving metabolic fitness for optimal cancer immunotherapy. *Clin Cancer Res.* (2018) 24:2473–81. doi: 10.1158/1078-0432.CCR-17-0894
108. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. *Cell.* (2015) 162:1229–41. doi: 10.1016/j.cell.2015.08.016
109. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. *Cell.* (2015) 162:1217–28. doi: 10.1016/j.cell.2015.08.012
110. Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. *Immunity.* (2016) 45:701–3. doi: 10.1016/j.immuni.2016.08.009
111. McDonnell E, Crown SB, Fox DB, Kitir B, Ilkayeva OR, Olsen CA, et al. Lipids reprogram metabolism to become a major carbon source for histone acetylation. *Cell Rep.* (2016) 17:1463–72. doi: 10.1016/j.celrep.2016.10.012
112. O’Sullivan D, Sanin DE, Pearce EJ, Pearce EL. Metabolic interventions in the immune response to cancer. *Nat Rev Immunol.* (2019) 19:324–35. doi: 10.1038/s41577-019-0140-9

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Pacella and Piconese. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Metabolism and Autoimmune Responses: The microRNA Connection

Alessandra Colamatteo¹, Teresa Micillo², Sara Bruzzaniti³, Clorinda Fusco¹, Silvia Garavelli³, Veronica De Rosa^{3,4}, Mario Galgani³, Maria Immacolata Spagnuolo⁵, Francesca Di Rella⁶, Annibale A. Puca^{7,8}, Paola de Candia⁷ and Giuseppe Matarese^{1,3*}

¹ Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy, ² Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Naples, Italy, ³ Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy, ⁴ Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy, ⁵ Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Naples, Italy, ⁶ Dipartimento di Senologia, Oncologia Medica, IRCCS–Fondazione G. Pascale, Naples, Italy, ⁷ Department of Cardiovascular Diseases, IRCCS MultiMedica, Milan, Italy, ⁸ Department of Medicine and Surgery, University of Salerno, Baronissi, Italy

OPEN ACCESS

Edited by:

Anna Ohradanova-Repic,
Medical University of Vienna, Austria

Reviewed by:

Stephan Blüml,
Medical University of Vienna, Austria

Federica Marelli-Berg,
Queen Mary University of London,
United Kingdom

*Correspondence:

Giuseppe Matarese
giuseppe.matarese@unina.it

Specialty section:

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

Received: 14 June 2019

Accepted: 05 August 2019

Published: 28 August 2019

Citation:

Colamatteo A, Micillo T, Bruzzaniti S, Fusco C, Garavelli S, De Rosa V, Galgani M, Spagnuolo MI, Di Rella F, Puca AA, de Candia P and Matarese G (2019) Metabolism and Autoimmune Responses: The microRNA Connection. *Front. Immunol.* 10:1969. doi: 10.3389/fimmu.2019.01969

Distinct metabolic pathways are known to regulate growth, differentiation, survival, and activation of immune cells by providing energy and specific biosynthetic precursors. Compelling experimental evidence demonstrates that effector T cell functions are coupled with profound changes in cellular metabolism. Importantly, the effector T cell-dependent “anti-self” response characterizing the autoimmune diseases is accompanied by significant metabolic alterations. MicroRNAs (miRNAs), evolutionary conserved small non-coding RNA molecules that affect gene expression by binding to target messenger RNAs, are now known to regulate multiple functions of effector T cells, including the strength of their activation, thus contributing to immune homeostasis. In this review, we will examine the most recent studies that describe miRNA direct involvement in the metabolic reprogramming that marks effector T cell functions. In particular, we will focus on the work showing a connection between miRNA regulatory function and the molecular network dysregulation that leads to metabolic pathway derangement in autoimmunity. Finally, we will also speculate on the possibility that the interplay between miRNAs and metabolism in T cells may help identify novel miRNA-based therapeutic strategies to treat effector T cell immunometabolic alterations in pathological conditions such as autoimmunity and chronic inflammation.

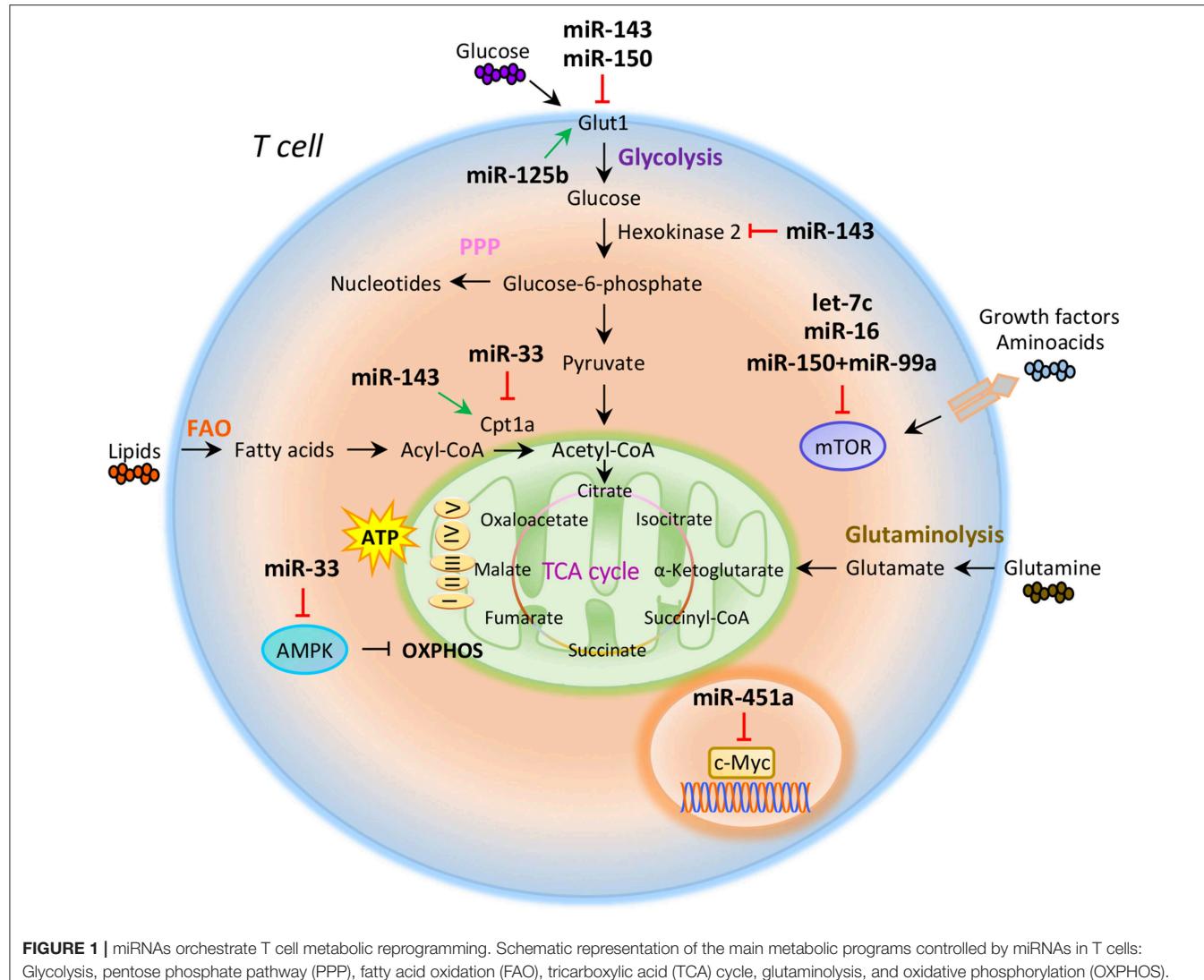
Keywords: T cells, metabolic regulation, immunometabolism, miRNAs, autoimmune diseases

INTRODUCTION

The immune system encompasses a variety of cellular subsets that are highly dynamic and specialized in several activities essential for host defense and tissue homeostasis (1–4). T cells are a crucial component of the adaptive immune system, with a unique nature that makes them able to respond rapidly to environmental changes (5–7). T cell activation and function are deeply related to specific metabolic programs necessary to regulate T cell signaling and support their growth, differentiation, and effector function. Indeed, the ability of intracellular metabolism to integrate signals and nutrients to produce energy is fundamental to determine a specific T cell fate (8–10).

Over the past decade, increasing studies have highlighted the role of microRNAs (miRNAs) in the metabolic control of immune cells. miRNAs are a class of small non-coding RNAs involved in the fine-tune regulation of gene expression. Several mechanisms have been uncovered by which miRNAs control T cell function, including regulation of intracellular metabolic pathways. Under specific conditions, such as inflammation, the biogenesis of miRNAs may be modified. Aberrant expression of miRNAs may influence T cell metabolic reprogramming, leading to pathological phenomena, including chronic inflammatory disorders and autoimmune conditions.

In this review, we discuss recent literature reporting the involvement of miRNAs in the metabolic control of immune responses, with particular emphasis on those impacting on T lymphocyte differentiation and function, in health and autoimmunity.

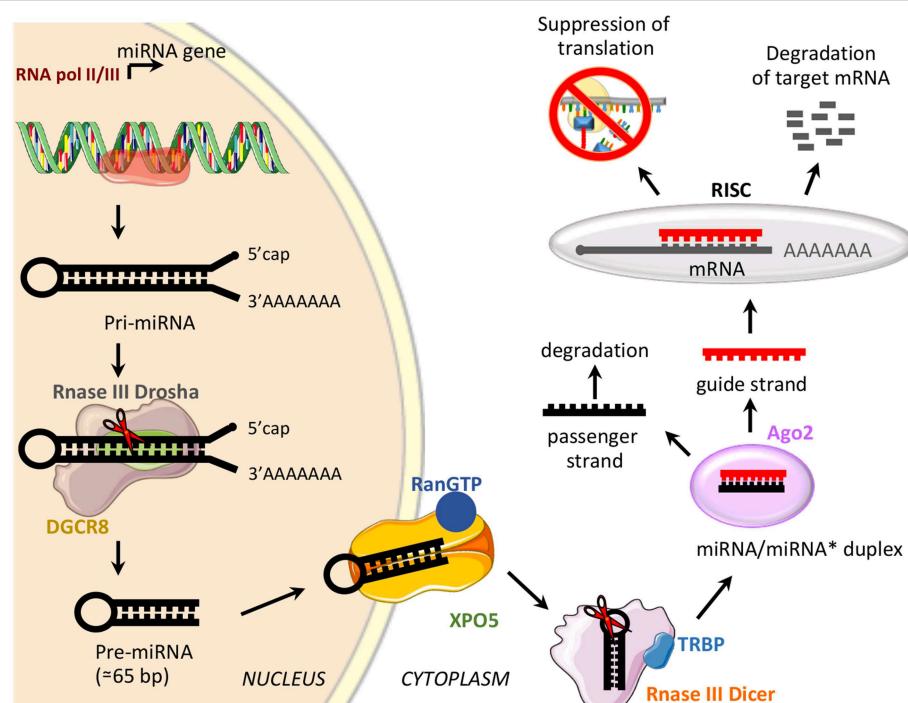

METABOLIC REGULATION OF T CELL RESPONSE

T lymphocytes play a crucial role in host defense and coordination of immune response (11). Upon antigen recognition via the T cell receptor (TCR) in the presence of co-stimulatory signals, T lymphocytes clonally expand and produce cytokines to eliminate infected or transformed cells (12, 13). In particular, during an acute infection, antigen-specific T cells proliferate and differentiate into effector T (Teff) cells: CD8⁺ cytotoxic T lymphocytes (CTLs) that rapidly mediate the clearance of infected cells and CD4⁺ Teff cells that became functional specialized in distinct T helper (Th) cell subset [Th1, Th2, Th17, follicular Th (Tfh), and regulatory T (Treg) cells] (14, 15). Their dysregulated activation leads to a wide spectrum of autoimmune and inflammatory conditions (16–19).

Compelling evidence indicate that intracellular metabolic programs adopted by T cells finely regulate immune response (20, 21). T cell activation determines an increased biosynthetic demand, which requires rapid changes to generate metabolic intermediates for T cell growth, proliferation, and function (20–22). Both quiescent naïve and memory T cells are characterized by metabolic pathways that supply energy for survival and migration, including oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and amino acid oxidation [Figure 1; (10, 23)]. Conversely, activation of T cells drives transcriptional changes, causing downregulation of oxidative metabolism and upregulation of biosynthetic pathways, such as aerobic glycolysis that promotes an increase in biochemical intermediates, necessary for nucleotide, amino acid, and fatty acid synthesis (24). This anabolic program increases nutrient uptake at the expense of ATP production (25, 26). Teff cells require high levels of glucose to proliferate and differentiate in distinct T cell subsets (27). The increased glucose metabolism is controlled by glucose transporters, glycolytic enzymes, multi-protein complexes, and transcriptional factors that coordinate glucose utilization to generate pyruvate (28, 29). Under hypoxic conditions, pyruvate can be converted to lactate by the lactate dehydrogenase (LDH) (anaerobic glycolysis); on the other hand, higher oxygen

levels promote pyruvate transfer into the mitochondria to supply intermediates of the tricarboxylic (TCA) cycle (30). TCA cycle starts from acetyl-CoA to generate citrate, which is consumed and regenerated throughout multiple biochemical reactions; nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FADH₂), and one GTP or ATP molecule are produced in each cycle [Figure 1; (31)]. Subsequently, NADH and FADH₂ provide electrons to generate ATP via OXPHOS [Figure 1; (31)]. Alternatively, glucose-6-phosphate (G6P), derived from the first enzymatic step of glycolysis, can be directed into the pentose phosphate pathway (PPP) that provides ribose for the synthesis of nucleotides and reducing equivalents, such as nicotinamide adenine dinucleotide phosphate (NADPH), for lipid and cholesterol biogenesis [Figure 1; (32)].

The increased glucose flow into the pentose phosphate pathway is also accompanied by an increase in glutamine metabolism (glutaminolysis), an energy-producing process required for fast biosynthesis of macromolecules necessary for lipid production (33, 34). Lipids play an important role in the regulation and maintenance of membrane properties, bioenergetic demands, and cell signaling (35). Upon TCR activation, T cells must increase their lipid content at each cell division for new plasma membrane generation; moreover, lipids, especially long fatty acids, are necessary to generate energy through the FAO [Figure 1; (36)]. Long-lived memory T cells preferentially use FAO to fuel the TCA cycle and OXPHOS, and maintain ATP production (37). Distinct metabolic and nutrient sensors, including the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, hypoxia-inducible factor 1 α (HIF1 α), c-Myc, and AMP-activated kinase (AMPK), integrate external stimuli and nutrient availability with intracellular metabolic processes (38–42). mTOR is a serine/threonine kinase with a key role in the regulation of T cell metabolism; it integrates multiple signals in response to nutrients, growth factors, energy, and stress to coordinate immune response upon TCR activation (43, 44). mTOR acts through two main signaling complexes, mTORC1 and mTORC2, which differ for their structure and sensitivity to the inhibitor rapamycin (43–46). PI3K/AKT/mTOR signaling pathway activation induced by TCR engagement, CD28 co-stimulation, or IL-2 receptor leads to an increase of glucose uptake via upregulation of Glucose transporter 1 (Glut1) levels, mediated by mTORC1 complex (45, 47). Instead, mTORC2, which mainly responds to growth signals, controls T cell proliferation and survival by AKT phosphorylation that affects glycogen synthase kinase-3 β (GSK-3 β) (48, 49). Moreover, mTORC1 activates glycolytic program in T cells also thanks to the downstream transcription factors HIF1 α and its target genes (50). HIF1 α is an oxygen sensor rapidly activated under hypoxic conditions, which determines the transcription of target genes including erythropoietin (EPO), vascular endothelial growth factor (VEGF), and glycolytic enzymes (51, 52). HIF1 α in turn induces the expression of intermediates required for glycolysis, such as Glut1, in the presence of low oxygen availability (53). HIF1 α can also increase glycolysis by inducing the expression of pyruvate dehydrogenase kinase 1 (PDK1), a key metabolic enzyme that favors the conversion of pyruvate to lactate (53).


FIGURE 1 | miRNAs orchestrate T cell metabolic reprogramming. Schematic representation of the main metabolic programs controlled by miRNAs in T cells: Glycolysis, pentose phosphate pathway (PPP), fatty acid oxidation (FAO), tricarboxylic acid (TCA) cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS).

mTORC1 is also responsible for the activation of c-Myc, another transcription factor with pleiotropic effects involved in cell proliferation, growth, and metabolism (38, 54). As a metabolic checkpoint, c-Myc is rapidly activated after TCR engagement and induces the transcription of enzymatic mediators of glycolysis, such as lactate dehydrogenase A (LDHA), pyruvate kinase isoenzyme type M2 (PKM2), hexokinase 2 (HK2), and Glut1 (55). c-Myc also induces the expression of transcription factor activating enhancer binding protein 4 (AP-4) which in turn upregulates the abovementioned glycolytic enzymes (56). Conversely, AMPK drives activated T cells to engage OXPHOS and maintain ATP levels under low glucose concentration (57). AMPK is activated in response to energy deprivation and under stress conditions, such as infections, inflammation, and DNA damage (58). AMPK is also a sensor of energy homeostasis and inhibits energy-consuming metabolism by increasing cellular AMP levels during energy deprivation, favoring ATP production (57, 59). Furthermore, AMPK controls catabolic metabolism through the inhibition of acetyl-CoA carboxylase (ACC), a

crucial metabolic enzyme of fatty acid biosynthesis, promoting FAO (59). Under nutrient deprivation, AMPK also inhibits mTORC1 complex activity in T cells (57). Indeed, it has been observed that AMPK loss in naive T cells upregulates mTOR activity and induces glycolysis (57). In all, these findings suggest that metabolism represents a critical checkpoint for T cell activation and function. Distinct levels of regulation (epigenetic, transcriptional, and translational) control and coordinate this cross-talk to ensure the appropriate energetic status underlying the specific immune cell function.

miRNA BIOGENESIS AND BIOLOGICAL FUNCTION

miRNAs are a class of small, non-coding RNAs of 21–25 nucleotides involved in post-transcriptional control of gene expression, through base pairing with complementary sequences in the 3' untranslated regions (3'UTR) (58). miRNAs are

FIGURE 2 | miRNA biogenesis and function. Schematic representation of miRNA biogenesis pathway and biological function. Di George syndrome Critical Region 8 (DGCR8), exportin-5 (XPO5), GTP-binding nuclear protein Ran (RanGTP), trans-activator RNA binding protein (TRBP), Argonaute protein 2 (Ago2), and RNA-induced silencing complex (RISC).

transcribed by RNA polymerase II or III as long variable-length transcripts named primary miRNA transcripts (pri-miRNAs), with a 5' cap and a 3'poly (A) tail [Figure 2; (60)]. Pri-miRNAs are processed by Drosha ribonuclease III and its partner named Di George syndrome Critical Region 8 (DGCR8), to produce a hairpin RNA of about 65 nucleotides known as pre-miRNA molecule [Figure 2; (61)]. After nuclear processing, the pre-miRNAs are exported from the nucleus to the cytoplasm by the GTP-binding nuclear protein Ran (RanGTP)/exportin-5 (XPO5) complex and cleaved into a miRNA duplex of about 21 nucleotides (ds-miRNAs) by a second endoribonucleolytic Dicer and its cofactor TRBP (trans-activator RNA binding protein) [Figure 2; (62)]. ds-miRNAs are loaded into the Argonaute protein (Ago2), which facilitates incorporation of the guide strand into the RNA-induced silencing complex (RISC), while the passenger strand is degraded [Figure 2; (63)]. The guide strand binds target messenger RNA (mRNA) based on sequence complementarity; base pairing match induces degradation of target mRNA, while the imperfect complementarity results in suppression of translation [Figure 2; (64)].

The biological relevance of miRNAs is highlighted by the discovery that a single miRNA could interact with hundreds of target mRNAs, and each gene transcript may have several sites of miRNA recognition (65, 66). The finely tuned control of gene expression requires the production of the appropriate level of specific miRNAs in a well-defined time frame (65, 66). Since miRNAs are involved in post-transcriptional regulation of

several cellular processes, dysregulation or dysfunction of their biogenesis leads to a wide range of human diseases, ranging from cancer to autoimmune disorders (67–69). Specific miRNAs have been described to regulate the function and homeostasis of several immune cell populations (70). Compelling evidence has demonstrated that deletion of Drosha or Dicer within T cell compartment affects T cell development, differentiation and function (71, 72). In this context, it has been shown that Dicer deletion at an early stage of T cell differentiation compromises the survival of TCR alphabeta (α/β) chain cells while it is dispensable for CD4 or CD8 T cell lineage commitment (73, 74). Furthermore, Chong et al. highlighted the essential role of Drosha and Dicer in Treg cells, as specific deletion of one or both of them results in impaired expression of the transcription factor forkhead box P3 (FoxP3), the master gene of Treg cell development and function (71). Among all the miRNAs involved in the control of T cell fate, miR-125b has been shown to restrain the expression of genes encoding molecules important for differentiation of naïve into effector and memory T cells, targeting interferon- γ (IFN- γ), interleukin 2 receptor β (IL-2R β), interleukin 10 receptor α (IL-10RA), and Blimp-1 (PRDM1) genes (75).

miR-214 and miR-182 act through different mechanisms to control T lymphocyte activation (76). Specifically, up-regulation of miR-124 in T cells, after TCR stimulation, promotes T cell activation through the inhibition of phosphatase and tensin homolog (PTEN), a negative regulator of T cell activation.

Mechanistically, activation via CD28 induces upregulation of miR-214, which targets the 3'UTR of *Pten*, causing a reduction in PTEN levels promoting T cell activation (76). Constitutive overexpression of miR-182 by IL-2 supports clonal expansion of Th cells, by reducing the transcription factor Foxo1, a suppressor of resting Th cell proliferation (77).

Compelling experimental evidence reports that several miRNAs can also influence T cell differentiation (78–80). In more detail, miR-155, expressed at high levels in Treg cells, is involved in the modulation of the suppressor of cytokine signaling 1 (SOCS1) and the signal transducers and activators of transcription 5 (STAT5) activity, key molecules for Treg cell differentiation and function (81). Data from animal models revealed that mice lacking miR-146a are more susceptible to chronic inflammation and autoimmune disorders secondarily to the loss of peripheral T cell tolerance. These findings suggest that miR-146 may be considered a key regulator of T cell response (82). In all, miRNA network can be considered as a crucial regulator of cell biology and, although studies focusing on miRNAs are progressively increasing, their impact on T cell function is still only partially explored.

ROLE OF miRNAs IN T CELL METABOLIC REPROGRAMMING

The role of miRNAs in the regulation of metabolic reprogramming in cancer cells has been largely investigated, thus opening the study of their potential role in the modulation of T cell metabolism (83–85). Several studies have suggested that miRNAs mainly act on key metabolic enzymes or transporters of energetic nutrients, thus impacting on T cell proliferation and differentiation (86, 87). In this context, Zhang et al. identified miR-143 as a regulator of T cell metabolism that reduces glucose uptake through the inhibition of glucose receptor Glut1. The authors found that, by specifically reducing glycolysis during TCR-dependent activation, miR-143 promotes memory T cell differentiation and metabolic reprogramming (88). In addition, miR-143 stimulates T cell memory differentiation also through the control of two enzymes, hexokinase II and carnitine palmitoyltransferase 1a (Cpt1a), which regulate glucose oxidation and oxidative phosphorylation, respectively [Figure 1; (88)]. miR-150 is an additional miRNA that finely tunes T cell glycolytic reprogramming, secondarily to co-stimulatory signals. Recent findings suggest that CD46 signaling, which is activated downstream of CD28 co-stimulation during T cell activation, leads to a rapid downregulation of miR-150 expression, which targets solute carrier family 2 member 1 (SLC2A1) gene, encoding the glucose transporter Glut1 [Figure 1; (89)]. Through a direct interference with Glut1-dependent glycolysis, miR-150 profoundly impacts on T cell activation in the absence of a proper co-stimulatory signal (89). On the contrary, metabolic reprogramming of activated T cells seems to be associated with the upregulation of miRNAs promoting glucose uptake and downregulation of those stimulating catabolic pathways. In this context, Liu et al. have studied the role of miR-125b, overexpressed in T cell acute lymphoblastic leukemia (T-ALL)

(90). The authors revealed that miR-125b regulates glucose uptake in T cell via Glut1 by reducing the expression of TNF- α -induced protein 3 (TNFAIP3), which inhibits the activation of nuclear factor k B (NF-kB) [Figure 1; (90)]. These findings suggest that, through the enhancement of glucose metabolism and oxygen consumption, deregulation of miR-125b contributes to abnormal differentiation of T cell in T cell leukemia (90).

It has been reported that CD28 engagement during T cell activation promotes the expression of Cpt1a, a key enzyme for mitochondrial FAO. This process is finely regulated by miR-33 that, in the absence of CD28 signal, attenuates Cpt1a expression, interfering with the metabolic demand central for future recall of memory T cells [Figure 1; (91)]. Several studies have also reported that miRNAs control T cell metabolic reprogramming by targeting important metabolic checkpoints, such as AMPK, mTOR, and c-Myc (92–94). Ouimet et al. unveiled that miR-33 targets AMPK, inducing an unbalance between aerobic glycolysis and mitochondrial OXPHOS (92). miR-33 affects oxidative phosphorylation and induces macrophages M2 polarization through direct targeting of AMPK [Figure 1; (92)]. The same authors revealed that miR-33 inhibition increased macrophage expression of the retinoic acid (RA)-producing enzyme aldehyde dehydrogenase family 1, subfamily A2 (ALDH1A2), and of retinal dehydrogenase enzyme, with subsequent production of RA, which favors differentiation of FoxP3 $^{+}$ CD4 $^{+}$ T cells (92).

Several other miRNAs are involved in the control of mTOR pathway; in particular, an increased activation of mTOR, leading to S6 and AKT phosphorylation, has been observed in the absence of co-stimulatory signals in CD4 $^{+}$ T cells deficient for RNaseIII enzyme Dicer, a key component of miRNAs biogenesis (93). Two miRNAs are involved in the fine regulation of mTOR and Rictor mRNA expression. Specifically, the downregulation of let-7c miRNA and miR-16 in Dicer-deficient CD4 $^{+}$ T cells causes TCR signaling amplification and increased IL-2 production, due to overexpression of mTOR and Rictor mRNAs [Figure 1; (93)]. Subsequently, restoration of mTOR and Rictor expression by genetic manipulation determines reduction of IL-2 production at levels sufficient to avoid anergy in response to TCR engagement (93, 94). Thus, let-7c miRNA and miR-16 control the balance between activation and anergy through post-transcriptional control of mTOR components in T cells [Figure 1; (93, 94)].

mTOR pathway is also regulated by miR-150 expressed at high levels during differentiation of naive CD4 $^{+}$ T cells into Treg cells; miR-150 efficiently represses mTOR in cooperation with miR-99a, and this promotes Treg cell differentiation [Figure 1; (87)]. In addition, a recent report showed that miR-451a directly targets c-Myc in Jurkat T cells; indeed, miR-451a negatively correlated with c-Myc expression in CD4 $^{+}$ T cells from dilated cardiomyopathy subjects. These results suggest a role of the miR-451a/c-Myc pathway in CD4 $^{+}$ T cell proliferation and activation [Figure 1; (95)].

These data support the idea that, through the modulation of intracellular metabolic programs, miRNAs are able to influence T cell fate and differentiation (96). Understanding the mechanism by which miRNAs target metabolism in T cells may lead to therapeutic strategies for immune-related diseases.

T CELL METABOLIC ALTERATION IN AUTOIMMUNITY: THE miRNA CONNECTION

Given the impact of miRNAs in the regulation of T cell metabolic programs, aberrant miRNA expression could interfere with T cell fate with consequent loss of immune homeostasis and autoimmunity (97–100). Autoimmune diseases afflict about 7–9% of the worldwide population; in particular, type 1 diabetes (T1D), systemic lupus erythematosus (SLE), and multiple sclerosis (MS) have been increasing in the last few years (101–104). The role of T cell metabolism in the control of immune function and how its alteration could influence immune response during autoimmunity have been well-characterized (24, 105–111). Naïve T lymphocytes are metabolically inactive, and their differentiation is controlled by metabolic reprogramming, involving glycolysis, FAO, and OXPHOS (10, 112–115). It is well-known that activated T cells require high levels of metabolic compounds to maintain their viability and function (57). In particular, it has been shown that glycolysis sustains cytokine production in Teff cells (57); moreover, FAO and OXPHOS play an important role to increase the inflammatory capacity of memory T cells, and this allows a rapid response upon antigen recall (116, 117). Thus, an aberrant metabolic environment could influence the development of inflammation and autoimmune disorder by fueling the differentiation and activation of pathogenic T cells.

miRNAs were shown to regulate metabolism-related genes in T1D, an autoimmune disease characterized by persistent hyperglycemia secondarily to pancreatic β -cell destruction and insulin deficiency (118, 119). Increased glucose levels in the extracellular microenvironment determine a metabolic reprogramming that fuels autoreactive Teff cell activation and IFN- γ secretion (57, 114, 116). Glucose-activated Teff cells upregulate Glut4 and insulin receptor substrate (IRS)-1 on their surface to sustain glycolytic rate and produce pro-inflammatory cytokines and reactive oxygen species (ROS) that promote the autoimmune response (120). In this context, let-7 family of miRNAs, which control several genes involved in glucose homeostasis, insulin resistance, and cell differentiation, has been reported to control important regulatory mechanisms in T1D subjects [Table 1; (121–123)]. Let-7 miRNAs are one of the largest and highly conserved family of miRNAs expressed in T cells, present in multiple copies in the genome; the number of let-7 miRNAs differs between species; for example, in humans, there are 10 mature let-7 miRNAs (124). It has been shown that let-7 miRNAs target multiple genes related to glucose response and the insulin-PI3K-mTOR pathway, such as insulin-like growth factor 1 receptor (IGF1R), insulin receptor (INSR), and IRS-2 but also regulate genes involved in the effector functions of CTLs (i.e., granzyme A, granzyme B, perforin 1, and eomesodermin) (121, 122, 125). In particular, it has been shown that four members of the let-7 miRNAs family (let-7a, let-7e, let-7f, and let-7g) were higher in PBMCs from T1D subjects (126); however, how these miRNAs are involved in T1D pathogenesis is poorly understood. Together, these results suggest that an altered

TABLE 1 | miRNAs involved in T cell metabolic reprogramming, during autoimmune diseases: type 1 diabetes (T1D), systemic lupus erythematosus (SLE), and multiple sclerosis (MS).

miRNAs	Diseases	Targets	References
let-7 family	T1D	IGF1R; INSR; IRS-2	(121–123, 126)
miR-378	T1D	GDP; DDAH1; LDHA; CRAT	(127–129)
miR-16-2	T1D	CD28	(130)
miR-551b	T1D	FasL	(130)
miR-877	T1D	AIRE	(130)
miR-26a	SLE	EZH2	(131–134)
miR-633	SLE	AKT1	(135)
miR-766-3p	SLE	IRS-2; PI3K receptor 1	(136)
NovelmiRNA-25	SLE	AMPD-2	(137)
miR-19b	MS	PTEN	(138)
miR-99b-5p	MS	IGF1R; mTOR; AKT1	(138–142)
miR-21	MS	SMAD7	(143–146)

insulin-PI3K-mTOR pathway in T cells of T1D individuals may determine an aberrant glucose uptake as a consequence of a defective regulation of insulin receptor genes. This impaired metabolism could favor the differentiation and activation of pathological Teff cells in T1D patients. Furthermore, serum miR-378 negatively correlates with insulinoma-associated protein 2 (IA2A) and the Zinc transporter 8 (Znt8) autoantibodies in T1D subjects (127). This miRNA is involved in the control of several metabolic processes, such as glycolysis, mitochondrial oxidation, and fatty acid metabolism, through the interference with the expression of mannose-1-phosphate guanylyltransferase (GDP), dimethylarginine dimethylaminohydrolase 1 (DDAH1), LDHA, and carnitine O-acetyltransferase (CRAT) enzymes [Table 1; (127–129)]. One hypothesis is that serum levels of miR-378 could reflect metabolic alteration that promotes differentiation of pathogenic T cells in T1D subjects (Table 1). In this context, Zhou et al. have investigated by *in silico* analysis that 27 miRNAs out of 530 are located in nine human insulin-dependent diabetes mellitus (IDDM) loci associated with T1D susceptibility (130). Among them, miR-16-2, miR-551b, and miR-877 target specific genes involved in the activation of Teff cells, such as CD28, Fas ligand (FasL), and the autoimmune regulator (AIRE), respectively [Table 1; (130)].

miR-26a is an additional miRNA associated with T cell dysfunction, glucose metabolism, and autoimmune disease development (131, 132). Its expression in T cells is regulated by glucose availability, and it is able to target the epigenetic regulator enhancer of zeste homolog 2 (EZH2), a histone-lysine-N-methyltransferase, well-known to improve effector T cell function by inhibiting Notch signaling repressors [Table 1; (133, 147)]. In SLE subjects, the levels of miR-26a in CD4 $^{+}$ T cells negatively correlate with disease severity; this suggests that the reduced miRNA regulation of EZH2, secondarily to an increased glycolytic activity in CD4 $^{+}$ T cells, sustains their activation (134, 148). Several defects in metabolic pathways

of T cells from SLE subjects have been described, especially those related to mitochondrial dysfunction (149–151). SLE is a complex multifactorial autoimmune disease where loss of tolerance determines the generation of antinuclear antibodies produced by B lymphocytes and tissue damage by autoreactive Teff cells (150, 152). Mitochondrial membrane hyperpolarization occurs in CD4⁺ T cells from SLE subjects, leading to increase of ROS and depletion of ATP and glutathione, determining an impaired T cell activation and cell death (149, 153, 154). Of note, mounting evidence show a role for mTOR as a sensor of mitochondrial dysfunction in Teff cell differentiation during SLE (155, 156). It has been recently reported that miR-633 that targets the AKT/mTOR pathway is significantly reduced in CD4⁺ T cells from SLE-affected subjects, and its expression negatively correlates with disease activity [Table 1; (135)]. In more detail, miR-633 inhibits the AKT/mTOR signaling and increases the induction of several cytokines, such as IL-4, IL-17, and IFN- γ , thus contributing to disease pathogenesis [Table 1; (135)]. Together with the abovementioned study, others reported an increase of miR-766-3p in CD4⁺ T cells from SLE subjects. Potential target genes of this miRNA are IRS-2 and PI3K receptor 1, both involved in the PI3K/AKT/mTOR pathway [Table 1; (136)]. These data suggest that CD4⁺ T cells of SLE subjects have an impaired PI3K signaling, which could affect their differentiation and function, leading to the development of autoimmunity. Recently, Guo et al. reported the upregulation of several miRNAs associated to metabolic pathways in PBMCs from SLE patients, such as NovelmiRNA-25 and miR-1273h-5p (137). NovelmiRNA-25 targets the enzyme adenosine monophosphate deaminase (AMPD)-2 involved in purine nucleobase or nucleotide metabolism by converting AMP to inosine monophosphate (IMP) [Table 1; (137)]. The overexpression of NovelmiRNA-25 associates with a downregulation of AMPD-2 protein in PBMCs from SLE subjects, contributing to AMP accumulation that improved the activation of pro-inflammatory pathways [Table 1; (137, 157)]. Moreover, increased levels of AMP contribute to activate AMPK, a key enzyme for cellular metabolic reprogramming (42). Of note, NovelmiRNA-25 positively correlates with disease activity, suggesting an important role for this miRNA as a biomarker to predict the activation of pathogenic T cells.

The role of miRNAs in the regulation of autoreactive T cell function has been reported also in MS (158–160). MS is the most common chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by autoreactive T cells able to target myelin-based antigens, leading to demyelinating lesions and neuronal degeneration (161). During MS, the demyelinating process associates with metabolic reprogramming in neuronal cell bodies sustaining chronic inflammation through the release of pro-inflammatory cytokines (162, 163). These events promote the activation of CD4⁺ T cells, which further increase neuronal damage (162). Mounting evidence highlights the close relationship between T cell metabolic alterations and neurodegeneration in MS (105, 164, 165). Impaired glycolytic engagement has been described in Tconv cells from naïve-to-treatment

relapsing remitting (RR)-MS subjects during the generation of induced (i) Treg cells, which contributes to loss of immune tolerance (105). In more detail, the glycolytic enzyme enolase-1 accumulates in the nuclei—secondarily to the reduced engagement in the glycolytic cascade—and constrains the induction of FoxP3 expression during the generation of Treg cells (105). Moreover, other key enzymes involved in glycolysis and mitochondrial respiration are reduced in CD4⁺ T cells from RR-MS subjects, such as aldolase, hexokinase 1, Glut1, dihydrolipoamide S-acetyltransferase (DLAT), and dihydrolipoamide S-succinyltransferase (DLST); interestingly, restoration of these enzymes after IFN- β -1a treatment correlates with disease amelioration (165). Several studies also reported that alterations in the PI3K/AKT/mTOR pathway, which controls T cell activation and metabolism, ameliorate the clinical course of MS (166–169). Also, rapamycin—an immunosuppressant drug that inhibits mTOR by destabilizing the mTOR-Raptor complex—controls disease progression in experimental autoimmune encephalomyelitis (EAE) mice by suppressing Teff cell functions (170, 171). In this context, miR-19b and the miR-99 family are associated with the mTOR pathway, affecting effector T cell activation during MS [Table 1; (138)]. By targeting PTEN, the negative regulator of the PI3K/AKT/mTOR signaling pathway, miR-19b enhances mTOR activity sustaining pathogenic Th17 cell development [Table 1; (138)]. Other reports revealed also that the miR-99 family modulates the PI3K/AKT/mTOR signaling pathways. In particular, the miR-99b-5p, a member of this miRNA family, is significantly higher in splenocytes of EAE mice; *in silico* analysis confirmed that it may target multiple genes, such as IGF1R, mTOR, and AKT1 [Table 1; (139–141)]. Combined miRNA and mRNA expression analysis confirmed these data also in human disease; indeed, miR-99b-5p levels are upregulated in PBMCs from pediatric MS subjects (142). These results suggest an important role for miR-99 family, in particular the miR-99b-5p, in T cell activation during MS through a hyper-activation of the mTOR pathway in pathogenic lymphocytes.

Furthermore, recent reports suggest that fumaric acid ester (FAE)—a Krebs cycle intermediate used for MS therapy—induces hypermethylation of the miR-21 locus in CD4⁺ T cells, and this constrains Th17 cell differentiation and function [Table 1; (143)]. In more detail, FAE treatment reduces Th17 cells, by direct hypermethylation of CpG sites spanning the MIR-21 promoter. Several studies have shown that miR-21 is upregulated in PBMCs from MS subjects and also in CNS-infiltrating T cells of EAE mice (144, 145). As a therapeutic tool in MS subjects, FAE selectively reduces miR-21 transcripts in Th17 cells and indirectly increases its target—the small mothers against decapentaplegic homolog 7 (SMAD7)—an inhibitor of their differentiation [Table 1; (144, 146)].

Taken together, these findings support the existence of a cross-talk between metabolic programs and miRNA network in T cells. Through a strong impact on the intracellular molecular pathways that control T cell differentiation and function, miRNA dysregulation leads to an imbalance between autoreactive T cell activation and regulatory function with consequent loss of immunological tolerance.

CONCLUDING REMARKS

Our understanding of the link between T cell metabolism and miRNA expression has substantially increased in the past decade. The ability of several miRNAs to regulate and reprogram metabolic pathways that drive T cell function and differentiation may represent a hallmark to improve the comprehension of the molecular processes underlying the pathogenesis of autoimmune disorders. However, further studies are required to better understand the connection among miRNAs, T cell metabolism, and loss of immunological tolerance. The precise mechanisms by which miRNAs target the genes encoding for enzymes, multi-protein complex, and transcription factors related to T cell metabolism and how their alteration associates with the development of autoimmune disorders remain to be dissected. Considering the increasing important role of miRNAs in the immune homeostasis, therapeutic approaches could represent an innovative way to control the aberrant metabolism sustaining autoreactive T cell clones.

REFERENCES

1. Mak TW, Saunders ME, Jett BD. Primer to the immune response. In: *Components of the Immune System*. Academic Cell Press; Elsevier (2014). p. 21–54.
2. Kumar BV, Kratchmarov R, Miron M, Carpenter DJ, Senda T, Lerner H, et al. Functional heterogeneity of human tissue-resident memory T cells based on dye efflux capacities. *JCI Insight*. (2018) 3:123568. doi: 10.1172/jci.insight.123568
3. Koenderman L, Buurman W, Daha MR. The innate immune response. *Immunol Lett*. (2014) 162:95–102. doi: 10.1016/j.imlet.2014.10.010
4. Chaplin DD. Overview of the immune response. *J Allergy Clin Immunol*. (2010) 125:S3–23. doi: 10.1016/j.jaci.2009.12.980
5. Raff MC. T and B lymphocytes and immune responses. *Nature*. (1973) 242:19–23.
6. Mak TW, Saunders ME, Jett BD. Primer to the immune response. In: *T Cell Development, Activation and Effector Functions*. Academic Cell Press; Elsevier (2014). p. 197–226.
7. Mak TW, Saunders ME, Jett BD. Primer to the immune response. In: *Regulation of Immune Responses in the Periphery*. Academic Cell Press; Elsevier (2014). p. 227–46.
8. Norata GD, Caligiuri G, Chavakis T, Matarese G, Netea MG, Nicoletti A, et al. The cellular and molecular basis of translational immunometabolism. *Immunity*. (2015) 43:421–34. doi: 10.1016/j.jimmuni.2015.08.023
9. Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function. *Trends Immunol*. (2012) 33:168–73. doi: 10.1016/j.it.2012.01.010
10. MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. *Annu. Rev. Immunol.* (2013) 31:259–83. doi: 10.1146/annurev-immunol-032712-095956
11. Jiang H, Chess L. Regulation of immune responses by T cells. *N Engl J Med*. (2006) 354:1166–76. doi: 10.1056/NEJMra055446
12. Brownlie RJ, Zamoyska R. T cell receptor signalling networks: branched, diversified and bounded. *Nat Rev Immunol*. (2013) 13:257–69. doi: 10.1038/nri3403
13. Chambers CA, Allison JP. Co-stimulation in T cell responses. *Curr Opin Immunol*. (1997) 9:396–404.
14. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. *Nat Rev Immunol*. (2012) 12:749–61. doi: 10.1038/nri3307
15. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. *Annu Rev Immunol*. (2010) 28:445–89. doi: 10.1146/annurev-immunol-030409-101212

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

This paper was supported by grants from the Juvenile Diabetes Research Foundation (JDRF n. 2-SRA-2018-479-S-B to MG and n. 1-SRA-2018-477-S-B to PdC) and the National Multiple Sclerosis Society (NMSS n. PP-1804-30725 to MG and PP-1606-24687 to PdC), Fondazione Italiana Sclerosi Multipla (FISM n. 2018/R/4 to VD, n. 2016/R/18 to GM, and n. 2016/R/10 to PdC), European Research Council Grant (ERC menTORingTregs n. 310496) and Telethon (n. GGP 17086) to GM, the Università degli Studi di Napoli Federico II (STAR Program Linea 1–2018), and Ministero della Salute (n. GR-2016-02363725) to VD.

Part of images used in the figure preparation were from the Motifolio drawing toolkits (www.motifolio.com) and from Servier Medical Art (<http://www.servier.fr/servier-medical-art>).

16. Suárez-Fueyo A, Bradley SJ, Tsokos GC. T cells in systemic lupus erythematosus. *Curr Opin Immunol*. (2016) 43:32–8. doi: 10.1016/j.co.2016.09.001
17. Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell function in cancer. *Nat Rev Immunol*. (2016) 16:599–611. doi: 10.1038/nri.2016.80
18. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. *N Engl J Med*. (2011) 365:2205–19. doi: 10.1056/NEJMra104965
19. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. *Nat Rev Immunol*. (2015) 15:486–99. doi: 10.1038/nri3862
20. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. *Immunity*. (2013) 38:633–43. doi: 10.1016/j.jimmuni.2013.04.005
21. Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic instruction of immunity. *Cell*. (2017) 169:570–86. doi: 10.1016/j.cell.2017.04.004
22. Wang R, Green DR. Metabolic checkpoints in activated T cells. *Nat Immunol*. (2012) 13:907–15. doi: 10.1038/ni.2386
23. Dumitru C, Kabat AM, Maloy KJ. Metabolic adaptations of CD4(+) T cells in inflammatory disease. *Front Immunol*. (2018) 9:540. doi: 10.3389/fimmu.2018.00540
24. Bantug GR, Galluzzi L, Kroemer G, Hess C. The spectrum of T cell metabolism in health and disease. *Nat Rev Immunol*. (2018) 18:19–34. doi: 10.1038/nri.2017.99
25. Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. *Immunity*. (2007) 27:173–8.
26. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. *Science*. (2009) 324:1029–33. doi: 10.1126/science.1160809
27. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. *J Immunol*. (2011) 186:3299–303. doi: 10.4049/jimmunol.1003613
28. MacIver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. *J Leukoc Biol*. (2008) 84:949–57. doi: 10.1189/jlb.0108024
29. Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. *Mol Biol Cell*. (2007) 18:1437–46. doi: 10.1091/mbc.e06-07-0593

30. Olson KA, Schell JC, Rutter J. Pyruvate and metabolic flexibility: Illuminating a path toward selective cancer therapies. *Trends Biochem Sci.* (2016) 41:219–30. doi: 10.1016/j.tibs.2016.01.002
31. Park BV, Pan F. Metabolic regulation of T cell differentiation and function. *Mol Immunol.* (2015) 68:497–506. doi: 10.1016/j.molimm.2015.07.027
32. Cho ES, Cha YH, Kim HS, Kim NH, Yook JI. The pentose phosphate pathway as a potential target for cancer therapy. *Biomol Ther.* (2018) 26:29–38. doi: 10.4062/biomolther.2017.179
33. Newsholme EA, Crabtree B, Ardaui MS. Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. *Q J Exp Physiol.* (1985) 70:473–89.
34. Newsholme EA, Crabtree B, Ardaui MS. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. *Biosci Rep.* (1985) 5:393–400.
35. Ingólfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, et al. Lipid organization of the plasma membrane. *J Am Chem Soc.* (2014) 136:14554–9. doi: 10.1021/ja507832e
36. Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. *Trends Immunol.* (2015) 36:81–91. doi: 10.1016/j.it.2014.12.005
37. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. *Nature.* (2009) 460:103–7. doi: 10.1038/nature08097
38. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. *Mol Cell.* (2010) 39:171–83. doi: 10.1016/j.molcel.2010.06.022
39. Powell JD, Pollizzi KN, Heikamp EB, Horton MR. Regulation of immune responses by mTOR. *Annu Rev Immunol.* (2012) 30:39–68. doi: 10.1146/annurev-immunol-020711-075024
40. Corcoran SE, O’Neill LA. HIF1 α and metabolic reprogramming in inflammation. *J Clin Invest.* (2016) 126:3699–707. doi: 10.1172/JCI84431
41. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. *Immunity.* (2011) 35:871–82. doi: 10.1016/j.immuni.2011.09.021
42. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. *Nat Cell Biol.* (2011) 13:1016–23. doi: 10.1038/ncb2329
43. Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. *Immunol Rev.* (2012) 249:43–58. doi: 10.1111/j.1600-065X.2012.01152.x
44. Laplante M, Sabatini DM. mTOR signaling at a glance. *J Cell Sci.* (2009) 122:3589–94. doi: 10.1242/jcs.051011
45. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. *Cell.* (2017) 168:960–76. doi: 10.1016/j.cell.2017.02.004
46. Liu C, Chapman NM, Karmaus PW, Zeng H, Chi H. mTOR and metabolic regulation of conventional and regulatory T cells. *J Leukoc Biol.* (2015) 97:837–47. doi: 10.1189/jlb.2RI0814-408R
47. Siska PJ, van der Windt GJ, Kishton RJ, Cohen S, Eisner W, MacIver NJ, et al. Suppression of Glut1 and glucose metabolism by decreased Akt/mTORC1 signaling drives T cell impairment in B cell leukemia. *J Immunol.* (2016) 97:2532–40. doi: 10.4049/jimmunol.1502464
48. Koromilas AE. Negative regulation of mTORC2 by glycogen synthase kinase-3 β : an adaptive process to stress with an anticancer therapeutic potential? *Fut Oncol.* (2011) 7:845–8. doi: 10.2217/fon.11.59
49. Chen CH, Shaikenev T, Peterson TR, Aimbetov R, Bissenbaev AK, Lee SW, et al. ER stress inhibits mTORC2 and Akt signaling through GSK-3 β -mediated phosphorylation of rictor. *Sci Signal.* (2001) 4:ra10. doi: 10.1126/scisignal.2001731
50. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. *J Exp Med.* (2011) 208:1367–76. doi: 10.1084/jem.20110278
51. Semenza GL. Oxygen sensing, homeostasis, and disease. *N Engl J Med.* (2011) 365:537–47. doi: 10.1056/NEJMra1011165
52. Semenza GL. Oxygen homeostasis. *Wiley Interdiscip Rev Syst Biol Med.* (2010) 2:336–61. doi: 10.1002/wsbm.69
53. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. *Genes Dev.* (1998) 12:149–62.
54. Meyer N, Penn LZ. Reflecting on 25 years with MYC. *Nat Rev Cancer.* (2008) 8:976–90. doi: 10.1038/nrc2231
55. Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. *Clin Cancer Res.* (2009) 15:6479–83. doi: 10.1158/1078-0432.CCR-09-0889
56. Chou C, Pinto AK, Curtis JD, Persaud SP, Cella M, Lin CC, et al. c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. *Nat Immunol.* (2014) 15:884–93. doi: 10.1038/ni.2943
57. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, Yurchenko E, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses *in vivo*. *Immunity.* (2015) 42:41–54. doi: 10.1016/j.immuni.2014.12.030
58. Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. *Cell.* (2012) 149:515–24. doi: 10.1016/j.cell.2012.04.005
59. Ma EH, Poffenberger MC, Wong AH, Jones RG. The role of AMPK in T cell metabolism and function. *Curr Opin Immunol.* (2017) 46:45–52. doi: 10.1016/j.co.2017.04.004
60. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. *EMBO J.* (2004) 23:4051–60. doi: 10.1038/sj.emboj.7600385
61. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. *Genes Dev.* (2004) 18:3016–27. doi: 10.1101/gad.1262504
62. Wu K, He J, Pu W, Peng Y. The role of Exportin-5 in MicroRNA biogenesis and cancer. *Genom Proteom Bioinform.* (2018) 16:120–6. doi: 10.1016/j.gpb.2017.09.004
63. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. *Nature.* (2005) 436:740–4. doi: 10.1038/nature03868
64. Denzler R, McGarry SE, Title AC, Agarwal V, Bartel DP, Stoffel M. Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. *Mol Cell.* (2016) 64:565–79. doi: 10.1016/j.molcel.2016.09.027
65. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. *Nature.* (2008) 455:64–71. doi: 10.1038/nature07242
66. Selbach M, Schwahnässer B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. *Nature.* (2008) 455:58–63. doi: 10.1038/nature07228
67. Pauley KM, Cha S, Chan EK. MicroRNA in autoimmunity and autoimmune diseases. *J Autoimmun.* (2009) 33:189–94. doi: 10.1016/j.jaut.2009.02.012
68. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. *Nat Rev Cancer.* (2006) 6:259–69. doi: 10.1038/nrc1840
69. Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic. *Nat Rev Immunol.* (2016) 16:279–94. doi: 10.1038/nri.2016.40
70. Jeker LT, Bluestone JA. Small RNA regulators of T cell-mediated autoimmunity. *J Clin Immunol.* (2010) 30:347–57. doi: 10.1007/s10875-010-9392-7
71. Chong MM, Rasmussen JP, Rudensky AY, Littman DR. The RNaseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. *J Exp Med.* (2008) 205:2005–17. doi: 10.1084/jem.20071219090508c
72. Kwon SC, Baek SC, Choi YG, Yang J, Lee YS, Woo JS, et al. Molecular basis for the single-nucleotide precision of primary microRNA processing. *Mol Cell.* (2019) 73:505–18.e5. doi: 10.1016/j.molcel.2018.11.005
73. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O’Connor E, Godwin J, et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. *J Exp Med.* (2005) 201:1367–73. doi: 10.1084/jem.20050572
74. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K. Aberrant T cell differentiation in the absence of Dicer. *J Exp Med.* (2005) 202:261–9. doi: 10.1084/jem.20050678
75. Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, Bonnal RJ, et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. *Nat Immunol.* (2011) 12:796–803. doi: 10.1038/ni.2057

76. Jindra PT, Bagley J, Godwin JG, Iacomini J. Costimulation-dependent expression of microRNA-214 increases the ability of T cells to proliferate by targeting Pten. *J Immunol.* (2010) 185:990–7. doi: 10.4049/jimmunol.1000793
77. Stittrich AB, Haftmann C, Sgouroudis E, Kühl AA, Hegazy AN, Panse I, et al. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. *Nat Immunol.* (2010) 11:1057–62. doi: 10.1038/ni.1945
78. Kroesen BJ, Teteloshvili N, Smigelska-Czepiel K, Brouwer E, Boots AM, et al. Immuno-miRs: critical regulators of T-cell development, function and ageing. *Immunology.* (2015) 144:1–10. doi: 10.1111/imm.12367
79. Tsitsiou E, Lindsay MA. microRNAs and the immune response. *Curr Opin Pharmacol.* (2009) 9:514–20. doi: 10.1016/j.coph.2009.05.003
80. Ha TY. The role of microRNAs in regulatory T cells and in the immune response. *Immune Netw.* (2011) 11:11–41. doi: 10.4110/in.2011.11.1.11
81. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. *Immunity.* (2009) 30:80–91. doi: 10.1016/j.jimmuni.2008.11.010
82. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. *J Exp Med.* (2011) 208:1189–201. doi: 10.1084/jem.20101823
83. Pinweha P, Rattanapornsompang K, Charoensawan V, Jitrapakdee S. MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. *Comput Struct Biotechnol J.* (2016) 14:223–33. doi: 10.1016/j.csbj.2016.05.005
84. Tomasetti M, Amati M, Santarelli L, Neuzil J. MicroRNA in metabolic re-programming and their role in tumorigenesis. *Int J Mol Sci.* (2016) 17:E754. doi: 10.3390/ijms17050754
85. Frediani JN, Fabbri M. Essential role of miRNAs in orchestrating the biology of the tumor microenvironment. *Mol. Cancer.* (2016) 15:42. doi: 10.1186/s12943-016-0525-3
86. Henao-Mejia J, Williams A, Goff LA, Staron M, Licona-Limón P, Kaech SM, et al. The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis. *Immunity.* (2013) 38:984–97. doi: 10.1016/j.jimmuni.2013.02.021
87. Warth SC, Hoefig KP, Hiekel A, Schallenberg S, Jovanovic K, Klein L, et al. Induced miR-99a expression represses Mtor cooperatively with miR-150 to promote regulatory T-cell differentiation. *EMBO J.* (2015) 34:1195–213. doi: 10.1525/embj.201489589
88. Zhang T, Zhang Z, Li F, Ping Y, Qin G, Zhang C, et al. miR-143 regulates memory T cell differentiation by reprogramming T cell metabolism. *J Immunol.* (2018) 201:2165–75. doi: 10.4049/jimmunol.1800230
89. King BC, Esguerra JL, Golec E, Eliasson L, Kemper C, Blom AM. CD46 activation regulates miR-150-mediated control of GLUT1 expression and cytokine secretion in human CD4+ T cells. *J Immunol.* (2016) 196:1636–45. doi: 10.4049/jimmunol.1500516
90. Liu Z, Smith KR, Khong HT, Huang J, Ahn EE, Zhou M, et al. miR-125b regulates differentiation and metabolic reprogramming of T cell acute lymphoblastic leukemia by directly targeting A20. *Oncotarget.* (2016) 7:78667–79. doi: 10.18632/oncotarget.12018
91. Klein Geltink RI, O'Sullivan D, Corrado M, Bremser A, Buck MD, Buescher JM, et al. Mitochondrial priming by CD28. *Cell.* (2017) 171:385–97.e11. doi: 10.1016/j.cell.2017.08.018
92. Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. *J Clin Invest.* (2015) 125:4334–48. doi: 10.1172/JCI81676
93. Marcais A, Blevins R, Graumann J, Feytout A, Dharmalingam G, Carroll T, et al. microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. *J Exp Med.* (2014) 211:2281–95. doi: 10.1084/jem.20132059
94. Merkenschlager M, Marcais A. microRNAs calibrate T cell responses by regulating mTOR. *Oncotarget.* (2015) 6:34059–60. doi: 10.18632/oncotarget.6107
95. Zeng Z, Wang K, Li Y, Xia N, Nie S, Lv B, et al. Down-regulation of microRNA-451a facilitates the activation and proliferation of CD4(+) T cells by targeting Myc in patients with dilated cardiomyopathy. *J Biol Chem.* (2017) 292:6004–13. doi: 10.1074/jbc.M116.765107
96. Ji Y, Hocker JD, Gattinoni L. Enhancing adoptive T cell immunotherapy with microRNA therapeutics. *Semin Immunol.* (2016) 28:45–53. doi: 10.1016/j.smim.2015.11.006
97. Rodriguez-Galán A, Fernández-Messina L, Sánchez-Madrid F. Control of immunoregulatory molecules by miRNAs in T cell activation. *Front Immunol.* (2018) 9:2148. doi: 10.3389/fimmu.2018.02148
98. Yao Q, Song Z, Wang B, Zhang JA. Emerging roles of microRNAs in the metabolic control of immune cells. *Cancer Lett.* (2018) 433:10–7. doi: 10.1016/j.canlet.2018.06.024
99. O'Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. *Annu Rev Immunol.* (2012) 30:295–312. doi: 10.1146/annurev-immunol-020711-075013
100. Long H, Wang X, Chen Y, Wang L, Zhao M, Lu Q. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. *Cancer Lett.* (2018) 428:90–103. doi: 10.1016/j.canlet.2018.04.016
101. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. *Nat Immunol.* (2017) 18:716–24. doi: 10.1038/ni.3731
102. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. *Lancet.* (2014) 383:69–82. doi: 10.1016/S0140-6736(13)60591-7
103. Furst DE, Clarke AE, Fernandes AW, Bancroft T, Greth W, Iorga SR. Incidence and prevalence of adult systemic lupus erythematosus in a large US managed-care population. *Lupus.* (2013) 22:99–105. doi: 10.1177/0961203312463110
104. Koch-Henriksen N, Sørensen PS. The changing demographic pattern of multiple sclerosis epidemiology. *Lancet Neurol.* (2010) 9:520–32. doi: 10.1016/S1474-4422(10)70064-8
105. De Rosa V, Galgani M, Porcellini A, Colamatteo A, Santopaolo M, Zuchegna C, et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. *Nat Immunol.* (2015) 16:1174–84. doi: 10.1038/ni.3269
106. Yin Y, Choi SC, Xu Z, Perry DJ, Seay H, Croker BP, et al. Normalization of CD4+ T cell metabolism reverses lupus. *Sci Transl Med.* (2015) 7:274ra18. doi: 10.1126/scitranslmed.aaa0835
107. Yin Y, Choi SC, Xu Z, Zeumer L, Kanda N, Croker BP, et al. Glucose oxidation is critical for CD4+ T cell activation in a mouse model of systemic lupus erythematosus. *J Immunol.* (2016) 196:80–90. doi: 10.4049/jimmunol.1501537
108. Nath N, Giri S, Prasad R, Salem ML, Singh AK, Singh I. 5-Aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. *J Immunol.* (2005) 175:566–74. doi: 10.4049/jimmunol.175.1.566
109. Carbone F, De Rosa V, Carrieri PB, Montella S, Buzzese D, Porcellini A, et al. Regulatory T cell proliferative potential is impaired in human autoimmune disease. *Nat Med.* (2014) 20:69–74. doi: 10.1038/nm.3411
110. Procaccini C, De Rosa V, Galgani M, Abanni L, Cali G, Porcellini A, et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. *Immunity.* (2010) 33:929–41. doi: 10.1016/j.jimmuni.2010.11.024
111. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. *Nature.* (2013) 499:485–90. doi: 10.1038/nature12297
112. Warburg O, Gawehn K, Geissler AW. Metabolism of leukocytes. *Z Naturforsch B.* (1958) 13B:515–6.
113. Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. *J Immunol.* (2010) 185:1037–44. doi: 10.4049/jimmunol.0903586
114. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. *Cell.* (2013) 153:1239–51. doi: 10.1016/j.cell.2013.05.016
115. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. *Immunity.* (2013) 38:225–36. doi: 10.1016/j.jimmuni.2012.10.020

116. Amersfoort J, Kuiper J. T cell metabolism in metabolic disease-associated autoimmunity. *Immunobiology*. (2017) 222:925–36. doi: 10.1016/j.imbio.2017.03.001
117. van der Windt GJ, O'Sullivan D, Everts B, Huang SC, Buck MD, Curtis JD, et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. *Proc Natl Acad Sci USA*. (2013) 110:14336–41. doi: 10.1073/pnas.1221740110
118. Katsarou A, Gudbjörnsdóttir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. *Nat Rev Dis Primers*. (2017) 3:17016. doi: 10.1038/nrdp.2017.16
119. Atkinson MA. Losing a grip on the notion of β -cell specificity for immune responses in type 1 diabetes: can we handle the truth? *Diabetes*. (2014) 63:3572–4. doi: 10.2337/db14-1069
120. Stentz FB, Kitabchi AE. Hyperglycemia-induced activation of human T-lymphocytes with *de novo* emergence of insulin receptors and generation of reactive oxygen species. *Biochem Biophys Res Commun*. (2005) 335:491–5. doi: 10.1016/j.bbrc.2005.07.109
121. Frost RJ, Olson EN. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. *Proc Natl Acad Sci USA*. (2011) 108:21075–80. doi: 10.1073/pnas.1118922109
122. Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS, et al. The Lin28/let-7 axis regulates glucose metabolism. *Cell*. (2011) 147:81–94. doi: 10.1016/j.cell.2011.08.033
123. Erener S, Marwaha A, Tan R, Panagiotopoulos C, Kieffer TJ. Profiling of circulating microRNAs in children with recent onset of type 1 diabetes *JCI Insight*. (2017) 2:e89656. doi: 10.1172/jci.insight.89656
124. Roush S, Slack FJ. The let-7 family of microRNAs. *Trends Cell Biol*. (2008) 18:505–16. doi: 10.1016/j.tcb.2008.07.007
125. Wells AC, Daniels KA, Angelou CC, Fagerberg E, Burnside AS, Markstein M, et al. Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells. *Elife*. (2017) 6:e26398. doi: 10.7554/elife.26398
126. Collares CV, Evangelista AF, Xavier DJ, Rassi DM, Arns T, Foss-Freitas MC, et al. Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. *BMC Res Notes*. (2013) 6:491. doi: 10.1186/1756-0500-6-491
127. Åkerman L, Casas R, Ludvigsson J, Tavira B, Skoglund C. Serum miRNA levels are related to glucose homeostasis and islet autoantibodies in children with high risk for type 1 diabetes. *PLoS ONE*. (2018) 13:e0191067. doi: 10.1371/journal.pone.0191067
128. Krist B, Florczyk U, Pietraszek-Gremplewicz K, Józkowicz A, Dulak J. The role of miR-378a in metabolism, angiogenesis, and muscle biology. *Int J Endocrinol*. (2015) 2015:281756. doi: 10.1155/2015/281756
129. Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. *Proc Natl Acad Sci USA*. (2012) 109:15330–5. doi: 10.1073/pnas.1207605109
130. Zhou L, He H, Mi JX, Li C, Lee B, Mi QS. MicroRNA genes. *Ann N Y Acad Sci*. (2008) 1150:72–5. doi: 10.1196/annals.1447.026
131. Ma H, Zhang S, Shi D, Mao Y, Cui J. MicroRNA-26a promotes regulatory T cells and suppresses autoimmune diabetes in mice. *Inflammation*. (2016) 39:1–9. doi: 10.1007/s10753-015-0215-0
132. Honardoost MA, Kiani-Esfahani A, Ghaedi K, Etemadifar M, Salehi M. miR-326 and miR-26a, two potential markers for diagnosis of relapse and remission phases in patient with relapsing-remitting multiple sclerosis. *Gene*. (2014) 544:128–33. doi: 10.1016/j.gene.2014.04.069
133. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. *Nat Immunol*. (2016) 17:95–103. doi: 10.1038/ni.3313
134. Coit P, Dozmorov MG, Merrill JT, McCune WJ, Maksimowicz-McKinnon K, Wren JD, et al. Epigenetic reprogramming in naive CD4+ T cells favoring T cell activation and non-Th1 effector T cell immune response as an early event in lupus flares. *Arthritis Rheum*. (2016) 68:2200–9. doi: 10.1002/art.39720
135. Chen S, Wang Y, Qin H, Lin J, Xie L, Chen S, et al. Downregulation of miR-633 activated AKT/mTOR pathway by targeting AKT1 in lupus CD4(+) T cells. *Lupus*. (2019) 28:510–9. doi: 10.1177/0961203319829853
136. Jafari Ghods F, Topal Sarikaya A, Arda N, Hamuryudan V. MiRNA and mRNA profiling in systemic lupus reveals a novel set of cytokine-related miRNAs and their target genes in cases with and without renal involvement. *Kidney Blood Press Res*. (2017) 42:1322–37. doi: 10.1159/000485987
137. Guo G, Wang H, Shi X, Ye L, Wu K, Lin K, et al. Novel miRNA-25 inhibits AMPD2 in peripheral blood mononuclear cells of patients with systemic lupus erythematosus and represents a promising novel biomarker. *J Transl Med*. (2018) 16:370. doi: 10.1186/s12967-018-1739-5
138. Liu SQ, Jiang S, Li C, Zhang B, Li QJ. miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. *J Biol Chem*. (2014) 289:12446–56. doi: 10.1074/jbc.M114.550723
139. Venkatesha SH, Dudics S, Song Y, Mahurkar A, Moudgil KD. The miRNA expression profile of experimental autoimmune encephalomyelitis reveals novel potential disease biomarkers. *Int J Mol Sci*. (2018) 19:E3990. doi: 10.3390/ijms19123990
140. Jin Y, Tybien SD, Chen D, Fang ZJ, Zhao Y, Dragas D, et al. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. *PLoS ONE*. (2013) 8:e64434. doi: 10.1371/journal.pone.0064434
141. Cao F, Liu T, Sun S, Feng S. The role of the miR-99b-5p/mTOR signaling pathway in neuroregeneration in mice following spinal cord injury. *Mol Med Rep*. (2017) 16:9355–60. doi: 10.3892/mmr.2017.7816
142. Liguori M, Nuzziello N, Lucciulli F, Consiglio A, Simone M, Viterbo RG, et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: an integrated approach to uncover novel pathogenic mechanisms of the disease. *Hum Mol Genet*. (2018) 27:66–79. doi: 10.1093/hmg/ddx385
143. Ntranos A, Ntranos V, Bonnefil V, Liu J, Kim-Schulze S, He Y, et al. Fumarates target the metabolic-epigenetic interplay of brain-homing T cells in multiple sclerosis. *Brain*. (2019) 142:647–61. doi: 10.1093/brain/awy344
144. Fenoglio C, Cantoni C, De Riz M, Ridolfi E, Cortini F, Serpente M, et al. Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis. *Neurosci Lett*. (2011) 504:9–12. doi: 10.1016/j.neulet.2011.08.021
145. Mycko MP, Cichalewska M, Machlanska A, Cwiklinska H, Mariasiewicz M, Selmaj KW. MicroRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. *Proc Natl Acad Sci USA*. (2012) 109:E1248–57. doi: 10.1073/pnas.1114325109
146. Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S, et al. MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. *J Clin Invest*. (2015) 125:1069–80. doi: 10.1172/JCI74347
147. Yang XP, Jiang K, Hirahara K, Vahedi G, Afzali B, Sciume G, et al. EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. *Sci Rep*. (2015) 5:10643. doi: 10.1038/srep10643
148. Yin Y, Qiu S, Peng Y. Functional roles of enhancer of zeste homolog 2 in gliomas. *Gene*. (2016) 576:189–94. doi: 10.1016/j.gene.2015.09.080
149. Perl A, Gergely P Jr, Banki K. Mitochondrial dysfunction in T cells of patients with systemic lupus erythematosus. *Int Rev Immunol*. (2004) 23:293–313. doi: 10.1080/08830180490452576
150. Perl A, Hanczko R, Doherty E. Assessment of mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus. *Methods Mol Biol*. (2012) 900:61–89. doi: 10.1007/978-1-60761-720-4_4
151. Morel L. Immunometabolism in systemic lupus erythematosus. *Nat Rev Rheumatol*. (2017) 13:280–90. doi: 10.1038/nrrheum.2017.43
152. Katsuyama T, Tsokos GC, Moulton VR. Aberrant T cell signaling and subsets in systemic lupus erythematosus. *Front Immunol*. (2018) 9:1088. doi: 10.3389/fimmu.2018.01088
153. Gergely P Jr, Grossman C, Niland B, Puskas F, Neupane H, Allam F, et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. *Arthritis Rheum*. (2002) 46:175–90. doi: 10.1002/1529-0131(200201)46:1<175::AID-ART10015>3.0.CO;2-H
154. Perl A, Hanczko R, Telarico T, Oaks Z, Landas S. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. *Trends Mol Med*. (2011) 17:395–403. doi: 10.1016/j.molmed.2011.01.014
155. Fernandez D, Perl A. mTOR signaling: a central pathway to pathogenesis in systemic lupus erythematosus? *Discov Med*. (2010) 9:173–8.
156. Lai ZW, Borsuk R, Shadakhshiri A, Yu J, Dawood M, Garcia R, et al. Mechanistic target of rapamycin activation triggers IL-4

- production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus. *J Immunol.* (2013) 191:2236–46. doi: 10.4049/jimmunol.1301005
157. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. *Pharmacol Ther.* (2006) 112:358–404. doi: 10.1016/j.pharmthera.2005.04.013
158. Junker A, Hohlfeld R, Meinl E. The emerging role of microRNAs in multiple sclerosis. *Nat Rev Neurol.* (2011) 7:56–9. doi: 10.1038/nrneuro.2010.179
159. Chen C, Zhou Y, Wang J, Yan Y, Peng L, Qiu W. Dysregulated microRNA involvement in multiple sclerosis by induction of T helper 17 cell differentiation. *Front Immunol.* (2018) 9:1256. doi: 10.3389/fimmu.2018.01256
160. Liu C, Yang H, Shi W, Wang T, Ruan Q. MicroRNA-mediated regulation of T helper type 17/regulatory T-cell balance in autoimmune disease. *Immunology.* (2018) 155:427–34. doi: 10.1111/imm.12994
161. Compston A. The pathogenesis and basis for treatment in multiple sclerosis. *Clin Neurol Neurosurg.* (2004) 106:246–8. doi: 10.1016/j.clineuro.2004.02.007
162. Vallée A, Lecarpentier Y, Guillemin R, Vallée JN. Demyelination in multiple sclerosis: Reprogramming energy metabolism and potential PPAR γ agonist treatment approaches. *Int J Mol Sci.* (2018) 19:E1212. doi: 10.3390/ijms19041212
163. Yuan S, Shi Y, Tang SJ. Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. *J Neuroimmune Pharmacol.* (2012) 7:904–13. doi: 10.1007/s11481-012-9370-3
164. Procaccini C, Santopaoolo M, Faicchia D, Colamatteo A, Formisano L, de Candia P, et al. Role of metabolism in neurodegenerative disorders. *Metabolism.* (2016) 65:1376–90. doi: 10.1016/j.metabol.2016.05.018
165. La Rocca C, Carbone F, De Rosa V, Colamatteo A, Galgani M, Perna F, et al. Immunometabolic profiling of T cells from patients with relapsing-remitting multiple sclerosis reveals an impairment in glycolysis and mitochondrial respiration. *Metabolism.* (2017) 77:39–46. doi: 10.1016/j.metabol.2017.08.011
166. Liu Y, Zhang DT, Liu XG. mTOR signaling in T cell immunity and autoimmunity. *Int Rev Immunol.* (2015) 34:50–66. doi: 10.3109/08830185.2014.933957
167. Giacoppo S, Pollastro F, Grassi G, Bramanti P, Mazzon E. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis. *Fitoterapia.* (2017) 116:77–84. doi: 10.1016/j.fitote.2016.11.010
168. Mammana S, Bramanti P, Mazzon E, Cavalli E, Basile MS, Fagone P, et al. Preclinical evaluation of the PI3K/Akt/mTOR pathway in animal models of multiple sclerosis. *Oncotarget.* (2018) 9:8263–77. doi: 10.18632/oncotarget.23862
169. Salmond RJ. mTOR regulation of glycolytic metabolism in T cells. *Front Cell Dev Biol.* (2018) 6:122. doi: 10.3389/fcell.2018.00122
170. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. *Cell.* (2002) 110:163–75. doi: 10.1016/s0092-8674(02)00808-5
171. Esposito M, Ruffini F, Bellone M, Gagliani N, Battaglia M, Martino G, et al. Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. *J Neuroimmunol.* (2010) 220:52–63. doi: 10.1016/j.jneuroim.2010.01.001

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer SB and handling editor declared their shared affiliation.

Copyright © 2019 Colamatteo, Micillo, Bruzzaniti, Fusco, Garavelli, De Rosa, Galgani, Spagnuolo, Di Rella, Puca, de Candia and Matarese. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The Metabolic Requirements of Th2 Cell Differentiation

Julian M. Stark[†], Christopher A. Tibbitt[†] and Jonathan M. Coquet*

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

Upon activation, naïve CD4⁺ T cells differentiate into a number of specialized T helper (Th) cell subsets. Th2 cells are central players in immunity to helminths and are implicated in mediating the inflammatory pathology associated with allergies. The differentiation of Th2 cells is dependent on transcription factors such as GATA3 and STAT6, which prime Th2 cells for the secretion of interleukin- (IL-) 4, IL-5, and IL-13. Several lines of work now suggest that differentiating Th2 cells in the lymph node are potent IL-4 cytokine producers, but do not become competent IL-5- and IL-13-producing cells until after receiving cues from non-lymphoid tissue. It is evident that Th2 cells that enter tissues undergo considerable changes in chromatin architecture and gene expression, and that over this time, the metabolic requirements of these cells change considerably. Herein, we discuss the metabolic requirements of Th2 cells during their early and late differentiation, focusing on the impact of glucose and lipid metabolism, mTOR activation, the nuclear receptor PPAR- γ and several metabolites.

OPEN ACCESS

Edited by:

Hannes Stockinger,
Medical University of Vienna, Austria

Reviewed by:

Valerie Dardalhon,
UMR5535 Institut de Génétique
Moléculaire de Montpellier
(IGMM), France

Paula M. Oliver,
University of Pennsylvania,
United States

*Correspondence:

Jonathan M. Coquet
jonathan.coquet@ki.se

[†]These authors have contributed
equally to this work

Specialty section:

This article was submitted to
T Cell Biology,
a section of the journal
Frontiers in Immunology

Received: 05 July 2019

Accepted: 13 September 2019

Published: 27 September 2019

Citation:

Stark JM, Tibbitt CA and Coquet JM (2019) The Metabolic Requirements of Th2 Cell Differentiation. *Front. Immunol.* 10:2318.
doi: 10.3389/fimmu.2019.02318

INTRODUCTION

CD4 T cells are central mediators of immunity to infections and cancers. Pioneering studies by Mosmann and Coffman identified mouse CD4 T cell clones with distinct functional properties that they termed T helper (Th) 1 and Th2 cells (1). Over 30 years of research has since defined several additional subsets of CD4 T cells including Th17, Thf, and T regulatory (Treg) cells. Th2 cells are defined by the expression of lineage-defining transcription factors including GATA3 and STAT6, surface molecules such as IL-33R and CCR8 and the effector cytokines IL-4, IL-5, and IL-13 (2). Through the secretion of IL-4, IL-5, and IL-13, Th2 cells promote B cell isotype class switching to IgG1 and IgE (3), induce the alternative activation (M2) phenotype in macrophages (4, 5), induce eosinophil recruitment and promote mucus secretion through the process of goblet cell metaplasia (6, 7). These effector functions have been shown to support immunity to helminths, venoms, certain bacterial infections, and are also beneficial in tissue healing (8, 9). However, Th2 cell-mediated immune responses are also implicated in allergic disorders including asthma, atopic dermatitis, chronic rhinitis, and some forms of gut disorders including ulcerative colitis (10–12). The rise in Th2 cell-mediated disorders has become especially apparent in the past 50 years and represents a significant and growing health and economic challenge.

THE PROCESS OF TH2 CELL DIFFERENTIATION

Th2 cell differentiation from naïve CD4 T cells is typically dependent on the presence of interleukin-4 (IL-4) in the local cytokine milieu. Ligation of the IL-4R induces JAK1/3 mediated phosphorylation and dimerization of Signal Transducer and Activator of Transcription-6 (STAT6) (13). pSTAT6 dimers then translocate to the nucleus and

induce expression of GATA3; the so-called “master” regulator of the Th2 cell lineage. GATA3 is sufficient to induce the Th2 cell phenotype, since for instance, enforced retroviral expression of GATA3 results in IL-4 production in Th1 cells (14, 15). Furthermore, GATA3-deficient T helper cells have impaired Th2 cell differentiation as shown in *in vitro* and *in vivo* studies (16–19). Expression of GATA3 results in profound modifications to the chromatin landscape across the *Il4/Il5/Rad50/Il13* locus at a number of well-characterized sites including several enhancer sites and a locus control region located in *Rad50* (20–23). Together with STAT6, this creates an “active” chromatin hub that allows co-ordinated expression of Th2 cell effector cytokines and a positive feedback loop through which GATA3-induced IL-4 maintains Th2 cell identity (24–26). Other genes important in the later stages of Th2 cell differentiation are also bound by GATA3 including the *Il1rl1* gene encoding a subunit of the IL-33R known as ST2, and the chemokine receptor *Ccr8* (27, 28).

Although the canonical pathway of Th2 cell differentiation is thought to proceed through GATA3 and STAT6, a number of non-classical pathways are also thought to be important during the early stages of Th2 cell differentiation, exemplified by the presence of IL-4⁺ and IL-13⁺ Th2 cells in STAT6-deficient mice (29). IL-2, induced upon TCR activation, has been shown to be capable of driving IL-4 production in T helper cells in an IL-4R-independent manner (30, 31). Triggering of the IL-2R results in activation of STAT5, with STAT5A being the most dominant isoform inducing downstream IL-4 expression (16). Support for the role of STAT5A in Th2 cell differentiation comes from studies of double STAT5A/STAT6-deficient mice that have further impairments in Th2 cell responses when compared to single STAT6-deficient mice (31, 32). STAT3 was also shown to be important for Th2 cell differentiation by guiding STAT6 to critical Th2 cell gene loci (33). Other studies have shown roles for a number of transcription factors in type 2 cytokine production including c-Maf, NF-κB, and IRF4 during the early stages of Th2 cell differentiation (34–36). Therefore, Th2 cell fate is determined by a complex network of transcription factors that together shape and promote naïve cells to adopt and maintain the Th2 cell phenotype.

TIMED CYTOKINE EXPRESSION IN TH2 CELLS

The Th2 cell effector cytokine genes *Il4*, *Il13*, and *Il5* are positioned together with *Rad50* (Chromosome 5 in humans; Chromosome 11 in mice), which contains a locus control region that co-ordinates at least *Il4* and *Il13* expression (24, 37). Despite the close proximity of these genes, their expression is exquisitely timed and not always concomitant. IL-4 expression is clearly detected in activated CD4 T cells in the lymph node, although several studies have shown that these cytokine-secreting cells are a mixed population of Th2 cells and Tfh cells, which require only low levels of GATA3 expression together with c-Maf (38–40). Meanwhile, IL-5 and IL-13 expression is a feature of Th2 cells only once these cells enter inflamed tissues such as the lungs (39, 41, 42). In response to house dust mite (HDM)

allergens, airway Th2 cells tended to express less *Il4* mRNA than their lymph node counterparts, suggesting that IL-4 is the dominant cytokine in the lymph node, while IL-5 and IL-13 are the dominant Th2 cell-derived cytokines in tissues. This distinct timing means that the absence of IL-4 or IL-13 has distinct functional consequences (37, 39, 41, 42). For instance, IL-4-deficient mice were found to clear the helminth *Nippostrongylus brasiliensis* more rapidly despite reduced IgE titers (43). In contrast, IL-13-deficient mice had significantly higher worm counts and took longer to clear infections despite no defect in IgE production. Similar responses were observed in models of *Trichuris muris* and *Heligmosomoides polygyrus* infection (44–46). Hence, the quality of Th2 cells changes over time and their function depends on the tissue context.

METABOLIC PATHWAYS IMPORTANT TO T HELPER CELLS

Generation of energy and biosynthesis of metabolites is critical to the activation, proliferation and differentiation of T helper cells (47). Naïve CD4 T cells favor the generation of energy via mitochondrial pathways (48). The tricarboxylic acid (TCA) cycle is a highly efficient means of converting acetyl-CoA into carbon dioxide and ATP and leads to the generation of NADH and FADH₂ in the inner membrane of the mitochondria (47). These two products are vital for the transfer of electrons in the electron transfer chain (ETC) via complexes I–IV. Given its greater efficiency in terms of ATP generation compared to glycolysis, the TCA cycle is able to meet the energy needs of long lived cells such as naïve CD4 T cells (49, 50).

Fatty acid oxidation is a means by which T helper cells can convert fatty acids for the generation of significant amounts of energy. The initial steps occur in the cytosol using ATP to generate fatty acid acyl-CoA, which is transported into the mitochondria via carnitine palmitoyltransferase I (CPT-1). Beta oxidation of fatty acids then produces acetyl-CoA, NADH and FADH₂ (47), which all help to fuel the TCA cycle.

During initial activation, glycolysis becomes the dominant metabolic pathway in T helper cells (51). Under the control of transcription factors such as c-Myc and HIF-1 α , extracellular glucose is taken up and catabolized to pyruvate, which yields 2 ATP per molecule of glucose (52–54) and provides a source of acetyl-CoA for the TCA cycle. Glycolysis also rapidly provides NADH and a range of intermediates, which are useful in anabolic pathways including nucleotide, amino acid and fatty acid biosynthesis (47). Reduction of pyruvate to lactate is also important to replenish NAD⁺ levels within the cell.

In addition to oxidation of lipids, *de novo* fatty acid synthesis needs to take place and is controlled by enzymes including sterol regulatory element-binding protein (SREBP), fatty acid synthase (FAS) and Acetyl-CoA carboxylase (ACC) (55). Straight chain and branched fatty acids are produced from products generated during glycolysis, the TCA cycle and the pentose phosphate pathway (47). For straight chain fatty acids, citrate is exported from the mitochondria and converted into acetyl-CoA in the

cytosol. Following carboxylation by ACC, it can be further extended by FAS in a NADPH-dependent mechanism to varying chain lengths. In order to produce branched forms, amino acids such as leucine or valine are required while fatty acids may also be combined with glycerol to form triacylglycerides and phospholipids (56).

All metabolic pathways are highly intertwined since products and intermediates from one pathway can function as key synthetic precursors in other pathways. These pathways not only promote cell division, survival and expansion, but metabolites and co-factors can also directly influence gene expression by modifying chromatin, acting as ligands for transcription factors and influencing the stability of cytokine mRNAs in the cytosol.

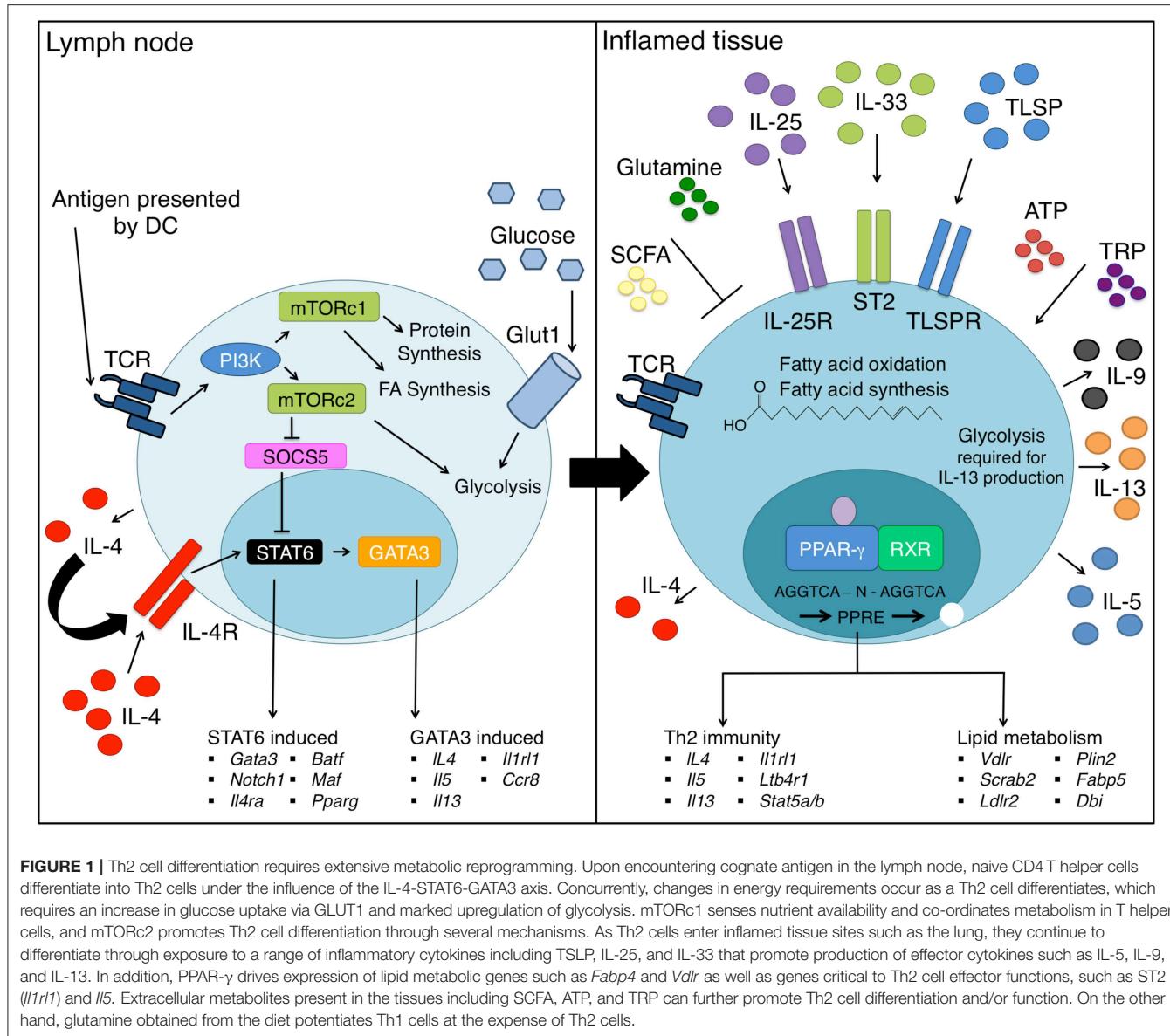
Below, we review the literature on the metabolic demands of CD4 T cells, in particular as they relate to Th2 cells. We address what is known of early Th2 cell differentiation, which primarily occurs in the context of the lymph node and then address metabolic adaptations of Th2 cells in the context of tissue immunity.

METABOLIC CHANGES DURING EARLY ACTIVATION OF TH2 CELLS

Promotion of Th2 Cell Differentiation by Mammalian Target of Rapamycin (mTOR)

In early and probably also later differentiation of T helper cells, coordination of cell growth, proliferation and metabolism is mediated by the kinase mTOR (57) (Figure 1). The mTOR complex monitors nutrient availability and integrates signals from growth factors and cytokine receptors to regulate glucose, amino acid and lipid metabolism. mTOR complex1 (mTORc1) is formed with the scaffolding protein regulatory associated protein of mTOR (RAPTOR) while mTOR complex 2 (mTORc2) uses Rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR) as a scaffold (58). Differentiation toward the effector Th cell lineages Th1, Th2, and Th17 is known to be reliant on mTOR activity, while inhibition of mTOR with rapamycin has been shown to favor Treg cell differentiation (59–61). All effector lineages including Th2 cells have been shown to require mTORc1 activation, since deletion of RAPTOR and thereby mTORc1 potently inhibits effector differentiation (62).

A number of studies have also highlighted a specific role for mTORc2 in Th2 cell differentiation. mTORc2 inhibits suppressor of cytokine signaling-5 (SOCS5) (63), which in turn suppresses IL-4-dependent STAT6 signaling to block Th2 cell differentiation (64). SGK1, a downstream target of mTORc2, promotes Th2 cell lineage commitment while blocking Th1 cell development (65). Furthermore, deletion of the GTPase RhoA, another mTORc2 target leads to decreased glycolysis and IL-4 production (66). Thus, while there is a clear requirement for mTORc1 in early Th2 cell development, signals downstream of mTORc2 seems to have distinct positive effects on the differentiation of Th2 cells.


Early Induction of Glycolysis in T helper Cells

Naïve T cells rely primarily on oxidative lipid metabolism as they recirculate among lymph nodes (51, 52). However, naïve T cells are poised for a rapid switch to effector cell metabolism by accumulating untranslated mRNAs required for glycolysis and fatty acid synthesis (67). Activation of T cells through the T cell receptor, co-stimulatory ligands and cytokine receptors is followed by expansion, differentiation and production of effector cytokines; processes which place a great metabolic pressure on cells.

Cells can upregulate glycolysis at faster rates than oxidative phosphorylation, as glycolysis requires no mitochondrial growth (47). The high rate of glycolysis in effector T cells requires activation of mTOR, HIF-1 α and increased expression of glucose transporters like Glut1, which is essential for CD4 but not for CD8 T cells (68, 69). Glut1 is translocated to the cell surface upon activation, a process mediated through the phosphatidylinositol 3-kinase (PI3K)-AKT pathway (70) and Myc expression (53). Glycolysis supports T cell activation in many ways; for instance by supporting epigenetic modifications through lactate dehydrogenase A (54) and by supplying dividing cells with many side products required for division and growth. Effector T helper cell subsets including Th1, Th2, and Th17 are all highly dependent on glycolysis for growth and function, and a small subset of Treg cells has also been shown to be highly glycolytic (61). Effector T helper cells have been shown to undergo various levels of glycolysis in *in vitro* assays and Th2 cells express the most Glut1 and appear the most glycolytic, when analyzed via Seahorse Analyzer (41, 51), suggestive of a more prominent role for the glycolytic machinery in these cells.

Fatty Acid Metabolism in Early T helper Cell Activation

A critical aspect of early T cell activation is the upregulation of lipid metabolism, especially lipid synthesis pathways, which enables cells to grow and divide. Typically, mTORc1 promotes lipid synthesis pathways by activating SREBP transcription factors (71). One of many targets of SREBPs is an enzyme essential in *de novo* synthesis of fatty acids, ACC1. In studies by Berod et al. (72), inhibition of ACC1 genetically or pharmaceutically prevented the differentiation of all effector lineages, while Treg cells preferentially differentiated from cultures of Th17 cells. This demonstrates that fatty acid synthesis is an essential feature of early T helper cell differentiation. In a separate study, it was suggested that early T helper cell activation, proliferation and growth may also rely on fatty acid uptake, orchestrated by the nuclear receptor, peroxisome proliferator activated receptor gamma (PPAR- γ) (73). However, the early division and proliferation of T helper cells was shown to be unaffected by genetic loss of PPAR- γ in another study (74) and the increase in PPAR- γ expression under neutral conditions is minor (73, 74). PPAR- γ becomes highly expressed specifically in Th2 cells and likely regulates fatty acid metabolism later in the Th2 cell differentiation program.

FIGURE 1 | Th2 cell differentiation requires extensive metabolic reprogramming. Upon encountering cognate antigen in the lymph node, naive CD4 T helper cells differentiate into Th2 cells under the influence of the IL-4-STAT6-GATA3 axis. Concurrently, changes in energy requirements occur as a Th2 cell differentiates, which requires an increase in glucose uptake via GLUT1 and marked upregulation of glycolysis. mTORc1 senses nutrient availability and co-ordinates metabolism in T helper cells, and mTORc2 promotes Th2 cell differentiation through several mechanisms. As Th2 cells enter inflamed tissue sites such as the lung, they continue to differentiate through exposure to a range of inflammatory cytokines including TSLP, IL-25, and IL-33 that promote production of effector cytokines such as IL-5, IL-9, and IL-13. In addition, PPAR- γ drives expression of lipid metabolic genes such as *Fabp4* and *Vdrl* as well as genes critical to Th2 cell effector functions, such as ST2 (*Il1rl1*) and *Il5*. Extracellular metabolites present in the tissues including SCFA, ATP, and TRP can further promote Th2 cell differentiation and/or function. On the other hand, glutamine obtained from the diet potentiates Th1 cells at the expense of Th2 cells.

METABOLIC CHANGES DURING LATER ACTIVATION OF TH2 CELLS

Inflammatory Cytokines in the Tissue Potentiate Th2 Cell Differentiation

Priming of CD4 T cells toward the Th2 cell subset in the lymph node induces the production of IL-4. However, several studies in the context of infection to *N. brasiliensis* and *H. polygyrus*, or to the allergen house dust mite (HDM) have shown that a large portion of IL-4-producing cells in these settings are Tfh cells (38, 75, 76). Full Th2 cell effector functions in the *N. brasiliensis* and HDM models, are not observed until T helper cells reach the lung tissue.

It is increasingly appreciated that the activation of epithelial and innate cells at the site of allergen, venom or pathogen

entry plays an important role in shaping Th2 cell responses (77). Impaired barrier function, exposure to damage associated molecular patterns (DAMPs) and microbial products can trigger receptors like Toll Like Receptor-4 (TLR4) and Protease Activated Receptor-2 (PAR2) in epithelial and tuft cells that line the surface of the airways (78, 79). These cells as well as innate lymphoid cells (ILCs), macrophages and dendritic cells (DCs), in turn secrete a range of potent inflammatory cytokines including IL-1, IL-18, IL-25, IL-33, GM-CSF, M-CSF, and thymic stromal lymphopoietin (TSLP) (42, 77). In the case of DCs, cytokines such as TSLP and IL-33 can promote expression of OX40L and suppression of IL-12 which further promotes Th2 cell differentiation and function (80–85). These signals from epithelial cells and innate cells in the lung have been shown to contribute

significantly to the final identity of Th2 cells in the tissue environment (41, 42).

Studies of infection with the helminth *N. brasiliensis* suggest that cytokines such as IL-25, IL-33, and TSLP are not required for the initial stages of Th2 cell differentiation within the lymph node but function to shape those “primed” Th2 effector cells upon entry to the inflamed sites such as the lung (42). Furthermore, our recent work depicted that activated T cells entering the lung were exposed to type I interferons in the context of HDM challenge, although how this cytokine may impact on Th2 cell functions remains unclear (41).

Comparison of the transcriptional and chromatin landscapes of lung Th2 cells to Th2 cells or naïve CD4 T cells from the lymph nodes demonstrated stark differences in lung Th2 cells (41, 42), suggesting that these cells more closely aligned with type 2 ILC (ILC2) from the lung than their lymph node counterparts (86). Thus, striking changes in cellular identity occur when T helper cells reach inflammatory tissues, and this is likely coupled with important metabolic changes.

Activation of Lipid Metabolism Pathways Is a Prominent Feature of Tissue Th2 Cells

A distinguishing feature of Th2 cells in the airways of mice administered HDM antigens was a striking upregulation in the expression of genes related to lipid oxidation and synthesis (41) (Figure 1). Comparison of DNA accessibility by ATAC-Sequencing also revealed more open chromatin at many gene loci associated with lipid metabolism in Th2 cells, compared with other T helper cell subsets in the lung, or naïve CD4 T cells in the lymph node (41). This feature of Th2 cells appears to be shared by ILC2 in the gut and lungs (87, 88). Using etomoxir and orlistat *in vivo* to block fatty acid oxidation, synthesis and uptake, Wilhelm and colleagues demonstrated that ILC2 were highly dependent on fatty acid metabolism both for their expansion and function (88). Similarly, blockade of these pathways in Th2 cell-mediated inflammation of the airways reduced Th2 cell pathologies such as airway eosinophilia and goblet cell metaplasia, and appeared to reduce T helper cell expansion and the production of IL-5 and IL-13 by Th2 cells to some extent (41).

PPAR- γ : Linking Th2 Cell Function and Cellular Metabolism

A feature of Th2 cells, ILC2, and alternatively activated M2 macrophages is the expression of PPAR- γ , a master regulator of adipocyte differentiation and regulator of lipid metabolism in various cell types (89–93). PPAR- γ belongs to a superfamily of nuclear receptors whose transcriptional effects are regulated by many natural ligands and dependent on co-factors such as CEBP, RXR α and other transcription factors (94). In macrophages and dendritic cells, PPAR- γ expression is induced by IL-4R ligation and STAT6 activation and it is likely the same mechanism at play in Th2 cells (95–97). The absence of PPAR- γ prevents the acquisition of the M2 phenotype, with impaired fatty acid uptake and mitochondria biogenesis (96, 98). The absence of PPAR- γ in CD4 T cells ameliorated Th2 cell-associated pathology in airway inflammation models and impaired Th2 cell-mediated immunity

to *H. polygyrus* (91, 93). An important facet of this phenotype was that PPAR- γ appeared to be particularly important for the pathogenic phenotype of Th2 cells in the lung (91, 93). Early activation of Th2 cells in lung-draining lymph nodes did not appear to be greatly affected (91). This suggests that PPAR- γ becomes important in sensing ligands in inflamed tissue. It remains unclear how the loss of PPAR- γ impacts on ILC2, although its high expression specifically in this subset of ILC, and its important role in M2 macrophages and Th2 cells implies that it could be important for ILC2 functions.

PPAR- γ Directly Promotes Th2 Cell Functions

The impact of PPAR- γ on the expression of the early Th2 cell effector cytokine IL-4 is ambiguous. Studies have characterized that the absence of PPAR- γ reduces (93), increases (74) or has no effect (91) on CD4 T cell-derived IL-4, thus making it apparent that the impact of PPAR- γ on IL-4 production is context and assay dependent. A clearer impact of PPAR- γ has been demonstrated for features of Th2 cells in lung tissue. For instance, the absence of PPAR- γ in CD4 T cells impairs the expression of ST2 in lung and airway Th2 cells, and significantly impairs the expression of IL-5 and IL-13 by CD4 T cells (91). In humans, PPAR- γ is highly expressed in CRTH2 $^{+}$ Th2 cells thought to harbor the pathogenic Th2 cell subset (93). It has also been linked to IL-9 production by a subset of pathogenic Th2 cells, which are prevalent in lesions taken from the skin of contact dermatitis patients (99). Inhibition of PPAR- γ profoundly suppressed the frequency of IL-9 $^{+}$ Th2 cell clones.

Mechanistic studies have pinpointed an enrichment for PPAR- γ binding sites at open chromatin regions in Th2 cells (41), and chromatin immunoprecipitation-sequencing (CHIP-Seq) has identified a number of critical target genes for PPAR- γ binding including *Ap1*, *Ets1*, *Runx1*, *Gata3*, *Stat5*, *Il5*, and *Il13* (100). Since PPAR- γ is a potent repressor as well as activator of gene transcription, it is difficult to predict the impact of this nuclear receptor through CHIP-Seq and ATAC-Seq analysis. Our own work demonstrated that the addition of PPAR- γ ligands to *in vitro* cultures had little direct impact on effector cytokine production by Th2 cells, but potently upregulated ST2 expression (91). For instance, the prostaglandin derivative 15d Δ 12,14-PG $_2$ (15d-PG $_2$) was able to induce ST2 expression, as did synthetic agonists such as pioglitazone (101, 102), a member of the class of clinically-approved compounds known as thiazolidinediones (TZDs). Thus, PPAR- γ plays an important role in shaping the chromatin architecture of Th2 cells and appears particularly important for late stage effector functions of Th2 cells.

A Role for PPAR- γ in Modulating Th2 Cell Metabolism

While PPAR- γ is a well-characterized regulator of cellular metabolism in macrophages, dendritic cells, tumor cells and adipocytes (103–105), its impact on Th2 cell metabolism is less well-understood. In co-operation with STAT6, PPAR- γ is thought to regulate lipid metabolism in DC and macrophages through the regulation of genes including *Fabp4* (97).

In Th2 cells, arrays of PPAR- γ -deficient ST2 $^+$ T helper cells suggested that a range of metabolic pathways may be affected by the absence of PPAR- γ including carbohydrate synthesis, metabolite transport, lipid storage and lipolysis (91). However, these gene expression arrays are complicated by the fact that ST2 $^+$ Th2 cells have difficulty differentiating into fully pathogenic Th2 cells. In the study by Angela and colleagues, PPAR- γ was shown to be induced by mTORc1 activation and particular important for the expression of genes associated with fatty acid uptake and lipolysis including *Ldlr*, *Scrab2*, *Vdlr*, *Plin2*, and *Fabp5* (73). In this study, silencing of PPAR- γ impaired oxidative metabolism and glycolysis suggesting that PPAR- γ may not only promote lipid metabolism.

Thus, PPAR- γ plays important roles in promoting the expression of critical Th2 cell-associated factors such as ST2, but also likely contributes to regulating the lipid metabolism in these cells, especially in the tissue context. More mechanistic studies are required to dissect the impact of PPAR- γ on cellular metabolism in T cells, potentially in the context of overexpression systems.

Glycolysis and Th2 Effector Cell Function *in situ*

Glycolysis is not only important in the early phases of T cell activation but may also play a direct role in shaping T cell effector functions in inflamed tissues such as the lung. Active glycolysis has been shown to promote production of IFN- γ by Th1 cells and CD8 T cells *in vitro* and in the tumor microenvironment (106, 107). In the absence of active glycolysis, the enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) bound the 3'UTR of *Ifng* mRNA, impeding its translation (106). Our own recent studies depicted that following *in vivo* or *in vitro* blockade of glycolysis, the expression of IL-13 and IL-5 was significantly reduced (41). Whether this is also mediated through GAPDH remains to be determined.

High concentrations of extracellular lactate, a byproduct of glycolysis, has also been shown to reduce the CCL5-induced motility of CD4 T cells. This effect is mediated by the sodium lactate transporter Slc5a12 and has been proposed as a mechanism retaining effector cells at sites of inflammation (108). It has also been shown to potentiate CD8 T cell function (109). Whether these mechanisms play a role in Th2 cell function and the pathology of asthma remains to be shown.

In summary, while glycolysis appears to be important for effector cytokine production by T helper cells, Th2 cells in tissues appear enriched for pathways associated with lipid metabolism compared to other T helper cell subsets and naïve cells. This is typified by the expression of genes associated with fatty acid metabolism, the open chromatin state of Th2 cells at several key genes associated with lipid metabolism, and the requirement for PPAR- γ in mediating robust Th2 cell-mediated immune responses.

THE ROLE OF EXTRA CELLULAR METABOLITES ON TH2 CELL DIFFERENTIATION AND FUNCTION

In addition to the activation of PPAR- γ by derivatives of prostaglandins and medium chain fatty acids, a range of other metabolites have been postulated to regulate Th2 cell differentiation and function.

Extracellular ATP

ATP found in the extracellular environment operates as a potent DAMP due to its almost complete absence from healthy tissues and its quick release following cell damage (110). It is sensed via P2X and P2Y receptors, expressed throughout the immune system. It has been widely shown that levels of extracellular ATP are elevated in the bronchoalveolar lavage fluid (BALF) of asthmatic patients in comparison to healthy controls (111) and it is thought to induce migration of eosinophils and activation of mast cells in the lung and airways (112). Unlike Treg cells, Th2 cells appear to be relatively insensitive to cell death induced by extracellular ATP (113). Exposure of mice to inhaled allergens such as ovalbumin (OVA) results in an increase of ATP in the airways (111). Non-degradable forms of ATP, which cannot be metabolized by ectonucleases CD39 and CD73, are capable of breaking tolerance and inducing type 2 responses to inert antigens such as OVA (111). It can also be induced in airway epithelium in response to allergens such as the Cockroach allergen, Per a 10, or aeroallergens derived from *Alternaria alternata*. It can drive IL-33 release which further supports Th2 cell differentiation and metabolic reprogramming *in situ* (114, 115). Autocrine ATP is sensed via the P2Y₂ receptor, which increases intracellular Ca²⁺ concentrations that in turn increase IL-33 release. Blockade of the P2Y₂ receptor is sufficient to halt Th2 cell induction (115). ATP has also been shown to induce DCs that promote Th2 cell responses. Interestingly, CD39-deficient mice have defective Th2 cell responses to both OVA and HDM (116). In the absence of CD39, DCs in these mice have impaired purinergic receptor activity, appear less able to upregulate co-stimulatory molecules and exhibit defects in chemotaxis. These studies suggest an important inflammatory role for ATP in driving Th2 cell responses to a range of allergens.

Short Chain Fatty Acids (SCFAs)

The gut microbiome greatly influences the composition of metabolites that is in our circulation. One important immune regulatory product of fermenting bacteria in the intestines are SCFAs. SCFAs can be transported into cells via various receptors and have been shown to contribute to epigenetic modifications (117). SCFAs also bind to G-Protein Coupled Receptor 41 (GPR41, also known as FFAR3) and GPR43 (FFAR2) (118) and can modulate immune cell functions through these receptors. Typically, SCFAs have been shown to suppress inflammation and promote tolerance by various mechanisms. In line with this, mice fed a high fiber diet and hence with high circulating levels of SCFAs, have been shown to develop reduced airway inflammation in OVA/alum and HDM models of allergic airway disease. In one study, SCFAs appeared to suppress

dendritic cell activation and migration through GPR41 (118). In another study, GPR41 was proposed to promote Treg cell IL-10 production, thereby suppressing allergic airway inflammation (119). Administration of a high-fiber or high-acetate diet in pregnant mice was also shown to reduce allergic airway disease in progeny, by promoting acetylation of the Foxp3 locus in Treg cells, highlighting the potent immune modulatory effects of these molecules (120). Studies of ILC2 have also shown that type 2 cytokine production and GATA3 expression may be dampened by SCFAs (121, 122). Despite the known anti-inflammatory function of SCFAs, a recent study of Th2 cells in people with eosinophilic esophagitis and in a mouse model of fungal infection revealed that SCFAs may also potentiate Th2 cell cytokine production (123). Thus, the impact of SCFAs on Th2 cell differentiation and function requires further investigation.

Glutamine

The conditionally essential amino acid glutamine is found at relatively high concentrations in the plasma and is capable of providing cells with a potential source of energy. However, under conditions of catabolic stress such as tissue damage or infection demand for glutamine rises with immune cells consuming particular high levels (124). Upon activation, T cells increase their uptake of glutamine 5–10-fold through the glutamine specific transporters SNAT-1/2 (124, 125). It serves as an important source of nitrogen and as an anapleurotic substrate for the TCA cycle and production of ribose in T cells (126–128). A lack of glutamine results in a failure for sustained proliferation and impairs cytokine release from T cells (125). Although glutamine plays an essential role in T cell activation, the addition of glutamine to the diet has been shown to favor Th1 cell responses over Th2 cells (129). Similarly, addition of high concentrations *in vitro* impairs Th2 cell differentiation in human PBMC cultures (130). This is at least in part due to the ability of high concentrations of glutamine to inhibit cytosolic phospholipase A2 (cPLA2), a key enzyme in releasing arachidonic acid from glycerophospholipids (131). This in turn provides the precursor molecules for a number of eicosanoids including well-known inflammatory mediators such as leukotrienes (LTs), prostaglandins and platelet-activating factor (PAF), which are important for Th2 cell functions. Thus, glutamine has the ability to regulate Th2 cell responses.

Indoamine 2,3-dioxygenase (IDO)

IDO is the rate-limiting enzyme required for tryptophan (TRP) metabolism (132). Within tissues such as the lung, IDO expression is high on epithelial cells and certain DC subpopulations (133). Given its constitutively high expression on Treg cells and cancer, IDO has been widely linked to immune suppression although some studies have indicated that it can in fact promote Th2 cell function. For instance it has been observed that 3-hydroxyanthranilic and quinolinic acids, metabolites of the KYN pathway, are capable of inducing apoptosis in Th1 cells without affecting Th2 cells (134). IDO expression by eosinophils is capable of inhibiting IFN- γ production by Th1 cells with no effect on Th2 cell function (135).

It has also been shown that IDO can potentiate Th2 cell cytokine production during *in vitro* differentiation of Th2 cells (133). In the context of airway inflammation, IDO-deficient mice appeared to have reduced Th2 cell responses and reduced levels of circulating IgE. Thus, IDO may aid in potentiating the polarization of Th2 cells and possibly inhibit bystander Th1 cells. Reduced expression of IDO during pregnancy results in enhanced ratios of Th1:Th2 cells (136). Interestingly, KYN-TRP levels are profoundly influenced by the composition of the gut microbiota via activation of AhR and TLRs in the host (137). Thus, regulation of TRP metabolism by IDO appears to promote Th2 cell responses.

METABOLIC INTERVENTIONS TARGETING TYPE 2 INFLAMMATION

Clinical and epidemiological studies have long indicated that type 2 inflammation, allergies and metabolic disorders are highly linked. For instance, a strong link between obesity and asthma has been reported in many studies (138, 139). In addition to BMI, other abnormalities in metabolism are also thought to predispose children and adults to asthma (138, 139). One obvious solution to reducing asthma linked to obesity is weight loss through exercise, although it can be difficult for asthmatics due to exercise-induced exacerbations. Nonetheless, aerobic exercise is known to reduce lung and airway inflammation, and reduce pathogenic cytokine secretion (140), which suggests that the right form of exercise could alleviate symptoms of asthma, in some patients.

Despite recent evidence that PPAR- γ promotes Th2 cell functions in mice and humans (91, 93), preclinical studies had repeatedly shown that PPAR- γ agonists reduced goblet cell metaplasia, alarmin release and airway hyperresponsiveness in mouse models of asthma (141–144). For this reason, several trials of TZDs were initiated in asthma and COPD. However, one recent trial using pioglitazone resulted in exacerbations in 14% of severe asthmatics. No patients experienced improvements in their disease symptoms, resulting in a premature cessation of this trial (145, 146).

In the last few years, a number of trials of putative anti-inflammatory dietary compounds has been initiated. A recent trial of polyunsaturated fatty acids conducted in pregnant women in Denmark showed that infants born to mothers on this supplement had a reduced absolute risk of developing wheeze and asthma in the first 3 years of life (147). Thus, modulating inflammation through the diet of mothers shows promise as a way to prevent allergy in infants. Furthermore, the anti-inflammatory effects of high fiber diets in preclinical studies have led to the commencement of trials in various disease settings including diabetes and asthma (148, 149). The results of these trials are eagerly anticipated.

CONCLUDING REMARKS

As Th2 cells differentiate, their metabolic requirements and exposure to nutrients changes dramatically. In the early activation of CD4 T cells, strong induction of glycolysis and

lipid metabolism is required to kick start the differentiation of effector T helper cell lineages including Th2 cells, seemingly at the expense of Treg cell differentiation. These pathways drive cell division and proliferation in essentially all T helper cell subsets, although mTORc2 appears to promote Th2 cell differentiation via several specific mechanisms. The extracellular environment changes profoundly when Th2 cells move from the draining lymph node to inflamed tissues via the vasculature. In the blood and in non-lymphoid tissues, T helper cells become exposed to levels of glucose, lipids, SCFAs and amino acids that are known to vary highly between individuals, and can have an important impact on Th2 cell differentiation. Important sensors for these factors include solute carrier proteins, ectonucleotidases, G-protein coupled receptors and nuclear receptors like PPAR- γ . In tissues, Th2 cells appear insensitive to death induced by ATP-sensing receptors, rely on lipids either as a source of energy or as ligands for PPAR- γ , and are susceptible to regulation by SCFAs released by the microbiota. Hence, sensors of the extracellular

environment influence the metabolism and function of T helper cell subsets in peripheral tissues and can have a strong bearing on the cytokine balance of an individual.

A major challenge going forward is whether we can understand precisely how all of the metabolic components in our blood and tissues work together to regulate T helper cell responses in humans. An issue with current studies in metabolomics is that they are conducted in patients with disease, who can have metabolic disruptions for multiple reasons. An important goal for the future is to conduct prospective cohort studies of healthy individuals, in order to understand how the metabolome shapes the T helper cell balance and impacts on the development of allergic diseases.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

REFERENCES

1. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. *J Immunol.* (1986) 136:2348.
2. Walker JA, McKenzie ANJ. TH2 cell development and function. *Nat Rev Immunol.* (2017) 18:121. doi: 10.1038/nri.2017.118
3. Kopf M, Gros GL, Bachmann M, Lamers MC, Bluethmann H, Köhler G. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. *Nature.* (1993) 362:245–8. doi: 10.1038/362245a0
4. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines *in vivo*: granulomatous pathology is shaped by the pattern of L-arginine metabolism. *J Immunol.* (2001) 167:6533. doi: 10.4049/jimmunol.167.11.6533
5. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. *J Exp Med.* (1992) 176:287–92. doi: 10.1084/jem.176.1.287
6. Coffman RL, Seymour BW, Hudak S, Jackson J, Rennick D. Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. *Science.* (1989) 245:308. doi: 10.1126/science.2787531
7. Dabbagh K, Takeyama K, Lee H-M, Ueki IF, Lausier JA, Nadel JA. IL-4 induces mucin gene expression and goblet cell metaplasia *in vitro* and *in vivo*. *J Immunol.* (1999) 162:6233.
8. Galli SJ, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against venoms: possible “good side” of allergy? *Allergol Int.* (2016) 65:3–15. doi: 10.1016/j.alit.2015.09.002
9. Paul WE, Zhu J. How are TH2-type immune responses initiated and amplified? *Nat Rev Immunol.* (2010) 10:225. doi: 10.1038/nri2735
10. Lambrecht BN, Hammad H. The immunology of asthma. *Nat Immunol.* (2015) 16:45. doi: 10.1038/ni.3049
11. Masoli M, Fabian D, Holt S, Beasley R, Global initiative for asthma P. The global burden of asthma: executive summary of the GINA Dissemination Committee Report. *Allergy.* (2004) 59:469–78. doi: 10.1111/j.1398-9995.2004.00526.x
12. Nemeth ZH, Bogdanovski DA, Barratt-Stopper P, Paglinco SR, Antonioli L, Rolandelli RH. Crohn’s disease and ulcerative colitis show unique cytokine profiles. *Cureus.* (2017) 9:e1177. doi: 10.7759/cureus.1177
13. Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. *Immunity.* (1996) 4:313–9. doi: 10.1016/S1074-7613(00)80439-2
14. Ouyang W, Löhnig M, Gao Z, Assenmacher M, Ranganath S, Radbruch A, et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. *Immunity.* (2000) 12:27–37. doi: 10.1016/S1074-7613(00)80156-9
15. Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL, Sha WC, et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. *Immunity.* (1998) 9:745–55. doi: 10.1016/S1074-7613(00)80671-8
16. Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A, Wang Q, et al. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. *Nat Immunol.* (2004) 5:1157–65. doi: 10.1038/ni1128
17. Zhang D-H, Yang L, Cohn L, Parkyn L, Homer R, Ray P, et al. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. *Immunity.* (1999) 11:473–82. doi: 10.1016/S1074-7613(00)80122-3
18. Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. *Cytokine.* (2015) 75:14–24. doi: 10.1016/j.cyto.2015.05.010
19. Pai S-Y, Truitt ML, Ho IC. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. *Proc Natl Acad Sci USA.* (2004) 101:1993–8. doi: 10.1073/pnas.0308697100
20. Lee HJ, Takemoto N, Kurata H, Kamogawa Y, Miyatake S, O’Garra A, et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. *J Exp Med.* (2000) 192:105–15. doi: 10.1084/jem.192.1.105
21. Zhang D-H, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. *J Biol Chem.* (1997) 272:21597–603. doi: 10.1074/jbc.272.34.21597
22. Zheng W-P, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. *Cell.* (1997) 89:587–96. doi: 10.1016/S0092-8674(00)80240-8
23. Ansel KM, Lee DU, Rao A. An epigenetic view of helper T cell differentiation. *Nat Immunol.* (2003) 4:616–23. doi: 10.1038/ni0703-616
24. Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of TH2 differentiation and Il4 locus accessibility. *Ann Rev Immunol.* (2006) 24:607–56. doi: 10.1146/annurev.immunol.23.021704.115821
25. Lee GR, Fields PE, Griffin TJ, Flavell RA. Regulation of the Th2 cytokine locus by a locus control region. *Immunity.* (2003) 19:145–53. doi: 10.1016/S1074-7613(03)00179-1
26. Lee GR, Kim ST, Spilianakis CG, Fields PE, Flavell RA. T helper cell differentiation: regulation by cis elements and epigenetics. *Immunity.* (2006) 24:369–79. doi: 10.1016/j.immuni.2006.03.007

27. Wei G, Abraham BJ, Yagi R, Jothi R, Cui K, Sharma S, et al. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. *Immunity*. (2011) 35:299–311. doi: 10.1016/j.jimmuni.2011.08.007
28. Zhu J, Yamane H, Cote-Sierra J, Guo L, Paul WE. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. *Cell Res.* (2006) 16:3–10. doi: 10.1038/sj.cr.7310002
29. Nicholas vP, Shiu-Choot T, Melanie P, Mali C, Debbie S, Joanna R, et al. *In vivo* studies fail to reveal a role for IL-4 or STAT6 signaling in Th2 lymphocyte differentiation. *Proc Natl Acad Sci USA*. (2008) 105:12423–8. doi: 10.1073/pnas.0806372105
30. Ben-Sasson SZ, Le Gros G, Conrad DH, Finkelman FD, Paul WE. IL-4 production by T cells from naive donors. IL-2 is required for IL-4 production. *J Immunol.* (1990) 145:1127.
31. Zhu J, Cote-Sierra J, Guo L, Paul WE. Stat5 activation plays a critical role in Th2 differentiation. *Immunity*. (2003) 19:739–48. doi: 10.1016/S1074-7613(03)00292-9
32. Kagami S-i, Nakajima H, Kumano K, Suzuki K, Suto A, Imada K, et al. Both Stat5a and Stat5b are required for antigen-induced eosinophil and T-cell recruitment into the tissue. *Blood*. (2000) 95:1370. doi: 10.1016/S0009-6749(00)91471-4
33. Stritesky GL, Muthukrishnan R, Sehra S, Goswami R, Pham D, Travers J, et al. The transcription factor STAT3 is required for T helper 2 cell development. *Immunity*. (2011) 34:39–49. doi: 10.1016/j.jimmuni.2010.12.013
34. Ahyi A-NN, Chang H-C, Dent AL, Nutt SL, Kaplan MH. IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. *J Immunol.* (2009) 183:1598. doi: 10.4049/jimmunol.0803302
35. Kim JI, Ho IC, Grusby MJ, Glimcher LH. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. *Immunity*. (1999) 10:745–51. doi: 10.1016/S1074-7613(00)80073-4
36. Li-Weber M, Giaisi M, Baumann S, Pálfi K, Krammer PH. NF-κB synergizes with NF-AT and NF-IL6 in activation of the IL-4 gene in T cells. *Eur J Immunol.* (2004) 34:1111–8. doi: 10.1002/eji.200324687
37. Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. *Cytokine*. (2015) 75:25–37. doi: 10.1016/j.cyto.2015.05.008
38. King IL, Mohrs M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. *J Exp Med.* (2009) 206:1001–7. doi: 10.1084/jem.20090313
39. Liang H-E, Reinhardt RL, Bando JK, Sullivan BM, Ho IC, Locksley RM. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. *Nat Immunol.* (2011) 13:58–66. doi: 10.1038/ni.2182
40. Yusuf I, Kageyama R, Monticelli L, Johnston RJ, Ditoro D, Hansen K, et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). *J Immunol.* (2010) 185:190–202. doi: 10.4049/jimmunol.0903505
41. Tibbitt CA, Stark JM, Martens L, Ma J, Mold JE, Deswarth K, et al. Single-cell RNA sequencing of the T helper cell response to house dust mites defines a distinct gene expression signature in airway Th2 cells. *Immunity*. (2019) 51:1–16. doi: 10.1016/j.jimmuni.2019.05.014
42. Van Dyken SJ, Nussbaum JC, Lee J, Molofsky AB, Liang H-E, Pollack JL, et al. A tissue checkpoint regulates type 2 immunity. *Nat Immunol.* (2016) 17:1381–7. doi: 10.1038/ni.3582
43. Lawrence RA, Gray CA, Osborne J, Maizels RM. Nippostrongylus brasiliensis: cytokine responses and nematode expulsion in normal and IL-4-deficient mice. *Exp Parasitol.* (1996) 84:65–73. doi: 10.1006/expar.1996.0090
44. Mandel TE, Phipps RP, Abbot AP, Tew JG. Long-term antigen retention by dendritic cells in the popliteal lymph node of immunized mice. *Immunology*. (1981) 43:353–62.
45. Urban JF, Maliszewski CR, Madden KB, Katona IM, Finkelman FD. IL-4 treatment can cure established gastrointestinal nematode infections in immunocompetent and immunodeficient mice. *J Immunol.* (1995) 154:4675.
46. Bancroft AJ, McKenzie ANJ, Grencis RK. A Critical Role for IL-13 in resistance to intestinal nematode infection. *J Immunol.* (1998) 160:3453.
47. O'Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. *Nat Rev Immunol.* (2016) 16:553–65. doi: 10.1038/nri.2016.70
48. MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. *Ann Rev Immunol.* (2013) 31:259–83. doi: 10.1146/annurev-immunol-032712-095956
49. Fruhwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. The CD28 signaling pathway regulates glucose metabolism. *Immunity*. (2002) 16:769–77. doi: 10.1016/S1074-7613(02)00323-0
50. Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. *Mol Biol Cell.* (2007) 18:1437–46. doi: 10.1091/mbc.e06-07-0593
51. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. *J Immunol.* (2011) 186:3299–303. doi: 10.4049/jimmunol.1003613
52. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 cells. *J Exp Med.* (2011) 208:1367–76. doi: 10.1084/jem.20110278
53. Wang R, Dillon Christopher P, Shi Lewis Z, Milasta S, Carter R, Finkelstein D, et al. The transcription factor myc controls metabolic reprogramming upon T lymphocyte activation. *Immunity*. (2011) 35:871–82. doi: 10.1016/j.jimmuni.2011.09.021
54. Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. *Science*. (2016) 354:481. doi: 10.1126/science.aaf6284
55. Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. *Trends Immunol.* (2015) 36:81–91. doi: 10.1016/j.it.2014.12.005
56. Dumitru C, Kabat AM, Maloy KJ. Metabolic adaptations of CD4(+) T cells in inflammatory disease. *Front Immunol.* (2018) 9:540. doi: 10.3389/fimmu.2018.00540
57. Saxton RA, Sabatini DM. mTOR Signaling in growth, metabolism, and disease. *Cell*. (2017) 168:960–76. doi: 10.1016/j.cell.2017.02.004
58. Polizzi KN, Powell JD. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. *Nat Rev Immunol.* (2014) 14:435–46. doi: 10.1038/nri3701
59. Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. *Immunity*. (2010) 32:743–53. doi: 10.1016/j.jimmuni.2010.06.002
60. Kurebayashi Y, Nagai S, Ikejiri A, Ohtani M, Ichiyama K, Baba Y, et al. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORγ. *Cell Rep.* (2012) 1:360–73. doi: 10.1016/j.celrep.2012.02.007
61. Sun I-H, Oh M-H, Zhao L, Patel CH, Arwood ML, Xu W, et al. mTOR complex 1 signaling regulates the generation and function of central and effector foxp3⁺ regulatory T cells. *J Immunol.* (2018) 201:481–92. doi: 10.4049/jimmunol.1701477
62. Yang K, Shrestha S, Zeng H, Karmaus PWF, Neale G, Vogel P, et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. *Immunity*. (2013) 39:1043–56. doi: 10.1016/j.jimmuni.2013.09.015
63. Delgoffe GM, Polizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. *Nat Immunol.* (2011) 12:295–303. doi: 10.1038/ni.2005
64. Seki Y-I, Hayashi K, Matsumoto A, Seki N, Tsukada J, Ransom J, et al. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. *Proc Natl Acad Sci USA*. (2002) 99:13003–8. doi: 10.1073/pnas.202477099
65. Heikamp EB, Patel CH, Collins S, Waickman A, Oh M-H, Sun I-H, et al. The AGC kinase SGK1 regulates TH1 and TH2 differentiation downstream of the mTORC2 complex. *Nat Immunol.* (2014) 15:457–64. doi: 10.1038/ni.2867
66. Yang J-Q, Kalim KW, Li Y, Zhang S, Hinge A, Filippi M-D, et al. RhoA orchestrates glycolysis for TH2 cell differentiation and allergic airway inflammation. *J Allergy Clin Immunol.* (2016) 137:231–45.e4. doi: 10.1016/j.jaci.2015.05.004

67. Ricciardi S, Manfrini N, Alfieri R, Calamita P, Crosti MC, Gallo S, et al. The translational machinery of human CD4+ T cells is poised for activation and controls the switch from quiescence to metabolic remodeling. *Cell Metab.* (2018) 28:895–906.e5. doi: 10.1016/j.cmet.2018.08.009
68. Cretenet G, Clerc I, Matias M, Loisel S, Craveiro M, Oburoglu L, et al. Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions. *Sci Rep.* (2016) 6:24129. doi: 10.1038/srep24129
69. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. *Cell Metab.* (2014) 20:61–72. doi: 10.1016/j.cmet.2014.05.004
70. Finlay DK. Regulation of glucose metabolism in T cells: new insight into the role of phosphoinositide 3-kinases. *Front Immunol.* (2012) 3:247. doi: 10.3389/fimmu.2012.00247
71. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leavers S, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. *Cell Metab.* (2008) 8:224–36. doi: 10.1016/j.cmet.2008.07.007
72. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, et al. *In vivo* fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. *Nat Med.* (2014) 20:1327. doi: 10.1038/nm.3704
73. Angela M, Endo Y, Asou HK, Yamamoto T, Tumes DJ, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPAR γ directs early activation of T cells. *Nat Commun.* (2016) 7:13683. doi: 10.1038/ncomms13683
74. Park H-J, Kim D-H, Choi J-Y, Kim W-J, Kim JY, Senejani AG, et al. PPAR γ negatively regulates T cell activation to prevent follicular helper T cells and germinal center formation. *PLoS ONE.* (2014) 9:e99127. doi: 10.1371/journal.pone.0099127
75. Ballesteros-Tato A, Randall TD, Lund FE, Spolski R, Leonard WJ, León B. T Follicular helper cell plasticity shapes pathogenic T helper 2 cell-mediated immunity to inhaled house dust mite. *Immunity.* (2016) 44:259–73. doi: 10.1016/j.immuni.2015.11.017
76. Coquet Jonathan M, Schuijs Martijn J, Smyth Mark J, Deswarre K, Beyaert R, Braun H, et al. Interleukin-21-producing CD4+ T cells promote type 2 immunity to house dust mites. *Immunity.* (2015) 43:318–30. doi: 10.1016/j.immuni.2015.07.015
77. Lambrecht BN, Hammad H, Fahy JV. The cytokines of asthma. *Immunity.* (2019) 50:975–91. doi: 10.1016/j.immuni.2019.03.018
78. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. *Nat Med.* (2009) 15:410. doi: 10.1038/nm.1946
79. Schmidlin F, Amadesi S, Dabbagh K, Lewis DE, Knott P, Bennett NW, et al. Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. *J Immunol.* (2002) 169:5315. doi: 10.4049/jimmunol.169.9.5315
80. Besnard A-G, Togbe D, Guillou N, Erard F, Quesniaux V, Ryffel B. IL-33-activated dendritic cells are critical for allergic airway inflammation. *Eur J Immunol.* (2011) 41:1675–86. doi: 10.1002/eji.201041033
81. Constant SL, Brogdon JL, Piggott DA, Herrick CA, Visintin I, Ruddle NH, et al. Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation *in situ*. *J Clin Invest.* (2002) 110:1441–8. doi: 10.1172/JCI200216109
82. Rank MA, Kobayashi T, Kozaki H, Bartemes KR, Squillace DL, Kita H. IL-33-activated dendritic cells induce an atypical TH2-type response. *J Allergy Clin Immunol.* (2009) 123:1047–54. doi: 10.1016/j.jaci.2009.02.026
83. Wang YH, Liu YJ. Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. *Clin Exp Allergy.* (2009) 39:798–806. doi: 10.1111/j.1365-2222.2009.03241.x
84. Ito T, Wang Y-H, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. *J Exp Med.* (2005) 202:1213–23. doi: 10.1084/jem.20051135
85. Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. *J Allergy Clin Immunol.* (2013) 131:187–200.e8. doi: 10.1016/j.jaci.2012.08.002
86. Shih H-Y, Sciumè G, Mikami Y, Guo L, Sun H-W, Brooks SR, et al. Developmental acquisition of regulomes underlies innate lymphoid cell functionality. *Cell.* (2016) 165:1120–33. doi: 10.1016/j.cell.2016.04.029
87. Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A, Lara-Astiaso D, et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. *Cell.* (2016) 166:1231–46.e13. doi: 10.1016/j.cell.2016.07.043
88. Wilhelm C, Harrison OJ, Schmitt V, Pelletier M, Spencer SP, Urban JF Jr, et al. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. *J Exp Med.* (2016) 213:1409–18. doi: 10.1084/jem.20151448
89. Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. *Nat Immunol.* (2015) 16:306–17. doi: 10.1038/ni.3094
90. Björklund ÅK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D, et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. *Nat Immunol.* (2016) 17:451. doi: 10.1038/ni.3368
91. Chen T, Tibbitt CA, Feng X, Stark JM, Rohrbeck L, Rausch L, et al. PPAR γ promotes type 2 immune responses in allergy and nematode infection. *Sci Immunol.* (2017) 2:eaal5196. doi: 10.1126/sciimmunol.aal5196
92. Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPAR γ and the global map of adipogenesis and beyond. *Trends Endocrinol Metab.* (2014) 25:293–302. doi: 10.1016/j.tem.2014.04.001
93. Nobs SP, Natali S, Pohlmeier L, Okreglicka K, Schneider C, Kurrer M, et al. PPAR γ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. *J Exp Med.* (2017) 214:3015–35. doi: 10.1084/jem.20162069
94. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al. PPAR γ signaling and metabolism: the good, the bad and the future. *Nat Med.* (2013) 19:557–66. doi: 10.1038/nm.3159
95. Daniel B, Nagy G, Czimerer Z, Horvath A, Hammers DW, Cuaranta-Monroy I, et al. The nuclear receptor PPAR γ controls progressive macrophage polarization as a ligand-insensitive epigenomic ratchet of transcriptional memory. *Immunity.* (2018) 49:615–26.e6. doi: 10.1016/j.immuni.2018.09.005
96. Odegaard JJ, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. *Nature.* (2007) 447:1116–20. doi: 10.1038/nature05894
97. Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, et al. STAT6 transcription factor is a facilitator of the nuclear receptor PPAR γ -regulated gene expression in macrophages and dendritic cells. *Immunity.* (2010) 33:699–712. doi: 10.1016/j.immuni.2010.11.009
98. Vats D, Mukundan L, Odegaard JJ, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. *Cell Metab.* (2006) 4:13–24. doi: 10.1016/j.cmet.2006.05.011
99. Micossé C, von Meyenn L, Steck O, Kipfer E, Adam C, Simillion C, et al. Human “TH9” cells are a subpopulation of PPAR γ + TH2 cells. *Sci Immunol.* (2019) 4:eaat5943. doi: 10.1126/sciimmunol.aat5943
100. Henriksson J, Chen X, Gomes T, Ullah U, Meyer KB, Miragaia R, et al. Genome-wide CRISPR screens in T helper cells reveal pervasive crosstalk between activation and differentiation. *Cell.* (2019) 176:882–96.e18. doi: 10.1016/j.cell.2018.11.044
101. Forman BM, Chen J, Evans RM. The peroxisome proliferator-activated receptors: ligands and activators. *Ann N Y Acad Sci.* (1996) 804:266–75. doi: 10.1111/j.1749-6632.1996.tb18621.x
102. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPAR γ . *Ann Rev Biochem.* (2008) 77:289–312. doi: 10.1146/annurev.biochem.77.061307.091829
103. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. *Cell Metab.* (2013) 18:153–61. doi: 10.1016/j.cmet.2013.05.017
104. Liu J, Farmer SR. Regulating the balance between peroxisome proliferator-activated receptor γ and β -catenin signaling during adipogenesis: a glycogen synthase kinase 3 β phosphorylation-defective mutant of β -catenin inhibits expression of a subset of adipogenic genes. *J Biol Chem.* (2004) 279:45020–7. doi: 10.1074/jbc.M407050200

105. Rodríguez A, Ezquierro S, Méndez-Giménez L, Becerril S, Fröhbeck G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. *Am J Physiol Endocrinol Metab.* (2015) 309:E691–714. doi: 10.1152/ajpendo.00297.2015
106. Chang C-H, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. *Cell.* (2013) 153:1239–51. doi: 10.1016/j.cell.2013.05.016
107. Chang C-H, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. *Cell.* (2015) 162:1229–41. doi: 10.1016/j.cell.2015.08.016
108. Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D'Acquisto F, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. *PLoS Biol.* (2015) 13:e1002202. doi: 10.1371/journal.pbio.1002202
109. Rundqvist H, Velića P, Barbieri L, Gameiro PA, Cunha PP, Gojkovic M, et al. Lactate potentiates differentiation and expansion of cytotoxic T cells. *bioRxiv.* (2019) 571745. doi: 10.2139/ssrn.3411249
110. Willart MAM, Lambrecht BN. The danger within: endogenous danger signals, atopy and asthma. *Clin Exp Allergy.* (2009) 39:12–9. doi: 10.1111/j.1365-2222.2008.03118.x
111. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MAM, Muskens F, et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. *Nat Med.* (2007) 13:913. doi: 10.1038/nm1617
112. Kobayashi T, Soma T, Noguchi T, Nakagome K, Nakamoto H, Kita H, et al. ATP drives eosinophil effector responses through P2 purinergic receptors. *Allergol Int.* (2015) 64:S30–6. doi: 10.1016/j.alit.2015.04.009
113. Aswad F, Kawamura H, Dennert G. High sensitivity of CD4+CD25+ regulatory T cells to extracellular metabolites nicotinamide adenine dinucleotide and ATP: a role for P2X7 receptors. *J Immunol.* (2005) 175:3075–83. doi: 10.4049/jimmunol.175.5.3075
114. Kale SL, Agrawal K, Gaur SN, Arora N. Cockroach protease allergen induces allergic airway inflammation via epithelial cell activation. *Sci Rep.* (2017) 7:42341. doi: 10.1038/srep42341
115. Kouzaki H, Iijima K, Kobayashi T, O'Grady SM, Kita H. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. *J Immunol.* (2011) 186:4375–87. doi: 10.4049/jimmunol.1003020
116. Idzko M, K Ayata C, Müller T, Dürk T, Grimm M, Baudiß K, et al. Attenuated allergic airway inflammation in Cd39 null mice. *Allergy.* (2013) 68:472–80. doi: 10.1111/all.12119
117. Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. *Mol Cell.* (2016) 64:982–92. doi: 10.1016/j.molcel.2016.10.025
118. Trompetta A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. *Nat Med.* (2014) 20:159. doi: 10.1038/nm.3444
119. Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. *Immunity.* (2015) 43:998–1010. doi: 10.1016/j.immuni.2015.09.012
120. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. *Nat Commun.* (2015) 6:7320. doi: 10.1038/ncomms8320
121. Thio CL-P, Chi P-Y, Lai AC-Y, Chang Y-J. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate. *J Allergy Clin Immunol.* (2018) 142:1867–83.e12. doi: 10.1016/j.jaci.2018.02.032
122. Wang J, Wen L, Wang Y, Chen F. Therapeutic effect of histone deacetylase inhibitor, sodium butyrate, on allergic rhinitis *in vivo*. *DNA Cell Biol.* (2016) 35:203–8. doi: 10.1089/dna.2015.3037
123. Wen T, Aronow BJ, Rochman Y, Rochman M, Kc K, Dexheimer PJ, et al. Single-cell RNA sequencing identifies inflammatory tissue T cells in eosinophilic esophagitis. *J Clin Invest.* (2019) 129:2014–28. doi: 10.1172/JCI125917
124. Ren W, Liu G, Yin J, Tan B, Wu G, Bazer FW, et al. Amino-acid transporters in T-cell activation and differentiation. *Cell Death Dis.* (2017) 8:e2655. doi: 10.1038/cddis.2016.222
125. Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. *J Immunol.* (2010) 185:1037–44. doi: 10.4049/jimmunol.0903586
126. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. *Nat Rev Cancer.* (2016) 16:619–34. doi: 10.1038/nrc.2016.71
127. Glick GD, Rossignol R, Lyssiotis CA, Wahl D, Lesch C, Sanchez B, et al. Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. *J Pharmacol Exp Ther.* (2014) 351:298–307. doi: 10.1124/jpet.114.218099
128. Kovacevic Z, McGivan JD. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. *Physiol Rev.* (1983) 63:547–605. doi: 10.1152/physrev.1983.63.2.547
129. Caris AV, Lira FS, de Mello MT, Oyama LM, dos Santos RVT. Carbohydrate and glutamine supplementation modulates the Th1/Th2 balance after exercise performed at a simulated altitude of 4500 m. *Nutrition.* (2014) 30:1331–6. doi: 10.1016/j.nut.2014.03.019
130. Chang W-K, Yang KD, Shaio M-F. Effect of glutamine on Th1 and Th2 cytokine responses of human peripheral blood mononuclear cells. *Clin Immunol.* (1999) 93:294–301. doi: 10.1006/clim.1999.4788
131. Ko HM, Kang NI, Kim YS, Lee YM, Jin ZW, Jung YJ, et al. Glutamine preferentially inhibits T-helper type 2 cell-mediated airway inflammation and late airway hyperresponsiveness through the inhibition of cytosolic phospholipase A2 activity in a murine asthma model. *Clin Exp Allergy.* (2008) 38:357–64. doi: 10.1111/j.1365-2222.2007.02900.x
132. Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. *Trends Immunol.* (2013) 34:137–43. doi: 10.1016/j.it.2012.10.001
133. Xu H, Zhang G-X, Ceric B, Rostami A. IDO: a double-edged sword for T(H)1/T(H)2 regulation. *Immunol Lett.* (2008) 121:1–6. doi: 10.1016/j.imlet.2008.08.008
134. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, et al. T cell apoptosis by tryptophan catabolism. *Cell Death Differ.* (2002) 9:1069–77. doi: 10.1038/sj.cdd.4401073
135. Odemuyiwa SO, Ghahary A, Li Y, Puttagunta L, Lee JE, Musat-Marcu S, et al. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. *J Immunol.* (2004) 173:5909. doi: 10.4049/jimmunol.173.10.5909
136. Clark DA, Blois S, Kandil J, Handjiski B, Manuel J, Arck PC. Reduced uterine indoleamine 2,3-dioxygenase versus increased Th1/Th2 cytokine ratios as a basis for occult and clinical pregnancy failure in mice and humans. *Am J Reprod Immunol.* (2005) 54:203–16. doi: 10.1111/j.1600-0897.2005.00299.x
137. Van der Leek AP, Yanishevsky Y, Kozyrskij AL. The kynurene pathway as a novel link between allergy and the gut microbiome. *Front Immunol.* (2017) 8:1374. doi: 10.3389/fimmu.2017.01374
138. Cottrell L, Neal WA, Ice C, Perez MK, Piedimonte G. Metabolic abnormalities in children with asthma. *Am J Respir Crit Care Med.* (2011) 183:441–8. doi: 10.1164/rccm.201004-0603OC
139. Serafino-Agrusa L, Spatafora M, Scichilone N. Asthma and metabolic syndrome: current knowledge and future perspectives. *World J Clin Cases.* (2015) 3:285–92. doi: 10.12998/wjcc.v3.i3.285
140. Del Giacco SR, Firinu D, Bjermer L, Carlsen K-H. Exercise and asthma: an overview. *Eur Clin Respir J.* (2015) 2:27984. doi: 10.3402/ecrj.v2.27984
141. Banno A, Reddy AT, Lakshmi SP, Reddy RC. PPARs: key regulators of airway inflammation and potential therapeutic targets in asthma. *Nucl Receptor Res.* (2018) 5:101306. doi: 10.11131/2018/101306
142. Belvisi MG, Hele DJ, Birrell MA. Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation. *Eur J Pharmacol.* (2006) 533:101–9. doi: 10.1016/j.ejphar.2005.12.048
143. Trifilieff A, Bench A, Hanley M, Bayley D, Campbell E, Whittaker P. PPAR-alpha and -gamma but not -delta agonists inhibit airway inflammation in a murine model of asthma: *in vitro* evidence for an NF-κB-independent effect. *Br J Pharmacol.* (2003) 139:163–71. doi: 10.1038/sj.bjp.0705232

144. Woerly G, Honda K, Loyens M, Papin J-P, Auwerx J, Staels B, et al. Peroxisome proliferator-activated receptors alpha and gamma down-regulate allergic inflammation and eosinophil activation. *J Exp Med.* (2003) 198:411–21. doi: 10.1084/jem.20021384
145. Anderson JR, Mortimer K, Pang L, Smith KM, Bailey H, Hodgson DB, et al. Evaluation of the PPAR- γ agonist pioglitazone in mild asthma: a double-blind randomized controlled trial. *PLoS ONE.* (2016) 11:e0160257. doi: 10.1371/journal.pone.0160257
146. Kaler M, Barochia AV, Weir NA, Cuento RA, Stylianou M, Roth MJ, et al. A randomized, placebo-controlled, double-blinded, crossover trial of pioglitazone for severe asthma. *J Allergy Clin Immunol.* (2017) 140:1716–8. doi: 10.1016/j.jaci.2017.05.033
147. Bisgaard H, Stokholm J, Chawes BL, Vissing NH, Bjarnadóttir E, Schoos A-MM, et al. Fish oil-derived fatty acids in pregnancy and wheeze and asthma in offspring. *NEng J Med.* (2016) 375:2530–9. doi: 10.1056/NEJMoa1503734
148. Guilleminault L, Williams EJ, Scott HA, Berthon BS, Jensen M, Wood LG. Diet and asthma: is it time to adapt our message? *Nutrients.* (2017) 9:1227. doi: 10.3390/nu911227
149. Weickert MO, Pfeiffer AFH. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. *J Nutr.* (2018) 148:7–12. doi: 10.1093/jn/nxx008

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Stark, Tibbitt and Coquet. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The Metabolic Profile of Tumor and Virally Infected Cells Shapes Their Microenvironment Counteracting T Cell Immunity

Isabelle Magalhaes^{1*}, Ohad Yoge², Jonas Mattsson^{1,3,4} and Anna Schurich^{5*}

¹ Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden, ² Division of Infection and Immunity, University College London, London, United Kingdom, ³ Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada, ⁴ Department of Medicine, University of Toronto, Toronto, ON, Canada, ⁵ Department of Infectious Diseases, King's College London, London, United Kingdom

OPEN ACCESS

Edited by:

Anna Ohradanova-Repic,
Medical University of Vienna, Austria

Reviewed by:

Carole Bourquin,
Université de Genève, Switzerland
Valerie Dardalhon,
UMR5535 Institut de Génétique
Moléculaire de Montpellier
(IGMM), France
Pankaj Seth,
Harvard University, United States

*Correspondence:

Isabelle Magalhaes
isabelle.magalhaes@ki.se
Anna Schurich
anna.schurich@kcl.ac.uk

Specialty section:

This article was submitted to
T Cell Biology,
a section of the journal
Frontiers in Immunology

Received: 01 July 2019

Accepted: 12 September 2019

Published: 04 October 2019

Citation:

Magalhaes I, Yoge O, Mattsson J and Schurich A (2019) The Metabolic Profile of Tumor and Virally Infected Cells Shapes Their Microenvironment Counteracting T Cell Immunity. *Front. Immunol.* 10:2309.
doi: 10.3389/fimmu.2019.02309

Upon activation naïve T cells undergo metabolic changes to support the differentiation into subsets of effector or regulatory cells, and enable subsequent metabolic adaptations to form memory. Interfering with these metabolic alterations leads to abrogation or reprogramming of T cell differentiation, demonstrating the importance of these pathways in T cell development. It has long been appreciated that the conversion of a healthy cell to a cancerous cell is accompanied by metabolic changes, which support uncontrolled proliferation. Especially in solid tumors these metabolic changes significantly influence the tumor microenvironment (TME) and affect tumor infiltrating immune cells. The TME is often hypoxic and nutrient depleted, additionally tumor cells produce co-inhibitory signals, together suppressing the immune response. Interestingly, viruses can stimulate a metabolism akin to that seen in tumor cells in their host cells and even in neighboring cells (e.g., via transfer of virally modified extracellular vesicles). Thus, viruses create their own niche which favors viral persistence and propagation, while again keeping the immune response at bay. In this review we will focus on the mechanisms employed by tumor cells and viruses influencing T cell metabolic regulation and the impact they have on shaping T cell fate.

Keywords: metabolism, tumor, T cell, virus, hypoxia

INTRODUCTION

In recent years the fundamental importance of energy regulation in immune cells has been appreciated and has created the research field of "Immunometabolism." Since there are excellent current reviews discussing the metabolic regulation of T cells in detail (1–3), we will here only give a short overview and then focus on the role of the tumor or virally infected target cell in manipulating T cell fate. The reader might also find **Table 1** helpful, summarizing the main mechanisms discussed for a quick overview. Naive T cells are relatively quiescent cells that have a low energetic demand. They predominantly make use of mitochondrial oxidative phosphorylation (OXPHOS). Upon antigen encounter and activation by professional antigen presenting cells, T cells increase the expression of nutrient transporters, especially glucose transporters 1 and 3 (GLUT1 and 3) (26) and start utilizing glycolysis even in the presence of sufficient oxygen. Glycolysis provides fast energy and biological building blocks required for cell division and effector function. Alongside,

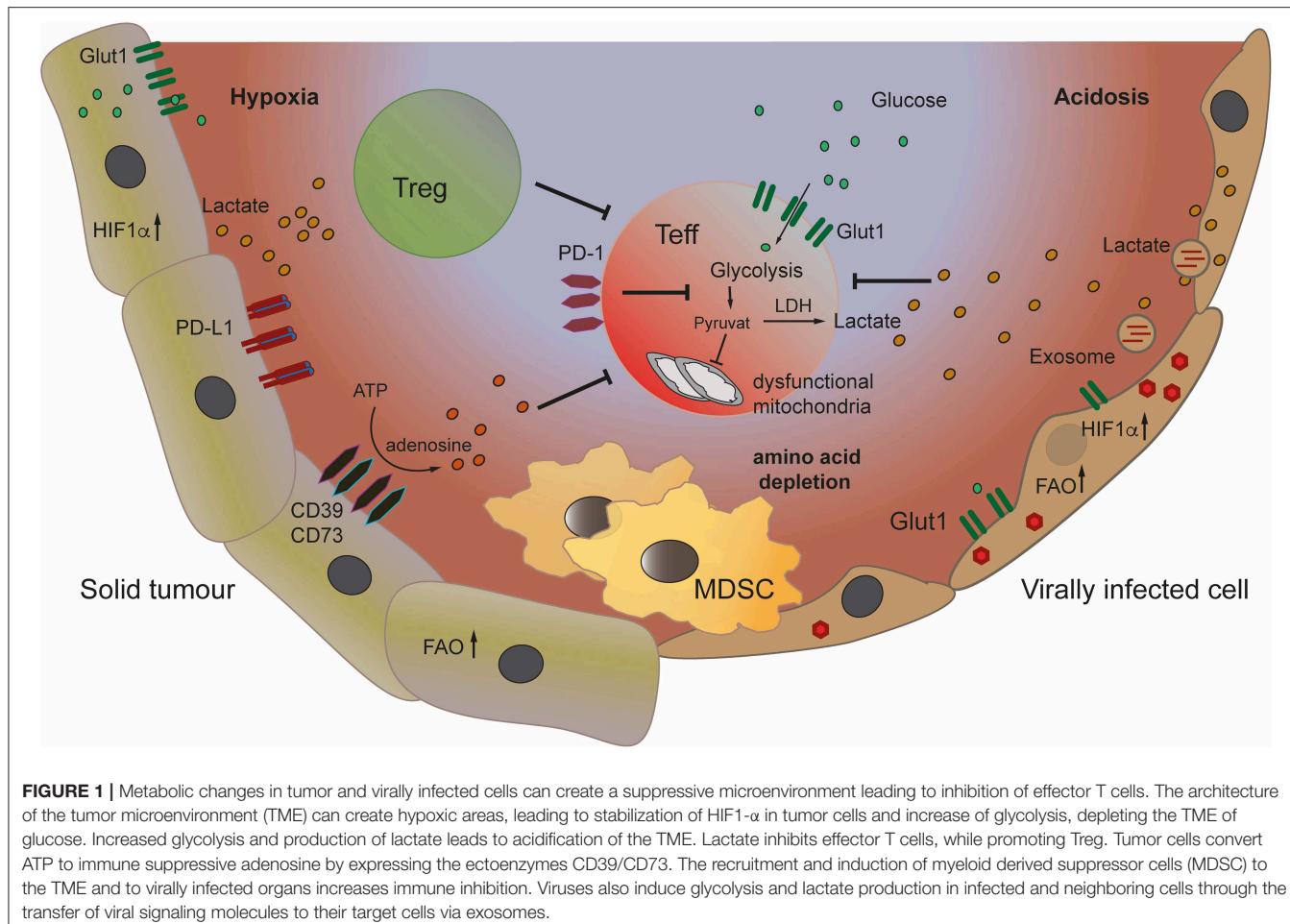
mitochondrial biogenesis is also activated and mitochondrial mass increased, allowing for increased respiration. Furthermore, a recent study highlights the important role of distinct mitochondrial metabolic pathways in regulating T cell proliferation and effector differentiation (27). Mitochondrial function is critical, and its disruption seems to be an underlying mechanism of T cell exhaustion (28–30). Upon the resolution of an acute insult (such as an acute viral infection) a proportion of the effector T cell pool differentiates into memory cells. This conversion is accompanied by the cell's metabolism refocusing on OXPHOS and fatty acid metabolism, while reducing glycolysis. Memory T cells have an increased mitochondrial mass and contain mitochondria with densely packed cristae linked to more efficient OXPHOS (31), poised to mount a fast recall response. In the situation where the immune response fails to deal with the insult effectively and T cells are subjected to persisting antigenic challenge like in cancer and chronic viral infection, effector responses become less vigorous and instead of developing into classical memory cells, formation is skewed toward exhaustion. Here we will discuss aspects of how the metabolic profile and signaling by target cells shapes their microenvironment and the impacts on T cell function, differentiation and fate decision.

THE INCREASED GLYCOLYSIS IN CANCER CELLS IMPACTS ON T CELLS

Reprogramming of energy metabolism has been recognized as one of the hallmarks of cancer cells (32). It is well established that cancer cells have increased glucose uptake, which is fermented to lactate even in the presence of oxygen, a process known as aerobic glycolysis (or Warburg effect). Of note, glucose can also be further metabolized through the mitochondrial tricarboxylic acid (TCA) cycle in tumors (33).

Glucose is an important source of carbon for the production of amino acids, nucleotides, and fatty acids. Oncogenic mutations of the phosphatase and tensin homolog (PTEN) and the phosphoinositide 3-kinase (PI3K) pathway lead to the reprogramming of glucose metabolism and increased glucose uptake via stimulation of glucose transporters in cancer cells [recently reviewed by Marbaniang et al. (34)]. Increased transcription of glycolysis genes in KRAS mutated colorectal cancer cell lines (35) is another example of the impact of oncogenic mutations on the cellular metabolic state. Mutations in the tumor suppressor gene p53 was shown to play a role in glucose metabolism, and interestingly also in mitochondrial activity and lipid metabolism (36).

The sustained consumption of glucose by tumor cells eventually leads to a decrease of glucose levels in the TME. Competition for glucose between tumor and T cells has been shown to decrease IFN- γ production by CD8+ T cells and to limit T cell antitumor functions (4, 5). Conversion of glycolysis intermediates by the pentose phosphate pathway generates NADPH (that can serve as an electron acceptor), which is needed for tumor cells to scavenge reactive oxygen species (ROS)


TABLE 1 | Table summarizing metabolic pathways and their role in tumors/TME and viral infection.

Mechanism	Tumor	Virus
Glycolysis	(i) Glucose depleted TME (ii) Inhibition of effector T cells (4, 5)	Stimulation of increased glycolysis in host cell for viral production and in neighboring cells via exosomes e.g., HTLV, HIV, KSHV, EBV (6, 7)
Hypoxia/ pseudohypoxia	Stabilization of HIF1- α : (i) Enhances glycolysis and acidosis of TME (8) (ii) Expression of ectoenzymes CD39/CD73 increasing extracellular adenosine levels (9) (iii) Upregulation of PD-L1 (10)	Stabilization of HIF1- α mimicking the effect of hypoxia (termed: pseudohypoxia) e.g., KSHV, EBV, HCV, HCMV, HPV (11, 12)
Lactate production	(i) Acidification of TME (ii) Inhibition of effector T cells (13, 14) (iii) Inhibition of CD4+ Th1 T cells (15) (iv) Promotion of Treg (15) (v) Induction of regulatory macrophages (16) (vi) Upregulation of PD-L1 (17)	Lactate secretion from (i) infected cells and (ii) neighboring cells stimulated by virally infected cells, creates microenvironment supporting viral propagation (e.g., KSHV)? (4, 18)
Amino acid depletion	(i) Increased glutaminolysis leads to glutamine depletion in TME (19) (ii) Expression of indoleamine 2,3-dioxygenase leads to depletion of tryptophan (20) (iii) Recruitment/induction of MDSC, which can deplete the essential amino acids cysteine and arginine	Recruitment of MDSC e.g., to HBV infected liver (21) Inhibition of amino acid uptake mediated by HIV Vpu protein (22)
Lipid metabolism	Inhibition of effector T cells Induction of Treg (23) Induction of increased release of fatty acids by adipocytes to fuel tumor (24)	Induction/modulation of fatty acid production e.g., CMV, KSHV, HCV, Zika, Dengue (25)

and maintain redox homeostasis. ROS produced by tumor cells participate in the oxidative stress T cells encounter in the TME, and interestingly, Tregs are more resistant than conventional CD4+ T cells to oxidative stress-induced cell death (37).

THE INFLUENCE OF HYPOXIA ON T CELL FUNCTION

Reduced blood flow in some tumor areas results in low oxygen levels (hypoxia) and acidification as discussed below and shown in **Figure 1**. Hypoxia leads to the stabilization of the transcription factor hypoxia-inducible factor 1- α (HIF1- α). HIF1- α in cancer

FIGURE 1 | Metabolic changes in tumor and virally infected cells can create a suppressive microenvironment leading to inhibition of effector T cells. The architecture of the tumor microenvironment (TME) can create hypoxic areas, leading to stabilization of HIF1- α in tumor cells and increase of glycolysis, depleting the TME of glucose. Increased glycolysis and production of lactate leads to acidification of the TME. Lactate inhibits effector T cells, while promoting Treg. Tumor cells convert ATP to immune suppressive adenosine by expressing the ectoenzymes CD39/CD73. The recruitment and induction of myeloid derived suppressor cells (MDSC) to the TME and to virally infected organs increases immune inhibition. Viruses also induce glycolysis and lactate production in infected and neighboring cells through the transfer of viral signaling molecules to their target cells via exosomes.

cells promotes glucose uptake by upregulation of GLUT1, GLUT3, and increased expression of glycolytic enzymes further promoting glycolysis and acidosis (8). In an elegant study Walton et al. have demonstrated that high acidity in the context of hypoxia results in inhibition of mTOR signaling in T cells and induction of T cell anergy. mTOR is a key sensor of nutrients and a major regulator of cellular metabolism and effector T cell function (38). Earlier studies had demonstrated that mTOR inhibition in the presence of TCR triggering drives T cell anergy (39), while promoting Treg development (40). Taken together these mechanisms might conceivably play a role in the tumor microenvironment *in vivo*, with both T effector cell inhibition and increased Treg numbers detrimental to tumor control. Various viruses (e.g., HCV and human papillomaviruses) have also been shown to manipulate the host cell's metabolism by promoting through different mechanisms HIF1- α stability and activity (11, 12) in the absence of hypoxia leading to subsequent increased glycolysis. In a recent report, influenza A (H1N1) virus led to proteasome inhibition and in turn stabilization of HIF1- α in normoxic conditions, however the impact on viral replication remains to be determined (41).

Apart from driving increased glycolysis HIF1- α induces expression of the ectoenzyme CD73 (9) and the expression by

cancer cells and Tregs of the tandem ectoenzymes CD39/CD73 which generate extracellular adenosine from the degradation of extracellular ATP. The binding of adenosine to the 2A2-adenosine receptor (A2AR) expressed by many immune cells including T cells, inhibits anti-tumor T cells (42). Finally, HIF1- α is also involved in the upregulation of PD-L1 by tumor cells (10). Interestingly, a deregulated oxidative metabolism in tumors and the associated hypoxia in the TME, correlated with resistance to PD-1 treatment (43).

A recent publication shows that hypoxia and glucose deprivation lead to down-regulation of MHC class I molecules on tumor cells facilitating immune escape. This finding was accompanied by tumor cells losing their sensitivity to IFN- γ mediated induction of MHC upregulation (44). Consequently, tumor cells evade killing by activated IFN- γ producing T cells creating another hurdle for T cell therapies.

TUMOR CELLS PRODUCE LACTATE THAT PROMOTES IMMUNE SUPPRESSION

In addition, the lactate secreted by glycolytic tumor cells into the TME adversely impacts on effector T cells. Lactate inhibits

CD8+ T cell proliferation, cytokine (IL-2 and IFN- γ) production, and cytotoxicity (13, 14), but also induces T cell apoptosis (45). These effects on activated CD8+ T cells by increased lactate levels are mediated through inhibition of NFAT upregulation and inhibition of phosphorylation of p38 MAP kinase and JNK (14, 45). A recent report demonstrated that exogenous lactate can reduce the frequency of Th1 CD4+ T cells and their IFN- γ production, while increasing the expression of FoxP3 and the frequency of regulatory CD4+ T cells (Tregs) (15). Expression of cell surface GLUT1 is lower in Tregs as compared to other CD4+ T cell subsets, and Tregs appear not to rely on glycolysis but rather lipid oxidation and OXPHOS (46). FoxP3 was shown to play a role in inducing resistance to the suppressive effects of lactate by mediating distinct metabolic adaptation in Tregs (18). The accumulation of lactate in the TME leads to TME acidification known to decrease T cell proliferative capacity and inducing anergy (47) (Figure 1). Interestingly, expression of the lactate receptor GPR81 by macrophages was shown to play a role in inducing immune regulatory genes and regulating inflammation (16).

Lactate was also shown to upregulate programmed cell death ligand-1 (PD-L1) expression in lung cancer cells (17). Interestingly, PD-L1 blockade on tumor cells inhibited their mTOR kinase activity and decreased the expression of glycolytic enzymes (4), which might contribute to the success of anti-PD-L1 checkpoint blockade.

Finally, the increased concentration of lactate in the TME seems to be advantageous to some tumors, as lactate can be converted to pyruvate to fuel the TCA cycle. Glycolytic tumor cells can therefore produce the fuel for neighboring cells in heterogenous tumors (48), while at the same time suppressing the immune response.

TUMOR CELLS DO NOT SOLELY RELY ON GLUCOSE AS A SOURCE OF ENERGY BUT UTILIZE AMINO ACIDS LEAVING THE TME DEPLETED

TCA activity can be replenished by mitochondrial metabolism of various amino acids such as alanine, cysteine, leucine, and fatty acids (33). Recent data shows that at least some tumors depend on the non-essential amino acid glutamine (in humans, the most abundant amino acid in the circulation), as a source of nitrogen needed for nucleotide biosynthesis, and of carbon to fuel the TCA cycle (49). Metanalysis of studies assessing the metabolic profile in patients with cancer have revealed that in addition to the expected increase in lactate in tumor tissues, other metabolic changes can be identified (50, 51). Glutamate and kynurenine were the two most frequently elevated metabolites when 343 pairs of tumor/normal samples were compared.

Glutamine metabolism is upregulated by many oncogenic mutations (52). The *MYC* oncogene is one of the most frequently amplified genes in human tumors. *MYC* upregulates glutamine transporters, and *MYC*-transformed cells are dependent on glutamine metabolism (19). This can lead to reduced levels of glutamine in the TME, compared to normal tissues, resulting in

limited availability for T cells. In order to sustain the energetic demands of cell proliferation and differentiation following T cells activation, T cells upregulate glutamine uptake, and enzymes for glutamine metabolism. Interestingly, extracellular glutamine deprivation and subsequent decreased intracellular pool of the glutamine-derived α -ketoglutarate promotes a shift in murine CD4+ T cells toward Treg differentiation (53). This was supported by data using human T cells where inhibition of glutaminolysis (conversion of glutamine into TCA cycle metabolites) promoted Treg differentiation (54).

Competition for glutamine may therefore represent an additional mechanism of immunosuppression in the TME.

Furthermore, many tumors constitutively express indoleamine 2,3-dioxygenase (IDO) which catabolizes the essential amino acid tryptophan depleting it from the TME inhibiting T cell proliferation (20). Depletion of tryptophan suppresses CD8+ effector T cell proliferation but again promotes Treg differentiation via activation of the GCN2 kinase (55). Tryptophan metabolism also releases the immunosuppressive catabolite kynurenine that activates the aryl hydrocarbon receptor which also promotes Treg differentiation (56). IDO inhibitors have been tested in clinical trials, but responses were overall disappointing either as single agents, or in combination with anti-PD1 therapy leading to a halt of some combination therapy phase III trials (57).

Tumors are well known to induce and attract myeloid derived suppressor cells (MDSC), which crucially can suppress both innate and adaptive immune responses (Figure 1). One mechanism being nutrient depletion by the sequestration of cysteine and the production of arginase-1, an enzyme leading to the break down of arginine, both amino acids being essential for T cells. In contrast to other cells T cells cannot convert the oxidized precursor cystine to the reduced amino acid cysteine and are dependent on extracellular levels (23). The depletion of arginine which has been demonstrated to contribute to suppression of T cell responses in cancer (58) is also operative in chronic viral infection. The HIV protein Vpu antagonizes amino acid uptake into CD4+ T cells (22), while in chronic hepatitis B virus (HBV) increased numbers of MDSC found in the infected liver correlate with low levels of arginine (21). As a consequence of the above combined mechanisms T cells in the TME and in chronic viral infections can find themselves depleted of essential amino acids, leaving them little ability to function effectively.

THE ROLE OF LIPID METABOLISM IN THE REGULATION OF T CELL RESPONSES

An enhanced lipid metabolism is crucially required for the synthesis of cell membranes in blasting and proliferating T cells (59) and highly organized lipid rafts in the membrane of effector T cells which enable the organization of the immunological synapse (12). A perturbation of the cholesterol and fatty acid homeostasis leads to a reduction in effector T cells. Furthermore, the development of T cell memory has been shown to be dependent on increased mitochondrial fatty acid oxidation (60, 61). Like proliferating T cells, proliferating cancer cells

require fatty acids for the synthesis of membranes and other molecules. Many tumor cells acquire fatty acids through *de novo* synthesis, however some ovarian, prostate and breast cancers rely on the uptake of exogenous fatty acids (62). Tumor cells have been shown to communicate with adipocytes to enhance provision of fatty acids (24), establishing a link between obesity and increased risk of cancer. Viruses likewise manipulate their host cell's lipid metabolism, for example human cytomegalovirus (CMV) induces an increase in fatty acid production to synthesize lipids for incorporation into the viral envelope (63). Hepatocytes infected by Hepatitis C virus (HCV) are forced to increase lipogenesis and gluconeogenesis to support viral particle production via sophisticated mechanisms involving viral proteins and interference with host miRNAs (64, 65). Since hepatocytes are vital in regulating systemic glucose and lipid homeostasis these manipulations by HCV lead to a significantly increased risk for patients to develop metabolic disorders. Pathogenic Flaviviruses, such as Zika and Dengue virus also rely on their host's lipid metabolism to complete their life cycle and thus interfere with this pathway to remodel intracellular membranes to allow virion biogenesis (25).

The importance of lipid metabolism in both cancer and viral infection make these pathways interesting candidates for therapeutic intervention.

TUMORS, TME AND T CELLS ARE HETEROGENOUS

One should keep in mind that tumor cells are proliferating, rapidly evolving cells, and metabolic changes are very heterogenous across different cancers, between patients with the same type of cancer, and within the same patient since spatial and temporal tumor cell heterogeneity also occur (66). In addition to intrinsic tumor cell differences, the heterogeneity of the tumor microenvironment (including oxygen levels/perfusion levels) influences the metabolic changes in tumor cells, which in turn as well shows heterogeneity. Tumor metabolomic analysis provides important information, however more efforts for instance in standardization of sampling, data analysis, choice of sample (cell lines, tissues, or blood), to ensure that only cancer specific changes are detected, are needed. These caveats are also true for the study of many chronic viral infections, especially where culture models are hard to establish and/or *in vivo* studies are limited to humanized models or primates where humans are the exclusive natural host of a virus as in HIV, HBV, HCV, and EBV.

As discussed above, metabolic suppression in the TME is important in inhibiting effector T cells and many solid tumors are devoid of much T cell infiltrate. Since T cell memory formation is equally dependent on metabolic programs, this can also be inhibited and skewed toward T cell deletion or dysfunction. Indeed, T cell exhaustion or Treg development occur in the TME instead of classical memory differentiation. It could be argued that exhaustion is a distinct type of memory, since exhausted T cells can be long lived, do retain limited effector functions and exert control over persistent viral infections (67–69).

Thus, anti-viral CD8+ T cells with exhausted phenotype (PD-1 intermediate/high, low IFN- γ /effector cytokine production) can for example maintain a low viral load in patients with untreated chronic HBV (70). Furthermore exhausted T cells can be reinvigorated by stimulation with cytokines such as IL-12 (71) and are targeted in immune checkpoint inhibitor therapy (69).

VIRUSES MANIPULATE THE METABOLISM OF BOTH THEIR HOST CELL AND CELLS IN THEIR MICROENVIRONMENT

Viruses acquire both the energy and the building blocks needed to synthesize progeny virions from their host. For this reason, it is not surprising that many viruses manipulate their host cell metabolic pathways and associated signaling cascades [reviewed in (6, 7)]. Interestingly, many of these metabolic changes mimic those found in cancer. This suggests that in the case of oncogenic viruses, these metabolic alterations also contribute to cellular transformation. An example of shared metabolic alteration between viruses and cancer is the induction of the Warburg effect. Similar to many cancer types, different viruses were shown to shift glucose metabolism and redirect the glycolysis end product, pyruvate, away from mitochondrial OXPHOS. Interestingly different viruses developed diverse mechanisms to manipulate glucose metabolism in their host cells. Moreover, increased glycolysis and reduced OXPHOS were shown to support both viral replication and latency, by activating biosynthetic pathways supporting viral propagation.

In the last decade, there is accumulating evidence that viruses not only manipulate the infected cells but also communicate and manipulate other cells in their microenvironment. One method viruses use for this is manipulation of extracellular vesicle (EV) secretion from the host cell (Figure 1). An increasing number of viruses has been shown to manipulate EV-secretion and cargo (72–84).

The field of EV has been extensively studied in the last years, mainly in cancer. Tumor-derived EVs were shown to have a dramatic effect on tumor growth and metastasis [reviewed in (85–87)]. Interestingly, it was shown that both cancer cells and viruses use EV to alter the metabolism of cells in their microenvironment. A fascinating example of this phenomenon comes from the two oncogenic gammaherpesviruses Epstein Barr Virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV). Both viruses establish latency quickly after primary infection. Though during latency, these viruses express only a small subset of their genome, both viruses were shown to have a complex effect on their host metabolism (88). KSHV was shown to shift glucose metabolism from mitochondrial OXPHOS to aerobic glycolysis and to induce fatty acid synthesis and glutaminolysis (89–94). One of the driving forces for these metabolic alterations is the virally encoded microRNAs, which are thought to downregulate different genes which are involved in the regulation of OXPHOS and by that shift cells to more glycolytic metabolism (94). Importantly it was shown that these microRNAs are also transferred from infected cells to non-infected cells in the microenvironment using EVs (95–97) and

that the viral microRNAs are active in these cells to induce similar metabolic phenotype (97). Similar to KSHV, EBV was also shown to alter its host cell metabolism (98). Specifically, the latent protein LMP1 was shown to shift host cell metabolism from OXPHOS to aerobic glycolysis (98, 99) by inducing expression of multiple genes, such as GLUT1. In EBV-induced carcinomas this increased glycolysis promotes MDSC expansion (100) leading to tumor immunosuppression as discussed. Additionally, LMP1, which is expressed in around 30% of EBV-driven Hodgkin Lymphomas, is also involved in stimulating regulatory T cell responses (101). LMP1 can be transferred in EV secreted from infected cells and thus manipulate EV-recipient cells (2, 102, 103). This suggests that similarly to KSHV, EBV can use EV to manipulate neighboring cells and thereby modulate its microenvironment.

Why do viruses alter their host's metabolism? One clear advantage is the activation of biosynthetic pathways to support viral replication. Redirecting pyruvate away from mitochondria and reducing OXPHOS can free different carbon molecules for the synthesis of nucleotides, amino acids and lipids or for protein glycosylation. Permissiveness of CD4+ T cells to HIV has been shown to be strongly influenced by the metabolic activation status of the T cells. CD4+ T cells with high rates of OXPHOS and glutaminolysis were the most susceptible (104, 105). Indeed, HIV infection could be significantly reduced by blocking glutaminolysis (105). In the case of latent viruses, the advantage of altering their host cell's metabolism is less obvious. Since during latency, there is a minimal expression of viral proteins, these viruses are completely dependent on cellular replication to maintain and replicate their genome. Adopting a "cancer-like" metabolism might support uncontrolled cell division, which results in maintenance and amplification of the viral genome.

Altering the metabolic state of cells in the microenvironment might suggest other advantages for infected cells. For example, in KSHV infection, it was shown that altering the metabolism of non-infected cells leads to the secretion of high-energy metabolites. These metabolites are being taken up by infected cells supporting their growth. Therefore, it is suggested that viruses can use EVs to create a specific niche which supports infected host cell growth (97).

Moreover, altering the metabolic phenotype of the niche could also allow viruses to escape the immune system. Since, T cells as part of their differentiation and activation need to undergo dramatic reprogramming of their cellular metabolism (3, 106) a low glucose high lactate microenvironment restricts T cells, dampening their effector function (4, 18). This raises the intriguing hypothesis that by manipulating their host cell's metabolism viruses attenuate T cell function by creating a suppressive microenvironment.

OUTLOOK AND THERAPEUTIC IMPLICATIONS

A better understanding of tumor metabolism is obviously important in order to target tumor cells as well as to counteract

their immunosuppressive impact on anti-tumor T cell responses. As described below different strategies are therefore being explored. One approach consists in the intratumor delivery by nanoparticles of RNA interference that silences lactate dehydrogenase A (LDHA) (107). The observation in preclinical models that the effect of anti-PD1 treatment in a model of melanoma, was improved in mice with LDH-A deficient tumors (108), and that, the deletion of LDHA in myeloid cells was shown to induce T cell antitumor immunity against lung carcinoma (109), further validates the targeting of LDHA. Expression of catalase by chimeric antigen receptor (CAR) T cells improved the protection of CAR T cells against oxidative stress induced in part by ROS in the TME (110). A recent report showed that acetate could be used as an alternative carbon source and rescue the functions (e.g., IFN- γ production) of exhausted tumor infiltrating T cells, and glucose-restricted CD8+ T cells (111).

Autophagy is a catabolic process that allows cell survival and maintenance of cell metabolism in face of stressful conditions such as nutrient starvation. In tumor cells, autophagy appears to play different roles by promoting tumor suppression but also tumor initiation (112). A better understanding of autophagy in tumors could therefore potentially be exploited to develop novel anticancer treatments. Note that in the context of viral infections, autophagy can again play a dual role by promoting or limiting viral replication (113).

Despite viruses amending the immune response, as discussed above, anti-viral responses often successfully eliminate the infecting agents or keep them life-long under control as evidenced by the rare occurrence of CMV or EBV-mediated disease in healthy individuals despite up to 90% of the human population being persistently infected (12). This has led to the interesting idea of repurposing anti-viral T cells against (114). In a recent study Rosato et al. demonstrated that anti-viral T cells can target tumors when these were loaded with exogenous viral peptide. This strategy was made even more efficient when combined with check-point blockade (114) potentially opening up new therapeutic avenues. It remains to be determined if such a strategy impacts on anti-viral control. An important question will be whether utilizing anti-viral T cells could over time lead to their exhaustion and/or reprogramming into Treg in the suppressive TME. Thus, the choice of viral peptide targets and combination with other strategies will be critical; especially considering that a persistent common virus such as EBV is oncogenic if uncontrolled (115).

Altering cell metabolism is one of the hallmarks of cancer. However, it is becoming clear that this effect is not limited to the tumor cells, and as part of tumor development, the metabolic phenotype of the TME is also dramatically changed. Additionally, viruses can mimic this phenotype, affecting the metabolism of both their host cells and cells in their microenvironment. Despite considerable advances, we still have some way to go in understanding how these metabolic alterations affect T cell response and how they could successfully be used to target cancer and chronic viral infection. However, it is clear that

the metabolic profiling of antigen specific T cells and their target cells should now be part of the development of new therapeutic strategies.

AUTHOR CONTRIBUTIONS

All authors have contributed to writing the article, and have read the manuscript.

REFERENCES

1. O'Sullivan D. The metabolic spectrum of memory T cells. *Immunol Cell Biol*. (2019) 97:636–46. doi: 10.1111/imcb.12274
2. Nanbo A, Kawanishi E, Yoshida R, Yoshiyama H. Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. *J Virol*. (2013) 87:10334–47. doi: 10.1128/JVI.01310-13
3. Ganeshan K, Chawla A. Metabolic regulation of immune responses. *Annu Rev Immunol*. (2014) 32:609–34. doi: 10.1146/annurev-immunol-032713-120236
4. Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. *Cell*. (2015) 162:1229–41. doi: 10.1016/j.cell.2015.08.016
5. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. *Cell*. (2015) 162:1217–28. doi: 10.1016/j.cell.2015.08.012
6. Levy P, Bartosch B. Metabolic reprogramming: a hallmark of viral oncogenesis. *Oncogene*. (2016) 35:4155–64. doi: 10.1038/onc.2015.479
7. Mesquita I, Estaquier J. Viral manipulation of the host metabolic network. *Exp Suppl*. (2018) 109:377–401. doi: 10.1007/978-3-319-74932-7_10
8. Schurich A, Magalhaes I, Mattsson J. Metabolic regulation of CAR T cell function by the hypoxic microenvironment in solid tumors. *Immunotherapy*. (2019) 11:335–45. doi: 10.2217/itm-2018-0141
9. Sitkovsky MV, Hatfield S, Abbott R, Belikoff B, Lukashev D, Ohta A. Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. *Cancer Immunol Res*. (2014) 2:598–605. doi: 10.1158/2326-6066.CIR-14-0075
10. Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. *Cancer Res*. (2014) 74:665–74. doi: 10.1158/0008-5472.CAN-13-0992
11. Santos SAD, Andrade DRJ. HIF-1alpha and infectious diseases: a new frontier for the development of new therapies. *Rev Inst Med Trop São Paulo*. (2017) 59:e92. doi: 10.1590/s1678-9946201759092
12. Pallett LJ, Schmidt N, Schurich A. T cell metabolism in chronic viral infection. *Clin Exp Immunol*. (2019) 197:143–52. doi: 10.1111/cei.13308
13. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. *Blood*. (2007) 109:3812–9. doi: 10.1182/blood-2006-07-035972
14. Mendlar AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. *Int J Cancer*. (2012) 131:633–40. doi: 10.1002/ijc.26410
15. Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, Parri M, et al. Lactate modulates CD4(+) T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. *Oncogene*. (2019) 38:3681–95. doi: 10.1038/s41388-019-0688-7
16. Ranganathan P, Shamugam A, Swafford D, Suryawanshi A, Bhattacharjee P, Hussein MS, et al. GPR81, a cell-surface receptor for lactate, regulates intestinal homeostasis and protects mice from experimental colitis. *J Immunol*. (2018) 200:1781–9. doi: 10.4049/jimmunol.1700604
17. Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, et al. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. *Oncogene*. (2017) 36:5829–39. doi: 10.1038/onc.2017.188
18. Angelin A, Gil-de-Gomez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. *Cell Metab*. (2017) 25:1282–93 e1287. doi: 10.1016/j.cmet.2016.12.018
19. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. *Proc Natl Acad Sci USA*. (2008) 105:18782–7. doi: 10.1073/pnas.0810199105
20. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. *J Exp Med*. (1999) 189:1363–72. doi: 10.1084/jem.189.9.1363
21. Pallett LJ, Gill US, Quaglia A, Sinclair LV, Jover-Cobos M, Schurich A, et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. *Nat Med*. (2015) 21:591–600. doi: 10.1038/nm.3856
22. Matheson NJ, Sumner J, Wals K, Rapiteanu R, Weekes MP, Vigan R, et al. Cell surface proteomic map of HIV infection reveals antagonism of amino acid metabolism by Vpu and Nef. *Cell Host Microbe*. (2015) 18:409–23. doi: 10.1016/j.chom.2015.09.003
23. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. *Cancer Res*. (2010) 70:68–77. doi: 10.1158/0008-5472.CAN-09-2587
24. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. *Nat Med*. (2011) 17:1498–503. doi: 10.1038/nm.2492
25. Martin-Acebes MA, Jimenez de Oya N, Saiz JC. Lipid metabolism as a source of druggable targets for antiviral discovery against zika and other flaviviruses. *Pharmaceuticals*. (2019) 12:E97. doi: 10.3390/ph12020097
26. Hukelmann JL, Anderson KE, Sinclair LV, Grzes KM, Murillo AB, Hawkins PT, et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. *Nat Immunol*. (2016) 17:104–12. doi: 10.1038/ni.3314
27. Bailis W, Shyer JA, Zhao J, Canaveras JCG, Al Khazal FJ, Qu R, et al. Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function. *Nature*. (2019) 571:403–7. doi: 10.1038/s41586-019-1311-3
28. Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, Attanasio J, et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. *Immunity*. (2016) 45:358–73. doi: 10.1016/j.jimmuni.2016.07.008
29. Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. *Immunity*. (2016) 45:374–88. doi: 10.1016/j.jimmuni.2016.07.009
30. Schurich A, Pallett LJ, Jajbhay D, Wijngaarden J, Otano I, Gill US, et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. *Cell Rep*. (2016) 16:1243–52. doi: 10.1016/j.celrep.2016.06.078
31. Buck MD, O'Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. *Cell*. (2016) 166:63–76. doi: 10.1016/j.cell.2016.05.035
32. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell*. (2011) 144:646–74. doi: 10.1016/j.cell.2011.02.013
33. Corbet C, Feron O. Cancer cell metabolism and mitochondria: nutrient plasticity for TCA cycle fueling. *Biochim Biophys Acta Rev Cancer*. (2017) 1868:7–15. doi: 10.1016/j.bbcan.2017.01.002

FUNDING

IM was supported by grants from Cancerfonden (19 0002 FE), the Dr. Åke Olsson Foundation (2019-00386), Svenska Läkaresällskapets (SLS-783531), and Clas Groschinskys Minnesfond (M 18224). JM was supported by grants from Cancerfonden (CAN2016/747), Radiumhemmet (181201), and the Mix private donation.

34. Marbaniang C, Kma L. Dysregulation of glucose metabolism by oncogenes and tumor suppressors in cancer cells. *Asian Pac J Cancer Prev.* (2018) 19:2377–90. doi: 10.22034/APJCP.2018.19.9.2377
35. Charitou T, Srihari S, Lynn MA, Jarboui MA, Fasterius E, Moldovan M, et al. Transcriptional and metabolic rewiring of colorectal cancer cells expressing the oncogenic KRAS(G13D) mutation. *Br J Cancer.* (2019) 121:37–50. doi: 10.1038/s41416-019-0477-7
36. Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism. *J Mol Cell Biol.* (2019) 11:284–92. doi: 10.1093/jmcb/mjy070
37. Mougiaakos D, Johansson CC, Kiessling R. Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. *Blood.* (2009) 113:3542–5. doi: 10.1182/blood-2008-09-1040
38. Walton ZE, Patel CH, Brooks RC, Yu Y, Ibrahim-Hashim A, Riddle M, et al. Acid suspends the circadian clock in hypoxia through inhibition of mTOR. *Cell.* (2018) 174:72–87 e32. doi: 10.1016/j.cell.2018.05.009
39. Zheng Y, Delgoffe GM, Meyer CF, Chan W, Powell JD. Anergic T cells are metabolically anergic. *J Immunol.* (2009) 183:6095–101. doi: 10.4049/jimmunol.0803510
40. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. *Blood.* (2005) 105:4743–8. doi: 10.1182/blood-2004-10-3932
41. Ren L, Zhang W, Han P, Zhang J, Zhu Y, Meng X, et al. Influenza A virus (H1N1) triggers a hypoxic response by stabilizing hypoxia-inducible factor-1alpha via inhibition of proteasome. *Virology.* (2019) 530:51–8. doi: 10.1016/j.virol.2019.02.010
42. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A adenosine receptor protects tumors from antitumor T cells. *Proc Natl Acad Sci USA.* (2006) 103:13132–7. doi: 10.1073/pnas.0605251103
43. Najjar YG, Menk AV, Sander C, Rao U, Karunamurthy A, Bhatia R, et al. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. *JCI Insight.* (2019) 4:124989. doi: 10.1172/jci.insight.124989
44. Marijt KA, Sluijter M, Blijlevens L, Tolmeijer SH, Scheeren FA, van der Burg SH, et al. Metabolic stress in cancer cells induces immune escape through a PI3K-dependent blockade of IFN γ receptor signaling. *J Immunother Cancer.* (2019) 7:152. doi: 10.1186/s40425-019-0627-8
45. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. *Cell Metab.* (2016) 24:657–71. doi: 10.1016/j.cmet.2016.08.011
46. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. *J Immunol.* (2011) 186:3299–303. doi: 10.4049/jimmunol.1003613
47. Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. *Cancer Res.* (2012) 72:2746–56. doi: 10.1158/0008-5472.CAN-11-1272
48. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, et al. Glucose feeds the TCA cycle via circulating lactate. *Nature.* (2017) 551:115–8. doi: 10.1038/nature24057
49. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. *Proc Natl Acad Sci USA.* (2007) 104:19345–50. doi: 10.1073/pnas.0709747104
50. Goveia J, Pircher A, Conradi LC, Kalucka J, Lagani V, Dowerchin M, et al. Meta-analysis of clinical metabolic profiling studies in cancer: challenges and opportunities. *EMBO Mol Med.* (2016) 8:1134–42. doi: 10.15252/emmm.201606798
51. Reznik E, Luna A, Aksoy BA, Liu EM, La K, Ostrovnyaya I, et al. A landscape of metabolic variation across tumor types. *Cell Syst.* (2018) 6:301–13 e303. doi: 10.1016/j.cels.2017.12.014
52. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. *Nat Rev Cancer.* (2016) 16:749. doi: 10.1038/nrc.2016.114
53. Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, et al. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. *Sci Signal.* (2015) 8:ra97. doi: 10.1126/scisignal.aab2610
54. Metzler B, Gfeller P, Guinet E. Restricting glutamine or glutamine-dependent purine and pyrimidine syntheses promotes human T cells with high FOXP3 expression and regulatory properties. *J Immunol.* (2016) 196:3618–30. doi: 10.4049/jimmunol.1501756
55. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. *J Immunol.* (2006) 176:6752–61. doi: 10.4049/jimmunol.176.11.6752
56. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. *J Immunol.* (2010) 185:3190–8. doi: 10.4049/jimmunol.0903670
57. Komiya T, Huang CH. Updates in the clinical development of epacadostat and other indoleamine 2,3-dioxygenase 1 inhibitors (IDO1) for human cancers. *Front Oncol.* (2018) 8:423. doi: 10.3389/fonc.2018.00423
58. Umansky V, Blattner C, Gebhardt C, Utikal J. The role of myeloid-derived suppressor cells (MDSC) in cancer progression. *Vaccines.* (2016) 4:E36. doi: 10.3390/vaccines4040036
59. Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ, Argus JP, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. *Nat Immunol.* (2013) 14:489–99. doi: 10.1038/ni.2570
60. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. *Nature.* (2009) 460:103–7. doi: 10.1038/nature08097
61. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. *Immunity.* (2012) 36:68–78. doi: 10.1016/j.jimmuni.2011.12.007
62. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. *Cell Metab.* (2013) 18:153–61. doi: 10.1016/j.cmet.2013.05.017
63. Purdy JG, Shenk T, Rabinowitz JD. Fatty acid elongase 7 catalyzes lipidome remodeling essential for human cytomegalovirus replication. *Cell Rep.* (2015) 10:1375–85. doi: 10.1016/j.celrep.2015.02.003
64. Lowey B, Hertz L, Chiu S, Valdez K, Li Q, Liang TJ. Hepatitis C virus infection induces hepatic expression of NF- κ B-inducing kinase and lipogenesis by downregulating miR-122. *MBio.* (2019) 10:e01617-19. doi: 10.1128/mBio.01617-19
65. Chen J, Zhou Y, Zhuang Y, Qin T, Guo M, Jiang J, et al. The metabolic regulator small heterodimer partner contributes to the glucose and lipid homeostasis abnormalities induced by hepatitis C virus infection. *Metabolism* 2019;153954. doi: 10.1016/j.metabol.2019.153954
66. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. *Nat Rev Clin Oncol.* (2018) 15:81–94. doi: 10.1038/nrclinonc.2017.166
67. Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE, et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. *Science.* (2012) 338:1220–5. doi: 10.1126/science.1229620
68. Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira DP, Calderon-Copete S, et al. T cell factor 1-expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections. *Immunity.* (2016) 45:415–27. doi: 10.1016/j.jimmuni.2016.07.021
69. Jameson SC, Masopust D. Understanding subset diversity in T cell memory. *Immunity.* (2018) 48:214–26. doi: 10.1016/j.jimmuni.2018.02.010
70. Maini MK, Schurich A. The molecular basis of the failed immune response in chronic HBV: therapeutic implications. *J Hepatol.* (2010) 52:616–9. doi: 10.1016/j.jhep.2009.12.017
71. Schurich A, Pallett LJ, Lubowiecki M, Singh HD, Gill US, Kennedy PT, et al. The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells. *PLoS Pathog.* (2013) 9:e1003208. doi: 10.1371/journal.ppat.1003208

72. Ahsan NA, Sampey GC, Lepene B, Akpamagbo Y, Barclay RA, Iordanskiy S, et al. Presence of viral RNA and proteins in exosomes from cellular clones resistant to rift valley fever virus infection. *Front Microbiol.* (2016) 7:139. doi: 10.3389/fmicb.2016.00139
73. Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. *PLoS Pathog.* (2014) 10:e1004424. doi: 10.1371/journal.ppat.1004424
74. Chen L, Feng Z, Yue H, Bazdar D, Mbonye U, Zender C, et al. Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. *Nat Commun.* (2018) 9:4585. doi: 10.1038/s41467-018-07006-2
75. Kalamvoki M, Du T, Roizman B. Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. *Proc Natl Acad Sci USA.* (2014) 111:E4991–6. doi: 10.1073/pnas.1419338111
76. Kapoor NR, Chadha R, Kumar S, Choedon T, Reddy VS, Kumar V. The HBx gene of hepatitis B virus can influence hepatic microenvironment via exosomes by transferring its mRNA and protein. *Virus Res.* (2017) 240:166–74. doi: 10.1016/j.virusres.2017.08.009
77. Kim JH, Lee CH, Lee SW. Exosomal transmission of microRNA from HCV replicating cells stimulates transdifferentiation in hepatic stellate cells. *Mol Ther Nucleic Acids.* (2019) 14:483–97. doi: 10.1016/j.omtn.2019.01.006
78. Liu DX, Li PP, Guo JP, Li LL, Guo B, Jiao HB, et al. Exosomes derived from HBV-associated liver cancer promote chemoresistance by upregulating chaperone-mediated autophagy. *Oncol Lett.* (2019) 17:323–31. doi: 10.3892/ol.2018.9584
79. Otaguiri KK, Dos Santos DF, Slavov SN, Depieri LV, Palma PVB, Meirelles FV, et al. TAX-mRNA-carrying exosomes from human T cell lymphotropic virus type 1-infected cells can induce interferon-gamma production *in vitro*. *AIDS Res Hum Retroviruses.* (2018) 34. doi: 10.1089/aid.2018.0115
80. Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, de Ruiter PE, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. *Proc Natl Acad Sci USA.* (2013) 110:13109–13. doi: 10.1073/pnas.1221899110
81. Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung MC, et al. Exosomes from HIV-1-infected cells stimulate production of pro-inflammatory cytokines through trans-activating response (TAR) RNA. *J Biol Chem.* (2016) 291:1251–66. doi: 10.1074/jbc.M115.662171
82. Temme S, Eis-Hubinger AM, McLellan AD, Koch N. The herpes simplex virus-1 encoded glycoprotein B diverts HLA-DR into the exosome pathway. *J Immunol.* (2010) 184:236–43. doi: 10.4049/jimmunol.0902192
83. Wang T, Fang L, Zhao F, Wang D, Xiao S. Exosomes mediate intercellular transmission of porcine reproductive and respiratory syndrome virus. *J Virol.* (2018) 92:e01734–17. doi: 10.1128/JVI.01734-17
84. Yang Y, Han Q, Hou Z, Zhang C, Tian Z, Zhang J. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction. *Cell Mol Immunol.* (2017) 14:465–75. doi: 10.1038/cmi.2016.24
85. Kalluri R. The biology and function of exosomes in cancer. *J Clin Invest.* (2016) 126:1208–15. doi: 10.1172/JCI81135
86. Rajagopal C, Harikumar KB. The origin and functions of exosomes in cancer. *Front Oncol.* (2018) 8:66. doi: 10.3389/fonc.2018.00066
87. Tung KH, Ernstooff MS, Allen C, Shu S. A review of exosomes and their role in the tumor microenvironment and host-tumor “macroenvironment”. *J Immunol Sci.* (2019) 3:4–8. doi: 10.29245/2578-3009/2019/1.1165
88. Lo AK, Dawson CW, Young LS, Lo KW. The role of metabolic reprogramming in gamma-herpesvirus-associated oncogenesis. *Int J Cancer.* (2017) 141:1512–21. doi: 10.1002/ijc.30795
89. Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenberry DM, Lagunoff M. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. *Proc Natl Acad Sci USA.* (2010) 107:10696–701. doi: 10.1073/pnas.1004882107
90. Delgado T, Sanchez EL, Camarda R, Lagunoff M. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. *PLoS Pathog.* (2012) 8:e1002866. doi: 10.1371/journal.ppat.1002866
91. Sanchez EL, Carroll PA, Thalhofer AB, Lagunoff M. Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival. *PLoS Pathog.* (2015) 11:e1005052. doi: 10.1371/journal.ppat.1005052
92. Sanchez EL, Pulliam TH, Dimaio TA, Thalhofer AB, Delgado T, Lagunoff M. Glycolysis, glutaminolysis, and fatty acid synthesis are required for distinct stages of Kaposi's sarcoma-associated herpesvirus lytic replication. *J Virol.* (2017) 91:e02237–16. doi: 10.1128/JVI.02237-16
93. Singh RK, Lang F, Pei Y, Jha HC, Robertson ES. Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. *PLoS Pathog.* (2018) 14:e1007062. doi: 10.1371/journal.ppat.1007062
94. Yoge O, Lagos D, Enver T, Boshoff C. Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. *PLoS Pathog.* (2014) 10:e1004400. doi: 10.1371/journal.ppat.1004400
95. Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, et al. Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. *PLoS Pathog.* (2013) 9:e1003484. doi: 10.1371/journal.ppat.1003484
96. McNamara RP, Chugh PE, Bailey A, Costantini LM, Ma Z, Bigi R, et al. Extracellular vesicles from Kaposi Sarcoma-associated herpesvirus lymphoma induce long-term endothelial cell reprogramming. *PLoS Pathog.* (2019) 15:e1007536. doi: 10.1371/journal.ppat.1007536
97. Yoge O, Henderson S, Hayes MJ, Marelli SS, Ofir-Birin Y, Regev-Rudzki N, et al. Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs. *PLoS Pathog.* (2017) 13:e1006524. doi: 10.1371/journal.ppat.1006524
98. Piccaluga PP, Weber A, Ambrosio MR, Ahmed Y, Leoncini L. Epstein-Barr virus-induced metabolic rearrangements in human B-cell lymphomas. *Front Microbiol.* (2018) 9:1233. doi: 10.3389/fmicb.2018.01233
99. Zhang J, Jia L, Liu T, Yip YL, Tang WC, Lin W, et al. mTORC2-mediated PDHE1 α nuclear translocation links EBV-LMP1 reprogrammed glucose metabolism to cancer metastasis in nasopharyngeal carcinoma. *Oncogene.* (2019) 38:4669–84. doi: 10.1038/s41388-019-0749-y
100. Cai TT, Ye SB, Liu YN, He J, Chen QY, Mai HQ, et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. *PLoS Pathog.* (2017) 13:e1006503. doi: 10.1371/journal.ppat.1006503
101. Marshall NA, Culligan DJ, Tighe J, Johnston PW, Barker RN, Vickers MA. The relationships between Epstein-Barr virus latent membrane protein 1 and regulatory T cells in Hodgkin's lymphoma. *Exp Hematol.* (2007) 35:596–604. doi: 10.1016/j.exphem.2007.01.030
102. Baglio SR, van Eijndhoven MA, Koppers-Lalic D, Berenguer J, Lougheed SM, Gibbs S, et al. Sensing of latent EBV infection through exosomal transfer of 5'pppRNA. *Proc Natl Acad Sci USA.* (2016) 113:E587–96. doi: 10.1073/pnas.1518130113
103. Hurwitz SN, Nkosi D, Conlon MM, York SB, Liu X, Tremblay DC, et al. CD63 regulates Epstein-Barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF- κ B signaling. *J Virol.* (2017) 91:e00251–16. doi: 10.1128/JVI.02251-16
104. Valle-Casuso JC, Angin M, Volant S, Passaes C, Monceaux V, Mikhailova A, et al. Cellular metabolism is a major determinant of HIV-1 reservoir seeding in CD4(+) T cells and offers an opportunity to tackle infection. *Cell Metab.* (2019) 29:611–26.e615. doi: 10.1016/j.cmet.2018.11.015
105. Clerc I, Abba Moussa D, Vahlas Z, Tardito S, Oburoglu L, Hope TJ, et al. Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells. *Nature Metabolism.* (2019) 1:717–30. doi: 10.1038/s42255-019-0084-1
106. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. *Immunity.* (2013) 38:633–43. doi: 10.1016/j.immuni.2013.04.005
107. Zhang YX, Zhao YY, Shen J, Sun X, Liu Y, Liu H, et al. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. *Nano Lett.* (2019) 19:2774–83. doi: 10.1021/acs.nanolett.8b04296
108. Daneshmandi S, Wegiel B, Seth P. Blockade of lactate dehydrogenase-A (LDH-A) improves efficacy of anti-programmed cell death-1 (PD-1)

- therapy in melanoma. *Cancers.* (2019) 11:E450. doi: 10.3390/cancers11040450
109. Seth P, Csizmadia E, Hedblom A, Vuerich M, Xie H, Li M, et al. Deletion of lactate dehydrogenase-A in myeloid cells triggers antitumor immunity. *Cancer Res.* (2017) 77:3632–43. doi: 10.1158/0008-5472.CAN-16-2938
110. Ligtenberg MA, Mougakakos D, Mukhopadhyay M, Witt K, Lladser A, Chmielewski M, et al. Coexpressed catalase protects chimeric antigen receptor-redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity. *J Immunol.* (2016) 196:759–66. doi: 10.4049/jimmunol.1401710
111. Qiu J, Villa M, Sanin DE, Buck MD, O'Sullivan D, Ching R, et al. Acetate promotes T cell effector function during glucose restriction. *Cell Rep.* (2019) 27:2063–74 e2065. doi: 10.1016/j.celrep.2019.04.022
112. Yun CW, Lee SH. The roles of autophagy in cancer. *Int J Mol Sci.* (2018) 19:E3466. doi: 10.3390/ijms19113466
113. Choi Y, Bowman JW, Jung JU. Autophagy during viral infection - a double-edged sword. *Nat Rev Microbiol.* (2018) 16:341–54. doi: 10.1038/s41579-018-0003-6
114. Rosato PC, Wijeyesinghe S, Stolley JM, Nelson CE, Davis RL, Manlove LS, et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. *Nat Commun.* (2019) 10:567. doi: 10.1038/s41467-019-08534-1
115. Farrell PJ. Epstein-Barr virus and cancer. *Annu Rev Pathol.* (2019) 14:29–53. doi: 10.1146/annurev-pathmechdis-012418-013023

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Magalhaes, Yoge, Mattsson and Schurich. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease

Jayne Louise Wilson*, Hannah Katharina Mayr and Thomas Weichhart*

Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria

OPEN ACCESS

Edited by:

Marianne Boes,
Utrecht University, Netherlands

Reviewed by:

Lobelia Samavati,
Wayne State University, United States
Valentina Guerrini,
Rutgers, The State University of New Jersey, Newark, United States

***Correspondence:**

Jayne Louise Wilson
jayne.wilson@meduniwien.ac.at
Thomas Weichhart
thomas.weichhart@meduniwien.ac.at

Specialty section:

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

Received: 14 June 2019

Accepted: 09 September 2019

Published: 04 October 2019

Citation:

Wilson JL, Mayr HK and Weichhart T (2019) Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease. *Front. Immunol.* 10:2265. doi: 10.3389/fimmu.2019.02265

Metabolic reprogramming is rapidly gaining appreciation in the etiology of immune cell dysfunction in a variety of diseases. Tuberculosis, schistosomiasis, and sarcoidosis represent an important class of diseases characterized by the formation of granulomas, where macrophages are causatively implicated in disease pathogenesis. Recent studies support the incidence of macrophage metabolic reprogramming in granulomas of both infectious and non-infectious origin. These publications identify the mechanistic target of rapamycin (mTOR), as well as the major regulators of lipid metabolism and cellular energy balance, peroxisome proliferator receptor gamma (PPAR- γ) and adenosine monophosphate-activated protein kinase (AMPK), respectively, as key players in the pathological progression of granulomas. In this review, we present a comprehensive breakdown of emerging research on the link between macrophage cell metabolism and granulomas of different etiology, and how parallels can be drawn between different forms of granulomatous disease. In particular, we discuss the role of PPAR- γ signaling and lipid metabolism, which are currently the best-represented metabolic pathways in this context, and we highlight dysregulated lipid metabolism as a common denominator in granulomatous disease progression. This review therefore aims to highlight metabolic mechanisms of granuloma immune cell fate and open up research questions for the identification of potential therapeutic targets in the future.

Keywords: macrophage, immunometabolism, granuloma, tuberculosis, schistosomiasis, sarcoidosis

INTRODUCTION

At its core, a granuloma is a compact and organized structure formed by the initial aggregation of macrophages in response to a persistent stimulus (1, 2). A multitude of stimuli have been reported to evoke a granulomatous reaction, including infectious agents, the best studied of which are *Mycobacterium tuberculosis* and the parasitic trematode genus *Schistosoma*, non-infectious foreign bodies such as silica, pollutants, dust and biomedical implants (3, 4), as well as autoimmune or inflammatory diseases of unknown etiology, including sarcoidosis and Crohn's disease. It has also been suggested, particularly in the case of sarcoidosis, that a combination of infectious and non-infectious factors could be responsible for disease pathogenesis, with evidence suggesting *Propionibacterium acnes* or mycobacterial infection as potential environmental triggers (5).

Depending on the nature and persistence of the inciting stimulus, the macrophages at the core of the granuloma can undergo a series of distinct morphological changes, the most prominent involving epithelioid cell differentiation; an enigmatic process for which the exact trigger and molecular mechanisms have yet to be elucidated. The resultant macrophages, termed “epithelioid,” are characterized by a hypertrophic, flattened appearance, diffuse cytoplasm and elongated nuclei, as well as epithelial-like interdigitated cell membranes, enabling the cells to interlace and form an epithelioid barrier to wall off the persistent antigen (1, 6, 7). These epithelioid macrophages can further develop into multinucleated giant cells via as yet undefined mechanisms; however, cell-cell fusion (8, 9) and cytokinesis failure (10) have been proposed. Furthermore, in the case of tuberculosis granulomas, macrophages can transform into foam cells as a result of their enhanced accumulation of lipids as the infection progresses (11).

As the granuloma matures, a number of additional cells can be recruited to the structure—a process that depends heavily on the nature of the inciting agent. Such cells include granulocytes, monocytes, dendritic cells, B and T cells, NK cells and fibroblasts (1, 12, 13), which surround the macrophage core resulting in a complex and highly organized structure. A subsequent and final stage of granuloma maturation involves the development of pathological structures as a result of dysregulated inflammation, which are associated with tissue damage and morbidity. One such feature is the formation of a fibrotic outer capsule that occurs in granulomas of diverse etiology, including sarcoidosis and schistosomiasis. Another pathological feature, which develops primarily in granulomas of infectious origin, is the formation of necrotic regions within the central core of the granuloma. This is a characteristic that is well-studied in the case of tuberculosis, during which necrosis is associated with a failure of the immune response and results in bacterial dissemination and patient morbidity (14).

Due to the major clinical role of granulomas in an array of disease pathologies, the morphological properties of granuloma formation have been extensively studied. However, the fundamental and molecular core mechanisms involved in the granulomatous immune response are only starting to emerge. Our group recently identified the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway as a molecular mechanism in the initiation and maintenance of granulomas in mice, as well as its activation in sarcoidosis patients suffering from a progressive form of the disease (15). mTOR is well-known to sense and integrate a range of environmental signals to regulate cellular metabolism and cell growth in many cell types (16, 17). However, our work specifically revealed an involvement of macrophage mTORC1 signaling in the context of granuloma formation and development (15), thus highlighting the potential importance of macrophage immunometabolic responses in granulomatous disease. While mTORC1 was also recently identified as a driver of foam cell biogenesis in tuberculosis (18), the relevance of mTOR signaling in schistosomiasis remains to be elucidated. Likewise, adenosine monophosphate-activated protein kinase (AMPK) has been reported to orchestrate lipid catabolism and oxidative

phosphorylation (OXHPOS) in tuberculosis (19, 20); however, an involvement of this metabolic regulator in schistosomiasis and sarcoidosis has barely been defined. Interestingly, peroxisome proliferator receptor gamma (PPAR- γ)-signaling has been implicated in the progression of all three diseases. As PPAR- γ is a master regulator of lipid homeostasis (21), this strongly suggests an involvement of lipid metabolism in the pathogenesis of granulomas.

Indeed, the significance of macrophage metabolic plasticity dependent on disease pathology is now widely accepted and the field of immunometabolism has gained momentum in recent years. New findings have emerged that shed light on the complex molecular mechanisms underpinning macrophage function across numerous diseases states; however, at present, such responses are exquisitely linked to the current M1/M2 framework of macrophage polarization. In this review, we focus on the current literature describing the immunometabolic programming of macrophages—as the workhorses at the forefront of granuloma formation, development and maintenance (1, 13)—in the best characterized examples of granulomatous disease: tuberculosis, schistosomiasis and sarcoidosis. In particular, we highlight literature pertaining to the role of PPAR- γ and lipid metabolism in the pathogenesis of these diseases, which suggests dysregulated lipid metabolism as a key contributor to granuloma fate.

A PRELUDE TO M1/M2 POLARIZATION AND ITS IMMUNOMETABOLIC NATURE

At present, the concept of M1/M2 macrophage polarization, albeit oversimplified and based primarily on *in vitro* data, still remains one of the best means by which macrophage activation can be described. Classically activated M1 macrophages function at the crux of host defense by eliciting essential pro-inflammatory responses and bridging innate and adaptive immunity. In contrast, alternatively activated M2 macrophages are crucial to immune regulation by promoting the resolution of inflammation and preventing an exacerbated, chronic inflammatory state, as well as the maintenance of tissue homeostasis by inducing tissue healing and remodeling (22–24). M1 and M2 polarization states are additionally defined by distinct metabolic profiles that are crucial in driving the differential activation of macrophages (25). It is important to note, however, that while the scheme of M1/M2 polarization has been very useful in furthering our understanding of macrophage function and biology, *in vivo* and human studies point toward a larger, less distinct spectrum of polarization states (26, 27). Accordingly, it is becoming more common to refer to the subcategories, which include M1a, M1b, and M2a-c that are, in part, defined by their differential expression of chemokine receptors (28). Transcriptomic analyses have revealed that there are six main polarization states in humans that are highly sensitive to certain stimuli, and thus the nomenclature has also been adapted to “M(LPS),” “M(IL-4)” and others (29). In addition, there is significant evidence to suggest that these polarization states have a high plasticity and do not represent a terminal differentiation (30).

Nevertheless, the pathological consequences of the immunometabolic nature of macrophage polarization in granulomas are only just starting to emerge, with the tubercle granuloma currently constituting the best-studied example. Thus, while the metabolic landscape of granuloma macrophages in a human disease scenario will be much more complex, the simplified M1/M2 dogma and the use of *in vivo* models currently comprise the primary framework for discussing macrophage metabolism in the context of granulomatous disease. Below, we therefore provide a brief overview of the key immunometabolic features of M1/M2 macrophage polarization as an introduction to the subsequent discussion on their contributing roles in the pathology of tuberculosis, schistosomiasis and sarcoidosis.

Classically Activated (M1) Macrophages

M1 macrophage polarization is typically stimulated by inflammatory cytokines including interferon-gamma (IFN- γ) and/or tumor necrosis factor (TNF) in combination with Toll-like receptor (TLR) ligation (31). This leads to NF- κ B signaling via the phosphorylation of Inhibitor of (I) κ B kinase, and the activation of several interferon-regulatory factors (IRFs) (32), which are signature genes of the M1 macrophage phenotype. Although both TLR ligation and IFN- γ signaling can individually and redundantly induce the phenotype (31), it was recently shown in tumor-associated macrophages that both mechanisms may need to work synergistically to produce an effective, highly pro-inflammatory M1 switch (33). Metabolically, M1 macrophage activation classically involves the Warburg effect. This metabolic switch is well-known in oncology and refers to a distinct metabolic profile in tumor cells undergoing uncontrolled division, during which cells utilize glycolysis for rapid ATP generation in the presence of oxygen, termed “aerobic glycolysis” (34). In macrophages, this switch drives the essential increase in ATP production required to support the innate immune response to infectious insult and/or tissue injury, supporting the rapid production of inflammatory cytokines and enhancing phagocytosis (25). Both TLR ligation and LPS-induced increased hypoxia-inducible factor 1- α (HIF-1 α) expression are associated with the Warburg effect in macrophages (35, 36). Specifically, HIF-1 α links the effector functions of M1 macrophages to their metabolic profile by both activating glycolytic enzymes and directly promoting transcription of the inflammatory mediator IL-1 β (36). Moreover, when HIF-1 α is overexpressed in macrophages, mitochondrial OXPHOS is suppressed and the cells enter a highly glycolytic and inflammatory state with a clear M1 phenotype (37). It must be noted, however, that the Warburg effect has almost exclusively been observed *in vitro* and in cancer cells, and it has been proposed that M1 macrophages only exhibit a “Warburg-like” phenotype (38).

Alternatively Activated (M2) Macrophages

M2 macrophage polarization is brought about by the cytokines IL-4 and IL-13 released from CD4 $^{+}$ Th2 cells (39, 40). The IL-4/13 receptor activates insulin receptor substrate 2 (IRS2), leading to the upregulation of key M2 markers: Arg-1, RELM α , and Ym1. The IL-4/13 receptors signal via signal transducer and

activator of transcription 6 (STAT6) to activate phospholipases and GATA binding protein 3 (GATA3), which are required for the production of chemokines and the anti-inflammatory cytokine IL-10 (41, 42). There is also evidence that IL-10 can produce an M2 or M2-like phenotype via the phosphorylation of STAT3, leading to the production of IL-10 in an autocrine manner (43, 44). Unlike their M1 counterparts, M2 macrophages are defined by their intact TCA cycle, which allows for the generation of FADH2 and NADH and the production of high ATP yields through OXPHOS. Concomitantly, M2 macrophages display increased glycolysis as a carbon source (15, 45). Importantly, an intact TCA cycle allows for the glycosylation of M2-specific mannose and lectin receptors by UDP-GlcNAc (46). OXPHOS in M2 macrophages is supported by fatty acid oxidation (FAO), and M2 polarization is marked by increased expression of the lipid scavenger receptor CD36, as well as a dependence on cell-intrinsic lysosomal lipolysis (38, 45, 47). M2 macrophages are also known to consume more glutamine than other macrophage phenotypes (48). Glutamine augments the production of UDP-GlcNAc (46) and glutaminolysis has been shown to produce α -ketoglutarate, a major metabolite and component of the TCA cycle (49). Glutamine-derived α -ketoglutarate promotes specific histone demethylation and transcription of M2 genes (49, 50).

TUBERCULOSIS AND THE IMMUNOMETABOLIC RESPONSE: A BALANCING ACT

Tuberculosis is an infectious disease caused by the bacillus *Mycobacterium tuberculosis* (Mtb) and is one of the most frequent etiological triggers of granuloma formation. It is the leading cause of mortality from a single infectious agent and was responsible for an estimated 1.7 million deaths worldwide in 2017 (51). However, only a small proportion (5–10%) of the infected population will develop active tuberculosis, with a greater incidence in individuals infected with HIV or suffering from malnutrition or diabetes (51). It has therefore long been established that the outcome of Mtb infection depends upon a complex and dynamic interplay between host and pathogen (52–54), with the degree of bacterial virulence and host resistance defining the pathogenesis of disease (55–57).

Initial Host Responses to Mtb Infection

Tuberculosis is typically a disease of the lungs initiated upon inhalation of airborne droplets containing the tubercle bacilli at an estimated infectious dose of just a single bacterium (58, 59). The bacteria are subsequently deposited in the airways where they are phagocytosed by resident alveolar macrophages and transported into the lung parenchyma (60, 61). The generation of TNF- α and inflammatory chemokines by the infected macrophages then drives a localized inflammatory response involving the recruitment of additional mononuclear cells (52), including interstitial macrophages, monocytes, neutrophils, and dendritic cells, many of which Mtb subsequently infects (54). Dendritic cells transfer Mtb from the lungs to the local draining lymph nodes (62) for subsequent priming of naive T cells and

the adaptive immune response (63), the development of which is unusually delayed during *Mtb* infection, taking up to 5–6 weeks in humans (64, 65). The latter has been attributed to successful immune evasion by the bacteria, which is thought to seek refuge within lung phagocytes (54). Thus, although *Mtb* is known to infect multiple immune cells in the lung, macrophages are considered to be the key players in the balance between bacterial containment and disease progression (66). Moreover, increasing evidence from non-human primate and/or human patient granulomas suggests that mycobacterial burden, as well as advancement to active disease, is associated with an increased proportion of alternatively activated M2 to classically activated M1 macrophages (67–69). We will explore this further in the following subsections, with a particular focus on the emerging importance of the immunometabolic characteristics of M1- vs. M2-like macrophages on the outcome of mycobacterial infection.

Distinct Immunometabolic Responses of Pulmonary Macrophages to *Mtb*

Tissue resident alveolar macrophages are the first cells to encounter invading mycobacteria after aerosol infection (54). Several studies in diverse model systems, encompassing mycobacterial infection of human alveolar macrophages (70–72), mouse models (73, 74) and zebrafish larvae (75), demonstrate an initial mycobactericidal role that is conserved in multiple tissue resident macrophages across species. However, these reports contend with numerous contradictory studies that render the alveolar macrophage as a favorable niche for the growth and survival of mycobacteria, acting as a shield against the bactericidal activity of subsequently recruited immune cells, as well as activation of the Th1 response (54).

At steady state, alveolar macrophages do not conform to the classical definition of M1 or M2 polarization, but instead exhibit a hybrid phenotype that affords a degree plasticity in keeping with their critical role in maintaining lung homeostasis (76, 77). It is logical that as sentinels of the lung, alveolar macrophages would mount an initial pro-inflammatory response to invading pathogens. Taking into account their potential to switch between activation states, it may not be surprising if they then re-polarize to a more M2-like status in response to a persistent pathogen to protect against hyperinflammation and exacerbated lung immunopathology. Such a switch toward an M2 state is particularly pertinent in the case of *Mtb* infection, considering the ability of mycobacteria to manipulate host immune responses to favor their own survival (52). Recent data suggesting alveolar macrophages are more permissive to *Mtb* replication than recruited monocyte-derived interstitial macrophages (78) highlight distinct metabolic programming as a critical factor in the differential antimycobacterial capacity of these two macrophage populations. This study utilized transcriptomic and subsequent pathway enrichment analyses, as well as functional *in vivo* and *in vitro* experiments employing inhibitors of different metabolic pathways, to reveal the metabolic preferences of *Mtb*-infected alveolar vs. interstitial macrophages. This work demonstrated that *Mtb*-infected alveolar macrophages

preferentially utilize FAO and exhibit enhanced fatty acid uptake, as well as higher bacterial replication rates, than interstitial macrophages. As it is well-known that *Mtb* accesses host-derived fatty acids and cholesterol as a primary carbon source (79–82), the fact that alveolar macrophages exhibit enhanced fatty acid uptake may explain why they are more permissive to *Mtb* replication. Furthermore, Huang et al. (78) showed that a FAO inhibitor, etomoxir, almost entirely abolished the production of IFN- β in *Mtb*-infected BMDMs. As type I interferon responses have been shown in multiple studies to be detrimental during tuberculosis [reviewed by (83)], this may explain how FAO can also contribute to *Mtb* survival. Conversely, interstitial macrophages were primarily glycolytic, which was shown to restrict mycobacterial growth (78), presumably due to the pro-inflammatory cytokine signals associated with glycolysis as well as the comparatively lower uptake of fatty acids by these cells. This is in agreement with several studies that demonstrate the requirement of glycolysis for *Mtb* growth control (84–86). Huang et al. (78) also showed that depletion of alveolar macrophages in *Mtb*-infected mice reduced bacterial burden, whereas depletion of the interstitial macrophage population was detrimental, resulting in enhanced bacterial survival. Thus, in this setting, alveolar macrophages appear to function as M2-like nutritionally permissive hosts in which mycobacteria can evade pro-inflammatory action and replicate relatively unperturbed, which is in contrast to the more growth-restrictive environment within pro-inflammatory interstitial macrophages. These data are supported by additional studies of alveolar or M2 macrophage depletion in animal models of pulmonary tuberculosis, which was associated with an enhanced Th1 response, reduced bacterial burden in the lung and protection against tuberculosis-induced lethality (87, 88). Granuloma formation was also found to be defective in mice deficient in alveolar macrophages, while the attraction and activation of T cells in the lung, as well as the numbers of polymorphonuclear cells, were enhanced (87). This is in contrast to the depletion of activated M1-like macrophages, which was detrimental and resulted in enhanced bacterial survival (88).

Such immunometabolic divergence of the two pulmonary macrophage populations in response to *Mtb* infection suggests that the developmental origin of granuloma macrophages plays a role in disease progression. Indeed, the role of ontogeny in macrophage functionality and metabolism during infectious insult has been discussed in a recent review (89). Furthermore, it should be noted that while the Warburg effect is considered to be primarily an *in vitro* phenomenon, the *in vivo* relevance of this bioenergetic phenotype is starting to emerge in the literature. Specifically, during the establishment of chronic *Mtb* infection in mice (up to 30 days after low-dose aerosol infection), transcriptomic and histological analysis of *Mtb*-infected lung tissue revealed a HIF-1 α -dependent enhancement of glucose uptake and glycolysis, as well as lactate formation and export (84). This was coupled with a concomitant down-regulation of pyruvate dehydrogenase complex (PDC), TCA cycle enzymes and OXPHOS. Moreover, defects in macrophage glycolytic capacity have been associated with the enhanced

susceptibility of cigarette smokers to *Mtb* infection (86). In this study, extracellular flux analysis of *Mtb*-infected human alveolar macrophages isolated from the bronchoalveolar lavage (BAL) fluid of smokers and non-smokers revealed an impairment of metabolic activity in the alveolar macrophages of the smokers, including reduced glycolytic response and spare respiratory capacity, which was accompanied by a weakened inflammatory response.

Biphasic Immunometabolic Response of Individual *Mtb*-Infected Macrophages

Further to the immunometabolic distinction between pulmonary macrophages of different lineages, increasing evidence points toward a time-dependent blend of M1 and M2 responses to *Mtb* infection within individual granuloma macrophages (90–92), which may further explain the paradox of alveolar macrophage functionality during infection. One such study utilized high-throughput capped analysis of gene expression (deepCAGE) technology to investigate the promoter-based transcriptional landscape of *Mtb*-infected macrophages (91). This work revealed drastic gene expression alterations that included up-regulation of genes involved in M1-related immune response and inflammation, as well as M2-related cell wounding and apoptosis. Furthermore, to delineate macrophage responses to *Mtb* infection, authors of a recent review (92) comprehensively analyzed the metabolic patterns reported in transcriptome databases and supplementary data files from studies of primary macrophage *Mtb* infection in the literature. The authors report on a biphasic response marked by a defensive M1 phenotype during the early phase of *in vitro* infection (up to 8 h post-infection), followed by a switch to an M2-driven adaptation/resolution phase as the infection progresses (24–48 h after infection). The early pro-inflammatory phase was characterized by upregulation of genes indicating a classical Warburg shift in metabolism, including *Hif1α*, as well as genes encoding glucose uptake transporters (GLUT1 and GLUT6), hexokinases (HK1 and HK2), phosphofructokinase liver (PFKL; from the phosphofructokinase-1 (PFK-1) family), 6-phosphofructo-2-kinase/fructose-2,6 biphosphatase 3 (PFKFB3; an essential enzyme from the PFK-2 family that is responsible for elevated glycolytic flux), and the major lactate secretion transporter member 4 (MCT4). Consistent with the profile of M1 macrophage polarization, this up-regulation of Warburg-associated genes was coupled with the downregulation of genes encoding mitochondrial enzymes and proteins, including the PDC, TCA cycle enzymes (aconitase 2 [ACO2], isocitrate dehydrogenase 2 [IDH2] and subunits of the succinate dehydrogenase [SDH] complex), as well as multiple components of respiratory chain complexes.

These findings are consistent with the current knowledge of the molecular mechanisms underpinning the metabolic switch in M1 macrophages, which are brought about by two distinct “breakpoints” in the TCA cycle (25). The first breakpoint occurs at the conversion of citrate to α -ketoglutarate, which is catalyzed by isocitrate dehydrogenase 1 (IDH1). IDH1 is downregulated 7-fold in M1 macrophages compared to

non-polarized macrophages, while the ratio of citrate to α -ketoglutarate is tripled (46). Itaconate, generated from the citrate accumulated as a result of this metabolic break (93), is a powerful bactericidal agent produced by M1 macrophages that functions as a potent inhibitor of bacterial isocitrate lyase (ICL). ICL, an enzyme that facilitates retention of carbon from fatty acids via the glyoxylate shunt (94), has been implicated in the control of *Mtb* infection (95, 96) due to its requirement for fatty acid catabolism by the bacteria (96). In this study, Muñoz-Elías and McKinney show that deletion of the genes that encode two ICL isoforms in *Mtb* (*icl1* and *icl2*) reduced growth and survival of the bacteria in murine macrophages and in human monocyte-derived macrophages, as well as the bacterial load in mouse lungs.

The second breakpoint in the TCA cycle occurs at the succinate-fumarate conversion step, which is catalyzed by SDH, as demonstrated by the accumulation of mitochondrial succinate in LPS-stimulated macrophages (36). Succinate accumulation occurs partially as a result of the aforementioned citrate-induced generation of itaconate, which downregulates SDH directly (97). Succinate can also be produced directly from glutamine in a TCA cycle-independent, γ -aminobutyric acid (GABA)-dependent manner via the GABA shunt (36, 46, 49, 50). Increasing evidence supports the role of succinate as an important metabolic signal linking metabolism and immunity (92, 98), as succinate has been shown to stabilize HIF-1 α and its proinflammatory effects, in particular its induction of IL-1 β expression (99, 100). In addition to the identification of genes involved in these classical pathways, Shi et al. (92) report the modulation of a diverse array of genes associated with a number of pro-inflammatory processes affected as a result of these TCA cycle breaks. Such processes include an augmented oxidative stress response coupled with an increase in antioxidant defense, as well as the synthesis of pro-inflammatory bioactive lipids (including long chain fatty acyl-CoAs, phospholipids and prostaglandins), and arginine uptake and metabolism.

Consistent with the metabolic profile of alternative macrophage activation, the adaptation/resolution phase transition in *Mtb*-infected macrophages was marked by gene expression changes signifying a reduction in glucose uptake and dampened glycolytic metabolism, with a concomitant recovery of the TCA cycle and OXPHOS (92). The latter coincided with induction of *Pgc1b* (92), which encodes PPAR- γ coactivator-1 β (PGC-1 β), a key player in mitochondrial biogenesis and oxidative metabolism that has been implicated in alternative macrophage activation (47). The PPAR- γ coactivator family of transcription factors (PGC-1) are potent anti-inflammatory regulators and enhancers of OXPHOS in various cell types, including macrophages, where retroviral transfection with PGC-1 β drives non-polarized cells toward an anti-inflammatory M2 phenotype characterized by enhanced OXPHOS and arginase-I expression (47).

Studies focusing on the behavior of *Mtb* during its infection cycle are also suggestive of a biphasic immunometabolic response of individual macrophages to *Mtb* infection. Following macrophage invasion, *Mtb* undergoes a series of physiological adaptations that accompany distinct phases of its infection process, from initial infection to intra-macrophage adaptation

and eventual establishment of successful, productive disease. Transcriptional profiling of *Mtb*, in conjunction with the use of a clock plasmid to measure bacterial replication and death rates, revealed a clear distinction in bacterial survival and response to host phagocyte function in a 2-week *in vitro* infection model encompassing this multi-phasic infection process (101). For the first 2 days post-infection of primary BMDMs, the bacteria encountered a “bottleneck” during which *Mtb* killing outweighed its relatively high replication rate (101); a finding that is emulated *in vivo* by rapid bacterial growth and pronounced bacterial killing in the mouse lung during the first 2 weeks of infection (102). Reduced survival of *Mtb* during early *in vitro* infection was attributed to *Mtb* stress due to the initial macrophage arsenal, inferred by up-regulation of *Mtb* genes involved in general stress response, carbon metabolism, oxidative stress, iron storage, as well as hypoxia and nitrosative stress (101). These findings are in accordance with an earlier transcriptomic dataset that was also acquired 2-day after *Mtb* infection of murine BMDMs (103).

The bottleneck observed by Rohde et al. (101) was followed by a period of reduced replication but enhanced bacterial survival (intracellular adaptation phase), which progressed over time to a period of extended growth resulting in established macrophage infection. Interestingly, only a subset of *Mtb* genes were upregulated early (by day 2 post-infection) and remained elevated over the remaining 2-week infection period, including genes involved in fatty acid and cholesterol metabolism, secreted antigens and regulators. Furthermore, many of the general stress response genes observed during early infection were markedly down-regulated during the adaptation and establishment phases. Such modifications of the *Mtb* response over time are consistent with an M1-M2 switch in macrophage activation, and suggest that *Mtb* exploits the proposed biphasic response of host macrophages in order to establish productive infection.

Foamy Macrophages and Lipid Metabolism in Tuberculosis

A characteristic feature of tuberculosis pathogenesis is the formation of foam cells (lipid-laden macrophages) that are associated with tubercle granuloma necrosis (11) due to their contribution to caseum formation, which is defined as an accumulation of necrotic debris at the core of the granuloma. The latter promotes inflammation, tissue injury, and the eventual cavitation of the granulomatous structure, resulting in transmission of live bacilli and tuberculosis disease [reviewed by (104)]. Although the role of foamy macrophages in the progression of tuberculosis is clear, the mechanisms controlling foam cell biogenesis remain ill-defined for this disease. However, a recent study using multiple *Mtb*-infection models has shed light on these mechanisms, as well as the lipid composition of tuberculosis foam cells (18). This work demonstrated that foamy macrophages in necrotizing granulomas in tuberculosis lung lesions accumulate triglycerides (TAG), and exhibit a multispecies TAG profile that is conserved in rabbits, non-human primates and humans. Elevated levels of TAG were also detected in *Mtb*-infected human monocyte-derived macrophages, and were accompanied by higher lipid

content and enhanced expression of TAG biosynthesis genes. Mechanistically, this TAG accumulation was mediated by TNFR signaling via downstream activation of the caspase cascade and mTORC1. Inhibition of these pathways was shown to significantly reduce lipid content in these cells, and up-regulation of the pathways was also observed in transcriptomic data from human tuberculosis lung tissue (18). Interestingly, an involvement of mTORC1 was previously implied by histological analysis of a human tuberculosis lung sample, which revealed mTORC1 activation in foamy macrophages (105). Furthermore, this key metabolic sensor has been shown to promote lipogenesis, in particular TAG biosynthesis, in obesity, diabetes, cancer and neurodegenerative disorders, while blocking lipolysis and β -oxidation (106). Indeed, *Mtb* and other mycobacterial species induce mTOR in macrophages (107, 108), and rapamycin inhibition of mTOR has been shown to decrease mycobacterial viability (107).

It is also interesting to note that mycobacterial infection of macrophages induces the expression and activation of PPAR- γ (109), a hallmark of alternative macrophage activation and a master regulator of lipid metabolism that controls fatty acid uptake, storage and lipogenesis (21). PPAR- γ has been implicated in mycobacterial disease progression by modulating host cell metabolism toward lipid droplet formation, as well as diminishing the pro-inflammatory immune response to favor bacterial survival (109–113). Moreover, a link between mycobacterial virulence and host PPAR- γ expression and activation during infection has been proposed. For instance, the virulent H37Rv strain of *Mtb* was shown to induce PPAR- γ expression, and attenuated growth of virulent *Mtb* was observed in human macrophages following PPAR- γ deletion (111), as well as in the lungs of macrophage-specific PPAR- γ -deficient mice (113). In contrast, attenuated *M. bovis* bacillus Calmette-Guerin (BCG) up-regulated PPAR- γ to a lesser extent (111) and *M. smegmatis*, an avirulent mycobacterial strain, failed to induce PPAR- γ expression (110, 111). Taken together, these findings suggest that PPAR- γ may also contribute to foam cell biogenesis in tuberculosis granulomas. This may additionally explain the link between PPAR- γ and tuberculosis pathogenesis, which is suggested by the correlation between *Mtb* virulence and PPAR- γ activity. Furthermore, enhanced expression of PPAR- γ has been reported in adipogenesis, and this was shown to be mTOR-dependent (114, 115), which raises the question as to whether PPAR- γ plays a role in mTORC1-mediated foam cell formation in tuberculosis. Interestingly, PPAR- α , one of the three PPAR isoforms alongside PPAR- γ and PPAR- β and a key driver of fatty acid β -oxidation (116), was recently reported to play an essential role in host innate immune defense against *Mtb* and BCG (117). In this study, the PPAR- α -mediated antimycobacterial response of BMDMs was attributed to enhanced autophagy, lysosomal biogenesis and phagosome maturation, as well as suppression of exacerbated inflammation via activation of transcription factor EB (TFEB). Moreover, PPAR- α promoted lipid catabolism, mitochondrial respiration and fatty acid β -oxidation in mycobacteria-infected macrophages (117). Thus, it appears that PPAR- γ and PPAR- α play opposing roles during

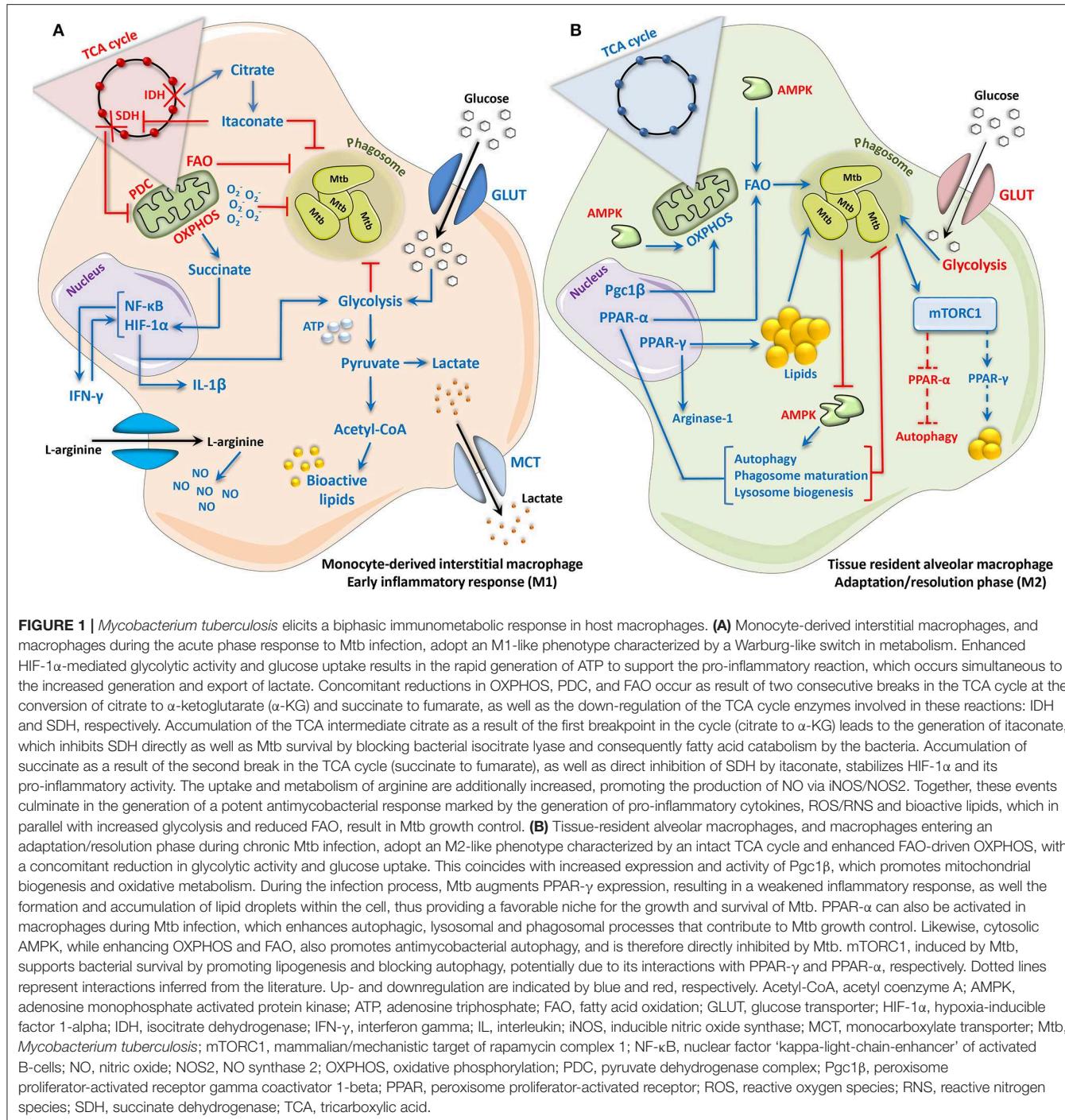
mycobacterial infection, which is due, in part, to their distinct effects on host lipid homeostasis.

AMPK is another key metabolic regulator that has gained traction in tuberculosis research, although the literature on its role in other granulomatous diseases is sparse. AMPK is an important coordinator of M2 polarization and lipid catabolism, and its effects can overlap, enhance or antagonize those of mTOR and the PPAR family [reviewed by (118)]. During Mtb infection, AMPK activation increases OXPHOS, FAO and also antimicrobial autophagy by interacting with PGC-1 α , as well as inhibiting Mtb-induced mTOR activation (19, 20). It is well-established that autophagy constitutes a successful antimycobacterial host response (119), therefore it is no surprise that Mtb has developed mechanisms to protect itself against this process. One such mechanism is the induction of microRNA expression in macrophages that directly silence AMPK (20). A second mechanism could be the activation of mTOR (19, 120), which is a well-known inhibitor of autophagy (121, 122). Indeed, mTORC1 has been reported to inhibit PPAR- α (123), which may constitute a mechanism by which mTORC1 inhibits autophagy in Mtb-infected cells. In comparison, mTORC1 is known to enhance the expression of PPAR- γ (114, 115), which supports an interplay between mTORC1 and PPAR- γ in the formation of foamy macrophages during Mtb infection.

These findings highlight not only the importance of macrophage lipid metabolism in the pathogenesis of tuberculosis, but also the critical involvement of mTORC1 and PPAR- γ in the survival and maintenance of Mtb during disease progression. The additional identification of AMPK and PPAR- α as host protective metabolic signaling pathways further accentuates the important link between immunometabolic signaling and the outcome of granulomatous disease. An overview of the Mtb-macrophage interactions described in this section is provided in **Figure 1**.

SCHISTOSOMIASIS: A STORY OF EGGS AND FATS

The second major cause of infectious granulomas, schistosomiasis (or bilharzia), is an endemic tropical disease of significant morbidity, mortality and socioeconomic impact. Like other helminth-borne infections, schistosomiasis occurs mainly in the southern hemisphere, where it is considered endemic in over 50 countries and affects over 200 million people, making it the most significant parasitic infection after malaria (124). Schistosomiasis is transmitted to humans via the aquatic larvae of several geographically distinct species of the *Schistosoma* trematodes. The most prominent causative agents of human schistosomiasis are *S. mansoni*, *S. japonicum*, and *S. haematobium*, all of which employ freshwater snails as intermediate hosts. Upon subcutaneous infection with the swimming larval stage, known as cercariae, the worms mature in the lung over the course of a month. During this time, the infection elicits an acute type-1 inflammatory response, which, in the case of *S. mansoni* and *S. japonicum*, subsides when the adult schistosomes travel to the hepatic and mesenteric vasculature to mate and lay eggs (125). *S. haematobium* instead colonizes


the urogenital tract. Egg deposition into perivascular tissues is accompanied by an acute type-2 response about 2 months post-infection, which finally becomes a lower-grade chronic disease marked by chronic pain, anemia, diarrhea, hepatomegaly and malnutrition (126). During this type-2 antihelminthic response, schistosome egg antigens induce rapid periovular granuloma formation that encases the eggs. Periovular granulomas protect the host from continuous exposure to toxic egg antigens and reduce immunopathology, but hepatic granulomas frequently become fibrotic if untreated, leading to portal hypertension and eventually liver cirrhosis with significant morbidity (127). Schistosome granulomas therefore have advantages and disadvantages for the host and their usefulness as a containment strategy has been discussed at length (128–130).

Cellular Composition of Schistosome Granulomas

Typically, periovular granulomas consist of alternatively activated M2 macrophages, Th2 CD4 $^{+}$ T cells and eosinophils (128). Although M2 macrophages are considered the key component of schistosome granulomas (131), granuloma composition is variable, with hepatic granulomas showing a higher cell heterogeneity and intestinal granulomas containing largely macrophages (132). Based on inverse proportions of eosinophils, macrophage numbers also appear to be higher in the granulomas of naturally-infected wild water rats (*Nectomys squamipes*) than in chronic granulomas of experimentally-infected mice (133), indicating that there may be significant differences between experimental and natural granuloma formation that must be taken into account. Schistosome egg-derived antigens such as omega-1 play a major role in driving a highly Th2-skewed antihelminthic immune response at 5–6 weeks after the initial infection, causing local CD4 $^{+}$ T helper cells to release IL-4 and IL-13 (134, 135). At the same time, intercellular adhesion molecule 1 (ICAM-1) is upregulated on sinusoidal endothelial cells surrounding newly deposited eggs (136). This milieu of cytokines and chemokines results in the T cell and STAT6-dependent recruitment of Ly6C $^{\text{hi}}$ monocytes to the periovular space, where they differentiate into granuloma macrophages with only a minor contribution from resident hepatic macrophages (131, 137–139). In the case of *S. japonicum* infection, parasite antigens can also signal via TLR2 to promote M2 polarization (140). Contrastingly, Tundup et al. (141) showed that the TLR co-receptor CD14 is highly upregulated in hepatic macrophages upon *S. mansoni* infection and acts as a crucial negative regulator of M2 polarization, possibly as part of a parasitic defense mechanism against granuloma formation (141). CD14, in turn, induces uptake of oxidized low-density lipoproteins (oxLDL), cholesterol and lipids into macrophages (142).

Lipid Metabolism and PPAR- γ -Signaling in Schistosomiasis

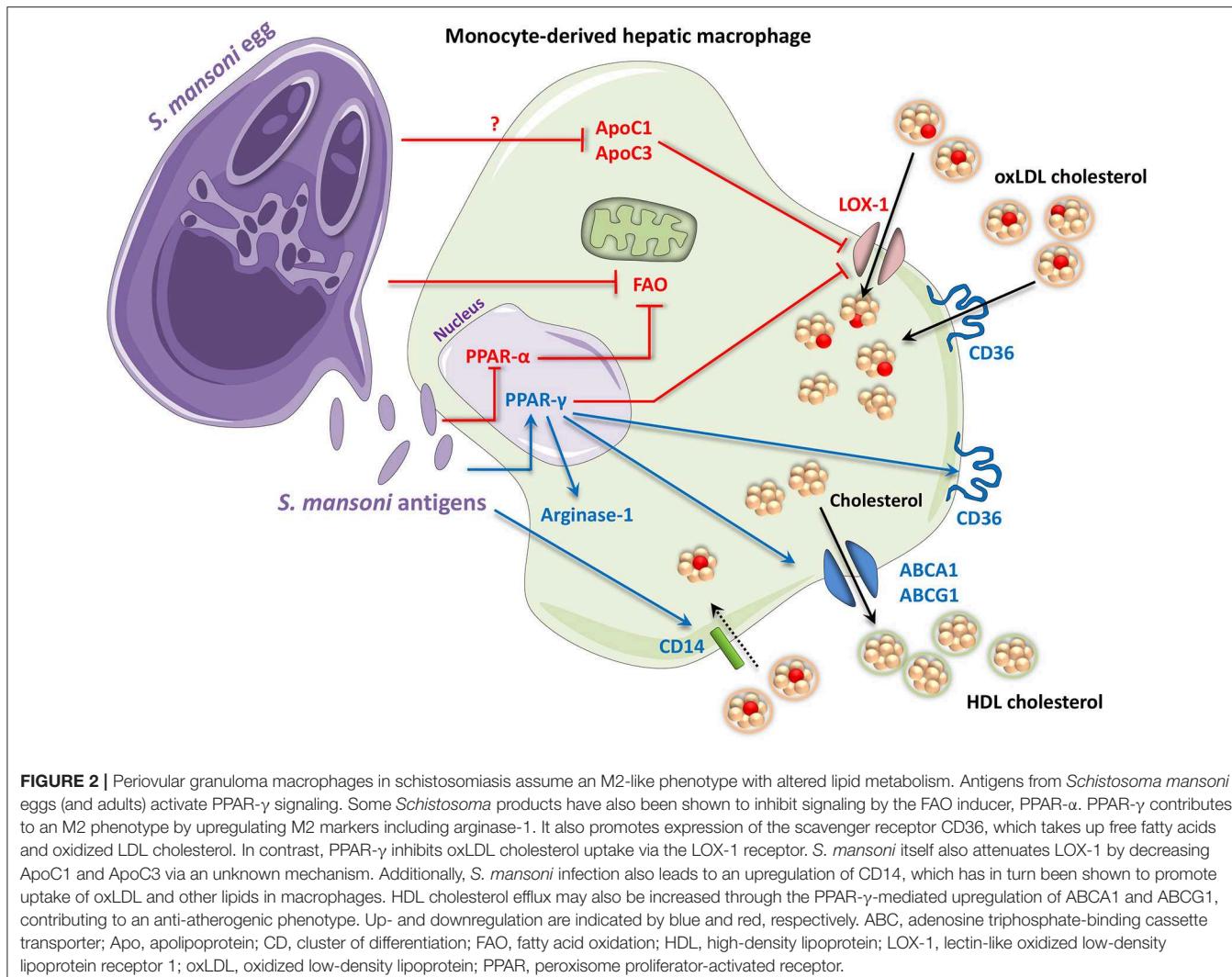
S. mansoni infection was recently linked to specific metabolic changes in hepatic macrophages, where granuloma formation around schistosome eggs was associated with differential lipid

and cholesterol metabolism (143). This is supported by multiple studies that have highlighted the significance of PPAR- γ in the context of schistosomiasis. PPAR- γ is a hallmark of M2 polarization and globally regulates lipid uptake and metabolism (144, 145). It is activated by a multitude of immunometabolic ligands, including various unsaturated fatty acids, lipoproteins, eicosanoids, flavonoids and the amino acids glutamine and arginine (146). Although the precise role of PPAR- γ in

macrophages depends on their lineage, polarization state and post-translational modifications (145, 147), PPAR- γ is generally considered to be an anti-inflammatory receptor known to limit M1 activation, for instance by transrepression and ubiquitination of NF- κ B (145, 148). Importantly, lipids secreted from the tegument of *S. mansoni* adults were shown to directly activate PPAR- γ in macrophages, leading to upregulation of arginase-1 expression and other M2 markers *in vitro* (149). This study did

not clarify whether this effect is only achieved in the presence of adult worms, or whether similar PPAR- γ -activating lipids are also found on the eggs. However, both live and inactivated *S. mansoni* eggs have been reported to induce a 7-fold increase in PPAR- γ expression in human liver cell cultures (150). PPAR- γ activation is a classical M2 macrophage marker and M2 macrophages are known to preferentially utilize FAO. While mice with a macrophage-specific PPAR- γ knockout show a downregulation of genes for both synthesis and oxidation of fatty acids in non-infectious settings (144), *S. mansoni*-infected human liver biopsies revealed a specific downregulation of FAO-related genes, including acetyl-CoA acyltransferase 2 (ACAA2) and acyl-CoA synthetase long-chain family member 1 (ACSL1) (151). Additionally, a secretory protein of *S. japonicum* inhibited PPAR- α , a key promoter of FAO, in a colitis mouse model (152), indicating that downregulation of FAO may be directed by the parasite itself. These findings support the notion that macrophage polarization during schistosomiasis is complex, with a potential decrease in FAO despite many classical M2 signatures (153).

It is now well-established that infection with *S. mansoni* alters host lipid metabolism globally by reducing total cholesterol, low-density lipoprotein (LDL) and triglycerides in the plasma of humans and apolipoprotein E (apoE)-deficient or high-fat diet-fed mice (154–156). In particular, PPAR- γ activation during schistosomiasis has been shown to counteract atherosclerosis and other high-fat diet-induced pathologies (157, 158). PPAR- γ has been strongly linked to these conditions, and mice with macrophage-specific PPAR- γ knockouts become susceptible to diet-induced obesity and insulin resistance (144). Peritoneal macrophages with a conditional PPAR- γ knockout have markedly reduced expression of cholesterol transport genes, such as the ATP-binding cassette transporters (ABC) A1 and G1, as well as reduced cholesterol efflux (157, 159, 160). Similar effects were shown in hepatic macrophages during schistosomiasis, where a recent study reports downregulation of a number of genes involved in cholesterol metabolism, including *APOC1* and *APOC3* (143), which are known contributors to inflammatory atherosclerosis (161, 162). A recent RNA interference study revealed that *ApoC1* in particular is a key promoter of oxLDL cholesterol uptake into macrophages via the lectin-like oxLDL receptor-1 (LOX-1), which is in turn inhibited by PPAR- γ (163, 164). Thus, *S. mansoni* infection blocks macrophage oxLDL cholesterol uptake by inhibiting *ApoC1* and *ApoC3* and may at the same time facilitate cholesterol efflux via ABCA1 and ABCG1. This suggests that unlike in tuberculosis, schistosomiasis macrophages do not accumulate lipids (see Figure 2). In accordance with this, there are no reports to date of *S. mansoni* or *S. japonicum* leading to foam cell formation. The rarer *S. mekongi*, which does not promote fibrosis, appears to be the only member of its genus to induce foam cells, although this phenomenon has not yet been investigated further (165).


Mechanistically, *S. mansoni* infection leads to significant upregulation of CD14, which induces macrophage uptake of oxLDL cholesterol and lipids (141, 142). Additionally, PPAR- γ is known to mediate transcription of the *Cd36* scavenger receptor gene in macrophages (166), which promotes uptake of oxLDL

cholesterol and provides a stepping stone for the development of atherosclerosis (158). A PPAR- γ response element in the *Cd36* gene means that PPAR- γ directly promotes *Cd36* transcription following PPAR- γ activation by oxLDL, constituting a positive feedback loop for cholesterol accumulation (158, 167, 168). In mice infected with *S. mansoni* while on an atherogenic high-fat diet, significant lipid uptake was found to be induced in the outermost cell layers of hepatic periovular granulomas; however, the plasma ratio of HDL to LDL was still improved (156). Unfortunately, this study did not determine which cells were responsible for the increased lipid uptake. However, as the experiments were performed only 7 weeks after *S. mansoni* infection, when granulomas are still somewhat immature and not yet associated with additional leukocytes (128), it is likely that the responsible cells were either eosinophils or macrophages. Another study showed that *S. mansoni* infection can induce lipid uptake and retention in hepatic stellate cells (150). Therefore, the lipid droplet-positive cells identified by Stanley et al. (156) could be non-granulomatous hepatic cells, although this would not account for their circular distribution around the granulomas. Since lipid uptake was only induced in the outermost cell layers of granulomas (156), there may be an as-of-yet unknown significance of physical proximity between the egg and the surrounding macrophages. While it is known that female schistosomes take up large amounts of fatty acids in order to produce eggs, it is not established whether eggs, which themselves contain large amounts of fatty acids, could extract and ingest lipids from surrounding macrophages (169, 170). It may be the case that CD36-induced oxLDL uptake, while pro-atherogenic in arterial walls, allows some sequestration of oxLDL cholesterol in non-migratory macrophages, thus contributing to the anti-atherogenic effect of schistosomiasis (171).

Overall, *S. mansoni* is characterized by modifications in the PPAR- γ network of lipid metabolism, during which oxLDL cholesterol uptake via *ApoC1* and *ApoC3* is directly suppressed, while uptake via CD14 and CD36 may be enhanced due to PPAR- γ signaling. Since PPAR- γ can directly activate multiple HDL cholesterol efflux channels, and there appears to be limited lipid accumulation and no evidence of foam cell formation in schistosome macrophages, this suggests that there may be a significant efflux of cholesterol from granuloma macrophages during schistosomiasis. The expulsion of HDL cholesterol could explain the anti-diabetic and anti-atherogenic effects observed in response to PPAR- γ agonists such as rosiglitazone (172–174).

PPAR- γ in *Schistosoma*-Induced Fibrosis

Macrophage lipid metabolism may also be involved in the formation of fibrosis, the major pathology of chronic schistosomiasis, as suggested by several studies using pharmacological PPAR- γ induction. For instance, in a mouse model of *S. japonicum*-induced liver fibrosis, the PPAR- γ agonist rosiglitazone was able to reduce liver fibrosis and extracellular matrix (ECM) deposition, which was attributed to decreased inflammatory signaling (175). Although this study did not link these effects to granuloma macrophages, but rather to hepatic

FIGURE 2 | Periovular granuloma macrophages in schistosomiasis assume an M2-like phenotype with altered lipid metabolism. Antigens from *Schistosoma mansoni* eggs (and adults) activate PPAR- γ signaling. Some *Schistosoma* products have also been shown to inhibit signaling by the FAO inducer, PPAR- α . PPAR- γ contributes to an M2 phenotype by upregulating M2 markers including arginase-1. It also promotes expression of the scavenger receptor CD36, which takes up free fatty acids and oxidized LDL cholesterol. In contrast, PPAR- γ inhibits oxLDL cholesterol uptake via the LOX-1 receptor. *S. mansoni* itself also attenuates LOX-1 by decreasing ApoC1 and ApoC3 via an unknown mechanism. Additionally, *S. mansoni* infection also leads to an upregulation of CD14, which has in turn been shown to promote uptake of oxLDL and other lipids in macrophages. HDL cholesterol efflux may also be increased through the PPAR- γ -mediated upregulation of ABCA1 and ABCG1, contributing to an anti-atherogenic phenotype. Up- and downregulation are indicated by blue and red, respectively. ABC, adenosine triphosphate-binding cassette transporter; Apo, apolipoprotein; CD, cluster of differentiation; FAO, fatty acid oxidation; HDL, high-density lipoprotein; LOX-1, lectin-like oxidized low-density lipoprotein receptor 1; oxLDL, oxidized low-density lipoprotein; PPAR, peroxisome proliferator-activated receptor.

stellate cells and myofibroblasts, ECM deposition and local synthesis have been described as key components in both sarcoid and infectious lung granulomas (176). Similar to the effects of rosiglitazone, the PPAR- γ agonist pioglitazone reduced hepatic and splenic histopathology in a mouse model of *S. japonicum* infection by increasing the proportion of regulatory T cells and inducing the polarization of mannose receptor-positive M2 macrophages (177). Another PPAR- γ agonist, telmisartan, reduced both hepatic fibrosis and granuloma diameter in *S. mansoni*-infected mice, although it did not synergistically increase the efficacy of praziquantel treatment, an antihelminthic drug commonly used to treat schistosomiasis (178). These findings may seem contradictory, seeing as PPAR- γ is known to induce M2 polarization, which is necessary for host survival during initial infection (179, 180), and also contributes to fibrosis by promoting fibroblast hyperactivity through TGF- β signaling (181, 182). At the same time, pharmacological activation of PPAR- γ has been shown multiple times to decrease histopathology and fibrosis in schistosomiasis and some renal

pathologies (183). Where PPAR- γ agonists have failed to ameliorate fibrosis, this has been speculatively attributed to the simultaneous activation of pro-fibrotic M2 macrophages (184, 185). It is therefore likely that this dual role of PPAR- γ is due to its activity in various cell types. For instance, activation and overexpression of PPAR- γ has been shown to act directly on both human and mouse fibroblasts to decrease fibrosis by reducing growth factor expression, mitosis, collagen secretion, and responsiveness to TGF- β (186, 187).

While these studies do not explicitly link the anti-fibrotic effects of different PPAR- γ agonists to immune cell lipid metabolism, it is clear that PPAR- γ plays a significant role in schistosomiasis pathogenesis and future work investigating how macrophage lipid metabolism affects fibrosis should prove interesting. Taken together, it is becoming apparent that *Schistosoma* infection has highly complex consequences for lipid metabolism, at both the cellular and global level (summarized in Figure 2), and more work is required to elucidate the exact metabolic pathways that characterize schistosome granulomas.

SARCOIDOSIS: A DISEASE LACKING AN IMMUNOMETABOLIC SWITCH?

Unlike tuberculosis and schistosomiasis, which are triggered by known pathogens and are typically organ-specific, sarcoidosis is an enigmatic multi-systemic disease of unknown origin. It is characterized by the development and accumulation of epithelioid, non-caseating (non-necrotic) granulomas typically found in the lungs; however, sarcoid granulomas can present almost anywhere in the body, with other notable sites including the eyes, skin and lymph nodes (188). The disease is increasingly difficult to treat once it develops from a self-limiting to progressive state, with pulmonary and cardiac involvement representing the most frequent causes of patient morbidity and mortality (189). Due to the unknown etiology of sarcoidosis, there is currently no therapeutic approach targeting the pathogenetic mechanisms (190). However, the occurrence of familial forms of the disease (191, 192) suggests that a genetic background may play a pathological role, and pine pollen (193), microbial infection (specifically *P. acnes* and mycobacteria) (5) as well as air pollutants (comprising mineral, micro or nanoparticles) (3) are increasingly regarded as strong environmental trigger candidates (188, 194, 195). Pollution, in particular, gained momentum among clinicians and biologists when a recrudescence of sarcoidosis was observed in the aftermath of the World Trade Center tragedy in subjects exposed to particulate matter (3). Although the exact relative contributions of genetic and environmental factors are unknown, it has been suggested that genetic factors account for 66% of disease susceptibility in monozygotic twins (191).

Immunological Profile of Sarcoidosis

At the cellular level, sarcoid granulomas are characterized by a strong Th1/Th17 phenotype (196). Once again, this sets sarcoidosis apart from tuberculosis and schistosomiasis, which are both marked by an acute Th1 and M1 phase that later progresses to a predominantly M2 phenotype. It has long been known that the pro-inflammatory milieu of IL-12, IL-17, TNF α , and IFN γ upregulate adhesion molecules on macrophages to promote aggregation, cell-to-cell contact and fusion (197, 198). In 2011, however, macrophages and multinucleated giant cells from granulomas of patients with systemic neuromuscular sarcoidosis were shown for the first time to be M2-polarized with high CCL18 expression and resistance to conversion by Th1 cytokines (199). More recently, immunohistochemical analysis also revealed M2 macrophage activation in lung and lymph node samples from pulmonary sarcoidosis patients (200). Advanced sequencing techniques confirmed that a CD163-positive macrophage fraction of peripheral blood mononuclear cells (PBMCs), isolated from sarcoidosis patients and treated with purified protein derivative (PPD), exhibits a partial M2 profile with upregulation of IL-13 downstream pathways (201, 202). Furthermore, the pro-inflammatory cytokine IL-17, well-established in sarcoidosis pathology, has also been shown to induce an M2-like phenotype in macrophages (203, 204). It is important to note that sarcoidosis is frequently linked to clinical anergy, which presents as the loss of skin test reactivity to

PPD and other antigens in sarcoidosis patients. While CD4 $^{+}$ T cells and dendritic cells have been implicated in this anergic response [reviewed by (205)], the findings described above suggest that anti-inflammatory macrophages may also contribute to the paradoxical diminished immunity often observed in sarcoidosis patients.

Dysregulation of Lipid Metabolism in Sarcoidosis

The M2 profile of macrophages reported for some sarcoid granulomas may also be associated with the expression and activity of PPAR- γ , as PPAR- γ deficiency was observed in alveolar macrophages of pulmonary sarcoidosis patients (206) and its expression was shown to negatively correlate with disease severity (207). Furthermore, polymorphisms in the *Pparg* gene and the gene encoding its transcriptional coactivator PPAR- γ coactivator 1- α (*Ppargc1a*) were identified at a higher frequency in sarcoidosis patients compared with healthy subjects (208). Thus, a genetic defect in PPAR- γ signaling may be a predisposing factor for the development of severe sarcoidosis. Additional work utilizing diverse mouse models supports the role of PPAR- γ in lung immunopathology (157, 159, 209–212). In one such study employing a multiwall carbon nanoparticle (MWCNT) model, which recapitulates the chronicity of human granulomas (211), PPAR- γ expression and activity was significantly reduced in alveolar macrophages following oropharyngeal instillation of MWCNT in wild type animals. Accordingly, increased pulmonary granuloma formation, as well as expression of pro-inflammatory markers in granulomatous lung tissue and BAL, were observed in macrophage-specific PPAR- γ -deficient mice (termed PPAR- γ $^{fl/fl}$, *Lyz2*-Cre) (153). Moreover, increased numbers of Th1 lymphocytes were observed in BAL fluid extracted from PPAR- γ $^{fl/fl}$, *Lyz2*-Cre mice compared to wild type controls. PPAR- γ deficient BAL cells also displayed elevated expression of inducible nitric oxide synthase (iNOS) and IFN- γ , as well as Th1-associated cytokines (209). Reconstitution of PPAR- γ by lentiviral transduction in the same study significantly reduced the expression of pro-inflammatory mediators and decreased the number of BAL lymphocytes by 90%. Taken together, these data suggest an important role of PPAR- γ in the regulation of pulmonary inflammation and maintenance of lung homeostasis.

As mentioned earlier, chronic inflammation typically triggers a heightened activation state in fibroblasts, lending to substantial deposition of ECM components at the site of injury and consequent development of fibrosis (213, 214). Thus, PPAR- γ deficiency in sarcoid granulomas of patients presenting severe forms of the disease may play a role in the characteristic Th1/M1 bias, and consequently the development of fibrosis that is typically associated with disease pathogenesis. This notion correlates with the observation that NF- κ B activation is increased in BAL samples from sarcoidosis patients (215). As described previously in this review, transrepression of NF- κ B by PPAR- γ is well-established, thus increased and/or uncontrolled activation of NF- κ B as a result of PPAR- γ deficiency could be one mechanism by

which continuous inflammation occurs. Indeed, in a study coupling a computational model of granuloma formation and function, termed *GranSim* (216), with macrophage polarization data from non-human primate tuberculosis granulomas, continuous or increased NF- κ B signaling was shown to exacerbate inflammation, resulting in uncontrolled bacterial growth and dissemination (68).

Mechanistically, PPAR- γ maintains pulmonary lipid homeostasis via alveolar macrophage liver X receptor-alpha (LXR- α) and ABCG1 (217), which, alongside ABCA1, is critical for macrophage efflux of cholesterol and phospholipids (218). Alveolar macrophages from sarcoidosis patients and mice following MWCNT instillation show diminished expression of ABCG1 and ABCA1, and the deficiency of these transporters in MWCNT-instilled mice correlates with increased alveolar macrophage lipid accumulation (210). In accordance with these findings, activation of the PPAR γ -ABCG1 pathway by the PPAR γ agonist rosiglitazone tempers MWCNT-induced granulomatous inflammation by significantly attenuating alveolar macrophage activation, pulmonary granuloma formation and pulmonary lipid dysregulation (212). Thus, the consequence of PPAR- γ deficiency in sarcoid granuloma macrophages appears to be manifold, resulting in both an uncontrolled inflammatory response and dysregulation of macrophage lipid metabolism.

Indeed, a number of proteins involved in lipid metabolism have been identified as contributing factors in the pathogenesis of sarcoidosis, including apoA1, fatty acid-binding protein 4/perilipin 2, 8-isoprostanate, zinc- α 2 glycoprotein and serum amyloid A (SAA) (219). In particular, SAA, a highly inducible acute-phase reactant and amyloid precursor protein (220), is a well-known modulator of the innate immune response, inflammation and apolipoprotein metabolism (221), and it has been suggested as a potential biomarker for sarcoidosis due to its significantly higher serum concentrations in patients vs. healthy subjects (222). However, SAA is not a diagnostic gold standard as it is also elevated in a number of other inflammatory conditions, namely arthritis and systemic lupus erythematosus (223). In tissue samples from sarcoidosis patients, SAA was shown to localize to macrophages and giant cells within granulomas, but it also correlated with the number of CD3 $^{+}$ cells and a local Th1 response (224). In this study, SAA was shown to promote chronic inflammation in sarcoid granulomas via TLR2 signaling and activation of NF- κ B, as well as cytokine production (224). Contrastingly, recent evidence suggests that during inflammation, SAA acts synergistically with secretory phospholipase-A to remove cell membrane debris, which suggests a partial involvement in anti-inflammatory repair processes (225). Interestingly, SAA has also been suggested to be responsible for the low HDL cholesterol and apoA1 levels observed in patients with active sarcoidosis (226, 227), which has been linked to an increased risk of atherosclerosis in sarcoidosis patients (219). This is in contrast to schistosomiasis, which has been reported to counteract atherosclerosis by altering global host lipid metabolism and reducing serum cholesterol levels (154).

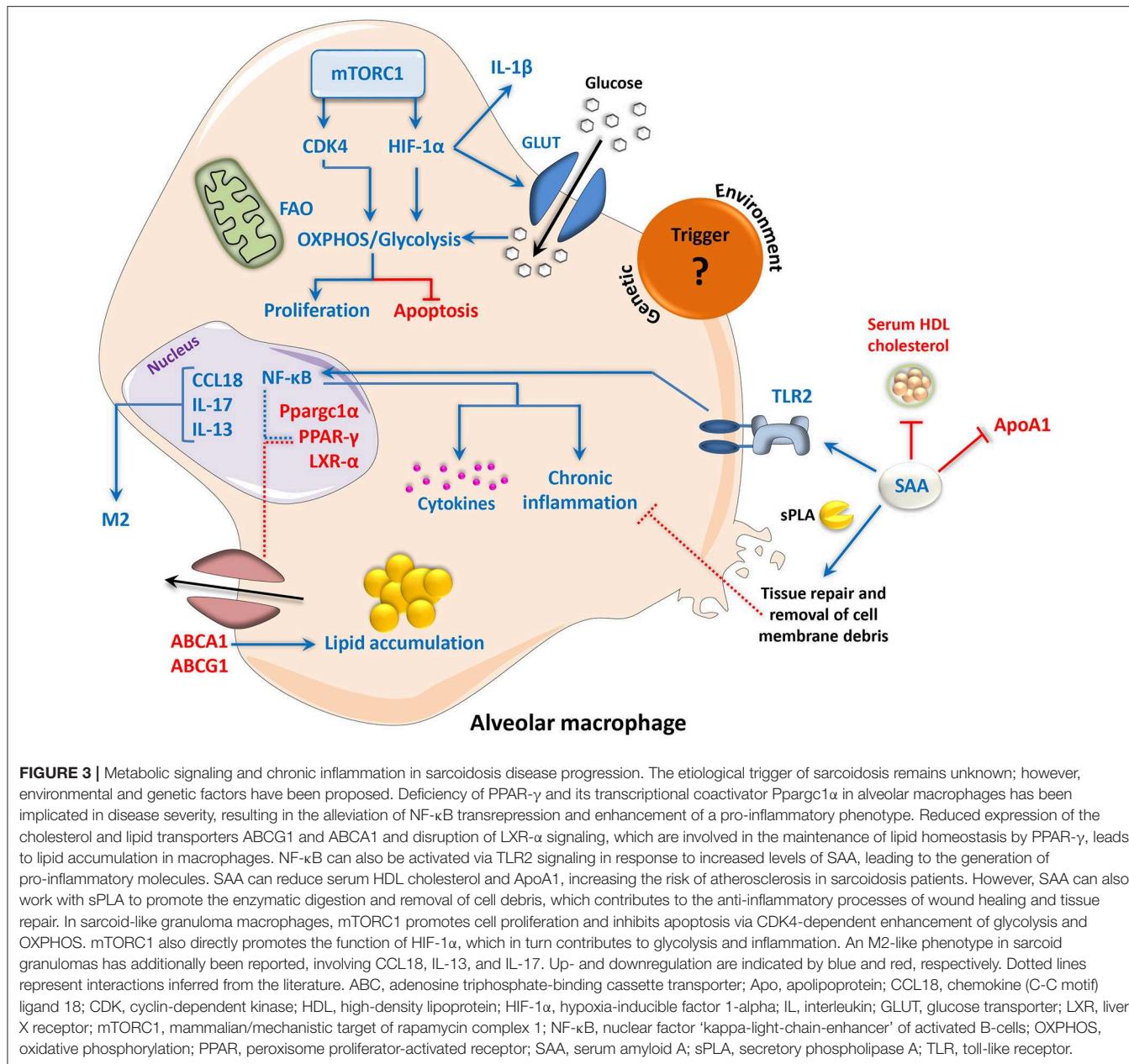
Metabolic Signaling as a Driver of Sarcoidosis Disease Progression

As mentioned previously in this review, Linke et al. (15) identified an involvement of macrophage-specific mTORC1 signaling in the initiation and maintenance of granulomas. In this study, constitutive activation of mTORC1 in murine macrophages was achieved via myeloid-specific deletion of the gene encoding its upstream inhibitor tuberous sclerosis complex 2 (Tsc2) (termed *Tsc2*^{fl/fl}, *Lyz2*-Cre mice). This genotype induced hypertrophy and enhanced cell proliferation in macrophages while reducing their apoptotic capacity. As a result, the *Tsc2*^{fl/fl}, *Lyz2*-Cre mice exhibited spontaneous formation of non-caseating (non-necrotic), epithelioid granulomas that were observed in multiple organs. In the lung specifically, the granuloma macrophages were shown to consist of M2-like alveolar macrophages. Thus, the disease pathology seen in the *Tsc2*^{fl/fl}, *Lyz2*-Cre mice strongly resembles the histological phenotype of sarcoidosis. Mechanistically, genes involved in both glycolysis and OXPHOS were enriched in transcriptomic datasets from *Tsc2*^{fl/fl}, *Lyz2*-Cre BMDMs compared with *Tsc2* floxed control (termed *Tsc2*^{fl/fl}) BMDMs, and the enhancement of both metabolic pathways was confirmed by extracellular flux analysis. Furthermore, the uptake of glucose was higher in *Tsc2*^{fl/fl}, *Lyz2*-Cre BMDMs and absolute glucose levels were decreased in both *Tsc2*-deficient macrophages as well as in the lungs of *Tsc2*-deficient animals, while mitochondrial mass and mitochondrial spare respiratory capacity were elevated (15). These findings are in accordance with the identification of increased levels of pyruvate in sarcoidosis patient sera, which is indicative of enhanced glycolytic activity (228). This study also reported an increase in serum metabolites that indicate enhanced mitochondrial FAO, as well as a decrease in serum levels of the key TCA cycle intermediate succinate (228). RNA-Seq data from sarcoidosis patient monocytes further revealed a dysregulation of OXPHOS and FAO pathways (229). Interestingly, the metabolic alterations described by Linke et al. were shown to be CDK4-dependent and crucial for the enhanced proliferation and reduced apoptosis of *Tsc2*-deficient macrophages. This study additionally identified mTORC1 activation, macrophage proliferation and glycolysis as hallmarks of disease progression in human sarcoidosis patients (15). Clinical involvement of mTORC1 has since been substantiated by its recent identification in RNA-Seq gene set enrichment data from cutaneous sarcoidosis patients (230), as well as whole exome sequencing and pathogenicity network analysis of familial cases of sarcoidosis (231). It should also be noted that successful treatment of a sarcoidosis patient with the mTOR inhibitor rapamycin has previously been reported (232). However, the molecular mechanisms underpinning mTOR involvement in human sarcoidosis remain to be elucidated.

Among other pathways, the involvement of mTORC1 points to a role of glycolytic metabolism in sarcoidosis pathogenesis. Importantly, the PI3K/Akt/mTOR axis, and mTORC1 specifically, have been shown to promote the production of the key glycolytic regulator HIF-1 α irrespective of oxygen concentrations (233–235). In accordance with this, a recent study demonstrated elevated protein levels of HIF-1 α ,

as well as HIF-1 α signaling pathway components such as HIF-1 β , HIF-2 α , and p300, in alveolar macrophages from sarcoidosis patients cultured under normoxic conditions (236). HIF-1 α protein expression was further confirmed in granulomatous lung tissue from sarcoidosis patients, and was found to be localized to alveolar macrophages and multinucleated giant cells (236). As described previously, HIF-1 α promotes pro-inflammatory macrophage functions by activating glycolytic enzymes and stimulating the production of IL-1 β (36). Indeed, Talreja et al. (236) demonstrated that in alveolar macrophages from sarcoidosis patients, increased levels of HIF-1 α correlated with augmented Glut1 protein expression and elevated levels of IL-1 β . Furthermore, siRNA inhibition of HIF-1 α in patient PBMCs significantly diminished the production of IL-1 β , IL-17 and IL-6 (236). Thus, HIF-1 α signaling appears to play a critical role in the pro-inflammatory milieu that defines sarcoidosis pathology, and provides an explanation for the enhanced glycolysis reported in the aforementioned studies.

These findings highlight the complexity of the metabolic landscape of granuloma macrophages both *in vivo* and in human disease. In particular, they emphasize the oversimplification of Warburg metabolism in M1 macrophages, which is classically defined by a simultaneous increase in glycolysis and decrease in OXPHOS. This accentuates the importance of future work that examines more closely the complexity of macrophage metabolism *in vivo* and in the context of individual human diseases. This is, however, in contrast to Mtb infection, during which the Warburg-like immune response has been documented and supported by *in vivo* data (84). However, this difference may simply be due to the infectious nature of Mtb and a typical pro-inflammatory reaction to initial infection, which is absent in sarcoidosis. It is also important to note that some of the sarcoidosis studies mentioned in this section utilized either patient PBMCs or patient sera, and therefore describe the peripheral/global metabolic alterations associated with sarcoidosis. The role of each of the identified metabolic pathways within the sarcoid granuloma environment, and their contribution to sarcoid granuloma macrophage function specifically, still has to be assessed. Nevertheless, the observations that glycolysis, OXPHOS and FAO may all occur simultaneously during sarcoidosis disease progression, and that these pathways are associated with both pro- and anti-inflammatory functions, may somewhat explain the paradoxical immunoregulation and anergy that are frequently associated with sarcoidosis.


An overview of the findings described in this section is provided in **Figure 3**.

COMMON AND DISTINCT METABOLIC FEATURES OF TUBERCULOSIS, SCHISTOSOMIASIS, AND SARCOIDOSIS

PPAR- γ signaling and dysregulated lipid metabolism are the overriding common features of each disease discussed in this review. However, these pathways are distinctly modulated depending on the disease, as well as disease severity. Such differences may be due to the granuloma-inciting agent and, in

particular, the ability of mycobacteria and *Schistosoma* species to manipulate host macrophage responses to promote their own survival. For instance, both tuberculosis and schistosomiasis are defined by an acute inflammatory phase followed by a pathogen-induced shift toward M2-like macrophage polarization, marked by the activation of PPAR- γ . In tuberculosis, PPAR- γ activation appears to be virulence-dependent, leading to lipid droplet accumulation and consequent foam cell formation that are associated with the development of necrosis, which is characteristic of tuberculosis pathogenesis. However, in schistosomiasis there appears to be only minor CD14/CD36-driven lipid accumulation that is confined to certain areas of the granuloma, with a potential efflux of cholesterol from macrophages and no reports of foam cell formation or a correlation with pathogenicity for the major *Schistosoma* species. This is further compounded by the up-regulation of FAO in Mtb-infected macrophages compared to its down-regulation in *Schistosoma*-infected livers, which may, in part, constitute a protective mechanism in tuberculosis foamy macrophages to counteract some of the lipid accumulation that occurs during infection. In contrast to tuberculosis and schistosomiasis, sarcoidosis exhibits defective or deficient PPAR- γ signaling that is associated with disease severity. However, this is not surprising considering the critical role of PPAR- γ in the M1-M2 metabolic switch in macrophages, and the chronic inflammatory nature of sarcoid granulomas in comparison to tuberculosis and schistosomiasis. Furthermore, the expression of SAA, which contributes to chronic inflammation, is greater in sarcoidosis than in other granulomatous diseases (224). SAA has also been associated with the increased prevalence of atherosclerosis in sarcoidosis patients by lowering serum levels of HDL and apoA1. This is again in contrast to schistosomiasis, which has been shown to reduce atherogenesis potentially due to the expulsion of HDL cholesterol from schistosome granuloma macrophages. This may be linked to enhanced PPAR- γ expression during *Schistosoma* infection that will, in turn, lead to increased expression of the cholesterol transporters ABCA1 and ABCG1, thus enabling HDL cholesterol efflux. Whereas, down-regulation of PPAR- γ , and accordingly ABCA1 and ABCG1, in macrophages from sarcoidosis patients and mice imply a decrease in the efflux of HDL cholesterol from these macrophages. Interestingly, FAO is also up-regulated in sarcoidosis (228), which may again constitute a homeostatic response of sarcoid granuloma macrophages to the increased lipid accumulation that occurs due to PPAR- γ deficiency. These findings highlight the importance of PPAR- γ in the control of lipid homeostasis, and how its dysregulation in a disease scenario can have immunometabolic consequences that directly impact macrophage effector functions and disease outcome.

In further support of the involvement of macrophage metabolic signaling in granulomatous disease progression, macrophage mTORC1 has recently been implicated in tuberculosis and sarcoidosis pathogenesis. However, the metabolic consequences of mTORC1 activation in each case appears to be distinct. During Mtb infection, this key metabolic sensor plays a role in foamy macrophage formation, whereas in sarcoidosis mTORC1 promotes OXPHOS and glycolysis. As

FIGURE 3 | Metabolic signaling and chronic inflammation in sarcoidosis disease progression. The etiological trigger of sarcoidosis remains unknown; however, environmental and genetic factors have been proposed. Deficiency of PPAR- γ and its transcriptional coactivator Ppargc1 α in alveolar macrophages has been implicated in disease severity, resulting in the alleviation of NF- κ B transrepression and enhancement of a pro-inflammatory phenotype. Reduced expression of the cholesterol and lipid transporters ABCG1 and ABCA1 and disruption of LXR- α signaling, which are involved in the maintenance of lipid homeostasis by PPAR- γ , leads to lipid accumulation in macrophages. NF- κ B can also be activated via TLR2 signaling in response to increased levels of SAA, leading to the generation of pro-inflammatory molecules. SAA can reduce serum HDL cholesterol and ApoA1, increasing the risk of atherosclerosis in sarcoidosis patients. However, SAA can also work with sPLA to promote the enzymatic digestion and removal of cell debris, which contributes to the anti-inflammatory processes of wound healing and tissue repair. In sarcoid-like granuloma macrophages, mTORC1 promotes cell proliferation and inhibits apoptosis via CDK4-dependent enhancement of glycolysis and OXPHOS. mTORC1 also directly promotes the function of HIF-1 α , which in turn contributes to glycolysis and inflammation. An M2-like phenotype in sarcoid granulomas has additionally been reported, involving CCL18, IL-13, and IL-17. Up- and downregulation are indicated by blue and red, respectively. Dotted lines represent interactions inferred from the literature. ABC, adenosine triphosphate-binding cassette transporter; Apo, apolipoprotein; CCL18, chemokine (C-C motif) ligand 18; CDK, cyclin-dependent kinase; HDL, high-density lipoprotein; HIF-1 α , hypoxia-inducible factor 1-alpha; IL, interleukin; GLUT, glucose transporter; LXR, liver X receptor; mTORC1, mammalian/mechanistic target of rapamycin complex 1; NF- κ B, nuclear factor 'kappa-light-chain-enhancer' of activated B-cells; OXPHOS, oxidative phosphorylation; PPAR, peroxisome proliferator-activated receptor; SAA, serum amyloid A; sPLA, secretory phospholipase A; TLR, toll-like receptor.

mTOR is a key intracellular nutrient sensor, these differences suggest that macrophages in tubercle and sarcoid granulomas may have a distinct nutritional content, which may again be due to the ability of Mtb to manipulate host cells to promote its own survival. On that note, Mtb-induced dysregulation of autophagy in macrophages is an established mechanism by which Mtb evades the host immune response. Interestingly, a link between mTOR and autophagy was recently proposed in familial cases of sarcoidosis (231). Therefore, the role of mTOR in these diseases may in fact be manifold, and the connection between mTOR and autophagy in both tuberculosis and sarcoidosis suggests that this could be a key molecular pathway in the pathogenesis of granulomatous diseases. In

schistosomiasis, however, very little is known about the function of mTOR. In dendritic cells, which play a major role in Th2 priming, mTOR inhibition by both rapamycin and torin-1 has been shown to increase IL-4 expression (237). However, while schistosome infection leads to an M2/Th2 profile shift in dendritic cells, the parasite antigens appear to do so in an mTOR-independent manner (237). One study reports that 90 % of mTOR pathway genes were downregulated in liver biopsies from human schistosomiasis *japonica* patients (151), even though *in vitro* work suggests that IL-13 induced by parasitic infections may enhance the expression of the mTORC2 protein Rictor (238). mTOR expression is also enhanced in *S. haematobium*-associated bladder cancer, although this may be a

general feature of malignancy rather than schistosomiasis (239). Recently, mTOR signaling in myeloid cells has also emerged as an attractive target for the treatment of hepatic fibrosis (240, 241).

FUTURE PERSPECTIVES

While research on the immunometabolic features of the pathogenesis of granulomatous diseases is developing, particularly in the case of tuberculosis, much more work is required to further our understanding of the exact roles of the different metabolic pathways in each disease. As this review highlights, the metabolic plasticity of macrophages allows for distinct metabolic phenotypes of individual granulomas that are highly dependent on the inciting agent. Identifying the key common and distinct features will not only be critical in defining potential therapeutic targets in the future, but may also provide an insight into how we could control the more enigmatic forms of granulomatous disease, such as sarcoidosis and Crohn's disease, for which the etiological triggers remain elusive. In tuberculosis and schistosomiasis, for example, the up-regulation of PPAR- γ results in a controlled immune response that prevents against exacerbated tissue damage by inducing an M2-like macrophage polarization state. While this role of PPAR- γ can be detrimental for pathogen clearance by the host in the case of infectious granulomas, it points toward a potential mechanism by which the chronic inflammation in sarcoidosis could be alleviated. Evidence for a role of the other PPAR isoforms (PPAR- α and PPAR- β) in granulomas of schistosomiasis and sarcoidosis is sparse in the literature and needs to be assessed in more detail. This is especially relevant considering that in tuberculosis the observed antimycobacterial function of PPAR- α is in direct contrast to the implicated function of PPAR- γ in mycobacterial disease progression, as well as the role of PPAR- α in promoting autophagy in Mtb-infected cells. While the specific significance of PPAR- α has not yet been studied in schistosomiasis, Sj16, an *S. japonicum* secretory protein, has been shown to inhibit PPAR- α (152). This lends weight to the notion that PPAR- α may play a role in schistosomiasis, and one that may also contrast with PPAR- γ . Future research should aim to examine the precise role(s) of the different PPARs in granulomatous disease, which may further our understanding of the complex lipid metabolism that is observed in each of the diseases discussed in this review. Because of the emerging significance of PPAR- γ in particular, it is also important to reiterate its well-established link with mTOR [e.g., (242, 243)]. This connection suggests that research directed at determining the precise role of mTOR in schistosomiasis should prove fruitful in the future and could highlight pathways of potential significance to tuberculosis and sarcoidosis.

AMPK could, unfortunately, not be assessed for a comparison between the granulomatous diseases discussed in this review, as it has been described almost exclusively for tuberculosis. However, while there is no research to date on the role of AMPK in sarcoidosis, IL-7-induced AMPK signaling in schistosomiasis *japonicum* has been shown to counteract macrophage autophagy

and potentiate liver damage (244). This is in direct contrast with the multiple reports of AMPK promoting macrophage autophagy during mycobacterial infection (20). Nevertheless, AMPK could prove a valuable component of granuloma immunometabolism as it has been linked to both PPAR- γ (245) and mTOR (118, 246). In cancer cell lines, for instance, AMPK and AMPK activators such as metformin have an inhibitory effect on PPAR- γ activity (247). In rat liver samples, AMPK activation was shown not only to suppress PPAR- γ activity, but also to decrease fatty acid synthesis while enhancing the beta-oxidation enzyme carnitine palmitoyltransferase (248). While it remains to be seen whether these findings are translatable into granuloma research, AMPK should prove an interesting target for future research.

The comparison between schistosomiasis and tuberculosis highlights an additional key difference relating to the structure of their respective granulomas and the ontogeny of the participating macrophages, which are likely influenced by the respective pathogens. For instance, tuberculous granulomas differ greatly based on the stage of disease, whereas the composition of schistosome granulomas depends on where the eggs are deposited. Additionally, in tuberculosis, granulomas appear to involve more tissue-resident pulmonary macrophages, while schistosome granulomas consist almost exclusively of monocyte-derived macrophages. Therefore, it will be interesting to investigate the activation and metabolic programming of macrophages dependent on the local environment of the granuloma vs. macrophage ontogeny. Metabolic differences have also been shown within the layers of individual granulomas, so the metabolic profiles of macrophages and/or the additional immune cells of the granuloma dependent on their spatial orientation within the granulomatous structure will also require characterization. This can also be applied to the different pathological structures of granulomas, particularly fibrotic, foam cell-containing and necrotic granulomas. Deciphering the metabolic pathways underlying the formation of these distinct structures will allow us to determine why some granulomas are more effective than others, and perhaps how to redirect granulomas toward a less harmful phenotype.

Finally, it is important to note that there is a significant epidemiological overlap between tuberculosis, HIV, malaria and schistosomiasis (249). It would therefore be interesting for future research to consider a schistosomiasis-tuberculosis co-infection approach. Even in urban settings of the southern hemisphere, studies report that over 60% of Mtb-exposed children also suffer from a helminth infection, the vast majority of which are caused by *Schistosoma* species (250). Furthermore, it was recently shown that infection with *S. haematobium* induces long-term, persistent epigenetic alterations resulting in a weakened inflammatory response and increased susceptibility to tuberculosis (251). Hence, research on tuberculosis therapies and vaccine candidates has made a point to assess the effect of *Schistosoma* species on tuberculosis disease progression (252). As both pathogens form granulomas but affect macrophage metabolism in a vastly different manner, it would be interesting to analyze granuloma formation in co-infection settings, particularly with regard to lipid metabolism.

Overall, the findings highlighted in this review demonstrate the importance and complexity of immunometabolic signaling in granulomatous diseases of different etiology. This emphasizes the need for future research that deciphers more closely the contribution of different metabolic pathways to each individual disease, as well as the regulation of these pathways by PPARs, mTOR, and AMPK. Furthermore, it is paramount that the role of key metabolic pathways and regulators are then verified *in vivo*, and where possible, by human studies. Building comprehensive metabolic networks that define granuloma macrophage function will enable us to identify novel therapeutic targets in the future.

REFERENCES

1. Adams DO. The granulomatous inflammatory response. A review. *Am J Pathol.* (1976) 84:164–92.
2. Kaye P. Granulomatous diseases. *Int J Exp Pathol.* (2000) 81:289–90. doi: 10.1046/j.1365-2613.2000.00171.x
3. Izbicki G, Chavko R, Banauch GI, Weiden MD, Berger KI, Aldrich TK, et al. World Trade Center “sarcoid-like” granulomatous pulmonary disease in New York City Fire Department rescue workers. *Chest.* (2007) 131:1414–23. doi: 10.1378/chest.06-2114
4. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. *Semin Immunol.* (2008) 20:86–100. doi: 10.1016/j.smim.2007.11.004
5. Esteves T, Aparicio G, Garcia-Patoss V. Is there any association between Sarcoidosis and infectious agents? a systematic review and meta-analysis. *BMC Pulm Med.* (2016) 16:165. doi: 10.1186/s12890-016-0332-z
6. Turk JL, Narayanan RB. The origin, morphology, and function of epithelioid cells. *Immunobiology.* (1982) 161:274–82. doi: 10.1016/S0017-2985(82)80083-1
7. Cronan MR, Beerman RW, Rosenberg AF, Saelens JW, Johnson MG, Oehlers SH, et al. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. *Immunity.* (2016) 45:861–76. doi: 10.1016/j.immuni.2016.09.014
8. Helming L, Gordon S. The molecular basis of macrophage fusion. *Immunobiology.* (2007) 212:785–93. doi: 10.1016/j.imb.2007.09.012
9. Helming L, Gordon S. Molecular mediators of macrophage fusion. *Trends Cell Biol.* (2009) 19:514–22. doi: 10.1016/j.tcb.2009.07.005
10. Herrtwich L, Nanda I, Evangelou K, Nikolova T, Horn V, Sagar Erny D, et al. DNA damage signaling instructs polyploid macrophage fate in granulomas. *Cell.* (2016) 167:1264–80.e18. doi: 10.1016/j.cell.2016.09.054
11. Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, et al. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for *M. tuberculosis* persistence. *PLoS Pathog.* (2008) 4:e1000204. doi: 10.1371/journal.ppat.1000204
12. Petersen HJ, Smith AM. The role of the innate immune system in granulomatous disorders. *Front Immunol.* (2013) 4:120. doi: 10.3389/fimmu.2013.00120
13. Pagán AJ, Ramakrishnan L. The formation and function of granulomas. *Annu Rev Immunol.* (2018) 36:639–65. doi: 10.1146/annurev-immunol-032712-100022
14. Pagán AJ, Ramakrishnan L. Immunity and immunopathology in the tuberculous granuloma. *Cold Spring Harb Perspect Med.* (2014) 5:a01849. doi: 10.1101/csdperspect.a018499
15. Linke M, Pham HTT, Katholnig K, Schnöller T, Miller A, Demel F, et al. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. *Nat Immunol.* (2017) 18:293–302. doi: 10.1038/ni.3655
16. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. *Cell.* (2012) 149:274–93. doi: 10.1016/j.cell.2012.03.017
17. Weichhart T, Hengstschläger M, Linke M. Regulation of innate immune cell function by mTOR. *Nat Rev Immunol.* (2015) 15:599–614. doi: 10.1038/nri3901
18. Guerrini V, Prideaux B, Blanc L, Bruiners N, Arrigucci R, Singh S, et al. Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. *PLoS Pathog.* (2018) 14:e1007223. doi: 10.1371/journal.ppat.1007223
19. Yang C-S, Kim J-J, Lee H-M, Jin HS, Lee S-H, Park J-H, et al. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. *Autophagy.* (2014) 10:785–802. doi: 10.4161/auto.28072
20. Ouimet M, Koster S, Sakowski E, Ramkhelawon B, van Solingen C, Oldebeeken S, et al. *Mycobacterium tuberculosis* induces the miR-33 locus to reprogram autophagy and host lipid metabolism. *Nat Immunol.* (2016) 17:677–86. doi: 10.1038/ni.3434
21. Dubois V, Eeckhoutte J, Lefebvre P, Staels B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. *J Clin Invest.* (2017) 127:1202–14. doi: 10.1172/JCI88894
22. Liu X, Liu J, Zhao S, Zhang H, Cai W, Cai M, et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. *Stroke.* (2016) 47:498–504. doi: 10.1161/STROKEAHA.115.012079
23. Klinkert K, Whelan D, Clover AJP, Leblond A-L, Kumar AHS, Caplice NM. Selective M2 macrophage depletion leads to prolonged inflammation in surgical wounds. *Eur Surg Res.* (2017) 58:109–20. doi: 10.1159/000451078
24. Zhang M-Z, Wang X, Wang Y, Niu A, Wang S, Zou C, et al. IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. *Kidney Int.* (2017) 91:375–86. doi: 10.1016/j.kint.2016.08.020
25. O’Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. *Nat Rev Immunol.* (2016) 16:553–65. doi: 10.1038/nri.2016.70
26. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. *Nat Rev Immunol.* (2011) 11:723–37. doi: 10.1038/nri3073
27. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. *Immunity.* (2014) 40:274–88. doi: 10.1016/j.immuni.2014.01.006
28. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. *Trends Immunol.* (2004) 25:677–86. doi: 10.1016/j.it.2004.09.015
29. Sudan B, Wacker MA, Wilson ME, Graff JW. A systematic approach to identify markers of distinctly activated human macrophages. *Front Immunol.* (2015) 6:253. doi: 10.3389/fimmu.2015.00253
30. Sica A, Mantovani A. Macrophage plasticity and polarization: *in vivo* veritas. *J Clin Invest.* (2012) 122:787–95. doi: 10.1172/JCI59643
31. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. *J Pathol.* (2012) 229:176–85. doi: 10.1002/path.4133
32. Yanai H, Negishi H, Taniguchi T. The IRF family of transcription factors: inception, impact and implications in oncogenesis. *Oncoimmunology.* (2012) 1:1376–86. doi: 10.4161/onci.22475

AUTHOR CONTRIBUTIONS

JW conceived of, and with HM wrote, reviewed and edited the manuscript. TW reviewed and edited the manuscript.

FUNDING

TW was supported by grants from the Austrian Science Fund (FWF) P27701-B20 and P30857-B28, by the Vienna Science and Technology Fund (WWTF) LS18-058, and by the Foundation for Sarcoidosis Research.

33. Müller E, Christopoulos PF, Halder S, Lunde A, Beraki K, Speth M, et al. Toll-like receptor ligands and Interferon- γ synergize for induction of antitumor M1 macrophages. *Front Immunol.* (2017) 8:1383. doi: 10.3389/fimmu.2017.01383
34. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. *J Gen Physiol.* (1927) 8:519–30. doi: 10.1085/jgp.8.6.519
35. Rodriguez-Prados J-C, Través PG, Cuena J, Rico D, Aragón J, Martín-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. *J Immunol.* (2010) 185:605–14. doi: 10.4049/jimmunol.0901698
36. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1 β through HIF-1 α . *Nature.* (2013) 496:238–42. doi: 10.1038/nature11986
37. Wang L, Hong Y, Wu J, Leung Y-K, Huang Y. Efficacy of thalidomide therapy in pediatric Crohn's disease with evidence of tuberculosis. *World J Gastroenterol.* (2017) 23:7727–34. doi: 10.3748/wjg.v23.i43.7727
38. Diskin C, Pálsson-McDermott EM. Metabolic modulation in macrophage effector function. *Front Immunol.* (2018) 9:270. doi: 10.3389/fimmu.2018.00270
39. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. *J Exp Med.* (1992) 176:287–92. doi: 10.1084/jem.176.1.287
40. Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). *J Biol Chem.* (2011) 286:1786–94. doi: 10.1074/jbc.M110.169367
41. Wei L, Vahedi G, Sun H-W, Watford WT, Takatori H, Ramos HL, et al. Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. *Immunity.* (2010) 32:840–51. doi: 10.1016/j.jimmuni.2010.06.003
42. Zhong Y, Yi C. MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. *Biosci Rep.* (2016) 36:e00363. doi: 10.1042/BSR20160105
43. Chuang Y, Hung ME, Cangelose BK, Leonard JN. Regulation of the IL-10-driven macrophage phenotype under incoherent stimuli. *Innate Immun.* (2016) 22:647–57. doi: 10.1177/1753425916668243
44. Staples KJ, Smallie T, Williams LM, Foey A, Burke B, Foxwell BMJ, et al. IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3. *J Immunol.* (2007) 178:4779–85. doi: 10.4049/jimmunol.178.8.4779
45. Huang SC-C, Evertz B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. *Nat Immunol.* (2014) 15:846–55. doi: 10.1038/ni.2956
46. Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. *Immunity.* (2015) 42:419–30. doi: 10.1016/j.jimmuni.2015.02.005
47. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. *Cell Metab.* (2006) 4:13–24. doi: 10.1016/j.cmet.2006.05.011
48. Covarrubias AJ, Aksoylar HI, Yu J, Snyder NW, Worth AJ, Iyer SS, et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. *eLife.* (2016) 5:e11612. doi: 10.7554/eLife.11612
49. Liu P-S, Wang H, Li X, Chao T, Teav T, Christen S, et al. α -ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. *Nat Immunol.* (2017) 18:985–94. doi: 10.1038/ni.3796
50. Ren W, Xia Y, Chen S, Wu G, Bazer FW, Zhou B, et al. Glutamine metabolism in macrophages: a novel target for obesity/type 2 diabetes. *Adv Nutr.* (2019) 10:321–30. doi: 10.1093/advances/nmy084
51. World Health Organization. *Global Tuberculosis Report 2018*. Geneva:World Health Organization. (2018) Available online at: https://www.who.int/tb/publications/global_report/en/
52. Russell DG. Who puts the tubercle in tuberculosis? *Nat Rev Microbiol.* (2007) 5:39–47. doi: 10.1038/nrmicro1538
53. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. *Nat Rev Immunol.* (2012) 12:352–66. doi: 10.1038/nri3211
54. Srivastava S, Ernst JD, Desvignes L. Beyond macrophages: the diversity of mononuclear cells in tuberculosis. *Immunol Rev.* (2014) 262:179–92. doi: 10.1111/imr.12217
55. Cooper AM. Cell-mediated immune responses in tuberculosis. *Annu Rev Immunol.* (2009) 27:393–422. doi: 10.1146/annurev.immunol.021908.132703
56. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. *Nat Med.* (2014) 20:75–9. doi: 10.1038/nm.3412
57. Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, et al. Ipr1 gene mediates innate immunity to tuberculosis. *Nature.* (2005) 434:767–72. doi: 10.1038/nature03419
58. Ratcliffe HL. Tuberculosis induced by droplet nuclei infection; pulmonary tuberculosis of predetermined initial intensity in mammals. *Am J Hyg.* (1952) 55:36–47. doi: 10.1093/oxfordjournals.aje.a119504
59. Ratcliffe HL, Palladino VS. Tuberculosis induced by droplet nuclei infection; initial homogeneous response of small mammals (rats, mice, guinea pigs, and hamsters) to human and to bovine bacilli, and the rate and pattern of tubercle development. *J Exp Med.* (1953) 97:61–8. doi: 10.1084/jem.97.1.61
60. Dannenberg AM. Immunopathogenesis of pulmonary tuberculosis. *Hospital Pract.* (1993) 28:51–8. doi: 10.1080/21548331.1993.11442738
61. Clay H, Davis JM, Beery D, Huttenlocher A, Lyons SE, Ramakrishnan L. Dichotomous role of the macrophage in early *Mycobacterium marinum* infection of the zebrafish. *Cell Host and Microbe.* (2007) 2:29–39. doi: 10.1016/j.chom.2007.06.004
62. Wolf AJ, Linas B, Trevejo-Nuñez GJ, Kincaid E, Tamura T, Takatsu K, et al. *Mycobacterium tuberculosis* infects dendritic cells with high frequency and impairs their function *in vivo*. *J Immunol.* (2007) 179:2509–19. doi: 10.4049/jimmunol.179.4.2509
63. Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al. Initiation of the adaptive immune response to *Mycobacterium tuberculosis* depends on antigen production in the local lymph node, not the lungs. *J Exp Med.* (2008) 205:105–15. doi: 10.1084/jem.20071367
64. Poulsen A. Some clinical features of tuberculosis. 1. Incubation period. *Acta Tuberc Scand.* (1950) 24:311–46.
65. Wallgren A. The time-table of tuberculosis. *Tubercl.* (1948) 29:245–51. doi: 10.1016/s0041-3879(48)80033-4
66. Flynn JL, Chan J, Lin PL. Macrophages and control of granulomatous inflammation in tuberculosis. *Mucosal Immunol.* (2011) 4:271–8. doi: 10.1038/mi.2011.14
67. Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. *J Immunol.* (2013) 191:773–84. doi: 10.4049/jimmunol.1300113
68. Marino S, Cilfone NA, Mattila JT, Linderman JJ, Flynn JL, Kirschner DE. Macrophage polarization drives granuloma outcome during *Mycobacterium tuberculosis* infection. *Infect Immun.* (2015) 83:324–38. doi: 10.1128/IAI.02494-14
69. Huang Z, Luo Q, Guo Y, Chen J, Xiong G, Peng Y, et al. *Mycobacterium tuberculosis*-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas *in vitro*. *PLoS ONE.* (2015) 10:e0129744. doi: 10.1371/journal.pone.0129744
70. Hirsch CS, Ellner JJ, Russell DG, Rich EA. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of *Mycobacterium tuberculosis* by human alveolar macrophages. *J Immunol.* (1994) 152:743–53.
71. Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Toossi Z. *Mycobacterium tuberculosis* (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. *Tubercl Lung Dis.* (1997) 78:247–55. doi: 10.1016/S0962-8479(97)90005-8
72. Aston C, Rom WN, Talbot AT, Reibman J. Early inhibition of mycobacterial growth by human alveolar macrophages is not due to

- nitric oxide. *Am J Respir Crit Care Med.* (1998) 157(6 Pt 1):1943–50. doi: 10.1164/ajrccm.157.6.9705028
73. Rutledge BJ, Rayburn H, Rosenberg R, North RJ, Gladue RP, Corless CL, et al. High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. *J Immunol.* (1995) 155:4838–43.
74. Antonelli LRV, Gigliotti Rothfuchs A, Gonçalves R, Roffé E, Cheever AW, Bafica A, et al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. *J Clin Invest.* (2010) 120:1674–82. doi: 10.1172/JCI40817
75. Cambier CJ, O'Leary SM, O'Sullivan MP, Keane J, Ramakrishnan L. Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. *Immunity.* (2017) 47:552–65.e4. doi: 10.1016/j.immuni.2017.08.003
76. Mitis E, Kamng'ona R, Rylance J, Solórzano C, Jesus Reiné J, Mwandumba HC, et al. Human alveolar macrophages predominantly express combined classical M1 and M2 surface markers in steady state. *Respir Res.* (2018) 19:66. doi: 10.1186/s12931-018-0777-0
77. Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. *Nat Rev Immunol.* (2014) 14:81–93. doi: 10.1038/nri3600
78. Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. Growth of *Mycobacterium tuberculosis* in vivo segregates with host macrophage metabolism and ontogeny. *J Exp Med.* (2018) 215:1135–52. doi: 10.1084/jem.20172020
79. Lee W, VanderVen BC, Fahey RJ, Russell DG. Intracellular *Mycobacterium tuberculosis* exploits host-derived fatty acids to limit metabolic stress. *J Biol Chem.* (2013) 288:6788–800. doi: 10.1074/jbc.M112.445056
80. Podinovskaia M, Lee W, Caldwell S, Russell DG. Infection of macrophages with *Mycobacterium tuberculosis* induces global modifications to phagosomal function. *Cell Microbiol.* (2013) 15:843–59. doi: 10.1111/cmi.12092
81. VanderVen BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C, et al. Novel inhibitors of cholesterol degradation in *Mycobacterium tuberculosis* reveal how the bacterium's metabolism is constrained by the intracellular environment. *PLoS Pathog.* (2015) 11:e1004679. doi: 10.1371/journal.ppat.1004679
82. Nazarova EV, Montague CR, La T, Wilburn KM, Sukumar N, Lee W, et al. Rv3723/LucA coordinates fatty acid and cholesterol uptake in *Mycobacterium tuberculosis*. *eLife.* (2017) 6:e26969. doi: 10.7554/eLife.26969
83. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. *Nat Rev Immunol.* (2015) 15:87–103. doi: 10.1038/nri3787
84. Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML. Infection with *Mycobacterium tuberculosis* induces the Warburg effect in mouse lungs. *Sci Rep.* (2015) 5:8176. doi: 10.1038/srep18176
85. Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O'Leary SM, O'Sullivan MP, et al. Cutting edge: *Mycobacterium tuberculosis* induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. *J Immunol.* (2016) 196:2444–9. doi: 10.4049/jimmunol.1501612
86. Gleeson LE, O'Leary SM, Ryan D, McLaughlin AM, Sheedy FJ, Keane J. Cigarette smoking impairs the bioenergetic immune response to *Mycobacterium tuberculosis* infection. *Am J Respir Cell Mol Biol.* (2018) 59:572–9. doi: 10.1165/rcmb.2018-0162OC
87. Leemans JC, Juffermans P, Florquin S, van Rooijen N, Vervoordeldonk MJ, Verbon A, et al. Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. *J Immunol.* (2001) 166:4604–11. doi: 10.4049/jimmunol.166.7.4604
88. Leemans JC, Thepen T, Weijer S, Florquin S, van Rooijen N, van de Winkel JG, et al. Macrophages play a dual role during pulmonary tuberculosis in mice. *J Infect Dis.* (2005) 191:65–74. doi: 10.1086/426395
89. Russell DG, Huang L, VanderVen BC. Immunometabolism at the interface between macrophages and pathogens. *Nat Rev Immunol.* (2019) 19:291–304. doi: 10.1038/s41577-019-0124-9
90. Kang DD, Lin Y, Moreno JR, Randall TD, Khader SA. Profiling early lung immune responses in the mouse model of tuberculosis. *PLoS ONE.* (2011) 6:e16161. doi: 10.1371/journal.pone.0016161
91. Roy S, Schmeier S, Kaczkowski B, Arner E, Alam T, Ozturk M, et al. Transcriptional landscape of *Mycobacterium tuberculosis* infection in macrophages. *Sci Rep.* (2018) 8:6758. doi: 10.1038/s41598-018-24509-6
92. Shi L, Jiang Q, Bushkin Y, Subbian S, Tyagi S. Biphasic dynamics of macrophage immunometabolism during *Mycobacterium tuberculosis* infection. *MBio.* (2019) 10:e02550–18. doi: 10.1128/mBio.02550-18
93. Williams NC, O'Neill LAJ. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. *Front Immunol.* (2018) 9:141. doi: 10.3389/fimmu.2018.00141
94. Dolan SK, Welch M. The glyoxylate shunt, 60 years on. *Annu Rev Microbiol.* (2018) 72:309–30. doi: 10.1146/annurev-micro-090817-062257
95. McKinney JD, Höner zu Bentrup K, Muñoz-Elías EJ, Miczak A, Chen B, Chan WT, et al. Persistence of *Mycobacterium tuberculosis* in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. *Nature.* (2000) 406:735–8. doi: 10.1038/35021074
96. Muñoz-Elías EJ, McKinney JD. *Mycobacterium tuberculosis* isocitrate lyases 1 and 2 are jointly required for *in vivo* growth and virulence. *Nat Med.* (2005) 11:638–44. doi: 10.1038/nm1252
97. Cordes T, Wallace M, Michelucci A, Divakaruni AS, Sapcariu SC, Sousa C, et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. *J Biol Chem.* (2016) 291:14274–84. doi: 10.1074/jbc.M115.685792
98. Mills E, O'Neill LAJ. Succinate: a metabolic signal in inflammation. *Trends Cell Biol.* (2014) 24:313–20. doi: 10.1016/j.tcb.2013.11.008
99. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. *Cancer Cell.* (2005) 7:77–85. doi: 10.1016/j.ccr.2004.11.022
100. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. *Cell Metab.* (2016) 24:158–66. doi: 10.1016/j.cmet.2016.06.004
101. Rohde KH, Veiga DFT, Caldwell S, Balázs G, Russell DG. Linking the transcriptional profiles and the physiological states of *Mycobacterium tuberculosis* during an extended intracellular infection. *PLoS Pathog.* (2012) 8:e1002769. doi: 10.1371/journal.ppat.1002769
102. Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR. A replication clock for *Mycobacterium tuberculosis*. *Nat Med.* (2009) 15:211–4. doi: 10.1038/nm.1915
103. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, et al. Transcriptional adaptation of *Mycobacterium tuberculosis* within macrophages: insights into the phagosomal environment. *J Exp Med.* (2003) 198:693–704. doi: 10.1084/jem.20030846
104. Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F. Foamy macrophages and the progression of the human tuberculosis granuloma. *Nat Immunol.* (2009) 10:943–8. doi: 10.1038/ni.1781
105. Brown RE, Hunter RL, Hwang S-A. Morphoproteomic-guided host-directed therapy for tuberculosis. *Front Immunol.* (2017) 8:78. doi: 10.3389/fimmu.2017.00078
106. Caron A, Richard D, Laplante M. The roles of mTOR complexes in lipid metabolism. *Annu Rev Nutr.* (2015) 35:321–48. doi: 10.1146/annurev-nutr-071714-034355
107. Zullo AJ, Lee S. Mycobacterial induction of autophagy varies by species and occurs independently of mammalian target of rapamycin inhibition. *J Biol Chem.* (2012) 287:12668–78. doi: 10.1074/jbc.M111.320135
108. Yang C-S, Song C-H, Lee J-S, Jung S-B, Oh J-H, Park J, et al. Intracellular network of phosphatidylinositol 3-kinase, mammalian target of the rapamycin/70 kDa ribosomal S6 kinase 1, and mitogen-activated protein kinases pathways for regulating mycobacteria-induced IL-23 expression in human macrophages. *Cell Microbiol.* (2006) 8:1158–71. doi: 10.1111/j.1462-5822.2006.00699.x
109. Almeida PE, Carneiro AB, Silva AR, Bozza PT. Ppary expression and function in mycobacterial infection: roles in lipid metabolism, immunity, and bacterial killing. *PPAR Res.* (2012) 2012:383829. doi: 10.1155/2012/383829
110. Almeida PE, Silva AR, Maya-Monteiro CM, Töröcsik D, D'Avila H, Dezsö B, et al. *Mycobacterium bovis* bacillus Calmette-Guérin infection induces TLR2-dependent peroxisome proliferator-activated receptor gamma expression and activation: functions in inflammation,

- lipid metabolism, and pathogenesis. *J Immunol.* (2009) 183:1337–45. doi: 10.4049/jimmunol.0900365
111. Rajaram MVS, Brooks MN, Morris JD, Torrelles JB, Azad AK, Schlesinger LS. *Mycobacterium tuberculosis* activates human macrophage peroxisome proliferator-activated receptor gamma linking mannose receptor recognition to regulation of immune responses. *J Immunology.* (2010) 185:929–42. doi: 10.4049/jimmunol.1000866
112. Salomon H, Bruiners N, Lakehal K, Shi L, Ravi J, Yamaguchi KD, et al. Cutting edge: vitamin D regulates lipid metabolism in *Mycobacterium tuberculosis* infection. *J Immunol.* (2014) 193:30–4. doi: 10.4049/jimmunol.1400736
113. Guirado E, Rajaram MV, Chawla A, Daigle J, La Perle KM, Arnett E, et al. Deletion of PPAR γ in lung macrophages provides an immunoprotective response against *M. tuberculosis* infection in mice. *Tuberculosis.* (2018) 111:170–7. doi: 10.1016/j.tube.2018.06.012
114. Kim JE, Chen J. Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. *Diabetes.* (2004) 53:2748–56. doi: 10.2337/diabetes.53.11.2748
115. Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K, et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. *J Clin Invest.* (2007) 117:387–96. doi: 10.1172/JCI29528
116. Han L, Shen W-J, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. *Part I PPAR- α Future Cardiol.* (2017) 13:259–78. doi: 10.2217/fca-2016-0059
117. Kim YS, Lee H-M, Kim JK, Yang C-S, Kim TS, Jung M, et al. PPAR- α activation mediates innate host defense through induction of TFEB and lipid catabolism. *J Immunol.* (2017) 198:3283–95. doi: 10.4049/jimmunol.1601920
118. Jo E-K, Silwal P, Yuk J-M. AMPK-targeted effector networks in mycobacterial infection. *Front Microbiol.* (2019) 10:520. doi: 10.3389/fmicb.2019.00520
119. Liang M, Habib Z, Sakamoto K, Chen X, Cao G. Mycobacteria and autophagy: many questions and few answers. *Curr Issues Mol Biol.* (2017) 21:63–72. doi: 10.21775/cimb.021.063
120. Dong H, Jing W, Rumpeng Z, Xuewei X, Min M, Ru C, et al. ESAT6 inhibits autophagy flux and promotes BCG proliferation through mTOR. *Biochem Biophys Res Commun.* (2016) 477:195–201. doi: 10.1016/j.bbrc.2016.06.042
121. Chang YY, Juhász G, Goraksha-Hicks P, Arsham AM, Mallin DR, Muller LK, et al. Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. *Biochem Soc Trans.* (2009) 37(Pt 1):232–6. doi: 10.1042/BST0370232
122. Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H. mTOR regulation of autophagy. *FEBS Lett.* (2010) 584:1287–95. doi: 10.1016/j.febslet.2010.01.017
123. Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. *Nature.* (2010) 468:1100–4. doi: 10.1038/nature09584
124. World Health Organization. *Schistosomiasis: Progress Report 2001–2011, Strategic Plan 2012–2020.* Geneva: World Health Organization. (2013). Available online at: <http://www.who.int/iris/handle/10665/78074>
125. King CH, Dickman K, Tisch DJ. Reassessment of the cost of chronic helminthic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. *Lancet.* (2005) 365:1561–9. doi: 10.1016/S0140-6736(05)66457-4
126. Grzych JM, Pearce E, Cheever A, Caulada ZA, Caspar P, Heiny S, et al. Egg deposition is the major stimulus for the production of Th2 cytokines in murine schistosomiasis mansoni. *J Immunol.* (1991) 146:1322–7.
127. Lambertucci JR, Serufo JC, Gerspacher-Lara R, Rayes AA, Teixeira R, Nobre V, et al. *Schistosoma mansoni*: assessment of morbidity before and after control. *Acta Trop.* (2000) 77:101–9. doi: 10.1016/S0001-706X(00)00124-8
128. Hams E, Aviello G, Fallon PG. The schistosoma granuloma: friend or foe? *Front Immunol.* (2013) 4:89. doi: 10.3389/fimmu.2013.00089
129. Elbaz T, Esmat G. Hepatic and intestinal schistosomiasis: review. *J Adv Res.* (2013) 4:445–52. doi: 10.1016/j.jare.2012.12.001
130. Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R, Wynn TA. Immunopathology of schistosomiasis. *Immunol Cell Biol.* (2007) 85:148–54. doi: 10.1038/sj.icb.7100014
131. Girgis NM, Gundra UM, Ward LN, Cabrera M, Frevert U, Loke P. Ly6C(high) monocytes become alternatively activated macrophages in schistosome granulomas with help from CD4+ cells. *PLoS Pathog.* (2014) 10:e1004080. doi: 10.1371/journal.ppat.1004080
132. Weinstock JV, Boros DL. Organ-dependent differences in composition and function observed in hepatic and intestinal granulomas isolated from mice with *Schistosomiasis mansoni*. *J Immunol.* (1983) 130:418–22.
133. Amaral KB, Silva TP, Dias FF, Malta KK, Rosa FM, Costa-Neto SF, et al. Histological assessment of granulomas in natural and experimental *Schistosoma mansoni* infections using whole slide imaging. *PLoS ONE.* (2017) 12:e0184696. doi: 10.1371/journal.pone.0184696
134. Everts B, Perona-Wright G, Smits HH, Hokke CH, van der Ham AJ, Fitzsimmons CM, et al. Omega-1, a glycoprotein secreted by *Schistosoma mansoni* eggs, drives Th2 responses. *J Exp Med.* (2009) 206:1673–80. doi: 10.1084/jem.20082460
135. Everts B, Hussaarts L, Driessen NN, Meevissen MHJ, Schramm G, van der Ham AJ, et al. Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor. *J Exp Med.* (2012) 209:1753–67. doi: 10.1084/jem.20111381
136. Ritter DM, McKerrow JH. Intercellular adhesion molecule 1 is the major adhesion molecule expressed during schistosome granuloma formation. *Infect Immun.* (1996) 64:4706–13.
137. Rahman K, Vengrenyuk Y, Ramsey SA, Vila NR, Girgis NM, Liu J, et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. *J Clin Invest.* (2017) 127:2904–15. doi: 10.1172/JCI75005
138. Nascimento M, Huang SC, Smith A, Everts B, Lam W, Bassity E, et al. Ly6Chi monocyte recruitment is responsible for Th2 associated host-protective macrophage accumulation in liver inflammation due to schistosomiasis. *PLoS Pathog.* (2014) 10:e1004282. doi: 10.1371/journal.ppat.1004282
139. Loke P, Nair MG, Parkinson J, Guiliano D, Blaxter M, Allen JE. IL-4 dependent alternatively-activated macrophages have a distinctive *in vivo* gene expression phenotype. *BMC Immunol.* (2002) 3:7. doi: 10.1186/1471-2127-3-7
140. Gong W, Huang F, Sun L, Yu A, Zhang X, Xu Y, et al. Toll-like receptor-2 regulates macrophage polarization induced by excretory-secretory antigens from *Schistosoma japonicum* eggs and promotes liver pathology in murine schistosomiasis. *PLoS Negl Trop Dis.* (2018) 12:e0007000. doi: 10.1371/journal.pntd.0007000
141. Tundup S, Srivastava L, Nagy T, Harn D. CD14 influences host immune responses and alternative activation of macrophages during *Schistosoma mansoni* infection. *Infect Immun.* (2014) 82:3240–51. doi: 10.1128/IAI.01780-14
142. An D, Hao F, Zhang F, Kong W, Chun J, Xu X, et al. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation. *J Biol Chem.* (2017) 292:14391–400. doi: 10.1074/jbc.M117.781807
143. Cortes-Selva D, Elvington AF, Ready A, Rajwa B, Pearce EJ, Randolph GJ, et al. *Schistosoma mansoni* infection-induced transcriptional changes in hepatic macrophage metabolism correlate with an athero-protective phenotype. *Front Immunol.* (2018) 9:2580. doi: 10.3389/fimmu.2018.02580
144. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. *Nature.* (2007) 447:1116–20. doi: 10.1038/nature05894
145. Ahmadian M, Suh JM, Hahn N, Liddle C, Atkins AR, Downes M, et al. PPAR γ signaling and metabolism: the good, the bad and the future. *Nat Med.* (2013) 19:557–66. doi: 10.1038/nm.3159
146. Marion-Letellier R, Savoie G, Ghosh S. Fatty acids, eicosanoids and PPAR gamma. *Eur J Pharmacol.* (2016) 785:44–9. doi: 10.1016/j.ejphar.2015.11.004
147. Nobs SP, Kopf M. PPAR- γ in innate and adaptive lung immunity. *J Leuk Biol.* (2018) 104:737–41. doi: 10.1002/JLB.3MR0118-034R
148. Hou Y, Moreau F, Chadee K. PPAR γ is an E3 ligase that induces the degradation of NF κ B/p65. *Nat Commun.* (2012) 3:1300. doi: 10.1038/ncomms2270
149. Assunção LS, Magalhães KG, Carneiro AB, Molinaro R, Almeida PE, Atella GC, et al. Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPAR γ dependent mechanisms. *Biochim Biophys Mol cell biology of lipids.* (2017) 1862:246–54. doi: 10.1016/j.bbapli.2016.11.006

150. Anthony B, Mathieson W, de Castro-Borges W, Allen J. *Schistosoma mansoni*: egg-induced downregulation of hepatic stellate cell activation and fibrogenesis. *Exp Parasitol.* (2010) 124:409–20. doi: 10.1016/j.exppara.2009.12.009
151. Gobert GN, Burke ML, McManus DP, Ellis MK, Chuah C, Ramm GA, et al. Transcriptional profiling of chronic clinical hepatic schistosomiasis japonica indicates reduced metabolism and immune responses. *Parasitology*. (2015) 142:1453–68. doi: 10.1017/S0031182015000682
152. Wang L, Xie H, Xu L, Liao Q, Wan S, Yu Z, et al. rSj16 Protects against DSS-Induced Colitis by Inhibiting the PPAR- α signaling pathway. *Theranostics*. (2017) 7:3446–60. doi: 10.7150/thno.20359
153. Huizar I, Malur A, Patel J, McPeek M, Dobbs L, Wingard C, et al. The role of PPAR γ in carbon nanotube-elicited granulomatous lung inflammation. *Respir Res.* (2013) 14:7. doi: 10.1186/1465-9921-14-7
154. Doenhoff MJ, Stanley RG, Griffiths K, Jackson CL. An anti-atherogenic effect of *Schistosoma mansoni* infections in mice associated with a parasite-induced lowering of blood total cholesterol. *Parasitology*. (2002) 125(Pt 5):415–21. doi: 10.1017/S0031182002002275
155. da Silva FL, Del-Rei RP, Fraga DBM, Leony LM, de Souza AM, Santos FLN. Alterations in the lipid profiles and circulating liver enzymes in individuals infected by *Schistosoma mansoni*. *Rev Soc Bras Med Trop.* (2018) 51:795–801. doi: 10.1590/0037-8682-0113-2018
156. Stanley RG, Jackson CL, Griffiths K, Doenhoff MJ. Effects of *Schistosoma mansoni* worms and eggs on circulating cholesterol and liver lipids in mice. *Atherosclerosis*. (2009) 207:131–8. doi: 10.1016/j.atherosclerosis.2009.04.037
157. Babaev VR, Yancey PG, Ryzhov SV, Kon V, Breyer MD, Magnuson MA, et al. Conditional knockout of macrophage PPAR γ increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. *Arterioscler Thromb Vasc Biol.* (2005) 25:1647–53. doi: 10.1161/01.ATV.0000173413.31789.1a
158. Cuaranta-Monroy I, Kiss M, Simandi Z, Nagy L. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells—revealing complexity through systems biology. *Eur J Clin Invest.* (2015) 45:964–75. doi: 10.1111/eci.12491
159. Akiyama TE, Sakai S, Lambert G, Nicol CJ, Matsusue K, Pimprale S, et al. Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. *Mol Cell Biol.* (2002) 22:2607–19. doi: 10.1128/MCB.22.8.2607-2619.2002
160. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. *Nat Med.* (2001) 7:53–8. doi: 10.1038/83348
161. Dai L, Chu SP, Wang ZH, Ni HB, Ding X, Tao Y, et al. APOC3 promotes TNF- α -induced expression of JAM-1 in endothelial cell via PI3K-IKK2-p65 pathway. *Cardiovasc Pathol.* (2019) 41:11–17. doi: 10.1016/j.carpath.2019.02.005
162. Westerterp M, Berbée JFP, Pires NMM, van Mierlo GJD, Kleemann R, Romijn JA, et al. Apolipoprotein C-I is crucially involved in lipopolysaccharide-induced atherosclerosis development in apolipoprotein E-knockout mice. *Circulation*. (2007) 116:2173–81. doi: 10.1161/CIRCULATIONAHA.107.693382
163. Domschke G, Linden F, Pawig L, Hafner A, Akhavanpoor M, Reymann J, et al. Systematic RNA-interference in primary human monocyte-derived macrophages: a high-throughput platform to study foam cell formation. *Sci Rep.* (2018) 8:10516. doi: 10.1038/s41598-018-28790-3
164. Chiba Y, Ogita T, Ando K, Fujita T. PPAR γ ligands inhibit TNF-alpha-induced LOX-1 expression in cultured endothelial cells. *Biochem Biophys Res Commun.* (2001) 286:541–6. doi: 10.1006/bbrc.2001.5361
165. Shimada M, Kirinoki M, Shimizu K, Kato-Hayashi N, Chigusa Y, Kitikoon V, et al. Characteristics of granuloma formation and liver fibrosis in murine schistosomiasis mekongi: a morphological comparison between *Schistosoma mekongi* and *S. japonicum* infection. *Parasitology*. (2010) 137:1781–9. doi: 10.1017/S0031182010000806
166. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. *Nature*. (2000) 391:79–82. doi: 10.1038/34178
167. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. Ppary promotes monocyte/macrophage differentiation and uptake of oxidized LDL. *Cell.* (1998) 93:241–52. doi: 10.1016/S0092-8674(00)81575-5
168. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. OXIDIZED LDL REGULATES MACROPHAGE GENE EXPRESSION THROUGH LIGAND ACTIVATION OF PPAR γ . *Cell.* (1998) 93:229–40. doi: 10.1016/S0092-8674(00)81574-3
169. Giera M, Kaisar MMM, Derkx RJE, Steenvoorden E, Kruize YCM, Hokke CH, et al. The *Schistosoma mansoni* lipidome: leads for immunomodulation. *Anal Chim Acta.* (2018) 1037:107–118. doi: 10.1016/j.aca.2017.11.058
170. Pearce EJ, Huang SC-C. The metabolic control of schistosome egg production. *Cell Microbiol.* (2015) 17:796–801. doi: 10.1111/cmi.12444
171. Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. *J Cell Mol Med.* (2016) 20:17–28. doi: 10.1111/jcmm.12689
172. Rigamonti E, Chinetti-Gbaguidi G, Staels B. Regulation of macrophage functions by PPAR-alpha, PPAR-gamma, and LXRs in mice and men. *Arterioscler Thromb Vasc Biol.* (2008) 28:1050–9. doi: 10.1161/ATVBAHA.107.158998
173. Hirakata M, Tozawa R, Imura Y, Sugiyama Y. Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation. *Biochem Biophys Res Commun.* (2004) 323:782–8. doi: 10.1016/j.bbrc.2004.08.151
174. Li C, Tu Y, Liu T-R, Guo Z-G, Xie D, Zhong J-K, et al. Rosiglitazone attenuates atherosclerosis and increases high-density lipoprotein function in atherosclerotic rabbits. *Int J Mol Med.* (2015) 35:715–23. doi: 10.3892/ijmm.2015.2072
175. Chen H, He Y-W, Liu W-Q, Zhang J-H. Rosiglitazone prevents murine hepatic fibrosis induced by *Schistosoma japonicum*. *World Journal of Gastroenterology.* (2008) 14:2905–11. doi: 10.3748/wjg.14.2905
176. Roman J, Jeon YJ, Gal A, Perez RL. Distribution of extracellular matrices, matrix receptors, and transforming growth factor-beta 1 in human and experimental lung granulomatous inflammation. *Am J Med Sci.* (1995) 309:124–33. doi: 10.1097/00000441-199503000-00002
177. Zhu Y, Ni Y, Liu R, Hou M, Yang B, Song J, et al. PPAR- γ agonist alleviates liver and spleen pathology via inducing treg cells during *Schistosoma japonicum* infection. *J Immunol Res.* (2018) 2018:6398078. doi: 10.1155/2018/6398078
178. Attia YM, Elalkamy EF, Hammam OA, Mahmoud SS, El-Khatib AS. Telmisartan, an AT1 receptor blocker and a PPAR gamma activator, alleviates liver fibrosis induced experimentally by *Schistosoma mansoni* infection. *Parasites Vect.* (2013) 6:199. doi: 10.1186/1756-3305-6-199
179. Brunet LR, Finkelman FD, Cheever AW, Kopf MA, Pearce EJ. IL-4 protects against TNF-alpha-mediated cachexia and death during acute schistosomiasis. *J Immunol.* (1997) 159:777–85.
180. Herbert DR, Hölscher C, Mohrs M, Arendse B, Schwegmann A, Radwanska M, et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. *Immunity.* (2004) 20:623–35. doi: 10.1016/S1074-7613(04)00107-4
181. Braga TT, Aguadé JSH, Camara NOS. Macrophages during the fibrotic process: M2 as friend and foe. *Front Immunol.* (2015) 6:602. doi: 10.3389/fimmu.2015.00602
182. Nikolic-Paterson DJ, Wang S, Lan HY. Macrophages promote renal fibrosis through direct and indirect mechanisms. *Kidney Int Suppl.* (2014) 4:34–8. doi: 10.1038/kisup.2014.7
183. Toblli JE, Cao G, Giani JF, Angerosa M, Dominici FP, Gonzalez-Cadavid NF. Antifibrotic effects of pioglitazone at low doses on the diabetic rat kidney are associated with the improvement of markers of cell turnover, tubular and endothelial integrity, and angiogenesis. *Kidney Blood Pressure Res.* (2011) 34:20–33. doi: 10.1159/000320380
184. Da Silva Morais A, Abarca-Quinones J, Horsmans Y, Stärkel P, Leclercq I. Peroxisome proliferated-activated receptor γ ligand, Pioglitazone, does not prevent hepatic fibrosis in mice. *Int J Mol Med.* (2007) 19:105–12. doi: 10.3892/ijmm.19.1.105
185. McVicker BL, Bennett RG. Novel anti-fibrotic therapies. *Front Pharmacol.* (2017) 8:318. doi: 10.3389/fphar.2017.00318
186. Saika S, Ikeda K, Yamanaka O, Okada Y, Miyamoto T, Kitano A, Ohnishi Y, et al. Effect of overexpression of PPAR gamma on smad signal in fibroblasts and macrophages and on the healing process of corneal

- alkali burn in mice. *Investig Ophthalmol Visual Sci.* (2007) 293:C75–86. doi: 10.1152/ajpcell.00332.2006
187. Milam JE, Keshamouni VG, Phan SH, Hu B, Gangireddy SR, Hogaboam CM, et al. PPAR-gamma agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis. *Am J Physiol Lung Cell Mol Physiol.* (2008) 294:L891–901. doi: 10.1152/ajplung.00332.2007
188. Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. *N Engl J Med.* (2007) 357:2153–65. doi: 10.1056/NEJMra071714
189. Kouranos V, Jacob J, Wells AU. Severe sarcoidosis. *Clin Chest Med.* (2015) 36:715–26. doi: 10.1016/j.ccm.2015.08.012
190. Iannuzzi MC, Fontana JR. Sarcoidosis: clinical presentation, immunopathogenesis, and therapeutics. *J Am Med Assoc.* (2011) 305:391–9. doi: 10.1001/jama.2011.10
191. Sverrild A, Backer V, Kyvik KO, Kaprio J, Milman N, Svendsen CB, et al. Heredity in sarcoidosis: a registry-based twin study. *Thorax.* (2008) 63:894–6. doi: 10.1136/thx.2007.094060
192. Rybicki BA, Iannuzzi MC, Frederick MM, Thompson BW, Rossman MD, Bresnitz EA, et al. Familial aggregation of sarcoidosis. A case-control etiologic study of sarcoidosis (ACCESS). *Am J Respir Crit Care Med.* (2001) 164:2085–91. doi: 10.1164/ajrccm.164.11.2106001
193. Adams DO. Experimental pine pollen granulomatous pneumonia in the rat. *Am J Pathol.* (1966) 49:153–65.
194. Chen ES, Moller DR. Etiologies of sarcoidosis. *Clin Rev Allergy Immunol.* (2015) 49:6–18. doi: 10.1007/s12016-015-8481-z
195. Valeyre D, Prasse A, Nunes H, Uzunhan Y, Brillet P-Y, Müller-Quernheim J. Sarcoidosis. *Lancet.* (2014) 383:1155–67. doi: 10.1016/S0140-6736(13)60680-7
196. Facco M, Cabrelle A, Teramo A, Olivieri V, Gnoato M, Teolato S, et al. Sarcoidosis is a Th1/Th17 multisystem disorder. *Thorax.* (2011) 66:144–50. doi: 10.1136/thx.2010.140319
197. Sasaki M, Namioka Y, Ito T, Izumiya N, Fukui S, Watanabe A, et al. Role of ICAM-1 in the aggregation and adhesion of human alveolar macrophages in response to TNF-alpha and INF-gamma. *Media Inflamm.* (2001) 10:309–13. doi: 10.1080/09629350120102325
198. Van Maarsseveen TCMT, Vos W, van Diest PJ. Giant cell formation in sarcoidosis: cell fusion or proliferation with non-division? *Clin Exp Immunol.* (2009) 155:476–86. doi: 10.1111/j.1365-2249.2008.03841.x
199. Prokop S, Heppner FL, Goebel HH, Stenzel W. M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis. *Am J Pathol.* (2011) 178:1279–86. doi: 10.1016/j.ajpath.2010.11.065
200. Shamaei M, Mortaz E, Pourabdollah M, Garssen J, Tabarsi P, Velayati A, et al. Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis: a new aspect of macrophage heterogeneity. *Hum Immunol.* (2018) 79:63–9. doi: 10.1016/j.humimm.2017.10.009
201. Crouser ED, White P, Caceres EG, Julian MW, Papp AC, Locke LW, et al. A novel *in vitro* human granuloma model of sarcoidosis and latent tuberculosis infection. *Am J Respir Cell Mol Biol.* (2017) 57:487–98. doi: 10.1165/rcmb.2016-0321OC
202. Locke LW, Crouser ED, White P, Julian MW, Guirado Caceres E, Papp AC, et al. IL-13-regulated macrophage polarization during granuloma formation in an *in vitro* human sarcoidosis model. *Am J Respir Cell Mol Biol.* (2019) 60:84–95. doi: 10.1165/rcmb.2018-0053OC
203. Tristão FSM, Rocha FA, Carlos D, Ketelut-Carneiro N, Souza COS, Milanezi CM, et al. Th17-inducing cytokines IL-6 and IL-23 are crucial for granuloma formation during experimental paracoccidioidomycosis. *Front Immunol.* (2017) 8:949. doi: 10.3389/fimmu.2017.00949
204. Nishikawa K, Seo N, Torii M, Ma N, Muraoka D, Tawara I, et al. Interleukin-17 induces an atypical M2-like macrophage subpopulation that regulates intestinal inflammation. *PLoS ONE.* (2014) 9:e108494. doi: 10.1371/journal.pone.0108494
205. Gupta D, Agarwal R, Aggarwal AN, Verma I. Immune responses to mycobacterial antigens in sarcoidosis: a systematic review. *Indian J Chest Allied Sci.* (2011) 53:41–9.
206. Culver DA, Barna BP, Raychaudhuri B, Bonfield TL, Abraham S, Malur A, et al. Peroxisome proliferator-activated receptor gamma activity is deficient in alveolar macrophages in pulmonary sarcoidosis. *Am J Respir Cell Mol Biol.* (2004) 30:1–5. doi: 10.1165/rcmb.2003-0304RC
207. Barna BP, Culver DA, Abraham S, Malur A, Bonfield TL, John N, et al. Depressed peroxisome proliferator-activated receptor gamma (PPArgamma) is indicative of severe pulmonary sarcoidosis: possible involvement of interferon gamma (IFN-gamma). *Sarcoidosis Vasc Diffuse Lung Dis.* (2006) 23:93–100.
208. Maver A, Medica I, Salobir B, Tercelj-Zorman M, Sabovic M, Petrovic D, et al. Peroxisome proliferator-activated receptor gamma/Pro12Ala polymorphism and peroxisome proliferator-activated receptor gamma coactivator-1 alpha/Gly482Ser polymorphism in patients with sarcoidosis. *Sarcoidosis Vasc Diffuse Lung Dis.* (2008) 25:29–35.
209. Malur A, Mccoy AJ, Arce S, Barna BP, Kavuru MS, Malur AG, et al. Deletion of PPAR gamma in alveolar macrophages is associated with a Th-1 pulmonary inflammatory response. *J Immunol.* (2009) 182:5816–22. doi: 10.4049/jimmunol.0803504
210. Barna BP, McPeek M, Malur A, Fessler MB, Wingard CJ, Dobbs L, et al. Elevated microRNA-33 in sarcoidosis and a carbon nanotube model of chronic granulomatous disease. *Am J Respir Cell Mol Biol.* (2016) 54:865–71. doi: 10.1165/rcmb.2015-0332OC
211. Huizar I, Malur A, Midgette YA, Kukoly C, Chen P, Ke PC, et al. Novel murine model of chronic granulomatous lung inflammation elicited by carbon nanotubes. *Am J Respir Cell Mol Biol.* (2011) 45:858–66. doi: 10.1165/rcmb.2010-0401OC
212. McPeek M, Malur A, Tokarz DA, Murray G, Barna BP, Thomassen MJ. PPAR-gamma pathways attenuate pulmonary granuloma formation in a carbon nanotube induced murine model of sarcoidosis. *Biochem Biophys Res Commun.* (2018) 503:684–90. doi: 10.1016/j.bbrc.2018.06.061
213. Wynn TA. Cellular and molecular mechanisms of fibrosis. *J Pathol.* (2008) 214:199–210. doi: 10.1002/path.2277
214. Wynn TA. Integrating mechanisms of pulmonary fibrosis. *J Exp Med.* (2011) 208:1339–50. doi: 10.1084/jem.20110551
215. Drent M, van den Berg R, Haenen GR, van den Berg H, Wouters EF, Bast A. NF-kappaB activation in sarcoidosis. *Sarcoidosis Vasc Diffuse Lung Dis.* (2001) 18:50–56.
216. Cilfone NA, Perry CR, Kirschner DE, Linderman JJ. Multi-scale modeling predicts a balance of tumor necrosis factor- α and interleukin-10 controls the granuloma environment during *Mycobacterium tuberculosis* infection. *PLoS ONE.* (2013) 8:e68680. doi: 10.1371/journal.pone.0068680
217. Baker AD, Malur A, Barna BP, Kavuru MS, Malur AG, Thomassen MJ. PPARgamma regulates the expression of cholesterol metabolism genes in alveolar macrophages. *Biochem Biophys Res Commun.* (2010) 393:682–7. doi: 10.1016/j.bbrc.2010.02.056
218. Pennings M, Meurs I, Ye D, Out R, Hoekstra M, Van Berkel TJC, et al. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. *FEBS Lett.* (2006) 580:5588–96. doi: 10.1016/j.febslet.2006.08.022
219. Bargagli E, Rosi E, Pistolesi M, Lavorini F, Voltolini L, Rottoli P. Increased risk of atherosclerosis in patients with sarcoidosis. *Pathobiology.* (2017) 84:258–63. doi: 10.1159/000477736
220. Uhlar CM, Whitehead AS. Serum amyloid A, the major vertebrate acute-phase reactant. *Eur J Biochem.* (1999) 265:501–23. doi: 10.1046/j.1432-1327.1999.00657.x
221. Sack GH. Serum amyloid A - a review. *Mol Med.* (2018) 24:46. doi: 10.1186/s10020-018-0047-0
222. Bargagli E, Magi B, Olivieri C, Bianchi N, Landi C, Rottoli P. Analysis of serum amyloid A in sarcoidosis patients. *Respir Med.* (2011) 105:775–80. doi: 10.1016/j.rmed.2010.12.010
223. Shen C, Sun X-G, Liu N, Mu Y, Hong C-C, Wei W, et al. Increased serum amyloid A and its association with autoantibodies, acute phase reactants and disease activity in patients with rheumatoid arthritis. *Mol Med Rep.* (2015) 11:1528–34. doi: 10.3892/mmr.2014.2804
224. Chen ES, Song Z, Willett MH, Heine S, Yung RC, Liu MC, et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through Toll-like receptor-2. *Am J Respir Crit Care Med.* (2010) 181:360–73. doi: 10.1164/rccm.200905-0696OC

225. Jayaraman S, Fändrich M, Gursky O. Synergy between serum amyloid A and secretory phospholipase A2. *eLife*. (2019) 8:e46630. doi: 10.7554/eLife.46630
226. Salazar A, Maña J, Pinto X, Argimon JM, Castañeiras MJ, Fiol C, et al. Low levels of high density lipoprotein cholesterol in patients with active sarcoidosis. *Atherosclerosis*. (1998) 136:133–7. doi: 10.1016/S0021-9150(97)00198-6
227. Salazar A, Maña J, Fiol C, Hurtado I, Argimon JM, Pujol R, et al. Influence of serum amyloid A on the decrease of high density lipoprotein-cholesterol in active sarcoidosis. *Atherosclerosis*. (2000) 152:497–502. doi: 10.1016/S0021-9150(00)00368-3
228. Geamanu A, Gupta SV, Bauerfeld C, Samavati L. Metabolomics connects aberrant bioenergetic, transmethylation, and gut microbiota in sarcoidosis. *Metab Off J Metab Soc.* (2016) 12:35. doi: 10.1007/s11306-015-0932-2
229. Talreja J, Farshi P, Alazizi A, Luca F, Pique-Regi R, Samavati L. RNA-sequencing identifies novel pathways in sarcoidosis monocytes. *Sci Rep.* (2017) 7:2720. doi: 10.1038/s41598-017-02941-4
230. Damsky W, Thakral D, Emeagwali N, Galan A, King B. Tofacitinib treatment and molecular analysis of cutaneous sarcoidosis. *N Engl J Med.* (2018) 379:2540–6. doi: 10.1056/NEJMoa1805958
231. Calender A, Lim CX, Weichhart T, Buisson A, Besnard V, Rollat-Farnier PA, et al. Exome sequencing and pathogenicity-network analysis of 5 French families implicate mTOR signalling and autophagy in familial sarcoidosis. *Eur Respir J.* (2019) 54:1900430. doi: 10.1183/13993003.00430-2019
232. Manzia TM, Bellini MI, Corona L, Toti L, Fratoni S, Cillis A, et al. Successful treatment of systemic *de novo* sarcoidosis with cyclosporine discontinuation and provision of rapamune after liver transplantation. *Transpl Int.* (2011) 24:e69–70. doi: 10.1111/j.1432-2277.2011.01256.x
233. Dodd KM, Yang J, Shen MH, Sampson JR, Tee AR. mTORC1 drives HIF-1 α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. *Oncogene*. (2015) 34:2239–50. doi: 10.1038/onc.2014.164
234. He L, Gomes AP, Wang X, Yoon SO, Lee G, Nagiec MJ, et al. mTORC1 promotes metabolic reprogramming by the suppression of GSK3-dependent Foxk1 phosphorylation. *Mol Cell.* (2018) 70:949–60.e4. doi: 10.1016/j.molcel.2018.04.024
235. Iommarini L, Porcelli AM, Gasparre G, Kurelac I. Non-canonical mechanisms regulating hypoxia-inducible factor 1 alpha in cancer. *Front Oncol.* (2017) 7:286. doi: 10.3389/fonc.2017.00286
236. Talreja J, Talwar H, Bauerfeld C, Grossman LI, Zhang K, Tranchida P, et al. HIF-1 α regulates IL-1 β and IL-17 in sarcoidosis. *eLife*. (2019) 8:e44519. doi: 10.7554/eLife.44519
237. Hussaarts L, Smits HH, Schramm G, van der Ham AJ, van der Zon GC, Haas H, et al. Rapamycin and omega-1: mTOR-dependent and -independent Th2 skewing by human dendritic cells. *Immunol Cell Biol.* (2013) 91:486–9. doi: 10.1038/icb.2013.31
238. Takagi K, Yamakuchi M, Matsuyama T, Kondo K, Uchida A, Misono S, et al. IL-13 enhances mesenchymal transition of pulmonary artery endothelial cells via down-regulation of miR-424/503 *in vitro*. *Cell Signal.* (2018) 42:270–80. doi: 10.1016/j.cellsig.2017.10.019
239. Makboul R, Refaiy A, Abdelkawi IF, Hameed DA, Elderwy AA, Shalaby MM, et al. Alterations of mTOR and PTEN protein expression in schistosomal squamous cell carcinoma and urothelial carcinoma. *Pathol Res Pract.* (2016) 212:385–92. doi: 10.1016/j.prp.2016.02.008
240. Torres-Hernandez A, Wang W, Nikiforov Y, Tejada K, Torres L, Kalabin A, et al. Targeting SYK signaling in myeloid cells protects against liver fibrosis and hepatocarcinogenesis. *Oncogene*. (2019) 38:4512–26. doi: 10.1038/s41388-019-0734-5
241. Wu SM, Li TH, Yun H, Ai HW, Zhang KH. miR-140-3p knockdown suppresses cell proliferation and fibrogenesis in hepatic stellate cells via PTEN-Mediated AKT/mTOR signaling. *Yonsei Med J.* (2019) 60:561–9. doi: 10.3349/ymj.2019.60.6.561
242. Liu Y-C, Gao X-X, Zhang Z-G, Lin Z-H, Zou Q-L. PPAR Gamma Coactivator 1 Beta (PGC-1 β) Reduces Mammalian Target of Rapamycin (mTOR) Expression via a SIRT1-dependent mechanism in neurons. *Cell Mol Neurobiol.* (2017) 37:879–87. doi: 10.1007/s10571-016-0425-5
243. Angela M, Endo Y, Asou HK, Yamamoto T, Tumes DJ, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPAR γ directs early activation of T cells. *Nat Commun.* (2016) 7:13683. doi: 10.1038/ncomms13683
244. Zhu J, Zhang W, Zhang L, Xu L, Chen X, Zhou S, et al. IL-7 suppresses macrophage autophagy and promotes liver pathology in *Schistosoma japonicum*-infected mice. *J Cell Mol Med.* (2018) 22:3353–63. doi: 10.1111/jcmm.13610
245. Herzog S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. *Nat Rev Mol Cell Biol.* (2018) 19:121–35. doi: 10.1038/nrm.2017.95
246. Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. *Annu Rev Pharmacol Toxicol.* (2012) 52:381–400. doi: 10.1146/annurev-pharmtox-010611-134537
247. Sozio MS, Lu C, Zeng Y, Liangpunsakul S, Crabb DW. Activated AMPK inhibits PPAR- $\{\alpha\}$ and PPAR- $\{\gamma\}$ transcriptional activity in hepatoma cells. *Am J Physiol Gastrointest Liver Physiol.* (2011) 301:G739–47. doi: 10.1152/ajpgi.00432.2010
248. Liu SH, Chiu CY, Huang LH, Chiang MT. Resistant maltodextrin ameliorates altered hepatic lipid homeostasis via activation of AMP-activated protein kinase in a high-fat diet-fed rat model. *Nutrients*. (2019) 11:291. doi: 10.3390/nu11020291
249. Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Ehrlich Sachs S, Sachs JD. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. *PLoS Med.* (2006) 3:e102. doi: 10.1371/journal.pmed.0030102
250. Said K, Hella J, Knopp S, Nassoro T, Shija N, Aziz F, et al. Schistosoma, other helminth infections, and associated risk factors in preschool-aged children in urban Tanzania. *PLoS Negl Trop Dis.* (2017) 11:e0006017. doi: 10.1371/journal.pntd.0006017
251. DiNardo AR, Nishiguchi T, Mace EM, Rajapakshe K, Mtetwa G, Kay A, et al. Schistosomiasis induces persistent DNA methylation and tuberculosis-specific immune changes. *J Immunol.* (2018) 201:124–33. doi: 10.4049/jimmunol.1800101
252. Wajja A, Namutebi M, Apule B, Oduru G, Kiwanuka S, Akello M, et al. Lessons from the first clinical trial of a non-licensed vaccine among Ugandan adolescents: a phase II field trial of the tuberculosis candidate vaccine, MVA85A. [version 1; peer review: 1 approved, 2 approved with reservations]. *Wellcome Open Res.* (2018) 3:121. doi: 10.12688/wellcomeopenres.14736.1

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Wilson, Mayr and Weichhart. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Metabolic Control of Epigenetics and Its Role in CD8⁺ T Cell Differentiation and Function

Cansu Yerinde^{1,2}, Britta Siegmund¹, Rainer Glauben^{1*†} and Carl Weidinger^{1,3†}

¹ Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany, ² Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany, ³ Clinician Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany

OPEN ACCESS

Edited by:

Anna Ohradanova-Repic,
 Medical University of Vienna, Austria

Reviewed by:

Sudha Rao,
 University of Canberra, Australia
 Wilfried Elmmeier,
 Medical University of Vienna, Austria

*Correspondence:

Rainer Glauben
 rainer.glauben@charite.de

[†]These authors have contributed
 equally to this work

Specialty section:

This article was submitted to
 T Cell Biology,
 a section of the journal
Frontiers in Immunology

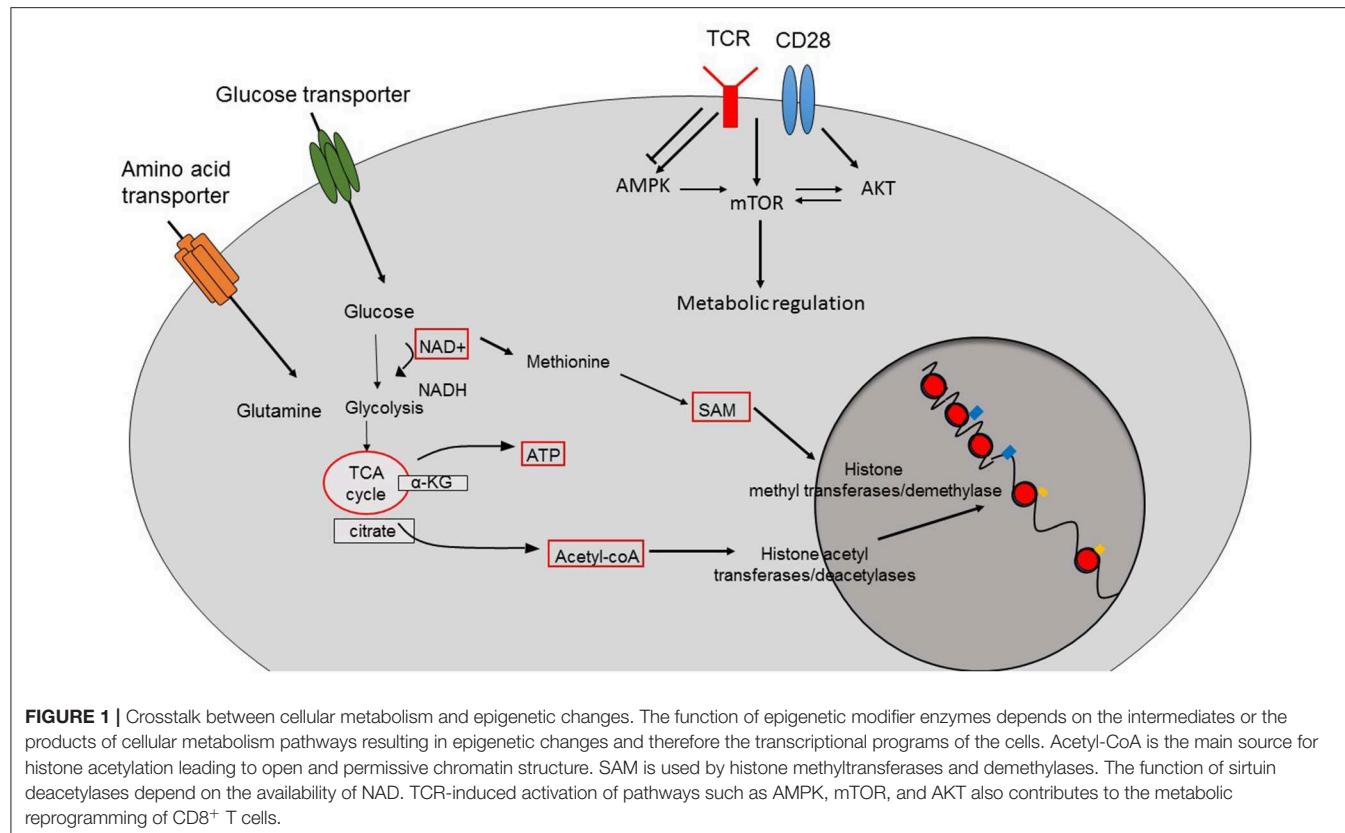
Received: 20 June 2019

Accepted: 05 November 2019

Published: 26 November 2019

Citation:

Yerinde C, Siegmund B, Glauben R and Weidinger C (2019) Metabolic Control of Epigenetics and Its Role in CD8⁺ T Cell Differentiation and Function. *Front. Immunol.* 10:2718.
 doi: 10.3389/fimmu.2019.02718


Epigenetic programs that control posttranslational modifications of histone proteins and DNA itself tightly regulate transcriptional networks determining the identity and function of CD8⁺ T cells. Chromatin-modifying enzymes such as histone acetyltransferases and deacetylases, represent key molecular determinants of the epigenetic imprinting of CD8⁺ T cells. The functions of these enzymes highly depend on the availability of key products of cellular metabolism pathways such as acetyl-CoA, NAD (Nicotinamide adenine dinucleotide) and SEM (S-adenosylmethionine), suggesting that there is a close crosstalk between the metabolic and the epigenetic regulation of CD8⁺ T cells. In this review, we will discuss the metabolic regulation of CD8⁺ T cell epigenetics during activation and differentiation. We will furthermore summarize how metabolic signals from the tumor microenvironment (TME) shape the epigenetic landscape of CD8⁺ T cells to better understand the mechanism underlying CD8⁺ T cell exhaustion in anti-tumor and anti-viral immunity, which might help to overcome limitations of current CD8⁺ T cell-based therapies.

Keywords: epigenetics, metabolism, CD8 T cell, exhaustion, anti-tumor immunity, anti-viral immunity

CROSSTALK BETWEEN EPIGENETICS AND METABOLISM

In order to adapt to shifting environments, CD8⁺ T cells dynamically modulate their transcriptional programs, which not only influence their differentiation but also alter their function and metabolic setup (1). Epigenetic changes are heritable and consist of post-translational modifications of DNA and surrounding histone proteins rather than alterations of primary DNA sequences. In changing external conditions, external stimuli like growth hormones and cytokines activate classical pathways such as mitogen activated protein kinase (MAPK) and nuclear factor of activated T cell (NFAT) signaling resulting in the recruitment, activation or induction of epigenetic modifying enzymes that promote epigenetic alterations in CD8⁺ T cells (2). Similarly, nutrient levels and the metabolic status of CD8⁺ T cells also interfere with the epigenetic programming and subsequently with the function of CD8⁺ T cells (3). Given the fact that epigenetic modifiers harness intermediates or products of key cellular metabolic processes as their cofactors/substrates, regulation of epigenetics by cellular metabolism represents a common biological process (Figure 1) (3), which can disrupt adequate immune responses by CD8⁺ T cells during anti-viral and anti-tumor immune responses (3).

While a wide range of epigenetic mechanisms exists that interfere with the accessibility of the genome by specific transcriptional programs, we will here recapitulate key epigenetic

FIGURE 1 | Crosstalk between cellular metabolism and epigenetic changes. The function of epigenetic modifier enzymes depends on the intermediates or the products of cellular metabolism pathways resulting in epigenetic changes and therefore the transcriptional programs of the cells. Acetyl-CoA is the main source for histone acetylation leading to open and permissive chromatin structure. SAM is used by histone methyltransferases and demethylases. The function of sirtuin deacetylases depend on the availability of NAD. TCR-induced activation of pathways such as AMPK, mTOR, and AKT also contributes to the metabolic reprogramming of CD8⁺ T cells.

mechanisms and their modifiers as well as their dependency on specific metabolic substrates. Subsequently, we will summarize recent insights into CD8⁺ T cell specific aspects of metabolism-regulated epigenetics in anti-viral and anti-tumor immunity and discuss possible implications of T cell epigenetics for the development of better immunotherapies of cancer.

HISTONE MODIFICATIONS

Eukaryotic DNA is packed in the form of chromatin. Thereby, nucleosomes, the basic unit of the chromatin, consist of 147 bp of DNA, which wraps around the histone octamer composed of two H2A and H2B dimers as well as a tetramer of H3 and H4 proteins. N- and C-terminus of histone tails, which protrude from the nucleosome, represent the main sites for posttranslational modifications (PTMs) including acetylation, methylation, phosphorylation and ubiquitination (4). PTMs of histone tails can either directly regulate the chromatin structure, resulting in altered DNA accessibility (5), or can act as platforms for the binding or recruitment of non-histone proteins, known as writers (histone-modifying), readers (histone-modification-recognizing) or erasers (histone modification-erasing) (6). This combination of PTMs on histone tails constitutes the “histone code” that regulates the eukaryotic transcription (5). Histone chaperons are also critical regulators of DNA accessibility since the association of histones with specific chaperons regulates their folding, oligomerization, PTMs or stabilities (5). Therefore,

different histone variants contribute to the regulation of DNA accessibility and epigenetic memory (7).

Histone Acetylation and Deacetylation

Acetylation and deacetylation of histones are among the best-studied epigenetic modifications. Acetylation of lysine residues is catalyzed by histone acetyltransferases (HATs) and reduces their positive charge, therefore the strength of electrostatic interaction between negatively charged DNA, resulting in relaxation of histone-DNA interactions, which leads to an increased accessibility of the DNA for transcription or transcription factors (TFs), respectively (8). Deacetylation reverses this permissive state via condensation of the chromatin structure (9). HATs are classified according to their localization. Cytoplasmic B-type HATs for example participate in the transport of newly synthesized histones from the cytoplasm to the nucleus, while nuclear A-type HATs take control of acetylation events related to the transcription (10). HATs can be further grouped according to their functional motifs consisting of Gcn5-related N-acetyltransferase (GNAT), Moz, Ybf2/Sas3, Sas2, Tip60 (MYST), Creb-binding protein/P300 (CBP/P300) and Rtt109 HAT families (10, 11).

HATs use acetyl-CoA as their primary source for histone acetylation. Acetyl-CoA is a central metabolite and the only source of acetyl groups in the cell (12). Most commonly, acetyl-CoA is produced in the mitochondrial matrix through glycolysis, β -oxidation or the catabolism of branched amino acids (12). As a

central metabolite and important signal transducer, acetyl-CoA regulates several cellular processes by controlling the balance between anabolic and catabolic reactions. Therefore, fluctuations in cellular acetyl-CoA levels can also affect the acetylation patterns of histones resulting in varying gene expression and function as well as distinct differentiation programs of cells (12).

Histone deacetylases (HDACs) are responsible for removing acetyl groups from acetylated histones resulting in chromatin condensation and a repressive chromatin structure. Depending on their homology and functions, HDACs are grouped into four different classes: class-I (HDAC1, HDAC2, HDAC3, HDAC8), class-IIa (HDAC4, HDAC5, HDAC7, HDAC9), class-IIb (HDAC6, HDAC10), class-III (Sirt1-Sirt7) as well as class-IV (HDAC11) (13). Although the diversity of the HDAC classes challenge the design of HDAC-inhibitors, several HDAC inhibitors are in clinical use or are under clinical investigation (14). While Vorinostat (SAHA) and Romidepsin (FK288) have been approved for the treatment of cutaneous T-cell lymphoma, Panobinostat (LBH589) and Belinostat (PXD101) are currently used for treating peripheral T-cell lymphoma and multiple myeloma, respectively (14). However, these inhibitors are pan-HDAC inhibitors, therefore studies attempting to design specific HDAC-inhibitors are active areas of research. According to clinical and experimental studies, inhibition of HDACs results in anti-neoplastic effects mostly via cytotoxic and pro-apoptotic mechanisms (15) [e.g., via stabilization of acetylated p53 (16)]. There are also accumulating data proving that inhibition of HDACs in non-oncological settings has important anti-inflammatory effects depending on the cell, tissue and context (15, 17, 18). For example, the gut microbiota-derived short-chain fatty acid butyrate modulates the transcriptional program of CTLs resulting in increased expression of IFN γ and granzyme B (19). However, the effects of butyrate are not mediated by the interaction with its receptors GPR41 and GPR43, but rather through HDAC inhibition resulting in a differential gene expression of CTL effector molecules, which was further validated by pan-HDAC inhibitor treatments (19). HDAC7, which is a Class-IIa HDAC, plays a pivotal role in the regulation of positive and negative selection of thymocytes and immune tolerance as well as their survival (20–22). Serine-threonine phosphoproteome analysis of CTLs by high resolution mass spectrometry revealed that HDAC7 is phosphorylated independently of T-cell receptor (TCR) activation and signaling, leading to its constitutive cytosolic localization (23). The exclusion of HDAC7 from the nucleus is critical for maintaining normal CTL function since the ectopic expression of the nuclear-trapped mutant phosphorylation-defective HDAC7 resulted in lower CD25 expression and subsequently reduced proliferation of CTLs in response to IL-2 (23). However, the role of HDAC7 in adult CD4 $^{+}$ and CD8 $^{+}$ T cells is still poorly understood. HDAC5, another class-IIa HDAC, has been described as a modulator of the inhibitory functions of Foxp3 $^{+}$ regulatory CD4 $^{+}$ T cells (Treg) (24), but inoculation of *Hdac5* knockout mice with congenic TC61 lung adeno-carcinoma cells did not result in decreased tumor growth compared to wild type littermates despite a defective immune suppressive capacity of *Hdac5*-deficient Treg, which can be explained by a simultaneous impairment of

IFN γ production in *Hdac5*-deficient CD8 $^{+}$ T cells (24). The inhibition of HDAC6 (Class-IIb) with its specific inhibitor (ACY-1215) results in impaired proliferation and activation as well as impaired pro-inflammatory cytokine production of CD8 $^{+}$ T cells during mouse models of skin inflammation, suggesting that HDAC6 represents a key regulator of TCR-signaling and function, therefore might serve as a new drug target for the treatment of CD8 $^{+}$ T cell-related skin disorders (25). On the other hand, the inhibition of HDAC6 in T cells of melanoma patients results in improved anti-tumor capacities of T cells (26). HDAC6 also takes role in the dynamics, transport and secretion of lytic granules to the immune synapse in CD8 $^{+}$ T cells, further proving its significance for CD8 $^{+}$ T cell function (27). In addition, HDAC3 (Class-I) is required for the proper T cell development in the thymus since its lymphocyte specific deletion resulted in reduced immature CD8 single-positive as well as CD4/CD8 double positive populations (28). Similarly, Class-I HDACs, HDAC1, and HDAC2, also participate in the proper thymic development of T cells (29, 30). Tschismarov et al. further confirm the critical role of HDAC1 during the development of T cells in the thymus. Additionally, they prove that T-cell specific deletion of HDAC1 results in impaired anti-viral responses upon LCMV infection and impaired expansion of LCMV-specific CD8 $^{+}$ T cells (31).

Among other HDAC isoforms, Sirtuins (HDAC class-III) were intensively studied in terms of their metabolic functions. They participate in different cellular processes including the regulation of metabolism, DNA repair and mitochondrial function (32). For their deacetylation functions, sirtuins require NAD $^{+}$, which is an essential coenzyme and participating in many redox reactions as in glycolysis, TCA cycle and fatty acid oxidation. Thereby, the provision of NAD $^{+}$ depends on its intracellular compartmentalization, synthesis as well as on metabolic and other pathways that use NAD $^{+}$. For instance, SIRTs were found to be an indirect target of the compound resveratrol leading to histone deacetylation due to increased NAD $^{+}$ availability suggesting that the level of NAD $^{+}$ is critical for the regulation of the epigenome of CD4 $^{+}$ T cells through sirtuins (33, 34). Interestingly, human CD8 $^{+}$ CD28 $^{-}$ T cells, which represent a highly cytotoxic population of terminally differentiated memory T cells (Tmem), display an increased glycolytic capacity, which could be linked to a decreased expression of SIRT1 through a forkhead box protein (FOXO1)-dependent manner suggesting that the evolutionary conserved FOXO1-SIRT1 axis is critical for the metabolic reprogramming of human CD8 $^{+}$ Tmem (35).

Histone Methylation

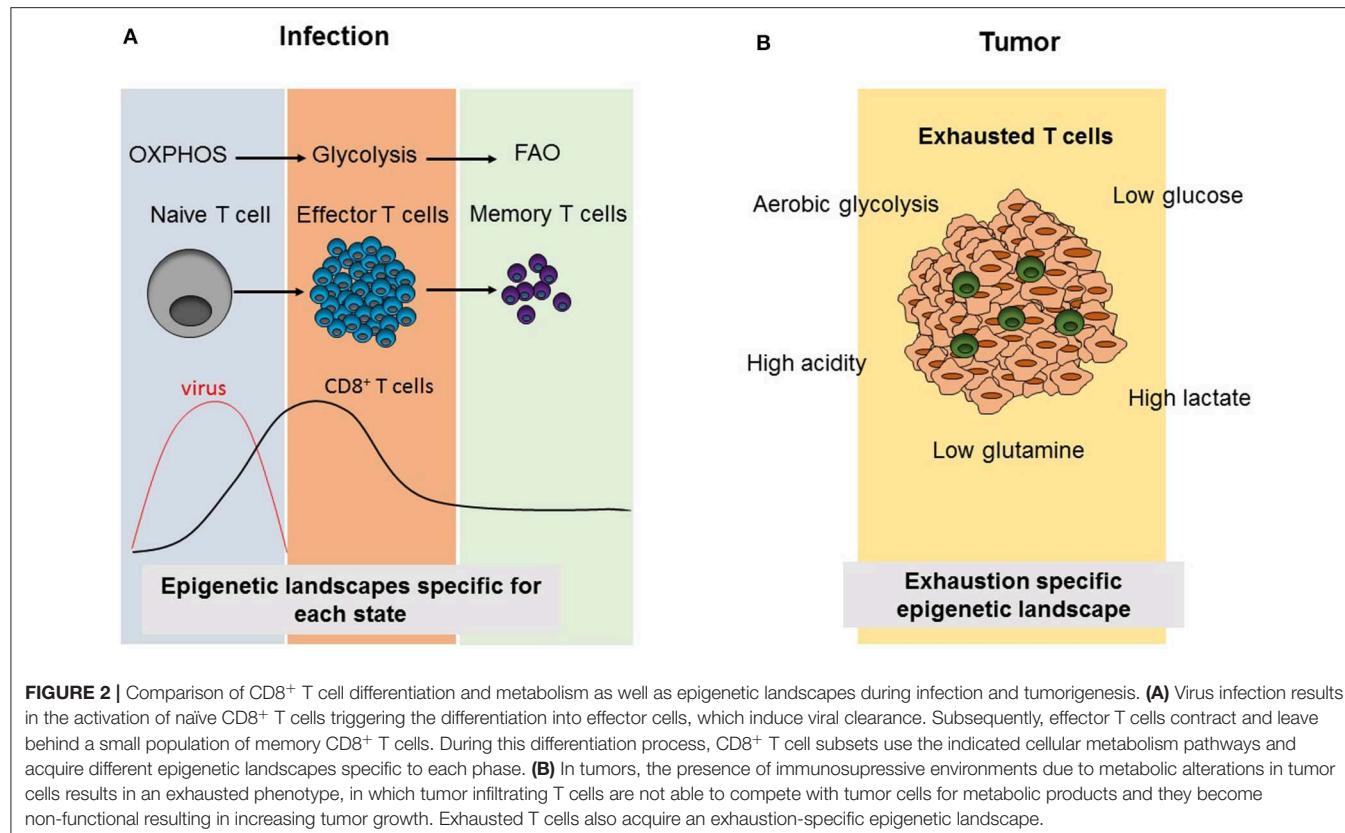
Unlike histone acetylation and deacetylation, which mark the chromatin for either transcriptional activation or repression, the effects of histone methylation on transcription are context dependent. For instance, while tri-methylation of lysine 4 on histone 3 (H3K4me3) triggers transcription, tri-methylation of histone 3 on lysine 27 (H3K27me3) is a sign for condensed chromatin and repressed gene transcription. Depending on the degree of methylation, different groups of histone methyltransferases catalyze the methylation of lysine residues. For example, H3K4 methylation is catalyzed by Set1

methyltransferases, whereas H3K9 methylation is catalyzed by KMT1 methyltransferases as well as H3K27 methylation by enhancer-of-zest homolog-2 (EZH2) (6).

Histone methyltransferases use S-adenosyl-methionine (SAM) as their source for methyl groups (36). Thereby, SAM is produced from methionine via one-carbon metabolism. In immune cells, one-carbon metabolism plays important roles especially in the regulation of proliferation. For instance, Ma et al. showed that once CD4⁺ or CD8⁺ T cells are activated, the expression of genes coding for one-carbon metabolism-related enzymes such as *Shtm1* and *Shmt2*, that are essential regulators of the entry of serine-dependent carbon into the cytosolic and mitochondrial tetrahydrofolate cycle, are up-regulated. Serine that is metabolized through this pathway is required for proper T cell proliferation both *in vitro* and *in vivo* (37).

ATP-Dependent Chromatin Remodeling Complexes

The formation of higher order chromatin structures is pivotal for the transcriptional programming by regulating or limiting the access of TFs to their binding sites. This structure can be modulated by either PTMs of histone tails or via nucleosome- and chromatin-remodeling complexes. These complexes are capable of removing histones, changing the path of DNA around the nucleosome and hence altering their position. Nucleosome remodeling complexes use the energy generated from ATP hydrolysis (38). Since the activity of these complexes is ATP-dependent, it is expected that fluctuations in cellular ATP levels affect their function, therefore the remodeling of nucleosomes and chromatin structure. However, cellular ATP levels are saturating for their catalytic sites and the activities of chromatin remodeling complexes are not influenced by changes in ATP in the cell. Nevertheless, gene expression states can still be regulated by AMPK signaling which can sense ADP/ATP ratios and induce transcriptional regulation (39). Previously, Blagih et al. showed that both CD4⁺ and CD8⁺ T cells are metabolically adapting in response to limited nutrient levels mediated by AMPK regulated mRNA translation as well as glutamine dependent mitochondrial metabolism. This is a key mechanism for the maintenance of T cell bioenergetics and survival. Their data equally indicated that AMPK signaling is mandatory for primary T cell responses to both, bacterial and viral infections, thus driving adaptive immunity (40). Interestingly, T cell specific deletion of AMPK in mice resulted in increased tumor growth, caused by an impaired tumor killing of CD8⁺ T cells. Deletion of AMPK in T cells resulted in a decreased production of IFN γ and granzyme B as well as an elevated serine/protein phosphatase activity upon activation, resulting in decreased survival rates and anti-tumor functions of CD8⁺ T cells, which could be reversed by inhibition of phosphatase activity (41).


METABOLIC REPROGRAMMING OF CD8⁺ T CELL DIFFERENTIATION AND FUNCTION

In order to adapt to dynamic environments and to meet the demands of cells for their different functions, cellular metabolism

is tightly controlled. Cells are capable of performing catabolic and anabolic processes to break down or synthesize macromolecules, which supply either energy in the form of ATP to meet their energy demands, or metabolic intermediate products that are essential for cellular growth (Figure 2A). Via the glycolysis pathway, two molecules of ATP per glucose molecule and pyruvate are produced. In oxygen-rich conditions, pyruvate can enter into tricarboxylic acid (TCA) cycle where it is further processed to generate 38 ATP (maximal number) molecules via oxidative phosphorylation (OXPHOS) (42). Catabolism of pyruvate is not the only mechanism providing substrates for TCA. While fatty acids are converted into acetyl-CoA through fatty acid oxidation (FAO), amino acids are catabolized into 3-, 4-, and 5- carbon substrates that are fed into the TCA cycle (42).

Different metabolic requirements for different cell states are also valid for CD8⁺ T cells. CD8⁺ T cells mainly have three phases as naïve, effector (Teff) and memory T cells. When naïve T cells encounter their antigens, this results in their activation leading to rapid proliferation, growth and differentiation (43). CD8⁺ T cells mostly differentiate into CTLs, producing cytotoxic molecules such as granzyme B, perforin, and pro-inflammatory cytokines including IFN γ and TNF α . Following this effector phase, the effector cell population contracts and a small population of memory T cells (Tmem) persists, which will turn again into CTLs in case of antigen re-challenge and which can persist in the body for years (43). While naïve T cells are metabolically quiescent and depend on OXPHOS, their activation results in a switch into glycolysis pathway to meet the demand for anabolic intermediates necessary for their rapid growth, proliferation and effector functions (Figure 2A). Recently, Store-Operated Calcium Entry (SOCE) signaling, which is the main calcium influx pathway in T cells in response to TCR activation and is mediated by stromal interaction molecule (STIM) 1 and STIM2 as well as ORAI proteins, was shown to control clonal expansion of both, CD4⁺ and CD8⁺ T cells, via controlling glycolysis and OXPHOS through the transcriptional regulation of glycolysis related gene expression (44). It was also shown that these effects are mediated by calcineurin and NFAT, which are the downstream regulators of SOCE (44). Metabolically, Tmem depend mostly on FAO and have a higher spare respiratory capacity (SRC) which supplies the high energy levels needed for their rapid function in case of antigen re-encounter (45–48). However, during most of these studies CPT1 α , the rate-limiting enzyme of long-chain FAO was targeted by the drug etomoxir (49, 50). Interestingly, T cell specific deletion of *Cpt1 α* *in vivo* proved that CPT1 α is dispensable for Teff or Tmem responses as well as CD4⁺ Treg suppressive function, differentiation and hemostasis (50). As the use of the CPT1 α inhibitor etomoxir at a concentration higher than 3 μ M causes off-target effects, it appears that other metabolic pathways than long-chain FAO are involved in Teff and Tmem differentiation (49, 50).

In conditions of continuous antigen exposure like chronic infections and tumors, T cells fail to differentiate into functional memory cells, but enter a state in which they are hypo-responsive (51). This so-called exhausted cells are incapable of cytokine secretion, proliferation or lysing target cells, paralleled by a

sustained expression of co-inhibitory molecules such as PD-1, LAG3 and TIM3 (51). There are several studies, which link the expression of co-inhibitory molecules in T cells with disturbances of metabolic pathways including the PI3K/Akt/mTOR pathway. Thus, Staron et al. recently demonstrated in a mouse model of chronic lymphocytic choriomeningitis mammarenavirus (LCMV) infection, that AKT and mTOR activation are impaired in virus antigen-specific CTLs resulting in a defective anabolic metabolism and enhanced activity of the TF FOXO1 due to its defective phosphorylation and subsequent nuclear trapping (52). Additionally, FOXO1 acts as a direct transcriptional activator of PD-1 as the nuclear localization of FOXO1 promotes the differentiation of terminally exhausted PD-1^{hi}Eomes^{hi} CTLs. In contrast, during chronic LCMV infection in mice blockage of PD-1 improves mTOR activity in antigen-specific CTLs while anti-PD-1 treatment was ineffective if mTOR was inhibited by rapamycin (52). Remarkably, the glycolytic metabolism of CD8⁺ T cells is already affected during the acute phase of viral infection in LCMV-infected mice and precedes further dysfunction of antigen-specific T cells suggesting that antigen-specific CD8⁺ T cells are unable to meet the metabolic demands needed for proper cytotoxic function (53). PD-1 is also an early regulator of genes related to glycolysis and mitochondrial function and represses peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1 α), whose overexpression is able to improve the metabolism of exhausted T cells and hence, partially restoring their functions (53). These studies suggest that metabolic

impairments, which are regulated by PD-1, are early drivers of CD8⁺ T cell exhaustion (53).

The expression of the pro-inflammatory cytokine IFN γ by activated T cells is regulated through 3'-untranslated region (UTR)-dependent mechanisms (54). Peng et al. showed that in activated T cells the expression of lactate dehydrogenase A (LDHA) is induced in order to support high levels of aerobic glycolysis, but also regulates the expression of IFN γ through 3'-UTR-independent mechanisms. Interestingly, high LDHA levels in activated T cells result in the maintenance of increased acetyl-CoA concentrations leading to increased histone acetylation and facilitating H3K9Ac accumulation on the IFN γ locus, therefore resulting in its increased transcription (55).

Upon TCR-activation, S-2-hydroxyglutarate (S-2-HG) accumulates in murine CD8⁺ T cells up to millimolar concentrations under physiological oxygen conditions through hypoxia inducible factor 1 alpha (HIF-1 α) predominating over R-2-hydroxyglutarate, which is an oncometabolite, produced via mutant isocitrate hydrogenase (IDH) (56). The accumulation of this metabolite results in changes in T cell differentiation, especially resulting in a central memory (Tcm) like phenotype that is stable after transfer into wild-type host mice. The accumulation of S-2-HG also resulted in higher proliferation, maintenance and anti-tumor functions of CD8⁺ T cells *in vivo* following their adoptive transfer into mice (56). Interestingly, these effects were mediated by the modulation of histone and DNA methylation. S-2-HG is an immunometabolite, thus

further supporting a metabolism-dependent regulation of T cell epigenetics and functions (56).

EPIGENETIC LANDSCAPES DURING CD8⁺ T CELL DIFFERENTIATION

Enabled by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq), which allows the identification of accessible regions of chromatin, the dynamic changes of chromatin as well as accessible TF binding sites were identified in response to acute and chronic LCMV infection during naïve, activated, effector, and memory states of polyclonal or antigen-specific CD8⁺ T cells (57, 58). In these studies, more than 70,000 regions were identified as open (accessible) at least in one of the differentiation state and half of these regions were shared among all states suggesting a CD8⁺ T cell-specific chromatin state. Thus, it was shown that in Tmem cells many regulatory sites are in the open configuration, demonstrating that these cells keep a memory-primed gene expression program that can readily and rapidly be activated in case of a secondary infection (57, 58).

Several TFs were identified to control the fate of CD8⁺ T cells during the differentiation of these cells. For instance, T-box expressed in T cells (Tbet), inhibitor of DNA-bing 2 (ID2), interferon regulatory factor 4 (IRF4), B lymphocyte induced maturation protein 2 (BLIMP-2), and zinc finger E-box-binding homeobox 2 (ZEB2) are required for the differentiation of Teff cells, whereas T-cell factor 1 (TCF1), eomesodermin (EOMES), inhibitor of DNA-binding protein 3 (ID3), B-cell lymphoma protein 6 (BCL6), and FOXO1 control for memory formation in CD8⁺ T cells (59). However, some of these TFs are not differentially expressed in Teff and Tmem subsets, suggesting that additional mechanisms are involved in controlling the fate decision of T cells. By using a model of bacterial infection in mice, Yu et al. have recently characterized the epigenetic landscapes of naïve, effector, memory precursor and memory CD8⁺ T cells, followed by the prediction of putative TF-binding to accessible chromatin regions in each cell subset (59). In addition, the importance of TFs was ranked in each cell subset via bioinformatic analysis. With this approach, the authors identified and experimentally validated two TFs, Yin Yang 1 (YY1) as well as nuclear receptor subfamily3 group C member 1 (NR3C1) as promoters of effector and memory precursor phenotypes (59).

Other studies applying the ATAC-seq technology demonstrated that also exhausted T cells possess a unique chromatin state (60). During acute models of viral infection in mice, exhausted T cells and effector cells share common accessible chromatin sites. However, additional sites on chromatin open or close during the exhaustion of T cells leading to the expression of PD-1. The treatment of exhausted T cells with anti-PD-1 antibodies resulted in the rescue of gene expression associated with effector functions. However, this treatment failed to fully rescue or reverse the exhaustion-specific chromatin signature as well as the exhaustion specific transcriptional program of exhausted T cells (60).

Although it is now known that exhausted CD8⁺ T cells have a unique chromatin state compared to effector or memory subsets, the mechanisms driving their transcriptional and epigenetic development are poorly understood. Recently, three studies identified the transcription factor thymocyte selection associated high mobility box (TOX) as the main factor promoting CD8⁺ T cell exhaustion by regulating early epigenetic events (61–63). These include decreased accessibility of genes associated with effector T cell differentiation as well as increased accessibility of memory and exhausted phenotype associated genes (62). The expression of TOX is a robust hallmark of exhausted T cells. However, it is transiently expressed at low levels during acute viral infections. In addition, the expression of TOX is essential and sufficient to induce the exhausted T cell phenotype as defined by the marker proteins PD-1, TIM3, LAG3, TIGIT as well as EOMES. Interestingly, initial TOX expression requires NFATc2 and calcineurin signaling, however, the sustained expression of TOX in exhausted CD8⁺ T cells is calcineurin-independent (62). This study suggests that among others, TOX expression-related mechanisms, can force exhausted cells into an irreversible exhaustion-specific and developmentally fixed chromatin state, which cannot be remodeled by anti-PD-1 treatment.

Further studies also provide information on the dynamic regulation of methylation patterns during virus-induced T cell differentiation (64, 65). For instance, in naïve CD8⁺ T cells, genes associated with effector functions are marked with H3K4me3 indicating that effector function related genes are repressed in naïve CD8⁺ T cells. Upon activation, the same genes acquire chromatin marks that are related to an active transcription (64, 65).

In addition to the regulation of chromatin marks of promoters or enhancers, which are characterized by H3K4me1 and H3K27ac, are also differentially remodeled during T cell activation and differentiation (59, 66). In studies by Kakaradov et al., around 50,000 enhancers were identified and about 50% of them were found to be shared between all stages of T cell activation and differentiation, whereas the other half of enhancers was either gained or lost depending on the state of the cells suggesting that there is a dynamic regulation of enhancers similar to the other epigenetic modifications of T cells during differentiation (66). According to single-cell sequencing studies, in which individual CD8⁺ T cells were analyzed during an acute LCMV infection in mice, the differentiation of terminal effector cells was initiated by an early burst of transcriptional activity followed by a refinement of epigenetic silencing of transcripts related to memory lymphocytes through H3K27me3 and Ezh2, which is the catalytic subunit of polycomb repressive complex 2 (PRC2) (67).

THE EFFECTS OF TUMOR MICROENVIRONMENT ON T CELL METABOLISM AND EPIGENETICS

Chronic infections and cancer share common properties in terms of CD8⁺ T cell functions. In both cases, antigen specific CD8⁺ T cells progress into the so-called exhausted state due to continuous

antigen exposure resulting in increased expression of exhaustion markers. Therefore, research on chronic infection models in mice as well as patient samples contributed to the development of anti-cancer therapies, which target T cell exhaustion such as anti-PD-1 or adoptive T cell therapies (68). Although the reprogramming of cellular metabolism and changes of the epigenetic landscape of CD8⁺ T cells have been intensively studied during chronic infections, these mechanisms are still poorly understood in tumor infiltrating lymphocytes (TILs). Although overlapping features of exhausted CD8⁺ T cells can be observed both in chronic infection and cancer models, the specific metabolic environment in tumors represents an additional, unique factor shaping T cell activation and differentiation via the specific supply provision of metabolites and various secreted signaling molecules (Figure 2B).

The metabolism of tumor cells is altered compared to normal cells, which metabolize glucose through OXPHOS. Instead, highly proliferating tumor cells use glycolysis pathway to metabolize glucose in order to supply the anabolic products needed for rapid cell growth and division. This metabolic alteration of tumor cells was characterized by Otto Warburg almost a century ago and is now considered as a hallmark of cancer (69). However, this phenomenon is only a portion of the unique tumor cell metabolism. In addition to glucose metabolism, lipid, amino acid, and adenosine metabolism are also altered in tumor cells to meet their high-energy demands (70). For instance, HIF1 α in tumor cells upregulates the expression of CD73, which is located on the surface of many tumor cells and which is responsible for the conversion of adenosine monophosphate to adenosine resulting in increased adenosine concentrations in TME (71). Similarly, HIF1 α also regulates genes critical for the lipid metabolism such as COX2 whose overexpression is associated with poor prognosis in several solid tumor cancers (72). Glutamine metabolism is also altered in tumor cells, that are known as glutamine traps since they have higher levels of glutamine uptake (70).

TILs are mostly non-functional or exhausted due to the highly immunosuppressive TME. The depletion of glucose in TME by tumor cells represents one “exhausting” mechanism and results in a decrease of aerobic glycolysis in TILs and decreased phosphoenolpyruvic acid (PEP) production that is a crucial metabolite participating in TCR-dependent activation of calcium pathways like SOCE and NFAT signaling in T cells (73, 74), which is critical for proper anti-tumor functions (73). Additionally, due to high lactate production of tumor cells, the acidity of TME increases, resulting in the inhibition of key T cell responses such as proliferation after activation and effector cytokine production by CD8⁺ T cells (70, 75). Similarly, due to the hypoxic environment of the tumors, HIF1 α upregulates the expression of PD-1-ligand leading to inhibition of CD8⁺ T-cell mediated cytotoxicity (76).

The epigenetic landscapes of tumor infiltrating CD8⁺ T cells are not well understood. In a recent study, Philipp et al. defined the chromatin dynamics of tumor-specific dysfunctional cells over the course of tumorigenesis (77). They observed

that naïve tumor-specific T cells that encounter their antigen firstly acquire a plastic, dysfunctional chromatin state that can be remodeled. Later, the same cells differentiate into a fixed dysfunctional chromatin state, which cannot be remodeled or rescued anymore during the progression of large established tumors. In addition, human dysfunctional tumor specific T cells with high PD-1 expression share many core elements with these mouse models (77). Interestingly, tumor-specific memory T cells also differentiate into the same fixed dysfunctional chromatin state suggesting that regardless of the initial chromatin states of the cells, continuous antigen exposure in tumors can overwrite this fixed dysfunctional chromatin state (77).

CONCLUSION

Since the manipulation of metabolic pathways *in vivo* is very challenging, so far mostly *in vitro* systems served in this field, to provide mechanistic information to reveal the regulation of T cell metabolism in a controlled environment. However, the field is still in need of experimental models that are able to better provide the physiological context of changing T cell environments such as nutrient availability, interaction between different cell types and cytokine milieu to fully investigate the role of metabolism during T cell activation and differentiation.

The link between epigenetic changes and cellular metabolism has been intensively studied in cancer cells. However, the role of metabolism on T cell function and differentiation has only recently been characterized despite growing knowledge about the connection of T cell epigenetics during differentiation and function by using genome-wide mapping of accessible chromatin sites. However, it still remains elusive how metabolites regulate the epigenome of T cells in a gene-specific manner.

Although this interplay between tumor cells and the epigenetic regulation of TILs remains elusive, a better understanding of the epigenetic regulation of exhaustion and the metabolic fitness of TILs might hold potential to improve current cancer therapies such as checkpoint blockade and adoptive T cell therapies. The relationship between the unique metabolism in TME and how it affects the epigenome of TILs might help to find ways to rescue their exhausted phenotype via epigenome-targeting pharmacological drugs to boost immune responses against tumor cells.

AUTHOR CONTRIBUTIONS

CY designed, wrote, and revised the manuscript. BS revised the manuscript. CW and RG designed and revised the manuscript.

FUNDING

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) (We 5303/3-1 to CW), and the German-Israeli Foundation for Scientific Research and Development to BS and RG.

REFERENCES

- Best JA, Blair DA, Knell J, Yang E, Mayya V, Doedens A, et al. Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation. *Nat Immunol.* (2013) 14:404–12. doi: 10.1038/ni.2536
- Kannan A, Huang W, Huang F, August A. Signal transduction via the T cell antigen receptor in naïve and effector/memory T cells. *Int J Biochem Cell Biol.* (2012) 44:2129–34. doi: 10.1016/j.biocel.2012.08.023
- Lu C, Thompson CB. Metabolic regulation of epigenetics. *Cell Metab.* (2012) 16:9–17. doi: 10.1016/j.cmet.2012.06.001
- Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. *Neurotox Res.* (2014) 27:172–97. doi: 10.1007/s12640-014-9508-6
- Burgess RJ, Zhang Z. Histone chaperones in nucleosome assembly and human disease. *Nat Struct Mol Biol.* (2013) 20:14–22. doi: 10.1038/nsmb.2461
- Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications – writers that read. *EMBO Rep.* (2015) 16:1467–81. doi: 10.1525/embr.201540945
- Henikoff S, Smith MM. Histone variants and epigenetics. *Cold Spring Harb Perspect Biol.* (2015) 7:a019364. doi: 10.1101/cshperspect.a019364
- Gregory PD, Wagner K, Hörz W. Histone acetylation and chromatin remodeling. *Exp Cell Res.* (2001) 265:195–202. doi: 10.1006/excr.2001.5187
- Eberharter A. Histone acetylation: a switch between repressive and permissive chromatin: second in review series on chromatin dynamics. *EMBO Rep.* (2002) 3:224–9. doi: 10.1093/embo-reports/kvf053
- Roth SY, Denu JM, Allis CD. Histone acetyltransferases. *Ann Rev Biochem.* (2001) 70:81–120. doi: 10.1146/annurev.biochem.70.1.81
- Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. *Cold Spring Harb Perspect Biol.* (2014) 6:a018762. doi: 10.1101/cshperspect.a018762
- Pietrocola F, Galluzzi L, Bravo-San P, José M, Madeo F, Kroemer G. Acetyl coenzyme A: a central metabolite and second messenger. *Cell Metab.* (2015) 21:805–21. doi: 10.1016/j.cmet.2015.05.014
- Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. *Cold Spring Harb Perspect Biol.* (2014) 6:a018713. doi: 10.1101/cshperspect.a018713
- Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. *Front Oncol.* (2018) 8:92. doi: 10.3389/fonc.2018.00092
- Akimova T, Beier UH, Liu Y, Wang L, Hancock WW. Histone/protein deacetylases and T-cell immune responses. *Blood.* (2012) 119:2443–51. doi: 10.1182/blood-2011-10-292003
- Roy S, Packman K, Jeffrey R, Tenniswood M. Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. *Cell Death Differ.* (2005) 12:482–91. doi: 10.1038/sj.cdd.4401581
- de Zoeten EF, Wang L, Butler K, Beier UH, Akimova T, Sai H, et al. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3+ T-regulatory cells. *Mol Cell Biol.* (2011) 31:2066–78. doi: 10.1128/MCB.05155-11
- de Zoeten EF, Wang L, Sai H, Dillmann WH, Hancock WW. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. *Gastroenterology.* (2010) 138:583–94. doi: 10.1053/j.gastro.2009.10.037
- Luu M, Weigand K, Wedi F, Breidenbend C, Leister H, Pautz S, et al. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. *Sci Rep.* (2018) 8:14430. doi: 10.1038/s41598-018-32860-x
- Kasler HG, Lim HW, Mottet D, Collins AM, Lee IS, Verdin E. Nuclear export of histone deacetylase 7 during thymic selection is required for immune self-tolerance. *EMBO J.* (2012) 31:4453–65. doi: 10.1038/embj.2012.295
- Kasler HG, Verdin E. Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. *Mol Cell Biol.* (2007) 27:5184–200. doi: 10.1128/MCB.02091-06
- Kasler HG, Young BD, Mottet D, Lim HW, Collins AM, Olson EN, et al. Histone deacetylase 7 regulates cell survival and TCR signaling in CD4/CD8 double-positive thymocytes. *J Immunol.* (2011) 186:4782–93. doi: 10.4049/jimmunol.1001179
- Navarro MN, Goebel J, Feijoo-Carnero C, Morrice N, Cantrell DA. Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. *Nat Immunol.* (2011) 12:352–61. doi: 10.1038/ni.2008
- Xiao H, Jiao J, Wang L, O’Brien S, Newick K, Wang L-CS, et al. HDAC5 controls the functions of Foxp3+T-regulatory and CD8+T cells. *Int J Cancer.* (2016) 138:2477–86. doi: 10.1002/ijc.29979
- Tsuji G, Okiyama N, Villaruel VA, Katz SI. Histone deacetylase 6 inhibition impairs effector CD8 T-cell functions during skin inflammation. *J Allergy Clin Immunol.* (2015) 135:1228–39. doi: 10.1016/j.jaci.2014.10.002
- Laino AS, Betts BC, Veerapathran A, Dolgalev I, Sarnai A, Quayle SN, et al. HDAC6 selective inhibition of melanoma patient T-cells augments anti-tumor characteristics. *J Immunother Cancer.* (2019) 7:33. doi: 10.1186/s40425-019-0517-0
- Núñez-Andrade N, Iborra S, Trullo A, Moreno-Gonzalo O, Calvo E, Catalán E, et al. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes. *J Cell Sci.* (2016) 129:1305–11. doi: 10.1242/jcs.180885
- Stengel KR, Zhao Y, Klus NJ, Kaiser JF, Gordy LE, Joyce S, et al. Histone deacetylase 3 is required for efficient T cell development. *Mol Cell Biol.* (2015) 35:3854–65. doi: 10.1128/MCB.00706-15
- Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM, Singh R, et al. Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. *Blood.* (2013) 121:1335–44. doi: 10.1182/blood-2012-07-441949
- Heideman MR, Wilting RH, Yanover E, Velds A, de Jong J, Kerkhoven RM, et al. Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. *Blood.* (2013) 121:2038–50. doi: 10.1182/blood-2012-08-450916
- Tschismarov R, Firner S, Gil-Cruz C, Göschl L, Boucheron N, Steiner G, et al. HDAC1 controls CD8+ T cell homeostasis and antiviral response. *PLoS ONE.* (2014) 9:e110576. doi: 10.1371/journal.pone.0110576
- Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. *Altern Med Rev.* (2010) 15:245–63.
- Craveiro M, Cretenet G, Mongellaz C, Matias MI, Caron O, de Lima MCP, et al. Resveratrol stimulates the metabolic reprogramming of human CD4+T cells to enhance effector function. *Sci Signal.* (2017) 10:ea3024. doi: 10.1126/scisignal.aaa3024
- Tran TQ, Lowman XH, Kong M. Molecular pathways: metabolic control of histone methylation and gene expression in cancer. *Clin Cancer Res.* (2017) 23:4004–9. doi: 10.1158/1078-0432.CCR-16-2506
- Jeng MY, Hull PA, Fei M, Kwon H-S, Tsou C-L, Kasler H, et al. Metabolic reprogramming of human CD8+ memory T cells through loss of SIRT1. *J Exp Med.* (2017) 215:51–62. doi: 10.1084/jem.20161066
- Chisom DA, Weinmann AS. Connections between metabolism and epigenetics in programming cellular differentiation. *Ann Rev Immunol.* (2018) 36:221–46. doi: 10.1146/annurev-immunol-042617-053127
- Ma EH, Bantug G, Griss T, Condotta S, Johnson RM, Samborska B, et al. Serine is an essential metabolite for effector T cell expansion. *Cell Metab.* (2017) 25:482. doi: 10.1016/j.cmet.2016.12.011
- Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. *Cell.* (2013) 154:490–503. doi: 10.1016/j.cell.2013.07.011
- Phan AT, Goldrath AW, Glass CK. Metabolic and epigenetic coordination of T cell and macrophage immunity. *Immunity.* (2017) 46:714–29. doi: 10.1016/j.immuni.2017.04.016
- Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, Yurchenko E, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses *in vivo*. *Immunity.* (2015) 42:41–54. doi: 10.1016/j.immuni.2014.12.030
- Rao E, Zhang Y, Zhu G, Hao J, Persson X-MT, Egilmez NK, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. *Oncotarget.* (2015) 6:7944–58. doi: 10.18632/oncotarget.3501
- Metallo CM, Vander H, Matthew G. Understanding metabolic regulation and its influence on cell physiology. *Mol Cell.* (2013) 49:388–98. doi: 10.1016/j.molcel.2013.01.018

43. Kaech SM, Wherry EJ. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. *Immunity*. (2007) 27:393–405. doi: 10.1016/j.jimmuni.2007.08.007
44. Vaeth M, Maus M, Klein-Hessling S, Freinkman E, Yang J, Eckstein M, et al. Store-operated Ca2+ entry controls clonal expansion of T cells through metabolic reprogramming. *Immunity*. (2017) 47:664–679.e666. doi: 10.1016/j.jimmuni.2017.09.003
45. Buck MD, O'Sullivan D, Klein G, Ramon I, Curtis JD, Chang C-H, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. *Cell*. (2016) 166:63–76. doi: 10.1016/j.cell.2016.05.035
46. van der Windt GJW, Everts B, Chang C-H, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. *Immunity*. (2012) 36:68–78. doi: 10.1016/j.jimmuni.2011.12.007
47. Chang C-H, Curtis JD, Maggi LB, Faubert B, Villarino AV, O'Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. *Cell*. (2013) 153:1239–51. doi: 10.1016/j.cell.2013.05.016
48. Buck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. *J Exp Med*. (2015) 212:1345–60. doi: 10.1084/jem.20151159
49. Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. *Cell Metab*. (2018) 28:504–15.e507. doi: 10.1016/j.cmet.2018.06.002
50. Divakaruni AS, Hsieh WY, Minarrieta L, Duong TN, Kim KKO, Desousa BR, et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. *Cell Metab*. (2018) 28:490–503.e497. doi: 10.1016/j.cmet.2018.06.001
51. Delgoffe GM, Powell JD. Feeding an army: the metabolism of T cells in activation, anergy, and exhaustion. *Mol Immunol*. (2015) 68:492–6. doi: 10.1016/j.molimm.2015.07.026
52. Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ, et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. *Immunity*. (2014) 41:802–14. doi: 10.1016/j.jimmuni.2014.10.013
53. Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, Attanasio J, et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. *Immunity*. (2016) 45:358–73. doi: 10.1016/j.jimmuni.2016.07.008
54. Savan R. Post-transcriptional regulation of interferons and their signaling pathways. *J Interferon Cytokine Res*. (2014) 34:318–29. doi: 10.1089/jir.2013.0117
55. Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. *Science*. (2016) 354:481–4. doi: 10.1126/science.aaf6284
56. Tyrakis PA, Palazon A, Macias D, Lee KL, Phan AT, Velića P, et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. *Nature*. (2016) 540:236–41. doi: 10.1038/nature20165
57. Scharer CD, Bally APR, Gandham B, Boss JM. Cutting edge: chromatin accessibility programs CD8 T cell memory. *J Immunol*. (2017) 198:2238–43. doi: 10.4049/jimmunol.1602086
58. Scott-Browne JP, López-Moyado IF, Trifari S, Wong V, Chavez L, Rao A, et al. Dynamic changes in chromatin accessibility occur in CD8+ T cells responding to viral infection. *Immunity*. (2016) 45:1327–40. doi: 10.1016/j.jimmuni.2016.10.028
59. Yu B, Zhang K, Milner JJ, Toma C, Chen R, Scott-Browne JP, et al. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation. *Nat Immunol*. (2017) 18:573–82. doi: 10.1038/ni.3706
60. Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, et al. The epigenetic landscape of T cell exhaustion. *Science*. (2016) 354:1165–9. doi: 10.1126/science.aae0491
61. Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P, et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. *Nature*. (2019) 571:265–9. doi: 10.1038/s41586-019-1326-9
62. Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. *Nature*. (2019) 571:211–8. doi: 10.1038/s41586-019-1325-x
63. Seo H, Chen J, González-Avalos E, Samaniego-Castruita D, Das A, Wang YH, et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. *Proc Natl Acad Sci USA*. (2019) 116:12410–5. doi: 10.1073/pnas.1905675116
64. Araki Y, Wang Z, Zang C, Wood WH, Schones D, Cui K, et al. Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. *Immunity*. (2009) 30:912–25. doi: 10.1016/j.jimmuni.2009.05.006
65. Russ BE, Olshansky M, Smallwood HS, Li J, Denton AE, Prier JE, et al. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8+ T cell differentiation. *Immunity*. (2014) 41:853–65. doi: 10.1016/j.jimmuni.2014.11.001
66. Kakaradov B, Arsenio J, Widjaja CE, He Z, Aigner S, Metz PJ, et al. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. *Nat Immunol*. (2017) 18:422–32. doi: 10.1038/ni.3688
67. Gray SM, Amezquita RA, Guan T, Kleinstein SH, Kaech SM. Polycomb repressive complex 2-mediated chromatin repression guides effector CD8+ T cell terminal differentiation and loss of multipotency. *Immunity*. (2017) 46:596–608. doi: 10.1016/j.jimmuni.2017.03.012
68. Vance RE, Eichberg MJ, Portnoy DA, Raulet DH. Listening to each other: infectious disease and cancer immunology. *Sci Immunol*. (2017) 2:eaai9339. doi: 10.1126/sciimmunol.aai9339
69. Warburg O. The metabolism of tumors in the body. *J Gen Physiol*. (1927) 8:519–30. doi: 10.1085/jgp.8.6.519
70. Renner K, Singer K, Koehl GE, Geissler EK, Peter K, Siska PJ, et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. *Front Immunol*. (2017) 8:248. doi: 10.3389/fimmu.2017.00248
71. Kaidi A, Qualtrough D, Williams AC, Paraskeva C. Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. *Cancer Res*. (2006) 66:6683–91. doi: 10.1158/0008-5472.CAN-06-0425
72. Baba Y, Noshio K, Shima K, Irahara N, Chan AT, Meyerhardt JA, et al. HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. *Am J Pathol*. (2010) 176:2292–301. doi: 10.2353/ajpath.2010.090972
73. Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. *Cell*. (2015) 162:1217–28. doi: 10.1016/j.cell.2015.08.012
74. Weidinger C, Shaw PJ, Feske S. STIM 1 and STIM 2-mediated Ca2+ influx regulates antitumour immunity by CD8+ T cells. *EMBO Mol Med*. (2013) 5:1311–21. doi: 10.1002/emmm.201302989
75. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. *Blood*. (2007) 109:3812–9. doi: 10.1182/blood-2006-07-035972
76. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1 α , and its blockade under hypoxia enhances MDSC-mediated T cell activation. *J Exp Med*. (2014) 211:781–90. doi: 10.1084/jem.20131916
77. Philip M, Fairchild L, Sun L, Horste EL, Camara S, Shakiba M, et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. *Nature*. (2017) 545:452–6. doi: 10.1038/nature22367

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer WE and handling editor declared their shared affiliation at the time of review.

Copyright © 2019 Yerinde, Siegmund, Glauben and Weidinger. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Advantages of publishing in Frontiers

OPEN ACCESS

Articles are free to read for greatest visibility and readership

FAST PUBLICATION

Around 90 days from submission to decision

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative, and constructive peer-review

TRANSPARENT PEER-REVIEW

Editors and reviewers acknowledged by name on published articles

REPRODUCIBILITY OF RESEARCH

Support open data and methods to enhance research reproducibility

DIGITAL PUBLISHING

Articles designed for optimal readership across devices

FOLLOW US
@frontiersin

IMPACT METRICS
Advanced article metrics track visibility across digital media

EXTENSIVE PROMOTION
Marketing and promotion of impactful research

LOOP RESEARCH NETWORK
Our network increases your article's readership

Frontiers

Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org

Contact us: info@frontiersin.org | +41 21 510 17 00