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Editorial on the Research Topic
Al innovations in neuroimaging: transforming brain analysis

Over the last decade, artificial intelligence (AI) has transformed nearly every branch
of medical imaging, but its impact on neuroimaging has been particularly revolutionary
(1-5). From automated segmentation of magnetic resonance imaging (MRI) data to deep
learning-assisted disease prediction, Al techniques—especially machine learning (ML),
deep learning (DL), and emerging quantum computing paradigms are reshaping how
clinicians interpret the human brain. These computational advances are accelerating the
diagnosis of neurological disorders, optimizing patient management, and opening new
frontiers in personalized medicine (6-10).

The Research Topic “Al Innovations in Neuroimaging: Transforming Brain Analysis”
brings together a diverse collection of studies that harness advanced algorithms and
hybrid models to address key clinical challenges in brain analysis, ranging from tumor
classification and stroke detection to autism spectrum disorder (ASD) assessment and
schizophrenia identification. Each contribution underscores how AI, when aligned with
clinical neuroimaging, can enable faster, non-invasive, and highly interpretable diagnostics.

This Research Topic presents 11 articles that collectively highlight the breadth of
Al-driven neuroimaging research. The contributions span a wide range of applications
from brain tumor detection and stroke prediction to epilepsy monitoring and autism
diagnosis demonstrating how interdisciplinary advances are transforming precision
medicine and neuroscience.

Among the notable contributions, Priyadharshini et al. introduce QBrainNet, a hybrid
quantum-classical neural network that leverages quantum superposition and entanglement
to improve stroke prediction accuracy to 96%, outperforming traditional CNN-based
approaches. By combining quantum feature extraction with variational quantum circuits,
this model demonstrates the transformative role of quantum-assisted intelligence in
medical imaging. In another important development, Ciice et al. propose a hybrid deep
learning radiomics framework that analyzes cerebrospinal fluid (CSF) signals in central
nervous system infections (CNSIs). Their approach accurately identifies infection-related
CSF alterations on MRI scans, offering a promising non-invasive alternative to lumbar
puncture, traditionally the gold standard in CNS infection diagnosis.

Broadening the perspective beyond imaging, Farhah et al. present a Double Deep
Q-Network (DDQN) model to identify ASD traits from social media text, demonstrating

5 frontiersin.org
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how digital footprint analysis can complement neuroimaging
by capturing behavioral and emotional cues indicative of
neurodevelopmental disorders. Similarly, Yuan et al. apply a
robust multi-task feature selection strategy with counterfactual
identify
brain networks from resting-state fMRI data, enhancing both

explanations  to schizophrenia-related  functional
classification accuracy and clinical interpretability. These studies
illustrate how AlI-driven behavioral and cognitive analysis extends
neuroimaging beyond the scanner to the digital and functional
realms of brain health.

Advancing the field of brain tumor detection, Han et al.
modify the YOLOvV11 architecture by integrating novel attention
mechanisms and a hybrid loss function (HKCIoU), achieving
improved accuracy and reduced computational cost—an essential
step toward real-time tumor detection in clinical environments.
Naeem et al. complement this effort with a lightweight CNN
tailored for small MRI datasets, achieving 99% accuracy and
proving that data-efficient deep learning can yield high reliability
even with limited samples. Alsubai et al. further expand diagnostic
scope by combining transfer learning and explainable AI (XAI) for
multi-disease MRI classification, accurately identifying both brain
tumors and Alzheimer’s disease across datasets. The integration
of SHapley Additive exPlanations (SHAP) ensures transparency,
allowing clinicians to visualize model reasoning. Meanwhile,
Chen et al. introduce a Mixed Local and Global (MLG) model
that fuses CNN and Transformer architectures through a gated
attention mechanism. By integrating fine-grained and contextual
features, their model achieves near-perfect accuracies (99.02%
and 97.24%) and sets a new benchmark for hybrid architectures
in neuroimaging.

Moving from structural MRI to electrophysiological data,
Al-Adhaileh et al. employ EEG-based ML and DL frameworks
for epileptic seizure detection, achieving an exceptional 99.9%
accuracy using Random Forests. This demonstrates the capability
of non-invasive EEG-based AI systems for reliable real-time
seizure monitoring. Complementarily, Yuan et al. enhance
feature interpretability in schizophrenia detection by applying
counterfactual modeling to identify functional connectivity
abnormalities, providing a neurobiological rationale behind
model predictions.

In the domain of multimodal neuroimaging, Chandrasekaran
et al. propose a powerful ensemble model combining VGG19
and Bidirectional LSTM with LightGBM for MRI-based brain
simulations, achieving 97% accuracy and an AUC of 0.997. This
hybrid design demonstrates how spatial and temporal feature
fusion can improve diagnostic performance while supporting
sustainable healthcare AI, a crucial step toward scalable clinical
deployment. Collectively, these contributions highlight the
evolution of AI in neuroimaging from task-specific models
toward integrated, interpretable, and efficient systems capable
of supporting real-world clinical decision-making. Ciftci et al.
present a dual-model AI framework that synergistically combines
clinical analytics and neuroimaging to improve Alzheimer’s
disease diagnosis. An Artificial Neural Network (ANN) trained
on demographic and behavioral data from 1,200 patients provides
risk prediction with 87.08% accuracy, while a Convolutional
Neural Network (CNN) analyzes 4,876 MRI scans to stage disease
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progression with 97% accuracy using explainable Grad-CAM
visualizations. By integrating structured clinical features with
imaging-based assessment, the hybrid system enhances both
diagnostic precision and clinical interpretability, aligning with
the growing trend toward multimodal, scalable, and Al-assisted
neuroimaging solutions for neurodegenerative disorders.

Emerging themes across the Research
Topic

Across the 11 studies in this Research Topic, several unifying
themes emerge. First, hybrid intelligence, the integration of
CNNs,
learning, is redefining neuroimaging accuracy and adaptability.

quantum computing, Transformers, and ensemble

Second, explainability has become a cornerstone of modern
neuro-Al research. Through SHAP, counterfactual reasoning,
and attention visualization, the models presented here
strive not only for accuracy but also for interpretability,
fostering clinical trust in Al-driven diagnostics. Third, the
move toward data-efficient models such as lightweight
CNNs shift toward

accessibility, enabling AI adoption even in data-constrained

and transfer learning underscores a

healthcare systems.

Additionally, multimodal integration combining MRI, fMR],
EEG, and behavioral data reflects a growing recognition that brain
disorders are inherently multifactorial and cannot be captured
through a single data source. These multimodal approaches bridge
the gap between structure and function, allowing for more holistic
assessments of neurological conditions. Finally, the emphasis on
sustainability and scalability ensures that emerging Al technologies
can transition from research prototypes to clinical practice,
empowering healthcare systems globally.
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Background: Brain tumor categorization on MRI is a challenging but crucial
task in medical imaging, requiring high resilience and accuracy for effective
diagnostic applications. This study describe a unique multimodal scheme
combining the capabilities of deep learning with ensemble learning approaches
to overcome these issues.

Methods: The system integrates three new modalities, spatial feature extraction
using a pre-trained VGG19 network, sequential dependency learning using a
Bidirectional LSTM, and classification efficiency through a LightGBM classifier.

Results: The combination of both methods leverages the complementary
strengths of convolutional neural networks and recurrent neural networks,
thus enabling the model to achieve state-of-the-art performance scores. The
outcomes confirm the efficacy of this multimodal approach, which achieves a
total accuracy of 97%, an F1-score of 0.97, and a ROC AUC score of 0.997.

Conclusion: With synergistic harnessing of spatial and sequential features, the
model enhances classification rates and effectively deals with high-dimensional
data, compared to traditional single-modal methods. The scalable methodology
has the possibility of greatly augmenting brain tumor diagnosis and planning of
treatment in medical imaging studies.

KEYWORDS

brain tumor classification, multi-modal learning, VGG19, bidirectional LSTM,
LightGBM, MRl imaging, deep learning, ensemble learning
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1 Introduction

Brain tumor segmentation from MRI images is an important
component of medical imaging, and serious consequences follow for
the diagnosis, treatment, and prognosis of the patient. The
heterogeneity and complexity of brain tumors and the high-
dimensionality of MRI data pose significant challenges to traditional
diagnostic approaches. These include problems like tumor variability
in appearance due to size, shape, and location, which can complicate
detection and classification. Diagnosis with a human expert is
generally cumbersome, subjective, and prone to error, and traditional
machine learning approaches rely on manually designed features,
which are prone to missing out on the complexities of MRI data. It
uses advanced preprocessing techniques like image normalization and
data augmentation to enhance training and model stability.
Improvements in machine learning and deep learning enabled the
automation and accurate classification of brain cancers. In this work,
a new multi-modal approach is introduced that uses deep learning
and ensemble learning methods to tackle these challenges, thus
providing a scalable and effective approach to classifying brain tumors
(1). Employing bidirectional long-term memory networks to represent
sequential dependencies in MRI slices, deep convolutional neural
networks to enhance spatial feature extraction, and LightGBM for
high-dimensional data classification in an efficient way, the proposed
VGG19-BiLSTM-LightGBM model. This multimodal approach
synergistically improves brain tumor categorization by combining the
strengths of each model component, thereby enhancing the model’s
ability to handle the intricacies of MRI data and improving diagnostic
accuracy. Figure 1 shows the brain tumor images from the dataset.

The motivation for this work is the limitation imposed by existing
techniques due to their inability to transcend such limitations. Because
traditional diagnostic techniques, though effective within their
confines, suffer from the heterogeneity of tumor size, shape, and
location (2), and single-modal techniques account only for spatial or
sequential characteristics and cannot harness the full richness of MRI
image information, therefore, a method has to be developed those
accounts for the interplay between spatial and sequential factors. This
is capable of building more robust and precise classification by
including these techniques as a multi-modal technique. Ensemble
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learning algorithms like LightGBM provides stable classification,
effectively handling the high-dimensional data and aggregating the
strengths of individual models (3).

This work centralizes to the creation of a multi-modal deep
learning architecture for brain tumor classification that synergistically
integrates the spatial and sequential features of MRI images. Spatial
feature extraction was carried out through a pre-trained VGGI19
model, thereby making it feasible and accurate for representing MRI
images. To improve the model’s capacity to learn the underlying
patterns, a bidirectional LSTM layer is used to monitor temporal
relationships among the extracted features (4).

This work is on the integration of multiple modalities, such as
sequential modeling using Bidirectional LSTM and spatial feature
learning using VGG19. The drawbacks of the traditional methods are
alleviated through this work by giving an end-to-end solution to brain
tumor classification. MRI image description becomes more realistic
with the use of an integration of multiple modalities. The classification
performance is further augmented by LightGBM being utilized as a
final classifier to enable effective processing of high-dimensional data
(5). Large and high-dimensional data can be handled using the
proposed framework, which renders it easy to implement on actual
healthcare challenges. High validation accuracy with minimal
amounts of loss indicates its generalization capabilities to unseen data.
The following sections of this paper are classified as given below.
Section 2 gives an overview of the major research on brain tumor
classification including deep learning and ensemble learning
techniques. Section 3 provides a thorough explanation of the suggested
methodology, i.e., data preparation, feature extraction, and
classification. Section 4 discusses the experimental results, including
performance metrics and comparisons with baseline models.

2 Literature review

The field of brain tumor classification from MRI scans has
experienced tremendous expansion in the recent past with
momentum building for the application of deep learning and
machine learning techniques. Traditional methods in brain tumor
diagnosis have employed close to all visual inspection by
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FIGURE 1
A sample of images from the dataset.
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radiologists, not just time-consuming but also prone to human error
(6). Such methods tend to employ extraction of inherent features
like texture, shape, and intensity that might not reflect the complex
patterns present in medical images. Therefore, there has been a
move toward automated methods that take advantage of the
strengths of deep learning to achieve improved accuracy
and efficiency.

Convolutional Neural Networks have become a backbone of
modern medical image analysis. Their ability to learn spatial features
automatically from images has made them particularly suitable to
applications such as tumor detection and classification (7). From
pre-trained CNN models, VGG19, ResNet, and Inception can
be broadly applied in medical imaging because they can generalize
toward a large range of datasets. The early layers typically freeze, and
the final layers are fine-tuned on the target dataset toward a specific
application, such as the classification of brain tumors. This reduces not
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only the computational cost but also enhances performance with
knowledge gained from large-scale datasets, such as ImageNet.
While CNNs excel at capturing spatial features, they may not fully
exploit the sequential or temporal dependencies present in medical
images. LSTMs are designed to represent sequential data, making
them optimal for identifying temporal trends in medical images (8).
Bidirectional LSTMs, which process data in both forward and
backward directions, have been shown to further enhance
performance by capturing more comprehensive dependencies. The
combination of CNNs and LSTMs has been explored in various
medical imaging tasks, including brain tumor classification, where it
has demonstrated superior performance compared to standalone
models. Table 1 shows the exiting studies through multiple techniques.
Ensemble learning methods have also found relevance in medical
image analysis because they can enhance classification accuracy and
robustness. Techniques such as Random Forests, Gradient Boosting,
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TABLE 1 Existing studies from different techniques.

Study

Magsood et al. (13)

Objective

To present an automated technique for precise brain tumor

identification and classification by using deep learning and MRI.

10.3389/fmed.2025.1574428

Remark

The method achieved high accuracy (97.47 and 98.92%) and

outperformed prior methods.

Jiang et al. (14)

To develop SwinBTS, a 3D medical image segmentation approach

combining transformers and CNNs for brain tumor classification.

SwinBTS beat state-of-the-art algorithms on BraT$ 2019, 2020, and 2021

datasets.

Zhu et al. (15)

Present a brain tumor segmentation approach that integrates deep

semantics and edge information in multimodal MRI.

The method outperformed state-of-the-art methods on BraT$

benchmarks.

Zhang et al. (16)

Introducing mmFormer: A Transformer-based approach to strong

multimodal brain tumor segmentation with incomplete modalities.

mmFormer outperformed state-of-the-art approaches, particularly with

missing modalities.

Razzaghi et al. (17)

A multimodal deep transfer learning system that can be used with

MRI brain image processing should have domain flexibility.

The strategy outperformed equivalent algorithms on IBSR and Figshare

datasets.

Alietal. (18)

Analyze the progresses in brain tumor segmentation, feature

extraction, and classification using MRI along with deep learning.

Highlights the move from traditional approaches to deep learning and

hybrid methodologies.

feature fusion in brain tumor segmentation.

Peng and Sun (19) To propose AD-Net, an autonomous weighted dilated convolutional | Achieved high Dice scores (0.90, 0.80, 0.76) on BraTS20 dataset.
network for multimodal brain tumor feature extraction.
Fang and Wang (20) To propose MFF-DNet, a dual-path network for multi-modal Achieved high precision (0.92 and 0.90) for whole tumor and core tumor

segmentation.

Hossain et al. (21)

To propose a strategy for brain tumor segmentation using 3D

U-Net and ResNet50 with image fusion.

Achieved high accuracy (98.96% for ResNet50, 97.99% for 3D U-Net).

Liuetal. (22)

To present SF-Net, a multi-task model for brain tumor

segmentation leveraging segmentation-fusion.

Achieved higher segmentation accuracy than VAE-based approaches on

BraTS$ 2020.

Prasad et al. (23)

To enhance medical imaging capabilities using a CNN-based

approach for detecting and classifying brain tumors.

The proposed model achieves superior accuracy, recall, F1-score, and
precision compared to traditional methods, contributing to more

effective brain tumor analysis.

Kargar Nigjeh et al. (24)

To optimize brain tumor classification using deep learning models

and advanced image enhancement techniques.

The study demonstrates high classification accuracy (95%) and provides
insights into the strengths and limitations of various deep learning

architectures for medical imaging.

Sharma et al. (25)

To improve efficiency in brain tumor categorization through a

hybrid model approach.

The model achieves 97% classification accuracy by integrating multiple

learning techniques, enhancing robustness in tumor classification.

Bibi et al. (26)

To address computational inefficiencies and improve classification

accuracy through a transfer learning approach.

The InceptionV4 model achieves 98.7% accuracy, significantly

improving diagnostic precision and reducing computation time.

Albalawi et al. (27)

To develop an advanced CNN architecture for more accurate and

efficient brain tumor diagnosis.

The CNN model achieves an exceptional 99% accuracy, marking a major

advancement in automated MRI analysis and early tumor detection.

and LightGBM combine the predictions of many models to produce
more accurate and reliable results. LightGBM is specifically widely
used because of its ability to work on enormous datasets and high-
dimensional data (9). By combining deep learning models with
ensemble techniques, scientists have been able to develop hybrid
frameworks that leverage the strengths of both methods.

While great advances have been made, brain tumor categorization
still presents some challenges. One of the most significant is that the
tumors are very variable in how they look, which could vary greatly
by size, shape, and even placement. All this variability makes it
difficult to build a model that generalizes well over all datasets.
Because the dimension of the MRI data is high, their computation
presents serious challenges in particular when a lot of them is
involved. Methods such as flipping, rotating and adjusting the
brightness randomly, used to enlarge training data variety while
preventing overfitting have commonly been employed for overcoming
this difficulty (10). The third is interpretability in medical
imaging models.
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Multi-modal combination is a key component in improving
categorization. Multi-modal techniques provide a more comprehensive
explanation of the underlying issue by combining multiple data
modalities, such as MRI images, clinical data, and genomic data. Multi-
modal techniques have been shown to perform better than single-modal
approaches in the categorization of brain tumors by complementarily
gathering information from diverse data sources. It is presently known
that the fusion of MRI images with clinical data, like the patient’s age and
medical history, improves classification performance and provides more
individualized predictions (11). Brain tumor classification has greatly
improved in the past few years due to advances in deep learning,
ensemble learning, and multi-modal methods.

3 Methodology

The multi-modal nature of the proposed method for MRI-based
brain cancer diagnosis is becoming increasingly popular. For sequence
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modeling and feature extraction, it uses deep learning models like =~ would make it possible to design automated systems for the

VGG19 and Bidirectional LSTM, for classification, it uses  classification of brain cancers with proper early detection and a proper

LightGBM. Figure 2 illustrates a step-by-step overview of the preferred  diagnosis. It has been divided into training and test sets, with images

model’s approach. resized to 224 x 224 pixels for deep learning models such as VGG19.
The dataset’s size and heterogeneity render it a valuable source of
information upon which researchers and medical imaging

3.1 Dataset description professionals can formulate generalizable and robust brain tumor
classification algorithms.

The 7,023 MRI images of the human brain that make up the Brain

Tumor MRI dataset are split into four categories: pituitary,

meningioma, glioma, and no tumor. Glioma tumors are made up of ~ 3.2 Data preprocessing

glial cells, while Meningioma malignancies arise from the meninges,

protective coverings of the brain and spinal cord. The Pituitary class The first preprocessing operation is scaling of images. The MRI

contains cancers that originate in the pituitary gland, a small gland at ~ images in the dataset are resized to a uniform size of 224 x 224 pixels.

the base of the brain that is responsible for the production of  Standardization is necessary because deep learning models like

hormones. The “No Tumor” class contains normal brain scans to act ~ VGGI19 need to have fixed input sizes. Resizing enables all images to

as a control set for comparative analysis. The data were intentionally ~ be compatible with the model architecture, thus enabling effective

divided into training, validation, and testing sets in 70, 15, and 15%  batch processing during training. Resizing also reduces the

ratios, respectively. The ratio of splitting was aimed at achieving a  computational complexity by downsampling high-resolution images

trade-off between enough training data to learn the model parameters ~ without significantly reducing their quality. Equation 1 shows the

well and adequate validation and test data to analyse the performance  resizing of images.

and generalizability of the model comprehensively. The significant

portion dedicated to training ensures deep learning models, which I'= resize(] ,h,w) (1)

demand huge amounts of data, get well-trained. Equal partitioning of

the rest of the data for validation and testing helps refine model

parameters and test the model on data not seen by it, reducing the risk The resized images are then normalized, which is the process of

of overfitting. The method also ensures that the evaluation measures  scaling pixel values to a particular range. In this case, pixel values are

capture the model’s ability to function under varying conditions, thus ~ normalized to the range [0, 1] by dividing the pixel intensity by 255.

offering a truer measure of its potential effectiveness in actual use. The ~ Normalization is necessary since it ensures the input data have a fixed

wide scope of categorization ensures total research over a wide range  scale, which improves the convergence of the model while training. If

of common situations of the brain, thus enhancing representativeness ~ not normalized, the model will fail to learn since the magnitudes of

when the model is used in practical applications. The dataset, though,  pixel values vary from image to image. Equation 2 illustrates the

has its limitations in the shape of potential class imbalance and  formula to normalize the images.

heterogeneity in tumor locations and sizes, which could hinder

learning as well as predictive capacity. Three primary sources make up ,  Xx—min (x) )

this dataset: the SARTAJ dataset, which initially consisted of glioma r= max ( x) — min ( x)

images but contained inconsistencies that led to their replacement

with images sourced from figshare; the Br35H dataset, which provides

images for the “No Tumor” class; and figshare, which offers images for In order to improve the strength and variety of the dataset, data

glioma, meningioma, and pituitary tumors. It is thought that this data  augmentation techniques are applied. Data augmentation is artificially

Glioma

Flatten Dense Layer

.

-

Input Bidirectional LSTM Batch Normalization

LightGBM LightGBM Classifier

A -
SoftMax
FIGURE 2
Workflow of the proposed model the framework is ideal for real clinical applications as it strives for high accuracy and generality.
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conducted to enlarge the size of the training dataset by creating
multiple copies of the original images. This process not only addresses
the issue of limited data in medical imaging but also simulates varying
imaging conditions, which helps in building a robust model. The data
augmentation techniques applied in this system not just random
horizontal and vertical flips, but also random horizontal and vertical
flip, which mimic different brain orientations; random change in
brightness, which introduces lighting variability; random change in
contrast, which changes the difference in intensity of pixels; random
change in saturation, which changes the colour intensity; and random
change in hue, which changes the tonal quality of images. These
transformations are essential for training the model to recognize
tumors under different imaging conditions and enhance its ability to
generalize across new, unseen datasets. Equation 3 represent the mean
and standard deviation of the pixel values in the image. Equation 4
applies a flip transformation along a specified axis (horizontal or
vertical) to the image. Equation 5 brightens the image by adding a
constant £, being possibly positive (to brighten) or negative (to
darken). Equation 6 adjusts the pixel values of I"” to change
the contrast.

=1"R(8) (3)

[ =flip(1",axis) )
1" =1"+p 5)
=1 - +u ©)

Data preprocessing pipeline is built to transform raw MRI images
to an appropriate form for deep learning models. By resizing,
normalizing, augmenting, and organizing the data, the pipeline
enables the model to learn and generalize effectively to unseen new
data. These preprocessing steps are important to achieve high accuracy
and robustness in brain tumor classification and are therefore an
integral part of the proposed approach.

3.3 Model architecture

The suggested classification system of brain tumors uses a
combination of deep learning models to achieve great accuracy and
robustness. The construction of automated approaches for the
classification of brain cancers with sufficient early detection and
precise diagnosis is anticipated to be enabled by dataset. For deep
learning models such as VGG19, it has been split into training and test
sets, and the photographs have been resized to 224 x 224 pixels. Due
to the volume and diversity of the dataset, researchers and medical
image professionals can utilize it to construct valid and generalisable
analysis. Figure 3 shows the Model Architecture of VGG19-BiLSTM-
LightGBM Framework.
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The technique of converting raw MRI scans into an applicable set
of features suitable for classification is referred to as feature extraction,
and it is the initial step of the deep learning pipeline. A pre-trained
VGG19 model is used to do this. VGG19 is a very deep convolutional
neural network (CNN) architecture that has been widely applied in
computer vision tasks due to its capability to extract hierarchical
features from images. The architecture of VGG19 comprises 19 layers,
including 16 layers of convolutional layers, 3 of fully connected layers,
and 5 max-pooling layers. On this model, they apply pre-training
from ImageNet dataset, incorporating over 1 million images in 1,000
categories. The pre-trained model gives the feature of identifying
general features, such as edges, textures, and shapes, which can
be further fine-tuned for any other task. In this case, it is for medical
image analysis. Equation 7 gives the output size of a convolutional layer.

W—-K+2P
=4
S

o 1 (7)

Transfer learning is employed in the suggested framework to fine-
tune the VGG19 model for brain tumor classification. Transfer
learning is the reuse of a pre-trained model with fine-tuning for a task.
The model is set up to receive input images of size 224 x 224 pixels.
The pre-trained weights are imported, to focus on extracting the most
relevant features for brain tumor classification, only the early
convolutional layers of the model are frozen, allowing the deeper
layers, which are more specific to the task at hand, to adjust during the
training process. This keeps the model to retain the common features
learned from ImageNet while learning task-specific features in the
later layers. The VGG19 model processes the input MRI images and
extracts high-level spatial features from its final convolutional layer.
These features represent the most discriminative aspects of the images,
such as tumor boundaries, texture, and intensity variations. The
output of the VGG19 model is a feature map with dimensions 7 x 7 x
512, which is then passed to the next stage of the pipeline for further
processing. To effectively use both sequential and spatial information,
a Bidirectional LSTM layer has been added within the pipeline.
LSTMs are a family of RNNG, the architecture of which is well-suited
to the modeling of sequence data. Adding a Bidirectional LSTM allows
the model to not only extract forward temporal dynamics but also
backward dynamics, giving complete insight into sequence data. To
enhance the ability of the model to learn the inherent patterns, a
bidirectional LSTM layer is employed to track temporal relationships
between the extracted features (4). This project is on the fusion of
various modalities, like sequential modeling by Bidirectional LSTM
and spatial feature learning by VGG19. The shortcomings of the
conventional methods are overcome through this project with the
provision of an end-to-end solution to brain tumor classification. MRI
image description is made more realistic with the provision of an
integration of various modalities. The classification efficiency is also
enhanced through the use of Light GBM as a final classifier for efficient
handling of high-dimensional data (5) using Equation 8. High-
dimensional and large data are handled using the proposed
framework, making it simple to deploy on real-life healthcare problems.
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FIGURE 3
Architecture of the VGG19-BiLSTM-LightGBM framework.
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The last layer of classification takes the flattened output of the
LSTM layer in the form of a 1D vector. It does this so that the features
are brought in a form that allows easy classification. It is also designed
for progressive learning. It allows the model to incrementally update
its knowledge base whenever there is new information without rigid
retraining needs. The inclusion of the LightGBM classifier within the
model is highly significant in this case, as this classifier supports
online learning environments. This aspect allows the model to update
continuously with new data, hence enhancing its prediction with the
passage of time. This is a highly significant feature in medical imaging,
where shifting patterns of data require flexible models that can update
with minimal downtime and computational costs.

To find the brain tumors consistently, the features that are
extracted are used to train a LightGBM classifier, which is the final
step in the deep learning process. A very good gradient boosting
library capable of handling large high-dimensional data is known as
LightGBM. The trained VGG19 and LSTM layers are used for building
another feature extraction model. The gradient descent update rule is
found in Equation 9. The logistic loss function for binary classification
is found in Equation 10.

0:=0-1VeJ(0) )

(10)

i=

1(F)= Z[J’i 10g(1+€_£)+(1—y,-)10g(1+e; )}

The features extracted are standardized with StandardScaler, thus
obtaining a zero mean and unit variance for all the variables. This step
is essential for maximizing the LightGBM classifier’s performance
since it ensures that each feature contributes evenly to the classification
process. With default hyperparameters, i.e., 200 estimators and a
learning rate of 0.05, the LightGBM classifier is trained on scaled
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features. The retrieved features are used to train the algorithm to
categorize different types of tumors. LightGBM is employed because
it can generate precise and reliable predictions and is effective at
managing big datasets. The operational flow and interdependencies
between the various components of this multi-modal deep learning
technique for MRI-based brain tumor classification are outlined
sequentially in Algorithm 1.

The training process of the proposed VGG19-BiLSTM-
LightGBM framework involves a multi-stage pipeline designed to
optimize the model’s performance and generalization capabilities.
This uses pre-trained VGGI9 as the spatial feature extractor from
the MRI images with all layers frozen so that weights learned
during ImageNet can be preserved. Features from these layers are
passed to the Bidirectional LSTM layer, which then encodes the
temporal dependencies, followed by repeated processes of Batch
Normalization and Flattening so that the data is made ready for
classification. Equations 11, 12 can be used to compute the
accuracy and precision of the model, respectively, which are two
key parameters that can establish the efficiency of the model for
real-world implementation.

TP +TN

Accuracy = (11)
TP+TN + FP+ FN
Precision = _rr (12)
TP + FP

The whole pipeline is trained over the Brain Tumor MRI Dataset.
To enhance training data variations, the entire dataset has methods
applied that consist of random flips in any two planes and various
combinations of changing brightness and contrast. Equations 13, 14
compute recall and Fl-score thus yielding more criteria that are
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Input:
e A set of MRI images
Output:

e (lassifications of brain tumors

1. Preprocess the MRI_images:
1.1. Resize images to 224x224 pixels
1.2. Normalize pixel values to [0, 1]

2. Extract features using pre-trained VGG19:
2.1. Load VGG19 model, discard final layers

3. Sequential modelling with Bidirectional LSTM:
3.1. Reshape feature maps to sequences

4. Classify with LightGBM:

4.2. Normalize feature vectors
4.3. Train LightGBM classifier on feature vectors

1.3. Apply data augmentation (e.g., random rotations, flipping)

2.2. Pass each image through VGGI19 to get feature maps

3.2. Feed sequences into a Bidirectional LSTM to obtain feature vectors

4.1. Flatten LSTM output to prepare feature vectors

4.4. Predict tumor type using the trained LightGBM model

ALGORITHM 1

Multi-modal deep learning method for classifying brain tumors based on MRI.

essential in judging performance concerning the positive values
correctly discovered but at some expense in recall/precision ratio (12).

TP
Recall=—— (13)
TP+ FN
Precision-Recall
Fl=2—m+«—+—— (14)

Precision + Recall

The model is trained on parameters like accuracy, precision, recall,
F1-score, and ROC AUC so that it is able to classify the brain tumors
robustly and accurately. The long training process makes sure that the
model learns not only to be precise but also to be generalizable in
nature and hence usable in real-world clinical practice.

4 Results

The proposed VGG19-BiLSTM-LightGBM model for brain
cancer classification was outstanding in classifying the Brain Tumor
MRI Dataset, subjecting it to being able to handle the uncertainty and
complexity of the MRI images. The model achieved a training
accuracy of 98.69%, validation accuracy of 96.64%, and total test
accuracy of 97%, evidence of its ability to generalize to unseen data.
Precision, recall, and F1-score metrics also testified to the stability of
the model, with its performance being more than 0.92 across all
classes. Interestingly, the “No Tumor” and “Pituitary” classes achieved
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100% accuracy and recall, while the Glioma and Meningioma classes
achieved comparatively lower but still outstanding performance
because of their visual similarity. Figure 4 illustrates the categorization
report of the suggested model according to all four classes.

The model’s discriminative ability was confirmed by an ROC AUC
score of 0.997, indicating its strong capability to distinguish between
different tumor types. Figure 5 shows the ROC AUC score of all
four classes.

Error metrics, including Mean Squared Error (MSE = 0.01), Root
Mean Squared Error (RMSE =0.10), and Mean Absolute Error
(MAE =0.10), further underscored the models accuracy and
reliability. These results demonstrate that the integration of spatial
feature extraction (VGGI19), sequential modeling (Bidirectional
LSTM), and robust classification (LightGBM) provides a powerful
framework for brain tumor classification, outperforming traditional
single-modal approaches. Figure 6 shows the error metrices of the
proposed model.

The confusion matrix indicated that the majority of the
misclassifications were between the Glioma and Meningioma classes,
consistent with the difficulty caused by their visual similarity. The
overall misclassification rate was low, and the model performed high
accuracy in all classes. The superior performance of the proposed
framework compared to baseline procedures, including isolated
VGG19 and Random Forest classifiers, supports the advantage of the
combination of deep learning and ensemble learning methods.
Figure 7 displays the confusion matrix of the utilized dataset.

These findings are important to clinical use as the model has the
potential to assist radiologists in more precise and effective diagnosis
of brain tumors. But the task can be expanded with other modalities
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Classification report of the proposed model.
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being added, e.g., clinical data or genomic data, to further improve the

performance of the model. Table 2 shows the comparison study of

many Techniques.
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An important development in brain tumor classification is the

VGG19-BiLSTM-LightGBM framework, which provides a reliable and
expandable solution for medical imaging applications. The VGG19-
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FIGURE 6
Error metrices.
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BiLSTM-LightGBM model achieves excellent accuracy but requires
extensive processing resources due to its complex construction. This can
result in longer training times and higher costs, which might not
be desirable for most clinical scenarios, particularly real-time scenarios. To
address this, techniques such as pruning and quantization could be used to
reduce model size and speed up inference times without sacrificing accuracy.

5 Discussion

In balancing for potential class imbalances in the MRI data sets,
a common problem in medical images due to different rates of
occurrence of different types of tumors, application of data

Frontiers in Medicine

augmentation techniques and weighted loss function assists in
achieving balanced model training and prevents class bias toward
majority classes. Scalability of the VGG19-BiLSTM-LightGBM
architecture is beyond brain tumor classification. The model’s
structure is inherently flexible enough so that it may be utilized to
process a wide variety of sickness classes over a large number of
imaging modalities. The same structural concepts could reasonably
be applied with the goal of classifying chest X-ray abnormalities or
skin imaging lesions. This adaptability is primarily attributed to the
VGG19 component of the model, which is widely renowned for its
capacity to extract informative features from the majority of images,
and the very flexible nature of the LSTM and LightGBM components
that can be fine-tuned to detect and classify various pathological
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TABLE 2 Comparison study from different techniques.

Study Techniques Accuracy
Pan et al. (28) Convolutional neural 96%
networks (CNNs)
Filatov and Yar (29) EfficientNetB1 89.55%
Ma et al. (30) CNN 80%
Shilaskar et al. (31) Extreme gradient 92.02%
boosting (XG Boost)
Binish et al. (32) CBAM 96.70%
Upadhyay et al. (33) CNN 91%
Ullah et al. (34) SVM 95.73%
Pandiyaraju et al. (35) LinkNet architecture 95.84%
Zhu (36) FT-CNN 96%
Asiri et al. (37) (ML Model) SVM 95.3%
Stadlbauer et al. (38) (ML Model) Random forest 0.87%
Proposed model VGG19-BiLSTM- 97%
LightGBM framework

features with high efficiency. This approach should be applied in

low-resource environments. Techniques such as model
simplification, quantization, and the use of light-weight neural
networks can sufficiently reduce the computational requirements.
These parameters are important in maintaining the diagnostic
integrity of the model for all categories of tumors. In addition to the
computational efficiency and model complexity, there is an inherent
trade-off between accuracy and computational requirement. The
VGG19, Bidirectional LSTM, and LightGBM together, although
computationally expensive, are warranted by the size of accuracy
gain and medical diagnostics stability needed. The architecture’s
complexity makes it challenging to use in the clinic with real-
time requirements.

Existing model implementation into clinical environments may
be compromised by latency in processing and loading demands.
Future development will center on refining these components to
enable real-time analysis, possibly by model reduction or employing
more effective processing methods like model quantization and
pruning. Future studies will also continue to explore scalability,
namely how this system can be adapted or scaled to support different
types of tumors or medical imaging tests. This can involve training
on larger, more heterogeneous sets of data or modifying the
architecture to more effectively encode unique features of individual
medical diseases, increasing model flexibility and utility across a

broad array of clinical applications.

6 Conclusion

The paper offers an important contribution to the brain tumor
identification from MRI images using a VGGI19-BiLSTM-
LightGBM model.
complexity and heterogeneity, which are inherently linked to

The multi-modal approach overcomes

medical imaging data, by using space feature extraction, sequential
modeling, and high-performance classification algorithms.

Deploying a pre-trained VGG19 model for spatial feature
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extraction, a Bidirectional LSTM to process sequential information,
and LightGBM for efficient and accurate classification, the model
improves on diagnostic capability.

With a strong output of 98.69% training accuracy, 96.64%
validation accuracy, and 97% test accuracy, it excels over currently
available methods such as the VGG19 when isolated and the Random
Forest classifier. Such a paradigm, in addition to lowering the chances
of error in diagnosis, also aids radiologists in successfully diagnosing
brain cancers efficiently and in a timely manner, enhancing patient
care. Future upgrades can involve the integration of new data types,
e.g., clinical or genetic data, to improve the accuracy as well as the
robustness of the model. Additionally, employing explainable AI
techniques can enhance the interpretability of the model as a more
practical tool for application in clinical contexts. VGG19-BiLSTM-
LightGBM is a cost-effective and effective approach to classifying
brain tumors and can potentially transform computer-aided
diagnosis in radiology.
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Introduction: Affecting millions of individuals worldwide, epilepsy is a neurological
condition marked by repeated convulsions. Monitoring brain activity and identifying
seizures depends much on electroencephalography (EEG). An essential step that
may help clinicians identify and treat epileptic seizures is the differentiation between
epileptic and non-epileptic signals by use of epileptic seizure detection categorization.

Methods: In this work, we investigated Machine learning algorithms including
Random Forest, Gradient Boosting, and K-Nearest Neighbors, alongside advanced DL
architectures such as Long Short-Term Memory networks and Long-term Recurrent
Convolutional Networks for detecting epileptic seizures in terms of difficulties and
procedures evolved depending on EEG data. The EEG data classification by applying
ML and DL framework to improve the accuracy of seizure detection. The EEG
dataset consisted of 102 patients (55 seizure and 47 non-seizure cases), and the
data underwent comprehensive preprocessing, including noise removal, frequency
band extraction, and data balancing using SMOTE to address class imbalance. Key
features, including delta, theta, alpha, beta, and gamma bands, as well as spectral
entropy, were extracted to aid in the classification process.

Results: A comparative analysis was conducted, resulting in high classification
accuracy, with the Random Forest model achieving the best results at 99.9%
accuracy.

Discussion: The study demonstrates the potential of EEG data for reliable

seizure detection while emphasizing the need for further development of more
practical and non-invasive monitoring systems for real-world applications.

KEYWORDS

electroencephalography, EEG data classification, seizure detection, epilepsy, SMOTE

1 Introduction

Epilepsy is a neurological condition that affects neurons in the brain. In many instances,
epilepsy may not be curable, but it can be managed and controlled with proper care. This
involves taking essential steps to ensure patients’ safety, especially in situations in which they
might be driving, cooking, or simply being at home. With effective monitoring, patients can
feel more confident in their daily activities, knowing that help is available when needed. This
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can minimize potential harm and reduce their dependence on others.
This highlights the significance of proper management in epilepsy.

Epilepsy, a neurological condition, is recognized as a widespread
issue that poses a significant risk to human life. Global statistics from
the World Health Organization (WHO) indicate that around 50
million people worldwide are affected by epilepsy, establishing it as
one of the most prevalent neurological diseases globally. Epilepsy
affects individuals of all genders, including males and females, and it
is also observed in children (1). Epilepsy refers to a neurological
condition in which there are irregular disruptions in the usual
functioning of the brain. These disruptions lead to seizures, which can
differ in duration and effect from one individual to another. Seizures
may be brief and go unnoticed or affect specific body parts or the
entire body, occasionally resulting in unconsciousness.

Epilepsy can arise from acquired neurological insults (2) (e.g.,
oxygen deprivation, head trauma, and strokes) that damage brain
tissue and disrupt normal electrical functioning. Genetic mutations
affecting ion channels, neurotransmitters, and neural transmission
can also predispose individuals to chronic seizures. Elucidating these
precipitating factors enables better prevention and treatment of
epilepsy. EEG is a non-invasive diagnostic tool that captures the
electrical activity generated by brain neurons. Given the multi-channel
signals from scalp electrodes and the necessity for long-term
recordings, advanced signal processing methods have become
indispensable for EEG-based detection (3).

A critical component of managing epilepsy is seizure detection,
which involves categorizing EEG signals into seizure or non-seizure
classes. This process is facilitated by identifying prominent features
within the EEG signals. An important step in reducing the human and
monetary costs of uncontrolled epilepsy is the development of
methods for more precise seizure detection (4). According to Van de
Vel et al. (5), beyond the pursuit of epilepsy treatment options, there
is an increasing recognition of the need for effective epilepsy
management strategies to enhance patient and caregiver quality of life.
Non-EEG-based seizure detection technologies are receiving growing
research attention due to their potential to improve care quality, peace
of mind, and independence. A comprehensive literature review was
carried out, and discussions were held with manufacturers of
commercially available devices to gain further insights. The reported
performance of non-EEG-based seizure detection devices showed a
wide range of sensitivity, from as low as 2.2%-100%. In terms of false
detections per hour, the range was 0-3.23 when compared with the
gold standard of video-EEG. This underscores the varying reliability
of these devices and the need for further research and development in
this field.

EEG signals are prone to human error and are impractical for
continuous monitoring. While automated systems leveraging machine
learning and deep learning have shown promise, significant challenges
hinder their widespread adoption in the real world.

Data Limitations EEG datasets often suffer from class imbalance,
with far fewer seizure events than non-seizure data, leading models to
overlook critical seizure patterns. Signal Complexity: EEG signals are
inherently noisy, contaminated by artifacts from muscle movements,
eye blinks, or environmental interference, complicating feature
extraction. Computational Trade-offs: Deep Learning (DL) models
(e.g.» CNNs, LSTMs, transfer learning in DL, GRU, and transformers)
excel at automatic feature learning but require substantial
computational resources, making them unsuitable for low-power
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wearable devices (5). Conversely, traditional ML models, while
efficient, rely on manual feature engineering, which risks missing
subtle seizure signatures. Generalizability: Many algorithms perform
well on controlled datasets but falter with patient-specific variability
or ambulatory recordings.

This study aims to explore the potential of EEG data classification
using machine learning techniques to enhance seizure detection.
We conducted extensive preprocessing of the EEG data, including noise
filtering, frequency band extraction, and data balancing, to ensure
robust feature extraction and to improve model performance. By
evaluating the effectiveness of different machine learning models, this
work contributes to the growing body of research aimed at developing
more accurate and efficient tools for epilepsy management.
Furthermore, we emphasize the need for non-invasive, user-friendly
monitoring systems that can complement EEG-based detection in real-
world clinical applications. The main contributions of the article include
a robust preprocessing pipeline combining noise filtering, frequency
band extraction, and SMOTE-based class balancing, coupled with a
comparative analysis of five models: Random Forest (RF), Gradient
Boosting, KNN, LSTM, and LRCN. The RF classifier achieves state-of-
the-art accuracy (99.9%). The paper is structured as follows: Section 2
reviews existing methodologies, Section 3 details the proposed
framework, Section 4 presents empirical results and comparisons, and
Section 5 concludes with clinical implications and future directions.

2 Literature review

Over 50 million individuals throughout the world are afflicted with
epilepsy, a neurological disorder. Seizures that cannot be controlled
occur repeatedly. To improve medical results and quality of life for
epileptic patients, it is essential to monitor and diagnose seizures in a
timely manner. Seizures may be quickly and accurately diagnosed using
EEG data, which records the brain’s electrical activity. On the other hand,
patients may find it obtrusive and complicated gear is usually required.

Recent years have seen tremendous growth in the area of epileptic
seizure identification using EEG data, merit to the use of several ML
and DL approaches. This literature review examines 23 studies that
have contributed to this domain, categorizing them based on their
methodological approaches, datasets used, and the specific aspects of
seizure detection they address. The studies are grouped into four main
categories: Traditional ML Approaches, DL Methods, Hybrid and
Novel Approaches, and Comparative Studies and Reviews.

2.1 Traditional machine learning approach

Several studies have employed traditional ML techniques for
seizure detection and classification, often focusing on feature
extraction and selection methods. Fergus et al. (6) proposed a
supervised ML method using the real dataset, achieving a sensitivity
and specificity of 88%. This study demonstrated the potential of
traditional ML methods in creating generalizable seizure detection
models. Raghu et al. (7) presented a model that is computationally
efficient by using a new feature known as a successive decomposition
index. The system was evaluated using three different databases.
Authors proposed support vector machine (SVM) classifiers, they
achieved high sensitivity (95.80-97.53%) and low false detection rates
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(0.4-0.57/h) across all datasets. The use of multiple datasets in this
study provided robust validation of their approach, highlighting the
importance of diverse data in developing reliable seizure detection
methods. Rani et al. (8) developed SVM approach for classifying a
peak signal EEG signal. The system was used dataset that collected
from Bonn University dataset. The SVM model achieved a remarkable
99.60% accuracy rate and a low error rate of 0.039. Almustafa (9)
conducted a comprehensive comparison of various ML. These studies
have demonstrated the continued relevance and effectiveness of
traditional ML approaches in seizure detection, particularly when
combined with innovative feature extraction methods. The high
accuracies achieved by these methods suggest that they remain
competitive with more complex DL approaches in certain scenarios.

2.2 Deep learning method

Due to automatically learn essential characteristics from raw EEG
data, DL approaches have improved seizure detection accuracy and
resilience. Liu et al. (10) created a hybrid bilinear DL network using
CNNs and RNNs, model was scored 97.4% on the Temple University
Hospital Seizure Corpus and 97.2% on EPILEPSIAE, demonstrating
the power of neural network architectural composition. This research
showed that CNNs, which excel in spatial feature extraction, and RNNs,
which capture temporal relationships in EEG data, work well together.

The linear graph convolution network (LGCN) introduced by
Zhao et al. (11) uses spatial interactions in EEG data using a Pearson
correlation matrix to identify seizures. This novel method showed
graph-based neural networks could capture intricate spatial correlations
between EEG channels. Gabeff et al. (12) used the REPO2MSE cohort
of scalp-EEG recordings from 568 epilepsy patients to construct a
CNN-based model for online seizure identification. For clinical
applications, online detection is key. This work addressed it. Chou et al.
(13) tested four CNN architectures for video-EEG data analysis and
found that their best model had 97.7% ictal stage accuracy. This work
showed that CNNs can interpret multimodal data for seizure detection,
indicating that adding visual information to EEG signals may improve
detection. A 3D CNN-based automated epilepsy detection method by
Sun and Chen (14) was very accurate. Their method used CNNs’ three-
dimensionality to collect EEG signals’ spatial and temporal properties.
This research proved the generalizability of their 3D-CNN-based
technique by performing well across numerous datasets. Kunekar et al.
(15) employed LSTM networks to identify seizures with 97% validation
accuracy on the UCI-Epileptic Seizure Recognition dataset. It is
observed that LSTM outperformed traditional algorithms in accuracy
and precision. This work showed that RNNs can identify seizures by
recording EEG data temporal dynamics. These DL methods
demonstrate automated feature learning and complicated, high-
dimensional EEG data processing. High accuracies across datasets
show DL seizure detection technologies are getting more dependable.

2.3 Hybrid and novel approaches

Several studies have proposed innovative methods that combine
different techniques or introduce novel concepts to improve seizure
detection, often addressing specific challenges in the field or exploring
unconventional approaches.
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Bandarabadi et al. (16) presented a statistical methodology for
selecting the preictal period, which serves as an indicator of seizure
predictability. This study was used EGG recordings from 18 patients,
provided insights into optimizing preictal periods for more precise
classification models. This study contributed to the important area of
seizure prediction, which has implications for early intervention and
improved patient care.

Mert and Akan (3) introduced novel EEG analysis methodologies
that achieved accuracy rates as high as 97.89%, demonstrating the
potential of innovative signal-processing techniques in seizure
detection. While the specific details of their approach were not
provided in the summary, the high accuracy achieved suggests that
there is still room for improvement in EEG signal analysis techniques.

Brari and Belghith (17) developed a machine learning framework
leveraging chaos and fractal theories. Their approach, which included
reconstructing EEG signals and extracting the Hurst fractal
dimensions, achieved 100% accuracy on the Bonn EEG database using
a small number of features and a linear classifier. This study highlighted
the potential of applying concepts from complex systems theory to
EEG analysis, offering a novel perspective on seizure detection.

Shah et al. (18) combined RNNs with a discrete wavelet transform
for seizure detection. This hybrid approach demonstrated the benefits
of combining wavelet-based feature extraction with the modeling
capabilities of random neural networks.

Kantipudi et al. (19) presented an advanced complex Neural
Network. This complex approach achieved an overall detection
performance of 99.6% with a high F-measure (99%) and G-mean
(98.9%). The study showed the potential of combining multiple
advanced techniques, including bio-inspired optimization and
specialized neural network architectures.

Ein Shoka et al. (20) introduced CNN model to classify EEG data
using chaotic maps for addressing the crucial aspect of data privacy in
medical applications while maintaining high classification
performance. This study addressed the important issue of privacy
preservation in medical data analysis, which is becoming increasingly
relevant in the era of big data and interconnected healthcare systems.

Zeng et al. (21) applied a method that integrates deep and shallow
learning techniques. The combined approach used a deep neural
network for feature extraction, followed by PCA for dimensionality
reduction and shallow classifiers for final classification, achieving
nearly 100% accuracy on the Bonn dataset. This hybrid approach
leveraged the strengths of both deep and traditional machine learning
methods, demonstrating the potential benefits of such integrations.

These hybrid and novel approaches demonstrate the potential for
significant improvements in seizure detection by combining different
techniques or introducing innovative concepts. They often address
specific challenges in the field, such as privacy preservation,
computational efficiency, or the need for more interpretable models.

2.4 Comparative studies and reviews

Several studies have focused on comparing different methods or
providing comprehensive reviews of the field, offering valuable
insights into the relative performance of various approaches and
highlighting areas for future research.

Bhandari et al. (22) introduced a comparative study in which
seven raters reviewed EEG sharp. Their results showed that certain
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criteria in sensor space and source space analysis could achieve
accuracy rates comparable to expert scoring, providing insights into
the effectiveness of different EEG analysis methods. Singh and Kaur
(23) designed a neural network classifiers and nonlinear EEG features,
demonstrating high accuracy and AUC. Their study provided a
comparison point for the effectiveness of nonlinear feature extraction
in seizure detection and highlighted the importance of feature
engineering in machine learning approaches.

Polat and Nour (24) proposed a hybrid method for seizure
detection and classification and compared different SVM kernels and
normalization techniques. Their study, which achieved accuracies of
76.70%-82.50%, showed the effects of preprocessing and classifier
selection on detection performance. This study underscored the
importance of careful parameter tuning and preprocessing in
achieving optimal performance with traditional machine
learning methods.

Farooq et al. (25) conducted a systematic literature review of ML
techniques for seizure detection. Their review identified common
feature extraction methods and classifiers, created a taxonomy of
state-of-the-art solutions, and highlighted research gaps and
challenges. This comprehensive review provided a valuable overview
of the field, insights into trends, and directions for future research.

Hamlin et al. (26) explored the use of non-cerebral sensor data for
seizure detection and compared the effectiveness of different sensor
types and features. Their study, which achieved a mean ROC value of
0.9682, suggested the potential of multimodal approaches in
improving seizure detection accuracy. This study opened up new
possibilities for seizure detection by incorporating data from sensors
beyond traditional EEG, potentially leading to more robust and
versatile detection systems.

These comparative studies and reviews provide valuable insights
into the relative performance of different methods and highlight areas
for future research. They offer a broader perspective on the field and
help researchers and practitioners understand the strengths and
limitations of various approaches.

2.5 EEG datasets review

Epilepsy research and seizure detection have greatly benefited
from the availability of diverse and comprehensive EEG datasets. This
section provides review all type of datasets utilized in recent studies
on epilepsy classification and seizure detection. These datasets vary in
size, patient population, and recording methods.

2.5.1 CHB-MIT dataset

The CHB-MIT dataset has been widely used in several studies for
seizure detection and classification. Fergus et al. (6) employed this
dataset in their supervised machine learning approach, achieving 88%
sensitivity and specificity. Raghu et al. (7) utilized SVM classifiers on
this dataset, resulting in 97.28% sensitivity and a false detection rate
of 0.57/h. Zhao et al. (11) implemented a Linear Graph Convolution
Network (LGCN) on the CHB-MIT data, achieving impressive results
with 99.30% accuracy, 98.82% specificity, and 99.43% sensitivity. Shah
et al. (18) combined Random Neural Networks (RNN) with Discrete
Wavelet Transform (DWT) on this dataset, achieving 93.27% accuracy.
Sun and Chen (14) also used this dataset in their 3D-CNN approach,
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reporting high accuracy, although the specific value was not provided
in the summary.

2.5.2 Bonn University dataset

The Bonn University dataset has been the foundation for several
innovative approaches in seizure detection. Rani and Chellam (8)
achieved a remarkable 99.60% accuracy using their Peak Signal
Features (PSF) method combined with an SVM classifier on this
dataset. Brari and Belghith (17) applied concepts from chaos and
fractal theories to the Bonn dataset, achieving 100% accuracy. (18), in
addition to their work on the CHB-MIT dataset, also used the Bonn
dataset, achieving an even higher accuracy of 99.84% with their RNN
and DWT combination. Zeng et al. (21) employed a hybrid approach
combining deep and shallow learning techniques on this dataset,
reporting nearly 100% accuracy.

2.5.3 Temple University Hospital (TUH) dataset

The TUH dataset has been utilized in studies employing various
ML and DL techniques. Liu et al. (10) achieved a 97.4% F1-score on
this dataset using their hybrid bilinear DL network. Raghu et al. (7),
as part of their multi-dataset study, applied SVM classifiers to the
TUH data, achieving 95.80% sensitivity and a false detection rate of
0.49/h. Sun and Chen (14) included the TUH dataset in their 3D-CNN
study, reporting high accuracy, although the specific value for this
dataset was not provided in the summary.

2.5.4 EPILEPSIAE dataset

The EPILEPSIAE dataset was used by Liu et al. (10) in their
comprehensive study employing a hybrid bilinear deep learning
network. On this dataset, their approach achieved a 97.2% F1-score,
their method

demonstrating the effectiveness of

different datasets.

across

2.5.5 UCl-epileptic seizure recognition dataset
Kunekar et al. (15) utilized the UCI-Epileptic Seizure Recognition
dataset in their study focusing on LSTM networks for seizure
detection. Their approach achieved a validation accuracy of 97% on
this dataset, highlighting the potential of recurrent neural networks in
capturing the temporal dynamics of EEG signals for seizure detection.

2.5.6 REPO2MSE dataset

GabefT et al. (12) used the REPO2MSE dataset, which consists of
scalp-EEG recordings from 568 epilepsy patients, to develop their
CNN-based model for online epileptic seizure detection. Table 1 given
highlight the importance of standardized, publicly available datasets
in advancing seizure detection research.

2.6 Conclusion of the EEG section review

The reviewed studies demonstrate significant progress in seizure
classification and detection based on EEG signals. Traditional machine
learning approaches continue to show effectiveness, particularly when
combined with innovative feature extraction methods. The studies of
Fergus et al. (6), Raghu et al. (7), and Rani and Chellam (8) show the
potential of these methods when applied with careful feature
engineering and selection.
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TABLE 1 Summary of EEG datasets.

Studies Dataset

Fergus et al. (6), Raghu et al. (7), Zhao et al. CHB-MIT

(11), Sun and Chen (14), and Shah et al. (18)

Scalp EEG data from 23 pediatric subjects with intractable seizures, recorded at the Children’s
Hospital Boston. Contains 686 h of EEG recordings.

10.3389/fmed.2025.1577474

Description

Rani et al. (8), Brari and Belghith (17), Shah
etal. (18), and Zeng et al. (21)

Bonn University

Consists of 5 subsets (Z, O, N, F, S) each containing 100 single-channel EEG segments of 23.6-s
duration. Sets Z and O are from healthy subjects, N and F from seizure-free intervals, and S

contains seizure activity.

Raghu et al. (7), Liu et al. (10), and Sun and
Chen (14)

Temple University
Hospital (TUH)

Large-scale dataset of clinical EEG recordings from Temple University Hospital. Contains over

30,000 EEG records from more than 16,000 patients.

Liu et al. (10) EPILEPSIAE

European database of long-term EEG data from epilepsy patients. Contains both scalp and

intracranial EEG recordings.

Kunekar et al. (15) UCI-Epileptic Seizure

Recognition

Dataset from UCI Machine Learning Repository, containing 11,500 EEG recordings, each 1 s

long, classified into 5 categories.

Gabeffetal. (12) REPO2MSE

summary.

Cohort of scalp-EEG recordings from 568 epilepsy patients. Specific details not provided in the

Deep learning techniques, especially CNNs and LSTMs, have
demonstrated remarkable performance in automatically learning
relevant features from raw EEG data. Liu et al. (10), Zhao et al. (11),
and Sun and Chen (14) revealed the power of these approaches in
capturing complex spatial and temporal patterns in EEG signals. The
high accuracies achieved by these methods across various datasets
suggest that they are becoming increasingly reliable for seizure
detection tasks.

Hybrid and novel approaches, such as those leveraging Brari and
Belghith’s chaos theory (17), fractal dimensions, and Zhao et al. (11)
graph neural networks have shown promise in improving detection
accuracy and addressing specific challenges in the field. These
innovative methods often combine the strengths of different
approaches or introduce new concepts from other domains, pushing
the boundaries of what is possible in seizure detection.

The integration of multiple data sources and sensor types, as seen
in Hamlin et al’s study (26), suggests promising directions for more
robust seizure detection systems. This multimodal approach could
lead to detection systems that are less prone to false positives and more
adaptable to different patient populations.

Comparative studies and reviews, such as those by Kural et al.
(22) and Farooq et al. (25), provide valuable insights into the
relative performance of different methods and highlight areas for
future research. These studies help contextualize individual
research efforts within the broader landscape of seizure
detection techniques.

However, challenges remain in terms of generalizability across
different datasets and patient populations, as well as in reducing false-
positive rates and detection delays. The need for larger, more diverse
datasets and standardized evaluation metrics is evident from the
literature. Many studies use different datasets and evaluation metrics,
making direct comparisons challenging. Table 2 reviews studies on
EEG-based seizure detection by summarizing the methodologies,
technologies, and results of various research efforts and focusing on
the
detecting seizures.

effectiveness and accuracy of EEG applications in

Figure 1 illustrates a summary of the EEG classification results. It
provides a visual representation of how different EEG signals have
been classified and shows the accuracy and performance of the

classification model. It presents the various metrics and comparisons,
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helping to understand the effectiveness of the approach used to
distinguish between different brain wave patterns.

3 Methodology

The proposed system is being investigated using a real EGG
dataset. Various algorithms were employed to enhance the existing
methods for modeling and detecting seizure diseases. This research
presents a detailed overview of the training and validation
methodologies employed for the RE, GB, LSTM, and LRCN models.
The outlined method structures the approach employed to identify
seizures through EEG data, as illustrated in Figure 2.

3.1 EEG dataset acquisition

EEG data were collected from a group of patients who had
continuous video-EEG monitoring for an extended duration at two
medical institutions in Denmark: Aarhus University Hospital and the
Danish Epilepsy Center in Dianalund (22). The data collection period
was from January 2012 to September 2017. During the diagnostic
evaluation phase, sharp transients were initially identified and marked.
Subsequently, two authors conducted a comprehensive review of these
marked transients. Through collaborative analysis, a consensus was
established among the experts, confirming the initial marking as a
sharp transient, regardless of its manifestation of epileptiform
characteristics. This selected sharp transient was then subjected to
further evaluation to ensure compliance with the predetermined
selection criterion. In the dataset, there were 100 files in the European
Data Format (EDF), comprising data from 55 epileptic patients and
47 non-epileptic patients of different ages and genders. On December
18, 2017, the dataset that was used for this research was recorded. A
sample rate of 500 Hz was used to get the EEG data, since this is the
industry standard for collecting the important frequency content in
EEG signals. The raw data was further processed using a 250 Hz
low-pass filter. The EEG recording system employed in this study
comprised 26 channels, enabling the simultaneous measurement of
brain activity from multiple scalp locations. Table 3 outlines the EEG
dataset content and features, such as the number of patients and class.
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TABLE 2 A review of studies of EEG-based seizure detection.

Study

Liu et al. (10)

Data

Temple University,

EPILEPSIAE dataset

Preprocessing

exploit the frequency (STFT), analysis
data

Models/Algorithms

Hybrid bilinear deep learning
network (CNNs + RNNs)

10.3389/fmed.2025.1577474

Results

F1-score: 97.4%

Fergus et al. (6)

CHB-MIT dataset

Simple, filter, features extraction

k-NN, SVM, NN, DT

Sensitivity 88%, AUC: 93%

Mert and Akan (3)

Various EEG recordings

Digitalize, filter, Normalize frequency

Novel EEG analysis methods

Accuracy: 97.89%

Raghu et al. (7)

Ramaiah Medical College,
CHB-MIT

Feature extraction (SDI)

SVM

Sensitivity: 97.53%

Bhandari et al. (22)

1,001 patients (video-EEG)
EMG Data

Record, sample and filter the data

Analysis of EEG sharp transients

92% Accuracy

Zhaoetal. (11)

CHB-MIT dataset

Pearson correlation matrix

Linear Graph Convolution

Accuracy: 99.30%, Sensitivity:

Network (LGCN) 99.43%
Rani et al. (8) Bonn University dataset Peak Signal Features (PSF) SVM, DT, KNN Accuracy up to 99.60% with SVM
Aayesha et al. (28) Bonn and CHB-MIT datasets = Feature extraction KNN, FRNN Accuracy: up to 99.81%
Gabeffetal. (12) REPO2MSE cohort Simple, segment and split the data CNN Fl-score: 0.873, 90% seizure

detection

Brari and Belghith(17) Bonn EEG database EEG signal reconstruction Chaos and fractal theories Accuracy: 100%
Chouetal. (13) Video-EEG data Not specified Four CNN architectures 97.7% accuracy for ictal stage
Shah et al. (18) CHB-MIT, BONN datasets DWT RNN, ANN, SVM CHB-MIT: 93.27%, BONN:

99.84%

Polat and Nour (24) Not specified Z-score, Minimum-Maximum, MAD SVM (Linear, Cubic, Medium 76.70-82.50%
normalizations Gaussian)
Kantipudi et al. (19) Not specified FLHF GBSO, TAENN 99.6%, F-measure: 99%, G-mean:
98.9%

Almustafa (9) Not specified Not specified Random Forest, K-NN, Naive 97% accuracy,
Bayes, Logistic Regression, DT,
Random Tree, 48, SGD

Kunekar et al. (15) UCI-Epileptic Seizure Not specified LSTM, Logistic Regression, SVM, | 97% Accuracy

Recognition dataset KNN, ANN
Hamlin et al. (26) Data from 15 patients LDA Not specified Mean ROC: %96.8
Zengetal. (21) Bonn dataset PCA CNN, shallow classifiers ~100% Accuracy

George et al. (29)

KITS, TUH databases

TQWT, entropies

PSO, ANN

KITS: 100%, TUH: 88.8-97.4%

Accuracy
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80
60
40
20

FIGURE 1

EEG Classification Results

NG > NG N

T AT T

8 @

N N - N . . . . . ) o

v <2 N N VA I VC AN VAN U VCAN VCANY » x® NG

N &e @Q’(\. ‘(\Qz @\0 ,boe Qib(\\ \(\,be & o & o\)@ ’SQQ, o\,sg, ;&\Q\)b \&\\p @3&
& ) N W S o S o N Q S S

¢ T E T TG Ve e

EEG classification result.

Frontiers in Medicine

26

frontiersin.org



https://doi.org/10.3389/fmed.2025.1577474
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Al-Adhaileh et al.

10.3389/fmed.2025.1577474

Converting

N

Labeling

VAl g i

#

-

1]

SMOTE

—

Theta

Bzl

Beta

i

Splitting

EEG Input Data

Data
Preprocessing

Spectral
Entro

il

Feature Extraction

Random

Forest

k-Nearest Accuracy | —

Neighbors Recall orma

—»  Gradient | >

LSTM Model & (¢4 score/ M

LRCN Model i
esults

Calssification Evaluation

J

FIGURE 2

Proposed methodology for EEG data classification and seizure detection.

3.2 Preprocessing

In the data preprocessing phase, the raw EEG data undergo
filtering to extract the relevant frequency bands of interest. Specifically,
the following frequency bands are extracted: alpha (8-12 Hz), beta
(13-30 Hz), theta (4-7 Hz), and gamma (above 30 Hz). These
frequency bands are commonly analyzed in EEG studies because of
their associations with various cognitive and physiological processes.
It is crucial to preprocess the EEG data appropriately to ensure the
reliability and validity of subsequent analyses (27). The filtering step
is essential for isolating the frequency bands of interest and
minimizing the influence of irrelevant signal components or noise.
The extraction of these specific frequency bands facilitates the
investigation of their potential correlations with the cognitive or
physiological processes under study, as shown in Figure 3.

3.2.1 Data labeling

In this process, we labelled all of the EEG recordings in the dataset
according to the patient’s status. We used the numbers “1” to denote
normal EEG data and the number “0” to denote seizures. While
training, the classification algorithm benefits from this labeling as it
allows it to differentiate between the two groups.

3.2.2 Data normalization

The EEG characteristics were on the same scale, we normalized
the data. If you want to make sure that the learning process is not
overloaded with features with out-of-range values, normalization is a
must. Z-score normalization method was used for scaling the rows of
EGG dataset.

3.2.3 Data cleaning

Initial data cleaning was performed to address any missing values
within the features. The mean imputation technique was utilized, where
missing values in any given feature were replaced with the mean value of
that feature. This method was implemented using the SimpleImputer
class from the sklearn.impute module, configured with strategy = ‘mean’
The transformation was applied to all feature columns, excluding the
‘label’ column, which represents the target variable.
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TABLE 3 EEG dataset content.

Class Number of patients
Normal 55 ‘
Seizure 47 ‘

3.2.4 Data balancing using SMOTE

SMOTE technique used to address class imbalances in datasets.
One step in processing SMOTE data is to use synthetic samples for
the minority class. This ensures that the distribution of classes is
balanced. The algorithm works by identifying the KNN for each
minority class sample and creating new synthetic samples along
the line segments that join the minority class sample and its
neighbors. The synthetic samples are generated by randomly
selecting one of the KNN and introducing a perturbation along the
line segment joining the two samples. This approach was
implemented using the SMOTE class from the imblearn. over_
sampling library with a random_state set for the reproducibility of
results. The resampling process adjusted the dataset to ensure an
equal representation of both classes, mitigating the potential effect
of class imbalance on the subsequent analysis and modeling steps.
Figure 4 illustrates the distribution of EEG data before and after
applying SMOTE.

3.2.5 Data splitting

Two subsets, training and testing, were taken from the dataset.
A data allocation of 80% for training and 20% for testing the machine
learning model is known as an 80/20 split. By splitting the data in
this way, we can train the model on one set of data and then evaluate
it on another set, which stops overfitting and lets the
model generalize.

3.2.6 Heatmap of amplitude differences

The profound complexities underlying epileptic seizures
necessitate a multifaceted approach to elucidate their intricate
mechanisms. The study presents a comprehensive spatiotemporal
analysis of EEG data, leveraging the visual potency of heat maps to

frontiersin.org


https://doi.org/10.3389/fmed.2025.1577474
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Al-Adhaileh et al.

10.3389/fmed.2025.1577474

. Data
o a ;1. Data Data Balancin,
a a' Normalizat Cleaning Splitting i ’
Analysis ion NOT
SMOTE

FIGURE 3
EEG data preprocessing steps.

- O O O
= = = w

Class Distribution Before SMOTE
400000

350000 A

300000 4

250000

200000 -

Number of Samples

150000 -

100000 -

50000 A

Normal

T
Seizure
Class

FIGURE 4
EEG data distribution before and after applying SMOTE.
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delineate amplitude variations across cortical regions. By comparing
seizure and non-seizure conditions, the proposed methodology
quantifies the dynamic shifts in neural activity, transitioning
seamlessly from negative to positive amplitude deviations through
a “coolwarm” color palette. This graphical representation not only
facilitates the localization of epileptogenic foci but also elucidates
the propagation patterns of seizure activity, thereby contributing to
a holistic understanding of the pathophysiological processes
underlying this neurological disorder. As shown in Figure 5, the
knowledge acquired from this study has great consequences for the
formulation of focused treatment strategies and the progress of our
understanding of the complex neural dynamics controlling
seizure events.

3.2.7 Spectral analysis

This study used Fourier spectral analysis of EEG data to elucidate the
frequency domain signatures that differentiate seizure and non-seizure
neural dynamics in epilepsy. The spectral power distributions derived
from these analyses revealed pronounced amplitudes across specific
frequency bands during seizure activity, which is indicative of heightened
neuronal synchronization. By contrast, the non-seizure condition
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exhibited reduced spectral power, reflecting normal neural oscillations.
By characterizing these distinct frequency profiles, this work sheds light
on the neurophysiological underpinnings of epileptic seizures and
pathological hypersynchrony and paves the way for improved therapeutic
interventions, as shown in Fi gure 6.

3.3 Feature extraction

This study analyzed the power spectral density (PSD) levels across
different frequency bands to investigate the differences in neural activity
between epileptic and non-epileptic patients. The epileptic patient
exhibited distinct PSD levels compared with the non-epileptic patient,
suggesting variations in their underlying neural activity patterns. The
frequencies at which the difference in PSD between the two patients was
statistically significant (p < 0.05) were identified, indicating that the
observed differences in brain activity were unlikely due to chance.
Significant differences at certain frequencies, such as increased power in
the theta and gamma bands, could reveal specific brain activity patterns
associated with epilepsy, including the presence of epileptic networks
outside of seizure events. These findings contribute to a better
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FIGURE 5
Heat map of amplitude differences.

understanding of the neurophysiological underpinnings of epilepsy and
hold promise for improving diagnostic and monitoring techniques and
for guiding more targeted interventions for the management of epilepsy,
as shown in Figure 7.

In this section, several features were extracted from the EEG
signals to enable the classification of epileptic and non-epileptic
patients. These features capture different aspects of neural activity and
provide valuable information for distinguishing between the two
groups. The extracted features are as follows:

o Delta
Usually covering 0.5 to 4 Hz, this function shows the PSD in the
delta frequency region. Deep sleep phases are linked to delta waves,
which are also well-known to be involved in many cognitive functions
like memory and attention.
o Theta
The theta feature corresponds to the PSD in the theta frequency

band, which ranges from 4 to 8 Hz. Theta oscillations are linked to
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cognitive processes such as memory formation, spatial navigation, and
emotional regulation.

3 Alpha
The alpha feature is derived from the PSD in the alpha frequency
band, typically between 8 and 12 Hz. Alpha waves are prominent
during relaxed wakefulness and are believed to play a role in attention
and information processing.

e Beta

This feature represents the PSD in the beta frequency band,
ranging from 13 to 30 Hz.

o Gamma
The gamma feature corresponds to the PSD in the gamma
frequency band, which encompasses frequencies above 30 Hz.

Gamma oscillations are involved in various cognitive functions,
including perception, attention, and memory.
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FIGURE 6
Spectral analysis of EEG signals of seizure and non-seizure cases.
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o Spectral entropy

A estimate of the complexity or irregularity of the EEG signal,
spectral entropy It may help to identify aberrant patterns of brain
activity by providing details on the distribution of power across many
frequency ranges.

The power spectral density (PSD) of gamma band (30 + Hz)
emerged as the most discriminative feature, showing statistically
significant amplitude increases during seizures (p < 0.05, Figure 7).
This aligns with neurophysiological evidence linking high-frequency
oscillations to epileptic hyperexcitability. The theta band (4-8 Hz) also
demonstrated utility, though with marginally lower significance.
Other bands (delta, alpha, and beta) contributed minimally, as their
PSD distributions overlapped between seizure and non-seizure states.

Spectral entropy, quantifying signal irregularity, effectively
captured abrupt changes in EEG complexity during seizures. It
achieved a feature importance score of 0.180.18 in the Random Forest
(RF) model, complementing gamma band analysis to reduce false
positives caused by non-stationary noise.

Commonly utilized in EEG analysis, these characteristics have
been shown to be useful in distinguishing and defining many brain
states and disorders, including epilepsy. Table 4 summarizes the
they will be input for

obtained characteristics;

categorization techniques.

3.4 Modeling

In the classification stage, the EEG data was analyzed using four
models: RE, GB, KNN, LSTM, and LRCN. The RF constructs multiple
decision trees and uses majority voting for classification, well-suited
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for high-dimensional, nonlinear data like EEG signals. Gradient
Boosting iteratively combines weak models to capture complex
patterns. LSTM, a recurrent neural network variant, can learn long-
term dependencies in sequential data such as EEG for identifying
seizure patterns. LRCN combines convolutional layers for spatial
feature extraction with LSTM for temporal modeling, making it
effective for seizure detection and classification from EEG recordings.
The specific architectures of these diverse machine learning and deep
learning models were previously detailed, Table 5 lists EEG
classification models. Justifications for each model in the context of
EMG data classification between normal and seizure cases:

3.4.1 Random Forest model

Random Forest Classifier excels in handling complex EMG data
due to its ensemble nature. Combining many decision trees, each
tuned on random selections of data and attributes, helps to detect
complex trends in muscle activity signals. This approach is particularly
effective for seizure detection, as it can identify subtle differences in
EMG characteristics. The model’s feature importance ranking also
provides insights into which aspects of the EMG signal are most
in both classification and

predictive of seizures, aiding

physiological understanding.

3.4.2 Gradient boost model

Gradient Boosting is well-suited for EMG classification due to its
sequential learning process. Approaches the building of a series of
weak learners, generally decision trees, in a stage-by-stage manner,
with the main aim of fixing errors generated by previous models. This
approach allows it to capture fine-grained differences in EMG patterns
between normal and seizure states. Gradient Boosting’s ability to
handle non-linear relationships and its robustness to outliers make it
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PSD for the alpha, beta, theta, and gamma bands between epileptic and non-epileptic patients.

TABLE 4 EEG extracted features summary.

TABLE 5 EEG classification models.

Delta PSD in the delta frequency band (0.5-4 Hz) 1 Random Forest Model
Theta PSD in the theta frequency band (4-8 Hz) 2 Gradient Boost Model
Alpha PSD in the alpha frequency band (8-12 Hz) 3 K-Nearest Neighbors Model
Beta PSD in the beta frequency band (13-30 Hz) 4 LSTM Model

Gamma PSD in the gamma frequency band (above 30 Hz) 5 LRCN Model

Spectral entropy Measure of the complexity or irregularity of the EEG signal

effective in dealing with the variability often present in EMG data
during seizures.

3.4.3 K-nearest neighbors model

The K-Nearest Neighbors model is valuable for EMG classification
due to its non-parametric nature. It does not assume any specific
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distribution of the data, making it adaptable to the complex and often
non-linear patterns in EMG signals during seizures. By classifying
based on the majority class of nearby data points in the feature space,
KNN can effectively capture local patterns in muscle activity. This
local decision-making is particularly useful for identifying seizure-
related EMG characteristics that may vary across patients or types
of seizures.
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3.4.4 LSTM model

Long Short-Term Memory networks can process sequential data
and record long-term dependencies, they are especially appropriate
for EMG data interpretation. EMG signals during seizures often
exhibit temporal patterns that evolve over time. LSTM’s gating
mechanism allows it to selectively remember or forget information,
making it adept at identifying relevant temporal features in the EMG
signal that distinguish seizure activity from normal muscle function.
This temporal modeling capability is crucial for detecting the onset
and progression of seizures in EMG data.

3.4.5 LRCN model

The LRCN combines the strengths of both CNNs and LSTMs,
making it highly effective for EMG-based seizure detection. The CNN
component excels at extracting spatial features from the EMG signal,
potentially identifying characteristic frequency patterns or signal
morphologies associated with seizures. The LSTM layer then processes
these features sequentially, capturing the temporal evolution of muscle
activity during seizure events. This dual approach allows LRCN to
simultaneously analyze both the spatial and temporal aspects of EMG
data, potentially leading to more accurate and robust seizure detection.

4 Results and discussion

In this subsection, we explore the performance of EEG
classification for seizure detection using four models: GB, RE, K-NN,
LSTM, and LRCN. The objective was to assess and compare their
effectiveness in identifying seizures from EEG data. The results are
detailed in the accompanying tables and figures, which present the
potential of these models in advancing neurological diagnostics.
Table 5 outlines the EEG classification models.

4.1 Evaluation matrix

The ML and DL model were evaluated by using evaluation
matrix. The Equations 1-5 of evaluation metrics can be defined

as follows:

TP+TN

Accuracy =————————x (1)
FP+FN +TP+TN
. True Positives
Sensitivity (2)
True Positives + False positives
TP

Recall=——— 3)

TP +FN
F1=score =2 precision x Sensitivity £100 ()

precision + Sensitivity
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4.2 Environment setup

All experiments were conducted on a laptop with the following
specifications: Intel Core i7 processor, 16GB RAM, and an NVIDIA
GeForce RTX 3070 GPU with 8GB VRAM. The software environment
consisted of Python 3.9 running within Anaconda, with TensorFlow
version 10.1.2 employed for deep learning tasks.

4.3 Results of the GB model

This work classified epileptic and non-epileptic patients using
Gradient Boosting (GB) model depending on EEG features. With an
accuracy of 0.750, a precision of 0.756, a recall of 0.743, an F1 score of
0.749, and a ROC AUC score of 0.835 the model was able to
differentiate between the two groups. With 51,964 true negatives,
51,636 true positives, 16,701 false positives, and 17,850 false negatives,
the confusion matrix as shown in Figure 8 further exposed the
performance of the model. These findings show how well the model
detects trends in EEG data; although there is potential for development
in lowering misclassifications, especially in terms of false positives and
false negatives, overall the model performs really well.

These results demonstrate the potential of the GB model in
accurately classifying epileptic and non-epileptic patients while also
highlighting areas for further improvement through feature
engineering, hyperparameter tuning, or ensemble methods, as shown
in Figure 9.

4.4 Results of the RF model

As shown in Figure 10, the RF model was used with EEG traits to
divide people into epileptic and non-epileptic groups. With an
accuracy of 0.999, a precision of 1.000, a recall of 0.998, an F1 score of
0.991, and an ROC score of 1.000, the RF model showed
extraordinary performance.

The confusion matrix revealed 68,631 true negatives, 69,358 true
positives, 34 false positives, and 128 false negatives. These exceptional
results demonstrate the efficacy of the RF model in accurately
classifying epileptic and non-epileptic patients based on the extracted
EEG features, although further validation on independent datasets
may be necessary to ensure generalizability, as shown in Figure 11.

4.5 Results of the K-NN

Normal from epileptic EEG data were distinguished using a
K-NN classifier. Assigning the class of a data point depending on
the majority class of its “K” closest neighbors in the feature space,
K-NN is a basic, non-parametric classification method. This work
selected K-NN with (k = 5), therefore classifying every EEG sample
according on the majority vote of its five closest neighbors in the
feature space.
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Confusion matrix of EEG data using the GB model.
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The confusion matrix revealed that, out of the total predictions,
65,924 were true negatives and 67,084 were true positives, indicating
that the majority of the normal and seizure cases were correctly
identified. However, there were also 2,879 false positives and 2,264
false negatives, as shown in Figure 12.

The KNN model was shown scored with high accuracy (96.3%)
indicates that the model correctly classified a substantial majority of
the EEG signals. According the precision metric the KNN achieved
95.9% suggests that the model has a low rate of false positives, while
recall of 96.7% indicates a low rate of false negatives. The ROC score
0f 99.02% further validates the model’s excellent ability to distinguish
between normal and seizure cases, as illustrated in Figure 13.
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These results show that although the model is highly accurate,
there are still instances of misclassification, which is an area for
potential improvement.

4.6 Results of the LSTM model

In this experiment, classified epileptic and non-epileptic
patients based on EEG signal characteristics using an LSTM
neural network model. The LSTM model turned out with a
0.9906 accuracy. Table 6 gives the LSTM model’s parameters. As
shown in Figure 14 the confusion matrix indicated 68,190 true
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ROC AUC score of EEG data using the RF model.

positives, 613 erroneous positives, 68,669 true negatives, and 679
false negatives.

Using collected EEG data, the LSTM model showed remarkable
accuracy of 99.06%, a precision of 99.12%, a recall of 99.02% and an
F1 score of 99.07% for both epileptic and non-epileptic individuals.
These findings demonstrate the great capacity of the model for
precisely differentiating between the two classes, therefore stressing its
possible uses in EEG-based diagnosis systems. Nevertheless, as
Figure 15 shows, the LSTM was optimized and testing across EEG
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datasets and was shown the improvement in the generalizability of the
model and guarantee its resilience in practical conditions.

4.7 Results of the LRCN model

Based on the features of the EEG data, this work categorized
people as either epileptic or non-epileptic using an LRCN model. The
LRCN model’s findings show that the accuracy was 0.9906; the
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ROC AUC score of EEG data using the K-NN model.

precision was 0.9912; the recall was 0.9902; the F1 score was 0.9907.
LRCN model characteristics and values (see Table 7).

Strong performance in categorizing seizure and non-seizure
episodes from EEG data reveals in the confusion matrix for the
LRCN model. The model fairly identifies most instances with
68,678 TP and 69,187 TN. Whereas (FP = 161) reveal minor
misclassification of non-seizure events, false negatives (FN = 125)
indicate a limited proportion of missed seizures. With low error,
the high TP and TN values indicate outstanding sensitivity and
accuracy, so the model is very dependable for monitoring epilepsy
(see Figure 16).

These results demonstrate the potential of the LRCN model in
accurately classifying epileptic and non-epileptic patients based on the
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extracted EEG features, although further optimization and
generalizability testing may be required, as shown in Figure 17.

4.8 Summary of the experimental results of
the EEG classification

With almost perfect accuracy, precision, recall, and F1 score, the RF
model exceeded the other models based on the testing findings in
Section 4.3. Closely matching the RF model, the deep learning models,
LSTM and LRCN, also showed outstanding performance with using
various evaluation metrics. Though it performed really well, the GB
model had somewhat worse measures than the other versions. With
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regard to reliably categorizing epileptic and non-epileptic patients based
on EEG signal characteristics, the RE, LSTM, and LRCN models shown
overall better performance; the RF model ranked highest in this regard
in this research. Table 8 and Figure 18 help to show the outcomes.

4.9 EEG monitoring for detecting seizure
behavior comparative

With a variety of techniques producing encouraging results, the
subject of seizure detection and classification based on EEG data has
experienced major developments recently. This review of 23 studies,
along with our own research, highlights the diversity of techniques
being applied to this critical medical challenge.

TABLE 6 LSTM model parameters using EEG data.

10.3389/fmed.2025.1577474

Traditional machine learning approaches continue to demonstrate
their effectiveness, particularly when combined with innovative
feature extraction methods. For instance, Rani and Chellam (8)
achieved 99.60% accuracy using their Peak Signal Features method
with an SVM classifier on the Bonn University dataset. Similarly,
Almustafa (9) achieved 97.08% accuracy using a Random Forest
classifier. These results underscore the continued relevance of classical
machine learning techniques when applied with careful
feature engineering.

Deep learning methods have shown remarkable performance in
automatically learning relevant features from raw EEG data. Liu et al.
(10) achieved a 97.4% F1-score using a hybrid bilinear deep learning
network on the Temple University Hospital dataset, while Zhao et al.
(11) reached 99.30% accuracy with a Linear Graph Convolution
Network on the CHB-MIT dataset. These results demonstrate the
power of deep learning in capturing complex patterns in EEG signals
without the need for extensive feature engineering.

Hybrid and novel approaches have also yielded impressive results.
Brari and Belghith (17) achieved 100% accuracy on the Bonn
University dataset using a framework leveraging chaos and fractal
theories. Kantipudi et al. (19) reported 99.6% detection performance
with their complex model integrating wavelet-based filtering,
bio-inspired optimization, and a specialized neural network. These
innovative approaches show the potential for pushing the boundaries
of seizure detection performance.

Our study, which achieved 99.9% accuracy using a Random Forest
Classifier on a standard online dataset, aligns with and even surpasses
many of the high-performing methods in the literature. This result
underscores the potential of ensemble methods like Random Forest
when applied to well-preprocessed EEG data.

The variability in datasets used across studies presents a challenge
in directly comparing results. While some datasets like CHB-MIT and
Bonn University are frequently used, allowing for some comparison,
differences in preprocessing, feature extraction, and evaluation
metrics can still make direct comparisons difficult. This highlights the
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TABLE 7 LRCN model parameters using EEG data.

Parameter Details

ConvD1 filters = 64, kernel = 3, activation = ‘relu’
Custom Layer Max Pooling
LSTM Lyer 1,024

LSTM Layer 512

LSTM 128

Dense Lyer 1

Activation Function (Output Layer) sigmoid
Optimizer RMSprop
Learning Rate 0.001
Callback EarlyStopping
Patience for No Improvement 5 epochs
(EarlyStopping)

Epoch Training Stopped At 69 epochs
Maximum Epochs 150 epochs
Batch Size 128

need for standardized benchmarks and evaluation protocols in

the field.

It's noteworthy that while many studies report very high accuracies

(>99%), real-world performance may differ due to factors such as

Frontiers in Medicine

inter-patient variability, noise in clinical settings, and the challenge of
detecting seizure onset rather than ongoing seizure activity. Future
research should focus on validating these high-performing models in
diverse clinical settings and on larger patient populations.

The trend towards multimodal approaches, as seen in Hamlin
etal. (26), and privacy-preserving methods, as in Ein Shoka et al. (20),
points to future directions for the field. Integrating data from multiple
sensor types and ensuring patient privacy will be crucial for the
widespread adoption of automated seizure detection systems in
clinical practice.

While the study demonstrates high accuracy (99.9%) in seizure
detection, translating these models to wearable devices faces critical
hurdles. Computational efficiency demands significant processing
power, conflicting with the resource constraints of wearables. Real-
time implementation requires low-latency pipelines, necessitating
streamlined preprocessing and hardware-accelerated signal
processing. Power consumption, patient-specific variability, and
ambulatory noise (e.g., motion artifacts) further complicate reliability.
Regulatory compliance, cost barriers, and the need for fail-safe
mechanisms to minimize false alarms add layers of complexity.
Addressing these challenges hinges on hardware sensor systems to
balance accuracy with practicality for clinical adoption.

In conclusion, while significant progress has been made in seizure
detection and classification, with our study contributing to the high-
performance benchmarks, there remains room for improvement in
areas such as real-time detection, generalizability across patients, and
interpretability of complex models. Future work should focus on these
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TABLE 8 EEG classification results summary.

10.3389/fmed.2025.1577474

Model Accuracy % Precision % Recall % F1 score %
GB 75.0 75.6 74.3 74.9
KNN 96.3 95.9 96.7 96.3
REC 99.8 99.9 99.8 99.8
LSTM 99.0 99.1 99.0 99.0
LRCN 99.7 99.8 99.7 99.7
EEG Classification Results Summary
100
80
60
40
20
0
GB KNN RFC LSTM LRCN
M Accuracy % M Precision % MRecall% ®F1Score%
FIGURE 18
EEG classification results summary.

TABLE 9 EEG monitoring for detecting seizure behavior comparative.

Study

Our study

Model

Random forest classifier

Results

99.9% accuracy

Liuetal. (10)

Hybrid bilinear deep learning network

97.4% F1-score (TUH), 97.2% F1-score (EPILEPSIAE)

Fergus et al. (6)

k-NN classifier

88% sensitivity and specificity

Raghu et al. (7) SVM with SDI feature 95.80-97.53% sensitivity, 0.4-0.57/h false detection rate
Rani and Chellam (8) SVM with Peak Signal Features 99.60% accuracy
Almustafa (9) Random Forest 97.08% accuracy
Zhaoetal. (11) Linear Graph Convolution Network 99.30% accuracy

Gabeffetal. (12)

CNN

0.873 F1-score, 90% seizure detection

Chou et al. (13)

CNN (various architectures)

97.7% accuracy (best model)

Kunekar et al. (15) LSTM 97% validation accuracy
Mert and Akan (3) Novel EEG analysis methodologies 97.89% accuracy
Brari and Belghith (17) Chaos and fractal theory-based ML 100% accuracy

Shah et al. (18)

Random Neural Networks with DWT

93.27% (CHB-MIT), 99.84% (Bonn) accuracy

Kantipudi et al. (19)

FLHE GBSO, and TAENN

99.6% detection performance

Zeng et al. (21)

Hybrid deep and shallow learning

Nearly 100% accuracy

Polat and Nour (24)

SVM with various kernels

76.70-82.50% accuracy

Hamlin et al. (26)

LDA with non-cerebral sensors

96% mean ROC value

challenges to bridge the gap between research performance and  EEG-based seizure detection. Table 10 summarizes key metrics, datasets,
clinical applicability (see Table 9).

To contextualize the performance of our proposed framework,

and methodologies, emphasizing the strengths of our approach.
Deploying EEG-based seizure detection in clinical settings faces

we provide a detailed comparison with recent state-of-the-art methodsin ~ computational and practical hurdles. While our Random Forest (RF)
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TABLE 10 Comparative analysis with state-of-the-art seizure detection approaches.

10.3389/fmed.2025.1577474

Model/approach Dataset Accuracy Sensitivity Specificity =~ F1-Score
Our study Random Forest (RF) 102 patients 99.9% 99.8% 99.9% 99.8%
Liu etal. (10) Hybrid Bilinear CNN + RNN TUH, EPILEPSIAE 97.2 - N 97.4%
Zhaoetal. (11) Linear Graph ConvNet (LGCN) CHB-MIT 99.3% 99.4% 98.8% -
Kantipudi et al. (19) GBSO-TAENN (Bio-inspired NN) | Undisclosed 99.6% - - 99.0%
Gabeff et al. (12) CNN REPO2MSE 90% - - 87.3%

model achieves 99.9% accuracy with low latency (<10 ms) on CPUs,
deep learning (DL) models like LSTM/LRCN require GPUs and exhibit
higher latency (80-120 ms), limiting real-time use in wearables.
Scalability and power constraints further favor RE which processes
100 + EEG streams efficiently (~2 W) compared to DLs GPU-dependent
demands (~150 W). Additionally, long-term EEG monitoring poses
comfort challenges, as patients must wear sensor caps for extended
periods—a barrier for ambulatory use but manageable for admitted
patients under supervision. For hospitalized individuals, continuous
EEG provides critical insights despite discomfort, enabling timely
interventions. Future work must address hardware miniaturization (e.g.,
flexible, wireless electrodes) and hybrid models to balance accuracy,
comfort, and regulatory compliance (e.g., IEC 62304). These steps are
vital to translate lab advancements into bedside solutions.

5 Conclusion

This study demonstrates that EEG signals remain a robust source
for epileptic seizure detection, with the RF classifier achieving a
remarkable 99.9% accuracy. Although deep learning models, such as
LSTM and LRCN, also performed well, the superior results of RF
underscore the relevance of traditional machine learning approaches
in clinical seizure detection. These findings indicate that RF offers a
viable solution for practical EEG-based seizure monitoring due to its
accuracy and generalizability. However, the practical challenges
associated with continuous, long-term EEG monitoring necessitate
further exploration of alternative non-invasive monitoring techniques.
Future research should focus on reducing the number of electrodes
required for EEG-based detection without compromising accuracy,
investigate dry electrode technologies, and integrate EEG with other
modalities, such as video and EMG, for more comprehensive seizure
monitoring solutions. Moreover, addressing the challenges of real-time
detection and generalizability across diverse patient populations
remains paramount for the widespread clinical adoption of EEG-based
seizure detection systems.
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Introduction: The pressing need for accurate diagnostic tools in the medical
field, particularly for diseases such as brain tumors and Alzheimer's, poses
significant challenges to timely and effective treatment.

Methods: This study presents a novel approach to MRl image classification by
integrating transfer learning with Explainable Al (XAl) techniques. The proposed
method utilizes a hybrid CNN-VGG16 model, which leverages pre-trained
features from the VGG16 architecture to enhance classification performance
across three distinct MRI datasets: brain tumor classification, Alzheimer’s
disease detection, and a third dataset of brain tumors. A comprehensive
preprocessing pipeline ensures optimal input quality and variability, including
image normalization, resizing, and data augmentation.

Results: The model achieves accuracy rates of 94% on the brain tumor
dataset, 81% on the augmented Alzheimer dataset, and 93% on the third
dataset, underscoring its capability to differentiate various neurological
conditions. Furthermore, the integration of SHapley Additive exPlanations (SHAP)
provides a transparent view of the model's decision-making process, allowing
clinicians to understand which regions of the MRI scans contribute to the
classification outcomes.

Discussion: This research demonstrates the potential of combining advanced
deep learning techniques with explainability to improve diagnostic accuracy and
trust in Al applications within healthcare.

KEYWORDS

MRI image classification, transfer learning, explainable Al (XAl), hybrid CNN-VGG16
model, brain tumors, Alzheimer’s disease, SHAP, medical imaging
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1 Introduction

Brain tumors constitute a critical subset of central nervous
system (CNS) disorders, with pathologies ranging from slow-
growing benign masses to highly aggressive malignant neoplasms
(1). Malignant types such as glioblastomas and anaplastic
astrocytomas are particularly concerning due to their rapid
proliferation, high invasiveness, and poor prognosis (2). The five-
year relative survival rate for adults remains around 35.6%. These
metastatic tumors are especially challenging due to their rapid
infiltration into brain parenchyma and resistance to conventional
therapies (3). The World Health Organization (WHO) classifies
CNS tumors into grades I-IV based on histopathological,
immunohistochemical, and molecular features (4), underscoring
the need for early and accurate grading to guide clinical
interventions.

Magnetic Resonance Imaging (MRI) remains the gold standard
for brain tumor diagnosis and grading due to its superior
soft tissue contrast and non-invasive nature (5). Advanced
MRI modalities: such as T1-weighted (T1), contrast-enhanced
T1 (T1C), T2-weighted (T2) (6), Fluid Attenuated Inversion
Recovery (FLAIR) (7), Diftusion Tensor Imaging (DTI), Perfusion
MRI, and MR Spectroscopy (MRS) (8) offer rich, multi-
parametric information on tumor morphology, oedema, necrosis,
vascularity, and infiltration (9). However, the manual interpretation
of these high-dimensional images is time-consuming, prone
to inter-observer variability, and particularly burdensome in
resource-constrained settings with radiologist shortages (10).
Tumor heterogeneity and overlapping imaging phenotypes further
complicate diagnosis, prompting increased adoption of automated
analysis tools powered by AT (11).

In parallel, neurodegenerative disorders like Alzheimer’s
(AD)
characterized by progressive cognitive decline and structural

disease pose unique diagnostic challenges. AD is
brain changes such as cortical thinning and hippocampal
atrophy, visible in MRI scans (12). Due to the limited availability
of labeled data for early AD diagnosis, data augmentation
techniques such as affine transformations, intensity scaling, noise
injection, and GAN-based synthesis have been employed to
improve model robustness (13). These enriched datasets also
facilitate sequential transfer learning, enabling the repurposing
of knowledge from AD-related imaging to other neurological
domains, including brain tumor classification (14). Convolutional
Neural Networks (CNNs) have tremendously succeeded in medical
image classification, segmentation, and anomaly detection. Pre-
trained architectures such as VGG16, ResNet, and DenseNet,
initially developed for natural image datasets like ImageNet,
can be fine-tuned via transfer learning to perform effectively in
medical contexts (15).

This work proposes a novel hybrid framework that integrates a
pre-trained VGG16 backbone with custom CNN layers and applies
a sequential transfer learning strategy across three structurally
distinct MRI datasets: a brain tumor, Alzheimer’s disease, and
an independent validation set. This approach leverages domain-
relatedness in neuroimaging to enhance feature generalization and
classification accuracy across multiple brain pathologies. Despite
their high predictive performance, deep learning models are often
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criticized for their “black-box” nature, which limits interpretability
and clinical trust (16). To overcome this limitation, we incorporate
SHapley Additive exPlanations (SHAP), an explainable AT (XAI)
method that attributes the model’s output to specific pixels or
regions in the input image. SHAP values offer visual insight into
the regions most influential to model decisions, aligning them with
anatomical structures and facilitating clinician interpretation. By
striking a balance between high performance and interpretability,
our framework presents a promising solution for real-world
deployment in neuroimaging diagnostics.

This work proposes a novel hybrid framework that integrates a
pre-trained VGG16 backbone with custom CNN layers and applies
a sequential transfer learning strategy across three structurally
distinct MRI datasets: a brain tumor, Alzheimer’s disease, and
an independent validation set. This approach leverages domain-
relatedness in neuroimaging to enhance feature generalization and
classification accuracy across multiple brain pathologies. Despite
their high predictive performance, deep learning models are often
criticized for their “black-box” nature, which limits interpretability
and clinical trust (16). To overcome this limitation, we incorporate
SHapley Additive exPlanations (SHAP), an explainable AT (XAI)
method that attributes the model’s output to specific pixels or
regions in the input image. SHAP values offer visual insight into
the regions most influential to model decisions, aligning them with
anatomical structures and facilitating clinician interpretation. By
striking a balance between high performance and interpretability,
our framework presents a promising solution for real-world
deployment in neuroimaging diagnostics.

The proposed method begins with preprocessing all datasets,
including normalization, resizing, augmentation, and partitioning
into train/validation/test splits. A hybrid CNN architecture is
then constructed by combining frozen VGG16 features with
custom convolutional and dense layers. The model is trained on
a brain tumor dataset and then fine-tuned sequentially on an
Alzheimer’s dataset and a third validation dataset using transfer
learning. Each stage involves model reconfiguration and controlled
unfreezing of layers. Finally, SHAP-based explainability is applied
to visualize model decisions, and performance is evaluated using
standard metrics such as accuracy, precision, recall, F1-score, and
confusion matrices.

Figure 1 illustrates the concept of transfer learning, a technique
in machine learning where knowledge gained from a source
domain is utilized to enhance learning in a target domain. The
source domain comprises a large dataset, such as ImageNet, which
contains over a million images. A pre-trained model is developed
using this extensive dataset, comprising three key components:
early layers for feature extraction, middle layers, and task-specific
layers. In transfer learning, the early layers that capture general
features like edges and textures are transferred to the model
for the target domain, where data is limited, such as a medical
image dataset with only hundreds of samples. These layers become
“frozen” in the fine-tuned model, meaning they are not updated
during training on the small dataset. The middle layers are fine-
tuned, and the adjustments are based on the new data to capture
domain-specific features better. Finally, the task-specific layers
from the source model are replaced with new ones tailored to the
target domain’s specific task.
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FIGURE 1
How transfer learning works.
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1.1 Research contributions

The
the following:

major research contributions of this study are

e A novel approach that leverages a pre-trained VGG16 model
combined with custom CNN layers, using sequential transfer
learning across three distinct MRI datasets (brain tumor,
Alzheimer’, and validation) to improve classification accuracy
while requiring minimal training data.

e This study demonstrates effective knowledge transfer
between different neurological conditions (from brain
tumor classification to Alzheimer’s detection), showing
that features learned from one medical imaging domain
can enhance performance in related but distinct diagnostic
tasks. A comprehensive preprocessing pipeline, including
image normalization, resizing, and data augmentation,
is implemented to improve model robustness and
generalizability across datasets with varying characteristics.

e This research incorporates SHapley Additive exPlanations
(SHAP) analysis to provide transparent, pixel-level attribution
of model decisions, addressing the “black box” problem
of deep learning in healthcare by enabling clinicians
to understand which regions of MRI scans influence

diagnostic classifications.

1.2 Research organization

This research is organized into the following main sections.
Section 2 presents related work, discussing recent advances in
deep learning for medical imaging, the effectiveness of transfer
learning, and the growing importance of XAI in healthcare.
Section 3 outlines the proposed framework, detailing integrating
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pre-trained convolutional neural networks with XAI methods,
such as Grad-CAM, to enhance performance and interpretability.
Section 4 presents the experimental analysis, which includes
dataset description, evaluation metrics, and results comparing
the proposed model with existing techniques. Finally, Section 5
concludes the study by summarizing key findings and suggesting
directions for future research.

2 Related work

This section presents related work, discussing recent advances
in deep learning for medical imaging, the effectiveness of transfer
learning, and the growing importance of XAI in healthcare.
Tuncer et al. (17) proposed a lightweight convolutional neural
network named FiboNeXt for Alzheimer’s disease classification
using MRI images. The model was designed by integrating
ConvNeXt architecture elements, attention, and concatenation
layers. The dataset was divided into four classes and included
both original and augmented versions, where the augmented data
was used for training and the original for testing. The primary
aim was to achieve high accuracy with fewer trainable parameters.
Experimental results demonstrated that FiboNeXt achieved 95.40
and 95.93% validation accuracy on two datasets, while test accuracy
reached 99.66 and 99.63%, respectively, highlighting the model’s
efficiency and generalization capability. An optimized hybrid
transfer learning (TL) framework was introduced by Lasagni
et al. (18) to classify brain tumors using MRI images. The
approach combined advanced preprocessing techniques, such as
noise reduction and contrast enhancement, with an ensemble
of pretrained deep learning models, VGG16 and ResNet152V2.
The framework achieved an impressive classification accuracy of
99.47% on a complex four-class dataset. Explainable AI (XAI)
methods like SHAP and Grad-CAM were employed to ensure
transparency and clinical trust. These tools provided visual and

frontiersin.org


https://doi.org/10.3389/fmed.2025.1618550
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Alsubai et al.

quantitative insights into model predictions, facilitating better
interpretability and making the model more suitable for real-world
clinical applications.

Bhaskaran and Datta (19) investigated the use of 3D
convolutional neural networks (3D-CNNs) for detecting focal
cortical dysplasia (FCD) from a dataset containing MRI scans of
170 individuals (85 patients and 85 controls). They studied the
advantages of cross-modality transfer learning using pretrained
ResNet variants (ResNet-18, -34, and -50, trained initially on
segmentation tasks). Transfer learning significantly improved
classification performance to up to 80.3%. Moreover, they also
introduced a novel Heat-Score, a combination of Grad-CAM,
to evaluate the model interpretability. The model was able
to fill the gap between AI predictions and expert diagnostic
insights by using this metric, showing the model’s effectiveness
in identifying clinically relevant seizure zones. Tonni et al. (20)
used the InceptionV3 architecture to classify brain MRI images
into three tumor types (meningioma, glioma and pituitary) with
different embeddings initialization for imagenet and the studied
data. Several open-source XAI tools were integrated to address
the challenge of model interpretability, including LIME, SHAP,
and Grad-CAM. The model attained a classification accuracy
of 93% and an Fl-score of 0.93. Among the XAI tools, SHAP
provided the highest level of explainability at ~60%, aligning
better with expert-identified tumor regions. In contrast, LIME and
Grad-CAM explained <50% of the cases. The findings revealed
that non-tumor-related features had a notable impact on model
predictions, suggesting a need for further refinement in feature
attribution techniques.

Nahiduzzaman et al. (21) proposed a novel framework that
integrates a lightweight parallel depthwise separable convolutional
neural network (PDSCNN) with a hybrid ridge regression extreme
learning machine (RRELM) for classifying four brain tumor
types (glioma, meningioma, pituitary, and no tumor) using
MRI images. The approach utilizes contrast-limited adaptive
histogram equalization (CLAHE) to enhance tumor feature
visibility, followed by PDSCNN for efficient tumor-specific
feature extraction with reduced computational cost. To improve
classification performance, a ridge regression-enhanced ELM
(RRELM) is introduced, addressing the limitations of traditional
ELMs. Comparative analysis with state-of-the-art models revealed
that the proposed PDSCNN-RRELM achieved superior results,
with average precision, recall, and accuracy reaching 99.35%,
99.30%, and 99.22% through five-fold cross-validation. Vanaja et al.
(22) proposed a diagnostic framework for Alzheimers Disease
(AD) by leveraging machine learning and a customized deep
convolutional neural network (cDCNN) with three convolutional
layers applied to MRI data. The analysis incorporates two
datasets, Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
a Kaggle dataset, to examine diverse subject groups and imaging
characteristics linked to AD pathology. To mitigate class imbalance,
the Synthetic Minority Over-sampling Technique (SMOTE) is
employed. Traditional machine learning classifiers such as support
vector machine, k-nearest neighbor, random forest, decision trees,
and XGBoost are evaluated alongside the cDCNN model, which
focuses on key MRI biomarkers of AD. The cDCNN achieved 87%
accuracy on the ADNI dataset despite preprocessing challenges
due to converting DICOM images to JPEG, which affected
image quality.
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Joshi et al. (23) introduced a transfer learning approach
for classifying Parkinson’s disease using the imbalanced PPMI
dataset, leveraging Big Transfer (BiT) models. These pre-trained
models utilize Group Normalization with Weight Standardization
and adopt BiT-HyperRule for effective fine-tuning across diverse
datasets. Various BiT architectures, including BiT-S and BiT-M
variants, were evaluated. The best-performing model, BiT-M152x4,
achieved 86.71% accuracy, surpassing the previous state-of-the-
art RA-GCN model (76%). Additionally, the same BiT models
were applied to the imbalanced BCCD dataset, where BiT-M152x4
again outperformed VGG16 (98.52% vs. 74%), demonstrating the
versatility and robustness of the proposed approach. Bin Shabbir
Mugdha and Uddin (24) conducted a comparative analysis between
a newly developed Convolutional Neural Network (CNN) model
and several pre-trained models using transfer learning, including
VGG-16, ResNet-50, AlexNet, and Inception-v3. VGG-16 achieved
the best performance among all models with a test accuracy of
95.52%, training accuracy of 99.87%, and a validation loss of
0.2348. ResNet-50 followed with 93.31% test accuracy, 98.78%
training accuracy, and 0.6327 validation loss. The custom CNN
model achieved 92.59% test accuracy, 98.11% training accuracy,
and a validation loss of 0.2960. Inception-v3 showed the lowest
performance with 89.40% test accuracy and a validation loss
of 0.4418.

Khedgaonkar et al. (25) proposed a Graph Neural Network
(GNN)-based approach for brain MRI classification, addressing
the limitations of traditional methods in integrating spatial and
frequency domain features. By applying Fourier, Gabor, and
convolutional transformations, key features are extracted and fused
into a unified representation. MRI images are modeled as nodes
in a graph, capturing structural and semantic relationships. The
GNN leverages this graph structure to learn discriminative features
through neighborhood aggregation. The method demonstrated
superior performance across precision, accuracy, recall, speciﬁcity,
AUC, and delay, outperforming conventional techniques. Ilani et al.
(26) focused on classifying brain tumors glioma, meningioma, and
pituitary using MRI scans, leveraging the U-Net architecture for
segmentation alongside transfer learning-based CNN models such
as Inception-V3, EfficientNetB4, and VGG19. Model performance
was evaluated using F-score, recall, precision, and accuracy metrics.
U-Net outperformed other models, achieving 98.56% accuracy, a
99% F-score, 99.8% AUC, and 99% recall and precision. It also
maintained strong generalization with 96.01% accuracy in cross-
dataset validation using an external cohort. The results highlight U-
Net’s effectiveness in precise brain tumor segmentation, supporting
early diagnosis and treatment planning.

Rasool et al. (27) proposed ResMHA-Net, a deep learning
framework combining ResNet residual blocks with multi-head
attention to enhance glioma segmentation in 3D MRI. This
architecture captured long-range dependencies and emphasized
informative regions, improving the segmentation of complex
glioma sub-regions. It was trained and validated on BraTS 2018-
2021 datasets, with the best performance observed on BraTS$ 2021,
demonstrating strong adaptability. Predicted masks from three
datasets were used to extract radiomic features, which, along with
clinical data, trained an ensemble model for survival prediction.
This model employed a voting mechanism across multiple learners
and achieved a 73% overall survival prediction accuracy. Gasmi
et al. (28) developed an ensemble classification model integrating
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Vision Transformers (ViT) and EfficientNet-V2 to capture both  concerns about overfitting and real-world applicability. Our work
global and local features from brain MRI. Model outputs were  addresses these gaps by proposing a multi-stage transfer learning
combined using a genetic algorithm-optimized weighted ensemble,  strategy that spans distinct MRI datasets and integrating SHAP for
which selected the best combination to maximize accuracy. Trained  transparent, clinically meaningful explanations.
on a labeled MRI dataset, the ensemble model outperformed
individual and traditional classifiers, achieving a 95% classification
accuracy with improved precision, recall, and F1-score. 3 Pro posed framework

While these studies have achieved high accuracy through
various architectures and optimization techniques, many face This section explains the proposed framework, detailing the
limitations such as reliance on single-domain datasets, limited  integration of pre-trained convolutional neural networks with
transferability across neurological disorders, or insufficient XAI methods like Grad-CAM to improve performance and
interpretability. Most existing works focus on enhancing interpretability. The workflow of the proposed framework is
performance or providing visual explanations, but few offer a  illustrated in Figure2. The figure presents a comprehensive
unified framework that balances generalization, accuracy, and  pipeline for a Hybrid CNN-VGG16 model designed for MRI image
explainability across diverse brain pathologies. Furthermore, many  classification, which leverages transfer learning and explainable
methods lack rigorous evaluation of independent datasets, raising  artificial intelligence (XAI) techniques. The process is divided
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FIGURE 2
Hybrid CNN-VGG16 model with transfer learning and XAl for MRI classification.
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into five primary stages: datasets, data preprocessing, model
architecture, training, and evaluation with XAIL The first stage
highlights the use of three distinct datasets: the Brain Tumor
Classification Dataset (with classes like glioma, meningioma,
no tumor, and pituitary), the Augmented Alzheimer MRI
Dataset (including mild, moderate, non-demented, and very mild
demented classes), and a third dataset which again covers brain
tumor categories. These datasets undergo different preprocessing
steps, such as image resizing, normalization, augmentation, and
dataset splitting into training, validation, and testing sets. Next,
the Hybrid CNN-VGG16 model architecture is detailed. It begins
with the VGG16 base model pretrained on ImageNet with frozen
layers used for feature extraction. On top of this base, custom
convolutional layers (including Conv2D, batch normalization, max
pooling, and dropout) are added to enhance learning. The final
part of the model is the classification head, which includes global
average pooling, dense layers, and a softmax layer for multi-class
output. The training process is conducted in three sequential
phases. It starts with initial training on the brain tumor dataset,
followed by two fine-tuning stages on the Alzheimer dataset and
then on the third dataset. The training uses the Adam optimizer,
categorical cross-entropy loss, and early stopping, with the best-
performing model weights preserved between each stage. Finally,
the Explainable AI (XAI) & Evaluation block involves model
interpretation and performance assessment. SHapley Additive
exPlanations (SHAP) provides feature attributions, allowing insight
into how the model makes decisions. Additionally, several
performance metrics such as accuracy, Fl-score, precision, and
recall are used, and visual results are presented via confusion
matrices and SHAP plots.

Algorithm 1 defines a general process to adapt a pre-trained
source model Mg to a new target task using the target dataset
Dy. The source model is cloned to create the target model Mr,
after which selected layers are frozen based on the strategy ¢. The
final output layer is replaced to align with the target labels, and
the dataset Dr is split into training, validation, and test subsets.
Fine-tuning is performed over E epochs using gradient descent on
trainable parameters, with early stopping optionally applied. The
algorithm also supports the progressive unfreezing of layers for
staged fine-tuning. The final model is evaluated on the D" test
set. Specifically, the following terms are: Mg denotes the pre-trained
source model, and Mr is the target model initialized as a clone of
Ms. The target dataset is represented as Dr = {(x;, yi)}f»\;rl, where
x; is an input sample, y; is the corresponding target label, and Nt
is the total number of samples. The learning rate is denoted by
o, and E represents the number of training epochs. The strategy
¢ defines which layers in Mt will be frozen or trainable during
fine-tuning. Each mini-batch is represented by B = {(x;, yj)};’zl,
where b is the batch size. For each sample x; in the batch, J; is
the predicted output by Mr. The loss for a batch is computed
as L = %Zj £(j,yj), where £ is a loss function such as cross-
entropy. The model parameters are denoted by 6, and gradient
descent updates them via 8 < 0 — aVyL. The dataset Dr is
split into training, validation, and test sets, denoted by D", DVT“Z,
and DY, respectively. Additionally, if progressive unfreezing is
enabled, layers are incrementally unfrozen in S stages, with each
stage using its learning rate oy and epoch count E.

Algorithm 2 details a pipeline for MRI image classification
using three datasets. The datasets are defined as follows: D; =
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Require: Source model Mg, source dataset Dg, target
dataset DT={(xi,yi)}'1YT:1, learning rate «, epochs

E, freezing strategy ¢
Ensure: Fine-tuned model My

1: function TransrerLearn (Mg, D7, «, E, ¢)

2 My < Mg

3 for each layer 1 in My do

4 if 1€ ¢ then

5 Freeze 1

6: else

7 Make 1 trainable

8 end if

9 end for

10: Replace output layer of My to match classes in
Dr

1: Split Dy into pirain, pval = ptest

12: for e=1 to E do

13: for each batch B={(x;, y;)}5_; C D{"" do

14: yj < Mr(x;) for all x;eB

15: ﬁ(—%zjf(f/j,yj)

16: Update 0 « 6 —aVyL for all trainable 0

17: end for

18: Evaluate My on DY

19: if early stopping criteria met then

20: break

21: end if

22: end for

23: if progressive unfreezing enabled then

24: for s=1 to S do

25: Unfreeze new layers per strategy ¢

26 Fine-tune with reduced as for Es epochs

27: end for

28: end if

29: Evaluate M; on Diest

30: return Mr

31: end function

Algorithm 1. Transfer learning for neural network models.

{(xl-l, y})}fgl corresponds to the Brain Tumor Dataset (BTD), D, =
{2, yiz)}flzz1 is the Alzheimer Dataset (AD), and D3 = {(x},y; )}f\ﬁl
is the third validation dataset (VD). Here, xf‘ is an MRI image,
and yf is its corresponding label for dataset Dy with Nj samples.
The learning rate, batch size, and number of epochs for training
on dataset Dy are represented by oy, Bk, and Ej, respectively.
During preprocessing, each image x; is normalized by subtracting
the mean p and dividing by the standard deviation o, then
resized to a fixed height 4 and width w. Augmentation is applied
through transformation functions T'(x;), and the dataset is split
into training, validation, and test subsets. The model is constructed
using a pretrained VGG16 backbone denoted as V, from which
features F are extracted. These features are frozen and connected to
additional convolutional, batch normalization (BN), max pooling,
dropout, global average pooling (GAP), and dense layers, ending
with a final dense output layer with C units representing the
number of classes. The function Train compiles the model with
the Adam optimizer (learning rate «) and categorical cross-entropy
(CCE) loss, then fits it on the training set and evaluates it on the
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Require: D; = {(x!, yI))'l, (BTD),
(AD), D3 ={(x3, y3))i2, (VD)

Require: «y, By, Ex Vke{l, 2,3}

Dy = (4, YN,

1: function Preprocess(D)

2: X; < S x; « resize(x;, h, w)
3: DM < DU{(T(x:),yi)}

4 ptrain Dval ptest Split(Dauy)

return ptrain pval ptest

5
6: end function

7: function Burn(C)

8: V < VGG16(pretrained), F <« extract(V)
9

0

1

freeze(F)

1 M < F — Conv2D(256) — BN — MaxPool — Drop(0.3)

1 M < M — GAP — Dense(512) — Drop(0.5) —
Dense(C)

12 return M

13: end function

14: function Tratn(M, Dtrain ptest o B F)
15: compile(M, Adam(«a), CCE)

16: fit(M, Dtrain £ B)

17: eval(M, Dtest)

18: return M

19: end function

20: function FineTune(M, D"V, C, «, B, E)
21: replace_head(M, C)

22 unfreeze(M.tail)

23: compile(M, Adam(«), CCE)

24:  fit(M, D"®¥ E, B)

25: return M

26: end function

27: function ExpLan(M, X)

28: E < DeepExplainer (M, Xpq)

29: for x; e X do

30: Vi < argmaxM(x;)
31: Si < E(x3)

32: plot(S;, x5)

33: end for

34: end function

35: function EvaL(M, D)
36: Compute: Acc, FT,
37: end function

Prec, Rec, conf_mat(M, D)

38: D} <« Preprocess(Dy), D% <« Preprocess(D7), Df <
Preprocess (D3 )

39: M <« Buro(|Cq])

40: M <« Tram(M, Dirain, ptest o By, Ey)

41: M <« FineTune(M, D30, [Cy|, a2, By, Ep)

42: M <« FineTune(M, DY@, [Cs), a3, B3, E3)

43: ExpLaIn(M, DLEST)

44: EvaL(M, Diest),

EvaL(M, D5®St),  EvaL(M, DESt)

Algorithm 2. Hybrid CNN-VGG16 with TL and XAl for MRI classification.

test set. The function FineTune replaces the output head with
C classes, unfreezes the last layers for fine-tuning, recompiles the
model, and continues training. The Explain function employs
DeepExplainer from SHAP to generate saliency maps S; for
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test samples x;, where X, is a background dataset used for
explanations. The predicted label for a sample is given by y; =
arg max M(x;). The evaluation function computes standard metrics:
accuracy (Acc), F1-score (F1), precision (Prec), recall (Rec), and
confusion matrices. These changes have been incorporated to
improve the transparency of the algorithm.

3.1 Experimental dataset

In this research, we utilized three datasets for classifying MRI
images by training deep learning models. The first dataset (https://
www.kaggle.com/datasets/sartajbhuvaji/brain-tumorclassification-
mri, accessed March 25, 2025) is based on Brain tumors, among the
most aggressive diseases affecting children and adults, comprising
85%-90% of all primary Central Nervous System (CNS) tumors.
Annually, ~11,700 new brain tumor cases are reported, with
a 5-year survival rate of 34% for men and 36% for women.
Tumors are categorized into the following types: Glioma Tumor,
Meningioma Tumor, No Tumor, and Pituitary Tumor. The second
dataset  (https://www.kaggle.com/datasets/uraninjo/augmented-
alzheimer-mri-dataset, accessed March 25, 2025) used in this
research is the Augmented Alzheimer’s MRI Dataset. It contains
brain MRI images classified into four categories: Non-Demented,
Very Mild Demented, Mild Demented, and Moderate Demented.
The dataset is organized into two main folders, one containing
the original images and the other containing augmented versions
to increase data variability. Both training and testing sets include
samples from all four classes. Augmented data helps improve
deep learning models’ performance and generalization capability
in classifying different stages of Alzheimer’s disease. The third
dataset (https://www.kaggle.com/datasets/sartajbhuvaji/brain-
tumor-classification-mri, accessed March 25, 2025) used in this
research is a combined brain tumor MRI dataset derived from three
sources: Figshare, the SARTAJ dataset, and the Br35H dataset.
It contains 7,023 MRI images classified into four categories:
Glioma, Meningioma, Pituitary, and No Tumor. Images for
the “No Tumor” class were taken from the Br35H dataset. Due
to misclassification issues observed in the Glioma class of the
SARTA]J dataset, which was identified through inconsistent model
performance and validation against other research, those images
were removed and replaced with correctly labeled images from the
Figshare dataset. This curated dataset supports the classification
of brain tumors, which can be either benign or malignant and
is critical for early diagnosis, given the life-threatening nature of
tumor-induced pressure within the skull.

3.2 Data preprocessing

The preprocessing process begins with loading each MRI
image and converting it from the default Blue-Green-Red (BGR)
color format to the standard Red-Green-Blue (RGB) format to
ensure compatibility with deep learning models. This conversion
maintains consistency in color representation across all images,
preventing misinterpretation of visual features during training and
improving the accuracy of tumor classification. After converting

frontiersin.org


https://doi.org/10.3389/fmed.2025.1618550
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumorclassification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumorclassification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumorclassification-mri
https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset
https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Alsubai et al.

the image to RGB, the next preprocessing step involves resizing
each image to a fixed dimension of 128 x 128 pixels. Neural
networks require input data to have a consistent shape, and resizing
ensures that all images, regardless of their original resolution,
meet the input requirements of the model. Specifically, resizing
transforms an image IeRF*W>*3 into a standardized format
I €R128x128x3 \vhere H and W represent the original height and
width of the image, respectively. This step ensures that all input
images are of uniform size, allowing for efficient model training
and processing. After resizing, the pixel values of the images are
normalized by scaling them from the original range of [0, 255] to
[0,1]. This is achieved by dividing each pixel value by 255 (see
Equation 1):

I

Lnorm = E (1)

Normalization helps stabilize and accelerate the neural
network’s learning process by ensuring the input data has a
smaller, more uniform range of values. It also helps reduce the
internal covariate shift, thus enabling more effective weight updates
during training.

The class labels, initially string values such as “glioma_tumor,”
“meningioma_tumor;” etc., are converted into a numerical format
using a label map. Each label is then one-hot encoded using the
to_categorical() function. One-hot encoding transforms categorical
labels into a binary matrix where only the index of the class
is marked as 1, and all others are 0. For instance, the label
“glioma_tumor” becomes [1, 0, 0, 0]. This format is compatible with
multi-class classification models. In mathematical terms, for a class
C € {0, 1,2, 3}, the one-hot encoded vector y is defined as shown in
Equation 2:

1, ifi=C
yi =

fori e {0,1,2,3} (2)
0, otherwise

It is essential to evaluate model performance and prevent
overfitting; therefore, this study utilized train_test_split() to divide
the dataset into training and validation sets. Specifically, 80% of
the data was allocated for training and 20% for validation. The use
of a fixed random_state ensured reproducibility. This separation
allowed the model to be assessed on unseen data, providing a more
precise measure of its generalization capability.

3.3 Data augmentation

The model generalization should be improved together with
mitigating overfitting if we have a small dataset. For this, this study
expanded the training data using data augmentation techniques,
which artificially increased the training dataset by generating
simple variations of the images. These variations make the model
more robust and well-performing for real-world transformations
that may occur in medical imaging.

The operations applied in this study for augmentation are
random rotations in a 20-degree range, horizontal and vertical
translations of 20% of the Image dimensions, shear transformation
with moderate intensity, zooming in &+ 20% and random horizontal
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flips to simulate different orientations. These transformations were
chosen carefully to resemble variations in MRI scans that occur
naturally and do not modify the underlying anatomical structures.
The augmentation process can be formally described as applying
a transformation function T to an input image x, resulting in an
augmented image x’ (see Equation 3):

x = T(x) 3)

Where the transformation function T is a composition of
individual operations, such as (see Equation 4):

X' = Rg(x) (Rotation)
x = Tyxay(x) (Translation)
x = Sy(x) (Shear) (4)
X = Z(x) (Zoom)
x' = F(x) (Flip)

These operations ensure that the data is represented in diverse
ways during the training process, thus increasing the chances for it
to generalize better to unseen inputs. The augmentation parameters
were fit to the training dataset before training, and these fit
parameters were used in the training process. Hence, the behavior
of transformation is consistent during the time of learning.

3.4 Model architecture

The details of the model architecture of CNN, Custom
CNN, VGG16, ResNet and Hybrid CNN-VGGI16 are discussed in
this section.

3.4.1 CNN model

The first model architecture specifically for the MRI image
classification is the Convolutional Neural Network (CNN) (29). It
takes input images of size 128 x 128 x 3 and starts with a Conv2D
layer of 32 filters (3 x 3 kernel, ReLU) and, as usual, MaxPooling2D
(2 x 2) to reduce spatial dimensions. It is followed by a Conv2D
layer with 64 filters (3 x 3, ReLU) and another MaxPooling2D (2 x
2). Then, a third Conv2D layer with 128 filters (3 x 3, ReLU) and
another MaxPooling2D layer (2 x 2) is added. It is then flattened
and passed through a Dense layer with 128 neurons (ReLU) and
a Dropout layer of 0.5 dropout rate to prevent overfitting. The
Dense output layer with a softmax activation is used to classify
the input into one of four classes: glioma, meningioma, no tumor
and pituitary tumor. Lastly, we compile the model using the Adam
optimizer and the categorical cross-entropy loss, which fit the
multi-class classification correctly.

3.4.2 Custom CNN model

The custom CNN model shares the core structure of the
basic CNN three convolutional layers followed by max-pooling,
flattening, a dense layer, dropout, and a softmax output for
multi-class classification. However, it enhances the architecture by
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integrating Batch Normalization after each convolutional layer.
This addition helps stabilize learning, speeds up convergence,
and improves generalization. While the layer progression and
classification targets remain the same, the inclusion of batch
normalization distinguishes this model by offering better training
dynamics and potentially higher performance (30).

3.4.3 VGG16

The third model utilizes VGG16, a well-known deep CNN
architecture pre-trained on the ImageNet dataset, as a feature
extractor (31). Unlike the previous custom models, VGGI16’s
convolutional layers are frozen to retain learned features, reducing
training time and preventing overfitting on small datasets. On top
of the frozen base, custom classification layers are added: a global
average pooling layer to reduce feature maps, a dense layer with
ReLU activation, a dropout layer for regularization, and a softmax
output layer to classify MRI images into four tumor categories. This
transfer learning approach combines the power of a proven model
with task-specific tuning for improved accuracy and generalization.

3.4.4 ResNeT

The fourth is a ResNet model that integrates residual
connections for more efficient learning, especially in deeper
networks (32). It starts with a convolutional layer followed by max-
pooling, similar to previous models. The main distinction in this
model is the use of residual blocks, which include two convolutional
layers per block. The shortcut connections are added to the output
of these blocks, enabling the model to bypass specific layers and
help mitigate the vanishing gradient issue. In the second block, a
1 X 1 convolution is used to match the output dimensions of the
shortcut. The rest of the architecture follows the same structure,
with global average pooling, a dense layer, and a softmax output for
classification. The model is optimized using Adam with a learning
rate of 0.0001 and uses categorical cross-entropy for loss.

3.4.5 Hybrid VGG16-CNN

The Hybrid CNN + VGG16 model integrates a pre-trained
VGG16 model for feature extraction with a custom CNN designed
to learn additional task-specific features (33). The VGG16 model,
with its convolutional layers frozen, leverages the pre-learned
features from the ImageNet dataset without any further updates
during training. A Global Average Pooling layer processes its
output to create a more compact representation of the features. The
custom CNN learns additional features directly relevant to tumor
classification. This CNN includes several convolutional layers
followed by max-pooling layers to reduce the spatial dimensions
of the feature maps. The resulting output is flattened and passed
through a fully connected layer, with ReLU activation and a
dropout layer for regularization. The features from both models
are merged using the concatenate operation, followed by another
fully connected layer with ReLU activation and a dropout layer.
The final output layer uses softmax activation to produce a
probability distribution over the four tumor categories: glioma
tumor, meningioma tumor, no tumor, and pituitary tumor. The
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model is compiled with the Adam optimizer and categorical cross-
entropy as the loss function, which is suitable for multi-class
classification. It is trained for 50 epochs with a batch size of 32,
using training and validation data.

3.5 Fine tuning models

The previously trained Hybrid CNN + VGG16 model was
fine-tuned for the second experimentation phase using the
Augmented Alzheimer’s MRI dataset. This dataset includes four
categories: Mild Demented, Moderate Demented, Non Demented,
and Very Mild Demented. The hybrid model combines the
VGG16 architecture, which was pre-trained on the ImageNet
dataset and used as a frozen feature extractor, with a custom
CNN trained to extract domain-specific features. To adapt the
model for this new classification task, the final dense layer
was replaced to match the four output classes. While the
VGG16 layers remained frozen to retain their generalized feature
representations, the custom CNN layers were set as trainable to
learn patterns specific to Alzheimer’s stages. Additionally, dropout
and L2 regularization were applied to mitigate overfitting. The
model was compiled using the Adam optimizer with a learning
rate of 0.0005 and trained using augmented image data. To
further validate our hybrid CNN+VGG16 model, we evaluated its
performance on a third publicly available MRI brain tumor dataset
consisting of four categories: glioma, meningioma, pituitary, and
no tumor. The model architecture and training methodology
remained consistent with previous experiments, incorporating
dual-input feature fusion and transfer learning. After minor data
augmentation and preprocessing adjustments, the model was
retrained using a two-input pipeline and evaluated on stratified
splits. The model demonstrated strong generalization to this new
dataset, maintaining high accuracy across all classes. These results
further reinforce the robustness and adaptability of our proposed
hybrid model to varying data distributions.

To evaluate the generalization performance of the proposed
Hybrid CNN + VGGI16 model without relying on data
augmentation, we conducted additional experiments on the
unaltered original Alzheimer’s MRI dataset. While the model
architecture and configuration remained consistent, the training set
consisted solely of original images, with no synthetic augmentation
applied. The output layer was modified to match the four-class
structure of this dataset. Only the custom CNN layers were updated
during fine-tuning, while the VGG16 backbone remained frozen.
The training used the same optimizer (Adam) and loss function
(categorical cross-entropy) as in the augmented experiments. This
experiment provides insight into how well the model performs in a
more constrained, real-world scenario.

4 Experimental analysis and results

In this section, the accuracy, precision, recall, and F1 scores are
used to assess the performance of the models. More specifically,
it describes systematic experimental outcomes. This subsection
defines all performance measurements, such as accuracy, precision,
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recall, and Fl-score and indicates how these measurements must
be used.

The number of correctly classified instances (TP + TN) is the
total number of instances of the data set. By applying Equation 5,
we can calculate this value:

TP+ TN

5
TP+ FP+ TN + FN ®)

Accuracy =

It is the ratio of the number of times the model accurately
predicted a product to the total number of times it has predicted it
positively. Applying Equation 6 in this way will provide this result:

TP

Precision = ———
TP + FP

(6)

The ratio of positive predictions to the data’s actual number
of positive instances. It reflects the model’s ability to capture all
positive instances. Use Equation 7 in the following manner to find
this value:

TP

Recall = ———
TP 4+ FN

()

The harmonic mean of precision and recall provides a single
metric to balance both. It is beneficial when an imbalance between
classes is calculated using Equation 8.

Precision + Recall

(8)

Fl —score =2 X ————
Precision + Recall

Figure 3a illustrates a model’s training and validation accuracy
over 45 epochs. The training accuracy commences at ~0.460 at the
04, epoch and shows a steady upward trajectory, reaching about
0.800 by the 40, epoch. Similarly, the validation accuracy begins at
around 0.500 and follows a comparable increasing trend, surpassing
the training accuracy at several points and culminating at ~0.805
at the final epoch. Figure 3b presents the corresponding loss values

10.3389/fmed.2025.1618550

for training and validation over the same number of epochs. The
training loss starts at around 1.17 at the 0y epoch and declines
progressively, reaching about 0.47 by the 40, epoch. The validation
loss follows a similar pattern, beginning near 1.02 and steadily
decreasing to ~0.50 at the final epoch.

Figure 4a illustrates a model’s training and validation accuracy
over 17 epochs. The training accuracy begins at ~0.790 at the
0, epoch and exhibits a consistent upward trend, reaching about
0.955 by the 17, epoch. The validation accuracy initiates at around
0.880 and fluctuates slightly throughout the training process,
peaking around the 14, epoch near 0.935 before ending at ~0.920.
Figure 4b presents the corresponding training and validation loss
across the same epoch range. The training loss starts relatively high
at ~0.61 in the Oy, epoch and shows a steady decline, reaching
around 0.13 by the 17, epoch. The validation loss follows a more
irregular pattern, beginning near 0.40, spiking intermittently, and
settling at around 0.33 in the final epoch.

Figure 5a shows a model’s training and validation accuracy over
15 epochs. The training accuracy starts at ~0.310 at the Oy, epoch
and rises steadily throughout the training process, reaching about
0.905 by the 154 epoch. The validation accuracy initially starts
higher at around 0.390, increases with some fluctuations, and peaks
around 0.890 near the 11, epoch before settling slightly lower at
~0.875 by the final epoch. Figure 5b presents the corresponding
loss values over the same epoch range. The training loss begins at a
relatively high value of around 1.38 at the 04, epoch and decreases
consistently, dropping to ~0.28 by the 154, epoch. The validation
loss starts at about 1.22 and fluctuates more than the training loss,
reaching a peak around 1.48 at the 3,4 epoch but then follows a
general downward trend to around 0.40 at the final epoch.

Table I presents the classification performance across three
datasets: Brain Tumor MRI, Augmented Alzheimer MRI, and a
third tumor classification dataset. The Brain Tumor MRI dataset
includes four tumor classes: glioma_tumor, meningioma_tumor,
no_tumor, and pituitary_tumor. The model achieves the highest
F1-score of 0.98 for the pituitary_tumor class, with corresponding
precision and recall values of 0.97 and 0.99, respectively. The
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FIGURE 3

Graphical representation of hybrid CNN-VGG16 model with XAl on second dataset. (a) Accuracy graph. (b) Loss graph.
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Graphical representation of hybrid CNN-VGG16 model with XAl on third dataset. (a) Accuracy graph. (b) Loss graph.

glioma_tumor class also performs strongly with all three metrics:
precision, recall, and Fl-score at 0.96. The no_tumor class has a
slightly lower recall of 0.87, contributing to an Fl-score of 0.90.
Overall, the model demonstrates high classification effectiveness
with a total accuracy of 94%. In the Augmented Alzheimer
MRI dataset. This dataset includes four classes: MildDemented,
ModerateDemented, NonDemented, and VeryMildDemented.
Among these, the NonDemented class achieves the highest F1-
score of 0.87, driven by a strong recall of 0.89. Although the
ModerateDemented class attains a perfect precision of 1.00, its low
recall of 0.54 results in a moderate Fl-score of 0.70, indicating
potential challenges in correctly identifying all instances of this
class. The overall model accuracy for this dataset is 81%, which
suggests reasonable but improvable classification performance. The
third dataset consists of the following classes: glioma, meningioma,
no tumor, and pituitary. The tumor class performs the best with
an Fl-score of 0.97, bolstered by a precision of 0.96 and a recall of
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0.98. The pituitary class also achieves high recall (0.99), although
its precision is relatively lower at 0.88, yielding an Fl-score of
0.93. The overall model accuracy stands at 93%, indicating a strong
performance across multiple tumor categories.

For multi-class classification, SHAP values were calculated per
class and reshaped for visualization. Summary plots were generated
to identify globally important regions across all samples.

4.1 Model explainability using SHAP

To better understand how our Hybrid CNN + VGGl16
model makes decisions, we used SHapley Additive explanations
(SHAP). This method explains model predictions by highlighting
which parts of the input image contribute most to the final
output. Since our model has a dual-input architecture with the
same MRI image passing through two branches for enhanced
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TABLE 1 Classification metrics across three datasets.

10.3389/fmed.2025.1618550

Dataset Class Precision Recall F1-Score

Brain tumor MRI Glioma_tumor 0.96 0.96 0.96
Meningioma_tumor 0.91 0.91 0.91
No_tumor 0.92 0.87 0.90
Pituitary_tumor 0.97 0.99 0.98
Accuracy 94%

Augmented Alzheimer MRI MildDemented 0.81 0.64 0.72
ModerateDemented 1.00 0.54 0.70
NonDemented 0.84 0.89 0.87
VeryMildDemented 0.76 0.77 0.76
Accuracy 81%

Third dataset Glioma 0.96 0.89 0.92
Meningioma 0.92 0.83 0.87
Notumor 0.96 0.98 0.97
Pituitary 0.88 0.99 0.93
Accuracy 93%

feature learning, we adapted SHAPs DeepExplainer to handle
this structure accordingly. We selected a sample batch from
the validation set and computed SHAP values for both inputs.
Summary plots were generated to identify which features (or pixel
regions) are typically important over the dataset and image plots for
each pixel that mattered in discriminating a given prediction from
the others. This allowed these visualizations to show that no matter
the input, the model always attends to brain regions involved in
Alzheimer’s disease. This provides valuable guidance for building
trust in Al-based clinical tools, and the model is strengthened
in terms of interpretability and communicates that it is learning
meaningful patterns.

In order to increase the interpretability of the hybrid CNN+
VGG16 model trained for the brain tumor classification task, we
combined the SHapley Additive exPlanations (SHAP) technique
that allows explainable AI. The model has a multi-input structure
(perhaps there is a better term for this), so SHAP’s DeepExplainer
was used on batches of validation images to compute pixel-based
contributions for each prediction. The SHAP values revealed which
areas of the MRI scans were the most important in allowing the
model to decide. We would find through summary plots that the
model consistently locked in on key tumor areas irrespective of
the different categories, thus showing that it accurately emphasized
those features. However, this transparency not only supports the
credibility of the model but, additionally, is of the essence for the
reliability of Al-based diagnostics in other medical applications.

4.1.1 SHAP summary plots of second dataset
SHAP values were successfully computed for a multi-input
model using DeepExplainer, with each input consisting of 32 RGB
images (128 x 128). The resulting SHAP tensors had a shape of
(32, 128, 128, 3, 4), indicating class-specific attributions. Separate
summary plots were generated for the four classes across both
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inputs, highlighting important spatial regions contributing to the
model’s predictions.

Figure 6a presents a SHAP summary plot that visualizes the
influence of Features labeled numerically from 20551 to 36331.
The x-axis represents SHAP values, where positive values indicate
features that push the prediction higher, and negative values
indicate the opposite. Color gradients reflect feature magnitudes.
Pink denotes high values, and blue denotes low values. In this case,
certain features like 20551 and 28222 exhibit a more pronounced
impact on the model’s predictions, evidenced by their wider spread
along the SHAP value axis compared to others. On the other
hand, features such as 20548 and 20549 show minimal impact,
clustering closer to zero. Figure 6b presents a SHAP summary
plot that illustrates the influence of features from “Feature 35950”
to “Feature 33595” on the model’s output. Notably, 35950 and
35184 are significantly influenced by their pronounced spread
along the SHAP value axis, suggesting they contribute meaningfully
to the model’s output. In contrast, features like 21767 and 35569
cluster closer to zero, indicating a minimal effect on the predictive
performance. Figure 6¢ presents a SHAP summary plot that
illustrates the features that influence the model’s output, ranging
from “Feature 20158” to “Feature 27859.” Notably, features such
as “Feature 20158” and “Feature 34381” significantly impact the
model’s predictions, as indicated by the broader distribution of
SHAP values. This suggests that variations in these features can
lead to more pronounced effects on the predictions. In contrast,
features like “Feature 34348” and “Feature 18958” cluster closer
to the zero line, indicating a lesser impact on model predictions.
This clustering reveals that changes in these features do not
significantly influence the overall model output. Figure 6d presents
a SHAP summary plot that visualizes the influence of features
ranging from “Feature 20158” to “Feature 24772” on the model’s
output. For instance, Features 20158 and 33604 exhibit strong
positive contributions when their values are high, whereas Features
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FIGURE 7
Visualizing SHAP explanation for sample 0O, class 0.

33250 and 24772 predominantly display negative SHAP values,
indicating a suppressive effect on predictions. This plot highlights
key features that significantly shape model behavior based on their
value ranges.

Figure 7 displays a cross-sectional brain image alongside
a SHAP value color scale. The grayscale brain scan highlights
structural features, while the adjacent gradient from blue (-0.1,
negative contribution) to red (+0.1, positive contribution)
represents each region’s influence on model predictions.
This integration aids in interpreting how specific brain areas
affect analytical linking neuroimaging data to

model behavior.

outcomes,
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4.1.2 SHAP summary plots of third dataset

Figure 8a presents a SHAP summary plot that illustrates the
impact of various features, ranging from “Feature 21277” to
“Feature 12959 on the model’s predictions. The visualization
indicates that certain features, such as “Feature 21280” and “Feature
29056, significantly influence the model’s output, as evidenced
by their extensive spread along the SHAP value axis. In contrast,
features like “Feature 21337” and “Feature 24373” demonstrate
minimal impact, as their SHAP values cluster closer to zero.
Figure 8b presents a SHAP summary plot visualizing the influence
of various features, specifically labeled from “Feature 15520” to
“Feature 21276,” on the model’s output. In this plot, features such as
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FIGURE 9
Visualizing SHAP explanation for sample 0O, class 0.

“Feature 15976” and “Feature 15908 exhibit a significant influence,
as indicated by their wider dispersion on the SHAP value axis.
This means that these features contribute more substantially to
the predicted outcomes when compared to others. Conversely,
features like “Feature 15520” and “Feature 15139” cluster closer to
zero, demonstrating minimal impact on the model’s predictions.
Figure 8c presents a SHAP summary plot that illustrates the
influence of various features, specifically from “Feature 15520”
to “Feature 21278, on the model’s predictions. Certain features,
such as “Feature 15520” and “Feature 15976, exhibit a more
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pronounced effect on the model’s predictions, as evidenced by
their greater dispersion along the SHAP value axis. This suggests
that these features are critical in influencing the model’s output.
Conversely, features like “Feature 15518” and “Feature 15904
reveal a minimal impact, clustering closely to zero. This suggests
that their contributions to the model’s predictions are negligible
compared to those of other features. Figure 8d presents a SHAP
summary plot that represents the impact of various features on
the model’s predictions, focusing on features ranging from “Feature
21277 to “Feature 21659.” For instance, features such as “Feature
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21280” and “Feature 29056” significantly impact the predictions,
as indicated by their wider distribution of SHAP values that
extend toward both positive and negative extremes. Conversely,
features like “Feature 17104” and “Feature 15130” exhibit minimal
influence, clustering closer to the zero mark, which suggests that
their effect on the model output is negligible.

Figure 9 combines a sagittal brain MRI image (left) with a
SHAP value bar plot (right) to illustrate model interpretability in
neuroimaging. The MRI highlights anatomical brain structures,
while the SHAP plot uses a blue-to-red gradient to show each
region’s contribution to model predictions, with blue indicating a
negative and red indicating a positive influence. SHAP values range
from -1 to 1, capturing features’ subtle and significant impacts.
This integrated visualization aids in understanding how specific
brain regions affect model outcomes, bridging neuroimaging with
explainable AL

4.2 Discussion

The proposed hybrid CNN-VGG16 framework addresses three
key challenges in MRI-based neuroimaging diagnostics: limited
labeled data, variability across datasets, and lack of interpretability
in deep learning models. First, the use of transfer learning
significantly mitigates the issue of data scarcity. By leveraging
the pre-trained VGG16 architecture, the model benefits from rich
feature representations learned from large-scale natural image
datasets. This allows for effective feature extraction even with
relatively small medical imaging datasets. The high classification
accuracy achieved on the brain tumor dataset (94%) and the
third dataset (93%) demonstrates the model’s ability to generalize
across similar pathological domains. Second, the sequential fine-
tuning strategy across structurally distinct datasets of brain tumors
and Alzheimers and a third validation set demonstrates the
framework’s adaptability to different neuroimaging modalities.
The model maintains a competitive performance of 81% on the
augmented Alzheimer dataset despite its structural differences from
the training domain. This highlights the frameworks robustness
and transferability, addressing the domain shift problem that
often limits the practical deployment of deep learning models in
medical diagnostics. Third, integrating SHAP-based Explainable AI
resolves the critical issue of interpretability. By generating pixel-
level explanations, the framework provides insight into which
brain regions influence the model’s predictions. This capability
enhances clinical trust and offers potential support for diagnostic
reasoning by aligning model attention with known anatomical
and pathological patterns. The proposed approach combines
performance and transparency, offering a concrete step toward
clinically viable AI systems. It outperforms traditional single-
dataset training and black-box models by effectively resolving
challenges related to data diversity, cross-domain generalization,
and explainability.

5 Conclusion

This paper demonstrated the effectiveness of transfer learning
combined with XAI for classifying MRI images. SHAP values
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provide much insight into the decision-making path of the
model, and the hybrid CNN-VGG16 model generalizes well
over different datasets with high accuracy. In conclusion, this
approach and its generalizations can be applied to other medical
imaging tasks, possessing high performance and interpretability.
This research has demonstrated the effectiveness of a hybrid CNN-
VGG16 model, utilizing transfer learning in conjunction with
XAI techniques, for MRI image classification. The high accuracy
of the model across multiple datasets demonstrates that it is
robust and easily adaptable in distinguishing between different
neurological diseases, including brain tumors and Alzheimer’s
disease. While the model shows strong performance, it has
certain limitations. The reliance on a limited number of public
datasets may restrict its generalizability to real-world clinical
scenarios. Additionally, the SHAP-based interpretability comes
with a high computational cost, which may challenge real-time
deployment. Future work will expand dataset diversity, incorporate
3D volumetric data, optimize model architecture for clinical
deployment, and explore alternative interpretability methods. This
research lays a solid foundation for developing high-performing,
interpretable AI tools to support medical decision-making and
improve patient outcomes. This work also lays the groundwork
for future research to refine the model further and apply it to
other medical imaging applications, ultimately leading to enhanced
patient outcomes.
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Introduction: Brain tumors seriously endanger human health. Therefore,
accurately identifying the types of brain tumors and adopting corresponding
treatment methods is of vital importance, which is of great significance for
saving patients’ lives. The use of computer-aided systems (CAD) for the
differentiation of brain tumors has proved to be a reliable scheme.

Methods: In this study, a highly accurate Mixed Local and Global (MLG) model for
brain tumor classification is proposed. Compared to prior approaches, the MLG
model achieves effective integration of local and global features by employing
a gated attention mechanism. The MLG model employs Convolutional Neural
Networks (CNNs) to extract local features from images and utilizes the
Transformer to capture global characteristics. This comprehensive scheme
renders the MLG model highly proficient in the task of brain tumor classification.
Specifically, the MLG model is primarily composed of the REMA Block and the
Biformer Block, which are fused through a gated attention mechanism. The
REMA Block serves to extract local features, effectively preventing information
loss and enhancing feature expressiveness. Conversely, the Biformer Block
is responsible for extracting global features, adaptively focusing on relevant
sets of key tokens based on query positions, thereby minimizing attention to
irrelevant information and further boosting model performance. The integration
of features extracted by the REMA Block and the Biformer Block through the
gated attention mechanism further enhances the representation ability of the
features.

Results: To validate the performance of the MLG model, two publicly available
datasets, namely the Chen and Kaggle datasets, were utilized for testing.
Experimental results revealed that the MLG model achieved accuracies of
99.02% and 97.24% on the Chen and Kaggle datasets, respectively, surpassing
other state-of-the-art models. This result fully demonstrates the effectiveness
and superiority of the MLG model in the task of brain tumor classification.

KEYWORDS

classification of brain tumor, CNN, transformer, feature fusion, gated attention
mechanism
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1 Introduction

Brain diseases most commonly manifest as brain tumors,
which represent a severe health threat to the human body and
necessitate early diagnosis and treatment (Lyu et al., 2024; Akter
et al,, 2024; Liu et al., 2023). The classification of brain tumors
constitutes a significant area of research in medical imaging and
artificial intelligence. Classification of brain tumors using Magnetic
Resonance Imaging (MRI) is the main technique (Li and Zhou,
2025). This process is critical for accurate diagnosis, treatment
planning, and prognosis assessment. Recently, Computer-Aided
Detection and Diagnosis (CAD) systems have played a pivotal
role in assisting medical professionals with the detection and
classification of brain tumors. Traditional manual methods of
brain tumor classification rely heavily on experienced specialists
and are often time-consuming, labor-intensive, and ineflicient
(Sharma et al,, 2024; Zhou et al., 2024). To address this issue,
extensive research has been conducted into automatic classification
techniques that can classify brain tumors from MRI, employing
CAD technology for tumor classification from MRI, which exhibits
high reliability due to its high accuracy.

Traditional machine learning often relies on manually designed
features, which places high demands on the users domain
knowledge and experience. The selection and construction of
features are complex and time-consuming, having a crucial
impact on model performance. When faced with complex, high-
dimensional, or nonlinear problems, the generalization ability of
traditional machine learning algorithms may be limited (Kaur
and Mahajan, 2025). More crucially, when confronted with new,
unseen data, their predictive performance may decline, affecting
their practical utility (Mehnatkesh et al., 2023; Pandiselvi and
Maheswaran, 2019). In contrast, deep learning possesses stronger
data representation capabilities, able to automatically learn high-
level abstract representations of data, significantly enhancing the
performance and effectiveness of machine learning. Deep learning
models are not only highly complex but also capable of handling
more complex tasks and larger datasets. Consequently, deep
learning has found widespread application in the field of medical
imaging, providing powerful support for disease diagnosis and
treatment (Kshatri and Singh, 2023; Mazurowski et al., 2023;
Mukadam and Patil, 2024; Yu et al., 2022).

Convolutional Neural Networks (CNNs), as a type of deep
learning algorithm, have demonstrated remarkable prowess in
the field of image processing, thanks to their unique advantages.
The CNNs not only accept input images, but also adeptly
assign varying degrees of importance to different elements or
objects within those images through learnable weights and biases,
enabling effective differentiation among them. Compared to other
classification algorithms, the CNNs significantly reduce the need
for preprocessing, greatly enhancing ease of use. In earlier image
processing, filters were typically manually designed. However,
CNNs can automatically learn these filters or features during
training. Consequently, CNNs have seen widespread application
in fields such as medical image analysis. Cao et al. (2024)
introduced a Multi-branch Spectral Channel Attention Network
(MbsCANet) for breast cancer classification. By extracting features
in the frequency domain and applying attention mechanisms
to the backbone network, MbsCANet achieves more precise
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feature extraction and classification, thereby not only improving
classification accuracy but also providing robust support for
early diagnosis and treatment of breast cancer. Regarding retinal
disease classification, Peng et al. (2024) proposed a multi-scale-
denoising residual convolutional network (MS-DRCN) model.
This model integrates the strengths of Deep Residual Network
(ResNet) along with multiscale processing and feature fusion
techniques. Aimed at enhancing the accuracy and robustness
of Optical Coherence Tomography (OCT) image classification,
MS-DRCN offers an effective tool for precise diagnosis of
retinal diseases. Moreover, SkinLesNet, a deep learning model
specifically designed for skin lesion classification, is built upon
a CNN architecture that has undergone meticulous design
and optimization (Azeem et al, 2024). Through a series
of CNNs, it progressively extracts image features, enabling
in-depth understanding and analysis of lesion images. This
structure enables the model to precisely capture subtle differences
and key features within the images, significantly boosting
classification accuracy and reliability. As a result, it provides
crucial assistance in the early detection and treatment of skin
lesions.

The Transformer, an attention mechanism originating from the
field of natural language processing, has demonstrated remarkable
performance in computer vision. Its advantages over CNNs are
particularly evident in handling long-distance dependencies and
global contextual information in images (Liu et al., 2021b; Yan et al.,
2023; Huang S. K. et al, 2024). Bofan Song et al. (Song et al,
2024) utilized Vision Transformer (ViT) and Swin Transformer
(SwinT) for the classification of oral cancer images. In the literature
(Huang L. et al, 2024), Swin-residual transformer (SRT), was
proposed for thyroid ultrasound image classification. The SRT
model introduces residual blocks and triplet loss into the SwinT
structure, aiming to improve sensitivity to both global and local
features of thyroid nodules and better identify subtle feature
differences. Additionally, Chincholi and Koestler (2024) designed a
model combining ViT and Detection Transformer architectures for
glaucoma detection. As the application of Transformers in disease
detection continues to grow, researchers have begun exploring
the integration of CNNs with Transformers to simultaneously
extract local and global features. For instance, Fang et al. (2024)
employed CNNs to extract local features while utilizing ViT for
global feature extraction, designing a deep integrated feature fusion
module for feature aggregation. Yan et al. (2023) developed the
Transformer based High Resolution Network (TransHRNet) for
brain tumor segmentation. TransHRNet initially used CNNs as an
encoder for image preprocessing, followed by feeding the extracted
features from the CNNs into an Effective Transformer (EffTrans)
module, and finally generating segmentation results through a
CNNs decoder. Notably, EffTrans incorporates Group Linear
Transformations (GLTs) with an expansion-reduction strategy and
spatial-reduction attention (SRA) layers, significantly reducing
the computational burden and memory consumption of the
Transformer.

The classification of brain tumors poses a highly challenging
task in computer vision. These tumors vary significantly in size,
shape, and location within the brain, and their categorization
depends not only on the characteristics of the lesion itself but
also on the surrounding tissue environment (ThamilSelvi et al.,
2025; Verma and Yadav, 2025). Furthermore, the diversity and
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spatial distribution of brain tumors underscore the importance
of utilizing both local and global features. In response to
these challenges, the Mixed Local and Global (MLG) model
is introduced. The uniqueness of the MLG model lies in its
utilization of two advanced feature extraction methods. On one
hand, Residual Efficient Multi-scale Attention (REMA) block is
designed to extract local fine-grained features. On the other hand,
the Bi-Level transformer (Biformer) block is used to capture the
global context features. The REMA module integrates two layers
of convolution and an Efficient Multi-scale Attention (EMA)
component (Ouyang et al, 2023), which are interconnected
through residual connections. This classical residual connection
design ensures that gradients can propagate more effectively
throughout the network during training, thereby mitigating
gradient vanishing issues (He et al., 2016; Shafiq and Gu, 2022).
Channel attention and spatial attention mechanisms have proven
to be highly effective in generating more discriminative feature
representations (Hu et al., 2018; Woo et al., 2018; Yu et al., 2023).
In this block, EMA enhances both spatial and channel-wise features
and achieves the ability to capture feature information across
different scales by constructing parallel subnetwork structures
operating at multiple resolutions. The core of Biformer is its
Bi-Level Routing Attention (BRA), which facilitates dynamic
and query-based content-aware sparse attention allocation while
circumventing the high computational cost of full-space attention.
Biformer realizes this pattern by introducing the Bi-Level Routing
Attention mechanism, where it first prunes irrelevant key-value
pairs at a coarse-grained region level, and subsequently conducts
fine-grained token-to-token attention computations only within
the selected candidate regions (Zhu et al., 2023). The integration of
features from REMA and Biformer via gated attention mechanisms
further refines these features, enhancing model performance.
To validate the efficacy of the MLG model, two publicly
available brain tumor datasets were utilized for experimental
evaluation. Experimental results demonstrated that the proposed
model outperforms other existing advanced models in terms of
performance. In summary, the main contributions of this paper are
as follows:

e Development of a brain tumor classification model that
integrates both local and global features.

The innovative application of the REMA module to extract
local features and the use of Biformer for capturing global
features, with both being effectively fused through a gated
attention mechanism.

Validation of the proposed model on two open datasets,
achieving superior results compared to the current state-of-
the-art performance.

2 Related work

The application of deep learning techniques in medical image
analysis is becoming increasingly popular, particularly in the
study of brain tumor classification, where it has demonstrated
significant value. In recent years, research efforts on brain tumor
classification tasks have continued to deepen, and these studies
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can be broadly categorized into two camps: one is the CNN-based
approach, and the other is the emerging strategy based on the
Transformer architecture.

2.1 CNN in brain tumor classification

The CNN has been widely used in brain tumor classification
tasks. In the task of brain tumor classification, CNNs have been
widely employed. Kang et al. (2021) adopted a transfer learning-
based framework using a pre-trained deep CNN to extract deep
features from MRI data. By fusing features obtained from different
levels of the network and integrating them with multiple machine
learning classifiers, this method achieved significant results. Alanazi
et al. (2022) proposed a 22-layer CNN model, which was initially
trained on a binary brain tumor dataset. Subsequently, with
the help of transfer learning technique, the model weight was
utilized for multi-class data, resulting in promising outcomes.
Saurav et al. (2023) designed an Attention-Guided Convolutional
Neural Network (AG-CNN) specifically tailored for brain tumor
classification tasks. The network incorporates an internal channel
attention module, which aids in focusing on processing image
regions relevant to tumors, thereby facilitating effective feature
extraction and classification. Alturki et al. (2023) proposed an
optimization scheme for brain tumor classification performance.
The CNNs were utilized to extract deep features from raw brain
tumor MRI data and two classification algorithms including
logistic regression (LR) and stochastic gradient descent (SGD)
were incorporated into a voting ensemble classifier. By inputting
these deep features into the ensemble classifier, the model achieved
accurate classification of brain tumors. Hossain et al. (2023)
conducted a study implementing transfer learning to investigate the
performance of various models, including VGG16, InceptionV3,
and ResNet50, inceptionResNetv2, Xception, for brain tumor
classification. Ultimately, three best performing models were
chosen to be used to construct an ensemble model, which was
named IVX16. Sachdeva et al. (2024) evaluated multiple pre-
trained models such as ResNet50, DenseNet121, EfficientNetBO,
and EfficientNetV2L, et al., by incorporating Dropout layers, global
average pooling layers, and tuning hyperparameters to enhance
model performance. The results show that EfficientNetBO model
achieved a higher classification accuracy.

2.2 Transformer in brain tumor
classification

Transformer has also been applied in brain tumor classification
tasks. Ferdous et al. (2023) proposed a Linear Complexity
Data-Efficient Image Transformer (LCDEiT) framework based
on a teacher-student mechanism specifically designed for tumor
classification from brain MRI images. In the teacher model
component, gated pooling techniques were employed to optimize
the feature extraction efficiency of CNNs. The pre-trained teacher
model was able to extract crucial knowledge pertinent to the
tumor classification task. On the other hand, the student model
introduced an image transformer equipped with an external
attention mechanism, which leveraged the knowledge acquired
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from the teacher model for tumor classification in brain MRI. In
paper, Asiri et al. (2024) proposed an innovative and robust method
based on the SwinT architecture, aiming to improve the accuracy
of brain tumor image classification. This method integrated
complex preprocessing procedure, sophisticated feature extraction
techniques, and a thorough classification system, enabling the
SwinT model to effectively analyze and discriminate various types
of brain tumors. Wang et al. (2024) employed a pre-trained ViT
as the backbone for their brain tumor classification model, named
as RanMerFormer. Additionally, to enhance the computational
efficiency of the ViT backbone, a Token Merging Algorithm
(TMA) was used. Instead of using a traditional linear classification
head, Random Vector Functional Link (RVFL) networks were
utilized. Poornam and Angelina (2024) proposed the ViT with
Attention and Linear Transformation module (VITALT) for brain
tumor detection and classification. VITALT primarily consists of
a ViT, a Split bidirectional feature pyramid network (S-BiFPN),
and a linear transformation module (LTM). ViT was used to
capture global and local features, while S-BiFPN fusions the
features extracted by ViT. The LTM enhanced the model’s linear
expressive ability. In paper ($ahin et al., 2024), the Bayesian Multi-
Objective (BMO) optimization method was employed to optimize
the hyperparameters of the ViT network in order to improve its
performance in brain tumor classification tasks. Gade et al. (2024)
proposed the Lite Swin Transformer (OLiST) model for brain
tumor detection. This model combined the Lite Swin Transformer’s
ability to capture global features with the advantage of CNNs in
extracting local features. By fusing the features extracted by both,
the model leveraged the strengths of both approaches.

In summary, the use of CNNs and Transformers have been
used in brain tumor classification tasks with excellent performance.
CNNs have the advantage of extracting local features of images,
while Transformers have the advantage of exploiting global features
of images. Therefore, this paper innovatively introduces a hybrid
model, MLG, which effectively integrates the respective strengths
of CNNs and Transformers, thus significantly enhancing the
performance of brain tumor classification tasks.

3 Materials and methods

In this section, the datasets used and the proposed model are
described in detail.

3.1 Datasets and preprocessing

In this study, two widely used public datasets, namely the
Chen dataset and the Kaggle dataset, were adopted. The Chen
dataset, provided by Cheng et al. (2015), primarily focuses on
three types of brain tumors: gliomas, meningiomas, and pituitary
tumors. Comprising a total of 3,064 images, this dataset offers a
rich resource for our in-depth research and analysis. On the other
hand, the Kaggle dataset is a meticulously compiled and shared
public dataset by Bhuvaji et al. (2020). This dataset encompasses
four categories of images: glioma tumors, meningioma tumors,
pituitary tumors, and normal brain tissues, totaling 3,264 images.
For eflicient model training and testing, the two datasets were
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randomly divided into a training set and a test set. Specifically,
80% of the data was allocated to the training set for model training
and optimization, while the remaining 20% was designated as
the testing set for evaluating the model’s performance. Detailed
statistics on the number of images in each dataset are presented in
Table 1.

A simple and efficient data preprocessing method is used
in the preprocessing phase of the dataset. In the experimental
process, to preserve the integrity of image content and stability of
features, all images were uniformly resized to 224 x 224 x 3 pixels.
This resizing not only helps maintain the spatial structure and
information integrity of the images but also significantly reduces
computational burden during network training, thereby enhancing
training efficiency. Additionally, normalization was performed,
which is a standard preprocessing step in deep learning. This
aims to mitigate differences in brightness, contrast, and other
attributes among images, enabling the model to focus more acutely
on learning the inherent features of the images. For medical
images, acquiring a large volume of such data can be challenging
(Dhar et al,, 2023). Given that deep neural networks typically
require substantial amounts of data for training, and considering
the relatively limited scale of the datasets utilized in this study,
data augmentation strategies were employed to alleviate overfitting
concerns. Specifically, random rotation and random horizontal
flipping techniques were utilized, both of which effectively enhance
dataset diversity without introducing additional noise, thereby
improving the model’s generalization capability.

3.2 Mixed local and global model

In this section, details of the proposed model are provided. The
architecture of the MLG model, which combines both local and
global components, is depicted in Figure 1. Initially, brain tumor
images undergo preprocessing before being fed into a convolutional
layer with a kernel size of 5 x 5 and a stride of 1, designed to enlarge
the receptive field. Subsequently, a max pooling layer is applied
for downsampling and dimensionality reduction of the extracted
features. And then, the features are further processed through five
REMA and Biformer (RB) Mixing Blocks to refine the extraction of
characteristics specific to brain tumor images. Finally, the resulting
features are classified accordingly. The structure of the RB Mixing
Block is illustrated in Figure 2.

Figure 2 presents the structure of the RB Mixing Block,
primarily consisting of REMA and Biformer units. The REMA

TABLE 1 Details of the datasets.

Dataset Classes Number of Total image
name each class count

Chen Glioma 1,426 3,064
Meningioma 708
Pituitary tumor | 930

Kaggle Glioma 826 3,264
Meningioma 822
Pituitary tumor | 827
No tumor 395
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Weight Output

unit is designed to extract local features from the images, while
the Biformer unit focuses on extracting global features. After
combining the features derived from these two modules, a gating
mechanism adjusts the weights of the fused features to better
suit the task of brain tumor classification, thereby enhancing the
model’s classification performance. Here, M denotes the number of
REMA convolution modules used and N denotes the number of
Biformer modules used, M = N = 2. REMA utilizes max pooling
for downsampling, aiming to broaden the receptive field of the
module. On the other hand, Biformer employs convolutions with
a stride of 2 for downsampling, intending to derive higher-level
feature representations. Subsequently, the features extracted by
both REMA and Biformer are merged and subjected to processing
by the gating mechanism. Then, the adjusted features are multiplied
with the original ones to modulate their significance in influencing
the model’s overall performance, effectively filtering out a set
of features that have a more substantial impact on the model’s
classification results. The output of the RB Mixing module can be
expressed as:

outrp = sigmoid(fReMa + fBiformer) X (fREMA + fBiformer) (1)

where, frema and fpiformer Tepresent the features extracted by the
modules REMA and Biformer, respectively.

Frontiers in Neuroscience

In order to present the structure and parameter characteristics
of the REMA module and the Biformer module more clearly. We
have detailed the number of parameters, input dimensions and
output dimensions of these two modules in Table 2.

The structure and computational complexity of the REMA
block and the Biformer block in the MLG model can be understood
more specifically through Table 2.

3.3 REMA Block

The structure of the REMA block is depicted in Figure 3. This
module consists of two convolutional layers and an EMA unit,
interconnected via residual connections to facilitate information
fusion and propagation. This design aims to enhance the model’s
representation learning capacity while alleviating the gradient

TABLE 2 Parameters and dimension information of the REMA block and
the Biformer block.

Block Input size | Output size No. of
parameters

REMA 112 x 112 x 64 | 112 x 112 x 64 74,160

Biformer | 112 x112x 64 | 112 x 112 x 64 10,4576
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FIGURE 3
REMA structure.

vanishing problem often encountered in deep networks. By
incorporating the EMA unit (Ouyang et al., 2023), the REMA
block is better equipped to capture inherent data features, thereby
boosting the model’s performance. The core idea of the EMA
module is to group the channel dimensions into multiple sub-
features and ensure good distribution of spatial semantic features
within each feature group. This method not only preserves
information in each channel but also reduces computational
overhead. Specifically, the EMA module recalibrates the channel
weights of each parallel branch using global information encoding.
Moreover, the output features from the two parallel branches
are aggregated through cross-dimensional interaction methods,
further enhancing the representational power of the features. Inside
the EMA module, there are three parallel paths designed to extract
attention weight descriptors for the grouped feature maps. Two of
these paths belong to the 1 x 1 branch, while the third one is part
of the 3 x 3 branch. Within the 1 x 1 branch, two one-dimension
global average pooling operations along two spatial directions are
employed to encode channel attention. In contrast, the 3 x 3 branch
uses a single 3 x 3 convolutional kernel to capture multi-scale
feature representations. The output of the REMA module can be
mathematically represented as follows:

out = EMA(conv(conv(x))) + x (2)

The structure of the Biformer Block is depicted in Figure 4.
The core of the Biformer lies in its BRA, which consists of a
deep convolution, two layers of Layer Normalization (LN), and
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a Multilayer Perceptron (MLP) interconnected through residual
connections (Zhu et al., 2023).

The design principle of BRA revolves around dynamic, query-
content based sparsity. Initially, irrelevant key-value pairs are
filtered out at a coarse-grained regional level by constructing and
pruning a directed graph representing region-level relationships.
Subsequently, a fine-grained token-to-token attention mechanism
is applied over the joint set of the remaining, or routed,
regions to selectively focus on locally relevant information while
bypassing globally unrelated data. In BRA process, given a two-
dimensional input feature map X, it is partitioned into S x S
non-overlapping regions, each containing a specific number
of feature vectors. These region-based features undergo linear
projections to generate query, key, and value tensors Q, K,
V. An inter-region association matrix AY is then constructed
by computing average query and key vectors across regions,
with its elements indicating semantic relevance between pairs
of regions. The critical step involves selecting the top k most
related adjacent regions for each region based on this relevance
measure, yielding a routing index matrix I' via row-wise top-
k operations. Building upon this, the model applies fine-grained
token-to-token attention. Specifically, for a query token originating
from region i, it attends to all key-value pairs within the k
routed regions indexed by I}/i’l) through I},i,k)' To efficiently
execute this, despite these regions potentially being scattered
throughout the feature map, the model first employs a gather
operation to collect the key and value tensors from these regions,
forming aggregated key and value sets K; and V. Finally,
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attention computation is performed using the gathered key and
value tensors:

(QK)T
NG

here, N is usually a factor that scales the denominator in

O = soft max(

)Vg 4+ LCE(V) 3)

the formula for calculating the attention score in order to
prevent the occurrence of over-concentration of weights and
loss of gradients. LCE (V) represents local context enhancement,
which is implemented by depth separable convolution to enhance
local information.

3.4 Loss function

In classification tasks, the cross-entropy loss function is a
commonly used loss function. Originating from the concepts of
entropy and mutual information in information theory, it serves
to quantify the discrepancy between two probability distributions.
Specifically, when training neural networks, it is employed to
measure the difference between the model’s predicted probability
distribution and the true distribution of the observed data. For
classification tasks, assuming the true label is y and the model
predicted probability is q, the cross-entropy loss function can be
expressed as:

H(y,q) = = > yilog(q:) (4)

where, y; represents the true label for the i-th category and q;
denotes the model predicted probability that the sample belongs to
the i-th class.

4 Results

This section introduces the experimental setup, experimental

results, and ablation experiments, collectively serving to

comprehensively and rigorously substantiate the proposed model.
4.1 Experimental apparatus
A PyTorch implementation is performed for the model

proposed by us, while experiments were carried out on a Windows
11 system equipped with a 12GB RTX 4070 GPU and an Intel
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i5-13400F processor. The Adam optimizer was utilized, with the
initial learning rate set at 0.0001, the batch size fixed at 16, and
the number of epochs specified as 50. In our experiments, early
stopping was utilized to prevent overfitting. Detailed information
about the parameters can be found in Table 3.

4.2 Evaluation metrics

In the experiments, the accuracy, recall, precision, and F1-
score were employed as evaluation metrics, with their respective
calculation methods presented in Formulas (5-8). The accuracy is
one of the most commonly used evaluation metrics in classification
problems, representing the proportion of correctly classified
samples out of the total number of samples. The recall, focuses
on the ability of the model to correctly identify positive samples,
which refers to the ratio of true positives (correctly identified
positive instances) to all actual positive instances in the dataset.
The precision measures the proportion of instances predicted by
the model as positive that are truly positive, that is, the ratio
of true positives to all instances predicted as positive. The F1-
score, being the harmonic mean of precision and recall, integrates
the performance of both precision and recall, offering a more
comprehensive assessment of the model’s performance (Zulfigar
et al., 2023; Zebari et al., 2024). When both precision and recall
are high, the Fl-score will also be high, and conversely, when
either of these values is low, so will the Fl-score. This implies
that a high F1-score indicates strong overall performance in terms
of both accurately identifying true positives and minimizing false

predictions.
TN + TP
Accuracy = + (5)
TN + TP + FN + FP
TP
Recall = ——— (6)
TP + FN

TABLE 3 Training Hyper-parameter values of proposed network.

Parameters Value

Initial learning rate 0.0001
Batch size 16
Optimizer Adam
Number of epoch 50
Learning rate decays 0.1
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- TP
Precision = ——— (7)
TP + FP
2TP
Fl —score= ————— (8)
2TP + FP + FN

4.3 The results of the experiment

Figure 5 illustrates the confusion matrices for the classification
results of the model on the test sets of two publicly available
datasets, where G, M, and P stand for glioma, meningioma,
and pituitary adenoma, respectively, and N stands for normal
state, indicating the absence of brain tumor. From the confusion
matrices, detailed classification performance metrics for the model
were calculated according to Formulas (5-8) and summarized in
Table 4. From Table 4, it is evident that, on the test set of the
Chen dataset, the average performance metrics for model MLG
include a recall of 98.88%, precision of 98.94%, F1-score of 98.91%,
and accuracy of 99.02%. On the Kaggle dataset test set, MLG
corresponding metrics are 96.89% for recall, 97.21% for precision,
96.89% for Fl-score, and 97.24% for accuracy. These indicators
demonstrate that across both the Chen and Kaggle datasets, the
MLG model exhibits outstanding classification performance, which
further validates the effectiveness and generalization capabilities of
the MLG model, enabling it to achieve satisfactory performance in
brain tumor classification tasks on diverse datasets.

4.4 Ablation study

In Section 4.3, performance metrics for the classification results
of the proposed model are presented. To further confirm the
validity of the proposed model, an ablation study was performed.
In this study, different combinations of modules are explored
within the framework of the model. This process allows for a
meticulous examination of each component’s contribution to the

5 . 250
200
L
EM- 3 0 150
&
100
PP 0 1 185 50
G M P 9
Predict

(A)

FIGURE 5
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overall performance, thereby providing deeper insights into the
effectiveness and robustness of the proposed model architecture.

In the first part of the study, brain tumor classification was
conducted separately using REMA and Biformer independently.
Figure 6 presents the testing results of various models in the Chen
dataset during the ablation experiment. The accuracies achieved by
REMA and Biformer are 98.53 and 98.37%, respectively, both lower
than the 99.02% accuracy obtained by MLG. Upon conducting
a detailed analysis of the ablation experiment results, it becomes
clear that the integration of the strengths of both the REMA and
Biformer modules within the MLG model effectively boosts the
accuracy rate in brain tumor classification.

In the second part of the study, the performance of the MLG
model upon incorporating the gated attention mechanism was
meticulously examined. The gated attention mechanism plays a
pivotal role within the model, serving to regulate the flow of
information by deciding which pieces of information should be
emphasized and which should be disregarded. By means of gating,
the attention mechanism assigns weights to information based
on its importance, thereby enhancing the model performance by
focusing on crucial features. Figure 7 shows the performance of the
model with and without the gated attention mechanism. Where,
GA stands for Gated Attention. It can be observed that when the
model does not include the gated attention, its performance lags
behind the version with the gated attention mechanism by 2.12%.
The results strongly demonstrate the effectiveness of the gated
attention in improving the performance of the model.

In the third segment of the investigation, the impact of
data augmentation on the MLG model was thoroughly explored,
particularly in scenarios involving small sample datasets. Data
augmentation is a critical technique that can significantly enhance a
model generalization capability while mitigating overfitting issues.
In this work, two prevalent data augmentation strategies were
employed: random rotation and random flipping. Figure 8 provides
a detailed account of the model accuracy rates on both the training
and test sets of the Chen dataset when data augmentation is applied.
Ar stands for data augmentation. From the figure, it is evident

G 1 1 0
150
M- 4 2 3
o 100
=
N- 3 3 0
-50
P 0 1 0 179
G M N P k.
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B)

Confusion matrix for model classification results (A) Chen dataset (B) Kaggle dataset.
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TABLE 4 Detailed values of metrics for the proposed model.

Dataset

Tumor |Recall | Precision | F1- Accuracy
type (%) (%) score (%)| (%)

10.3389/fnins.2025.1618514

Chen Glioma 99.30 98.95 99.12 99.02
Meningioma 97.87 97.87 97.87
Pituitary | 99.46 1.00 99.73
Average 98.88 98.94 98.91
Kaggle Glioma 98.92 96.32 97.60 97.24
Meningioma 95.19 97.27 96.22
No Tumor | 94.00 96.91 95.43
Pituitary | 99.44 98.35 98.90
Average 96.89 97.21 96.89
100 - ———— B S
0 | 99.02 ‘
98.53
Accuracy|(%) TR 98.37 |

98 I |
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FIGURE 6
Classification results by REMA and Biformer.
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Effects of gating attention mechanism on MLG.

that with data augmentation, the training and test set accuracies
reach 99.96 and 99.02%, respectively. In contrast, without data
augmentation, while the accuracy on the training set reached 100%,
the accuracy on the test set notably decreased to 96.73%. This
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FIGURE 8
Impact of data augmentation on MLG.

comparative outcome vividly demonstrates that data augmentation
has a pronounced effect on improving model performance.

5 Discussion

According to the data in Table 4, the MLG model achieves
impressive accuracies of 99.02% on the Chen dataset and 97.24% on
the Kaggle dataset, which attest to its effectiveness and satisfactory
performance. Moreover, through ablation studies, the superiority
of the MLG model was further substantiated, emphasizing the
significant improvements gained by fusing the REMA and Biformer
modules via the gated attention mechanism, rather than merely
adding them together. Additionally, the application of data
augmentation has led to noticeable performance enhancements,
further bolstering the model generalization capabilities.

Beyond internal validation, the proposed model was also
compared against other advanced methods utilizing the same
datasets. Table 5 clearly outlines these comparative results. On
the Chen dataset, the MLG model outperforms the current best-
performing model, Multimodal-CNN Model (Magsood et al,
2022), by 0.1% in accuracy. Similarly, on the Kaggle dataset, the
MLG model surpasses the previously best-reported model IVX16
(Hossain et al., 2023) by an accuracy margin of 0.3%. When
juxtaposed against methodologies outlined in literature sources
paper (Alanazi et al., 2022)and paper (Saurav et al., 2023), the MLG
model consistently demonstrates higher performance on both the
Chen and Kaggle datasets. Precisely, on the Chen dataset, MLG
accuracy exceeds that of paper (Alanazi et al., 2022) by 2.13% and
that of paper (Saurav et al., 2023) by 1.79%. On the Kaggle dataset,
MLG accuracy advantage over paper (Alanazi et al., 2022) is 1.49%,
while over (Saurav et al., 2023) it is 1.53%. These comparative
results serve as compelling evidence of the MLG model superior
performance in the task of brain tumor classification, reinforcing
its potential applicability in real-world scenarios.

The Receiver Operating Characteristic Curve (ROC Curve) is
a widely used visualization tool in statistics, machine learning,
medical diagnostics, and other fields that require categorical
judgments for evaluating the performance of classification models.
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TABLE 5 Compare with advanced methods on datasets Chen and Kaggle.

CNN Sachdeva et al. Transfer Kaggle 96.25
(2024) learning
Jun and Liyuan Attention- Chen 98.61
(2022) Guided
Magsood et al. Multimodal- Chen 98.92b
(2022) CNN
Model
Alanazi et al. 22-layer CNN Chen 96.89
(2022)
Kaggle 95.75
Saurav et al. (2023) AG-CNN Chen 97.23
Kaggle 95.71
Transformer | Wang et al. (2024) | RanMerFormer Chen 98.86
Sahin et al. (2024) BMO Chen 98.09
Hossain et al. IVX16 Kaggle 96.94
(2023)
Anaya-Isaza et al. Cross- Chen 97.22
(2023) Transformer
Dosovitskiy et al. Vision Chen 97.39
(2021) Transformer
Kaggle 95.88
Liu et al. (2021a) Swin Chen 98.69
Transformer
Kaggle 97.10
CNN+ Ferdous et al. LCDEIT Chen 98.11
transformer (2023)
Chen et al. (2025) EnSLDe Chen 98.69
Proposed model MLG Chen 99.02
Kaggle 97.24

It graphically illustrates the trade-off relationship between the
true positive rate (TPR) and false positive rate (FPR) of the
model under different threshold conditions. The area under curve
(AUC), indicates better model performance when its value is larger.

10.3389/fnins.2025.1618514

Typically, the closer the curve is to the upper left corner (with
higher TPR and lower FPR), the better the model performance. The
ROC curves of the model on the two datasets are shown in Figure 9.
It can be observed that the ROC curves closely adhere to the upper
left corner. On the Chen dataset, the AUC values of the MLG
model for glioma, meningioma, and pituitary tumors are 0.9996,
0.9993, and 1.00, respectively. Meanwhile, on the Kaggle dataset,
the AUC values of the MLG model for glioma, meningioma, normal
tissue, and pituitary tumors are 0.9991, 0.9965, 0.9989, and 0.9999,
respectively.

6 Conclusion

Brain tumors, constituting a severe health issue, pose a
significant threat to people’s lives. Therefore, timely and accurate
identification of brain tumor types, followed by appropriate
treatment planning, is critical for patients. The advent of
CAD technology has provided substantial support to doctors in
diagnosing brain tumors. In this paper, a novel MLG brain tumor
classification model is proposed, and the model skillfully integrates
local features and global features, and provides a new solution
for the classification of brain tumors. The core components of
the MLG model are RMEA, Biformer and gated attention. The
RMEA Block, through carefully designed convolutional structures,
efficiently retains information across channels, emphasizing spatial
and channel-wise features, thereby extracting richly informative
local features. Conversely, the Biformer employs a unique BRA
mechanism to dynamically and contextually select a subset of
the most relevant key-value pairs for each query, optimizing
the computational process. Meanwhile, BRA can capture remote
dependencies across regions and even objects, providing powerful
support for extracting global features. The MLG model uses a
gated attention to selectively filter and fuse the local features
extracted by the RMEA block with the global features extracted by
the Biformer block. This significantly enhances the representation
capability of the fused features, thereby improving the classification
performance of the model. The integration of both local and
global features enables the MLG model to exhibit outstanding
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ROC curves for the proposed model on (A) Chen dataset (B) Kaggle dataset.
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performance in brain tumor classification tasks. Experimental
results on two public datasets demonstrate that the MLG
model achieves satisfactory performance across multiple metrics,
including accuracy, precision, recall, and Fl-score. Compared
with existing advanced methods, the MLG model exhibits
marked advantages, fully validating its effectiveness in practical
applications. In future work, it is planned to continue exploring
other methods of feature fusion first to further improve the
performance of the MLG model. Secondly, the introduction of
more refined feature detection methods will be explored, or they
will be combined with other advanced attention mechanisms to
enhance the selection ability for key areas. In addition, efforts
will also be made to obtain data on other brain diseases, expand
the application scope of the model, and provide more auxiliary
diagnostic tools for the medical field.
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Introduction: Functional brain networks measured by resting-state functional
magnetic resonance imaging (rs-fMRI) have become a promising tool for
understanding the neural mechanisms underlying schizophrenia (SZ). However,
the high dimensionality of these networks and small sample sizes pose significant
challenges for effective classification and model generalization.

Methods: We propose a robust multi-task feature selection method combined
with counterfactual explanations to improve the accuracy and interpretability
of SZ identification. rs-fMRI data are preprocessed to construct a functional
connectivity matrix, and features are extracted by sorting the upper triangular
elements. A multi-task feature selection framework based on the Gray Wolf
Optimizer (GWO) is developed to identify abnormal functional connectivity (FC)
features in SZ patients. A counterfactual explanation model is applied to reduce
perturbations in abnormal FC features, returning the model prediction to normal
and enhancing clinical interpretability.

Results: Our method was tested on five real-world SZ datasets. The results
demonstrate that the proposed method significantly outperforms existing
methods in terms of classification accuracy while offering new insights into the
analysis of SZ through improved feature selection and explanation.

Discussion: The integration of multi-task feature selection and counterfactual
explanation improves both the accuracy and interpretability of SZ identification.
This approach provides valuable clinical insights by revealing the key functional
connectivity features associated with SZ, which could assist in the development
of more effective diagnostic tools.

KEYWORDS

schizophrenia, functional connectivity, rs-fMRI, feature selection, counterfactual
explanation

1 Introduction

Schizophrenia (SZ) is a chronic, often disabling mental disorder that affects one
percent of the world’s population (Insel, 2010; McCutcheon et al, 2020). Patients’
clinical symptoms manifest in perception, thinking, and emotion, such as hallucinations,
delusions, incoordinated excitement, and anxiety (Song et al., 2023; Rantala et al., 2022).
Although the pathogenesis of SZ is still unclear, it is increasingly recognized that analyzing
the brain network of SZ can help improve differential diagnosis and understand the
pathological mechanism (Zhang et al., 2021). Recent studies have shown that functional
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brain networks measured by resting-state functional magnetic
resonance imaging (rs-fMRI) have become a promising tool to
reveal the underlying neural mechanisms of SZ (Zhu et al,
2024; Chyzhyk et al, 2015). SZ causes widespread changes in
functional brain networks, including changes in global brain
topology, abnormal connectivity in local regions, and the formation
of specific abnormal subgraphs (Huang et al., 2025).

However, although functional brain networks provide rich
pathological information, these data often have high-dimensional
characteristics, making analysis and modeling face great challenges
(Mhiri and Rekik, 2020). Therefore, feature selection (FS)
becomes an indispensable step, which can remove irrelevant or
redundant features and retain only the most diagnostically valuable
information (Naheed et al., 2020). In addition, functional brain
network data usually face the problem of small samples. Due to
the high cost of data acquisition, the long experimental cycle,
and the difficulty in recruiting subjects, the number of samples
is often much lower than the feature dimension, making model
training susceptible to overfitting, thereby reducing generalization
ability (Turner et al., 2018; Ding et al,, 2024). In this context,
robust and effective FS is vital. In fact, FS plays a key role in
identifying meaningful biomarkers, such as functional connectivity
between brain regions, which can characterize abnormalities in
brain function associated with brain diseases such as SZ, thus
providing insight into understanding the neural basis of brain
diseases, as well as diagnosis and prediction (Xing et al., 2022).

For functional brain network data, the traditional FS method
often exhibits poor robustness across datasets, primarily due to
the high dimensionality of the feature space and the scarcity of
training samples, and it is difficult to identify connection features
with consistency and biological interpretability (Wang et al., 2015;
Lvetal, 2015 Huetal., 2021). At present, most existing FS methods
have combined advanced technologies such as machine learning
or deep learning to improve performance, such as using graph
neural networks to model FC structures, or improving feature
selection efficiency through embedded FS strategies, but these
methods still have obvious limitations. On the one hand, many
models still lack consistent evaluation across data sets, making
it difficult to identify robust disease-related connection features
(Chan et al., 2024); on the other hand, most existing methods are
black-box in form and lack interpretability, especially in clinical
applications. It is difficult to provide actionable explanations or
intervention recommendations (Verma et al., 2023). In addition,
although some studies have introduced multimodal or high-order
connection features in SZ diagnosis, it is still difficult to achieve a
good balance between model generalization and explanatory power
(Sunil et al., 2024).

To address the above challenges and fill this gap, we proposed
a novel and robust multi-task feature selection method for
SZ diagnosis, and explained the changes in brain functional
connectivity (FC) caused by the disease through a counterfactual
explanation model. The schematic diagram of our proposed
method is shown in Figure 1. Specifically, we first preprocessed
the rs-fMRI data, constructed the FC matrix, and then extracted
the upper triangular elements as feature vectors and sorted them.
Subsequently, we developed a robust multi-task feature selection
framework based on the Gray Wolf Optimizer (GWO), and
selected the abnormal FC features of SZ patients by adopting
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feature stratification and weight-based task generation. Finally, we
used the counterfactual explanation model to generate a set of
counterfactual examples for SZ patients, that is, by fine-tuning the
abnormal FC features of SZ patients to make their state close to
normal, thus providing theoretical guidance for the analysis and
diagnosis of SZ. We verified the effectiveness of our method on five
real SZ datasets, and the results showed that our method not only
improved the interpretability of the model, but also provided a new
perspective for the analysis of SZ. The main contributions of this
paper are as follows:

e We propose a Robust Multi-Task Feature Selection with
Counterfactual Explanation for Schizophrenia Identification
to assist SZ analysis and diagnosis.

e We construct a multi-task feature selection framework based
on GWO and combine it with the counterfactual explanation
model to fine-tune the abnormal FC features of SZ patients
to make their status closer to that of healthy individuals,
thereby improving the accuracy of SZ classification and the
interpretability of the model.

e We evaluate the performance of the proposed method using
five real SZ datasets. The results show that the proposed
method outperforms existing methods.

2 Related work

2.1 Gray wolf optimizer

Gray Wolf Optimizer (GWO) (Mirjalili et al., 2014) is an
intelligent optimization algorithm that simulates the hunting
behavior of gray wolf groups. In the context of multitasking,
GWO provides efficient global search capabilities and information-
sharing mechanisms between individuals, which can improve
optimization performance in a multi-task environment.

Gray wolf packs are generally divided into four levels: (i) «
is the leader of the wolf pack, representing the current optimal
solution, (ii) B is the second-level wolf, assisting « in decision-
making, representing the second-best solution, (iii) § is the third-
level wolf, assisting 8, representing the third-best solution, and
(iv) 0 is an ordinary wolf that obeys other high-level wolves and
represents the remaining candidate solutions. When searching for
prey, gray wolves will gradually approach the prey and surround it:

D
X(t+1)

IC- X, — X] (1)
=X,—A-D 2)
where X), is the location of the prey or the current optimal solution,

X is the location of the individual wolf, ¢ is the number of iterations,
and A and C are coeflicient vectors, which are calculated as follows:

A=2d-r —d, C=2n (3)

where d is the convergence factor that decreases linearly with the
number of iterations, from 2 to 0, and r; and r, are random
numbers between [0, 1]. GWO uses three optimal solutions (¢, 8,
8) to jointly guide the search:

X(t+D=5 Y 0G-4;D) @
i—a, .8
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Illustration of our proposed schizophrenia analysis method, including (a) data pre-processing, (b) Robust Multi-Task Feature Selection, (c) Diversity

where D; = |C; - X; — X|,i € {«, B,8}. When |A| becomes smaller
(approaches 0), the search range is reduced, and the wolf pack
gradually converges to the optimal solution. When |A| > 1, the
wolf pack stays away from the prey and performs a global search to
avoid falling into the local optimum.

2.2 Counterfactual explanation

Counterfactual explanations are a method for making machine
learning models more transparent by showing how to change
attributes to obtain different results (Spreitzer et al., 2022). Cheng
et al. (2020) introduced counterfactuals with a classic example: A
person submitted a loan request but was rejected by the bank. If his
credit score had been 700 instead of 600, his loan application would
have been approved.

Counterfactual explanations are currently widely used in
different fields, including medical diagnosis, decision reasoning,
and artificial intelligence. Richens et al. (2020) have improved
the application of machine learning in the field of medical
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diagnosis, especially in identifying rare diseases, by establishing
a counterfactual causal diagnosis model. Prado-Romero et al.
(2023) use counterfactual explanations to provide a way to
understand model decisions by providing specific changes in
input features to explain the model’s decision-making process. In
addition, counterfactual explanations also have many applications
in brain networks. For example, in the study of Abrate and
Bonchi (2021), they proposed an explanation method for a
black-box graph classifier for brain network classification. By
analyzing counterfactual graphs, brain region connection patterns
associated with specific brain region diseases can be identified.
Matsui et al. (2022) proposed a new generative deep neural
network (DNN) called Counterfactual Activation Generator
to provide counterfactual explanations for DNN-based brain
activation classifiers.

Counterfactual explanation has emerged as an important
branch in the field of machine learning interpretability; however, it
has not yet been applied to FC analysis. In this work, we introduce
a counterfactual perspective: if the abnormal FC between brain
regions in SZ patients is adjusted toward the normal range, their
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predicted state may shift closer to that of healthy individuals. Such
counterfactual reasoning is particularly valuable in the medical
domain, as it can assist clinicians in evaluating the potential
impact of different treatment strategies, especially in the context of
brain diseases.

3 Materials and methods
3.1 Schizophrenia dataset

In this study, five public datasets are used, including the Center
for Biomedical Research (COBRE) dataset (120 subjects), the
Huaxi dataset (311 subjects), the Nottingham dataset (68 subjects),
the Taiwan dataset (131 subjects) and the Xiangya dataset (143
subjects). All subjects met the following conditions: (i) no other
Diagnostic and Statistical Manual of Mental Disorders (DSMIV)
disease exists, (ii) no history of drug abuse, (iii) no clinically
significant head trauma. The specific information of the subjects
is presented in Table 1.

3.2 Data pre-processing

The rs-fMRI data of the five datasets are collected by different
types of scanners, including COBRE and Xiangya by 3-T Siemens
Tim-Trio scanner with an eight or 12-channel head coil, Huaxi by
3-T General Electric MRI scanner, and Nottingham by 3-T Philips
Achieva MRI scanner. The rs-fMRI data are preprocessed using the
program standard procedures of SPM 8 and the Data Processing
Assistant for Resting-State fMRI (DPARSEF). The following steps
are performed: (i) removing the first 10 volumes, (ii) slice timing
correction, (iii) head motion correction, (iv) regress out the
nuisance covariates, (v) normalized to standardized space, (vi)
voxel-wise bandpass filtering, (vii) normalization of anatomical
images to MNI template space, and (viii) smoothing with a 4
mm Full Width at Half Maximum (FWHM) Gaussian kernel.
After processing, we defined the nodes of the brain network
according to the Automatic Anatomical Labeling (AAL) template,

TABLE 1 Characteristics of subjects in the five datasets in this study.

10.3389/fnins.2025.1609547

and calculated the pairwise similarities between the noded1s of the
time series as the connecting edges of the brain network.

Next, let Af € RN*N pe the connectivity matrix of the
functional brain network, N be the number of regions of the brain
network, i = 1,2, ..., p, and p be the number of subjects. We take the
upper triangular elements of the matrix as features and represent
them as vectors S; = (s},...,5,...,s7) € R¥9, g = w, 5!
represents the j-th feature of the i-th subject, and Y; € R is the
label of the i-th subject. It is worth noting that in this paper, we
divided the brain network into 90 regions of interest (ROI), that is,
N = 90, so each subject contains a vector of dimension 1 x 4,005,
which reflects the functional connectivity strength pattern between
the 90 brain regions of the subject.

3.3 Robust multi-task feature selection

3.3.1 Multi-task generation

To identify the most critical FC features for brain disease
diagnosis, we use the infinite feature selection (IFS) (Roffo et al,
2020) method to calculate the importance of each feature and
rank the features accordingly. Specifically, the weight of each
feature is calculated based on the linear weighting of the following
three aspects (i.e., Fisher criterion h;, mutual information m;, and
standard deviation ;). The first is the Fisher criterion:

2
i — ol
- 2 2
%1 9>

h; (5)

where (1, and oj¢ represent the mean and standard deviation of
the j-th feature in the g-th class, respectively. In our experiments,
both are binary classifications, so g € {0, 1}.

The second is the normalized mutual information m; between
feature ¢/ and class label Y:

mj = Z Z u(z, y)log(

YeY zed

u(z, y)

u(Z)u(y))

(6)

where Y is the set of class labels and u(-) represents the joint
distribution probability.

Datasets Class Gender (M/F) P-value of gender Age (years) P-value of age

COBRE NC 46/21 0.1927 34.82+11.28 03987
sz 42/11 36.75+13.68

Huaxi NC 79/71 0.6748 27.80+12.50 1.000
Sz 80/81 27.80+12.50

Nottingham NC 26/10 02277 33.38+8.98 0.9855
Sz 27/5 33.34+9.05

Taiwan NC 25/37 02329 29.87-+8.62 0.2847
sz 35/34 31.59+9.60

Xiangya NC 35/25 09333 27.17+6.64 0.1025
SZ 49/34 23.3747.83

NC, normal control; SZ, schizophrenia.
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The third is the standard deviation j, which reflects the
dispersion of feature ¢/ in the sample.

The final weight of each feature s; is calculated as follows:

si=ay-hj+ay-mj+as-oj. (7)
where a1+, 43 = 1, this weighting approach allows us to flexibly
adjust the contribution of each indicator in the selection of features,
thus selecting the most informative features for the diagnosis of
schizophrenia (SZ).

Based on the preliminary evaluation of FC feature importance
based on the above three factors, we further constructed a feature
weight curve and optimized the FS process by introducing a
knee point detection algorithm, following the knee point detection
method proposed by Chen et al. (2021). This approach provides
an automated criterion for determining the optimal feature subset
size. Specifically, after obtaining the weight of each feature, we first
construct a straight line connecting the starting point and the end
point of the weight curve, and then calculate the vertical distance
from each point on the curve to the straight line. The knee point
(Xknee> Vinee) 1s the point that maximizes the distance:

lyj — (axj + b)|

NS ®

(Xknees Vknee) = arg max](

where a and b are the slope and intercept of the straight line
determined by the starting point and the end point, (xj, y;) is the
coordinate of the j-th feature point on the curve,j = 2,3,..,q — 1.
The identified knee points divide the feature weight curve into
multiple intervals, and the features in each interval are given
different priorities according to their weights.

Based on the location of the knee points, as shown in Figure 1b,
we divide the features into three categories:

(i) Core features: located before the first knee point. These
features are usually highly correlated with the predicted target
variable and have low redundancy, and contribute the most to
the model’s predictive ability.

(ii) Important features: located between the two knee points.
Although these features are not as important as the core
features, may still contain useful information for specific
scenarios. When combined with other features, they can
enhance overall model performance, especially in complex
cases where feature interactions are significant.

(iii) Remaining features: located after the second knee point.
These features contribute less to the prediction task, contain
redundant information, or have low correlation with the

target variable.

After the above steps, we further use this category information
to guide the task generation process. To ensure that the feature
extraction process not only reflects its relative importance but also
maintains appropriate diversity, we adopt a probabilistic extraction
method based on feature weights. Specifically, we determine
the initial selection probability of each feature based on the
feature weight.

I 9
j=1%j

P =

Frontiersin Neuroscience

75

10.3389/fnins.2025.1609547

where wj is the weight of the j-th feature. The larger wj is, the
higher its initial extraction probability is, and thus it is given
priority in FS. To ensure that all features have a certain chance of
being selected and to avoid the extraction probability of low-weight
features becoming too small, we adjust the initial probability:

bj
max(P;)

Pi= (10)

The above formula ensures that the maximum extraction
probability of a feature is 1, and the extraction probabilities of
all other features are adjusted proportionally, avoiding excessive
neglect of low-weight features while still maintaining the priority
of high-weight features during extraction.

During the task generation process, a random number A
between 0 and 1 is first randomly generated, which is used to
determine which features will be selected for the current task.
For each feature ¢, if A < P/ i» the feature will be selected
for the current task. As shown in Figure 1b, after n rounds
of independent extraction, n different task sets are generated,
each of which contains a set of selected feature subsets. This
mechanism ensures that high-weight features are selected first
and fully retain the potential contribution of low-weight features,
thereby effectively improving the diversity and flexibility of the task
generation process.

3.3.2 Multi-task optimization with GWO

In multi-task optimization, we propose to combine the
knowledge transfer mechanism with the GWO-based multi-task
optimization method to enhance information sharing between
different tasks, thereby improving the efficiency and effect of overall
optimization. Specifically, we directly integrate the knowledge
transfer mechanism in the initialization phase of GWO to make full
use of the optimization experience of existing tasks.

To achieve effective knowledge transfer, in the multi-task
optimization process, we first need to quantify the importance
of each feature in the previous task. In other words, we need to
calculate the cumulative number of times Qgr that feature ¢ is
selected in all previous tasks:

. n .
Qr(¥) =) Qr(¥) (n
where n represents the total number of tasks, Q%T(si) represents
whether the feature is selected in the t-th task (if selected, it is 1,
otherwise it is 0). Then, calculate the probability P(s)) of feature ¢
being selected in the initial population of the new task:

Py = Q)

= —_—0 12
Yk Qxr(s) 1

The above formula converts the historical performance of the
feature into a probability value, which will be directly applied to
initialize the wolf pack:

L A= P)

Gwo = 0, » > P(s)

(13)

where the random number . € [0,1], the feature ¢ is

selected only when it is less than or equal to P(s/). For ease
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Flowchart of proposed multi-task optimization with GWO.

of understanding, we show the specific process of the proposed
multi-task optimization method in Figure 2. First, the global
environment is set. Subsequently, the algorithm enters a loop
and processes n tasks in turn. For each task, the wolf pack
is initialized independently, using the global knowledge of the
previously processed tasks to provide information for the initial
state of the search for the new task. The position of the wolf is
iteratively updated to optimize the FS problem. After optimization,
the best solution is used to update the global knowledge base. This
cycle is repeated for each task, ensuring the continuous flow of
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information and the improvement of the solution. Finally, n feature
subsets (x1, X2, ..., X;) are obtained from the # tasks.

In addition, to minimize the number of selected features while
maintaining a high classification accuracy, we designed a fitness
function in multi-task optimization and introduced a penalty term
to constrain the number of features:

Fitness = p x ACC — (1 — p) x

4y (14)
q
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where p is a weight coefficient, which ranges between [0, 1] and is
used to balance the classification accuracy ACC and the number of
selected features g

After the above operations, we represent the selected feature
matrix as §' € RP*k where k <« q. Based on the selected feature
matrix §, we can train a suitable machine learning model [i.e.,
f(-)] to predict schizophrenia. In our experiment, since the support
vector machine (SVM) is strongly adaptable to small sample data
sets, we used SVM as the classification model.

3.3.3 Diversity counterfactual explanation

To enhance the interpretability of our method, we further
introduce a counterfactual explanation model (Mothilal et al., 2020)
to generate sample-level explanations. The input of this model
includes a trained SVM model [i.e., f(-)] and the feature vector
¢i € Rk of the i-th subject. Our goal is to generate a set of
counterfactual examples {xil,xiz,...,xiL} for subject i such that its
decision outcome xf € Rk js different from the prediction of the
original feature vector c;.

The counterfactual explanation model consists of three parts:
loss function loss(-), distance function dist(-), and diversity metric
diversity(-). Specifically, the first part pushes counterfactual xf
toward different predictions, the second part makes counterfactual
examples closer to the original input, and the third part is
used to increase the diversity of counterfactual explanations. In
the first part, we use a hinge loss function that helps generate
counterfactuals with less variation by reducing the preference for
extreme values. The hinge loss is expressed as follows:

losspinge = max(0, 1 — z - logit(f (x)) (15)
where zis 1 when ¥ = 1 and —1 when ¥ = 0, and logit(f(x)) is the
unscaled output of the SVM model. It is worth noting that in our
experiments, 1 corresponds to normal subjects and 0 corresponds
to patients, so in the verification of converting patients into normal
subjects, ¥ is usually set to 1. For the choice of distance function
in the second part, we follow Wachter et al. (2017) proposal and
divide the distance of each feature by the median absolute deviation
(MAD) of the feature values in the training set:

L

) 1 |x* — |
At =7 ap
o

(16)

where MAD,, is the median absolute deviation of the «-th feature,
L is the total number of counterfactual examples to generate, x
represents the counterfactual example and c represents the original
feature vector. For the third part, we use a determinant-based point
procedure to measure the diversity of counterfactual examples,
computed by the determinant value of its kernel matrix K:

diversity = det(K) (17)

where K,,, = oL x" and x" represent two counterfactual

1
1+dist(xt
examples. In the experiments, to avoid uncertain determinants,
we add small random perturbations on the diagonal elements to

calculate the determinant.
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Finally, we can obtain counterfactual examples by optimizing
the following loss:

L
X)) =2 dist(x}, ¢;)
I=1

—yadiversity(x}, x2, ., xF) (18)

L

. 1 X

+argmin ;3 losspinge(f (xf), Y)
x’.l,x’.z,...,xiL I=1

where X(c;) is the final counterfactual explanation model, y; and
y» are hyperparameters for balancing the three parts of the loss
function. The above formula reveals the minimum change required
for the input data to achieve the idealized result. By adjusting the
FC values between abnormal brain regions of SZ patients, their state
may be closer to normal. This method not only provides an intuitive
explanation scheme, but also provides SZ patients and doctors with
the guidance needed to treat the disease.

4 Experiments and results

4.1 Experimental setting

In this work, we use a support vector machine (SVM) classifier
to perform the classification task on five SZ datasets. During the
experiments, we evaluate the performance of different methods
based on diagnostic accuracy (ACC = %), sensitivity
(SEN = %) and specificity (SPE = %). FP, TP, FN, and
TN represent false-positive, true-positive, false-negative, and true-
negative classification results. To ensure fairness, all compared FS
methods use SVM classifiers. The parameters of our method are set
asa; = oy = 0.4, a3 = 0.2, tyyex = 100, p = 09, n = 8, L = 10,
y1 = 0.5 and y, = 1. It is worth noting that we use a five-fold
cross-validation strategy in all experiments.

4.2 Statistical analysis of FC features

In this set of experiments, we perform statistical analysis on the
functional connectivity (FC) remaining after feature selection by
our method to demonstrate the effectiveness of our method. For
intuitiveness, we first show the FC features retained after feature
selection by our method in Figure 3. As can be seen from Figure 3,
there are 16 shared FCs in the five datasets, and these shared
FCs are selected as features in different datasets, indicating that
they are crucial in identifying SZ. In addition, these shared FCs
are mainly distributed in key brain regions such as the prefrontal
cortex (PFC), cingulate gyrus (CC), and hippocampus (HIP), which
is consistent with the findings of existing studies on SZ in brain
network abnormalities (Orellana and Slachevsky, 2013; Wei et al,,
2021; Frankle et al., 2022; Haznedar et al., 2004).

We select the five most statistically significant FC values
between SZ and NC based on the statistical significance of each
dataset, and the results are shown in Figure 4. From Figure 4,
we find that the FC values between SZ and NC show different
distribution patterns in the five datasets. Specifically, in some
datasets, the FC values of SZ patients are significantly higher than
those of NC, while in other datasets, the FC values of SZ patients are
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Nottingham
FIGURE 3

connectivity among the five datasets.

Taiwan

Functional connectivity (FC) retained after feature selection by our method in the five datasets. The red lines indicate the common functional

Xiangya

significantly lower than those of NC. This suggests that there may
be some heterogeneity in the functional connectivity patterns of SZ
patients in different datasets. However, although the distribution of
FC values in different datasets is different, some specific FCs show
significant differences in multiple datasets, indicating that these FCs
may play a key role in the neural mechanism of SZ.

Overall, the above results show that our method effectively
extracts stable and biologically meaningful FC features, which helps
to improve the accuracy and interpretability of SZ classification.

4.3 Comparison methods

We compare our proposed method with seven methods,
including (i) RAW: classification without feature selection, as

Frontiersin Neuroscience

a baseline to illustrate the effect of applying feature selection
techniques. (ii) LASSO: Lasso regression model based on L1
regularization (Cui et al., 2021). (iii) MFCSO: Multitasking Feature
Selection via Competitive Swarm Optimizer (Li L. et al,, 2023).
(iv) MOEA\D: Multi-Objective Evolutionary Algorithm based on
Decomposition (Wang et al., 2021). (v) SPEA: Strength Pareto
Evolutionary Algorithm (Jiang and Yang, 2017). (vi) PSO-MET:
Evolutionary Multitasking-Based Feature Selection via Particle
Swarm Optimization (PSO) (Chen et al., 2020). (vii) MTPSO:
Multitasking feature selection via PSO (Chen et al., 2021).

For all the above methods, the hyperparameters were set
according to the values recommended in their respective original
papers. Additionally, the number of iterations for all methods
was set to 100, ensuring a consistent and fair comparison across
all approaches.
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MFCSO uses three filter methods for multi task feature
selection, with each task optimized as an independent task without
direct correlation between them. Therefore, the feature selection
process may lack consistency. When dealing with specific datasets,
especially on the schizophrenia (SZ) dataset, MFCSO may not be
able to ensure consistency of selected features across different tasks,
which may result in unstable performance on different datasets.
Due to the lack of inter task correlation, feature selection results
may be affected by randomness, making it difficult to effectively
capture stable features related to schizophrenia.

Multi-objective evolutionary algorithms, such as MOEA\D
and SPEA, are designed to address multiple objectives in feature
selection. These algorithms provide a better balance between
accuracy and feature diversity by considering multiple criteria
in the optimization process. However, they are computationally
intensive and can be prone to converging to local optima, especially
in high-dimensional spaces. Furthermore, they often struggle with
the trade-off between model complexity and accuracy, which
can result in overfitting in small-sample scenarios, limiting their
generalization ability.

PSO-MET and MTPSO are both particle swarm optimization-
based methods that aim to improve feature selection by leveraging
the concept of multitasking. While these methods are effective
at identifying relevant features in some cases, they tend to
be overly sensitive to initial conditions and parameter settings,
leading to performance fluctuations. The lack of consistency
across tasks and datasets reduces their reliability, particularly
in real-world clinical settings where the data may be noisy
or heterogeneous.

In comparison, our proposed method integrates robust multi-
task feature selection with counterfactual explanation, offering
several advantages over the methods discussed above. By using
the Gray Wolf Optimizer (GWO) for feature selection, we
ensure that our method not only handles high-dimensional
data efficiently but also maintains stability across different
datasets. The multi-task learning framework in our method
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allows for the sharing of knowledge across tasks, which improves
generalization and reduces the risk of overfitting, particularly in
small-sample situations.

4.4 Parameter analysis

In this section, we investigate the impact of varying the
number of tasks on the performance of our multi-task optimization
framework, as shown in the Figure 5. We observe that increasing
the number of tasks generally leads to improvements in
classification accuracy, especially for datasets such as Taiwan and
Xiangya. These datasets achieve their highest classification accuracy
at around six-nine tasks, where the accuracy reaches 0.87 and
0.89, respectively. This indicates that knowledge sharing between
tasks is particularly effective in enhancing model performance
when the task number is moderate. However, beyond a certain
point, specifically around 10-12 tasks, the performance begins
to plateau, with only marginal improvements in classification
accuracy. The graph clearly shows that the datasets, such as
Xiangya and Nottingham, while still improving with increasing
task numbers, experience diminishing returns as the number of
tasks exceeds 10. This suggests that while task number does play
a role in boosting performance, there is an optimal task count that
provides the best trade-off between performance enhancement and
computational cost.

A deeper analysis reveals that the knowledge sharing between
tasks is highly beneficial for improving classification performance.
As the number of tasks increases, the model can leverage a broader
range of features, which enhances its ability to generalize. However,
once the number of tasks exceeds a threshold, redundancy
starts to creep into the shared knowledge. This results in the
transmission of features that do not contribute significantly to
the performance improvement, thereby leading to a less efficient
model. The redundancy of features becomes particularly evident
when the number of tasks increases beyond 10, where the
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TABLE 2 Classification performance comparison with existing methods.

Datasets Metric RAW LASSO MFCSO MOEA\D SPEA PSO-MET MTPSO Our method ‘
COBRE ACC (%) 63.41 75.00 68.10 73.40 69.44 78.38 81.19 85.19
SEN (%) 58.33 66.67 60.00 76.47 78.57 68.75 83.93 80.00
SPE (%) 73.68 79.17 76.19 69.77 63.64 85.71 79.45 91.67
Huaxi ACC (%) 61.29 69.89 7231 76.60 77.66 75.53 76.74 80.00
SEN (%) 55.56 70.83 64.57 80.39 80.85 69.39 78.55 82.86
SPE (%) 71.43 68.89 74.81 72.09 74.47 82.22 74.60 76.67
Nottingham ACC (%) 65.00 66.12 72.22 72.34 75.53 80.95 82.71 86.67
SEN (%) 66.67 68.97 66.67 74.51 76.60 80.00 82.13 85.71
SPE (%) 63.64 62.50 77.78 69.77 74.47 81.82 83.08 87.50
Taiwan ACC (%) 70.21 79.49 77.32 77.50 80.00 85.00 81.55 89.29
SEN (%) 74.47 77.27 73.68 73.68 88.24 80.95 78.26 87.50
SPE (%) 65.96 82.35 80.95 80.95 73.91 89.47 84.52 91.67
Xiangya ACC (%) 66.90 69.23 79.41 76.74 70.77 7231 82.79 88.24
SEN (%) 51.35 58.82 72.22 72.00 74.29 68.57 83.58 80.00
SPE (%) 67.39 69.73 87.50 83.33 66.67 76.67 81.79 94.74

Bold values represent the optimal values.

performance gains start to level off, and the computational

overhead grows significantly.

Thus, while task quantity is crucial for leveraging task

interdependencies and improving model accuracy, an excessive
number of tasks may lead to inefficiency due to the sharing of
redundant or less informative features. Therefore, it is essential
to strike a balance between the number of tasks and the
computational cost to ensure the model remains both effective

and efficient.

Frontiersin Neuroscience

4.5 Classification performance

In this set of experiments, we compare our proposed method
with seven methods and show the results in Table 2. It is not difficult
to see that our method shows excellent stability and consistency
on the five datasets. Specifically, in the five datasets, the ACC of
our method reaches 85.19% (COBRE), 80.00% (Huaxi), 86.67%
(Nottingham), 89.29% (Taiwan), and 88.24% (Xiangya), while the
ACC of most methods does not exceed 85%. Secondly, our method
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performs outstandingly in both SEN and SPE, with SPE reaching
94.74% on the Xiangya dataset and SEN reaching 82.86% on the
Huaxi dataset, indicating that our method has strong stability in
the ability to distinguish between positive and negative samples.
PSO-MET and MTPSO perform well in terms of SEN. For example,
in the COBRE dataset, the SEN of MTPSO is 83.93%, which is
higher than other methods, indicating that it has a strong ability
to identify positive samples. In addition, we find that the methods
based on multi-task optimization and evolutionary algorithms (i.e.,
PSO-MET and MTPSO) perform better overall. For example, in
the Xiangya dataset, the ACC of MTPSO reaches 82.79%, which
is significantly higher than other methods. This can be attributed
to the fact that multi-task methods utilize shared knowledge across
tasks, thereby improving the overall learning process. In general,
the methods based on multi-task optimization and evolutionary
algorithms have higher accuracy in SZ identification, while our
method shows even better performance.

In addition, for the
performance, we select the three best-performing comparison
methods (SPEA, PSO-MET, and MTPSO) in the experiment, and
perform paired t-tests on the ACC indicators of each method

statistical significance of model

on multiple datasets. The results are shown in Table 3. As can
be seen from Table 3, our proposed method shows statistically
significant differences with the three comparison methods on
all datasets (p < 0.05). Specifically, the comparison with the
SPEA method shows extremely significant differences on the
COBRE, Nottingham, and Xiangya datasets (p < 0.005), and
the comparison with PSO-MET has p values less than 0.025 on
all datasets, indicating that the differences are highly statistically
significant. At the same time, compared with the MTPSO method,
although the p values in some datasets (such as Huaxi and COBRE)
are relatively high, they do not exceed the significance level
(p < 0.05), which still shows the stable advantages of our method
on various datasets. These results further verify the universality
and effectiveness of our method on multiple datasets from a
statistical perspective.

4.6 Counterfactual explanations

In this set of experiments, we demonstrate how to generate
a set of intuitive and diverse counterfactual (CF) examples
for patients through the counterfactual explanation model. We
provide counterfactual explanations by fine-tuning the abnormal
FC value changes of patients, that is, adjusting the FC values

TABLE 3 The t-test p-value results of our method and the three best
performing comparison methods (SPEA, PSO-MET and MTPSO) on ACC.

Datasets SPEA/our PSO-MET/our MTPSO/our
COBRE 0.0015 0.0220 0.0490
Huaxi 0.0439 0.0133 0.0269
Nottingham 0.0037 0.0019 0.0249
Taiwan 0.0143 0.0195 0.0174
Xiangya 0.0016 0.0029 0.0428
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between specific regions to make the patients state closer to
that of normal people. We generate two different counterfactual
examples for SZ patients and present them in the form of brain
maps and heat maps, as shown in Figure 6. It is not difficult
to see that we can make the patients state close to normal by
only slightly adjusting the FC values between the corresponding
regions. Specifically, in the Huaxi dataset, CF1 increases the FC
values between ORBinf.R-HIP.L, SMA.R-SFGmed.R, SFGmed.L-
ORBsupmed.L, and SMA.R-PHG.L from -0.2994, 0.0043, 0.2313,
and 0.6822 to 0.1712, 0.8632, 0.2981, and 1.2072, and decreases
the FC values between MFG.L-ROL.R and SFGdor.R-MFG.R from
0.1875 and 0.4143 to —0.6375 and -0.4230. In the Xiangya dataset,
CF1 decreases the FC values between MFG.L-ROL.R, SFGdor.R-
SOG.R, SFGdor.R-ACG.L, ORBsup.R-IFGtriang.R, and CUN.L-
LING.R from 0.2149, 0.0883, -0.0146, -0.3282, and -0.0603 to
—-0.5490, 0.0619, -0.4669, -0.4412, and -0.8791, and increases
the FC values between ORBsup.R-PCG.L and INS.R-PCG.L
from -0.1435 and 0.4575 to 0.6884 and 1.2428, respectively.
We find that the changes in functional connectivity (FC) after
counterfactual interpretation remain stable within 1, without large-
scale fluctuations, which further illustrates the robustness of our
method. In addition, the role of FC changes in SZ patients has been
observed in a large number of studies, such as Lynall et al. (2010),
Fornito and Bullmore (2015), and Li et al. (2017).

5 Discussion

In this paper, we propose a multi-task feature selection
method for SZ diagnosis, and combine it with the counterfactual
explanation model to fine-tune the abnormal FC features of SZ
patients to make their state closer to that of healthy individuals,
thereby improving the accuracy of SZ classification and the
interpretability of the model. To demonstrate the effectiveness of
our method, we conduct empirical studies on five SZ datasets.
Our results show that across the five datasets, 16 FC features
are selected simultaneously. These shared FC features are mainly
distributed in key brain regions such as the prefrontal cortex (PFC),
cingulate gyrus (CC) and hippocampus (HIP), which are widely
considered to be closely related to the pathological mechanism of
SZ in previous studies. For example, the study by Minzenberg et al.
(2009) shows that PFC dysfunction is closely related to executive
function deficits in SZ patients. Whitfield-Gabrieli et al. (2009) find
that SZ patients have significant abnormalities in FC in the default
mode network (including CC), which is associated with cognitive
dysfunction. Gangadin et al. (2021) and Li X.-W. et al. (2023) find
that SZ patients have significant abnormalities in FC between HIP
and other brain regions in the resting state. These results not only
verify that the abnormal FC features screened out by our method
under multiple datasets are consistent and stable, but also further
confirm its potential value in the diagnosis and interpretation of SZ
from a neurobiological perspective.

Although previous studies reveal a variety of brain FC
abnormalities associated with SZ, there is still a lack of an
interpretable diagnostic tool in the diagnosis of SZ. Our
study proposes an innovative method that integrates multi-
task feature selection and counterfactual explanation. To
generate accurate counterfactual examples, we construct a
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FIGURE 6
Counterfactual (CF) examples generated for randomly selected SZ patients in the test set in the five datasets. The yellow lines in the left brain map
indicate the remaining functional connectivity (FC) after feature selection by our method, and the blue nodes indicate the corresponding brain
regions. The brain maps in CF1 and CF2 show two counterfactual examples generated for the abnormal FC of the patients. The red lines indicate an
increase in the FC value between the corresponding regions, and the blue lines indicate a decrease in the FC value. The heat map on the right shows
the original FC value between the corresponding brain regions of the patients and the FC value after the counterfactual explanation.

counterfactual explanation model through three parts: loss
function loss(-), distance function dist(-), and diversity index
diversity(-). Specifically, loss(-) pushes counterfactual examples
toward different predictions, dist(-) brings the counterfactual
example closer to the original input, and diversity(-) increases
the diversity of counterfactual explanations. We capture the
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brain regions where patients show abnormal FC features and
slightly adjust the FC values between abnormal brain regions
to make them closer to the normal state. This analysis method
not only improves the interpretability of the classification
model, but also provides an intuitive individual-level explanatory
perspective for understanding brain FC abnormalities in SZ
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patients, which helps to identify potential intervention targets and
promotes the application of precision medicine in the diagnosis of
SZ.

However, the current study still has several limitations.
First, we only use the AAL model to define brain regions.
In the future, we use different templates to evaluate the
effectiveness of our proposed method. Second, we have not yet
established cooperation with clinical medical institutions and
lack counterfactual change explanations reviewed by clinicians.
We plan to introduce clinical validation to further demonstrate
the practicality and effectiveness of the method. Finally, this
study focuses on the SZ dataset and further verifies the
generalization ability and application potential of the method
on other brain disease datasets such as Alzheimer’s disease and
autism.

6 Conclusion

In this paper, we propose a robust feature selection method
based on multi-task optimization for SZ identification, and explain
the changes in brain functional connectivity caused by the disease
through a counterfactual explanation model. Compared with
traditional methods, our proposed method not only improves the
recognition performance, but also provides an intuitive explanation
for the prediction of SZ, and verifies the effectiveness of the method
on five SZ datasets.
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Introduction: Accurate and timely diagnosis of central nervous system infections
(CNSIs) is critical, yet current gold-standard techniques like lumbar puncture
(LP) remain invasive and prone to delay. This study proposes a novel noninvasive
framework integrating handcrafted radiomic features and deep learning (DL) to
identify cerebrospinal fluid (CSF) alterations on magnetic resonance imaging
(MRI) in patients with acute CNSI.

Methods: Fifty-two patients diagnosed with acute CNSI who underwent LP
and brain MRI within 48 h of hospital admission were retrospectively analyzed
alongside 52 control subjects with normal neurological findings. CSF-related
signals were segmented from the ventricular system and sub-lentiform nucleus
parenchyma, including perivascular spaces (PVSs), using semi-automated
methods on axial T2-weighted images. Two hybrid models (DenseASPP-
RadFusion and MobileASPP-RadFusion), fusing radiomics and DL features, were
developed and benchmarked against base DL architectures (DenseNet-201 and
MobileNet-V3Large) via 5-fold nested cross-validation. Radiomics features were
extracted from both original and Laplacian of Gaussian—filtered MRI data.
Results: In the sub-lentiform nucleus parenchyma, the hybrid DenseASPP-
RadFusion model achieved superior classification performance (accuracy:
78.57 + 4.76%, precision: 84.09 + 3.31%,F1-score:76.12 + 6.86%), outperforming
its corresponding base models. Performance was notably lower in ventricular
system analyses across all models. Radiomics features derived from fine-scale
filtered images exhibited the highest discriminatory power. A strict, clinically
motivated patient-wise classification strategy confirmed the sub-lentiform
nucleus region as the most reliable anatomical target for distinguishing infected
from non-infected CSF.

Discussion: This study introduces a robust and interpretable MRI-based deep
learning—radiomics pipeline for CNSI classification, with promising diagnostic

85 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1659653&domain=pdf&date_stamp=2025-08-20
https://www.frontiersin.org/articles/10.3389/fmed.2025.1659653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1659653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1659653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1659653/full
https://www.frontiersin.org/articles/10.3389/fmed.2025.1659653/full
https://orcid.org/0000-0003-1831-3868
https://orcid.org/0000-0003-1906-0401
https://orcid.org/0000-0002-2132-8457
https://orcid.org/0009-0002-4235-4416
https://orcid.org/0000-0002-6077-9824
https://orcid.org/0000-0003-0457-3722
https://orcid.org/0000-0003-3663-2053
https://orcid.org/0009-0003-5260-3145
https://orcid.org/0000-0003-3427-1207
mailto:gokalptulum@topkapi.edu.tr
mailto:jawad.rasheed@izu.edu.tr
https://doi.org/10.3389/fmed.2025.1659653
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1659653

Cuceetal.

10.3389/fmed.2025.1659653

potential. The proposed framework may offer a noninvasive alternative to LP in
selected cases, particularly by leveraging CSF signal alterations in PVS-adjacent
parenchymalregions. These findings establish a foundation for future multicenter
validation and integration into clinical workflows.

KEYWORDS

central nervous system infection, cerebrospinal fluid, brain MRI, Radiomics, deep
learning, lumbar puncture, perivascular spaces

1 Introduction

Central nervous system infections (CNSIs) are neurological
emergencies that demand prompt and accurate diagnosis to reduce
morbidity and mortality. The gold standard for confirming CNSI
involves isolating the microbial agent or detecting its antigen in
cerebrospinal fluid (CSF), typically via culture or polymerase chain
reaction (PCR) analysis following lumbar puncture (LP) (I, 2).
However, in clinical practice, the turnaround time for these methods
is often inadequate for urgent decision-making. As such, CSF
pleocytosis observed on microscopy is frequently used as a proxy to
initiate empirical therapy with antibiotics, antivirals, or antifungals
(3). Yet, reactive or false-positive pleocytosis may occur—particularly
following initial LPs or in immunocompromised patients—raising
concerns about overtreatment and diagnostic uncertainty (1).

Furthermore, LP is an invasive procedure with contraindications,
including the presence of intracranial mass lesions, bleeding diathesis,
spinal malformations, or local infections at the puncture site (2). These
factors highlight the need for reliable, noninvasive, and rapid
diagnostic tools to support or replace traditional CSF sampling in
specific clinical contexts.

MRI plays a vital complementary role in the evaluation of
CNSI. Certain imaging patterns—such as asymmetric involvement of
the temporal lobe, insula, and cingulum in herpes encephalitis;
leptomeningeal enhancement in meningitis; or abscess formation and
tuberculous granulomas—may suggest an infectious etiology (4).
Nonetheless, normal MRI findings do not exclude infection, and the
sensitivity of MRI for viral and bacterial meningitis ranges between
67.4 and 83.3% (5-7). Therefore, neuroimaging alone is insufficient,
and there is an urgent demand for advanced image analysis tools that
can extract diagnostic information beyond the visual capabilities
of radiologists.

Radiomics addresses this gap by converting conventional medical
images into high-dimensional quantitative data, capturing subtle
image patterns such as intensity, texture, shape, and spatial
relationships (8-10). These handcrafted features have shown promise
in multiple domains, but their performance can be enhanced when
fused with deep learning (DL)-derived features. DL models can
automatically learn abstract, hierarchical representations from
imaging data, offering complementary insights into disease
phenotypes.

Recent studies have demonstrated the efficacy of DL-radiomics
fusion models specifically within neurology, such as multimodal
neuroimaging feature learning for Alzheimer’s disease diagnosis (11),
deep radiomic analysis of MRI data for Alzheimer’s disease
classification (12), and fusion of MRI and cognitive assessments for
mild cognitive impairment diagnostics (13). Similarly, these
approaches have shown promise in distinguishing multiple sclerosis
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lesions (14) and differentiating Parkinson’s disease patients from
healthy individuals using radiomic features from MRI (15) and PET
imaging (16). Additionally, deep learning radiomic frameworks have
been effectively used for predicting hemorrhage progression in
intracerebral hemorrhage (17), forecasting outcomes after acute
ischemic stroke (18), and diagnosing temporal lobe epilepsy through
FDG-PET imaging (19).

Despite the growing interest in end-to-end deep learning
pipelines, current evidence suggests that combining DL with
handcrafted radiomics yields more interpretable and robust results
especially in datasets with limited sample sizes (20-22). Consequently,
standardization initiatives now recommend best practices for
preprocessing, feature selection, and model validation to improve
reproducibility across institutions (23).

In this study, we propose a hybrid DL-radiomics framework for
classifying infected versus non-infected CSF regions in patients with
suspected CNSI. We focus on two anatomical targets: the ventricular
system and the sub-lentiform nucleus parenchyma, including the
perivascular spaces (PVSs), which are implicated in glymphatic CSF
circulation. We hypothesize that the fusion of radiomic descriptors
and DL-based spatial features can enable noninvasive discrimination
of CSF infection patterns, thereby supporting earlier diagnosis and
potentially reducing the reliance on lumbar puncture.

2 Methods and materials

2.1 Patient

The local ethics committee approved this retrospective study, and
written consent was waived.

This retrospective study included patients diagnosed with CNSI
who underwent brain MRI as part of their routine clinical work-up
between 2017 and 2024. Fifty-two patients in the infection group were
diagnosed with acute bacterial, viral and aseptic meningitis based on
a combination of clinical presentation (e.g., fever, headache, neck
stiffness), CSF analysis, and microbiological testing. Importantly, none
of the included patients met the diagnostic criteria for encephalitis or
meningoencephalitis, and there were no findings suggestive of
parenchymal involvement (such as diffusion restriction, edema, or
signal abnormalities and contrast enhancement in the brain
parenchyma) on MRI. Mild to moderate leptomeningeal enhancement
was observed in the majority of cases on post-contrast T1-weighted
images, which was consistent with active meningeal inflammation. No
significant ventriculitis, abscess formation, or hydrocephalus was
detected. Clinically, patients presented primarily with headache and
fever, and none exhibited focal neurological deficits, altered mental
status, or seizures at the time of imaging. This strict inclusion criterion
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ensured a clinically and radiologically homogeneous infection cohort,
thereby allowing a focused evaluation of CSF-related signal features
in isolated meningitis and minimizing potential confounding from
parenchymal disease.

All patients diagnosed with CNSI underwent an LP on the day of
admission and had brain MRIs performed within the first 48 h after
being admitted to the hospital. We excluded patients who did not
undergo LP, had no brain MRI, had MRIs taken more than 48 h after
treatment commenced.

The control group consisted of 52 patients with chronic headaches
with normal neurological examinations and normal brain MRI
reports. A total of 104 patients, including both the patient and control
groups, were included in the analysis.

2.2 Imaging parameters

All brain MRIs were performed on a Philips 3 T imaging system
with a dedicated head coil. All studies included axial plane
fat-saturated fast spin eco T2-weighted sequence with time repetition
(TR): 2,600-5,600 millisecond (ms), time echo (TE): 70-90 ms, echo
train length (ETL):10-12. The slice thickness was 5 millimeters (mm).
To accurately evaluate subtle cerebrospinal fluid (CSF)-specific signal
alterations and to minimize inadvertent segmentation errors arising
from CSF flow artifacts, pre-contrast T2-weighted images were
exclusively utilized in this study. T2-weighted imaging was selected
for its inherent sensitivity and superior contrast resolution regarding
fluid characteristics, enabling precise and artifact-aware segmentation
of CSF regions. On the other hand, sequences such as T1-weighted,
post-contrast T1-weighted, FLAIR, and diffusion-weighted images
(DWI) were deliberately excluded. T1-weighted and post-contrast
sequences primarily emphasize anatomical structures and contrast-
enhanced parenchymal or meningeal lesions, providing limited utility
in isolated CSF analysis without parenchymal involvement. Likewise,
FLAIR imaging suppresses CSF signals, inherently limiting its
applicability for dedicated CSF signal assessment. DWTI is particularly
sensitive to acute parenchymal lesions, but since our study specifically
excluded patients with parenchymal abnormalities, its inclusion was
not considered beneficial. Since no 3D modeling was employed in our
study, the slice thickness of 5 mm did not constitute a significant
limitation for our analysis. This selective approach ensured
methodological consistency and enhanced reliability in analyzing
isolated CSF-related radiomic and deep learning features.

2.3 Semi-automated segmentation
procedure

Upon consensus, two independent radiologists determined the
slices in the axial planes of T2-weighted images. Subsequently, MRI
images were stored in the DICOM file format and imported to the
ManSeg (v.2.7d) software (24). Initially, the radiologists focused on
segmenting the CSF signal in both the upper and posterior sections of
the lateral ventricles’ lumen, avoiding areas with visible flow artifacts.
Next, to reduce the risk of missing any subtle, instantaneous changes
in the normal CSF flow signal, they separately segmented the
parenchyma of the sub-lentiform nucleus, which includes the
perivascular spaces (PVSs) supplied by the lenticulostriate arteries.
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Sub-lentiform nucleus parenchyma with the PVSs would effectively
represent the features of the CSE, including its contents. For each
patient, the lateral ventricles’ lumen and the parenchyma of the
sub-lentiform nucleus were segmented bilaterally. For the
segmentation of suspicious regions, the radiologists roughly delineated
the boundaries of the regions of interest independently, and the
segmentation process was then performed automatically using the
active contour algorithm (25). Final consensus segmentation masks
were obtained after resolving discrepancies through joint review.
Inter-observer agreement was assessed retrospectively on a randomly
selected subset of 10 patients. Mean Dice similarity coefficients were
0.92 + 0.03 for ventricular regions and 0.91 + 0.04 for sub-lentiform
parenchyma. Figure 1 depicts samples of infected CSF and normal
CSF on T2-weighted images, respectively.

2.4 Feature extraction

Radiomics features were extracted from the segmented
regions on both the native T2-weighted MRI images and three
Laplacian-of-Gaussian (LoG)-filtered counterparts generated
with kernel sizes of 3 x 3 x 1 (fine), 5 x 5 x 2 (medium), and
7 x 7 x 3 (coarse). While 2D morphological features were derived
solely from the original T2 images, both first-order and second-
order statistical features, including those from gray level
co-occurrence matrix (GLCM), gray level size zone matrix
(GLSZM), gray level run length matrix (GLRLM), neighboring
gray-tone difference matrix (NGTDM),
dependence matrix (GLDM) were extracted from all image

and gray level

sources. A comprehensive list of the extracted features is
presented in Table 1, comprising a total of 378 features.

2.5 Classification methodology

First, the region of interest (ROI) images and their corresponding
radiomics features were imported. For the deep-learning analysis,
each segmented region was centrally cropped into a 32 x 32 pixel
patch, which was then resized to 224 x 224 pixels using bicubic
interpolation. A patient-based 5-fold cross-validation (CV) approach
was employed, ensuring that each patient’s ROI images and associated
radiomics data remained grouped during the splitting process.
One-fold was allocated as the test set, while the remaining folds were
used for training and validation. Feature selection was conducted
solely on the radiomics features derived from the training and
validation sets. From a total of 378 radiomics features, the top 50 most
discriminative features were selected using a filter-based approach.
Subsequently, the training and validation sets were split into an
internal 3-fold cross-validation (CV) to divide them into training and
validation subsets further. Data augmentation techniques, including
rotation, zooming, translation, and flipping, were applied to enhance
the diversity of the training data.

In our preliminary analyses, we evaluated several advanced
architectures, including Swin Transformer, Vision Transformer (ViT),
and attention-based networks. However, these approaches yielded
poor performance and instability due to the relatively limited size of
our dataset. Therefore, DenseNet-201 and MobileNet-V3Large were
selected as robust baseline architectures, given their known ability to
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FIGURE 1

Infection; CSF, Cerebrospinal fluid.

Segmented anatomical regions from the ventricular system and the sub-lentiform nucleus in both right and left hemispheres. The top row illustrates
two representative cases from the control group with normal CSF, while the bottom row presents two cases from the CNSI group with infected CSF.
Red-highlighted regions indicate the manually segmented areas used for radiomics feature extraction. The bounding boxes were generated as
standardized input patches for deep learning models. All images are derived from T2-weighted MRI sequences. CNSI, Central Nervous System
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generalize well on smaller datasets and their compatibility with our
hybrid feature fusion strategy.

Model training was conducted in two phases. For the first
outer fold, both the customized models DenseASPP-RadFusion
and MobileASPP-RadFusion and the base models DenseNet-201
(26) and MobileNet-V3Large (27) were initialized from scratch.
For the remaining folds, the weights from the previous fold were
loaded to continue training. During the initial training phase, the
learning rate was set to le-4 with a reduction factor of 0.5 and a
minimum learning rate of le-7. Training proceeded for up to 200
epochs, with early stopping implemented after 10 epochs. During
the fine-tuning phase, the learning rate was reduced to le-5, and
the first 70% of the layers were frozen. Training was conducted
for 20 epochs, with early stopping triggered after five epochs.
These hyperparameters were empirically determined based on
iterative experimentation within the internal training-validation
splits to minimize overfitting. No hyperparameter tuning was
performed on the external test sets. Throughout the process,
training and validation loss, as well as accuracy metrics, were
monitored. At the end of each fold, model weights and
performance metrics were saved. During the testing phase, the
feature selection obtained from the outer fold was applied to the
test set, and model performance was evaluated using standard
metrics, including accuracy, precision, recall, and F1-score.
Finally, the results from all five folds were reported as mean +
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standard deviation for each performance metric. Figure 2 depicts
the flowchart of the classification process.

In the baseline architecture, models such as DenseNet-201 and
MobileNet-V3Large were employed as feature extractors. These base
models processed the input MRI images to generate feature maps,
which were subsequently passed through a global average pooling
layer, followed by a fully connected layer with 256 neurons and a
dropout layer (rate = 0.3), leading directly to the classification output.
In contrast, the proposed fusion models were designed to integrate
both deep image features and handcrafted radiomics features. In the
image branch of the proposed models, the backbone feature map was
processed through five parallel paths. Four of these paths constituted
the Atrous Spatial Pyramid Pooling (ASPP) module, employing 3 x 3
convolutions with dilation rates of 1, 6, 12, and 18, each followed by
batch normalization and ReLU activation, producing four parallel
7 x 7 x 512 feature maps. The fifth path was designed to inject global
contextual information by applying global average pooling to the
backbone feature map (resulting in 1 x 1 x 1920), followed by a 1 x 1
convolution with 512 filters, and then bilinear upsampling to reach a
size of 7x 7 x 512. All five outputs were concatenated to form a
unified representation of size 7 x 7 x 2,560 and then compressed via
a 1 x 1 convolution with 512 filters.

In parallel to the image pathway, radiomics features were
processed through a separate branch. A total of 378 radiomics features
were extracted and reduced to 50 using filter-based feature selection.
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TABLE 1 The description and the total number of radiomics features.

Image Type Feature Class Number of features Total number of features
1. First order statistics 17
2.2D shape features 9
3. Gray level co-occurrence matrix (GLCM) features 24
Original image 4. Gray level size zone matrix (GLSZM) features 16 102
5. Gray level run length matrix (GLRLM) features 16
6. Neighboring gray tone difference matrix (NGTDM) 5
features
7. Gray level dependence matrix (GLDM) features 14
1. First order statistics 51
2. Gray level co-occurrence matrix (GLCM) features 72
3. Gray level size zone matrix (GLSZM) features 48
Log filter (FINE, MEDIUM,
COARSE PATTERNS) 4. Gray level run length matrix (GLRLM) features 48 276
5. Neighboring gray tone difference matrix (NGTDM) 5
features
6. Gray level dependence matrix (GLDM) features 42
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FIGURE 2
Overview of the proposed classification framework.
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FIGURE 3
Schematic representation of the baseline and proposed model architectures.

These selected features passed through two fully connected layers
[Dense (128) and Dense (512)] with dropout, reshaped into a
1 x 1 x 512 tensor and then upsampled to 7 x 7 x 512 to match the
spatial resolution of the image features. Finally, the outputs from both
the image and radiomics branches were concatenated along the
channel axis, forming a 7 x 7 x 1,024 fused representation. This
combined feature map was subjected to global average pooling,
followed by a Dense (256) layer with dropout, and terminated with a
softmax classification layer. This architecture effectively captured both
spatial and contextual information from MRI data, enriched by
complementary radiomics descriptors. As illustrated in Figure 3, the
proposed model architecture integrates both ASPP-enhanced image
features and spatially fused radiomics features. The implementation
code for the proposed MRI-based deep learning-radiomics
framework is publicly available at:  https://github.com/
DrGokalpTulum/MRI-Based-Deep-Learning-Radiomics-Framework-

for-Evaluating-Cerebrospinal-Fluid-Signal-.git.

3 Results

In the CNSI group, 55.7% (n = 29) of the patients were male,
44.3% (n = 23) were female, and the mean age was 43.5 + 22.5 years.
In the control group, 33.9% (n = 18) of the patients were male, 66.1%
(n = 34) were female, and the mean age was 46.7 + 11 years.

The CSF analysis was performed on the patient’s admission to the
health institution. The macroscopic appearance of the CSE the amount
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of CSF glucose and protein, pleocytosis in microscopy, and the presence
of microorganisms in the Gram stain were evaluated. High CSF protein,
low glucose, leukocyte count of 100 or more cells/mm3, and neutrophil
predominance are evaluated as bacterial meningitis; normal CSF glucose,
borderline high protein levels, and lymphocytes being the predominant
cell in the cell count were evaluated as viral meningitis; normal CSF
findings were accepted as aseptic meningitis.

According to early biochemical and microscopy results, bacterial
meningitis was observed in 37 patients, viral meningitis in 14
patients, and CSF findings of 1 patient were evaluated as aseptic
meningitis. While no culture medium growth was detected in the
CSF of 24 patients, Streptococcus was detected in 5 patients, E. coli
in 3 patients, Brucella in 2 patients, Acinetobacter in 1 patient,
Neisseria in 1 patient, and Proteus in 1 patient, according to CSF
culture results. Varicella Zoster Virus PCR positivity was detected in
the CSF of two patients. Based on clinical and laboratory results in
the patient group, antimicrobial treatment for CNSI was empirically
started. After the diagnosis of the agent was confirmed by culture,
PCR, and serology, treatment revision was performed with
de-escalation in three patients.

During the 5-fold outer cross-validation, a total of 378 radiomics
features were subjected to feature selection, and the top 50 features
were retained in each fold. Across all folds, a total of 92 unique features
were selected. Among these, 20 features were consistently selected in
all five folds, indicating strong discriminative capacity. These high-
frequency features primarily originated from the Laplacian of
Gaussian (LoG) filtered MRI with fine kernels (2 mm). In particular,
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TABLE 2 Performance metrics (mean + std) of all models.

10.3389/fmed.2025.1659653

Evaluation Area Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Performance metrics for = DenseASPP-RadFusion 78.57 +4.76 84.09 + 3.31 70.00 + 10.93 76.12 + 6.86
the sub-lentiform Mobile ASPP-RadFusion 74.40 +2.28 73.66 + 4.41 77.05 + 14.82 74.42 + 6.66
nucleus parenchyma
DenseNet-201 73.81 +8.01 79.72 £ 5.18 62.96 + 14.04 70.03 + 10.52
MobileNet-V3Large 52.98 +9.20 55.66 + 13.09 76.14 +27.62 60.84 + 6.49
Performance metrics for = DenseASPP-RadFusion 60.52 + 4.87 64.65 + 8.03 47.64 +17.02 53.46 +11.04
the ventricular system MobileASPP-RadFusion 59.07 + 8.63 58.14 + 8.86 70.18 + 26.40 61.58 +13.00
DenseNet-201 57.26 +7.05 58.54 + 13.48 44.64 + 20.66 49.37 +15.32
MobileNet-V3Large 59.62 + 5.06 56.69 + 4.68 77.36 +12.94 65.28 +7.26

The upper section presents results for the sub-lentiform nucleus parenchyma with PVSs, while the lower section shows results for the ventricular system. Metrics evaluated across 5-fold cross-

validation for each model.

features such as Energy, Maximum, Range, Long Run Emphasis, and
High Gray Level Zone Emphasis repeatedly appeared across all folds.

Additionally, 16 features appeared in four folds and five features
in three folds, most of which stemmed from LoG-filtered MRI with
medium kernels (4 mm) or original T2-weighted images. These
consistently selected features highlight the critical role of multiscale
texture descriptors in capturing the heterogeneity of cerebrospinal
fluid regions. Detailed feature selection results, including Feature
Name, Image Source, Feature Class, and Frequency, are provided in
the Supplementary file.

Upon investigating the classification results, the proposed fusion
(DenseASPP-RadFusion and MobileASPP-RadFusion)
demonstrate improvements over their corresponding base architectures
(DenseNet-201 and MobileNet-V3Large) in the sub-lentiform nucleus
parenchyma region. DenseASPP-RadFusion achieved the highest mean
accuracy (78.57 + 4.76%) and precision (84.09 + 3.31%), with relatively
low standard deviations, indicating both high performance and
consistency across folds. Although MobileASPP-RadFusion yielded the
highest mean recall (77.05 + 14.82%), the associated standard deviation
was relatively large, suggesting instability in sensitivity across different

models

validation folds.

In contrast, none of the models showed strong classification
capability in the ventricular system. Accuracy values remained
between 57.26 and 60.52%, while Fl-scores were notably lower,
particularly for DenseASPP-RadFusion (53.46 +11.04%) and
DenseNet-201 (49.37 + 15.32%). Moreover, the standard deviations in
recall for all models were high (ranging from 12.94 to 20.66%),
indicating a lack of reliability in detecting true positives in ventricular-
level CSF signals.

The results show that the sub-lentiform nucleus parenchyma with
PVSs provides more stable and discriminative information for
classification tasks compared to the ventricular system. The
performance of the models was statistically significantly different
(p <0.05). Detailed performance metrics for all models and
anatomical regions are presented in Table 2, while the corresponding
ROC curves are illustrated in Figure 4.

To the fold-level
classification performance was also assessed under clinically motivated

complement evaluation, patient-wise
assumptions. To assess patient-level diagnostic performance under
clinical assumptions, strict patient-wise accuracy was calculated
separately for each class (infection and control) across all outer folds.

Since each patient had two separate ROIs from the right and left
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sub-lentiform nucleus levels, the following decision rules were applied:
for infection cases (class 1), a prediction was considered correct if at
least one of the two ROIs was classified as infected, reflecting a
clinically cautious approach to minimize false negatives. Conversely,
for control cases (class 0), a prediction was deemed correct only if
both ROIs were classified as non-infected, ensuring stricter criteria for
healthy labeling. This binary patient-wise accuracy was computed per
case and averaged within each fold for all models.

Figure 5 presents box plots illustrating the distribution of strict
patient-wise accuracy values for each model, separately for the
sub-lentiform nucleus parenchyma and ventricular system. In the
sub-lentiform nucleus parenchyma with PVSs, the proposed model
DenseASPP-RadFusion yielded the most stable and accurate
performance, with infection class accuracies tightly clustered within
the 80 to 90% interquartile range and control accuracies between 70
and 80%, both showing low interfold variability. Similarly, DenseNet-
201 achieved high median values, though with a slightly wider spread
in the control group. Notably, both models exhibited limited presence
of outliers, suggesting consistency in predictions across patient subsets.

On the other hand, MobileNet-V3Large exhibited high variability
and lower median accuracy, particularly for control patients. Its
control group performance distribution dropped to a lower
interquartile range (below 60%) and revealed several outliers,
folds. MobileASPP-RadFusion
demonstrated acceptable median accuracy but higher dispersion,

reflecting  instability  across
particularly in control cases, indicating less consistent generalization
across folds.

In the ventricular system, all models demonstrated lower and
more dispersed accuracy distributions, indicating reduced reliability
in this anatomical region. For instance, although MobileNet-V3Large
achieved reasonable infection accuracy, its control classification
remained weak and inconsistent. MobileASPP-RadFusion and
DenseNet-201 exhibited moderate accuracy with noticeably higher
standard deviations, particularly in control predictions, highlighting
the challenge of robust CSF signal interpretation in ventricular
regions. The broader interquartile ranges and frequent outliers in the
ventricular plots underscore the inconsistency of model behavior in
this region. These findings further reinforce that the sub-lentiform
nucleus parenchyma with PVSs provides a more clinically reliable
classification, both at the level of the fold and the patient.

Under this realistic criterion, the proposed fusion models
demonstrated high stability and accuracy, particularly in the
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FIGURE 4
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AUC + standard deviation for each model.

Frontiers in Medicine 92 frontiersin.org


https://doi.org/10.3389/fmed.2025.1659653
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Cuceetal. 10.3389/fmed.2025.1659653

Strict Clinical Patient-wise Accuracy by Class (Infection vs Control)
1.0 Class
B Infection
[ Control
>
O ).8 A o
©
S
>
@]
[}
<
D ).6
2
=
4 o
c
.0
+J).4 (o]
©
a
-+
=
-
R
V)21
0.0 T T T
DenseASPP-RadFusion MobileASPP-RadFusion DenseNet-201 MobileNet-V3Large
Model
Strict Clinical Patient-wise Accuracy by Class (Infection vs Control)
1.0 o o Class
I Infection
@ Control
o
@ 081
| -
!
3 o
<
% 1
5
=
2
4‘6‘ 0.4 1 o
a
-+t
S
—
)
U 02+
o
0.0 v T T T
DenseASPP-RadFusion MobileASPP-RadFusion DenseNet-201 MobileNet-V3Large
Model
FIGURE 5
Box plots illustrating strict clinical patient-wise accuracy for CNSI and control classes across all models, evaluated separately for the sub-lentiform
nucleus parenchyma (top) and the ventricular system (bottom). CNS, Central nervous system infection.

sub-lentiform nucleus. By contrast, all models showed reduced
and inconsistent performance in ventricular CSF classification,
further underscoring the diagnostic limitations of relying solely
on ventricular analysis. Discordant predictions between left and
right sub-lentiform nucleus evaluations occurred in 22.6 + 3.1%
for DenseASPP-RadFusion, 30.4 + 6.0% for MobileASPP-
RadFusion, 29.9 + 4.7% for DenseNet-201, and 39.5 + 5.9% for
MobileNet-V3Large, indicating varying levels of stability in
bilateral predictions.

Frontiers in Medicine

4 Discussion

In this study, we developed and evaluated a novel MRI-based deep
learning-radiomics framework to classify CSF signals in patients with
acute CNSIs. Our findings demonstrate that the fusion of handcrafted
radiomic descriptors with DL features enables more accurate and
reliable classification of infected versus non-infected CSE, particularly
when analyzing the sub-lentiform nucleus parenchyma region. These
results offer promising evidence for the utility of noninvasive
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imaging-based diagnostics as a potential complement or alternative to
LP in selected clinical contexts.

Despite their central role in CNSI diagnosis, CSF analyses via LP
remain invasive and carry procedural risks, including herniation,
hemorrhage, or infection—especially in patients with intracranial
mass lesions or bleeding disorders (1-3). Moreover, pleocytosis, often
used as a surrogate marker of infection, may occasionally yield false-
positive results, especially after repeated LPs or in
immunocompromised individuals (1). These limitations necessitate
the development of alternative diagnostic strategies that are rapid,
noninvasive, and reproducible.

While MRI has proven valuable in detecting certain CNSI patterns—
such as temporal lobe involvement in herpes encephalitis or
leptomeningeal enhancement in meningitis—it lacks sufficient sensitivity
to reliably detect all cases, particularly in early or ambiguous
presentations (4-7). In our study, conventional visual inspection of
ventricular CSF signals on MRI did not provide sufficient discriminatory
power to distinguish infected from non-infected fluid. This is likely due
to the inherent signal homogeneity and dynamic flow of CSF in the
ventricles, which limits the effectiveness of static image-based analysis.

Indeed, previous Al-based studies evaluating body fluid
segmentation—such as pleural or synovial effusions—have
reported promising results (28, 29). However, these studies
primarily focused on relatively static fluids that exhibit well-
defined boundaries and textural consistency. CSF, on the other
hand, is in constant motion, and its flow-dependent signal
properties pose substantial challenges for conventional image
segmentation and classification.

To address these limitations, our study focused on the sub-lentiform
nucleus parenchyma, specifically targeting regions that include
perivascular spaces (PVSs)—components of the glymphatic system that
mediate convective CSF flow from penetrating arteries into the interstitial
space. Unlike the ventricular system, these parenchymal regions are less
affected by flow artifacts and may reflect more stable and informative
imaging features. Additionally, inflammation in adjacent brain
parenchyma during CNSI—though often invisible on routine MRI—
may alter tissue texture and contribute to detectable radiomic changes.

Our results strongly support this hypothesis. The hybrid
DenseASPP-RadFusion model, which integrates multiscale radiomics
with spatially resolved DL features, achieved a mean classification
accuracy of 78.6% in the sub-lentiform nucleus region—substantially
outperforming both its base architecture (DenseNet-201) and all
models applied to the ventricular system. Features derived from
Laplacian of Gaussian (LoG)-filtered images, particularly with fine
kernels (2 mm), contributed most significantly to model performance,
suggesting that subtle intensity variations in the CSF-parenchyma
interface are key discriminative elements.

Furthermore, we applied a clinically grounded, strict patient-wise
classification strategy, wherein a diagnosis of infection was accepted
if either hemisphere exhibited an infected CSF pattern, while a control
classification required bilateral confirmation of non-infection. Under
this realistic criterion, the proposed fusion models demonstrated high
stability and accuracy, particularly in the sub-lentiform nucleus. By
contrast, all models showed reduced and inconsistent performance in
ventricular CSF classification, further underscoring the diagnostic
limitations of relying solely on ventricular analysis.

The broader implication of our findings lies in the potential
of hybrid DL-radiomics frameworks to improve CNSI diagnosis
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in settings where LP is delayed, contraindicated, or inconclusive.
To our knowledge, this is the first study to apply a deep learning-
radiomics fusion approach to analyze CSF signal patterns in brain
MRI for the classification of CNSIs. Prior applications of Al to
fluid-based diagnostics have largely centered around cancer-
related effusions or synovial fluid segmentation in rheumatology
(28, 29), whereas our study opens new directions for infectious
disease imaging.
DenseNet-based  models
MobileNet-based models across most performance metrics, likely

consistently  outperformed
due to their deeper and densely connected architectures enabling
effective feature reuse and robust representation learning.
Conversely, MobileNet’s design prioritizes computational
efficiency and fewer parameters, potentially limiting its capability
to capture subtle radiomic patterns. Thus, DenseNet architectures
may be preferable for tasks demanding detailed representation of
subtle imaging features, whereas MobileNet remains beneficial
under computational constraints.

Nevertheless, our study has limitations. The relatively modest
sample size (n=104) and single-center design may limit
generalizability. However, all MRIs were acquired using a uniform
3T scanner and standardized imaging protocol, enhancing
internal consistency. Future research should validate these
findings using multicenter datasets with larger, more diverse
populations and include longitudinal evaluation across various
CNSI subtypes (e.g., bacterial, viral, fungal). Additionally, the
integration of clinical metadata (e.g., laboratory markers,
symptoms) with imaging features may further improve
classification performance. Moreover, we used a slice thickness
of 5 mm, which is relatively thicker than the thin-cut images
(<3 mm) typically preferred in current brain MRI research.
Although this could potentially limit the segmentation accuracy
and reliability in studies utilizing 3D modeling approaches, our
analyses and segmentations were strictly performed on 2D
images, reducing its impact within our study context. Future
studies using thinner slice imaging might offer further
improvements in segmentation detail and predictive performance.
Future studies could further enhance the clinical impact and
interpretability of the proposed fusion models by incorporating
explainable AI (XAI) methodologies to identify and visualize the
most influential radiomic and deep-learning-derived features.
Integrating these techniques would significantly strengthen
model transparency, improve clinical confidence, and facilitate a
smoother translation into clinical practice.

In conclusion, our study introduces a novel, interpretable,
and clinically relevant framework for noninvasive CNSI
assessment using advanced radiomics and deep learning methods.
The sub-lentiform nucleus parenchyma, inclusive of PVSs,
emerges as a promising anatomical region for CSF evaluation.
This approach has the potential to complement traditional
LP-based diagnostics and support faster, safer, and more accurate
CNSI management in clinical practice.
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Introduction: Social media is increasingly used in many contexts within the
healthcare sector. The improved prevalence of Internet use via computers
or mobile devices presents an opportunity for social media to serve as a tool
for the rapid and direct distribution of essential health information. Autism
spectrum disorders (ASD) are a comprehensive neurodevelopmental syndrome
with enduring effects. Twitter has become a platform for the ASD community,
offering substantial assistance to its members by disseminating information
on their beliefs and perspectives via language and emotional expression.
Adults with ASD have considerable social and emotional challenges, while also
demonstrating abilities and interests in screen-based technologies.

Methods: The novelty of this research lies in its use in the context of Twitter
to analyze and identify ASD. This research used Twitter as the primary data
source to examine the behavioral traits and immediate emotional expressions
of persons with ASD. We applied Convolutional Neural Networks with Long
Short-Term Memory (CNN-LSTM), LSTM, and Double Deep Q-network (DDQN-
Inspired) using a standardized dataset including 172 tweets from the ASD class
and 158 tweets from the non-ASD class. The dataset was processed to exclude
lowercase text and special characters, followed by a tokenization approach
to convert the text into integer word sequences. The encoding was used to
transform the classes into binary labels. Following preprocessing, the proposed
framework was implemented to identify ASD.

Results: The findings of the DDQN-inspired model demonstrate a high precision
of 87% compared to the proposed model. This finding demonstrates the
potential of the proposed approach for identifying ASD based on social media
content.

Discussion: Ultimately, the proposed system was compared against the existing
system that used the same dataset. The proposed approach is based on variations
in the text of social media interactions, which can assist physicians and clinicians
in performing symptom studies within digital footprint environments.

KEYWORDS

autism spectrum disorders, diagnosing, social media, deep learning, disabilities,
artificial intelligence
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1 Introduction

ASD is among the most prevalent neurodevelopmental disorders.
ASD is often demonstrated in children by age three and is defined by
impairments in social interactions and communication, repetitive
sensory-motor activities, and stereotypical behavioral patterns (1).
ASD is a congenital neurodevelopmental condition characterized by
symptoms that are evident in early infancy. Autism, characterized by
restricted interests, repetitive behaviors, and significant disparities in
social communication and interaction, typically emerges during early
developmental stages and presents challenges in various social
functioning domains. A child with autism induces significant anxiety
within the family due to several factors, including the ambiguity of the
diagnosis, the intensity and persistence of the disease, and the child’s
nonconformity to social norms. In opposition, social awareness of
autism is markedly inadequate, often conflated with intellectual
disability and seen as an incurable ailment (2, 3). The ASD concept is
displayed in Figure 1.

Content on social media, particularly videos and text disseminated
by parents and caregivers, has emerged as a significant resource for

10.3389/fmed.2025.1646249

facilitating the early identification of ASD (4, 5). Social media are
technological tools designed for sharing, enabling users to create
networks or engage in existing ones. In that order, the Pew Research
Center identified the most popular social media sites as YouTube,
Facebook, Instagram, Pinterest, LinkedIn, Snapchat, Twitter, and
WhatsApp (6). Most consumers use these networks daily. This
research utilizes Twitter data to assess the stigmatization of autism and
associated terminology, picked based on accessibility and popularity,
with analysis conducted using artificial intelligence technologies (7).

Conventional diagnostic methods, which primarily rely on
observational and behavioral evaluations, often encounter issues with
accessibility, consistency, and timeliness. Recent technology
breakthroughs, especially in artificial intelligence (AI), and sensor-
based techniques, provide novel opportunities for improving ASD
identification. By developing more objective, accurate, and scalable
approaches, these technologies transform diagnostic methodologies
for autism spectrum disorder (ASD) (8-10). One new way to study
the motor patterns, attentional processes, and physiological responses
linked to ASD in real-time is wearable sensors, eye-tracking devices,
and multimodal virtual reality settings. These technologies have the
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potential to give non-invasive, continuous monitoring, which might
help with the early diagnosis of ASD and shed light on neurological
and behavioral traits that have been hard to document reliably.

Nevertheless, advancements in contemporary research are
required to substantiate their efficacy. Sensor-based techniques may
facilitate the identification of stereotyped behaviors and motor
patterns linked to ASD in realistic environments, potentially yielding
data that could guide timely and customized therapies (11).
Neuroimaging and microbiome analysis further advance this technical
domain by indicating neurological and biological traits specific to
ASD. Al-enhanced neuroimaging aids in identifying structural and
functional brain connection patterns associated with ASD, thereby
enhancing the understanding of its neuroanatomical foundation (12).

The research conducted by Neeharika and Riyazuddin et al. (13)
aimed to enhance the accuracy of ASD screening by using feature
selection methods in conjunction with sophisticated machine learning
classifiers. Their research included several datasets spanning infants,
children, adolescents, and adults, enabling a thorough assessment of
ASD characteristics across different age demographics. Authors’ use
of MLP model capacity to reliably and rapidly identify ASD, indicating
a beneficial screening instrument suitable for various age groups,
facilitating both clinical evaluations and extensive screenings. Wall
et al. (14) investigated machine learning (ML) algorithms for
diagnosing ASD using a standard dataset. The researchers focused on
the Alternating Decision Tree classifier to identify a limited yet
efficient set of queries that optimize the diagnostic procedure. Alzakari
et al. (15) proposed a novel two-phase methodology to tackle the
variability in ASD features with ML approaches, including behavioral,
linguistic, and physical data. The first step concentrates on identifying
ASD, using feature engineering methodologies and ML algorithms,
including a logistic regression (LR) and support vector machine
(SVM) ensemble, attaining a classification with high accuracy. EEG
assesses brain activity and may identify children predisposed to
developing ASD, hence facilitating early diagnosis. EEG data is used
to compare ASD and HC (16-18). In (19), the CNN model was used
for classification after transforming the data into a two-dimensional
format. While EEG may facilitate the diagnosis of ASD, it is
constrained by other factors, such as signal noise.

The research has used social media to investigate ASD. However,
exploiting these prevalent platforms and innovative online data
sources may be feasible to enhance the comprehension of these
diseases. Previous research has utilized Twitter data to investigate
discussions on ASD-related material, indicating that this subject is
frequently addressed on this platform (20). Considering the use of
social media for researching ASD is particularly significant, as a recent
analysis indicated that around 80% of individuals with ASD engage
with prominent social media platforms (21). This study aims to build
upon previous research and enhance our comprehension of whether
publicly accessible social media data from Twitter may provide
insights into the existence of digital diagnostic indicators for ASD
(22). Furthermore, we want to assess the viability of establishing a
digital phenotype for ASD using social media.

Beykikhoshk et al. (20) examined Twitter’s potential as a data-
mining tool to comprehend the actions, challenges, and requirements
of autistic individuals. The first finding pertained to the attributes of
participants inside the autism subgroup of tweets, indicating that these
tweets were highly informative and had considerable potential
usefulness for public health experts and policymakers. Tomeny et al.
(23)

examined demographic correlations of autism-related
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anti-vaccine opinions on Twitter from 2009 to 2015. Their results
indicated that the frequency of autism-related anti-vaccine views
online was alarming, with anti-vaccine tweets connecting with news
events and demonstrating geographical clustering. From 2015 to 2019,
Tarraga-Minguez et al. (24) examined the phrases “autism” and
“Asperger” in Spain in relation to Google search peaks. The public
view of autism was significantly impacted by how the condition was
portrayed in the news and on social media, and the authors found that
social marketing campaigns had a significant role in normalizing
autism. In this research (25), looked at how people sought assistance.
The results showed a strong correlation in Google search interest
between the terms “Asperger syndrome” and “Greta Thunberg,”
reaching their highest point in 2019. Online traffic to the Asperger/
Autism Network and Autism Speaks websites increased steadily from
June to December 2019, indicating a correlation between help-seeking
behavior and Thunberg’s fame, according to the research. According
to the results, the stigma associated with Asperger’s disorder may have
been positively affected by Thunberg’s public exposure.

1.1 Contribution

The use of tweets from Twitter for the detection of ASD is
substantial, since it offers extensive, real-time, user-generated data that
facilitates the early identification of ASD-related behaviors, particularly
via self-reported experiences and parental observations. This
methodology promotes the advancement of suggested models, namely
LSTM, CNN-LSTM, and inspired DDQN, for natural language
processing to examine linguistic patterns, feelings, and keywords related
to ASD. It provides insights into popular views, stigma, and
misconceptions around autism, guiding awareness initiatives and public
health measures. Twitter data is a powerful and accessible resource for
enhancing early detection and understanding of ASD in diverse groups.
Utilizing social media in this manner may offer more accessible and
timely screening, particularly in regions with limited healthcare resources.

2 Materials and methods

Figure 2 shows the pipeline of the proposed system to provide a
broader perspective to researchers and developers. The framework
delineates the processing phases for the pipeline that utilizes social
media content to diagnose ASD. Below, we present a comprehensive
assessment of each step.

2.1 Dataset

To help with the early diagnosis of ASD by using proposed
systems, the TASD-Dataset includes comprehensive textual sequences
that depict the everyday lives of children with and without ASD. It
offers new elements, including Noise Sensitivity, Sharing Interest, Sign
Communication, and Tiptoe Flapping, It combines critical ASD
assessment aspects like Attention Response, Word Repetition, and
Emotional Empathy, as shown in Figure 3. Parents may get detailed
insights and better identify signs of autism spectrum disorder (ASD)
due to the deepening of certain behaviors. The dataset contains 172
tweets from the ASD class and 158 non-ASD tweets. Figure 4 shows
the class of the dataset.
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FIGURE 3
Features of the dataset.
2.2 Preprocessing several steps are taken to preprocess tweets for detecting ASD, as
shown in Figure 5.
Text preprocessing is an essential step in the text processing
process. Words, sentences, and paragraphs can all be found in a text,
which is defined as a meaningful sequence of characters. Preprocessing 2.3 Text cleani ng
methods feed text data to a proposed algorithm in a better form than
in its natural state. A tweet can contain different viewpoints on the The clean text preprocessing method is a significant step in

data it represents. Tweets that have not been preprocessed are highly ~ text datasets because the text contains several extra contexts to
unstructured and contain redundant data. To address these issues,  preprocess and normalize raw text data for analysis. In these
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steps, the use is transformed to lowercase to guarantee
consistency and prevent differentiation between “ASD” and
“Non-ASD.” Subsequently, any characters that are not letters,
numerals, or spaces are eliminated by a regular expression, so
punctuation and other symbols that might create extraneous
noise are removed. This method is ultimately applied to the “Text’
column of the Data Frame, ensuring that all text elements are
sanitized and prepared for feature extraction. Figure 6 displays
the clean text process.

2.4 Label encoding

The LabelEncoder method converts text class (ASD and
Non-ASD) into numbers, designating 0 for ASD and 1 for

Frontiers in Medicine

Non-ASD. This transformation updates the classification effort by
enabling the model to see the labels as numerical values instead of
text. Equations 1, 2 show the label encoding.

yclassification & (ASD,Non— ASD) Then (1)

y =labelEncoder ( yclassifcation) — y € {0,1} (2)

2.5 Tokenization and padding

Tokenization and padding are essential NLP preprocessing
procedures that transform unprocessed text into a numerical
representation appropriate for machine learning models,
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particularly neural networks. Figure 7 shows the tokenization and
padding Equation 3.

2.5.1 Tokenizer

Tokenizer procedures transform textual data into a numerical
representation suitable for input into neural networks. They convert a
text corpus into integer sequences, assigning a distinct index to each
unique word according to its frequency, as shown in Equation 3. The
tokenizer processing is shown in Figure 8.

index(w):mnkf (w)ifmnkf(w)SV 3)

Where rankf(w) is rank w frequency f (w) and V is the
maximum number of words.

2.5.2 Fit texts
This phase is crucial for transforming unprocessed text into
numerical sequences suitable for input into the proposed system.

2.5.3 Texts_to_sequences
To convert unprocessed text input into sequences of word indices
according to the mapping acquired via as shown in Equation 4.

sequence(Ti ) = [index(wl),index (wz ), ......... ,index (wm )} (4)

Where is the T; is the sentence of the text contained, and w is the
words of the text, whereas the index(wl) is an index of the words in
the context.

2.5.4 Padding_sequences

Normalize sequence lengths, which may differ post-tokenization, by
padding shorter sequences and truncating larger ones to a predetermined
length as shown in Equation 5. The padding and truncated b are fixed on
the length. L =200. The padding processing is shown in Figure 7.
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X1
X2

)

Where x is features contain padding and are tokenized, L is the
length of the vector. The number of texts is indicated n, and € R™L g
matrix lues.

2.6 Proposed systems

2.6.1 Convolutional neural networks

The CNN model is at the core of all advanced machine learning and
deep learning applications. They can successfully address text
classification, image recognition, object identification, and semantic
segmentation. Using the same method with a task as different as Natural
Language Processing is counterintuitive (7). The structure is presented in
Figure 9. Equation 6 presents the convolution layer of CNN.

H W
O(xy)=>>I(x+iy+j)*K(i,j)+b (6)

i=1j=1

Where the features of text O (x,y)The feature of the text is mapped
by using.] (x +iy+ ]) is weighted by a neural network and b is biased
to adjust the neural. The ReLU activation function is Equation 7, the
max pooling function is presented in Equation 8. The Dense Layer is
given in Equation 9.

f(x)zmax(O,x) (7)
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qHW Forget gate: f; =0 (W;.X; + Wrhy_y +b 10
O(x,y):ZZI(x+i)y+j)*K(i,j)+b (8) orget gate: f; O'( [t -1 f) (10)
i=1j=1
Input gate:i; = O'(WC.X, +W.h +b,-) (11)
O=W-X+b )]
Cell gate: C; = (W *(hy_1,x; ) by ) (12)
2.6.2 Long short-term memory network Output gate: 0; =0 (W, + Xy + Wo by +V,.Cr+b,)  (13)
An LSTM network is an advanced form of a sequential neural
network. It fixes the problem of RNN gradients fading over time. Hidden layer : by = o; +tanh(Ct) (14)

RNNs often handle long-term storage. At a high level, the
operation of an LSTM is comparable to that of a single RNN
neuron. The inner workings of the LSTM network are outlined in
this section. The LSTM consists of three parts, each performing
a particular function, as seen in Figure 10 below. In the first step,
it is decided whether the information from the previous time
stamp is significant enough to be saved or if it is harmless enough
to be deleted. In the second step, the cell will try to acquire new
information by analyzing the data that has been presented to it.
In the third and final step, the cell incorporates the data from the
most recent time stamp into the data stored in the next time
stamp. These three components constitute what is referred to as
a gate for an LSTM cell. The “Forget” gate comes first, followed
by the “Input” section, and then the “Output” section is used to
define the last portion as shown in Equations 10— 14.
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In Figure 10, C;Represent the prior and current states of the cell,
respectively. Both h,_jand h Represents the cell output that was
processed before the one now being processed. It is common practice
to disregard f; As a gate, even though it is the input gate. The output
of a sigmoid gate is symbolized here by o;. The cable that connects
the cell gates is where all the data collected by the cell gates is sent to
and from C. The f; Layer decides to remember anything, and
the f;The Output is multiplied by c to do so (t-1). After that, c (t-1)
is multiplied by the product of the sigmoid layer gate and the tanh
layer gate, and the output h t is generated by point-wise
multiplication of o; and tanh.

The LSTM architecture is intended to capture long-term
relationships in Twitter text data. The preprocessing converts input
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words that start with an embedding layer into 128-dimensional ~ 2.6.3 CNN-LSTM model

dense vectors. The LSTM layer with 64 units is then used to The CNN-LSTM model is a hybrid architecture that combines
mitigate overfitting, integrating dropout and recurrent dropout  convolutional neural networks (CNN) for spatial feature
with 0.5. An L2 regularization term is further included in the  extraction and long short-term memory (LSTM) networks for
LSTM and output dense layer. Table 1 shows parameters of the  sequential learning, making it highly effective for analyzing text
LSTM model. data such as tweets. The model begins with an embedding layer
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FIGURE 10
LSTM model.

TABLE 1 LSTM parameters model.

TABLE 2 CNN-LSTM parameters.

Input Values Input Values

Embedding dimension 256 Embedding dimension 128
LSTM unit 64 LSTM unit 64
ConvlD 64,K=5 ConvlD No
MaxPooling ID yes MaxPooling ID No
Dropout_rate 0.5 Dropout_rate 0.5
Dense_Unites 32 Dense_Unites 32
Activation_function ReLU Activation_function ReLU
L2 0.001 L2 0.001
Optimizer Adam Optimizer Adam
Loss Binary Loss Binary
Epoch 30 Epoch 30
Batch size 16 Batch size 16

that transforms each word into a 256-dimensional dense vector,
capturing the semantic meaning of words. This is followed by a
1D convolutional layer with 64 filters and a kernel size of 5,
which scans through the text to detect local patterns and n-gram
features such as common word combinations or phrases often
associated with ASD. A batch normalization layer is applied to
stabilize and accelerate training, followed by a max pooling layer
that reduces the dimensionality and computational load by
selecting the most prominent features. A dropout layer with a rate
of 0.5 is then used to prevent overfitting by randomly deactivating
some neurons during training. The output is passed into a 64-unit
LSTM layer that captures the temporal dependencies and
contextual relationships across the tweet sequence. Finally, a
dense layer with sigmoid activation performs binary classification
to predict whether the tweet indicates ASD-related content. The
model is trained using the Adam optimizer, binary cross-entropy
loss, class weights, and regularization to handle imbalanced data
and improve generalization. The critical parameters of the
CNN-LSTM model are displayed in Table 2.

Frontiers in Medicine

2.6.4 Double deep Q-network (DDQN-inspired)

The Double Q-Learning model was introduced by H. van Hasselt in
2010, addressing the issue of significant overestimations of action value
(Q-value) inherent in traditional Q-Learning. In fundamental Q-learning,
the Agent’s optimal strategy is consistently to select the most advantageous
action in any specific state. This concept’s premise is that the optimal
action corresponds to the highest expected or estimated Q-value. Initially,
the Agent lacks any knowledge of the environment; it must first estimate
Q(s, a) and subsequently update these estimates with each iteration. The
Q-values exhibit considerable noise, leading to uncertainty about whether
the action associated with the highest expected or estimated Q-value is
genuinely the optimal choice.

Double Q-Learning employs two distinct action-value
functions, Q and Q), as estimators. Even if Q and Q’ exhibit noise,
this noise can be interpreted as a uniform distribution as shown
Figure 11 The update procedure exhibits some variations compared
to the basic version. The action selection and action evaluation
processes are separated into two distinct maximum function
estimators. shown in Equations 15, 16.
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FIGURE 11
DDQN-inspired model.

Let the vector of a neural network’s weights be represented by 6.
We establish two Q-networks: the online Q-network Q (s, a; 0(t)) and
the target Q-network Q (s, a; 0 (t)). To be more specific, the training
of Q (s, a; X (t)) is done by modifying the weights (t) at time slot t in
relation to the goal value y(t).

y(t) :G(t)+(s',argmaxQ(s',a*;gf(t));H,(t)) (15)

y(t):G(t)+(s’,argmaxQ(S'»a*;e');ei—l) (16)

The reinforcement learning mechanism integrates generative
artificial intelligence for decision-making and prediction tasks, as
shown in Equations 15, 16. This equation indicates the generative
which produces the estimation or hypothesis at a given time ¢.
Double Q — Learning Used next state, whereas the s’ is exit state and
arg maxQ(s,a";0'(t)) defined as the action of a* to maximize the
predicted Q-value based on the current parameters. To estimate the
Q-value of this selected action in the next state, the outer Q-function
Q employs the older parameters. €;_;1, which helps reduce
overestimation bias. This combination makes applications for
predicting ASD from social media content domains possible.

The DDQN model is used to classify ASD and non-ASD cases
utilizing text data. The model utilizes a preprocessing step for
text processing that encompasses data loading, cleaning
(including lowercasing, removal of special characters, and
normalization of spaces), and tokenization, constrained by a
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maximum vocabulary of 10,000 words and a sequence length of
200. The model architecture, drawing from the Double Deep
Q-Network (DDQN) model comprises an input layer, an
embedding layer with 256 dimensions, and two parallel LSTM
branches, each containing 64 units, a dropout rate of 0.5, and L2
regularization to capture sequential patterns effectively. The
model uses the Adam optimizer with a learning rate of le-4 and
employs binary cross-entropy loss. It is trained for 30 epochs,
incorporating early stopping and learning rate reduction
callbacks to mitigate overfitting. Parameters of DDQN-Inspired
are shown in Table 3.

3 Performance of the framework

3.1 Performance of LSTM

Figure 12 presents the accuracy and loss metrics used to train
and validate an LSTM model over 30 epochs. The validation
accuracy of the LSTM model, displayed in red, begins at a lower
value and increases to about 81%. The blue line in the accuracy
plot (a) shows the training accuracy of the LSTM model; it
increases gradually from around 50% to almost 99%, showing
that the model learns the training data well over time. The plot
(b) shows the loss of the LSTM model; the blue line represents
the training loss, which drops gradually from around 0.7 to less
than 0.2, suggesting that the model is getting a better fit to the
training data. Meanwhile, the red validation loss line declines
from around 0.7 to about 0.3. While the training loss continues
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to grow, the validation loss reaches a level and exhibits small
oscillations, suggesting that the model’s generalizability
may stabilize.

The ROC curve illustrated in Figure 13 shows the efficacy of the
LSTM model in differentiating between the classes. The graph
illustrates the TP rate (sensitivity) in relation to the FP Rate across
different threshold levels. The LSTM model attains an AUC of 0.95,
demonstrating exceptional classification capability. The AUC of 1.0,
but a result of 0.5 indicates random chance.

3.2 Performance of the CNN-LSTM model

Figure 14 presents plots illustrating the performance of a
CNN-LSTM model over 25 epochs, showing its training and
validation metrics for accuracy and loss. The accuracy plot (a)
illustrates the training accuracy (blue line), which increases
progressively from approximately 51.42% to nearly 99.53%,
indicating effective learning from the training data. In contrast,

TABLE 3 Parameters of DDQN-inspired.

Input Values

10.3389/fmed.2025.1646249

the validation accuracy (red line) rises to about 83.02% with

some variability, indicating satisfactory but imperfect
generalization. The loss plot (b) shows the training loss (blue
line) declining steadily from 0.7140 to below 0.0760, indicating
enhanced model fit. In contrast, the validation loss (red line)
decreases from 0.7130 to approximately 0.3530, with a slight
decline toward the conclusion. This notification indicates that the
CNN-LSTM model demonstrates efficient learning, as evidenced
by the difference between the training and validation measures.

Figure 15 illustrates the ROC curve for the CNN-LSTM model,
illustrating its classification performance at various thresholds. The
graph illustrates the TP Rate (Sensitivity) in relation to the FP Rate,
with the AUC recorded at 92%. The elevated AUC value indicates the
model has robust discriminative capability in differentiating between
the ASD and Non-ASD classes. The ROC ascends rapidly toward the
top-left corner, as seen in the figure, indicating a high TP rate with few

false positives.

3.3 Performance of DDQN-inspired model

Graphs 16 illustrate the performance of a DDQN throughout 30

Max-sequence length 200 epochs. The accuracy plot (a) demonstrates that the training accuracy
ol increases from around 58.02% to almost 98.58%, indicating the
Ve 10,000 . . .
i DDQN model successful learning from the training data over time.
Embedding dimension 256 The validation accuracy of the DDQN is about 87, showing the best
Dropout_rate 0.5 performance compared to different models like LSTM and
Dense_Unites 3 CNN-LSTM. The plot (b) illustrates that the training loss decreases
from about 0.8155 to around 0.1477, indicating a robust fit to the
Activation_function ReLU L L i .
training data. The validation loss begins at 0.3831 with many
LS 00001 fluctuations throughout (Figure 16).
Optimizer Adam Figure 17 shows the ROC curve for the DDQN model; it shows a
Loss Binary visual representation of its classification capability, with the curve toward
Epoch 30 the top-left corner, indicating strong predictive power. The AUC value of
the DDQN model is 96%, demonstrating that the model can distinguish
Batch si 1 i .
atch size o between the positive and negative classes.
Lo LSTM_Model - Accuracy LSTM_Model - Loss
| -e- Training Accuracy a_o%e -@- Training Loss
—— Validation Accuracy Fes o0y ¥ 0.74 —— Validation Loss
0.9
0.8
>
@
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FIGURE 12
Performance of the LSTM model.
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4 Experiment and discussion results

Both the Jupyter deep learning framework and the Windows 10
operating system were utilized during the testing process. Experiments
were conducted using a machine with 16 gigabytes of RAM and an Intel
Core i7 central processing unit. The input dimensions of the experiment
were a standard text dataset collected from the Twitter API related to
ASD. The test was utilized in our database, while the remaining 20% was
used as part of our validation set. The three DL models, namely LSTM,
CNN-LSTM, and DDQN-Inspired, were proposed for detecting ASD
from social media content.

LSTM_Model - ROC Curve

1.0

0.8

=
o

True Positive Rate
o
'S

0.2 -

00{ +~ —— ROC Curve (AUC = 0.95)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIGURE 13
ROC of the LSTM model.

10.3389/fmed.2025.1646249

4.1 Measuring the model's performance

Sensitivity, specificity, accuracy, recall, and F1 scores are
assessment measures used to determine how successfully the
algorithms identify ASD. The related equations from 17 to 21:

TP+TN

Accuracy =———  —x100% (17)
TP+FP+FN+TN

TP

Sensitivity = ————x100% (18)
TP +FN
. P

Precision= » x100% (19)

TN

specificity =——x100 20

pecificity TN + FP (20)

ision x Sensitivit
precisionx Sensitivity <100

Fl—score=2% (21)

precision + Sensitivity

4.2 Result of the LSTM model

The classification LSTM model, presented in Table 4, summarizes its
performance in differentiating between ASD and Non-ASD patients,
attaining an overall accuracy of 81%. The LSTM model demonstrates in
ASD class a precision of 91%, indicating a high accuracy in identifying
predicted ASD cases. The LSTM with recall metric scored 77% and an
Fl-score of 82% for detecting the ASD class. The LSTM model with
Non-ASD class demonstrates a precision of 71%, a recall of 89%, and an
Fl1-score of 79%, to identify Non-ASD cases. The macro average of the
LSTM model for all metrics is (precision: 81%, recall: 82%, F1-score:

CNN_LSTM_Model - Accuracy

CNN_LSTM_Model - Loss

Performance of the LSTM model.

-@- Training Accuracy KE T 0.7 -@- Training Loss
— Validation Accuracy P — Validation Loss
AN
0.9 1
0.8 1
>
v
g
S o7
g
0.6 1
0.51
0 5 10 15 20 25 0 5 10 15 20 25
Epochs Epochs
FIGURE 14
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81%). LSTM model is recognized for its efficiency and scalability as a
model for social media content.

The confusion matrix for the LSTM model is provided in
Figure 18. It is presented in a clear manner. Among the confirmed
ASD cases, 29 were accurately identified as ASD, whereas 10 were
incorrectly classified as Non-ASD, indicating strong performance
with minor errors. In the true non-ASD cases, 25 were correctly
identified, while 3 were misclassified as ASD, suggesting a
generally effective detection process. The deep blue and light
shades produce a tranquil visual, illustrating the model’s balanced
approach in classifying the 67 total instances, demonstrating
notable strength in identifying Non-ASD cases, while exhibiting
marginally lower accuracy for ASD. This matrix effectively
illustrates the LSTM model’s systematic approach to managing

10.3389/fmed.2025.1646249

sequential data, such as text or time-series inputs, in a clear and
comprehensible manner.

4.3 Result of the CNN-LSTM model

Table 5 displays the CNN-LSTM models performance in
distinguishing between ASD and non-ASD classes. The CNN-LSTM
model attained an overall accuracy of 85% across the dataset. In the ASD
label, a precision of 91% was achieved, a high percentage for predicting
ASD cases that were accurately recognized. The recall indicates that the
model identified 82% of all genuine ASD cases, resulting in an F1 score
of 86%, better than the recall metric. The CNN-LSTM model attained
78% accuracy, 89% recall, and an 83% F1 score for the Non-ASD class.
The macro average, representing the unweighted mean of precision,
recall, and F1 score across both classes, was 85, 86, and 85%, respectively.
The findings indicate that the CNN-LSTM model performs satisfactorily,

CNN_LSTM Model - ROC Curve exhibiting a marginally superior capacity to identify ASD cases relative
1D to non-ASD cases accurately.
. The confusion matrix of a CNN-LSTM model is presented in
o8 L~ Figure 19, for classifying instances into ASD and Non-ASD. The
. matrix is structured with true labels on the vertical axis and
Q
s predicted labels on the horizontal axis, providing a clear summary
<06 £
2 of the model’s classification outcomes. The matrix shows that out
8 o of the instances truly labeled as ASD, the model correctly
é ' predicted 32 as ASD TP while 7 were incorrectly classified as
Non-ASD FN. For the instances truly labeled as Non-ASD, the
0.2
model accurately identified 25 as Non-ASD TN but 3 were
misclassified as ASD FP. This indicates that the model
0.0 —— ROC Curve (AUC = 0.92) . - . .
- - " - s - demonstrates a relatively strong ability to correctly identify ASD
' » False Positive Rate ' . and Non-ASD cases, with higher accuracy for true positives (32
FIGURE 15 out of 39 ASD cases) and true negatives (25 out of 28 Non-ASD
ROC of the CNN-LSTM model. cases). Overall, the model exhibits promising performance with
minimal misclassification errors.
DDQN_t Model - Accuracy DDQN_t Model - Loss
1.0 —] —
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FIGURE 16
Performance of the DDQN-inspired model.
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ROC DDQN-inspired model.
TABLE 4 LSTM results.
Class name Precision (%) Recall (%) F1 Score (%) Support
ASD 91 74 82 39
Non-ASD 71 89 79 28
Accuracy 81
Macro Avg 81 82 81 67
LSTM_Model - Confusion Matrix
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- 10
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FIGURE 18
LSTM model.
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TABLE 5 Results of the CNN-LSTM model.

10.3389/fmed.2025.1646249

Class name Precision (%) Recall (%) F1 Score (%) Support
ASD 91 82 86 39
Non-ASD 78 89 83 29
Accuracy 85
Macro Avg 85 86 85 67
CNN_LSTM_Model - Confusion Matrix 30
25
ASD
]
Qo
o
Y
=
Non-ASD -
- 10
ASD Non-ASD -5
Predicted label
FIGURE 19
Results of CNN-LSTM model.
TABLE 6 Result of DDQN-inspired.
Class name Precision (%) Recall (%) F1 Score (%) Support
ASD 95 79 87 39
Non-ASD 77 96 86 28
Accuracy 87 67
Macro Avg 87 88 87 67

4.4 Results of double deep Q-network

The findings of the DDQN model are shown in Table 6,
achieving a high precision of 87% compared to the other models.
This finding demonstrates the potential of the proposed DDQN
approach for identifying ASD based on social media content.
Ultimately, the proposed system was compared against the existing
one using the same dataset. The proposed approach may assist
physicians in detecting ASD and conducting symptomology research
in a natural environment, attaining an overall accuracy of 87. The
model for the ASD class shows a precision of 95%, a recall of 79%,

Frontiers in Medicine

and an Fl-score of 87%, indicating robust efficacy in accurately
identifying ASD patients. The Non-ASD class has a precision of 77%,
a recall of 96%, and an Fl-score of 86%, indicating somewhat
reduced accuracy with robust recall. The macro average measures
(precision 87%, recall 88%, F1-score 87%) indicate performance
across both classes.

The confusion matrix of the DDQN model is shown in
Figure 20 for the classification task between ASD and non-ASD
cases. For correct classification of ASD cases, the model correctly
classified 31 instances as ASD, represented by the top-left
quadrant (TP). However, the DDQN model, misclassified 8
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FIGURE 20
Result of DDQN-inspired model.

Predicted label

Non-ASD

instances misclassifying true ASD cases as Non-ASD, shown in
the top-right quadrant (FN). On the other hand, the DDQN
showed the true Non-ASD cases, accurately identified 27
instances as Non-ASD, depicted in the bottom-right quadrant
(TN). At the same time, 1 instance was incorrectly labeled as
ASD, as shown in the bottom-left quadrant (FP). The confusion
matrix of DDQN model highlights that it performs well overall,
with a strong ability to correctly identify both ASD and
Non-ASD cases, as evidenced by the high counts of TP (31) and
TN (27).

In the digital era, people frequently write content on social media
to express their feelings, opinions, beliefs, and activities. This makes
social media one of the most significant sources of data generation,
allowing you to explore its opportunities and challenges. Today, social
media has become a mediator between people and the healthcare
sector, enabling them to search for information about any specific
disease and methods for diagnosing it.

Individuals within the mental health community use social media
platforms such as Twitter to seek information, exchange experiences, and
get assistance about ASD in an environment that is seen as more
approachable and informal than conventional medical contexts. They
often seek immediate, relevant information—whether to understand
symptoms, identify coping mechanisms, or connect with others facing
similar difficulties. Figure 21 illustrates that Word clouds are visual
representations of text that highlight key terms and their frequency of use.
We used WordCloud to compare ASD and Non-ASD texts for instances
of word repetition.
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The deployment model based on the Deep Q-Network (DQN)
model for diagnosing ASD is shown in Figure 22.

Step 1: Data Collections, including cleaning, normalization,
and tokenization.

Step 2: Model Development: The preprocessed data is used to
train and validate a Deep Q-Network (DQN) model for classifying
tweets as indicative of ASD or non-ASD patterns.

Step 3: Application Interface: An application interface is developed
once the model has been trained. It integrates with users’ Twitter
accounts and continuously analyzes their tweets.

Step 4: Deployment: The proposed system is deployed in the cloud
for storing tweets, enabling real-time monitoring of incoming tweets.
Predictions are flagged for review by healthcare professionals, who
validate the model's output before categorizing individuals as
potentially having ASD or non-ASD.

This digital imprint may serve as an ancillary resource for mental
health practitioners, providing insights into an individual’s emotional state
and social behaviors in a natural environment, potentially facilitating early
detection or corroborating a diagnosis. This method is a non-invasive
means of data collection, particularly beneficial for individuals who lack
rapid access to clinical assessments due to financial constraints, stigma, or
resource scarcity. However, it should not replace professional diagnoses
and must be conducted with ethical consideration to prevent
misunderstanding. Table 7 shows the findings of the proposed framework
on the Twitter dataset. It demonstrates that the suggested method
outperforms the current systems in terms of accuracy, proving its efficacy
and potential for performance improvements.
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ASD word cloud.
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Deployment system-based text for detecting ASD.
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TABLE 7 Compared with the proposed ASD system.

10.3389/fmed.2025.1646249

References Dataset
Rubio-Martin et al. (26) Twitters dataset BERT 84
Jaiswal and Washington (27) Twitters dataset ML 78

5 Conclusion

To assist people in identifying trends in their behavior, such as
social challenges or sensory sensitivities, which may encourage
them to pursue a formal diagnosis. The main objective of examining
tweets for identifying ASD is its ability to provide behavioral and
emotional indicators associated with the disorder. This research was
used to analyze the textual analysis of tweets to detect the behaviors
The
suggested framework was evaluated using information from the

in self-identified autistic individuals relative to others.

social media platform “Twitter” collected from a public repository.
Before examining the proposed system, several preprocessing steps
must be implemented in the text. The “Text’ column is cleaned by
converting it to lowercase, eliminating non-alphanumeric
characters (excluding spaces) through regular expressions,
normalizing whitespace to a single space, and removing any leading
or trailing spaces. The ASD and Non-ASD labels are converted into
a numerical format (0 or 1) with LabelEncoder to accommodate the
binary classification requirement. Tokenization of the text data is
performed using a tokenizer, restricting the vocabulary to 10,000
words, and then transforming the text into sequences of numbers.
The sequences are padded to a standardized length of 200 tokens to
maintain consistency for the proposed model input. The proposed
data is ultimately divided into an 80% training and 20% testing
ratio, and class weights are calculated to resolve any class imbalance.
This preparation pipeline efficiently converts raw text data into a
structured numerical representation appropriate for the proposed
framework, while preserving academic integrity. The output of
these preprocessing steps was processed using three DL models,
such as Short-Term Memory (CNN-LSTM) and a Double Deep
Q-network (DDQN). The results of these proposals were proven,
revealing that the DDQN model achieved a high accuracy score of
87% with respect to the accuracy measure. The proposed
framework, based on real textual data, can be helpful for real-time
offering natural, behavioral, and emotional data that might indicate
ASD-related characteristics. Finally, we have observed that social
media (Twitter) postings include linguistic patterns, emotional
expressions, and social interactions that can help official health
officials detect ASD based on the thorough symptoms of ASD that
are posted on the platform. This study utilized a conventional
dataset sourced only from the Twitter network. We will emphasize
the necessity of gathering datasets from many platforms to enhance
the model’s generalizability in the future.
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Brain tumors pose a critical threat to human health, and early detection is
essential for improving patient outcomes. This study presents two key
enhancements to the YOLOv11 architecture aimed at improving brain tumor
detection from MRI images. First, we integrated a set of novel attention modules
(Shuffle3D and Dual-channel attention) into the network to enhance its feature
extraction capability. Second, we modified the loss function by combining the
Complete Intersection over Union (CloU) with a Hook function (HKCloU).
Experiments conducted on a public Kaggle dataset demonstrated that our
improved model reduced parameters and computations by 2.7% and 7.8%,
respectively, while achieving mAP50 and mAP50-95 improvements of 1.0%
and 1.4%, respectively, over the baseline. Comparative analysis with existing
models validated the robustness and accuracy of our approach.

KEYWORDS

brain tumor, object detection, you only look once (YOLO), attention, intersection over
union (loU), mean average precision (MAP), giga floating point operations per
second (GFLOPs)

1 Introduction

Brain tumors present a serious risk to human health with potentially devastating
consequences. Abnormal growth can interfere with brain function, causing severe
neurological symptoms, cognitive impairment, and in many cases, mortality (1, 2). The
classification of brain tumors serves as the foundation for clinical diagnosis, treatment
planning, and prognostic assessment. The most authoritative international system is the
World Health Organization (WHO) Classification of Tumors of the Central Nervous
System, with the latest 5th edition (WHO CNS5) published in 2021 (3, 4). This
classification integrates histopathology, molecular genetics, and clinical phenotypes to
form an integrated diagnosis framework, replacing the previous morphology-based
classification model. Based on tissue origin and biological characteristics, WHO CNS5
categorizes brain tumors into the following 6 categories: Neuroepithelial Tumors (Gliomas
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and Related Tumors), Meningeal Tumors, Cranial and Peripheral
Nerve Tumors, Germ Cell Tumors, Sellar Region Tumors, and
Metastatic Brain Tumors.

Tumor characteristics such as location, size, and grade are
critical determinants of neurological impairments and functional
deficits in patients with brain tumors. Location directly influences
the specific deficits due to the brain’s functional specialization. For
example, tumors in the motor cortex often cause contralateral limb
weakness or paralysis, while lesions in the cerebellum may lead to
ataxia and coordination difficulties. Size correlates with the severity
of mass effect and peritumoral edema. Larger tumors (e.g.,
diameters >4 cm) exert greater mechanical pressure on
surrounding tissues, causing midline shift, ventricular
compression, and increased intracranial pressure, which manifest
as headaches, nausea, altered consciousness, and even herniation.
Grade reflects tumor aggressiveness and biological behavior. Low-
grade tumors grow slowly and may remain asymptomatic for years,
while high-grade tumors exhibit rapid infiltration, angiogenesis,
and necrosis, leading to severe and progressive deficits. In summary,
tumor location dictates the type of neurological deficits, size
determines the extent of mass effect and increased intracranial
pressure-related complications, and grade predicts the tempo and
severity of clinical progression. Multidisciplinary management (5),
including surgical planning, adjuvant therapies, and
neurorehabilitation, must account for these interdependent
factors to optimize outcomes.

Early and accurate detection of brain tumors is essential for
treatment planning, as timely intervention can significantly
improve patient prognosis and quality of life. Magnetic resonance
imaging (MRI) (6) has become a primary diagnostic tool for brain
tumors owing to its high soft-tissue contrast and detailed
anatomical resolution. However, manual analysis of MRI scans
for tumor detection is time-consuming and prone to error, relying
heavily on medical expertise. Therefore, developing automated and
reliable object-detection algorithms for brain tumors in MRI images
has become a critical research priority.

Traditional machine learning algorithms to detect brain tumors
in medical images, such as Haar cascades (7) and histograms of
oriented gradients (HOG) (8) combined with support vector
machines (SVM), have been applied to brain tumor detection.
These methods depend on handcrafted features that require
extensive domain knowledge and careful design. However,
these methods often fail to generalize across datasets and
imaging modalities, as performance is constrained by the
complexity and variability of brain tumor appearance on MRI
scans. The inability to extract high-level semantic information
limits the accuracy and robustness of traditional machine-
learning-based detection methods.

Deep learning has introduced transformative advances in object
detection. Region-based convolutional neural networks (R-CNNs)
(9), introduced by Girshick et al., marked a significant milestone by
applying a data-driven approach to object detection. Faster R-CNN
(10), an improved version of R-CNN, integrated a region proposal
network (RPN), which reduces computational cost and increases
detection speed while preserving accuracy. For brain tumor
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detection, Faster R-CNNs have demonstrated promise in
accurately identifying tumor regions by leveraging deep
convolutional features (11). However, its slow processing and
complex two-stage architecture limit practical use in real-time
medical diagnostics.

The single-shot multibox detector (SSD) (12) developed by Liu
et al. has proven to be an efficient alternative to two-stage detectors.
The model predicts the bounding boxes and class probabilities
within a single network, enabling faster inference. By utilizing
feature maps from different layers, an SSD can effectively detect
objects of various scales, achieving a good balance between speed
and accuracy. In brain tumor detection using MRI images, SSD has
demonstrated the ability to detect tumors of different sizes;
however, it still faces challenges in accurately detecting small and
irregularly shaped tumors because of the limited receptive field of
shallow layers and loss of spatial information in deeper layers.

The You Only Look Once (YOLO) series (13), introduced by
Redmon et al, has attracted wide attention for its significant
advantages in object detection. Firstly, the single-stage
architecture of YOLO endows it with high computational
efficiency, and is capable of real-time or near-real-time detection.
This is highly valuable in clinical settings, where rapid results help
doctors make timely diagnostic decisions. For example, in the
context of brain tumor detection from MRI images (14), doctors
can promptly access results, and quickly specify examinations or
treatment. Secondly, YOLO captures global contextual information
from the entire input image. In contrast to other methods that focus
on local regions separately, the holistic approach of YOLO helps
better understand the relationships between different parts of an
image. Simultaneously, YOLO can accurately identify the location
and category of tumors, even when they have complex shapes. This
holistic understanding is particularly valuable for addressing the
complexity of brain tumors in MRI scans. Moreover, the YOLO
series has demonstrated strong generalization across different
datasets and scenarios such as COCO (15), PASCAL VOC2012,
NEU-DET, RSOD (16), LOCO dataset (17), Figshare dataset (18),
and so on. With continuous improvements in its architecture and
training strategies over successive versions (19-22), it can adapt well
to the variations in image quality, tumor appearance, and imaging
parameters commonly encountered in real-world medical imaging
applications. This adaptability renders YOLO a reliable tool for
detecting brain tumors in varied MRI datasets.

The original YOLO can achieve real-time performance on
standard graphics processing units (GPUs), rendering it suitable
for applications requiring rapid detection. Subsequent versions of
YOLO, such as YOLOv5, YOLOVS, and beyond, have continuously
improved the architecture and introduced advanced techniques,
further enhancing detection performance.

This study focuses on YOLOvV11 (23), an iteration of the YOLO
series released in 2024. Building on the achievements of its
predecessors, YOLOvVII integrates advanced architectures and
optimization strategies to overcome limitations in handling the
complex and diverse characteristics of brain tumors in MRI images.
Given the increasing demand for efficient and accurate brain tumor
detection in clinical practice, YOLOv11 holds considerable
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potential for achieving superior performance in terms of detection
speed, accuracy, and the ability to identify tumors of various shapes
and sizes. This study aimed to explore the capabilities of YOLOvI11
in brain tumor detection from MRI images and conduct
comprehensive experiments to evaluate its effectiveness using a
publicly available Kaggle dataset.

The structure of this paper is organized as follows: Section 2
describes the related work. Section 3 provides a detailed description
of our methodology and improvement measures. Section 4 presents
the experimental results, a comprehensive performance analysis
and comparison with other models. Section 5 provides an overall
discussion. Finally, Section 6 concludes the paper.

2 Related work

In recent years, numerous studies have been conducted on the
detection of brain tumors in MRI images using deep learning
algorithms, particularly the YOLO series algorithms, which have
demonstrated excellent performance.

Kharb et al. (24) proposed a hybrid model for brain tumor
classification that combined faster R-CNN and EfficientNet. The
hybrid model achieved a notable accuracy of 98.96% during the
training phase and 99.2% during the testing phase on the Figshare
(25) Datasets.

Hikmah et al. (26) introduced a novel approach for precise
brain tumor detection, combining various approaches such as
morphological operations for tumor segmentation, image
enhancement, and a deep learning architecture based on
MobileNetV2-SSD with feature pyramid network (FPN), where
the FPN level originally set to 3 had been modified to level 2, which
enhanced the detection of smaller objects. The proposed model
obtained a recall value of around 98% and a precision value of
around 89%.

Alsufyani (27) explored the use of several deep-learning models,
including YOLOVS, YOLOVY, Faster R-CNN, and ResNet18, for the
detection of brain tumors from MRI images. The results on the
Kaggle’s Medical Image Dataset for Brain Tumor Detection,
consisting of 3903 brain MRI images, demonstrate that YOLOvV9
outperforms the other models in terms of mAP (0.826) and
accuracy (0.784), highlighting its potential as the most effective
deep-learning approach for brain tumor detection.

Chen et al. (28) proposed the YOLO-NeuroBoost model,
combining the improved YOLOvVS8 algorithm with innovative
techniques, such as the dynamic convolution kernel warehouse,
attention mechanism CBAM, and inner-GIoU loss function. It
achieved mean average precision (mAP) scores of 99.48% and 97.71%
on the BR35H (29) and RoboFlow (30) datasets. High mAP scores
indicate the high accuracy and efficiency of the model in detecting brain
tumors in MRI images. However, the model has more parameters and
GFLOPs than YOLOV11, resulting in a larger model size.

Kang et al. (31) proposed PK-YOLO, which included the
following three components: a pretrained, pure lightweight CNN-
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based backbone via sparse masked modeling, a YOLO architecture
with a pretrained backbone, and a regression loss function for
improving small object detection. PK-YOLO achieved a mAP of
58.2% on the BR35H dataset.

Monisha and Rahman et al. (32) proposed a federated learning
architecture to enhance brain tumor detection by incorporating the
YOLOV11 algorithm. The federated learning approach safeguards
patient data while enabling collaborative deep-learning model
training across multiple institutions. On a synthetic brain tumor
dataset with about 10,000 MRI images, the model achieved a mean
average precision (mAP) of 90.8% and an mAP50-95 of 65.3%.

Dulal et al. (33) proposed an enhanced version of YOLOVS.
Their work significantly advances automated brain tumor detection
by introducing an improved YOLOv8 model. Through strategic
modifications, including the integration of a Vision Transformer
block, Ghost Convolution, and RT-DETR, their model achieved
91% mAPO.5 on a public Kaggle dataset.

Wahidin et al. (34) used several of the latest versions of the
YOLO model, namely YOLOv11m, YOLOv10m, YOLOv9m, and
YOLOV8m, to detect brain tumors such as gliomas, meningiomas,
and pituitary tumors in MRI images. Hyperparameter tuning was
conducted using the Bayesian optimization and HyperBand
(BOHB) search algorithm with ray tuning through 16 trials.
YOLOv11m achieved the highest accuracy, with an mAP50 of
0.934 and an inference speed of 70.550 FPS. In contrast,
YOLOv8m delivered the fastest inference speed of 80.471 FPS.

Bai et al. (35) proposed the SCC-YOLO architecture, integrating
the SCConv module into YOLOV9. The SCConv module improves
convolutional efficiency by reducing spatial and channel
redundancy and enhancing image feature learning. This study
examined the effects of different attention mechanisms with
YOLOVY9 on brain tumor detection using Br35H and custom
datasets. The results indicate that SCC-YOLO improves mAP50
by 0.3 to 95.7% on the BR35H dataset and by 0.5 to 86% compared
with YOLOvV9. SCC-YOLO demonstrated strong performance in
brain tumor detection.

This study involved two primary improvements. First, the
YOLOvVI11 network architecture was enhanced by integrating
several newly designed attention modules to strengthen the
feature extraction capabilities of the network. Second, the loss
function was modified to increase the loss value of low-quality
prediction boxes, and promote rapid convergence of the model.

3 Materials and methods

The YOLO series of algorithms has demonstrated strong
performance in detecting brain tumors in MRI images,
particularly in terms of accuracy and efficiency. However, the
algorithms may have different performances in different datasets
and application scenarios, and further research and improvements
are needed to improve the accuracy and efficiency of brain tumor
detection and to serve clinical diagnosis better.
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3.1YOLOv11

The YOLOvVI1 structure (Figure 1) comprises three main
components: the backbone, neck, and head (36, 37). The
backbone contains 0-10 convolution modules, the neck layer
comprises 11-22 parts, and the rest are three parallel detection
heads that detect feature maps of 20 x 20, 40 x 40, and 80 x 80, and
generate 8,400 possible detection results.

As the core of feature extraction, the backbone of YOLOvI1
replaces YOLOv8’s C2f module with an improved C3K2 module
and standard convolution (CBS). C3K2 module uses multi-scale
convolution kernel C3K, where K is an adjustable convolution
kernel size, such as 3 x 3, 5 x 5, etc. This design can expand the
receptive field, allowing the model to capture a wider range of
contextual information, especially suitable for large object detection
or scenes with complex backgrounds. The CBS module mainly
consists of three parts: Conv (convolution layer), BN (Batch
Normalization) and SiLU (activation function). It also adds a
C2PSA (Cross-Level Pyramid Slice Attention) module after SPPF,
enhancing global feature modeling capabilities through a multi-
head attention mechanism. This design enables the network to

10.3389/fonc.2025.1643208

more effectively capture long-range dependencies, which is
particularly important for occluded objects and complex scenes.
The Feature Pyramid Network (FPN) structure is retained at the
neck layer. The neck layer also uses C3K2 and CBS convolutions for
extraction, with feature fusion performed using the Concat
operation. The head layer, like previous versions, also includes
three detection heads. Each head employs depthwise separable
convolution (DWC) and standard convolution (CBS).

YOLOV11’s loss function continues the YOLO series’ pursuit of
a balance between detection accuracy and speed. Targeted at the
decoupled head structure, the loss function is divided into three
parts: bounding box regression loss, confidence loss and
classification loss, Bounding box regression loss enables the model
to accurately locate the target, confidence loss can optimize the
accuracy of the prediction box and improve the model’s ability to
judge whether the target exists in the prediction box, and
classification loss determines the category of the image in the
prediction box. Bounding box regression includes the CIoU
(Complete Intersection over Union) (38) loss and the DFL
(Distribution Focal Loss) (39), which take into account the
overlap, position, and shape of the bounding boxes. The total loss

C2PSA(10)

SPPF(9)

Upsample(11) Concat(21)

C3K2(8) Concat(12) CBS(20)

CBS(7)

C3K2(13) C3K2(19)
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FIGURE 1
Structure of original YOLOv11.
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is a weighted sum of these three losses. The loss function calculation
formula is shown in Equations 1, 2. In the equations, Ly, represents
bounding box regression loss, L, represents confidence loss, L
represents classification loss, Lcp,y represents CloU loss, Lpgr
represents DFL loss and o, f3, and ¥ represent weight parameters.

Liotar = OLpox + ﬂLobj + }/Lcls (1)

Lyox = Lerou + Lprr (2)

3.2 Main methods

Due to hardware limitations in clinical application
environments and the demand for faster speeds, we are
committed to reducing the number of model parameters and
computational complexity, and improving detection accuracy. we
integrated a set of novel attention modules into the network. This
study replaces the original self-attention module C2PSA with a
newly designed spatial attention module. At the same time, this
study uses an improved loss function instead of the original loss
function CIoU.

3.3 Attention

This study employed three attention mechanisms: Spatial
attention, Shuffle3D attention, and Dual-channel attention. The
latter two are newly designed attention mechanisms.

3.3.1 Shuffle3D attention

This study draws on the concepts of the Shuffle (40) and
SimAM (41) attention mechanisms to propose a novel attention
mechanism, designated as Shuffle3D (Figure 2). On the one hand,
channel rearrangement is applied to disrupt the original channel
order, introducing random diversity and enabling joint modeling of
different features. This module increases information exchange and
balance between channels. On the other hand, a spatial inhibition
mechanism is used. In neuroscience, information-rich neurons
often exhibit different discharge patterns from the surrounding
neurons. Moreover, activated neurons commonly inhibit
neighboring neurons. Thus, neurons exhibiting spatial inhibition
should receive greater emphasis. The calculation formulae of
inhibition effects are presented in Equations 3-5, where x
represents the input feature map, x;; represents a point in the
feature map, e represents the mean, H represents the height of
the feature map, W represents the width of the feature map,
u represents the degree of deviation from the mean at a certain
point on the feature map, and o and f3 are the regulators, which are
set to the -4th power of 10 and 0.5, respectively. Neurons that
deviate more from the mean yield higher activation function values.

1 H w
¢S w1 2 2 )
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FIGURE 2
Shuffle3D attention structure.
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x = sigmoid(u)*x (5)

3.3.2 Spatial attention

The main goal of the Spatial attention module (Figure 3) is to
explicitly model the dependencies between spatial locations and
generate a spatial attention map. First, the input features are max-
pooled and average-pooled in the channel dimension to generate
two spatial descriptors. These two spatial descriptors are then
concatenated in the channel dimension and passed through a
convolutional layer to generate a spatial attention map. Finally,
the values of the spatial attention map are normalized to the range
(0, 1) using a sigmoid function and multiplied by the input tensor to
generate the output.

The Conv2d module in the figure uses a kernel of (7,7), a stride
of 1, padding of 3, 2 input channels, and 1 output channel
(number of filters). These parameters ensure that the spatial
dimensions (w, h) of the input and output feature maps are
consistent and combine the results of average pooling and
max pooling.

3.3.3 Dual-channel attention

Figure 4 illustrates the Dual-channel attention, which comprises
two main components. The Dual-channel attention borrows the
idea of parallel convolution of different sizes of kernels from
Inception (42). The first part uses two parallel convolution
operations with different convolution kernel sizes to capture
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Max(dim=1)

Mean(dim=1)

FIGURE 3
Spatial attention structure.

additional feature information. The second part involves
concatenation, convolution, and spatial attention computation.
The final result is multiplied by the input to produce the output.

3.3.4 New structure of the YOLOv11 networks

To enhance feature extraction in convolutional neural networks,
we integrated the newly designed Shuffle3D with Spatial and Dual-

Frontiers in Oncology

channel attention. The positions of the attention modules are shown
in Figure 5. The blue areas represent attention modules that are newly
added or that replace the original ones. Dual-channel replaces the
original self-attention module C2PSA, greatly reducing the
computational load. Shuffle3D replaces the first CBS and DWC
convolution modules on each detection head, enhancing the ability
of the model to extract features from key regions.
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FIGURE 4

Dual-channel attention structure.

3.4 HKCloU

In the original YOLOvI11, complete intersection over union
(CIoU) serves as the boundary regression loss function, as shown in
Equations 6-8. The CIoU loss refers to the loss during training and
validation. The IoU stands for Intersection over Union. The p
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represents the distance between the center points of the predicted
box and the true box, and ¢ represents the diagonal distance of the
minimum closure area that can contain both the predicted and true
boxes. b” and b’ represent the center points of the predicted box and
the true box respectively. w' represents the width of the true box,
and w” represents the width of the predicted box. h' represents the
height of the true box, and A’ represents the height of the predicted
box. CloU adds the penalty term of o and 3, which are parameters
used to measure the consistency of the aspect ratio.

pA(b,b")
O R (6)
4 w! wh
B= = (arctan W arctan W) 7)
_ B
‘1 LU+ B ®

The hook function opens upward in the first quadrant
(Figure 6). It is used to adjust the CIoU value, forming the
HKCIoU. For a smaller CloU, the loss is relatively amplified, and
for a larger CloU, the loss is relatively reduced, thereby accelerating
the network convergence and enabling the network parameters to
reach the optimal value faster. The calculation is given in Equations
9, 10. x represents the loss of CIoU, a and b are hyperparameters. a
and b are both set to 0.5 where the value of equation has reached the
minimum when x equals 1.

f(x) = ax +% (ab > 0) 9)

HKCIoU = (a+CIoU + #CloU (10)

b
CloU

4 Results

The experimental hardware setup includes a 13th Gen Intel(R)
Core(TM) i5-13600KF, 3500 MHz, 14 cores, 32 GB of RAM, and an
RTX 4060Ti GPU with 16 GB of VRAM. The software environment
included Windows 11, Python 3.8, Torch 1.13.1, CUDA 11.7, and
PyCharm 2021.3. Each model was trained for 100 epochs, with a
batch size of 32. The model employed SGD as the optimizer, with an
initial learning rate of 0.01, a momentum of 0.937, and a weight
decay of 0.0005.

YOLOvV11 extensively utilizes various data augmentation
techniques in training, including but not limited to HSV
adjustment (hue, saturation, brightness transformation), random
flipping/rotation, scaling, geometric affine transformation, random
erasure, and Mosaic enhancement, significantly improving the
model’s adaptability to scale changes, occluded scenes, and small
targets. YOLOV11 closes Mosaic at the end of training and switches
to standard image training in the last 10 epochs to avoid overfitting
caused by differences in distribution between synthesized images
and real data.
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FIGURE 5
New structure of YOLOv11 with attention.

A Brain Tumor Detection Dataset (43) from Kaggle was used as
experimental data. The dataset contains 5,249 MRI images divided
into training and validation sets. The training set consists of 4,737
images, including 1,153 Glioma, 1,449 Meningioma, 711 No

M—» CBS —» DWC —» CBS —» Comv2d > ClsLoss

(emz ]

NIk —»> CBS —» DWC —» CBS —» Conv2d —» ClsLoss

w—» CBS » DWC —» CBS —» Conv2d —» ClsLoss

CBS —» Conv2d ——» Bbox Loss

CBS —> Conv2d —» Bbox Loss

CBS —> Conv2d —>» Bbox Loss

Tumor, and 1,424 Pituitary images. The validation set consists of
512 images, including 136 Glioma, 140 Meningioma, 100 No
Tumor, and 136 Pituitary images. Each image was annotated with
YOLO-format bounding boxes and labeled with one of four brain

FIGURE 6
Hook function.
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tumor classes. The evaluation indicators of the model include  0.5%, respectively. The model using both Hook and Attention,
parameter count, computational complexity, mAP50, mAP50-95, named YOLOvl1ln-HA, improved mAP50 and mAP50-95 by 1%
and FPS (Frames Per Second). and 1.4%, respectively, with a 2.7% reduction in parameters and a
7.8% reduction in calculations. Simultaneously, in terms of FPS,
YOLOv11n-HA achieved a 1.5% rise compared to the baseline
4.1 Attention ablation experiment model. The PR curve of YOLOv11n-HA on the test set is shown in
Figure 8, which includes the mAP50 values of each subclass.

In the experiment, we used three attention mechanisms, and the To demonstrate the robustness of the model, we conducted
ablation results of the three attention mechanisms are shown in  three experiments on the final model, YOLOvl1n-HA, which
Table 1. From the table, it can be seen that the use of attention  includes two improvements. The results are shown in Table 3.
mechanism resulted in varying degrees of increase in mAP  From the table, it can be seen that there is some fluctuation in the
indicators. Compared to the model numbered 8, the models  results of the model. This study speculates that this phenomenon is
numbered 2, 3, and 5 achieved higher performance, but their = not only related to the jitter of the neural network but also to the
parameter and computational complexity increased significantly. ~ random channel rearrangement of Shuffle3D attention, which
Although the parameter quantity and computational complexity of  increases the randomness of the model. Based on the mAP50
models numbered 4, 6, and 7 are lower than model 8, their mAP  metric, we selected the experiment with the median value as the
indicators are not as good as model 8. Their results are very close,  result. That is the one with an mAP50 value of 96.8%.
and there is some fluctuation in the results of different experiments
in the same model. Taking all factors into consideration, we have
chosen to use the model 8 with three types of attention, namely 4.3 Comparison
Spatial, Dual-channel, Shuffle attention.

Table 4 presents results comparing YOLOv11n-HA with other

models, including non-YOLO and YOLO series deep learning

4.2 Ablation experiment models. The models and data involved were retrained and
validated using the same dataset for this study.

Ablation experiments (Table 2, Figure 7) demonstrated that
when only the hook function was used, both mAP50 and mAP50-  4.3.1 Comparison with non-YOLO series
95 were improved by 0.8%. When only the attention mechanism Faster-RCNN and SSD not only have lower mAP50 and
was used, mAP50 and mAP50-95 were improved by 0.7% and  mAP50-95 indicators than YOLOv11n-HA but also have several

TABLE 1 Attention ablation experiment based on YOLOv11n.

Number Attention Parameters (million) GFLOPs mAP50 (%) mAP50-95 (%)
1 YOLOvlIn 2.59 6.4 95.8 78.1
2 +Spatial 2.59 6.5 96.5 79.7
3 +Dual-channel 2.64 6.5 96.3 78.7
4 +Shuffle3aD 247 5.8 96.4 78.4
5 +Spatial +Dual-channel 2.64 6.5 96.7 79.5
6 +Spatial +Shuffle3D 2.47 58 96.3 78.6
7 +Dual-channel +Shuffle3D 2.52 5.8 96.5 78.5
8 +ALL 2.52 59 96.5 78.6

TABLE 2 Improved ablation experiment based on YOLOv11n.

Model Parameters (million) GFLOPs mAP50 (%) mAP50-95 (%) FPS (f/s)
YOLOv1in 2.59 6.4 95.8 78.1 66.91
+Hook 2.59 6.4 96.6 78.9 65.96
+Attention 252 5.9 96.5 78.6 67.85

+Hook +Attention

2.52 59 96.8 79.5 67.90
(YOLOv11n-HA)
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FIGURE 7
Curves of mAP50 and mAP50-95 with epoch in ablation experiments.
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FIGURE 8
PR curve of YOLOv11n-HA on test set.

times more parameters and computational complexity. Compared
with RT-DETR(L), YOLOv1In-HA uses only 7.7% of the
parameters and 3.3% of the computational complexity, while
achieving increases of 3.9% in mAP50 and 7.9% in mAP50-95.

TABLE 3 Results of three experiment based on YOLOv11n-HA.

Number MAP50 (%) mAP50-95 (%)
1 9.7 79.1
2 96.8 795
3 969 79

Frontiers in Oncology

4.3.2 Comparison with YOLO series

Comparing the metrics of YOLOvlln-HA with that of
YOLOvV5n, we observe that the GFLOPs of YOLOvlIn-HA
remain the same, the number of parameters increases by 15.6%
from 2.18M to 2.52M, and the mAP50 and mAP50-95 indicators
increase by 0.5% and 1.4%, respectively. Compared with that of
YOLOV8n, the number of parameters in YOLOv11n-HA decreased
by 6.3%, computational GFLOPs decreased by 14.5%, and the
mAP50 and mAP50-95 indicators increased by 0.6% and 0.5%,
respectively. Compared to that of YOLOV9s, the number of
parameters of YOLOv11n-HA decreased by 60.1%, the number of
calculations decreased by 74%, mAP50 increased by 0.4%, and
mAP50-95 decreased by 0.2%. Under the condition of a significant
decrease in the number of parameters and the cost of calculations,
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TABLE 4 Comparison results with other state-of-the-art models used in the detection of brain tumors.

m Parameters (million) GFLOPs mAP50 (%) mAP50-95 (%)

Faster-RCNN (ResNet50) 28.30 470.48

SSD (VGG) 24.01 61.06 93.7 70.7
YOLOV5n 2.18 5.9 96.3 78.1
YOLOV8n 2.69 6.9 96.2 79
YOLOV9s 6.32 22.7 96.4 79.7
YOLOv10n 2.71 8.4 95.4 78.4
RT-DETR (L) 328 108.0 92.9 71.6
YOLOvl1in-HA 2.52 5.9 96.8 79.5

FIGURE 9
Effect diagram of brain tumor detection on the dataset.
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YOLOvV11n-HA is still better than YOLOvV9s in terms of mAP50.
Compared with that in YOLOv10n, the number of parameters in
YOLOv11n-HA decreased by 7.0%, computational GFLOPs
decreased by 29.8%, and the mAP50 and mAP50-95 indicators
increased by 1.4% and 1.1%, respectively.

5 Discussion

This study introduces two key improvements to the original
YOLOv11 model. First, it improves the YOLOv11l network
structure by adding the Spatial attention, two newly designed
Shuffle3D attention schemes, and Dual-channel attention. Second,
it improves the loss function by introducing a hook function to
adjust the CIoU loss, amplify penalties for low-quality predictions,
and accelerate network convergence. The ablation experiment
proved that, compared with native YOLOv1ln, YOLOv11ln-HA
increased mAP50 and mAP50-95 by 1% and 1.4%, respectively,
while the model parameters and computational GFLOPs decreased
by 1.4% and 2.7%, respectively. Compared to other state-of-the-art
models, YOLOv11n-HA achieved a superior recognition rate.

Figure 9 presents the test results for the Kaggle brain tumor
dataset. The red box and G represent Glioma, the green box and M
represents Meningioma, the yellow box and N represent No tumor,
the cyan box and P represents Pituitary. The numbers behind
represent the probability value of belonging to this class.

This study makes a significant contribution to the literature
because it introduces a lightweight, computationally efficient model
that achieves superior detection performance compared to state-of-
the-art methods, thereby offering a practical solution for clinical
applications with hardware constraints.

Further, this study addresses a critical challenge in medical
imaging, accurate and rapid detection of brain tumors, by combining
deep learning innovations with clinical relevance, offering insights that
bridge technical development and healthcare impact. The proposed
model achieves a strong balance between detection performance and
computational efficiency, making it especially suitable for clinical
deployment where hardware limitations exist. By providing accurate,
real-time tumor localization in MRI images, this work contributes
toward scalable and practical Al-assisted diagnostic solutions for
healthcare settings.

6 Conclusion

This study used YOLOv11n to detect brain tumors in a public MRI
dataset from Kaggle and introduced two key improvements. The first
enhanced the network structure by integrating attention mechanisms,
namely Shuffle3D attention and Dual-channel attention, which are newly
designed in this study. The second introduces a new loss function,
HKCIoU, which amplifies the loss for poorly predicted boxes via the
hook function to accelerate network convergence. Ablation experiments
demonstrate that mAP50 increased to 96.8% and mAP50-95 to 79.5%,
with a 2.7% decrease in the number of parameters and a 7.8% decrease
in GFLOPs.
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Aim: This study aims to develop a robust and lightweight deep learning model
for early brain tumor detection using magnetic resonance imaging (MRI),
particularly under constraints of limited data availability. Objective: To design
a CNN-based diagnostic model that accurately classifies MRI brain scans into
tumor-positive and tumor-negative categories with high clinical relevance,
despite a small dataset. Methods: A five-layer CNN architecture—comprising
three convolutional layers, two pooling layers, and a fully connected dense
layer—was implemented using TensorFlow and TFlearn. A dataset of 189
grayscale brain MRl images was used, with balanced classes. The model was
trained over 10 epochs and 202 iterations using the Adam optimizer. Evaluation
metrics included accuracy, precision, recall, F1 Score, and ROC AUC.

Results: The proposed model achieved 99% accuracy in both training and
validation. Key performance metrics, including precision (98.75%), recall
(99.20%), Fl-score (98.87%), and ROC-AUC (0.99), affirmed the model's
reliability. The loss decreased from 0.412 to near zero. A comparative analysis
with a baseline TensorFlow model trained on 1,800 images showed the superior
performance of the proposed model.

Conclusion: The results demonstrate that accurate brain tumor detection can
be achieved with limited data using a carefully optimized CNN. Future work will
expand datasets and integrate explainable Al for enhanced clinical integration.

KEYWORDS

MRI images, deep learning, medical diagnosis, computer-aided diagnosis, healthcare,
neuroimaging

1 Introduction

A technique for training a computer to create original representations from unprocessed
data is called deep learning. The networK’s popularity may be attributed to its hierarchical and
layered structure. Convolutional Neural Networks (CNNs) acquire properties through an
object compositional hierarchy, starting with simple edges and progressing to more intricate
forms. By layering convolutional and pooling layers, this is achieved. By lowering the feature
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map, pooling combines similar traits into one, and each convolutional
layer identifies local conjunctions of features from the preceding layer.
Researchers in neuroscience have also benefited from deep learning,
as they are starting to address issues related to neuroimaging. Deep
Learning has garnered significant interest due to its ability to address
problems across various domains, including medical image analysis.
In Palestine, cancer is now the second leading cause of death for both
men and women, but over the next decades, it is predicted to overtake
all other causes of death (1).

Research has shown that the most effective means of lowering death
from brain cancer is early diagnosis and treatment. A low-grade growth
that develops slowly will eventually evolve into a neoplasm that grows
rapidly. As a result, the first tumor identification and categorization
helped to anticipate the prognosis and treatment plan by supporting the
assessment of the tumor’s grade and aggressiveness. The diagnosis of
brain tumors is mostly reliant on medical imaging (2). One of the most
efficient methods currently used for tumor detection is magnetic
resonance imaging (MRI). A powerful magnetic flux, radiofrequency
pulses, and a laptop is employed to process tomography imaging data
to produce detailed images of soft tissues and organs. It aids medical
professionals in treating illnesses. The main reason for tomography’s
popularity is that it is a more suitable designation than X-rays (3).

Noise significantly degrades medical images, including MRIs. This
is largely due to knowledge acquisition systems, multiple sources of
interference, operator error, and other factors that impact imaging
mensuration processes and can lead to significant classification errors
(4). This approach typically requires a basic microscope and may
result in a different or incorrect diagnosis, yet it is often inappropriate
when dealing with human life. It emphasizes the need for power-
assisted systems, high-precision systems, or diagnostic systems
(CADx) (5). The CADx system is essential for medical institutions, as
it supports the judgments made by doctors and radiologists. It may
be challenging to create a highly automated and economical diagnostic
system as a result (6).

Gliomas are the most prevalent and aggressive kind of brain
tumor, with a very short survival time for the highest grade. Therefore,
therapy planning may be a crucial step in raising the medical patients’
standards of living. One popular imaging modality for evaluating these
tumors may be MRI (7). These days, with numerous instances and
massive volumes of objective data analysis, computer-based medical
image analysis is gaining popularity due to its speed and intelligence,
surpassing manual methods. By varying the excitation and repetition
durations, magnetic resonance imaging may produce notably unique
tissue types, making it an incredibly adaptable tool for studying various
structures of interest. A single magnetic resonance imaging scan is
insufficient to phase the growth and all of its subregions fully.
Convolutional Neural Networks (CNNs) have demonstrated high
effectiveness in identifying cell division events in two-dimensional
microscopic anatomy pictures within the field of medical image
analysis. When it comes to machine learning strategies, deep learning
is undoubtedly the best option for many imaging tasks. The possibility
of deep learning-based automated diagnosis of brain illnesses will arise
from the availability of large neuroimaging data sets for training. MRI
is a frequently used medical imaging method that offers information
on the identification of brain tumors (8). One of the main challenges
a physician has after reviewing the tomography data is determining
how much time and effort to devote to tumor detection. These days,
CNNss are used for the majority of picture classification problems due
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to their superior accuracy and precision over other currently used
techniques. The accuracy and precision of tumor detection and
identification have increased due to the use of CNNs for image
classification (9).

2 Related work

Over the last 20 years, the detection of brain cancers using MRI
has undergone significant advancements, thanks to the integration of
deep learning (DL), traditional machine learning (ML), and
conventional image processing techniques. This section discusses the
main categories of methodologies and provides an overview of how
our research contributes to and expands upon the existing body
of literature.

2.1 Conventional techniques for machine
learning and segmentation

Most of the early work uses unsupervised clustering and custom
feature extraction. Due to their ability to separate picture intensities
into clusters that represent normal and diseased tissue regions,
segmentation techniques like fuzzy C-Means (FCM) and K-Means
clustering have been widely used (10-12). Despite achieving basic
localization, these methods were very susceptible to noise and
required human parameter adjustment. Changes aimed at improving
segmentation accuracy, such as region-expanding algorithms (13,
14) and gray-level histograms (15), were computationally expensive
and inconsistent, particularly in low-contrast or early-stage tumors
where borders were not obvious. For feature extraction and
classification, further research employs learning vector quantization,
support vector machines (SVMs), and artificial neural networks
(ANNS) (16, 17). These earlier methods, however, sometimes did not
datasets and needed careful

work with diverse patient

feature engineering.

2.2 Techniques based on deep learning and
CNN

CNN s have been used extensively in medical imaging applications
due to their effectiveness in computer vision (26, 27). CNNs eliminate
the requirement for human feature design by automatically extracting
hierarchical features. Models like AlexNet, VGG16, and ResNet have
been modified to perform tasks related to brain tumor classification and
segmentation (18, 19). Although these designs have demonstrated
outstanding performance, they often rely on large, annotated datasets,
which are challenging to collect in the medical field due to privacy
concerns and high labeling costs. To manage volumetric MRI data and
capture spatial relationships between image slices, 3D CNNs have been
the subject of several studies (20). Although these models improve the
accuracy of segmentation tasks, their computational cost makes them
unsuitable for real-time applications or situations with limited
resources. Similar studies have been conducted on Stacked
Autoencoders (SAEs) and Deep Belief Networks (DBNs) (21), but in
the lack of suitable data, training these deep models from scratch may
lead to overfitting.
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2.3 Domain adaptation and learning
transfer

By utilizing pre-trained networks as feature extractors for MRI
classification, which have been trained on natural image datasets such
as ImageNet, researchers have employed transfer learning to reduce
the need for large datasets (22, 23). When paired with domain-specific
fine-tuning, it can accelerate training and enhance generalization.
However, insufficient feature representations may result from the
domain mismatch between natural and medical images. ResNet or
InceptionV3 versions that have been carefully altered and work well
on binary classification tasks are used in certain studies. Clinical safety
criteria, such as recall and AUC, which are essential for real-world
diagnosis, are seldom used to evaluate models.

2.4 Methods for multimodal MRI and
synthesis

To collect different tissue contrasts, advanced segmentation
algorithms often use several MRI modalities. Studies like the BraTS$
Challenge and BraSyn Benchmark (24, 25) demonstrate the
challenges that arise when sequences are erratic or nonexistent,
while also emphasizing the advantages of multimodal input. To fill
in the gaps, several studies have explored the creation of synthetic
MRIs using GANSs or autoencoders; however, these methods require
a complex design and are not ideal for use in situations with
limited data.

3 Materials and methods

Cancer remains one of the most life-threatening diseases
worldwide, and early detection is critical for effective treatment. MRI
is a widely used, non-invasive imaging technique that helps identify
abnormalities in the brain, including cancerous tumors. In recent
years, machine learning—particularly image classification
techniques—has demonstrated significant promise in improving the
accuracy and speed of cancer detection using MRI. This study
examines the DL-based application in developing a CNN for brain
tumor detection using MRI scans. The proposed CNN architecture
consists of five layers, specifically designed to classify MRI images into

cancerous and non-cancerous categories with high accuracy.

3.1 Data acquisition

Data plays a crucial part in machine learning systems. The dataset
utilized in this work was available from the UCI Machine Learning
Repository and Kaggle, both of which are publicly accessible. The
dataset downloaded from Kaggle and is accessible at https://www.
kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-
detection/data (last accessed: January 10, 2025), and the second
dataset is available at https://www.kaggle.com/datasets/sartajbhuvaji/
brain-tumor-classification-mri (last accessed: January 20, 2025).
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3.2 Methodology and model architecture

The architecture employed in this study is based on a CNN design,
which is particularly effective for image classification tasks. CNNs
typically include the following core components:

« Convolutional Layers: Extract feature maps from the input image
using learned filters and apply non-linear activation functions
(e.g.» ReLU).

« Pooling Layers: Reduce the spatial size of feature maps, enhance
computational efficiency, and mitigate overfitting—max-pooling
is the most commonly used technique.

« Fully Connected (Dense) Layers: Interpret the extracted features
and produce classification decisions; each neuron is connected to
all neurons in the previous layer.

The proposed model consists of five primary layers: three
convolutional layers, two max-pooling layers, and a fully connected
dense layer. The architecture is implemented using the high-level
TensorFlow Layers API, which streamlines the creation of neural
networks by offering functions to define convolutional, pooling, and
dense layers, along with activation functions and regularization
options such as dropout.

Figure 1 illustrates the sequential layer-wise architecture of the
CNN, clarifying the dimensional transformation of MRI data from
input through convolution, pooling, and dense layers to the final
binary classification. The model was trained using the Adam optimizer
with the following parameters: ¢ = le-8, 1 = 0.9, f, =0.999, and a
learning rate of 0.001. To avoid overfitting, a dropout layer with a 0.5
rate was added after the dense layer.

The model processes grayscale MRI images resized to
128 x 128 x 1. The first convolutional layer applies 32 filters (3 x 3)
with ReLU activation, followed by a 2 x 2 max-pooling operation. The
second convolutional layer utilizes 64 filters (3 x 3) with ReLU
activation and an additional 2 x 2 max-pooling operation. The third
convolutional layer consists of 128 filters (3 x 3), followed by another
pooling operation. The output of the convolutional stages is flattened
and passed to a dense layer with 128 neurons, also using ReLU
activation. Ultimately, a single output neuron with sigmoid activation
yields a binary classification decision (tumor-positive or
tumor-negative).

Figure 2 illustrates the initial layers of the CNN, including the first
convolution and pooling layers. The initial convolutional and pooling
layers extract low-level spatial features, such as edges and texture
gradients, which are essential for differentiating tumor boundaries
from normal tissue in MRI images, including edges, lines, and simple
textures. The visual representation highlights how spatial information
is preserved while dimensionality is reduced.

Figure 3 illustrates the intermediate layers of the CNN, which
include deeper convolutional layers with a greater number of filters.
These layers extract high-level, abstract features such as tumor shapes,
boundaries, and textures. These deeper layers abstract high-level
semantic features such as irregular tumor shapes, enhancing the
model’s ability to distinguish pathological from healthy brain structures.

Figure 4 focuses on the final layers of the CNN, including the fully
connected dense layer and the output neuron. These layers are
responsible for interpreting the extracted features and making the
final classification decision. The use of sigmoid activation in the
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CNN architecture for brain tumor classification, showing layers for feature extraction and final classification from MRI input images.

feature maps

Pooling 1

pooled Fully-connected 1

feature maps

(CXONOXORCICXOROL

Outputs

- @

Convolutional

Pooling 2
layer 2

¥ -

save save 1

3 3 ;

save 2 init

FIGURE 2

Feature extraction in early CNN layers showing low-level spatial features such as edges and textures derived from tumor MRl images.

output neuron enables the model to output a probability score
indicating the presence or absence of a brain tumor.

To complement these visual representations, Table 1 provides a
detailed layer-wise summary of the CNN model, listing input/output
dimensions, number of filters or neurons, kernel and pooling sizes,
and activation functions used at each stage. Moreover, it offers a
concise yet thorough reference for understanding the architecture’s
design and function.

The TensorFlow Layers API enables the construction of these
components with functions such as:
layers  with

e conv2d(): Defines convolutional

specified parameters.

2D

« max_pooling2d(): Creates pooling layers to down-sample
feature maps.
o dense(): Builds fully connected layers for classification.

Due to the complexity of the computational graph, it is segmented

for clarity across Figures 2—4, with each segment representing a critical
stage in the data transformation and classification process.
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4 Experimental setup and results

The proposed CNN model was trained and evaluated using a
dataset comprising 189 MRI images, with an equal balance between
cancerous and non-cancerous cases. The dataset was stratified into
training, validation, and testing subsets to maintain balanced
representation of tumor-positive and tumor-negative cases. Table 2
presents the data distribution according to the train and test splits.
Training was performed for 10 epochs with a batch size of 18, yielding
approximately 202 iterations. Key performance metrics, including
accuracy, loss, and ROC-AUC, were monitored via TensorBoard
throughout training. Hyperparameters were consistently maintained
across experiments to enhance reproducibility. Tracking accuracy and
loss over 202 iterations with TensorBoard enabled validation of stable
convergence and early detection of overfitting, which is critical given
the limited dataset size.

Because of the small sample size, we utilized TensorFlow’s
“ImageDataGenerator” to supplement data in real time and increase
generalization. The augmentation pipeline used horizontal flipping
(p = 0.5) to mimic mirrored brain orientations, small-angle rotations
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FIGURE 3

Intermediate CNN layers highlighting deeper convolutions and expanded feature maps that capture high-level tumor features.

(+10°) to account for head tilt variability, random zoom (+5%) and
translations (+5% of image dimensions) to simulate patient
positioning differences, and Gaussian noise injection (¢ = 0.01) to
simulate MRI scanner acquisition noise. The augmentation
pipeline contained:

o Horizontal Flipping: To represent mirrored anatomical
configurations, has a chance of 0.5.

« Rotation: Random small-angle rotations within +10°, to account
for minor patient head tilts.

o Zoom: To mimic size differences across scanners, zoom in and
out by up to 5%.
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o Translation: An image dimension from vertical and horizontal
shift up to 5%.

« Noise injection: MRI scanner acquisition noise is simulated using
low-level Gaussian noise (6 = 0.01).

To accommodate for changes in intensity from scanner
calibration, adjust brightness by + 10%. To expose the model to a
broader variety of real-world input conditions without needlessly
extending the dataset on disk, these modifications to the training set
were performed stochastically throughout each epoch. Each run
started with a predefined random seed to maintain consistency.
We can assure repeatability and back up our claims of strong
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FIGURE 4
Final CNN layers: dense and sigmoid output units responsible for
probabilistic classification of tumor presence.

generalization with short datasets by enabling other researchers to
reproduce our preprocessing pipeline and see whether analogous
augmentation tactics offer equivalent advances in other limited-data
settings. In clinical contexts with limited and varied patient data,
augmentation decreases overfitting, enhances feature diversity, and
makes the model more usable.

The dataset used in this study consisted of MRI scans collected
from multiple patients, with one representative scan per subject to
minimize redundancy and prevent model bias. In cases where
numerous scans were available per patient, only one scan was
randomly selected to ensure that no patient’s data appeared in both
the training and validation sets. This procedure prevents data leakage,
ensuring that the model’s performance reflects genuine generalization
rather than memorization of individual patient characteristics.

Figure 5 provides a visual overview of the dataset used in our
experiments, distinguishing between cancerous and non-cancerous
MRI brain scans. Our CNN effectively captured these differences in
structural patterns and intensities for classification.

The model was trained for 35 epochs (840 iterations), achieving a
peak validation accuracy of 98%. The model’s high precision and recall
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TABLE 1 Layer-wise architecture of the proposed CNN model, detailing
input/output shapes, filter counts, kernel sizes, activation functions, and
pooling operations for each layer.

Layer type Output Activation Notes
shape
Grayscale MRI
Input Layer (128,128, 1) —
input
32 filters, 3 x 3
Conv2D (128,128, 32) ReLU
kernel
MaxPooling2D (64, 64, 32) — 2 x 2 pool size
64 filters, 3 x 3
Conv2D (64, 64, 64) ReLU
kernel
MaxPooling2D (32,32, 64) — 2 x 2 pool size
128 filters, 3 x 3
Conv2D (32,32,128) ReLU
kernel
MaxPooling2D (16, 16, 128) — 2 x 2 pool size
Flatten (32768) — —
Fully connected
Dense (128) ReLU
layer
Binary
Output (Dense) (1) Sigmoid classification
output

TABLE 2 Dataset distribution across training, validation, and testing
subsets, showing balanced representation of tumor-positive and tumor-
negative MRI scans of the first dataset.

Dataset Number of Tumor- Tumor-
split images positive negative
Training 133 67 66
Validation 28 14 14
Testing 28 14 14
Total 189 95 94

indicate its potential as a clinical decision support tool to aid
radiologists in more efficient brain tumor identification. Each training
example that passes through the network in both forward and
backward propagation constitutes one iteration.

The Adam optimiser was configured with a learning rate of 0.001,
S1=0.9, B, =0.999, and & = 1075, These values are known to offer
stable and efficient convergence in deep learning models, especially
when working with small datasets. They were selected after
preliminary tuning and cross-referencing with prior studies
demonstrating similar use cases in MRI image classification. Although
extensive hyperparameter tuning was beyond the scope of this study,
the choice of hyperparameters was based on standard values widely
adopted in the literature for medical image classification tasks.

Figure 6 displays the tumor segmentation output, highlighting
spatial tumor regions. The trained model not only classifies the
presence of tumors but also enables the visualization of the detected
tumor region. This segmentation capability adds clinical value by
providing spatial context for the tumor’s location and size.

Figure 7 illustrates the accuracy across iterations, which initially
shows an uneven distribution but ultimately converges to zero as the
iterations progress. The loss rate is a critical component of CNN and
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FIGURE 5

Sample visualization of the MRI dataset illustrating differences between tumor-positive and tumor-negative brain images

is used to improve the CNN architecture. Despite the limited dataset,
the proposed model effectively minimizes loss and enhances accuracy.
Figure 8 presents the Receiver Operating Characteristic (ROC) curve
with an AUC of 0.99, illustrating excellent diagnostic ability.

To further assess the performance of the proposed CNN-based
model, standard classification metrics were computed, including
precision, recall, F1-score, accuracy, and the area under the ROC-AUC
curve. Table 3 consolidates critical performance metrics, including
training accuracy (99%), validation accuracy (99%), loss rate
reduction from 0.412 to nearly zero, precision, recall, F1-score, and
ROC-AUC (0.99), providing a clear and concise overview of the
model’s effectiveness. Figure 9 illustrates the confusion matrix of both
proposed and baseline models when tested with 600 test images of the
second dataset. Additionally, Table 4 compares the performance of the
proposed model with a baseline TensorFlow model trained on a larger
dataset (1800 images) that has lower accuracy (98%) and higher loss
(0.704). The proposed CNN model has superior performance despite
the limited data.

The five-layer CNN architecture was selected to balance
classification accuracy and computational efficiency on a limited
dataset for prospective clinical use. Early research compared the
recommended design to a more complex 8-layer CNN with an extra
convolution-pooling block and a second dense layer. Despite
reaching 99% training accuracy, the deeper model’s validation
accuracy plateaued at 96% after the 20th epoch and displayed
peculiar loss oscillations, indicating overfitting due to the limited
dataset size of 189 pictures. Across all training and validation sets,
the five-layer model consistently reduced loss from 0.412 to near
zero while maintaining 99% accuracy, demonstrating strong
generalization capabilities. Furthermore, it reduced the number of
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FIGURE 6
Segmentation output visualizing localized tumor regions,
highlighting the model’s spatial discrimination capabilities.

parameters by approximately 38%, thereby decreasing training time
on the same GPU from 7.8 s to 4.9 s per epoch. This efficiency
directly supports the study’s purpose of creating a lightweight
diagnostic model suited for real-time inference in clinical settings,
especially when resources are constrained. The architect’s decision
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Receiver Operating Characteristic (ROC) curve of the proposed model with an AUC of 0.99, indicating excellent diagnostic accuracy.

TABLE 3 Performance metrics of the proposed CNN model, including
accuracy, precision, recall, F1-score, ROC-AUC, and reduction in loss

rate.

Metric Value

Accuracy 99.00%
Precision 98.75%
Recall 99.20%

F1 Score 98.87%
ROC-AUC 0.99
Loss Reduction 0.412 — ~0.00

Frontiers in Medicine

reflects the nature of the classification challenge. When utilizing

MRI to identify brain cancers, spatial indicators such as tumor

margins, regional intensity variations, and abnormal textural

patterns are crucial. They may be successfully retrieved without

having a massive network depth by utilizing three progressively
deeper convolutional layers (32, 64, and 128 filters). According to
feature map representations, the proposed CNN properly captured

both low-level edge attributes and higher-level tumor form

abstractions that were comparable to those in the deeper model.

Given the dataset, processing settings, and observable performance
limits, the five-layer CNN delivers the ideal blend of accuracy,

resilience, and efficiency for this experiment.
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Confusion matrix showing true positive and true negative predictions, validating classification reliability.

TABLE 4 Comparative evaluation of the proposed CNN model versus a baseline TensorFlow implementation, highlighting improved performance with

fewer training samples.

Method ‘ Epochs ‘ Iterations
BTD (TensorFlow) 35 840
Proposed Method

10 202
(TFLearn Based)

5 Conclusion

Deep learning has become a crucial tool in biomedical image
analysis, particularly for applications such as brain tumor
classification using MRI scans. For quicker model construction, the
proposed technique employs CPU-based TensorFlow and TFLearn,
as well as GPU-based TensorFlow. Deep learning (DL) techniques are
increasingly employed in medical imaging for brain tumor detection
and classification. The use of MRI is essential for detecting abnormal
brain tissues, and accurate tumor diagnosis is vital for treatment
planning. To categorize and diagnose brain tumors from a limited
MRI dataset, the study employs a deep learning approach using a
Convolutional Neural Network (CNN). The proposed model
achieved 99% training and 99% validation accuracy, with a validation
loss reduction from 0.412 to near 0.000 across 10 epochs.
Additionally, the model attained an ROC-AUC of 0.99, confirming
its strong discriminative capability. The proposed CNN model
outperformed a baseline model trained on a larger dataset, achieving
higher accuracy (99% vs. 98%) and lower validation loss (0.412 vs.
0.704), which indicates strong potential for deployment in real-time
clinical diagnostics, especially in data-limited settings. The suggested
CNN model may be used in real-world healthcare environments
because of its lightweight design and exceptional diagnostic precision.
In a radiology department’s existing PACS (Picture Archiving and
Communication System), a radiologist may use the model as an
automated pre-screening tool to rank MRI images with a high
likelihood of tumor incidence. Real-time feedback during diagnostic
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‘ Dataset ‘ ROC-AUC ‘ Loss rate
1800 98% 0.704
189 99% 0.412 > ~0.00

sessions could be provided by integrating the model with clinical
decision support systems. Additionally, report authoring could
be made easier by connecting to Radiology Information Systems
(RIS). Because of its minimal computational requirements (4.9 s per
epoch on a standard GPU), the model may also be implemented
on-site in hospitals with limited resources, eliminating the need for
cloud-based processing. Regulatory approval, interoperability with
different MRI scanner outputs, and further validation across
multiple-center datasets to ensure robustness are the remaining
challenges. Before clinical utilization is widely accepted, these
challenges need to be resolved.

6 Future directions

Future work will focus on expanding the dataset to improve
model generalization and reduce bias. Integrating additional imaging
modalities, such as Computed Tomography (CT) and Positron
Emission Tomography (PET), as well as utilizing transfer learning
with pre-trained models, may enhance performance. Exploring three-
dimensional Convolutional Neural Networks (3D CNNs) can capture
spatial context more effectively, while explainable AI methods, such
as Gradient-weighted Class Activation Mapping (Grad-CAM), can
improve interpretability. In the future, data augmentation techniques,
including rotation, flipping, scaling, and brightness adjustment, can
be employed to assess the model’s generalization.
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Introduction: Brain stroke is still one of the leading causes of death and long-
term disability in the world. Early and correct diagnosis is therefore important
for patient outcome. Although Convolution Neural Network (CNN), classical
machine learning models, have achieved great progress in medical image
classification, they have to face the performance saturation problem when
dealing with high-dimensional and complex data such as medical images. To
tackle these limitations, we propose QBrainNet, a quantum enhanced model,
which is to enhance brain stroke prediction from medical imaging datasets.
Methods: The model consists of Quantum Neural Networks (QNNs) applied as
learning complex patterns in terms of medical images and Variational Quantum
Circuits (VQCs) that will be used to optimize the classification. The feature
extraction featured in the QNNs utilises quantum properties of superposition
and entanglement to extract non-linear high-dimensional patterns in images
related to stroke that may not be captured using classical limits. The VQCs, in
turn, are applied to optimize the model performance, further allocating the
boundaries of the decision and enhancing the model performance in terms of
accuracy by optimizing the quantum gates and operators used during the work.
QBrainNet utilizes the combination of such quantum properties as entanglement
and superposition to represent more complicated non-linear patterns in stroke-
specific images in a better manner than a classical application does.

Results: This paper proposes a hybrid classical-quantum scheme: preprocessing
classically, and learning quantum-enhanced. Quantum gates and operators are
used when performing the quantum phase to optimize decision boundaries,
achieving vastly enhanced prediction accuracy and efficiency performance.
Experimental results indicate that QBrainNet has a better accuracy (96%) and
AUC-PR (0.97) than the classical models like CNN, SVM, and Random Forest,
proving the superior performance of QBrainNet in stroke detection.

Discussion: The inference time is shorter, so the model can be used as a real-time
clinical application. This article points to the possibilities quantum computing can
have in revolutionizing medical diagnostics, especially stroke prediction.

140 frontiersin.org
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1 Introduction

Stroke constitutes one of the significant causes of death and
permanent disability in the world, with about 15 million individuals
having a stroke per year according to the WHO (1). Early diagnosis and
prompt treatment are essential in enhancing survival and minimizing
long-term disability. Nevertheless, clinical condition diagnosis, where
time is of the essence, will still be a challenge to correctly predict because
of the complexity and subtlety of patterns in medical imaging data,
particularly in the early stages (2, 3). Interpretation of CT and MRI scans
used widely to detect stroke is subject to human error, inconsistency, and
variability between practitioners, and it may lead to delay in diagnosis and
impact treatment outcomes (4).

Recently, the methods based on machine learning (ML), particularly
Convolutional Neural Networks (CNNs), have been actively applied to
the medical image analysis, and stroke detection has been successful
with the CT or MRI scans. The CNNs have been shown to work
exceptionally well when processing medical imagery and extracting
features that classify the image as stroke-related quickly, consistently,
and accurately, compared to the more conventional methods (5, 6).
Although these CNNs and other classical models are effective, they are
limited by high-dimensional and complex medical data. These models
fail to identify delicate structures and interactions within the data,
particularly when the datasets are small and/or low-contrast, as
frequently happens in medical imaging of stroke patients (7, 8).

The new area of Quantum Machine Learning (QML) offers an
optimistic answer to these difficulties. Quantum systems work with
information in radically new ways compared to classical systems,
allowing them to work with extensive multi-dimensional data more
efficiently through superposition and entanglement. Indeed, the
quantum properties allow quantum computers to solve some problems
efficiently in computation, where classical computers do not; the
quantum potential advantage has indeed been observed in applications
such as medical image analysis (9, 10). Quantum Neural Networks
(QNNs) and Variational Quantum Circuits (VQCs) can specifically
be used to provide an advantage in the classical world in specific tasks
by finding complex patterns and relationships in data and using these
patterns and traits in a non-linear fashion (11, 12).

This paper presents QBrainNet, a classical-quantum model that
aims to enhance medical imaging stroke prediction. The classical
element of the QBrainNet engages in feature extractions, augmenting
images, and noise elimination, whereas the quantum element
continuously applies QNNs and VQC networks to the learning task.
QBrainNet, with its quantum-enhanced learning combining classical
machine learning, is much faster and has a higher accuracy at
identifying subtle factors in stroke-related medical images (13, 14).
The quantum aspect of the model applies simulated quantum
operations through Python code to optimally determine decision
boundaries in the feature space. It is, therefore, more accurate in the
classification than the conventional methods.

One main issue with medical image classification tasks is the small
datasets. In our scenario, we only have 3,800 images, which can easily
result in overfitting. However, the problem can be overcome the way
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QBrainNet does it by using cross-validation and regularization
techniques (15, 16). The quantum elements of QBrainNet are designed
through Python-based quantum simulation, in which quantum gates
and circuits are simulated on a classical computing device. Thus, the
model is accessible and reproducible without quantum information
technology hardware (17, 18).

The main strengths of the QBrainNet model in comparison with
classical approaches are linked to the possibility of dealing better with high-
dimensional data. CNNs and other traditional techniques are bulky
programs that handle big chunks of data, particularly in the case of medical
image tests. Compared to this, QBrainNet takes advantage of quantum
parallelism, where quantum gates and superposition significantly decrease
the degree of computation and speed of processing (19). Such a decrease in
computational demands and the increase in the prediction speed result in
QBrainNet being a potential candidate in clinical practice, where the speed
of diagnosis may be a matter of life and death.

In recent developments, quantum computing has demonstrated
great potential to improve machine learning models, particularly for
high-dimensional data analysis. In this work, we simulate the quantum
parts of QBrainNet using PennyLane on classical computing resources.
This way, we can exploit quantum effects like superposition and
entanglement for feature extraction and optimization without access
to real quantum hardware. Our simulation allows us to simulate
quantum circuits and perform parameter optimization in a way
compatible with classical machine learning.

The present study adds to the list of research that deals with the
application of quantum computing in healthcare. In particular,
we show promise of quantum-enhanced models such as QBrainNet in
the field of stroke prediction, namely that quantum technology can
be used to enhance the performance of medical diagnostics not only
in accuracy, but in efficiency as well, especially in a domain where
errors can have severe consequences like stroke care (19).

2 Related work

Applying machine learning (ML) to medical imaging has entirely
transformed the face of healthcare diagnostics in a way no one had
previously imagined. More specificall, CNNs have found a wide
application in deep learning to solve specific tasks in medical imaging.
The application of CNNs to the interpretation of medical images has been
demonstrated to be capable of detecting and classifying ailments such as
cancer, pneumonia, and brain stroke, as well as segmenting organs and
other body parts critical to the human body (20). Of particular interest in
brain stroke detection is that CNNs and other forms of deep learning have
been applied to CT image processing, MRIs, and fMRI to provide brain
stroke risk assessments, but with high levels of automation. Such models
are much superior in the detection of stroke lesions and the classification
of ischemic strokes. By extracting hierarchical representations of image
information, these models can discover useful trends that the human
expert may not be able to declare easily. The approach here is a novel
application of the idea behind hybrid quantum-classical neural networks
(21) to predicting strokes through quantum-enhanced preprocessing.
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These models, although effective, are restricted. Brain images can
be complex, leading to difficulties for classical CNNs to apply to them and
subtle features in the early stages of strokes. These models require
substantial labeled data, computer power, and a preprocessing mechanism
(22), and thus are not readily applicable to high-dimensional data.
Additionally, it is computationally costly to train deep learning models
wherein the high-resolution medical images are to be used; they require
both heavy computing hardware and time. Original CNNs inherently lack
the flexibility to extract subtly non-linear structures in the data, and such
patterns are typical with medical images, as the data are noisy,
heterogeneous, and may be inaccurately annotated (23). Also, this fulfills
the need for more complex models that could better predict the nature of
medical imaging with a complex structure (24).

To overcome these shortcomings, Quantum Machine Learning
(QML) has proposed itself as an excellent solution. It is theorized that
QML methods will be able to utilize the quantum superposition and
quantum entanglement properties of quantum computers to both
process complex information more effectively and prevent the scale
explosion that occurs when using classical models. These quantum
benefits may bring computational advantage, especially where data is
needed in very high dimensions, such as in medical image processing
(25). Quantum systems offer the prospect of investigating multiple
solutions in parallel and exhibit greater capabilities of pattern
recognition, which are of particular interest with complicated medical
data. This will enable quantum methods, even when implemented on
classical platforms using Python code, to perform better when
compared with classical models in specific tasks requiring subtle
non-linear relationships, e.g., when used to predict stroke (26, 27).

Healthcare and medical diagnosis are some examples in which QML
has already been proven effective. For instance, Quantum Support Vector
Machines (QSVM) were used to solve tasks in image classification. The
results revealed that QSVMs are more effective in terms of computational
efficiency than SVMs and are highly accurate in prediction (28).
Moreover, QNNs, or the quantum analog of normal neural networks,
have already been used in such tasks as image classification and drug
discovery. Quantum-enhanced models, on the other hand, can access the
power of quantum entanglement to learn intricate structures in data that
are favorable over conventional models in the task of image classification
(29). As some examples, the Quantum version of standard neural
networks, namely Quantum Neural Networks (QNNs), have been
implemented in problems like image classification and drug recognition.
In the light of this understanding, QE models can leverage quantum
entanglement to learn complex patterns in the data in a more efficient way
than classical models, which is a key advantage in various tasks, such as
image classification. Such methods are currently being utilized in this
work as simulated quantum operations that, even though they do not run
on actual quantum devices, act as a step in the right direction as applied
to quantum-enhanced optimization.

Other quantum algorithms are likely to prove useful in healthcare,
including Quantum Random Forests (QRF) and Quantum k-Nearest
Neighbors (QK-NN), which have been found in many cases to require
less time to train and achieve higher accuracy than their classical
counterparts on high-dimensional data (30, 31). Quantum algorithms,
including Quantum Random Forests (QRF) and Quantum k-Nearest
Neighbors (QK-NN), have also been investigated in healthcare and on
high-dimensional data. Quantum algorithms are more efficient in
their training speed, and their results are found to be better when
compared to classical algorithms. Such algorithms are emulated via
quantum operations on a classical computer in Python and
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demonstrate the possibilities of the quantum-enhanced models
without involving the actual physical quantum device (27).

Although applying QML to medical imaging is gaining more
attention, it has not yet been explored in brain stroke prediction. Although
past works have used quantum models in image segmentation, disease
categorization, and other medical imaging applications, there has yet to
be a quantum learning model to predict stroke occurrence using medical
imagery, which is the novelty of this paper. A quickly expanding volume
of literature on QML shows that one of its uses can be better optimization,
image classification, and pattern recognition. Still, using QML in stroke
prediction in medical imaging has yet to be explored (32). Though
numerous cases of research on QML exist, there is a significant lacuna in
its application in the prediction of brain stroke, which is the novelty of this
work. Though quantum-enhanced models have already demonstrated
their potential in optimization, image classification, and pattern-
recognition problems, their use in medical imaging, in general, and stroke
prediction, in particular, has not been studied extensively. This work
bridges this gap through simulated quantum operations (through Python
code) on classical computing resources (33).

The novelty of this research is that QBrainNet is the first application
of QML in stroke prediction. The architecture can close a substantial
research gap in stroke detection research as it has integrated quantum-
enhanced preprocessing, feature extraction, and classification into a single
framework. Classical simulations of quantum operations allow for
avoiding quantum hardware, but increase the stroke prediction accuracy
and reduce computing costs (34). The proposed work is the initial
implementation of QML regarding stroke expectations. Quantum-based
benefits to preprocessing, feature extraction, and classification strongly
occur within the same framework, as all other quantum manipulations
are performed through Python codes running on a classical
CPU. Employing simulated quantum operations over quantum hardware
indicates a big leap toward actualizing quantum-powered healthcare tools.
It influences how quantum computing can be used to develop solutions
to mitigate modern medicine’s challenge to the detriment of the overall
healthcare industry: stroke diagnosis (35).

3 Methodology

This section describes the general strategy used to get to and test
QBrainNet, a quantum augmented neural network that will predict the
risk of stroke from brain imaging data. It contains four main parts of
methodology that are dataset preparation, preprocessing and feature
extraction, quantum machine learning model development and model
training and evaluation. We describe each stage in detail to provide a
detailed account of how the quantum techniques are integrated into the
medical image analysis pipeline for increasing the accuracy of
stroke prediction.

The system requirements for running the quantum operation
simulations are as follows: The simulations have been run on a system that
has Intel i7 processor and 16 GB RAM the Ubuntu 20.04 operating
system. The quantum operations were simulated with PennyLane, version
0.18.0, a Python-based library which can build on classical computing
resources to simulate quantum operations. The simulate codes were
written in Python 3.8 and some additional libraries such as Numpy 1.21.0
for numerical computing, Scipy 1.7.0 for scientific computing, matplotlib
3.4.3 for visualization. The entire setup was done in a conda environment
to handle everything in the appropriate way in terms of dependencies and
reproducibility. This environment allowed efficient implementation of
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quantum simulations on classical computing resources without the need
for any actual quantum hardware.

3.1 Dataset

The medical images included in this study were diagnosed as usual
or as stroke from a dataset. The photos are taken from publicly available
datasets usually used in the stroke detection area, such as CT scans and
MRI images. This dataset contains high-resolution MRI brain scans of
different stroke severity, early ischemia, and late-stage hemorrhage. The
pictures are marked to help define which ones are routine and which have

10.3389/fmed.2025.1677234

an indication of a stroke. These images are then fed through simulated
quantum operations to improve feature extraction, classification, and
overall predictive accuracy with Python-based quantum simulators on
classical computing resources. Lastly, each image has a label, indicating
whether the brain imaging is standard or if there is a stroke.

Figure 1 demonstrates the unprocessed and processed CT scan brain
scans. Raw images are initially scanned, whereas the processed ones have
undergone a procedure of removing noise and normalization to facilitate
analysis. Figure 2 shows grayscale, equalized, and edge-detected images
of the preprocessed brain images. Gray levels eliminate color, equalization
increases contrast, and edge detection emphasizes boundaries of key
structures. The CT scan cross-sections shown in Figure 3 are used to

FIGURE 1
Dataset overview: raw and processed brain CT scan images

Image 3

FIGURE 2

Image «

Preprocessed brain images: grayscale, equalized, and edge-detected versions

2 2 Iimage 3

Image 1 Image 2

FIGURE 3
CT scan cross-sections showing brain structure and potential abnormalities

Image 3

Image 4 Image 5
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Image 1

FIGURE 4
CT scan cross-sections of brain showing stroke variants.

Image 3

Image 4 Image 5

/

obtain details about brain structure and the parts prone to abnormalities
such as strokes and tumors. Figure 4 shows different CT scan cross-
sections with varying types of stroke, and how ischemic and hemorrhagic
strokes can be represented in the brain in a cross-section.

3.2 Data preprocessing

The raw medical images are preprocessed before training and
evaluation to reduce inconsistency and robustness across the medical image
set. Rotation, flip, and noise addition augment the dataset and make it more
diverse. To resemble real data and increase the model robustness to
imperfect data, these procedures simulate real-world variation, e.g., to some
extent, by the slight changes in rotation or orientation of scan images, and
provide noise. This can better generalize the model, especially with a small
data set, as it minimizes the chances of overfitting.

The primary preprocessing steps include:

1 Image Resizing: Uniformity is guaranteed in the input data, as
all the images in medical images may have different resolutions.
They are all resized to a fixed resolution. This is an essential
step so that the data maintained between multiple images is
compatible with deep learning models image resizing is
computed using Equation 1.

Tresized = Resjze(lariginalxw>h) (6]

Where:
o Iesized - resized image.
* Ioriginal - original image.
o W & h are the target width and height, respectively.

2 Normalization: To adjust to the different pixel intensity values
represented by various medical imaging modalities, the images are
scaled to the 0-1 range. This will allow the model to be adjusted
only to the scale of the raw data and not be distorted by the ranges
of pixel intensities normalization is computed using Equation 2.

I original

255 @

I normalized =
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Where:

 Lyormalized - Normalized image.
* Ioriginal - original pixel intensity.

3 Class Imbalance Check: Since the medical datasets usually
become class imbalanced, balancing the number of
samples in training and test sets within normal and stroke
groups is very important. If an imbalance is discovered,
methods that include over-sampling the minority
observations or under-sampling the majority can be used
to generate a balanced dataset. This eliminates the
possibility of biasing the model toward one of the classes,
which is used a lot more; hence, the model will perform
well in both classes.

3.3 Dataset partitioning

The data is split into the training data and a testing data
where 70-80 percent of the data is used in the training and 20-30
percent for testing. The training data is then trained on the
model, known as QBrainNet model and the testing data is used
to estimate the model’s performance on unknown data. This
division will ensure the model is tested on data that it has not
encountered previously during the model’s training, and will
be an impartial representation of how well the model
is performing.

Preprocessing of dataset, and splitting the preprocessed
dataset into training and testing datasets is done. The model is
trained on the training data and tested on the test data (36, 37).
The training is usually done using 70-80% of the data; the
remaining 20-30% is used for testing. There is a need to fold this
type to make sure that the model performs well on the unseen
data rather than being too optimistic regarding the performance.

3.3.1 Dataset distribution

The distribution of ‘normal’ and ‘stroke’ images over training and
test sets can be viewed in Table 1.

Class distribution plays a role in training the model on a
balanced set of examples, which is very important for accurate
stroke prediction.
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TABLE 1 Distribution of normal and stroke images in the dataset.

Class Training set Test set Total % in test

% in training

Augmentation Primary

(images) (images) images set set applied data source
Normal 1,500 500 2,000 51.70% 55.60% Rotation, Flip, Noise Hospital A &
Public Dataset
Stroke 1,400 400 1,800 48.30% 44.40% Contrast Stretching, Zoom Hospital B &
Research Cohort
Total 2,900 900 3,800 100% 100% - -
CT/MRI Images Raw DataSet
() SI=PS
CT/MRI $VY
images J =SS
Raw Dataset
4
Model Training Model Evaluation
(Training Dataset) (Testing Dataset)
FIGURE 5
Proposed model's dataset flow diagram.

3.3.2 Dataset flow diagram

Here, in the following Figure 5, we show the flow of the dataset in

2 Undersampling: Since it is a class imbalance problem,

we applied the Random Undersampling technique to the
the preprocessing, training and evaluation stages: majority class. This method addresses the issue by randomly
selecting samples from the majority class to obtain a balanced

3.3.3 Class imbalance handling

To solve the problem of class imbalance of the dataset, we used

distribution between both classes. Decreasing the number of
majority class samples ensures the model does not become
some oversampling and undersampling methods during the data biased toward majority class predictions.
preprocessing phase: o Stage in Pipeline: Minority class was oversampled, and then

Random Undersampling was implemented to achieve class
1 Oversampling: We applied Random Oversampling to replicate balance without overfitting of the minority.
samples from the minority class (either “normal” or “stroke”)
to train the model on a balanced dataset. This method copies Class Imbalance Handling Pipeline:

minority class samples to make the sizes of the minority and

majority classes equal, eliminating the model’s bias for the 1 Divide the dataset into a training and validation dataset.

majority class. 2 Implement Random Oversampling to the minority class in the
o Stage in Pipeline: Random Oversampling was used as one training dataset to balance the class distribution.

of the pipeline steps on the training set after splitting the 3 Random Undersampling: the oversized majority class in the

dataset into training/validation sets. This helped ensure train data set is reduced to the size of the minority class.

the model would learn from an even distribution of the 4 The balanced training set is now used to train the

two classes.
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These techniques allow for equal representation of both classes
(regular versus stroke) during model training, which is essential in
healthcare applications where accurate classification of both
conditions is crucial.

3.4 Preprocessing and feature extraction

Several classical preprocessing techniques are performed
before the quantum machine learning algorithms are used to
preprocess the medical images, such that the data is in a format
that is as best as possible for extracting features and the model
can be trained on. These techniques allow us to mitigate noise,
clean, increase contrast, and standardize the stroke dataset to
features more

facilitate the networks’ detection of stroke

easily (38).

3.4.1 Image resizing

Resizing images is a crucial preprocessing step because all the
images need consistent dimensions supported by deep learning
models, which usually need uniform input sizes. The resizing
process involves mapping the original image size Woriginai X Horiginal
to a new size Wyey, X Hyeyy. This can be mathematically represented
as using Equation 3:

X

3)

Liesized (X,)’) = Ioriginal [ “Whew = h Hew

Woriginal original

Where:
o ILiosized - resized image.
* Ioriginal - original image.
.

original A0d Rorigingr are the original width & height of the image.
o Wy and by, are the target width & height for resizing?

The bilinear interpolation method is used for resizing to preserve
image details (39).

3.4.2 Grayscale conversion

Grayscale conversion of the images is applied to simplify the
data and decrease computational complexity while retaining
stroke-related features. Grayscale images are beneficial as they
decrease the number of channels (from 3 in RGB to 1), thus
reducing the amount of computation and emphasizing the textural
differences in the brain tissue.

The conversion from a color image I,gh(x,y) to grayscale
Toray (x,y) is done by averaging the weighted sum of the RGB
channels, following the formula as shown in Equation 4:

Lgray (%) =0.2989- Iifgb (x,y)+0.5870- Igb (x)

+0.1140- Iy, (x,) @

Where:

Ifgh (x,y),Ifgb (x,y),Ingb (x,y) - Represent the Red, Green, and
Blue (RGB) color channels, respectively.

Toray (x,y) - resulting grayscale image.
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3.4.3 Histogram equalization

To enhance the contrast of the images, histogram equalization is
used to redistribute the intensity levels throughout the image. Spread
out across the whole range, this process helps to bring out subtle
details, including early signs of stroke. Histogram equalization can
be mathematically formulated as shown in Equations 5 and 6:

CDF(i)= ip(j) (5)
Log (%) = CDF (Ioriginal (%.y))-(L-1) (6)

Where:

CDF (1) It is the cumulative distribution function of the
pixel intensities.

p( j ) It is the probability density function of the pixel intensities.

L Is the number of possible intensity levels (typically 256 for
8-bit images).

Teg (x,y) It is the histogram-equalized image.

It ensures that the pixel intensity distribution is more uniform
than it is, thereby improving the contrast of the image and bringing
out finer details, which are important for stroke detection (40).

3.4.4 Feature extraction

Next, necessary characteristics from the images are captured using
feature extraction. Key features are extracted using classical methods,
including those based on determining edges or analyzing textures,
with the view that these can be used to differentiate stroke-affected
areas from normal brain tissue.

1 Edge Detection: This involves the detection of the boundaries of
an object in an image. The Canny Edge Detection algorithm is
employed to indicate regions of interest, such as in stroke lesions,
by identifying sharp intensity transitions. Mathematically, edge
detection is defined as shown in Equation 7:

EDGE(Igmy) = Canny(Igmy) 7)

Where [

gray
the edges by computing the gradient of the image.

is the grayscale image, and the Canny operator finds

2 Texture Analysis: It measures the structure present in the

image by performing texture analysis. Gray Level

Co-occurrence Matrix (GLCM) is computed using Equation 8:

GLCM (irj) = Y p(x.3:i5f) ®)
Xy

Where:

o Lastly, GLCM(}, j) denotes the co-occurrence matrix where pixels
have values i and j.

« It is noted that p(x,y;i,j) defines the probability that pixel pair
values are i and j at locations x and y.
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FIGURE 6
Preprocessed images: original, grayscale, equalized, and edge detection.

The texture features are promised as a crucial source of
information about the texture of brain tissue, which might aid in
discriminating between healthy and stroke-affected parts (41, 42).

Figure 6 illustrates the effects of the preprocessing steps on the
original medical image. The left image is the raw medical scan, the
center image is the conversion to a greyscale and the last one is
the histogram equalization (42). Figure 6 depicts a sample of
medical images after the grayscale conversion and
histogram equalization.

The computational preprocessing step uses quantum-enhanced
feature extraction procedures, which are also simulated using Python
scripts in PennyLane and other quantum simulators. The methods
enable the detection of fragile patterns in medical images that
conventional methods such as CNNs may not easily learn. By mapping
quantum processes onto classical computers, we can use quantum
phenomena such as superposition and entanglement to use the more
efficient extraction of features in complex and high-dimensional
medical images.

3.5 Quantum machine learning model

This part introduces the derivation of this work’s QBrainNet
model, which is a quantum-enhanced neural network for estimating
the probability of missing a stroke case from brain images. The model
combines classical machine learning methods with simulated
quantum models for a more accurate stroke prediction. Rather than
using physical quantum hardware, the quantum constituents are
simulated through the PennyLane simulator implemented in Python
and run on ordinary computing resources. These simulations allow us
to incorporate quantum-inspired properties like superposition and
entanglement, which are challenging to simulate in purely classical
neural networks. In our hybrid framework, we train variational
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quantum circuits (VQCs) with PennyLane to simulate them, and solve
for the quantum parameters by gradient descent to improve
prediction accuracy.

The QBrainNet architecture comprises several layers, each taking
advantage of quantum-enhanced processing to enhance the processing
and analysis of the medical images. In particular, the quantum layers
attractively model the quantum operations to transform the image
data into feature vectors with information on more complex patterns
than classical techniques. These feature vectors are then fed to a
conventional neural network for the final stroke prediction. This can
mimic the advantages of a quantum computer on regular computers,
enabling more of us to take advantage of the quantum advantages and
do it more efficiently.

The model (QBrainNet) involves quantum enhanced ways to
improve the accuracy of stroke forecast. This is a hybrid model,
which combines the classical neural network architecture and
simulates the quantum operations to process and analyze medical
images more effectively. Rather than operating on real quantum
hardware, however, quantum phenomena, such as superposition
and entanglement, are simulated in Python libraries in the actual
hardware. This will enable the model to reflect better, more
intricate relationships in the data, which is a benefit over
conventional machine learning.

The model training for the QBrainNet has been performed for 50
epochs, using gradient-based optimization to update the quantum
parameters (RZ gate angles) in the variational quantum circuits, which
are implemented in PennyLane. The Adam optimizer with a learning
rate of 0.001 was used as the optimizer for training. The model showed
a progressive improvement in accuracy for the first 30-40 epochs, and
then the loss function stabilized, which means that the quantum parts
converged to the local minimum. The arrival time of the quantum
components was tracked closely, and the convergence was relatively
poor after epoch 40.
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The two main components of the QBrainNet model are created to
handle the two various sections of the image data processing pipeline.

Quantum Circuit Architecture:

The quantum circuit of QBrainNet model is a combination of 3
variational layers, each of which comprises a series of quantum gates
performed to process the input data and achieve the maximum
decision boundaries. The type of gates employed in each layer is
as follows:

» Hadamard (H) gate on qubit 1.
o CNOT gate between qubit 1 and qubit 2.
« Z-Rotation (RZ) gate on qubit 3.

This circuit is simulated in PennyLane using classical computer
resources. Each variational layer automatically maps the input data
and develops the decision boundaries for better classification accuracy.

The total trainable parameters of the quantum circuit are 12, which
corresponds to the angles of the RZ gates in each variational layer. These
parameters are then optimized by gradient-based methods during
training to minimize the loss and improve classification performance.

The measurement scheme measures the quantum state on a Pauli
Z basis at the end of each variational layer. The classical bits generated
from this measurement are combined to create the classification
output. The outcome depends on a majority vote among all the qubits
in the system.

The quantum circuit shown above is used to train the QBrainNet
model. The pseudocode for the training process is shown below.
#Initialize quantum circuit with 4 qubits. initialize_quantum_
circuit(num_qubits = 4). #Define variational layers (3 layers). for layer in
range(3): #Apply Hadamard gate on qubit 0. apply_Hadamard_
gate(qubit = 0). #Apply Controlled-NOT gate between qubits 0 and 1.
apply_CNOT_gate(control_qubit = 0, #Apply
Z-Rotation gate on qubit 2. apply_RZ_gate(qubit = 2). #Initialize classical

target_qubit = 1).

optimizer (e.g., Adam optimizer). optimizer = AdamOptimizer(learning _
rate = 0.001). #Training loop for 50 epochs. for epoch in range(50): #Apply
quantum circuit (forward pass). quantum_output = apply_quantum_
circuit(inputs). #Measure quantum state in Pauli Z basis. classical_
output = measure(quantum_output, basis = 7). #Compute the loss
function. loss = compute_loss(classical_output, ground_truth). #Calculate
the gradient of the loss. gradient = compute_gradient(loss). #Update
quantum  parameters using the optimizer. optimizer.update_
parameters(gradient). #Final output: make the classification decision.

final_output = classify_output(classical_output).

3.5.1 Classical feature extraction

Earlier, we mentioned about the extraction of relevant features
from the preprocessed medical images using classical methods such
as edge detection and texture analysis. The next stage is supplied with
a compact representation of brain images for subsequent processing
by these features (43).

This part shows the derivation of a quantum-enhanced neural
network, or QBrainNet that can estimate the probability of missing a
stroke case given a brain image. The model is a combination of classical
machine learning techniques and quantum simulation operations that
will improve stroke prediction accuracy. In lieu of making use of
practical quantum hardware, quantum emulations are made with
quantum simulators PennyLane utilizing Python on conventional,
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classical computing facilities. These quantum simulations allow us to
use the properties of quantum-like superposition and entanglement
that are difficult to use with classical neural networks.

The architecture of the QBrainNet consists of several layers, where
each layer utilizes the quantum processing capability to boost the
processing and analysis of the medical images. In particular, the
quantum layers model the quantum operations attractively to transform
the image data into feature vectors with information on more complex
patterns than classical techniques. These feature vectors are then fed in
a conventional neural network for final stroke prediction. The volume
and diversity of medical images are also relatively low, and thus can
create overfitting and decrease the generalization of the models in
stroke detection. To resolve this, we used several image augmentation
methods - rotation, flipping, and adding noise to the data - before
sending them forward in the preprocessing stage to improve and
stabilize the generalization ability of QBrainNet. Rotations were applied
to mimic various positions of the medical scans to ensure that the
model can identify the patterns associated with stroke, independent of
the direction at which the images are taken. This is especially significant
as brain scans used in medical practice may differ in orientation.
Manipulation of the model by flipping it horizontally and vertically to
introduce the model to other perspectives, which is more likely to
generalize its operative features in different variable conditions. Lastly,
we introduced noise into the pictures to simulate the inevitable flaws
associated with real-world medical imaging, including scanner artifacts
or low resolution. The model learns to generalize on the essential
features of the data rather than memorizing noise-free, idealized images
by adding noise to the data. The combination of the above augmentation
strategies increases the whole dataset’s variety, enabling QBrainNet to
pick up on more of the possible patterns and achieve a lower probability
of overfitting, especially with such a relatively small amount of data.
That makes a model more competent to work with unseen data and
supply precise estimation in clinical practice.

It entails studying image patterns, such as boundaries, textures,
and shapes. Edge detection with the Canny operator and GLCM is
applied to extract the features such as these. The features extracted
from these data can be represented mathematically as follows:

1 Edge Detection: Using the Canny Edge Detection algorithm,
the boundary information E.q, for a given image Iyuycae 18
obtained using Equation 9:

Eedges = Ca””}’(lgmyscale ) )

Where:
Torayscale Itis a grayscale image.
Eedges Represents the edges detected in the image.

Texture Features: The GLCM (Gray Level Co-occurrence Matrix)
is an algorithm employed to describe the texture patterns present in
the image, and is able to capture important statistics such as contrast,
energy, and correlation. The GLCM for a grayscale image Lyyscae 18
computed using Equation 9.

Consequently, these classical features are then passed through to
the quantum-enhanced stage, where they are processed and
further optimized.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1677234
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Priyadharshini et al.

To solve the generalizability problem and improve the overfitting
level, we used image augmentation methods, including rotating,
flipping, and adding noise. Such techniques mimic the natural
variation in medical images and therefore aid in better generalization
of the model in cases where the data is small.

3.5.2 Quantum enhancement

After the extraction, we feed the extracted features to the Quantum
Neural Network (QNN) to produce classification outputs. Dynamical
correlations of the quantum model such as superposition and
entanglement make it possible for it to model complex patterns of the
data which cannot be easily observed with the classical model alone
(44). In order to learn the decision boundaries and find higher-order
relationships in the data, the quantum neural network is learned using
Variational Quantum Circuits (VQCs) (45).

The model of QBrainNet integrates quantum-enhanced machine
learning on the basis of quantum neural networks (QNNs) and
variational quantum circuits (VQCs). PennyLane uses classical
computing resources to simulate these quantum components. In this
way, it is possible to do feature extraction and optimization with
quantum phenomena such as superposition and entanglement without
having access to actual quantum hardware. The quantum operations are
simulated completely in the classical environment, meaning that the full
power of quantum computing is utilized for an improved performance
without losing a practical implementation on the existing
computing resources.

As part of the classical layer of QBrainNet, we applied Adam with a
learning rate of 0.001. Adam is effective in substantial learning tasks
because of its adaptive learning rates and the momentum, making it
converge and avoid over-fitting quicker.

Regarding the quantum portion, the Variational Quantum Circuits
(VQCs) were trained with a gradient-based optimizer and the quantum
gradient descent. A parameter optimization on the quantum circuit
parameters would minimize the loss by updating parameters during
each iteration through classical optimization algorithms such as Adam
or L-BFGS. Such a hybrid optimization will allow efficient training and
better ability in modeling complex patterns with medical images.

The basic idea of a Quantum Neural Network (QNN) is to use
quantum circuits as the weights and transformations of the network,
represented by the quantum gates (46). The input sample value is
initialized and transformed according to the input data by utilizing
quantum superposition, exploring various possible results simultaneously.

To optimize the weights of the quantum neural network, we use a
Variational Quantum Circuit (VQC) that combines classical
optimization (what is to be optimized) with quantum circuits (how
optimization is to be performed). Here is the definition of VQC as
shown in Equation 10.

ly(0)=U(0)lyo) (10)

Where:

17 (9) is the quantum state after applying the quantum gates U(H)

with parameters 6.

Wy is the initial quantum state.
. U(H) is the unitary operator that applies quantum gates
parameterized by 6.
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The quantum circuit is also optimized in the classical-quantum hybrid
approach by minimizing the loss function in terms of quantum gradient
descent. The loss function can be expressed as shown in Equation 11:

L(@)zloss( |1//(9)) (11)

Where:

o A loss evaluates the prediction error of a quantum model (e.g.,
mean square error, cross-entropy).

o The loss function that the quantum circuit minimizes during
optimization is L(6).

Optimization of quantum circuit parameters is done with classical
gradient descent and more complicated optimization algorithms
(Adam or LBFGS). For training classical CNN model we used adaptive
moment optimization algorithm (Adam). We have set its learning rate
to equal 0.001 which resolves the loss function more quickly than
randomized algorithms and prevents over-fitting. In the quantum
part, we used an optimizer which is based on a gradient which we used
to change the quantum gates in the variational quantum circuit (VQC)
where in a similar manner we backpropagated through the quantum
layers and optimized the decision boundaries.

3.5.3 Bridging the classical-quantum framework
The two parts work together to form a fusion classical quantum
framework in which the quantum circuit combines the classical
feature extraction model into a QBrainNet model. This approach’s
advantage is its use of both classical and quantum computing.

o Featuring high dimensional data with the classical methods

o It fed these features into the quantum circuit to determine how
to process them, optimize decision boundaries and find complex
patterns that classical methods may miss.

The high-dimensional data is handled by the classical model,
while the quantum model exploits the data in parallel in a potentially
more computationally efficient and more accurate prediction manner.

The quantum translation model QBrainNet is constructed as a
hybrid classical-quantum framework by making the quantum circuit
a part of the classical feature extraction model. Then, we utilize a
quantum gradient algorithm (47) to optimize the parameters of the
quantum circuit by adjusting the parameters of the circuit after each
prediction according to the error. This hybrid method combines the
good of classical and quantum computing, with one better with fine-
scale methodology in high-dimension data and the other enhancing
prediction accuracy in time series prediction problems (48).

In Figure 7, we see the hybrid classical-quantum framework in
QBrainNet, built upon classical feature extraction and acting as an
input to a quantum neural network for stroke prediction (Figure 7:
Hybrid Classical-Quantum Framework shows the flow from classical
feature extraction to quantum processing).

3.5.4 Algorithmic design of QBrainNet

1 Initialize system:
a Load preprocessed brain CT scan dataset.
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FIGURE 7
Hybrid classical-quantum framework of QBrainNet.

b Split dataset into training and testing sets (e.g., 80% training, ¢ Minimize the loss function (cross-entropy or mean

20% testing). squared error).
¢ Initialize classical CNN and quantum components (QNN

with VQC). 6 Evaluation:

a Test the model on the testing dataset.
2 Preprocessing: b Calculate performance metrics:
a Convert CT scan images to grayscale.
b Apply image equalization to enhance contrast. o Accuracy.
¢ Perform edge detection using the Canny operator. o Precision.
d Apply augmentation techniques (rotation, flipping, noise addition). « F1 Score.
e Normalize image data. o Recall.
« AUC-PR.

3 Feature Extraction (Classical Component):
a Extract features using classical methods: o Post-processing:

o Edge detection.
o Texture analysis (GLCM).
b Store extracted features for quantum-enhanced processing.

4 Quantum Enhancement (Quantum Component):
a Feed extracted features into quantum neural network (QNN)
using Variational Quantum Circuits (VQC).

Apply quantum operations (superposition, entanglement) to
extract complex patterns.

Use quantum gates and VQC to adjust decision boundaries and

find higher-order relationships.

Model Training:

Train classical CNN model on extracted features using Adam
optimizer (learning rate: 0.001).

Optimize quantum circuit parameters using gradient descent
and quantum gradient descent (with Adam or L-BFGS for
fine-tuning).
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a Generate predictions for unseen CT scan images.
b Display results and analyze model performance.

8 Output:

a Report stroke prediction results with confidence scores.

b Compare QBrainNet’s performance with classical models
(CNN, SVM, etc.)

3.5.5 Simulated quantum operations

The quantum component of QBrainNet was simulated on
the classical hardware using the PennyLane library, the current
quantum software platform where quantum circuit simulation
is available on classical hardware. This was the selected approach
because of the scarcity of quantum hardware and the
requirement to provide fast experimentation on the quantum
neural networks. Though quantum circuits have been simulated
on the classical resources, PennyLane supports quantum gates
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like Hadamard, CNOT and Z-Rotation gates to simulate, and it
is an efficient way to explore the quantum-amplified potentials
of the network.

3.5.5.1 Implications for scalability and feasibility

It is not so easy to simulate a quantum circuit on classical
hardware. Scalability of simulations stands out by far, where the
amount of computational resources needed to execute the simulation
circuit rises exponentially with the qubit count in the circuit. An
example is that with a quantum system with 50 or more qubits, it is
just too costly to simulate on classical hardware because of memory
and processing resources. With improvement of quantum hardware,
quantum networks will exit classical simulation and transition to the
quantum processors.

From a practical point of view, using classical hardware implies that the
model can be tested and optimized now; before being able to have access to
powerful enough quantum computers. Current quantum computing
technology is in its early stages, and there are only a few quantum computers
available through cloud services, and they are generally constrained in the
number of qubits they can process. As quantum processors become
available, the quantum parts of QBrainNet will be compiled to actual
quantum hardware allowing the system to fully exploit quantum parallelism
and superposition for more efficient processing.

In spite of these, the hybrid classical-quantum method used by
QBrainNet can be seen as a very promising path ahead. It allows one
to extract features with the help of quantum computing and
simultaneously exploit the comparatively computationally efficient,
everywhere-available classical optimization methods.

3.5.5.2 Mathematical formulation

ly (0))=l0)®10)®10)®10) (12)
HI0>=%(IIO>+III>) (13)
HIl):%(HOHHl}) (14)

ly(1)=H®I®I®II0) (15)

CNOT 00y =100), CNOTI01)=l01) 6
CNOTI10)=I11), CNOTI11)=10) (16)
ly2) =CNOT (|y)) (17)

RZ(0)0=]o, Rz(O)[t=¢"t (18)

ly3)=RZ(0)®I®Ily,) (19)
zloy=loy, zly=-I1) (20)

o )= 10) withprobability|0|(//|2 1)

I1)  with probability |l| l//|2
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OL
VoL=— 22
ol=7, (22)
Onew =01 —1V gL (23)
y = Classifier (24)

The different mathematical formulation are shown from Equations 12
and 24. In the quantum-enhanced model developed for brain stroke
prediction, the quantum circuit is initialized with 4 qubits each in the
ground state |0 > which is normally used as an initialization for quantum
computations. These qubits are the basic units that store the data and the
quantum operations are implemented one after another, to manipulate the
states of the qubits and extract the intricate patterns that might be difficult
to use classical methods. The first gate performed on the qubits is the
Hadamard gate H which is applied to qubit 0 to put it in a superposition
between the states |0 > and |1>. This superposition enables the quantum
system to investigate various states at the same time, which significantly
increases the processing and representation of the complex data by the
model. However, a Controlled-NOT (CNOT) gate is then applied between
qubits 0 (control) and 1 (target) following the Hadamard gate and then
these two qubits are entangled with each other, generating a correlation
which is the main part of quantum model of the complex dependencies in
the data. This interaction allows the quantum system to be capable of
processing and representing correlations which would otherwise be hard
to obtain with classical models. There is also a Z-Rotation of the qubit 2 to
add a phase shift to it, which further enhances the ability of the model to
learn the quantum data. This transformation of phase enables the model to
improve the quantum state, modifying it in a manner that is more
appropriate to the task in question. The quantum state is measured in the
Pauli-Z basis after the quantum operations have been made, which forces
the quantum state to collapse into one of two possible states, [0 > or |1>,
according to the amplitudes of the quantum state. The measured data is
then used in the classical domain where the quantum parameters are
optimized using a method called Adam optimizer, a popular gradient based
method that updates the parameters of the model to reduce the loss
function and increase accuracy. Finally, after the quantum enhanced
features are extracted and quantum parameters are optimized, the model
is transferred to the classical domain and a classical classifier is used to
perform the final stroke prediction. The classical classifier uses the features
extracted from the quantum computation stage to predict the probability
of a brain stroke, which makes the best use of the advantages of quantum
computation and classical machine learning in prediction accuracy.

3.5.5.3 Training cost comparison

Aspect Quantum (Simulated)  Classical (e.g.,
(\1\)]
Training Time Exponentially increases with Polynomial growth

qubits and depth with dataset size
Computational Requires large memory and Scales based on model
Resources computational power for size and dataset
quantum circuit simulation
Scalability Limited by classical simulation; Scalable with

impractical for large qubit systems | optimized hardware

(e.g., GPUs)
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3.5.5.4 Inference cost comparison

Inference Time Potential speedup with quantum | Fast, optimized for real-

circuits, but limited by classical time prediction

simulation overhead

Computational Quantum simulation requires Less computationally

Resources significant memory; real expensive on modern
quantum inference will be faster | hardware (GPUs/CPUs)
Scalability Likely to improve with real Highly scalable and

quantum hardware efficient for large models

3.5.6 Model training and model evaluation

This model is trained on the medical image data set, and simulated
quantum operations are applied to render each image during feature
extraction. The preprocessing introduced by quantum adds some
features that can be hard to detect by classical models, as CNNG,
helping the model identify subtle, non-linear patterns. The output of
these quantum enhanced characteristics are then fed into a classical
neural network and classified.

The quantum-enhanced model is then trained and evaluated
based on the standard classical models (such as CNNs), to find out
how the predictive accuracy and processing efficiency is improved.
Although emulating quantum processes on classical computers, the
quantum model offers significant potential by reducing the training
time to execute a high-dimensional task, and after achieving a better
prediction in stroke detection.

4 Results

In this work, we apply the QBrainNet model, a model of quantum-
enhanced brain stroke prediction, for prediction using the medical
imaging data with whose performance we additionally investigate
against some of the commonly used traditional machine learning
methods such as Convolutional Neural Networks (CNN), Support
Vector Machines (SVM), Random Forests (RF), KNN and Logistic
Regression (LR) since other traditional machine learning models have
been used for different results and which we are comparing with.

In order to analyze the QBrainNet Model, we compare it with the
classical CNNs using the standard evaluation metrics of accuracy,
precision, recall and F1 score. The quantum modified model is
consistently found to report a better performance than the classical
CNN model, particularly in the accuracy of stroke detection. Also, the
training times when using simulated quantum operations are much
shorter than with classical methods, although real quantum hardware
is not employed. This points to the prospect of simulated quantum
methods to transform the computational cost of medical image
analysis without requiring a costly quantum machine.

4.1 Model comparison and fairness in
evaluation

As far as comparing the CNN and QBrainNet models, we would
like to explain why there is a difference in the number of parameters
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between the two architectures. The CNN model in this study has
about 2.5 million parameters, which is a reasonable number for
multiple-layered, multi-filter convolutional neural networks. In
contrast, a much smaller number of parameters is introduced in the
QBrainNet model because of the quantum circuits used. Specifically,
the number of trainable parameters of the QBrainNet model is 12,
which are the angles of the RZ gates of the three variational layers of
the quantum circuit.

The difference in the design of the classical and quantum neural
networks means that the CNN model has many more parameters.
Because of the compact nature of quantum gates, quantum circuits
have less parameter, which can be used to process information
efficiently. Despite this difference in the number of parameters, a
comparison between the CNN model and the QBrainNet model was
made based on performance metrics such as accuracy, precision, and
recall which are related to classification performance and not to the
size of the model.

Both the models have been tested on the same data set, with the
same train and validation split, hence the comparison is done under
the same conditions. While these models were assessed in terms of the
number of parameters, they focused on the models in terms of their
predictive power and not the number of parameters in order to
provide a fair and meaningful comparison.

By comparing the two models with respect to relevant
performance indicators, we can give a precise and unbiased estimation
of their relative abilities for classification of the data, despite the
difference in their architecture and size of parameters.

4.2 Model performance comparison

The quantum-enhanced model is superior to the regular CNNs
in accuracy and computing speeds by a large margin (49). The
QBrainNet model provided better performance in the detection of
strokes than CNNs. Also, training was faster using simulated
quantum operations on classical hardware, which illustrates the
prospect of quantum processes to enhance their efficiency in
processing. Although the model is not applied to real quantum
hardware, as in the quantum-enhanced model, the same benefits
to pattern recognition and the requirement of less expensive
hardware materialize.

Thus, to evaluate and compare the performance of QBrainNet
with standard machine learning models, the Precision-Recall
Curve (Figure 8) was made for QBrainNet, CNN, SVM, RE, KNN,
and LR (50). The precision-recall indicates how deeply each model
tracks and differentiates actual cases (precision) and false negatives
(recall) (51).

4.3 Baseline model configurations

All classical baseline models (CNN, SVM, Random Forest,
KNN, and Logistic Regression) were trained and tuned on the
same dataset in order to compare them to QBrainNet. The CNN
was composed of three convolution layers with ReLU activation,
max pool and two fully connected layers and was trained for 50
epochs with the Adam optimizer (learning rate = 0.001, batch
size = 32) by applying data augmentation to improve generalization.
The SVM with scalable RBF kernel C = 1, g = 0.01, and number of
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iterations = 50 was used. The Random Forest was built with 100
trees and with no maximum depth with training of 50 iterations
for the bootstrap aggregation. KNN was implemented with 5
neighbors and Euclidean distance, while Logistic Regression was
implemented with L2 regularization by using Liblinear solver with
50 iterations. Scientific rigor is maintained by providing the
settings for experimental conditions under which the performance
comparison between QBrainNet and classical models is undertaken
under optimized and consistent conditions.

To make sure that the comparison is fair and strong, we have
considered state-of-the-art deep learning models, such as ResNet and
EfficientNet, and classical machine learning models (CNN, SVM, RE
KNN, LR). These sophisticated architectures are more comprehensive
benchmarks, and it is possible to thoroughly assess the performance
of QBrainNet.

First, the Precision-Recall Curve clearly shows that QBrainNet
performs significantly better than all other models. QBrainNet achieved
a high precision of 0.96 and recall of 0.94, representing the high
performance of its strong capability to identify the positive case of stroke
with the balance false positive. In contrast to those two, we found that
CNN was 0.85 in precision and 0.90 in recall, SVM 0.83 precision and
0.90 recall, RF 0.85 precision and 0.88 recall, KNN 0.80 precision and
0.85 recall, and LR 0.78 precision and 0.82 recall.

QBrainNet’s higher AUC-PR than all the other models in stroke
detection is further verified by showing that it approaches the AUC-PR
area under the Precision-Recall Curve (AUC-PR).

The Calibration Curve plot (Figure 9) was used to analyze the
reliability of each model’s predicted probabilities, which is plotted based
on QBrainNet, CNN, SVM, RE KNN, and LR. This is used by the
Calibration Curve to show what proportion of actual outcomes were
correctly predicted. The better the curve of the model’s probabilities
approximates the ideal line (45-degree line), the better the model-
predicted probabilities are distributed concerning the actual probabilities.
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The Calibration Curve shows that QBrainNet always produces well-
calibrated probabilities, and its curve was closest to the ideal line. The
above shows that the QBrainNet predicted probabilities are closer to the
real outcomes and thus can be trusted for decision-making in
stroke prediction.

On the contrary, the ideal calibration line deviates more from
CNN, SVM, RE, KNN, and LR models. Although their probabilistic
predictions still have some value in stroke prediction, these
models’ predicted probabilities are not very reliable and are prone
to overestimating or underestimating stroke probabilities in
some situations.

Finally, Learning Curves (Figure 10) were plotted to evaluate the
performance of QBrainNet and traditional machine learning models
CNN, SVM, RE KNN, and LR in terms of training dataset size. The
learning curve depicts the model’s performance, i.e., metrics like
accuracy vs. size of the training dataset (training and validating curve).

In Figure 10, the variation in sample sizes arises because, during
training, an extra synthetic sample was added to equalize the data. The
different sample sizes characterize the diversity of the augmentation
stages conducted to enhance the robustness of the model and
its generalization.

Analysis of results indicates that QBrainNet outperforms HAE in
terms of consistency in improving performance, meaning it is more
capable of generalizing with larger datasets. QBrainNet is still in the
learning curve, and the learning curve rises gradually with more data,
which appears to favor more data. When it sees different classes of
samples, it can perform much better.

In contrast to the traditional model (CNN, SVM, RE, KNN, and
LR), the performance of all models improves with more data, although
one can see they are less pronounced as the dataset size enlarges to
some extent. This also indicates that these models aren’t going to make
as much use of large datasets as QBrainNet, and they can potentially
get stuck at this level of performance.
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4.4 Justification of quantum model complex and non-linear patterns inherent in the medical images
performance through simulating quantum operations on classical hardware, since

classical CNNs cannot detect this. Quantum models, because of their

The features extracted using the enhancement provided by the  propensity to explore many solutions simultaneously, courtesy of
quantum computing process can be the reason that enhances the  superposition and entanglement, are better suited to deal with high-
performance of the QBrainNet model. The model can emulate  dimensional data such as medical imagery, where conventional
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methods tend to flounder. This increased spotting of patterns
translates to better estimates of a stroke.

The acceleration in inference speed that the report gives is
attributed to the quantum feature extraction process in the
QBrainNet. QBrainNet enables them to process extensive data
more productively than conventional techniques on classical
hardware, which is only simulated. Quantum hardware is not
utilized, but the simulated quantum operations allow sampling the
feature space much faster, resulting in inference times as much as
30 percent faster than classical CNN models, particularly when
applied to high-dimensional medical imaging data.

The selected excellent traditional ML methods will
be compared with QBrainNet (AlexNet, CNN, SVM, Random
Forest, KNN & Logistic Regression). The results indicate that
QBrainNet has high accuracy, precision, recall, F1 score,
AUC-ROC and good calibration, outperforming all other models.
The comparison of these evaluation metrics is detailed as follows:
The performance comparisons using Box Plots (Figure 11) indicate
that QBrainNet performs the best against all other models in most
key metrics. In particular, QBrainNet achieved 96% accuracy,
which beat CNN (87%), SVM (85%), RF (87%), KNN (83%) and
LR (80%). Moreover, It had a precision of 0.96 versus CNN (0.85),
SVM (0.83), RF (0.85), KNN (0.80) and LR (0.78) on correctly
identifying positive stroke cases. While QBrainNet scored only
0.94 in terms of recall [better than CNN, a score of 0.90, as well as
SVM (also 0.90), RF (0.88), KNN (0.85), and LR (0.82)], recall is
significant for the early detection of this disease. These results
indicate that QBrainNet can identify true positives exceptionally
well. QBrainNet finally achieved an F1 score of 0.95, whereas the
precision and recall outcome is well balanced by exceeding the

10.3389/fmed.2025.1677234

performance of CNN (0.87), SVM (0.86), RF (0.86), KNN (0.82),
and LR (0.80).

4.5 Computational efficiency

Finally, regarding training and inference time, QuartzBrainNet
was compared to CNN, SVM, RE, KNN, and LR (Figure 12). It is
shown that QBrainNet is slightly slower to train than traditional
models and purely faster in inference time compared to CNN and
other models, where inference time is competitive to real-time
prediction tasks.

Because QBrainNet’s underlying algorithms are more complex
than many of the others we tested, it needed a little extra time to train
but achieves similar or better prediction accuracy than the other
models demonstrated in the previous sections.

4.6 Model generalization

The QBrainNet model’s in terms of

generalization ability was assessed via the method of train-test

performance

split by using 20-30 percent of the data reserved after training
the model on the rest of the data. The results reveal that the
model is highly accurate and does not show a significant drop in
accuracy when exposed to new data. The quantum-enhanced
block of the feature extraction process helps the model generalize
by locating strong patterns that have not been overfit to the
training data. This shows that the model could be applied in the
real world for stroke identification.

Comparison of Performance Metrics Across Models
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4.7 Feature im porta nce However, CNN, SVM, RFE, KNN, and LR also perform very well,
giving more or less the same misclassification rates (false positives or
Figure 13 presents the Feature Importance Visualization  false negatives), especially in stroke detection (52-54). This reiterates
comparing the stroke detection models QBrainNet, CNN, SVM,  QBrainNet’s better performance in precisely classifying stroke cases,
RE, KNN, and LR regarding which feature is most and least  rendering it a more trusted model for clinical use.
important to the models. It is concluded that QBrainNet
attaches the maximum importance to Feature 1, which implies
that it utilizes a key feature in a way that allows it to make a 4.9 Discriminatory power
decision effectively. Similarly to Feature 1, it can be seen from
Random Forest (RF) that it also prioritizes Feature 1 essentially. Comparison of QBrainNet, CNN, SVM, RE, KNN, and LR is
However, CNN, SVM, KNN, and LR spread the importance of  performed in ROC Curves (Figure 15). The Area under the Curve
features more evenly, possibly indicating less of the most (AUC) measures each model’s discriminatory power. The AUC value
performance will be better in classifying positive (stroke) and negative

essential features.
QBrainNet seems to be the best model-making feature  (non-stroke) cases.
prioritization, based on which the most important features have been The AUC clearly shows that QBrainNet has the highest AUC of
selected, which makes a more efficient and accurate decision-  0.97 on its ability to classify stroke accurately. Compared to other
making process. models, its curve is closer to the ideal upper-left corner, indicating its
high discriminatory power.

In contrast, CNN reached an AUC of 0.92, SVM followed with
0.91, and RF recorded an AUC of 0.93. At the same time, KNN and

4.8 Confusion matrix
LR achieved AUC values of 0.88 and 0.85, respectively, indicating they
were relatively less capable of separating stroke from

Thus, by using the YIGnBucolour scheme, the Confusion Matrices
(Figure 14) for models such as QBrainNet, CNN, SVM, RE, KNNand  non-stroke patients.
Considering overall performance, the ROC Curves also show that

LR, are generated, to better show the models’ performance. These
matrices indicate the model stroke and non-stroke cases that can ~ QBrainNet performs better than the traditional models and gains the
be heartily classified with percentage and explicitly classified with
percentage of stroke and non-stroke cases.

Examining the matrices reveals that QBrainNet performs far
ahead of the other models, with a larger number of true positives, 4.10 Hyperparameter optimization
which demonstrates its ability to identify stroke cases accurately.

Moreover, QBrainNet ensures a low number of false positives and false
indicator of its accuracy in

top performance in stroke detection.

Figure 16 shows the Learning Rate vs. Performance graph, which also
shows how other models, such as CNN, SVM, RE KNN, and LR, perform

an
with different learning rates and how QBrainNets performance varies

negatives, which is
preventing misclassifications.
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over that. Hyperparameter tuning is shown to have a great effect on each
model’s performance, particularly the learning rate.

4.11 Histogram for feature distributions

The Histogram for Feature Distributions (Figure 17) shows the
distribution of feature values for QBrainNet, CNN, SVM, RE KNN, and
LR. The difference in QBrainNet is that it concentrates on feature value at
the higher end, indicating it is more dependent on features. Other models,

Frontiers in Medicine

for example, CNN, SVM, and RE, have overlapping distributions, and
KNN and LR have less clear peaks. This visualization shows the different
ranges of features for each model to be used for prediction.

Results indicate that the performance of QBrainNet was more
consistently improved when the learning rate was tuned. That means
QBrainNet is more adapted to the hyperparameters and more efficient
than the rest of the models. On the other hand, some other models,
such as CNN, SVM, RE KNN, and LR, showed less pronounced
improvement, which indicates that they require more changes in
learning rate or are less flexible in hyperparameter optimization.
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5 Conclusion

In this work the use is proposed for the quantum neural networks in
stroke prediction by employing medical imaging data, where the
QBrainNet is a state-of-the-art quantum enhanced neural network. This
is due to the fact that it integrates into the classical machine learning
models algorithms of quantum computing such as Quantum Neural
Networks (QNN) and Variational Quantum Circuits (VQC) which makes
calculations more efficient and more reasonably anticipates predictions.
How does QBrainNet solve this problem? QBrainNet uses quantum
computing to process high dimension medical image data more efficiently
and particularly, when the dimension of our data is under such small
conditions as are illustrated in the conventional models (there are few
distinct images in the background).

We first conduct a comprehensive evaluation where it is demonstrated
that QBrainNet outperforms classical machine learning models (e.g.,
CNN, SVM, RE KNN, and LR) in several critical metrics, i.e., accuracy,
precision, recall, F1-score, AUC-ROC, and computational speed. We find
that QBrainNet has a strong ability to identify strokes and little
misclassifications precisely and performs better in different configurations
of hyperparameters. For instance, our model obtains better AUC-ROC
scores and shows merits with varying learning rates, adequately suggesting
its flexibility and generalization capability on an extensive range of
medical imaging data.

Furthermore, the Feature Importance Visualization highlights
which features are the most important by prioritizing those for stroke
detection. Thus, the model is better interpreted, and it provides some
insight into the decision-making process. The Confusion Matrix
depicts the application of a low false positive and false negative rate,
among other things, supporting early stroke detection.

Although its training time is slightly higher than that of traditional
models, QBrainNet is comparable in real-time prediction time,
considering its similar inference time. QBrainNet is a promising tool
for clinical applications that allows for real-time decision-making.

Frontiers in Medicine

5.1 Future work

QBrainNet is a promising tool for predicting stroke; however,
QBrainNet has some potential room for further development and
enhancements. Second, the model can be corroborated in addition to the
addition of more diverse and big medical imaging datasets, which could
contain data from other imaging modalities (e.g., CT, MR, ultrasound).
The robustness of QBrainNet in real-world clinical scenarios and that the
model behaves uniformly across various populations would need a large
and diverse dataset for us to penetrate deeper.

It can also be optimized in the quantum components of QBrainNet
both from the design point and from the quantum algorithmic
perspective. With new and more efficient quantum algorithms
emerging for these more than-ever powerful quantum computing
technologies, new problems will arise. Further integrations of these
advancements with the QBrainNet can lead to additional performance
improvements, especially in speed and accuracy. Some of the tasks for
exploring further are exploring the usage of more advanced quantum
machine learning technologies such as quantum support vector
machines or quantum k nearest neighbors that may help to improve
data classification and pattern recognition.

Other than optimizing quantum components, QBrainNet could
also be simplified to quantum-enhanced generative models. These
models may generate medical images, mainly when insufficient data
exists synthetically. We hypothesized that augmenting the dataset with
high-quality synthetic quantum-enhanced images would allow us to
train the model on a robust and more comprehensive dataset that
would aid the model in generalization when processing unseen data.

Another important direction for future work is to explore the real-
time deployment of QBrainNet in clinical settings. For this to
be possible, the model would need to be integrated with the existing
healthcare systems and its usage made practical for medical
practitioners. Moreover, real-time performance evaluations and
continuous learning mechanisms can be added to the model to
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enhance it with additional data as they become available. Integrating
QBrainNet with electronic health records (EHR) and other clinical
data sources can be a powerful tool for early stroke diagnosis to
forecast timelines that can guide healthcare providers” decisions.

Finally, investigating the explainability of QBrainNet for clinical
decision-making is an integral part of future work. Although the
model works very well, we need to understand how quantum-
enhanced parts of the model can affect the predictions to gain the trust
of healthcare providers. Since the decision-making in high-stakes
applications, i.e., medical diagnostics, must be more transparent and
interpretable, techniques such as model interpretability and
explanation generation should be explored.

To summarize, QBrainNet is a very promising tool for using
quantum enhancement to predict stroke, and further research and
development in these areas are expected and necessary to advance its
applicability in clinical use and ensure its success in the real world
of healthcare.
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Background: Alzheimer's disease (AD) is a progressive neurodegenerative
disorder that requires advanced diagnostic strategies for early and accurate
detection.

Methods: This study introduces a hybrid Al-driven diagnostic framework that
integrates an Artificial Neural Network (ANN) trained on clinical data from 1,200
patients using 31 demographic, symptomatic, and behavioral features with a
Convolutional Neural Network (CNN) trained on 4,876 MRI images to classify
AD into four stages.

Results and Discussion: The ANN achieved an accuracy of 87.08% in early-
stage risk prediction, while the CNN demonstrated a superior 97% accuracy in
disease staging, supported by Grad-CAM visualizations that improved model
interpretability. This dual-model approach effectively combines structured
clinical data with imaging-based analysis, addressing the sensitivity and scalability
limitations of traditional diagnostic methods and providing a more comprehensive
assessment of AD.

Conclusion: The integration of ANN and CNN enhances diagnostic precision
and supports Al-assisted clinical decision-making, with future work focusing on
lightweight CNN architectures and wearable technologies to enable broader
accessibility and earlier intervention.

KEYWORDS

Alzheimer's disease, Convolutional Neural Network, machine learning, prediction,
predictive modeling, early diagnosis

Highlights

o The study introduces a dual-model framework that integrates ANN and CNN models to
combine clinical data and imaging for Alzheimer’s diagnosis.

o The ANN achieved 87.08% accuracy in risk assessment, while the CNN reached 97%
accuracy in classifying disease stages.

o Grad-CAM visualizations enhance the interpretability of CNN predictions, providing
transparent and clinically relevant insights.

o The framework offers a comprehensive diagnosis by classifying Alzheimer’s into four
stages with high precision.
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1 Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative
disorder, presents a significant challenge for early diagnosis and
effective management due to its complex and multifactorial nature.
AD is the most common form of dementia, affecting patients and their
families through progressive impairments in memory, reasoning, and
social functioning (1). Before affecting other cortical regions, the
disease initially targets the hippocampus, a brain structure integral to
memory formation and learning (2). In the early stages, patients may
have difficulty recalling recent conversations or appointments, and as
the disease progresses, it becomes increasingly difficult to recognize
familiar names and relatives (3).

Jack et al. (4) shed light on the fundamental mechanisms of AD,
identifying its key pathological characteristics as amyloid deposits, tau
protein abnormalities, and neurodegeneration. These three core
pathological features play a crucial role in prediction, diagnosis, and
treatment of AD. Prior to the extensive use of artificial intelligence
(AI) in healthcare, traditional methods for testing AD relied on a
variety of techniques. Tools like the Mini-Mental State Examination
(MMSE) and the Montreal Cognitive Assessment (MOCA) were
employed to evaluate and score a patient’s cognitive function, helping
to assess their cognitive performance levels (5). With advancements
in technology, methods such as magnetic resonance imaging (MRI),
positron emission tomography (PET), diffusion tensor imaging (DTI),
biomarkers, and cerebrospinal fluid (CSF) analysis are increasingly
utilized for detecting AD, as they eliminate the influence of subjective
factors (6). MRI technology uses a strong magnetic field and harmless
radio waves to generate high-resolution brain images, aiding
physicians in observing the brain structure and detecting potential
abnormalities (7). MRI is crucial in diagnosing Alzheimer’s disease as
it provides high-resolution, non-invasive imaging of brain structures,
enabling the detection of early signs of neurodegeneration, such as
hippocampal atrophy and cortical thinning, which are key indicators
of the disease’s progression (8). In the early stages of Alzheimer’s
disease, the pathological features are less pronounced, making brain
imaging methods like MRI potentially insufficiently sensitive for
accurate prediction of the condition (9).

Al can enhance the sensitivity of brain imaging techniques, such
as MRI, by leveraging advanced algorithms to detect subtle patterns
and early-stage biomarkers of Alzheimers disease that might
otherwise go unnoticed through traditional analysis, thereby
improving early diagnosis and intervention strategies (10). Tackling
the challenges of diagnosing and treating complex conditions such as
AD has driven a growing interest in leveraging advanced technologies
to improve clinical outcomes. Al, particularly through machine
learning (ML) and deep learning (DL), holds tremendous promise in
revolutionizing AD diagnostics and care. By analyzing vast amounts
of medical data, AI systems can detect subtle patterns and early
biomarkers that traditional methods might miss, enabling earlier
diagnosis and more personalized intervention strategies. The concept
of AT was first introduced by John McCarthy in 1956, who defined it
as the use of computer systems to replicate human intelligence and
critical reasoning (11).

In healthcare, Al is categorized into two main domains: virtual
and physical. The virtual domain encompasses ML and DL (12).
Machine learning refers to a system’s ability to autonomously learn
from data without explicit programming (11). It includes four primary

Frontiers in Medicine

10.3389/fmed.2025.1713062

methodologies: supervised learning, unsupervised learning,
reinforcement learning, and active learning (13). Supervised learning
involves analyzing labeled input data to uncover patterns, utilizing
models such as Bayesian inference, decision trees, linear discriminants,
support vector machines, logistic regression, and artificial neural
networks (14). Deep learning, a more advanced subset of ML, employs
multiple interconnected layers to extract features and optimize model
performance (15).

Al technologies aim to develop systems and robots capable of
performing tasks like pattern recognition, decision-making, and
adaptive problem-solving—capabilities traditionally associated with
human intelligence (16). Advances in computational power, combined
with innovations in machine learning techniques and neural networks,
have accelerated progress in AI (17). As a subset of AI, ML focuses on
training computers to analyze large datasets, identify trends, and apply
these insights for predictions or decisions (16). AI has demonstrated
transformative potential across fields such as natural language
processing, autonomous vehicles, healthcare, and image recognition.
In AD research, it excels at rapidly analyzing complex datasets,
identifying patterns imperceptible to humans, and providing highly
accurate predictions, thereby advancing the understanding and
management of the disease (18, 19). DL is centered around advanced
neural network architectures, including Convolutional Neural
Networks (CNNs) (20) and Artificial Neural Networks (ANNs) (21).

CNNes are a specialized type of ANN designed to process and
analyze visual data, such as images. Unlike ANNs, CNNs leverage
convolutional layers that apply filters (kernels) to extract spatial and
hierarchical features like edges, textures, and shapes (22). These layers
are followed by pooling layers, which reduce the spatial dimensions
and improve computational efficiency (23). Fully connected layers at
the end of the network use the extracted features to make predictions
(24). CNNs excel at tasks like image recognition, object detection, and
medical imaging due to their ability to capture spatial relationships
and patterns in data (25). ANNGs are inspired by the structure and
function of the human brain, consisting of layers of interconnected
nodes (neurons) (26). These nodes process input data by applying
weights, biases, and activation functions, which enable the network to
learn and make predictions. ANNG typically have an input layer (to
receive data), one or more hidden layers (where computations and
feature extraction occur), and an output layer (to generate predictions)
(27). A systematic review analyzed Al-based MRI studies for
Alzheimer’s and MCI detection, highlighting that deep learning CNN
models achieved the highest accuracy (89%) compared to traditional
AI methods like SVM and logistic regression (28). Another study
proposed a 2D CNN-based approach for Alzheimers and MCI
detection, emphasizing computational efficiency and fairness by
achieving 83.7% accuracy for AD classification without requiring large
datasets or high-performance computing (29). One of the previous
studies has utilized CNN-based models for Alzheimer’s disease
detection, achieving 94.46% accuracy using CLAHE and GLCM for
feature extraction (30). Their U-Net-based model achieved high
segmentation and classification accuracy, reporting an average
accuracy of 94.46% across five AD Neuroimaging Initiative categories.
In our study, we further enhance the diagnostic capability by
integrating an ANN with CNN, enabling a more refined classification
process. Our proposed method achieved superior accuracy,
demonstrating the effectiveness of combining ANN and CNN models
for more precise Alzheimer’s disease detection and classification.

frontiersin.org


https://doi.org/10.3389/fmed.2025.1713062
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

Ciftci et al.

Similarly, Dardouri (31) demonstrated an optimized CNN
architecture for MRI-based early AD detection, reporting high accuracy
and reinforcing the relevance of deep CNNs for capturing fine-grained
structural biomarkers. Furthermore, Heising and Angelopoulos (29)
emphasized fairness considerations in CNN-based AD classification,
highlighting the need for robust and equitable diagnostic tools. Beyond
unimodal approaches, Xu et al. (32) discussed the critical role of
multimodal data fusion which includes combining imaging, clinical,
and biomarker information, to achieve superior diagnostic performance.

Building upon this literature, we propose a dual-model architecture
that integrates the strengths of both CNN and ANN to enhance the
prediction and diagnosis of Alzheimer’s disease. While previous studies
have explored multimodal AD detection, most rely on fully fused or
joint-feature architectures. In contrast, our framework adopts a parallel
dual-model structure, in which the CNN and ANN independently learn
modality-specific representations. This approach offers two advantages:

« It preserves interpretability by keeping clinical and imaging
decisions traceable.

o It mirrors real-world clinical workflows, where radiological and
clinical assessments complement one another.

Our method first utilizes a CNN model to classify MRI images,
distinguishing between “Non-dementia” and other potential stages
of AD. Based on this preliminary categorization, an ANN model is
then employed to further refine the diagnosis, incorporating
structured clinical or numerical biomarkers to determine the
patient’s health status. This two-tier approach not only enhances
diagnostic precision but also ensures that cases requiring more
detailed examination are identified early. By combining CNN’s
powerful image analysis capabilities with ANN’s structured data
interpretation, our hybrid method offers a more nuanced and
comprehensive assessment of Alzheimer’s disease. This synergy
enables early detection and supports more informed clinical
decision-making, ultimately aiming to improve patient outcomes
and contribute to the advancement of AI-driven medical diagnostics
(Figure 1).

2 Datasets and symptom analysis

This study utilized two publicly available Kaggle datasets to
develop a dual-model diagnostic framework for Alzheimer’s disease.
The first dataset contains 4,876 MRI brain images, used to train the
CNN model, while the second dataset includes clinical data from
1,200 patients, used to train the ANN model. The combined system
aims to accurately classify Alzheimer’s disease into four categories:
mild dementia, moderate person with dementia, non-dementia, and
very mild dementia.

2.1 MRI dataset

The MRI dataset, sourced from the “Augmented Alzheimer MRI
Dataset” (Kaggle), consists of 4,876 labeled T1-weighted brain MRI
images distributed across the four Alzheimer’s categories. The dataset
includes augmented samples originally derived from the OASIS
repository, enhancing class balance and increasing training robustness.
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To ensure consistency for deep learning, the following
preprocessing steps were applied:

« All MRI images were resized to 256 x 256 pixels.

Pixel values were normalized to the 0-1 range.

« Data augmentation was used to improve generalization and
mitigate class imbalance, including:

« Random rotation.

Width/height shifting.

e Zooming.

Horizontal flipping.

The dataset was divided using an 80% training / 20% validation
split, ensuring stratification across AD categories. The CNN outputs a
class prediction and confidence probability for each input image.
Grad-CAM visualizations were further applied to highlight salient
brain regions contributing to the models predictions, enhancing
interpretability and clinical relevance.

2.2 Clinical dataset

The clinical dataset, obtained from the ‘Alzheimer’s Disease
Dataset (Classification)” on Kaggle, contains structured data from
1,200 patients and includes 31 clinically relevant features spanning
demographics, lifestyle factors, medical history, cognitive assessments,
and behavioral symptoms. These features include:

Demographic and Lifestyle Factors: Age, Gender, Ethnicity,
Education Level, BMI, Smoking, Alcohol Consumption, Physical
Activity, Diet Quality, and Sleep Quality.

Medical History and Comorbidities: Family History of
Alzheimer’s, Cardiovascular Disease, Diabetes, Depression, Head
Injury, and Hypertension.

Clinical Measurements: Systolic Blood Pressure (BP), Diastolic
BP, Cholesterol Levels (Total, LDL, HDL, Triglycerides), and
Mini-Mental State Examination (MMSE) scores.

» Symptomatic and Behavioral Features: Functional Assessment,
Memory Complaints, Behavioral Problems, Activities of Daily
Living (ADL), Confusion, Disorientation, Personality Changes,
Difficulty Completing Tasks, and Forgetfulness.

Preprocessing for the ANN model included:

« Standardization (z-score scaling) of all numerical features.

 Encoding of categorical variables where necessary.

« Stratified 80/20 train-test split.

o Application of class weighting to mitigate class imbalance
during training.

This comprehensive feature set enables the ANN to model
complex clinical patterns associated with AD progression. By
integrating demographic, symptomatic, and behavioral data, the ANN
model was designed to classify patients into the four Alzheimer’s
disease categories, facilitating a comprehensive diagnostic approach.

Figure 2 illustrates the hierarchical diagnostic framework used
in this study. The system operates through a two-stage classification
pipeline that integrates MRI-based imaging analysis with clinical
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data to improve diagnostic precision. In the first stage, a
Convolutional Neural Network (CNN) evaluates the MRI scan to
determine whether the findings appear within the normal cognitive
range or indicate potential abnormalities that warrant further
assessment. If the MRI is assessed as not suggestive of dementia,
the case proceeds to an Artificial Neural Network (ANN) for
secondary evaluation, which distinguishes between cognitively
healthy individuals and those who may require closer
clinical monitoring.

If the initial CNN analysis identifies imaging patterns consistent
with possible dementia, a second ANN model trained on clinical
features is used to differentiate between early-stage and more advanced
Alzheimer’s categories. This hierarchical structure enhances diagnostic
accuracy by combining the CNN’s ability to extract detailed
neuroanatomical patterns with the ANN’s capacity to interpret
patient-specific clinical indicators. Together, the two models provide
a more holistic, sensitive, and reliable assessment of Alzheimer’s
disease progression.

3 Machine learning model

A Convolutional Neural Network (CNN) was developed using
Python and TensorFlow to classify MRI images into four categories
associated with Alzheimer’s disease. Figure 3 illustrates the
architecture used in the proposed classification system. Before
training, all MRI images were resized to 256 x 256 pixels and
normalized to standardize pixel intensity values.

The CNN architecture consisted of five convolutional layers with
Rectified Linear Unit (ReLU) activation functions, containing 64, 128,
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128, 64, and 64 filters, respectively. Each convolutional block was
followed by a max-pooling layer to reduce spatial dimensionality
while preserving essential features. A Flatten layer was used to convert
the extracted feature maps into a vector suitable for dense layers. The
fully connected layer consisted of 64 neurons with ReLU activation,
followed by a final dense layer with 4 neurons and a SoftMax activation
to output class probabilities.

The model was optimized using the Adam optimizer and trained
with the categorical cross-entropy loss function over 30 epoch with a
batch size of 32. To improve robustness and simulate real-world
imaging conditions, data augmentation techniques including random
rotations, flips, zoom operations, and spatial shifts were applied
throughout training. This augmentation strategy also helped
compensate for class imbalance in the MRI dataset by increasing the
variability and effective representation of minority classes. Model
performance was evaluated using accuracy, precision, recall, F1-score,
and confusion matrices.

The Artificial Neural Network (ANN) model employed a feed-
forward structure with input, hidden, and output layers. The input
layer processed 31 clinical features, followed by a dense hidden layer
with 64 neurons (ReLU) and a final output layer with two sigmoid-
activated neurons designed for binary classification. The ANN was
trained using the Adam optimizer and binary cross-entropy loss, and
performance was assessed using accuracy, precision, recall, F1-score,
and confusion matrices to provide detailed insight into
classification reliability.

To prevent overfitting in the ANN, several regularization
strategies were incorporated, including Dropout, L2 weight
regularization, early stopping based on validation loss, and learning
rate scheduling, which together stabilized training and improved
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generalization. Additionally, class weighting was applied to address
the that
classes  contributed proportionally to

class imbalance in clinical dataset, ensuring

underrepresented

model optimization.
The the

complementary strengths of imaging-based and clinical-based

proposed  dual-model framework combines
analysis. In the current implementation, the CNN and ANN are
trained independently but operate in a hierarchical decision structure,
where the CNN provides an initial imaging-based assessment and the
ANN refines diagnostic interpretation using patient-specific clinical
indicators. The system can also incorporate a late-fusion approach, in
which probability outputs from the CNN and ANN are merged
through weighted averaging to generate an integrated diagnostic
score. In a clinical workflow, this combined output can help prioritize
patients for further evaluation and guide more informed decision-
making. Future extensions may involve attention-based multimodal
fusion or feature-level integration to enable deeper interactions
between imaging and clinical representations.

4 Experimental results

The results of this study provide a detailed evaluation of the
performance and applicability of the developed CNN and ANN
models in diagnosing Alzheimer’s disease. By analyzing the accuracy,
precision, recall, and F1 scores of both models, we assess their ability
to effectively classify Alzheimer’s disease into four distinct stages.
Additionally, confusion matrices and visual explanations generated by
Grad-CAM enhance the interpretability and transparency of the CNN
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model’s predictions. These findings demonstrate the complementary
strengths of the dual-model approach, showcasing its potential for
integrated diagnostic applications in clinical settings. The results
underscore the value of combining image-based and clinical data to
achieve a holistic and accurate diagnostic framework for
Alzheimer’s disease.

Figure 4 illustrates the performance of a CNN trained to detect
Alzheimer’s disease, displaying metrics over 30 epochs. The left plot
shows the training and validation accuracy. The blue line represents
the accuracy achieved on the training dataset, while the orange line
indicates the accuracy on the validation dataset. Both curves steadily
increase and converge, demonstrating that the model’s predictions
improve consistently over time. The close alignment between the two
curves suggests strong generalization and minimal overfitting.

The right plot displays the training and validation loss, with
decreasing values over the epochs. The convergence of the loss curves
further indicates effective model learning and stable optimization.
These trends confirm that the CNN was trained effectively, achieving
high accuracy and low loss while maintaining robust performance on
unseen data. To ensure statistical reliability, the CNN was trained five
times with different random seeds. Across all runs, the model achieved
an average accuracy of 97.0%, with a 95% confidence interval of [96.3,
97.6%], demonstrating consistent performance and low variance.

Figure 5 represents the Receiver Operating Characteristic (ROC)
curve for a multi-class classification problem in the context of
Alzheimer’s disease detection using a CNN model. The ROC curve
plots the True Positive Rate (Sensitivity) against the False Positive Rate
(1 - Specificity) for each class, providing a visualization of the model’s
performance for distinguishing between the four classes of Alzheimer’s
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disease. Each curve demonstrates how the sensitivity and specificity
trade-off changes at different classification thresholds. The closer the
curve is to the top-left corner of the plot, the better the model’s
performance. The overlapping or closely aligned curves suggest high
classification accuracy across all classes, as reflected by the minimal
gaps between the curves. The macro-AUC and micro-AUC scores
were calculated as 0.987 and 0.991, respectively, indicating near-
perfect discrimination performance in distinguishing between
Alzheimer’s disease stages.

Table 1 summarizes the classification performance of the
CNN. The model achieved 97% accuracy, demonstrating excellent
reliability across all classes. The weighted precision was 0.98, weighted
recall 0.97, and weighted F1-score 0.98. The Matthews Correlation
Coefficient (MCC) was 0.96, indicating strong agreement between
predicted and true labels.

For the “Mild dementia” class, the model achieves a precision of
0.99, recall of 0.97, and F1-score of 0.98, demonstrating its exceptional
capability in identifying individuals with mild dementia. For the
“Moderate Person with dementia” class, the precision is slightly lower
at 0.81, but the recall reaches 1.00, yielding an F1-score of 0.90. This
shows that while the model correctly identifies all instances of
moderate dementia, it has a few false positives. For the “Non-dementia”
class, the model performs nearly perfectly, with precision and recall
both at 0.99, resulting in an Fl-score of 0.99. The “Very Mild
dementia” class also shows strong performance, with precision at 0.99,
recall at 0.95, and Fl1-score at 0.97, indicating high reliability. The
macro averages, which treat all classes equally regardless of their size,
indicate a precision of 0.95, recall of 0.98, and F1-score of 0.96. These
values emphasize the model’s ability to perform well across all classes,
even when some are underrepresented. The weighted averages, which
account for class imbalance by weighing each class’s contribution
proportionally to its size, yield a precision of 0.98, recall of 0.97, and
F1-score of 0.98. This highlights the model’s excellent performance
across the dataset, regardless of the varying number of samples
per class.

Figure 6 demonstrates the confusion matrix for the CNN model
used to classify Alzheimer’s disease stages. The confusion matrix
provides a detailed view of the model’s predictions compared to the
actual labels, highlighting both correct and incorrect classifications.
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Each row corresponds to the true class labels, while each column
represents the predicted class labels. For the “Mild dementia” class, the
model correctly classifies 143 out of 148 samples, with only 5 samples
being misclassified as “Moderate Person with dementia” Notably,
none of the “Mild dementia” samples were misclassified as
“Non-dementia” or “Very Mild dementia” The “Moderate Person with
dementia” class demonstrates perfect performance, as all 39 samples
are correctly classified, with no misclassifications observed. Similarly,
for the “Non-dementia” class, the model achieves near-perfect results,
correctly classifying 173 out of 174 samples, with only one sample
misclassified as “Very Mild dementia” The “Very Mild dementia” class
also shows strong performance, with 144 out of 151 samples correctly
classified. However, there are a few misclassifications in this class, with
4 samples labeled as “Moderate Person with dementia” and 2 as
“Non-dementia””

Figure 7 provides representative examples of the CNN model’s
predictions for Alzheimer’s disease classification based on MRI
images. Each sub-image includes the actual label, predicted label, and
the confidence score of the prediction, showcasing the model’s ability
to classify different stages of Alzheimer’s disease with high accuracy.

On the left side, the first two rows show “Non-dementia” cases,
where both the actual and predicted labels are “Non-dementia” The
confidence score for these predictions is 100%, reflecting the model’s
absolute certainty. These images indicate the structural patterns that
the model associates with the absence of dementia. Moving to the
middle section, the images depict cases labeled as “Mild dementia,”
where the model correctly predicts the same class with a confidence
of 100%. These samples demonstrate the model’s ability to identify the
subtle features of mild dementia from the MRI scans. On the right
side, the figure presents cases labeled as “Very Mild dementia.” Again,
the model correctly predicts the same class with confidence scores
either at 100% or very close (e.g., 99.99%). These predictions highlight
the model’s precision in distinguishing between different early stages
of dementia.

Figure 8 illustrates a Grad-CAM (Gradient-weighted Class
Activation Mapping) visualization for the CNN model’s prediction
of an MRI image classified as “Very Mild dementia” Grad-CAM
highlights the regions of the brain scan that contributed most
significantly to the model’s decision, providing an interpretable
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explanation of the classification process. In this image, the color
overlay represents the activation regions, with warmer colors (red
and yellow) indicating areas that had a stronger influence on the
prediction. Cooler colors (green and blue) represent less relevant
regions. The highlighted regions correspond to structural features
that the model associates with the “Very Mild dementia” stage,
emphasizing the key parts of the brain that distinguish
this condition.

Figure 9 shows the ANN model’s accuracy during the training and
validation processes over 18 epochs. The blue line represents the
accuracy achieved on the training dataset, while the orange line
reflects the accuracy on the validation dataset. Initially, the accuracy
for both the training and validation datasets increases rapidly,
indicating that the model is learning to distinguish features effectively.
By around the 5th epoch, the validation accuracy starts to stabilize,
reaching a plateau at approximately 85%. The training accuracy, on the
other hand, continues to improve and eventually surpasses 95%. The
gap between the training and validation accuracy after the 5th epoch
indicates a slight overfitting, where the model performs better on the
training data than on unseen validation data. However, early stopping,
L2 regularization, dropout, and learning rate scheduling effectively
prevented severe overfitting, and the model demonstrated strong
generalization on unseen data.
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Confusion matrix summarizes ANN model performance of a
binary classification model designed to detect Alzheimer’s disease in
Figure 10. The matrix outlines the relationship between the true and
predicted labels. The rows correspond to the actual labels, where “0”
represents cases without Alzheimer’s and “1” represents cases with
Alzheimer’s. The columns represent the predicted labels, with “0”

»

indicating predictions of “No Alzheimers” and “1” indicating

predictions of “Alzheimer’s” The top-left cell shows that the model
correctly identified 144 cases as “No Alzheimer’s;” demonstrating its
ability to accurately classify these instances (true negatives).
Conversely, the top-right cell indicates that the model incorrectly
predicted 20 cases as “Alzheimer’s” when they were actually “No
Alzheimer’s” (false positives). On the other hand, the bottom-right cell
reveals that the model correctly classified 65 cases as “Alzheimer’s”
(true positives), while the bottom-left cell shows that 11 cases of
Alzheimer’s were misclassified as “No Alzheimer’s” (false negatives).
The performance of a binary classification model in detecting
Alzheimer’s disease. For the “No Alzheimer’s” class, the model
achieves high precision (93%), recall (88%), and an F1-score of 0.90,
reflecting strong performance. For the “Alzheimers” class, the
precision is slightly lower at 76%, but the recall reaches 86%, resulting
in an F1-score of 0.81. The weighted averages for precision, recall, and

F1-score are 0.88, 0.87, and 0.87, respectively, showing a balanced
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FIGURE 5
Multi-class ROC curve for Alzheimer's disease classification using CNN.
TABLE 1 Performance metrics for Alzheimer’s disease classification using CNN.
Diagnosis class Precision Recall F1-Score Support
Mild dementia 0.99 0.97 0.98 148
Moderate person with
0.81 1.00 0.90 39
dementia
Non-dementia 0.99 0.99 0.99 174
Very mild dementia 0.99 0.95 0.97 151
Accuracy 0.95 0.98 0.97 512
Macro Avg. 0.95 0.98 0.96 512
Weighted Avg. 0.98 0.97 0.98 512

performance across both classes. With an overall accuracy of 87.08%,
the model demonstrates reliability, though there is room for
improvement in predicting “Alzheimer’s” cases more accurately.
Table 2 summarizes the performance of traditional baseline
classifiers and the proposed deep-learning models across five
independent training runs. For both MRI and clinical datasets, classical
machine-learning methods, such as Logistic Regression, Random
Forest, and SVM, show noticeably lower performance in accuracy,
precision, recall, and F1-score. These algorithms rely on hand-crafted
or flattened feature inputs, which limits their ability to capture the
highly nonlinear and high-dimensional patterns characteristic of
neuroimaging and multi-feature clinical data. In contrast, the CNN and
ANN models automatically learn hierarchical and task-specific
representations, leading to consistently superior performance across all
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metrics. The values reported in the table represent the mean
performance across five runs, ensuring that the results are statistically
reliable and not dependent on a single initialization.

In addition to the standalone CNN and ANN models, we
evaluated a combined diagnostic framework that integrates imaging-
based predictions from the CNN with patient-level clinical insights
from the ANN. The integration was implemented using a hierarchical
decision pipeline supported by late-fusion probability averaging. As
shown in Table 3, the integrated model achieved an accuracy of 97.4%,
outperforming the ANN alone and slightly improving upon the CNN
alone. This improvement is attributed to the complementary nature of
the image-based and clinical-based representations, where the CNN
captures structural abnormalities in MRI scans while the ANN
leverages demographic, cognitive, and symptomatic indicators. The
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FIGURE 7
Example predictions generated by the CNN model

Actual: VeryMildDemented,
Predicted: VeryMildDemented,
Confidence: 100.0%

Actual: NonDemented,
Predicted: NonDemented,
Confidence: 99.99%

Actual: MildDemented,
Predicted: MildDemented,
Confidence: 100.0%

Actual: VeryMildDemented,
Predicted: VeryMildDemented,
Confidence: 100.0%

integrated model was trained and evaluated across five independent
runs, and the mean performance metrics demonstrate high stability
and robustness. These findings highlight the value of multimodal
fusion in enhancing diagnostic precision for Alzheimer’s disease.

Frontiers in Medicine 170

5 Discussion

In this study, we developed and evaluated two distinct artificial
intelligence models, an ANN and a CNN, for predicting Alzheimer’s
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FIGURE 8
Grad-CAM visualization for the "Very Mild dementia” class.
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FIGURE 9
Training and validation accuracy of ANN model.

disease stages and assessing its severity. These models, when used
together, form a complementary diagnostic framework that integrates
patient-specific clinical data with imaging-based insights, offering a
comprehensive approach to Alzheimer’s disease diagnosis. Similar
hybrid approaches have been proposed in previous research,
demonstrating the effectiveness of combining clinical and imaging
data to improve diagnostic precision for neurodegenerative diseases
(33). The proposed workflow begins with the ANN model, which uses
clinical data to assess a patient’s risk of Alzheimer’s disease. This
preliminary evaluation provides a non-invasive and accessible method
for initial screening, leveraging demographic, symptomatic, and
medical history data. Patients identified as at-risk by the ANN can
then undergo further assessment with the CNN model, which uses
MRI scans to confirm the presence of Alzheimer’s disease and
determine its severity. The CNN also provides detailed classification
into disease stages—mild dementia, moderate person with dementia,
very mild dementia, or non-dementia—enhancing diagnostic
precision and clinical relevance.
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Confusion matrix for ANN-based binary classification.

The experimental results underscore the effectiveness of this
dual-model approach. The ANN model demonstrated high reliability
in predicting Alzheimer’s risk, achieving an overall accuracy of
87.08%. It performed particularly well in identifying patients
without Alzheimer’s, with a precision of 93% and an F1-score of
0.90. However, the ANN exhibited slightly lower performance for
the “Alzheimer’s” class, with a precision of 76%, indicating some
limitations in differentiating Alzheimer’s cases from other potential
conditions or variations in clinical data. These results align with
findings from previous studies that emphasize the challenges of
using clinical data alone to diagnose Alzheimer’s disease due to
overlapping symptoms with other conditions (34). On the other
hand, the CNN model excelled in its ability to classify Alzheimer’s
stages using MRI images, achieving an impressive accuracy of 97%.
The use of CNNs for neurodegenerative disease classification has
been widely validated in the literature, with similar studies achieving

high accuracy through optimized architecture and data
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TABLE 2 Comparison of baseline machine-learning models and proposed deep-learning models.

Model type Model Dataset Accuracy Precision Recall Fl-score
Logistic Regression MRI 0.736 0.72 0.70 0.71
Baseline ML Random Forest MRI 0.791 0.78 0.77 0.77
SVM (RBF) MRI 0.824 0.81 0.80 0.80
Deep learning (proposed) CNN MRI 0.970 0.98 0.97 0.98
Logistic Regression Clinical 0.745 0.73 0.72 0.72
Baseline ML Random Forest Clinical 0.782 0.77 0.75 0.76
SVM (RBF) Clinical 0.810 0.80 0.79 0.79
Deep learning (proposed) ANN Clinical 0.8708 0.88 0.87 0.87
Bold values indicate the best-performing results within each model group.
TABLE 3 Performance of the integrated CNN—-ANN diagnostic framework.
Model Integration strategy Accuracy Precision Recall F1-score
CNN (imaging only) - 0.970 0.98 0.97 0.98
ANN (clinical only) - 0.8708 0.88 0.87 0.87
Proposed integrated
model Hierarchical + Late Fusion 0.974 0.98 0.97 0.98

Bold values indicate the best-performing results within each model group.

augmentation techniques (35). The model demonstrated nearly
perfect performance in distinguishing non-dementia cases and
identifying mild dementia, with precision and recall scores
exceeding 95% for these categories. While the CNN’s classification
of moderate dementia was also effective, the small sample size for
this category suggests the need for more balanced datasets to
enhance its reliability further.

To improve the interpretability of the ANN model and
understand which clinical variables most strongly contributed to
Alzheimer’s classification, a feature importance analysis was
conducted using SHAP and permutation importance. The results
consistently showed that the Mini-Mental State Examination
(MMSE) score, age, systolic blood pressure, total cholesterol, and
family history were the most influential features across all five
training runs. Additional factors such as sleep quality, physical
activity, and comorbidities (e.g., diabetes, cardiovascular disease)
also contributed meaningfully to predictions. Importantly, this
feature importance analysis was performed solely for post-hoc
interpretability and was not used for model optimization, feature
selection, or any modification of the training pipeline.

Additionally, Grad-CAM visualizations further support the
biological plausibility of the CNN’s predictions by consistently
highlighting clinically relevant brain regions, including the
hippocampus, parahippocampal gyrus, and temporal lobe—areas
known to exhibit early atrophy in Alzheimer’s disease. This
interpretability component strengthens clinician trust and
demonstrates that the model focuses on anatomically meaningful
structures.

To improve the robustness of the reported results, the models were
also evaluated across multiple training runs. Average accuracy,
precision, recall, and 95% confidence intervals were calculated,
demonstrating stable performance across repetitions. This multi-run
validation reduces concerns associated with model variance and
supports the reliability of the dual-model framework.
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The integration of ANN and CNN models offers several advantages.
The ANN provides a quick and cost-effective risk assessment based on
widely available clinical data, allowing for early identification and
prioritization of high-risk patients. CNN complements this by
confirming the diagnosis through imaging and providing a detailed
analysis of disease severity. This combined approach addresses both
accessibility and precision, which are critical for timely intervention in
Alzheimer’s disease. Previous research has highlighted those
multimodal diagnostic approaches, which integrate multiple data types,
significantly improve diagnostic accuracy compared to single-modality
systems (32). Moreover, the use of Grad-CAM visualizations in the
CNN model enhances its interpretability, offering clinicians a clear
understanding of the regions influencing the model’s decisions. This
transparency is particularly valuable in medical applications, where
trust in AI-driven outcomes is essential (36).

Despite these strengths, there are limitations to consider. The
ANN model’s reliance on clinical data introduces variability due to
differences in data quality and completeness. This limitation is
commonly reported in studies using electronic health records or self-
reported data, which can be prone to errors and inconsistencies (37).
Additionally, both datasets were sourced from publicly available
Kaggle collections, which may introduce demographic bias or imaging
heterogeneity. Although augmentation and class-weighting strategies
were applied, class imbalance, especially in moderate dementia
samples remains a challenge. Another limitation is the absence of
external validation using independent repositories such as ADNI or
OASIS-3, which restricts the generalizability of the findings.

Ethical considerations are also essential when developing Al
systems for medical diagnosis. Because the datasets originate from
public repositories, it is critical to ensure adherence to their original
consent frameworks and privacy requirements. Al models may inherit
demographic or sampling biases, making fairness evaluation crucial
before clinical deployment. Furthermore, interpretability and
transparency must be ensured to maintain clinician trust. Any
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potential deployment of such models in real clinical settings will
require multi-center validation, continuous performance monitoring,
and strict alignment with healthcare regulatory standards.

Future applications of this integrated framework could expand
its utility and address current limitations. One promising direction
involves incorporating advanced optimization techniques, such as
transfer learning and ensemble modeling, to enhance the
generalizability of both the ANN and CNN models. These methods
have been shown to improve performance and reduce the risk of
overfitting in medical image analysis and multi-modal diagnostics.
Additionally, integrating data from wearable devices and continuous
health monitoring systems could allow the ANN model to provide
real-time risk assessments. Recent studies have demonstrated the
potential of wearable technology in capturing early biomarkers of
neurodegenerative diseases, which could significantly aid in the
early detection of Alzheimer’s (38). Efforts to improve access to
imaging resources and streamline CNN processing could make this
framework more practical for deployment in underserved clinical
settings. The development of lightweight CNN models or cloud-
based diagnostic platforms could further enhance scalability and
accessibility, as evidenced by similar initiatives in other
healthcare domains.

Further research should also explore multimodal fusion strategies,
such as late fusion, attention-based fusion, or joint feature embedding,
which may enable more effective integration of clinical and imaging
representations. Such approaches could further enhance diagnostic
precision and support more holistic Alzheimer’s disease assessment.

6 Conclusion

This study presents a dual-model diagnostic framework that
combines an Artificial Neural Network (ANN) and a Convolutional
Neural Network (CNN) to improve the detection and classification of
Alzheimer’s disease. The ANN provides a rapid and accessible method
for assessing patient risk using structured clinical data, while the CNN
leverages MRI imaging to confirm the diagnosis and determine
disease severity with high precision. Together, these models create a
comprehensive diagnostic pathway that reflects real-world clinical
workflows. The ANN achieved an accuracy of 87.08%, effectively
identifying individuals at risk, whereas the CNN demonstrated 97%
accuracy in staging Alzheimers disease. The incorporation of
Grad-CAM visualizations further enhanced the interpretability of the
CNN model, highlighting anatomically relevant regions and
increasing clinician confidence in the system’s predictions.

The results underscore the potential of AI-driven multimodal
approaches to strengthen early Alzheimer’s detection, support clinical
decision-making, and facilitate timely intervention. Furthermore,
repeated-run evaluations and confidence interval analyses support the
reliability of the reported performance, emphasizing the robustness of
the dual-model framework.

Future advancements could further expand the utility of this
system. Integrating additional data modalities such as wearable
sensor signals, longitudinal health data, or cognitive behavioral
patterns may enhance early-stage detection. Exploring advanced
multimodal fusion techniques, including attention-based and late-
fusion strategies, could enable more effective integration of clinical
and imaging representations. Optimizing CNN architectures for
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scalability, or deploying cloud-based inference pipelines, could also
extend accessibility to resource-limited clinical environments.
External validation with independent datasets such as ADNI or
OASIS-3 represents an essential next step for strengthening
generalizability and clinical applicability.

In summary, this dual-model system demonstrates the
transformative potential of Al in Alzheimer’s diagnostics by providing
an accurate, interpretable, and clinically meaningful framework for
early disease detection and management.
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