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Editorial on the Research Topic

AI innovations in neuroimaging: transforming brain analysis

Over the last decade, artificial intelligence (AI) has transformed nearly every branch

of medical imaging, but its impact on neuroimaging has been particularly revolutionary

(1–5). From automated segmentation of magnetic resonance imaging (MRI) data to deep

learning–assisted disease prediction, AI techniques—especially machine learning (ML),

deep learning (DL), and emerging quantum computing paradigms are reshaping how

clinicians interpret the human brain. These computational advances are accelerating the

diagnosis of neurological disorders, optimizing patient management, and opening new

frontiers in personalized medicine (6–10).

The Research Topic “AI Innovations in Neuroimaging: Transforming Brain Analysis”

brings together a diverse collection of studies that harness advanced algorithms and

hybrid models to address key clinical challenges in brain analysis, ranging from tumor

classification and stroke detection to autism spectrum disorder (ASD) assessment and

schizophrenia identification. Each contribution underscores how AI, when aligned with

clinical neuroimaging, can enable faster, non-invasive, and highly interpretable diagnostics.

This Research Topic presents 11 articles that collectively highlight the breadth of

AI-driven neuroimaging research. The contributions span a wide range of applications

from brain tumor detection and stroke prediction to epilepsy monitoring and autism

diagnosis demonstrating how interdisciplinary advances are transforming precision

medicine and neuroscience.

Among the notable contributions, Priyadharshini et al. introduce QBrainNet, a hybrid

quantum-classical neural network that leverages quantum superposition and entanglement

to improve stroke prediction accuracy to 96%, outperforming traditional CNN-based

approaches. By combining quantum feature extraction with variational quantum circuits,

this model demonstrates the transformative role of quantum-assisted intelligence in

medical imaging. In another important development, Cüce et al. propose a hybrid deep

learning radiomics framework that analyzes cerebrospinal fluid (CSF) signals in central

nervous system infections (CNSIs). Their approach accurately identifies infection-related

CSF alterations on MRI scans, offering a promising non-invasive alternative to lumbar

puncture, traditionally the gold standard in CNS infection diagnosis.

Broadening the perspective beyond imaging, Farhah et al. present a Double Deep

Q-Network (DDQN) model to identify ASD traits from social media text, demonstrating
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how digital footprint analysis can complement neuroimaging

by capturing behavioral and emotional cues indicative of

neurodevelopmental disorders. Similarly, Yuan et al. apply a

robust multi-task feature selection strategy with counterfactual

explanations to identify schizophrenia-related functional

brain networks from resting-state fMRI data, enhancing both

classification accuracy and clinical interpretability. These studies

illustrate how AI-driven behavioral and cognitive analysis extends

neuroimaging beyond the scanner to the digital and functional

realms of brain health.

Advancing the field of brain tumor detection, Han et al.

modify the YOLOv11 architecture by integrating novel attention

mechanisms and a hybrid loss function (HKCIoU), achieving

improved accuracy and reduced computational cost—an essential

step toward real-time tumor detection in clinical environments.

Naeem et al. complement this effort with a lightweight CNN

tailored for small MRI datasets, achieving 99% accuracy and

proving that data-efficient deep learning can yield high reliability

even with limited samples. Alsubai et al. further expand diagnostic

scope by combining transfer learning and explainable AI (XAI) for

multi-disease MRI classification, accurately identifying both brain

tumors and Alzheimer’s disease across datasets. The integration

of SHapley Additive exPlanations (SHAP) ensures transparency,

allowing clinicians to visualize model reasoning. Meanwhile,

Chen et al. introduce a Mixed Local and Global (MLG) model

that fuses CNN and Transformer architectures through a gated

attention mechanism. By integrating fine-grained and contextual

features, their model achieves near-perfect accuracies (99.02%

and 97.24%) and sets a new benchmark for hybrid architectures

in neuroimaging.

Moving from structural MRI to electrophysiological data,

Al-Adhaileh et al. employ EEG-based ML and DL frameworks

for epileptic seizure detection, achieving an exceptional 99.9%

accuracy using Random Forests. This demonstrates the capability

of non-invasive EEG-based AI systems for reliable real-time

seizure monitoring. Complementarily, Yuan et al. enhance

feature interpretability in schizophrenia detection by applying

counterfactual modeling to identify functional connectivity

abnormalities, providing a neurobiological rationale behind

model predictions.

In the domain of multimodal neuroimaging, Chandrasekaran

et al. propose a powerful ensemble model combining VGG19

and Bidirectional LSTM with LightGBM for MRI-based brain

simulations, achieving 97% accuracy and an AUC of 0.997. This

hybrid design demonstrates how spatial and temporal feature

fusion can improve diagnostic performance while supporting

sustainable healthcare AI, a crucial step toward scalable clinical

deployment. Collectively, these contributions highlight the

evolution of AI in neuroimaging from task-specific models

toward integrated, interpretable, and efficient systems capable

of supporting real-world clinical decision-making. Ciftci et al.

present a dual-model AI framework that synergistically combines

clinical analytics and neuroimaging to improve Alzheimer’s

disease diagnosis. An Artificial Neural Network (ANN) trained

on demographic and behavioral data from 1,200 patients provides

risk prediction with 87.08% accuracy, while a Convolutional

Neural Network (CNN) analyzes 4,876 MRI scans to stage disease

progression with 97% accuracy using explainable Grad-CAM

visualizations. By integrating structured clinical features with

imaging-based assessment, the hybrid system enhances both

diagnostic precision and clinical interpretability, aligning with

the growing trend toward multimodal, scalable, and AI-assisted

neuroimaging solutions for neurodegenerative disorders.

Emerging themes across the Research
Topic

Across the 11 studies in this Research Topic, several unifying

themes emerge. First, hybrid intelligence, the integration of

quantum computing, CNNs, Transformers, and ensemble

learning, is redefining neuroimaging accuracy and adaptability.

Second, explainability has become a cornerstone of modern

neuro-AI research. Through SHAP, counterfactual reasoning,

and attention visualization, the models presented here

strive not only for accuracy but also for interpretability,

fostering clinical trust in AI-driven diagnostics. Third, the

move toward data-efficient models such as lightweight

CNNs and transfer learning underscores a shift toward

accessibility, enabling AI adoption even in data-constrained

healthcare systems.

Additionally, multimodal integration combining MRI, fMRI,

EEG, and behavioral data reflects a growing recognition that brain

disorders are inherently multifactorial and cannot be captured

through a single data source. These multimodal approaches bridge

the gap between structure and function, allowing for more holistic

assessments of neurological conditions. Finally, the emphasis on

sustainability and scalability ensures that emerging AI technologies

can transition from research prototypes to clinical practice,

empowering healthcare systems globally.
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Background: Brain tumor categorization on MRI is a challenging but crucial 
task in medical imaging, requiring high resilience and accuracy for effective 
diagnostic applications. This study describe a unique multimodal scheme 
combining the capabilities of deep learning with ensemble learning approaches 
to overcome these issues.

Methods: The system integrates three new modalities, spatial feature extraction 
using a pre-trained VGG19 network, sequential dependency learning using a 
Bidirectional LSTM, and classification efficiency through a LightGBM classifier.

Results: The combination of both methods leverages the complementary 
strengths of convolutional neural networks and recurrent neural networks, 
thus enabling the model to achieve state-of-the-art performance scores. The 
outcomes confirm the efficacy of this multimodal approach, which achieves a 
total accuracy of 97%, an F1-score of 0.97, and a ROC AUC score of 0.997.

Conclusion: With synergistic harnessing of spatial and sequential features, the 
model enhances classification rates and effectively deals with high-dimensional 
data, compared to traditional single-modal methods. The scalable methodology 
has the possibility of greatly augmenting brain tumor diagnosis and planning of 
treatment in medical imaging studies.

KEYWORDS

brain tumor classification, multi-modal learning, VGG19, bidirectional LSTM, 
LightGBM, MRI imaging, deep learning, ensemble learning
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1 Introduction

Brain tumor segmentation from MRI images is an important 
component of medical imaging, and serious consequences follow for 
the diagnosis, treatment, and prognosis of the patient. The 
heterogeneity and complexity of brain tumors and the high-
dimensionality of MRI data pose significant challenges to traditional 
diagnostic approaches. These include problems like tumor variability 
in appearance due to size, shape, and location, which can complicate 
detection and classification. Diagnosis with a human expert is 
generally cumbersome, subjective, and prone to error, and traditional 
machine learning approaches rely on manually designed features, 
which are prone to missing out on the complexities of MRI data. It 
uses advanced preprocessing techniques like image normalization and 
data augmentation to enhance training and model stability. 
Improvements in machine learning and deep learning enabled the 
automation and accurate classification of brain cancers. In this work, 
a new multi-modal approach is introduced that uses deep learning 
and ensemble learning methods to tackle these challenges, thus 
providing a scalable and effective approach to classifying brain tumors 
(1). Employing bidirectional long-term memory networks to represent 
sequential dependencies in MRI slices, deep convolutional neural 
networks to enhance spatial feature extraction, and LightGBM for 
high-dimensional data classification in an efficient way, the proposed 
VGG19-BiLSTM-LightGBM model. This multimodal approach 
synergistically improves brain tumor categorization by combining the 
strengths of each model component, thereby enhancing the model’s 
ability to handle the intricacies of MRI data and improving diagnostic 
accuracy. Figure 1 shows the brain tumor images from the dataset.

The motivation for this work is the limitation imposed by existing 
techniques due to their inability to transcend such limitations. Because 
traditional diagnostic techniques, though effective within their 
confines, suffer from the heterogeneity of tumor size, shape, and 
location (2), and single-modal techniques account only for spatial or 
sequential characteristics and cannot harness the full richness of MRI 
image information, therefore, a method has to be developed those 
accounts for the interplay between spatial and sequential factors. This 
is capable of building more robust and precise classification by 
including these techniques as a multi-modal technique. Ensemble 

learning algorithms like LightGBM provides stable classification, 
effectively handling the high-dimensional data and aggregating the 
strengths of individual models (3).

This work centralizes to the creation of a multi-modal deep 
learning architecture for brain tumor classification that synergistically 
integrates the spatial and sequential features of MRI images. Spatial 
feature extraction was carried out through a pre-trained VGG19 
model, thereby making it feasible and accurate for representing MRI 
images. To improve the model’s capacity to learn the underlying 
patterns, a bidirectional LSTM layer is used to monitor temporal 
relationships among the extracted features (4).

This work is on the integration of multiple modalities, such as 
sequential modeling using Bidirectional LSTM and spatial feature 
learning using VGG19. The drawbacks of the traditional methods are 
alleviated through this work by giving an end-to-end solution to brain 
tumor classification. MRI image description becomes more realistic 
with the use of an integration of multiple modalities. The classification 
performance is further augmented by LightGBM being utilized as a 
final classifier to enable effective processing of high-dimensional data 
(5). Large and high-dimensional data can be  handled using the 
proposed framework, which renders it easy to implement on actual 
healthcare challenges. High validation accuracy with minimal 
amounts of loss indicates its generalization capabilities to unseen data. 
The following sections of this paper are classified as given below. 
Section 2 gives an overview of the major research on brain tumor 
classification including deep learning and ensemble learning 
techniques. Section 3 provides a thorough explanation of the suggested 
methodology, i.e., data preparation, feature extraction, and 
classification. Section 4 discusses the experimental results, including 
performance metrics and comparisons with baseline models.

2 Literature review

The field of brain tumor classification from MRI scans has 
experienced tremendous expansion in the recent past with 
momentum building for the application of deep learning and 
machine learning techniques. Traditional methods in brain tumor 
diagnosis have employed close to all visual inspection by 
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radiologists, not just time-consuming but also prone to human error 
(6). Such methods tend to employ extraction of inherent features 
like texture, shape, and intensity that might not reflect the complex 
patterns present in medical images. Therefore, there has been a 
move toward automated methods that take advantage of the 
strengths of deep learning to achieve improved accuracy 
and efficiency.

Convolutional Neural Networks have become a backbone of 
modern medical image analysis. Their ability to learn spatial features 
automatically from images has made them particularly suitable to 
applications such as tumor detection and classification (7). From 
pre-trained CNN models, VGG19, ResNet, and Inception can 
be broadly applied in medical imaging because they can generalize 
toward a large range of datasets. The early layers typically freeze, and 
the final layers are fine-tuned on the target dataset toward a specific 
application, such as the classification of brain tumors. This reduces not 

only the computational cost but also enhances performance with 
knowledge gained from large-scale datasets, such as ImageNet.

While CNNs excel at capturing spatial features, they may not fully 
exploit the sequential or temporal dependencies present in medical 
images. LSTMs are designed to represent sequential data, making 
them optimal for identifying temporal trends in medical images (8). 
Bidirectional LSTMs, which process data in both forward and 
backward directions, have been shown to further enhance 
performance by capturing more comprehensive dependencies. The 
combination of CNNs and LSTMs has been explored in various 
medical imaging tasks, including brain tumor classification, where it 
has demonstrated superior performance compared to standalone 
models. Table 1 shows the exiting studies through multiple techniques.

Ensemble learning methods have also found relevance in medical 
image analysis because they can enhance classification accuracy and 
robustness. Techniques such as Random Forests, Gradient Boosting, 

FIGURE 1

A sample of images from the dataset.
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and LightGBM combine the predictions of many models to produce 
more accurate and reliable results. LightGBM is specifically widely 
used because of its ability to work on enormous datasets and high-
dimensional data (9). By combining deep learning models with 
ensemble techniques, scientists have been able to develop hybrid 
frameworks that leverage the strengths of both methods.

While great advances have been made, brain tumor categorization 
still presents some challenges. One of the most significant is that the 
tumors are very variable in how they look, which could vary greatly 
by size, shape, and even placement. All this variability makes it 
difficult to build a model that generalizes well over all datasets. 
Because the dimension of the MRI data is high, their computation 
presents serious challenges in particular when a lot of them is 
involved. Methods such as flipping, rotating and adjusting the 
brightness randomly, used to enlarge training data variety while 
preventing overfitting have commonly been employed for overcoming 
this difficulty (10). The third is interpretability in medical 
imaging models.

Multi-modal combination is a key component in improving 
categorization. Multi-modal techniques provide a more comprehensive 
explanation of the underlying issue by combining multiple data 
modalities, such as MRI images, clinical data, and genomic data. Multi-
modal techniques have been shown to perform better than single-modal 
approaches in the categorization of brain tumors by complementarily 
gathering information from diverse data sources. It is presently known 
that the fusion of MRI images with clinical data, like the patient’s age and 
medical history, improves classification performance and provides more 
individualized predictions (11). Brain tumor classification has greatly 
improved in the past few years due to advances in deep learning, 
ensemble learning, and multi-modal methods.

3 Methodology

The multi-modal nature of the proposed method for MRI-based 
brain cancer diagnosis is becoming increasingly popular. For sequence 

TABLE 1  Existing studies from different techniques.

Study Objective Remark

Maqsood et al. (13) To present an automated technique for precise brain tumor 

identification and classification by using deep learning and MRI.

The method achieved high accuracy (97.47 and 98.92%) and 

outperformed prior methods.

Jiang et al. (14) To develop SwinBTS, a 3D medical image segmentation approach 

combining transformers and CNNs for brain tumor classification.

SwinBTS beat state-of-the-art algorithms on BraTS 2019, 2020, and 2021 

datasets.

Zhu et al. (15) Present a brain tumor segmentation approach that integrates deep 

semantics and edge information in multimodal MRI.

The method outperformed state-of-the-art methods on BraTS 

benchmarks.

Zhang et al. (16) Introducing mmFormer: A Transformer-based approach to strong 

multimodal brain tumor segmentation with incomplete modalities.

mmFormer outperformed state-of-the-art approaches, particularly with 

missing modalities.

Razzaghi et al. (17) A multimodal deep transfer learning system that can be used with 

MRI brain image processing should have domain flexibility.

The strategy outperformed equivalent algorithms on IBSR and Figshare 

datasets.

Ali et al. (18) Analyze the progresses in brain tumor segmentation, feature 

extraction, and classification using MRI along with deep learning.

Highlights the move from traditional approaches to deep learning and 

hybrid methodologies.

Peng and Sun (19) To propose AD-Net, an autonomous weighted dilated convolutional 

network for multimodal brain tumor feature extraction.

Achieved high Dice scores (0.90, 0.80, 0.76) on BraTS20 dataset.

Fang and Wang (20) To propose MFF-DNet, a dual-path network for multi-modal 

feature fusion in brain tumor segmentation.

Achieved high precision (0.92 and 0.90) for whole tumor and core tumor 

segmentation.

Hossain et al. (21) To propose a strategy for brain tumor segmentation using 3D 

U-Net and ResNet50 with image fusion.

Achieved high accuracy (98.96% for ResNet50, 97.99% for 3D U-Net).

Liu et al. (22) To present SF-Net, a multi-task model for brain tumor 

segmentation leveraging segmentation-fusion.

Achieved higher segmentation accuracy than VAE-based approaches on 

BraTS 2020.

Prasad et al. (23) To enhance medical imaging capabilities using a CNN-based 

approach for detecting and classifying brain tumors.

The proposed model achieves superior accuracy, recall, F1-score, and 

precision compared to traditional methods, contributing to more 

effective brain tumor analysis.

Kargar Nigjeh et al. (24) To optimize brain tumor classification using deep learning models 

and advanced image enhancement techniques.

The study demonstrates high classification accuracy (95%) and provides 

insights into the strengths and limitations of various deep learning 

architectures for medical imaging.

Sharma et al. (25) To improve efficiency in brain tumor categorization through a 

hybrid model approach.

The model achieves 97% classification accuracy by integrating multiple 

learning techniques, enhancing robustness in tumor classification.

Bibi et al. (26) To address computational inefficiencies and improve classification 

accuracy through a transfer learning approach.

The InceptionV4 model achieves 98.7% accuracy, significantly 

improving diagnostic precision and reducing computation time.

Albalawi et al. (27) To develop an advanced CNN architecture for more accurate and 

efficient brain tumor diagnosis.

The CNN model achieves an exceptional 99% accuracy, marking a major 

advancement in automated MRI analysis and early tumor detection.
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modeling and feature extraction, it uses deep learning models like 
VGG19 and Bidirectional LSTM, for classification, it uses 
LightGBM. Figure 2 illustrates a step-by-step overview of the preferred 
model’s approach.

3.1 Dataset description

The 7,023 MRI images of the human brain that make up the Brain 
Tumor MRI dataset are split into four categories: pituitary, 
meningioma, glioma, and no tumor. Glioma tumors are made up of 
glial cells, while Meningioma malignancies arise from the meninges, 
protective coverings of the brain and spinal cord. The Pituitary class 
contains cancers that originate in the pituitary gland, a small gland at 
the base of the brain that is responsible for the production of 
hormones. The “No Tumor” class contains normal brain scans to act 
as a control set for comparative analysis. The data were intentionally 
divided into training, validation, and testing sets in 70, 15, and 15% 
ratios, respectively. The ratio of splitting was aimed at achieving a 
trade-off between enough training data to learn the model parameters 
well and adequate validation and test data to analyse the performance 
and generalizability of the model comprehensively. The significant 
portion dedicated to training ensures deep learning models, which 
demand huge amounts of data, get well-trained. Equal partitioning of 
the rest of the data for validation and testing helps refine model 
parameters and test the model on data not seen by it, reducing the risk 
of overfitting. The method also ensures that the evaluation measures 
capture the model’s ability to function under varying conditions, thus 
offering a truer measure of its potential effectiveness in actual use. The 
wide scope of categorization ensures total research over a wide range 
of common situations of the brain, thus enhancing representativeness 
when the model is used in practical applications. The dataset, though, 
has its limitations in the shape of potential class imbalance and 
heterogeneity in tumor locations and sizes, which could hinder 
learning as well as predictive capacity. Three primary sources make up 
this dataset: the SARTAJ dataset, which initially consisted of glioma 
images but contained inconsistencies that led to their replacement 
with images sourced from figshare; the Br35H dataset, which provides 
images for the “No Tumor” class; and figshare, which offers images for 
glioma, meningioma, and pituitary tumors. It is thought that this data 

would make it possible to design automated systems for the 
classification of brain cancers with proper early detection and a proper 
diagnosis. It has been divided into training and test sets, with images 
resized to 224 × 224 pixels for deep learning models such as VGG19. 
The dataset’s size and heterogeneity render it a valuable source of 
information upon which researchers and medical imaging 
professionals can formulate generalizable and robust brain tumor 
classification algorithms.

3.2 Data preprocessing

The first preprocessing operation is scaling of images. The MRI 
images in the dataset are resized to a uniform size of 224 × 224 pixels. 
Standardization is necessary because deep learning models like 
VGG19 need to have fixed input sizes. Resizing enables all images to 
be compatible with the model architecture, thus enabling effective 
batch processing during training. Resizing also reduces the 
computational complexity by downsampling high-resolution images 
without significantly reducing their quality. Equation 1 shows the 
resizing of images.

	 ( )resize , ,I I h w=′ 	 (1)

The resized images are then normalized, which is the process of 
scaling pixel values to a particular range. In this case, pixel values are 
normalized to the range [0, 1] by dividing the pixel intensity by 255. 
Normalization is necessary since it ensures the input data have a fixed 
scale, which improves the convergence of the model while training. If 
not normalized, the model will fail to learn since the magnitudes of 
pixel values vary from image to image. Equation 2 illustrates the 
formula to normalize the images.

	

( )
( ) ( )

min
max min

x x
x

x x
−

=
−

′
	

(2)

In order to improve the strength and variety of the dataset, data 
augmentation techniques are applied. Data augmentation is artificially 

FIGURE 2

Workflow of the proposed model the framework is ideal for real clinical applications as it strives for high accuracy and generality.
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conducted to enlarge the size of the training dataset by creating 
multiple copies of the original images. This process not only addresses 
the issue of limited data in medical imaging but also simulates varying 
imaging conditions, which helps in building a robust model. The data 
augmentation techniques applied in this system not just random 
horizontal and vertical flips, but also random horizontal and vertical 
flip, which mimic different brain orientations; random change in 
brightness, which introduces lighting variability; random change in 
contrast, which changes the difference in intensity of pixels; random 
change in saturation, which changes the colour intensity; and random 
change in hue, which changes the tonal quality of images. These 
transformations are essential for training the model to recognize 
tumors under different imaging conditions and enhance its ability to 
generalize across new, unseen datasets. Equation 3 represent the mean 
and standard deviation of the pixel values in the image. Equation 4 
applies a flip transformation along a specified axis (horizontal or 
vertical) to the image. Equation 5 brightens the image by adding a 
constant β , being possibly positive (to brighten) or negative (to 
darken). Equation 6 adjusts the pixel values of I ′′′ to change 
the contrast.

	 ( )·I I R′′′′ ′′′= θ
	 (3)

	 ( )flip ,axisI I′′′′′ ′′′= 	 (4)

	 I I′′′′′′ = ′′′ + β 	 (5)

	 ( )·I I′′′′′′′ = α ′′′ − µ + µ
	 (6)

Data preprocessing pipeline is built to transform raw MRI images 
to an appropriate form for deep learning models. By resizing, 
normalizing, augmenting, and organizing the data, the pipeline 
enables the model to learn and generalize effectively to unseen new 
data. These preprocessing steps are important to achieve high accuracy 
and robustness in brain tumor classification and are therefore an 
integral part of the proposed approach.

3.3 Model architecture

The suggested classification system of brain tumors uses a 
combination of deep learning models to achieve great accuracy and 
robustness. The construction of automated approaches for the 
classification of brain cancers with sufficient early detection and 
precise diagnosis is anticipated to be enabled by dataset. For deep 
learning models such as VGG19, it has been split into training and test 
sets, and the photographs have been resized to 224 × 224 pixels. Due 
to the volume and diversity of the dataset, researchers and medical 
image professionals can utilize it to construct valid and generalisable 
analysis. Figure 3 shows the Model Architecture of VGG19-BiLSTM-
LightGBM Framework.

The technique of converting raw MRI scans into an applicable set 
of features suitable for classification is referred to as feature extraction, 
and it is the initial step of the deep learning pipeline. A pre-trained 
VGG19 model is used to do this. VGG19 is a very deep convolutional 
neural network (CNN) architecture that has been widely applied in 
computer vision tasks due to its capability to extract hierarchical 
features from images. The architecture of VGG19 comprises 19 layers, 
including 16 layers of convolutional layers, 3 of fully connected layers, 
and 5 max-pooling layers. On this model, they apply pre-training 
from ImageNet dataset, incorporating over 1 million images in 1,000 
categories. The pre-trained model gives the feature of identifying 
general features, such as edges, textures, and shapes, which can 
be further fine-tuned for any other task. In this case, it is for medical 
image analysis. Equation 7 gives the output size of a convolutional layer.

	
2 1W K PO

S
− +

= +
	

(7)

Transfer learning is employed in the suggested framework to fine-
tune the VGG19 model for brain tumor classification. Transfer 
learning is the reuse of a pre-trained model with fine-tuning for a task. 
The model is set up to receive input images of size 224 × 224 pixels. 
The pre-trained weights are imported, to focus on extracting the most 
relevant features for brain tumor classification, only the early 
convolutional layers of the model are frozen, allowing the deeper 
layers, which are more specific to the task at hand, to adjust during the 
training process. This keeps the model to retain the common features 
learned from ImageNet while learning task-specific features in the 
later layers. The VGG19 model processes the input MRI images and 
extracts high-level spatial features from its final convolutional layer. 
These features represent the most discriminative aspects of the images, 
such as tumor boundaries, texture, and intensity variations. The 
output of the VGG19 model is a feature map with dimensions 7 × 7 × 
512, which is then passed to the next stage of the pipeline for further 
processing. To effectively use both sequential and spatial information, 
a Bidirectional LSTM layer has been added within the pipeline. 
LSTMs are a family of RNNs, the architecture of which is well-suited 
to the modeling of sequence data. Adding a Bidirectional LSTM allows 
the model to not only extract forward temporal dynamics but also 
backward dynamics, giving complete insight into sequence data. To 
enhance the ability of the model to learn the inherent patterns, a 
bidirectional LSTM layer is employed to track temporal relationships 
between the extracted features (4). This project is on the fusion of 
various modalities, like sequential modeling by Bidirectional LSTM 
and spatial feature learning by VGG19. The shortcomings of the 
conventional methods are overcome through this project with the 
provision of an end-to-end solution to brain tumor classification. MRI 
image description is made more realistic with the provision of an 
integration of various modalities. The classification efficiency is also 
enhanced through the use of LightGBM as a final classifier for efficient 
handling of high-dimensional data (5) using Equation 8. High-
dimensional and large data are handled using the proposed 
framework, making it simple to deploy on real-life healthcare problems.

	



2
i B

i
B

xx µ − = γ + β
 σ +  	

(8)
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The last layer of classification takes the flattened output of the 
LSTM layer in the form of a 1D vector. It does this so that the features 
are brought in a form that allows easy classification. It is also designed 
for progressive learning. It allows the model to incrementally update 
its knowledge base whenever there is new information without rigid 
retraining needs. The inclusion of the LightGBM classifier within the 
model is highly significant in this case, as this classifier supports 
online learning environments. This aspect allows the model to update 
continuously with new data, hence enhancing its prediction with the 
passage of time. This is a highly significant feature in medical imaging, 
where shifting patterns of data require flexible models that can update 
with minimal downtime and computational costs.

To find the brain tumors consistently, the features that are 
extracted are used to train a LightGBM classifier, which is the final 
step in the deep learning process. A very good gradient boosting 
library capable of handling large high-dimensional data is known as 
LightGBM. The trained VGG19 and LSTM layers are used for building 
another feature extraction model. The gradient descent update rule is 
found in Equation 9. The logistic loss function for binary classification 
is found in Equation 10.

	 ( ): · Jθθ = θ − η∇ θ
	 (9)

	
( ) ( ) ( ) ( )

1
l , log 1 gˆ 1 lo 1i i

n
y y

i i
i

y y y e y e−

=

 = + + − +  ∑
	

(10)

The features extracted are standardized with StandardScaler, thus 
obtaining a zero mean and unit variance for all the variables. This step 
is essential for maximizing the LightGBM classifier’s performance 
since it ensures that each feature contributes evenly to the classification 
process. With default hyperparameters, i.e., 200 estimators and a 
learning rate of 0.05, the LightGBM classifier is trained on scaled 

features. The retrieved features are used to train the algorithm to 
categorize different types of tumors. LightGBM is employed because 
it can generate precise and reliable predictions and is effective at 
managing big datasets. The operational flow and interdependencies 
between the various components of this multi-modal deep learning 
technique for MRI-based brain tumor classification are outlined 
sequentially in Algorithm 1.

The training process of the proposed VGG19-BiLSTM-
LightGBM framework involves a multi-stage pipeline designed to 
optimize the model’s performance and generalization capabilities. 
This uses pre-trained VGG19 as the spatial feature extractor from 
the MRI images with all layers frozen so that weights learned 
during ImageNet can be preserved. Features from these layers are 
passed to the Bidirectional LSTM layer, which then encodes the 
temporal dependencies, followed by repeated processes of Batch 
Normalization and Flattening so that the data is made ready for 
classification. Equations 11, 12 can be  used to compute the 
accuracy and precision of the model, respectively, which are two 
key parameters that can establish the efficiency of the model for 
real-world implementation.

	
Accuracy TP TN

TP TN FP FN
+

=
+ + + 	

(11)

	
Precision TP

TP FP
=

+ 	
(12)

The whole pipeline is trained over the Brain Tumor MRI Dataset. 
To enhance training data variations, the entire dataset has methods 
applied that consist of random flips in any two planes and various 
combinations of changing brightness and contrast. Equations 13, 14 
compute recall and F1-score thus yielding more criteria that are 

FIGURE 3

Architecture of the VGG19-BiLSTM-LightGBM framework.
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essential in judging performance concerning the positive values 
correctly discovered but at some expense in recall/precision ratio (12).

	
Recall TP

TP FN
=

+ 	
(13)

	

Precision·Recall1 2·
Precision Recall

F =
+ 	

(14)

The model is trained on parameters like accuracy, precision, recall, 
F1-score, and ROC AUC so that it is able to classify the brain tumors 
robustly and accurately. The long training process makes sure that the 
model learns not only to be precise but also to be generalizable in 
nature and hence usable in real-world clinical practice.

4 Results

The proposed VGG19-BiLSTM-LightGBM model for brain 
cancer classification was outstanding in classifying the Brain Tumor 
MRI Dataset, subjecting it to being able to handle the uncertainty and 
complexity of the MRI images. The model achieved a training 
accuracy of 98.69%, validation accuracy of 96.64%, and total test 
accuracy of 97%, evidence of its ability to generalize to unseen data. 
Precision, recall, and F1-score metrics also testified to the stability of 
the model, with its performance being more than 0.92 across all 
classes. Interestingly, the “No Tumor” and “Pituitary” classes achieved 

100% accuracy and recall, while the Glioma and Meningioma classes 
achieved comparatively lower but still outstanding performance 
because of their visual similarity. Figure 4 illustrates the categorization 
report of the suggested model according to all four classes.

The model’s discriminative ability was confirmed by an ROC AUC 
score of 0.997, indicating its strong capability to distinguish between 
different tumor types. Figure  5 shows the ROC AUC score of all 
four classes.

Error metrics, including Mean Squared Error (MSE = 0.01), Root 
Mean Squared Error (RMSE = 0.10), and Mean Absolute Error 
(MAE = 0.10), further underscored the model’s accuracy and 
reliability. These results demonstrate that the integration of spatial 
feature extraction (VGG19), sequential modeling (Bidirectional 
LSTM), and robust classification (LightGBM) provides a powerful 
framework for brain tumor classification, outperforming traditional 
single-modal approaches. Figure 6 shows the error metrices of the 
proposed model.

The confusion matrix indicated that the majority of the 
misclassifications were between the Glioma and Meningioma classes, 
consistent with the difficulty caused by their visual similarity. The 
overall misclassification rate was low, and the model performed high 
accuracy in all classes. The superior performance of the proposed 
framework compared to baseline procedures, including isolated 
VGG19 and Random Forest classifiers, supports the advantage of the 
combination of deep learning and ensemble learning methods. 
Figure 7 displays the confusion matrix of the utilized dataset.

These findings are important to clinical use as the model has the 
potential to assist radiologists in more precise and effective diagnosis 
of brain tumors. But the task can be expanded with other modalities 

ALGORITHM 1

Multi-modal deep learning method for classifying brain tumors based on MRI.
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being added, e.g., clinical data or genomic data, to further improve the 
performance of the model. Table 2 shows the comparison study of 
many Techniques.

An important development in brain tumor classification is the  
VGG19-BiLSTM-LightGBM framework, which provides a reliable and 
expandable solution for medical imaging applications. The VGG19- 

FIGURE 4

Classification report of the proposed model.

FIGURE 5

ROC and AUC curve.
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FIGURE 7

Confusion matrix.

BiLSTM-LightGBM model achieves excellent accuracy but requires 
extensive processing resources due to its complex construction. This can 
result in longer training times and higher costs, which might not 
be desirable for most clinical scenarios, particularly real-time scenarios. To 
address this, techniques such as pruning and quantization could be used to 
reduce model size and speed up inference times without sacrificing accuracy.

5 Discussion

In balancing for potential class imbalances in the MRI data sets, 
a common problem in medical images due to different rates of 
occurrence of different types of tumors, application of data 

augmentation techniques and weighted loss function assists in 
achieving balanced model training and prevents class bias toward 
majority classes. Scalability of the VGG19-BiLSTM-LightGBM 
architecture is beyond brain tumor classification. The model’s 
structure is inherently flexible enough so that it may be utilized to 
process a wide variety of sickness classes over a large number of 
imaging modalities. The same structural concepts could reasonably 
be applied with the goal of classifying chest X-ray abnormalities or 
skin imaging lesions. This adaptability is primarily attributed to the 
VGG19 component of the model, which is widely renowned for its 
capacity to extract informative features from the majority of images, 
and the very flexible nature of the LSTM and LightGBM components 
that can be fine-tuned to detect and classify various pathological 

FIGURE 6

Error metrices.
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features with high efficiency. This approach should be applied in 
low-resource environments. Techniques such as model 
simplification, quantization, and the use of light-weight neural 
networks can sufficiently reduce the computational requirements. 
These parameters are important in maintaining the diagnostic 
integrity of the model for all categories of tumors. In addition to the 
computational efficiency and model complexity, there is an inherent 
trade-off between accuracy and computational requirement. The 
VGG19, Bidirectional LSTM, and LightGBM together, although 
computationally expensive, are warranted by the size of accuracy 
gain and medical diagnostics stability needed. The architecture’s 
complexity makes it challenging to use in the clinic with real-
time requirements.

Existing model implementation into clinical environments may 
be  compromised by latency in processing and loading demands. 
Future development will center on refining these components to 
enable real-time analysis, possibly by model reduction or employing 
more effective processing methods like model quantization and 
pruning. Future studies will also continue to explore scalability, 
namely how this system can be adapted or scaled to support different 
types of tumors or medical imaging tests. This can involve training 
on larger, more heterogeneous sets of data or modifying the 
architecture to more effectively encode unique features of individual 
medical diseases, increasing model flexibility and utility across a 
broad array of clinical applications.

6 Conclusion

The paper offers an important contribution to the brain tumor 
identification from MRI images using a VGG19-BiLSTM-
LightGBM model. The multi-modal approach overcomes 
complexity and heterogeneity, which are inherently linked to 
medical imaging data, by using space feature extraction, sequential 
modeling, and high-performance classification algorithms. 
Deploying a pre-trained VGG19 model for spatial feature 

extraction, a Bidirectional LSTM to process sequential information, 
and LightGBM for efficient and accurate classification, the model 
improves on diagnostic capability.

With a strong output of 98.69% training accuracy, 96.64% 
validation accuracy, and 97% test accuracy, it excels over currently 
available methods such as the VGG19 when isolated and the Random 
Forest classifier. Such a paradigm, in addition to lowering the chances 
of error in diagnosis, also aids radiologists in successfully diagnosing 
brain cancers efficiently and in a timely manner, enhancing patient 
care. Future upgrades can involve the integration of new data types, 
e.g., clinical or genetic data, to improve the accuracy as well as the 
robustness of the model. Additionally, employing explainable AI 
techniques can enhance the interpretability of the model as a more 
practical tool for application in clinical contexts. VGG19-BiLSTM-
LightGBM is a cost-effective and effective approach to classifying 
brain tumors and can potentially transform computer-aided 
diagnosis in radiology.
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Introduction: Affecting millions of individuals worldwide, epilepsy is a neurological 
condition marked by repeated convulsions. Monitoring brain activity and identifying 
seizures depends much on electroencephalography (EEG). An essential step that 
may help clinicians identify and treat epileptic seizures is the differentiation between 
epileptic and non-epileptic signals by use of epileptic seizure detection categorization.

Methods: In this work, we investigated Machine learning algorithms including 
Random Forest, Gradient Boosting, and K-Nearest Neighbors, alongside advanced DL 
architectures such as Long Short-Term Memory networks and Long-term Recurrent 
Convolutional Networks for detecting epileptic seizures in terms of difficulties and 
procedures evolved depending on EEG data. The EEG data classification by applying 
ML and DL framework to improve the accuracy of seizure detection. The EEG 
dataset consisted of 102 patients (55 seizure and 47 non-seizure cases), and the 
data underwent comprehensive preprocessing, including noise removal, frequency 
band extraction, and data balancing using SMOTE to address class imbalance. Key 
features, including delta, theta, alpha, beta, and gamma bands, as well as spectral 
entropy, were extracted to aid in the classification process.

Results: A comparative analysis was conducted, resulting in high classification 
accuracy, with the Random Forest model achieving the best results at 99.9% 
accuracy.

Discussion: The study demonstrates the potential of EEG data for reliable 
seizure detection while emphasizing the need for further development of more 
practical and non-invasive monitoring systems for real-world applications.

KEYWORDS

electroencephalography, EEG data classification, seizure detection, epilepsy, SMOTE

1 Introduction

Epilepsy is a neurological condition that affects neurons in the brain. In many instances, 
epilepsy may not be curable, but it can be managed and controlled with proper care. This 
involves taking essential steps to ensure patients’ safety, especially in situations in which they 
might be driving, cooking, or simply being at home. With effective monitoring, patients can 
feel more confident in their daily activities, knowing that help is available when needed. This 
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can minimize potential harm and reduce their dependence on others. 
This highlights the significance of proper management in epilepsy.

Epilepsy, a neurological condition, is recognized as a widespread 
issue that poses a significant risk to human life. Global statistics from 
the World Health Organization (WHO) indicate that around 50 
million people worldwide are affected by epilepsy, establishing it as 
one of the most prevalent neurological diseases globally. Epilepsy 
affects individuals of all genders, including males and females, and it 
is also observed in children (1). Epilepsy refers to a neurological 
condition in which there are irregular disruptions in the usual 
functioning of the brain. These disruptions lead to seizures, which can 
differ in duration and effect from one individual to another. Seizures 
may be brief and go unnoticed or affect specific body parts or the 
entire body, occasionally resulting in unconsciousness.

Epilepsy can arise from acquired neurological insults (2) (e.g., 
oxygen deprivation, head trauma, and strokes) that damage brain 
tissue and disrupt normal electrical functioning. Genetic mutations 
affecting ion channels, neurotransmitters, and neural transmission 
can also predispose individuals to chronic seizures. Elucidating these 
precipitating factors enables better prevention and treatment of 
epilepsy. EEG is a non-invasive diagnostic tool that captures the 
electrical activity generated by brain neurons. Given the multi-channel 
signals from scalp electrodes and the necessity for long-term 
recordings, advanced signal processing methods have become 
indispensable for EEG-based detection (3).

A critical component of managing epilepsy is seizure detection, 
which involves categorizing EEG signals into seizure or non-seizure 
classes. This process is facilitated by identifying prominent features 
within the EEG signals. An important step in reducing the human and 
monetary costs of uncontrolled epilepsy is the development of 
methods for more precise seizure detection (4). According to Van de 
Vel et al. (5), beyond the pursuit of epilepsy treatment options, there 
is an increasing recognition of the need for effective epilepsy 
management strategies to enhance patient and caregiver quality of life. 
Non-EEG-based seizure detection technologies are receiving growing 
research attention due to their potential to improve care quality, peace 
of mind, and independence. A comprehensive literature review was 
carried out, and discussions were held with manufacturers of 
commercially available devices to gain further insights. The reported 
performance of non-EEG-based seizure detection devices showed a 
wide range of sensitivity, from as low as 2.2%–100%. In terms of false 
detections per hour, the range was 0–3.23 when compared with the 
gold standard of video-EEG. This underscores the varying reliability 
of these devices and the need for further research and development in 
this field.

EEG signals are prone to human error and are impractical for 
continuous monitoring. While automated systems leveraging machine 
learning and deep learning have shown promise, significant challenges 
hinder their widespread adoption in the real world.

Data Limitations EEG datasets often suffer from class imbalance, 
with far fewer seizure events than non-seizure data, leading models to 
overlook critical seizure patterns. Signal Complexity: EEG signals are 
inherently noisy, contaminated by artifacts from muscle movements, 
eye blinks, or environmental interference, complicating feature 
extraction. Computational Trade-offs: Deep Learning (DL) models 
(e.g., CNNs, LSTMs, transfer learning in DL, GRU, and transformers) 
excel at automatic feature learning but require substantial 
computational resources, making them unsuitable for low-power 

wearable devices (5). Conversely, traditional ML models, while 
efficient, rely on manual feature engineering, which risks missing 
subtle seizure signatures. Generalizability: Many algorithms perform 
well on controlled datasets but falter with patient-specific variability 
or ambulatory recordings.

This study aims to explore the potential of EEG data classification 
using machine learning techniques to enhance seizure detection. 
We conducted extensive preprocessing of the EEG data, including noise 
filtering, frequency band extraction, and data balancing, to ensure 
robust feature extraction and to improve model performance. By 
evaluating the effectiveness of different machine learning models, this 
work contributes to the growing body of research aimed at developing 
more accurate and efficient tools for epilepsy management. 
Furthermore, we emphasize the need for non-invasive, user-friendly 
monitoring systems that can complement EEG-based detection in real-
world clinical applications. The main contributions of the article include 
a robust preprocessing pipeline combining noise filtering, frequency 
band extraction, and SMOTE-based class balancing, coupled with a 
comparative analysis of five models: Random Forest (RF), Gradient 
Boosting, KNN, LSTM, and LRCN. The RF classifier achieves state-of-
the-art accuracy (99.9%). The paper is structured as follows: Section 2 
reviews existing methodologies, Section 3 details the proposed 
framework, Section 4 presents empirical results and comparisons, and 
Section 5 concludes with clinical implications and future directions.

2 Literature review

Over 50 million individuals throughout the world are afflicted with 
epilepsy, a neurological disorder. Seizures that cannot be controlled 
occur repeatedly. To improve medical results and quality of life for 
epileptic patients, it is essential to monitor and diagnose seizures in a 
timely manner. Seizures may be quickly and accurately diagnosed using 
EEG data, which records the brain’s electrical activity. On the other hand, 
patients may find it obtrusive and complicated gear is usually required.

Recent years have seen tremendous growth in the area of epileptic 
seizure identification using EEG data, merit to the use of several ML 
and DL approaches. This literature review examines 23 studies that 
have contributed to this domain, categorizing them based on their 
methodological approaches, datasets used, and the specific aspects of 
seizure detection they address. The studies are grouped into four main 
categories: Traditional ML Approaches, DL Methods, Hybrid and 
Novel Approaches, and Comparative Studies and Reviews.

2.1 Traditional machine learning approach

Several studies have employed traditional ML techniques for 
seizure detection and classification, often focusing on feature 
extraction and selection methods. Fergus et  al. (6) proposed a 
supervised ML method using the real dataset, achieving a sensitivity 
and specificity of 88%. This study demonstrated the potential of 
traditional ML methods in creating generalizable seizure detection 
models. Raghu et al. (7) presented a model that is computationally 
efficient by using a new feature known as a successive decomposition 
index. The system was evaluated using three different databases. 
Authors proposed support vector machine (SVM) classifiers, they 
achieved high sensitivity (95.80–97.53%) and low false detection rates 
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(0.4–0.57/h) across all datasets. The use of multiple datasets in this 
study provided robust validation of their approach, highlighting the 
importance of diverse data in developing reliable seizure detection 
methods. Rani et al. (8) developed SVM approach for classifying a 
peak signal EEG signal. The system was used dataset that collected 
from Bonn University dataset. The SVM model achieved a remarkable 
99.60% accuracy rate and a low error rate of 0.039. Almustafa (9) 
conducted a comprehensive comparison of various ML. These studies 
have demonstrated the continued relevance and effectiveness of 
traditional ML approaches in seizure detection, particularly when 
combined with innovative feature extraction methods. The high 
accuracies achieved by these methods suggest that they remain 
competitive with more complex DL approaches in certain scenarios.

2.2 Deep learning method

Due to automatically learn essential characteristics from raw EEG 
data, DL approaches have improved seizure detection accuracy and 
resilience. Liu et al. (10) created a hybrid bilinear DL network using 
CNNs and RNNs, model was scored 97.4% on the Temple University 
Hospital Seizure Corpus and 97.2% on EPILEPSIAE, demonstrating 
the power of neural network architectural composition. This research 
showed that CNNs, which excel in spatial feature extraction, and RNNs, 
which capture temporal relationships in EEG data, work well together.

The linear graph convolution network (LGCN) introduced by 
Zhao et al. (11) uses spatial interactions in EEG data using a Pearson 
correlation matrix to identify seizures. This novel method showed 
graph-based neural networks could capture intricate spatial correlations 
between EEG channels. Gabeff et al. (12) used the REPO2MSE cohort 
of scalp-EEG recordings from 568 epilepsy patients to construct a 
CNN-based model for online seizure identification. For clinical 
applications, online detection is key. This work addressed it. Chou et al. 
(13) tested four CNN architectures for video-EEG data analysis and 
found that their best model had 97.7% ictal stage accuracy. This work 
showed that CNNs can interpret multimodal data for seizure detection, 
indicating that adding visual information to EEG signals may improve 
detection. A 3D CNN-based automated epilepsy detection method by 
Sun and Chen (14) was very accurate. Their method used CNNs’ three-
dimensionality to collect EEG signals’ spatial and temporal properties. 
This research proved the generalizability of their 3D-CNN-based 
technique by performing well across numerous datasets. Kunekar et al. 
(15) employed LSTM networks to identify seizures with 97% validation 
accuracy on the UCI-Epileptic Seizure Recognition dataset. It is 
observed that LSTM outperformed traditional algorithms in accuracy 
and precision. This work showed that RNNs can identify seizures by 
recording EEG data temporal dynamics. These DL methods 
demonstrate automated feature learning and complicated, high-
dimensional EEG data processing. High accuracies across datasets 
show DL seizure detection technologies are getting more dependable.

2.3 Hybrid and novel approaches

Several studies have proposed innovative methods that combine 
different techniques or introduce novel concepts to improve seizure 
detection, often addressing specific challenges in the field or exploring 
unconventional approaches.

Bandarabadi et al. (16) presented a statistical methodology for 
selecting the preictal period, which serves as an indicator of seizure 
predictability. This study was used EGG recordings from 18 patients, 
provided insights into optimizing preictal periods for more precise 
classification models. This study contributed to the important area of 
seizure prediction, which has implications for early intervention and 
improved patient care.

Mert and Akan (3) introduced novel EEG analysis methodologies 
that achieved accuracy rates as high as 97.89%, demonstrating the 
potential of innovative signal-processing techniques in seizure 
detection. While the specific details of their approach were not 
provided in the summary, the high accuracy achieved suggests that 
there is still room for improvement in EEG signal analysis techniques.

Brari and Belghith (17) developed a machine learning framework 
leveraging chaos and fractal theories. Their approach, which included 
reconstructing EEG signals and extracting the Hurst fractal 
dimensions, achieved 100% accuracy on the Bonn EEG database using 
a small number of features and a linear classifier. This study highlighted 
the potential of applying concepts from complex systems theory to 
EEG analysis, offering a novel perspective on seizure detection.

Shah et al. (18) combined RNNs with a discrete wavelet transform 
for seizure detection. This hybrid approach demonstrated the benefits 
of combining wavelet-based feature extraction with the modeling 
capabilities of random neural networks.

Kantipudi et  al. (19) presented an advanced complex Neural 
Network. This complex approach achieved an overall detection 
performance of 99.6% with a high F-measure (99%) and G-mean 
(98.9%). The study showed the potential of combining multiple 
advanced techniques, including bio-inspired optimization and 
specialized neural network architectures.

Ein Shoka et al. (20) introduced CNN model to classify EEG data 
using chaotic maps for addressing the crucial aspect of data privacy in 
medical applications while maintaining high classification 
performance. This study addressed the important issue of privacy 
preservation in medical data analysis, which is becoming increasingly 
relevant in the era of big data and interconnected healthcare systems.

Zeng et al. (21) applied a method that integrates deep and shallow 
learning techniques. The combined approach used a deep neural 
network for feature extraction, followed by PCA for dimensionality 
reduction and shallow classifiers for final classification, achieving 
nearly 100% accuracy on the Bonn dataset. This hybrid approach 
leveraged the strengths of both deep and traditional machine learning 
methods, demonstrating the potential benefits of such integrations.

These hybrid and novel approaches demonstrate the potential for 
significant improvements in seizure detection by combining different 
techniques or introducing innovative concepts. They often address 
specific challenges in the field, such as privacy preservation, 
computational efficiency, or the need for more interpretable models.

2.4 Comparative studies and reviews

Several studies have focused on comparing different methods or 
providing comprehensive reviews of the field, offering valuable 
insights into the relative performance of various approaches and 
highlighting areas for future research.

Bhandari et al. (22) introduced a comparative study in which 
seven raters reviewed EEG sharp. Their results showed that certain 
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criteria in sensor space and source space analysis could achieve 
accuracy rates comparable to expert scoring, providing insights into 
the effectiveness of different EEG analysis methods. Singh and Kaur 
(23) designed a neural network classifiers and nonlinear EEG features, 
demonstrating high accuracy and AUC. Their study provided a 
comparison point for the effectiveness of nonlinear feature extraction 
in seizure detection and highlighted the importance of feature 
engineering in machine learning approaches.

Polat and Nour (24) proposed a hybrid method for seizure 
detection and classification and compared different SVM kernels and 
normalization techniques. Their study, which achieved accuracies of 
76.70%–82.50%, showed the effects of preprocessing and classifier 
selection on detection performance. This study underscored the 
importance of careful parameter tuning and preprocessing in 
achieving optimal performance with traditional machine 
learning methods.

Farooq et al. (25) conducted a systematic literature review of ML 
techniques for seizure detection. Their review identified common 
feature extraction methods and classifiers, created a taxonomy of 
state-of-the-art solutions, and highlighted research gaps and 
challenges. This comprehensive review provided a valuable overview 
of the field, insights into trends, and directions for future research.

Hamlin et al. (26) explored the use of non-cerebral sensor data for 
seizure detection and compared the effectiveness of different sensor 
types and features. Their study, which achieved a mean ROC value of 
0.9682, suggested the potential of multimodal approaches in 
improving seizure detection accuracy. This study opened up new 
possibilities for seizure detection by incorporating data from sensors 
beyond traditional EEG, potentially leading to more robust and 
versatile detection systems.

These comparative studies and reviews provide valuable insights 
into the relative performance of different methods and highlight areas 
for future research. They offer a broader perspective on the field and 
help researchers and practitioners understand the strengths and 
limitations of various approaches.

2.5 EEG datasets review

Epilepsy research and seizure detection have greatly benefited 
from the availability of diverse and comprehensive EEG datasets. This 
section provides review all type of datasets utilized in recent studies 
on epilepsy classification and seizure detection. These datasets vary in 
size, patient population, and recording methods.

2.5.1 CHB-MIT dataset
The CHB-MIT dataset has been widely used in several studies for 

seizure detection and classification. Fergus et al. (6) employed this 
dataset in their supervised machine learning approach, achieving 88% 
sensitivity and specificity. Raghu et al. (7) utilized SVM classifiers on 
this dataset, resulting in 97.28% sensitivity and a false detection rate 
of 0.57/h. Zhao et al. (11) implemented a Linear Graph Convolution 
Network (LGCN) on the CHB-MIT data, achieving impressive results 
with 99.30% accuracy, 98.82% specificity, and 99.43% sensitivity. Shah 
et al. (18) combined Random Neural Networks (RNN) with Discrete 
Wavelet Transform (DWT) on this dataset, achieving 93.27% accuracy. 
Sun and Chen (14) also used this dataset in their 3D-CNN approach, 

reporting high accuracy, although the specific value was not provided 
in the summary.

2.5.2 Bonn University dataset
The Bonn University dataset has been the foundation for several 

innovative approaches in seizure detection. Rani and Chellam (8) 
achieved a remarkable 99.60% accuracy using their Peak Signal 
Features (PSF) method combined with an SVM classifier on this 
dataset. Brari and Belghith (17) applied concepts from chaos and 
fractal theories to the Bonn dataset, achieving 100% accuracy. (18), in 
addition to their work on the CHB-MIT dataset, also used the Bonn 
dataset, achieving an even higher accuracy of 99.84% with their RNN 
and DWT combination. Zeng et al. (21) employed a hybrid approach 
combining deep and shallow learning techniques on this dataset, 
reporting nearly 100% accuracy.

2.5.3 Temple University Hospital (TUH) dataset
The TUH dataset has been utilized in studies employing various 

ML and DL techniques. Liu et al. (10) achieved a 97.4% F1-score on 
this dataset using their hybrid bilinear DL network. Raghu et al. (7), 
as part of their multi-dataset study, applied SVM classifiers to the 
TUH data, achieving 95.80% sensitivity and a false detection rate of 
0.49/h. Sun and Chen (14) included the TUH dataset in their 3D-CNN 
study, reporting high accuracy, although the specific value for this 
dataset was not provided in the summary.

2.5.4 EPILEPSIAE dataset
The EPILEPSIAE dataset was used by Liu et  al. (10) in their 

comprehensive study employing a hybrid bilinear deep learning 
network. On this dataset, their approach achieved a 97.2% F1-score, 
demonstrating the effectiveness of their method across 
different datasets.

2.5.5 UCI-epileptic seizure recognition dataset
Kunekar et al. (15) utilized the UCI-Epileptic Seizure Recognition 

dataset in their study focusing on LSTM networks for seizure 
detection. Their approach achieved a validation accuracy of 97% on 
this dataset, highlighting the potential of recurrent neural networks in 
capturing the temporal dynamics of EEG signals for seizure detection.

2.5.6 REPO2MSE dataset
Gabeff et al. (12) used the REPO2MSE dataset, which consists of 

scalp-EEG recordings from 568 epilepsy patients, to develop their 
CNN-based model for online epileptic seizure detection. Table 1 given 
highlight the importance of standardized, publicly available datasets 
in advancing seizure detection research.

2.6 Conclusion of the EEG section review

The reviewed studies demonstrate significant progress in seizure 
classification and detection based on EEG signals. Traditional machine 
learning approaches continue to show effectiveness, particularly when 
combined with innovative feature extraction methods. The studies of 
Fergus et al. (6), Raghu et al. (7), and Rani and Chellam (8) show the 
potential of these methods when applied with careful feature 
engineering and selection.
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Deep learning techniques, especially CNNs and LSTMs, have 
demonstrated remarkable performance in automatically learning 
relevant features from raw EEG data. Liu et al. (10), Zhao et al. (11), 
and Sun and Chen (14) revealed the power of these approaches in 
capturing complex spatial and temporal patterns in EEG signals. The 
high accuracies achieved by these methods across various datasets 
suggest that they are becoming increasingly reliable for seizure 
detection tasks.

Hybrid and novel approaches, such as those leveraging Brari and 
Belghith’s chaos theory (17), fractal dimensions, and Zhao et al. (11) 
graph neural networks have shown promise in improving detection 
accuracy and addressing specific challenges in the field. These 
innovative methods often combine the strengths of different 
approaches or introduce new concepts from other domains, pushing 
the boundaries of what is possible in seizure detection.

The integration of multiple data sources and sensor types, as seen 
in Hamlin et al.’s study (26), suggests promising directions for more 
robust seizure detection systems. This multimodal approach could 
lead to detection systems that are less prone to false positives and more 
adaptable to different patient populations.

Comparative studies and reviews, such as those by Kural et al. 
(22) and Farooq et  al. (25), provide valuable insights into the 
relative performance of different methods and highlight areas for 
future research. These studies help contextualize individual 
research efforts within the broader landscape of seizure 
detection techniques.

However, challenges remain in terms of generalizability across 
different datasets and patient populations, as well as in reducing false-
positive rates and detection delays. The need for larger, more diverse 
datasets and standardized evaluation metrics is evident from the 
literature. Many studies use different datasets and evaluation metrics, 
making direct comparisons challenging. Table 2 reviews studies on 
EEG-based seizure detection by summarizing the methodologies, 
technologies, and results of various research efforts and focusing on 
the effectiveness and accuracy of EEG applications in 
detecting seizures.

Figure 1 illustrates a summary of the EEG classification results. It 
provides a visual representation of how different EEG signals have 
been classified and shows the accuracy and performance of the 
classification model. It presents the various metrics and comparisons, 

helping to understand the effectiveness of the approach used to 
distinguish between different brain wave patterns.

3 Methodology

The proposed system is being investigated using a real EGG 
dataset. Various algorithms were employed to enhance the existing 
methods for modeling and detecting seizure diseases. This research 
presents a detailed overview of the training and validation 
methodologies employed for the RF, GB, LSTM, and LRCN models. 
The outlined method structures the approach employed to identify 
seizures through EEG data, as illustrated in Figure 2.

3.1 EEG dataset acquisition

EEG data were collected from a group of patients who had 
continuous video-EEG monitoring for an extended duration at two 
medical institutions in Denmark: Aarhus University Hospital and the 
Danish Epilepsy Center in Dianalund (22). The data collection period 
was from January 2012 to September 2017. During the diagnostic 
evaluation phase, sharp transients were initially identified and marked. 
Subsequently, two authors conducted a comprehensive review of these 
marked transients. Through collaborative analysis, a consensus was 
established among the experts, confirming the initial marking as a 
sharp transient, regardless of its manifestation of epileptiform 
characteristics. This selected sharp transient was then subjected to 
further evaluation to ensure compliance with the predetermined 
selection criterion. In the dataset, there were 100 files in the European 
Data Format (EDF), comprising data from 55 epileptic patients and 
47 non-epileptic patients of different ages and genders. On December 
18, 2017, the dataset that was used for this research was recorded. A 
sample rate of 500 Hz was used to get the EEG data, since this is the 
industry standard for collecting the important frequency content in 
EEG signals. The raw data was further processed using a 250 Hz 
low-pass filter. The EEG recording system employed in this study 
comprised 26 channels, enabling the simultaneous measurement of 
brain activity from multiple scalp locations. Table 3 outlines the EEG 
dataset content and features, such as the number of patients and class.

TABLE 1  Summary of EEG datasets.

Studies Dataset Description

Fergus et al. (6), Raghu et al. (7), Zhao et al. 

(11), Sun and Chen (14), and Shah et al. (18)

CHB-MIT Scalp EEG data from 23 pediatric subjects with intractable seizures, recorded at the Children’s 

Hospital Boston. Contains 686 h of EEG recordings.

Rani et al. (8), Brari and Belghith (17), Shah 

et al. (18), and Zeng et al. (21)

Bonn University Consists of 5 subsets (Z, O, N, F, S) each containing 100 single-channel EEG segments of 23.6-s 

duration. Sets Z and O are from healthy subjects, N and F from seizure-free intervals, and S 

contains seizure activity.

Raghu et al. (7), Liu et al. (10), and Sun and 

Chen (14)

Temple University 

Hospital (TUH)

Large-scale dataset of clinical EEG recordings from Temple University Hospital. Contains over 

30,000 EEG records from more than 16,000 patients.

Liu et al. (10) EPILEPSIAE European database of long-term EEG data from epilepsy patients. Contains both scalp and 

intracranial EEG recordings.

Kunekar et al. (15) UCI-Epileptic Seizure 

Recognition

Dataset from UCI Machine Learning Repository, containing 11,500 EEG recordings, each 1 s 

long, classified into 5 categories.

Gabeff et al. (12) REPO2MSE Cohort of scalp-EEG recordings from 568 epilepsy patients. Specific details not provided in the 

summary.
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TABLE 2  A review of studies of EEG-based seizure detection.

Study Data Preprocessing Models/Algorithms Results

Liu et al. (10) Temple University, 

EPILEPSIAE dataset

exploit the frequency (STFT), analysis 

data

Hybrid bilinear deep learning 

network (CNNs + RNNs)

F1-score: 97.4%

Fergus et al. (6) CHB-MIT dataset Simple, filter, features extraction k-NN, SVM, NN, DT Sensitivity 88%, AUC: 93%

Mert and Akan (3) Various EEG recordings Digitalize, filter, Normalize frequency Novel EEG analysis methods Accuracy: 97.89%

Raghu et al. (7) Ramaiah Medical College, 

CHB-MIT

Feature extraction (SDI) SVM Sensitivity: 97.53%

Bhandari et al. (22) 1,001 patients (video-EEG) 

EMG Data

Record, sample and filter the data Analysis of EEG sharp transients 92% Accuracy

Zhao et al. (11) CHB-MIT dataset Pearson correlation matrix Linear Graph Convolution 

Network (LGCN)

Accuracy: 99.30%, Sensitivity: 

99.43%

Rani et al. (8) Bonn University dataset Peak Signal Features (PSF) SVM, DT, KNN Accuracy up to 99.60% with SVM

Aayesha et al. (28) Bonn and CHB-MIT datasets Feature extraction KNN, FRNN Accuracy: up to 99.81%

Gabeff et al. (12) REPO2MSE cohort Simple, segment and split the data CNN F1-score: 0.873, 90% seizure 

detection

Brari and Belghith(17) Bonn EEG database EEG signal reconstruction Chaos and fractal theories Accuracy: 100%

Chou et al. (13) Video-EEG data Not specified Four CNN architectures 97.7% accuracy for ictal stage

Shah et al. (18) CHB-MIT, BONN datasets DWT RNN, ANN, SVM CHB-MIT: 93.27%, BONN: 

99.84%

Polat and Nour (24) Not specified Z-score, Minimum-Maximum, MAD 

normalizations

SVM (Linear, Cubic, Medium 

Gaussian)

76.70–82.50%

Kantipudi et al. (19) Not specified FLHF GBSO, TAENN 99.6%, F-measure: 99%, G-mean: 

98.9%

Almustafa (9) Not specified Not specified Random Forest, K-NN, Naïve 

Bayes, Logistic Regression, DT, 

Random Tree, J48, SGD

97% accuracy,

Kunekar et al. (15) UCI-Epileptic Seizure 

Recognition dataset

Not specified LSTM, Logistic Regression, SVM, 

KNN, ANN

97% Accuracy

Hamlin et al. (26) Data from 15 patients LDA Not specified Mean ROC: %96.8

Zeng et al. (21) Bonn dataset PCA CNN, shallow classifiers ~100% Accuracy

George et al. (29) KITS, TUH databases TQWT, entropies PSO, ANN KITS: 100%, TUH: 88.8–97.4% 

Accuracy

FIGURE 1

EEG classification result.
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3.2 Preprocessing

In the data preprocessing phase, the raw EEG data undergo 
filtering to extract the relevant frequency bands of interest. Specifically, 
the following frequency bands are extracted: alpha (8–12 Hz), beta 
(13–30 Hz), theta (4–7 Hz), and gamma (above 30 Hz). These 
frequency bands are commonly analyzed in EEG studies because of 
their associations with various cognitive and physiological processes. 
It is crucial to preprocess the EEG data appropriately to ensure the 
reliability and validity of subsequent analyses (27). The filtering step 
is essential for isolating the frequency bands of interest and 
minimizing the influence of irrelevant signal components or noise. 
The extraction of these specific frequency bands facilitates the 
investigation of their potential correlations with the cognitive or 
physiological processes under study, as shown in Figure 3.

3.2.1 Data labeling
In this process, we labelled all of the EEG recordings in the dataset 

according to the patient’s status. We used the numbers “1” to denote 
normal EEG data and the number “0” to denote seizures. While 
training, the classification algorithm benefits from this labeling as it 
allows it to differentiate between the two groups.

3.2.2 Data normalization
The EEG characteristics were on the same scale, we normalized 

the data. If you want to make sure that the learning process is not 
overloaded with features with out-of-range values, normalization is a 
must. Z-score normalization method was used for scaling the rows of 
EGG dataset.

3.2.3 Data cleaning
Initial data cleaning was performed to address any missing values 

within the features. The mean imputation technique was utilized, where 
missing values in any given feature were replaced with the mean value of 
that feature. This method was implemented using the SimpleImputer 
class from the sklearn.impute module, configured with strategy = ‘mean’. 
The transformation was applied to all feature columns, excluding the 
‘label’ column, which represents the target variable.

3.2.4 Data balancing using SMOTE
SMOTE technique used to address class imbalances in datasets. 

One step in processing SMOTE data is to use synthetic samples for 
the minority class. This ensures that the distribution of classes is 
balanced. The algorithm works by identifying the KNN for each 
minority class sample and creating new synthetic samples along 
the line segments that join the minority class sample and its 
neighbors. The synthetic samples are generated by randomly 
selecting one of the KNN and introducing a perturbation along the 
line segment joining the two samples. This approach was 
implemented using the SMOTE class from the imblearn. over_
sampling library with a random_state set for the reproducibility of 
results. The resampling process adjusted the dataset to ensure an 
equal representation of both classes, mitigating the potential effect 
of class imbalance on the subsequent analysis and modeling steps. 
Figure 4 illustrates the distribution of EEG data before and after 
applying SMOTE.

3.2.5 Data splitting
Two subsets, training and testing, were taken from the dataset. 

A data allocation of 80% for training and 20% for testing the machine 
learning model is known as an 80/20 split. By splitting the data in 
this way, we can train the model on one set of data and then evaluate 
it on another set, which stops overfitting and lets the 
model generalize.

3.2.6 Heatmap of amplitude differences
The profound complexities underlying epileptic seizures 

necessitate a multifaceted approach to elucidate their intricate 
mechanisms. The study presents a comprehensive spatiotemporal 
analysis of EEG data, leveraging the visual potency of heat maps to 

FIGURE 2

Proposed methodology for EEG data classification and seizure detection.

TABLE 3  EEG dataset content.

Class Number of patients

Normal 55

Seizure 47
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FIGURE 4

EEG data distribution before and after applying SMOTE.

delineate amplitude variations across cortical regions. By comparing 
seizure and non-seizure conditions, the proposed methodology 
quantifies the dynamic shifts in neural activity, transitioning 
seamlessly from negative to positive amplitude deviations through 
a “coolwarm” color palette. This graphical representation not only 
facilitates the localization of epileptogenic foci but also elucidates 
the propagation patterns of seizure activity, thereby contributing to 
a holistic understanding of the pathophysiological processes 
underlying this neurological disorder. As shown in Figure 5, the 
knowledge acquired from this study has great consequences for the 
formulation of focused treatment strategies and the progress of our 
understanding of the complex neural dynamics controlling 
seizure events.

3.2.7 Spectral analysis
This study used Fourier spectral analysis of EEG data to elucidate the 

frequency domain signatures that differentiate seizure and non-seizure 
neural dynamics in epilepsy. The spectral power distributions derived 
from these analyses revealed pronounced amplitudes across specific 
frequency bands during seizure activity, which is indicative of heightened 
neuronal synchronization. By contrast, the non-seizure condition 

exhibited reduced spectral power, reflecting normal neural oscillations. 
By characterizing these distinct frequency profiles, this work sheds light 
on the neurophysiological underpinnings of epileptic seizures and 
pathological hypersynchrony and paves the way for improved therapeutic 
interventions, as shown in Figure 6.

3.3 Feature extraction

This study analyzed the power spectral density (PSD) levels across 
different frequency bands to investigate the differences in neural activity 
between epileptic and non-epileptic patients. The epileptic patient 
exhibited distinct PSD levels compared with the non-epileptic patient, 
suggesting variations in their underlying neural activity patterns. The 
frequencies at which the difference in PSD between the two patients was 
statistically significant (p < 0.05) were identified, indicating that the 
observed differences in brain activity were unlikely due to chance. 
Significant differences at certain frequencies, such as increased power in 
the theta and gamma bands, could reveal specific brain activity patterns 
associated with epilepsy, including the presence of epileptic networks 
outside of seizure events. These findings contribute to a better 

FIGURE 3

EEG data preprocessing steps.
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understanding of the neurophysiological underpinnings of epilepsy and 
hold promise for improving diagnostic and monitoring techniques and 
for guiding more targeted interventions for the management of epilepsy, 
as shown in Figure 7.

In this section, several features were extracted from the EEG 
signals to enable the classification of epileptic and non-epileptic 
patients. These features capture different aspects of neural activity and 
provide valuable information for distinguishing between the two 
groups. The extracted features are as follows:

	•	 Delta

Usually covering 0.5 to 4 Hz, this function shows the PSD in the 
delta frequency region. Deep sleep phases are linked to delta waves, 
which are also well-known to be involved in many cognitive functions 
like memory and attention.

	•	 Theta

The theta feature corresponds to the PSD in the theta frequency 
band, which ranges from 4 to 8 Hz. Theta oscillations are linked to 

cognitive processes such as memory formation, spatial navigation, and 
emotional regulation.

	•	 Alpha

The alpha feature is derived from the PSD in the alpha frequency 
band, typically between 8 and 12 Hz. Alpha waves are prominent 
during relaxed wakefulness and are believed to play a role in attention 
and information processing.

	•	 Beta

This feature represents the PSD in the beta frequency band, 
ranging from 13 to 30 Hz.

	•	 Gamma

The gamma feature corresponds to the PSD in the gamma 
frequency band, which encompasses frequencies above 30 Hz. 
Gamma oscillations are involved in various cognitive functions, 
including perception, attention, and memory.

FIGURE 5

Heat map of amplitude differences.
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	•	 Spectral entropy

A estimate of the complexity or irregularity of the EEG signal, 
spectral entropy It may help to identify aberrant patterns of brain 
activity by providing details on the distribution of power across many 
frequency ranges.

The power spectral density (PSD) of gamma band (30 + Hz) 
emerged as the most discriminative feature, showing statistically 
significant amplitude increases during seizures (p < 0.05, Figure 7). 
This aligns with neurophysiological evidence linking high-frequency 
oscillations to epileptic hyperexcitability. The theta band (4–8 Hz) also 
demonstrated utility, though with marginally lower significance. 
Other bands (delta, alpha, and beta) contributed minimally, as their 
PSD distributions overlapped between seizure and non-seizure states.

Spectral entropy, quantifying signal irregularity, effectively 
captured abrupt changes in EEG complexity during seizures. It 
achieved a feature importance score of 0.180.18 in the Random Forest 
(RF) model, complementing gamma band analysis to reduce false 
positives caused by non-stationary noise.

Commonly utilized in EEG analysis, these characteristics have 
been shown to be useful in distinguishing and defining many brain 
states and disorders, including epilepsy. Table  4 summarizes the 
obtained characteristics; they will be  input for 
categorization techniques.

3.4 Modeling

In the classification stage, the EEG data was analyzed using four 
models: RF, GB, KNN, LSTM, and LRCN. The RF constructs multiple 
decision trees and uses majority voting for classification, well-suited 

for high-dimensional, nonlinear data like EEG signals. Gradient 
Boosting iteratively combines weak models to capture complex 
patterns. LSTM, a recurrent neural network variant, can learn long-
term dependencies in sequential data such as EEG for identifying 
seizure patterns. LRCN combines convolutional layers for spatial 
feature extraction with LSTM for temporal modeling, making it 
effective for seizure detection and classification from EEG recordings. 
The specific architectures of these diverse machine learning and deep 
learning models were previously detailed, Table  5 lists EEG 
classification models. Justifications for each model in the context of 
EMG data classification between normal and seizure cases:

3.4.1 Random Forest model
Random Forest Classifier excels in handling complex EMG data 

due to its ensemble nature. Combining many decision trees, each 
tuned on random selections of data and attributes, helps to detect 
complex trends in muscle activity signals. This approach is particularly 
effective for seizure detection, as it can identify subtle differences in 
EMG characteristics. The model’s feature importance ranking also 
provides insights into which aspects of the EMG signal are most 
predictive of seizures, aiding in both classification and 
physiological understanding.

3.4.2 Gradient boost model
Gradient Boosting is well-suited for EMG classification due to its 

sequential learning process. Approaches the building of a series of 
weak learners, generally decision trees, in a stage-by-stage manner, 
with the main aim of fixing errors generated by previous models. This 
approach allows it to capture fine-grained differences in EMG patterns 
between normal and seizure states. Gradient Boosting’s ability to 
handle non-linear relationships and its robustness to outliers make it 

FIGURE 6

Spectral analysis of EEG signals of seizure and non-seizure cases.
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effective in dealing with the variability often present in EMG data 
during seizures.

3.4.3 K-nearest neighbors model
The K-Nearest Neighbors model is valuable for EMG classification 

due to its non-parametric nature. It does not assume any specific 

distribution of the data, making it adaptable to the complex and often 
non-linear patterns in EMG signals during seizures. By classifying 
based on the majority class of nearby data points in the feature space, 
KNN can effectively capture local patterns in muscle activity. This 
local decision-making is particularly useful for identifying seizure-
related EMG characteristics that may vary across patients or types 
of seizures.

FIGURE 7

PSD for the alpha, beta, theta, and gamma bands between epileptic and non-epileptic patients.

TABLE 4  EEG extracted features summary.

Feature Description

Delta PSD in the delta frequency band (0.5–4 Hz)

Theta PSD in the theta frequency band (4–8 Hz)

Alpha PSD in the alpha frequency band (8–12 Hz)

Beta PSD in the beta frequency band (13–30 Hz)

Gamma PSD in the gamma frequency band (above 30 Hz)

Spectral entropy Measure of the complexity or irregularity of the EEG signal

TABLE 5  EEG classification models.

No Model

1 Random Forest Model

2 Gradient Boost Model

3 K-Nearest Neighbors Model

4 LSTM Model

5 LRCN Model
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3.4.4 LSTM model
Long Short-Term Memory networks can process sequential data 

and record long-term dependencies, they are especially appropriate 
for EMG data interpretation. EMG signals during seizures often 
exhibit temporal patterns that evolve over time. LSTM’s gating 
mechanism allows it to selectively remember or forget information, 
making it adept at identifying relevant temporal features in the EMG 
signal that distinguish seizure activity from normal muscle function. 
This temporal modeling capability is crucial for detecting the onset 
and progression of seizures in EMG data.

3.4.5 LRCN model
The LRCN combines the strengths of both CNNs and LSTMs, 

making it highly effective for EMG-based seizure detection. The CNN 
component excels at extracting spatial features from the EMG signal, 
potentially identifying characteristic frequency patterns or signal 
morphologies associated with seizures. The LSTM layer then processes 
these features sequentially, capturing the temporal evolution of muscle 
activity during seizure events. This dual approach allows LRCN to 
simultaneously analyze both the spatial and temporal aspects of EMG 
data, potentially leading to more accurate and robust seizure detection.

4 Results and discussion

In this subsection, we  explore the performance of EEG 
classification for seizure detection using four models: GB, RF, K-NN, 
LSTM, and LRCN. The objective was to assess and compare their 
effectiveness in identifying seizures from EEG data. The results are 
detailed in the accompanying tables and figures, which present the 
potential of these models in advancing neurological diagnostics. 
Table 5 outlines the EEG classification models.

4.1 Evaluation matrix

The ML and DL model were evaluated by using evaluation 
matrix. The Equations 1–5 of evaluation metrics can be defined 
as follows:
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4.2 Environment setup

All experiments were conducted on a laptop with the following 
specifications: Intel Core i7 processor, 16GB RAM, and an NVIDIA 
GeForce RTX 3070 GPU with 8GB VRAM. The software environment 
consisted of Python 3.9 running within Anaconda, with TensorFlow 
version 10.1.2 employed for deep learning tasks.

4.3 Results of the GB model

This work classified epileptic and non-epileptic patients using 
Gradient Boosting (GB) model depending on EEG features. With an 
accuracy of 0.750, a precision of 0.756, a recall of 0.743, an F1 score of 
0.749, and a ROC AUC score of 0.835 the model was able to 
differentiate between the two groups. With 51,964 true negatives, 
51,636 true positives, 16,701 false positives, and 17,850 false negatives, 
the confusion matrix as shown in Figure  8 further exposed the 
performance of the model. These findings show how well the model 
detects trends in EEG data; although there is potential for development 
in lowering misclassifications, especially in terms of false positives and 
false negatives, overall the model performs really well.

These results demonstrate the potential of the GB model in 
accurately classifying epileptic and non-epileptic patients while also 
highlighting areas for further improvement through feature 
engineering, hyperparameter tuning, or ensemble methods, as shown 
in Figure 9.

4.4 Results of the RF model

As shown in Figure 10, the RF model was used with EEG traits to 
divide people into epileptic and non-epileptic groups. With an 
accuracy of 0.999, a precision of 1.000, a recall of 0.998, an F1 score of 
0.991, and an ROC score of 1.000, the RF model showed 
extraordinary performance.

The confusion matrix revealed 68,631 true negatives, 69,358 true 
positives, 34 false positives, and 128 false negatives. These exceptional 
results demonstrate the efficacy of the RF model in accurately 
classifying epileptic and non-epileptic patients based on the extracted 
EEG features, although further validation on independent datasets 
may be necessary to ensure generalizability, as shown in Figure 11.

4.5 Results of the K-NN

Normal from epileptic EEG data were distinguished using a 
K-NN classifier. Assigning the class of a data point depending on 
the majority class of its “k” closest neighbors in the feature space, 
K-NN is a basic, non-parametric classification method. This work 
selected K-NN with (𝑘 = 5), therefore classifying every EEG sample 
according on the majority vote of its five closest neighbors in the 
feature space.
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The confusion matrix revealed that, out of the total predictions, 
65,924 were true negatives and 67,084 were true positives, indicating 
that the majority of the normal and seizure cases were correctly 
identified. However, there were also 2,879 false positives and 2,264 
false negatives, as shown in Figure 12.

The KNN model was shown scored with high accuracy (96.3%) 
indicates that the model correctly classified a substantial majority of 
the EEG signals. According the precision metric the KNN achieved 
95.9% suggests that the model has a low rate of false positives, while 
recall of 96.7% indicates a low rate of false negatives. The ROC score 
of 99.02% further validates the model’s excellent ability to distinguish 
between normal and seizure cases, as illustrated in Figure 13.

These results show that although the model is highly accurate, 
there are still instances of misclassification, which is an area for 
potential improvement.

4.6 Results of the LSTM model

In this experiment, classified epileptic and non-epileptic 
patients based on EEG signal characteristics using an LSTM 
neural network model. The LSTM model turned out with a 
0.9906 accuracy. Table 6 gives the LSTM model’s parameters. As 
shown in Figure 14 the confusion matrix indicated 68,190 true 

FIGURE 8

Confusion matrix of EEG data using the GB model.

FIGURE 9

ROC AUC score of EEG data using the GB model.
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positives, 613 erroneous positives, 68,669 true negatives, and 679 
false negatives.

Using collected EEG data, the LSTM model showed remarkable 
accuracy of 99.06%, a precision of 99.12%, a recall of 99.02% and an 
F1 score of 99.07% for both epileptic and non-epileptic individuals. 
These findings demonstrate the great capacity of the model for 
precisely differentiating between the two classes, therefore stressing its 
possible uses in EEG-based diagnosis systems. Nevertheless, as 
Figure 15 shows, the LSTM was optimized and testing across EEG 

datasets and was shown the improvement in the generalizability of the 
model and guarantee its resilience in practical conditions.

4.7 Results of the LRCN model

Based on the features of the EEG data, this work categorized 
people as either epileptic or non-epileptic using an LRCN model. The 
LRCN model’s findings show that the accuracy was 0.9906; the 

FIGURE 10

Confusion matrix of EEG data using the RF model.

FIGURE 11

ROC AUC score of EEG data using the RF model.
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precision was 0.9912; the recall was 0.9902; the F1 score was 0.9907. 
LRCN model characteristics and values (see Table 7).

Strong performance in categorizing seizure and non-seizure 
episodes from EEG data reveals in the confusion matrix for the 
LRCN model. The model fairly identifies most instances with 
68,678 TP and 69,187 TN. Whereas (FP = 161) reveal minor 
misclassification of non-seizure events, false negatives (FN = 125) 
indicate a limited proportion of missed seizures. With low error, 
the high TP and TN values indicate outstanding sensitivity and 
accuracy, so the model is very dependable for monitoring epilepsy 
(see Figure 16).

These results demonstrate the potential of the LRCN model in 
accurately classifying epileptic and non-epileptic patients based on the 

extracted EEG features, although further optimization and 
generalizability testing may be required, as shown in Figure 17.

4.8 Summary of the experimental results of 
the EEG classification

With almost perfect accuracy, precision, recall, and F1 score, the RF 
model exceeded the other models based on the testing findings in 
Section 4.3. Closely matching the RF model, the deep learning models, 
LSTM and LRCN, also showed outstanding performance with using 
various evaluation metrics. Though it performed really well, the GB 
model had somewhat worse measures than the other versions. With 

FIGURE 12

Confusion matrix of EEG data using the K-NN model.

FIGURE 13

ROC AUC score of EEG data using the K-NN model.
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FIGURE 14

Confusion matrix of EEG data using the RF model.

regard to reliably categorizing epileptic and non-epileptic patients based 
on EEG signal characteristics, the RF, LSTM, and LRCN models shown 
overall better performance; the RF model ranked highest in this regard 
in this research. Table 8 and Figure 18 help to show the outcomes.

4.9 EEG monitoring for detecting seizure 
behavior comparative

With a variety of techniques producing encouraging results, the 
subject of seizure detection and classification based on EEG data has 
experienced major developments recently. This review of 23 studies, 
along with our own research, highlights the diversity of techniques 
being applied to this critical medical challenge.

Traditional machine learning approaches continue to demonstrate 
their effectiveness, particularly when combined with innovative 
feature extraction methods. For instance, Rani and Chellam (8) 
achieved 99.60% accuracy using their Peak Signal Features method 
with an SVM classifier on the Bonn University dataset. Similarly, 
Almustafa (9) achieved 97.08% accuracy using a Random Forest 
classifier. These results underscore the continued relevance of classical 
machine learning techniques when applied with careful 
feature engineering.

Deep learning methods have shown remarkable performance in 
automatically learning relevant features from raw EEG data. Liu et al. 
(10) achieved a 97.4% F1-score using a hybrid bilinear deep learning 
network on the Temple University Hospital dataset, while Zhao et al. 
(11) reached 99.30% accuracy with a Linear Graph Convolution 
Network on the CHB-MIT dataset. These results demonstrate the 
power of deep learning in capturing complex patterns in EEG signals 
without the need for extensive feature engineering.

Hybrid and novel approaches have also yielded impressive results. 
Brari and Belghith (17) achieved 100% accuracy on the Bonn 
University dataset using a framework leveraging chaos and fractal 
theories. Kantipudi et al. (19) reported 99.6% detection performance 
with their complex model integrating wavelet-based filtering, 
bio-inspired optimization, and a specialized neural network. These 
innovative approaches show the potential for pushing the boundaries 
of seizure detection performance.

Our study, which achieved 99.9% accuracy using a Random Forest 
Classifier on a standard online dataset, aligns with and even surpasses 
many of the high-performing methods in the literature. This result 
underscores the potential of ensemble methods like Random Forest 
when applied to well-preprocessed EEG data.

The variability in datasets used across studies presents a challenge 
in directly comparing results. While some datasets like CHB-MIT and 
Bonn University are frequently used, allowing for some comparison, 
differences in preprocessing, feature extraction, and evaluation 
metrics can still make direct comparisons difficult. This highlights the 

TABLE 6  LSTM model parameters using EEG data.

Parameter Details

LSTM Layer 1,024

LSTM Layer 512, (BatchNormalization ())

LSTM Layer 256

Dense Lyer 34

Dense Lyer 1

Activation Function (Output Layer) sigmoid

Optimizer RMSprop

Learning Rate 0.001

Callback EarlyStopping

Patience for No Improvement 

(EarlyStopping)

5 epochs

Epoch Training Stopped At 67 epochs

Maximum Epochs 150 epochs

Batch Size 1,024
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need for standardized benchmarks and evaluation protocols in 
the field.

It’s noteworthy that while many studies report very high accuracies 
(>99%), real-world performance may differ due to factors such as 

inter-patient variability, noise in clinical settings, and the challenge of 
detecting seizure onset rather than ongoing seizure activity. Future 
research should focus on validating these high-performing models in 
diverse clinical settings and on larger patient populations.

The trend towards multimodal approaches, as seen in Hamlin 
et al. (26), and privacy-preserving methods, as in Ein Shoka et al. (20), 
points to future directions for the field. Integrating data from multiple 
sensor types and ensuring patient privacy will be  crucial for the 
widespread adoption of automated seizure detection systems in 
clinical practice.

While the study demonstrates high accuracy (99.9%) in seizure 
detection, translating these models to wearable devices faces critical 
hurdles. Computational efficiency demands significant processing 
power, conflicting with the resource constraints of wearables. Real-
time implementation requires low-latency pipelines, necessitating 
streamlined preprocessing and hardware-accelerated signal 
processing. Power consumption, patient-specific variability, and 
ambulatory noise (e.g., motion artifacts) further complicate reliability. 
Regulatory compliance, cost barriers, and the need for fail-safe 
mechanisms to minimize false alarms add layers of complexity. 
Addressing these challenges hinges on hardware sensor systems to 
balance accuracy with practicality for clinical adoption.

In conclusion, while significant progress has been made in seizure 
detection and classification, with our study contributing to the high-
performance benchmarks, there remains room for improvement in 
areas such as real-time detection, generalizability across patients, and 
interpretability of complex models. Future work should focus on these 

FIGURE 15

Accuracy and loss of EEG data using the LSTM model.

TABLE 7  LRCN model parameters using EEG data.

Parameter Details

ConvD1 filters = 64, kernel = 3, activation = ‘relu’

Custom Layer Max Pooling

LSTM Lyer 1,024

LSTM Layer 512

LSTM 128

Dense Lyer 1

Activation Function (Output Layer) sigmoid

Optimizer RMSprop

Learning Rate 0.001

Callback EarlyStopping

Patience for No Improvement 

(EarlyStopping)

5 epochs

Epoch Training Stopped At 69 epochs

Maximum Epochs 150 epochs

Batch Size 128
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FIGURE 16

Confusion matrix of EEG data using the LRCN model.

FIGURE 17

Accuracy and loss of EEG data using the LRCN model.

38

https://doi.org/10.3389/fmed.2025.1577474
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Al-Adhaileh et al.� 10.3389/fmed.2025.1577474

Frontiers in Medicine 19 frontiersin.org

challenges to bridge the gap between research performance and 
clinical applicability (see Table 9).

To contextualize the performance of our proposed framework, 
we provide a detailed comparison with recent state-of-the-art methods in 

EEG-based seizure detection. Table 10 summarizes key metrics, datasets, 
and methodologies, emphasizing the strengths of our approach.

Deploying EEG-based seizure detection in clinical settings faces 
computational and practical hurdles. While our Random Forest (RF) 

TABLE 8  EEG classification results summary.

Model Accuracy % Precision % Recall % F1 score %

GB 75.0 75.6 74.3 74.9

KNN 96.3 95.9 96.7 96.3

RFC 99.8 99.9 99.8 99.8

LSTM 99.0 99.1 99.0 99.0

LRCN 99.7 99.8 99.7 99.7

FIGURE 18

EEG classification results summary.

TABLE 9  EEG monitoring for detecting seizure behavior comparative.

Study Model Results

Our study Random forest classifier 99.9% accuracy

Liu et al. (10) Hybrid bilinear deep learning network 97.4% F1-score (TUH), 97.2% F1-score (EPILEPSIAE)

Fergus et al. (6) k-NN classifier 88% sensitivity and specificity

Raghu et al. (7) SVM with SDI feature 95.80–97.53% sensitivity, 0.4–0.57/h false detection rate

Rani and Chellam (8) SVM with Peak Signal Features 99.60% accuracy

Almustafa (9) Random Forest 97.08% accuracy

Zhao et al. (11) Linear Graph Convolution Network 99.30% accuracy

Gabeff et al. (12) CNN 0.873 F1-score, 90% seizure detection

Chou et al. (13) CNN (various architectures) 97.7% accuracy (best model)

Kunekar et al. (15) LSTM 97% validation accuracy

Mert and Akan (3) Novel EEG analysis methodologies 97.89% accuracy

Brari and Belghith (17) Chaos and fractal theory-based ML 100% accuracy

Shah et al. (18) Random Neural Networks with DWT 93.27% (CHB-MIT), 99.84% (Bonn) accuracy

Kantipudi et al. (19) FLHF, GBSO, and TAENN 99.6% detection performance

Zeng et al. (21) Hybrid deep and shallow learning Nearly 100% accuracy

Polat and Nour (24) SVM with various kernels 76.70–82.50% accuracy

Hamlin et al. (26) LDA with non-cerebral sensors 96% mean ROC value
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model achieves 99.9% accuracy with low latency (<10 ms) on CPUs, 
deep learning (DL) models like LSTM/LRCN require GPUs and exhibit 
higher latency (80–120 ms), limiting real-time use in wearables. 
Scalability and power constraints further favor RF, which processes 
100 + EEG streams efficiently (~2 W) compared to DL’s GPU-dependent 
demands (~150 W). Additionally, long-term EEG monitoring poses 
comfort challenges, as patients must wear sensor caps for extended 
periods—a barrier for ambulatory use but manageable for admitted 
patients under supervision. For hospitalized individuals, continuous 
EEG provides critical insights despite discomfort, enabling timely 
interventions. Future work must address hardware miniaturization (e.g., 
flexible, wireless electrodes) and hybrid models to balance accuracy, 
comfort, and regulatory compliance (e.g., IEC 62304). These steps are 
vital to translate lab advancements into bedside solutions.

5 Conclusion

This study demonstrates that EEG signals remain a robust source 
for epileptic seizure detection, with the RF classifier achieving a 
remarkable 99.9% accuracy. Although deep learning models, such as 
LSTM and LRCN, also performed well, the superior results of RF 
underscore the relevance of traditional machine learning approaches 
in clinical seizure detection. These findings indicate that RF offers a 
viable solution for practical EEG-based seizure monitoring due to its 
accuracy and generalizability. However, the practical challenges 
associated with continuous, long-term EEG monitoring necessitate 
further exploration of alternative non-invasive monitoring techniques. 
Future research should focus on reducing the number of electrodes 
required for EEG-based detection without compromising accuracy, 
investigate dry electrode technologies, and integrate EEG with other 
modalities, such as video and EMG, for more comprehensive seizure 
monitoring solutions. Moreover, addressing the challenges of real-time 
detection and generalizability across diverse patient populations 
remains paramount for the widespread clinical adoption of EEG-based 
seizure detection systems.
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Introduction: The pressing need for accurate diagnostic tools in the medical

field, particularly for diseases such as brain tumors and Alzheimer’s, poses

significant challenges to timely and e�ective treatment.

Methods: This study presents a novel approach to MRI image classification by

integrating transfer learning with Explainable AI (XAI) techniques. The proposed

method utilizes a hybrid CNN-VGG16 model, which leverages pre-trained

features from the VGG16 architecture to enhance classification performance

across three distinct MRI datasets: brain tumor classification, Alzheimer’s

disease detection, and a third dataset of brain tumors. A comprehensive

preprocessing pipeline ensures optimal input quality and variability, including

image normalization, resizing, and data augmentation.

Results: The model achieves accuracy rates of 94% on the brain tumor

dataset, 81% on the augmented Alzheimer dataset, and 93% on the third

dataset, underscoring its capability to di�erentiate various neurological

conditions. Furthermore, the integration of SHapley Additive exPlanations (SHAP)

provides a transparent view of the model’s decision-making process, allowing

clinicians to understand which regions of the MRI scans contribute to the

classification outcomes.

Discussion: This research demonstrates the potential of combining advanced

deep learning techniques with explainability to improve diagnostic accuracy and

trust in AI applications within healthcare.

KEYWORDS

MRI image classification, transfer learning, explainable AI (XAI), hybrid CNN-VGG16

model, brain tumors, Alzheimer’s disease, SHAP, medical imaging
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1 Introduction

Brain tumors constitute a critical subset of central nervous

system (CNS) disorders, with pathologies ranging from slow-

growing benign masses to highly aggressive malignant neoplasms

(1). Malignant types such as glioblastomas and anaplastic

astrocytomas are particularly concerning due to their rapid

proliferation, high invasiveness, and poor prognosis (2). The five-

year relative survival rate for adults remains around 35.6%. These

metastatic tumors are especially challenging due to their rapid

infiltration into brain parenchyma and resistance to conventional

therapies (3). The World Health Organization (WHO) classifies

CNS tumors into grades I–IV based on histopathological,

immunohistochemical, and molecular features (4), underscoring

the need for early and accurate grading to guide clinical

interventions.

Magnetic Resonance Imaging (MRI) remains the gold standard

for brain tumor diagnosis and grading due to its superior

soft tissue contrast and non-invasive nature (5). Advanced

MRI modalities: such as T1-weighted (T1), contrast-enhanced

T1 (T1C), T2-weighted (T2) (6), Fluid Attenuated Inversion

Recovery (FLAIR) (7), Diffusion Tensor Imaging (DTI), Perfusion

MRI, and MR Spectroscopy (MRS) (8) offer rich, multi-

parametric information on tumor morphology, oedema, necrosis,

vascularity, and infiltration (9). However, themanual interpretation

of these high-dimensional images is time-consuming, prone

to inter-observer variability, and particularly burdensome in

resource-constrained settings with radiologist shortages (10).

Tumor heterogeneity and overlapping imaging phenotypes further

complicate diagnosis, prompting increased adoption of automated

analysis tools powered by AI (11).

In parallel, neurodegenerative disorders like Alzheimer’s

disease (AD) pose unique diagnostic challenges. AD is

characterized by progressive cognitive decline and structural

brain changes such as cortical thinning and hippocampal

atrophy, visible in MRI scans (12). Due to the limited availability

of labeled data for early AD diagnosis, data augmentation

techniques such as affine transformations, intensity scaling, noise

injection, and GAN-based synthesis have been employed to

improve model robustness (13). These enriched datasets also

facilitate sequential transfer learning, enabling the repurposing

of knowledge from AD-related imaging to other neurological

domains, including brain tumor classification (14). Convolutional

Neural Networks (CNNs) have tremendously succeeded in medical

image classification, segmentation, and anomaly detection. Pre-

trained architectures such as VGG16, ResNet, and DenseNet,

initially developed for natural image datasets like ImageNet,

can be fine-tuned via transfer learning to perform effectively in

medical contexts (15).

This work proposes a novel hybrid framework that integrates a

pre-trained VGG16 backbone with custom CNN layers and applies

a sequential transfer learning strategy across three structurally

distinct MRI datasets: a brain tumor, Alzheimer’s disease, and

an independent validation set. This approach leverages domain-

relatedness in neuroimaging to enhance feature generalization and

classification accuracy across multiple brain pathologies. Despite

their high predictive performance, deep learning models are often

criticized for their “black-box” nature, which limits interpretability

and clinical trust (16). To overcome this limitation, we incorporate

SHapley Additive exPlanations (SHAP), an explainable AI (XAI)

method that attributes the model’s output to specific pixels or

regions in the input image. SHAP values offer visual insight into

the regions most influential to model decisions, aligning them with

anatomical structures and facilitating clinician interpretation. By

striking a balance between high performance and interpretability,

our framework presents a promising solution for real-world

deployment in neuroimaging diagnostics.

This work proposes a novel hybrid framework that integrates a

pre-trained VGG16 backbone with custom CNN layers and applies

a sequential transfer learning strategy across three structurally

distinct MRI datasets: a brain tumor, Alzheimer’s disease, and

an independent validation set. This approach leverages domain-

relatedness in neuroimaging to enhance feature generalization and

classification accuracy across multiple brain pathologies. Despite

their high predictive performance, deep learning models are often

criticized for their “black-box” nature, which limits interpretability

and clinical trust (16). To overcome this limitation, we incorporate

SHapley Additive exPlanations (SHAP), an explainable AI (XAI)

method that attributes the model’s output to specific pixels or

regions in the input image. SHAP values offer visual insight into

the regions most influential to model decisions, aligning them with

anatomical structures and facilitating clinician interpretation. By

striking a balance between high performance and interpretability,

our framework presents a promising solution for real-world

deployment in neuroimaging diagnostics.

The proposed method begins with preprocessing all datasets,

including normalization, resizing, augmentation, and partitioning

into train/validation/test splits. A hybrid CNN architecture is

then constructed by combining frozen VGG16 features with

custom convolutional and dense layers. The model is trained on

a brain tumor dataset and then fine-tuned sequentially on an

Alzheimer’s dataset and a third validation dataset using transfer

learning. Each stage involves model reconfiguration and controlled

unfreezing of layers. Finally, SHAP-based explainability is applied

to visualize model decisions, and performance is evaluated using

standard metrics such as accuracy, precision, recall, F1-score, and

confusion matrices.

Figure 1 illustrates the concept of transfer learning, a technique

in machine learning where knowledge gained from a source

domain is utilized to enhance learning in a target domain. The

source domain comprises a large dataset, such as ImageNet, which

contains over a million images. A pre-trained model is developed

using this extensive dataset, comprising three key components:

early layers for feature extraction, middle layers, and task-specific

layers. In transfer learning, the early layers that capture general

features like edges and textures are transferred to the model

for the target domain, where data is limited, such as a medical

image dataset with only hundreds of samples. These layers become

“frozen” in the fine-tuned model, meaning they are not updated

during training on the small dataset. The middle layers are fine-

tuned, and the adjustments are based on the new data to capture

domain-specific features better. Finally, the task-specific layers

from the source model are replaced with new ones tailored to the

target domain’s specific task.
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FIGURE 1

How transfer learning works.

1.1 Research contributions

The major research contributions of this study are

the following:

• A novel approach that leverages a pre-trained VGG16 model

combined with custom CNN layers, using sequential transfer

learning across three distinct MRI datasets (brain tumor,

Alzheimer’s, and validation) to improve classification accuracy

while requiring minimal training data.

• This study demonstrates effective knowledge transfer

between different neurological conditions (from brain

tumor classification to Alzheimer’s detection), showing

that features learned from one medical imaging domain

can enhance performance in related but distinct diagnostic

tasks. A comprehensive preprocessing pipeline, including

image normalization, resizing, and data augmentation,

is implemented to improve model robustness and

generalizability across datasets with varying characteristics.

• This research incorporates SHapley Additive exPlanations

(SHAP) analysis to provide transparent, pixel-level attribution

of model decisions, addressing the “black box” problem

of deep learning in healthcare by enabling clinicians

to understand which regions of MRI scans influence

diagnostic classifications.

1.2 Research organization

This research is organized into the following main sections.

Section 2 presents related work, discussing recent advances in

deep learning for medical imaging, the effectiveness of transfer

learning, and the growing importance of XAI in healthcare.

Section 3 outlines the proposed framework, detailing integrating

pre-trained convolutional neural networks with XAI methods,

such as Grad-CAM, to enhance performance and interpretability.

Section 4 presents the experimental analysis, which includes

dataset description, evaluation metrics, and results comparing

the proposed model with existing techniques. Finally, Section 5

concludes the study by summarizing key findings and suggesting

directions for future research.

2 Related work

This section presents related work, discussing recent advances

in deep learning for medical imaging, the effectiveness of transfer

learning, and the growing importance of XAI in healthcare.

Tuncer et al. (17) proposed a lightweight convolutional neural

network named FiboNeXt for Alzheimer’s disease classification

using MRI images. The model was designed by integrating

ConvNeXt architecture elements, attention, and concatenation

layers. The dataset was divided into four classes and included

both original and augmented versions, where the augmented data

was used for training and the original for testing. The primary

aim was to achieve high accuracy with fewer trainable parameters.

Experimental results demonstrated that FiboNeXt achieved 95.40

and 95.93% validation accuracy on two datasets, while test accuracy

reached 99.66 and 99.63%, respectively, highlighting the model’s

efficiency and generalization capability. An optimized hybrid

transfer learning (TL) framework was introduced by Lasagni

et al. (18) to classify brain tumors using MRI images. The

approach combined advanced preprocessing techniques, such as

noise reduction and contrast enhancement, with an ensemble

of pretrained deep learning models, VGG16 and ResNet152V2.

The framework achieved an impressive classification accuracy of

99.47% on a complex four-class dataset. Explainable AI (XAI)

methods like SHAP and Grad-CAM were employed to ensure

transparency and clinical trust. These tools provided visual and
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quantitative insights into model predictions, facilitating better

interpretability and making the model more suitable for real-world

clinical applications.

Bhaskaran and Datta (19) investigated the use of 3D

convolutional neural networks (3D-CNNs) for detecting focal

cortical dysplasia (FCD) from a dataset containing MRI scans of

170 individuals (85 patients and 85 controls). They studied the

advantages of cross-modality transfer learning using pretrained

ResNet variants (ResNet-18, -34, and -50, trained initially on

segmentation tasks). Transfer learning significantly improved

classification performance to up to 80.3%. Moreover, they also

introduced a novel Heat-Score, a combination of Grad-CAM,

to evaluate the model interpretability. The model was able

to fill the gap between AI predictions and expert diagnostic

insights by using this metric, showing the model’s effectiveness

in identifying clinically relevant seizure zones. Tonni et al. (20)

used the InceptionV3 architecture to classify brain MRI images

into three tumor types (meningioma, glioma and pituitary) with

different embeddings initialization for imagenet and the studied

data. Several open-source XAI tools were integrated to address

the challenge of model interpretability, including LIME, SHAP,

and Grad-CAM. The model attained a classification accuracy

of 93% and an F1-score of 0.93. Among the XAI tools, SHAP

provided the highest level of explainability at ∼60%, aligning

better with expert-identified tumor regions. In contrast, LIME and

Grad-CAM explained <50% of the cases. The findings revealed

that non-tumor-related features had a notable impact on model

predictions, suggesting a need for further refinement in feature

attribution techniques.

Nahiduzzaman et al. (21) proposed a novel framework that

integrates a lightweight parallel depthwise separable convolutional

neural network (PDSCNN) with a hybrid ridge regression extreme

learning machine (RRELM) for classifying four brain tumor

types (glioma, meningioma, pituitary, and no tumor) using

MRI images. The approach utilizes contrast-limited adaptive

histogram equalization (CLAHE) to enhance tumor feature

visibility, followed by PDSCNN for efficient tumor-specific

feature extraction with reduced computational cost. To improve

classification performance, a ridge regression-enhanced ELM

(RRELM) is introduced, addressing the limitations of traditional

ELMs. Comparative analysis with state-of-the-art models revealed

that the proposed PDSCNN-RRELM achieved superior results,

with average precision, recall, and accuracy reaching 99.35%,

99.30%, and 99.22% through five-fold cross-validation. Vanaja et al.

(22) proposed a diagnostic framework for Alzheimer’s Disease

(AD) by leveraging machine learning and a customized deep

convolutional neural network (cDCNN) with three convolutional

layers applied to MRI data. The analysis incorporates two

datasets, Alzheimer’s Disease Neuroimaging Initiative (ADNI) and

a Kaggle dataset, to examine diverse subject groups and imaging

characteristics linked to AD pathology. Tomitigate class imbalance,

the Synthetic Minority Over-sampling Technique (SMOTE) is

employed. Traditional machine learning classifiers such as support

vector machine, k-nearest neighbor, random forest, decision trees,

and XGBoost are evaluated alongside the cDCNN model, which

focuses on key MRI biomarkers of AD. The cDCNN achieved 87%

accuracy on the ADNI dataset despite preprocessing challenges

due to converting DICOM images to JPEG, which affected

image quality.

Joshi et al. (23) introduced a transfer learning approach

for classifying Parkinson’s disease using the imbalanced PPMI

dataset, leveraging Big Transfer (BiT) models. These pre-trained

models utilize Group Normalization with Weight Standardization

and adopt BiT-HyperRule for effective fine-tuning across diverse

datasets. Various BiT architectures, including BiT-S and BiT-M

variants, were evaluated. The best-performing model, BiT-M152x4,

achieved 86.71% accuracy, surpassing the previous state-of-the-

art RA-GCN model (76%). Additionally, the same BiT models

were applied to the imbalanced BCCD dataset, where BiT-M152x4

again outperformed VGG16 (98.52% vs. 74%), demonstrating the

versatility and robustness of the proposed approach. Bin Shabbir

Mugdha andUddin (24) conducted a comparative analysis between

a newly developed Convolutional Neural Network (CNN) model

and several pre-trained models using transfer learning, including

VGG-16, ResNet-50, AlexNet, and Inception-v3. VGG-16 achieved

the best performance among all models with a test accuracy of

95.52%, training accuracy of 99.87%, and a validation loss of

0.2348. ResNet-50 followed with 93.31% test accuracy, 98.78%

training accuracy, and 0.6327 validation loss. The custom CNN

model achieved 92.59% test accuracy, 98.11% training accuracy,

and a validation loss of 0.2960. Inception-v3 showed the lowest

performance with 89.40% test accuracy and a validation loss

of 0.4418.

Khedgaonkar et al. (25) proposed a Graph Neural Network

(GNN)-based approach for brain MRI classification, addressing

the limitations of traditional methods in integrating spatial and

frequency domain features. By applying Fourier, Gabor, and

convolutional transformations, key features are extracted and fused

into a unified representation. MRI images are modeled as nodes

in a graph, capturing structural and semantic relationships. The

GNN leverages this graph structure to learn discriminative features

through neighborhood aggregation. The method demonstrated

superior performance across precision, accuracy, recall, specificity,

AUC, and delay, outperforming conventional techniques. Ilani et al.

(26) focused on classifying brain tumors glioma, meningioma, and

pituitary using MRI scans, leveraging the U-Net architecture for

segmentation alongside transfer learning-based CNN models such

as Inception-V3, EfficientNetB4, and VGG19. Model performance

was evaluated using F-score, recall, precision, and accuracy metrics.

U-Net outperformed other models, achieving 98.56% accuracy, a

99% F-score, 99.8% AUC, and 99% recall and precision. It also

maintained strong generalization with 96.01% accuracy in cross-

dataset validation using an external cohort. The results highlight U-

Net’s effectiveness in precise brain tumor segmentation, supporting

early diagnosis and treatment planning.

Rasool et al. (27) proposed ResMHA-Net, a deep learning

framework combining ResNet residual blocks with multi-head

attention to enhance glioma segmentation in 3D MRI. This

architecture captured long-range dependencies and emphasized

informative regions, improving the segmentation of complex

glioma sub-regions. It was trained and validated on BraTS 2018–

2021 datasets, with the best performance observed on BraTS 2021,

demonstrating strong adaptability. Predicted masks from three

datasets were used to extract radiomic features, which, along with

clinical data, trained an ensemble model for survival prediction.

This model employed a voting mechanism across multiple learners

and achieved a 73% overall survival prediction accuracy. Gasmi

et al. (28) developed an ensemble classification model integrating
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Vision Transformers (ViT) and EfficientNet-V2 to capture both

global and local features from brain MRI. Model outputs were

combined using a genetic algorithm-optimized weighted ensemble,

which selected the best combination tomaximize accuracy. Trained

on a labeled MRI dataset, the ensemble model outperformed

individual and traditional classifiers, achieving a 95% classification

accuracy with improved precision, recall, and F1-score.

While these studies have achieved high accuracy through

various architectures and optimization techniques, many face

limitations such as reliance on single-domain datasets, limited

transferability across neurological disorders, or insufficient

interpretability. Most existing works focus on enhancing

performance or providing visual explanations, but few offer a

unified framework that balances generalization, accuracy, and

explainability across diverse brain pathologies. Furthermore, many

methods lack rigorous evaluation of independent datasets, raising

concerns about overfitting and real-world applicability. Our work

addresses these gaps by proposing a multi-stage transfer learning

strategy that spans distinct MRI datasets and integrating SHAP for

transparent, clinically meaningful explanations.

3 Proposed framework

This section explains the proposed framework, detailing the

integration of pre-trained convolutional neural networks with

XAI methods like Grad-CAM to improve performance and

interpretability. The workflow of the proposed framework is

illustrated in Figure 2. The figure presents a comprehensive

pipeline for a Hybrid CNN-VGG16 model designed for MRI image

classification, which leverages transfer learning and explainable

artificial intelligence (XAI) techniques. The process is divided

FIGURE 2

Hybrid CNN-VGG16 model with transfer learning and XAI for MRI classification.
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into five primary stages: datasets, data preprocessing, model

architecture, training, and evaluation with XAI. The first stage

highlights the use of three distinct datasets: the Brain Tumor

Classification Dataset (with classes like glioma, meningioma,

no tumor, and pituitary), the Augmented Alzheimer MRI

Dataset (including mild, moderate, non-demented, and very mild

demented classes), and a third dataset which again covers brain

tumor categories. These datasets undergo different preprocessing

steps, such as image resizing, normalization, augmentation, and

dataset splitting into training, validation, and testing sets. Next,

the Hybrid CNN-VGG16 model architecture is detailed. It begins

with the VGG16 base model pretrained on ImageNet with frozen

layers used for feature extraction. On top of this base, custom

convolutional layers (including Conv2D, batch normalization, max

pooling, and dropout) are added to enhance learning. The final

part of the model is the classification head, which includes global

average pooling, dense layers, and a softmax layer for multi-class

output. The training process is conducted in three sequential

phases. It starts with initial training on the brain tumor dataset,

followed by two fine-tuning stages on the Alzheimer dataset and

then on the third dataset. The training uses the Adam optimizer,

categorical cross-entropy loss, and early stopping, with the best-

performing model weights preserved between each stage. Finally,

the Explainable AI (XAI) & Evaluation block involves model

interpretation and performance assessment. SHapley Additive

exPlanations (SHAP) provides feature attributions, allowing insight

into how the model makes decisions. Additionally, several

performance metrics such as accuracy, F1-score, precision, and

recall are used, and visual results are presented via confusion

matrices and SHAP plots.

Algorithm 1 defines a general process to adapt a pre-trained

source model MS to a new target task using the target dataset

DT . The source model is cloned to create the target model MT ,

after which selected layers are frozen based on the strategy φ. The

final output layer is replaced to align with the target labels, and

the dataset DT is split into training, validation, and test subsets.

Fine-tuning is performed over E epochs using gradient descent on

trainable parameters, with early stopping optionally applied. The

algorithm also supports the progressive unfreezing of layers for

staged fine-tuning. The final model is evaluated on the Dtest
T test

set. Specifically, the following terms are:MS denotes the pre-trained

source model, and MT is the target model initialized as a clone of

MS. The target dataset is represented as DT = {(xi, yi)}
NT
i=1, where

xi is an input sample, yi is the corresponding target label, and NT

is the total number of samples. The learning rate is denoted by

α, and E represents the number of training epochs. The strategy

φ defines which layers in MT will be frozen or trainable during

fine-tuning. Each mini-batch is represented by B = {(xj, yj)}
b
j=1,

where b is the batch size. For each sample xj in the batch, ŷj is

the predicted output by MT . The loss for a batch is computed

as L = 1
b

∑

j ℓ(ŷj, yj), where ℓ is a loss function such as cross-

entropy. The model parameters are denoted by θ , and gradient

descent updates them via θ ← θ − α∇θL. The dataset DT is

split into training, validation, and test sets, denoted by Dtrain
T , Dval

T ,

and Dtest
T , respectively. Additionally, if progressive unfreezing is

enabled, layers are incrementally unfrozen in S stages, with each

stage using its learning rate αs and epoch count Es.

Algorithm 2 details a pipeline for MRI image classification

using three datasets. The datasets are defined as follows: D1 =

Require: Source model MS, source dataset DS, target

dataset DT = {(xi,yi)}
NT
i=1, learning rate α, epochs

E, freezing strategy φ

Ensure: Fine-tuned model MT

1: function TRANSFERLEARN(MS, DT, α, E, φ)

2: MT ← MS

3: for each layer l in MT do

4: if l ∈ φ then

5: Freeze l

6: else

7: Make l trainable

8: end if

9: end for

10: Replace output layer of MT to match classes in

DT

11: Split DT into DtrainT , DvalT , DtestT

12: for e = 1 to E do

13: for each batch B = {(xj,yj)}
b
j=1 ⊂ DtrainT do

14: ŷj ← MT(xj) for all xj ∈ B

15: L← 1
b

∑

j ℓ(ŷj,yj)

16: Update θ ← θ − α∇θL for all trainable θ

17: end for

18: Evaluate MT on DvalT

19: if early stopping criteria met then

20: break

21: end if

22: end for

23: if progressive unfreezing enabled then

24: for s = 1 to S do

25: Unfreeze new layers per strategy φ

26: Fine-tune with reduced αs for Es epochs

27: end for

28: end if

29: Evaluate MT on DtestT

30: return MT

31: end function

Algorithm 1. Transfer learning for neural network models.

{(x1i , y
1
i )}

N1
i=1 corresponds to the Brain Tumor Dataset (BTD), D2 =

{(x2i , y
2
i )}

N2
i=1 is the Alzheimer Dataset (AD), and D3 = {(x

3
i , y

3
i )}

N3
i=1

is the third validation dataset (VD). Here, xki is an MRI image,

and yki is its corresponding label for dataset Dk with Nk samples.

The learning rate, batch size, and number of epochs for training

on dataset Dk are represented by αk, Bk, and Ek, respectively.

During preprocessing, each image xi is normalized by subtracting

the mean µ and dividing by the standard deviation σ , then

resized to a fixed height h and width w. Augmentation is applied

through transformation functions T(xi), and the dataset is split

into training, validation, and test subsets. The model is constructed

using a pretrained VGG16 backbone denoted as V , from which

features F are extracted. These features are frozen and connected to

additional convolutional, batch normalization (BN), max pooling,

dropout, global average pooling (GAP), and dense layers, ending

with a final dense output layer with C units representing the

number of classes. The function Train compiles the model with

the Adam optimizer (learning rate α) and categorical cross-entropy

(CCE) loss, then fits it on the training set and evaluates it on the
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Require: D1 = {(x
1
i,y

1
i)}

N1
i=1 (BTD), D2 = {(x

2
i,y

2
i)}

N2
i=1

(AD), D3 = {(x
3
i,y

3
i)}

N3
i=1 (VD)

Require: αk,Bk,Ek ∀k ∈ {1,2,3}

1: function PREPROCESS(D)

2: xi ←
xi−µ

σ
, xi ← resize(xi,h,w)

3: Daug ← D ∪ {(T(xi),yi)}

4: Dtrain,Dval,Dtest ← split(Daug)

5: return Dtrain,Dval,Dtest

6: end function

7: function BUILD(C)

8: V← VGG16(pretrained), F← extract(V)

9: freeze(F)

10: M← F→ Conv2D(256)→ BN→ MaxPool→ Drop(0.3)

11: M ← M → GAP → Dense(512) → Drop(0.5) →

Dense(C)

12: return M

13: end function

14: function TRAIN(M,Dtrain,Dtest,α,B,E)

15: compile(M,Adam(α),CCE)

16: fit(M,Dtrain,E,B)

17: eval(M,Dtest)

18: return M

19: end function

20: function FINETUNE(M,Dnew,C,α,B,E)

21: replace_head(M,C)

22: unfreeze(M.tail)

23: compile(M,Adam(α),CCE)

24: fit(M,Dnew,E,B)

25: return M

26: end function

27: function EXPLAIN(M,X)

28: E← DeepExplainer(M,Xbg)

29: for xi ∈ X do

30: ŷi ← argmaxM(xi)

31: Si ← E(xi)

32: plot(Si,xi)

33: end for

34: end function

35: function EVAL(M,D)

36: Compute: Acc, F1, Prec, Rec, conf_mat(M, D)

37: end function

38: D∗1 ← PREPROCESS(D1), D∗2 ← PREPROCESS(D2), D∗3 ←

PREPROCESS(D3)

39: M← BUILD(|C1|)

40: M← TRAIN(M,Dtrain1 ,Dtest1 ,α1,B1,E1)

41: M← FINETUNE(M,Dtrain2 , |C2|,α2,B2,E2)

42: M← FINETUNE(M,Dtrain3 , |C3|,α3,B3,E3)

43: EXPLAIN(M,Dtest3 )

44: EVAL(M,Dtest1 ), EVAL(M,Dtest2 ), EVAL(M,Dtest3 )

Algorithm 2. Hybrid CNN-VGG16 with TL and XAI for MRI classification.

test set. The function FineTune replaces the output head with

C classes, unfreezes the last layers for fine-tuning, recompiles the

model, and continues training. The Explain function employs

DeepExplainer from SHAP to generate saliency maps Si for

test samples xi, where Xbg is a background dataset used for

explanations. The predicted label for a sample is given by ŷi =

argmaxM(xi). The evaluation function computes standardmetrics:

accuracy (Acc), F1-score (F1), precision (Prec), recall (Rec), and

confusion matrices. These changes have been incorporated to

improve the transparency of the algorithm.

3.1 Experimental dataset

In this research, we utilized three datasets for classifying MRI

images by training deep learning models. The first dataset (https://

www.kaggle.com/datasets/sartajbhuvaji/brain-tumorclassification-

mri, accessed March 25, 2025) is based on Brain tumors, among the

most aggressive diseases affecting children and adults, comprising

85%–90% of all primary Central Nervous System (CNS) tumors.

Annually, ∼11,700 new brain tumor cases are reported, with

a 5-year survival rate of 34% for men and 36% for women.

Tumors are categorized into the following types: Glioma Tumor,

Meningioma Tumor, No Tumor, and Pituitary Tumor. The second

dataset (https://www.kaggle.com/datasets/uraninjo/augmented-

alzheimer-mri-dataset, accessed March 25, 2025) used in this

research is the Augmented Alzheimer’s MRI Dataset. It contains

brain MRI images classified into four categories: Non-Demented,

Very Mild Demented, Mild Demented, and Moderate Demented.

The dataset is organized into two main folders, one containing

the original images and the other containing augmented versions

to increase data variability. Both training and testing sets include

samples from all four classes. Augmented data helps improve

deep learning models’ performance and generalization capability

in classifying different stages of Alzheimer’s disease. The third

dataset (https://www.kaggle.com/datasets/sartajbhuvaji/brain-

tumor-classification-mri, accessed March 25, 2025) used in this

research is a combined brain tumorMRI dataset derived from three

sources: Figshare, the SARTAJ dataset, and the Br35H dataset.

It contains 7,023 MRI images classified into four categories:

Glioma, Meningioma, Pituitary, and No Tumor. Images for

the “No Tumor” class were taken from the Br35H dataset. Due

to misclassification issues observed in the Glioma class of the

SARTAJ dataset, which was identified through inconsistent model

performance and validation against other research, those images

were removed and replaced with correctly labeled images from the

Figshare dataset. This curated dataset supports the classification

of brain tumors, which can be either benign or malignant and

is critical for early diagnosis, given the life-threatening nature of

tumor-induced pressure within the skull.

3.2 Data preprocessing

The preprocessing process begins with loading each MRI

image and converting it from the default Blue-Green-Red (BGR)

color format to the standard Red-Green-Blue (RGB) format to

ensure compatibility with deep learning models. This conversion

maintains consistency in color representation across all images,

preventing misinterpretation of visual features during training and

improving the accuracy of tumor classification. After converting
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the image to RGB, the next preprocessing step involves resizing

each image to a fixed dimension of 128 × 128 pixels. Neural

networks require input data to have a consistent shape, and resizing

ensures that all images, regardless of their original resolution,

meet the input requirements of the model. Specifically, resizing

transforms an image IǫRH×W×3 into a standardized format

I
′
ǫR128×128×3, where H and W represent the original height and

width of the image, respectively. This step ensures that all input

images are of uniform size, allowing for efficient model training

and processing. After resizing, the pixel values of the images are

normalized by scaling them from the original range of [0, 255] to

[0, 1]. This is achieved by dividing each pixel value by 255 (see

Equation 1):

Inorm =
I

255
(1)

Normalization helps stabilize and accelerate the neural

network’s learning process by ensuring the input data has a

smaller, more uniform range of values. It also helps reduce the

internal covariate shift, thus enabling more effective weight updates

during training.

The class labels, initially string values such as “glioma_tumor,”

“meningioma_tumor,” etc., are converted into a numerical format

using a label map. Each label is then one-hot encoded using the

to_categorical() function. One-hot encoding transforms categorical

labels into a binary matrix where only the index of the class

is marked as 1, and all others are 0. For instance, the label

“glioma_tumor” becomes [1, 0, 0, 0]. This format is compatible with

multi-class classification models. In mathematical terms, for a class

C ∈ {0, 1, 2, 3}, the one-hot encoded vector y is defined as shown in

Equation 2:

yi =

{

1, if i = C

0, otherwise
for i ∈ {0, 1, 2, 3} (2)

It is essential to evaluate model performance and prevent

overfitting; therefore, this study utilized train_test_split() to divide

the dataset into training and validation sets. Specifically, 80% of

the data was allocated for training and 20% for validation. The use

of a fixed random_state ensured reproducibility. This separation

allowed the model to be assessed on unseen data, providing a more

precise measure of its generalization capability.

3.3 Data augmentation

The model generalization should be improved together with

mitigating overfitting if we have a small dataset. For this, this study

expanded the training data using data augmentation techniques,

which artificially increased the training dataset by generating

simple variations of the images. These variations make the model

more robust and well-performing for real-world transformations

that may occur in medical imaging.

The operations applied in this study for augmentation are

random rotations in a ±20-degree range, horizontal and vertical

translations of 20% of the Image dimensions, shear transformation

withmoderate intensity, zooming in± 20% and random horizontal

flips to simulate different orientations. These transformations were

chosen carefully to resemble variations in MRI scans that occur

naturally and do not modify the underlying anatomical structures.

The augmentation process can be formally described as applying

a transformation function T to an input image x, resulting in an

augmented image x′ (see Equation 3):

x
′

= T(x) (3)

Where the transformation function T is a composition of

individual operations, such as (see Equation 4):

x′ = Rθ (x) (Rotation)

x′ = Tdx,dy(x) (Translation)

x′ = Sα(x) (Shear)

x′ = Zs(x) (Zoom)

x′ = F(x) (Flip)

(4)

These operations ensure that the data is represented in diverse

ways during the training process, thus increasing the chances for it

to generalize better to unseen inputs. The augmentation parameters

were fit to the training dataset before training, and these fit

parameters were used in the training process. Hence, the behavior

of transformation is consistent during the time of learning.

3.4 Model architecture

The details of the model architecture of CNN, Custom

CNN, VGG16, ResNet and Hybrid CNN-VGG16 are discussed in

this section.

3.4.1 CNN model
The first model architecture specifically for the MRI image

classification is the Convolutional Neural Network (CNN) (29). It

takes input images of size 128× 128× 3 and starts with a Conv2D

layer of 32 filters (3× 3 kernel, ReLU) and, as usual, MaxPooling2D

(2 × 2) to reduce spatial dimensions. It is followed by a Conv2D

layer with 64 filters (3× 3, ReLU) and another MaxPooling2D (2×

2). Then, a third Conv2D layer with 128 filters (3 × 3, ReLU) and

another MaxPooling2D layer (2 × 2) is added. It is then flattened

and passed through a Dense layer with 128 neurons (ReLU) and

a Dropout layer of 0.5 dropout rate to prevent overfitting. The

Dense output layer with a softmax activation is used to classify

the input into one of four classes: glioma, meningioma, no tumor

and pituitary tumor. Lastly, we compile the model using the Adam

optimizer and the categorical cross-entropy loss, which fit the

multi-class classification correctly.

3.4.2 Custom CNN model
The custom CNN model shares the core structure of the

basic CNN three convolutional layers followed by max-pooling,

flattening, a dense layer, dropout, and a softmax output for

multi-class classification. However, it enhances the architecture by
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integrating Batch Normalization after each convolutional layer.

This addition helps stabilize learning, speeds up convergence,

and improves generalization. While the layer progression and

classification targets remain the same, the inclusion of batch

normalization distinguishes this model by offering better training

dynamics and potentially higher performance (30).

3.4.3 VGG16
The third model utilizes VGG16, a well-known deep CNN

architecture pre-trained on the ImageNet dataset, as a feature

extractor (31). Unlike the previous custom models, VGG16’s

convolutional layers are frozen to retain learned features, reducing

training time and preventing overfitting on small datasets. On top

of the frozen base, custom classification layers are added: a global

average pooling layer to reduce feature maps, a dense layer with

ReLU activation, a dropout layer for regularization, and a softmax

output layer to classifyMRI images into four tumor categories. This

transfer learning approach combines the power of a proven model

with task-specific tuning for improved accuracy and generalization.

3.4.4 ResNeT
The fourth is a ResNet model that integrates residual

connections for more efficient learning, especially in deeper

networks (32). It starts with a convolutional layer followed by max-

pooling, similar to previous models. The main distinction in this

model is the use of residual blocks, which include two convolutional

layers per block. The shortcut connections are added to the output

of these blocks, enabling the model to bypass specific layers and

help mitigate the vanishing gradient issue. In the second block, a

1 × 1 convolution is used to match the output dimensions of the

shortcut. The rest of the architecture follows the same structure,

with global average pooling, a dense layer, and a softmax output for

classification. The model is optimized using Adam with a learning

rate of 0.0001 and uses categorical cross-entropy for loss.

3.4.5 Hybrid VGG16-CNN
The Hybrid CNN + VGG16 model integrates a pre-trained

VGG16 model for feature extraction with a custom CNN designed

to learn additional task-specific features (33). The VGG16 model,

with its convolutional layers frozen, leverages the pre-learned

features from the ImageNet dataset without any further updates

during training. A Global Average Pooling layer processes its

output to create a more compact representation of the features. The

custom CNN learns additional features directly relevant to tumor

classification. This CNN includes several convolutional layers

followed by max-pooling layers to reduce the spatial dimensions

of the feature maps. The resulting output is flattened and passed

through a fully connected layer, with ReLU activation and a

dropout layer for regularization. The features from both models

are merged using the concatenate operation, followed by another

fully connected layer with ReLU activation and a dropout layer.

The final output layer uses softmax activation to produce a

probability distribution over the four tumor categories: glioma

tumor, meningioma tumor, no tumor, and pituitary tumor. The

model is compiled with the Adam optimizer and categorical cross-

entropy as the loss function, which is suitable for multi-class

classification. It is trained for 50 epochs with a batch size of 32,

using training and validation data.

3.5 Fine tuning models

The previously trained Hybrid CNN + VGG16 model was

fine-tuned for the second experimentation phase using the

Augmented Alzheimer’s MRI dataset. This dataset includes four

categories: Mild Demented, Moderate Demented, Non Demented,

and Very Mild Demented. The hybrid model combines the

VGG16 architecture, which was pre-trained on the ImageNet

dataset and used as a frozen feature extractor, with a custom

CNN trained to extract domain-specific features. To adapt the

model for this new classification task, the final dense layer

was replaced to match the four output classes. While the

VGG16 layers remained frozen to retain their generalized feature

representations, the custom CNN layers were set as trainable to

learn patterns specific to Alzheimer’s stages. Additionally, dropout

and L2 regularization were applied to mitigate overfitting. The

model was compiled using the Adam optimizer with a learning

rate of 0.0005 and trained using augmented image data. To

further validate our hybrid CNN+VGG16 model, we evaluated its

performance on a third publicly available MRI brain tumor dataset

consisting of four categories: glioma, meningioma, pituitary, and

no tumor. The model architecture and training methodology

remained consistent with previous experiments, incorporating

dual-input feature fusion and transfer learning. After minor data

augmentation and preprocessing adjustments, the model was

retrained using a two-input pipeline and evaluated on stratified

splits. The model demonstrated strong generalization to this new

dataset, maintaining high accuracy across all classes. These results

further reinforce the robustness and adaptability of our proposed

hybrid model to varying data distributions.

To evaluate the generalization performance of the proposed

Hybrid CNN + VGG16 model without relying on data

augmentation, we conducted additional experiments on the

unaltered original Alzheimer’s MRI dataset. While the model

architecture and configuration remained consistent, the training set

consisted solely of original images, with no synthetic augmentation

applied. The output layer was modified to match the four-class

structure of this dataset. Only the custom CNN layers were updated

during fine-tuning, while the VGG16 backbone remained frozen.

The training used the same optimizer (Adam) and loss function

(categorical cross-entropy) as in the augmented experiments. This

experiment provides insight into how well the model performs in a

more constrained, real-world scenario.

4 Experimental analysis and results

In this section, the accuracy, precision, recall, and F1 scores are

used to assess the performance of the models. More specifically,

it describes systematic experimental outcomes. This subsection

defines all performance measurements, such as accuracy, precision,
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recall, and F1-score and indicates how these measurements must

be used.

The number of correctly classified instances (TP + TN) is the

total number of instances of the data set. By applying Equation 5,

we can calculate this value:

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

It is the ratio of the number of times the model accurately

predicted a product to the total number of times it has predicted it

positively. Applying Equation 6 in this way will provide this result:

Precision =
TP

TP + FP
(6)

The ratio of positive predictions to the data’s actual number

of positive instances. It reflects the model’s ability to capture all

positive instances. Use Equation 7 in the following manner to find

this value:

Recall =
TP

TP + FN
(7)

The harmonic mean of precision and recall provides a single

metric to balance both. It is beneficial when an imbalance between

classes is calculated using Equation 8.

F1− score = 2×
Precision+ Recall

Precision+ Recall
(8)

Figure 3a illustrates a model’s training and validation accuracy

over 45 epochs. The training accuracy commences at∼0.460 at the

0th epoch and shows a steady upward trajectory, reaching about

0.800 by the 40th epoch. Similarly, the validation accuracy begins at

around 0.500 and follows a comparable increasing trend, surpassing

the training accuracy at several points and culminating at ∼0.805

at the final epoch. Figure 3b presents the corresponding loss values

for training and validation over the same number of epochs. The

training loss starts at around 1.17 at the 0th epoch and declines

progressively, reaching about 0.47 by the 40th epoch. The validation

loss follows a similar pattern, beginning near 1.02 and steadily

decreasing to∼0.50 at the final epoch.

Figure 4a illustrates a model’s training and validation accuracy

over 17 epochs. The training accuracy begins at ∼0.790 at the

0th epoch and exhibits a consistent upward trend, reaching about

0.955 by the 17th epoch. The validation accuracy initiates at around

0.880 and fluctuates slightly throughout the training process,

peaking around the 14th epoch near 0.935 before ending at∼0.920.

Figure 4b presents the corresponding training and validation loss

across the same epoch range. The training loss starts relatively high

at ∼0.61 in the 0th epoch and shows a steady decline, reaching

around 0.13 by the 17th epoch. The validation loss follows a more

irregular pattern, beginning near 0.40, spiking intermittently, and

settling at around 0.33 in the final epoch.

Figure 5a shows amodel’s training and validation accuracy over

15 epochs. The training accuracy starts at ∼0.310 at the 0th epoch

and rises steadily throughout the training process, reaching about

0.905 by the 15th epoch. The validation accuracy initially starts

higher at around 0.390, increases with some fluctuations, and peaks

around 0.890 near the 11th epoch before settling slightly lower at

∼0.875 by the final epoch. Figure 5b presents the corresponding

loss values over the same epoch range. The training loss begins at a

relatively high value of around 1.38 at the 0th epoch and decreases

consistently, dropping to ∼0.28 by the 15th epoch. The validation

loss starts at about 1.22 and fluctuates more than the training loss,

reaching a peak around 1.48 at the 3rd epoch but then follows a

general downward trend to around 0.40 at the final epoch.

Table 1 presents the classification performance across three

datasets: Brain Tumor MRI, Augmented Alzheimer MRI, and a

third tumor classification dataset. The Brain Tumor MRI dataset

includes four tumor classes: glioma_tumor, meningioma_tumor,

no_tumor, and pituitary_tumor. The model achieves the highest

F1-score of 0.98 for the pituitary_tumor class, with corresponding

precision and recall values of 0.97 and 0.99, respectively. The

FIGURE 3

Graphical representation of hybrid CNN-VGG16 model with XAI on second dataset. (a) Accuracy graph. (b) Loss graph.
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FIGURE 4

Graphical representation of hybrid CNN-VGG16 model with transfer learning on third dataset. (a) Accuracy graph. (b) Loss graph.

FIGURE 5

Graphical representation of hybrid CNN-VGG16 model with XAI on third dataset. (a) Accuracy graph. (b) Loss graph.

glioma_tumor class also performs strongly with all three metrics:

precision, recall, and F1-score at 0.96. The no_tumor class has a

slightly lower recall of 0.87, contributing to an F1-score of 0.90.

Overall, the model demonstrates high classification effectiveness

with a total accuracy of 94%. In the Augmented Alzheimer

MRI dataset. This dataset includes four classes: MildDemented,

ModerateDemented, NonDemented, and VeryMildDemented.

Among these, the NonDemented class achieves the highest F1-

score of 0.87, driven by a strong recall of 0.89. Although the

ModerateDemented class attains a perfect precision of 1.00, its low

recall of 0.54 results in a moderate F1-score of 0.70, indicating

potential challenges in correctly identifying all instances of this

class. The overall model accuracy for this dataset is 81%, which

suggests reasonable but improvable classification performance. The

third dataset consists of the following classes: glioma, meningioma,

no tumor, and pituitary. The tumor class performs the best with

an F1-score of 0.97, bolstered by a precision of 0.96 and a recall of

0.98. The pituitary class also achieves high recall (0.99), although

its precision is relatively lower at 0.88, yielding an F1-score of

0.93. The overall model accuracy stands at 93%, indicating a strong

performance across multiple tumor categories.

For multi-class classification, SHAP values were calculated per

class and reshaped for visualization. Summary plots were generated

to identify globally important regions across all samples.

4.1 Model explainability using SHAP

To better understand how our Hybrid CNN + VGG16

model makes decisions, we used SHapley Additive explanations

(SHAP). This method explains model predictions by highlighting

which parts of the input image contribute most to the final

output. Since our model has a dual-input architecture with the

same MRI image passing through two branches for enhanced
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TABLE 1 Classification metrics across three datasets.

Dataset Class Precision Recall F1-Score

Brain tumor MRI Glioma_tumor 0.96 0.96 0.96

Meningioma_tumor 0.91 0.91 0.91

No_tumor 0.92 0.87 0.90

Pituitary_tumor 0.97 0.99 0.98

Accuracy 94%

Augmented Alzheimer MRI MildDemented 0.81 0.64 0.72

ModerateDemented 1.00 0.54 0.70

NonDemented 0.84 0.89 0.87

VeryMildDemented 0.76 0.77 0.76

Accuracy 81%

Third dataset Glioma 0.96 0.89 0.92

Meningioma 0.92 0.83 0.87

Notumor 0.96 0.98 0.97

Pituitary 0.88 0.99 0.93

Accuracy 93%

feature learning, we adapted SHAP’s DeepExplainer to handle

this structure accordingly. We selected a sample batch from

the validation set and computed SHAP values for both inputs.

Summary plots were generated to identify which features (or pixel

regions) are typically important over the dataset and image plots for

each pixel that mattered in discriminating a given prediction from

the others. This allowed these visualizations to show that no matter

the input, the model always attends to brain regions involved in

Alzheimer’s disease. This provides valuable guidance for building

trust in AI-based clinical tools, and the model is strengthened

in terms of interpretability and communicates that it is learning

meaningful patterns.

In order to increase the interpretability of the hybrid CNN+

VGG16 model trained for the brain tumor classification task, we

combined the SHapley Additive exPlanations (SHAP) technique

that allows explainable AI. The model has a multi-input structure

(perhaps there is a better term for this), so SHAP’s DeepExplainer

was used on batches of validation images to compute pixel-based

contributions for each prediction. The SHAP values revealed which

areas of the MRI scans were the most important in allowing the

model to decide. We would find through summary plots that the

model consistently locked in on key tumor areas irrespective of

the different categories, thus showing that it accurately emphasized

those features. However, this transparency not only supports the

credibility of the model but, additionally, is of the essence for the

reliability of AI-based diagnostics in other medical applications.

4.1.1 SHAP summary plots of second dataset
SHAP values were successfully computed for a multi-input

model using DeepExplainer, with each input consisting of 32 RGB

images (128 × 128). The resulting SHAP tensors had a shape of

(32, 128, 128, 3, 4), indicating class-specific attributions. Separate

summary plots were generated for the four classes across both

inputs, highlighting important spatial regions contributing to the

model’s predictions.

Figure 6a presents a SHAP summary plot that visualizes the

influence of Features labeled numerically from 20551 to 36331.

The x-axis represents SHAP values, where positive values indicate

features that push the prediction higher, and negative values

indicate the opposite. Color gradients reflect feature magnitudes.

Pink denotes high values, and blue denotes low values. In this case,

certain features like 20551 and 28222 exhibit a more pronounced

impact on the model’s predictions, evidenced by their wider spread

along the SHAP value axis compared to others. On the other

hand, features such as 20548 and 20549 show minimal impact,

clustering closer to zero. Figure 6b presents a SHAP summary

plot that illustrates the influence of features from “Feature 35950”

to “Feature 33595” on the model’s output. Notably, 35950 and

35184 are significantly influenced by their pronounced spread

along the SHAP value axis, suggesting they contribute meaningfully

to the model’s output. In contrast, features like 21767 and 35569

cluster closer to zero, indicating a minimal effect on the predictive

performance. Figure 6c presents a SHAP summary plot that

illustrates the features that influence the model’s output, ranging

from “Feature 20158” to “Feature 27859.” Notably, features such

as “Feature 20158” and “Feature 34381” significantly impact the

model’s predictions, as indicated by the broader distribution of

SHAP values. This suggests that variations in these features can

lead to more pronounced effects on the predictions. In contrast,

features like “Feature 34348” and “Feature 18958” cluster closer

to the zero line, indicating a lesser impact on model predictions.

This clustering reveals that changes in these features do not

significantly influence the overall model output. Figure 6d presents

a SHAP summary plot that visualizes the influence of features

ranging from “Feature 20158” to “Feature 24772” on the model’s

output. For instance, Features 20158 and 33604 exhibit strong

positive contributions when their values are high, whereas Features
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FIGURE 6

SHAP summary plots for Classes 0 through 3. (a) Class 0. (b) Class 1. (c) Class 2. (d) Class 3.

FIGURE 7

Visualizing SHAP explanation for sample 0, class 0.

33250 and 24772 predominantly display negative SHAP values,

indicating a suppressive effect on predictions. This plot highlights

key features that significantly shape model behavior based on their

value ranges.

Figure 7 displays a cross-sectional brain image alongside

a SHAP value color scale. The grayscale brain scan highlights

structural features, while the adjacent gradient from blue (–0.1,

negative contribution) to red (+0.1, positive contribution)

represents each region’s influence on model predictions.

This integration aids in interpreting how specific brain areas

affect analytical outcomes, linking neuroimaging data to

model behavior.

4.1.2 SHAP summary plots of third dataset
Figure 8a presents a SHAP summary plot that illustrates the

impact of various features, ranging from “Feature 21277” to

“Feature 12959,” on the model’s predictions. The visualization

indicates that certain features, such as “Feature 21280” and “Feature

29056,” significantly influence the model’s output, as evidenced

by their extensive spread along the SHAP value axis. In contrast,

features like “Feature 21337” and “Feature 24373” demonstrate

minimal impact, as their SHAP values cluster closer to zero.

Figure 8b presents a SHAP summary plot visualizing the influence

of various features, specifically labeled from “Feature 15520” to

“Feature 21276,” on the model’s output. In this plot, features such as

Frontiers inMedicine 13 frontiersin.org54

https://doi.org/10.3389/fmed.2025.1618550
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alsubai et al. 10.3389/fmed.2025.1618550

FIGURE 8

SHAP summary plots for Classes 0 to 3. (a) Class 0. (b) Class 1. (c) Class 2. (d) Class 3.

FIGURE 9

Visualizing SHAP explanation for sample 0, class 0.

“Feature 15976” and “Feature 15908” exhibit a significant influence,

as indicated by their wider dispersion on the SHAP value axis.

This means that these features contribute more substantially to

the predicted outcomes when compared to others. Conversely,

features like “Feature 15520” and “Feature 15139” cluster closer to

zero, demonstrating minimal impact on the model’s predictions.

Figure 8c presents a SHAP summary plot that illustrates the

influence of various features, specifically from “Feature 15520”

to “Feature 21278,” on the model’s predictions. Certain features,

such as “Feature 15520” and “Feature 15976,” exhibit a more

pronounced effect on the model’s predictions, as evidenced by

their greater dispersion along the SHAP value axis. This suggests

that these features are critical in influencing the model’s output.

Conversely, features like “Feature 15518” and “Feature 15904”

reveal a minimal impact, clustering closely to zero. This suggests

that their contributions to the model’s predictions are negligible

compared to those of other features. Figure 8d presents a SHAP

summary plot that represents the impact of various features on

the model’s predictions, focusing on features ranging from “Feature

21277” to “Feature 21659.” For instance, features such as “Feature

Frontiers inMedicine 14 frontiersin.org55

https://doi.org/10.3389/fmed.2025.1618550
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alsubai et al. 10.3389/fmed.2025.1618550

21280” and “Feature 29056” significantly impact the predictions,

as indicated by their wider distribution of SHAP values that

extend toward both positive and negative extremes. Conversely,

features like “Feature 17104” and “Feature 15130” exhibit minimal

influence, clustering closer to the zero mark, which suggests that

their effect on the model output is negligible.

Figure 9 combines a sagittal brain MRI image (left) with a

SHAP value bar plot (right) to illustrate model interpretability in

neuroimaging. The MRI highlights anatomical brain structures,

while the SHAP plot uses a blue-to-red gradient to show each

region’s contribution to model predictions, with blue indicating a

negative and red indicating a positive influence. SHAP values range

from –1 to 1, capturing features’ subtle and significant impacts.

This integrated visualization aids in understanding how specific

brain regions affect model outcomes, bridging neuroimaging with

explainable AI.

4.2 Discussion

The proposed hybrid CNN-VGG16 framework addresses three

key challenges in MRI-based neuroimaging diagnostics: limited

labeled data, variability across datasets, and lack of interpretability

in deep learning models. First, the use of transfer learning

significantly mitigates the issue of data scarcity. By leveraging

the pre-trained VGG16 architecture, the model benefits from rich

feature representations learned from large-scale natural image

datasets. This allows for effective feature extraction even with

relatively small medical imaging datasets. The high classification

accuracy achieved on the brain tumor dataset (94%) and the

third dataset (93%) demonstrates the model’s ability to generalize

across similar pathological domains. Second, the sequential fine-

tuning strategy across structurally distinct datasets of brain tumors

and Alzheimer’s and a third validation set demonstrates the

framework’s adaptability to different neuroimaging modalities.

The model maintains a competitive performance of 81% on the

augmented Alzheimer dataset despite its structural differences from

the training domain. This highlights the framework’s robustness

and transferability, addressing the domain shift problem that

often limits the practical deployment of deep learning models in

medical diagnostics. Third, integrating SHAP-based Explainable AI

resolves the critical issue of interpretability. By generating pixel-

level explanations, the framework provides insight into which

brain regions influence the model’s predictions. This capability

enhances clinical trust and offers potential support for diagnostic

reasoning by aligning model attention with known anatomical

and pathological patterns. The proposed approach combines

performance and transparency, offering a concrete step toward

clinically viable AI systems. It outperforms traditional single-

dataset training and black-box models by effectively resolving

challenges related to data diversity, cross-domain generalization,

and explainability.

5 Conclusion

This paper demonstrated the effectiveness of transfer learning

combined with XAI for classifying MRI images. SHAP values

provide much insight into the decision-making path of the

model, and the hybrid CNN-VGG16 model generalizes well

over different datasets with high accuracy. In conclusion, this

approach and its generalizations can be applied to other medical

imaging tasks, possessing high performance and interpretability.

This research has demonstrated the effectiveness of a hybrid CNN-

VGG16 model, utilizing transfer learning in conjunction with

XAI techniques, for MRI image classification. The high accuracy

of the model across multiple datasets demonstrates that it is

robust and easily adaptable in distinguishing between different

neurological diseases, including brain tumors and Alzheimer’s

disease. While the model shows strong performance, it has

certain limitations. The reliance on a limited number of public

datasets may restrict its generalizability to real-world clinical

scenarios. Additionally, the SHAP-based interpretability comes

with a high computational cost, which may challenge real-time

deployment. Future work will expand dataset diversity, incorporate

3D volumetric data, optimize model architecture for clinical

deployment, and explore alternative interpretability methods. This

research lays a solid foundation for developing high-performing,

interpretable AI tools to support medical decision-making and

improve patient outcomes. This work also lays the groundwork

for future research to refine the model further and apply it to

other medical imaging applications, ultimately leading to enhanced

patient outcomes.
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Introduction: Brain tumors seriously endanger human health. Therefore,

accurately identifying the types of brain tumors and adopting corresponding

treatment methods is of vital importance, which is of great significance for

saving patients’ lives. The use of computer-aided systems (CAD) for the

differentiation of brain tumors has proved to be a reliable scheme.

Methods: In this study, a highly accurate Mixed Local and Global (MLG) model for

brain tumor classification is proposed. Compared to prior approaches, the MLG

model achieves effective integration of local and global features by employing

a gated attention mechanism. The MLG model employs Convolutional Neural

Networks (CNNs) to extract local features from images and utilizes the

Transformer to capture global characteristics. This comprehensive scheme

renders the MLG model highly proficient in the task of brain tumor classification.

Specifically, the MLG model is primarily composed of the REMA Block and the

Biformer Block, which are fused through a gated attention mechanism. The

REMA Block serves to extract local features, effectively preventing information

loss and enhancing feature expressiveness. Conversely, the Biformer Block

is responsible for extracting global features, adaptively focusing on relevant

sets of key tokens based on query positions, thereby minimizing attention to

irrelevant information and further boosting model performance. The integration

of features extracted by the REMA Block and the Biformer Block through the

gated attention mechanism further enhances the representation ability of the

features.

Results: To validate the performance of the MLG model, two publicly available

datasets, namely the Chen and Kaggle datasets, were utilized for testing.

Experimental results revealed that the MLG model achieved accuracies of

99.02% and 97.24% on the Chen and Kaggle datasets, respectively, surpassing

other state-of-the-art models. This result fully demonstrates the effectiveness

and superiority of the MLG model in the task of brain tumor classification.

KEYWORDS

classification of brain tumor, CNN, transformer, feature fusion, gated attention
mechanism
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1 Introduction

Brain diseases most commonly manifest as brain tumors,
which represent a severe health threat to the human body and
necessitate early diagnosis and treatment (Lyu et al., 2024; Akter
et al., 2024; Liu et al., 2023). The classification of brain tumors
constitutes a significant area of research in medical imaging and
artificial intelligence. Classification of brain tumors using Magnetic
Resonance Imaging (MRI) is the main technique (Li and Zhou,
2025). This process is critical for accurate diagnosis, treatment
planning, and prognosis assessment. Recently, Computer-Aided
Detection and Diagnosis (CAD) systems have played a pivotal
role in assisting medical professionals with the detection and
classification of brain tumors. Traditional manual methods of
brain tumor classification rely heavily on experienced specialists
and are often time-consuming, labor-intensive, and inefficient
(Sharma et al., 2024; Zhou et al., 2024). To address this issue,
extensive research has been conducted into automatic classification
techniques that can classify brain tumors from MRI, employing
CAD technology for tumor classification from MRI, which exhibits
high reliability due to its high accuracy.

Traditional machine learning often relies on manually designed
features, which places high demands on the user’s domain
knowledge and experience. The selection and construction of
features are complex and time-consuming, having a crucial
impact on model performance. When faced with complex, high-
dimensional, or nonlinear problems, the generalization ability of
traditional machine learning algorithms may be limited (Kaur
and Mahajan, 2025). More crucially, when confronted with new,
unseen data, their predictive performance may decline, affecting
their practical utility (Mehnatkesh et al., 2023; Pandiselvi and
Maheswaran, 2019). In contrast, deep learning possesses stronger
data representation capabilities, able to automatically learn high-
level abstract representations of data, significantly enhancing the
performance and effectiveness of machine learning. Deep learning
models are not only highly complex but also capable of handling
more complex tasks and larger datasets. Consequently, deep
learning has found widespread application in the field of medical
imaging, providing powerful support for disease diagnosis and
treatment (Kshatri and Singh, 2023; Mazurowski et al., 2023;
Mukadam and Patil, 2024; Yu et al., 2022).

Convolutional Neural Networks (CNNs), as a type of deep
learning algorithm, have demonstrated remarkable prowess in
the field of image processing, thanks to their unique advantages.
The CNNs not only accept input images, but also adeptly
assign varying degrees of importance to different elements or
objects within those images through learnable weights and biases,
enabling effective differentiation among them. Compared to other
classification algorithms, the CNNs significantly reduce the need
for preprocessing, greatly enhancing ease of use. In earlier image
processing, filters were typically manually designed. However,
CNNs can automatically learn these filters or features during
training. Consequently, CNNs have seen widespread application
in fields such as medical image analysis. Cao et al. (2024)
introduced a Multi-branch Spectral Channel Attention Network
(MbsCANet) for breast cancer classification. By extracting features
in the frequency domain and applying attention mechanisms
to the backbone network, MbsCANet achieves more precise

feature extraction and classification, thereby not only improving
classification accuracy but also providing robust support for
early diagnosis and treatment of breast cancer. Regarding retinal
disease classification, Peng et al. (2024) proposed a multi-scale-
denoising residual convolutional network (MS-DRCN) model.
This model integrates the strengths of Deep Residual Network
(ResNet) along with multiscale processing and feature fusion
techniques. Aimed at enhancing the accuracy and robustness
of Optical Coherence Tomography (OCT) image classification,
MS-DRCN offers an effective tool for precise diagnosis of
retinal diseases. Moreover, SkinLesNet, a deep learning model
specifically designed for skin lesion classification, is built upon
a CNN architecture that has undergone meticulous design
and optimization (Azeem et al., 2024). Through a series
of CNNs, it progressively extracts image features, enabling
in-depth understanding and analysis of lesion images. This
structure enables the model to precisely capture subtle differences
and key features within the images, significantly boosting
classification accuracy and reliability. As a result, it provides
crucial assistance in the early detection and treatment of skin
lesions.

The Transformer, an attention mechanism originating from the
field of natural language processing, has demonstrated remarkable
performance in computer vision. Its advantages over CNNs are
particularly evident in handling long-distance dependencies and
global contextual information in images (Liu et al., 2021b; Yan et al.,
2023; Huang S. K. et al., 2024). Bofan Song et al. (Song et al.,
2024) utilized Vision Transformer (ViT) and Swin Transformer
(SwinT) for the classification of oral cancer images. In the literature
(Huang L. et al., 2024), Swin-residual transformer (SRT), was
proposed for thyroid ultrasound image classification. The SRT
model introduces residual blocks and triplet loss into the SwinT
structure, aiming to improve sensitivity to both global and local
features of thyroid nodules and better identify subtle feature
differences. Additionally, Chincholi and Koestler (2024) designed a
model combining ViT and Detection Transformer architectures for
glaucoma detection. As the application of Transformers in disease
detection continues to grow, researchers have begun exploring
the integration of CNNs with Transformers to simultaneously
extract local and global features. For instance, Fang et al. (2024)
employed CNNs to extract local features while utilizing ViT for
global feature extraction, designing a deep integrated feature fusion
module for feature aggregation. Yan et al. (2023) developed the
Transformer based High Resolution Network (TransHRNet) for
brain tumor segmentation. TransHRNet initially used CNNs as an
encoder for image preprocessing, followed by feeding the extracted
features from the CNNs into an Effective Transformer (EffTrans)
module, and finally generating segmentation results through a
CNNs decoder. Notably, EffTrans incorporates Group Linear
Transformations (GLTs) with an expansion-reduction strategy and
spatial-reduction attention (SRA) layers, significantly reducing
the computational burden and memory consumption of the
Transformer.

The classification of brain tumors poses a highly challenging
task in computer vision. These tumors vary significantly in size,
shape, and location within the brain, and their categorization
depends not only on the characteristics of the lesion itself but
also on the surrounding tissue environment (ThamilSelvi et al.,
2025; Verma and Yadav, 2025). Furthermore, the diversity and
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spatial distribution of brain tumors underscore the importance
of utilizing both local and global features. In response to
these challenges, the Mixed Local and Global (MLG) model
is introduced. The uniqueness of the MLG model lies in its
utilization of two advanced feature extraction methods. On one
hand, Residual Efficient Multi-scale Attention (REMA) block is
designed to extract local fine-grained features. On the other hand,
the Bi-Level transformer (Biformer) block is used to capture the
global context features. The REMA module integrates two layers
of convolution and an Efficient Multi-scale Attention (EMA)
component (Ouyang et al., 2023), which are interconnected
through residual connections. This classical residual connection
design ensures that gradients can propagate more effectively
throughout the network during training, thereby mitigating
gradient vanishing issues (He et al., 2016; Shafiq and Gu, 2022).
Channel attention and spatial attention mechanisms have proven
to be highly effective in generating more discriminative feature
representations (Hu et al., 2018; Woo et al., 2018; Yu et al., 2023).
In this block, EMA enhances both spatial and channel-wise features
and achieves the ability to capture feature information across
different scales by constructing parallel subnetwork structures
operating at multiple resolutions. The core of Biformer is its
Bi-Level Routing Attention (BRA), which facilitates dynamic
and query-based content-aware sparse attention allocation while
circumventing the high computational cost of full-space attention.
Biformer realizes this pattern by introducing the Bi-Level Routing
Attention mechanism, where it first prunes irrelevant key-value
pairs at a coarse-grained region level, and subsequently conducts
fine-grained token-to-token attention computations only within
the selected candidate regions (Zhu et al., 2023). The integration of
features from REMA and Biformer via gated attention mechanisms
further refines these features, enhancing model performance.
To validate the efficacy of the MLG model, two publicly
available brain tumor datasets were utilized for experimental
evaluation. Experimental results demonstrated that the proposed
model outperforms other existing advanced models in terms of
performance. In summary, the main contributions of this paper are
as follows:

• Development of a brain tumor classification model that
integrates both local and global features.
• The innovative application of the REMA module to extract

local features and the use of Biformer for capturing global
features, with both being effectively fused through a gated
attention mechanism.
• Validation of the proposed model on two open datasets,

achieving superior results compared to the current state-of-
the-art performance.

2 Related work

The application of deep learning techniques in medical image
analysis is becoming increasingly popular, particularly in the
study of brain tumor classification, where it has demonstrated
significant value. In recent years, research efforts on brain tumor
classification tasks have continued to deepen, and these studies

can be broadly categorized into two camps: one is the CNN-based
approach, and the other is the emerging strategy based on the
Transformer architecture.

2.1 CNN in brain tumor classification

The CNN has been widely used in brain tumor classification
tasks. In the task of brain tumor classification, CNNs have been
widely employed. Kang et al. (2021) adopted a transfer learning-
based framework using a pre-trained deep CNN to extract deep
features from MRI data. By fusing features obtained from different
levels of the network and integrating them with multiple machine
learning classifiers, this method achieved significant results. Alanazi
et al. (2022) proposed a 22-layer CNN model, which was initially
trained on a binary brain tumor dataset. Subsequently, with
the help of transfer learning technique, the model weight was
utilized for multi-class data, resulting in promising outcomes.
Saurav et al. (2023) designed an Attention-Guided Convolutional
Neural Network (AG-CNN) specifically tailored for brain tumor
classification tasks. The network incorporates an internal channel
attention module, which aids in focusing on processing image
regions relevant to tumors, thereby facilitating effective feature
extraction and classification. Alturki et al. (2023) proposed an
optimization scheme for brain tumor classification performance.
The CNNs were utilized to extract deep features from raw brain
tumor MRI data and two classification algorithms including
logistic regression (LR) and stochastic gradient descent (SGD)
were incorporated into a voting ensemble classifier. By inputting
these deep features into the ensemble classifier, the model achieved
accurate classification of brain tumors. Hossain et al. (2023)
conducted a study implementing transfer learning to investigate the
performance of various models, including VGG16, InceptionV3,
and ResNet50, inceptionResNetv2, Xception, for brain tumor
classification. Ultimately, three best performing models were
chosen to be used to construct an ensemble model, which was
named IVX16. Sachdeva et al. (2024) evaluated multiple pre-
trained models such as ResNet50, DenseNet121, EfficientNetB0,
and EfficientNetV2L, et al., by incorporating Dropout layers, global
average pooling layers, and tuning hyperparameters to enhance
model performance. The results show that EfficientNetB0 model
achieved a higher classification accuracy.

2.2 Transformer in brain tumor
classification

Transformer has also been applied in brain tumor classification
tasks. Ferdous et al. (2023) proposed a Linear Complexity
Data-Efficient Image Transformer (LCDEiT) framework based
on a teacher-student mechanism specifically designed for tumor
classification from brain MRI images. In the teacher model
component, gated pooling techniques were employed to optimize
the feature extraction efficiency of CNNs. The pre-trained teacher
model was able to extract crucial knowledge pertinent to the
tumor classification task. On the other hand, the student model
introduced an image transformer equipped with an external
attention mechanism, which leveraged the knowledge acquired
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from the teacher model for tumor classification in brain MRI. In
paper, Asiri et al. (2024) proposed an innovative and robust method
based on the SwinT architecture, aiming to improve the accuracy
of brain tumor image classification. This method integrated
complex preprocessing procedure, sophisticated feature extraction
techniques, and a thorough classification system, enabling the
SwinT model to effectively analyze and discriminate various types
of brain tumors. Wang et al. (2024) employed a pre-trained ViT
as the backbone for their brain tumor classification model, named
as RanMerFormer. Additionally, to enhance the computational
efficiency of the ViT backbone, a Token Merging Algorithm
(TMA) was used. Instead of using a traditional linear classification
head, Random Vector Functional Link (RVFL) networks were
utilized. Poornam and Angelina (2024) proposed the ViT with
Attention and Linear Transformation module (VITALT) for brain
tumor detection and classification. VITALT primarily consists of
a ViT, a Split bidirectional feature pyramid network (S-BiFPN),
and a linear transformation module (LTM). ViT was used to
capture global and local features, while S-BiFPN fusions the
features extracted by ViT. The LTM enhanced the model’s linear
expressive ability. In paper (Şahin et al., 2024), the Bayesian Multi-
Objective (BMO) optimization method was employed to optimize
the hyperparameters of the ViT network in order to improve its
performance in brain tumor classification tasks. Gade et al. (2024)
proposed the Lite Swin Transformer (OLiST) model for brain
tumor detection. This model combined the Lite Swin Transformer’s
ability to capture global features with the advantage of CNNs in
extracting local features. By fusing the features extracted by both,
the model leveraged the strengths of both approaches.

In summary, the use of CNNs and Transformers have been
used in brain tumor classification tasks with excellent performance.
CNNs have the advantage of extracting local features of images,
while Transformers have the advantage of exploiting global features
of images. Therefore, this paper innovatively introduces a hybrid
model, MLG, which effectively integrates the respective strengths
of CNNs and Transformers, thus significantly enhancing the
performance of brain tumor classification tasks.

3 Materials and methods

In this section, the datasets used and the proposed model are
described in detail.

3.1 Datasets and preprocessing

In this study, two widely used public datasets, namely the
Chen dataset and the Kaggle dataset, were adopted. The Chen
dataset, provided by Cheng et al. (2015), primarily focuses on
three types of brain tumors: gliomas, meningiomas, and pituitary
tumors. Comprising a total of 3,064 images, this dataset offers a
rich resource for our in-depth research and analysis. On the other
hand, the Kaggle dataset is a meticulously compiled and shared
public dataset by Bhuvaji et al. (2020). This dataset encompasses
four categories of images: glioma tumors, meningioma tumors,
pituitary tumors, and normal brain tissues, totaling 3,264 images.
For efficient model training and testing, the two datasets were

randomly divided into a training set and a test set. Specifically,
80% of the data was allocated to the training set for model training
and optimization, while the remaining 20% was designated as
the testing set for evaluating the model’s performance. Detailed
statistics on the number of images in each dataset are presented in
Table 1.

A simple and efficient data preprocessing method is used
in the preprocessing phase of the dataset. In the experimental
process, to preserve the integrity of image content and stability of
features, all images were uniformly resized to 224× 224× 3 pixels.
This resizing not only helps maintain the spatial structure and
information integrity of the images but also significantly reduces
computational burden during network training, thereby enhancing
training efficiency. Additionally, normalization was performed,
which is a standard preprocessing step in deep learning. This
aims to mitigate differences in brightness, contrast, and other
attributes among images, enabling the model to focus more acutely
on learning the inherent features of the images. For medical
images, acquiring a large volume of such data can be challenging
(Dhar et al., 2023). Given that deep neural networks typically
require substantial amounts of data for training, and considering
the relatively limited scale of the datasets utilized in this study,
data augmentation strategies were employed to alleviate overfitting
concerns. Specifically, random rotation and random horizontal
flipping techniques were utilized, both of which effectively enhance
dataset diversity without introducing additional noise, thereby
improving the model’s generalization capability.

3.2 Mixed local and global model

In this section, details of the proposed model are provided. The
architecture of the MLG model, which combines both local and
global components, is depicted in Figure 1. Initially, brain tumor
images undergo preprocessing before being fed into a convolutional
layer with a kernel size of 5× 5 and a stride of 1, designed to enlarge
the receptive field. Subsequently, a max pooling layer is applied
for downsampling and dimensionality reduction of the extracted
features. And then, the features are further processed through five
REMA and Biformer (RB) Mixing Blocks to refine the extraction of
characteristics specific to brain tumor images. Finally, the resulting
features are classified accordingly. The structure of the RB Mixing
Block is illustrated in Figure 2.

Figure 2 presents the structure of the RB Mixing Block,
primarily consisting of REMA and Biformer units. The REMA

TABLE 1 Details of the datasets.

Dataset
name

Classes Number of
each class

Total image
count

Chen Glioma 1,426 3,064

Meningioma 708

Pituitary tumor 930

Kaggle Glioma 826 3,264

Meningioma 822

Pituitary tumor 827

No tumor 395
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FIGURE 1

Proposed brain tumor classification system.

FIGURE 2

The RB Mixing Block structure.

unit is designed to extract local features from the images, while
the Biformer unit focuses on extracting global features. After
combining the features derived from these two modules, a gating
mechanism adjusts the weights of the fused features to better
suit the task of brain tumor classification, thereby enhancing the
model’s classification performance. Here, M denotes the number of
REMA convolution modules used and N denotes the number of
Biformer modules used, M = N = 2. REMA utilizes max pooling
for downsampling, aiming to broaden the receptive field of the
module. On the other hand, Biformer employs convolutions with
a stride of 2 for downsampling, intending to derive higher-level
feature representations. Subsequently, the features extracted by
both REMA and Biformer are merged and subjected to processing
by the gating mechanism. Then, the adjusted features are multiplied
with the original ones to modulate their significance in influencing
the model’s overall performance, effectively filtering out a set
of features that have a more substantial impact on the model’s
classification results. The output of the RB Mixing module can be
expressed as:

outRB = sigmoid(fREMA + fBiformer)× (fREMA + fBiformer) (1)

where, fREMA and fBiformer represent the features extracted by the
modules REMA and Biformer, respectively.

In order to present the structure and parameter characteristics
of the REMA module and the Biformer module more clearly. We
have detailed the number of parameters, input dimensions and
output dimensions of these two modules in Table 2.

The structure and computational complexity of the REMA
block and the Biformer block in the MLG model can be understood
more specifically through Table 2.

3.3 REMA Block

The structure of the REMA block is depicted in Figure 3. This
module consists of two convolutional layers and an EMA unit,
interconnected via residual connections to facilitate information
fusion and propagation. This design aims to enhance the model’s
representation learning capacity while alleviating the gradient

TABLE 2 Parameters and dimension information of the REMA block and
the Biformer block.

Block Input size Output size No. of
parameters

REMA 112× 112× 64 112× 112× 64 74,160

Biformer 112×112× 64 112× 112× 64 10,4576
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FIGURE 3

REMA structure.

vanishing problem often encountered in deep networks. By
incorporating the EMA unit (Ouyang et al., 2023), the REMA
block is better equipped to capture inherent data features, thereby
boosting the model’s performance. The core idea of the EMA
module is to group the channel dimensions into multiple sub-
features and ensure good distribution of spatial semantic features
within each feature group. This method not only preserves
information in each channel but also reduces computational
overhead. Specifically, the EMA module recalibrates the channel
weights of each parallel branch using global information encoding.
Moreover, the output features from the two parallel branches
are aggregated through cross-dimensional interaction methods,
further enhancing the representational power of the features. Inside
the EMA module, there are three parallel paths designed to extract
attention weight descriptors for the grouped feature maps. Two of
these paths belong to the 1 × 1 branch, while the third one is part
of the 3 × 3 branch. Within the 1 × 1 branch, two one-dimension
global average pooling operations along two spatial directions are
employed to encode channel attention. In contrast, the 3× 3 branch
uses a single 3 × 3 convolutional kernel to capture multi-scale
feature representations. The output of the REMA module can be
mathematically represented as follows:

out = EMA(conv(conv(x)))+ x (2)

The structure of the Biformer Block is depicted in Figure 4.
The core of the Biformer lies in its BRA, which consists of a
deep convolution, two layers of Layer Normalization (LN), and

a Multilayer Perceptron (MLP) interconnected through residual
connections (Zhu et al., 2023).

The design principle of BRA revolves around dynamic, query-
content based sparsity. Initially, irrelevant key-value pairs are
filtered out at a coarse-grained regional level by constructing and
pruning a directed graph representing region-level relationships.
Subsequently, a fine-grained token-to-token attention mechanism
is applied over the joint set of the remaining, or routed,
regions to selectively focus on locally relevant information while
bypassing globally unrelated data. In BRA process, given a two-
dimensional input feature map X, it is partitioned into S × S
non-overlapping regions, each containing a specific number
of feature vectors. These region-based features undergo linear
projections to generate query, key, and value tensors Q, K,
V. An inter-region association matrix Aγ is then constructed
by computing average query and key vectors across regions,
with its elements indicating semantic relevance between pairs
of regions. The critical step involves selecting the top k most
related adjacent regions for each region based on this relevance
measure, yielding a routing index matrix Iγ via row-wise top-
k operations. Building upon this, the model applies fine-grained
token-to-token attention. Specifically, for a query token originating
from region i, it attends to all key-value pairs within the k
routed regions indexed by Iγ(i,1) through Iγ(i,k). To efficiently
execute this, despite these regions potentially being scattered
throughout the feature map, the model first employs a gather
operation to collect the key and value tensors from these regions,
forming aggregated key and value sets Kg and Vg . Finally,
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FIGURE 4

Biformer structure.

attention computation is performed using the gathered key and
value tensors:

O = soft max(
(QKg)

T
√

C
)Vg + LCE(V) (3)

here, √C is usually a factor that scales the denominator in
the formula for calculating the attention score in order to
prevent the occurrence of over-concentration of weights and
loss of gradients. LCE (V) represents local context enhancement,
which is implemented by depth separable convolution to enhance
local information.

3.4 Loss function

In classification tasks, the cross-entropy loss function is a
commonly used loss function. Originating from the concepts of
entropy and mutual information in information theory, it serves
to quantify the discrepancy between two probability distributions.
Specifically, when training neural networks, it is employed to
measure the difference between the model’s predicted probability
distribution and the true distribution of the observed data. For
classification tasks, assuming the true label is y and the model
predicted probability is q, the cross-entropy loss function can be
expressed as:

H(y, q) = −
∑

i

yi log(qi) (4)

where, yi represents the true label for the i-th category and qi
denotes the model predicted probability that the sample belongs to
the i-th class.

4 Results

This section introduces the experimental setup, experimental
results, and ablation experiments, collectively serving to
comprehensively and rigorously substantiate the proposed model.

4.1 Experimental apparatus

A PyTorch implementation is performed for the model
proposed by us, while experiments were carried out on a Windows
11 system equipped with a 12GB RTX 4070 GPU and an Intel

i5-13400F processor. The Adam optimizer was utilized, with the
initial learning rate set at 0.0001, the batch size fixed at 16, and
the number of epochs specified as 50. In our experiments, early
stopping was utilized to prevent overfitting. Detailed information
about the parameters can be found in Table 3.

4.2 Evaluation metrics

In the experiments, the accuracy, recall, precision, and F1-
score were employed as evaluation metrics, with their respective
calculation methods presented in Formulas (5–8). The accuracy is
one of the most commonly used evaluation metrics in classification
problems, representing the proportion of correctly classified
samples out of the total number of samples. The recall, focuses
on the ability of the model to correctly identify positive samples,
which refers to the ratio of true positives (correctly identified
positive instances) to all actual positive instances in the dataset.
The precision measures the proportion of instances predicted by
the model as positive that are truly positive, that is, the ratio
of true positives to all instances predicted as positive. The F1-
score, being the harmonic mean of precision and recall, integrates
the performance of both precision and recall, offering a more
comprehensive assessment of the model’s performance (Zulfiqar
et al., 2023; Zebari et al., 2024). When both precision and recall
are high, the F1-score will also be high, and conversely, when
either of these values is low, so will the F1-score. This implies
that a high F1-score indicates strong overall performance in terms
of both accurately identifying true positives and minimizing false
predictions.

Accuracy =
TN + TP

TN + TP + FN + FP
(5)

Recall =
TP

TP + FN
(6)

TABLE 3 Training Hyper-parameter values of proposed network.

Parameters Value

Initial learning rate 0.0001

Batch size 16

Optimizer Adam

Number of epoch 50

Learning rate decays 0.1
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Precision =
TP

TP + FP
(7)

F1− score =
2TP

2TP + FP + FN
(8)

4.3 The results of the experiment

Figure 5 illustrates the confusion matrices for the classification
results of the model on the test sets of two publicly available
datasets, where G, M, and P stand for glioma, meningioma,
and pituitary adenoma, respectively, and N stands for normal
state, indicating the absence of brain tumor. From the confusion
matrices, detailed classification performance metrics for the model
were calculated according to Formulas (5–8) and summarized in
Table 4. From Table 4, it is evident that, on the test set of the
Chen dataset, the average performance metrics for model MLG
include a recall of 98.88%, precision of 98.94%, F1-score of 98.91%,
and accuracy of 99.02%. On the Kaggle dataset test set, MLG
corresponding metrics are 96.89% for recall, 97.21% for precision,
96.89% for F1-score, and 97.24% for accuracy. These indicators
demonstrate that across both the Chen and Kaggle datasets, the
MLG model exhibits outstanding classification performance, which
further validates the effectiveness and generalization capabilities of
the MLG model, enabling it to achieve satisfactory performance in
brain tumor classification tasks on diverse datasets.

4.4 Ablation study

In Section 4.3, performance metrics for the classification results
of the proposed model are presented. To further confirm the
validity of the proposed model, an ablation study was performed.
In this study, different combinations of modules are explored
within the framework of the model. This process allows for a
meticulous examination of each component’s contribution to the

overall performance, thereby providing deeper insights into the
effectiveness and robustness of the proposed model architecture.

In the first part of the study, brain tumor classification was
conducted separately using REMA and Biformer independently.
Figure 6 presents the testing results of various models in the Chen
dataset during the ablation experiment. The accuracies achieved by
REMA and Biformer are 98.53 and 98.37%, respectively, both lower
than the 99.02% accuracy obtained by MLG. Upon conducting
a detailed analysis of the ablation experiment results, it becomes
clear that the integration of the strengths of both the REMA and
Biformer modules within the MLG model effectively boosts the
accuracy rate in brain tumor classification.

In the second part of the study, the performance of the MLG
model upon incorporating the gated attention mechanism was
meticulously examined. The gated attention mechanism plays a
pivotal role within the model, serving to regulate the flow of
information by deciding which pieces of information should be
emphasized and which should be disregarded. By means of gating,
the attention mechanism assigns weights to information based
on its importance, thereby enhancing the model performance by
focusing on crucial features. Figure 7 shows the performance of the
model with and without the gated attention mechanism. Where,
GA stands for Gated Attention. It can be observed that when the
model does not include the gated attention, its performance lags
behind the version with the gated attention mechanism by 2.12%.
The results strongly demonstrate the effectiveness of the gated
attention in improving the performance of the model.

In the third segment of the investigation, the impact of
data augmentation on the MLG model was thoroughly explored,
particularly in scenarios involving small sample datasets. Data
augmentation is a critical technique that can significantly enhance a
model generalization capability while mitigating overfitting issues.
In this work, two prevalent data augmentation strategies were
employed: random rotation and random flipping. Figure 8 provides
a detailed account of the model accuracy rates on both the training
and test sets of the Chen dataset when data augmentation is applied.
Ar stands for data augmentation. From the figure, it is evident

FIGURE 5

Confusion matrix for model classification results (A) Chen dataset (B) Kaggle dataset.
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TABLE 4 Detailed values of metrics for the proposed model.

Dataset Tumor
type

Recall
(%)

Precision
(%)

F1-
score (%)

Accuracy
(%)

Chen Glioma 99.30 98.95 99.12 99.02

Meningioma 97.87 97.87 97.87

Pituitary 99.46 1.00 99.73

Average 98.88 98.94 98.91

Kaggle Glioma 98.92 96.32 97.60 97.24

Meningioma 95.19 97.27 96.22

No Tumor 94.00 96.91 95.43

Pituitary 99.44 98.35 98.90

Average 96.89 97.21 96.89

FIGURE 6

Classification results by REMA and Biformer.

FIGURE 7

Effects of gating attention mechanism on MLG.

that with data augmentation, the training and test set accuracies
reach 99.96 and 99.02%, respectively. In contrast, without data
augmentation, while the accuracy on the training set reached 100%,
the accuracy on the test set notably decreased to 96.73%. This

FIGURE 8

Impact of data augmentation on MLG.

comparative outcome vividly demonstrates that data augmentation
has a pronounced effect on improving model performance.

5 Discussion

According to the data in Table 4, the MLG model achieves
impressive accuracies of 99.02% on the Chen dataset and 97.24% on
the Kaggle dataset, which attest to its effectiveness and satisfactory
performance. Moreover, through ablation studies, the superiority
of the MLG model was further substantiated, emphasizing the
significant improvements gained by fusing the REMA and Biformer
modules via the gated attention mechanism, rather than merely
adding them together. Additionally, the application of data
augmentation has led to noticeable performance enhancements,
further bolstering the model generalization capabilities.

Beyond internal validation, the proposed model was also
compared against other advanced methods utilizing the same
datasets. Table 5 clearly outlines these comparative results. On
the Chen dataset, the MLG model outperforms the current best-
performing model, Multimodal-CNN Model (Maqsood et al.,
2022), by 0.1% in accuracy. Similarly, on the Kaggle dataset, the
MLG model surpasses the previously best-reported model IVX16
(Hossain et al., 2023) by an accuracy margin of 0.3%. When
juxtaposed against methodologies outlined in literature sources
paper (Alanazi et al., 2022)and paper (Saurav et al., 2023), the MLG
model consistently demonstrates higher performance on both the
Chen and Kaggle datasets. Precisely, on the Chen dataset, MLG
accuracy exceeds that of paper (Alanazi et al., 2022) by 2.13% and
that of paper (Saurav et al., 2023) by 1.79%. On the Kaggle dataset,
MLG accuracy advantage over paper (Alanazi et al., 2022) is 1.49%,
while over (Saurav et al., 2023) it is 1.53%. These comparative
results serve as compelling evidence of the MLG model superior
performance in the task of brain tumor classification, reinforcing
its potential applicability in real-world scenarios.

The Receiver Operating Characteristic Curve (ROC Curve) is
a widely used visualization tool in statistics, machine learning,
medical diagnostics, and other fields that require categorical
judgments for evaluating the performance of classification models.
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TABLE 5 Compare with advanced methods on datasets Chen and Kaggle.

Method
category

References Method Dataset Accuracy
(%)

CNN Sachdeva et al.
(2024)

Transfer
learning

Kaggle 96.25

Jun and Liyuan
(2022)

Attention-
Guided

Chen 98.61

Maqsood et al.
(2022)

Multimodal-
CNN

Model

Chen 98.92b

Alanazi et al.
(2022)

22-layer CNN Chen 96.89

Kaggle 95.75

Saurav et al. (2023) AG-CNN Chen 97.23

Kaggle 95.71

Transformer Wang et al. (2024) RanMerFormer Chen 98.86

Şahin et al. (2024) BMO Chen 98.09

Hossain et al.
(2023)

IVX16 Kaggle 96.94

Anaya-Isaza et al.
(2023)

Cross-
Transformer

Chen 97.22

Dosovitskiy et al.
(2021)

Vision
Transformer

Chen 97.39

Kaggle 95.88

Liu et al. (2021a) Swin
Transformer

Chen 98.69

Kaggle 97.10

CNN+
transformer

Ferdous et al.
(2023)

LCDEiT Chen 98.11

Chen et al. (2025) EnSLDe Chen 98.69

Proposed model MLG Chen 99.02

Kaggle 97.24

It graphically illustrates the trade-off relationship between the
true positive rate (TPR) and false positive rate (FPR) of the
model under different threshold conditions. The area under curve
(AUC), indicates better model performance when its value is larger.

Typically, the closer the curve is to the upper left corner (with
higher TPR and lower FPR), the better the model performance. The
ROC curves of the model on the two datasets are shown in Figure 9.
It can be observed that the ROC curves closely adhere to the upper
left corner. On the Chen dataset, the AUC values of the MLG
model for glioma, meningioma, and pituitary tumors are 0.9996,
0.9993, and 1.00, respectively. Meanwhile, on the Kaggle dataset,
the AUC values of the MLG model for glioma, meningioma, normal
tissue, and pituitary tumors are 0.9991, 0.9965, 0.9989, and 0.9999,
respectively.

6 Conclusion

Brain tumors, constituting a severe health issue, pose a
significant threat to people’s lives. Therefore, timely and accurate
identification of brain tumor types, followed by appropriate
treatment planning, is critical for patients. The advent of
CAD technology has provided substantial support to doctors in
diagnosing brain tumors. In this paper, a novel MLG brain tumor
classification model is proposed, and the model skillfully integrates
local features and global features, and provides a new solution
for the classification of brain tumors. The core components of
the MLG model are RMEA, Biformer and gated attention. The
RMEA Block, through carefully designed convolutional structures,
efficiently retains information across channels, emphasizing spatial
and channel-wise features, thereby extracting richly informative
local features. Conversely, the Biformer employs a unique BRA
mechanism to dynamically and contextually select a subset of
the most relevant key-value pairs for each query, optimizing
the computational process. Meanwhile, BRA can capture remote
dependencies across regions and even objects, providing powerful
support for extracting global features. The MLG model uses a
gated attention to selectively filter and fuse the local features
extracted by the RMEA block with the global features extracted by
the Biformer block. This significantly enhances the representation
capability of the fused features, thereby improving the classification
performance of the model. The integration of both local and
global features enables the MLG model to exhibit outstanding

FIGURE 9

ROC curves for the proposed model on (A) Chen dataset (B) Kaggle dataset.
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performance in brain tumor classification tasks. Experimental
results on two public datasets demonstrate that the MLG
model achieves satisfactory performance across multiple metrics,
including accuracy, precision, recall, and F1-score. Compared
with existing advanced methods, the MLG model exhibits
marked advantages, fully validating its effectiveness in practical
applications. In future work, it is planned to continue exploring
other methods of feature fusion first to further improve the
performance of the MLG model. Secondly, the introduction of
more refined feature detection methods will be explored, or they
will be combined with other advanced attention mechanisms to
enhance the selection ability for key areas. In addition, efforts
will also be made to obtain data on other brain diseases, expand
the application scope of the model, and provide more auxiliary
diagnostic tools for the medical field.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found at: the datasets used are free and open. Dataset Chen
from figshare (https://figshare.com/articles/dataset/brain_tumor_
dataset/1512427). Dataset Kaggle from Kaggle (https://www.kaggle.
com/datasets/sartajbhuvaji/brain-tumor-classification-mri).

Author contributions

WC: Project administration, Conceptualization, Visualization,
Writing – review & editing, Investigation. XT: Formal Analysis,
Software, Writing – original draft. JZ: Conceptualization, Project
administration, Writing – review & editing, Software. GD: Project
administration, Supervision, Writing – review & editing. QF:
Writing – review & editing, Validation. HJ: Writing – review &
editing, Project administration, Validation.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This research was

funded by the Henan Province Young Backbone Teachers Training
Program (No. 2023GGJS045), the Major Science and Technology
Projects of Henan Province (No. 221100210500), the Foundation
of Henan Educational Committee (No. 24A320004), the Medical
and Health Research Project in Luoyang (No. 2001027A), and the
Construction Project of Improving Medical Service Capacity of
Provincial Medical Institutions in Henan Province (No. 2017-51).

Acknowledgments

The provision of these two public datasets by Kaggle and Chen
is greatly appreciated by us.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Akter, A., Nosheen, N., Ahmed, S., Hossain, M., Yousuf, M., Almoyad, A.,
et al. (2024). Robust clinical applicable CNN and U-Net based algorithm for MRI
classification and segmentation for brain tumor. Expert Syst. Appl. 238:122347. doi:
10.1016/j.eswa.2023.122347

Alanazi, M., Ali, M., Hussain, S., Zafar, A., Mohatram, M., Irfan, M., et al. (2022).
Brain tumor/mass classification framework using magnetic-resonance-imaging-based
isolated and developed transfer deep-learning model. Sensors 22:372. doi: 10.3390/
s22010372

Alturki, N., Umer, M., Ishaq, A., Abuzinadah, N., Alnowaiser, K., Mohamed,
A., et al. (2023). Combining CNN features with voting classifiers for optimizing
performance of brain tumor classification. Cancers 15:1767. doi: 10.3390/cancers150
61767

Anaya-Isaza, A., Mera-Jiménez, L., Verdugo-Alejo, L., and Sarasti, L. (2023).
Optimizing MRI-based brain tumor classification and detection using AI: A
comparative analysis of neural networks, transfer learning, data augmentation, and the

cross-transformer network. Eur. J. Radiol. Open 10:100484. doi: 10.1016/j.ejro.2023.
100484

Asiri, A., Shaf, A., Ali, T., Pasha, M., Khan, A., Irfan, M., et al. (2024). Advancing
brain tumor detection: Harnessing the Swin Transformer’s power for accurate
classification and performance analysis. PeerJ Comput. Sci. 10:e1867. doi: 10.7717/
peerj-cs.1867

Azeem, M., Kiani, K., Mansouri, T., and Topping, N. (2024). SkinLesNet:
Classification of skin lesions and detection of melanoma cancer using a novel
multi-layer deep convolutional neural network. Cancers 16:108. doi: 10.3390/
cancers16010108

Bhuvaji, S., Kadam, A., Bhumkar, P., Dedge, S., and Kanchan, S. (2020). Brain tumor
classification (MRI). San Francisco, CA: Kaggle, doi: 10.34740/KAGGLE/DSV/1183165

Cao, L., Pan, K., Ren, Y., Lu, R., and Zhang, J. (2024). Multi-branch spectral channel
attention network for breast cancer histopathology image classification. Electronics
13:459. doi: 10.3390/electronics13020459

Frontiers in Neuroscience 11 frontiersin.org69

https://doi.org/10.3389/fnins.2025.1618514
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://doi.org/10.1016/j.eswa.2023.122347
https://doi.org/10.1016/j.eswa.2023.122347
https://doi.org/10.3390/s22010372
https://doi.org/10.3390/s22010372
https://doi.org/10.3390/cancers15061767
https://doi.org/10.3390/cancers15061767
https://doi.org/10.1016/j.ejro.2023.100484
https://doi.org/10.1016/j.ejro.2023.100484
https://doi.org/10.7717/peerj-cs.1867
https://doi.org/10.7717/peerj-cs.1867
https://doi.org/10.3390/cancers16010108
https://doi.org/10.3390/cancers16010108
https://doi.org/10.34740/KAGGLE/DSV/1183165
https://doi.org/10.3390/electronics13020459
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1618514 July 2, 2025 Time: 16:22 # 12

Chen et al. 10.3389/fnins.2025.1618514

Chen, W., Liu, J., Tan, X., Zhang, J., Du, G., Fu, Q., et al. (2025). EnSLDe: An
enhanced short-range and long-range dependent system for brain tumor classification.
Front. Oncol. 15:1512739. doi: 10.3389/fonc.2025.1512739

Cheng, J., Huang, W., Cao, S., Yang, Ru, Yang, W., Yun, Z., et al. (2015).
Enhanced performance of brain tumor classification via tumor region augmentation
and partition. PLoS One 10:e0140381. doi: 10.1371/journal.pone.0140381

Chincholi, F., and Koestler, H. (2024). Transforming glaucoma diagnosis:
Transformers at the forefront. Front. Artif. Intell. 7:1324109. doi: 10.3389/frai.2024.
1324109

Dhar, T., Dey, N., Borra, S., and Sherratt, R. S. (2023). Challenges of deep learning in
medical image analysis–improving explainability and trust. IEEE Trans. Technol. Soc.
4, 68–75. doi: 10.1109/TTS.2023.3234203

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., et al. (2021). An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv [Preprint]. doi: 10.48550/arXiv.2010.11929 arXiv:2010.11929.

Fang, M., Fu, M., Liao, B., Lei, X., and Wu, F.-X. (2024). Deep integrated fusion of
local and global features for cervical cell classification. Comput. Biol. Med. 171:108153.
doi: 10.1016/j.compbiomed.2024.108153

Ferdous, G. J., Sathi, K. A., Hossain, A., Hoque, M. M., and Dewan, M. A. A. (2023).
LCDEiT: A linear complexity data-efficient image transformer for MRI brain tumor
classification. IEEE Access 11, 20337–20350. doi: 10.1109/ACCESS.2023.3244228

Gade, V. S. R., Cherian, R. K., Rajarao, B., and Kumar, M. A. (2024). BMO based
improved Lite Swin transformer for brain tumor detection using MRI images. Biomed.
Signal Process. Control 92:91. doi: 10.1016/j.bspc.2024.106091

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the 2016 IEEE conference on computer vision and pattern
recognition (CVPR), (Las Vegas, NV: IEEE), 770–778. doi: 10.1109/CVPR.2016.90

Hossain, S., Chakrabarty, A., Gadekallu, T. R., Alazab, M., and Piran, J. (2023).
Vision transformers, ensemble model, and transfer learning leveraging explainable
AI for brain tumor detection and classification. IEEE J. Biomed. Health Inform. 28,
1261–1272. doi: 10.1109/JBHI.2023.3266614

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, (Salt
Lake City, UT), 7132–7141.

Huang, S. K., Yu, Y.-T., Huang, C.-R., and Cheng, H.-C. (2024). Cross-scale fusion
transformer for histopathological image classification’. IEEE J. Biomed. Health Inform.
28, 297–308. doi: 10.1109/JBHI.2023.3322387

Huang, L., Xu, Y., Wang, S., Sang, L., and Ma, H. (2024). SRT: Swin-residual
transformer for benign and malignant nodules classification in thyroid ultrasound
images’. Med. Eng. Phys. 124:104101. doi: 10.1016/j.medengphy.2024.104101

Jun, W., and Liyuan, Z. (2022). Brain tumor classification based on attention guided
deep learning model’. Int. J. Comput. Intell. Syst. 15:35. doi: 10.1007/s44196-022-
00090-9

Kang, J., Ullah, Z., and Gwak, J. (2021). MRI-based brain tumor classification
using ensemble of deep features and machine learning classifiers’. Sensors 21:2222.
doi: 10.3390/s21062222

Kaur, P., and Mahajan, P. (2025). Detection of brain tumors using a transfer
learning-based optimized ResNet152 model in MR images.’. Comput. Biol. Med.
188:109790. doi: 10.1016/j.compbiomed.2025.109790

Kshatri, S. S., and Singh, D. (2023). Convolutional neural network in medical image
analysis: A review’. Arch. Comput. Methods Eng. 30, 2793–2810. doi: 10.1007/s11831-
023-09898-w

Li, Z., and Zhou, X. (2025). A global-local parallel dual-branch deep learning model
with attention-enhanced feature fusion for brain tumor MRI classification’. CMC
Comput. Mater. Contin. 83, 739–760. doi: 10.32604/cmc.2025.059807

Liu, H., Huo, G., Li, Q., Guan, X., and Tseng, M. (2023). Multiscale lightweight 3D
segmentation algorithm with attention mechanism: Brain tumor image segmentation’.
Expert Syst. Appl. 214:9166. doi: 10.1016/j.eswa.2022.119166

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021b). “Swin transformer:
Hierarchical vision transformer using shifted windows,” in Proceedings of the 2021
IEEE/CVF international conference on computer vision (ICCV), (Montreal, QC: IEEE),
9992–10002. doi: 10.1109/ICCV48922.2021.00986

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021a). Swin transformer:
Hierarchical vision transformer using shifted windows. arXiv [Preprint]. doi: 10.
48550/arXiv.2103.14030 arXiv:2103.14030.

Lyu, I. J., Han, K., Park, K.-A., and Oh, S. Y. (2024). Ocular motor cranial nerve
palsies and increased risk of primary malignant brain tumors: South Korean national
health insurance data’. Cancers 16:781. doi: 10.3390/cancers16040781

Maqsood, S., Damaševičius, R., and Maskeliūnas, R. (2022). Multi-modal brain
tumor detection using deep neural network and multiclass SVM’. Medicina 58:1090.
doi: 10.3390/medicina58081090

Mazurowski, M. A., Dong, H., Gu, H., Yang, J., Konz, N., and Zhang, Y. (2023).
Segment anything model for medical image analysis: An experimental study’. Med.
Image Anal. 89:102918. doi: 10.1016/j.media.2023.102918

Mehnatkesh, H., Jalali, S. M. J., Khosravi, A., and Nahavandi, S. (2023). An intelligent
driven deep residual learning framework for brain tumor classification using MRI
images’. Expert Syst. Appl. 213:119087. doi: 10.1016/j.eswa.2022.119087

Mukadam, S. B., and Patil, H. Y. (2024). Machine learning and computer vision
based methods for cancer classification: A systematic review’. Arch. Comput. Methods
Eng. 31, 3015–3050. doi: 10.1007/s11831-024-10065-y

Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J., et al. (2023). “Efficient
multi-scale attention module with cross-spatial learning,” in Proceedings of the ICASSP
2023–2023 IEEE international conference on acoustics, speech and signal processing
(ICASSP), (Rhodes), 1–5. doi: 10.1109/ICASSP49357.2023.10096516

Pandiselvi, T., and Maheswaran, R. (2019). Efficient framework for identifying,
locating, detecting and classifying MRI brain tumor in MRI images. J. Med. Syst.
43:189. doi: 10.1007/s10916-019-1253-1

Peng, J., Lu, J., Zhuo, J., and Li, P. (2024). Multi-scale-denoising residual
convolutional network for retinal disease classification using OCT’. Sensors 24:150.
doi: 10.3390/s24010150

Poornam, S., and Angelina, J. J. R. (2024). VITALT: A robust and efficient
brain tumor detection system using vision transformer with attention and linear
transformation’. Neural Comput. Appl. 36, 6403–6419. doi: 10.1007/s00521-023-
09306-1

Sachdeva, J., Sharma, D., and Ahuja, C. K. (2024). Comparative analysis of different
deep convolutional neural network architectures for classification of brain tumor on
magnetic resonance images’. Arch. Comput. Methods Eng. 31, 1959–1978. doi: 10.1007/
s11831-023-10041-y
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Introduction: Functional brain networks measured by resting-state functional

magnetic resonance imaging (rs-fMRI) have become a promising tool for

understanding the neural mechanisms underlying schizophrenia (SZ). However,

the high dimensionality of these networks and small sample sizes pose significant

challenges for e�ective classification and model generalization.

Methods: We propose a robust multi-task feature selection method combined

with counterfactual explanations to improve the accuracy and interpretability

of SZ identification. rs-fMRI data are preprocessed to construct a functional

connectivity matrix, and features are extracted by sorting the upper triangular

elements. A multi-task feature selection framework based on the Gray Wolf

Optimizer (GWO) is developed to identify abnormal functional connectivity (FC)

features in SZ patients. A counterfactual explanation model is applied to reduce

perturbations in abnormal FC features, returning the model prediction to normal

and enhancing clinical interpretability.

Results: Our method was tested on five real-world SZ datasets. The results

demonstrate that the proposed method significantly outperforms existing

methods in terms of classification accuracy while o�ering new insights into the

analysis of SZ through improved feature selection and explanation.

Discussion: The integration of multi-task feature selection and counterfactual

explanation improves both the accuracy and interpretability of SZ identification.

This approach provides valuable clinical insights by revealing the key functional

connectivity features associated with SZ, which could assist in the development

of more e�ective diagnostic tools.

KEYWORDS

schizophrenia, functional connectivity, rs-fMRI, feature selection, counterfactual

explanation

1 Introduction

Schizophrenia (SZ) is a chronic, often disabling mental disorder that affects one

percent of the world’s population (Insel, 2010; McCutcheon et al., 2020). Patients’

clinical symptoms manifest in perception, thinking, and emotion, such as hallucinations,

delusions, incoordinated excitement, and anxiety (Song et al., 2023; Rantala et al., 2022).

Although the pathogenesis of SZ is still unclear, it is increasingly recognized that analyzing

the brain network of SZ can help improve differential diagnosis and understand the

pathological mechanism (Zhang et al., 2021). Recent studies have shown that functional
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brain networks measured by resting-state functional magnetic

resonance imaging (rs-fMRI) have become a promising tool to

reveal the underlying neural mechanisms of SZ (Zhu et al.,

2024; Chyzhyk et al., 2015). SZ causes widespread changes in

functional brain networks, including changes in global brain

topology, abnormal connectivity in local regions, and the formation

of specific abnormal subgraphs (Huang et al., 2025).

However, although functional brain networks provide rich

pathological information, these data often have high-dimensional

characteristics, making analysis and modeling face great challenges

(Mhiri and Rekik, 2020). Therefore, feature selection (FS)

becomes an indispensable step, which can remove irrelevant or

redundant features and retain only the most diagnostically valuable

information (Naheed et al., 2020). In addition, functional brain

network data usually face the problem of small samples. Due to

the high cost of data acquisition, the long experimental cycle,

and the difficulty in recruiting subjects, the number of samples

is often much lower than the feature dimension, making model

training susceptible to overfitting, thereby reducing generalization

ability (Turner et al., 2018; Ding et al., 2024). In this context,

robust and effective FS is vital. In fact, FS plays a key role in

identifying meaningful biomarkers, such as functional connectivity

between brain regions, which can characterize abnormalities in

brain function associated with brain diseases such as SZ, thus

providing insight into understanding the neural basis of brain

diseases, as well as diagnosis and prediction (Xing et al., 2022).

For functional brain network data, the traditional FS method

often exhibits poor robustness across datasets, primarily due to

the high dimensionality of the feature space and the scarcity of

training samples, and it is difficult to identify connection features

with consistency and biological interpretability (Wang et al., 2015;

Lv et al., 2015; Hu et al., 2021). At present, most existing FSmethods

have combined advanced technologies such as machine learning

or deep learning to improve performance, such as using graph

neural networks to model FC structures, or improving feature

selection efficiency through embedded FS strategies, but these

methods still have obvious limitations. On the one hand, many

models still lack consistent evaluation across data sets, making

it difficult to identify robust disease-related connection features

(Chan et al., 2024); on the other hand, most existing methods are

black-box in form and lack interpretability, especially in clinical

applications. It is difficult to provide actionable explanations or

intervention recommendations (Verma et al., 2023). In addition,

although some studies have introduced multimodal or high-order

connection features in SZ diagnosis, it is still difficult to achieve a

good balance between model generalization and explanatory power

(Sunil et al., 2024).

To address the above challenges and fill this gap, we proposed

a novel and robust multi-task feature selection method for

SZ diagnosis, and explained the changes in brain functional

connectivity (FC) caused by the disease through a counterfactual

explanation model. The schematic diagram of our proposed

method is shown in Figure 1. Specifically, we first preprocessed

the rs-fMRI data, constructed the FC matrix, and then extracted

the upper triangular elements as feature vectors and sorted them.

Subsequently, we developed a robust multi-task feature selection

framework based on the Gray Wolf Optimizer (GWO), and

selected the abnormal FC features of SZ patients by adopting

feature stratification and weight-based task generation. Finally, we

used the counterfactual explanation model to generate a set of

counterfactual examples for SZ patients, that is, by fine-tuning the

abnormal FC features of SZ patients to make their state close to

normal, thus providing theoretical guidance for the analysis and

diagnosis of SZ. We verified the effectiveness of our method on five

real SZ datasets, and the results showed that our method not only

improved the interpretability of the model, but also provided a new

perspective for the analysis of SZ. The main contributions of this

paper are as follows:

• We propose a Robust Multi-Task Feature Selection with

Counterfactual Explanation for Schizophrenia Identification

to assist SZ analysis and diagnosis.

• We construct a multi-task feature selection framework based

on GWO and combine it with the counterfactual explanation

model to fine-tune the abnormal FC features of SZ patients

to make their status closer to that of healthy individuals,

thereby improving the accuracy of SZ classification and the

interpretability of the model.

• We evaluate the performance of the proposed method using

five real SZ datasets. The results show that the proposed

method outperforms existing methods.

2 Related work

2.1 Gray wolf optimizer

Gray Wolf Optimizer (GWO) (Mirjalili et al., 2014) is an

intelligent optimization algorithm that simulates the hunting

behavior of gray wolf groups. In the context of multitasking,

GWO provides efficient global search capabilities and information-

sharing mechanisms between individuals, which can improve

optimization performance in a multi-task environment.

Gray wolf packs are generally divided into four levels: (i) α

is the leader of the wolf pack, representing the current optimal

solution, (ii) β is the second-level wolf, assisting α in decision-

making, representing the second-best solution, (iii) δ is the third-

level wolf, assisting β , representing the third-best solution, and

(iv) θ is an ordinary wolf that obeys other high-level wolves and

represents the remaining candidate solutions. When searching for

prey, gray wolves will gradually approach the prey and surround it:

D = |C · Xp − X| (1)

X(t + 1) = Xp − A · D (2)

where Xp is the location of the prey or the current optimal solution,

X is the location of the individual wolf, t is the number of iterations,

and A and C are coefficient vectors, which are calculated as follows:

A = 2d · r1 − d, C = 2r2 (3)

where d is the convergence factor that decreases linearly with the

number of iterations, from 2 to 0, and r1 and r2 are random

numbers between [0, 1]. GWO uses three optimal solutions (α, β ,

δ) to jointly guide the search:

X(t + 1) =
1

3

∑

i=α,β ,δ

(Xi − Ai · Di) (4)
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FIGURE 1

Illustration of our proposed schizophrenia analysis method, including (a) data pre-processing, (b) Robust Multi-Task Feature Selection, (c) Diversity

counterfactual explanation.

where Di = |Ci · Xi − X|, i ∈ {α,β , δ}. When |A| becomes smaller

(approaches 0), the search range is reduced, and the wolf pack

gradually converges to the optimal solution. When |A| > 1, the

wolf pack stays away from the prey and performs a global search to

avoid falling into the local optimum.

2.2 Counterfactual explanation

Counterfactual explanations are a method for making machine

learning models more transparent by showing how to change

attributes to obtain different results (Spreitzer et al., 2022). Cheng

et al. (2020) introduced counterfactuals with a classic example: A

person submitted a loan request but was rejected by the bank. If his

credit score had been 700 instead of 600, his loan application would

have been approved.

Counterfactual explanations are currently widely used in

different fields, including medical diagnosis, decision reasoning,

and artificial intelligence. Richens et al. (2020) have improved

the application of machine learning in the field of medical

diagnosis, especially in identifying rare diseases, by establishing

a counterfactual causal diagnosis model. Prado-Romero et al.

(2023) use counterfactual explanations to provide a way to

understand model decisions by providing specific changes in

input features to explain the model’s decision-making process. In

addition, counterfactual explanations also have many applications

in brain networks. For example, in the study of Abrate and

Bonchi (2021), they proposed an explanation method for a

black-box graph classifier for brain network classification. By

analyzing counterfactual graphs, brain region connection patterns

associated with specific brain region diseases can be identified.

Matsui et al. (2022) proposed a new generative deep neural

network (DNN) called Counterfactual Activation Generator

to provide counterfactual explanations for DNN-based brain

activation classifiers.

Counterfactual explanation has emerged as an important

branch in the field of machine learning interpretability; however, it

has not yet been applied to FC analysis. In this work, we introduce

a counterfactual perspective: if the abnormal FC between brain

regions in SZ patients is adjusted toward the normal range, their
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predicted state may shift closer to that of healthy individuals. Such

counterfactual reasoning is particularly valuable in the medical

domain, as it can assist clinicians in evaluating the potential

impact of different treatment strategies, especially in the context of

brain diseases.

3 Materials and methods

3.1 Schizophrenia dataset

In this study, five public datasets are used, including the Center

for Biomedical Research (COBRE) dataset (120 subjects), the

Huaxi dataset (311 subjects), the Nottingham dataset (68 subjects),

the Taiwan dataset (131 subjects) and the Xiangya dataset (143

subjects). All subjects met the following conditions: (i) no other

Diagnostic and Statistical Manual of Mental Disorders (DSMIV)

disease exists, (ii) no history of drug abuse, (iii) no clinically

significant head trauma. The specific information of the subjects

is presented in Table 1.

3.2 Data pre-processing

The rs-fMRI data of the five datasets are collected by different

types of scanners, including COBRE and Xiangya by 3-T Siemens

Tim-Trio scanner with an eight or 12-channel head coil, Huaxi by

3-T General Electric MRI scanner, and Nottingham by 3-T Philips

Achieva MRI scanner. The rs-fMRI data are preprocessed using the

program standard procedures of SPM 8 and the Data Processing

Assistant for Resting-State fMRI (DPARSF). The following steps

are performed: (i) removing the first 10 volumes, (ii) slice timing

correction, (iii) head motion correction, (iv) regress out the

nuisance covariates, (v) normalized to standardized space, (vi)

voxel-wise bandpass filtering, (vii) normalization of anatomical

images to MNI template space, and (viii) smoothing with a 4

mm Full Width at Half Maximum (FWHM) Gaussian kernel.

After processing, we defined the nodes of the brain network

according to the Automatic Anatomical Labeling (AAL) template,

and calculated the pairwise similarities between the noded1s of the

time series as the connecting edges of the brain network.

Next, let AF
i ∈ R

N×N be the connectivity matrix of the

functional brain network, N be the number of regions of the brain

network, i = 1, 2, ..., p, and p be the number of subjects. We take the

upper triangular elements of the matrix as features and represent

them as vectors Si = (s1i , ..., s
j
i, ..., s

q
i ) ∈ R

1×q, q = N(N−1)
2 , s

j
i

represents the j-th feature of the i-th subject, and Yi ∈ R is the

label of the i-th subject. It is worth noting that in this paper, we

divided the brain network into 90 regions of interest (ROI), that is,

N = 90, so each subject contains a vector of dimension 1 × 4,005,

which reflects the functional connectivity strength pattern between

the 90 brain regions of the subject.

3.3 Robust multi-task feature selection

3.3.1 Multi-task generation
To identify the most critical FC features for brain disease

diagnosis, we use the infinite feature selection (IFS) (Roffo et al.,

2020) method to calculate the importance of each feature and

rank the features accordingly. Specifically, the weight of each

feature is calculated based on the linear weighting of the following

three aspects (i.e., Fisher criterion hj, mutual information mj, and

standard deviation σj). The first is the Fisher criterion:

hj =
|µj,1 − µj,2|

2

σ 2
j,1 + σ 2

j,2

(5)

where µj,g and σj,g represent the mean and standard deviation of

the j-th feature in the g-th class, respectively. In our experiments,

both are binary classifications, so g ∈ {0, 1}.

The second is the normalized mutual information mj between

feature sj and class label Y :

mj =
∑

y∈Y

∑

z∈sj

u(z, y)log(
u(z, y)

u(z)u(y)
) (6)

where Y is the set of class labels and u(·) represents the joint

distribution probability.

TABLE 1 Characteristics of subjects in the five datasets in this study.

Datasets Class Gender (M/F) P-value of gender Age (years) P-value of age

COBRE NC 46/21 0.1927 34.82+11.28 0.3987

SZ 42/11 36.75+13.68

Huaxi NC 79/71 0.6748 27.80+12.50 1.000

SZ 80/81 27.80+12.50

Nottingham NC 26/10 0.2277 33.38+8.98 0.9855

SZ 27/5 33.34+9.05

Taiwan NC 25/37 0.2329 29.87+8.62 0.2847

SZ 35/34 31.59+9.60

Xiangya NC 35/25 0.9333 27.17+6.64 0.1025

SZ 49/34 23.37+7.83

NC, normal control; SZ, schizophrenia.
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The third is the standard deviation σj, which reflects the

dispersion of feature sj in the sample.

The final weight of each feature si is calculated as follows:

si = α1 · hj + α2 ·mj + α3 · σj. (7)

where α1+α2+α3 = 1, this weighting approach allows us to flexibly

adjust the contribution of each indicator in the selection of features,

thus selecting the most informative features for the diagnosis of

schizophrenia (SZ).

Based on the preliminary evaluation of FC feature importance

based on the above three factors, we further constructed a feature

weight curve and optimized the FS process by introducing a

knee point detection algorithm, following the knee point detection

method proposed by Chen et al. (2021). This approach provides

an automated criterion for determining the optimal feature subset

size. Specifically, after obtaining the weight of each feature, we first

construct a straight line connecting the starting point and the end

point of the weight curve, and then calculate the vertical distance

from each point on the curve to the straight line. The knee point

(xknee, yknee) is the point that maximizes the distance:

(xknee, yknee) = argmaxj(
|yj − (axj + b)|

√
a2 + 1

) (8)

where a and b are the slope and intercept of the straight line

determined by the starting point and the end point, (xj, yj) is the

coordinate of the j-th feature point on the curve, j = 2, 3, ..., q − 1.

The identified knee points divide the feature weight curve into

multiple intervals, and the features in each interval are given

different priorities according to their weights.

Based on the location of the knee points, as shown in Figure 1b,

we divide the features into three categories:

(i) Core features: located before the first knee point. These

features are usually highly correlated with the predicted target

variable and have low redundancy, and contribute the most to

the model’s predictive ability.

(ii) Important features: located between the two knee points.

Although these features are not as important as the core

features, may still contain useful information for specific

scenarios. When combined with other features, they can

enhance overall model performance, especially in complex

cases where feature interactions are significant.

(iii) Remaining features: located after the second knee point.

These features contribute less to the prediction task, contain

redundant information, or have low correlation with the

target variable.

After the above steps, we further use this category information

to guide the task generation process. To ensure that the feature

extraction process not only reflects its relative importance but also

maintains appropriate diversity, we adopt a probabilistic extraction

method based on feature weights. Specifically, we determine

the initial selection probability of each feature based on the

feature weight.

Pj =
ωj

∑q
j=1 ωj

(9)

where ωj is the weight of the j-th feature. The larger ωj is, the

higher its initial extraction probability is, and thus it is given

priority in FS. To ensure that all features have a certain chance of

being selected and to avoid the extraction probability of low-weight

features becoming too small, we adjust the initial probability:

P′j =
Pj

max(Pj)
(10)

The above formula ensures that the maximum extraction

probability of a feature is 1, and the extraction probabilities of

all other features are adjusted proportionally, avoiding excessive

neglect of low-weight features while still maintaining the priority

of high-weight features during extraction.

During the task generation process, a random number λ

between 0 and 1 is first randomly generated, which is used to

determine which features will be selected for the current task.

For each feature sj, if λ ≤ P′j, the feature will be selected

for the current task. As shown in Figure 1b, after n rounds

of independent extraction, n different task sets are generated,

each of which contains a set of selected feature subsets. This

mechanism ensures that high-weight features are selected first

and fully retain the potential contribution of low-weight features,

thereby effectively improving the diversity and flexibility of the task

generation process.

3.3.2 Multi-task optimization with GWO
In multi-task optimization, we propose to combine the

knowledge transfer mechanism with the GWO-based multi-task

optimization method to enhance information sharing between

different tasks, thereby improving the efficiency and effect of overall

optimization. Specifically, we directly integrate the knowledge

transfer mechanism in the initialization phase of GWO tomake full

use of the optimization experience of existing tasks.

To achieve effective knowledge transfer, in the multi-task

optimization process, we first need to quantify the importance

of each feature in the previous task. In other words, we need to

calculate the cumulative number of times QKT that feature sj is

selected in all previous tasks:

QKT(s
j) =

∑n

t=1
Qt
KT(s

j) (11)

where n represents the total number of tasks, Qt
KT(s

j) represents

whether the feature is selected in the t-th task (if selected, it is 1,

otherwise it is 0). Then, calculate the probability P(sj) of feature sj

being selected in the initial population of the new task:

P(sj) =
QKT(s

j)
∑q

j=1 QKT(sj)
(12)

The above formula converts the historical performance of the

feature into a probability value, which will be directly applied to

initialize the wolf pack:

Gwo =

{

1, λ ≤ P(sj)

0, λ > P(sj)
(13)

where the random number λ ∈ [0, 1], the feature sj is

selected only when it is less than or equal to P(sj). For ease
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FIGURE 2

Flowchart of proposed multi-task optimization with GWO.

of understanding, we show the specific process of the proposed

multi-task optimization method in Figure 2. First, the global

environment is set. Subsequently, the algorithm enters a loop

and processes n tasks in turn. For each task, the wolf pack

is initialized independently, using the global knowledge of the

previously processed tasks to provide information for the initial

state of the search for the new task. The position of the wolf is

iteratively updated to optimize the FS problem. After optimization,

the best solution is used to update the global knowledge base. This

cycle is repeated for each task, ensuring the continuous flow of

information and the improvement of the solution. Finally, n feature

subsets (x1, x2, ..., xn) are obtained from the n tasks.

In addition, to minimize the number of selected features while

maintaining a high classification accuracy, we designed a fitness

function in multi-task optimization and introduced a penalty term

to constrain the number of features:

Fitness = ρ × ACC − (1− ρ)×
qsf

q
(14)
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where ρ is a weight coefficient, which ranges between [0, 1] and is

used to balance the classification accuracy ACC and the number of

selected features qsf .

After the above operations, we represent the selected feature

matrix as S′ ∈ R
p×k, where k ≪ q. Based on the selected feature

matrix S′, we can train a suitable machine learning model [i.e.,

f (·)] to predict schizophrenia. In our experiment, since the support

vector machine (SVM) is strongly adaptable to small sample data

sets, we used SVM as the classification model.

3.3.3 Diversity counterfactual explanation
To enhance the interpretability of our method, we further

introduce a counterfactual explanationmodel (Mothilal et al., 2020)

to generate sample-level explanations. The input of this model

includes a trained SVM model [i.e., f (·)] and the feature vector

ci ∈ R
1×k of the i-th subject. Our goal is to generate a set of

counterfactual examples {x1i , x
2
i , ..., x

L
i } for subject i such that its

decision outcome xli ∈ R
1×k is different from the prediction of the

original feature vector ci.

The counterfactual explanation model consists of three parts:

loss function loss(·), distance function dist(·), and diversity metric

diversity(·). Specifically, the first part pushes counterfactual xli
toward different predictions, the second part makes counterfactual

examples closer to the original input, and the third part is

used to increase the diversity of counterfactual explanations. In

the first part, we use a hinge loss function that helps generate

counterfactuals with less variation by reducing the preference for

extreme values. The hinge loss is expressed as follows:

losshinge = max(0, 1− z · logit(f (x)) (15)

where z is 1 when Ŷ = 1 and−1 when Ŷ = 0, and logit(f (x)) is the

unscaled output of the SVM model. It is worth noting that in our

experiments, 1 corresponds to normal subjects and 0 corresponds

to patients, so in the verification of converting patients into normal

subjects, Ŷ is usually set to 1. For the choice of distance function

in the second part, we follow Wachter et al. (2017) proposal and

divide the distance of each feature by the median absolute deviation

(MAD) of the feature values in the training set:

dist(x, c) =
1

L

L
∑

α=1

|xα − cα|

MADα

(16)

where MADα is the median absolute deviation of the α-th feature,

L is the total number of counterfactual examples to generate, x

represents the counterfactual example and c represents the original

feature vector. For the third part, we use a determinant-based point

procedure to measure the diversity of counterfactual examples,

computed by the determinant value of its kernel matrix K:

diversity = det(K) (17)

where Ku,v = 1
1+dist(xu ,xv)

, xv and xu represent two counterfactual

examples. In the experiments, to avoid uncertain determinants,

we add small random perturbations on the diagonal elements to

calculate the determinant.

Finally, we can obtain counterfactual examples by optimizing

the following loss:

X(ci) =
γ1
L

L
∑

l=1

dist(xli, ci)

−γ2diversity(x
1
i , x

2
i , ..., x

L
i )

+argmin
x1i ,x

2
i ,...,x

L
i

1
L

L
∑

l=1

losshinge(f (x
l
i), Ŷ)

(18)

where X(ci) is the final counterfactual explanation model, γ1 and

γ2 are hyperparameters for balancing the three parts of the loss

function. The above formula reveals the minimum change required

for the input data to achieve the idealized result. By adjusting the

FC values between abnormal brain regions of SZ patients, their state

may be closer to normal. Thismethod not only provides an intuitive

explanation scheme, but also provides SZ patients and doctors with

the guidance needed to treat the disease.

4 Experiments and results

4.1 Experimental setting

In this work, we use a support vector machine (SVM) classifier

to perform the classification task on five SZ datasets. During the

experiments, we evaluate the performance of different methods

based on diagnostic accuracy (ACC = TP+TN
TP+TN+FP+FN ), sensitivity

(SEN = TP
TP+FN ) and specificity (SPE = TN

TN+FP ). FP, TP, FN, and

TN represent false-positive, true-positive, false-negative, and true-

negative classification results. To ensure fairness, all compared FS

methods use SVM classifiers. The parameters of our method are set

as α1 = α2 = 0.4, α3 = 0.2, tmax = 100, ρ = 0.9, n = 8, L = 10,

γ1 = 0.5 and γ2 = 1. It is worth noting that we use a five-fold

cross-validation strategy in all experiments.

4.2 Statistical analysis of FC features

In this set of experiments, we perform statistical analysis on the

functional connectivity (FC) remaining after feature selection by

our method to demonstrate the effectiveness of our method. For

intuitiveness, we first show the FC features retained after feature

selection by our method in Figure 3. As can be seen from Figure 3,

there are 16 shared FCs in the five datasets, and these shared

FCs are selected as features in different datasets, indicating that

they are crucial in identifying SZ. In addition, these shared FCs

are mainly distributed in key brain regions such as the prefrontal

cortex (PFC), cingulate gyrus (CC), and hippocampus (HIP), which

is consistent with the findings of existing studies on SZ in brain

network abnormalities (Orellana and Slachevsky, 2013; Wei et al.,

2021; Frankle et al., 2022; Haznedar et al., 2004).

We select the five most statistically significant FC values

between SZ and NC based on the statistical significance of each

dataset, and the results are shown in Figure 4. From Figure 4,

we find that the FC values between SZ and NC show different

distribution patterns in the five datasets. Specifically, in some

datasets, the FC values of SZ patients are significantly higher than

those of NC, while in other datasets, the FC values of SZ patients are
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FIGURE 3

Functional connectivity (FC) retained after feature selection by our method in the five datasets. The red lines indicate the common functional

connectivity among the five datasets.

significantly lower than those of NC. This suggests that there may

be some heterogeneity in the functional connectivity patterns of SZ

patients in different datasets. However, although the distribution of

FC values in different datasets is different, some specific FCs show

significant differences inmultiple datasets, indicating that these FCs

may play a key role in the neural mechanism of SZ.

Overall, the above results show that our method effectively

extracts stable and biologically meaningful FC features, which helps

to improve the accuracy and interpretability of SZ classification.

4.3 Comparison methods

We compare our proposed method with seven methods,

including (i) RAW: classification without feature selection, as

a baseline to illustrate the effect of applying feature selection

techniques. (ii) LASSO: Lasso regression model based on L1

regularization (Cui et al., 2021). (iii) MFCSO: Multitasking Feature

Selection via Competitive Swarm Optimizer (Li L. et al., 2023).

(iv) MOEA\D: Multi-Objective Evolutionary Algorithm based on

Decomposition (Wang et al., 2021). (v) SPEA: Strength Pareto

Evolutionary Algorithm (Jiang and Yang, 2017). (vi) PSO-MET:

Evolutionary Multitasking-Based Feature Selection via Particle

Swarm Optimization (PSO) (Chen et al., 2020). (vii) MTPSO:

Multitasking feature selection via PSO (Chen et al., 2021).

For all the above methods, the hyperparameters were set

according to the values recommended in their respective original

papers. Additionally, the number of iterations for all methods

was set to 100, ensuring a consistent and fair comparison across

all approaches.
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FIGURE 4

Statistical analysis is performed on the functional connections (FC) retained by feature selection using our method, and the five most statistically

significant FC values between SZ and NC in the five datasets are shown here. Among them, ∗ indicates 0.01 < p < 0.05, ∗∗ indicates 0.001 < p < 0.01,
∗∗∗ indicates 0.0001 < p < 0.001, and ∗∗∗∗ indicates p < 0.0001.

MFCSO uses three filter methods for multi task feature

selection, with each task optimized as an independent task without

direct correlation between them. Therefore, the feature selection

process may lack consistency. When dealing with specific datasets,

especially on the schizophrenia (SZ) dataset, MFCSO may not be

able to ensure consistency of selected features across different tasks,

which may result in unstable performance on different datasets.

Due to the lack of inter task correlation, feature selection results

may be affected by randomness, making it difficult to effectively

capture stable features related to schizophrenia.

Multi-objective evolutionary algorithms, such as MOEA\D

and SPEA, are designed to address multiple objectives in feature

selection. These algorithms provide a better balance between

accuracy and feature diversity by considering multiple criteria

in the optimization process. However, they are computationally

intensive and can be prone to converging to local optima, especially

in high-dimensional spaces. Furthermore, they often struggle with

the trade-off between model complexity and accuracy, which

can result in overfitting in small-sample scenarios, limiting their

generalization ability.

PSO-MET and MTPSO are both particle swarm optimization-

based methods that aim to improve feature selection by leveraging

the concept of multitasking. While these methods are effective

at identifying relevant features in some cases, they tend to

be overly sensitive to initial conditions and parameter settings,

leading to performance fluctuations. The lack of consistency

across tasks and datasets reduces their reliability, particularly

in real-world clinical settings where the data may be noisy

or heterogeneous.

In comparison, our proposed method integrates robust multi-

task feature selection with counterfactual explanation, offering

several advantages over the methods discussed above. By using

the Gray Wolf Optimizer (GWO) for feature selection, we

ensure that our method not only handles high-dimensional

data efficiently but also maintains stability across different

datasets. The multi-task learning framework in our method

allows for the sharing of knowledge across tasks, which improves

generalization and reduces the risk of overfitting, particularly in

small-sample situations.

4.4 Parameter analysis

In this section, we investigate the impact of varying the

number of tasks on the performance of our multi-task optimization

framework, as shown in the Figure 5. We observe that increasing

the number of tasks generally leads to improvements in

classification accuracy, especially for datasets such as Taiwan and

Xiangya. These datasets achieve their highest classification accuracy

at around six–nine tasks, where the accuracy reaches 0.87 and

0.89, respectively. This indicates that knowledge sharing between

tasks is particularly effective in enhancing model performance

when the task number is moderate. However, beyond a certain

point, specifically around 10–12 tasks, the performance begins

to plateau, with only marginal improvements in classification

accuracy. The graph clearly shows that the datasets, such as

Xiangya and Nottingham, while still improving with increasing

task numbers, experience diminishing returns as the number of

tasks exceeds 10. This suggests that while task number does play

a role in boosting performance, there is an optimal task count that

provides the best trade-off between performance enhancement and

computational cost.

A deeper analysis reveals that the knowledge sharing between

tasks is highly beneficial for improving classification performance.

As the number of tasks increases, the model can leverage a broader

range of features, which enhances its ability to generalize. However,

once the number of tasks exceeds a threshold, redundancy

starts to creep into the shared knowledge. This results in the

transmission of features that do not contribute significantly to

the performance improvement, thereby leading to a less efficient

model. The redundancy of features becomes particularly evident

when the number of tasks increases beyond 10, where the
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FIGURE 5

Impact of varying task numbers on model performance.

TABLE 2 Classification performance comparison with existing methods.

Datasets Metric RAW LASSO MFCSO MOEA\D SPEA PSO-MET MTPSO Our method

COBRE ACC (%) 63.41 75.00 68.10 73.40 69.44 78.38 81.19 85.19

SEN (%) 58.33 66.67 60.00 76.47 78.57 68.75 83.93 80.00

SPE (%) 73.68 79.17 76.19 69.77 63.64 85.71 79.45 91.67

Huaxi ACC (%) 61.29 69.89 72.31 76.60 77.66 75.53 76.74 80.00

SEN (%) 55.56 70.83 64.57 80.39 80.85 69.39 78.55 82.86

SPE (%) 71.43 68.89 74.81 72.09 74.47 82.22 74.60 76.67

Nottingham ACC (%) 65.00 66.12 72.22 72.34 75.53 80.95 82.71 86.67

SEN (%) 66.67 68.97 66.67 74.51 76.60 80.00 82.13 85.71

SPE (%) 63.64 62.50 77.78 69.77 74.47 81.82 83.08 87.50

Taiwan ACC (%) 70.21 79.49 77.32 77.50 80.00 85.00 81.55 89.29

SEN (%) 74.47 77.27 73.68 73.68 88.24 80.95 78.26 87.50

SPE (%) 65.96 82.35 80.95 80.95 73.91 89.47 84.52 91.67

Xiangya ACC (%) 66.90 69.23 79.41 76.74 70.77 72.31 82.79 88.24

SEN (%) 51.35 58.82 72.22 72.00 74.29 68.57 83.58 80.00

SPE (%) 67.39 69.73 87.50 83.33 66.67 76.67 81.79 94.74

Bold values represent the optimal values.

performance gains start to level off, and the computational

overhead grows significantly.

Thus, while task quantity is crucial for leveraging task

interdependencies and improving model accuracy, an excessive

number of tasks may lead to inefficiency due to the sharing of

redundant or less informative features. Therefore, it is essential

to strike a balance between the number of tasks and the

computational cost to ensure the model remains both effective

and efficient.

4.5 Classification performance

In this set of experiments, we compare our proposed method

with sevenmethods and show the results in Table 2. It is not difficult

to see that our method shows excellent stability and consistency

on the five datasets. Specifically, in the five datasets, the ACC of

our method reaches 85.19% (COBRE), 80.00% (Huaxi), 86.67%

(Nottingham), 89.29% (Taiwan), and 88.24% (Xiangya), while the

ACC of most methods does not exceed 85%. Secondly, our method
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performs outstandingly in both SEN and SPE, with SPE reaching

94.74% on the Xiangya dataset and SEN reaching 82.86% on the

Huaxi dataset, indicating that our method has strong stability in

the ability to distinguish between positive and negative samples.

PSO-MET andMTPSO performwell in terms of SEN. For example,

in the COBRE dataset, the SEN of MTPSO is 83.93%, which is

higher than other methods, indicating that it has a strong ability

to identify positive samples. In addition, we find that the methods

based on multi-task optimization and evolutionary algorithms (i.e.,

PSO-MET and MTPSO) perform better overall. For example, in

the Xiangya dataset, the ACC of MTPSO reaches 82.79%, which

is significantly higher than other methods. This can be attributed

to the fact that multi-task methods utilize shared knowledge across

tasks, thereby improving the overall learning process. In general,

the methods based on multi-task optimization and evolutionary

algorithms have higher accuracy in SZ identification, while our

method shows even better performance.

In addition, for the statistical significance of model

performance, we select the three best-performing comparison

methods (SPEA, PSO-MET, and MTPSO) in the experiment, and

perform paired t-tests on the ACC indicators of each method

on multiple datasets. The results are shown in Table 3. As can

be seen from Table 3, our proposed method shows statistically

significant differences with the three comparison methods on

all datasets (p < 0.05). Specifically, the comparison with the

SPEA method shows extremely significant differences on the

COBRE, Nottingham, and Xiangya datasets (p < 0.005), and

the comparison with PSO-MET has p values less than 0.025 on

all datasets, indicating that the differences are highly statistically

significant. At the same time, compared with the MTPSO method,

although the p values in some datasets (such as Huaxi and COBRE)

are relatively high, they do not exceed the significance level

(p < 0.05), which still shows the stable advantages of our method

on various datasets. These results further verify the universality

and effectiveness of our method on multiple datasets from a

statistical perspective.

4.6 Counterfactual explanations

In this set of experiments, we demonstrate how to generate

a set of intuitive and diverse counterfactual (CF) examples

for patients through the counterfactual explanation model. We

provide counterfactual explanations by fine-tuning the abnormal

FC value changes of patients, that is, adjusting the FC values

TABLE 3 The t-test p-value results of our method and the three best

performing comparison methods (SPEA, PSO-MET and MTPSO) on ACC.

Datasets SPEA/our PSO-MET/our MTPSO/our

COBRE 0.0015 0.0220 0.0490

Huaxi 0.0439 0.0133 0.0269

Nottingham 0.0037 0.0019 0.0249

Taiwan 0.0143 0.0195 0.0174

Xiangya 0.0016 0.0029 0.0428

between specific regions to make the patient’s state closer to

that of normal people. We generate two different counterfactual

examples for SZ patients and present them in the form of brain

maps and heat maps, as shown in Figure 6. It is not difficult

to see that we can make the patient’s state close to normal by

only slightly adjusting the FC values between the corresponding

regions. Specifically, in the Huaxi dataset, CF1 increases the FC

values between ORBinf.R–HIP.L, SMA.R–SFGmed.R, SFGmed.L–

ORBsupmed.L, and SMA.R–PHG.L from –0.2994, 0.0043, 0.2313,

and 0.6822 to 0.1712, 0.8632, 0.2981, and 1.2072, and decreases

the FC values betweenMFG.L–ROL.R and SFGdor.R–MFG.R from

0.1875 and 0.4143 to –0.6375 and –0.4230. In the Xiangya dataset,

CF1 decreases the FC values between MFG.L–ROL.R, SFGdor.R–

SOG.R, SFGdor.R–ACG.L, ORBsup.R–IFGtriang.R, and CUN.L–

LING.R from 0.2149, 0.0883, –0.0146, –0.3282, and –0.0603 to

–0.5490, 0.0619, –0.4669, –0.4412, and –0.8791, and increases

the FC values between ORBsup.R–PCG.L and INS.R–PCG.L

from –0.1435 and 0.4575 to 0.6884 and 1.2428, respectively.

We find that the changes in functional connectivity (FC) after

counterfactual interpretation remain stable within 1, without large-

scale fluctuations, which further illustrates the robustness of our

method. In addition, the role of FC changes in SZ patients has been

observed in a large number of studies, such as Lynall et al. (2010),

Fornito and Bullmore (2015), and Li et al. (2017).

5 Discussion

In this paper, we propose a multi-task feature selection

method for SZ diagnosis, and combine it with the counterfactual

explanation model to fine-tune the abnormal FC features of SZ

patients to make their state closer to that of healthy individuals,

thereby improving the accuracy of SZ classification and the

interpretability of the model. To demonstrate the effectiveness of

our method, we conduct empirical studies on five SZ datasets.

Our results show that across the five datasets, 16 FC features

are selected simultaneously. These shared FC features are mainly

distributed in key brain regions such as the prefrontal cortex (PFC),

cingulate gyrus (CC) and hippocampus (HIP), which are widely

considered to be closely related to the pathological mechanism of

SZ in previous studies. For example, the study by Minzenberg et al.

(2009) shows that PFC dysfunction is closely related to executive

function deficits in SZ patients. Whitfield-Gabrieli et al. (2009) find

that SZ patients have significant abnormalities in FC in the default

mode network (including CC), which is associated with cognitive

dysfunction. Gangadin et al. (2021) and Li X.-W. et al. (2023) find

that SZ patients have significant abnormalities in FC between HIP

and other brain regions in the resting state. These results not only

verify that the abnormal FC features screened out by our method

under multiple datasets are consistent and stable, but also further

confirm its potential value in the diagnosis and interpretation of SZ

from a neurobiological perspective.

Although previous studies reveal a variety of brain FC

abnormalities associated with SZ, there is still a lack of an

interpretable diagnostic tool in the diagnosis of SZ. Our

study proposes an innovative method that integrates multi-

task feature selection and counterfactual explanation. To

generate accurate counterfactual examples, we construct a
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FIGURE 6

Counterfactual (CF) examples generated for randomly selected SZ patients in the test set in the five datasets. The yellow lines in the left brain map

indicate the remaining functional connectivity (FC) after feature selection by our method, and the blue nodes indicate the corresponding brain

regions. The brain maps in CF1 and CF2 show two counterfactual examples generated for the abnormal FC of the patients. The red lines indicate an

increase in the FC value between the corresponding regions, and the blue lines indicate a decrease in the FC value. The heat map on the right shows

the original FC value between the corresponding brain regions of the patients and the FC value after the counterfactual explanation.

counterfactual explanation model through three parts: loss

function loss(·), distance function dist(·), and diversity index

diversity(·). Specifically, loss(·) pushes counterfactual examples

toward different predictions, dist(·) brings the counterfactual

example closer to the original input, and diversity(·) increases

the diversity of counterfactual explanations. We capture the

brain regions where patients show abnormal FC features and

slightly adjust the FC values between abnormal brain regions

to make them closer to the normal state. This analysis method

not only improves the interpretability of the classification

model, but also provides an intuitive individual-level explanatory

perspective for understanding brain FC abnormalities in SZ
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patients, which helps to identify potential intervention targets and

promotes the application of precision medicine in the diagnosis of

SZ.

However, the current study still has several limitations.

First, we only use the AAL model to define brain regions.

In the future, we use different templates to evaluate the

effectiveness of our proposed method. Second, we have not yet

established cooperation with clinical medical institutions and

lack counterfactual change explanations reviewed by clinicians.

We plan to introduce clinical validation to further demonstrate

the practicality and effectiveness of the method. Finally, this

study focuses on the SZ dataset and further verifies the

generalization ability and application potential of the method

on other brain disease datasets such as Alzheimer’s disease and

autism.

6 Conclusion

In this paper, we propose a robust feature selection method

based on multi-task optimization for SZ identification, and explain

the changes in brain functional connectivity caused by the disease

through a counterfactual explanation model. Compared with

traditional methods, our proposed method not only improves the

recognition performance, but also provides an intuitive explanation

for the prediction of SZ, and verifies the effectiveness of the method

on five SZ datasets.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Ethics statement

Written informed consent was obtained from the individual(s)

for the publication of any potentially identifiable images or data

included in this article.

Author contributions

XY: Investigation, Methodology, Writing – original draft,

Writing – review & editing. SW: Data curation, Investigation,

Writing – original draft. YS: Methodology, Writing – review &

editing. LG: Validation, Writing – review & editing. YH: Formal

analysis, Writing – review & editing. TC: Formal analysis, Writing

– review & editing. HY: Resources, Software, Writing – review &

editing. HR: Validation, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Acknowledgments

We sincerely appreciate the researchers and institutions that

provided the publicly available datasets used in this study,

including COBRE, Huaxi, Nottingham, Taiwan and Xiangya.

These datasets have greatly contributed to the advancement

of schizophrenia research. Additionally, we acknowledge the

efforts of all participants and staff involved in data collection

and preprocessing.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abrate, C., and Bonchi, F. (2021). “Counterfactual graphs for explainable
classification of brain networks,” in Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining (New York, NY: ACM), 2495–2504.
doi: 10.1145/3447548.3467154

Chan, Y. H., Girish, D., Gupta, S., Xia, J., Kasi, C., He, Y., et al. (2024). Discovering
robust biomarkers of psychiatric disorders from resting-state functional MRI via
graph neural networks: a systematic review. arXiv [Preprint]. arXiv:2405.00577.
doi: 10.48550/arXiv.2405.00577

Chen, K., Xue, B., Zhang, M., and Zhou, F. (2020). An evolutionary
multitasking-based feature selection method for high-dimensional

classification. IEEE Trans. Cybern. 52, 7172–7186. doi: 10.1109/TCYB.2020.30
42243

Chen, K., Xue, B., Zhang, M., and Zhou, F. (2021). Evolutionary multitasking
for feature selection in high-dimensional classification via particle swarm
optimization. IEEE Trans. Evol. Comput. 26, 446–460. doi: 10.1109/TEVC.2021.310
0056

Cheng, F., Ming, Y., and Qu, H. (2020). Dece: decision explorer
with counterfactual explanations for machine learning models. IEEE
Trans. Vis. Comput. Graph. 27, 1438–1447. doi: 10.1109/TVCG.2020.30
30342

Frontiers inNeuroscience 13 frontiersin.org83

https://doi.org/10.3389/fnins.2025.1609547
https://doi.org/10.1145/3447548.3467154
https://doi.org/10.48550/arXiv.2405.00577
https://doi.org/10.1109/TCYB.2020.3042243
https://doi.org/10.1109/TEVC.2021.3100056
https://doi.org/10.1109/TVCG.2020.3030342
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yuan et al. 10.3389/fnins.2025.1609547

Chyzhyk, D., Savio, A., and Graña, M. (2015). Computer aided diagnosis of
schizophrenia on resting state fMRI data by ensembles of elm. Neural Netw. 68, 23–33.
doi: 10.1016/j.neunet.2015.04.002

Cui, L., Bai, L., Wang, Y., Yu, P. S., and Hancock, E. R. (2021). Fused lasso
for feature selection using structural information. Pattern Recognit. 119:108058.
doi: 10.1016/j.patcog.2021.108058

Ding, W., Zhou, T., Huang, J., Jiang, S., Hou, T., Lin, C.-T., et al.
(2024). FMDNN: a fuzzy-guided multi-granular deep neural network for
histopathological image classification. IEEE Trans. Fuzzy Syst. 32, 4709–4723.
doi: 10.1109/TFUZZ.2024.3410929

Fornito, A., and Bullmore, E. T. (2015). Reconciling abnormalities of brain
network structure and function in schizophrenia. Curr. Opin. Neurobiol. 30, 44–50.
doi: 10.1016/j.conb.2014.08.006

Frankle, W. G., Himes, M., Mason, N. S., Mathis, C. A., and Narendran, R. (2022).
Prefrontal and striatal dopamine release are inversely correlated in schizophrenia. Biol.
Psychiatry 92, 791–799. doi: 10.1016/j.biopsych.2022.05.009

Gangadin, S. S., Cahn, W., Scheewe, T. W., Pol, H. E. H., and Bossong,
M. G. (2021). Reduced resting state functional connectivity in the hippocampus-
midbrain-striatum network of schizophrenia patients. J. Psychiatr. Res. 138, 83–88.
doi: 10.1016/j.jpsychires.2021.03.041

Haznedar, M. M., Buchsbaum, M. S., Hazlett, E. A., Shihabuddin, L., New, A.,
Siever, L. J., et al. (2004). Cingulate gyrus volume and metabolism in the schizophrenia
spectrum. Schizophr. Res. 71, 249–262. doi: 10.1016/j.schres.2004.02.025

Hu, R., Peng, Z., Zhu, X., Gan, J., Zhu, Y., Ma, J., et al. (2021). Multi-band brain
network analysis for functional neuroimaging biomarker identification. IEEE Trans.
Med. Imaging 40, 3843–3855. doi: 10.1109/TMI.2021.3099641

Huang, J., Wang, M., Ju, H., Ding, W., and Zhang, D. (2025). Agbn-transformer:
anatomy-guided brain network transformer for schizophrenia diagnosis. Biomed.
Signal Process. Control 102:107226. doi: 10.1016/j.bspc.2024.107226

Insel, T. R. (2010). Rethinking schizophrenia. Nature 468, 187–193.
doi: 10.1038/nature09552

Jiang, S., and Yang, S. (2017). A strength pareto evolutionary algorithm based on
reference direction for multiobjective and many-objective optimization. IEEE Trans.
Evol. Comput. 21, 329–346. doi: 10.1109/TEVC.2016.2592479

Li, L., Xuan,M., Lin, Q., Jiang,M.,Ming, Z., Tan, K. C., et al. (2023). An evolutionary
multitasking algorithm with multiple filtering for high-dimensional feature selection.
IEEE Trans. Evol. Comput. 27, 802–816. doi: 10.1109/TEVC.2023.3254155

Li, T., Wang, Q., Zhang, J., Rolls, E. T., Yang, W., Palaniyappan, L., et al. (2017).
Brain-wide analysis of functional connectivity in first-episode and chronic stages of
schizophrenia. Schizophr. Bull. 43, 436–448. doi: 10.1093/schbul/sbw099

Li, X.-W., Liu, H., Deng, Y.-Y., Li, Z.-Y., Jiang, Y.-H., Li, D.-Y., et al. (2023).
Aberrant intra-and internetwork functional connectivity patterns of the anterior and
posterior hippocampal networks in schizophrenia. CNS Neurosci. Ther. 29, 2223–2235.
doi: 10.1111/cns.14171

Lv, J., Jiang, X., Li, X., Zhu, D., Chen, H., Zhang, T., et al. (2015). Sparse
representation of whole-brain fMRI signals for identification of functional networks.
Med. Image Anal. 20, 112–134. doi: 10.1016/j.media.2014.10.011

Lynall, M.-E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U.,
et al. (2010). Functional connectivity and brain networks in schizophrenia. J. Neurosci.
30, 9477–9487. doi: 10.1523/JNEUROSCI.0333-10.2010

Matsui, T., Taki, M., Pham, T. Q., Chikazoe, J., and Jimura, K. (2022).
Counterfactual explanation of brain activity classifiers using image-to-image
transfer by generative adversarial network. Front. Neuroinform. 15:802938.
doi: 10.3389/fninf.2021.802938

McCutcheon, R. A., Marques, T. R., and Howes, O. D. (2020). Schizophrenia—an
overview. JAMA Psychiatry 77, 201–210. doi: 10.1001/jamapsychiatry.2019.3360

Mhiri, I., and Rekik, I. (2020). Joint functional brain network atlas estimation and
feature selection for neurological disorder diagnosis with application to autism. Med.
Image Anal. 60:101596. doi: 10.1016/j.media.2019.101596

Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., and Glahn,
D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of
executive function in schizophrenia. Arch. Gen. Psychiatry 66, 811–822.
doi: 10.1001/archgenpsychiatry.2009.91

Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf optimizer. Adv. Eng.
Softw. 69, 46–61. doi: 10.1016/j.advengsoft.2013.12.007

Mothilal, R. K., Sharma, A., and Tan, C. (2020). “Explaining machine learning
classifiers through diverse counterfactual explanations,” in Proceedings of the 2020
conference on Fairness, Accountability, and Transparency (New York, NY: ACM),
607–617. doi: 10.1145/3351095.3372850

Naheed, N., Shaheen, M., Khan, S. A., Alawairdhi, M., and Khan, M. A.
(2020). Importance of features selection, attributes selection, challenges and future
directions for medical imaging data: a review. Comput. Model. Eng. Sci. 125, 314–344.
doi: 10.32604/cmes.2020.011380

Orellana, G., and Slachevsky, A. (2013). Executive functioning in schizophrenia.
Front. Psychiatry 4:35. doi: 10.3389/fpsyt.2013.00035

Prado-Romero, M. A., Prenkaj, B., Stilo, G., and Giannotti, F. (2023). A survey
on graph counterfactual explanations: definitions, methods, evaluation, and research
challenges. ACM Comput. Surv. 56, 1–37. doi: 10.1145/3618105

Rantala, M. J., Luoto, S., Borráz-León, J. I., and Krams, I. (2022).
Schizophrenia: the new etiological synthesis. Neurosci. Biobehav. Rev. 142:104894.
doi: 10.1016/j.neubiorev.2022.104894

Richens, J. G., Lee, C. M., and Johri, S. (2020). Improving the accuracy
of medical diagnosis with causal machine learning. Nat. Commun. 11:3923.
doi: 10.1038/s41467-020-17419-7

Roffo, G., Melzi, S., Castellani, U., Vinciarelli, A., and Cristani, M. (2020). Infinite
feature selection: a graph-based feature filtering approach. IEEE Trans. Pattern Anal.
Mach. Intell. 43, 4396–4410. doi: 10.1109/TPAMI.2020.3002843

Song, X., Wu, K., and Chai, L. (2023). Brain network analysis of schizophrenia
patients based on hypergraph signal processing. IEEE Trans. Image Process. 32,
4964–4976. doi: 10.1109/TIP.2023.3307975

Spreitzer, N., Haned, H., and van der Linden, I. (2022). “Evaluating the practicality
of counterfactual explanations,” in Workshop on Trustworthy and Socially Responsible
Machine Learning, NeurIPS 2022.

Sunil, G., Gowtham, S., Bose, A., Harish, S., and Srinivasa, G. (2024). Graph neural
network and machine learning analysis of functional neuroimaging for understanding
schizophrenia. BMC Neurosci. 25:2. doi: 10.1186/s12868-023-00841-0

Turner, B. O., Paul, E. J., Miller, M. B., and Barbey, A. K. (2018). Small
sample sizes reduce the replicability of task-based fMRI studies. Commun. Biol. 1:62.
doi: 10.1038/s42003-018-0073-z

Verma, S., Goel, T., Tanveer, M., Ding, W., Sharma, R., Murugan, R., et al. (2023).
Machine learning techniques for the schizophrenia diagnosis: a comprehensive review
and future research directions. J. Ambient Intell. Humaniz. Comput. 14, 4795–4807.
doi: 10.1007/s12652-023-04536-6

Wachter, S., Mittelstadt, B., and Russell, C. (2017). Counterfactual explanations
without opening the black box: automated decisions and the GDPR. Harv. JL Tech.
31:841. doi: 10.2139/ssrn.3063289

Wang, P., Xue, B., Liang, J., and Zhang, M. (2021). Multiobjective differential
evolution for feature selection in classification. IEEE Trans. Cybern. 53, 4579–4593.
doi: 10.1109/TCYB.2021.3128540

Wang, Y., Li, Z., Wang, Y., Wang, X., Zheng, J., Duan, X., et al. (2015). A novel
approach for stable selection of informative redundant features from high dimensional
fMRI data. arXiv [Preprint]. arXiv:1506.08301. doi: 10.48550/arXiv.1506.08301

Wei, G.-X., Ge, L., Chen, L.-Z., Cao, B., and Zhang, X. (2021). Structural
abnormalities of cingulate cortex in patients with first-episode drug-naïve
schizophrenia comorbid with depressive symptoms.Hum. Brain Mapp. 42, 1617–1625.
doi: 10.1002/hbm.25315

Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S.
V., McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default
network in schizophrenia and in first-degree relatives of persons with schizophrenia.
Proc. Nat. Acad. Sci. 106, 1279–1284. doi: 10.1073/pnas.0809141106

Xing, Y., Kochunov, P., van Erp, T. G., Ma, T., Calhoun, V. D., Du, Y., et al. (2022).
A novel neighborhood rough set-based feature selection method and its application to
biomarker identification of schizophrenia. IEEE J. Biomed. Health Inform. 27, 215–226.
doi: 10.1109/JBHI.2022.3212479

Zhang, X., Braun, U., Harneit, A., Zang, Z., Geiger, L. S., Betzel, R. F., et al. (2021).
Generative network models of altered structural brain connectivity in schizophrenia.
Neuroimage 225:117510. doi: 10.1016/j.neuroimage.2020.117510

Zhu, C., Tan, Y., Yang, S., Miao, J., Zhu, J., Huang, H., et al. (2024).
Temporal dynamic synchronous functional brain network for schizophrenia
classification and lateralization analysis. IEEE Trans. Med. Imaging 43, 4307–4318.
doi: 10.1109/TMI.2024.3419041

Frontiers inNeuroscience 14 frontiersin.org84

https://doi.org/10.3389/fnins.2025.1609547
https://doi.org/10.1016/j.neunet.2015.04.002
https://doi.org/10.1016/j.patcog.2021.108058
https://doi.org/10.1109/TFUZZ.2024.3410929
https://doi.org/10.1016/j.conb.2014.08.006
https://doi.org/10.1016/j.biopsych.2022.05.009
https://doi.org/10.1016/j.jpsychires.2021.03.041
https://doi.org/10.1016/j.schres.2004.02.025
https://doi.org/10.1109/TMI.2021.3099641
https://doi.org/10.1016/j.bspc.2024.107226
https://doi.org/10.1038/nature09552
https://doi.org/10.1109/TEVC.2016.2592479
https://doi.org/10.1109/TEVC.2023.3254155
https://doi.org/10.1093/schbul/sbw099
https://doi.org/10.1111/cns.14171
https://doi.org/10.1016/j.media.2014.10.011
https://doi.org/10.1523/JNEUROSCI.0333-10.2010
https://doi.org/10.3389/fninf.2021.802938
https://doi.org/10.1001/jamapsychiatry.2019.3360
https://doi.org/10.1016/j.media.2019.101596
https://doi.org/10.1001/archgenpsychiatry.2009.91
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.32604/cmes.2020.011380
https://doi.org/10.3389/fpsyt.2013.00035
https://doi.org/10.1145/3618105
https://doi.org/10.1016/j.neubiorev.2022.104894
https://doi.org/10.1038/s41467-020-17419-7
https://doi.org/10.1109/TPAMI.2020.3002843
https://doi.org/10.1109/TIP.2023.3307975
https://doi.org/10.1186/s12868-023-00841-0
https://doi.org/10.1038/s42003-018-0073-z
https://doi.org/10.1007/s12652-023-04536-6
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.1109/TCYB.2021.3128540
https://doi.org/10.48550/arXiv.1506.08301
https://doi.org/10.1002/hbm.25315
https://doi.org/10.1073/pnas.0809141106
https://doi.org/10.1109/JBHI.2022.3212479
https://doi.org/10.1016/j.neuroimage.2020.117510
https://doi.org/10.1109/TMI.2024.3419041
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Frontiers in Medicine 01 frontiersin.org

A novel MRI-based deep 
learning–radiomics framework 
for evaluating cerebrospinal fluid 
signal in central nervous system 
infection
Ferhat Cüce  1, Gökalp Tulum  2*, Muhammed Ikbal Isik  1, 
Marziye Jalili  3, Güven Girgin  4, Ömer Karadaş  5, Niray Baş 5, 
Berza Özcan 6, Ümit Savaşci  6, Sena Şakir  6, 
Akçay Övünç Karadaş  7, Eda Teomete 8, Onur Osman 2 and 
Jawad Rasheed 9,10,11,12*
1 Department of Radiology, Health Science University, Gulhane Training, and Research Hospital, 
Ankara, Türkiye, 2 Department of Electrical and Electronics Engineering, Topkapi University, Istanbul, 
Türkiye, 3 Department of Artificial Intelligence, Üsküdar University, Istanbul, Türkiye, 4 Department of 
Neurology, Muğla Training, and Research Hospital, Muğla, Türkiye, 5 Department of Neurology, Health 
Science University, Gulhane Training, and Research Hospital, Ankara, Türkiye, 6 Department of 
Infection Disease, Health Science University, Gulhane Training, and Research Hospital, Ankara, 
Türkiye, 7 Private Clinic, Ankara, Türkiye, 8 Department of Classics, University of Michigan, Ann Arbor, 
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Introduction: Accurate and timely diagnosis of central nervous system infections 
(CNSIs) is critical, yet current gold-standard techniques like lumbar puncture 
(LP) remain invasive and prone to delay. This study proposes a novel noninvasive 
framework integrating handcrafted radiomic features and deep learning (DL) to 
identify cerebrospinal fluid (CSF) alterations on magnetic resonance imaging 
(MRI) in patients with acute CNSI.
Methods: Fifty-two patients diagnosed with acute CNSI who underwent LP 
and brain MRI within 48 h of hospital admission were retrospectively analyzed 
alongside 52 control subjects with normal neurological findings. CSF-related 
signals were segmented from the ventricular system and sub-lentiform nucleus 
parenchyma, including perivascular spaces (PVSs), using semi-automated 
methods on axial T2-weighted images. Two hybrid models (DenseASPP-
RadFusion and MobileASPP-RadFusion), fusing radiomics and DL features, were 
developed and benchmarked against base DL architectures (DenseNet-201 and 
MobileNet-V3Large) via 5-fold nested cross-validation. Radiomics features were 
extracted from both original and Laplacian of Gaussian–filtered MRI data.
Results: In the sub-lentiform nucleus parenchyma, the hybrid DenseASPP-
RadFusion model achieved superior classification performance (accuracy: 
78.57 ± 4.76%, precision: 84.09 ± 3.31%, F1-score: 76.12 ± 6.86%), outperforming 
its corresponding base models. Performance was notably lower in ventricular 
system analyses across all models. Radiomics features derived from fine-scale 
filtered images exhibited the highest discriminatory power. A strict, clinically 
motivated patient-wise classification strategy confirmed the sub-lentiform 
nucleus region as the most reliable anatomical target for distinguishing infected 
from non-infected CSF.
Discussion: This study introduces a robust and interpretable MRI-based deep 
learning–radiomics pipeline for CNSI classification, with promising diagnostic 
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potential. The proposed framework may offer a noninvasive alternative to LP in 
selected cases, particularly by leveraging CSF signal alterations in PVS-adjacent 
parenchymal regions. These findings establish a foundation for future multicenter 
validation and integration into clinical workflows.

KEYWORDS

central nervous system infection, cerebrospinal fluid, brain MRI, Radiomics, deep 
learning, lumbar puncture, perivascular spaces

1 Introduction

Central nervous system infections (CNSIs) are neurological 
emergencies that demand prompt and accurate diagnosis to reduce 
morbidity and mortality. The gold standard for confirming CNSI 
involves isolating the microbial agent or detecting its antigen in 
cerebrospinal fluid (CSF), typically via culture or polymerase chain 
reaction (PCR) analysis following lumbar puncture (LP) (1, 2). 
However, in clinical practice, the turnaround time for these methods 
is often inadequate for urgent decision-making. As such, CSF 
pleocytosis observed on microscopy is frequently used as a proxy to 
initiate empirical therapy with antibiotics, antivirals, or antifungals 
(3). Yet, reactive or false-positive pleocytosis may occur—particularly 
following initial LPs or in immunocompromised patients—raising 
concerns about overtreatment and diagnostic uncertainty (1).

Furthermore, LP is an invasive procedure with contraindications, 
including the presence of intracranial mass lesions, bleeding diathesis, 
spinal malformations, or local infections at the puncture site (2). These 
factors highlight the need for reliable, noninvasive, and rapid 
diagnostic tools to support or replace traditional CSF sampling in 
specific clinical contexts.

MRI plays a vital complementary role in the evaluation of 
CNSI. Certain imaging patterns—such as asymmetric involvement of 
the temporal lobe, insula, and cingulum in herpes encephalitis; 
leptomeningeal enhancement in meningitis; or abscess formation and 
tuberculous granulomas—may suggest an infectious etiology (4). 
Nonetheless, normal MRI findings do not exclude infection, and the 
sensitivity of MRI for viral and bacterial meningitis ranges between 
67.4 and 83.3% (5–7). Therefore, neuroimaging alone is insufficient, 
and there is an urgent demand for advanced image analysis tools that 
can extract diagnostic information beyond the visual capabilities 
of radiologists.

Radiomics addresses this gap by converting conventional medical 
images into high-dimensional quantitative data, capturing subtle 
image patterns such as intensity, texture, shape, and spatial 
relationships (8–10). These handcrafted features have shown promise 
in multiple domains, but their performance can be enhanced when 
fused with deep learning (DL)–derived features. DL models can 
automatically learn abstract, hierarchical representations from 
imaging data, offering complementary insights into disease  
phenotypes.

Recent studies have demonstrated the efficacy of DL–radiomics 
fusion models specifically within neurology, such as multimodal 
neuroimaging feature learning for Alzheimer’s disease diagnosis (11), 
deep radiomic analysis of MRI data for Alzheimer’s disease 
classification (12), and fusion of MRI and cognitive assessments for 
mild cognitive impairment diagnostics (13). Similarly, these 
approaches have shown promise in distinguishing multiple sclerosis 

lesions (14) and differentiating Parkinson’s disease patients from 
healthy individuals using radiomic features from MRI (15) and PET 
imaging (16). Additionally, deep learning radiomic frameworks have 
been effectively used for predicting hemorrhage progression in 
intracerebral hemorrhage (17), forecasting outcomes after acute 
ischemic stroke (18), and diagnosing temporal lobe epilepsy through 
FDG-PET imaging (19).

Despite the growing interest in end-to-end deep learning 
pipelines, current evidence suggests that combining DL with 
handcrafted radiomics yields more interpretable and robust results 
especially in datasets with limited sample sizes (20–22). Consequently, 
standardization initiatives now recommend best practices for 
preprocessing, feature selection, and model validation to improve 
reproducibility across institutions (23).

In this study, we propose a hybrid DL–radiomics framework for 
classifying infected versus non-infected CSF regions in patients with 
suspected CNSI. We focus on two anatomical targets: the ventricular 
system and the sub-lentiform nucleus parenchyma, including the 
perivascular spaces (PVSs), which are implicated in glymphatic CSF 
circulation. We hypothesize that the fusion of radiomic descriptors 
and DL-based spatial features can enable noninvasive discrimination 
of CSF infection patterns, thereby supporting earlier diagnosis and 
potentially reducing the reliance on lumbar puncture.

2 Methods and materials

2.1 Patient

The local ethics committee approved this retrospective study, and 
written consent was waived.

This retrospective study included patients diagnosed with CNSI 
who underwent brain MRI as part of their routine clinical work-up 
between 2017 and 2024. Fifty-two patients in the infection group were 
diagnosed with acute bacterial, viral and aseptic meningitis based on 
a combination of clinical presentation (e.g., fever, headache, neck 
stiffness), CSF analysis, and microbiological testing. Importantly, none 
of the included patients met the diagnostic criteria for encephalitis or 
meningoencephalitis, and there were no findings suggestive of 
parenchymal involvement (such as diffusion restriction, edema, or 
signal abnormalities and contrast enhancement in the brain 
parenchyma) on MRI. Mild to moderate leptomeningeal enhancement 
was observed in the majority of cases on post-contrast T1-weighted 
images, which was consistent with active meningeal inflammation. No 
significant ventriculitis, abscess formation, or hydrocephalus was 
detected. Clinically, patients presented primarily with headache and 
fever, and none exhibited focal neurological deficits, altered mental 
status, or seizures at the time of imaging. This strict inclusion criterion 
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ensured a clinically and radiologically homogeneous infection cohort, 
thereby allowing a focused evaluation of CSF-related signal features 
in isolated meningitis and minimizing potential confounding from 
parenchymal disease.

All patients diagnosed with CNSI underwent an LP on the day of 
admission and had brain MRIs performed within the first 48 h after 
being admitted to the hospital. We excluded patients who did not 
undergo LP, had no brain MRI, had MRIs taken more than 48 h after 
treatment commenced.

The control group consisted of 52 patients with chronic headaches 
with normal neurological examinations and normal brain MRI 
reports. A total of 104 patients, including both the patient and control 
groups, were included in the analysis.

2.2 Imaging parameters

All brain MRIs were performed on a Philips 3 T imaging system 
with a dedicated head coil. All studies included axial plane 
fat-saturated fast spin eco T2-weighted sequence with time repetition 
(TR): 2,600–5,600 millisecond (ms), time echo (TE): 70–90 ms, echo 
train length (ETL):10–12. The slice thickness was 5 millimeters (mm). 
To accurately evaluate subtle cerebrospinal fluid (CSF)-specific signal 
alterations and to minimize inadvertent segmentation errors arising 
from CSF flow artifacts, pre-contrast T2-weighted images were 
exclusively utilized in this study. T2-weighted imaging was selected 
for its inherent sensitivity and superior contrast resolution regarding 
fluid characteristics, enabling precise and artifact-aware segmentation 
of CSF regions. On the other hand, sequences such as T1-weighted, 
post-contrast T1-weighted, FLAIR, and diffusion-weighted images 
(DWI) were deliberately excluded. T1-weighted and post-contrast 
sequences primarily emphasize anatomical structures and contrast-
enhanced parenchymal or meningeal lesions, providing limited utility 
in isolated CSF analysis without parenchymal involvement. Likewise, 
FLAIR imaging suppresses CSF signals, inherently limiting its 
applicability for dedicated CSF signal assessment. DWI is particularly 
sensitive to acute parenchymal lesions, but since our study specifically 
excluded patients with parenchymal abnormalities, its inclusion was 
not considered beneficial. Since no 3D modeling was employed in our 
study, the slice thickness of 5 mm did not constitute a significant 
limitation for our analysis. This selective approach ensured 
methodological consistency and enhanced reliability in analyzing 
isolated CSF-related radiomic and deep learning features.

2.3 Semi-automated segmentation 
procedure

Upon consensus, two independent radiologists determined the 
slices in the axial planes of T2-weighted images. Subsequently, MRI 
images were stored in the DICOM file format and imported to the 
ManSeg (v.2.7d) software (24). Initially, the radiologists focused on 
segmenting the CSF signal in both the upper and posterior sections of 
the lateral ventricles’ lumen, avoiding areas with visible flow artifacts. 
Next, to reduce the risk of missing any subtle, instantaneous changes 
in the normal CSF flow signal, they separately segmented the 
parenchyma of the sub-lentiform nucleus, which includes the 
perivascular spaces (PVSs) supplied by the lenticulostriate arteries. 

Sub-lentiform nucleus parenchyma with the PVSs would effectively 
represent the features of the CSF, including its contents. For each 
patient, the lateral ventricles’ lumen and the parenchyma of the 
sub-lentiform nucleus were segmented bilaterally. For the 
segmentation of suspicious regions, the radiologists roughly delineated 
the boundaries of the regions of interest independently, and the 
segmentation process was then performed automatically using the 
active contour algorithm (25). Final consensus segmentation masks 
were obtained after resolving discrepancies through joint review. 
Inter-observer agreement was assessed retrospectively on a randomly 
selected subset of 10 patients. Mean Dice similarity coefficients were 
0.92 ± 0.03 for ventricular regions and 0.91 ± 0.04 for sub-lentiform 
parenchyma. Figure 1 depicts samples of infected CSF and normal 
CSF on T2-weighted images, respectively.

2.4 Feature extraction

Radiomics features were extracted from the segmented 
regions on both the native T2-weighted MRI images and three 
Laplacian-of-Gaussian (LoG)–filtered counterparts generated 
with kernel sizes of 3 × 3 × 1 (fine), 5 × 5 × 2 (medium), and 
7 × 7 × 3 (coarse). While 2D morphological features were derived 
solely from the original T2 images, both first-order and second-
order statistical features, including those from gray level 
co-occurrence matrix (GLCM), gray level size zone matrix 
(GLSZM), gray level run length matrix (GLRLM), neighboring 
gray-tone difference matrix (NGTDM), and gray level 
dependence matrix (GLDM) were extracted from all image 
sources. A comprehensive list of the extracted features is 
presented in Table 1, comprising a total of 378 features.

2.5 Classification methodology

First, the region of interest (ROI) images and their corresponding 
radiomics features were imported. For the deep-learning analysis, 
each segmented region was centrally cropped into a 32 × 32 pixel 
patch, which was then resized to 224 × 224 pixels using bicubic 
interpolation. A patient-based 5-fold cross-validation (CV) approach 
was employed, ensuring that each patient’s ROI images and associated 
radiomics data remained grouped during the splitting process. 
One-fold was allocated as the test set, while the remaining folds were 
used for training and validation. Feature selection was conducted 
solely on the radiomics features derived from the training and 
validation sets. From a total of 378 radiomics features, the top 50 most 
discriminative features were selected using a filter-based approach. 
Subsequently, the training and validation sets were split into an 
internal 3-fold cross-validation (CV) to divide them into training and 
validation subsets further. Data augmentation techniques, including 
rotation, zooming, translation, and flipping, were applied to enhance 
the diversity of the training data.

In our preliminary analyses, we  evaluated several advanced 
architectures, including Swin Transformer, Vision Transformer (ViT), 
and attention-based networks. However, these approaches yielded 
poor performance and instability due to the relatively limited size of 
our dataset. Therefore, DenseNet-201 and MobileNet-V3Large were 
selected as robust baseline architectures, given their known ability to 
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generalize well on smaller datasets and their compatibility with our 
hybrid feature fusion strategy.

Model training was conducted in two phases. For the first 
outer fold, both the customized models DenseASPP-RadFusion 
and MobileASPP-RadFusion and the base models DenseNet-201 
(26) and MobileNet-V3Large (27) were initialized from scratch. 
For the remaining folds, the weights from the previous fold were 
loaded to continue training. During the initial training phase, the 
learning rate was set to 1e-4 with a reduction factor of 0.5 and a 
minimum learning rate of 1e-7. Training proceeded for up to 200 
epochs, with early stopping implemented after 10 epochs. During 
the fine-tuning phase, the learning rate was reduced to 1e-5, and 
the first 70% of the layers were frozen. Training was conducted 
for 20 epochs, with early stopping triggered after five epochs. 
These hyperparameters were empirically determined based on 
iterative experimentation within the internal training-validation 
splits to minimize overfitting. No hyperparameter tuning was 
performed on the external test sets. Throughout the process, 
training and validation loss, as well as accuracy metrics, were 
monitored. At the end of each fold, model weights and 
performance metrics were saved. During the testing phase, the 
feature selection obtained from the outer fold was applied to the 
test set, and model performance was evaluated using standard 
metrics, including accuracy, precision, recall, and F1-score. 
Finally, the results from all five folds were reported as mean ± 

standard deviation for each performance metric. Figure 2 depicts 
the flowchart of the classification process.

In the baseline architecture, models such as DenseNet-201 and 
MobileNet-V3Large were employed as feature extractors. These base 
models processed the input MRI images to generate feature maps, 
which were subsequently passed through a global average pooling 
layer, followed by a fully connected layer with 256 neurons and a 
dropout layer (rate = 0.3), leading directly to the classification output. 
In contrast, the proposed fusion models were designed to integrate 
both deep image features and handcrafted radiomics features. In the 
image branch of the proposed models, the backbone feature map was 
processed through five parallel paths. Four of these paths constituted 
the Atrous Spatial Pyramid Pooling (ASPP) module, employing 3 × 3 
convolutions with dilation rates of 1, 6, 12, and 18, each followed by 
batch normalization and ReLU activation, producing four parallel 
7 × 7 × 512 feature maps. The fifth path was designed to inject global 
contextual information by applying global average pooling to the 
backbone feature map (resulting in 1 × 1 × 1920), followed by a 1 × 1 
convolution with 512 filters, and then bilinear upsampling to reach a 
size of 7 × 7 × 512. All five outputs were concatenated to form a 
unified representation of size 7 × 7 × 2,560 and then compressed via 
a 1 × 1 convolution with 512 filters.

In parallel to the image pathway, radiomics features were 
processed through a separate branch. A total of 378 radiomics features 
were extracted and reduced to 50 using filter-based feature selection. 

FIGURE 1

Segmented anatomical regions from the ventricular system and the sub-lentiform nucleus in both right and left hemispheres. The top row illustrates 
two representative cases from the control group with normal CSF, while the bottom row presents two cases from the CNSI group with infected CSF. 
Red-highlighted regions indicate the manually segmented areas used for radiomics feature extraction. The bounding boxes were generated as 
standardized input patches for deep learning models. All images are derived from T2-weighted MRI sequences. CNSI, Central Nervous System 
Infection; CSF, Cerebrospinal fluid.
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TABLE 1  The description and the total number of radiomics features.

Image Type Feature Class Number of features Total number of features

Original image

1. First order statistics 17

102

2. 2D shape features 9

3. Gray level co-occurrence matrix (GLCM) features 24

4. Gray level size zone matrix (GLSZM) features 16

5. Gray level run length matrix (GLRLM) features 16

6. Neighboring gray tone difference matrix (NGTDM) 

features
5

7. Gray level dependence matrix (GLDM) features 14

Log filter (FINE, MEDIUM, 

COARSE PATTERNS)

1. First order statistics 51

276

2. Gray level co-occurrence matrix (GLCM) features 72

3. Gray level size zone matrix (GLSZM) features 48

4. Gray level run length matrix (GLRLM) features 48

5. Neighboring gray tone difference matrix (NGTDM) 

features
15

6. Gray level dependence matrix (GLDM) features 42

FIGURE 2

Overview of the proposed classification framework.
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FIGURE 3

Schematic representation of the baseline and proposed model architectures.

These selected features passed through two fully connected layers 
[Dense (128) and Dense (512)] with dropout, reshaped into a 
1 × 1 × 512 tensor and then upsampled to 7 × 7 × 512 to match the 
spatial resolution of the image features. Finally, the outputs from both 
the image and radiomics branches were concatenated along the 
channel axis, forming a 7 × 7 × 1,024 fused representation. This 
combined feature map was subjected to global average pooling, 
followed by a Dense (256) layer with dropout, and terminated with a 
softmax classification layer. This architecture effectively captured both 
spatial and contextual information from MRI data, enriched by 
complementary radiomics descriptors. As illustrated in Figure 3, the 
proposed model architecture integrates both ASPP-enhanced image 
features and spatially fused radiomics features. The implementation 
code for the proposed MRI-based deep learning–radiomics 
framework is publicly available at: https://github.com/
DrGokalpTulum/MRI-Based-Deep-Learning-Radiomics-Framework- 
for-Evaluating-Cerebrospinal-Fluid-Signal-.git.

3 Results

In the CNSI group, 55.7% (n = 29) of the patients were male, 
44.3% (n = 23) were female, and the mean age was 43.5 ± 22.5 years. 
In the control group, 33.9% (n = 18) of the patients were male, 66.1% 
(n = 34) were female, and the mean age was 46.7 ± 11 years.

The CSF analysis was performed on the patient’s admission to the 
health institution. The macroscopic appearance of the CSF, the amount 

of CSF glucose and protein, pleocytosis in microscopy, and the presence 
of microorganisms in the Gram stain were evaluated. High CSF protein, 
low glucose, leukocyte count of 100 or more cells/mm3, and neutrophil 
predominance are evaluated as bacterial meningitis; normal CSF glucose, 
borderline high protein levels, and lymphocytes being the predominant 
cell in the cell count were evaluated as viral meningitis; normal CSF 
findings were accepted as aseptic meningitis.

According to early biochemical and microscopy results, bacterial 
meningitis was observed in 37 patients, viral meningitis in 14 
patients, and CSF findings of 1 patient were evaluated as aseptic 
meningitis. While no culture medium growth was detected in the 
CSF of 24 patients, Streptococcus was detected in 5 patients, E. coli 
in 3 patients, Brucella in 2 patients, Acinetobacter in 1 patient, 
Neisseria in 1 patient, and Proteus in 1 patient, according to CSF 
culture results. Varicella Zoster Virus PCR positivity was detected in 
the CSF of two patients. Based on clinical and laboratory results in 
the patient group, antimicrobial treatment for CNSI was empirically 
started. After the diagnosis of the agent was confirmed by culture, 
PCR, and serology, treatment revision was performed with 
de-escalation in three patients.

During the 5-fold outer cross-validation, a total of 378 radiomics 
features were subjected to feature selection, and the top 50 features 
were retained in each fold. Across all folds, a total of 92 unique features 
were selected. Among these, 20 features were consistently selected in 
all five folds, indicating strong discriminative capacity. These high-
frequency features primarily originated from the Laplacian of 
Gaussian (LoG) filtered MRI with fine kernels (2 mm). In particular, 
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features such as Energy, Maximum, Range, Long Run Emphasis, and 
High Gray Level Zone Emphasis repeatedly appeared across all folds.

Additionally, 16 features appeared in four folds and five features 
in three folds, most of which stemmed from LoG-filtered MRI with 
medium kernels (4 mm) or original T2-weighted images. These 
consistently selected features highlight the critical role of multiscale 
texture descriptors in capturing the heterogeneity of cerebrospinal 
fluid regions. Detailed feature selection results, including Feature 
Name, Image Source, Feature Class, and Frequency, are provided in 
the Supplementary file.

Upon investigating the classification results, the proposed fusion 
models (DenseASPP-RadFusion and MobileASPP-RadFusion) 
demonstrate improvements over their corresponding base architectures 
(DenseNet-201 and MobileNet-V3Large) in the sub-lentiform nucleus 
parenchyma region. DenseASPP-RadFusion achieved the highest mean 
accuracy (78.57 ± 4.76%) and precision (84.09 ± 3.31%), with relatively 
low standard deviations, indicating both high performance and 
consistency across folds. Although MobileASPP-RadFusion yielded the 
highest mean recall (77.05 ± 14.82%), the associated standard deviation 
was relatively large, suggesting instability in sensitivity across different 
validation folds.

In contrast, none of the models showed strong classification 
capability in the ventricular system. Accuracy values remained 
between 57.26 and 60.52%, while F1-scores were notably lower, 
particularly for DenseASPP-RadFusion (53.46 ± 11.04%) and 
DenseNet-201 (49.37 ± 15.32%). Moreover, the standard deviations in 
recall for all models were high (ranging from 12.94 to 20.66%), 
indicating a lack of reliability in detecting true positives in ventricular-
level CSF signals.

The results show that the sub-lentiform nucleus parenchyma with 
PVSs provides more stable and discriminative information for 
classification tasks compared to the ventricular system. The 
performance of the models was statistically significantly different 
(p < 0.05). Detailed performance metrics for all models and 
anatomical regions are presented in Table 2, while the corresponding 
ROC curves are illustrated in Figure 4.

To complement the fold-level evaluation, patient-wise 
classification performance was also assessed under clinically motivated 
assumptions. To assess patient-level diagnostic performance under 
clinical assumptions, strict patient-wise accuracy was calculated 
separately for each class (infection and control) across all outer folds. 
Since each patient had two separate ROIs from the right and left 

sub-lentiform nucleus levels, the following decision rules were applied: 
for infection cases (class 1), a prediction was considered correct if at 
least one of the two ROIs was classified as infected, reflecting a 
clinically cautious approach to minimize false negatives. Conversely, 
for control cases (class 0), a prediction was deemed correct only if 
both ROIs were classified as non-infected, ensuring stricter criteria for 
healthy labeling. This binary patient-wise accuracy was computed per 
case and averaged within each fold for all models.

Figure 5 presents box plots illustrating the distribution of strict 
patient-wise accuracy values for each model, separately for the 
sub-lentiform nucleus parenchyma and ventricular system. In the 
sub-lentiform nucleus parenchyma with PVSs, the proposed model 
DenseASPP-RadFusion yielded the most stable and accurate 
performance, with infection class accuracies tightly clustered within 
the 80 to 90% interquartile range and control accuracies between 70 
and 80%, both showing low interfold variability. Similarly, DenseNet-
201 achieved high median values, though with a slightly wider spread 
in the control group. Notably, both models exhibited limited presence 
of outliers, suggesting consistency in predictions across patient subsets.

On the other hand, MobileNet-V3Large exhibited high variability 
and lower median accuracy, particularly for control patients. Its 
control group performance distribution dropped to a lower 
interquartile range (below 60%) and revealed several outliers, 
reflecting instability across folds. MobileASPP-RadFusion 
demonstrated acceptable median accuracy but higher dispersion, 
particularly in control cases, indicating less consistent generalization 
across folds.

In the ventricular system, all models demonstrated lower and 
more dispersed accuracy distributions, indicating reduced reliability 
in this anatomical region. For instance, although MobileNet-V3Large 
achieved reasonable infection accuracy, its control classification 
remained weak and inconsistent. MobileASPP-RadFusion and 
DenseNet-201 exhibited moderate accuracy with noticeably higher 
standard deviations, particularly in control predictions, highlighting 
the challenge of robust CSF signal interpretation in ventricular 
regions. The broader interquartile ranges and frequent outliers in the 
ventricular plots underscore the inconsistency of model behavior in 
this region. These findings further reinforce that the sub-lentiform 
nucleus parenchyma with PVSs provides a more clinically reliable 
classification, both at the level of the fold and the patient.

Under this realistic criterion, the proposed fusion models 
demonstrated high stability and accuracy, particularly in the 

TABLE 2  Performance metrics (mean ± std) of all models.

Evaluation Area Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Performance metrics for 

the sub-lentiform 

nucleus parenchyma

DenseASPP-RadFusion 78.57 ± 4.76 84.09 ± 3.31 70.00 ± 10.93 76.12 ± 6.86

MobileASPP-RadFusion 74.40 ± 2.28 73.66 ± 4.41 77.05 ± 14.82 74.42 ± 6.66

DenseNet-201 73.81 ± 8.01 79.72 ± 5.18 62.96 ± 14.04 70.03 ± 10.52

MobileNet-V3Large 52.98 ± 9.20 55.66 ± 13.09 76.14 ± 27.62 60.84 ± 6.49

Performance metrics for 

the ventricular system

DenseASPP-RadFusion 60.52 ± 4.87 64.65 ± 8.03 47.64 ± 17.02 53.46 ± 11.04

MobileASPP-RadFusion 59.07 ± 8.63 58.14 ± 8.86 70.18 ± 26.40 61.58 ± 13.00

DenseNet-201 57.26 ± 7.05 58.54 ± 13.48 44.64 ± 20.66 49.37 ± 15.32

MobileNet-V3Large 59.62 ± 5.06 56.69 ± 4.68 77.36 ± 12.94 65.28 ± 7.26

The upper section presents results for the sub-lentiform nucleus parenchyma with PVSs, while the lower section shows results for the ventricular system. Metrics evaluated across 5-fold cross-
validation for each model.
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FIGURE 4

Mean ROC curves with standard deviation (shaded regions) for each model across the 5-fold cross-validation. The upper plot illustrates results for the 
sub-lentiform nucleus parenchyma with PVSs. The lower plot presents results for the ventricular system. Legend entries include average 
AUC ± standard deviation for each model.
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sub-lentiform nucleus. By contrast, all models showed reduced 
and inconsistent performance in ventricular CSF classification, 
further underscoring the diagnostic limitations of relying solely 
on ventricular analysis. Discordant predictions between left and 
right sub-lentiform nucleus evaluations occurred in 22.6 ± 3.1% 
for DenseASPP-RadFusion, 30.4 ± 6.0% for MobileASPP-
RadFusion, 29.9 ± 4.7% for DenseNet-201, and 39.5 ± 5.9% for 
MobileNet-V3Large, indicating varying levels of stability in 
bilateral predictions.

4 Discussion

In this study, we developed and evaluated a novel MRI-based deep 
learning–radiomics framework to classify CSF signals in patients with 
acute CNSIs. Our findings demonstrate that the fusion of handcrafted 
radiomic descriptors with DL features enables more accurate and 
reliable classification of infected versus non-infected CSF, particularly 
when analyzing the sub-lentiform nucleus parenchyma region. These 
results offer promising evidence for the utility of noninvasive 

FIGURE 5

Box plots illustrating strict clinical patient-wise accuracy for CNSI and control classes across all models, evaluated separately for the sub-lentiform 
nucleus parenchyma (top) and the ventricular system (bottom). CNS, Central nervous system infection.
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imaging-based diagnostics as a potential complement or alternative to 
LP in selected clinical contexts.

Despite their central role in CNSI diagnosis, CSF analyses via LP 
remain invasive and carry procedural risks, including herniation, 
hemorrhage, or infection—especially in patients with intracranial 
mass lesions or bleeding disorders (1–3). Moreover, pleocytosis, often 
used as a surrogate marker of infection, may occasionally yield false-
positive results, especially after repeated LPs or in 
immunocompromised individuals (1). These limitations necessitate 
the development of alternative diagnostic strategies that are rapid, 
noninvasive, and reproducible.

While MRI has proven valuable in detecting certain CNSI patterns—
such as temporal lobe involvement in herpes encephalitis or 
leptomeningeal enhancement in meningitis—it lacks sufficient sensitivity 
to reliably detect all cases, particularly in early or ambiguous 
presentations (4–7). In our study, conventional visual inspection of 
ventricular CSF signals on MRI did not provide sufficient discriminatory 
power to distinguish infected from non-infected fluid. This is likely due 
to the inherent signal homogeneity and dynamic flow of CSF in the 
ventricles, which limits the effectiveness of static image-based analysis.

Indeed, previous AI-based studies evaluating body fluid 
segmentation—such as pleural or synovial effusions—have 
reported promising results (28, 29). However, these studies 
primarily focused on relatively static fluids that exhibit well-
defined boundaries and textural consistency. CSF, on the other 
hand, is in constant motion, and its flow-dependent signal 
properties pose substantial challenges for conventional image 
segmentation and classification.

To address these limitations, our study focused on the sub-lentiform 
nucleus parenchyma, specifically targeting regions that include 
perivascular spaces (PVSs)—components of the glymphatic system that 
mediate convective CSF flow from penetrating arteries into the interstitial 
space. Unlike the ventricular system, these parenchymal regions are less 
affected by flow artifacts and may reflect more stable and informative 
imaging features. Additionally, inflammation in adjacent brain 
parenchyma during CNSI—though often invisible on routine MRI—
may alter tissue texture and contribute to detectable radiomic changes.

Our results strongly support this hypothesis. The hybrid 
DenseASPP-RadFusion model, which integrates multiscale radiomics 
with spatially resolved DL features, achieved a mean classification 
accuracy of 78.6% in the sub-lentiform nucleus region—substantially 
outperforming both its base architecture (DenseNet-201) and all 
models applied to the ventricular system. Features derived from 
Laplacian of Gaussian (LoG)–filtered images, particularly with fine 
kernels (2 mm), contributed most significantly to model performance, 
suggesting that subtle intensity variations in the CSF-parenchyma 
interface are key discriminative elements.

Furthermore, we applied a clinically grounded, strict patient-wise 
classification strategy, wherein a diagnosis of infection was accepted 
if either hemisphere exhibited an infected CSF pattern, while a control 
classification required bilateral confirmation of non-infection. Under 
this realistic criterion, the proposed fusion models demonstrated high 
stability and accuracy, particularly in the sub-lentiform nucleus. By 
contrast, all models showed reduced and inconsistent performance in 
ventricular CSF classification, further underscoring the diagnostic 
limitations of relying solely on ventricular analysis.

The broader implication of our findings lies in the potential 
of hybrid DL–radiomics frameworks to improve CNSI diagnosis 

in settings where LP is delayed, contraindicated, or inconclusive. 
To our knowledge, this is the first study to apply a deep learning–
radiomics fusion approach to analyze CSF signal patterns in brain 
MRI for the classification of CNSIs. Prior applications of AI to 
fluid-based diagnostics have largely centered around cancer-
related effusions or synovial fluid segmentation in rheumatology 
(28, 29), whereas our study opens new directions for infectious 
disease imaging.

DenseNet-based models consistently outperformed 
MobileNet-based models across most performance metrics, likely 
due to their deeper and densely connected architectures enabling 
effective feature reuse and robust representation learning. 
Conversely, MobileNet’s design prioritizes computational 
efficiency and fewer parameters, potentially limiting its capability 
to capture subtle radiomic patterns. Thus, DenseNet architectures 
may be preferable for tasks demanding detailed representation of 
subtle imaging features, whereas MobileNet remains beneficial 
under computational constraints.

Nevertheless, our study has limitations. The relatively modest 
sample size (n = 104) and single-center design may limit 
generalizability. However, all MRIs were acquired using a uniform 
3 T scanner and standardized imaging protocol, enhancing 
internal consistency. Future research should validate these 
findings using multicenter datasets with larger, more diverse 
populations and include longitudinal evaluation across various 
CNSI subtypes (e.g., bacterial, viral, fungal). Additionally, the 
integration of clinical metadata (e.g., laboratory markers, 
symptoms) with imaging features may further improve 
classification performance. Moreover, we used a slice thickness 
of 5 mm, which is relatively thicker than the thin-cut images 
(≤3 mm) typically preferred in current brain MRI research. 
Although this could potentially limit the segmentation accuracy 
and reliability in studies utilizing 3D modeling approaches, our 
analyses and segmentations were strictly performed on 2D 
images, reducing its impact within our study context. Future 
studies using thinner slice imaging might offer further 
improvements in segmentation detail and predictive performance. 
Future studies could further enhance the clinical impact and 
interpretability of the proposed fusion models by incorporating 
explainable AI (XAI) methodologies to identify and visualize the 
most influential radiomic and deep-learning-derived features. 
Integrating these techniques would significantly strengthen 
model transparency, improve clinical confidence, and facilitate a 
smoother translation into clinical practice.

In conclusion, our study introduces a novel, interpretable, 
and clinically relevant framework for noninvasive CNSI 
assessment using advanced radiomics and deep learning methods. 
The sub-lentiform nucleus parenchyma, inclusive of PVSs, 
emerges as a promising anatomical region for CSF evaluation. 
This approach has the potential to complement traditional 
LP-based diagnostics and support faster, safer, and more accurate 
CNSI management in clinical practice.
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Introduction: Social media is increasingly used in many contexts within the 
healthcare sector. The improved prevalence of Internet use via computers 
or mobile devices presents an opportunity for social media to serve as a tool 
for the rapid and direct distribution of essential health information. Autism 
spectrum disorders (ASD) are a comprehensive neurodevelopmental syndrome 
with enduring effects. Twitter has become a platform for the ASD community, 
offering substantial assistance to its members by disseminating information 
on their beliefs and perspectives via language and emotional expression. 
Adults with ASD have considerable social and emotional challenges, while also 
demonstrating abilities and interests in screen-based technologies.
Methods: The novelty of this research lies in its use in the context of Twitter 
to analyze and identify ASD. This research used Twitter as the primary data 
source to examine the behavioral traits and immediate emotional expressions 
of persons with ASD. We  applied Convolutional Neural Networks with Long 
Short-Term Memory (CNN-LSTM), LSTM, and Double Deep Q-network (DDQN-
Inspired) using a standardized dataset including 172 tweets from the ASD class 
and 158 tweets from the non-ASD class. The dataset was processed to exclude 
lowercase text and special characters, followed by a tokenization approach 
to convert the text into integer word sequences. The encoding was used to 
transform the classes into binary labels. Following preprocessing, the proposed 
framework was implemented to identify ASD.
Results: The findings of the DDQN-inspired model demonstrate a high precision 
of 87% compared to the proposed model. This finding demonstrates the 
potential of the proposed approach for identifying ASD based on social media 
content.
Discussion: Ultimately, the proposed system was compared against the existing 
system that used the same dataset. The proposed approach is based on variations 
in the text of social media interactions, which can assist physicians and clinicians 
in performing symptom studies within digital footprint environments.
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1 Introduction

ASD is among the most prevalent neurodevelopmental disorders. 
ASD is often demonstrated in children by age three and is defined by 
impairments in social interactions and communication, repetitive 
sensory-motor activities, and stereotypical behavioral patterns (1). 
ASD is a congenital neurodevelopmental condition characterized by 
symptoms that are evident in early infancy. Autism, characterized by 
restricted interests, repetitive behaviors, and significant disparities in 
social communication and interaction, typically emerges during early 
developmental stages and presents challenges in various social 
functioning domains. A child with autism induces significant anxiety 
within the family due to several factors, including the ambiguity of the 
diagnosis, the intensity and persistence of the disease, and the child’s 
nonconformity to social norms. In opposition, social awareness of 
autism is markedly inadequate, often conflated with intellectual 
disability and seen as an incurable ailment (2, 3). The ASD concept is 
displayed in Figure 1.

Content on social media, particularly videos and text disseminated 
by parents and caregivers, has emerged as a significant resource for 

facilitating the early identification of ASD (4, 5). Social media are 
technological tools designed for sharing, enabling users to create 
networks or engage in existing ones. In that order, the Pew Research 
Center identified the most popular social media sites as YouTube, 
Facebook, Instagram, Pinterest, LinkedIn, Snapchat, Twitter, and 
WhatsApp (6). Most consumers use these networks daily. This 
research utilizes Twitter data to assess the stigmatization of autism and 
associated terminology, picked based on accessibility and popularity, 
with analysis conducted using artificial intelligence technologies (7).

Conventional diagnostic methods, which primarily rely on 
observational and behavioral evaluations, often encounter issues with 
accessibility, consistency, and timeliness. Recent technology 
breakthroughs, especially in artificial intelligence (AI), and sensor-
based techniques, provide novel opportunities for improving ASD 
identification. By developing more objective, accurate, and scalable 
approaches, these technologies transform diagnostic methodologies 
for autism spectrum disorder (ASD) (8–10). One new way to study 
the motor patterns, attentional processes, and physiological responses 
linked to ASD in real-time is wearable sensors, eye-tracking devices, 
and multimodal virtual reality settings. These technologies have the 

FIGURE 1

Displays the ASD concept.
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potential to give non-invasive, continuous monitoring, which might 
help with the early diagnosis of ASD and shed light on neurological 
and behavioral traits that have been hard to document reliably.

Nevertheless, advancements in contemporary research are 
required to substantiate their efficacy. Sensor-based techniques may 
facilitate the identification of stereotyped behaviors and motor 
patterns linked to ASD in realistic environments, potentially yielding 
data that could guide timely and customized therapies (11). 
Neuroimaging and microbiome analysis further advance this technical 
domain by indicating neurological and biological traits specific to 
ASD. AI-enhanced neuroimaging aids in identifying structural and 
functional brain connection patterns associated with ASD, thereby 
enhancing the understanding of its neuroanatomical foundation (12).

The research conducted by Neeharika and Riyazuddin et al. (13) 
aimed to enhance the accuracy of ASD screening by using feature 
selection methods in conjunction with sophisticated machine learning 
classifiers. Their research included several datasets spanning infants, 
children, adolescents, and adults, enabling a thorough assessment of 
ASD characteristics across different age demographics. Authors’ use 
of MLP model capacity to reliably and rapidly identify ASD, indicating 
a beneficial screening instrument suitable for various age groups, 
facilitating both clinical evaluations and extensive screenings. Wall 
et  al. (14) investigated machine learning (ML) algorithms for 
diagnosing ASD using a standard dataset. The researchers focused on 
the Alternating Decision Tree classifier to identify a limited yet 
efficient set of queries that optimize the diagnostic procedure. Alzakari 
et al. (15) proposed a novel two-phase methodology to tackle the 
variability in ASD features with ML approaches, including behavioral, 
linguistic, and physical data. The first step concentrates on identifying 
ASD, using feature engineering methodologies and ML algorithms, 
including a logistic regression (LR) and support vector machine 
(SVM) ensemble, attaining a classification with high accuracy. EEG 
assesses brain activity and may identify children predisposed to 
developing ASD, hence facilitating early diagnosis. EEG data is used 
to compare ASD and HC (16–18). In (19), the CNN model was used 
for classification after transforming the data into a two-dimensional 
format. While EEG may facilitate the diagnosis of ASD, it is 
constrained by other factors, such as signal noise.

The research has used social media to investigate ASD. However, 
exploiting these prevalent platforms and innovative online data 
sources may be  feasible to enhance the comprehension of these 
diseases. Previous research has utilized Twitter data to investigate 
discussions on ASD-related material, indicating that this subject is 
frequently addressed on this platform (20). Considering the use of 
social media for researching ASD is particularly significant, as a recent 
analysis indicated that around 80% of individuals with ASD engage 
with prominent social media platforms (21). This study aims to build 
upon previous research and enhance our comprehension of whether 
publicly accessible social media data from Twitter may provide 
insights into the existence of digital diagnostic indicators for ASD 
(22). Furthermore, we want to assess the viability of establishing a 
digital phenotype for ASD using social media.

Beykikhoshk et al. (20) examined Twitter’s potential as a data-
mining tool to comprehend the actions, challenges, and requirements 
of autistic individuals. The first finding pertained to the attributes of 
participants inside the autism subgroup of tweets, indicating that these 
tweets were highly informative and had considerable potential 
usefulness for public health experts and policymakers. Tomeny et al. 
(23) examined demographic correlations of autism-related 

anti-vaccine opinions on Twitter from 2009 to 2015. Their results 
indicated that the frequency of autism-related anti-vaccine views 
online was alarming, with anti-vaccine tweets connecting with news 
events and demonstrating geographical clustering. From 2015 to 2019, 
Tárraga-Mínguez et  al. (24) examined the phrases “autism” and 
“Asperger” in Spain in relation to Google search peaks. The public 
view of autism was significantly impacted by how the condition was 
portrayed in the news and on social media, and the authors found that 
social marketing campaigns had a significant role in normalizing 
autism. In this research (25), looked at how people sought assistance. 
The results showed a strong correlation in Google search interest 
between the terms “Asperger syndrome” and “Greta Thunberg,” 
reaching their highest point in 2019. Online traffic to the Asperger/
Autism Network and Autism Speaks websites increased steadily from 
June to December 2019, indicating a correlation between help-seeking 
behavior and Thunberg’s fame, according to the research. According 
to the results, the stigma associated with Asperger’s disorder may have 
been positively affected by Thunberg’s public exposure.

1.1 Contribution

The use of tweets from Twitter for the detection of ASD is 
substantial, since it offers extensive, real-time, user-generated data that 
facilitates the early identification of ASD-related behaviors, particularly 
via self-reported experiences and parental observations. This 
methodology promotes the advancement of suggested models, namely 
LSTM, CNN-LSTM, and inspired DDQN, for natural language 
processing to examine linguistic patterns, feelings, and keywords related 
to ASD. It provides insights into popular views, stigma, and 
misconceptions around autism, guiding awareness initiatives and public 
health measures. Twitter data is a powerful and accessible resource for 
enhancing early detection and understanding of ASD in diverse groups. 
Utilizing social media in this manner may offer more accessible and 
timely screening, particularly in regions with limited healthcare resources.

2 Materials and methods

Figure 2 shows the pipeline of the proposed system to provide a 
broader perspective to researchers and developers. The framework 
delineates the processing phases for the pipeline that utilizes social 
media content to diagnose ASD. Below, we present a comprehensive 
assessment of each step.

2.1 Dataset

To help with the early diagnosis of ASD by using proposed 
systems, the TASD-Dataset includes comprehensive textual sequences 
that depict the everyday lives of children with and without ASD. It 
offers new elements, including Noise Sensitivity, Sharing Interest, Sign 
Communication, and Tiptoe Flapping, It combines critical ASD 
assessment aspects like Attention Response, Word Repetition, and 
Emotional Empathy, as shown in Figure 3. Parents may get detailed 
insights and better identify signs of autism spectrum disorder (ASD) 
due to the deepening of certain behaviors. The dataset contains 172 
tweets from the ASD class and 158 non-ASD tweets. Figure 4 shows 
the class of the dataset.
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2.2 Preprocessing

Text preprocessing is an essential step in the text processing 
process. Words, sentences, and paragraphs can all be found in a text, 
which is defined as a meaningful sequence of characters. Preprocessing 
methods feed text data to a proposed algorithm in a better form than 
in its natural state. A tweet can contain different viewpoints on the 
data it represents. Tweets that have not been preprocessed are highly 
unstructured and contain redundant data. To address these issues, 

several steps are taken to preprocess tweets for detecting ASD, as 
shown in Figure 5.

2.3 Text cleaning

The clean text preprocessing method is a significant step in 
text datasets because the text contains several extra contexts to 
preprocess and normalize raw text data for analysis. In these 

FIGURE 2

Farmwork of ASD system.

FIGURE 3

Features of the dataset.
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steps, the use is transformed to lowercase to guarantee 
consistency and prevent differentiation between “ASD” and 
“Non-ASD.” Subsequently, any characters that are not letters, 
numerals, or spaces are eliminated by a regular expression, so 
punctuation and other symbols that might create extraneous 
noise are removed. This method is ultimately applied to the ‘Text’ 
column of the Data Frame, ensuring that all text elements are 
sanitized and prepared for feature extraction. Figure 6 displays 
the clean text process.

2.4 Label encoding

The LabelEncoder method converts text class (ASD and 
Non-ASD) into numbers, designating 0 for ASD and 1 for 

Non-ASD. This transformation updates the classification effort by 
enabling the model to see the labels as numerical values instead of 
text. Equations 1, 2 show the label encoding.

	 ( )∈ −,yclassification ASD Non ASD Then 	 (1)

	 ( ) { }= → ∈ 0,1y labelEncoder yclassifcation y 	 (2)

2.5 Tokenization and padding

Tokenization and padding are essential NLP preprocessing 
procedures that transform unprocessed text into a numerical 
representation appropriate for machine learning models, 

FIGURE 4

Label of the dataset.

FIGURE 5

Preprocessing ASD text analysis.
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particularly neural networks. Figure 7 shows the tokenization and 
padding Equation 3.

2.5.1 Tokenizer
Tokenizer procedures transform textual data into a numerical 

representation suitable for input into neural networks. They convert a 
text corpus into integer sequences, assigning a distinct index to each 
unique word according to its frequency, as shown in Equation 3. The 
tokenizer processing is shown in Figure 8.

	 ( ) ( ) ( )= ≤f findex w rank w if rank w V 	 (3)

Where ( )frank w is rank w frequency ( )f w  and V  is the 
maximum number of words.

2.5.2 Fit texts
This phase is crucial for transforming unprocessed text into 

numerical sequences suitable for input into the proposed system.

2.5.3 Texts_to_sequences
To convert unprocessed text input into sequences of word indices 

according to the mapping acquired via as shown in Equation 4.

	 ( ) ( ) ( ) ( ) = ……… 1 2, , ,i msequence T index w index w index w 	 (4)

Where is the iT  is the sentence of the text contained, and w is the 
words of the text, whereas the ( )1index w  is an index of the words in 
the context.

2.5.4 Padding_sequences
Normalize sequence lengths, which may differ post-tokenization, by 

padding shorter sequences and truncating larger ones to a predetermined 
length as shown in Equation 5. The padding and truncated b are fixed on 
the length. = 200L . The padding processing is shown in Figure 7.

	

= ∈

1

2
.
.
.
.

nxL

x
x

x

y



	

(5)

Where x  is features contain padding and are tokenized, L is the 
length of the vector. The number of texts is indicated n, and ∈ nxL  is 
matrix lues.

2.6 Proposed systems

2.6.1 Convolutional neural networks
The CNN model is at the core of all advanced machine learning and 

deep learning applications. They can successfully address text 
classification, image recognition, object identification, and semantic 
segmentation. Using the same method with a task as different as Natural 
Language Processing is counterintuitive (7). The structure is presented in 
Figure 9. Equation 6 presents the convolution layer of CNN.

	
( ) ( ) ( )

= =
= + + ∗ +∑∑

1 1
, , ,

H W

i j
O x y I x i y j K i j b

	
(6)

Where the features of text ( ),O x y The feature of the text is mapped 
by using. ( )+ +,I x i y j  is weighted by a neural network and b is biased 
to adjust the neural. The ReLU activation function is Equation 7, the 
max pooling function is presented in Equation 8. The Dense Layer is 
given in Equation 9.

	 ( ) ( )=max 0,f x x 	 (7)

FIGURE 6

Clean text.
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( ) ( ) ( )

= =
= + + ∗ +∑∑

1 1
, , ,

H W

i j
O x y I x i y j K i j b

	
(8)

	 = +O ·W X b	 (9)

2.6.2 Long short-term memory network
An LSTM network is an advanced form of a sequential neural 

network. It fixes the problem of RNN gradients fading over time. 
RNNs often handle long-term storage. At a high level, the 
operation of an LSTM is comparable to that of a single RNN 
neuron. The inner workings of the LSTM network are outlined in 
this section. The LSTM consists of three parts, each performing 
a particular function, as seen in Figure 10 below. In the first step, 
it is decided whether the information from the previous time 
stamp is significant enough to be saved or if it is harmless enough 
to be deleted. In the second step, the cell will try to acquire new 
information by analyzing the data that has been presented to it. 
In the third and final step, the cell incorporates the data from the 
most recent time stamp into the data stored in the next time 
stamp. These three components constitute what is referred to as 
a gate for an LSTM cell. The “Forget” gate comes first, followed 
by the “Input” section, and then the “Output” section is used to 
define the last portion as shown in Equations 10– 14.

	 ( )σ −= + +1Forget gate : . .t f t f t ff W X W h b 	 (10)

	 ( )σ −= + +1Input gate : . .t c t i t ii W X W h b 	 (11)

	 ( )( )−= ∗ 1Cell gate : . ,t f t t fC W h x b 	 (12)

	 ( )σ −= + + + +1Output gate : . .t o t o t o t oo W X W h V C b 	 (13)

	 ( )= +Hidden layer : tanht t th o C 	 (14)

In Figure 10, tC Represent the prior and current states of the cell, 
respectively. Both −1th and h Represents the cell output that was 
processed before the one now being processed. It is common practice 
to disregard tf  As a gate, even though it is the input gate. The output 
of a sigmoid gate is symbolized here by to . The cable that connects 
the cell gates is where all the data collected by the cell gates is sent to 
and from C . The tf  Layer decides to remember anything, and 
the tf The Output is multiplied by c to do so (t-1). After that, c (t-1) 
is multiplied by the product of the sigmoid layer gate and the tanh 
layer gate, and the output h t is generated by point-wise 
multiplication of to  and tanh.

The LSTM architecture is intended to capture long-term 
relationships in Twitter text data. The preprocessing converts input 

FIGURE 7

Sample of text tokenization and padding.
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words that start with an embedding layer into 128-dimensional 
dense vectors. The LSTM layer with 64 units is then used to 
mitigate overfitting, integrating dropout and recurrent dropout 
with 0.5. An L2 regularization term is further included in the 
LSTM and output dense layer. Table 1 shows parameters of the 
LSTM model.

2.6.3 CNN-LSTM model
The CNN-LSTM model is a hybrid architecture that combines 

convolutional neural networks (CNN) for spatial feature 
extraction and long short-term memory (LSTM) networks for 
sequential learning, making it highly effective for analyzing text 
data such as tweets. The model begins with an embedding layer 

FIGURE 8

Tokenizer analysis: word frequencies and sequence lengths.

FIGURE 9

Structure CNN.
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that transforms each word into a 256-dimensional dense vector, 
capturing the semantic meaning of words. This is followed by a 
1D convolutional layer with 64 filters and a kernel size of 5, 
which scans through the text to detect local patterns and n-gram 
features such as common word combinations or phrases often 
associated with ASD. A batch normalization layer is applied to 
stabilize and accelerate training, followed by a max pooling layer 
that reduces the dimensionality and computational load by 
selecting the most prominent features. A dropout layer with a rate 
of 0.5 is then used to prevent overfitting by randomly deactivating 
some neurons during training. The output is passed into a 64-unit 
LSTM layer that captures the temporal dependencies and 
contextual relationships across the tweet  sequence. Finally, a 
dense layer with sigmoid activation performs binary classification 
to predict whether the tweet indicates ASD-related content. The 
model is trained using the Adam optimizer, binary cross-entropy 
loss, class weights, and regularization to handle imbalanced data 
and improve generalization. The critical parameters of the 
CNN-LSTM model are displayed in Table 2.

2.6.4 Double deep Q-network (DDQN-inspired)
The Double Q-Learning model was introduced by H. van Hasselt in 

2010, addressing the issue of significant overestimations of action value 
(Q-value) inherent in traditional Q-Learning. In fundamental Q-learning, 
the Agent’s optimal strategy is consistently to select the most advantageous 
action in any specific state. This concept’s premise is that the optimal 
action corresponds to the highest expected or estimated Q-value. Initially, 
the Agent lacks any knowledge of the environment; it must first estimate 
Q(s, a) and subsequently update these estimates with each iteration. The 
Q-values exhibit considerable noise, leading to uncertainty about whether 
the action associated with the highest expected or estimated Q-value is 
genuinely the optimal choice.

Double Q-Learning employs two distinct action-value 
functions, Q and Q’, as estimators. Even if Q and Q’ exhibit noise, 
this noise can be interpreted as a uniform distribution as shown 
Figure 11 The update procedure exhibits some variations compared 
to the basic version. The action selection and action evaluation 
processes are separated into two distinct maximum function  
estimators. shown in Equations 15, 16.

FIGURE 10

LSTM model.

TABLE 1  LSTM parameters model.

Input Values

Embedding dimension 256

LSTM unit 64

Conv1D 64, K = 5

MaxPooling ID yes

Dropout_rate 0.5

Dense_Unites 32

Activation_function ReLU

L2 0.001

Optimizer Adam

Loss Binary

Epoch 30

Batch size 16

TABLE 2  CNN-LSTM parameters.

Input Values

Embedding dimension 128

LSTM unit 64

Conv1D No

MaxPooling ID No

Dropout_rate 0.5

Dense_Unites 32

Activation_function ReLU

L2 0.001

Optimizer Adam

Loss Binary

Epoch 30

Batch size 16
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Let the vector of a neural network’s weights be represented by θ. 
We establish two Q-networks: the online Q-network Q (s, a; θ(t)) and 
the target Q-network Q (s, a; θ (t)). To be more specific, the training 
of Q (s, a; Χ (t)) is done by modifying the weights (t) at time slot t in 
relation to the goal value y(t).

	
( ) ( ) ( )( ) ( )( )θ θ∗ ′= + ′ ′ ′,arg max , ; ;y t G t s Q s a t t

	
(15)

	
( ) ( ) ( )( )θ θ∗

−′= + ′ ′ 1,arg max , ; ; iy t G t s Q s a
	

(16)

The reinforcement learning mechanism integrates generative 
artificial intelligence for decision-making and prediction tasks, as 
shown in Equations 15, 16. This equation indicates the generative 
which produces the estimation or hypothesis at a given time t . 

−Double Q Learning Used next state, whereas the s’ is exit state and 
θ∗′ ′arg max ( , ; ( ))Q s a t  defined as the action of ∗a  to maximize the 

predicted Q-value based on the current parameters. To estimate the 
Q-value of this selected action in the next state, the outer Q-function 
Q’ employs the older parameters. θ −1i 1, which helps reduce 
overestimation bias. This combination makes applications for 
predicting ASD from social media content domains possible.

The DDQN model is used to classify ASD and non-ASD cases 
utilizing text data. The model utilizes a preprocessing step for 
text processing that encompasses data loading, cleaning 
(including lowercasing, removal of special characters, and 
normalization of spaces), and tokenization, constrained by a 

maximum vocabulary of 10,000 words and a sequence length of 
200. The model architecture, drawing from the Double Deep 
Q-Network (DDQN) model comprises an input layer, an 
embedding layer with 256 dimensions, and two parallel LSTM 
branches, each containing 64 units, a dropout rate of 0.5, and L2 
regularization to capture sequential patterns effectively. The 
model uses the Adam optimizer with a learning rate of 1e-4 and 
employs binary cross-entropy loss. It is trained for 30 epochs, 
incorporating early stopping and learning rate reduction 
callbacks to mitigate overfitting. Parameters of DDQN-Inspired 
are shown in Table 3.

3 Performance of the framework

3.1 Performance of LSTM

Figure 12 presents the accuracy and loss metrics used to train 
and validate an LSTM model over 30 epochs. The validation 
accuracy of the LSTM model, displayed in red, begins at a lower 
value and increases to about 81%. The blue line in the accuracy 
plot (a) shows the training accuracy of the LSTM model; it 
increases gradually from around 50% to almost 99%, showing 
that the model learns the training data well over time. The plot 
(b) shows the loss of the LSTM model; the blue line represents 
the training loss, which drops gradually from around 0.7 to less 
than 0.2, suggesting that the model is getting a better fit to the 
training data. Meanwhile, the red validation loss line declines 
from around 0.7 to about 0.3. While the training loss continues 

FIGURE 11

DDQN-inspired model.
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to grow, the validation loss reaches a level and exhibits small 
oscillations, suggesting that the model’s generalizability 
may stabilize.

The ROC curve illustrated in Figure 13 shows the efficacy of the 
LSTM model in differentiating between the classes. The graph 
illustrates the TP rate (sensitivity) in relation to the FP Rate across 
different threshold levels. The LSTM model attains an AUC of 0.95, 
demonstrating exceptional classification capability. The AUC of 1.0, 
but a result of 0.5 indicates random chance.

3.2 Performance of the CNN-LSTM model

Figure  14 presents plots illustrating the performance of a 
CNN-LSTM model over 25 epochs, showing its training and 
validation metrics for accuracy and loss. The accuracy plot (a) 
illustrates the training accuracy (blue line), which increases 
progressively from approximately 51.42% to nearly 99.53%, 
indicating effective learning from the training data. In contrast, 

the validation accuracy (red line) rises to about 83.02% with 
some variability, indicating satisfactory but imperfect 
generalization. The loss plot (b) shows the training loss (blue 
line) declining steadily from 0.7140 to below 0.0760, indicating 
enhanced model fit. In contrast, the validation loss (red line) 
decreases from 0.7130 to approximately 0.3530, with a slight 
decline toward the conclusion. This notification indicates that the 
CNN-LSTM model demonstrates efficient learning, as evidenced 
by the difference between the training and validation measures.

Figure 15 illustrates the ROC curve for the CNN-LSTM model, 
illustrating its classification performance at various thresholds. The 
graph illustrates the TP Rate (Sensitivity) in relation to the FP Rate, 
with the AUC recorded at 92%. The elevated AUC value indicates the 
model has robust discriminative capability in differentiating between 
the ASD and Non-ASD classes. The ROC ascends rapidly toward the 
top-left corner, as seen in the figure, indicating a high TP rate with few 
false positives.

3.3 Performance of DDQN-inspired model

Graphs 16 illustrate the performance of a DDQN throughout 30 
epochs. The accuracy plot (a) demonstrates that the training accuracy 
increases from around 58.02% to almost 98.58%, indicating the 
DDQN model successful learning from the training data over time. 
The validation accuracy of the DDQN is about 87, showing the best 
performance compared to different models like LSTM and 
CNN-LSTM. The plot (b) illustrates that the training loss decreases 
from about 0.8155 to around 0.1477, indicating a robust fit to the 
training data. The validation loss begins at 0.3831 with many 
fluctuations throughout (Figure 16).

Figure 17 shows the ROC curve for the DDQN model; it shows a 
visual representation of its classification capability, with the curve toward 
the top-left corner, indicating strong predictive power. The AUC value of 
the DDQN model is 96%, demonstrating that the model can distinguish 
between the positive and negative classes.

TABLE 3  Parameters of DDQN-inspired.

Input Values

Max-sequence length 200

Vocabulary 10,000

Embedding_dimension 256

Dropout_rate 0.5

Dense_Unites 32

Activation_function ReLU

LS 0.0001

Optimizer Adam

Loss Binary

Epoch 30

Batch size 16

FIGURE 12

Performance of the LSTM model.
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4 Experiment and discussion results

Both the Jupyter deep learning framework and the Windows 10 
operating system were utilized during the testing process. Experiments 
were conducted using a machine with 16 gigabytes of RAM and an Intel 
Core i7 central processing unit. The input dimensions of the experiment 
were a standard text dataset collected from the Twitter API related to 
ASD. The test was utilized in our database, while the remaining 20% was 
used as part of our validation set. The three DL models, namely LSTM, 
CNN-LSTM, and DDQN-Inspired, were proposed for detecting ASD 
from social media content.

4.1 Measuring the model’s performance

Sensitivity, specificity, accuracy, recall, and F1 scores are 
assessment measures used to determine how successfully the 
algorithms identify ASD. The related equations from 17 to 21:

	
+

= ×
+ + +

100%TP TNAccuracy
TP FP FN TN 	

(17)

	
= ×

+
100%TPSensitivity

TP FN 	
(18)

	
= ×

+
100%TPPrecision

TP FP 	
(19)

	
= ×

+
100TNspecificity

TN FP 	
(20)

	

×
− = ∗ ×

+
1 2 100precision SensitivityF score

precision Sensitivity 	
(21)

4.2 Result of the LSTM model

The classification LSTM model, presented in Table 4, summarizes its 
performance in differentiating between ASD and Non-ASD patients, 
attaining an overall accuracy of 81%. The LSTM model demonstrates in 
ASD class a precision of 91%, indicating a high accuracy in identifying 
predicted ASD cases. The LSTM with recall metric scored 77% and an 
F1-score of 82% for detecting the ASD class. The LSTM model with 
Non-ASD class demonstrates a precision of 71%, a recall of 89%, and an 
F1-score of 79%, to identify Non-ASD cases. The macro average of the 
LSTM model for all metrics is (precision: 81%, recall: 82%, F1-score: 

FIGURE 14

Performance of the LSTM model.

FIGURE 13

ROC of the LSTM model.
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81%). LSTM model is recognized for its efficiency and scalability as a 
model for social media content.

The confusion matrix for the LSTM model is provided in 
Figure 18. It is presented in a clear manner. Among the confirmed 
ASD cases, 29 were accurately identified as ASD, whereas 10 were 
incorrectly classified as Non-ASD, indicating strong performance 
with minor errors. In the true non-ASD cases, 25 were correctly 
identified, while 3 were misclassified as ASD, suggesting a 
generally effective detection process. The deep blue and light 
shades produce a tranquil visual, illustrating the model’s balanced 
approach in classifying the 67 total instances, demonstrating 
notable strength in identifying Non-ASD cases, while exhibiting 
marginally lower accuracy for ASD. This matrix effectively 
illustrates the LSTM model’s systematic approach to managing 

sequential data, such as text or time-series inputs, in a clear and 
comprehensible manner.

4.3 Result of the CNN-LSTM model

Table  5 displays the CNN-LSTM model’s performance in 
distinguishing between ASD and non-ASD classes. The CNN-LSTM 
model attained an overall accuracy of 85% across the dataset. In the ASD 
label, a precision of 91% was achieved, a high percentage for predicting 
ASD cases that were accurately recognized. The recall indicates that the 
model identified 82% of all genuine ASD cases, resulting in an F1 score 
of 86%, better than the recall metric. The CNN-LSTM model attained 
78% accuracy, 89% recall, and an 83% F1 score for the Non-ASD class. 
The macro average, representing the unweighted mean of precision, 
recall, and F1 score across both classes, was 85, 86, and 85%, respectively. 
The findings indicate that the CNN-LSTM model performs satisfactorily, 
exhibiting a marginally superior capacity to identify ASD cases relative 
to non-ASD cases accurately.

The confusion matrix of a CNN-LSTM model is presented in 
Figure 19, for classifying instances into ASD and Non-ASD. The 
matrix is structured with true labels on the vertical axis and 
predicted labels on the horizontal axis, providing a clear summary 
of the model’s classification outcomes. The matrix shows that out 
of the instances truly labeled as ASD, the model correctly 
predicted 32 as ASD TP while 7 were incorrectly classified as 
Non-ASD FN. For the instances truly labeled as Non-ASD, the 
model accurately identified 25 as Non-ASD TN but 3 were 
misclassified as ASD FP. This indicates that the model 
demonstrates a relatively strong ability to correctly identify ASD 
and Non-ASD cases, with higher accuracy for true positives (32 
out of 39 ASD cases) and true negatives (25 out of 28 Non-ASD 
cases). Overall, the model exhibits promising performance with 
minimal misclassification errors.

FIGURE 15

ROC of the CNN-LSTM model.

FIGURE 16

Performance of the DDQN-inspired model.
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FIGURE 18

LSTM model.

FIGURE 17

ROC DDQN-inspired model.

TABLE 4  LSTM results.

Class name Precision (%) Recall (%) F1 Score (%) Support

ASD 91 74 82 39

Non-ASD 71 89 79 28

Accuracy 81

Macro Avg 81 82 81 67
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4.4 Results of double deep Q-network

The findings of the DDQN model are shown in Table  6, 
achieving a high precision of 87% compared to the other models. 
This finding demonstrates the potential of the proposed DDQN 
approach for identifying ASD based on social media content. 
Ultimately, the proposed system was compared against the existing 
one using the same dataset. The proposed approach may assist 
physicians in detecting ASD and conducting symptomology research 
in a natural environment, attaining an overall accuracy of 87. The 
model for the ASD class shows a precision of 95%, a recall of 79%, 

and an F1-score of 87%, indicating robust efficacy in accurately 
identifying ASD patients. The Non-ASD class has a precision of 77%, 
a recall of 96%, and an F1-score of 86%, indicating somewhat 
reduced accuracy with robust recall. The macro average measures 
(precision 87%, recall 88%, F1-score 87%) indicate performance 
across both classes.

The confusion matrix of the DDQN model is shown in 
Figure 20 for the classification task between ASD and non-ASD 
cases. For correct classification of ASD cases, the model correctly 
classified 31 instances as ASD, represented by the top-left 
quadrant (TP). However, the DDQN model, misclassified 8 

TABLE 5  Results of the CNN-LSTM model.

Class name Precision (%) Recall (%) F1 Score (%) Support

ASD 91 82 86 39

Non-ASD 78 89 83 29

Accuracy 85

Macro Avg 85 86 85 67

FIGURE 19

Results of CNN-LSTM model.

TABLE 6  Result of DDQN-inspired.

Class name Precision (%) Recall (%) F1 Score (%) Support

ASD 95 79 87 39

Non-ASD 77 96 86 28

Accuracy 87 67

Macro Avg 87 88 87 67
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instances misclassifying true ASD cases as Non-ASD, shown in 
the top-right quadrant (FN). On the other hand, the DDQN 
showed the true Non-ASD cases, accurately identified 27 
instances as Non-ASD, depicted in the bottom-right quadrant 
(TN). At the same time, 1 instance was incorrectly labeled as 
ASD, as shown in the bottom-left quadrant (FP). The confusion 
matrix of DDQN model highlights that it performs well overall, 
with a strong ability to correctly identify both ASD and  
Non-ASD cases, as evidenced by the high counts of TP (31) and 
TN (27).

In the digital era, people frequently write content on social media 
to express their feelings, opinions, beliefs, and activities. This makes 
social media one of the most significant sources of data generation, 
allowing you to explore its opportunities and challenges. Today, social 
media has become a mediator between people and the healthcare 
sector, enabling them to search for information about any specific 
disease and methods for diagnosing it.

Individuals within the mental health community use social media 
platforms such as Twitter to seek information, exchange experiences, and 
get assistance about ASD in an environment that is seen as more 
approachable and informal than conventional medical contexts. They 
often seek immediate, relevant information—whether to understand 
symptoms, identify coping mechanisms, or connect with others facing 
similar difficulties. Figure  21 illustrates that Word clouds are visual 
representations of text that highlight key terms and their frequency of use. 
We used WordCloud to compare ASD and Non-ASD texts for instances 
of word repetition.

The deployment model based on the Deep Q-Network (DQN) 
model for diagnosing ASD is shown in Figure 22.

Step  1: Data Collections, including cleaning, normalization, 
and tokenization.

Step 2: Model Development: The preprocessed data is used to 
train and validate a Deep Q-Network (DQN) model for classifying 
tweets as indicative of ASD or non-ASD patterns.

Step 3: Application Interface: An application interface is developed 
once the model has been trained. It integrates with users’ Twitter 
accounts and continuously analyzes their tweets.

Step 4: Deployment: The proposed system is deployed in the cloud 
for storing tweets, enabling real-time monitoring of incoming tweets. 
Predictions are flagged for review by healthcare professionals, who 
validate the model’s output before categorizing individuals as 
potentially having ASD or non-ASD.

This digital imprint may serve as an ancillary resource for mental 
health practitioners, providing insights into an individual’s emotional state 
and social behaviors in a natural environment, potentially facilitating early 
detection or corroborating a diagnosis. This method is a non-invasive 
means of data collection, particularly beneficial for individuals who lack 
rapid access to clinical assessments due to financial constraints, stigma, or 
resource scarcity. However, it should not replace professional diagnoses 
and must be  conducted with ethical consideration to prevent 
misunderstanding. Table 7 shows the findings of the proposed framework 
on the Twitter dataset. It demonstrates that the suggested method 
outperforms the current systems in terms of accuracy, proving its efficacy 
and potential for performance improvements.

FIGURE 20

Result of DDQN-inspired model.
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FIGURE 21

ASD word cloud.

FIGURE 22

Deployment system-based text for detecting ASD.
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5 Conclusion

To assist people in identifying trends in their behavior, such as 
social challenges or sensory sensitivities, which may encourage 
them to pursue a formal diagnosis. The main objective of examining 
tweets for identifying ASD is its ability to provide behavioral and 
emotional indicators associated with the disorder. This research was 
used to analyze the textual analysis of tweets to detect the behaviors 
in self-identified autistic individuals relative to others. The 
suggested framework was evaluated using information from the 
social media platform “Twitter” collected from a public repository. 
Before examining the proposed system, several preprocessing steps 
must be implemented in the text. The ‘Text’ column is cleaned by 
converting it to lowercase, eliminating non-alphanumeric 
characters (excluding spaces) through regular expressions, 
normalizing whitespace to a single space, and removing any leading 
or trailing spaces. The ASD and Non-ASD labels are converted into 
a numerical format (0 or 1) with LabelEncoder to accommodate the 
binary classification requirement. Tokenization of the text data is 
performed using a tokenizer, restricting the vocabulary to 10,000 
words, and then transforming the text into sequences of numbers. 
The sequences are padded to a standardized length of 200 tokens to 
maintain consistency for the proposed model input. The proposed 
data is ultimately divided into an 80% training and 20% testing 
ratio, and class weights are calculated to resolve any class imbalance. 
This preparation pipeline efficiently converts raw text data into a 
structured numerical representation appropriate for the proposed 
framework, while preserving academic integrity. The output of 
these preprocessing steps was processed using three DL models, 
such as Short-Term Memory (CNN-LSTM) and a Double Deep 
Q-network (DDQN). The results of these proposals were proven, 
revealing that the DDQN model achieved a high accuracy score of 
87% with respect to the accuracy measure. The proposed 
framework, based on real textual data, can be helpful for real-time 
offering natural, behavioral, and emotional data that might indicate 
ASD-related characteristics. Finally, we have observed that social 
media (Twitter) postings include linguistic patterns, emotional 
expressions, and social interactions that can help official health 
officials detect ASD based on the thorough symptoms of ASD that 
are posted on the platform. This study utilized a conventional 
dataset sourced only from the Twitter network. We will emphasize 
the necessity of gathering datasets from many platforms to enhance 
the model’s generalizability in the future.
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Application and improvement
of YOLO11 for brain tumor
detection in medical images
Weijuan Han1*, Xinjie Dong2, Guixia Wang1, Yuwen Ding3

and Aolin Yang4

1School of Mechanical and Electronic Engineering, Zhongyuan Institute of Science and Technology,
Zhengzhou, China, 2Information and Communication Department, Henan Public Security
Department, Zhengzhou, China, 3Editorial Department, Henan Medical College, Zhengzhou, China,
4School of Public Administration, Henan University of Economics and Law, Zhengzhou, China
Brain tumors pose a critical threat to human health, and early detection is

essential for improving patient outcomes. This study presents two key

enhancements to the YOLOv11 architecture aimed at improving brain tumor

detection from MRI images. First, we integrated a set of novel attention modules

(Shuffle3D and Dual-channel attention) into the network to enhance its feature

extraction capability. Second, we modified the loss function by combining the

Complete Intersection over Union (CIoU) with a Hook function (HKCIoU).

Experiments conducted on a public Kaggle dataset demonstrated that our

improved model reduced parameters and computations by 2.7% and 7.8%,

respectively, while achieving mAP50 and mAP50–95 improvements of 1.0%

and 1.4%, respectively, over the baseline. Comparative analysis with existing

models validated the robustness and accuracy of our approach.
KEYWORDS

brain tumor, object detection, you only look once (YOLO), attention, intersection over
union (IoU), mean average precision (MAP), giga floating point operations per
second (GFLOPs)
1 Introduction

Brain tumors present a serious risk to human health with potentially devastating

consequences. Abnormal growth can interfere with brain function, causing severe

neurological symptoms, cognitive impairment, and in many cases, mortality (1, 2). The

classification of brain tumors serves as the foundation for clinical diagnosis, treatment

planning, and prognostic assessment. The most authoritative international system is the

World Health Organization (WHO) Classification of Tumors of the Central Nervous

System, with the latest 5th edition (WHO CNS5) published in 2021 (3, 4). This

classification integrates histopathology, molecular genetics, and clinical phenotypes to

form an integrated diagnosis framework, replacing the previous morphology-based

classification model. Based on tissue origin and biological characteristics, WHO CNS5

categorizes brain tumors into the following 6 categories: Neuroepithelial Tumors (Gliomas
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and Related Tumors), Meningeal Tumors, Cranial and Peripheral

Nerve Tumors, Germ Cell Tumors, Sellar Region Tumors, and

Metastatic Brain Tumors.

Tumor characteristics such as location, size, and grade are

critical determinants of neurological impairments and functional

deficits in patients with brain tumors. Location directly influences

the specific deficits due to the brain’s functional specialization. For

example, tumors in the motor cortex often cause contralateral limb

weakness or paralysis, while lesions in the cerebellum may lead to

ataxia and coordination difficulties. Size correlates with the severity

of mass effect and peritumoral edema. Larger tumors (e.g.,

diameters >4 cm) exert greater mechanical pressure on

surrounding tissues, causing midline shift, ventricular

compression, and increased intracranial pressure, which manifest

as headaches, nausea, altered consciousness, and even herniation.

Grade reflects tumor aggressiveness and biological behavior. Low-

grade tumors grow slowly and may remain asymptomatic for years,

while high-grade tumors exhibit rapid infiltration, angiogenesis,

and necrosis, leading to severe and progressive deficits. In summary,

tumor location dictates the type of neurological deficits, size

determines the extent of mass effect and increased intracranial

pressure-related complications, and grade predicts the tempo and

severity of clinical progression. Multidisciplinary management (5),

including surgical planning, adjuvant therapies , and

neurorehabilitation, must account for these interdependent

factors to optimize outcomes.

Early and accurate detection of brain tumors is essential for

treatment planning, as timely intervention can significantly

improve patient prognosis and quality of life. Magnetic resonance

imaging (MRI) (6) has become a primary diagnostic tool for brain

tumors owing to its high soft-tissue contrast and detailed

anatomical resolution. However, manual analysis of MRI scans

for tumor detection is time-consuming and prone to error, relying

heavily on medical expertise. Therefore, developing automated and

reliable object-detection algorithms for brain tumors in MRI images

has become a critical research priority.

Traditional machine learning algorithms to detect brain tumors

in medical images, such as Haar cascades (7) and histograms of

oriented gradients (HOG) (8) combined with support vector

machines (SVM), have been applied to brain tumor detection.

These methods depend on handcrafted features that require

extensive domain knowledge and careful design. However,

these methods often fail to generalize across datasets and

imaging modalities, as performance is constrained by the

complexity and variability of brain tumor appearance on MRI

scans. The inability to extract high-level semantic information

limits the accuracy and robustness of traditional machine-

learning-based detection methods.

Deep learning has introduced transformative advances in object

detection. Region-based convolutional neural networks (R-CNNs)

(9), introduced by Girshick et al., marked a significant milestone by

applying a data-driven approach to object detection. Faster R-CNN

(10), an improved version of R-CNN, integrated a region proposal

network (RPN), which reduces computational cost and increases

detection speed while preserving accuracy. For brain tumor
Frontiers in Oncology 02117
detection, Faster R-CNNs have demonstrated promise in

accurately identifying tumor regions by leveraging deep

convolutional features (11). However, its slow processing and

complex two-stage architecture limit practical use in real-time

medical diagnostics.

The single-shot multibox detector (SSD) (12) developed by Liu

et al. has proven to be an efficient alternative to two-stage detectors.

The model predicts the bounding boxes and class probabilities

within a single network, enabling faster inference. By utilizing

feature maps from different layers, an SSD can effectively detect

objects of various scales, achieving a good balance between speed

and accuracy. In brain tumor detection using MRI images, SSD has

demonstrated the ability to detect tumors of different sizes;

however, it still faces challenges in accurately detecting small and

irregularly shaped tumors because of the limited receptive field of

shallow layers and loss of spatial information in deeper layers.

The You Only Look Once (YOLO) series (13), introduced by

Redmon et al., has attracted wide attention for its significant

advantages in object detection. Firstly, the single-stage

architecture of YOLO endows it with high computational

efficiency, and is capable of real-time or near-real-time detection.

This is highly valuable in clinical settings, where rapid results help

doctors make timely diagnostic decisions. For example, in the

context of brain tumor detection from MRI images (14), doctors

can promptly access results, and quickly specify examinations or

treatment. Secondly, YOLO captures global contextual information

from the entire input image. In contrast to other methods that focus

on local regions separately, the holistic approach of YOLO helps

better understand the relationships between different parts of an

image. Simultaneously, YOLO can accurately identify the location

and category of tumors, even when they have complex shapes. This

holistic understanding is particularly valuable for addressing the

complexity of brain tumors in MRI scans. Moreover, the YOLO

series has demonstrated strong generalization across different

datasets and scenarios such as COCO (15), PASCAL VOC2012,

NEU-DET, RSOD (16), LOCO dataset (17), Figshare dataset (18),

and so on. With continuous improvements in its architecture and

training strategies over successive versions (19–22), it can adapt well

to the variations in image quality, tumor appearance, and imaging

parameters commonly encountered in real-world medical imaging

applications. This adaptability renders YOLO a reliable tool for

detecting brain tumors in varied MRI datasets.

The original YOLO can achieve real-time performance on

standard graphics processing units (GPUs), rendering it suitable

for applications requiring rapid detection. Subsequent versions of

YOLO, such as YOLOv5, YOLOv8, and beyond, have continuously

improved the architecture and introduced advanced techniques,

further enhancing detection performance.

This study focuses on YOLOv11 (23), an iteration of the YOLO

series released in 2024. Building on the achievements of its

predecessors, YOLOv11 integrates advanced architectures and

optimization strategies to overcome limitations in handling the

complex and diverse characteristics of brain tumors in MRI images.

Given the increasing demand for efficient and accurate brain tumor

detection in clinical practice, YOLOv11 holds considerable
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potential for achieving superior performance in terms of detection

speed, accuracy, and the ability to identify tumors of various shapes

and sizes. This study aimed to explore the capabilities of YOLOv11

in brain tumor detection from MRI images and conduct

comprehensive experiments to evaluate its effectiveness using a

publicly available Kaggle dataset.

The structure of this paper is organized as follows: Section 2

describes the related work. Section 3 provides a detailed description

of our methodology and improvement measures. Section 4 presents

the experimental results, a comprehensive performance analysis

and comparison with other models. Section 5 provides an overall

discussion. Finally, Section 6 concludes the paper.
2 Related work

In recent years, numerous studies have been conducted on the

detection of brain tumors in MRI images using deep learning

algorithms, particularly the YOLO series algorithms, which have

demonstrated excellent performance.

Kharb et al. (24) proposed a hybrid model for brain tumor

classification that combined faster R-CNN and EfficientNet. The

hybrid model achieved a notable accuracy of 98.96% during the

training phase and 99.2% during the testing phase on the Figshare

(25) Datasets.

Hikmah et al. (26) introduced a novel approach for precise

brain tumor detection, combining various approaches such as

morphological operations for tumor segmentation, image

enhancement, and a deep learning architecture based on

MobileNetV2-SSD with feature pyramid network (FPN), where

the FPN level originally set to 3 had been modified to level 2, which

enhanced the detection of smaller objects. The proposed model

obtained a recall value of around 98% and a precision value of

around 89%.

Alsufyani (27) explored the use of several deep-learning models,

including YOLOv8, YOLOv9, Faster R-CNN, and ResNet18, for the

detection of brain tumors from MRI images. The results on the

Kaggle’s Medical Image Dataset for Brain Tumor Detection,

consisting of 3903 brain MRI images, demonstrate that YOLOv9

outperforms the other models in terms of mAP (0.826) and

accuracy (0.784), highlighting its potential as the most effective

deep-learning approach for brain tumor detection.

Chen et al. (28) proposed the YOLO-NeuroBoost model,

combining the improved YOLOv8 algorithm with innovative

techniques, such as the dynamic convolution kernel warehouse,

attention mechanism CBAM, and inner-GIoU loss function. It

achieved mean average precision (mAP) scores of 99.48% and 97.71%

on the BR35H (29) and RoboFlow (30) datasets. High mAP scores

indicate the high accuracy and efficiency of the model in detecting brain

tumors in MRI images. However, the model has more parameters and

GFLOPs than YOLOv11, resulting in a larger model size.

Kang et al. (31) proposed PK-YOLO, which included the

following three components: a pretrained, pure lightweight CNN-
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based backbone via sparse masked modeling, a YOLO architecture

with a pretrained backbone, and a regression loss function for

improving small object detection. PK-YOLO achieved a mAP of

58.2% on the BR35H dataset.

Monisha and Rahman et al. (32) proposed a federated learning

architecture to enhance brain tumor detection by incorporating the

YOLOv11 algorithm. The federated learning approach safeguards

patient data while enabling collaborative deep-learning model

training across multiple institutions. On a synthetic brain tumor

dataset with about 10,000 MRI images, the model achieved a mean

average precision (mAP) of 90.8% and an mAP50–95 of 65.3%.

Dulal et al. (33) proposed an enhanced version of YOLOv8.

Their work significantly advances automated brain tumor detection

by introducing an improved YOLOv8 model. Through strategic

modifications, including the integration of a Vision Transformer

block, Ghost Convolution, and RT-DETR, their model achieved

91% mAP0.5 on a public Kaggle dataset.

Wahidin et al. (34) used several of the latest versions of the

YOLO model, namely YOLOv11m, YOLOv10m, YOLOv9m, and

YOLOv8m, to detect brain tumors such as gliomas, meningiomas,

and pituitary tumors in MRI images. Hyperparameter tuning was

conducted using the Bayesian optimization and HyperBand

(BOHB) search algorithm with ray tuning through 16 trials.

YOLOv11m achieved the highest accuracy, with an mAP50 of

0.934 and an inference speed of 70.550 FPS. In contrast,

YOLOv8m delivered the fastest inference speed of 80.471 FPS.

Bai et al. (35) proposed the SCC-YOLO architecture, integrating

the SCConv module into YOLOv9. The SCConv module improves

convolutional efficiency by reducing spatial and channel

redundancy and enhancing image feature learning. This study

examined the effects of different attention mechanisms with

YOLOv9 on brain tumor detection using Br35H and custom

datasets. The results indicate that SCC-YOLO improves mAP50

by 0.3 to 95.7% on the BR35H dataset and by 0.5 to 86% compared

with YOLOv9. SCC-YOLO demonstrated strong performance in

brain tumor detection.

This study involved two primary improvements. First, the

YOLOv11 network architecture was enhanced by integrating

several newly designed attention modules to strengthen the

feature extraction capabilities of the network. Second, the loss

function was modified to increase the loss value of low-quality

prediction boxes, and promote rapid convergence of the model.
3 Materials and methods

The YOLO series of algorithms has demonstrated strong

performance in detecting brain tumors in MRI images,

particularly in terms of accuracy and efficiency. However, the

algorithms may have different performances in different datasets

and application scenarios, and further research and improvements

are needed to improve the accuracy and efficiency of brain tumor

detection and to serve clinical diagnosis better.
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3.1 YOLOv11

The YOLOv11 structure (Figure 1) comprises three main

components: the backbone, neck, and head (36, 37). The

backbone contains 0–10 convolution modules, the neck layer

comprises 11–22 parts, and the rest are three parallel detection

heads that detect feature maps of 20 × 20, 40 × 40, and 80 × 80, and

generate 8,400 possible detection results.

As the core of feature extraction, the backbone of YOLOv11

replaces YOLOv8’s C2f module with an improved C3K2 module

and standard convolution (CBS). C3K2 module uses multi-scale

convolution kernel C3K, where K is an adjustable convolution

kernel size, such as 3 × 3, 5 × 5, etc. This design can expand the

receptive field, allowing the model to capture a wider range of

contextual information, especially suitable for large object detection

or scenes with complex backgrounds. The CBS module mainly

consists of three parts: Conv (convolution layer), BN (Batch

Normalization) and SiLU (activation function). It also adds a

C2PSA (Cross-Level Pyramid Slice Attention) module after SPPF,

enhancing global feature modeling capabilities through a multi-

head attention mechanism. This design enables the network to
Frontiers in Oncology 04119
more effectively capture long-range dependencies, which is

particularly important for occluded objects and complex scenes.

The Feature Pyramid Network (FPN) structure is retained at the

neck layer. The neck layer also uses C3K2 and CBS convolutions for

extraction, with feature fusion performed using the Concat

operation. The head layer, like previous versions, also includes

three detection heads. Each head employs depthwise separable

convolution (DWC) and standard convolution (CBS).

YOLOv11’s loss function continues the YOLO series’ pursuit of

a balance between detection accuracy and speed. Targeted at the

decoupled head structure, the loss function is divided into three

parts: bounding box regression loss, confidence loss and

classification loss, Bounding box regression loss enables the model

to accurately locate the target, confidence loss can optimize the

accuracy of the prediction box and improve the model’s ability to

judge whether the target exists in the prediction box, and

classification loss determines the category of the image in the

prediction box. Bounding box regression includes the CIoU

(Complete Intersection over Union) (38) loss and the DFL

(Distribution Focal Loss) (39), which take into account the

overlap, position, and shape of the bounding boxes. The total loss
FIGURE 1

Structure of original YOLOv11.
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is a weighted sum of these three losses. The loss function calculation

formula is shown in Equations 1, 2. In the equations, Lbox represents

bounding box regression loss, Lobj represents confidence loss, Lcls
represents classification loss, LCIoU represents CIoU loss, LDFL
represents DFL loss and a, b, and g represent weight parameters.

Ltotal =  aLbox +   bLobj + g Lcls (1)

Lbox = LCIoU + LDFL   (2)
3.2 Main methods

Due to hardware limitations in clinical application

environments and the demand for faster speeds, we are

committed to reducing the number of model parameters and

computational complexity, and improving detection accuracy. we

integrated a set of novel attention modules into the network. This

study replaces the original self-attention module C2PSA with a

newly designed spatial attention module. At the same time, this

study uses an improved loss function instead of the original loss

function CIoU.
3.3 Attention

This study employed three attention mechanisms: Spatial

attention, Shuffle3D attention, and Dual-channel attention. The

latter two are newly designed attention mechanisms.

3.3.1 Shuffle3D attention
This study draws on the concepts of the Shuffle (40) and

SimAM (41) attention mechanisms to propose a novel attention

mechanism, designated as Shuffle3D (Figure 2). On the one hand,

channel rearrangement is applied to disrupt the original channel

order, introducing random diversity and enabling joint modeling of

different features. This module increases information exchange and

balance between channels. On the other hand, a spatial inhibition

mechanism is used. In neuroscience, information-rich neurons

often exhibit different discharge patterns from the surrounding

neurons. Moreover, activated neurons commonly inhibit

neighboring neurons. Thus, neurons exhibiting spatial inhibition

should receive greater emphasis. The calculation formulae of

inhibition effects are presented in Equations 3–5, where x

represents the input feature map, xij represents a point in the

feature map, e represents the mean, H represents the height of

the feature map, W represents the width of the feature map,

u represents the degree of deviation from the mean at a certain

point on the feature map, and a and b are the regulators, which are

set to the -4th power of 10 and 0.5, respectively. Neurons that

deviate more from the mean yield higher activation function values.

e = 
1

H*W − 1o
H
j=1oW

i=1xij (3)
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u =
(x − e)2

4(oH
j=1oW

i=1xij=(H*W − 1) + a)
+ b (4)

x = sigmoid(u)*x (5)
3.3.2 Spatial attention
The main goal of the Spatial attention module (Figure 3) is to

explicitly model the dependencies between spatial locations and

generate a spatial attention map. First, the input features are max-

pooled and average-pooled in the channel dimension to generate

two spatial descriptors. These two spatial descriptors are then

concatenated in the channel dimension and passed through a

convolutional layer to generate a spatial attention map. Finally,

the values of the spatial attention map are normalized to the range

(0, 1) using a sigmoid function and multiplied by the input tensor to

generate the output.

The Conv2d module in the figure uses a kernel of (7,7), a stride

of 1, padding of 3, 2 input channels, and 1 output channel

(number of filters). These parameters ensure that the spatial

dimensions (w, h) of the input and output feature maps are

consistent and combine the results of average pooling and

max pooling.

3.3.3 Dual-channel attention
Figure 4 illustrates the Dual-channel attention, which comprises

two main components. The Dual-channel attention borrows the

idea of parallel convolution of different sizes of kernels from

Inception (42). The first part uses two parallel convolution

operations with different convolution kernel sizes to capture
FIGURE 2

Shuffle3D attention structure.
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additional feature information. The second part involves

concatenation, convolution, and spatial attention computation.

The final result is multiplied by the input to produce the output.

3.3.4 New structure of the YOLOv11 networks
To enhance feature extraction in convolutional neural networks,

we integrated the newly designed Shuffle3D with Spatial and Dual-
Frontiers in Oncology 06121
channel attention. The positions of the attention modules are shown

in Figure 5. The blue areas represent attentionmodules that are newly

added or that replace the original ones. Dual-channel replaces the

original self-attention module C2PSA, greatly reducing the

computational load. Shuffle3D replaces the first CBS and DWC

convolution modules on each detection head, enhancing the ability

of the model to extract features from key regions.
FIGURE 3

Spatial attention structure.
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3.4 HKCIoU

In the original YOLOv11, complete intersection over union

(CIoU) serves as the boundary regression loss function, as shown in

Equations 6–8. The CIoU loss refers to the loss during training and

validation. The IoU stands for Intersection over Union. The r
Frontiers in Oncology 07122
represents the distance between the center points of the predicted

box and the true box, and c represents the diagonal distance of the

minimum closure area that can contain both the predicted and true

boxes. bp and bt represent the center points of the predicted box and

the true box respectively. wt represents the width of the true box,

and wp represents the width of the predicted box. ht represents the

height of the true box, and hp represents the height of the predicted

box. CIoU adds the penalty term of a and b, which are parameters

used to measure the consistency of the aspect ratio.

CIoU   =   IoU −
r2(bp, bt)

c2
− a*b (6)

b =
4
p2 (arctan

wt

ht
− arctan

wp

hp
)2 (7)

a =
b

1 − IoU + b
(8)

The hook function opens upward in the first quadrant

(Figure 6). It is used to adjust the CIoU value, forming the

HKCIoU. For a smaller CIoU, the loss is relatively amplified, and

for a larger CIoU, the loss is relatively reduced, thereby accelerating

the network convergence and enabling the network parameters to

reach the optimal value faster. The calculation is given in Equations

9, 10. x represents the loss of CIoU, a and b are hyperparameters. a

and b are both set to 0.5 where the value of equation has reached the

minimum when x equals 1.

f (x) =   ax +
b
x
  (ab > 0) (9)

HKCIoU = (a*CIoU +
b

CIoU
)*CIoU   (10)
4 Results

The experimental hardware setup includes a 13th Gen Intel(R)

Core(TM) i5-13600KF, 3500 MHz, 14 cores, 32 GB of RAM, and an

RTX 4060Ti GPU with 16 GB of VRAM. The software environment

included Windows 11, Python 3.8, Torch 1.13.1, CUDA 11.7, and

PyCharm 2021.3. Each model was trained for 100 epochs, with a

batch size of 32. The model employed SGD as the optimizer, with an

initial learning rate of 0.01, a momentum of 0.937, and a weight

decay of 0.0005.

YOLOv11 extensively utilizes various data augmentation

techniques in training, including but not limited to HSV

adjustment (hue, saturation, brightness transformation), random

flipping/rotation, scaling, geometric affine transformation, random

erasure, and Mosaic enhancement, significantly improving the

model’s adaptability to scale changes, occluded scenes, and small

targets. YOLOv11 closes Mosaic at the end of training and switches

to standard image training in the last 10 epochs to avoid overfitting

caused by differences in distribution between synthesized images

and real data.
FIGURE 4

Dual-channel attention structure.
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A Brain Tumor Detection Dataset (43) from Kaggle was used as

experimental data. The dataset contains 5,249 MRI images divided

into training and validation sets. The training set consists of 4,737

images, including 1,153 Glioma, 1,449 Meningioma, 711 No
Frontiers in Oncology 08123
Tumor, and 1,424 Pituitary images. The validation set consists of

512 images, including 136 Glioma, 140 Meningioma, 100 No

Tumor, and 136 Pituitary images. Each image was annotated with

YOLO-format bounding boxes and labeled with one of four brain
FIGURE 5

New structure of YOLOv11 with attention.
on.
FIGURE 6

Hook functi
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tumor classes. The evaluation indicators of the model include

parameter count, computational complexity, mAP50, mAP50-95,

and FPS (Frames Per Second).
4.1 Attention ablation experiment

In the experiment, we used three attention mechanisms, and the

ablation results of the three attention mechanisms are shown in

Table 1. From the table, it can be seen that the use of attention

mechanism resulted in varying degrees of increase in mAP

indicators. Compared to the model numbered 8, the models

numbered 2, 3, and 5 achieved higher performance, but their

parameter and computational complexity increased significantly.

Although the parameter quantity and computational complexity of

models numbered 4, 6, and 7 are lower than model 8, their mAP

indicators are not as good as model 8. Their results are very close,

and there is some fluctuation in the results of different experiments

in the same model. Taking all factors into consideration, we have

chosen to use the model 8 with three types of attention, namely

Spatial, Dual-channel, Shuffle attention.
4.2 Ablation experiment

Ablation experiments (Table 2, Figure 7) demonstrated that

when only the hook function was used, both mAP50 and mAP50–

95 were improved by 0.8%. When only the attention mechanism

was used, mAP50 and mAP50–95 were improved by 0.7% and
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0.5%, respectively. The model using both Hook and Attention,

named YOLOv11n-HA, improved mAP50 and mAP50–95 by 1%

and 1.4%, respectively, with a 2.7% reduction in parameters and a

7.8% reduction in calculations. Simultaneously, in terms of FPS,

YOLOv11n-HA achieved a 1.5% rise compared to the baseline

model. The PR curve of YOLOv11n-HA on the test set is shown in

Figure 8, which includes the mAP50 values of each subclass.

To demonstrate the robustness of the model, we conducted

three experiments on the final model, YOLOv11n-HA, which

includes two improvements. The results are shown in Table 3.

From the table, it can be seen that there is some fluctuation in the

results of the model. This study speculates that this phenomenon is

not only related to the jitter of the neural network but also to the

random channel rearrangement of Shuffle3D attention, which

increases the randomness of the model. Based on the mAP50

metric, we selected the experiment with the median value as the

result. That is the one with an mAP50 value of 96.8%.
4.3 Comparison

Table 4 presents results comparing YOLOv11n-HA with other

models, including non-YOLO and YOLO series deep learning

models. The models and data involved were retrained and

validated using the same dataset for this study.

4.3.1 Comparison with non-YOLO series
Faster-RCNN and SSD not only have lower mAP50 and

mAP50–95 indicators than YOLOv11n-HA but also have several
TABLE 1 Attention ablation experiment based on YOLOv11n.

Number Attention Parameters (million) GFLOPs mAP50 (%) mAP50-95 (%)

1 YOLOv11n 2.59 6.4 95.8 78.1

2 +Spatial 2.59 6.5 96.5 79.7

3 +Dual-channel 2.64 6.5 96.3 78.7

4 +Shuffle3D 2.47 5.8 96.4 78.4

5 +Spatial +Dual-channel 2.64 6.5 96.7 79.5

6 +Spatial +Shuffle3D 2.47 5.8 96.3 78.6

7 +Dual-channel +Shuffle3D 2.52 5.8 96.5 78.5

8 +ALL 2.52 5.9 96.5 78.6
TABLE 2 Improved ablation experiment based on YOLOv11n.

Model Parameters (million) GFLOPs mAP50 (%) mAP50-95 (%) FPS (f/s)

YOLOv11n 2.59 6.4 95.8 78.1 66.91

+Hook 2.59 6.4 96.6 78.9 65.96

+Attention 2.52 5.9 96.5 78.6 67.85

+Hook +Attention
(YOLOv11n-HA)

2.52 5.9 96.8 79.5 67.90
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times more parameters and computational complexity. Compared

with RT-DETR(L), YOLOv11n-HA uses only 7.7% of the

parameters and 3.3% of the computational complexity, while

achieving increases of 3.9% in mAP50 and 7.9% in mAP50-95.
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4.3.2 Comparison with YOLO series
Comparing the metrics of YOLOv11n-HA with that of

YOLOv5n, we observe that the GFLOPs of YOLOv11n-HA

remain the same, the number of parameters increases by 15.6%

from 2.18M to 2.52M, and the mAP50 and mAP50–95 indicators

increase by 0.5% and 1.4%, respectively. Compared with that of

YOLOv8n, the number of parameters in YOLOv11n-HA decreased

by 6.3%, computational GFLOPs decreased by 14.5%, and the

mAP50 and mAP50–95 indicators increased by 0.6% and 0.5%,

respectively. Compared to that of YOLOv9s, the number of

parameters of YOLOv11n-HA decreased by 60.1%, the number of

calculations decreased by 74%, mAP50 increased by 0.4%, and

mAP50–95 decreased by 0.2%. Under the condition of a significant

decrease in the number of parameters and the cost of calculations,
FIGURE 8

PR curve of YOLOv11n-HA on test set.
TABLE 3 Results of three experiment based on YOLOv11n-HA.

Number mAP50 (%) mAP50-95 (%)

1 96.7 79.1

2 96.8 79.5

3 96.9 79
FIGURE 7

Curves of mAP50 and mAP50–95 with epoch in ablation experiments.
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TABLE 4 Comparison results with other state-of-the-art models used in the detection of brain tumors.

Model Parameters (million) GFLOPs mAP50 (%) mAP50-95 (%)

Faster-RCNN (ResNet50) 28.30 470.48 91.2 59

SSD (VGG) 24.01 61.06 93.7 70.7

YOLOv5n 2.18 5.9 96.3 78.1

YOLOv8n 2.69 6.9 96.2 79

YOLOv9s 6.32 22.7 96.4 79.7

YOLOv10n 2.71 8.4 95.4 78.4

RT-DETR (L) 32.8 108.0 92.9 71.6

YOLOv11n-HA 2.52 5.9 96.8 79.5
F
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FIGURE 9

Effect diagram of brain tumor detection on the dataset.
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YOLOv11n-HA is still better than YOLOv9s in terms of mAP50.

Compared with that in YOLOv10n, the number of parameters in

YOLOv11n-HA decreased by 7.0%, computational GFLOPs

decreased by 29.8%, and the mAP50 and mAP50–95 indicators

increased by 1.4% and 1.1%, respectively.
5 Discussion

This study introduces two key improvements to the original

YOLOv11 model. First, it improves the YOLOv11 network

structure by adding the Spatial attention, two newly designed

Shuffle3D attention schemes, and Dual-channel attention. Second,

it improves the loss function by introducing a hook function to

adjust the CIoU loss, amplify penalties for low-quality predictions,

and accelerate network convergence. The ablation experiment

proved that, compared with native YOLOv11n, YOLOv11n-HA

increased mAP50 and mAP50–95 by 1% and 1.4%, respectively,

while the model parameters and computational GFLOPs decreased

by 1.4% and 2.7%, respectively. Compared to other state-of-the-art

models, YOLOv11n-HA achieved a superior recognition rate.

Figure 9 presents the test results for the Kaggle brain tumor

dataset. The red box and G represent Glioma, the green box and M

represents Meningioma, the yellow box and N represent No tumor,

the cyan box and P represents Pituitary. The numbers behind

represent the probability value of belonging to this class.

This study makes a significant contribution to the literature

because it introduces a lightweight, computationally efficient model

that achieves superior detection performance compared to state-of-

the-art methods, thereby offering a practical solution for clinical

applications with hardware constraints.

Further, this study addresses a critical challenge in medical

imaging, accurate and rapid detection of brain tumors, by combining

deep learning innovations with clinical relevance, offering insights that

bridge technical development and healthcare impact. The proposed

model achieves a strong balance between detection performance and

computational efficiency, making it especially suitable for clinical

deployment where hardware limitations exist. By providing accurate,

real-time tumor localization in MRI images, this work contributes

toward scalable and practical AI-assisted diagnostic solutions for

healthcare settings.
6 Conclusion

This study used YOLOv11n to detect brain tumors in a public MRI

dataset from Kaggle and introduced two key improvements. The first

enhanced the network structure by integrating attention mechanisms,

namely Shuffle3D attention andDual-channel attention, which are newly

designed in this study. The second introduces a new loss function,

HKCIoU, which amplifies the loss for poorly predicted boxes via the

hook function to accelerate network convergence. Ablation experiments

demonstrate that mAP50 increased to 96.8% and mAP50–95 to 79.5%,

with a 2.7% decrease in the number of parameters and a 7.8% decrease

in GFLOPs.
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Aim: This study aims to develop a robust and lightweight deep learning model 
for early brain tumor detection using magnetic resonance imaging (MRI), 
particularly under constraints of limited data availability. Objective: To design 
a CNN-based diagnostic model that accurately classifies MRI brain scans into 
tumor-positive and tumor-negative categories with high clinical relevance, 
despite a small dataset. Methods: A five-layer CNN architecture—comprising 
three convolutional layers, two pooling layers, and a fully connected dense 
layer—was implemented using TensorFlow and TFlearn. A dataset of 189 
grayscale brain MRI images was used, with balanced classes. The model was 
trained over 10 epochs and 202 iterations using the Adam optimizer. Evaluation 
metrics included accuracy, precision, recall, F1 Score, and ROC AUC.
Results: The proposed model achieved 99% accuracy in both training and 
validation. Key performance metrics, including precision (98.75%), recall 
(99.20%), F1-score (98.87%), and ROC-AUC (0.99), affirmed the model’s 
reliability. The loss decreased from 0.412 to near zero. A comparative analysis 
with a baseline TensorFlow model trained on 1,800 images showed the superior 
performance of the proposed model.
Conclusion: The results demonstrate that accurate brain tumor detection can 
be achieved with limited data using a carefully optimized CNN. Future work will 
expand datasets and integrate explainable AI for enhanced clinical integration.

KEYWORDS

MRI images, deep learning, medical diagnosis, computer-aided diagnosis, healthcare, 
neuroimaging

1 Introduction

A technique for training a computer to create original representations from unprocessed 
data is called deep learning. The network’s popularity may be attributed to its hierarchical and 
layered structure. Convolutional Neural Networks (CNNs) acquire properties through an 
object compositional hierarchy, starting with simple edges and progressing to more intricate 
forms. By layering convolutional and pooling layers, this is achieved. By lowering the feature 
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map, pooling combines similar traits into one, and each convolutional 
layer identifies local conjunctions of features from the preceding layer. 
Researchers in neuroscience have also benefited from deep learning, 
as they are starting to address issues related to neuroimaging. Deep 
Learning has garnered significant interest due to its ability to address 
problems across various domains, including medical image analysis. 
In Palestine, cancer is now the second leading cause of death for both 
men and women, but over the next decades, it is predicted to overtake 
all other causes of death (1).

Research has shown that the most effective means of lowering death 
from brain cancer is early diagnosis and treatment. A low-grade growth 
that develops slowly will eventually evolve into a neoplasm that grows 
rapidly. As a result, the first tumor identification and categorization 
helped to anticipate the prognosis and treatment plan by supporting the 
assessment of the tumor’s grade and aggressiveness. The diagnosis of 
brain tumors is mostly reliant on medical imaging (2). One of the most 
efficient methods currently used for tumor detection is magnetic 
resonance imaging (MRI). A powerful magnetic flux, radiofrequency 
pulses, and a laptop is employed to process tomography imaging data 
to produce detailed images of soft tissues and organs. It aids medical 
professionals in treating illnesses. The main reason for tomography’s 
popularity is that it is a more suitable designation than X-rays (3).

Noise significantly degrades medical images, including MRIs. This 
is largely due to knowledge acquisition systems, multiple sources of 
interference, operator error, and other factors that impact imaging 
mensuration processes and can lead to significant classification errors 
(4). This approach typically requires a basic microscope and may 
result in a different or incorrect diagnosis, yet it is often inappropriate 
when dealing with human life. It emphasizes the need for power-
assisted systems, high-precision systems, or diagnostic systems 
(CADx) (5). The CADx system is essential for medical institutions, as 
it supports the judgments made by doctors and radiologists. It may 
be challenging to create a highly automated and economical diagnostic 
system as a result (6).

Gliomas are the most prevalent and aggressive kind of brain 
tumor, with a very short survival time for the highest grade. Therefore, 
therapy planning may be a crucial step in raising the medical patients’ 
standards of living. One popular imaging modality for evaluating these 
tumors may be MRI (7). These days, with numerous instances and 
massive volumes of objective data analysis, computer-based medical 
image analysis is gaining popularity due to its speed and intelligence, 
surpassing manual methods. By varying the excitation and repetition 
durations, magnetic resonance imaging may produce notably unique 
tissue types, making it an incredibly adaptable tool for studying various 
structures of interest. A single magnetic resonance imaging scan is 
insufficient to phase the growth and all of its subregions fully. 
Convolutional Neural Networks (CNNs) have demonstrated high 
effectiveness in identifying cell division events in two-dimensional 
microscopic anatomy pictures within the field of medical image 
analysis. When it comes to machine learning strategies, deep learning 
is undoubtedly the best option for many imaging tasks. The possibility 
of deep learning-based automated diagnosis of brain illnesses will arise 
from the availability of large neuroimaging data sets for training. MRI 
is a frequently used medical imaging method that offers information 
on the identification of brain tumors (8). One of the main challenges 
a physician has after reviewing the tomography data is determining 
how much time and effort to devote to tumor detection. These days, 
CNNs are used for the majority of picture classification problems due 

to their superior accuracy and precision over other currently used 
techniques. The accuracy and precision of tumor detection and 
identification have increased due to the use of CNNs for image 
classification (9).

2 Related work

Over the last 20 years, the detection of brain cancers using MRI 
has undergone significant advancements, thanks to the integration of 
deep learning (DL), traditional machine learning (ML), and 
conventional image processing techniques. This section discusses the 
main categories of methodologies and provides an overview of how 
our research contributes to and expands upon the existing body 
of literature.

2.1 Conventional techniques for machine 
learning and segmentation

Most of the early work uses unsupervised clustering and custom 
feature extraction. Due to their ability to separate picture intensities 
into clusters that represent normal and diseased tissue regions, 
segmentation techniques like fuzzy C-Means (FCM) and K-Means 
clustering have been widely used (10–12). Despite achieving basic 
localization, these methods were very susceptible to noise and 
required human parameter adjustment. Changes aimed at improving 
segmentation accuracy, such as region-expanding algorithms (13, 
14) and gray-level histograms (15), were computationally expensive 
and inconsistent, particularly in low-contrast or early-stage tumors 
where borders were not obvious. For feature extraction and 
classification, further research employs learning vector quantization, 
support vector machines (SVMs), and artificial neural networks 
(ANNs) (16, 17). These earlier methods, however, sometimes did not 
work with diverse patient datasets and needed careful 
feature engineering.

2.2 Techniques based on deep learning and 
CNN

CNNs have been used extensively in medical imaging applications 
due to their effectiveness in computer vision (26, 27). CNNs eliminate 
the requirement for human feature design by automatically extracting 
hierarchical features. Models like AlexNet, VGG16, and ResNet have 
been modified to perform tasks related to brain tumor classification and 
segmentation (18, 19). Although these designs have demonstrated 
outstanding performance, they often rely on large, annotated datasets, 
which are challenging to collect in the medical field due to privacy 
concerns and high labeling costs. To manage volumetric MRI data and 
capture spatial relationships between image slices, 3D CNNs have been 
the subject of several studies (20). Although these models improve the 
accuracy of segmentation tasks, their computational cost makes them 
unsuitable for real-time applications or situations with limited 
resources. Similar studies have been conducted on Stacked 
Autoencoders (SAEs) and Deep Belief Networks (DBNs) (21), but in 
the lack of suitable data, training these deep models from scratch may 
lead to overfitting.
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2.3 Domain adaptation and learning 
transfer

By utilizing pre-trained networks as feature extractors for MRI 
classification, which have been trained on natural image datasets such 
as ImageNet, researchers have employed transfer learning to reduce 
the need for large datasets (22, 23). When paired with domain-specific 
fine-tuning, it can accelerate training and enhance generalization. 
However, insufficient feature representations may result from the 
domain mismatch between natural and medical images. ResNet or 
InceptionV3 versions that have been carefully altered and work well 
on binary classification tasks are used in certain studies. Clinical safety 
criteria, such as recall and AUC, which are essential for real-world 
diagnosis, are seldom used to evaluate models.

2.4 Methods for multimodal MRI and 
synthesis

To collect different tissue contrasts, advanced segmentation 
algorithms often use several MRI modalities. Studies like the BraTS 
Challenge and BraSyn Benchmark (24, 25) demonstrate the 
challenges that arise when sequences are erratic or nonexistent, 
while also emphasizing the advantages of multimodal input. To fill 
in the gaps, several studies have explored the creation of synthetic 
MRIs using GANs or autoencoders; however, these methods require 
a complex design and are not ideal for use in situations with 
limited data.

3 Materials and methods

Cancer remains one of the most life-threatening diseases 
worldwide, and early detection is critical for effective treatment. MRI 
is a widely used, non-invasive imaging technique that helps identify 
abnormalities in the brain, including cancerous tumors. In recent 
years, machine learning—particularly image classification 
techniques—has demonstrated significant promise in improving the 
accuracy and speed of cancer detection using MRI. This study 
examines the DL-based application in developing a CNN for brain 
tumor detection using MRI scans. The proposed CNN architecture 
consists of five layers, specifically designed to classify MRI images into 
cancerous and non-cancerous categories with high accuracy.

3.1 Data acquisition

Data plays a crucial part in machine learning systems. The dataset 
utilized in this work was available from the UCI Machine Learning 
Repository and Kaggle, both of which are publicly accessible. The 
dataset downloaded from Kaggle and is accessible at https://www.
kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-
detection/data (last accessed: January 10, 2025), and the second 
dataset is available at https://www.kaggle.com/datasets/sartajbhuvaji/
brain-tumor-classification-mri (last accessed: January 20, 2025).

3.2 Methodology and model architecture

The architecture employed in this study is based on a CNN design, 
which is particularly effective for image classification tasks. CNNs 
typically include the following core components:

	•	 Convolutional Layers: Extract feature maps from the input image 
using learned filters and apply non-linear activation functions 
(e.g., ReLU).

	•	 Pooling Layers: Reduce the spatial size of feature maps, enhance 
computational efficiency, and mitigate overfitting—max-pooling 
is the most commonly used technique.

	•	 Fully Connected (Dense) Layers: Interpret the extracted features 
and produce classification decisions; each neuron is connected to 
all neurons in the previous layer.

The proposed model consists of five primary layers: three 
convolutional layers, two max-pooling layers, and a fully connected 
dense layer. The architecture is implemented using the high-level 
TensorFlow Layers API, which streamlines the creation of neural 
networks by offering functions to define convolutional, pooling, and 
dense layers, along with activation functions and regularization 
options such as dropout.

Figure 1 illustrates the sequential layer-wise architecture of the 
CNN, clarifying the dimensional transformation of MRI data from 
input through convolution, pooling, and dense layers to the final 
binary classification. The model was trained using the Adam optimizer 
with the following parameters: ε = 1e-8, β₁ = 0.9, β₂ = 0.999, and a 
learning rate of 0.001. To avoid overfitting, a dropout layer with a 0.5 
rate was added after the dense layer.

The model processes grayscale MRI images resized to 
128 × 128 × 1. The first convolutional layer applies 32 filters (3 × 3) 
with ReLU activation, followed by a 2 × 2 max-pooling operation. The 
second convolutional layer utilizes 64 filters (3 × 3) with ReLU 
activation and an additional 2 × 2 max-pooling operation. The third 
convolutional layer consists of 128 filters (3 × 3), followed by another 
pooling operation. The output of the convolutional stages is flattened 
and passed to a dense layer with 128 neurons, also using ReLU 
activation. Ultimately, a single output neuron with sigmoid activation 
yields a binary classification decision (tumor-positive or 
tumor-negative).

Figure 2 illustrates the initial layers of the CNN, including the first 
convolution and pooling layers. The initial convolutional and pooling 
layers extract low-level spatial features, such as edges and texture 
gradients, which are essential for differentiating tumor boundaries 
from normal tissue in MRI images, including edges, lines, and simple 
textures. The visual representation highlights how spatial information 
is preserved while dimensionality is reduced.

Figure 3 illustrates the intermediate layers of the CNN, which 
include deeper convolutional layers with a greater number of filters. 
These layers extract high-level, abstract features such as tumor shapes, 
boundaries, and textures. These deeper layers abstract high-level 
semantic features such as irregular tumor shapes, enhancing the 
model’s ability to distinguish pathological from healthy brain structures.

Figure 4 focuses on the final layers of the CNN, including the fully 
connected dense layer and the output neuron. These layers are 
responsible for interpreting the extracted features and making the 
final classification decision. The use of sigmoid activation in the 

131

https://doi.org/10.3389/fmed.2025.1636059
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/data
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/data
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection/data
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri


Naeem et al.� 10.3389/fmed.2025.1636059

Frontiers in Medicine 04 frontiersin.org

output neuron enables the model to output a probability score 
indicating the presence or absence of a brain tumor.

To complement these visual representations, Table 1 provides a 
detailed layer-wise summary of the CNN model, listing input/output 
dimensions, number of filters or neurons, kernel and pooling sizes, 
and activation functions used at each stage. Moreover, it offers a 
concise yet thorough reference for understanding the architecture’s 
design and function.

The TensorFlow Layers API enables the construction of these 
components with functions such as:

	•	 conv2d(): Defines 2D convolutional layers with 
specified parameters.

	•	 max_pooling2d(): Creates pooling layers to down-sample 
feature maps.

	•	 dense(): Builds fully connected layers for classification.

Due to the complexity of the computational graph, it is segmented 
for clarity across Figures 2–4, with each segment representing a critical 
stage in the data transformation and classification process.

4 Experimental setup and results

The proposed CNN model was trained and evaluated using a 
dataset comprising 189 MRI images, with an equal balance between 
cancerous and non-cancerous cases. The dataset was stratified into 
training, validation, and testing subsets to maintain balanced 
representation of tumor-positive and tumor-negative cases. Table 2 
presents the data distribution according to the train and test splits. 
Training was performed for 10 epochs with a batch size of 18, yielding 
approximately 202 iterations. Key performance metrics, including 
accuracy, loss, and ROC-AUC, were monitored via TensorBoard 
throughout training. Hyperparameters were consistently maintained 
across experiments to enhance reproducibility. Tracking accuracy and 
loss over 202 iterations with TensorBoard enabled validation of stable 
convergence and early detection of overfitting, which is critical given 
the limited dataset size.

Because of the small sample size, we  utilized TensorFlow’s 
“ImageDataGenerator” to supplement data in real time and increase 
generalization. The augmentation pipeline used horizontal flipping 
(p = 0.5) to mimic mirrored brain orientations, small-angle rotations 

FIGURE 1

CNN architecture for brain tumor classification, showing layers for feature extraction and final classification from MRI input images.

FIGURE 2

Feature extraction in early CNN layers showing low-level spatial features such as edges and textures derived from tumor MRI images.
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(±10°) to account for head tilt variability, random zoom (±5%) and 
translations (±5% of image dimensions) to simulate patient 
positioning differences, and Gaussian noise injection (σ = 0.01) to 
simulate MRI scanner acquisition noise. The augmentation 
pipeline contained:

	•	 Horizontal Flipping: To represent mirrored anatomical 
configurations, has a chance of 0.5.

	•	 Rotation: Random small-angle rotations within ±10°, to account 
for minor patient head tilts.

	•	 Zoom: To mimic size differences across scanners, zoom in and 
out by up to 5%.

	•	 Translation: An image dimension from vertical and horizontal 
shift up to 5%.

	•	 Noise injection: MRI scanner acquisition noise is simulated using 
low-level Gaussian noise (σ = 0.01).

To accommodate for changes in intensity from scanner 
calibration, adjust brightness by ± 10%. To expose the model to a 
broader variety of real-world input conditions without needlessly 
extending the dataset on disk, these modifications to the training set 
were performed stochastically throughout each epoch. Each run 
started with a predefined random seed to maintain consistency. 
We  can assure repeatability and back up our claims of strong 

FIGURE 3

Intermediate CNN layers highlighting deeper convolutions and expanded feature maps that capture high-level tumor features.
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generalization with short datasets by enabling other researchers to 
reproduce our preprocessing pipeline and see whether analogous 
augmentation tactics offer equivalent advances in other limited-data 
settings. In clinical contexts with limited and varied patient data, 
augmentation decreases overfitting, enhances feature diversity, and 
makes the model more usable.

The dataset used in this study consisted of MRI scans collected 
from multiple patients, with one representative scan per subject to 
minimize redundancy and prevent model bias. In cases where 
numerous scans were available per patient, only one scan was 
randomly selected to ensure that no patient’s data appeared in both 
the training and validation sets. This procedure prevents data leakage, 
ensuring that the model’s performance reflects genuine generalization 
rather than memorization of individual patient characteristics.

Figure 5 provides a visual overview of the dataset used in our 
experiments, distinguishing between cancerous and non-cancerous 
MRI brain scans. Our CNN effectively captured these differences in 
structural patterns and intensities for classification.

The model was trained for 35 epochs (840 iterations), achieving a 
peak validation accuracy of 98%. The model’s high precision and recall 

indicate its potential as a clinical decision support tool to aid 
radiologists in more efficient brain tumor identification. Each training 
example that passes through the network in both forward and 
backward propagation constitutes one iteration.

The Adam optimiser was configured with a learning rate of 0.001, 
β₁ = 0.9, β₂ = 0.999, and ε = 10−8. These values are known to offer 
stable and efficient convergence in deep learning models, especially 
when working with small datasets. They were selected after 
preliminary tuning and cross-referencing with prior studies 
demonstrating similar use cases in MRI image classification. Although 
extensive hyperparameter tuning was beyond the scope of this study, 
the choice of hyperparameters was based on standard values widely 
adopted in the literature for medical image classification tasks.

Figure 6 displays the tumor segmentation output, highlighting 
spatial tumor regions. The trained model not only classifies the 
presence of tumors but also enables the visualization of the detected 
tumor region. This segmentation capability adds clinical value by 
providing spatial context for the tumor’s location and size.

Figure 7 illustrates the accuracy across iterations, which initially 
shows an uneven distribution but ultimately converges to zero as the 
iterations progress. The loss rate is a critical component of CNN and 

FIGURE 4

Final CNN layers: dense and sigmoid output units responsible for 
probabilistic classification of tumor presence.

TABLE 1  Layer-wise architecture of the proposed CNN model, detailing 
input/output shapes, filter counts, kernel sizes, activation functions, and 
pooling operations for each layer.

Layer type Output 
shape

Activation Notes

Input Layer (128, 128, 1) —
Grayscale MRI 

input

Conv2D (128, 128, 32) ReLU
32 filters, 3 × 3 

kernel

MaxPooling2D (64, 64, 32) — 2 × 2 pool size

Conv2D (64, 64, 64) ReLU
64 filters, 3 × 3 

kernel

MaxPooling2D (32, 32, 64) — 2 × 2 pool size

Conv2D (32, 32, 128) ReLU
128 filters, 3 × 3 

kernel

MaxPooling2D (16, 16, 128) — 2 × 2 pool size

Flatten (32768) — —

Dense (128) ReLU
Fully connected 

layer

Output (Dense) (1) Sigmoid

Binary 

classification 

output

TABLE 2  Dataset distribution across training, validation, and testing 
subsets, showing balanced representation of tumor-positive and tumor-
negative MRI scans of the first dataset.

Dataset 
split

Number of 
images

Tumor-
positive

Tumor-
negative

Training 133 67 66

Validation 28 14 14

Testing 28 14 14

Total 189 95 94
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is used to improve the CNN architecture. Despite the limited dataset, 
the proposed model effectively minimizes loss and enhances accuracy. 
Figure 8 presents the Receiver Operating Characteristic (ROC) curve 
with an AUC of 0.99, illustrating excellent diagnostic ability.

To further assess the performance of the proposed CNN-based 
model, standard classification metrics were computed, including 
precision, recall, F1-score, accuracy, and the area under the ROC-AUC 
curve. Table 3 consolidates critical performance metrics, including 
training accuracy (99%), validation accuracy (99%), loss rate 
reduction from 0.412 to nearly zero, precision, recall, F1-score, and 
ROC-AUC (0.99), providing a clear and concise overview of the 
model’s effectiveness. Figure 9 illustrates the confusion matrix of both 
proposed and baseline models when tested with 600 test images of the 
second dataset. Additionally, Table 4 compares the performance of the 
proposed model with a baseline TensorFlow model trained on a larger 
dataset (1800 images) that has lower accuracy (98%) and higher loss 
(0.704). The proposed CNN model has superior performance despite 
the limited data.

The five-layer CNN architecture was selected to balance 
classification accuracy and computational efficiency on a limited 
dataset for prospective clinical use. Early research compared the 
recommended design to a more complex 8-layer CNN with an extra 
convolution-pooling block and a second dense layer. Despite 
reaching 99% training accuracy, the deeper model’s validation 
accuracy plateaued at 96% after the 20th epoch and displayed 
peculiar loss oscillations, indicating overfitting due to the limited 
dataset size of 189 pictures. Across all training and validation sets, 
the five-layer model consistently reduced loss from 0.412 to near 
zero while maintaining 99% accuracy, demonstrating strong 
generalization capabilities. Furthermore, it reduced the number of 

parameters by approximately 38%, thereby decreasing training time 
on the same GPU from 7.8 s to 4.9 s per epoch. This efficiency 
directly supports the study’s purpose of creating a lightweight 
diagnostic model suited for real-time inference in clinical settings, 
especially when resources are constrained. The architect’s decision 

FIGURE 5

Sample visualization of the MRI dataset illustrating differences between tumor-positive and tumor-negative brain images.

FIGURE 6

Segmentation output visualizing localized tumor regions, 
highlighting the model’s spatial discrimination capabilities.
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reflects the nature of the classification challenge. When utilizing 
MRI to identify brain cancers, spatial indicators such as tumor 
margins, regional intensity variations, and abnormal textural 
patterns are crucial. They may be successfully retrieved without 
having a massive network depth by utilizing three progressively 
deeper convolutional layers (32, 64, and 128 filters). According to 
feature map representations, the proposed CNN properly captured 
both low-level edge attributes and higher-level tumor form 
abstractions that were comparable to those in the deeper model. 
Given the dataset, processing settings, and observable performance 
limits, the five-layer CNN delivers the ideal blend of accuracy, 
resilience, and efficiency for this experiment.

FIGURE 7

Accuracy and loss curves of the proposed model: Training loss progression illustrating reduction from 0.412 to near zero, reflecting stable model 
convergence.

FIGURE 8

Receiver Operating Characteristic (ROC) curve of the proposed model with an AUC of 0.99, indicating excellent diagnostic accuracy.

TABLE 3  Performance metrics of the proposed CNN model, including 
accuracy, precision, recall, F1-score, ROC-AUC, and reduction in loss 
rate.

Metric Value

Accuracy 99.00%

Precision 98.75%

Recall 99.20%

F1 Score 98.87%

ROC-AUC 0.99

Loss Reduction 0.412 → ~0.00
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5 Conclusion

Deep learning has become a crucial tool in biomedical image 
analysis, particularly for applications such as brain tumor 
classification using MRI scans. For quicker model construction, the 
proposed technique employs CPU-based TensorFlow and TFLearn, 
as well as GPU-based TensorFlow. Deep learning (DL) techniques are 
increasingly employed in medical imaging for brain tumor detection 
and classification. The use of MRI is essential for detecting abnormal 
brain tissues, and accurate tumor diagnosis is vital for treatment 
planning. To categorize and diagnose brain tumors from a limited 
MRI dataset, the study employs a deep learning approach using a 
Convolutional Neural Network (CNN). The proposed model 
achieved 99% training and 99% validation accuracy, with a validation 
loss reduction from 0.412 to near 0.000 across 10 epochs. 
Additionally, the model attained an ROC-AUC of 0.99, confirming 
its strong discriminative capability. The proposed CNN model 
outperformed a baseline model trained on a larger dataset, achieving 
higher accuracy (99% vs. 98%) and lower validation loss (0.412 vs. 
0.704), which indicates strong potential for deployment in real-time 
clinical diagnostics, especially in data-limited settings. The suggested 
CNN model may be used in real-world healthcare environments 
because of its lightweight design and exceptional diagnostic precision. 
In a radiology department’s existing PACS (Picture Archiving and 
Communication System), a radiologist may use the model as an 
automated pre-screening tool to rank MRI images with a high 
likelihood of tumor incidence. Real-time feedback during diagnostic 

sessions could be provided by integrating the model with clinical 
decision support systems. Additionally, report authoring could 
be made easier by connecting to Radiology Information Systems 
(RIS). Because of its minimal computational requirements (4.9 s per 
epoch on a standard GPU), the model may also be  implemented 
on-site in hospitals with limited resources, eliminating the need for 
cloud-based processing. Regulatory approval, interoperability with 
different MRI scanner outputs, and further validation across 
multiple-center datasets to ensure robustness are the remaining 
challenges. Before clinical utilization is widely accepted, these 
challenges need to be resolved.

6 Future directions

Future work will focus on expanding the dataset to improve 
model generalization and reduce bias. Integrating additional imaging 
modalities, such as Computed Tomography (CT) and Positron 
Emission Tomography (PET), as well as utilizing transfer learning 
with pre-trained models, may enhance performance. Exploring three-
dimensional Convolutional Neural Networks (3D CNNs) can capture 
spatial context more effectively, while explainable AI methods, such 
as Gradient-weighted Class Activation Mapping (Grad-CAM), can 
improve interpretability. In the future, data augmentation techniques, 
including rotation, flipping, scaling, and brightness adjustment, can 
be employed to assess the model’s generalization.

FIGURE 9

Confusion matrix showing true positive and true negative predictions, validating classification reliability.

TABLE 4  Comparative evaluation of the proposed CNN model versus a baseline TensorFlow implementation, highlighting improved performance with 
fewer training samples.

Method Epochs Iterations Dataset ROC-AUC Loss rate

BTD (TensorFlow) 35 840 1800 98% 0.704

Proposed Method 

(TFLearn Based)
10 202 189 99% 0.412 → ~0.00
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Introduction: Brain stroke is still one of the leading causes of death and long-
term disability in the world. Early and correct diagnosis is therefore important 
for patient outcome. Although Convolution Neural Network (CNN), classical 
machine learning models, have achieved great progress in medical image 
classification, they have to face the performance saturation problem when 
dealing with high-dimensional and complex data such as medical images. To 
tackle these limitations, we propose QBrainNet, a quantum enhanced model, 
which is to enhance brain stroke prediction from medical imaging datasets.
Methods: The model consists of Quantum Neural Networks (QNNs) applied as 
learning complex patterns in terms of medical images and Variational Quantum 
Circuits (VQCs) that will be used to optimize the classification. The feature 
extraction featured in the QNNs utilises quantum properties of superposition 
and entanglement to extract non-linear high-dimensional patterns in images 
related to stroke that may not be captured using classical limits. The VQCs, in 
turn, are applied to optimize the model performance, further allocating the 
boundaries of the decision and enhancing the model performance in terms of 
accuracy by optimizing the quantum gates and operators used during the work. 
QBrainNet utilizes the combination of such quantum properties as entanglement 
and superposition to represent more complicated non-linear patterns in stroke-
specific images in a better manner than a classical application does.
Results: This paper proposes a hybrid classical-quantum scheme: preprocessing 
classically, and learning quantum-enhanced. Quantum gates and operators are 
used when performing the quantum phase to optimize decision boundaries, 
achieving vastly enhanced prediction accuracy and efficiency performance. 
Experimental results indicate that QBrainNet has a better accuracy (96%) and 
AUC-PR (0.97) than the classical models like CNN, SVM, and Random Forest, 
proving the superior performance of QBrainNet in stroke detection.
Discussion: The inference time is shorter, so the model can be used as a real-time 
clinical application. This article points to the possibilities quantum computing can 
have in revolutionizing medical diagnostics, especially stroke prediction.
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1 Introduction

Stroke constitutes one of the significant causes of death and 
permanent disability in the world, with about 15 million individuals 
having a stroke per year according to the WHO (1). Early diagnosis and 
prompt treatment are essential in enhancing survival and minimizing 
long-term disability. Nevertheless, clinical condition diagnosis, where 
time is of the essence, will still be a challenge to correctly predict because 
of the complexity and subtlety of patterns in medical imaging data, 
particularly in the early stages (2, 3). Interpretation of CT and MRI scans 
used widely to detect stroke is subject to human error, inconsistency, and 
variability between practitioners, and it may lead to delay in diagnosis and 
impact treatment outcomes (4).

Recently, the methods based on machine learning (ML), particularly 
Convolutional Neural Networks (CNNs), have been actively applied to 
the medical image analysis, and stroke detection has been successful 
with the CT or MRI scans. The CNNs have been shown to work 
exceptionally well when processing medical imagery and extracting 
features that classify the image as stroke-related quickly, consistently, 
and accurately, compared to the more conventional methods (5, 6). 
Although these CNNs and other classical models are effective, they are 
limited by high-dimensional and complex medical data. These models 
fail to identify delicate structures and interactions within the data, 
particularly when the datasets are small and/or low-contrast, as 
frequently happens in medical imaging of stroke patients (7, 8).

The new area of Quantum Machine Learning (QML) offers an 
optimistic answer to these difficulties. Quantum systems work with 
information in radically new ways compared to classical systems, 
allowing them to work with extensive multi-dimensional data more 
efficiently through superposition and entanglement. Indeed, the 
quantum properties allow quantum computers to solve some problems 
efficiently in computation, where classical computers do not; the 
quantum potential advantage has indeed been observed in applications 
such as medical image analysis (9, 10). Quantum Neural Networks 
(QNNs) and Variational Quantum Circuits (VQCs) can specifically 
be used to provide an advantage in the classical world in specific tasks 
by finding complex patterns and relationships in data and using these 
patterns and traits in a non-linear fashion (11, 12).

This paper presents QBrainNet, a classical-quantum model that 
aims to enhance medical imaging stroke prediction. The classical 
element of the QBrainNet engages in feature extractions, augmenting 
images, and noise elimination, whereas the quantum element 
continuously applies QNNs and VQC networks to the learning task. 
QBrainNet, with its quantum-enhanced learning combining classical 
machine learning, is much faster and has a higher accuracy at 
identifying subtle factors in stroke-related medical images (13, 14). 
The quantum aspect of the model applies simulated quantum 
operations through Python code to optimally determine decision 
boundaries in the feature space. It is, therefore, more accurate in the 
classification than the conventional methods.

One main issue with medical image classification tasks is the small 
datasets. In our scenario, we only have 3,800 images, which can easily 
result in overfitting. However, the problem can be overcome the way 

QBrainNet does it by using cross-validation and regularization 
techniques (15, 16). The quantum elements of QBrainNet are designed 
through Python-based quantum simulation, in which quantum gates 
and circuits are simulated on a classical computing device. Thus, the 
model is accessible and reproducible without quantum information 
technology hardware (17, 18).

The main strengths of the QBrainNet model in comparison with 
classical approaches are linked to the possibility of dealing better with high-
dimensional data. CNNs and other traditional techniques are bulky 
programs that handle big chunks of data, particularly in the case of medical 
image tests. Compared to this, QBrainNet takes advantage of quantum 
parallelism, where quantum gates and superposition significantly decrease 
the degree of computation and speed of processing (19). Such a decrease in 
computational demands and the increase in the prediction speed result in 
QBrainNet being a potential candidate in clinical practice, where the speed 
of diagnosis may be a matter of life and death.

In recent developments, quantum computing has demonstrated 
great potential to improve machine learning models, particularly for 
high-dimensional data analysis. In this work, we simulate the quantum 
parts of QBrainNet using PennyLane on classical computing resources. 
This way, we  can exploit quantum effects like superposition and 
entanglement for feature extraction and optimization without access 
to real quantum hardware. Our simulation allows us to simulate 
quantum circuits and perform parameter optimization in a way 
compatible with classical machine learning.

The present study adds to the list of research that deals with the 
application of quantum computing in healthcare. In particular, 
we show promise of quantum-enhanced models such as QBrainNet in 
the field of stroke prediction, namely that quantum technology can 
be used to enhance the performance of medical diagnostics not only 
in accuracy, but in efficiency as well, especially in a domain where 
errors can have severe consequences like stroke care (19).

2 Related work

Applying machine learning (ML) to medical imaging has entirely 
transformed the face of healthcare diagnostics in a way no one had 
previously imagined. More specifically, CNNs have found a wide 
application in deep learning to solve specific tasks in medical imaging. 
The application of CNNs to the interpretation of medical images has been 
demonstrated to be capable of detecting and classifying ailments such as 
cancer, pneumonia, and brain stroke, as well as segmenting organs and 
other body parts critical to the human body (20). Of particular interest in 
brain stroke detection is that CNNs and other forms of deep learning have 
been applied to CT image processing, MRIs, and fMRI to provide brain 
stroke risk assessments, but with high levels of automation. Such models 
are much superior in the detection of stroke lesions and the classification 
of ischemic strokes. By extracting hierarchical representations of image 
information, these models can discover useful trends that the human 
expert may not be able to declare easily. The approach here is a novel 
application of the idea behind hybrid quantum-classical neural networks 
(21) to predicting strokes through quantum-enhanced preprocessing.
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These models, although effective, are restricted. Brain images can 
be complex, leading to difficulties for classical CNNs to apply to them and 
subtle features in the early stages of strokes. These models require 
substantial labeled data, computer power, and a preprocessing mechanism 
(22), and thus are not readily applicable to high-dimensional data. 
Additionally, it is computationally costly to train deep learning models 
wherein the high-resolution medical images are to be used; they require 
both heavy computing hardware and time. Original CNNs inherently lack 
the flexibility to extract subtly non-linear structures in the data, and such 
patterns are typical with medical images, as the data are noisy, 
heterogeneous, and may be inaccurately annotated (23). Also, this fulfills 
the need for more complex models that could better predict the nature of 
medical imaging with a complex structure (24).

To overcome these shortcomings, Quantum Machine Learning 
(QML) has proposed itself as an excellent solution. It is theorized that 
QML methods will be able to utilize the quantum superposition and 
quantum entanglement properties of quantum computers to both 
process complex information more effectively and prevent the scale 
explosion that occurs when using classical models. These quantum 
benefits may bring computational advantage, especially where data is 
needed in very high dimensions, such as in medical image processing 
(25). Quantum systems offer the prospect of investigating multiple 
solutions in parallel and exhibit greater capabilities of pattern 
recognition, which are of particular interest with complicated medical 
data. This will enable quantum methods, even when implemented on 
classical platforms using Python code, to perform better when 
compared with classical models in specific tasks requiring subtle 
non-linear relationships, e.g., when used to predict stroke (26, 27).

Healthcare and medical diagnosis are some examples in which QML 
has already been proven effective. For instance, Quantum Support Vector 
Machines (QSVM) were used to solve tasks in image classification. The 
results revealed that QSVMs are more effective in terms of computational 
efficiency than SVMs and are highly accurate in prediction (28). 
Moreover, QNNs, or the quantum analog of normal neural networks, 
have already been used in such tasks as image classification and drug 
discovery. Quantum-enhanced models, on the other hand, can access the 
power of quantum entanglement to learn intricate structures in data that 
are favorable over conventional models in the task of image classification 
(29). As some examples, the Quantum version of standard neural 
networks, namely Quantum Neural Networks (QNNs), have been 
implemented in problems like image classification and drug recognition. 
In the light of this understanding, QE models can leverage quantum 
entanglement to learn complex patterns in the data in a more efficient way 
than classical models, which is a key advantage in various tasks, such as 
image classification. Such methods are currently being utilized in this 
work as simulated quantum operations that, even though they do not run 
on actual quantum devices, act as a step in the right direction as applied 
to quantum-enhanced optimization.

Other quantum algorithms are likely to prove useful in healthcare, 
including Quantum Random Forests (QRF) and Quantum k-Nearest 
Neighbors (QK-NN), which have been found in many cases to require 
less time to train and achieve higher accuracy than their classical 
counterparts on high-dimensional data (30, 31). Quantum algorithms, 
including Quantum Random Forests (QRF) and Quantum k-Nearest 
Neighbors (QK-NN), have also been investigated in healthcare and on 
high-dimensional data. Quantum algorithms are more efficient in 
their training speed, and their results are found to be better when 
compared to classical algorithms. Such algorithms are emulated via 
quantum operations on a classical computer in Python and 

demonstrate the possibilities of the quantum-enhanced models 
without involving the actual physical quantum device (27).

Although applying QML to medical imaging is gaining more 
attention, it has not yet been explored in brain stroke prediction. Although 
past works have used quantum models in image segmentation, disease 
categorization, and other medical imaging applications, there has yet to 
be a quantum learning model to predict stroke occurrence using medical 
imagery, which is the novelty of this paper. A quickly expanding volume 
of literature on QML shows that one of its uses can be better optimization, 
image classification, and pattern recognition. Still, using QML in stroke 
prediction in medical imaging has yet to be  explored (32). Though 
numerous cases of research on QML exist, there is a significant lacuna in 
its application in the prediction of brain stroke, which is the novelty of this 
work. Though quantum-enhanced models have already demonstrated 
their potential in optimization, image classification, and pattern-
recognition problems, their use in medical imaging, in general, and stroke 
prediction, in particular, has not been studied extensively. This work 
bridges this gap through simulated quantum operations (through Python 
code) on classical computing resources (33).

The novelty of this research is that QBrainNet is the first application 
of QML in stroke prediction. The architecture can close a substantial 
research gap in stroke detection research as it has integrated quantum-
enhanced preprocessing, feature extraction, and classification into a single 
framework. Classical simulations of quantum operations allow for 
avoiding quantum hardware, but increase the stroke prediction accuracy 
and reduce computing costs (34). The proposed work is the initial 
implementation of QML regarding stroke expectations. Quantum-based 
benefits to preprocessing, feature extraction, and classification strongly 
occur within the same framework, as all other quantum manipulations 
are performed through Python codes running on a classical 
CPU. Employing simulated quantum operations over quantum hardware 
indicates a big leap toward actualizing quantum-powered healthcare tools. 
It influences how quantum computing can be used to develop solutions 
to mitigate modern medicine’s challenge to the detriment of the overall 
healthcare industry: stroke diagnosis (35).

3 Methodology

This section describes the general strategy used to get to and test 
QBrainNet, a quantum augmented neural network that will predict the 
risk of stroke from brain imaging data. It contains four main parts of 
methodology that are dataset preparation, preprocessing and feature 
extraction, quantum machine learning model development and model 
training and evaluation. We describe each stage in detail to provide a 
detailed account of how the quantum techniques are integrated into the 
medical image analysis pipeline for increasing the accuracy of 
stroke prediction.

The system requirements for running the quantum operation 
simulations are as follows: The simulations have been run on a system that 
has Intel i7 processor and 16 GB RAM the Ubuntu 20.04 operating 
system. The quantum operations were simulated with PennyLane, version 
0.18.0, a Python-based library which can build on classical computing 
resources to simulate quantum operations. The simulate codes were 
written in Python 3.8 and some additional libraries such as Numpy 1.21.0 
for numerical computing, Scipy 1.7.0 for scientific computing, matplotlib 
3.4.3 for visualization. The entire setup was done in a conda environment 
to handle everything in the appropriate way in terms of dependencies and 
reproducibility. This environment allowed efficient implementation of 
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quantum simulations on classical computing resources without the need 
for any actual quantum hardware.

3.1 Dataset

The medical images included in this study were diagnosed as usual 
or as stroke from a dataset. The photos are taken from publicly available 
datasets usually used in the stroke detection area, such as CT scans and 
MRI images. This dataset contains high-resolution MRI brain scans of 
different stroke severity, early ischemia, and late-stage hemorrhage. The 
pictures are marked to help define which ones are routine and which have 

an indication of a stroke. These images are then fed through simulated 
quantum operations to improve feature extraction, classification, and 
overall predictive accuracy with Python-based quantum simulators on 
classical computing resources. Lastly, each image has a label, indicating 
whether the brain imaging is standard or if there is a stroke.

Figure 1 demonstrates the unprocessed and processed CT scan brain 
scans. Raw images are initially scanned, whereas the processed ones have 
undergone a procedure of removing noise and normalization to facilitate 
analysis. Figure 2 shows grayscale, equalized, and edge-detected images 
of the preprocessed brain images. Gray levels eliminate color, equalization 
increases contrast, and edge detection emphasizes boundaries of key 
structures. The CT scan cross-sections shown in Figure 3 are used to 

FIGURE 1

Dataset overview: raw and processed brain CT scan images.

FIGURE 2

Preprocessed brain images: grayscale, equalized, and edge-detected versions.

FIGURE 3

CT scan cross-sections showing brain structure and potential abnormalities.
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obtain details about brain structure and the parts prone to abnormalities 
such as strokes and tumors. Figure 4 shows different CT scan cross-
sections with varying types of stroke, and how ischemic and hemorrhagic 
strokes can be represented in the brain in a cross-section.

3.2 Data preprocessing

The raw medical images are preprocessed before training and 
evaluation to reduce inconsistency and robustness across the medical image 
set. Rotation, flip, and noise addition augment the dataset and make it more 
diverse. To resemble real data and increase the model robustness to 
imperfect data, these procedures simulate real-world variation, e.g., to some 
extent, by the slight changes in rotation or orientation of scan images, and 
provide noise. This can better generalize the model, especially with a small 
data set, as it minimizes the chances of overfitting.

The primary preprocessing steps include:

	 1	 Image Resizing: Uniformity is guaranteed in the input data, as 
all the images in medical images may have different resolutions. 
They are all resized to a fixed resolution. This is an essential 
step so that the data maintained between multiple images is 
compatible with deep learning models image resizing is 
computed using Equation 1.

	 ( )= , ,resized originalI Resize I W h 	 (1)

Where:
	•	 resizedI  - resized image.
	•	 originalI  - original image.
	•	 W & h are the target width and height, respectively.

	 2	 Normalization: To adjust to the different pixel intensity values 
represented by various medical imaging modalities, the images are 
scaled to the 0–1 range. This will allow the model to be adjusted 
only to the scale of the raw data and not be distorted by the ranges 
of pixel intensities normalization is computed using Equation 2.

	
=

255
original

normalized
I

I
	

(2)

Where:

	•	 normalizedI  - normalized image.
	•	 originalI  - original pixel intensity.

	 3	 Class Imbalance Check: Since the medical datasets usually 
become class imbalanced, balancing the number of 
samples in training and test sets within normal and stroke 
groups is very important. If an imbalance is discovered, 
methods that include over-sampling the minority 
observations or under-sampling the majority can be used 
to generate a balanced dataset. This eliminates the 
possibility of biasing the model toward one of the classes, 
which is used a lot more; hence, the model will perform 
well in both classes.

3.3 Dataset partitioning

The data is split into the training data and a testing data 
where 70–80 percent of the data is used in the training and 20–30 
percent for testing. The training data is then trained on the 
model, known as QBrainNet model and the testing data is used 
to estimate the model’s performance on unknown data. This 
division will ensure the model is tested on data that it has not 
encountered previously during the model’s training, and will 
be  an impartial representation of how well the model 
is performing.

Preprocessing of dataset, and splitting the preprocessed 
dataset into training and testing datasets is done. The model is 
trained on the training data and tested on the test data (36, 37). 
The training is usually done using 70–80% of the data; the 
remaining 20–30% is used for testing. There is a need to fold this 
type to make sure that the model performs well on the unseen 
data rather than being too optimistic regarding the performance.

3.3.1 Dataset distribution
The distribution of ‘normal’ and ‘stroke’ images over training and 

test sets can be viewed in Table 1.
Class distribution plays a role in training the model on a 

balanced set of examples, which is very important for accurate 
stroke prediction.

FIGURE 4

CT scan cross-sections of brain showing stroke variants.
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3.3.2 Dataset flow diagram
Here, in the following Figure 5, we show the flow of the dataset in 

the preprocessing, training and evaluation stages:

3.3.3 Class imbalance handling
To solve the problem of class imbalance of the dataset, we used 

some oversampling and undersampling methods during the data 
preprocessing phase:

	 1	 Oversampling: We applied Random Oversampling to replicate 
samples from the minority class (either “normal” or “stroke”) 
to train the model on a balanced dataset. This method copies 
minority class samples to make the sizes of the minority and 
majority classes equal, eliminating the model’s bias for the 
majority class.

	o	 Stage in Pipeline: Random Oversampling was used as one 
of the pipeline steps on the training set after splitting the 
dataset into training/validation sets. This helped ensure 
the model would learn from an even distribution of the 
two classes.

	 2	 Undersampling: Since it is a class imbalance problem, 
we  applied the Random Undersampling technique to the 
majority class. This method addresses the issue by randomly 
selecting samples from the majority class to obtain a balanced 
distribution between both classes. Decreasing the number of 
majority class samples ensures the model does not become 
biased toward majority class predictions.

	o	 Stage in Pipeline: Minority class was oversampled, and then 
Random Undersampling was implemented to achieve class 
balance without overfitting of the minority.

Class Imbalance Handling Pipeline:

	 1	 Divide the dataset into a training and validation dataset.
	 2	 Implement Random Oversampling to the minority class in the 

training dataset to balance the class distribution.
	 3	 Random Undersampling: the oversized majority class in the 

train data set is reduced to the size of the minority class.
	 4	 The balanced training set is now used to train the 

QBrainNet model.

TABLE 1  Distribution of normal and stroke images in the dataset.

Class Training set 
(images)

Test set 
(images)

Total 
images

% in training 
set

% in test 
set

Augmentation 
applied

Primary 
data source

Normal 1,500 500 2,000 51.70% 55.60% Rotation, Flip, Noise Hospital A & 

Public Dataset

Stroke 1,400 400 1,800 48.30% 44.40% Contrast Stretching, Zoom Hospital B & 

Research Cohort

Total 2,900 900 3,800 100% 100% – –

FIGURE 5

Proposed model’s dataset flow diagram.
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These techniques allow for equal representation of both classes 
(regular versus stroke) during model training, which is essential in 
healthcare applications where accurate classification of both 
conditions is crucial.

3.4 Preprocessing and feature extraction

Several classical preprocessing techniques are performed 
before the quantum machine learning algorithms are used to 
preprocess the medical images, such that the data is in a format 
that is as best as possible for extracting features and the model 
can be trained on. These techniques allow us to mitigate noise, 
clean, increase contrast, and standardize the stroke dataset to 
facilitate the networks’ detection of stroke features more 
easily (38).

3.4.1 Image resizing
Resizing images is a crucial preprocessing step because all the 

images need consistent dimensions supported by deep learning 
models, which usually need uniform input sizes. The resizing 
process involves mapping the original image size ×original originalW h  
to a new size ×new neww h . This can be mathematically represented 
as using Equation 3:

	
( )

 
= ⋅ = ⋅  

 
,resized original new new

original original

x yI x y I w h
w h 	

(3)

Where:
	•	 resizedI  - resized image.
	•	 originalI  - original image.
	•	 originalW  and originalh  are the original width & height of the image.
	•	 newW  and newh  are the target width & height for resizing?

The bilinear interpolation method is used for resizing to preserve 
image details (39).

3.4.2 Grayscale conversion
Grayscale conversion of the images is applied to simplify the 

data and decrease computational complexity while retaining 
stroke-related features. Grayscale images are beneficial as they 
decrease the number of channels (from 3  in RGB to 1), thus 
reducing the amount of computation and emphasizing the textural 
differences in the brain tissue.

The conversion from a color image ( ),rgbI x y  to grayscale 
( ),grayI x y  is done by averaging the weighted sum of the RGB 

channels, following the formula as shown in Equation 4:

	

( ) ( ) ( )
( )

R G
gray rgb rgb

B
rgb

I x y I x y I x y

I x y

, 0.2989 , 0.5870 ,

0.1140 ,

= ⋅ + ⋅

+ ⋅
	

(4)

Where:
( ) ( ) ( ), , , , ,R G B

rgb rgb rgbI x y I x y I x y  - Represent the Red, Green, and 
Blue (RGB) color channels, respectively.

( ),grayI x y  - resulting grayscale image.

3.4.3 Histogram equalization
To enhance the contrast of the images, histogram equalization is 

used to redistribute the intensity levels throughout the image. Spread 
out across the whole range, this process helps to bring out subtle 
details, including early signs of stroke. Histogram equalization can 
be mathematically formulated as shown in Equations 5 and 6:

	
( ) ( )

=
= ∑

0

i

j
CDF i p j

	
(5)

	 ( ) ( )( ) ( )= ⋅ −, , 1eq originalI x y CDF I x y L 	 (6)

Where:
( )CDF i  It is the cumulative distribution function of the 

pixel intensities.
( )p j  It is the probability density function of the pixel intensities.

L Is the number of possible intensity levels (typically 256 for 
8-bit images).

( ),egI x y  It is the histogram-equalized image.
It ensures that the pixel intensity distribution is more uniform 

than it is, thereby improving the contrast of the image and bringing 
out finer details, which are important for stroke detection (40).

3.4.4 Feature extraction
Next, necessary characteristics from the images are captured using 

feature extraction. Key features are extracted using classical methods, 
including those based on determining edges or analyzing textures, 
with the view that these can be used to differentiate stroke-affected 
areas from normal brain tissue.

	 1	 Edge Detection: This involves the detection of the boundaries of 
an object in an image. The Canny Edge Detection algorithm is 
employed to indicate regions of interest, such as in stroke lesions, 
by identifying sharp intensity transitions. Mathematically, edge 
detection is defined as shown in Equation 7:

	 ( ) ( )=gray grayEDGE I Canny I 	 (7)

Where Igray is the grayscale image, and the Canny operator finds 
the edges by computing the gradient of the image.

	 2	 Texture Analysis: It measures the structure present in the 
image by performing texture analysis. Gray Level 
Co-occurrence Matrix (GLCM) is computed using Equation 8:

	
( ) ( )=∑

,
, , , ,

x y
GLCM i j p x y i j

	
(8)

Where:

	•	 Lastly, GLCM(i, j) denotes the co-occurrence matrix where pixels 
have values i and j.

	•	 It is noted that p(x,y,i,j) defines the probability that pixel pair 
values are i and j at locations x and y.
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The texture features are promised as a crucial source of 
information about the texture of brain tissue, which might aid in 
discriminating between healthy and stroke-affected parts (41, 42).

Figure 6 illustrates the effects of the preprocessing steps on the 
original medical image. The left image is the raw medical scan, the 
center image is the conversion to a greyscale and the last one is 
the histogram equalization (42). Figure  6 depicts a sample of 
medical images after the grayscale conversion and 
histogram equalization.

The computational preprocessing step uses quantum-enhanced 
feature extraction procedures, which are also simulated using Python 
scripts in PennyLane and other quantum simulators. The methods 
enable the detection of fragile patterns in medical images that 
conventional methods such as CNNs may not easily learn. By mapping 
quantum processes onto classical computers, we can use quantum 
phenomena such as superposition and entanglement to use the more 
efficient extraction of features in complex and high-dimensional 
medical images.

3.5 Quantum machine learning model

This part introduces the derivation of this work’s QBrainNet 
model, which is a quantum-enhanced neural network for estimating 
the probability of missing a stroke case from brain images. The model 
combines classical machine learning methods with simulated 
quantum models for a more accurate stroke prediction. Rather than 
using physical quantum hardware, the quantum constituents are 
simulated through the PennyLane simulator implemented in Python 
and run on ordinary computing resources. These simulations allow us 
to incorporate quantum-inspired properties like superposition and 
entanglement, which are challenging to simulate in purely classical 
neural networks. In our hybrid framework, we  train variational 

quantum circuits (VQCs) with PennyLane to simulate them, and solve 
for the quantum parameters by gradient descent to improve 
prediction accuracy.

The QBrainNet architecture comprises several layers, each taking 
advantage of quantum-enhanced processing to enhance the processing 
and analysis of the medical images. In particular, the quantum layers 
attractively model the quantum operations to transform the image 
data into feature vectors with information on more complex patterns 
than classical techniques. These feature vectors are then fed to a 
conventional neural network for the final stroke prediction. This can 
mimic the advantages of a quantum computer on regular computers, 
enabling more of us to take advantage of the quantum advantages and 
do it more efficiently.

The model (QBrainNet) involves quantum enhanced ways to 
improve the accuracy of stroke forecast. This is a hybrid model, 
which combines the classical neural network architecture and 
simulates the quantum operations to process and analyze medical 
images more effectively. Rather than operating on real quantum 
hardware, however, quantum phenomena, such as superposition 
and entanglement, are simulated in Python libraries in the actual 
hardware. This will enable the model to reflect better, more 
intricate relationships in the data, which is a benefit over 
conventional machine learning.

The model training for the QBrainNet has been performed for 50 
epochs, using gradient-based optimization to update the quantum 
parameters (RZ gate angles) in the variational quantum circuits, which 
are implemented in PennyLane. The Adam optimizer with a learning 
rate of 0.001 was used as the optimizer for training. The model showed 
a progressive improvement in accuracy for the first 30–40 epochs, and 
then the loss function stabilized, which means that the quantum parts 
converged to the local minimum. The arrival time of the quantum 
components was tracked closely, and the convergence was relatively 
poor after epoch 40.

FIGURE 6

Preprocessed images: original, grayscale, equalized, and edge detection.
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The two main components of the QBrainNet model are created to 
handle the two various sections of the image data processing pipeline.

Quantum Circuit Architecture:
The quantum circuit of QBrainNet model is a combination of 3 

variational layers, each of which comprises a series of quantum gates 
performed to process the input data and achieve the maximum 
decision boundaries. The type of gates employed in each layer is 
as follows:

	•	 Hadamard (H) gate on qubit 1.
	•	 CNOT gate between qubit 1 and qubit 2.
	•	 Z-Rotation (RZ) gate on qubit 3.

This circuit is simulated in PennyLane using classical computer 
resources. Each variational layer automatically maps the input data 
and develops the decision boundaries for better classification accuracy.

The total trainable parameters of the quantum circuit are 12, which 
corresponds to the angles of the RZ gates in each variational layer. These 
parameters are then optimized by gradient-based methods during 
training to minimize the loss and improve classification performance.

The measurement scheme measures the quantum state on a Pauli 
Z basis at the end of each variational layer. The classical bits generated 
from this measurement are combined to create the classification 
output. The outcome depends on a majority vote among all the qubits 
in the system.

The quantum circuit shown above is used to train the QBrainNet 
model. The pseudocode for the training process is shown below. 
#Initialize quantum circuit with 4 qubits. initialize_quantum_
circuit(num_qubits = 4). #Define variational layers (3 layers). for layer in 
range(3): #Apply Hadamard gate on qubit 0. apply_Hadamard_
gate(qubit = 0). #Apply Controlled-NOT gate between qubits 0 and 1. 
apply_CNOT_gate(control_qubit = 0, target_qubit = 1). #Apply 
Z-Rotation gate on qubit 2. apply_RZ_gate(qubit = 2). #Initialize classical 
optimizer (e.g., Adam optimizer). optimizer = AdamOptimizer(learning_
rate = 0.001). #Training loop for 50 epochs. for epoch in range(50): #Apply 
quantum circuit (forward pass). quantum_output = apply_quantum_
circuit(inputs). #Measure quantum state in Pauli Z basis. classical_
output = measure(quantum_output, basis = ‘Z’). #Compute the loss 
function. loss = compute_loss(classical_output, ground_truth). #Calculate 
the gradient of the loss. gradient = compute_gradient(loss). #Update 
quantum parameters using the optimizer. optimizer.update_
parameters(gradient). #Final output: make the classification decision. 
final_output = classify_output(classical_output).

3.5.1 Classical feature extraction
Earlier, we mentioned about the extraction of relevant features 

from the preprocessed medical images using classical methods such 
as edge detection and texture analysis. The next stage is supplied with 
a compact representation of brain images for subsequent processing 
by these features (43).

This part shows the derivation of a quantum-enhanced neural 
network, or QBrainNet that can estimate the probability of missing a 
stroke case given a brain image. The model is a combination of classical 
machine learning techniques and quantum simulation operations that 
will improve stroke prediction accuracy. In lieu of making use of 
practical quantum hardware, quantum emulations are made with 
quantum simulators PennyLane utilizing Python on conventional, 

classical computing facilities. These quantum simulations allow us to 
use the properties of quantum-like superposition and entanglement 
that are difficult to use with classical neural networks.

The architecture of the QBrainNet consists of several layers, where 
each layer utilizes the quantum processing capability to boost the 
processing and analysis of the medical images. In particular, the 
quantum layers model the quantum operations attractively to transform 
the image data into feature vectors with information on more complex 
patterns than classical techniques. These feature vectors are then fed in 
a conventional neural network for final stroke prediction. The volume 
and diversity of medical images are also relatively low, and thus can 
create overfitting and decrease the generalization of the models in 
stroke detection. To resolve this, we used several image augmentation 
methods - rotation, flipping, and adding noise to the data - before 
sending them forward in the preprocessing stage to improve and 
stabilize the generalization ability of QBrainNet. Rotations were applied 
to mimic various positions of the medical scans to ensure that the 
model can identify the patterns associated with stroke, independent of 
the direction at which the images are taken. This is especially significant 
as brain scans used in medical practice may differ in orientation. 
Manipulation of the model by flipping it horizontally and vertically to 
introduce the model to other perspectives, which is more likely to 
generalize its operative features in different variable conditions. Lastly, 
we introduced noise into the pictures to simulate the inevitable flaws 
associated with real-world medical imaging, including scanner artifacts 
or low resolution. The model learns to generalize on the essential 
features of the data rather than memorizing noise-free, idealized images 
by adding noise to the data. The combination of the above augmentation 
strategies increases the whole dataset’s variety, enabling QBrainNet to 
pick up on more of the possible patterns and achieve a lower probability 
of overfitting, especially with such a relatively small amount of data. 
That makes a model more competent to work with unseen data and 
supply precise estimation in clinical practice.

It entails studying image patterns, such as boundaries, textures, 
and shapes. Edge detection with the Canny operator and GLCM is 
applied to extract the features such as these. The features extracted 
from these data can be represented mathematically as follows:

	 1	 Edge Detection: Using the Canny Edge Detection algorithm, 
the boundary information Eedges for a given image Igrayscale is 
obtained using Equation 9:

	 ( )=edges grayscaleE Canny I 	 (9)

Where:
grayscaleI  It is a grayscale image.
edgesE  Represents the edges detected in the image.

Texture Features: The GLCM (Gray Level Co-occurrence Matrix) 
is an algorithm employed to describe the texture patterns present in 
the image, and is able to capture important statistics such as contrast, 
energy, and correlation. The GLCM for a grayscale image Igrayscale is 
computed using Equation 9.

Consequently, these classical features are then passed through to 
the quantum-enhanced stage, where they are processed and 
further optimized.

148

https://doi.org/10.3389/fmed.2025.1677234
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Priyadharshini et al.� 10.3389/fmed.2025.1677234

Frontiers in Medicine 10 frontiersin.org

To solve the generalizability problem and improve the overfitting 
level, we  used image augmentation methods, including rotating, 
flipping, and adding noise. Such techniques mimic the natural 
variation in medical images and therefore aid in better generalization 
of the model in cases where the data is small.

3.5.2 Quantum enhancement
After the extraction, we feed the extracted features to the Quantum 

Neural Network (QNN) to produce classification outputs. Dynamical 
correlations of the quantum model such as superposition and 
entanglement make it possible for it to model complex patterns of the 
data which cannot be easily observed with the classical model alone 
(44). In order to learn the decision boundaries and find higher-order 
relationships in the data, the quantum neural network is learned using 
Variational Quantum Circuits (VQCs) (45).

The model of QBrainNet integrates quantum-enhanced machine 
learning on the basis of quantum neural networks (QNNs) and 
variational quantum circuits (VQCs). PennyLane uses classical 
computing resources to simulate these quantum components. In this 
way, it is possible to do feature extraction and optimization with 
quantum phenomena such as superposition and entanglement without 
having access to actual quantum hardware. The quantum operations are 
simulated completely in the classical environment, meaning that the full 
power of quantum computing is utilized for an improved performance 
without losing a practical implementation on the existing 
computing resources.

As part of the classical layer of QBrainNet, we applied Adam with a 
learning rate of 0.001. Adam is effective in substantial learning tasks 
because of its adaptive learning rates and the momentum, making it 
converge and avoid over-fitting quicker.

Regarding the quantum portion, the Variational Quantum Circuits 
(VQCs) were trained with a gradient-based optimizer and the quantum 
gradient descent. A parameter optimization on the quantum circuit 
parameters would minimize the loss by updating parameters during 
each iteration through classical optimization algorithms such as Adam 
or L-BFGS. Such a hybrid optimization will allow efficient training and 
better ability in modeling complex patterns with medical images.

The basic idea of a Quantum Neural Network (QNN) is to use 
quantum circuits as the weights and transformations of the network, 
represented by the quantum gates (46). The input sample value is 
initialized and transformed according to the input data by utilizing 
quantum superposition, exploring various possible results simultaneously.

To optimize the weights of the quantum neural network, we use a 
Variational Quantum Circuit (VQC) that combines classical 
optimization (what is to be optimized) with quantum circuits (how 
optimization is to be performed). Here is the definition of VQC as 
shown in Equation 10.

	 ( ) ( )ψ θ θ ψ〉 = 〉0U∣ ∣ 	 (10)

Where:

	•	 ( )ψ θ  is the quantum state after applying the quantum gates ( )θU  
with parameters θ .

	•	 ψ0  is the initial quantum state.
	•	 ( )θU  is the unitary operator that applies quantum gates 

parameterized by θ .

The quantum circuit is also optimized in the classical-quantum hybrid 
approach by minimizing the loss function in terms of quantum gradient 
descent. The loss function can be expressed as shown in Equation 11:

	 ( ) ( )( )θ ψ θ=L loss 	 (11)

Where:

	•	 A loss evaluates the prediction error of a quantum model (e.g., 
mean square error, cross-entropy).

	•	 The loss function that the quantum circuit minimizes during 
optimization is L(θ).

Optimization of quantum circuit parameters is done with classical 
gradient descent and more complicated optimization algorithms 
(Adam or LBFGS). For training classical CNN model we used adaptive 
moment optimization algorithm (Adam). We have set its learning rate 
to equal 0.001 which resolves the loss function more quickly than 
randomized algorithms and prevents over-fitting. In the quantum 
part, we used an optimizer which is based on a gradient which we used 
to change the quantum gates in the variational quantum circuit (VQC) 
where in a similar manner we backpropagated through the quantum 
layers and optimized the decision boundaries.

3.5.3 Bridging the classical-quantum framework
The two parts work together to form a fusion classical quantum 

framework in which the quantum circuit combines the classical 
feature extraction model into a QBrainNet model. This approach’s 
advantage is its use of both classical and quantum computing.

	•	 Featuring high dimensional data with the classical methods
	•	 It fed these features into the quantum circuit to determine how 

to process them, optimize decision boundaries and find complex 
patterns that classical methods may miss.

The high-dimensional data is handled by the classical model, 
while the quantum model exploits the data in parallel in a potentially 
more computationally efficient and more accurate prediction manner.

The quantum translation model QBrainNet is constructed as a 
hybrid classical-quantum framework by making the quantum circuit 
a part of the classical feature extraction model. Then, we utilize a 
quantum gradient algorithm (47) to optimize the parameters of the 
quantum circuit by adjusting the parameters of the circuit after each 
prediction according to the error. This hybrid method combines the 
good of classical and quantum computing, with one better with fine-
scale methodology in high-dimension data and the other enhancing 
prediction accuracy in time series prediction problems (48).

In Figure 7, we see the hybrid classical-quantum framework in 
QBrainNet, built upon classical feature extraction and acting as an 
input to a quantum neural network for stroke prediction (Figure 7: 
Hybrid Classical-Quantum Framework shows the flow from classical 
feature extraction to quantum processing).

3.5.4 Algorithmic design of QBrainNet

	 1	 Initialize system:
	 a	 Load preprocessed brain CT scan dataset.
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	 b	 Split dataset into training and testing sets (e.g., 80% training, 
20% testing).

	 c	 Initialize classical CNN and quantum components (QNN 
with VQC).

	 2	 Preprocessing:
	 a	 Convert CT scan images to grayscale.
	 b	 Apply image equalization to enhance contrast.
	 c	 Perform edge detection using the Canny operator.
	 d	 Apply augmentation techniques (rotation, flipping, noise addition).
	 e	 Normalize image data.

	 3	 Feature Extraction (Classical Component):
	 a	 Extract features using classical methods:

	o	 Edge detection.
	o	 Texture analysis (GLCM).

	 b	 Store extracted features for quantum-enhanced processing.

	 4	 Quantum Enhancement (Quantum Component):
	 a	 Feed extracted features into quantum neural network (QNN) 

using Variational Quantum Circuits (VQC).
	 b	 Apply quantum operations (superposition, entanglement) to 

extract complex patterns.
	 c	 Use quantum gates and VQC to adjust decision boundaries and 

find higher-order relationships.

	 5	 Model Training:
	 a	 Train classical CNN model on extracted features using Adam 

optimizer (learning rate: 0.001).
	 b	 Optimize quantum circuit parameters using gradient descent 

and quantum gradient descent (with Adam or L-BFGS for 
fine-tuning).

	 c	 Minimize the loss function (cross-entropy or mean 
squared error).

	 6	 Evaluation:
	 a	 Test the model on the testing dataset.
	 b	 Calculate performance metrics:

	•	 Accuracy.
	•	 Precision.
	•	 F1 Score.
	•	 Recall.
	•	 AUC-PR.

	 o	 Post-processing:
	 a	 Generate predictions for unseen CT scan images.
	 b	 Display results and analyze model performance.

	 8	 Output:
	 a	 Report stroke prediction results with confidence scores.
	 b	 Compare QBrainNet’s performance with classical models 

(CNN, SVM, etc.)

3.5.5 Simulated quantum operations
The quantum component of QBrainNet was simulated on 

the classical hardware using the PennyLane library, the current 
quantum software platform where quantum circuit simulation 
is available on classical hardware. This was the selected approach 
because of the scarcity of quantum hardware and the 
requirement to provide fast experimentation on the quantum 
neural networks. Though quantum circuits have been simulated 
on the classical resources, PennyLane supports quantum gates 

FIGURE 7

Hybrid classical-quantum framework of QBrainNet.
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like Hadamard, CNOT and Z-Rotation gates to simulate, and it 
is an efficient way to explore the quantum-amplified potentials 
of the network.

3.5.5.1 Implications for scalability and feasibility
It is not so easy to simulate a quantum circuit on classical 

hardware. Scalability of simulations stands out by far, where the 
amount of computational resources needed to execute the simulation 
circuit rises exponentially with the qubit count in the circuit. An 
example is that with a quantum system with 50 or more qubits, it is 
just too costly to simulate on classical hardware because of memory 
and processing resources. With improvement of quantum hardware, 
quantum networks will exit classical simulation and transition to the 
quantum processors.

From a practical point of view, using classical hardware implies that the 
model can be tested and optimized now, before being able to have access to 
powerful enough quantum computers. Current quantum computing 
technology is in its early stages, and there are only a few quantum computers 
available through cloud services, and they are generally constrained in the 
number of qubits they can process. As quantum processors become 
available, the quantum parts of QBrainNet will be compiled to actual 
quantum hardware allowing the system to fully exploit quantum parallelism 
and superposition for more efficient processing.

In spite of these, the hybrid classical-quantum method used by 
QBrainNet can be seen as a very promising path ahead. It allows one 
to extract features with the help of quantum computing and 
simultaneously exploit the comparatively computationally efficient, 
everywhere-available classical optimization methods.

3.5.5.2 Mathematical formulation

	 ( )ψ 〉 = 〉⊗ 〉⊗ 〉⊗ 〉0 0 0 0 0∣ ∣ ∣ ∣ ∣ 	 (12)
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	 =ŷ Classifier	 (24)

The different mathematical formulation are shown from Equations 12 
and 24. In the quantum-enhanced model developed for brain stroke 
prediction, the quantum circuit is initialized with 4 qubits each in the 
ground state |0 > which is normally used as an initialization for quantum 
computations. These qubits are the basic units that store the data and the 
quantum operations are implemented one after another, to manipulate the 
states of the qubits and extract the intricate patterns that might be difficult 
to use classical methods. The first gate performed on the qubits is the 
Hadamard gate H which is applied to qubit 0 to put it in a superposition 
between the states |0 > and |1>. This superposition enables the quantum 
system to investigate various states at the same time, which significantly 
increases the processing and representation of the complex data by the 
model. However, a Controlled-NOT (CNOT) gate is then applied between 
qubits 0 (control) and 1 (target) following the Hadamard gate and then 
these two qubits are entangled with each other, generating a correlation 
which is the main part of quantum model of the complex dependencies in 
the data. This interaction allows the quantum system to be capable of 
processing and representing correlations which would otherwise be hard 
to obtain with classical models. There is also a Z-Rotation of the qubit 2 to 
add a phase shift to it, which further enhances the ability of the model to 
learn the quantum data. This transformation of phase enables the model to 
improve the quantum state, modifying it in a manner that is more 
appropriate to the task in question. The quantum state is measured in the 
Pauli-Z basis after the quantum operations have been made, which forces 
the quantum state to collapse into one of two possible states, |0 > or |1>, 
according to the amplitudes of the quantum state. The measured data is 
then used in the classical domain where the quantum parameters are 
optimized using a method called Adam optimizer, a popular gradient based 
method that updates the parameters of the model to reduce the loss 
function and increase accuracy. Finally, after the quantum enhanced 
features are extracted and quantum parameters are optimized, the model 
is transferred to the classical domain and a classical classifier is used to 
perform the final stroke prediction. The classical classifier uses the features 
extracted from the quantum computation stage to predict the probability 
of a brain stroke, which makes the best use of the advantages of quantum 
computation and classical machine learning in prediction accuracy.

3.5.5.3 Training cost comparison

Aspect Quantum (Simulated) Classical (e.g., 
CNN)

Training Time Exponentially increases with 

qubits and depth

Polynomial growth 

with dataset size

Computational 

Resources

Requires large memory and 

computational power for 

quantum circuit simulation

Scales based on model 

size and dataset

Scalability Limited by classical simulation; 

impractical for large qubit systems

Scalable with 

optimized hardware 

(e.g., GPUs)
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3.5.5.4 Inference cost comparison

Aspect Quantum (Simulated) Classical

Inference Time Potential speedup with quantum 

circuits, but limited by classical 

simulation overhead

Fast, optimized for real-

time prediction

Computational 

Resources

Quantum simulation requires 

significant memory; real 

quantum inference will be faster

Less computationally 

expensive on modern 

hardware (GPUs/CPUs)

Scalability Likely to improve with real 

quantum hardware

Highly scalable and 

efficient for large models

3.5.6 Model training and model evaluation
This model is trained on the medical image data set, and simulated 

quantum operations are applied to render each image during feature 
extraction. The preprocessing introduced by quantum adds some 
features that can be  hard to detect by classical models, as CNNs, 
helping the model identify subtle, non-linear patterns. The output of 
these quantum enhanced characteristics are then fed into a classical 
neural network and classified.

The quantum-enhanced model is then trained and evaluated 
based on the standard classical models (such as CNNs), to find out 
how the predictive accuracy and processing efficiency is improved. 
Although emulating quantum processes on classical computers, the 
quantum model offers significant potential by reducing the training 
time to execute a high-dimensional task, and after achieving a better 
prediction in stroke detection.

4 Results

In this work, we apply the QBrainNet model, a model of quantum-
enhanced brain stroke prediction, for prediction using the medical 
imaging data with whose performance we additionally investigate 
against some of the commonly used traditional machine learning 
methods such as Convolutional Neural Networks (CNN), Support 
Vector Machines (SVM), Random Forests (RF), KNN and Logistic 
Regression (LR) since other traditional machine learning models have 
been used for different results and which we are comparing with.

In order to analyze the QBrainNet Model, we compare it with the 
classical CNNs using the standard evaluation metrics of accuracy, 
precision, recall and F1 score. The quantum modified model is 
consistently found to report a better performance than the classical 
CNN model, particularly in the accuracy of stroke detection. Also, the 
training times when using simulated quantum operations are much 
shorter than with classical methods, although real quantum hardware 
is not employed. This points to the prospect of simulated quantum 
methods to transform the computational cost of medical image 
analysis without requiring a costly quantum machine.

4.1 Model comparison and fairness in 
evaluation

As far as comparing the CNN and QBrainNet models, we would 
like to explain why there is a difference in the number of parameters 

between the two architectures. The CNN model in this study has 
about 2.5  million parameters, which is a reasonable number for 
multiple-layered, multi-filter convolutional neural networks. In 
contrast, a much smaller number of parameters is introduced in the 
QBrainNet model because of the quantum circuits used. Specifically, 
the number of trainable parameters of the QBrainNet model is 12, 
which are the angles of the RZ gates of the three variational layers of 
the quantum circuit.

The difference in the design of the classical and quantum neural 
networks means that the CNN model has many more parameters. 
Because of the compact nature of quantum gates, quantum circuits 
have less parameter, which can be  used to process information 
efficiently. Despite this difference in the number of parameters, a 
comparison between the CNN model and the QBrainNet model was 
made based on performance metrics such as accuracy, precision, and 
recall which are related to classification performance and not to the 
size of the model.

Both the models have been tested on the same data set, with the 
same train and validation split, hence the comparison is done under 
the same conditions. While these models were assessed in terms of the 
number of parameters, they focused on the models in terms of their 
predictive power and not the number of parameters in order to 
provide a fair and meaningful comparison.

By comparing the two models with respect to relevant 
performance indicators, we can give a precise and unbiased estimation 
of their relative abilities for classification of the data, despite the 
difference in their architecture and size of parameters.

4.2 Model performance comparison

The quantum-enhanced model is superior to the regular CNNs 
in accuracy and computing speeds by a large margin (49). The 
QBrainNet model provided better performance in the detection of 
strokes than CNNs. Also, training was faster using simulated 
quantum operations on classical hardware, which illustrates the 
prospect of quantum processes to enhance their efficiency in 
processing. Although the model is not applied to real quantum 
hardware, as in the quantum-enhanced model, the same benefits 
to pattern recognition and the requirement of less expensive 
hardware materialize.

Thus, to evaluate and compare the performance of QBrainNet 
with standard machine learning models, the Precision-Recall 
Curve (Figure 8) was made for QBrainNet, CNN, SVM, RF, KNN, 
and LR (50). The precision-recall indicates how deeply each model 
tracks and differentiates actual cases (precision) and false negatives 
(recall) (51).

4.3 Baseline model configurations

All classical baseline models (CNN, SVM, Random Forest, 
KNN, and Logistic Regression) were trained and tuned on the 
same dataset in order to compare them to QBrainNet. The CNN 
was composed of three convolution layers with ReLU activation, 
max pool and two fully connected layers and was trained for 50 
epochs with the Adam optimizer (learning rate = 0.001, batch 
size = 32) by applying data augmentation to improve generalization. 
The SVM with scalable RBF kernel C = 1, g = 0.01, and number of 
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iterations = 50 was used. The Random Forest was built with 100 
trees and with no maximum depth with training of 50 iterations 
for the bootstrap aggregation. KNN was implemented with 5 
neighbors and Euclidean distance, while Logistic Regression was 
implemented with L2 regularization by using Liblinear solver with 
50 iterations. Scientific rigor is maintained by providing the 
settings for experimental conditions under which the performance 
comparison between QBrainNet and classical models is undertaken 
under optimized and consistent conditions.

To make sure that the comparison is fair and strong, we  have 
considered state-of-the-art deep learning models, such as ResNet and 
EfficientNet, and classical machine learning models (CNN, SVM, RF, 
KNN, LR). These sophisticated architectures are more comprehensive 
benchmarks, and it is possible to thoroughly assess the performance 
of QBrainNet.

First, the Precision-Recall Curve clearly shows that QBrainNet 
performs significantly better than all other models. QBrainNet achieved 
a high precision of 0.96 and recall of 0.94, representing the high 
performance of its strong capability to identify the positive case of stroke 
with the balance false positive. In contrast to those two, we found that 
CNN was 0.85 in precision and 0.90 in recall, SVM 0.83 precision and 
0.90 recall, RF 0.85 precision and 0.88 recall, KNN 0.80 precision and 
0.85 recall, and LR 0.78 precision and 0.82 recall.

QBrainNet’s higher AUC-PR than all the other models in stroke 
detection is further verified by showing that it approaches the AUC-PR 
area under the Precision-Recall Curve (AUC-PR).

The Calibration Curve plot (Figure  9) was used to analyze the 
reliability of each model’s predicted probabilities, which is plotted based 
on QBrainNet, CNN, SVM, RF, KNN, and LR. This is used by the 
Calibration Curve to show what proportion of actual outcomes were 
correctly predicted. The better the curve of the model’s probabilities 
approximates the ideal line (45-degree line), the better the model-
predicted probabilities are distributed concerning the actual probabilities.

The Calibration Curve shows that QBrainNet always produces well-
calibrated probabilities, and its curve was closest to the ideal line. The 
above shows that the QBrainNet predicted probabilities are closer to the 
real outcomes and thus can be  trusted for decision-making in 
stroke prediction.

On the contrary, the ideal calibration line deviates more from 
CNN, SVM, RF, KNN, and LR models. Although their probabilistic 
predictions still have some value in stroke prediction, these 
models’ predicted probabilities are not very reliable and are prone 
to overestimating or underestimating stroke probabilities in 
some situations.

Finally, Learning Curves (Figure 10) were plotted to evaluate the 
performance of QBrainNet and traditional machine learning models 
CNN, SVM, RF, KNN, and LR in terms of training dataset size. The 
learning curve depicts the model’s performance, i.e., metrics like 
accuracy vs. size of the training dataset (training and validating curve).

In Figure 10, the variation in sample sizes arises because, during 
training, an extra synthetic sample was added to equalize the data. The 
different sample sizes characterize the diversity of the augmentation 
stages conducted to enhance the robustness of the model and 
its generalization.

Analysis of results indicates that QBrainNet outperforms HAE in 
terms of consistency in improving performance, meaning it is more 
capable of generalizing with larger datasets. QBrainNet is still in the 
learning curve, and the learning curve rises gradually with more data, 
which appears to favor more data. When it sees different classes of 
samples, it can perform much better.

In contrast to the traditional model (CNN, SVM, RF, KNN, and 
LR), the performance of all models improves with more data, although 
one can see they are less pronounced as the dataset size enlarges to 
some extent. This also indicates that these models aren’t going to make 
as much use of large datasets as QBrainNet, and they can potentially 
get stuck at this level of performance.

FIGURE 8

Precision-recall curve.
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4.4 Justification of quantum model 
performance

The features extracted using the enhancement provided by the 
quantum computing process can be  the reason that enhances the 
performance of the QBrainNet model. The model can emulate 

complex and non-linear patterns inherent in the medical images 
through simulating quantum operations on classical hardware, since 
classical CNNs cannot detect this. Quantum models, because of their 
propensity to explore many solutions simultaneously, courtesy of 
superposition and entanglement, are better suited to deal with high-
dimensional data such as medical imagery, where conventional 

FIGURE 9

Hybrid calibration curve.

FIGURE 10

Learning curve.
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methods tend to flounder. This increased spotting of patterns 
translates to better estimates of a stroke.

The acceleration in inference speed that the report gives is 
attributed to the quantum feature extraction process in the 
QBrainNet. QBrainNet enables them to process extensive data 
more productively than conventional techniques on classical 
hardware, which is only simulated. Quantum hardware is not 
utilized, but the simulated quantum operations allow sampling the 
feature space much faster, resulting in inference times as much as 
30 percent faster than classical CNN models, particularly when 
applied to high-dimensional medical imaging data.

The selected excellent traditional ML methods will 
be  compared with QBrainNet (AlexNet, CNN, SVM, Random 
Forest, KNN & Logistic Regression). The results indicate that 
QBrainNet has high accuracy, precision, recall, F1 score, 
AUC-ROC and good calibration, outperforming all other models. 
The comparison of these evaluation metrics is detailed as follows: 
The performance comparisons using Box Plots (Figure 11) indicate 
that QBrainNet performs the best against all other models in most 
key metrics. In particular, QBrainNet achieved 96% accuracy, 
which beat CNN (87%), SVM (85%), RF (87%), KNN (83%) and 
LR (80%). Moreover, It had a precision of 0.96 versus CNN (0.85), 
SVM (0.83), RF (0.85), KNN (0.80) and LR (0.78) on correctly 
identifying positive stroke cases. While QBrainNet scored only 
0.94 in terms of recall [better than CNN, a score of 0.90, as well as 
SVM (also 0.90), RF (0.88), KNN (0.85), and LR (0.82)], recall is 
significant for the early detection of this disease. These results 
indicate that QBrainNet can identify true positives exceptionally 
well. QBrainNet finally achieved an F1 score of 0.95, whereas the 
precision and recall outcome is well balanced by exceeding the 

performance of CNN (0.87), SVM (0.86), RF (0.86), KNN (0.82), 
and LR (0.80).

4.5 Computational efficiency

Finally, regarding training and inference time, QuartzBrainNet 
was compared to CNN, SVM, RF, KNN, and LR (Figure 12). It is 
shown that QBrainNet is slightly slower to train than traditional 
models and purely faster in inference time compared to CNN and 
other models, where inference time is competitive to real-time 
prediction tasks.

Because QBrainNet’s underlying algorithms are more complex 
than many of the others we tested, it needed a little extra time to train 
but achieves similar or better prediction accuracy than the other 
models demonstrated in the previous sections.

4.6 Model generalization

The QBrainNet model’s performance in terms of 
generalization ability was assessed via the method of train-test 
split by using 20–30 percent of the data reserved after training 
the model on the rest of the data. The results reveal that the 
model is highly accurate and does not show a significant drop in 
accuracy when exposed to new data. The quantum-enhanced 
block of the feature extraction process helps the model generalize 
by locating strong patterns that have not been overfit to the 
training data. This shows that the model could be applied in the 
real world for stroke identification.

FIGURE 11

Performance comparisons.
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4.7 Feature importance

Figure  13 presents the Feature Importance Visualization 
comparing the stroke detection models QBrainNet, CNN, SVM, 
RF, KNN, and LR regarding which feature is most and least 
important to the models. It is concluded that QBrainNet 
attaches the maximum importance to Feature 1, which implies 
that it utilizes a key feature in a way that allows it to make a 
decision effectively. Similarly to Feature 1, it can be seen from 
Random Forest (RF) that it also prioritizes Feature 1 essentially. 
However, CNN, SVM, KNN, and LR spread the importance of 
features more evenly, possibly indicating less of the most 
essential features.

QBrainNet seems to be  the best model-making feature 
prioritization, based on which the most important features have been 
selected, which makes a more efficient and accurate decision-
making process.

4.8 Confusion matrix

Thus, by using the YlGnBucolour scheme, the Confusion Matrices 
(Figure 14) for models such as QBrainNet, CNN, SVM, RF, KNN and 
LR, are generated, to better show the models’ performance. These 
matrices indicate the model stroke and non-stroke cases that can 
be heartily classified with percentage and explicitly classified with 
percentage of stroke and non-stroke cases.

Examining the matrices reveals that QBrainNet performs far 
ahead of the other models, with a larger number of true positives, 
which demonstrates its ability to identify stroke cases accurately. 
Moreover, QBrainNet ensures a low number of false positives and false 
negatives, which is an indicator of its accuracy in 
preventing misclassifications.

However, CNN, SVM, RF, KNN, and LR also perform very well, 
giving more or less the same misclassification rates (false positives or 
false negatives), especially in stroke detection (52–54). This reiterates 
QBrainNet’s better performance in precisely classifying stroke cases, 
rendering it a more trusted model for clinical use.

4.9 Discriminatory power

Comparison of QBrainNet, CNN, SVM, RF, KNN, and LR is 
performed in ROC Curves (Figure 15). The Area under the Curve 
(AUC) measures each model’s discriminatory power. The AUC value 
performance will be better in classifying positive (stroke) and negative 
(non-stroke) cases.

The AUC clearly shows that QBrainNet has the highest AUC of 
0.97 on its ability to classify stroke accurately. Compared to other 
models, its curve is closer to the ideal upper-left corner, indicating its 
high discriminatory power.

In contrast, CNN reached an AUC of 0.92, SVM followed with 
0.91, and RF recorded an AUC of 0.93. At the same time, KNN and 
LR achieved AUC values of 0.88 and 0.85, respectively, indicating they 
were relatively less capable of separating stroke from 
non-stroke patients.

Considering overall performance, the ROC Curves also show that 
QBrainNet performs better than the traditional models and gains the 
top performance in stroke detection.

4.10 Hyperparameter optimization

Figure 16 shows the Learning Rate vs. Performance graph, which also 
shows how other models, such as CNN, SVM, RF, KNN, and LR, perform 
with different learning rates and how QBrainNet’s performance varies 

FIGURE 12

Computational efficiency.
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FIGURE 13

Feature importance visualization.

FIGURE 14

Confusion matrix.
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over that. Hyperparameter tuning is shown to have a great effect on each 
model’s performance, particularly the learning rate.

4.11 Histogram for feature distributions

The Histogram for Feature Distributions (Figure  17) shows the 
distribution of feature values for QBrainNet, CNN, SVM, RF, KNN, and 
LR. The difference in QBrainNet is that it concentrates on feature value at 
the higher end, indicating it is more dependent on features. Other models, 

for example, CNN, SVM, and RF, have overlapping distributions, and 
KNN and LR have less clear peaks. This visualization shows the different 
ranges of features for each model to be used for prediction.

Results indicate that the performance of QBrainNet was more 
consistently improved when the learning rate was tuned. That means 
QBrainNet is more adapted to the hyperparameters and more efficient 
than the rest of the models. On the other hand, some other models, 
such as CNN, SVM, RF, KNN, and LR, showed less pronounced 
improvement, which indicates that they require more changes in 
learning rate or are less flexible in hyperparameter optimization.

FIGURE 15

ROC curves.

FIGURE 16

Learning rate vs. performance.
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5 Conclusion

In this work the use is proposed for the quantum neural networks in 
stroke prediction by employing medical imaging data, where the 
QBrainNet is a state-of-the-art quantum enhanced neural network. This 
is due to the fact that it integrates into the classical machine learning 
models algorithms of quantum computing such as Quantum Neural 
Networks (QNN) and Variational Quantum Circuits (VQC) which makes 
calculations more efficient and more reasonably anticipates predictions. 
How does QBrainNet solve this problem? QBrainNet uses quantum 
computing to process high dimension medical image data more efficiently 
and particularly, when the dimension of our data is under such small 
conditions as are illustrated in the conventional models (there are few 
distinct images in the background).

We first conduct a comprehensive evaluation where it is demonstrated 
that QBrainNet outperforms classical machine learning models (e.g., 
CNN, SVM, RF, KNN, and LR) in several critical metrics, i.e., accuracy, 
precision, recall, F1-score, AUC-ROC, and computational speed. We find 
that QBrainNet has a strong ability to identify strokes and little 
misclassifications precisely and performs better in different configurations 
of hyperparameters. For instance, our model obtains better AUC-ROC 
scores and shows merits with varying learning rates, adequately suggesting 
its flexibility and generalization capability on an extensive range of 
medical imaging data.

Furthermore, the Feature Importance Visualization highlights 
which features are the most important by prioritizing those for stroke 
detection. Thus, the model is better interpreted, and it provides some 
insight into the decision-making process. The Confusion Matrix 
depicts the application of a low false positive and false negative rate, 
among other things, supporting early stroke detection.

Although its training time is slightly higher than that of traditional 
models, QBrainNet is comparable in real-time prediction time, 
considering its similar inference time. QBrainNet is a promising tool 
for clinical applications that allows for real-time decision-making.

5.1 Future work

QBrainNet is a promising tool for predicting stroke; however, 
QBrainNet has some potential room for further development and 
enhancements. Second, the model can be corroborated in addition to the 
addition of more diverse and big medical imaging datasets, which could 
contain data from other imaging modalities (e.g., CT, MRI, ultrasound). 
The robustness of QBrainNet in real-world clinical scenarios and that the 
model behaves uniformly across various populations would need a large 
and diverse dataset for us to penetrate deeper.

It can also be optimized in the quantum components of QBrainNet 
both from the design point and from the quantum algorithmic 
perspective. With new and more efficient quantum algorithms 
emerging for these more than-ever powerful quantum computing 
technologies, new problems will arise. Further integrations of these 
advancements with the QBrainNet can lead to additional performance 
improvements, especially in speed and accuracy. Some of the tasks for 
exploring further are exploring the usage of more advanced quantum 
machine learning technologies such as quantum support vector 
machines or quantum k nearest neighbors that may help to improve 
data classification and pattern recognition.

Other than optimizing quantum components, QBrainNet could 
also be simplified to quantum-enhanced generative models. These 
models may generate medical images, mainly when insufficient data 
exists synthetically. We hypothesized that augmenting the dataset with 
high-quality synthetic quantum-enhanced images would allow us to 
train the model on a robust and more comprehensive dataset that 
would aid the model in generalization when processing unseen data.

Another important direction for future work is to explore the real-
time deployment of QBrainNet in clinical settings. For this to 
be possible, the model would need to be integrated with the existing 
healthcare systems and its usage made practical for medical 
practitioners. Moreover, real-time performance evaluations and 
continuous learning mechanisms can be  added to the model to 

FIGURE 17

Feature distributions.
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enhance it with additional data as they become available. Integrating 
QBrainNet with electronic health records (EHR) and other clinical 
data sources can be  a powerful tool for early stroke diagnosis to 
forecast timelines that can guide healthcare providers’ decisions.

Finally, investigating the explainability of QBrainNet for clinical 
decision-making is an integral part of future work. Although the 
model works very well, we  need to understand how quantum-
enhanced parts of the model can affect the predictions to gain the trust 
of healthcare providers. Since the decision-making in high-stakes 
applications, i.e., medical diagnostics, must be more transparent and 
interpretable, techniques such as model interpretability and 
explanation generation should be explored.

To summarize, QBrainNet is a very promising tool for using 
quantum enhancement to predict stroke, and further research and 
development in these areas are expected and necessary to advance its 
applicability in clinical use and ensure its success in the real world 
of healthcare.
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Background: Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder that requires advanced diagnostic strategies for early and accurate 
detection.
Methods: This study introduces a hybrid AI-driven diagnostic framework that 
integrates an Artificial Neural Network (ANN) trained on clinical data from 1,200 
patients using 31 demographic, symptomatic, and behavioral features with a 
Convolutional Neural Network (CNN) trained on 4,876 MRI images to classify 
AD into four stages.
Results and Discussion: The ANN achieved an accuracy of 87.08% in early-
stage risk prediction, while the CNN demonstrated a superior 97% accuracy in 
disease staging, supported by Grad-CAM visualizations that improved model 
interpretability. This dual-model approach effectively combines structured 
clinical data with imaging-based analysis, addressing the sensitivity and scalability 
limitations of traditional diagnostic methods and providing a more comprehensive 
assessment of AD.
Conclusion: The integration of ANN and CNN enhances diagnostic precision 
and supports AI-assisted clinical decision-making, with future work focusing on 
lightweight CNN architectures and wearable technologies to enable broader 
accessibility and earlier intervention.
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Highlights

	•	 The study introduces a dual-model framework that integrates ANN and CNN models to 
combine clinical data and imaging for Alzheimer’s diagnosis.

	•	 The ANN achieved 87.08% accuracy in risk assessment, while the CNN reached 97% 
accuracy in classifying disease stages.

	•	 Grad-CAM visualizations enhance the interpretability of CNN predictions, providing 
transparent and clinically relevant insights.

	•	 The framework offers a comprehensive diagnosis by classifying Alzheimer’s into four 
stages with high precision.
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1 Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative 
disorder, presents a significant challenge for early diagnosis and 
effective management due to its complex and multifactorial nature. 
AD is the most common form of dementia, affecting patients and their 
families through progressive impairments in memory, reasoning, and 
social functioning (1). Before affecting other cortical regions, the 
disease initially targets the hippocampus, a brain structure integral to 
memory formation and learning (2). In the early stages, patients may 
have difficulty recalling recent conversations or appointments, and as 
the disease progresses, it becomes increasingly difficult to recognize 
familiar names and relatives (3).

Jack et al. (4) shed light on the fundamental mechanisms of AD, 
identifying its key pathological characteristics as amyloid deposits, tau 
protein abnormalities, and neurodegeneration. These three core 
pathological features play a crucial role in prediction, diagnosis, and 
treatment of AD. Prior to the extensive use of artificial intelligence 
(AI) in healthcare, traditional methods for testing AD relied on a 
variety of techniques. Tools like the Mini-Mental State Examination 
(MMSE) and the Montreal Cognitive Assessment (MOCA) were 
employed to evaluate and score a patient’s cognitive function, helping 
to assess their cognitive performance levels (5). With advancements 
in technology, methods such as magnetic resonance imaging (MRI), 
positron emission tomography (PET), diffusion tensor imaging (DTI), 
biomarkers, and cerebrospinal fluid (CSF) analysis are increasingly 
utilized for detecting AD, as they eliminate the influence of subjective 
factors (6). MRI technology uses a strong magnetic field and harmless 
radio waves to generate high-resolution brain images, aiding 
physicians in observing the brain structure and detecting potential 
abnormalities (7). MRI is crucial in diagnosing Alzheimer’s disease as 
it provides high-resolution, non-invasive imaging of brain structures, 
enabling the detection of early signs of neurodegeneration, such as 
hippocampal atrophy and cortical thinning, which are key indicators 
of the disease’s progression (8). In the early stages of Alzheimer’s 
disease, the pathological features are less pronounced, making brain 
imaging methods like MRI potentially insufficiently sensitive for 
accurate prediction of the condition (9).

AI can enhance the sensitivity of brain imaging techniques, such 
as MRI, by leveraging advanced algorithms to detect subtle patterns 
and early-stage biomarkers of Alzheimer’s disease that might 
otherwise go unnoticed through traditional analysis, thereby 
improving early diagnosis and intervention strategies (10). Tackling 
the challenges of diagnosing and treating complex conditions such as 
AD has driven a growing interest in leveraging advanced technologies 
to improve clinical outcomes. AI, particularly through machine 
learning (ML) and deep learning (DL), holds tremendous promise in 
revolutionizing AD diagnostics and care. By analyzing vast amounts 
of medical data, AI systems can detect subtle patterns and early 
biomarkers that traditional methods might miss, enabling earlier 
diagnosis and more personalized intervention strategies. The concept 
of AI was first introduced by John McCarthy in 1956, who defined it 
as the use of computer systems to replicate human intelligence and 
critical reasoning (11).

In healthcare, AI is categorized into two main domains: virtual 
and physical. The virtual domain encompasses ML and DL (12). 
Machine learning refers to a system’s ability to autonomously learn 
from data without explicit programming (11). It includes four primary 

methodologies: supervised learning, unsupervised learning, 
reinforcement learning, and active learning (13). Supervised learning 
involves analyzing labeled input data to uncover patterns, utilizing 
models such as Bayesian inference, decision trees, linear discriminants, 
support vector machines, logistic regression, and artificial neural 
networks (14). Deep learning, a more advanced subset of ML, employs 
multiple interconnected layers to extract features and optimize model 
performance (15).

AI technologies aim to develop systems and robots capable of 
performing tasks like pattern recognition, decision-making, and 
adaptive problem-solving—capabilities traditionally associated with 
human intelligence (16). Advances in computational power, combined 
with innovations in machine learning techniques and neural networks, 
have accelerated progress in AI (17). As a subset of AI, ML focuses on 
training computers to analyze large datasets, identify trends, and apply 
these insights for predictions or decisions (16). AI has demonstrated 
transformative potential across fields such as natural language 
processing, autonomous vehicles, healthcare, and image recognition. 
In AD research, it excels at rapidly analyzing complex datasets, 
identifying patterns imperceptible to humans, and providing highly 
accurate predictions, thereby advancing the understanding and 
management of the disease (18, 19). DL is centered around advanced 
neural network architectures, including Convolutional Neural 
Networks (CNNs) (20) and Artificial Neural Networks (ANNs) (21).

CNNs are a specialized type of ANN designed to process and 
analyze visual data, such as images. Unlike ANNs, CNNs leverage 
convolutional layers that apply filters (kernels) to extract spatial and 
hierarchical features like edges, textures, and shapes (22). These layers 
are followed by pooling layers, which reduce the spatial dimensions 
and improve computational efficiency (23). Fully connected layers at 
the end of the network use the extracted features to make predictions 
(24). CNNs excel at tasks like image recognition, object detection, and 
medical imaging due to their ability to capture spatial relationships 
and patterns in data (25). ANNs are inspired by the structure and 
function of the human brain, consisting of layers of interconnected 
nodes (neurons) (26). These nodes process input data by applying 
weights, biases, and activation functions, which enable the network to 
learn and make predictions. ANNs typically have an input layer (to 
receive data), one or more hidden layers (where computations and 
feature extraction occur), and an output layer (to generate predictions) 
(27). A systematic review analyzed AI-based MRI studies for 
Alzheimer’s and MCI detection, highlighting that deep learning CNN 
models achieved the highest accuracy (89%) compared to traditional 
AI methods like SVM and logistic regression (28). Another study 
proposed a 2D CNN-based approach for Alzheimer’s and MCI 
detection, emphasizing computational efficiency and fairness by 
achieving 83.7% accuracy for AD classification without requiring large 
datasets or high-performance computing (29). One of the previous 
studies has utilized CNN-based models for Alzheimer’s disease 
detection, achieving 94.46% accuracy using CLAHE and GLCM for 
feature extraction (30). Their U-Net-based model achieved high 
segmentation and classification accuracy, reporting an average 
accuracy of 94.46% across five AD Neuroimaging Initiative categories. 
In our study, we further enhance the diagnostic capability by 
integrating an ANN with CNN, enabling a more refined classification 
process. Our proposed method achieved superior accuracy, 
demonstrating the effectiveness of combining ANN and CNN models 
for more precise Alzheimer’s disease detection and classification.
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Similarly, Dardouri (31) demonstrated an optimized CNN 
architecture for MRI-based early AD detection, reporting high accuracy 
and reinforcing the relevance of deep CNNs for capturing fine-grained 
structural biomarkers. Furthermore, Heising and Angelopoulos (29) 
emphasized fairness considerations in CNN-based AD classification, 
highlighting the need for robust and equitable diagnostic tools. Beyond 
unimodal approaches, Xu et al. (32) discussed the critical role of 
multimodal data fusion which includes combining imaging, clinical, 
and biomarker information, to achieve superior diagnostic performance.

Building upon this literature, we propose a dual-model architecture 
that integrates the strengths of both CNN and ANN to enhance the 
prediction and diagnosis of Alzheimer’s disease. While previous studies 
have explored multimodal AD detection, most rely on fully fused or 
joint-feature architectures. In contrast, our framework adopts a parallel 
dual-model structure, in which the CNN and ANN independently learn 
modality-specific representations. This approach offers two advantages:

	•	 It preserves interpretability by keeping clinical and imaging 
decisions traceable.

	•	 It mirrors real-world clinical workflows, where radiological and 
clinical assessments complement one another.

Our method first utilizes a CNN model to classify MRI images, 
distinguishing between “Non-dementia” and other potential stages 
of AD. Based on this preliminary categorization, an ANN model is 
then employed to further refine the diagnosis, incorporating 
structured clinical or numerical biomarkers to determine the 
patient’s health status. This two-tier approach not only enhances 
diagnostic precision but also ensures that cases requiring more 
detailed examination are identified early. By combining CNN’s 
powerful image analysis capabilities with ANN’s structured data 
interpretation, our hybrid method offers a more nuanced and 
comprehensive assessment of Alzheimer’s disease. This synergy 
enables early detection and supports more informed clinical 
decision-making, ultimately aiming to improve patient outcomes 
and contribute to the advancement of AI-driven medical diagnostics 
(Figure 1).

2 Datasets and symptom analysis

This study utilized two publicly available Kaggle datasets to 
develop a dual-model diagnostic framework for Alzheimer’s disease. 
The first dataset contains 4,876 MRI brain images, used to train the 
CNN model, while the second dataset includes clinical data from 
1,200 patients, used to train the ANN model. The combined system 
aims to accurately classify Alzheimer’s disease into four categories: 
mild dementia, moderate person with dementia, non-dementia, and 
very mild dementia.

2.1 MRI dataset

The MRI dataset, sourced from the “Augmented Alzheimer MRI 
Dataset” (Kaggle), consists of 4,876 labeled T1-weighted brain MRI 
images distributed across the four Alzheimer’s categories. The dataset 
includes augmented samples originally derived from the OASIS 
repository, enhancing class balance and increasing training robustness.

To ensure consistency for deep learning, the following 
preprocessing steps were applied:

	•	 All MRI images were resized to 256 × 256 pixels.
	•	 Pixel values were normalized to the 0–1 range.
	•	 Data augmentation was used to improve generalization and 

mitigate class imbalance, including:
	•	 Random rotation.
	•	 Width/height shifting.
	•	 Zooming.
	•	 Horizontal flipping.

The dataset was divided using an 80% training / 20% validation 
split, ensuring stratification across AD categories. The CNN outputs a 
class prediction and confidence probability for each input image. 
Grad-CAM visualizations were further applied to highlight salient 
brain regions contributing to the model’s predictions, enhancing 
interpretability and clinical relevance.

2.2 Clinical dataset

The clinical dataset, obtained from the “Alzheimer’s Disease 
Dataset (Classification)” on Kaggle, contains structured data from 
1,200 patients and includes 31 clinically relevant features spanning 
demographics, lifestyle factors, medical history, cognitive assessments, 
and behavioral symptoms. These features include:

	•	 Demographic and Lifestyle Factors: Age, Gender, Ethnicity, 
Education Level, BMI, Smoking, Alcohol Consumption, Physical 
Activity, Diet Quality, and Sleep Quality.

	•	 Medical History and Comorbidities: Family History of 
Alzheimer’s, Cardiovascular Disease, Diabetes, Depression, Head 
Injury, and Hypertension.

	•	 Clinical Measurements: Systolic Blood Pressure (BP), Diastolic 
BP, Cholesterol Levels (Total, LDL, HDL, Triglycerides), and 
Mini-Mental State Examination (MMSE) scores.

	•	 Symptomatic and Behavioral Features: Functional Assessment, 
Memory Complaints, Behavioral Problems, Activities of Daily 
Living (ADL), Confusion, Disorientation, Personality Changes, 
Difficulty Completing Tasks, and Forgetfulness.

Preprocessing for the ANN model included:

	•	 Standardization (z-score scaling) of all numerical features.
	•	 Encoding of categorical variables where necessary.
	•	 Stratified 80/20 train–test split.
	•	 Application of class weighting to mitigate class imbalance 

during training.

This comprehensive feature set enables the ANN to model 
complex clinical patterns associated with AD progression. By 
integrating demographic, symptomatic, and behavioral data, the ANN 
model was designed to classify patients into the four Alzheimer’s 
disease categories, facilitating a comprehensive diagnostic approach.

Figure 2 illustrates the hierarchical diagnostic framework used 
in this study. The system operates through a two-stage classification 
pipeline that integrates MRI-based imaging analysis with clinical 
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data to improve diagnostic precision. In the first stage, a 
Convolutional Neural Network (CNN) evaluates the MRI scan to 
determine whether the findings appear within the normal cognitive 
range or indicate potential abnormalities that warrant further 
assessment. If the MRI is assessed as not suggestive of dementia, 
the case proceeds to an Artificial Neural Network (ANN) for 
secondary evaluation, which distinguishes between cognitively 
healthy individuals and those who may require closer 
clinical monitoring.

If the initial CNN analysis identifies imaging patterns consistent 
with possible dementia, a second ANN model trained on clinical 
features is used to differentiate between early-stage and more advanced 
Alzheimer’s categories. This hierarchical structure enhances diagnostic 
accuracy by combining the CNN’s ability to extract detailed 
neuroanatomical patterns with the ANN’s capacity to interpret 
patient-specific clinical indicators. Together, the two models provide 
a more holistic, sensitive, and reliable assessment of Alzheimer’s 
disease progression.

3 Machine learning model

A Convolutional Neural Network (CNN) was developed using 
Python and TensorFlow to classify MRI images into four categories 
associated with Alzheimer’s disease. Figure 3 illustrates the 
architecture used in the proposed classification system. Before 
training, all MRI images were resized to 256 × 256 pixels and 
normalized to standardize pixel intensity values.

The CNN architecture consisted of five convolutional layers with 
Rectified Linear Unit (ReLU) activation functions, containing 64, 128, 

128, 64, and 64 filters, respectively. Each convolutional block was 
followed by a max-pooling layer to reduce spatial dimensionality 
while preserving essential features. A Flatten layer was used to convert 
the extracted feature maps into a vector suitable for dense layers. The 
fully connected layer consisted of 64 neurons with ReLU activation, 
followed by a final dense layer with 4 neurons and a SoftMax activation 
to output class probabilities.

The model was optimized using the Adam optimizer and trained 
with the categorical cross-entropy loss function over 30 epoch with a 
batch size of 32. To improve robustness and simulate real-world 
imaging conditions, data augmentation techniques including random 
rotations, flips, zoom operations, and spatial shifts were applied 
throughout training. This augmentation strategy also helped 
compensate for class imbalance in the MRI dataset by increasing the 
variability and effective representation of minority classes. Model 
performance was evaluated using accuracy, precision, recall, F1-score, 
and confusion matrices.

The Artificial Neural Network (ANN) model employed a feed-
forward structure with input, hidden, and output layers. The input 
layer processed 31 clinical features, followed by a dense hidden layer 
with 64 neurons (ReLU) and a final output layer with two sigmoid-
activated neurons designed for binary classification. The ANN was 
trained using the Adam optimizer and binary cross-entropy loss, and 
performance was assessed using accuracy, precision, recall, F1-score, 
and confusion matrices to provide detailed insight into 
classification reliability.

To prevent overfitting in the ANN, several regularization 
strategies were incorporated, including Dropout, L2 weight 
regularization, early stopping based on validation loss, and learning 
rate scheduling, which together stabilized training and improved 

FIGURE 1

Overview of the proposed dual-model framework integrating CNN and ANN.
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generalization. Additionally, class weighting was applied to address 
class imbalance in the clinical dataset, ensuring that 
underrepresented classes contributed proportionally to 
model optimization.

The proposed dual-model framework combines the 
complementary strengths of imaging-based and clinical-based 
analysis. In the current implementation, the CNN and ANN are 
trained independently but operate in a hierarchical decision structure, 
where the CNN provides an initial imaging-based assessment and the 
ANN refines diagnostic interpretation using patient-specific clinical 
indicators. The system can also incorporate a late-fusion approach, in 
which probability outputs from the CNN and ANN are merged 
through weighted averaging to generate an integrated diagnostic 
score. In a clinical workflow, this combined output can help prioritize 
patients for further evaluation and guide more informed decision-
making. Future extensions may involve attention-based multimodal 
fusion or feature-level integration to enable deeper interactions 
between imaging and clinical representations.

4 Experimental results

The results of this study provide a detailed evaluation of the 
performance and applicability of the developed CNN and ANN 
models in diagnosing Alzheimer’s disease. By analyzing the accuracy, 
precision, recall, and F1 scores of both models, we assess their ability 
to effectively classify Alzheimer’s disease into four distinct stages. 
Additionally, confusion matrices and visual explanations generated by 
Grad-CAM enhance the interpretability and transparency of the CNN 

model’s predictions. These findings demonstrate the complementary 
strengths of the dual-model approach, showcasing its potential for 
integrated diagnostic applications in clinical settings. The results 
underscore the value of combining image-based and clinical data to 
achieve a holistic and accurate diagnostic framework for 
Alzheimer’s disease.

Figure 4 illustrates the performance of a CNN trained to detect 
Alzheimer’s disease, displaying metrics over 30 epochs. The left plot 
shows the training and validation accuracy. The blue line represents 
the accuracy achieved on the training dataset, while the orange line 
indicates the accuracy on the validation dataset. Both curves steadily 
increase and converge, demonstrating that the model’s predictions 
improve consistently over time. The close alignment between the two 
curves suggests strong generalization and minimal overfitting.

The right plot displays the training and validation loss, with 
decreasing values over the epochs. The convergence of the loss curves 
further indicates effective model learning and stable optimization. 
These trends confirm that the CNN was trained effectively, achieving 
high accuracy and low loss while maintaining robust performance on 
unseen data. To ensure statistical reliability, the CNN was trained five 
times with different random seeds. Across all runs, the model achieved 
an average accuracy of 97.0%, with a 95% confidence interval of [96.3, 
97.6%], demonstrating consistent performance and low variance.

Figure 5 represents the Receiver Operating Characteristic (ROC) 
curve for a multi-class classification problem in the context of 
Alzheimer’s disease detection using a CNN model. The ROC curve 
plots the True Positive Rate (Sensitivity) against the False Positive Rate 
(1 – Specificity) for each class, providing a visualization of the model’s 
performance for distinguishing between the four classes of Alzheimer’s 

FIGURE 2

Hierarchical deep learning workflow for MRI-based Alzheimer’s classification.
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disease. Each curve demonstrates how the sensitivity and specificity 
trade-off changes at different classification thresholds. The closer the 
curve is to the top-left corner of the plot, the better the model’s 
performance. The overlapping or closely aligned curves suggest high 
classification accuracy across all classes, as reflected by the minimal 
gaps between the curves. The macro-AUC and micro-AUC scores 
were calculated as 0.987 and 0.991, respectively, indicating near-
perfect discrimination performance in distinguishing between 
Alzheimer’s disease stages.

Table 1 summarizes the classification performance of the 
CNN. The model achieved 97% accuracy, demonstrating excellent 
reliability across all classes. The weighted precision was 0.98, weighted 
recall 0.97, and weighted F1-score 0.98. The Matthews Correlation 
Coefficient (MCC) was 0.96, indicating strong agreement between 
predicted and true labels.

For the “Mild dementia” class, the model achieves a precision of 
0.99, recall of 0.97, and F1-score of 0.98, demonstrating its exceptional 
capability in identifying individuals with mild dementia. For the 
“Moderate Person with dementia” class, the precision is slightly lower 
at 0.81, but the recall reaches 1.00, yielding an F1-score of 0.90. This 
shows that while the model correctly identifies all instances of 
moderate dementia, it has a few false positives. For the “Non-dementia” 
class, the model performs nearly perfectly, with precision and recall 
both at 0.99, resulting in an F1-score of 0.99. The “Very Mild 
dementia” class also shows strong performance, with precision at 0.99, 
recall at 0.95, and F1-score at 0.97, indicating high reliability. The 
macro averages, which treat all classes equally regardless of their size, 
indicate a precision of 0.95, recall of 0.98, and F1-score of 0.96. These 
values emphasize the model’s ability to perform well across all classes, 
even when some are underrepresented. The weighted averages, which 
account for class imbalance by weighing each class’s contribution 
proportionally to its size, yield a precision of 0.98, recall of 0.97, and 
F1-score of 0.98. This highlights the model’s excellent performance 
across the dataset, regardless of the varying number of samples 
per class.

Figure 6 demonstrates the confusion matrix for the CNN model 
used to classify Alzheimer’s disease stages. The confusion matrix 
provides a detailed view of the model’s predictions compared to the 
actual labels, highlighting both correct and incorrect classifications. 

Each row corresponds to the true class labels, while each column 
represents the predicted class labels. For the “Mild dementia” class, the 
model correctly classifies 143 out of 148 samples, with only 5 samples 
being misclassified as “Moderate Person with dementia.” Notably, 
none of the “Mild dementia” samples were misclassified as 
“Non-dementia” or “Very Mild dementia.” The “Moderate Person with 
dementia” class demonstrates perfect performance, as all 39 samples 
are correctly classified, with no misclassifications observed. Similarly, 
for the “Non-dementia” class, the model achieves near-perfect results, 
correctly classifying 173 out of 174 samples, with only one sample 
misclassified as “Very Mild dementia.” The “Very Mild dementia” class 
also shows strong performance, with 144 out of 151 samples correctly 
classified. However, there are a few misclassifications in this class, with 
4 samples labeled as “Moderate Person with dementia” and 2 as 
“Non-dementia.”

Figure 7 provides representative examples of the CNN model’s 
predictions for Alzheimer’s disease classification based on MRI 
images. Each sub-image includes the actual label, predicted label, and 
the confidence score of the prediction, showcasing the model’s ability 
to classify different stages of Alzheimer’s disease with high accuracy.

On the left side, the first two rows show “Non-dementia” cases, 
where both the actual and predicted labels are “Non-dementia.” The 
confidence score for these predictions is 100%, reflecting the model’s 
absolute certainty. These images indicate the structural patterns that 
the model associates with the absence of dementia. Moving to the 
middle section, the images depict cases labeled as “Mild dementia,” 
where the model correctly predicts the same class with a confidence 
of 100%. These samples demonstrate the model’s ability to identify the 
subtle features of mild dementia from the MRI scans. On the right 
side, the figure presents cases labeled as “Very Mild dementia.” Again, 
the model correctly predicts the same class with confidence scores 
either at 100% or very close (e.g., 99.99%). These predictions highlight 
the model’s precision in distinguishing between different early stages 
of dementia.

Figure 8 illustrates a Grad-CAM (Gradient-weighted Class 
Activation Mapping) visualization for the CNN model’s prediction 
of an MRI image classified as “Very Mild dementia.” Grad-CAM 
highlights the regions of the brain scan that contributed most 
significantly to the model’s decision, providing an interpretable 

FIGURE 3

CNN architecture used for MRI classification.
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explanation of the classification process. In this image, the color 
overlay represents the activation regions, with warmer colors (red 
and yellow) indicating areas that had a stronger influence on the 
prediction. Cooler colors (green and blue) represent less relevant 
regions. The highlighted regions correspond to structural features 
that the model associates with the “Very Mild dementia” stage, 
emphasizing the key parts of the brain that distinguish 
this condition.

Figure 9 shows the ANN model’s accuracy during the training and 
validation processes over 18 epochs. The blue line represents the 
accuracy achieved on the training dataset, while the orange line 
reflects the accuracy on the validation dataset. Initially, the accuracy 
for both the training and validation datasets increases rapidly, 
indicating that the model is learning to distinguish features effectively. 
By around the 5th epoch, the validation accuracy starts to stabilize, 
reaching a plateau at approximately 85%. The training accuracy, on the 
other hand, continues to improve and eventually surpasses 95%. The 
gap between the training and validation accuracy after the 5th epoch 
indicates a slight overfitting, where the model performs better on the 
training data than on unseen validation data. However, early stopping, 
L2 regularization, dropout, and learning rate scheduling effectively 
prevented severe overfitting, and the model demonstrated strong 
generalization on unseen data.

Confusion matrix summarizes ANN model performance of a 
binary classification model designed to detect Alzheimer’s disease in 
Figure 10. The matrix outlines the relationship between the true and 
predicted labels. The rows correspond to the actual labels, where “0” 
represents cases without Alzheimer’s and “1” represents cases with 
Alzheimer’s. The columns represent the predicted labels, with “0” 
indicating predictions of “No Alzheimer’s” and “1” indicating 
predictions of “Alzheimer’s.” The top-left cell shows that the model 
correctly identified 144 cases as “No Alzheimer’s,” demonstrating its 
ability to accurately classify these instances (true negatives). 
Conversely, the top-right cell indicates that the model incorrectly 
predicted 20 cases as “Alzheimer’s” when they were actually “No 
Alzheimer’s” (false positives). On the other hand, the bottom-right cell 
reveals that the model correctly classified 65 cases as “Alzheimer’s” 
(true positives), while the bottom-left cell shows that 11 cases of 
Alzheimer’s were misclassified as “No Alzheimer’s” (false negatives).

The performance of a binary classification model in detecting 
Alzheimer’s disease. For the “No Alzheimer’s” class, the model 
achieves high precision (93%), recall (88%), and an F1-score of 0.90, 
reflecting strong performance. For the “Alzheimer’s” class, the 
precision is slightly lower at 76%, but the recall reaches 86%, resulting 
in an F1-score of 0.81. The weighted averages for precision, recall, and 
F1-score are 0.88, 0.87, and 0.87, respectively, showing a balanced 

FIGURE 4

Training and validation performance of the CNN model.
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performance across both classes. With an overall accuracy of 87.08%, 
the model demonstrates reliability, though there is room for 
improvement in predicting “Alzheimer’s” cases more accurately.

Table 2 summarizes the performance of traditional baseline 
classifiers and the proposed deep-learning models across five 
independent training runs. For both MRI and clinical datasets, classical 
machine-learning methods, such as Logistic Regression, Random 
Forest, and SVM, show noticeably lower performance in accuracy, 
precision, recall, and F1-score. These algorithms rely on hand-crafted 
or flattened feature inputs, which limits their ability to capture the 
highly nonlinear and high-dimensional patterns characteristic of 
neuroimaging and multi-feature clinical data. In contrast, the CNN and 
ANN models automatically learn hierarchical and task-specific 
representations, leading to consistently superior performance across all 

metrics. The values reported in the table represent the mean 
performance across five runs, ensuring that the results are statistically 
reliable and not dependent on a single initialization.

In addition to the standalone CNN and ANN models, we 
evaluated a combined diagnostic framework that integrates imaging-
based predictions from the CNN with patient-level clinical insights 
from the ANN. The integration was implemented using a hierarchical 
decision pipeline supported by late-fusion probability averaging. As 
shown in Table 3, the integrated model achieved an accuracy of 97.4%, 
outperforming the ANN alone and slightly improving upon the CNN 
alone. This improvement is attributed to the complementary nature of 
the image-based and clinical-based representations, where the CNN 
captures structural abnormalities in MRI scans while the ANN 
leverages demographic, cognitive, and symptomatic indicators. The 

FIGURE 5

Multi-class ROC curve for Alzheimer’s disease classification using CNN.

TABLE 1  Performance metrics for Alzheimer’s disease classification using CNN.

Diagnosis class Precision Recall F1-Score Support

Mild dementia 0.99 0.97 0.98 148

Moderate person with 

dementia
0.81 1.00 0.90 39

Non-dementia 0.99 0.99 0.99 174

Very mild dementia 0.99 0.95 0.97 151

Accuracy 0.95 0.98 0.97 512

Macro Avg. 0.95 0.98 0.96 512

Weighted Avg. 0.98 0.97 0.98 512
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integrated model was trained and evaluated across five independent 
runs, and the mean performance metrics demonstrate high stability 
and robustness. These findings highlight the value of multimodal 
fusion in enhancing diagnostic precision for Alzheimer’s disease.

5 Discussion

In this study, we developed and evaluated two distinct artificial 
intelligence models, an ANN and a CNN, for predicting Alzheimer’s 

FIGURE 6

Confusion matrix for Alzheimer’s disease classification using CNN model.

FIGURE 7

Example predictions generated by the CNN model.
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disease stages and assessing its severity. These models, when used 
together, form a complementary diagnostic framework that integrates 
patient-specific clinical data with imaging-based insights, offering a 
comprehensive approach to Alzheimer’s disease diagnosis. Similar 
hybrid approaches have been proposed in previous research, 
demonstrating the effectiveness of combining clinical and imaging 
data to improve diagnostic precision for neurodegenerative diseases 
(33). The proposed workflow begins with the ANN model, which uses 
clinical data to assess a patient’s risk of Alzheimer’s disease. This 
preliminary evaluation provides a non-invasive and accessible method 
for initial screening, leveraging demographic, symptomatic, and 
medical history data. Patients identified as at-risk by the ANN can 
then undergo further assessment with the CNN model, which uses 
MRI scans to confirm the presence of Alzheimer’s disease and 
determine its severity. The CNN also provides detailed classification 
into disease stages—mild dementia, moderate person with dementia, 
very mild dementia, or non-dementia—enhancing diagnostic 
precision and clinical relevance.

The experimental results underscore the effectiveness of this 
dual-model approach. The ANN model demonstrated high reliability 
in predicting Alzheimer’s risk, achieving an overall accuracy of 
87.08%. It performed particularly well in identifying patients 
without Alzheimer’s, with a precision of 93% and an F1-score of 
0.90. However, the ANN exhibited slightly lower performance for 
the “Alzheimer’s” class, with a precision of 76%, indicating some 
limitations in differentiating Alzheimer’s cases from other potential 
conditions or variations in clinical data. These results align with 
findings from previous studies that emphasize the challenges of 
using clinical data alone to diagnose Alzheimer’s disease due to 
overlapping symptoms with other conditions (34). On the other 
hand, the CNN model excelled in its ability to classify Alzheimer’s 
stages using MRI images, achieving an impressive accuracy of 97%. 
The use of CNNs for neurodegenerative disease classification has 
been widely validated in the literature, with similar studies achieving 
high accuracy through optimized architecture and data 

FIGURE 8

Grad-CAM visualization for the “Very Mild dementia” class.

FIGURE 9

Training and validation accuracy of ANN model. FIGURE 10

Confusion matrix for ANN-based binary classification.
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augmentation techniques (35). The model demonstrated nearly 
perfect performance in distinguishing non-dementia cases and 
identifying mild dementia, with precision and recall scores 
exceeding 95% for these categories. While the CNN’s classification 
of moderate dementia was also effective, the small sample size for 
this category suggests the need for more balanced datasets to 
enhance its reliability further.

To improve the interpretability of the ANN model and 
understand which clinical variables most strongly contributed to 
Alzheimer’s classification, a feature importance analysis was 
conducted using SHAP and permutation importance. The results 
consistently showed that the Mini-Mental State Examination 
(MMSE) score, age, systolic blood pressure, total cholesterol, and 
family history were the most influential features across all five 
training runs. Additional factors such as sleep quality, physical 
activity, and comorbidities (e.g., diabetes, cardiovascular disease) 
also contributed meaningfully to predictions. Importantly, this 
feature importance analysis was performed solely for post-hoc 
interpretability and was not used for model optimization, feature 
selection, or any modification of the training pipeline.

Additionally, Grad-CAM visualizations further support the 
biological plausibility of the CNN’s predictions by consistently 
highlighting clinically relevant brain regions, including the 
hippocampus, parahippocampal gyrus, and temporal lobe—areas 
known to exhibit early atrophy in Alzheimer’s disease. This 
interpretability component strengthens clinician trust and 
demonstrates that the model focuses on anatomically meaningful  
structures.

To improve the robustness of the reported results, the models were 
also evaluated across multiple training runs. Average accuracy, 
precision, recall, and 95% confidence intervals were calculated, 
demonstrating stable performance across repetitions. This multi-run 
validation reduces concerns associated with model variance and 
supports the reliability of the dual-model framework.

The integration of ANN and CNN models offers several advantages. 
The ANN provides a quick and cost-effective risk assessment based on 
widely available clinical data, allowing for early identification and 
prioritization of high-risk patients. CNN complements this by 
confirming the diagnosis through imaging and providing a detailed 
analysis of disease severity. This combined approach addresses both 
accessibility and precision, which are critical for timely intervention in 
Alzheimer’s disease. Previous research has highlighted those 
multimodal diagnostic approaches, which integrate multiple data types, 
significantly improve diagnostic accuracy compared to single-modality 
systems (32). Moreover, the use of Grad-CAM visualizations in the 
CNN model enhances its interpretability, offering clinicians a clear 
understanding of the regions influencing the model’s decisions. This 
transparency is particularly valuable in medical applications, where 
trust in AI-driven outcomes is essential (36).

Despite these strengths, there are limitations to consider. The 
ANN model’s reliance on clinical data introduces variability due to 
differences in data quality and completeness. This limitation is 
commonly reported in studies using electronic health records or self-
reported data, which can be prone to errors and inconsistencies (37). 
Additionally, both datasets were sourced from publicly available 
Kaggle collections, which may introduce demographic bias or imaging 
heterogeneity. Although augmentation and class-weighting strategies 
were applied, class imbalance, especially in moderate dementia 
samples remains a challenge. Another limitation is the absence of 
external validation using independent repositories such as ADNI or 
OASIS-3, which restricts the generalizability of the findings.

Ethical considerations are also essential when developing AI 
systems for medical diagnosis. Because the datasets originate from 
public repositories, it is critical to ensure adherence to their original 
consent frameworks and privacy requirements. AI models may inherit 
demographic or sampling biases, making fairness evaluation crucial 
before clinical deployment. Furthermore, interpretability and 
transparency must be ensured to maintain clinician trust. Any 

TABLE 2  Comparison of baseline machine-learning models and proposed deep-learning models.

Model type Model Dataset Accuracy Precision Recall F1-score

Baseline ML

Logistic Regression MRI 0.736 0.72 0.70 0.71

Random Forest MRI 0.791 0.78 0.77 0.77

SVM (RBF) MRI 0.824 0.81 0.80 0.80

Deep learning (proposed) CNN MRI 0.970 0.98 0.97 0.98

Baseline ML

Logistic Regression Clinical 0.745 0.73 0.72 0.72

Random Forest Clinical 0.782 0.77 0.75 0.76

SVM (RBF) Clinical 0.810 0.80 0.79 0.79

Deep learning (proposed) ANN Clinical 0.8708 0.88 0.87 0.87

Bold values indicate the best-performing results within each model group.

TABLE 3  Performance of the integrated CNN–ANN diagnostic framework.

Model Integration strategy Accuracy Precision Recall F1-score

CNN (imaging only) – 0.970 0.98 0.97 0.98

ANN (clinical only) – 0.8708 0.88 0.87 0.87

Proposed integrated 

model
Hierarchical + Late Fusion 0.974 0.98 0.97 0.98

Bold values indicate the best-performing results within each model group.
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potential deployment of such models in real clinical settings will 
require multi-center validation, continuous performance monitoring, 
and strict alignment with healthcare regulatory standards.

Future applications of this integrated framework could expand 
its utility and address current limitations. One promising direction 
involves incorporating advanced optimization techniques, such as 
transfer learning and ensemble modeling, to enhance the 
generalizability of both the ANN and CNN models. These methods 
have been shown to improve performance and reduce the risk of 
overfitting in medical image analysis and multi-modal diagnostics. 
Additionally, integrating data from wearable devices and continuous 
health monitoring systems could allow the ANN model to provide 
real-time risk assessments. Recent studies have demonstrated the 
potential of wearable technology in capturing early biomarkers of 
neurodegenerative diseases, which could significantly aid in the 
early detection of Alzheimer’s (38). Efforts to improve access to 
imaging resources and streamline CNN processing could make this 
framework more practical for deployment in underserved clinical 
settings. The development of lightweight CNN models or cloud-
based diagnostic platforms could further enhance scalability and 
accessibility, as evidenced by similar initiatives in other 
healthcare domains.

Further research should also explore multimodal fusion strategies, 
such as late fusion, attention-based fusion, or joint feature embedding, 
which may enable more effective integration of clinical and imaging 
representations. Such approaches could further enhance diagnostic 
precision and support more holistic Alzheimer’s disease assessment.

6 Conclusion

This study presents a dual-model diagnostic framework that 
combines an Artificial Neural Network (ANN) and a Convolutional 
Neural Network (CNN) to improve the detection and classification of 
Alzheimer’s disease. The ANN provides a rapid and accessible method 
for assessing patient risk using structured clinical data, while the CNN 
leverages MRI imaging to confirm the diagnosis and determine 
disease severity with high precision. Together, these models create a 
comprehensive diagnostic pathway that reflects real-world clinical 
workflows. The ANN achieved an accuracy of 87.08%, effectively 
identifying individuals at risk, whereas the CNN demonstrated 97% 
accuracy in staging Alzheimer’s disease. The incorporation of 
Grad-CAM visualizations further enhanced the interpretability of the 
CNN model, highlighting anatomically relevant regions and 
increasing clinician confidence in the system’s predictions.

The results underscore the potential of AI-driven multimodal 
approaches to strengthen early Alzheimer’s detection, support clinical 
decision-making, and facilitate timely intervention. Furthermore, 
repeated-run evaluations and confidence interval analyses support the 
reliability of the reported performance, emphasizing the robustness of 
the dual-model framework.

Future advancements could further expand the utility of this 
system. Integrating additional data modalities such as wearable 
sensor signals, longitudinal health data, or cognitive behavioral 
patterns may enhance early-stage detection. Exploring advanced 
multimodal fusion techniques, including attention-based and late-
fusion strategies, could enable more effective integration of clinical 
and imaging representations. Optimizing CNN architectures for 

scalability, or deploying cloud-based inference pipelines, could also 
extend accessibility to resource-limited clinical environments. 
External validation with independent datasets such as ADNI or 
OASIS-3 represents an essential next step for strengthening 
generalizability and clinical applicability.

In summary, this dual-model system demonstrates the 
transformative potential of AI in Alzheimer’s diagnostics by providing 
an accurate, interpretable, and clinically meaningful framework for 
early disease detection and management.
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