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This paper explored the novel approach of targeting the cyclic guanosine
monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of
interferon genes (CGAS-STING) pathway for the treatment of osteosarcoma (OS).
Osteosarcoma is a common malignancy in adolescents. Most patients die from lung
metastasis. It reviewed the epidemiology and pathological characteristics of OS,
highlighting its highly malignant nature and tendency for pulmonary metastasis,
underscoring the importance of identifying new therapeutic targets. The cGAS-
STING pathway was closely associated with the malignant biological behaviors of OS
cells, suggesting that targeting this pathway could be a promising therapeutic
strategy. Currently, research on the role of the cGAS-STING pathway in OS
treatment has been limited, and the underlying mechanisms remain unclear.
Therefore, further investigation into the mechanisms of the cGAS-STING pathway
in OS and the exploration of therapeutic strategies based on this pathway are of great
significance for developing more effective treatments for OS. This paper offered a
fresh perspective on the treatment of OS, providing hope for new therapeutic
options for OS patients by targeting the cGAS-STING pathway.

KEYWORDS

osteosarcoma, cGAS-STING, treatment target, drug, tumor immunity

1 Introduction

OS is a malignant bone tumor that primarily affects children and adolescents,
particularly those in a rapid growth phase. According to literature reports, the incidence
of OS has tripled since 2000, with the highest incidence observed in individuals aged 10 to
24 years, reaching 7.2 cases per million (95% CI: 6.9-7.5) (1). Although the overall incidence
is relatively low, its highly malignant nature and tendency for pulmonary metastasis
contribute to a high mortality rate, posing a significant threat to the health of adolescents.
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Current treatment primarily has involved a combination of surgery,
chemotherapy, and radiotherapy. Traditional treatments for
osteosarcoma include surgical resection and systemic
chemotherapy. Surgery is mainly divided into amputation and
limb-salvage surgery. Surgery means complete removal of the
tumor. Amputation requires that the osteotomy plane is at least 5
cm away from the tumor-free boundary. If the lesion cannot be
completely removed during limb-salvage surgery, the local
recurrence rate can be as high as 25% (2). At best, only 10% of all
patients with osteosarcoma can be cured by tumor resection alone,
and most develop local recurrence and/or lung metastases months
later. Adjuvant systemic chemotherapy can significantly improve a
patient’s chance of cure (3-5). Adjuvant systemic chemotherapy
includes postoperative chemotherapy used to remove lesions that
cannot be completely removed by surgery and preoperative
chemotherapy to improve the success rate of limb-sparing surgery
and reduce the risk of recurrence, which have significantly
improved the 5-year survival rate of patients with osteosarcoma.
However, it is impossible to avoid the systemic side effects caused by
chemotherapy, including liver and kidney damage, bone marrow
suppression, neurotoxicity, gastrointestinal reactions, etc. For
example, doxorubicin can cause permanent myocardial damage,
and cisplatin can cause high-frequency hearing loss. wait (6-8).
Although radiotherapy can be used for patients whose tumors
cannot be surgically removed or remain at the resection margin,
and for OS patients whose tumors do not respond well to
chemotherapy, the actual sensitivity of OS to radiotherapy is not
high (9). While these treatments improve survival rates, they also
present challenges such as chemotherapy resistance and high
recurrence rates, indicating the need for better treatment options
and improved patient quality of life (4, 10). Immunotherapy is a hot
research direction at present and is considered to be one of the
breakthroughs in the treatment of osteosarcoma (11-15). The
tumor microenvironment exists as an immune cell network with
complex functions that can promote OS growth. Tumor-derived
exosomes can drive bone cell behavior and create conditions for
tumor cell homing (16). On the other hand, exosomes also widely
promote immunosuppression, such as inhibiting the activity of T
cells and NK cells, inducing T cell apoptosis, etc., to help
osteosarcoma cells escape immune system (17-19). In addition,
many factors such as specific proteins in OS-derived exosomes,
cancer-associated fibroblasts, TGF-B, VEGF, tumor-associated
macrophages, etc. have their own roles in the osteosarcoma
microenvironment, some of which mediate the downregulation of
immune cells, some of which provide support for tumor growth,
regulate tumor progression, or affect the immune response (20, 21).
A strongly suppressive immune microenvironment is associated
with overactivation of multiple immunosuppressive pathways, so
there is an urgent need to gain a deeper understanding of the
osteosarcoma immune system and use its immune markers to
develop targeted immunotherapy (22). The abnormal regulation
of the immune system is crucial for the occurrence of OS. During
interactions between the bone microenvironment and OS cells, the
loss or dysfunction of the fatty acid synthase protein within OS cells
allows them to evade immune surveillance, particularly in
metastatic environments such as the lungs, which constitutively
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express fatty acid synthase ligands. It allows tumor cells to bypass
the host’s defense mechanisms, significantly reducing the efficacy of
immune monitoring and clearance. Additionally, the macrophage
migration inhibitory factor in OS activates the RAS/MAPK
pathway, further promoting tumor cell escape and invasion (23).
The formation of an immunosuppressive microenvironment and
chronic inflammation provides a conducive environment for tumor
growth. Metastatic cells with osteolytic potential in bone metastases
can induce OS cells to produce factors such as parathyroid
hormone-related protein, transforming growth factor-beta, or
interleukin 11, which interact with the RANKL-RANK pathway
between osteoblasts and osteoclasts, stimulating osteoclast
activation. Simultaneously, the expression of RANK enhances the
invasive ability of tumor cells. In environments with impaired
immune function, this increases the risk of pulmonary metastasis,
contributing to bone tumor progression. These abnormal immune
responses not only exacerbate OS progression but also complicate
immunotherapy, highlighting the immune system as a potential
target for treatment. Therefore, understanding these abnormal
regulatory mechanisms is crucial for developing more effective OS
treatment strategies (24). (Figure 1) The cGAS-STING pathway is
closely related to the regulation of the tumor’s immune
microenvironment. In recent years, the ¢cGAS-STING pathway
has received increasing attention in the immunotherapy research
of osteosarcoma (25, 26). Therefore, we chose cGAS-STING
pathway for discussion in this review, although Jordan et al.
recently published a review with a similar theme (27). The main
focus of these two reviews is different. Our main focus is on the
cGAS-STING pathway and its upstream and downstream
molecular mechanisms. The paper published by Jordan et al.
mainly focuses on the application of nanotechnology in targeting
the cGAS-STING pathway.

Traditional treatment methods for osteosarcoma include
surgical resection, chemotherapy, and radiotherapy as adjuvant
therapies. However, due to limitations such as restricted surgical
anatomical locations, high tumor recurrence rates, poor aesthetic
outcomes, significant systemic side effects of chemotherapy, and
low sensitivity to radiotherapy, the advantages of immunotherapy
have come to the fore. Studies indicate that immunological agents
such as human interferon o, interferon o-2b and liposomal
muramyl tripeptide phosphatidylethanolamine can effectively
inhibit or reduce osteosarcoma cells.

The cGAS-STING pathway is a well-studied immune pathway.
It activates innate immunological responders(IRs), forming a
broadly applicable surveillance mechanism to defend against
tissue damage and pathogen invasion (28). The pathway
recognizes cytoplasmic double-stranded DNA (dsDNA) and
promotes type I interferon (IFN) inflammatory signaling
responses, while also influencing processes such as autophagy, cell
survival, and senescence. It interacts with other innate immune
pathways, regulating responses to infections, inflammatory diseases,
and cancer, contributing to the impacts of immunotherapy (29).
The cGAS-STING pathway is abnormally activated in various
tumors, including hepatocellular carcinoma, acute myeloid
leukemia, and OS, and plays a role in their occurrence and
development (30-32). In OS, the abnormal activation of this
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pathway is closely associated with the malignant biological
behaviors of tumor cells (25). This paper aimed to explore the
mechanisms of the ¢cGAS-STING pathway in OS and identify
therapeutic strategies based on this pathway. We outlined the
structure and function of the cGAS-STING pathway and its role
in innate IRs, and analyzed the abnormal activation of this pathway
in OS and its relationship with tumor cell proliferation, invasion,
and metastasis. We also discussed therapeutic strategies (including
small molecule inhibitors alongside immunotherapy), and the
challenges and prospects of targeting this pathway for OS
treatment, providing a new perspective on OS treatment.

2 Structure and function of cGAS and
STING proteins

c¢GAS is composed of a double-globular domain with two
spherical structures connected by a groove. Its C-terminal portion
contains a nucleotide transferase domain, which includes a catalytic
domain and two DNA binding sites (A and B). DNA binding site A
induces conformational changes in the protein, repositioning the
catalytic pocket to allow catalysis with ATP and GTP substrates.
The unique structure of cGAS enables it to effectively recognize and
bind to DNA, cGAMP synthesis, and activate the IRs. STING
(stimulator of interferon genes) is a protein composed of four
transmembrane helices, a cytoplasmic ligand-binding domain
(LBD), and a C-terminal tail. The LBD undergoes conformational
changes upon binding to cGAMP, promoting STING
oligomerization. cGAS and STING are key proteins in the cGAS-
STING pathway, playing important roles in DNA recognition and
activation of downstream signaling. ¢cGAS catalyzes cGAMP
synthesis, which acts as a second messenger to activate STING.
STING then recruits and activates TBKI, initiating downstream
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signaling that leads to an IR. When dsDNA, whether exogenous or
endogenous, is detected in the cytoplasm due to DNA damage or
pathogen infection, cGAS catalyzes the synthesis of cGAMP.
STING, located on the endoplasmic reticulum, recognizes and
binds cGAMP, triggering conformational changes, including a
180° rotation and inward folding of the LBD, promoting STING
oligomerization. Activated STING is transported from the
endoplasmic reticulum to the Golgi apparatus via specific
signaling pathways, where it recruits and activates numerous
TBK1 molecules. Upon activation, TBK1 phosphorylates
interferon regulatory factor 3 (IRF3) and nuclear factor kappa B
transcription factors, promoting their translocation into the nucleus
and the expression of IFN-0/ff and tumor necrosis factor-alpha
genes. These genes enhance innate IRs and initiate adaptive IRs
(33-35). In addition to this classical pathway, STING can also
mediate autonomous defense functions through gene transcription,
with autophagy playing a key role. The activation of STING not
only triggers antiviral IRs but also induces cellular “senescence” and
eventually leads to cell death. Autophagy, senescence, and apoptosis
are crucial mechanisms by which the ¢cGAS-STING pathway
combats pathological changes and maintains cellular homeostasis
(33, 35, 36).

3 Relationship of cGAS-STING
pathway with different diseases

The cGAS-STING pathway plays a crucial role in tumor
immunology. For example, tumor cells can produce DNA
damage, activate the cGAS-STING pathway, and trigger
inflammatory responses and cell senescence, thereby inhibiting
tumor growth. Additionally, tumor cells can evade immune
destruction by degrading c¢GAS, STING, or TBKI proteins.
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Radiation therapy, a traditional cancer treatment, plays an
important role in clinical applications. It directly kills tumor cells
and also activates the cGAS-STING pathway, regulating
downstream signals to improve the effectiveness of cancer
treatment. Studies have found that expression levels of genes
related to the cGAS-STING pathway are low in non-small cell
lung cancer cells. Researchers used the cGAS-STING pathway
activator diABZI and the small molecule human polynucleotide
kinase/phosphatase inhibitor A12B4C3 (which promotes DNA
damage) to enhance the activation of this pathway. The results
showed that both diABZI and DNA damage increased the
sensitivity of NSCLC cells to radiotherapy by promoting
apoptosis, offering a new direction for combining radiotherapy
with immunotherapy (37). In liver cancer research, a
nanoplatform was used to activate the cGAS-STING pathway and
enhance the effectiveness of immunotherapy. This platform uses
manganese ions (Mn>") and PB-paclitaxel to activate the cGAS-
STING pathway, upregulate programmed death-ligand 1 (PD-L1),
enhance T cell responses, and inhibit tumor growth and metastasis
(38). Another study has demonstrated the potential of the cGAS-
STING pathway in treating gastric cancer, where metformin can
promote the release of downstream inflammatory factors by
activating this pathway, enhancing antitumor IRs. The
mechanism lies in the fact that metformin inhibits protein kinase
B (AKT) phosphorylation, downregulating the expression of the
transcription factor sex-determining region Y-box 2 (SOX2). SOX2
downregulation inhibits the AKT signaling pathway, thereby
activating the cGAS-STING pathway (39). While cell senescence
has a double-edged role in cancer, it can inhibit tumor progression
by halting the cell cycle and enhancing immune surveillance (40). In
breast cancer treatment, nanomaterials have been used to activate
the cGAS-STING pathway, producing hydrogen sulfide and carbon
monoxide gases. These gases induce mitochondrial dysfunction and
tumor cell apoptosis while stimulating inflammation and dendritic
cell maturation, ultimately promoting antitumor IRs and inhibiting
the growth and metastasis of breast cancer (41). Many studies also
suggest that various factors in multiple cancers activate the cGAS-
STING pathway to enhance antitumor IRs (42).

Immune checkpoints are molecules that interact between
immune cells, and under normal conditions, they regulate IRs
and prevent excessive damage to the body’s own tissues (43).
However, in the tumor microenvironment (TME), tumor cells
exploit immune checkpoints to suppress immune cell activity,
evading immune surveillance and promoting tumor growth and
metastasis. Immune checkpoint blockade (ICB) therapy targets
these immune checkpoints, relieving their inhibitory effects,
reactivating immune cells, and enhancing antitumor IRs (44-46).
The cGAS-STING pathway, a cytoplasmic DNA sensor, can
recognize dsDNA in the cytoplasm and activate innate IRs.
Studies have found that the cGAS-STING pathway works
synergistically with ICB therapy to enhance antitumor IRs. This is
because the ataxia telangiectasia mutated protein, a key factor in
DNA damage repair, is absent, leading to increased cytoplasmic
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DNA levels, which activate the cGAS-STING pathway, enhancing
the efficacy of ICB therapy (47).

The ¢cGAS-STING pathway plays a key role in infectious
diseases. During infection, pathogen DNA is released into the
cytoplasm, where ¢cGAS recognizes and binds to this DNA,
catalyzing the synthesis of cGAMP and activating STING
protein. STING then initiates downstream signaling, activating
TBK1 and IRF3, which induce the production of type I IFNs and
inflammatory factors. These factors activate immune cells and
trigger inflammatory and adaptive IRs to eliminate pathogens.
The cGAS-STING pathway plays an important role in various
infectious diseases. For example, during Kaposi’s sarcoma-
associated herpesvirus infection, the pathway is activated,
inhibiting viral replication and enhancing IRs. The viral IFN
regulatory factor 1 protein encoded by KSHV can inhibit
STING-mediated DNA sensing, affecting viral replication and
host IRs (48). Another study found that human glial cells express
high levels of cGAS and downstream STING proteins in both
resting and activated states, improving their ability to recognize
viral DNA, activate IRF3, and express IFN-f mRNA, enhancing
antiviral capacity (49). In dengue virus infections, which involve
an RNA virus, the cGAS-STING pathway is activated, triggering
antiviral IRs. Dengue virus can activate this pathway through
mechanisms such as IL-1B-induced mitochondrial DNA
(mtDNA) release and direct activation of cGAS. However,
dengue virus infection can also inhibit the ¢cGAS-STING
pathway, such as through the degradation of cGAS or
inhibition of STING signal transduction, demonstrating the
dual nature of the pathway in viral infections (50-52). In
bacterial infections, the cGAS-STING pathway plays an
important role in host defense. It recognizes bacterial DNA
and regulates innate IRs through a cascade of reactions. In a
respiratory tract infection model, STING knockout mice
exhibited higher bacterial loads, indicating the cGAS-STING
pathway’s importance in controlling Brucella infection (53).
Similarly, following Mycobacterium bovis infection, the cGAS-
STING pathway promotes the maturation and activation of DCs
and enhances CD4+ T cell proliferation, bolstering adaptive IRs
to clear the infection (54). In fungal infections, the cGAS-STING
pathway is a key pattern recognition receptor in host defense,
particularly in corneal epithelial cells. Fungal DNA or RNA
hybrids are recognized by cGAS in the cytoplasm, triggering
the pathway, promoting IFNs and inflammatory cytokines, and
initiating IRs to clear fungal pathogens. Additionally, the
pathway induces autophagic flux by enhancing the formation
of microtubule-associated protein 1 light chain 3-, participating
in clearing intracellular DNA and viruses, which helps the host
fight fungal infections (55). Therefore, the cGAS-STING
pathway plays an essential role in various infectious diseases,
acting as the body’s first line of defense against pathogen
invasion. By activating this pathway, the body effectively
responds to diverse infectious challenges and achieves self-
protection (36, 56-58) (Table 1).
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TABLE 1 The role of cGAS-STING signaling pathway in different types of diseases.

Disease

Type Disease Effects of cGAS-STING signaling pathway Reference
diABZI and promotion of DNA damage activate the cGAS-
Lung cancer STING pathway and increase the sensitivity of NSCLC cells (37)
to radiotherapy.
. It enhances T cell responses and inhibits tumor growth and
Liver cancer K K R (38)
Cance metastasis by upregulating programmed death-ligand 1.
. It promotes the release of downstream inflammatory factors and
Gastric cancer K K (39)
enhance anti-tumor immune response
It promotes anti-tumor immune response and inhibit the growth
Breast cancer . (41)
and metastasis of breast cancer.
Kaposi sarcoma-associated herpes virus It inhibits viral replication and enhance immune response (48)
. Activation of the cGAS-STING pathway can induce cell damage
Dengue virus ) (50)
and apoptosis
Brucella STING knockout mous'e model of 'respiratory infection exhibits (53)
. . higher bacterial load
infection
. . It enhances adaptive immune responses to clear and
Mycobacterium bovis i X (54)
fight infection
It promotes the expression of IFNs and other inflammatory
Aspergillus fumigatus cytokines, triggering host immune responses and clearing (55)
fungal pathogens.

4 Role of cGAS-STING pathway in OS

The TME is a highly dynamic and evolving system, making
accurate prediction challenging. The TME functions like nutrient-
rich soil, providing nourishment for tumor cell proliferation while
restricting anti-tumor immunity (59). The cGAS-STING pathway
supports tumor survival and proliferation by promoting the
formation of an immunosuppressive TME (60). Zhang et al. (61)
constructed a Cox proportional hazards regression model and
found that high expression of C-C motif chemokine ligand 5 was
associated with a favorable prognosis in children with OS. The
mechanism involves high expression of C-C motif chemokine
ligand 5 significantly increasing the infiltration levels of
macrophages (M0, M1), CD8+ T cells, and regulatory T cells in
tumor tissues. Henrich et al. (62) developed a model for Ewing’s
sarcoma and discovered that ubiquitin-specific protease 6
significantly enhanced the infiltration of macrophages (F4/80+),
DCs (CD11c+), and myeloid cells (CD11b+) in primary Ewing’s
sarcoma tumors through the synergistic effect of inducing
chemokines such as C-X-C motif chemokine ligand 10, resulting
in a significant improvement in overall survival rates. C-C motif
chemokine ligand 5 and 10 can promote the infiltration of DCs and
immune effector cells in OS. Radiotherapy can elevate the
expression levels of C-C motif chemokine ligand 5 and 10 (63);
however, this effect is not universally present in all cells. In U20S
OS cells with low STING expression, this effect is not observed. The
use of STING agonists can alter this phenomenon (63). STING
signaling is essential for radiation-induced expression of C-C motif
chemokine ligand 5 and 10 in OS cells. Therefore, enhancing
STING signaling may be beneficial for OS treatment. Sodium-
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glucose cotransporter 2 is a mediator of epithelial glucose
transport and is highly expressed in many tumor types. Inhibition
of Sodium-glucose cotransporter 2 can exert anticancer effects in
various tumors, including HCC, pancreatic cancer, prostate cancer,
colorectal cancer, lung cancer, and breast cancer (64-67). Wei et al.
found that Sodium-glucose cotransporter 2 inhibitors can
upregulate the cGAS-STING pathway and induce immune cell
infiltration. Furthermore, the combination of Sodium-glucose
cotransporter 2 inhibitors and the STING agonist 2°3’-cGAMP
exhibited synergistic antitumor effects in OS (32). However,
whether STING has an antitumor effect in tumor treatment
remains controversial (68). Inducing apoptosis is a commonly
employed antitumor strategy. The IFN gamma inducible protein
16/p53 pathway is a mechanism of cell apoptosis. Studies have
shown that STING can promote the degradation of IFN gamma
inducible protein 16. Additionally, overexpression of STING
inhibits p53 serine 392 phosphorylation, p53 transcriptional
activity, p53 target gene expression, and p53-dependent
mitochondrial depolarization and apoptosis (69). Therefore,
further research is needed to identify the therapeutic targets of
the cGAS-STING pathway in OS.

The biological characteristics of OS have driven a surge of
interest in developing new antitumor drugs based on tissue
engineering. One promising approach involves targeting reactive
oxygen species (ROS), which are by-products of cellular oxygen
metabolism, such as superoxide anion, hydrogen peroxide,
hydroxyl radical, and nitric oxide. These ROS are mainly
generated by complexes I and III of the mitochondrial inner
membrane respiratory chain and by nicotinamide adenine

dinucleotide phosphate oxidase on the cell membrane. While
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ROS play a crucial role in cellular signaling and homeostasis, they
are also associated with the occurrence and progression of cancer.
Under normal conditions, cells maintain a balance in ROS levels via
the antioxidant defense system. However, when this balance is
disrupted, excessive ROS can lead to DNA damage, genomic
instability, and carcinogenic mutations, thus promoting cancer
progression (70, 71). In tumor cells, this imbalance is often
caused by mitochondrial dysfunction, which leads to an impaired
electron transport chain, reduced mitochondrial membrane
potential, increased nicotinamide adenine dinucleotide phosphate
oxidase expression, and iron metabolism disorders. These factors,
coupled with the excessive proliferation of tumor cells and reduced
antioxidant enzyme activity, contribute to elevated intracellular
ROS levels (72). Based on this mechanism, Xiang et al. developed
composite nanoparticles composed of ROS-sensitive amphiphilic
polymers designed to activate the cGAS-STING pathway. These
nanoparticles dissociate within the cell in response to ROS,
releasing Pt(IV)-C12 and NLG919. The former induces DNA
damage, which activates the cGAS-STING pathway and promotes
the infiltration of CD8+ T cells into the TME, while the latter
enhances the activity of these CD8+ T cells, boosting the IR against
cancer cells. For patients with inoperable or metastatic OS,
radiotherapy is a critical treatment method. However, in some
TMEs with strong immunosuppression, low-dose radiotherapy can
lead to radio resistance in tumor cells (73, 74), whereas high-dose
radiotherapy may cause damage to immune cells and healthy
tissues. Experimental studies have shown that a Ta-Zr co-doped
metal-organic framework has significant synergistic effects in
enhancing radiotherapy sensitization, photodynamic therapy, and
immunotherapy in OS cells. The radiotherapy-radiotherapy
dynamic therapy effect mediated by Ta-Zr co-doped metal-
organic framework induces DNA damage, which activates the
cGAS-STING pathway, stimulating antitumor IRs. Notably, PD-
L1 expression stimulated by the cGAS-STING pathway in the Ta-Zr
co-doped metal-organic framework+X-ray group was twice that of
the control and unirradiated Ta-Zr co-doped metal-organic
framework groups, promoting a stronger antitumor IR
in radiotherapy.

5 Therapeutic strategies targeting the
cGAS-STING pathway

Given the significant potential of cGAS-STING pathway in
tumor treatment, many researchers are actively investigating
therapies that target this pathway. Here, we summarized recent
findings related to drug treatments aimed at modulating cGAS-
STING activity across various cancers.

Several commonly used chemotherapeutic drugs have been
shown to activate the cGAS-STING pathway, contributing to
their antitumor effects. For instance, Hu et al. (75) demonstrated
in vitro that paclitaxel could activate cGAS signaling in certain
triple-negative breast cancer cell lines, inducing the polarization of
macrophages toward the M1 phenotype and recruiting lymphocytes
to the TME, and improving patient survival when combined with
other treatments. However, this lymphocyte infiltration does not
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occur in all triple-negative breast cancer cases, and corresponding
in vivo studies are lacking. Future research could address this gap
and explore the variability in response to paclitaxel. In another
study, Li et al. (76) found that arsenic trioxide-induced
mitochondrial damage could activate the cGAS-STING pathway
in hepatocellular carcinoma cells, enhancing the expression of IFNs.
At the same time, STING activation was also associated with
increased expression of the immune checkpoint protein PD-LI in
tumor cells. arsenic trioxide treatment improved antitumor
immunity and immunogenicity in arsenic trioxide-sensitive
hepatocellular carcinoma cells, although arsenic trioxide-
insensitive hepatocellular carcinoma cells showed limited
response. Future research could focus on improving arsenic
trioxide sensitivity in these resistant cells. Notably, when arsenic
trioxide-pretreated tumor cells were injected into mice, the
treatment also showed both preventive and therapeutic effects,
significantly reducing tumor growth, providing a new avenue for
the development of hepatocellular carcinoma vaccines. In addition
to chemotherapeutic agents, some drugs traditionally used for non-
cancer treatments have also been found to activate the cGAS-
STING pathway in tumors. Metformin, a classic drug for type 2
diabetes, has been found in recent years to have antitumor effects in
several cancers, including lung, pancreatic, breast, prostate, and
colon cancer (77-79). Most of these antitumor mechanisms were
found to be independent of cGAS-STING pathway. However, Shen
et al. (39) found that metformin could activate the cGAS-STING
pathway via the SOX2/AKT axis in gastric cancer cells, promoting
the release of inflammatory factors and enhancing the effectiveness
of immunotherapy. This raises the question of whether metformin
may exert similar cGAS-STING-mediated effects in the treatment of
other tumors, warranting further investigation.

Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme
A reductase, is widely used to treat hyperlipidemia but also shows
promise in cancer treatment. Huang et al. (80) demonstrated that
lovastatin activated the cGAS-STING pathway by increasing the
abundance of mtDNA in the cytoplasm through mitochondrial
damage. This activation resulted in growth inhibition and apoptosis
across various cancer cell types. In HCT116 xenograft tumor models,
lovastatin effectively inhibited tumor growth via the cGAS-STING
pathway. Knocking out cGAS or STING diminished its antitumor
effects. Nonsteroidal anti-inflammatory drugs also play a role in tumor
treatment. Kosaka et al. (81) found that celecoxib, a selective
cyclooxygenase-2 inhibitor, enhanced the antitumor effect of the
STING agonist cGAMP in a T cell-dependent manner, inducing
systemic tumor-specific IRs in mouse models. Additionally, Zhu
et al. (82) showed that aspirin, a targeted drug for inhibiting cGAS-
STING signaling, significantly improved asymptomatic orchitis
induced by airborne particulate matter. Tumor immunomodulators
have been integrated into cGAS-STING targeted therapy. Anlotinib,
effective against various tumors such as hepatocellular carcinoma, renal
cell carcinoma, and non-small cell lung cancers, glioblastoma,
refractory metastatic cervical cancer, and refractory epithelial ovarian
cancer, has been shown to enhance tumor control and improve long-
term survival (83-88). Yuan et al. (89) established a gastric cancer
mouse model and found that anlotinib treatment reduced cell
proliferation and invasion by activating the ¢cGAS-STING/IFN-f
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pathway. Nanotechnology-based targeted therapies focusing on cGAS-
STING are gaining attention. Mn*" can enhance antitumor IRs by
activating the ¢cGAS-STING pathway (90, 91). Excessive zinc ions
(Zn*"), which can induce mutant p53 prevalent in many cancers, may
relieve inhibition of the cGAS-STING pathway and lead to tumor
immunosuppression (92, 93). To harness the synergistic effects of Mn**
and Zn**, Sun et al. (94) constructed MnO,-modified zeolitic
imidazolate framework 8 nanoparticles, which not only deliver
individual ions but also provide dsDNA for the activation of cGAS-
STING pathway, enhancing cGAS-STING-mediated antitumor
immunotherapy. Fang et al. (95) constructed a manganese-based
nanosystem that activates the cGAS-STING pathway to promote the
maturation of DCs and enhance the infiltration of cytotoxic T
lymphocytes, thereby increasing the sensitivity to ICB
immunotherapy. Additionally, Li et al. (96) created an iron-based
metal-organic framework nanoparticle reactor loaded with
dihydroartemisinin that induces DNA damage to activate the cGAS-
STING pathway, facilitating the binding of STING and IRF3 and
promoting anticancer immunotherapy. Scutellarein, a natural

10.3389/fimmu.2025.1539396

compound isolated from schisandra lignans, has also been shown to
activate the cGAS-STING pathway, inhibiting hepatitis B virus
replication and chronic hepatitis B (97). Yang et al. (98) further
found that SC reduced tumor growth by enhancing type I IEN
responses in a cGAS-STING pathway-dependent manner. Moreover,
when combined with platinum chemotherapy, Scutellarein enhanced
the antitumor effects of cisplatin while mitigating side effects. These
findings highlight the potential of cGAS-STING-targeted therapies and
nanotechnology in cancer treatment Figure 2, Table 2.

The DNA binding site of cGAS A induces conformational
changes in the protein, repositioning the catalytic pocket to allow
catalysis with ATP and GTP substrates. The LBD undergoes
conformational changes upon binding to cGAMP, promoting
STING oligomerization. cGAS catalyzes cGAMP synthesis, which
acts as a second messenger to activate STING. STING then recruits
and activates TBK1, initiating downstream signaling that leads to an
IR. Then TBKI phosphorylates IRF3 and nuclear factor kappa B
transcription factors, promoting their translocation into the nucleus
and the expression of IFN-o/p and tumor necrosis factor-alpha
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FIGURE 2
Effect of cGAS-STING signaling pathway in OS.
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TABLE 2 Tumor treatment of drugs targeting the cGAS-STING pathway.

10.3389/fimmu.2025.1539396

In
cell lines Vivo Effects References
Studies
5 Metformin exerts an anti-tumor effect in gastric cancer immunotherapy
Metformin mmol/ BGC823, AGS, SGC7901 none by inhibiting SOX2/AKT activation of the cGAS/STING (39)
L signaling pathway.
Anlotinib SuM AGSHS746T Subcutaneous AnloFinib may inhibit the‘ prs)liferation, migration, and immune evasion of (89)
tumor model | gastric cancer cells by activating the cGAS-STING/IFN-f pathway.
Schisandrin 30 MC38.4T1 Subcutaneous | Schisandrin C reduces tumor growth by enhancing type I IFN response in ©98)
C mg/kg ’ tumor model | a cGAS-STING-dependent manner.
Lovastatin triggers accumulation of mitochondrial DNA in the cytoplasm
. Subcutaneous S . . o
Lovastatin 10 uM HCT116,HEK293T tumor model through oxidative mitochondrial DNA damage, thus activating the cGAS- (80)
uj
STING pathway in CRC.
Al ic trioxide activates the cGAS/STING/IFN de th h
Arsenic 3 Hepal-6,Huh7, MHCC97H, Subcutaneous | | rsem‘c rioxt ? activa es‘ ec / ! cascade rou‘g
L. induction of mitochondrial damage and mtDNA release, exerting an (76)
trioxide mg/kg Hep G2, Hep 3B,H22 tumor model i X
immunostimulatory effect.
MDA-MB-231,BT-549, Paclitaxel induces macrophage polarization to M1 phenotype in a cGAS-
Paclitaxel L0nM MDA-MB-468, MDA-MB- none dependent manner, and may h.elp V'Vlth ly'mphocyté ljecrultment in some 75)
436,MDA-MB-453, TNBC samples and better survival in patients receiving
Hs578T, HCC1806 combination therapy.
4T1-Luc RRID, CVCL_J239,
Celecoxib 200 uCEO771 RRID: J Orthotopic Combination treatment with cGAMP and celecoxib significantly inhibits @1)
ppm CVCL_GR23, C'.1“26 tumor model | tumor growth through T cell-mediated and STING signaling responses.

genes. Activation of the cGAS-STING signaling pathway leads to
osteosarcoma. inhibitory effect. SGLT2 inhibitors, CCL5, CXCL10,
RT-RDT, ROS and other factors affect the activation of the cGAS-
STING signaling pathway.

6 Clinical research

The cGAS-STING signaling pathway is a popular molecular
mechanism in recent years. There are few clinical studies related to
the cGAS-STING signaling pathway. The cGAS-STING signaling
pathway is of great significance in the treatment of tumors. Eribulin
is a regulator of the cGAS-STING signaling pathway that can
improve the tumor microenvironment. Candace et al. found that
the combination of Eribulin and pembrolizumab in metastatic soft
tissue sarcoma can achieve better therapeutic effects in liposarcomas
and angiosarcomas, and serum IFNo and IL4 levels are associated
with clinical benefits (99). Manganese is necessary for cGAS-STING
to defend against cytoplasmic dsDNA (100). Lv et al. found in a
phase I clinical trial that manganese and anti-PD-1 antibodies were
used in combination in patients with a variety of metastatic solid
tumors. The results showed that the combined application showed
promising efficacy, exhibiting type I IFN induction, manageable
safety and revived responses to immunotherapy (90). Combining
activators of the cGAS-STING signaling pathway has advantages
for tumor treatment. In addition to research on tumors, the cGAS-
STING signaling pathway has also been clinically studied in diseases
such as anemia and infection (101, 102). There are no reports on
clinical studies of the cGAS-STING signaling pathway
in osteosarcoma.
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7 Summary and outlook

The cGAS-STING pathway is emerging as a crucial component
in tumor immunology, particularly in OS. Research has shown that
this pathway is abnormally activated in OS, correlating with the
malignant biological behaviors of tumor cells. Targeting the cGAS-
STING pathway presents a promising new approach for the
treatment of OS. Recent studies indicate that various small
molecule drugs and nanomaterials aimed at the cGAS-STING
pathway may serve as potential therapies for OS. For example,
SGLT2 inhibitors can upregulate the cGAS-STING pathway and
induce immune cell infiltration, while Mn®" can activate the cGAS-
STING pathway in vivo, promoting antitumor IRs. These findings
suggest new ideas for developing OS treatment based on the cGAS-
STING pathway. However, research on the role of the cGAS-STING
pathway in OS treatment remains limited, and the underlying
mechanisms are not fully understood. Therefore, further
investigation into the mechanisms of cGAS-STING in OS and the
exploration of targeted treatment strategies are of great significance
for the development of more effective treatment options for OS.
While effective therapies for OS are still lacking, the significance of
the cGAS-STING pathway in tumor diseases might provide a new
perspective for its treatment. In future, targeted therapies based on
the cGAS-STING pathway may offer new hope for OS patients.
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Role of MLIP in burn-induced
sepsis and insights into sepsis-
associated cancer progression
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Introduction: Burn-induced sepsis is a critical clinical challenge marked by
systemic inflammation, immune dysregulation, and high mortality. Macrophage-
driven inflammatory pathways are central to sepsis pathogenesis, while immune cell
metabolic reprogramming plays a key role in both sepsis and cancer progression.

Methods: Bioinformatics analyses using GEO, TCGA, and GTEx datasets
identified MLIP-modulated genes linked to immune responses and prognosis.
In vitro, LPS-stimulated HUVEC cells were used to study MLIP's effects on
infammation and macrophage function through cell viability, ROS levels,
cytokine expression, qRT-PCR, and immunofluorescence assays.

Results: MLIP-modulated genes were associated with immune-related
metabolic pathways in both sepsis and cancer. Epigenetic analysis showed
MLIP expression is regulated by promoter methylation and chromatin
accessibility. Prognostic analyses revealed MLIP’s impact on survival outcomes
across cancer types. In vitro, MLIP reduced inflammation, oxidative stress, and
macrophage hyperactivation.

Conclusions: MLIP regulates immune-metabolic dynamics in burn-induced
sepsis, influencing macrophage activity and oxidative stress. Its role in
metabolic reprogramming suggests MLIP as a potential therapeutic target
linking immune modulation and cancer progression. Further research on
MLIP’s role in immune evasion and tumor metabolism may inform novel
therapeutic strategies.
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Introduction

Currently, burns, sepsis, and cancer represent significant global
public health challenges, all of which involve complex immune
responses characterized by inflammation, cellular injury, and
subsequent repair mechanisms. A comprehensive understanding
of the unique pathophysiological processes underlying these
conditions is crucial for advancing therapeutic strategies.
Furthermore, identifying pathways that can alleviate disease
progression, rather than allowing it to worsen, holds substantial
therapeutic value. Elucidating the mechanisms behind these
interconnected yet distinct health issues, by synthesizing global
and regional data, enables a systematic analysis of key aspects such
as disease epidemiology, risk factors, and disease burden. This
knowledge provides critical evidence for the development of
effective control strategies and facilitates the formulation of
targeted and impactful interventions (1-3).

Sepsis is notably characterized by its rapid onset and high
mortality rate, primarily attributed to the excessive release of
cytokine that initiates a cascade of immune imbalances leading
to immunosuppression and, ultimately, multiorgan failure
(4, 5). A considerable body of research has focused on the
pathophysiological mechanisms through which sepsis induces
organ dysfunction. With the support of immunological
approaches, basic research has increasingly concentrated on the
role of macrophages in various organs during this process, while
also showing significant interest in the regulatory mechanisms of
macrophages in the context of infection. Although macrophages
play a central role, other immune cells, such as neutrophils and T
cells, are equally critical in the progression of both sepsis and
cancer. A thorough understanding of the immune responses of
various immune cell types is vital for developing comprehensive
therapeutic strategies. Understanding the role of cytokines in
immune responses provides valuable insights for the development
of effective treatment strategies for a range of diseases. Through
research into cytokine signaling and immune regulation
mechanisms, scientists have identified numerous potential
therapeutic targets (6). Burn injuries induce widespread
inflammatory responses and immune dysregulation, often
resulting in immunosuppression and increased susceptibility to
sepsis. Severe burns can lead to systemic inflammatory response
syndrome (SIRS), a pathway similar to sepsis, frequently
culminating in organ failure and high mortality rates (7).
Investigating the immune and inflammatory alterations triggered
by burns is critical for devising preventive strategies against burn-
induced sepsis (8, 9).In this context, a significant number of
macrophages may become hyperactivated, releasing immune
mediators in a rapid, burst-like manner. This amplified immune
response can shift the individual’s focus from managing the initial
inflammatory phase to addressing secondary infections, which are
frequently observed following severe burns and critically influence
the prognosis of burn-induced sepsis. When designing therapeutic
interventions, it is essential to consider the dynamic temporal
patterns of macrophage activation, particularly during the acute
and chronic phases of sepsis and burns, as well as their interplay
with metabolic shifts. These metabolic changes can further
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exacerbate immune dysfunction, influencing the effectiveness of
immune responses and the overall recovery process.

Additionally, the immunosuppressive state induced by burn
injuries can impair the body’s capacity to detect and combat
emerging cancers, potentially heightening the risk for certain
malignancies (10, 11). Cellular regeneration following burn
injuries may foster conditions conducive to abnormal cell growth
and cancerous lesions. Such an environment could contribute to
carcinogenesis (12, 13). In the pursuit of understanding the
underlying mechanisms, recent research advancements in the
field of molecular biology have provided valuable insights.
Transcriptomics has emerged as a crucial tool, as it plays a
significant role in revealing the immune microenvironment and
holds great importance for the diagnosis and prognosis of various
diseases (14, 15). Through transcriptome analysis and single - cell
techniques, researchers are now able to identify the functional
characteristics and molecular markers of different cancer -
associated fibroblast (CAF) sub - populations, thereby providing a
solid theoretical foundation for the development of precise
treatment strategies (16). Moreover, the immune escape
mechanisms prevalent in the tumor microenvironment and their
subsequent promotion of tumor progression have been identified as
potential therapeutic targets for novel targeted treatment approaches
(17). Single - cell transcriptomics analysis has demonstrated that
diverse signaling pathways and immune regulatory factors play
critical roles in antigen - specific cell functional exhaustion and
immune escape, offering essential guidance for optimizing treatment
regimens (18, 19). By leveraging single - cell RNA sequencing and
bioinformatics analysis, researchers have been successful in
identifying important molecules and pathways associated with the
tumor microenvironment, thus charting new directions for precision
medicine (20). Additionally, single - cell transcriptomics has been
applied to analyze the repair process, shedding light on the
underlying mechanisms (21). Concurrently, bioinformatics
analysis and experimental validation of potential biomarkers have
furnished crucial indicators for disease diagnosis and prognosis
assessment (22-24). The advent of novel technologies and
advanced molecular research methods has had a profound impact
on disease research and treatment (25). In the realm of cancer
treatment, for instance, antibody - drug conjugates and
photodynamic therapy have witnessed continuous development.
Through meticulous mechanism research, rigorous clinical
validation, and the integration of bioinformatics analysis of clinical
data, these advancements have propelled cancer treatment to new
heights (26). Modern bioinformatics and big data technologies are
increasingly indispensable in disease diagnosis, prognosis evaluation,
and treatment. The application of these cutting - edge technologies
and methodologies has not only spurred the growth of biomedical
research but has also laid a robust foundation for the realization of
precision medicine (27, 28). Gaining insight into how burns may
facilitate cancer formation could inform the development of
strategies to mitigate the risk of advanced-stage cancer (13, 29).
However, the specific mechanisms by which burn-induced immune-
metabolic changes impact cancer development across different
cancer types should be further elucidated, as this connection is not
yet fully understood.
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Sepsis, with its extensive infectious inflammation, similarly poses a
potential pathway for cancer development (30, 31). The prolonged
inflammatory state associated with sepsis may lead to genomic
instability and the accumulation of mutations, creating conditions
that disrupt local cellular environments and potentially transform cells
into malignant tumors (32, 33). Addressing chronic sepsis-related
inflammation and bolstering immune function could play a pivotal
role in modulating cancer risk and progression (31, 34). Furthermore,
various macrophage cell death pathways, such as pyroptosis,
autophagy, and ferroptosis, play a significant role in organ damage
during sepsis. These mechanisms add complexity to the immune
response in sepsis and may serve as potential therapeutic targets for
modulating immune responses and preventing multiorgan failure. The
heterogeneity of tumor microenvironments across different cancer
types may limit the generalizability of findings related to the impact of
sepsis-induced immune alterations on cancer development. Moderate
exercise has long been recognized for its positive effects on immune
function, strengthening the body’s defense mechanisms. Such exercise
may enhance management strategies for conditions like burns, sepsis,
and cancer (35, 36). Exercise supports recovery from burn injuries,
reduces the risk of sepsis, and mitigates some irreversible side effects of
cancer therapies, while also boosting the efficacy of treatments (37, 38).
Thus, this emerging perspective could foster a more integrated
approach to patient care, treating these conditions in concert rather
than in isolation (39, 40). Research has found that nicorandil can
relieve joint contracture and fibrosis by inhibiting the RhoA/ROCK
and TGF - B1/Smad signaling pathways, providing potential drug
targets for joint diseases (41).

The fields of cell therapy and biologic agent therapy are developing
rapidly. Studies on engineered extracellular vesicles and exosomes
derived from stem cells have delved deep into their mechanisms of
action and actual treatment effects in tissue repair and regeneration
(42). Moreover, exploring the relationship between exercise-induced
metabolites and macrophage activity offers a promising area for
research. Insights from this field could reveal novel methods for
immune regulation and open pathways for resolving sepsis-
associated inflammation. In summary, the combined effects of
conditions such as burns and sepsis may increase the risk of cancer,
a factor that warrants attention both medically and socially (31, 43).
Moreover, by investigating the role of macrophages and their immune
functions in sepsis, we aim to identify novel therapeutic targets to
reduce multiorgan dysfunction and improve patient survival rates.
Moving forward, it is essential to further explore the complex
interconnections between burns, sepsis, and cancer, with the goal of
optimizing treatment strategies based on these findings, ultimately
offering better therapeutic prospects for patients.

Materials and methods
Exercise-induced modulation of pan-
cancer gene expression in the context of
burns and sepsis

We applied the Wilcoxon rank sum test (also known as the
Mann-Whitney U test), a nonparametric method, to assess gene
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expression differences between cancerous and normal tissue across
multiple cancer types (44, 45). This test was chosen for its suitability
with non-normally distributed data, unlike parametric alternatives
that require normal distribution assumptions. Statistical
significance was established at oo = 0.05, indicating meaningful
divergence between the median values of two independent sample
groups. We analyzed de-identified gene expression data,
represented as transcripts per million (TPM), from The Cancer
Genome Atlas (TCGA) for tumor samples and late-stage normal
tissue samples from the Genotype-Tissue Expression (GTEx)
project. These datasets were accessed via the UCSC Xena
database. To mitigate inter-dataset variability, the gene expression
values were normalized using Z-scores, allowing for consistent
dimensional comparisons. Our primary analysis centered on the
glioblastoma multiforme (GBM) dataset, through which we
investigated gene expression disparities between cancerous and
non-cancerous tissues. This detailed comparison allowed us to
observe exercise-induced changes in gene expression, providing
insights into potential therapeutic implications for managing burns
and sepsis within the cancer context.

Promoter methylation analysis of genes
linked to exercise impacts on burns
and sepsis

This study provides an overview of methylation levels across
diverse genomic regions, including the TSS1500 region (200-1500 bp
upstream of the transcription start site), the proximal promoter
region (the first 200 bp upstream from the TSS), the first exon, and
the 5’ untranslated region (UTR) (46, 47). For each sample, median
methylation values within these regions were determined to represent
the sample’s overall methylation status. To investigate the correlation
between methylation levels and gene expression, we applied
Spearman’s rank correlation, a non-parametric test ideal for
assessing relationships between variables that may not exhibit
linear patterns. In this analysis, methylation levels served as the
independent variables, while gene expression levels were treated as
dependent variables. The strength of these associations was quantified
using the Spearman rank correlation coefficient. Additionally, we
employed the Wilcoxon rank sum test to compare methylation levels
between tumor and normal tissue samples. This non-parametric test
is appropriate for comparing two independent sample groups
without assuming a specific data distribution, thereby enabling a
reliable distinction between tumor and normal tissue methylation
patterns across different sample sources. Through this approach, we
identified significant methylation differences, enhancing our
understanding of tumor biology and the potential role of exercise
in modulating responses to burns and sepsis.

ATAC-seq analysis of exercise-related gene
modulation in burns and sepsis

In this study, we employed ChIPseeker, an R package tailored for
analyzing and visualizing both ChIP-seq and ATAC-seq data (48, 49).
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Utilizing ChIPseeker’s annotatePeak function, we conducted an in-
depth analysis of transcription start sites (TSS) within promoter
regions of genes. We set the parameter tssRegion = ¢ (-3000, 3000)
to cover the 3000 base pairs upstream and downstream of the TSS,
enabling a comprehensive examination of genomic elements,
including transcription factor binding sites and histone
modifications. To visualize coverage, we utilized ChIPseeker’s
covplot function, generating plots that illustrate the distribution of
peaks across the genome in human ATAC-seq data. These coverage
plots reveal not only the spatial distribution of peaks along
chromosomes but also offer detailed insights, including gene names,
tumor types, chromosomal positions, and genetic distances,
conveniently displayed on the left side of the graph. This visual
approach provides researchers with a holistic and precise
representation of the ATAC-seq data, enhancing our understanding
of exercise-induced gene regulation in the context of burns and sepsis.

Prognostic assessment of exercise-related
genes in burns and sepsis across
pan-cancer

To evaluate the prognostic significance of various genes, we
applied a univariate Cox regression model using the survival
package in R (50, 51). For each gene, we derived hazard ratios
along with their 95% confidence intervals by fitting the data into a
Cox proportional hazards model through the coxph() function. The
results were visualized in a heatmap to facilitate comparative
analysis and enhance interpretability.

Genomic profiling of exercise-related
genes in burns, sepsis, and pan-
cancer contexts

To investigate the impact of exercise on genes associated with
burns and sepsis across various cancer types, we analyzed copy
number alterations and DNA methylation data from The Cancer
Genome Atlas (TCGA) (52, 53). Patient samples were organized in
a structured matrix format, with rows representing samples and
columns representing genes or genomic regions. After quality
control steps to exclude low-quality samples and probes, data
were standardized to minimize technical variation. Using tools
like GISTIC and CNAnorm, we identified and categorized
genomic amplification and deletion events, quantifying their
frequencies across the genome. DNA methylation levels at gene
promoter regions were assessed on the UALCAN platform,
comparing differences between normal and cancerous tissues to
elucidate the influence of exercise on wound healing and infection
responses. For methylation pattern analysis in specific cancer-
associated genes, we utilized the ‘gene visualization’ module
available in MethSurv. To further understand genomic impacts,
Mutation Annotation Files (MAF) from TCGAbiolinks and tumor
mutation burden (TMB) calculations via maftools allowed us to
explore links between these genomic features and immunotherapy
responsiveness. Statistical analyses, including correlation and
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survival analyses, were conducted on copy number alteration,
DNA methylation, and TMB data to assess their associations with
exercise-modulated gene expression in wound healing and
infection. These analyses aimed to evaluate the potential impact
of these genomic variations on tumor progression and
patient outcomes.

Gene set enrichment analysis across pan-
cancer types

This study utilized data from The Cancer Genome Atlas
(TCGA) repository, incorporating tumor and normal tissue
samples from a specific cancer type (54, 55). The data underwent
stringent quality control processes, during which invalid samples
and probes were excluded to ensure robustness. Following quality
filtering, normalization was applied to mitigate technical variability
inherent in the dataset, including adjustments for background
noise, often present in raw files. We employed the “limma”
package within the R environment, which facilitates background
correction, normalization, and statistical analyses for identifying
genes with significant differential expression. The criteria for
selection involved both log2 fold change (log,FC) and p-values.
Log,FC quantified the relative changes in gene expression, while the
p-value assessed statistical significance. For gene set enrichment
analysis (GSEA), we used the “clusterProfiler” package in R to
annotate and visualize enriched pathways associated with
differentially expressed genes in public databases such as KEGG,
GO, and Reactome. We relied on the Enrichment Score (ES), which
ranges from 0 to 1, as a metric to determine the relevance of
pathway alterations in relation to gene expression changes. Finally,
to visualize the findings, we utilized R packages, including
“ggplot2,” to create various graphical representations. This
included simple bar charts, scatter plots, and heatmaps, allowing
a clear interpretation of the results. This methodological framework
provides a structured approach to interpreting the molecular
implications of gene expression variations in cancer.

Cell culture

Human umbilical vein endothelial cells (HUVECs) were seeded
in culture flasks and maintained in Dulbecco’s modified Eagle
medium (DMEM, low glucose), supplemented with 10% fetal
bovine serum (FBS), 1% endothelial cell growth supplement, and
1% penicillin-streptomycin solution. The cells were incubated at 37°C
in a humidified chamber with 5% CO, under normoxic conditions.
To establish an in vitro model, HUVECs were subsequently exposed
to 1 pg/mL of lipopolysaccharide (LPS). Eight hours before the
experiments, cells were cultured in serum-free DMEM. For
differentiation, THP-1 cells were treated with 100 ng/mL phorbol
12-myristate 13-acetate (PMA) for five days to induce macrophage-
like characteristics. RAW 264.7 mouse macrophages (ATCC,
Rockville, MD, USA) were cultured in DMEM containing 10%
heat-inactivated FBS, 100 U/mL penicillin, and 100 pg/mL
streptomycin, and incubated at 37°C in a 5% CO, atmosphere.
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Cell viability assay

HUVECs, seeded at a density of 5 x 10° cells per well, were
transfected with MLIP knockdown, overexpression, or control
plasmids and plated in 96-well plates to assess proliferation. After
an initial 16-hour incubation, the cells were either stimulated with
LPS or left untreated for 0, 6, and 24-hour intervals. Cell
proliferation was measured using the Cell Counting Kit-8 (CCK-
8; Beyotime, Beijing, China, Cat#C0038), in accordance with the
manufacturer’s protocol. Absorbance was recorded at 450 nm using
a BioTek microplate reader (BioTek, U.S.A.).

Real-time reverse transcription polymerase
chain reaction

Total RNA was isolated from the three experimental groups
using Trizol reagent (Invitrogen, USA). The isolated RNA was
reverse-transcribed into complementary DNA (cDNA) using the
PrimeScript II 1st Strand ¢cDNA Synthesis Kit (Takara, Shiga,
Japan). Real-time RT-PCR was performed with the SYBR Premix
Ex Taq II (Takara, Shiga, Japan) on a StepOnePlus Real-Time PCR
system (Applied Biosystems, CA, USA). The relative mRNA
expression levels were quantified using the 2A-AACt method,
with GAPDH as the internal control.

Measurement of oxidative stress and LDH
release assay

Cytotoxicity was assessed by quantifying lactate dehydrogenase
(LDH) release using a commercial assay kit, following the
manufacturer’s instructions. Briefly, 50 UL of supernatant from each
well was collected and incubated with reduced nicotinamide adenine
dinucleotide (NADH) and pyruvate for 15 minutes at 37°C. The
reaction was terminated with the addition of 0.4 mol/L NaOH. LDH
activity was measured by recording the absorbance at 440 nm on a
SpectraMax M2 spectrophotometer (Molecular Devices, Sunnyvale,
CA, USA) and expressed as U/g protein. Additionally, oxidative stress
markers, including superoxide dismutase (SOD) and glutathione
peroxidase (GSH-Px) activities, along with reactive oxygen species
(ROS) and malondialdehyde (MDA) levels, were measured using
commercially available kits, following the manufacturer’s protocols.

Flow cytometry analysis

Apoptosis and cell polarization were evaluated in both treated and
untreated cells using flow cytometry. Following treatment, cells were
harvested and stained with FITC-Annexin V and propidium iodide
(PI) for 10 minutes at room temperature, following the protocol
provided by the Annexin V-EGFP Apoptosis Detection Kit (KeyGEN
BioTECH). For polarization assessment, cells were additionally
stained with antibodies targeting M1 polarization markers when
required. Data acquisition and analysis were conducted on a
Fluorescence-Activated Cell Sorting (FACS) Calibur flow cytometer
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(Becton-Dickinson, Sparks, MD, USA) with associated software. For
the colony formation assay, cells were plated in 6-well plates and
treated with designated drugs for 6 hours according to the
experimental groups for reactive oxygen species (ROS) detection. A
fluorescent probe, DCFH-DA (10 uM; Solarbio, China), was diluted in
a serum-free medium, and cells were incubated with it for 30 minutes
at 37°C. FITC signals were subsequently detected via flow cytometry.

Immunofluorescence analysis

Cells were plated in 6-well culture plates and incubated overnight
to ensure adherence. The cells were then fixed with 3.7%
paraformaldehyde at room temperature for 15 minutes and
subsequently permeabilized in cold methanol at -20°C for 15
minutes. Blocking was performed using a buffer containing 5%
normal goat serum and 0.5% Triton X-100 in PBS for 1 hour at
room temperature. Primary antibodies were added, and cells were
incubated overnight at 4°C. After washing three times with PBS for 10
minutes each, cells were incubated at room temperature with Alexa
Fluor 488-conjugated goat anti-rabbit secondary antibody (Cat# A-
11034) and Alexa Fluor 594-conjugated goat anti-mouse secondary
antibody (Cat# A-11004; Thermo Fisher), both diluted 1:500 in
blocking buffer. Prior to imaging, nuclei were stained with DAPI
(Cat# D9542; Sigma) for 30 minutes at room temperature. Images
were obtained using a Nikon Eclipse E800 fluorescence microscope.

Statistical analysis

Data are presented as mean * standard deviation (SD).
Statistical analyses were conducted using GraphPad Prism 8
software. Group differences were assessed using either Student’s t-
test or analysis of variance (ANOVA), depending on the
experimental design. A p-value of less than 0.05 (P < 0.05) was
considered statistically significant.

Results

Gene expression and pathway
enrichment analysis

In our study, we investigated gene expression differences and
pathway enrichment between two sample groups using a variety of
analytical approaches. The UMAP plot (Figure 1A) revealed distinct
clustering between the groups, indicating significant differences in gene
expression profiles. This clustering suggests that the gene expression
profiles of the groups are sufficiently divergent to merit further
investigation into the underlying molecular mechanisms. The volcano
plot (Figure 1B) highlighted differentially expressed genes. This
visualization not only underscores the extent of differential expression
but also aids in the identification of key genes that may be crucial in the
context of burn-induced sepsis and its potential association with cancer.
GSEA identified significantly enriched pathways (Figure 1C), including
those related to immune response activation, metabolic pathways, and
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FIGURE 1

Analysis of gene expression and pathway enrichment between two sample groups. (A) The UMAP plot shows the two-dimensional distribution of the
two sample groups visualized using Uniform Manifold Approximation and Projection (UMAP). Each point represents an individual sample, color-
coded by group, and illustrates clustering patterns based on gene expression profiles. (B) The volcano plot presents differential gene expression
analysis between the two groups. The x-axis displays the log2 fold change in gene expression between groups, and the y-axis shows the -log10
adjusted p-value to indicate statistical significance. Red points highlight significantly upregulated genes, blue points represent significantly
downregulated genes, and grey points indicate genes without significant changes. (C) The GSEA plot illustrates gene set enrichment analysis,
highlighting pathways with significant enrichment. The enrichment score is plotted across the rank-ordered gene list for three specific pathways:
Immune Response in Activation, Metabolic Pathways, and Tumor Suppressor Inhibition, each represented by different colors and line types. (D) The
GSEA top pathways display the four most significantly enriched pathways individually through GSEA. Each panel includes an enrichment score curve,
indicating the positions of genes within the pathway on the ranked gene list, revealing the distribution and relevance of genes contributing to
pathway enrichment. (E) The heatmap visualizes the expression levels of genes identified in the enriched pathways. Each row represents a specific
gene, and each column corresponds to a sample. Gene expression levels are normalized to z-scores, with red indicating high expression and blue
indicating low expression, allowing a visual comparison of expression patterns across samples in each group.

tumor suppressor inhibition. The top four enriched pathways
(Figure 1D) were further explored, with the enrichment scores and
the specific positions of genes within these pathways clearly displayed. A
heatmap (Figure 1E) illustrates the Z-scores of gene expression for genes
within these pathways, providing a clear visualization of expression
patterns across all samples. This comprehensive analysis highlights
significant differences in gene expression and pathway enrichment
between the two groups, emphasizing key pathways involved in
disease mechanisms and pinpointing potential therapeutic targets.
These findings lay the groundwork for identifying therapeutic targets
and biomarker candidates, which could play a crucial role in the
development of more effective treatment strategies for burn-induced
sepsis and its potential link to cancer.

Differential gene expression and pathway
enrichment analysis

Our study aimed to identify differentially expressed genes (DEGs)
and significantly enriched pathways between tumor and normal
tissue samples. To achieve this, we utilized a combination of
statistical and computational tools, with the results presented
in various figures to provide clarity and a comprehensive
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understanding of the findings. Figure 2A presents a volcano plot
that illustrates the distribution of DEGs between tumor and normal
groups. The dashed lines represent thresholds for statistical
significance, enabling the clear identification of the most relevant
genes affected by the conditions under investigation. GSEA was
conducted to identify significantly enriched pathways, with
Figure 2B depicting the statistical significance of these pathways.
This figure reveals the biological processes most influenced by the
differential gene expression patterns observed between tumor and
normal tissues. The pathways selected based on their statistical
significance offer valuable insights into the biological processes that
are most affected by the differentially expressed genes. Further GSEA
results highlighted the top four enriched pathways, as shown in
Figure 2C. Additionally, the gene distribution within these pathways
is shown, offering a clearer understanding of how specific genes
contribute to pathway enrichment and their potential role in tumor
development. Figure 2D displays a heatmap that visualizes gene
expression levels across all samples, specifically focusing on genes
related to the identified pathways. Each row in the heatmap
corresponds to a unique gene, while each column represents an
individual sample. Collectively, these analyses provide a detailed view
of the molecular alterations occurring in tumor and normal tissues.
The identification of significantly enriched pathways and
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Analysis of differential gene expression and pathway enrichment. (A) The volcano plot illustrates the differential expression of genes between two
groups. The x-axis represents log2 fold change, while the y-axis shows -log10(p-value). Red highlights genes with significant upregulation, blue
indicates downregulated genes, and dashed lines mark the thresholds for statistical significance. (B) Gene Set Enrichment Analysis (GSEA) plots
illustrate the enrichment of three pathways with significant results. The y-axis displays the enrichment score (ES), and the x-axis shows the rank of
genes within the ordered dataset. Key pathways enriched in this analysis are emphasized based on their statistical significance. (C) Additional GSEA
plots present the top four pathways with notable enrichment scores, further emphasizing the relevance of pathways that show substantial statistical
enrichment. (D) A heatmap shows the expression levels of genes across significant pathways, normalized by Z-score across all samples. Each row
represents a gene, and each column represents a sample, with color gradation indicating expression levels—red for high expression and blue for
low. This comparison includes gene expression data from both tumor and normal tissue samples, allowing a comparative analysis of gene

expression under different conditions.

differentially expressed genes contributes to a deeper understanding
of the biological functions and pathways involved in tumorigenesis.

Expression landscape of exercise-
influenced genes in pan-cancer analysis

In this study, we analyzed the expression landscape of exercise-
influenced genes associated with burns and sepsis. The datasets
used included GSE193428, GSE61477, and a dataset of exercise-
related genes, collectively providing a comprehensive profile of gene
expression. By integrating data from these diverse sources, we
aimed to investigate the shared and unique gene expression
patterns influenced by exercise in the context of burns, sepsis,
and cancer. As shown in Figure 3A, a Venn diagram illustrates the
overlap and unique characteristics of DEGs across the datasets.
Specifically, 626 genes were unique to GSE193428, 911 were specific
to GSE61477, and 194 were exclusive to the exercise-related genes.
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Additionally, 53 genes overlapped between GSE193428 and
GSE61477, while 10 genes were common between GSE61477 and
the exercise-related gene dataset. Key genes identified among these,
such as FARSA, SVIL, LAMP2, and COL12A1, were found to be
influenced by exercise in both burns and sepsis, suggesting their
potential roles in exercise-mediated recovery processes. These genes
are involved in critical biological functions such as protein
synthesis, cell signaling, and tissue repair, all of which are vital
for enhancing the body’s response to burns, sepsis, and potentially
cancer development. Figures 3B, C present the differential
expression analysis of these genes across various cancer types.
Figure 3B illustrates the expression levels using non-paired
samples, capturing the variability in gene expression due to
exercise, burns, and sepsis. In contrast, Figure 3C employs paired
samples to compare tumor and adjacent normal tissues, providing a
more refined analysis that controls for individual variability and
highlights consistent exercise-influenced expression patterns.
Expanding on these analyses, Figure 3D integrates data from both
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G0S2 SVIL
HSPAS8 LAMP2
KCNJ2 RYR1
KCNQ1 626 MLIP
PUS1 VAPA
ACADM PHKB
TK2 COL12A1
PER1
MGME1
ALDH4A1

GSE61477 Exercise related genes
FIGURE 3

Expression profiles of exercise-modulated genes related to burns and sepsis in pan-cancer analysis. (A) The Venn diagram illustrates the overlap of
differentially expressed genes (DEGs) identified from two datasets, GSE193428 and GSE61477, including a subset of genes associated with exercise.
This visualization distinguishes DEGs unique to each dataset from those shared between them, underscoring genes commonly modulated by
exercise, burns, and sepsis. Specific genes unique to each condition are labeled outside the Venn circles. (B) Differential expression analysis was
conducted on exercise-modulated genes linked to burns and sepsis using non-paired samples across multiple cancer types. The resulting heatmap
depicts the expression levels of these genes, with color intensity reflecting the extent of expression change. The data, drawn from various cancer
types, showcases gene expression variations influenced by exercise, burns, and sepsis. (C) A subsequent differential expression analysis was
performed on the same gene set, using paired samples from individual patients. This heatmap presents refined insights into gene expression changes
by comparing tumor tissue directly with adjacent normal tissue from the same patient. Analyzing paired samples helps control for individual
variability, revealing more consistent gene expression patterns related to exercise influences. (D) Additional differential expression analysis
incorporates data from the TCGA-GTEx projects, providing a comprehensive comparison of gene expression across cancerous and normal tissues.
This analysis examines exercise’s influence on genes associated with burns and sepsis. At the top, a bar chart details the number of samples
analyzed, while the heatmap below indicates shifts in gene expression, with color coding denoting increased or decreased levels.

the TCGA and GTEx projects, enabling a comprehensive
comparison of gene expression profiles in malignant and healthy
tissues. This figure offers further insights into how physical activity
may modulate expression changes associated with burns and sepsis.
At the top of Figure 3D, the sample sizes for each cancer type are
displayed. Below, a heatmap uses color coding to represent
upregulated and downregulated genes, highlighting the expression
patterns across cancer types. These findings underscore the
significant influence of exercise on transcriptional patterns
associated with burns and sepsis in the context of cancer. The
consistent expression changes observed in exercise-influenced genes
across various datasets suggest that exercise may be a critical
modulator of recovery from both sepsis and burns, with potential
implications for cancer prevention and survival.

Analysis of promoter methylation of burn
and sepsis-related genes influenced
by exercise

Figure 4 provides an in-depth analysis of promoter methylation

levels and their impact on mRNA expression in burn- and sepsis-related
genes affected by physical activity. Figure 4A presents a heatmap that

Frontiers in Immunology

10.3389/fimmu.2025.1540998

-1og10(FOR)
X
®w
® w0
o m
@

displays variations in promoter methylation levels for genes such as
ACADM, ALDHA4Al, COLI2A1, FARS2, G6PC, HSP90A, KCNJ2,
KCNQI, PER1, PHKB, PUSI, RYRI1, SVIL, TK2, and VAPA. In this
heatmap, red represents hypermethylation, blue indicates
hypomethylation, and white denotes no significant change. The
analysis compares methylation patterns across patient samples,
distinguishing those who underwent exercise intervention from those
who did not, revealing notable differences that suggest the influence of
exercise on the epigenetic regulation of these genes. Figure 4B illustrates
the relationship between promoter methylation levels and
corresponding mRNA expression levels, employing the same color
scheme: red for a negative correlation, blue for a positive correlation,
and white for no significant correlation. This heatmap demonstrates
how changes in promoter methylation can impact gene expression, with
hypermethylation generally associated with reduced mRNA expression
and hypomethylation linked to increased expression levels. The analysis
was conducted with rigorous statistical evaluations, examining
parameters such as distribution, mean, median, standard deviation,
and variance to ensure objectivity and precision in data interpretation.
These findings highlight the potential regulatory role of exercise in gene
expression related to burn and sepsis recovery, emphasizing the
significance of considering epigenetic modifications in therapeutic
strategies and suggesting the potential benefits of exercise
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FIGURE 4
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Analysis of promoter methylation in exercise-modulated genes related to nurns and sepsis. (A) The heatmap visualizes differences in promoter
methylation for specific genes associated with burns and sepsis, including ACADM, ALDH4A1, COL12A1, FARS2, G6PC, HSP90OA, KCNJ2, KCNQ1,
PER1, PHKB, PUS1, RYR1, SVIL, TK2, and VAPA. The colors in the heatmap represent methylation levels, with red indicating hypermethylation, blue
indicating hypomethylation, and white showing no significant change. This analysis compares samples from patients receiving exercise treatment
with those who did not. (B) The heatmap examines the correlation between promoter methylation and mRNA expression levels for the same set of
genes. It visually represents the relationship between changes in methylation and mRNA expression, using the same color scheme as in panel (A).
Red indicates a negative correlation, blue indicates a positive correlation, and white shows no significant correlation. This analysis seeks to

understand how variations in promoter methylation impact gene expression.

interventions in clinical settings. Future research should aim to further
elucidate the mechanisms behind these epigenetic modifications and
their implications for recovery in burn and sepsis. Investigating how
specific exercise interventions might influence gene methylation
pathways and understanding their functional consequences on gene
expression will provide deeper insights into the potential therapeutic
benefits of exercise. This analysis provides valuable insights into the
influence of exercise on promoter methylation and gene expression,
making a substantial contribution to the growing field of exercise
genomics and its role in medical treatments.

Promoter methylation analysis of burn and
sepsis-related genes affected by exercise

Promoter methylation analysis revealed varying methylation
patterns across burn and sepsis-related genes influenced by
exercise. ACADM showed mainly unmethylated or low
methylation, with variable CpG site methylation (Supplementary
Figure 1A). ALDH4A1l had predominantly unmethylated sites
(Supplementary Figure 1B), while COL12A1 exhibited low to
medium methylation hotspots (Supplementary Figure 1C). FARSA
had a balanced methylation pattern with some sites highly
methylated (Supplementary Figure 1D). G0S2 showed low
methylation levels with specific CpG site variation (Supplementary
Figure 1E). HSPA8 and LAMP2 were primarily lowly methylated
(Supplementary Figures 1F, I). KCNJ2 and KCNQI exhibited
medium to high methylation (Supplementary Figures 1G, H).
MGME]1 and SVIL had balanced methylation with significant site-
specific methylation (Supplementary Figures 1], P). MLIP showed
varied methylation, notably high levels (Supplementary Figure 1K),
while PER1 and PHKB had low to medium methylation
(Supplementary Figures 1L, M). PUSI had medium to high
methylation (Supplementary Figure 1N), and RYRI was largely
unmethylated (Supplementary Figure 10). TK2 mainly exhibited
low methylation (Supplementary Figure 1Q), and VAPA was mostly
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unmethylated or lowly methylated (Supplementary Figure 1R). These
results highlight exercise’s potential role in regulating the epigenetic
modification of these genes, providing insight into the underlying
molecular mechanisms and potential therapeutic applications.

Correlation of burn and sepsis-related
gene expression with tumor prognosis

Our study examined the correlation between the expression of
burn- and sepsis-related genes and tumor prognosis, specifically
focusing on Disease-Free Interval (DFI), Disease-Specific Survival
(DSS), Overall Survival (OS), and Progression-Free Interval (PFI)
(Figure 5). In the Disease-Free Interval (DFI) panel (Figure 5A), a
heatmap displays the relationship between gene expression and DFI
in tumor patients. Here, red squares denote genes associated with
increased risk, while blue squares indicate protective genes, with
significant correlations marked (p < 0.05). Similarly, the Disease-
Specific Survival (DSS) panel (Figure 5B) presents a heatmap that
illustrates the correlation between gene expression and DSS,
maintaining the same color scheme and significance threshold.
The Overall Survival (OS) panel (Figure 5C) shows correlations
between gene expression and OS, with red indicating risky genes
and blue representing protective genes. Only statistically significant
correlations (p < 0.05) are displayed to emphasize meaningful
relationships. Lastly, the Progression-Free Interval (PFI) panel
(Figure 5D) provides a heatmap showing the correlation between
gene expression and PFI, using consistent color coding and
significance criteria. These findings highlight the significant
influence of specific gene expressions on various tumor prognosis
metrics, offering valuable insights that could guide the development
of potential therapeutic targets. The study emphasizes the
importance of considering the molecular landscape shaped by
burn and sepsis-related genes, which may provide novel
opportunities for personalized treatments in cancer patients,
particularly those recovering from burns or sepsis.
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FIGURE 5

Association of burn and sepsis-related gene expression with tumor prognosis indicators (DFI, DSS, OS, PFI). (A) The heatmap shows the correlation
between the expression of burn and sepsis-associated genes and the disease-free interval in cancer patients. Red squares represent genes
correlated with an increased risk (risky), while blue squares indicate genes with a protective effect. Only significant correlations (p<0.05) are shown.
(B) The heatmap illustrates the relationship between gene expression and disease-specific survival in cancer patients, following the same color
coding as in panel (A). Red squares denote risky genes, and blue squares indicate protective genes, with only significant associations (p<0.05)
included. (C) This panel provides a heatmap that demonstrates the correlation between gene expression and overall survival in cancer patients.
Genes associated with a higher risk are shown in red, while those with protective associations are in blue. Only significant correlations (p<0.05) are
highlighted. (D) The heatmap examines the correlation between gene expression and progression-free interval in cancer patients. As in the previous
panels, red indicates risky genes, and blue represents protective genes. Only statistically significant correlations (p<0.05) are displayed.

Comprehensive analysis of exercise-
influenced burn and sepsis-related genes
across pan-cancer

This study explores the impact of exercise on genes associated with
burns and sepsis across various cancer types, revealing several key
findings. Supplementary Figure 2A shows mutation frequencies of
these genes in 20 cancer types, with color intensity representing
mutation rates. A waterfall plot (Supplementary Figure 2B) highlights
mutation variability across categories. Figures 2C, D illustrate the
correlation between gene expression and Tumor Mutation Burden
(TMB), with bubble sizes indicating correlation significance and colors
reflecting the strength and direction. Figures 2E, F categorize samples by
copy number amplifications, identifying the most common cancer types.
Figure 2G presents cumulative copy number alterations, while Figure 2H
compares amplifications and deletions across cancer types. Finally,
Figure 2I displays a correlation matrix of gene expression in different
cancers, with bubble sizes representing p-values. These findings highlight
the heterogeneous genomic effects of exercise on burn- and sepsis-related
genes in cancers, offering insights into potential therapeutic targets and
informing personalized cancer treatment strategies.

Exercise-influenced gene expression in
cancer and microbiomes

Our analysis of gene expression following exercise across multiple
cancer types revealed notable enrichments in genomic features and
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microbiome signatures. In Figure 6A, we observed distinctive gene
expression patterns associated with burns and sepsis that correlate
with CNVs. In this figure, circle sizes denote significance levels, while
color gradients indicate delta values, highlighting differential
expression. Similarly, Figure 6B shows the relationship between
gene expression and promoter methylation, with blue representing
negative correlations and red indicating positive correlations.
Figures 6C, D explore the expression of these genes within different
microbiomes. A heatmap in Figure 6C presents normalized
expression levels, while hierarchical clustering in Figure 6D reveals
co-regulated gene clusters influenced by microbial presence.
Figure 6E provides a GSEA across various cancers, identifying
enriched pathways. Bubble sizes correspond to the number of
genes involved, and colors reflect enrichment scores, with red
indicating higher scores. These findings suggest that exercise
modulates gene expression in ways that affect cancer biology and
microbial interactions, offering potential insights for therapeutic
development. The interaction between exercise, gene expression,
and microbiome modulation highlights new avenues for improving
cancer treatment strategies through holistic approaches that consider
genetic, epigenetic, and microbial factors.

Pan-cancer GSVA enrichment analysis

This study performed an extensive pan-cancer analysis of burn-
and sepsis-related gene sets influenced by exercise across various
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FIGURE 6

Pan-cancer enrichment analysis and gene expression in microbiomes. (A) Association of exercise-influenced burn and sepsis gene expression with
CNV in multiple cancer types: This panel presents the correlation between the expression of exercise-modulated genes associated with burns and
sepsis and copy number variations (CNV) across various cancer types. Circle size corresponds to the significance level (-log10 p-value), while the

color gradient indicates delta values, with red representing upregulation and

promoter methylation across cancer types: This panel displays the correlation between gene expression and promoter methylation levels for
exercise-influenced genes related to burns and sepsis across multiple cancers. Circle size reflects the significance level (-logl0 p-value), while the
color gradient denotes correlation values, with blue indicating negative correlation and red showing positive correlation. (C, D) Expression of
exercise-influenced genes in microbiomes: The heatmap in panel (C) illustrates expression levels of these genes across various microbiomes, with
color intensity representing normalized expression levels. Panel (D) depicts hierarchical clustering of gene expression data, with a color scale from
blue (low expression) to red (high expression), showing distinct clustering patterns. (E) GSEA pathway enrichment analysis in different cancers: This
bubble plot illustrates the pathways enriched in different cancers, with bubble size representing the number of genes involved and color indicating
the enrichment score—red for a higher enrichment score and blue for a lower score. The symbols *, **, and *** represent statistical significance

levels corresponding to p<0.05, p<0.01, and p<0.001, respectively.

cancer types using four scoring methods: combined z-scores, GSVA
z-scores, PLAGE z-scores, and ssGSEA z-scores. Results in
Supplementary Figure 3 reveal significant differences in gene set
enrichment between normal and tumor tissues. Supplementary
Figure 3A presents the combined z-scores, showing notable
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blue indicating downregulation. (B) Association of gene expression with

statistical significance in cancers such as KIRC and BLCA, which
suggests differential gene expression. Supplementary Figure 3B
displays the GSVA z-scores, with marked variations in THCA
and KICH, pointing to potential implications for tumor biology.
In Supplementary Figure 3C, the PLAGE z-scores highlight

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1540998
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Li et al.

significant differences in KIRP and BLCA, underscoring the
influence of exercise on gene set activity. Finally, Supplementary
Figure 3D shows the ssGSEA z-scores, revealing substantial changes
across multiple cancers, suggesting therapeutic potential for
exercise-modulated genes in cancer treatment. This analysis
provides key insights into the role of exercise-related genes in
cancer biology, emphasizing their potential therapeutic
applications. It opens avenues for future research, particularly in
identifying cancer types that could benefit from exercise-based
interventions and exploring the molecular mechanisms
underlying exercise-induced gene expression changes in cancer.

MLIP modulates inflammation, oxidative
stress, and macrophage polarization in
LPS-induced RAW264.7 cells

This study investigated the role of MLIP in regulating
inflammation, oxidative stress, and macrophage polarization in
LPS-induced RAW264.7 cells. Figure 7A shows that MLIP
overexpression (MLIP-OE) significantly enhanced the expression
of target genes, while MLIP knockdown (sh-MLIP) notably reduced
expression, highlighting MLIP’s regulatory function. Figure 7B
reveals that LPS treatment upregulated TNF-a, IL-6, and IL-1B
mRNA levels, indicating an intensified inflammatory response.
MLIP-OE attenuated these cytokine levels, suggesting its potential
to suppress inflammation, while LPS + sh-MLIP further elevated
inflammatory markers, indicating that MLIP inhibition exacerbates
inflammation. Figure 7C demonstrates increased ROS production
in the LPS group, reflecting heightened oxidative stress. MLIP-OE
reduced ROS levels compared to LPS treatment alone, indicating
that MLIP mitigates oxidative stress, while sh-MLIP further
increased ROS levels. Figure 7D illustrates that superoxide
dismutase (SOD) activity, a key antioxidant enzyme, was reduced
by LPS but partially restored with MLIP-OE, underscoring the
antioxidative role of MLIP. Figures 7E, F explore MLIP’s effects on
macrophage polarization. MLIP-OE reduced the expression of the
M1 marker CD86 and IL-1[3, while increasing the expression of the
M2 marker CD206, suggesting MLIP’s role in promoting a balanced
macrophage polarization. IL-10 levels remained highest in the LPS
group, reflecting the influence of LPS on anti-inflammatory
responses. Figure 7G, through immunofluorescence staining,
shows reduced IL-6 and IL-1f expression in the MLIP-OE group
compared to the LPS and sh-MLIP groups, further supporting
MLIP’s anti-inflammatory effects. Finally, Figure 7H presents flow
cytometry data showing shifts in macrophage polarization profiles:
MLIP-OE promoted a less inflammatory state, while sh-MLIP
favored pro-inflammatory polarization. Overall, these results
highlight the significant role of MLIP in modulating
inflammation, oxidative stress, and macrophage polarization in
LPS-induced RAW264.7 cells. These findings suggest that MLIP
could serve as a potential therapeutic target for inflammatory
diseases, particularly those involving macrophage polarization,
such as autoimmune disorders, infections, and chronic

inflammatory conditions.
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The role of MLIP in regulating
inflammation, oxidative stress, and cell
proliferation in HUVECs, with implications
for burn-induced sepsis and

cancer progression

This study explores MLIP’s role in modulating gene expression,
inflammation, oxidative stress, and cell proliferation in human
umbilical vein endothelial cells (HUVECs). Additionally, it
investigates MLIP’s potential involvement in burn-induced sepsis
and subsequent cancer progression. As illustrated in Figure 8A,
MLIP overexpression markedly increased the relative mRNA levels
of target genes, whereas MLIP knockdown reduced these levels,
underscoring its significant function in gene regulation. Figure 8B
demonstrates that MLIP overexpression enhances cell viability, as
indicated by the CCK-8 assay, while knockdown decreases
proliferation, suggesting MLIP’s supportive role in cell growth.
Further, Figure 8C compares the expression levels of pro-
inflammatory cytokines TNFa, IL-6, and IL-1P across different
treatments. The LPS + MLIP-OE group displayed lower cytokine
levels than the LPS-only group, underscoring MLIP’s potential anti-
inflammatory effect. Conversely, increased cytokine levels in the
LPS + sh-MLIP group suggest that MLIP inhibition may amplify
inflammatory responses. Immunofluorescence analysis of IL-6 and
IL-1PB (Figures 8D, E) corroborates these findings, showing reduced
inflammatory marker expression with MLIP overexpression and
elevated levels with knockdown. Moreover, flow cytometry analysis
of ROS production (Figure 8F) reveals that MLIP overexpression
alleviates LPS-induced oxidative stress, while knockdown elevates
ROS levels, highlighting MLIP’s regulatory influence on oxidative
stress. Apoptosis analysis (Figure 8G) indicates that MLIP
overexpression mitigates LPS-induced apoptosis, whereas its
inhibition increases apoptosis rates, suggesting a protective role
against cell death. Figure 9 provides a comprehensive view of
MLIP’s involvement in burn-induced sepsis and its implications
for cancer progression related to sepsis. The left panel traces the
progression from burns to systemic inflammation and sepsis,
showing MLIP’s role in immune modulation. Central
bioinformatics analysis demonstrates differential gene expression,
pathway enrichment, and pan-cancer analysis, elucidating MLIP’s
influence on specific pathways and epigenetic regulation during
sepsis. Prognostic analysis suggests MLIP’s potential relevance
across various cancer types, while microbiome interactions hint at
its immunomodulatory properties. The right panel integrates
findings from in vitro studies on an LPS-induced endothelial
model of sepsis, linking MLIP’s effects on cell proliferation, ROS
levels, and inflammatory cytokine expression. Collectively, these
findings highlight MLIP as a pivotal modulator of cellular responses
under inflammatory conditions, offering a foundation for its
therapeutic potential in managing sepsis and reducing cancer risk
associated with inflammation. These results support the notion that
MLIP may act as a central mediator of cellular responses in
inflammation, oxidative stress, and immune modulation, with
important implications for inflammatory diseases and
cancer treatment.
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FIGURE 7

MLIP's role in modulating inflammation, oxidative stress, and polarization in LPS-induced RAW264.7 cells. (A) Quantitative RT-PCR analysis of target
gene expression in RAW264.7 cells across various treatment groups, including Control, MLIP overexpression (MLIP-OE), MLIP knockdown (sh-MLIP),
and LPS-stimulated cells. Expression levels are normalized to the Control group and reported as mean + SD, with p < 0.05 indicating statistical
significance. (B) Quantitative RT-PCR analysis showing relative mRNA levels of TNF-a, IL-6, and IL-1B in Control, LPS, LPS + MLIP-OE, and LPS + sh-
MLIP groups, demonstrating MLIP's role in modulating inflammation in the context of LPS treatment. (C) DCFH-DA assay results illustrate the effects

of different treatments on intracellular reactive oxygen species (ROS) levels. The Control group serves as the baseline, while LPS treatment induces

ROS production, and LPS + MLIP-OE treatment reduces ROS, suggesting an

antioxidative role for MLIP. (D) Measurement of SOD activity across

Control, LPS, and LPS + MLIP-OE groups. LPS significantly reduces SOD activity, while MLIP overexpression restores SOD function in treated cells.
Data are expressed as mean + SD, with p < 0.05 indicating statistical significance. (E) gRT-PCR analysis of M1 macrophage markers IL-1 and CD86
in Control, LPS, and LPS + MLIP-OE groups, highlighting MLIP's influence on macrophage polarization. (F) Comparison of IL-10 and CD206
expression levels in Control, LPS, and LPS + MLIP-OE groups using gRT-PCR. Data are shown as mean + SD, with p < 0.05 denoting statistical
significance. (G) Immunofluorescence staining of inflammatory cytokines: Representative immunofluorescence images illustrating IL-6 and IL-1B
expression in RAW264.7 cells across Control, LPS, LPS + MLIP-OE, and LPS + sh-MLIP groups. Cells are stained with DAPI (blue) to label nuclei, with
IL-6 or IL-1B (red) indicating cytokine localization and expression. (H) Flow cytometry analysis of macrophage polarization: Flow cytometric plots
showing the impact of LPS, LPS + MLIP-OE, and LPS + sh-MLIP treatments on macrophage polarization, measured by surface marker expression.
Data illustrate shifts in polarization states influenced by MLIP modulation. The results represent three independent experiments. ns, not significant.

Discussion

Burn-induced sepsis presents not only a clinical emergency but
also a significant public health concern, as supported by
epidemiological data. This alarming statistic highlights the critical
nature of burn-induced sepsis and underscores the urgent need for
enhanced preventive strategies, diagnostic methods, and
therapeutic interventions (56, 57). Given macrophages’ pivotal
role in immune response, their involvement is central to sepsis
pathology. Understanding macrophage-mediated inflammatory
responses offers a promising avenue for identifying potential
therapeutic targets in treating burn-induced sepsis.

Recent advancements in the medical research field have
provided great hope in addressing the complexities of burn-
induced sepsis. This study establishes a solid theoretical
foundation for improving intervention strategies and discovering
new therapeutic targets (58). Given these findings, an appropriate
exercise regimen for burn patients could potentially enhance
immune function and recovery, thereby reducing susceptibility to
sepsis. Significant progress has also been made in nanotechnology.
Through bioinformatics, scientists have gained a deeper
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understanding of the relationship between the microstructure and
properties of nanomaterials. This has enabled precise control over
pore size, porosity, and composition, leading to broad applications
in catalysis, adsorption, and biomedicine (59, 60). For instance, the
development of near-infrared light-activated upconversion
nanoparticles/curcumin mixed nanomedicines has shown
promising potential in inducing glioma stem cell differentiation
and effective eradication (61). While this research primarily focuses
on gliomas, the concept of using nanomaterials for targeted therapy
can be applied to burn-induced sepsis. Researchers have
successfully identified potential biomarkers and developed risk
prediction models, offering new perspectives for personalized
treatment strategies (62-64). Large datasets have also been
utilized for bioinformatics analysis, facilitating the precise
identification of biomarkers, the exploration of signaling
pathways, and the systematic study of immune characteristics
(65-67). In the context of burn-induced sepsis, this could lead to
early detection through the identification of sepsis-specific
biomarkers. Moreover, assessing patients’ immune profiles allows
for more accurate prognosis, enabling timely adjustments to
treatment strategies.
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Effects of MLIP on gene expression, cell viability, inflammation, ROS levels, and apoptosis in HUVECs across treatment conditions. (A) The relative
MRNA expression levels of target genes were analyzed via qRT-PCR across treatment groups, with the Control group as a baseline. The EV (empty
vector) group serves as a negative control, MLIP-OE represents MLIP overexpression, and sh-MLIP indicates MLIP knockdown. Data represent mean
+ SD from three independent experiments, with *p < 0.05 denoting statistical significance. (B) HUVEC proliferation was measured under various
conditions. Control represents untreated cells, EV serves as the empty vector control, MLIP-OE represents MLIP overexpression, and sh-MLIP
indicates MLIP silencing. Results are expressed as mean + SD, with *p < 0.05 indicating significant differences. (C) mRNA levels of infammatory
cytokines were measured by gRT-PCR in Control, LPS-stimulated, LPS + MLIP-OE, and LPS + sh-MLIP groups. LPS stimulation models inflammation,
and subsequent treatments assess MLIP's role in modulating cytokine expression. Data are presented as mean + SD, with *p < 0.05 indicating
significance. (D) Immunofluorescence staining of IL-6 (red) with DAPI (blue) was performed on HUVECs to assess IL-6 expression under different
treatment conditions, including LPS stimulation and MLIP modulation. (E) Cells were stained for IL-1B (red) and DAPI (blue), revealing IL-1f
expression changes due to LPS treatment, MLIP overexpression, and MLIP knockdown. (F) Flow cytometry quantified ROS levels in HUVECs under
Control, LPS, LPS + MLIP-OE, and LPS + sh-MLIP conditions, highlighting MLIP's role in regulating oxidative stress during inflammation. (G) The
percentage of apoptotic cells was measured across treatment groups: Control, LPS-stimulated, LPS + MLIP-OE, and LPS + sh-MLIP. Data
underscore MLIP’s influence on LPS-induced apoptosis, illustrating differences in apoptosis rates between groups. ns, not significant

Our research focuses on gene expression profiles and
epigenetic modifications in the context of burn - induced sepsis
and cancer. These processes are essential for understanding how
sepsis and tumorigenesis are interlinked, as they may facilitate
tumor cell proliferation and survival while also potentially
enhancing immune evasion (31, 68). For instance, cytokines
such as TNF-a and IL-6, produced during sepsis, play a key role
in organizing inflammatory responses and may indirectly support
tumor formation (31, 69). Additionally, oxidative stress associated
with sepsis can result in DNA double-strand breaks and genomic
instability, creating a genetic foundation conducive to tumor
initiation and progression (70). These findings highlight the
need for further exploration into the impact of sepsis on tumor
microenvironments, particularly in terms of immune suppression
and the initiation of genomic instability, both of which could
present novel therapeutic opportunities. Examining how
macrophage dysfunction during sepsis contributes to site-
specific organ damage may provide novel insights into
controlling inflammation and preventing cancer progression,
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depending on the affected sites. We are investigating how
exercise influences gene expression profiles and epigenetic
modifications across medical conditions such as burns, sepsis,
and cancer (71, 72). The Wilcoxon rank - sum test was applied to
analyze gene expression differences between tumor and normal
tissues. Sourcing data from relevant databases and performing
necessary normalizations, we also analyzed methylation levels in
specific genomic regions.

These findings underscore the particular significance and
timeliness of our study. By investigating the mechanisms of burn-
induced sepsis, we aim to provide deeper insights into this clinical
issue from both molecular and biological perspectives (73). Our
research contributes not only to the development of new
preventative and therapeutic strategies to reduce sepsis risk and
improve outcomes for burn patients but also to the understanding
of the intricate link between inflammation and tumor development.
By expanding scientific knowledge on the connections between
burn-induced sepsis and tumorigenesis, we can provide valuable
data to support informed policy development, potentially leading to
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FIGURE 9

Comprehensive analysis of MLIP’s role in burns-induced sepsis and cancer progression through bioinformatics and in vitro studies. In vivo findings
highlight MLIP’s role in modulating immune responses, suggesting its potential in preventing the transition from sepsis to cancer. The middle section
focuses on bioinformatics, analyzing differential gene expression, pathway enrichment, and Gene Set Enrichment Analysis (GSEA) using RNA-seq
data. The right section describes in vitro experiments using an endothelial cell model of sepsis, where cells are treated with lipopolysaccharide (LPS).
These experiments assess cell proliferation, inflammatory markers, ROS, and cytokine levels, shedding light on immune responses during septic
conditions. This comprehensive figure explores MLIP's involvement in burns-induced sepsis and cancer progression, presenting potential

therapeutic targets.

measurable reductions in the incidence and healthcare costs of these
diseases on a broader scale (13, 31).

This study employed a multitude of approaches to explore the
therapeutic potential of molecular targets, with bioinformatics
playing a pivotal role in data interpretation. From a microscopic
perspective of molecules and cells, the combination of
transcriptomics and proteomics has delved deep into disease
mechanisms, revealing the crucial regulatory mechanisms of
transcription factor networks and protein modifications in diseases.
This has laid a theoretical foundation for developing novel treatment
strategies (74). Through the combined analysis of metabolomics and
proteomics, the metabolic pathways and their significant roles in cell
functions have been explored multiple times (75). In cell - level
research, an in - depth exploration of cell polarization and its role in
immune regulation and treatment strategies has provided important
evidence for understanding cell functions and immune regulation
mechanisms (76). The advancements in proteomics technology have
enabled a more thorough study of protein - protein interaction
networks, their modifications, and regulatory mechanisms. This
helps uncover the complex signal transduction processes within
cells, laying the groundwork for understanding the essence of life
activities and developing new targeted treatment strategies (77, 78).
Through bioinformatics analysis, key genes associated with specific
diseases were identified, and their roles in immune infiltration were
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explored, indicating the direction for disease diagnosis and the search
for treatment targets (79, 80). Notably, the inclusion of bioinformatics
tools in the analysis has provided insights into the molecular
underpinnings of burn-induced sepsis and their connections to
cancer-related pathways. Bioinformatics tools were applied to
annotate gene functions and conduct pathway enrichment analyses,
revealing potential signaling pathways and regulatory networks
involved in burn - induced sepsis and its connection to cancer -
related pathways. In vivo studies using animal models further
substantiated these findings. For instance, RNA-seq allows
researchers to quantify gene expression across various tumor types
in comparison to normal tissues, identifying gene expression profiles
associated with cancer development (81, 82). High - throughput
sequencing technologies, like RNA - seq, combined with
bioinformatics analysis, were used to investigate gene expression
profiles in tumor and normal tissues, identifying profiles associated
with cancer development.

Bisulfite sequencing (BS-seq) and chromatin accessibility assays
offer insights into epigenetic regulatory mechanisms by inferring
the DNA methylation status of gene promoters. This is crucial for
understanding epigenetic modifications that lead to the activation
or silencing of transcription start sites (TSS) (83, 84). Additionally,
ATAC-seq technology identifies open chromatin regions that may
interact with transcription factors and other regulatory proteins,
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playing a vital role in controlling gene expression (85, 86). We
anticipate that future work will further explore how these epigenetic
modifications could potentially serve as therapeutic targets in burn-
induced sepsis and cancer. This approach may ultimately assist in
identifying novel biomarkers for early cancer detection, particularly
in individuals who have experienced burn-induced sepsis. GSEA
can be applied to immune-related gene sets, providing an integrated
perspective on immune regulatory mechanisms within the tumor
microenvironment (87). Additionally, microbial differential
expression studies enable the examination of gene expression
profiles within microbial communities in tumor contexts,
shedding light on the relationships between microbes, tumor
development, and treatment responses (88).

This study systematically investigated the role of MLIP in
RAW264.7 cells and HUVECs through in vitro experiments, with a
particular focus on MLIP’s regulation of inflammation. Initially, PCR
was first utilized to assess MLIP’s effects on gene expression in
RAW264.7 cells and HUVECs, while the CCK - 8 assay evaluated
cell proliferation (89, 90). Subsequently, an inflammatory response
model was established by treating cells with LPS, allowing us to observe
the regulatory effects of MLIP on inflammatory markers, including
TNFo. (tumor necrosis factor-alpha) and IL-6 (interleukin-6), as well
as its impact on cellular processes like hydration and electrical
conductivity during inflammation (91, 92). Our experiments
highlighted MLIP’s potential in regulating immune responses,
offering a promising strategy for modulating inflammation in burn-
induced sepsis. Additionally, flow cytometry was used to examine
MLIP’s regulatory influence on M1 and M2 macrophage polarization
(93). This comprehensive experimental approach aims to elucidate the
underlying mechanisms by which MLIP may influence inflammatory
diseases, offering theoretical support for its potential therapeutic target
(94). The insights gained into macrophage polarization and ROS
modulation suggest possible pathways for targeted interventions in
the management of sepsis-related organ damage.

Through a comprehensive analysis of data from the GEO database,
we identified a cohort of genes associated with burn and sepsis that are
influenced by exercise and exhibit distinct expression patterns in
various tumor samples compared to normal tissues (95, 96).
Returning to the macroscopic perspective of clinical applications and
disease research, when evaluating treatment efficacy and prognostic
indicators, multiple factors such as metabolic tumor burden and
immune cell characteristics were comprehensively considered,
providing a multi - dimensional perspective for judging disease
progression and treatment responses (97, 98). In studying the
associations between diseases and other factors, methods such as
Mendelian randomization studies and case - control studies play
important roles. For example, exploring the association between
cholecystectomy and the risk of a certain disease, as well as
comparing the molecular characteristic differences of different
disease onset types (99). Animal models were used to verify in-vivo
effects, and histological and immunohistochemical analyses were
carried out to observe tissue pathological changes, providing
important evidence for subsequent research (80). Mendelian
randomization analysis was applied to explore the causal relationship
between metabolites and diseases. This method effectively eliminates
the influence of confounding factors and improves the accuracy of
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causal inference (100). While focusing on disease treatment, the
humanistic care for patients should not be overlooked. Peer support
and patient participation have a significant effect on improving the
treatment experience and quality of life of cancer patients (101).
Spiritual beliefs play an important psychological support role in
patients at the end - stage of diseases (102). Further investigation
focused on the methylation status of the promoter regions of these
genes. We observed substantial changes in methylation levels in tumor
cells compared to normal cells. Notably, increased methylation of
specific genes was associated with their silencing, potentially serving as
a mechanism for tumor cells to evade immune surveillance and
facilitate tumor progression (103, 104). Using ATAC-seq technology,
we assessed the chromatin accessibility of these genes. The results
indicated that chromatin regions associated with tumor progression
were more accessible in tumor cells, allowing transcription factors and
other regulatory proteins to bind more easily, thereby modulating gene
expression (105, 106). These findings underscore the potential of
macrophage-targeted therapies to alter the tumor microenvironment
and improve patient outcomes in sepsis-associated cancers. In the
broader context of medical research, significant advancements have
been made in various related fields. In materials science, breakthroughs
in nanomaterial preparation have opened up broad prospects in fields
such as catalysis, adsorption, and biomedicine (107, 108). In analyzing
core genes across various cancers, we examined copy number
variations, methylation status, and tumor mutation burden,
uncovering complex genetic and epigenetic alterations (109, 110).
Specifically, mutations in key genes associated with tumor
aggressiveness and resistance to chemotherapy were identified,
suggesting new strategies for developing targeted therapies against
these genes (111, 112). GSEA further indicated an enrichment of these
core genes in immune-related pathways, highlighting their possible
roles in modulating the tumor immune microenvironment.
Additionally, differential expression analysis of these genes across
various microbiomes suggested their involvement in host-microbe
interactions within the tumor microenvironment (113).

This study highlights the significant biological functions of MLIP
in RAW264.7 cells and HUVECs. In RAW264.7 cells, MLIP
overexpression markedly increased gene expression as assessed by
PCR, underscoring its crucial role in gene regulation. Following LPS
treatment, the expression of inflammatory markers TNFa, IL-6, and
IL-1P was significantly elevated; however, these levels were relatively
lower in the MLIP overexpression group, suggesting that MLIP may
play a role in suppressing inflammatory responses. Conversely, the
elevated inflammatory factors observed in the MLIP knockdown
group imply that MLIP deficiency may exacerbate inflammation.
Simultaneously, changes in ROS levels indicated that LPS enhances
oxidative stress, while MLIP overexpression appears to moderate
ROS levels, highlighting its potential antioxidant function. In terms
of M1 macrophage polarization, MLIP expression was closely
associated with variations in CD86 and IL-1B levels, further
supporting its regulatory role in macrophage polarization. In
HUVECs, MLIP overexpression also promoted gene expression
and cell proliferation, as demonstrated by CCK-8 assay results.
Following LPS treatment, inflammatory factor expression increased
significantly, but this rise was tempered in the MLIP overexpression
group, suggesting that MLIP helps maintain cell function by
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modulating inflammatory responses under prolonged stress
conditions. Additionally, MLIP was shown to increase cell
proliferation rates, as indicated by flow cytometry analysis. Its role
in regulating cell polarization and proliferation provides a theoretical
foundation for potential therapeutic applications in various
inflammatory diseases. MLIP’s regulatory influence extends to the
polarization and proliferation of multiple cell types, including
RAW264.7 cells and HUVECs. Using the Chickseeker package, we
evaluated the spatial proximity of transcription factor binding sites
and histone modifications relative to transcription start sites.

MLIP expression was elevated in the MLIP-OE group using an
overexpression vector, whereas, in the sh-MLIP group, MLIP
expression was suppressed through shRNA targeting (114, 115).
Preliminary findings suggest that MLIP may play a critical role in
macrophage polarization and metabolic reprogramming, though
further studies are needed to elucidate the complex intracellular
pathways influenced by MLIP and their impact on macrophage
function in both normal and pathological states. A significant
amount of data on RNA levels and cellular responses in various
conditions was gathered using standardized quantification methods,
providing insights into the dual role of MLIP in regulating cell
proliferation. Flow cytometry was used to analyze the rate of cell
apoptosis, ROS levels, and differences in cell surface markers between
the groups. We paid special attention to apoptosis induced by LPS to
evaluate whether MLIP confers a protective effect in this pathway.
These methodologies clarify MLIP’s role in modulating macrophage
activity and its implications in inflammatory responses (116, 117).

This study, through bioinformatics analysis and in vitro cell
experiments, has demonstrated the pivotal role of MLIP in burn -
induced sepsis. Our findings highlight MLIP’s potential as a
therapeutic target, as alterations in its expression are closely
associated with inflammatory responses and cellular damage. Future
research will focus on delineating the specific mechanisms by which
MLIP influences sepsis progression, including its roles in
inflammatory pathways and effects on cell survival and function.
Additionally, we plan to assess the feasibility of therapeutically
targeting MLIP, offering new insights and directions for clinical
intervention (118, 119). The application of network pharmacology
and experimental verification methods in traditional Chinese medicine
research has opened up new avenues and strategies for drug
development (120). The development of bioinformation technology
has promoted breakthroughs in natural product research. The use of
molecular network technology for rapid screening and target molecule
discovery has effectively accelerated the drug development process
(121). Molecular dynamics simulation and structural biology methods
are used to analyze the binding characteristics and functions of target
proteins, providing important evidence for new drug design (122).
Further studies will also explore the collective roles of these genes in
tumorigenesis, particularly focusing on their interactions with immune
cells within the tumor microenvironment (123, 124). Investigating
how these genes respond to exercise and other lifestyle factors may
contribute to advancements in personalized medicine (125, 126). We
also plan to assess the feasibility of therapeutically targeting MLIP.
However, it should be noted that this study has limitations, such as the
lack of large - scale clinical trials.
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Conclusion

This study highlights MLIP’s role in burn-induced sepsis as a
potential therapeutic target. Using bioinformatics and in vitro
analyses, we showed its regulatory effects on inflammation/
cellular damage. Findings improve sepsis-cancer interplay
insights, especially immune response’s role in tumor progression.
Practically, they could guide targeted therapies for sepsis patients to
improve outcomes. But larger-scale trials are needed for validation.
Future research should clarify MLIP’s mechanistic pathways in
sepsis and its oncology implications.
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SUPPLEMENTARY FIGURE 1

Analysis of promoter methylation in genes related to burns and sepsis,
modulated by exercise. (A) ACADM Promoter Methylation: The pie chart
displays methylation levels (unmethylated, low, medium, high) across
samples. A bar graph shows the percentage of methylated cytosines at
specific CpG sites in the ACADM promoter, and a line graph illustrates
methylation patterns across various promoter regions. (B) ALDH4Al
promoter methylation: Similar to panel (A), the pie chart, bar graph, and
line graph illustrate the distribution of methylation levels, percentage of
methylated cytosines, and regional methylation across the ALDH4Al
promoter. (C) COL12A1 Promoter Methylation: The pie chart shows
methylation levels across samples, the bar graph indicates the percentage
of methylated cytosines at selected CpG sites, and the line graph depicts
methylation across the COL12A1 promoter. (D) FARSA Promoter Methylation:
The pie chart illustrates overall methylation levels at the FARSA promoter,
while the bar graph shows the percentage of methylated cytosines and
potential methylatable sites. The line graph provides a view of regional
methylation, facilitating comparison across different promoter sections. (E)
GO0S2 promoter methylation: The pie chart summarizes the methylation
distribution across samples, the bar graph shows methylation percentages
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at various promoter locations, and the line graph details patterns across the
GO0S2 promoter sequence. (F) HSPA8 promoter methylation: Similar to prior
analyses, the pie chart, bar graph, and line graph collectively display
methylation levels, the percentage of methylated cytosines, and regional
patterns across the HSPA8 promoter. (G) KCNJ2 promoter methylation: This
analysis presents the distribution of methylation levels in the KCNJ2
promoter, using a pie chart for overall levels, a bar graph for CpG site
methylation, and a line graph for regional analysis. (H) KCNQ1 promoter
methylation: The pie chart, bar graph, and line diagram illustrate methylation
levels, percentage of methylated cytosines, and regional methylation status
across the KCNQ1 promoter segments. (I) LAMP2 promoter methylation: The
pie chart shows methylation levels across samples, the bar graph indicates
methylation at specific CpG sites, and the line chart details methylation
patterns across the LAMP2 promoter. (J) MGMEL1 promoter methylation:
The pie, bar, and line charts depict methylation levels, the percentage of
methylated cytosines, and regional methylation across the MGME1 promoter.
(K) MLIP promoter methylation: This section includes the distribution of
methylation levels (pie chart), the percentage of methylated cytosines (bar
graph), and the methylation status across promoter regions (line graph) for
MLIP. (L) PER1 promoter methylation: A pie chart shows methylation levels, a
bar graph displays methylated cytosine percentages, and a line graph
illustrates regional methylation patterns for the PER1 promoter. (M) PHKB
promoter methylation: The pie chart summarizes methylation levels across
samples, while the bar graph and line graph provide details on methylated
cytosine percentages and regional methylation patterns in the PHKB
promoter. (N) PUS1 promoter methylation: A set of three charts—pie chart,
bar graph, and line graph—demonstrates the methylation levels, percentage
of methylated cytosines, and regional methylation across the PUS1 promoter.
(O) RYR1 promoter methylation: This panel uses pie and bar charts to display
methylation levels and proportions of methylated cytosines within the RYR1
promoter, with a line graph showing regional methylation variations. (P) SVIL
promoter methylation: The pie chart, bar graph, and line graph visualize
methylation levels, the percentage of methylated cytosines, and regional
methylation status in the SVIL promoter. (Q) TK2 promoter methylation: The
pie chart illustrates methylation levels, the bar graph shows methylated
cytosine percentages, and the line graph details regional patterns within the
TK2 promoter. (R) VAPA promoter methylation: The pie chart represents
methylation levels in the VAPA promoter, with a bar graph showing
methylated cytosine percentages and a line graph displaying methylation
variations across different promoter regions.

SUPPLEMENTARY FIGURE 2

Analysis of exercise-influenced genes related to burns and sepsis across pan-
cancer. (A) Mutation frequency across 20 cancer types: This panel displays the
mutation frequency of genes influenced by exercise, burns, and sepsis across
20 cancer types. Each cellin the grid corresponds to the mutation frequency of
a specific gene within a given cancer type. Color gradations indicate mutation
percentages, allowing for a visual comparison of mutation rates for each gene
across different cancer types. (B) Waterfall plot of mutations: This waterfall plot
illustrates the mutation burden for each exercise-influenced burn and sepsis-
related gene across multiple cancer types. Each bar represents the mutation
load for a specific gene, with color distinctions indicating different mutation
types. (C, D) Correlation of gene expression with Tumor Mutation Burden
(TMB): These panels show a correlation analysis between gene expression and
TMB across various cancers. Bubble size represents the significance of each
correlation, while color denotes the direction and strength of the correlation.
(E) Copy number amplification ratios across pan-cancer: Bars represent the
proportion of samples with copy number amplifications for each gene across
different cancer types, showing the prevalence of gene amplification. (F) Copy
number deletion ratios across pan-cancer: This bar graph shows the
percentage of samples with copy number deletions for each gene across
cancer types, comparing deletion frequencies. (G) Total copy number variation
(Amplification and Deletion): Each cell represents the sum of copy number
changes (amplifications and deletions) for each gene across various cancers,
giving a comprehensive view of overall copy number deviations. (H) Ratios of
copy number amplifications to deletions: This panel compares amplification
(positive values) and deletion (negative values) ratios for each gene across
different cancer types, with cells indicating the relative prevalence of each type
of copy number change. (I) Correlation matrix of gene expression and
statistical significance (-logl0 p-value) across cancer types: The correlation
matrix illustrates the relationship between gene expression and p-value
significance across cancer types. Bubble size indicates the p-value
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significance level, and color represents the direction and strength of
each correlation.

SUPPLEMENTARY FIGURE 3

Pan-cancer GSVA enrichment analysis of exercise-influenced genes related
to burns and sepsis. (A) Combined z-scores: This panel shows the combined
z-scores for both normal (blue) and tumor (red) tissues across multiple cancer
types. Each box plot represents the distribution of z-scores, highlighting gene
set enrichment levels. P-values indicate the statistical significance of
differences between normal and tumor tissues. (B) GSVA z-scores: This
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Exploring NUP62’s role in cancer
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from multi-omics analysis
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Background: NUP62, a key component of the nuclear pore complex, is closely
associated with cellular functions and cancer progression. However, its
expression patterns, prognostic value, and relationship with tumour immunity
and drug sensitivity across multiple cancers have not been systematically studied.
This study used multi-omics analyses combined with experimental validation in
gastric cancer to investigate the expression, functional characteristics, and
clinical relevance of NUP62 in cancer.

Methods: Data from TCGA, GTEx, and CPTAC databases were used to analyse
the expression, mutation characteristics, and clinical associations of NUP62.
Tools such as SangerBox, TIMER 2.0, and GSEA were employed to evaluate the
relationship between NUP62 and the tumour immune microenvironment, as well
as its involvement in signalling pathways. Immunohistochemistry and RT-PCR
were used to validate the expression of NUP62 in gastric cancer tissues. PRISM
and CTRP databases were utilised to assess the correlation between NUP62
expression and drug sensitivity.

Results: NUP62 was significantly upregulated in multiple cancers and was
associated with poor prognosis in cancers such as clear cell renal carcinoma
(KIRC), lower-grade glioma (LGG), and adrenocortical carcinoma (ACC), while
playing a protective role in others, such as bladder cancer (BLCA) and stomach
cancer (STAD). Functional analyses showed that NUP62 is involved in cell cycle
regulation, DNA damage repair, and tumour immunity. High NUP62 expression
was significantly correlated with increased infiltration of immune cells, such as
macrophages and T cells, and a higher response rate to immunotherapy. Drug
sensitivity analysis identified NUP62 as a marker of sensitivity to various
chemotherapeutic agents. Validation experiments demonstrated that NUP62
MRNA and protein levels were significantly higher in gastric cancer tissues than
in adjacent normal tissues.
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Conclusions: NUP62 plays a critical role in multiple cancers and shows potential
as a biomarker for cancer diagnosis, prognosis, and therapeutic response
prediction. Its role in tumour immunity and signalling pathways highlights its
potential as a target for immunotherapy and precision medicine.

Nup62, immune, pan cancer, gastric cancer, immune cell infiltration

1 Background

Cancer represents a major public health issue worldwide and is
the second leading cause of death in the United States. In 2022,
there will be nearly 20 million new cases of cancer, while 9.7 million
people will die of cancer. About one in five men or women will
develop cancer in their lifetime, while about one in nine men and
one in 12 women will die of cancer (1). The rate of decline in cancer
mortality has risen from about 1 percent per year in the 1990s, to 1.5
percent per year in the 2000s, to 2 percent per year between 2015
and 2020 (2).This trend reflects the increasing depth of human
research into cancer, which is closely related to advancements in
early cancer diagnosis and targeted therapy (3-5). Pan-cancer
analysis, which integrates multiple databases, can aid in the
identification of cancer biomarkers and therapeutic targets (6, 7).

Metabolic reprogramming is a hallmark of tumors, whereby
tumors undergo reprogramming of nutrient acquisition and
metabolic pathways to meet the bioenergetic, biosynthetic, and
redox demands of malignant cells (8, 9). There exists a close
interaction between metabolism and signaling pathways in cancer
cells, and several signaling pathways associated with cell
proliferation also regulate metabolic pathways that integrate
nutrients into biomacromolecules (10). Consequently, certain
cancer-related mutations enable cancer cells to acquire and
metabolize nutrients in a manner conducive to proliferation,
rather than efficiently producing ATP (11, 12). To fulfill the
demands of proliferation, cancer cells utilize processes such as
glycolysis, glutaminolysis, and fatty acid oxidation to meet their
energy requirements and metabolic synthesis processes (13, 14).
Studies have indicated that oxidative phosphorylation represents an
emerging target in cancer therapy (15). Furthermore, immune cells
within the tumor microenvironment (TME) exhibit metabolic shifts
similar to the glycolytic metabolic profile, leading to competition for
nutrients between cancer cells and tumor-infiltrating cells (16). On
the other hand, metabolic disturbances characterized by hypoxia
and elevated metabolite levels (especially lactate) in the TME can
result in immunosuppression (17, 18). Simultaneously, metabolic
dysregulation and imbalances in immune cells within the TME can
drive immune evasion and compromise treatment outcomes (19).

The primary function of the nuclear pore complex (NPC) is to
mediate transport between the nucleus and cytoplasm. Studies have
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shown that nucleoporins exert effects independently of the NPC in
both nuclear and cytoplasmic compartments, directly regulating gene
expression and participating in the regulation of development and the
cell cycle (20). Nucleoporin 62 (NUP62), a structural component of the
NPC, may mediate the localization of glucocorticoid receptors to the
nucleus after binding to steroids (21). Additionally, NUP62 can interact
with OSBP-related protein 8 (ORPS8), which has the ability to regulate
hepatic lipogenesis and plasma lipid levels (22). Furthermore,
numerous studies have demonstrated that NUP62 mediates selective
nucleocytoplasmic transport and is associated with various cancers
through chromosomal translocations that generate fusion proteins,
alterations in protein expression levels, and single-point mutations (23—
27). Specifically, high expression of NUP62 contributes to preventing
epidermal differentiation in squamous cell carcinomas originating from
stratified epithelia (27, 28).

2 Materials and methods
2.1 Data collection and processing

We obtained expression levels and related clinical characteristics of
NUP62 from the Cancer Genome Atlas (TCGA, http://
cancergenome.nih.gov/) and the Genotype-Tissue Expression
(GTEx, https://gtexportal.org/) databases through the Xena
platform at the University of California, San Diego. The mutation
frequency of NUP62 in the TCGA cohort was calculated using the
cBioPortal database (https://www.cbioportal.org/). Pan-cancer
analysis of TCGA samples was conducted using the online
bioinformatics tool SangerBox 3.0 (http://sangerbox.com/) (29).
Various immune infiltration algorithms in the TIMER 2.0 database
(http://timer.cistrome.org) were utilized to characterize the correlation
between NUP62 expression and the tumor immune microenvironment.

Expression profiles of human normal tissues and cancer cell
lines were obtained from the Human Protein Atlas (HPA, https://
www.proteinatlas.org/). Relevant chemotherapy data were retrieved
from the Genomics of Drug Sensitivity in Cancer (GDSC, https://
www.cancerrxgene.org/), Cancer Therapeutics Response Portal
(CTRP, http://portals.broadinstitute.org/ctrp/), and PRISM
databases to illustrate the relationship between NUP62 expression
and drug sensitivity. Cancer immune cycle data originated from the

frontiersin.org


http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://gtexportal.org/
https://www.cbioportal.org/
http://sangerbox.com/
http://timer.cistrome.org
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://portals.broadinstitute.org/ctrp/
https://doi.org/10.3389/fimmu.2025.1559396
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

Tracking Immune Phenotypes in Cancer (TIP, https://
biocc.hrbmu.edu.cn/TIP/), while Immune Phenotype Scores (IPS)
data were obtained from the TCIA website (https://tcia.at/home).

2.2 Expression and variation analysis

To investigate whether there were differences in NUP62
expression between tumor and normal tissues, we first compared
the expression of NUP62 mRNA between tumor and normal tissues
using the “wilcox” test. Subsequently, a paired “wilcox” test was
conducted on matched samples to validate protein expression at the
external gene transcriptome level in the GEO and CPTAC
databases. Additionally, we used the “gganatogram” R package to
visualize the expression of NUP62 in different human organs. The
cBioPortal website (http://www.cbioportal.org) served as a powerful
tool to search for NUP62 mutation frequency, types, copy number
alteration (CNA) data, and gene alteration traits. Furthermore, we
employed the “pROC” R package to calculate the Area Under the
Curve (AUC) value, illustrating the importance of NUP62 in pan-
cancer diagnosis.

2.3 Survival and clinical outcome analysis

Survival data were sourced from the TCGA database. We
analyzed the relationship between NUP62 expression and these
prognostic indicators, including Overall Survival (OS), Disease-
Specific Survival (DSS), Progression-Free Interval (PFI), and
Disease-Free Interval (DFI), using the “survival” and “survminer”
R packages. Kaplan-Meier (KM) analysis and univariate COX
analysis were combined to assess whether NUP62 was a
protective or risk factor, resulting in the creation of high-
confidence survival landscapes for NUP62. Additionally, the
“forestplot” R package was utilized for visual analysis of COX
survival data.

2.4 Subtyping of NUP62 and
immunotherapy analysis

Researchers conducted extensive immunogenomic analysis on
over 10,000 tumor samples encompassing 33 different cancer types
from the TCGA database. Across tumor types, they successfully
identified six immune subtypes by evaluating macrophage or
lymphocyte markers, Thl to Th2 cell ratios, the range of genetic
heterogeneity among tumors, aneuploidy, neoantigen burden range,
total cell landscape, immune-regulatory gene expression, and
prognosis. The six subtypes are introduced as follows:

Cl (Tissue Healing) subtype exhibits elevated angiogenic gene
expression, a high proliferation rate, and significant acquired immune
infiltration with a Th2 bias. Primary associated cancers include
colorectal adenocarcinoma (COAD), rectal adenocarcinoma (READ),
lung squamous cell carcinoma (LUSC), luminal A subtype of breast
invasive ductal carcinoma (BRCA), classical subtype of head and neck
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squamous cell carcinoma (HNSC), and chromosomally unstable
gastrointestinal subtype.

C2 (IFN-y Dominant) subtype demonstrates the highest M1/
M2 macrophage polarization, strong CD8 signaling, and, like the C6
subtype, the highest TCR diversity. Additionally, the C2 subtype
has a high proliferation rate, with primary associated cancers
including hypermutated BRCA, gastric cancer, ovarian cancer,
HNSC, and cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC).

C3 (Inflammatory) subtype shows elevated Th17 and Th1 gene
expression but fails to effectively inhibit tumor cell proliferation.
Like the C5 subtype, C3 has fewer aneuploidies and overall cellular
copy number alterations compared to other subtypes. Primary
associated cancers include most kidney cancers, prostate
adenocarcinoma (PRAD), pancreatic adenocarcinoma (PAAD),
and thyroid papillary carcinoma (THCA).

C4 (Lymphocyte-Depleted) subtype is characterized by
prominent macrophage features, Thl suppression, and high M2
responsiveness. Primary associated cancers include specific
subtypes of adrenocortical carcinoma (ACC), pheochromocytoma
and paraganglioma (PCPG), hepatocellular carcinoma (LIHC),
and gliomas.

C5 (Immunologically Silent) subtype has the lowest lymphocyte
count, the highest macrophage response, and is dominated by M2
macrophages. This subtype is primarily a subtype of low-grade
gliomas (LGG) of the brain, including glioma CpG island
methylator phenotype-high (CIMP-H), 1p/19q codeleted subtype,
and fibrillary astrocytoma-like (PA-like) type. Additionally, the
remaining types are mainly within the C4 subtype, while
isocitrate dehydrogenase mutant types are more prevalent in the
C5 subtype than in the C4 subtype.

C6 (TGF- Dominant) subtype is a smaller group composed of
a mix of cancers and does not dominate any TCGA subtype. This
subtype has the highest TGF-B signature and high lymphatic
infiltration, with equal distribution of Type I and Type II T cells.

This study further explored the relationship between NUP62
and patient prognosis in external datasets using the BEST database
and investigated the correlation between NUP62 expression and the
immunotherapy response in cancer patients (30).

2.5 Pathway and mechanism of
action analysis

To delve into the mechanism of action of NUP62-related
pathways, we classified various tumor samples based on NUP62
expression levels (the top 30% as the high-expression group and the
bottom 30% as the low-expression group). Subsequently, we
employed Gene Set Enrichment Analysis (GSEA) to investigate
the differential activation or inhibition states of 50 characteristic
genomic signatures and 83 metabolic genomic signatures between
the high and low NUP62 expression groups across different
malignancies. Utilizing the “GSVA” R package, we quantitatively
analyzed 14 functional status genomic signatures using the “z-
score” algorithm. Based on the z-score values of each genomic
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signature, we conducted subsequent data processing and analysis.
Furthermore, we applied “Pearson” correlation analysis to assess the
statistical correlation between the z-score of each genomic signature
and NUP62 expression levels. Additionally, we identified genes that
underwent significant changes in both high and low NUP62
expression groups.

2.6 Identification of chemicals interacting
with NUP62

To explore the potential association between NUP62 expression
and drug sensitivity, we leveraged the GSCA database (http://
bioinfo life.edu.cn/web/GSCALite/). Through the GSCA platform,
we obtained information on small molecule drugs from the GDSC and
CTRP databases. Furthermore, we identified genes differentially
expressed between the high and low NUP62 expression groups
across various malignancies. To screen for biomarkers closely related
to NUP62, we selected the top 150 significantly upregulated and
downregulated genes. Simultaneously, we downloaded the
CMAP_gene_signatures RData file, which contains 1,288 attributes
associated with compound functional characteristics.

3 Results

3.1 Expression and mutation of NUP62
in humans

Using unpaired and paired sample data from the TCGA
database, we conducted an in-depth analysis at the mRNA level
and observed an upward trend in NUP62 expression across
multiple cancer types, including Bladder Urothelial Carcinoma
(BLCA), Breast Invasive Carcinoma (BRCA), COAD, Esophageal
Carcinoma (ESCA), HNSC, Kidney Renal Clear Cell Carcinoma
(KIRC), Kidney Renal Papillary Cell Carcinoma (KIRP), LIHC,
Lung Adenocarcinoma (LUAD), LUSC, and Stomach
Adenocarcinoma (STAD) (Figures 1A, C). Additionally, we
further validated these findings in the CPTAC database
(Figure 1B). Figure 1D depicts the expression profile of NUP62 in
different human organs. Notably, NUP62 expression levels were
significantly upregulated in most cancer types, while they exhibited
a downward trend in testicular tissue. NUP62 displayed variable
expression patterns in most cancers, with mutation sites distributed
as shown in Figure 1E. Leveraging the cBioPortal (TCGA, Pan-
cancer Atlas) database, we comprehensively assessed the pan-cancer
mutational characteristics of the NUP62 gene. The results indicated
that the most common types of variations in NUP62 included
mutations, amplifications, and deep deletions, with Endometrial
Cancer, Cervical Cancer, and Bladder Cancer having the highest
mutation rates (Figure 1F). Subsequently, we conducted an in-depth
analysis of the distribution characteristics of NUP62 mutations
across different cancers and explored the types of single nucleotide
variants (SNVs). The results showed that missense mutations
dominated among various types of variations (Figure 1G). Finally,
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we conducted a comprehensive analysis of the distribution of
NUP62 and other genes in cancer samples. The results revealed
that among all cancer types, NUP62 was most widely distributed in
UCEC, while the TP53 signal was significantly distributed in most
cancers (Figure 1H).

3.2 Expression of NUP62 in cells

Based on fluorescence images provided by the Human Protein
Atlas (HPA), we observed that NUP62 is primarily localized within the
cell nucleus (Supplementary Figure 1A). Researchers systematically
analyzed normal tissues such as the cerebral cortex, liver, colon,
kidney, and pancreas, as well as tumor tissues such as lung cancer,
liver cancer, colorectal cancer, pancreatic cancer, and breast cancer,
using immunohistochemical techniques. The results indicated that
compared to normal tissues, the expression level of NUP62 in tumor
tissues exhibited a significant upward trend (Supplementary Figure 1B).

3.3 Correlation between NUP62 and
clinical characteristics across various
cancer types

As shown in Figure 2A, gender differences in NUP62 expression
levels are observed in sarcoma (SARC), KIRP, and the Pan-kidney
cohort (KIPAN), with significantly higher expression in female patients
compared to male patients. Additionally, the expression level of
NUP62 is closely related to age. In KIRP, PCPG, and ESCA, there is
a negative correlation between age and NUP62 expression (Figure 2G).
Furthermore, the expression of NUP62 is associated with various
cancer stages. In KIPAN and LIHC, differences in NUP62 expression
are observed among tumor patients with different T stages (Figure 2B).
In KIRP and ACC, NUP62 expression exhibits certain differences
across different N stages (Figure 2C). Only in ACC is there an
association between NUP62 expression and its M stage (Figure 2D).
In glioma (GBMLGG), LGG, HNSC, and LIHG, significant differences
in NUP62 expression are found among tumor patients with different G
stages (Figure 2E). In LIHC, NUP62 expression is correlated with its
stage classification (Figure 2F).

3.4 Diagnostic value of NUP62 in
pan-cancer

We evaluated the diagnostic capacity of NUP62 for various
cancers in both the TCGA dataset and the combined TCGA-GTEx
dataset (Figure 3A). The results indicated that the AUC value of
NUP62 in ESCA was >0.9, suggesting a high diagnostic value for
ESCA. Additionally, the AUC values in BRCA, LUSC, COAD,
STAD, READ, KIRC, and HNSC were all between 0.8 and 0.9,
indicating that NUP62 also has diagnostic value for these tumors.
Figures 3B, C depict the ROC curves of NUP62 in ESCA and BRCA,
respectively. Therefore, NUP62 is an effective diagnostic biomarker
across various cancer types.
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FIGURE 1

Expression and Mutation of NUP62. (A) Expression of NUP62 mRNA in tumor and normal tissues. (B) Expression of NUP62 in tumor and normal tissues from
the CPTAC database. (C) Expression of NUP62 in tumor and paired adjacent normal tissues. (D) Expression and distribution of NUP62 in organs of tumor and
normal tissues. (E) Mutation sites of NUP62. (F) Mutation frequencies and corresponding mutations of NUP62 in different cancers. (G) Gene alteration sites
and numbers of NUP62 in different cancers. (H) Distribution of NUP62 and other signals in cancers. *P<0.05. **P<0.01. ***P<0.001. ****P<0.0001.

3.5 Correlation between NUP62 expression
and pan-cancer prognosis

To gain deeper insights into the clinical significance of NUP62
in the field of cancer, we analyzed its prognostic value in multiple
malignant tumors. The results in Figure 4A clearly show that
NUP62 expression levels are significantly associated with poor
prognosis in various cancers, serving as a risk factor for their
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prognosis. Figures 4B-M present the KM survival curves for
overall survival (OS) based on NUP62 expression levels in some
cancers. The results indicate that high expression of NUP62 is
significantly associated with shorter OS in KIRP, KIRC, ACC, LGG,
LIHC, mesothelioma (MESO), skin cutaneous melanoma (SKCM),
and SARC (p < 0.05). However, in uveal melanoma (UVM), BLCA,
STAD, and CESC, high expression of NUP62 is associated with
longer survival, potentially playing a protective role.
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Survival Analysis Spectrum of NUP62 Across Multiple Cancer Types. (A) Correlation between NUP62 expression levels and OS, disease-specific
survival (DSS), disease-free interval (DFI), and progression-free interval (PFl). (B-M) Relationship between NUP62 expression levels and OS in patients

with different cancer types.

3.6 The role of NUP62 in cancer pathways

To delve deeper into the potential roles and specific functions of
NUP62 in cancer, we employed an integrated analysis of signature
gene expression to assess the activity status of NUP62 pathways. We
utilized the z-score parameter from Gene Set Variation Analysis
(GSVA) to quantify and evaluate 14 functional status gene sets,
covering angiogenesis, apoptosis, cell cycle regulation, cell
differentiation, DNA damage response, DNA repair mechanisms,
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epithelial-mesenchymal transition (EMT), hypoxic adaptation,
inflammatory response, invasive behavior, metastatic potential,
cell proliferation, cellular quiescence, and cellular stemness
features. From this, composite z-scores were obtained.
Subsequently, we calculated the Pearson correlation coefficients
between NUP62 and each functional status gene set score
(Figure 5A). The results revealed significant positive correlations
between NUP62 expression levels and cell cycle regulation, DNA
damage response, and DNA repair mechanisms. Additionally, we

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1559396
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

10.3389/fimmu.2025.1559396

", ] °§
3y 4.0
R¥021,p<2.26-16 =0.37, z R9018$€229~|6

R=0.32,p<22e-16 R=012,p<22e-16

Inflammation

Metastasis

Quiescence Stemness.

Oncogenic combined z-scores (zscore)

) SR

77 iy B v i s
o, pézze—w R=011,p<2.26-16 12,p<5.26-16 Re03n$ R=0.029, p=0.0031
pLPE2EETD : P RO

—2 0 2 = 0 2

-2 0 2
B NUP62 (zscore)

-2 0 -2 0 2

oo

LRI

Svees g‘o"'o'o'o'ooo- oosn
[ '.8' °

bsd

:!: o!oo !soo‘ ‘30-. 3?'/.
’3
®

KEGG: Vitarmin 86 Metaboli

KEGG: Valine Leucine And Isoleucine Degradation

KEGG e Leucine And lsoleucine Blosyines:

KEGG: Uniqunone And Other Terpenod- Guinons Biosynthesis
v

KEGG: Terpenoid Backbone Biosynthesis
KEGG: Taurine And Hypotaurine Metabolism
KEGG: Synihess And Degradaton Of Ketone Badies
G: Sulfur Metabolism

G2, it Hamons Bosyresis
KEGG Strox Sioyntness
KEGG: rose Metabolism
KeSe: pmngulpmm

EGG: Selenacompound| Meunansm
KESS Rbtam ot
KESS Rovnai wetapalam "
KEGG: Pyruvate Metaboism
° KEGG: Pyrimidine Metabolism

KEGG: Purine Metabolism

ate Pathiay
KEGG: Penlose And Glucuronsle ntrconversions

KEGG: Nitrogen Metabolisr
KEGG: Neotnate And Nicatnamide Metabolism
KEGS: Neomycin Kanamycin And Gentamicn Biosynthesis

synihesis.
° KEGG: Mucih Type O-Glycan Biosy

thesis
? [KEGE: Metaboa Of Xencbialcs By Gytochrome Pas0
KEGG: Mamose Type 0-Giycan Bosyntiesis
n

KEGG L holci AmMelzbohim

G:

KEGG: Glyoxylate And Dicarboxylate Metabolism

KEGG: ylphosphatidylinosilol Gpi-Anchor Biosynthesis
G: Glycosphingolpd Bosyninesis Lacto And Neolacto Series

.o
P
R

G

KEGG. Giycosaminbglycan Degradato

KEGG: rmmwm\yunamynmwl Keratan Su\labe

KEGG: Glycosaminoglycan Biosyninesis Hepara

KEGG Gycosamiadican e mness B natoin Suae Bermatan Sulate
A

KEGS Ghere s’:;ng And Mr;naw Metabolism
o ism NES
KEGS. Gcrcip et
KEGG: Glutathione Metabolism
KEGG: Galactose Metabolism N
KEGG: Fructose And Mannose Metabolism
KEGG: Folate Biosynthesis
KEGG: Fatty Acd Elongation o
KEGG Fatty Acd
KEGS Flty Acd Bosyninesis N
KEGG: Ether Lipid Meta
KEGG: Drug Meubeusm ‘Otner Enzymes
KGR, 0" tarane And O-Shsamate eiabol
: - mae Metabolsm E
KEGQ D-Atnng And b-Oroihne Metaseie 1og10(p.adjust
KEGS Cysieng And Metionine Melabolim . G0
KEGG: Citiate Cycle Tea Cyc
KEGS. Safone Metabatirs 25
KEGG: Butanoate Metabolsm
KEGG: Biotin Metabolism ® 5o
KEGG Blosyniness Of Unsatrated Faty Acids ® s
KEGG: Beta-Alanine Metabols
KEGG. Ascorbats And Aldarat Metabolsm
KEGS Arginine Blosynnesi
KEGG: Arginine And Proline Metabolism
KEGG: Arachidonic Acid Metabolsm
KEGG: Amino Sugar And Nucleotide Sugar Metabolism
KEGG: Alpha-Linolenc Acd Metabolm
KEGG Metabolism
Nt onobioic Mesbagem
Halmar ini Sea Catenin Sgnaing

u Response 5
infolded Protein Respy
® g  fHalmanc na e Ign:lmgvn N

a
ecretion

fllmark: PIck Akt Mior Signaling

fllmark: Peroxisome

almark: Pancreas Beta Cols

a

imark: Oxidatve P Pnuspnumannn
Hallmark: Notch Signs

Hallmark: Inflammatory Response
Halmar 5 3ok S Sonaing
Hallmark: 112 Stat5 Signaing
Hallmark: Hy

Halimar Hme Metabolis
allmar nali

o G;{jﬂ og Signaling

o hedxw
° falimark: Fatty Acid Metabolism
sk Esogen Rasponas Lt

@00 ©
?

s Ear
almar.EpirStal Mesanchymar Fansiton

e e Soaa

Aoopt
Sirtace
Halimar Amauunmn
Flmark. Anegen Response
Hallmark: Allograft Rejection
Halmark: Adpogeness

LGG| @ ©

Acc
BLCA
BRCA{ @
CESC{ @
cHoL
conp
DLBC{ ©
ESCA{ ®
GBM
HNSC{ @
KICH
KIRC{ @
KIRP{ @
LAML {00
LHC{ @&
LuAD{ ®
Lusc{ ®
MESO{ @
PAAD{ B
PCPG
PRAD
STAD{ @
TGCT{ B

READ
SARC
skem{| @

FIGURE 5

[ ]
z
iz
FE

UCEC
ucs
uwm

(A) Relationships between NUP62 and 14 malignant features of cancer; (B) Enrichment differences of NUP62 in 50 HALLMARK and 83 metabolic gene sets.

collected datasets from cancer patients and conducted Gene Set
Enrichment Analysis (GSEA). The analysis results indicated that
NUP62 may be involved in various tumor-related pathways and
metabolic regulatory processes, such as the G2/M checkpoint, E2F
transcription factor target genes, allograft rejection, and mitotic
spindle formation (Figure 5B).

Frontiers in Immunology 43

3.7 The relationship between NUP62 and
cellular pathways

Utilizing the TCGA database, we conducted an in-depth
exploration of the interaction between NUP62 and functional
proteins within the TCGA database, and found that NUP62
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exhibits significant correlations with multiple key functional proteins
across various cancer types. Specifically, in UVM, the expression level
of NUP62 is significantly positively correlated with CASPASES,
CYCLIN D1, CRAF (pS338), AKT, and RB proteins, while it is
significantly negatively correlated with the expression levels of ACC-
pS79, ACCl, CKIT, ATM, and PKCo. In ACC, the expression of
NUP62 is positively correlated with the expression of CABL protein
and negatively correlated with the expression of FOXO3A protein
(Figure 6A). Figure 6B illustrates the relationships between cancer
and 10 cancer-related pathways, where the activation of apoptosis,
activation, cell cycle, and DNA damage promotes the occurrence of
cancer. Subsequently, we detailed the most significantly correlated
functional proteins of NUP62 in ACC and UVM from the TCPA
database (Figures 6C, D).

3.8 The relationship between NUP62 and
immune subtypes and immunotherapy

Based on nearly 10,000 cancer samples from the TCGA database,
we subclassified them into six distinct immune subtypes. The analysis
revealed that C1, C2, C3, and C4 subtypes dominate among all
immune subtypes. Additionally, in cancer samples with high NUP62

10.3389/fimmu.2025.1559396

expression, the proportion of the C2 subtype was significantly higher
than that in samples with low NUP62 expression; conversely, in
patients with low NUP62 expression, the proportions of C3 and C5
subtypes were significantly higher than those in patients with high
NUP62 expression (Figure 7A). Subsequently, we delved into the
correlation between NUP62 expression levels and immunotherapy
response in clinical trials. Among the two immunotherapy cohorts
included in the study, patients with high NUP62 expression had a
significantly higher response rate to immunotherapy than those with
low expression (Figure 7B). Notably, we evaluated the potential efficacy
of NUP62 as a predictor of immunotherapy response using ROC curve
analysis (Figure 7C). By comparing the impact of two different
immunotherapy regimens on patients” overall survival, we found that
patients with elevated NUP62 expression had a significantly longer
overall survival compared to those with decreased NUP62
expression (Figure 7D).

3.9 The relationship between NUP62
and immunity

Immunotherapy has emerged as a primary modality in cancer
treatment, prompting our investigation into the potential association
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between NUP62 and cancer immunity. Our results indicate that
across various cancer types, the expression level of NUP62
significantly correlates with the expression of immune-related
genes, such as those in THCA, KIRC, KIRP, and PCPG
(Figure 8A). Furthermore, by examining the levels of immune cell
infiltration in the TME, we found that the expression of NUP62 is
significantly correlated with the infiltration levels of multiple immune
cell types, including Th1 cells, Th2 cells, dendritic cells (DC-TIMER),
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MO and M1 macrophages (Macrophages-M0-CIBERSORT),
neutrophils (neutrophil-TIMER), T cells (T-cells-MCPcounter),
and regulatory T cells (T-cells-regulatory-CIBERSORT), among
others, across several cancer types (Figure 8B). These findings
suggest that NUP62 may play a crucial role in the tumor immune
microenvironment, potentially affecting tumor growth and the
efficacy of immunotherapy by regulating the expression of immune

cells or immune-modulating genes.
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3.10 NUP62 may influence
chemotherapy response

We further delved into the potential association between
NUP62 expression levels and drug sensitivity. Results from both
PRISM and CTRP drug sensitivity experiments revealed a
significant correlation between NUP62 mRNA expression levels
and drug sensitivity. The PRISM drug sensitivity experiment
showed that the top three drugs positively correlated with NUP62
expression levels were trametinib, Ro-4987655, and AS-703026,
while the top three negatively correlated drugs were idronoxil,
sirolimus, and LY3023414 (Figure 9A). Similarly, the CTRP drug
sensitivity experiment also demonstrated that the top three drugs
positively correlated with NUP62 expression levels were
selumetinib, saracatinib, and PD318088, while the top three
negatively correlated drugs were axitinib, indisulam, and PRIMA-
1 (Figure 9B). The discovery of compounds that can significantly
modulate NUP62 activity holds important potential value for
developing novel and effective tumor treatment regimens. We
found that arachidonyltrifluoromethane significantly impacts
NUP62 expression across multiple tumor types (Figure 9C).
Subsequently, we detailed the specific effects of various
compounds on NUP62 in different tumor types and highlighted
the significant diagnostic and prognostic predictive value of NUP62
in these tumor types (Figures 9D-F).
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3.11 Validation of NUP62 expression levels
in gastric cancer

To validate our initial hypothesis, we employed
immunohistochemical techniques to conduct an in-depth analysis
of NUP62 protein expression levels in gastric cancer tissues and
their adjacent non-cancerous tissues. Figure 10A visually
demonstrates the distribution and intensity of NUP62 expression
in both non-cancerous and gastric cancer tissues. The research
findings indicate that the expression level of NUP62 in gastric
cancer tissues is significantly higher than that in their adjacent non-
cancerous tissues (see Figure 10B). Furthermore, through
quantitative PCR analysis, we found that the mRNA expression
level of NUP62 in gastric cancer tissues is also significantly elevated
compared to their adjacent non-cancerous tissues.

4 Discussion

Firstly, our study determined the expression and mutation
status of NUP62 in humans. The results indicated that NUP62
expression is generally higher in cancer cells compared to normal
cells. Mutations in NUP62 within tumors may lead to functional
abnormalities of NUP62, affecting normal cellular functions and
playing a role in tumorigenesis and progression. HPA fluorescence
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images and staining data demonstrated that NUP62 is primarily
localized in the nucleus, consistent with its role as a component of
the NPC (20, 31). Further stratification according to patients’
clinical characteristics revealed that NUP62 is associated with the
stages of multiple cancers, suggesting its role in tumor progression,
invasion, and metastasis (32-34). The expression of NUP62 is also
closely related to gender and age, which may be associated with
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hormones, cellular aging, decreased DNA damage repair capacity,
and increased cancer risk (35-37). In the TCGA dataset and the
combined TCGA-GTEx dataset, NUP62 exhibited high AUC values
across various cancers. Notably, in ESCA, the AUC value was >0.9,
indicating that NUP62 has significant value for the screening and
diagnosis of multiple cancers, particularly ESCA (38-40). Next, our
research found that NUP62 expression is associated with the
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prognosis of cancer patients, with differential expression observed
in different types of cancer patients, as confirmed by KM curves.
This suggests that NUP62 can serve as a prognostic marker for
some cancers to guide the selection of treatment regimens for
cancer patients, taking into account individual differences and
formulating personalized treatment plans (41-43). Further GSEA
analysis revealed that NUP62 is significantly associated with the cell

Frontiers in Immunology

cycle, DNA damage, and DNA repair, which may be related to
NUP62’s involvement in numerous tumor-related pathways and
metabolic processes, including the G2/M checkpoint, E2F target
genes, allograft rejection, and mitotic spindle. These pathways and
processes play crucial roles in cancer cell proliferation, invasion,
metastasis, and drug resistance, emphasizing the complexity and
diversity of NUP62 in tumors (44-48). Subsequently, we
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investigated the relationship between NUP62 and TCPA functional
proteins, further demonstrating the important role of NUP62 in
regulating the cell cycle of cancer patients.

We noted a decreasing trend in the expression level of NUP62 in
testicular cancer tissues, which contrasts with the upregulation of
NUP62 expression in most cancers. This difference in expression
patterns may reflect the unique biology of testicular cancer.
Therefore, we believe that testicular cancer is a validated
experimental subject worthy of further study. By deeply exploring the
expression regulation mechanism of NUP62 in testicular cancer, it is
expected to provide new ideas and methods for the diagnosis and
treatment of testicular cancer. We have not validated this for the time
being, but it will be an important direction for future research.

Although our study found that high expression of NUP62 was
associated with longer survival in these tumors, this does not mean
that NUP62 is necessarily protective in these tumors. It is possible
that the expression level of NUP62 is affected by a variety of factors,
which may have different roles in different types of tumors.
Therefore, the specific mechanism of action of NUP62 in these
tumors and its interrelationship with other biomarkers can be
further explored in subsequent studies, with the aim of providing
more accurate targets for the treatment of these tumors.

Nuclear pore complex core proteins were shown to be
extensively involved in metabolic reprogramming, such as
NUP37, Nup210 (49-51). Therefore we speculated that NUP62
might be involved in metabolic pathways in tumors. In the
subsequent analysis, we comprehensively analyzed the metabolic
pathways in which NUP62 might be involved in pan-cancer by
performing GSEA analysis on the KEGG metabolic gene set. The
results indicated that NUP62 may inhibit multiple metabolic
pathways in most tumors, such as steroid hormone synthesis,
fatty acid synthesis, and glucose metabolism. This finding reveals
a novel function of NUP62 as a nuclear pore complex core protein
in tumor metabolism. Traditionally, NUP62 is mainly thought to be
involved in the regulation of nuclear-plasmic transport and cellular
signaling, whereas this study links it to metabolic pathways in
tumors, providing a new perspective for understanding the role of
NUP62 in tumorigenesis and progression.

Simultaneously, our research also revealed that the expression of
NUP62 is significantly correlated with the infiltration levels of various
immune cells, indicating that NUP62 can regulate the tumor immune
microenvironment by influencing immune cells (52-55).

We delved into the correlation between NUP62 expression
levels and immunotherapy response. The results showed that in
clinical trials of immunotherapy, the response rate to
immunotherapy was significantly higher in patients with high
NUP62 expression than in patients with low expression. This
suggests that NUP62 may be an important biomarker for
predicting response to immunotherapy (56). By detecting
patients’ NUP62 expression levels, physicians may be able to
more accurately predict which patients are more likely to benefit
from immunotherapy, thereby optimizing the treatment regimen
and improving the therapeutic efficacy. The results of the ROC
curve analysis showed the potential efficacy of NUP62 in predicting
immunotherapy response, which provides a new way of thinking
for the development of immunotherapy evaluation methods (57).
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Traditional immunotherapy assessment methods mainly rely on
indicators such as changes in tumor size, but these indicators often
suffer from lag and inaccuracy. In contrast, biomarker-based
prediction methods may be able to assess immunotherapy effects
earlier and more accurately, thus guiding the adjustment and
optimization of treatment regimens (58, 59). The study also
found that the overall survival of patients with high NUP62
expression in immunotherapy was significantly longer than that
of patients with low expression. This suggests that NUP62 may be
associated with immunotherapy resistance (60). Through in-depth
study of the mechanism of NUP62’s role in immunotherapy
resistance, it may provide new strategies and methods for
overcoming immunotherapy resistance, thereby improving the
effectiveness of immunotherapy and patient survival (61, 62).

The significant negative correlation of NUP62 with CTLA-4
may imply that the low expression of NUP62 in these two cancers is
associated with an attenuated immunosuppressive state (63). This
suggests that NUP62 expression in these cancers may not be the
primary factor promoting immune evasion or that it interacts in a
complex manner with other immune regulatory mechanisms. The
significant correlation of NUP62 with the expression of immune-
related genes (e.g., THCA, KIRC, KIRP, and PCPG) in multiple
cancer types suggests that it may play a role in a wide range of
immune regulatory processes (64). This further supports the idea
that NUP62 serves as an important node in the cancer
immunoregulatory network. Given the significant correlation of
NUP62 with immune-related genes, it could be a potential target for
immunotherapy (65). By regulating the expression or function of
NUP62, it may be able to influence the activity of immune cells and
the immune status in the tumor microenvironment, thus providing
new strategies for immunotherapy. In the future, further in-depth
studies can be conducted to investigate how NUP62 interacts with
immune-related genes and how these interactions affect the tumor
immune microenvironment and immunotherapeutic effects (66).

The findings suggest that NUP62 expression level may become a
marker for predicting the efficacy of specific drugs (67). This means
that in future clinical practice, physicians can select the most likely
effective drugs based on a patient’s NUP62 expression level, enabling
more precise and personalized treatment (68). By understanding the
relationship between NUP62 and drug sensitivity, drug developers can
design new drugs in a more targeted manner, especially for those drugs
that are positively or negatively correlated with NUP62 expression
levels (69). This biomarker-based drug development strategy is
expected to improve the success rate and clinical application of new
drugs. In addition, by monitoring changes in NUP62 expression levels,
physicians can make timely adjustments to treatment regimens to
avoid or delay the onset of drug resistance. In addition, the efficacy of
certain drugs, such as those negatively correlated with NUP62
expression levels, may be affected by NUP62 expression levels, and
therefore, other alternative drugs or combination strategies may need
to be explored in specific patient populations (70, 71). The present
study reveals a novel role of NUP62 in drug sensitivity, which provides
important clues for an in-depth understanding of its biological
functions and regulatory mechanisms. This can help to further
expand the application areas of biomarker research and improve the
diagnosis and treatment of diseases such as cancer (72-74).
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Additionally, we validated the differential expression of
NUP62 between gastric cancer tissues and their adjacent non-
cancerous tissues.

In summary, this study revealed the expression characteristics of
NUP62 in multiple malignancies and its associations with tumor-
related pathways, clinical features, prognosis, and tumor immunity.
These findings provide crucial insights into our understanding of the
role of NUP62 in tumors and offer new targets for future tumor
diagnosis and immunotherapy. However, to fully uncover the
mechanisms of NUP62 in tumors, further in-depth research and
exploration are required.
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Background: Sepsis-induced cardiomyopathy (SIC) presents a critical
complication in cancer patients, contributing notably to heart failure and
elevated mortality rates. While its clinical relevance is well-documented, the
intricate molecular mechanisms that link sepsis, tumor-driven inflammation, and
cardiac dysfunction remain inadequately explored. This study aims to elucidate
the interaction between post-tumor inflammation, intratumor heterogeneity,
and the dysfunction of VSMC in SIC, as well as to evaluate the therapeutic
potential of exercise training and specific pharmacological interventions.

Methods: Transcriptomic data from NCBI and GEO databases were analyzed to
identify differentially expressed genes (DEGs) associated with SIC. Weighted gene
co-expression network analysis (WGCNA), gene ontology (GO), and KEGG
pathway enrichment analyses were utilized to elucidate the biological
significance of these genes. Molecular docking and dynamics simulations were
used to investigate drug-target interactions, and immune infiltration and gene
mutation analyses were carried out by means of platforms like TIMER 2.0 and
DepMap to comprehend the influence of DVL1 on immune responsiveness.

Results: Through the utilization of the datasets, we discovered the core gene
DVLI that exhibited remarkable up-regulated expression both in SIC and in
diverse kinds of cancers, which were associated with poor prognosis and
inflammatory responses. Molecular docking revealed that Digoxin could bind
to DVL1 and reduce oxidative stress in SIC. The DVL1 gene module related to SIC
was identified by means of WGCNA, and the immune infiltration analysis
demonstrated the distinctive immune cell patterns associated with DVL1
expression and the impact of DVL1 on immunotherapeutic resistance.

Conclusions: DVL1 is a core regulator of SIC and other cancers and, therefore,
can serve as a therapeutic target. The present study suggests that targeted
pharmacological therapies to enhance response to exercise regimens may be a
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novel therapeutic tool to reduce the inflammatory response during sepsis,
particularly in cancer patients. The identified drugs, Digoxin, require further in
vivo and clinical studies to confirm their effects on SIC and their potential efforts
to improve outcomes in immunotherapy-resistant cancer patients.

sepsis induced cardiomyopathy, DVL1, intratumor heterogeneity, oxidative stress, drug
therapy, immunotherapy resistance, molecular docking, exercise training

1 Background

Sepsis-induced cardiomyopathy (SIC) is a common serious
complication in critically ill cancer patients (I, 2). This condition
leads to cardiac dysfunction, which is strongly associated with multiple
organ failure, thereby increasing the risk of death (1, 2).
Epidemiological studies have shown that SIC has a high incidence in
critically ill patients, especially in cancer patients with accompanying
sepsis, where its mortal (3, 4). This may be closely related to factors
such as cancer-related chronic inflammation and immune dysfunction
(5, 6). In recent years, an increasing number of studies have focused on
the mechanisms of SIC in cancer patients, finding that the tumor
microenvironment (TME) may interact with the immune imbalance
related to sepsis, thus aggravating the development of SIC (7, 8). In
addition, immunotherapy, chemotherapy, and targeted therapy may
have an impact on the cardiovascular system and further increase the
susceptibility to SIC in cancer patients (9, 10). In recent years, with
technological advances, through RNA sequencing and spatial
transcriptomics, scientists have revealed the functions and
interactions of immune cells in the tumor microenvironment (11—
13). Therefore, the systematic investigation of the molecular
mechanisms of SIC and the exploration of potential therapeutic
strategies may have important clinical implications for improving the
prognosis of cancer patients (14). The pathomechanisms of SIC involve
systemic inflammation, oxidative stress, mitochondrial dysfunction, as
well as immune dysregulation (15, 16). In sepsis, a large number of
proinflammatory cytokines (INF- o, IL-6, IL-1 ) are released,
triggering a cascade of inflammatory responses, leading to
cardiomyocyte damage, mitochondrial collapse, deregulation of
calcium homeostasis and, ultimately,myocardial contractile
dysfunction (4, 17). In addition, oxidative stress and overproduction
of ROS not only exacerbate cellular damage but may also further
worsen the progression of SIC by inducing the loss of mitochondrial
membrane potential and abnormal energy metabolism (18, 19).
Increasing awareness of the role of cell death and metabolic
regulation in disease progression is providing new targets and
strategies for developing drugs (20-22). In cancer patients, the
occurrence of SIC is also significantly affected by the tumor
microenvironment. Macrophage polarization is closely related to
changes in the immune microenvironment and crosstalk between
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immune cells (23, 24). Immunosuppressive cytokines secreted by
tumors, such as TGF-f3 and IL-10, weaken the body’s ability to resist
infection and inhibit the normal regulation of inflammatory response,
leading to more severe sepsis-related myocardial injury (25, 26). At the
same time, patients resistant to immunotherapy may exhibit more
severe sepsis-associated cardiac damage, as TME-driven immune
escape mechanisms may further contribute to inflammatory
imbalance and immune hyperactivation in a septic setting (27, 28).
Although the molecular mechanisms of SIC have been well studied in
typical sepsis patients, the specific characteristics of SIC, immune-
metabolic interactions, and their responses to existing treatment
options in cancer patients are still underexplored (29, 30). Cancer-
induced chronic inflammation and immunosuppression may
exacerbate the development and progression of SIC, highlighting the
importance of studying the role of tumor-associated immune
regulation in the progression of sepsis-associated cardiomyopathy
(31). In particular, considering the complexity of the cancer
microenvironment, which includes different genetic, cellular, and
tissue characteristics, leading to different therapeutic responses (32, 33).
The pathogenesis of SIC is closely related to the systemic
inflammatory response, excessive cytokine release, and oxidative
stress (34, 35). Hyperactivation of the immune system during
sepsis leads to the massive release of pro-inflammatory cytokines
such as tumor necrosis factor- o0 (TNF- o), interleukin-6 (IL-6), and
interleukin-1 B (IL-1 B) (36, 37). These inflammatory mediators
disrupt cardiac function, induce mitochondrial damage,
dysregulation of calcium homeostasis, and promote cardiomyocyte
apoptosis (38, 39). This inflammatory cascade is more complex
in cancer patients, further exacerbated by tumor-induced
immunosuppression. Tumor cells can secrete immunosuppressive
cytokines such as transforming growth factor- § (TGF- ) and
interleukin-10 (IL-10), which can inhibit the activation of cytotoxic
immune cells and promote the formation of an immunotolerant
tumor microenvironment (40, 41). Moreover, oxidative stress is also a
key factor in the development of SIC. Reactive oxygen species (ROS)
accumulation causes cell damage and apoptosis, which further
deteriorates cardiac function and intensifies cardiac dysfunction
(42, 43). Bioinformatics technologies have played a key role in the
study of gene expression and regulatory mechanisms, providing an
essential basis for understanding biological processes (44, 45).
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The high incidence rate and the high intratumoral heterogeneity
of tumors show the high pathological characteristics of SIC in
cancer patients, as well as the high variability of treatment (46,
47). This heterogeneity is implicated by genetic variation and
phenotypic heterogeneity, directly modulating the effectiveness of
various treatment modalities, including immunotherapy. This
variation presents a barrier to consistent clinical results (2, 48).
Hence, it is crucial to understand the interaction between systemic
inflammation, genetic variation, and the tumor microenvironment
for the development of personalized treatment strategies for SIC in
cancer patients (49, 50). While SIC is commonly associated with
acute cardiac insufficiency and with symptoms such as hypotension
and arrhythmia, clinically, it is associated with a decreased survival
rate (1, 2). Continuous deterioration in cardiac function is associated
with a marked reduction in quality of life. Still, it may also enhance
the onset of complications, including chronic heart failure (CHF)
and systemic multiorgan dysfunction (SOD) (51, 52). Thus, an in-
depth understanding of the underlying pathogenic mechanisms of
SIC will contribute to the exploration of therapeutic strategies with
higher targeting and clinical applicability (53, 54). Individualized
precision medicine intervention strategy combining several factors
could be more beneficial to improve the therapeutic outcome of SIC
(55). Despite extensive research on the inflammatory response and
cellular damage mechanisms of SIC, there remain significant gaps in
understanding the role of specific cell types, such as VSMCs, in
sepsis-associated cardiac dysfunction (56). Most of the existing
studies have focused on the effects of cytokine release on
cardiomyocytes and ignored the role of VSMCs as an essential
component of the cardiovascular system in the development of SIC
(57, 58). VSMCs are mainly responsible for maintaining vascular
stability and regulating vascular tone, enabling blood vessels to adapt
to dynamic changes in blood pressure and blood flow (59,
60).VSMCs can transition from a contractile to a synthetic form in
a sepsis-induced inflammatory setting, displaying both pro-
inflammatory and pro-oxidative traits (61, 62). This pathological
remodeling not only exacerbates the vascular dysfunction but also
may further drive the progression of SIC by worsening the
myocardial microcirculation and exacerbating cardiac
inflammation (48, 63). Single-cell multi-omics analysis can analyze
the complex physiological processes at the single-cell level, facilitate
a deep understanding of the transplant immune mechanism, and
provide support for the optimization of treatment options (64, 65).
Therefore, studying the mechanism of VSMCs in sepsis-related
cardiac dysfunction will not only contribute to a deep
understanding of the pathogenesis of SIC but may also provide
new potential therapeutic targets to lay the foundation for precise
intervention of SIC.

In this study, the DVLI protein has become a key point. DVLI is
a core regulator of the Wnt/f -catenin signaling pathway and is
capable of regulating cell proliferation, differentiation, and apoptosis
(48, 63). In various cancers, abnormal DVLI expression is associated
with poor prognosis, indicating its relevance in tumor biology (66).
Advances in big data technologies and bioinformatics tools have
driven the identification and validation of disease markers, especially
in the areas of immune microenvironment, cellular signaling, and
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metabolic regulation (67, 68). In a septic setting, abnormal activation
of DVL1 may affect macrophage polarization and disrupt the balance
between proinflammatory M1 and immunosuppressive M2
macrophages, thereby exacerbating the systemic inflammatory
response and inhibiting immune recovery, accelerating SIC
progression (58). In cancer metabolism, DVL]1 may regulate
glycolysis and mitochondrial bioenergetic metabolism through the
Wnt signaling pathway (58, 69). It is shown that DVLI
overexpression may enhance the metabolic plasticity of tumor-
associated immune cells and cardiomyocytes, leading to abnormal
glucose utilization and impaired oxidative phosphorylation, thus
aggravating the myocardial energy crisis in SIC (31, 70). Moreover,
DVLI may affect cardiac dysfunction through oxidative stress
associated with mitochondrial signaling (71, 72). Studies have
shown that overexpression of DVLI can increase reactive oxygen
species (ROS) generation, directly disrupt cardiomyocytes, and
perturb the mitochondrial membrane potential (73, 74). Wnt
signaling can also affect mitochondrial biosynthesis by interacting
with PGC-1 o, exacerbating metabolic and function decline in SIC
(75, 76). Although DVLI is recognized as a key factor in
gastrointestinal cancer and SIC, its specific molecular roles and
pathways in sepsis, cancer metabolism,and cardiac dysfunction
have not been fully explored (70, 77). Further exploration of the
mechanism by which DVLI regulates SIC could provide new ideas
for the treatment of SIC (69, 78).

This research seeks to examine how post-tumor inflammation
interacts with VSMC dysfunction, aiming to bridge a significant gap
in the understanding of SIC mechanisms. Subsequently, determine
potential therapeutic targets to alleviate the treatment burden of SIC
in individuals with cancer (56, 79). Paying particular attention to
the DVL1 expression pattern in gastrointestinal cancers and
evaluating the potential utility of FDA approved drugs in the
treatment of SIC(37,38). This study also combines bibliometric
analysis to judge the application trend of computer-assisted drug
design in SIC-targeted therapy, and to provide a theoretical basis for
the development of new therapeutic strategies in the future (80, 81).
The application of network pharmacology and experimental
validation methods in drug research provides new approaches
and strategies for drug research and development, such as
studying the mechanism of action and efficacy of a drug in the
treatment of new diseases (82, 83).

New technologies and molecular research methods have played an
essential role in disease research and treatment (84, 85). This study
adopted a multi-level integration strategy to integrate transcriptomic
data analysis (86). Through the deep mining of a large number of
transcriptomic data, key genes and signaling pathways closely related
to various physiological and pathological processes can be screened
out, and potential targets for drug development can be identified (87,
88). Meanwhile, the key genes and signaling pathways associated with
SIC were systematically analyzed (89, 90). The study of the regulatory
mechanisms of multiple biological processes provides a basis for the
optimization of intervention strategies (91-93). In recent years,
precision-targeted intervention strategies targeting specific proteins
or gene pathways have made breakthroughs in improving treatment
specificity or clinical efficacy. The combination of transcriptomics
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with proteomics reveals key regulatory mechanisms of transcription
factor networks and protein modification in disease (94, 95). This
experimental study provides a successful experience for
the individualized treatment of SIC (96, 97). This study further
revealed the regulatory mechanism of VSMC dysfunction in SIC by
post-tumor inflammation, focusing on immune cell infiltration,
genetic heterogeneity, and its association with cardiovascular injury
and assessing the potential of pharmacological intervention to
alleviate pathological effects (98, 99). These findings enhance the
comprehension of SIC’s pathogenic mechanisms and support the
creation of personalized treatment approaches (43, 48). By integrating
bioinformatics, transcriptomics, and pharmacological techniques, we
will study the specific role of A fresh perspective on precision
treatment for SIC patients provided by DVL1 in SIC (100, 101).

2 Materials and methods

2.1 Analysis of differential gene expression
in sepsis-related cardiomyopathy

Transcriptomic datasets concerning sepsis-related cardiomyopathy
were sourced from the NCBI and GEO databases (http://
www.ncbinlm.nih.gov/geo/) (102, 103). For this study, two specific
datasets were chosen: GSE172270, containing 20 peripheral blood
samples from healthy individuals and 47 from patients with acute
myocardial infarction (AMI), and GSE57065, which includes 25
samples from healthy controls alongside 28 from individuals
diagnosed with sepsis (103, 104). Differential gene expression analysis
was conducted using the limma package, applying a threshold of an
adjusted P-value < 0.05 and |log2 fold change (log,FC)| > 1.00 to
identify differentially expressed genes (DEGs). Volcano plots were
employed to visualize the DEGs. To pinpoint common genes linked
to sepsis-induced cardiomyopathy, Venn diagrams were used for
comparative analysis. Subsequently, Gene Set Enrichment Analysis
(GSEA) was performed to elucidate the functional roles of gene sets
implicated in sepsis-related cardiomyopathy.

2.2 Development of a weighted gene co-
expression network

To investigate gene expression patterns associated with sepsis-
induced cardiomyopathy, genes exhibiting variance levels above the
upper quartile were initially selected (90, 105). These selected genes
were subsequently analyzed using the “WGCNA” package within R
software to establish a weighted gene co-expression network
(WGCNA) specific to sepsis-induced cardiomyopathy (55). The
optimal soft-thresholding power (3) was determined by clustering
the samples and using a scale-free network model to establish the
association network by calculating the gene connection adjacency
matrix. The topological overlap matrix (TOM) was used to
measure gene similarity and create a hierarchical clustering tree.
Dynamic tree-cutting methods were then employed to identify and
refine gene modules from a constructed gene dendrogram. After the
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modules were established, the module eigengenes (MEs) for each
cluster were calculated, followed by correlation with clinical
characteristics of the AMI patients. To calculate the correlation
between MEs and clinical traits, Pearson correlation was computed
to find a module associated most closely with AMI, which was
termed the key hub module. Further analyses were performed on
this module, including validation of differentially expressed genes
and functional enrichment. WGCNA was performed to screen hub
genes, which were then overlapped with differentially expressed
genes in sepsis-induced cardiomyopathy. This resulted in the
identification of core genes closely associated with sepsis-induced
cardiomyopathy. Using the clusterProfiler gene ontology (GO),
common target genes for sepsis-induced cardiomyopathy were
examined. R package in R and Perl. To elucidate the biological
functions of these targets, this analysis involved the main GO
categories, namely Cellular Component (CC), Molecular Function
(MF), and Biological Process (BP). KEGG pathway enrichment
analysis was also conducted using the clusterProfilerKEGG. R
package, and pathway visualization performed using the path
view package. The enrichment factor was used to assess the
relevance of core pathway enrichments, revealing biological
functions and signaling pathways that are involved in the
pathophysiology of sepsis-induced cardiomyopathy.

2.3 Screening of FDA-approved drug
library and molecular docking analysis

A library of 2,568 small molecules, all approved by the FDA
(Food and Drug Administration), was selected for screening (106,
107). The molecular structures of these compounds were retrieved in
SDF format from the DrugBank database (https://go.drugbank.com/)
(108, 109). These molecules were imported into Chem3D software,
where the structural optimization and energy minimization were
performed using the MMFF94 force field (Halgren, 1999) within the
Calculation module, and the optimized structures were saved in
mol2 format. Core protein domains in pdb format were obtained
from the PDB database (http://www.rcsb.org/), and preliminary
processing, including solvent removal, was performed using PyMol
software. Further preparations, including the addition of hydrogen
atoms and assignment of charges, were executed using
AutoDockTools, with both the protein targets and small
molecules saved in pdbqt format. Grid parameters, including
positions and dimensions, were defined, and the molecular
docking between the ligands and target proteins was performed
using Autodock-Vina. The results were analyzed using clustering
heatmaps generated in R software, and PyMol was used for
visualizing the docking interactions, yielding detailed molecular
docking model diagrams.

2.4 Molecular dynamics simulation

Molecular dynamics (MD) simulations were performed using
Gromacs version 2019.6 (110, 111). The optimal protein-ligand
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docking model, as determined from docking outcomes, was selected
as the starting conformation for the simulation, with GAPDH used
as a positive control (112, 113). The protein was modeled using the
amberl4sb force field, whereas the small molecule was represented
with the Gaff2 force field. Using the TIP3P water model, the
complex system was solvated, and a water box was formed with
sodium ions to neutralize its charge. The Verlet and cg algorithms
were used for elastic simulations, with Particle-Mesh Ewald (PME)
handling electrostatic interactions. The system was subjected to
energy minimization through the steepest descent method with a set
step limit. The cutoff distances for Coulomb and van der Waals
forces were set at 1.4 nm. Equilibration was achieved through both
the constant volume (NVT) and constant pressure (NPT)
ensembles, followed by a 100 ns MD simulation under standard
temperature and pressure conditions. During the MD run, the
LINCS algorithm was used to constrain hydrogen bonds with a
two fs integration time step. PME calculations utilized a cutoff
distance of 1.2 nm, while a 10 A cutoff was set for non-bonded
interactions. Temperature was kept at 300 K using the V-rescale
thermostat, and pressure was stabilized at 1 bar with the Berendsen
barostat. A 30 ps equilibration period was conducted under both
NVT and NPT conditions at 300 K, preceding the 100 ns MD
simulation of the protein-ligand complex. Local conformational
shifts during the simulation were assessed using the root mean
square fluctuation (RMSF) with a threshold of 0.2. The radius of
gyration (Rg) was used to evaluate the structural compactness of the
system, while RMSF offered insights into specific site fluctuations
throughout the simulation.

2.5 Expression landscape analysis of DVL1
in gastrointestinal tumors

Recognizing the close association between gastrointestinal
tumors and sepsis, this study performed a comprehensive analysis
of DVLI expression in various gastrointestinal cancers (COAD,
ESCA, READ, and STAD) by comparing its expression in tumor
and adjacent normal tissues to elucidate its role in tumor
development (114, 115). Data from the TCGA and GTEx
databases were integrated to investigate disparities in DVLI
expression between healthy individuals and cancer patients. The
ability of DVLI levels to distinguish between cancerous and healthy
tissues was assessed using the pROC package, which included
calculating the 95% confidence interval, the area under the curve
(AUCQ), and creating ROC curves. Additionally, expression patterns
of DVLI in various cell subpopulations were analyzed using single-
cell datasets associated with gastrointestinal tumors.

For methylation analysis, emphasis was placed on the TSS1500,
TSS200, 1st Exon, and 5" UTR regions, using Spearman correlation
analysis to examine the relationship between methylation status and
gene expression—particularly appropriate for analyzing
correlations in non-normally distributed data. Copy number
variation (CNV) analysis was carried out on 451 samples using
the GISTIC scoring method, and the results were presented through
bar charts. Chromosomal alterations were quantified, with

Frontiers in Immunology

10.3389/fimmu.2025.1560717

indicators defined from C1 to C5. To explore expression
differences among gene subgroups, ANOVA and TukeyHSD were
employed for multiple comparisons.

Pathway activity was evaluated using the GSVA package with four
parameters—z-score, GSVA, ssGSEA, and PLAGE—standardizing
the results to Z-Score values. Differences in expression between
tumor and normal tissues were tested using the Wilcoxon Rank
Sum Test and visualized through boxplots using the ggplot2
package. The pan-cancer mutation landscape of the DVL1 gene was
illustrated using the plotmafSummary function from the maftools
package. Additionally, immune infiltration data from TCGA samples
were retrieved from the TIMER 2.0 database to evaluate the presence
of different immune cell types in the tumor microenvironment and
their correlation with DVL1 expression. Correlations between
immune cell abundance and gene expression were clearly illustrated
using bar-scatter plots, showing correlation coefficients.

2.6 Spatial transcriptomic analysis of core
genes at the single-cell level

In this paper, gene expression data obtained from the TISCH
database for rectal cancer at the single-cell level up to October 2023
were analysed (116, 117). Heatmap of Gene Expression Patterns at
the Single Cell Level in Different Cancer Types In order to detect
and preserve gene expression patterns in different types of cancers,
hierarchical clustering was performed using Euclidean distance and
Ward’s minimum variance method. Due to the use of UMAP
(Uniform Mobility Approximation and Projection) for high-
dimensional data exploration, the original data structure was
preserved as part of an algorithm designed specifically for non-
linear data. Using UMAP to elucidate biological differences in gene
expression in our cohort. The Kruskal-Wallis rank sum test was
used to determine differences in gene expression between cell types.
The Wilcoxon rank sum test is a non-parametric test used to
determine if there is a significant difference between two
independent groups. It does not assume that the data follow a
normal distribution. The AUCell score, which quantifies the
variability of pathway activity in single cells, was also used, as
well as UMAP for visualisation. This approach provides a
comprehensive view of the distribution of pathway activity and
helps to identify potential biological differences.

2.7 Cell culture

RAW 264.7 Mouse macrophages (ATCC, Rockville, USA) were
cultured in DMEM medium containing 10% heat-inactivated foetal
bovine serum (FBS), 100 U/mL penicillin, and 100 ug/mL
streptomycin at 37°C under 5% CO,. Digoxin and general HPLC
reagents were purchased from Sigma (St. Louis, MO, USA). Cell
culture media and supplements were provided by Invitrogen
(Carlsbad, USA). THP-1 human monocytes (ATCC, Rockville,
USA) were cultured in RPMI 1640 medium, which also contained
10% FBS, 100 U/mL penicillin, and 100 pg/mL streptomycin, and
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incubated under the same conditions at 37°C and 5% CO,
conditions. To induce differentiation into macrophages, THP-1
monocytes were exposed to PMA (100 ng/mL) for 5 days. To
investigate the effect of Digoxin on P-glycoprotein (P-gp) activity in
macrophages, RAW 264.7 cells were treated with 0.2 uM Digoxin
for 4 hours (118, 119). Digoxin concentrations used in the
treatments included 0, 0.025 mM (low), 0.05 mM (medium), and
0.1 mM (high).

Human colorectal cancer cell lines, including HCT116, SW480,
CX-1, SW620, LoVo, COLO 205, LS-174T, and the normal colonic
mucosa cell line FHC, were purchased from the American Typical
Culture Collection (ATCC, Manassas, VA, USA). HCT116 cells
were cultured in DMEM/F12 medium supplemented with 10% fetal
bovine serum (FBS). SW480, SW620, and LoVo cells were
maintained in DMEM containing 10% FBS. CX-1 and COLO 205
cells were grown in RPMI-1640 medium containing 10% FBS. In
contrast, LS-174T cells were grown in Eagle Minimum Essential
Medium (MEM) supplemented with 1% non-essential amino acids,
1 mM sodium pyruvate, and 10% FBS. Eagle Minimum Essential
Medium (MEM) supplemented with 1% non-essential amino acids
and 10% FBS. All cells were incubated at 37°C in a humidified
environment with 5% CO,.

2.8 Statistical analysis

All statistical analyses were carried out with the help of
GraphPad Prism 8.0 software. Descriptive statistics were used to
summarise general data (120). For quantitative data, a t-test was
used to compare means between two groups using an independent
samples t-test. One-way analysis of variance (ANOVA) was used to
assess differences in means between groups. P-values less than 0.05
were considered to indicate statistical significance.

3 Result

3.1 Core genes and pathways in sepsis-
induced myocardial dysfunction: the role
of DVL1

The transcriptome analysis of Sepsis-Induced Myocardial
Dysfunction (SIMD) across datasets, including GSE122720 for
Acute Myocardial Infarction (AMI) and GSE57065 for sepsis,
revealed significant differential expression patterns, with five core
genes (KIF11, TOP2A, DVL1, RRM2, SERPINB2) being
consistently differentially expressed across both conditions
(Figures 1A-E). The hierarchical clustering of these genes
highlighted distinct expression profiles, emphasizing their
potential role in SIMD (Figure 1C). Subsequent Gene Ontology
(GO) and KEGG pathway enrichment analyses identified key
biological processes and pathways, such as the Wnt signaling
pathway and complement cascades, which are implicated in the
disease’s pathophysiology (Figures 1D-E). Further exploration
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using Weighted Gene Co-expression Network Analysis
(WGCNA) pinpointed the MEturquoise module as significantly
correlated with SIMD, containing numerous hub genes, including
the core gene DVLI1, which was consistently upregulated in SIMD
(Figures 1F-I). The relative expression analysis of DVLI across
different patient groups further supported its potential as a
biomarker, with significant upregulation observed in SIMD cases
(Figure 1I). Supplementary analyses extended these findings to
gastrointestinal tumors, where DVL1 was linked to poor
prognosis and altered immune landscapes, reinforcing its role as a
critical gene across multiple conditions (Supplementary Figure 1).
Together, these results highlight the central role of DVLI in SIMD
and its broader implications in disease, positioning it as a promising
target for future therapeutic strategies.

3.2 Molecular docking and dynamics
simulation of DVL1 as a drug target

The identification of DVL1 as a drug target was conducted
through a combination of molecular docking and molecular
dynamics (MD) simulations, revealing significant insights into its
interactions with FDA-approved drugs. Table 1 presents the
binding affinity and docking scores of various compounds
interacting with the DVL1 protein, as determined by molecular
docking simulations using Autodock-Vina and Discovery Studio
2019 (Table 1). As shown in Figure 2, virtual screening highlighted
small molecules with high binding affinity for DVLI, with docking
scores visualized through a heat map (Figure 2A), where red
represents strong binding affinity and blue represents weaker
interactions. Among the top candidates, Digoxin was selected for
further analysis due to its balanced docking score. Detailed
molecular docking models (Supplementary Figures 2B-G)
demonstrated the interaction of DVL1 with selected ligands,
showcasing various conformations and key molecular interactions
such as hydrogen bonds and hydrophobic contacts. MD
simulations provided additional insights, with RMSD analysis
(Figure 2H) showing fluctuations in the DVLI-Digoxin complex
around 5 ns, stabilizing after 10 ns, indicating initial instability
followed by equilibrium. The Radius of Gyration (RG) analysis
(Figure 2I) revealed significant fluctuations in DVLI-Digoxin,
suggesting transitions between unstable states, contrasting with
the more stable GAPDH-Digoxin complex. RMSF analysis
(Figure 2J) highlighted the flexibility of specific residues, with
DVLI showing considerable conformational changes. The Solvent
Accessible Surface Area (SASA) analysis (Figure 2K) indicated a
stable decrease in SASA for the DVLI1-Digoxin complex, reflecting
favorable binding and structural compactness. Finally, the
Hydrogen Bond Number (HBNUM) analysis (Figure 2L) showed
consistent hydrogen bond formation in both complexes, correlating
with their stability. Overall, these findings underscore DVL1’s
potential as a drug target, with Digoxin emerging as a promising
ligand due to its strong binding and stability, as revealed through
the comprehensive simulations.
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FIGURE 1

Identification of core genes in sepsis-induced myocardial dysfunction. (A, B) Volcano plots depicting differentially expressed genes (DEGs) in sepsis-
Induced myocardial dysfunction. (A) DEGs from the GSE122720 dataset related to Acute Myocardial Infarction (AMI). Genes with significant
upregulation (Log2 FC > 1, p < 0.05) are highlighted in red, while those significantly downregulated (Log2 FC < -1, p < 0.05) are shown in blue.
Notable genes such as SERPINH1 and RRAD are labeled. (B) DEGs from the GSE57065 dataset related to sepsis. Significant upregulated and
downregulated genes are indicated similarly, with DVL1 and SERPINH1 highlighted. (C) Heatmap of differentially expressed genes associated with
Sepsis-Induced Myocardial Dysfunction. Hierarchical clustering of DEGs shows distinct expression patterns across different patient groups, with
clustering performed on both gene expression profiles and patient samples. Key genes such as SERPINH1, TOP2A, and DVL1 are labeled, with
expression levels indicated by the color gradient (from blue to pink representing low to high expression). (D, E) GO and KEGG pathway enrichment
analysis of differentially expressed genes in Sepsis-Induced Myocardial Dysfunction. (D) GO enrichment analysis indicates significant biological
processes, cellular components, and molecular functions associated with DEGs. (E) KEGG pathway enrichment analysis showing pathways such as
Wnt signaling, complement and coagulation cascades, and nucleotide metabolism. The gene ratio indicates the proportion of DEGs involved in each
pathway, with the color gradient representing the significance level [-log10(p-value)]. (F, G) Weighted Gene Co-expression Network Analysis
(WGCNA) of Sepsis-Induced Myocardial Dysfunction. (F) Module-trait relationships identified in the AMI dataset, highlighting correlations between
gene modules and clinical traits. (G) Module-trait relationships in the sepsis dataset, identifying key gene modules associated with disease severity.
Color scale indicates the strength and direction of correlations. (H) Venn diagram illustrating the intersection of key genes identified across the
datasets (GSE122720-AMI, GSE57065-Sepsis, AMI-WGCNA, Sepsis-WGCNA). This diagram highlights the core genes common to both conditions,
emphasizing genes like DVL1 and SERPINH1 that are central to the disease process. () Relative expression analysis of the DVL1 gene across different
patient groups (Control, AMI, Sepsis, Normal). The bar graph shows the mean + standard deviation of DVL1 expression, with statistical significance
denoted by p-values (e.g., p < 0.05). This analysis underscores the differential expression of DVL1 in Sepsis-Induced Myocardial Dysfunction,
suggesting its potential role as a biomarker or therapeutic target.
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TABLE 1 Molecular docking results of selected compounds with DVL1 protein (PDB ID: 6TTK) using autodock-vina and discovery studio 2019.

Protein (Binding Site) Compound Vina (kcal-mol™) DS (LibDockScore)
DVLI1 (6TTK) Digoxin -4.5 1.619 165.304
DVLI1 (6TTK) Paromomycin -3.7 2.095 158.73
DVL1 (6TTK) Cabazitaxel -4.5 1.829 152.19
DVL1 (6TTK) Paclitaxel -4.6 1516 151.868
DVL1 (6TTK) Streptomycin -4.6 2,614 148.925
DVLI (6TTK) Toposar -5.2 0.452 147.71

This table presents the binding affinity and docking scores of various compounds interacting with the DVLI protein, as determined by molecular docking simulations using Autodock-Vina and
Discovery Studio 2019. The Vina score (expressed in kcal-mol™) reflects the binding affinity, where more negative values indicate stronger interactions between the compound and the protein.
The RMSD (Root Mean Square Deviation) values provide insight into the stability and accuracy of the binding pose, with lower values indicating a more stable interaction. The DS
(LibDockScore) from Discovery Studio 2019 represents the strength of interaction, with higher scores suggesting better binding affinity. The bold values in the table are the binding energies
calculated by autodock - vina (Vina values, in kcal-mol- 1), the root - mean - square deviations (RMSD), and the LibDockScore values calculated in Discovery Studio, which are used to measure
the binding characteristics of compounds to the DVLI protein.

3.3 Comprehensive ana[ysis of DVL1 expression in colorectal and stomach cancer tissues, supporting
expression and mutation in its involvement in cancer pathophysiology (Supplementary
gastrointestina[ cancers Figure 2D). These findings collectively suggest that DVLI is a

critical biomarker in gastrointestinal cancers, with significant

In this study, we investigated the role of DVL1 in implications for its use in diagnosis and prognosis.
gastrointestinal cancers, focusing on its expression pattern,
diagnostic potential and prognostic significance. Analysis of
DVLI1 expression in four gastrointestinal tumors - COAD, STAD, 3.4 Expression and prognostic signiﬁcance
ESCA and READ - showed significant overexpression in tumor of DVL1 in colorectal cancer
tissues compared to normal tissues (Figure 3A, C). DVLI gene
expression levels varied in different organs of cancer patients, and Our study reveals that DVL1 is significantly overexpressed in
the expression levels varied with the anatomical location of the  colorectal cancer (COAD) tissues compared to adjacent normal
tumor (Figure 3B). The ROC analysis demonstrated that DVLI has  tissues, as demonstrated by both immunohistochemical staining
strong diagnostic potential, with high AUC values in COAD, ESCA,  and RNA-seq analysis (Figures 4A-C). The ROC curves further
and READ (Supplementary Figures 3D-F). Kaplan-Meier survival ~ confirm the diagnostic and prognostic value of DVL1, with AUC
curves indicated that elevated DVL1 expression correlates with  values indicating its potential to distinguish between tumor and
poorer survival outcomes in these cancers, suggesting its value as  normal tissues, and to predict patient outcomes (Figures 4D, E).
a prognostic marker (Supplementary Figures 3G-I). Figures 3D-I  High DVLI expression correlates with poorer overall survival, as
display the related analyses of DVL1 in gastrointestinal tumors,  shown by Kaplan-Meier survival curves and a comparative analysis
including ROC curves and survival curves for different tumor types.  of clinical characteristics (Figures 4F-H). The observed changes in
These figures intuitively demonstrate the important roles of DVL1 ~ DVLI phosphorylation sites between normal and tumor tissues
in diagnosis and prognosis. Further investigation revealed  suggest possible post-translational modifications contributing to its
heterogeneity in DVL1 expression across different cellular  oncogenic role (Figure 4I). Thermal profiling data delineate
populations within tumors (Figure 3]) and significant differences  significant covariations between DVLI transcriptional activity and
in expression across various immune subtypes (Figure 3K).  immunological biomarkers within COAD, establishing mechanistic
Correlation analyses between DVLI expression and oncogenic  insights into its regulatory potential within tumor-associated
pathways highlighted its involvement in tumor biology immune landscapes (Figure 4]). Additionally, the analysis of
(Figure 3L). A summary of clinical data from 1181 TCGA  DVLI expression across different tumor stages and its correlation
patients indicated that higher DVLI expression is associated with ~ with various COAD-related genes indicates a strong association
advanced tumor stages and poorer outcomes (Figure 3M). In  with disease progression, although survival analysis did not show a
colorectal cancer, DVL1 showed a somatic mutation rate of  significant difference between high and low-expression groups
1.61%, with several mutation hotspots identified (Supplementary  (Supplementary Figures 3A-G). Functional analyses, covering
Figure 2A). Pan-cancer analysis confirmed DVL1 as one of the most ~ CRISPR-Cas9 screening as well as pathway enrichment studies,
mutated genes, emphasizing its potential role in carcinogenesis  further highlighted the critical role of DVLI in cancer biology, with
(Supplementary Figure 2B). Additionally, DVL1 expression varied  significant enrichment in pathways associated with tumor
significantly across difterent MSI subtypes, implicating it in MSI-  progression (Supplementary Figures 4A-I). These findings suggest
driven tumorigenesis (Supplementary Figure 2C). Protein  that DVLI plays a crucial role in the development of COAD and
expression analysis using HPA data showed differential DVL1  could serve as a potential therapeutic target.
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FIGURE 2

Molecular dynamics simulation and virtual screening of core protein DVL1. (A) Heat map representation of the virtual screening of core protein DVL1
against the FDA-approved drug library. The color gradient from red to blue represents the binding affinity, with red indicating high binding affinity
and blue indicating low binding affinity. (B-G) Molecular docking models of the core protein DVL1 with selected ligands. Each panel shows the
overall structure of DVLL in a ribbon diagram (left), a zoomed-in view of the ligand-binding site with interacting residues highlighted (middle), and a
2D interaction diagram depicting the molecular interactions between DVL1 and the ligand (right). The models illustrate the different conformations
of DVL1 when bound to various ligands, highlighting key interactions such as hydrogen bonds, hydrophobic contacts, and electrostatic interactions.
(H-L) Molecular dynamics (MD) simulation analysis comparing DVL1 (blue) with the positive control protein GAPDH (orange). The analysis includes:
(H) Root Mean Square Deviation (RMSD) analysis over the simulation time, showing the structural stability of DVL1 and GAPDH. (I) Radius of Gyration
(RQ) indicating the compactness of the protein structures. (J) Root Mean Square Fluctuation (RMSF) analysis, providing insight into the flexibility of
specific residues within the protein structures. (K) Solvent Accessible Surface Area (SASA) analysis, representing the extent of exposure of the protein
surface to the solvent. (L) Hydrogen Bond Number (HBNUM) analysis, illustrating the number of hydrogen bonds formed during the simulation,
which correlates with protein stability.
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FIGURE 3

Landscape of DVL1 expression in gastrointestinal tumors. (A, C) DVL1 gene expression levels across four types of gastrointestinal tumors (COAD,
STAD, ESCA, and READ) are depicted. Panel (A) shows a comparison between normal and tumor tissues based on data from the TCGA and GTEx
databases, demonstrating differential expression patterns with statistical significance (indicated by p-values). Panel (C) provides a summary of the
area under the curve (AUC) values for the receiver operating characteristic (ROC) analysis, reflecting the diagnostic potential of DVL1 in these
cancers. (B) Illustration of DVL1 gene expression distribution across different organs in cancer patients, highlighting the variation in expression levels
depending on the anatomical location of the tumor. (D-F) Receiver operating characteristic (ROC) curves for DVL1 gene in three types of
gastrointestinal tumors (COAD, ESCA, and READ) are presented. The curves show the diagnostic accuracy of DVL1 expression, with each panel
detailing the AUC values, sensitivity, and specificity metrics for each cancer type. (G-1) Kaplan-Meier survival curves analyzing the prognostic
significance of DVL1 expression in three types of gastrointestinal tumors (COAD, ESCA, and READ). The survival analysis indicates the correlation
between DVL1 expression levels and patient survival outcomes, with log-rank test p-values provided to denote statistical significance. (J) Heatmap
showing DVL1 gene expression across different cell subgroups in four gastrointestinal tumors. This panel illustrates the heterogeneity in DVL1
expression among various cellular populations within the tumors. (K) Violin plot depicting the expression of DVL1 across different immune subtypes
within gastrointestinal tumors. The plot demonstrates significant differences in DVL1 expression depending on the immune landscape of the tumor
(p < 0.001). (L) Scatter plots examining the relationship between DVL1 expression and 14 different tumor phenotypes. Each plot includes regression
lines and correlation coefficients, providing insight into the association between DVL1 expression and oncogenic pathways. (M) Summary of clinical
data for 1181 TCGA patients with four types of gastrointestinal tumors, classified based on DVL1 expression levels. The panel provides an overview of
clinical characteristics such as tumor stage, survival status, and molecular subtypes, highlighting the relevance of DVL1 expression in the clinical
context. The symbols *, **, and **** represent statistical significance levels corresponding to p<0.05, p<0.01, and p<0.0001.
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FIGURE 4

Expression and prognostic significance of DVL1 in colorectal cancer (COAD). (A, B) Immunohistochemical (IHC) staining for DVL1 in colorectal cancer
tissues and adjacent normal tissues demonstrats increased expression of DVL1 in tumor tissues compared to normal tissues. Representative images from
the study cohort are shown, with higher DVL1 expression observed in the tumor samples. Data were obtained using the Human Protein Atlas (HPA)
database. (C) Distribution of DVL1 gene expression in colorectal cancer versus normal tissues, analyzed using the GSE37182 dataset. The data is
presented as density plots, showing a significant upregulation of DVL1 in tumor tissues compared to normal tissues. (D) Receiver Operating
Characteristic (ROC) curve assessing the diagnostic performance of DVL1 expression in distinguishing tumor tissues from normal tissues. The area under
the curve (AUC) and the model's discriminatory ability are shown, indicating a good diagnostic value for DVL1 expression in COAD. (E) ROC curve
evaluating the prognostic performance of DVL1 expression in predicting outcomes in colorectal cancer patients. The AUC value and the 95% confidence
interval (Cl) are provided, highlighting the prognostic relevance of DVL1 expression in COAD. (F) Comparative analysis of clinical characteristics between
high and low DVL1 expression groups in COAD patients. The circular heatmap visualizes the distribution of various clinical traits (e.g., age, gender, BMI,
stage) between the two groups, illustrating significant associations with DVL1 expression. (G) Forest plot summarizing the univariate analysis of DVL1
expression across multiple datasets for COAD patients. Hazard ratios (HR) and 95% confidence intervals (Cl) are depicted for each study, with a pooled
HR calculated from the meta-analysis, indicating the overall prognostic impact of DVL1. The analysis shows a significant association between high DVL1
expression and poor prognosis. (H) Kaplan-Meier survival curve comparing overall survival between high and low DVL1 expression groups in COAD
patients. The survival analysis shows a statistically significant difference (p = 0.011), with high DVL1 expression associated with worse survival outcomes.
(1) Analysis of phosphorylation site changes in the DVL1 protein between normal and tumor tissues, indicating potential post-translational modifications
that may contribute to altered function in colorectal cancer. The density plots depict the distribution of phosphorylation levels at specific sites, showing
significant differences between normal and tumor groups. (J) Correlation heatmaps show the association between DVL1 expression and various immune
markers in COAD, highlighting the positive and negative correlations with immune-related genes. The analysis provides insights into the potential role of
DVL1 in modulating the immune microenvironment in COAD. The symbols *** represent statistical significance levels corresponding to p<0. 001.
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3.5 Analysis of DVLL in colorectal cancer

In this research, we probed into the function of the DVLI in
COAD, concentrating on its expression patterns among tumor
stages and its connection with key cancer-related pathways.
Supplementary Figure 4A presents the distribution of DVLI
expression across four clinical stages of COAD (Stage I to IV).
Statistical analysis shows that there are no remarkable differences in
DVLI expression levels among stages (P = 0.87). Likewise, a
comparison between the early-stage (Stage I to II) and the late-
stage (Stage III to IV) of COAD in Supplementary Figure 4B also
reveals no significant difference (P = 0.995).To further explore the
functional role of DVLI1, we analyzed its dependency across various
cancer types using CRISPR-Cas9 screening data from the DepMap
database, as illustrated in Figure 4C. This analysis highlights
variable DVL1 dependency across cancer cell lines, indicating its
essential role in certain types of cancers. Next, we performed KEGG
pathway enrichment analysis (Supplementary Figure 4D), which
identified several cancer-related pathways associated with DVL1
expression, including the Wnt signaling pathway and pathways
involved in cell cycle regulation. GSEA was conducted to assess
hallmark gene sets, revealing significant enrichment in cellular
processes related to proliferation, DNA repair, and apoptosis,
particularly in the high DVL1 expression group, as shown in
Supplementary Figure 4E. Additionally, Supplementary Figure 4F
presents a LocusCompare analysis, which demonstrates specific
genetic loci correlated with DVLI expression. Finally, functional
enrichment analysis for transcription factors associated with DVL1
expression was performed. The GO term analysis (Supplementary
Figure 4G) highlights biological processes related to transcriptional
regulation, while KEGG pathway analysis (Supplementary
Figure 4H) indicates significant involvement in pathways such as
p53 signaling and RNA polymerase activity. The Friends analysis in
Figure 41 identifies key transcription factors, such as FOXM1 and
NFKB2, which are strongly correlated with DVLI expression and
may contribute to its regulatory network in cancer. Collectively,
these findings suggest that while DVLI expression remains
consistent across COAD stages, its dependency and functional
interactions highlight its critical role in cancer biology,
particularly in cell survival and proliferation pathways.

3.6 Comprehensive analysis of DVL1 in
colorectal adenocarcinoma: gene
interaction, immune landscape, and
therapeutic implications

The DVLI gene plays a critical role in COAD, as demonstrated
by a series of comprehensive analyses involving gene set
enrichment, immune landscape evaluation, and upstream
transcription factor studies. As illustrated in Figure 5A, a gene
interaction network centered on DVLI reveals significant
associations with various genes, underscoring its involvement in
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essential cellular processes. Differential expression analysis
(Figure 5B) further highlights the extensive alteration in gene
expression associated with DVLI, implicating its pivotal role in
tumor development. Gene set enrichment analysis (GSEA) and
gene set variation analysis (GSVA) results (Supplementary
Figures 5C, E, F) show significant pathway alterations between
high and low DVLI expression groups, particularly in hallmark
gene sets, reinforcing DVLI’s influence on tumorigenesis. The
immune response correlation (Figure 5H) and its association with
immunostimulatory genes (Figure 5I) reveal a complex relationship
between DVLI1 expression and immune system activity, further
supported by the immunomodulatory landscape in COAD
(Figure 5]). Upstream transcription factors were analyzed to
uncover potential regulatory mechanisms affecting DVLI
expression, with significant correlations observed between ATAC-
Peak signals and specific transcription factors (Figure 6A). Figure
6C presents transcription factors associated with DVL1 identified
via Friends analysis, offering critical insights for exploring the
regulatory mechanisms of this signaling molecule. These
transcription factors, highlighted in the differential expression
analysis (Figure 6B) and prognostic forest plots (Supplementary
Figures 6D-G), suggest potential targets for therapeutic
intervention. The correlation of DVLI with SMAD2 and XBP1
(Figure 6H) further suggests a collaborative role in COAD
progression. In terms of therapeutic implications, DVL1’s role in
predicting drug sensitivity and immunotherapy response is
evidenced by the ROC-AUC analysis (Supplementary Figure 5A)
and its significant correlation with drug sensitivity metrics
(Supplementary Figures 5B-D). Notably, DVLI expression
correlated with increased sensitivity to the drug BI.2536
(Supplementary Figures 5E, F), suggesting that DVLI could serve
as a potential biomarker of drug response. Mutation analysis
(Supplementary Figures 6K-M) provided insights into the
mutational status of DVLI and its impact on components of the
tumor microenvironment (Supplementary Figures 6N-P), further
cementing its relevance in colorectal cancer pathogenesis and
treatment. Together, these findings highlight the importance of
DVLI as a key player in colorectal cancer, providing valuable
insights for targeted therapy and prognostic assessment.

3.7 Comprehensive analysis of DVL1
expression in colorectal cancer using
single-cell and spatial transcriptomics

The comprehensive analysis of DVL1 expression in colorectal
cancer, combining single-cell sequencing and spatial transcriptomics,
reveals critical insights into the gene’s role within the tumor
microenvironment. Through UMAP visualization of major cell
lineages (Figure 7A), distinct clusters such as T cells, B cells,
epithelial cells, and fibroblasts were identified, with Figure 7B
highlighting varying levels of DVL] expression across these
populations. The comparison of cell type proportions between
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FIGURE 5

DVL1 gene enrichment analysis and associated immune landscape in COAD. (A, D) DVL1 gene interaction network: A network analysis illustrating the
interactions of genes closely related to DVLL. Panel (A) shows a comprehensive gene-gene interaction network with DVL1 at the center, highlighting
both direct and indirect interactions with associated genes. Panel (D) further details the connections and functional relationships among these genes
using a circular plot. (B) Differential expression analysis of DVL1-associated genes: A volcano plot showing the differentially expressed genes associated
with DVL1. Genes are categorized into upregulated (green), downregulated (red), and non-significant (black) groups based on log?2 fold changes and
statistical significance (p-value). (C) GSEA enrichment analysis of differentially expressed genes associated with DVL1: A line graph representing the Gene
Set Enrichment Analysis (GSEA) results for DVL1-related differentially expressed genes, focusing on key gene sets that show significant enrichment or
depletion. (E) Hallmark gene set enrichment analysis (GSEA): A dot plot visualizing the enrichment scores and significance levels of various hallmark gene
sets associated with DVL1 expression. The pathways are ranked based on normalized enrichment score (NES) and statistical significance. (F) GSVA
pathway enrichment scores comparing DVL1 high-expression versus low-expression groups: A bar chart depicting the difference in pathway activity
scores between high and low DVL1 expression groups, identified using Gene Set Variation Analysis (GSVA). Pathways with significantly altered activity are
color-coded based on their upregulation (blue) or downregulation (red) in high DVL1 expression groups. (G) Visualization analysis using gassocplot
package: Scatter plots displaying the association between specific genetic variants and phenotypic traits related to DVL1, across various chromosomal
locations. Points are color-coded according to their significance and categorized by variant type, with annotation of significant SNPs and genomic
regions. (H) Immune response and genome state: A heatmap representing the correlation between DVL1 expression and various immune-related genes
or pathways. Data points are color-coded to indicate the strength and direction of correlation, providing insights into the relationship between DVL1 and
immune system activity. (I) Landscape of DVL1 in immunostimulator analysis: Heatmaps illustrating the association of DVL1 expression levels with various
immunostimulatory genes across different sample sets. The analysis highlights significant correlations, with color intensities representing the degree of
association. (J) Complex heatmap of immunomodulators in COAD: A detailed heatmap depicting the expression patterns, copy number variations, and
mutation frequencies of key immunomodulatory genes in colorectal adenocarcinoma (COAD). The rows represent individual genes, and the columns
represent different patient samples or conditions. The heatmap is annotated to show expression levels, amplification, deletion frequencies, and the
presence of mutations, providing a comprehensive overview of the immunomodulatory landscape in relation to DVL1 expression in COAD. The symbols
*, ** and *** represent statistical significance levels corresponding to p<0.05, p<0.01, and p<0. 001, respectively.
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FIGURE 6

Analysis of upstream transcription factors of DVL1 gene. (A) Spearman correlation analysis between ATAC-Peak and transcription factors. This panel
illustrates the Spearman correlation coefficients between ATAC-Peak signals and various transcription factors, providing insight into the potential
regulatory relationships affecting DVL1 expression. The analysis highlights transcription factors with significant correlations, denoted by color-coded
squares representing the strength and direction of correlation (positive in red, negative in blue). (B) Differential expression analysis of transcription
factors associated with the DVL1 gene. Box plots display the expression levels of transcription factors across different sample groups, with statistical
significance indicated for factors showing a differential expression. This analysis identifies transcription factors that are differentially regulated in
association with DVL1, highlighting potential key regulators. (C) Friends analysis of the DVL1 gene to identify correlated transcription factors. A
heatmap shows the correlation between DVL1 and selected transcription factors, identified through Friends analysis. Transcription factors with
positive and negative correlations are listed alongside their correlation coefficients (R-values). The analysis helps to pinpoint transcription factors that
may co-regulate with DVL1 or are part of the same regulatory network. (D-G) Forest plots screening prognostically relevant transcription factors
through multi-gene analysis. These panels show hazard ratios and confidence intervals for multiple transcription factors in relation to overall survival
in a cohort of cancer patients. The forest plots identify transcription factors significantly associated with prognosis, highlighting those with potential
as biomarkers or therapeutic targets in conjunction with DVL1. (H) Correlation analysis between the DVL1 gene and transcription factors SMAD2 and
XBP1. Heatmaps present the correlation strength between DVL1 and SMAD2/XBP1 across various samples, categorized into positive, moderate, weak,
and negative correlations. The analysis provides a detailed view of the interaction between DVL1 and these specific transcription factors, offering
insights into their potential collaborative roles in the biological processes studied. The symbols *, **, ***and ****represent statistical significance
levels corresponding to p<0.05, p<0.01,p<0. 001 and p<0. 0001, respectively. ns, not significant.
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FIGURE 7

Single-cell sequencing analysis of DVL1 in colorectal cancer. (A, B) UMAP visualization of major cell lineages and DVL1 single-gene expression in single
cells from colorectal cancer samples. (A) displays the distribution of the main cell lineages identified in the dataset, including T cells, B cells, epithelial
cells, fibroblasts, myofibroblasts, mast cells, and others, with distinct clusters representing each lineage. (B) shows the UMAP plot highlighting the
expression levels of the DVL1 gene across individual cells, with a gradient indicating varying expression levels. (C) Comparison of the proportions of
different cell types between DVL1-positive and DVL1-negative groups. The bar graph presents the proportion of each cell type (e.g., T cells, B cells,
fibroblasts) stratified by DVL1 expression status. The data suggest differential representation of cell types depending on DVL1 gene expression, with
statistically significant differences noted. (D) Interaction network of different cell subsets in colorectal cancer. This network diagram illustrates the
inferred interactions between various cell subsets within the tumor microenvironment, highlighting connections involving DVL1+ malignant cells and
their interactions with other cell types such as CD8+ T cells, fibroblasts, and endothelial cells. The thickness of the lines corresponds to the strength or
frequency of interactions. (E) Differential expression of DVL1 and upstream transcription factors across different cell types. The expression patterns of
DVL1 and associated transcription factors such as ATF5, E2F2, HIRA, TFAP2A, and TP73 are shown across various cell types, including malignant cells,
fibroblasts, and T cells. Each panel represents the distribution of expression levels across the cell types. (F) Variability in DVL1 expression across different
tumor cell states. Box plots illustrate the differential expression of DVL1 among various tumor cell states, indicating statistically significant differences (P <
0.001). This comparison underscores the heterogeneity of DVL1 expression in distinct tumor microenvironments. (G) Pathway differences between
DVL1-positive and DVL1-negative groups across different cell types. A dot plot shows the differential pathway activity scores between cells grouped by
DVL1 expression status, across various cell types. Each dot represents a pathway, with size and color intensity reflecting the significance and magnitude
of pathway activation differences. (H, 1) Pathway enrichment differences between cell types. Heatmaps depict the enrichment of signaling pathways
across different cell types in the tumor microenvironment. (H) displays outgoing signaling pathways, while (I) focuses on incoming signaling pathways.
The data show distinct enrichment patterns, highlighting the unique roles of different cell types in signal transduction within the tumor context. (J, K)
Correlation analysis of gene expression levels. (J) presents UMAP visualizations of the co-expression patterns of two specific genes, including DVL1 and
ATF5, both individually and in combination. (K) shows a scatter plot demonstrating the correlation between the average expression levels of these two
genes, with a color-coded threshold (0.5) indicating the strength of the correlation. This analysis reveals a significant positive correlation, suggesting
potential regulatory interactions between DVL1 and ATF5.

Frontiers in Immunology 67 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1560717
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al.

DVLI-positive and DVL1-negative groups (Figure 7C) underscores the
differential representation of cell types, notably a higher presence of
fibroblasts and T cells in DVLI-positive samples. Furthermore, the
interaction network in Figure 7D demonstrates the significant role of
DVL1+ malignant cells in coordinating cellular interactions,
particularly with CD8+ T cells and fibroblasts. Differential expression
analysis in Figure 7E highlights the association between DVLI and
transcription factors like ATF5 and E2F2 across various cell types. The
variability in DVLI expression across tumor cell states (Figure 7F) and
pathway activity differences between DVLI1-positive and DVLI-
negative cells (Figure 7G) emphasize the gene’s influence on tumor
heterogeneity and pathway activation. The pathway enrichment of
different cell types in the tumor microenvironment (TME) revealed the
differential activity of pro-inflammatory and immune regulation-
related signaling pathways (e. g. Wnt/B -catenin, NF- x B, TGE- )
in immune cells, fibroblasts and tumor cells (Figures 7H, I) Tumor-
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associated fibroblasts (CAF) showed high activity in TGF- § and ECM-
related pathways, while Treg cells were enriched in IL-10-mediated
anti-inflammatory pathways, suggesting unique roles for different cell
types in TME regulation. Correlation analysis between DVL1 and
ATF5 (Figures 7], K) suggests a regulatory interaction, potentially
impacting tumor progression. Spatial transcriptomics provides a
refined visualization of DVL1 expression within tumor tissue,
revealing its heterogeneous spatial distribution (Figure 8A). A robust
correlation is noticed between the expression of DVL1 and key
microenvironmental constituents (Supplementary Figures 7A-D).
Spatial mapping further accentuates the enhanced expression of
DVLI in malignant areas, indicating its potential engagement in
tumor progression and aggression (Figures 8B-D). Altogether, these
discoveries emphasize the crucial role of DVLI in coordinating the
cellular and spatial dynamics of colorectal cancer, molding
microenvironmental interactions and influencing tumor behavior.
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Spatial transcriptomics analysis of DVL1 in colorectal cancer. (A) Spatial distribution of DVL1 expression across the tissue sample. The heatmap
illustrates expression levels, with higher intensities indicating elevated DVL1 expression. (B) Spearman correlation analysis between DVL1 expression
and tumor microenvironment components. The correlation matrix represents the relationships between DVL1 and various cell types, with color
gradients reflecting positive and negative correlations. Statistically significant correlations are highlighted. (C) Comparison of DVL1 mean expression
levels among malignant, mixed, and normal tissue regions. Statistical significance is indicated by p-values. (D) Mean AUC values of a specific gene
set across different tissue compositions, highlighting significant differences in tumor microenvironment interactions.
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3.8 DVL1 expression and its role in
modulating cell proliferation and
tumor progression

The study investigated the expression of DVLI and its impact on
cell proliferation and tumor progression across various cell lines,
including SW620, HCT116, and RAW264.7. Quantitative PCR
analysis, as shown in Figure 9A, revealed that DVL1 mRNA levels
were significantly downregulated in response to different
concentrations of Digoxin, particularly at high concentrations (p <
0.001). Among the tested cell lines, HCT116 and SW620 exhibited
the most substantial reductions in DVLI expression, suggesting that
Digoxin effectively suppresses DVL1 expression. Additionally,
Figure 9D highlights a significant upregulation of DVLI in
RAW264.7 cells compared to THP-1 cells (p < 0.001). To assess
the functional role of DVL1, a CCK-8 assay was performed, revealing
a dose-dependent decrease in cell viability in HCT116 and SW620
cells treated with Digoxin, with the greatest inhibition observed at
high concentrations, as illustrated in Figure 9B (p < 0.05). This
suggests that Digoxin-mediated DVL1 downregulation contributes to
reduced tumor cell proliferation. Moreover, the expression of
inflammatory cytokines was measured using qPCR across different
treatments, showing significant changes in SW620, HCT116, and
RAW264.7 cells (Figure 9C, p < 0.001), indicating a role of DVLI in
modulating inflammatory responses. Further analysis involved DVL1
overexpression and knockdown models, where Figure 9E
demonstrated that overexpression significantly promoted cell
proliferation, whereas knockdown markedly inhibited growth (p <
0.001). The plate colony formation assay results, depicted in
Figure 9H, supported these findings, showing enhanced colony
formation with DVL1 overexpression and a reduction with
knockdown. CCK-8 proliferation assays demonstrated that DVL1
overexpression enhances cellular growth kinetics in both HCT116
and SW620 colorectal cancer models, whereas genetic silencing of
DVLI1 exerted potent growth-suppressive effects (Figure 9F).
Finally, Figure 9G showed a substantial decrease in DVLI mRNA
levels in SW620, HCT116, and RAW264.7 cells following DVL1
knockdown (p < 0.001). Collectively, these results suggest that DVL1
plays a critical role in promoting cell proliferation and tumor
progression, and that down-regulation of its expression by
pharmacological agents or gene knockdown significantly inhibits
these processes.

3.9 The effects of digoxin and DVL1
overexpression on inflammatory responses,
cell viability, migration, and protein
expression in cancer cells

This study investigated the impact of Digoxin and OE-DVLI on
various cellular processes in SW620 and HCT116 cell lines, focusing
on inflammatory cytokine expression, EMT markers, cell viability,
migration, proliferation, apoptosis, and protein expression. qRT-
PCR analysis showed that Digoxin and OE-DVLI significantly
reduced the expression of pro-inflammatory cytokines TNFa, IL6,
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and IL1PB compared to the LPS-treated group, suggesting an anti-
inflammatory effect (Figure 10A). The expression of key EMT
markers such as CDHI1, VIM, and MMP9 was modulated by the
combination of Digoxin and OE-DVLI, suggesting its role in
inhibiting EMT-related changes (Figure 10A). CCK-8
demonstrated that Digoxin, particularly at high doses,
significantly reduced the viability of SW620 and HCT116 cells,
with further decreases when combined with OE-DVLI, highlighting
their combined inhibitory effect on cell proliferation (Figure 10B).
Transwell migration assays confirmed that both Digoxin and OE-
DVLI significantly reduced cell migration, further supporting their
role in inhibiting metastatic potential (Figure 10C). Colony
formation assays showed a marked decrease in the number of
colonies formed in cells treated with Digoxin, with an additional
reduction observed when combined with OE-DVLI, suggesting
enhanced anti-proliferative effects (Figure 10D). Flow cytometry
analysis indicated increased apoptosis levels in cells treated with
Digoxin, particularly when combined with OE-DVLI, highlighting
the pro-apoptotic effects of these treatments (Figure 10E).
Immunofluorescence staining revealed decreased expression of
EMT markers ZEB2 and MMP9, as well as cell cycle regulators
CDC6 and PCNA, indicating alterations in EMT status and cell
cycle progression following treatment (Figures 10F, G).
Furthermore, Figure 11 illustrates the broader role of DVLI in
SICand multiple cancers, with oxidative stress identified as a critical
mediator linking DVLI to these conditions. Digoxin emerges as a
potential therapeutic agent targeting DVLI1, modulating its activity
and downstream signaling pathways. The combined results from
transcriptomic analyses, drug susceptibility screening, and spatial
transcriptomics provide a comprehensive view of DVLI’s
involvement in both SIC and cancer, positioning Digoxin as a
promising therapeutic strategy for regulating these pathways.

4 Discussion

SIC is a serious complication in critically ill cancer patients and
is closely associated with heart failure and high mortality (2, 121).
TME-driven immune imbalance may exacerbate the development
and progression of SIC (122, 123). The interaction mechanisms
between tumor-associated inflammation, dysfunction of VSMC,
and myocardial injury are still poorly elucidated (56, 124).
Therefore, it is crucial to investigate the pathogenesis. In this
study, the role of DVLI in SIC was investigated by integrating
transcriptome analysis, WGCNA, molecular docking and drug
screening, and explored the possibility of DVLI as a potential
therapeutic target for SIC.

This study revealed the critical role of DVLI gene in SIC in cancer
patients (2). Multiomic analysis indicates that DVLI is significantly
upregulated in SIC and various gastrointestinal cancers, and is closely
associated with the occurrence of poor prognosis and enhanced
inflammatory response (115, 125). These findings not only highlight
the role of DVLLI in the progression of SIC, but also elucidate its
underlying mechanism in immune regulation within the tumor
microenvironment. Furthermore, these insights have important
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FIGURE 9

Analysis of DVL1 expression and its effects on cell proliferation and tumor progression across various cell lines. (A) Quantitative PCR Analysis: Relative
MRNA levels of DVL1 in SW620, HCT116, and RAW264.7 cell lines following treatment with different concentrations of Digoxin (H, High; M, Medium;
L, Low) were assessed using gPCR. The expression of DVL1 is significantly downregulated in cells treated with Digoxin, especially at high
concentrations (p < 0.001). (B) CCK-8 Assay: Cell viability analysis of HCT116 and SW620 cells treated with different concentrations of Digoxin (H, M,
L) over 48 hours using the CCK-8 assay. The results indicate a dose-dependent reduction in tumor volume in both cell lines, with Digoxin H
showing the greatest inhibitory effect on proliferation (p < 0.05). (C) Inflammatory Cytokine Expression: Quantitative PCR was used to detect the
MRNA expression levels of key inflammatory cytokines in multiple cell lines, including SW620, HCT116, and RAW264.7, treated with various
conditions. Notable changes in cytokine expression are evident across different treatments (p < 0.001). (D) DVL1 Expression in THP-1 and RAW264.7
Cells: gPCR analysis of DVL1 mRNA levels in THP-1 and RAW264.7 cell lines, highlighting significant upregulation in RAW264.7 cells compared to
THP-1 (p < 0.001). (E) DVL1 Expression in Various Cell Lines: gPCR results show the expression of DVL1 in SW620, HCT116, and RAW264.7 cells. The
data indicate distinct differences in DVL1 expression levels among cell lines, with overexpression observed in specific groups (p < 0.001). (F) Impact
of DVL1 on Cell Proliferation: The effect of DVL1 on cell proliferation in HCT116 and SW620 cells was evaluated using a CCK-8 assay. Results
indicate that overexpression of DVL1 promotes cell proliferation, whereas knockdown significantly inhibits growth in both cell lines (p < 0.001).

(G) DVLI Expression Post-Knockdown: Quantitative PCR analysis of DVL1 expression in SW620, HCT116, and RAW264.7 cells following DVL1
knockdown. Results demonstrate a significant decrease in DVLL mRNA levels across all tested cell lines after knockdown treatment (p < 0.001).

(H) Plate Colony Formation Assay: Assessment of DVL1's impact on colony-forming ability in SW620 and HCT116 cells through plate cloning
experiments. Images depict colonies from control, EV (empty vector), DVL1 overexpression (OE-DVL1), and DVL1 knockdown groups (sh-DVL1). The
data suggest that DVL1 overexpression enhances colony formation, while knockdown reduces it. The symbols *, **, and *** represent statistical
significance levels corresponding to p<0.05, p<0.01, and p<0. 001, respectively. ns, not significant.
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FIGURE 10

The effects of digoxin and DVL1 overexpression on inflammatory cytokine expression, cell viability, migration, proliferation, apoptosis, and key
protein expression in SW620 and HCT116 cell lines. (A) Relative mRNA expression levels of inflammatory cytokines (TNFa, IL6, IL1B) and key EMT
markers (CDH1, VIM, CDK1A, CDKN1, BCL2, BIRC5, MMP9, MMP2, 3-catenin) were assessed in SW620 and HCT116 cell lines under different
treatment conditions: Control group (NC), LPS, Digoxin, OE-DVL1, and the combination of LPS and Digoxin with OE-DVL1 overexpression. Data are
presented as mean + SD, with statistical significance indicated by p-values. (B) The effects of varying concentrations of Digoxin (High, Medium, Low)
and OE-DVL1 on the viability of SW620 and HCT116 cells were measured using the CCK-8 assay. Significant decreases in viability were observed in
cells treated with Digoxin H compared to controls, with further reductions upon OE-DVL1 overexpression. (C) The migratory capacity of SW620 and
HCT116 cells was assessed using Transwell chambers. Cells treated with Digoxin H and those overexpressing DVL1 showed reduced migration
compared to the control group, highlighting the role of Digoxin and DVL1 in inhibiting cell migration. (D) Proliferative ability was evaluated by plating
SW620 and HCT116 cells. Colony formation was significantly reduced in the Digoxin H treatment group, with a further decrease in the combination
of Digoxin H and OE-DVL1, indicating the suppressive effect of these treatments on cell proliferation. (E) Apoptosis was measured using flow
cytometry in SW620 and HCT116 cells under various treatments. Increased levels of apoptosis were observed in cells treated with Digoxin H,
especially when combined with OE-DVL1, compared to untreated controls. (F, G) Immunofluorescence staining of ZEB2, MMP9, CDC6, and PCNA
The expression of EMT marker ZEB2 and matrix metalloproteinase MMP9, as well as the cell cycle regulators CDC6 and PCNA, were visualized by
immunofluorescence in SW620 and HCT116 cells. Cells treated with Digoxin H and those overexpressing OE-DVL1 displayed significant changes in
these protein expressions, indicating alterations in EMT and cell cycle progression.

implications for understanding the differentiated response patterns
during patient immunotherapy (63, 126). We used a variety of
experimental methods to study the function of DVLI in SIC and
selected FDA-approved drugs such as Digoxin and paromomycin as
potential inhibitors of DVLI. Among them, Digoxin reduces the level
of sepsis-induced oxidative stress by targeting DVLI, thereby
improving the survival rate of cardiomyocytes. The results of this
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study provide a new direction for pharmacological intervention in
SIC. Approved drugs (repurposed drugs) may be used to improve
clinical outcomes in patients with SIC. Especially in cancer patients,
the impact of SIC on cardiac function may be more severe, and thus
DVLI-targeted therapies may be an important complement to
personalised immunotherapy. WGCNA further identified a
turquoise module that is closely associated with SIC. This module
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FIGURE 11

Critical role of DVL1 in sepsis-induced cardiomyopathy (SIC) and multiple cancers. This figure illustrates the central role of DVL1 in the progression
of sepsis-induced cardiomyopathy and its association with various cancers, emphasizing the role of oxidative stress as a key mediator. The upper
part of the image depicts sepsis-induced systemic inflammation leading to increased oxidative stress, which impacts the cardiovascular system,
resulting in SIC. The illustration also highlights DVL1's involvement in cancer development and progression through its effects on tumor
microenvironments. Positioned centrally, DVL1 acts as a crucial node that links oxidative stress responses to both cardiac dysfunction and oncogenic
processes. Digoxin is indicated as a potential therapeutic agent that targets DVL1, offering a promising approach for modulating DVL1 activity and its
downstream pathways. The lower section of the figure provides an overview of various experimental analyses related to DVL1's function. It includes
differential expression analysis of core genes in SIC, highlighting significant alterations in gene expression (e.g., DVL1) through a volcano plot. Drug
susceptibility screening results are presented in a heatmap, identifying the responsiveness of SIC-associated cells to potential therapeutic agents.
Additionally, the figure shows DVL1 expression across different tumor types through box plots, revealing its dysregulation in multiple cancers. Gene
set enrichment analysis (GSEA) and gene set variation analysis (GSVA) further demonstrate DVL1's involvement in critical signaling pathways.
Transcription factor analysis and single-cell sequencing provide insights into the regulatory mechanisms and cellular heterogeneity associated with
DVL1 expression. Spatial transcriptomic analysis maps the spatial distribution of DVL1 in tissue samples, while cell-based experiments validate the
functional impact of DVL1, including the effects of Digoxin treatment and DVL1 knockdown on downstream signaling and cell viability.
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contains a set of key genes that may synergistically contribute to the
ground inflammatory response during sepsis. Immune infiltration
analyses showed that increased DVLI expression levels were closely
associated with increased infiltration of pro-inflammatory immune
cells (e.g., macrophages and T-cells), suggesting that DVL1 may
influence the susceptibility of SIC patients by modulating the
behavior of immune cells in the sepsis microenvironment. These
results suggest that SIC is, at least in part, an immune-mediated
disease and further reveal a central role for 138DVLI in the regulation
of inflammation.

In a broader biological context, this study revealed DVLI as a
key molecular link between sepsis, cancer, and cardiac dysfunction
(31, 127).DVLI is a core regulator of the Wnt signaling pathway
and plays important roles in biological processes such as cell
proliferation, differentiation, and migration (128, 129). Through
bioinformatics analysis and experimental verification, studying the
association of signaling pathways and diseases has become an
important direction of current medical research, among which
the research on the Wnt signaling pathway has yielded fruitful
results (130).These studies provide new targets and ideas of disease
treatment, further highlighting the significance for SIC therapy in
the research focusing on DVL1 and the Wnt signaling
pathway.DVLI, as a central mediator of the Wnt signaling
pathway, modulates downstream signaling upon Wnt signaling
activation by interacting with the frizzled receptor as well as
Lrp5/6. It promotes the accumulation of B-cyclins by inhibiting
GSK-3B and bringing it into the nucleus, which ultimately affects
the expression of downstream genes (131, 132). Aberrant activation
of the Wnt signaling pathway may promote pathological
remodeling of cardiac tissue associated with SIC, especially in
cancer patients in a hyperinflammatory state (133, 134). Because
to the central role of Wnt signaling in immune regulation, this
mechanism can help to understand the emergence of
immunotherapy resistance in certain cancer subtypes.

This study also explored the epigenetic mechanisms of DVLI
transcriptional regulation, combined with ATAC-seq data. The
methods of this study borrowed and combineed advanced technology
and experimental procedures of several documents (135-137). In this
process, big data and bioinformatics technologies play a key role. Their
use in biomarker identification is increasingly important to aid in the
diagnosis and prognostic assessment of the disease (138). We found
that the open chromatin state of the DVL1 promoter and enhancer
regions is closely associated with the binding of multiple transcription
factors, including key transcriptional regulators such as MYC, NF- x B
and STAT 3. These transcription factors all play important roles in the
inflammatory response, tumor progression, and immune regulation.
The abnormal activation of MYC may aggravate the inflammatory
response in the tumor microenvironment by enhancing DVLI
expression, and the synergistic action of NF- k¥ B and STAT 3 may
further drive the pathological progression of SIC. It has been shown
that the open state of chromatin not only determines gene accessibility,
but also affects the extent to which tumor cells respond to
immunotherapy. In the study of cancer immunotherapy, new
mechanisms of immune cells have been explored from the aspects of
epigenetic modification, metabolic regulation and intercellular
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communication to provide a theoretical basis for the optimization of
cancer immunotherapy strategies (139). These studies highlight the
important role of bioinformatics and transcriptomic approaches in
resolving the tumor immune microenvironment and provide new
perspectives for the development of future targeted therapeutic
protocols (140, 141). This has similarities with our study on the role
of DVLI in SIC and the therapeutic strategy. Therefore, we
hypothesized that targeted regulation of DVLI-associated epigenetic
regulatory networks may help to optimize therapeutic strategies for SIC
and related tumors. The study of biomarkers is a key link in early
disease diagnosis and precision treatment (142). Using multi-omics
analysis technology and combined with bioinformatics means it can
reveal the potential markers of diseases from the molecular level, such
as the identification of disease-related MicroRNAs, metabolic
fingerprint maps and extracellular vesicle surface proteins from
biological samples such as bile and serum, opening up a new way for
the early detection of diseases and disease monitoring (143). The open
chromatin regions revealed by ATAC-seq data can be used to screen
patients who respond to DVLI targeted therapy to enable precision
treatment. Moreover, combined with single-cell sequencing technology,
it is expected to further investigate the role of DVLI in different
immune cell subsets and reveal its dynamic changes in the remodeling
of the immune microenvironment. These findings provide new
perspectives for future research on targeted intervention strategies for
DVLI. Despite the importance of this study, some limitations remain.
First, we focused on the direct effect of DVLI on cardiomyocytes, and
did not deeply investigate its specific role in VSMCs in SIC (48, 56).
VSMCs play a key role in maintaining vascular homeostasis and
vascular remodeling processes, and their response during sepsis may
influence the pathological progression of SIC (60, 144). Future studies
investigating DVLI function in VSMCs and analyzing its effects on
vascular dysfunction should be performed to refine the mechanism of
DVLI action in the pathogenesis of SIC. Second, although this study
explored the pharmacological intervention strategies for DVLI, its
synergy with non-pharmacological interventions (e.g., exercise) has
not been fully evaluated (145, 146). Exercise has been shown to improve
the course of SIC by modulating the Wnt signaling pathway and
reducing oxidative stress and inflammation.

In the future, further research can be made to investigate whether
exercise improves SIC by affecting the DVLI signaling pathway and
evaluate the effect of combined exercise and drug intervention to
optimize the comprehensive treatment regimen of SIC. Moreover,
this study has some limitations in terms of sample size and dataset.
The sample size may not be sufficiently representative of all potential
patient population characteristics.The data in the database used may
also have geographical, ethnic and other bias, thus affecting the
generalizability of the study results. Future studies should also
cover a wider range of cell types and explore in-depth the
function of DVLI in different microenvironments (e.g., tumor
microenvironment and immune system).At the same time, the
development of “off-the-shelf” gene therapy nanoparticles based on
existing drugs or the use of CRISPR technology also provides new
possibilities for clinical applications in medicine (147, 148).
Furthermore, through in-depth analysis of patient engagement and
social support systems, the investigators revealed the important
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impact of these factors on disease management and patient mental
health (149, 150). Future studies on SIC can consider including these
psychosocial factors in the research category, comprehensively
evaluate their interaction with biological factors, develop more
comprehensive and effective treatment and management programs,
and promote the overall recovery of patients.DVLI expression is
upregulated in a variety of cancers (such as colorectal and gastric
cancers) and is closely associated with the abnormal activation of the
Wnt signaling pathway. Understanding these interactions could
provide new insights into how DVL1 mediates immune responses
in the SIC. Finally, the main conclusions of this study are based on in
vitro experiments and bioinformatics analysis, and lack support from
in vivo experimental and clinical data. In the future, mouse SIC
models should be constructed to verify the efficacy of DVLI
inhibitors (such as Digoxin) in SIC treatment and evaluate the
correlation of DVLI expression level and the prognosis of SIC
patients combined with clinical data. The further development of
animal experiments and clinical research will provide stronger
evidence for the wide application of DVLI-targeted drugs in SIC
treatment. Although this study focuses on the interaction of post-
tumor inflammation with the dysfunction of VSMC and the
mechanism of DVLLI in sepsis-induced cardiomyopathy (SIC), the
field of medical research is broad and interconnected (43, 151). The
coding research of the biological meta-universe explores the progress
and challenges in the neural field from the macro level to the micro
level, combined with the simulation of the nervous system
information transmission, and lays the foundation for the future
development of human-computer interaction and neuroregulation
technology (152). In terms of microbial research, the study of the gut
microbiome has always been a hot topic (153, 154). Using
metagenomic sequencing technology combined with bioinformatics
data analysis to deeply explore the interactions between
microorganisms in the gutis important for understanding the
relationship between human health and disease. Microorganisms
are also emerging in drug delivery. bacteria-based drug delivery
systems have opened up new ways for the treatment of non-
neoplastic diseases, showing unique therapeutic advantages (155).
In this study, although the microbiome-related content was not
directly involved, the microbiome combined with bioinformatics
analysis can also open up new ways for the diagnosis and
treatment of diseases (156, 157). In the future, in the study of SIC
and related diseases, we may learn from the ideas and methods of
microbial research, use bioinformatics to analyze the pathogen
genome and host immune response data, deeply explore the
relationship between microorganisms and diseases in SIC patients,
and provide multi-dimensional support for the development of more
effective treatment strategies (158, 159). This also suggests that in
future studies, we should focus on the integration of research results
in different fields and explore the pathogenesis and treatment
strategies of SIC from a broader perspective (8, 121). In conclusion,
this study reveals the critical role of DVLI in the pathogenesis of SIC
and provides strong evidence as a novel therapeutic target, providing
important clues for precision medicine of SIC. Moreover, the
synergistic effects of pharmacological and non-pharmacological
interventions still deserve intensive investigation in the hope of

Frontiers in Immunology

10.3389/fimmu.2025.1560717

providing more effective personalized treatment options for
patients with SIC (160).In this process, big data and bioinformatics
technologies play a pivotal role, particularly in biomarker
identification, which is increasingly important for aiding the
diagnosis and prognostic assessment of diseases (138). In the
future, combining big data analysis, bioinformatics means, and
multi-level experimental validation, it is expected to further
elucidate the regulatory network of DVLI and optimize its targeted
intervention strategies (161, 162). The findings of this study not only
deepen the understanding of the molecular mechanisms of DVLI,
but also establish the theoretical basis for future personalized
treatment strategies for patients with SIC (163, 164). Research of
biomarkers is crucial for the early diagnosis and precise treatment of
diseases (142, 165). In this study, multi-omics analysis techniques and
bioinformatics means were used to study the DVLI1 gene as a
potential biomarker (125, 166). In the future, further research is
expected to identify potential markers such as MicroRNAs, metabolic
fingerprints, and extracellular vesicle surface proteins from more
biological samples so as to provide more ways for early disease
detection and disease monitoring and promote the development of
personalized treatment for SIC and related diseases (143). With the
continuous advancement of research, DVLI will become a new
breakthrough in the treatment of SIC and even cancer-related
cardiovascular diseases, contributing to the development of new
treatment methods (167-169).

5 Conclusion

This study highlights DVL1 as a key gene in SIC and its
association with poor outcomes in cancer, particularly in the
context of immunotherapy resistance. DVL1’s upregulation is
linked to increased inflammation and unfavorable prognosis,
suggesting its role in the complex landscape of intratumor
heterogeneity. Molecular docking identified Digoxin as a promising
candidate for targeting DVLI, with the potential to reduce oxidative
stress and modulate immune responses in SIC. WGCNA further
confirmed the central role of DVLI in the gene network driving
disease progression. These findings underscore the potential of
targeting DVL1 to improve therapeutic outcomes in SIC and
cancer, particularly when integrated with pharmacotherapy and
exercise regimens. By addressing the challenges posed
by intratumor heterogeneity, this study offers new insights into the
molecular mechanisms underlying SIC and its overlap with cancer
progression. Further clinical research is needed to validate the
therapeutic potential of targeting DVLI, aiming to enhance
immunotherapy effectiveness and provide more personalized
treatment strategies for patients facing both SIC and cancer.
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Thymidine phosphorylase (TYMP), a protein found in both prokaryotic and
eukaryotic cells, is encoded by a gene located in the ql3 region of
chromosome 22. With a relative molecular mass of 55,000, TYMP exists as a
homodimer. Recent research has increasingly illuminated the diverse functions
of TYMP. It is known to facilitate platelet activation, osteoclast differentiation, and
angiogenesis. Mutations in the TYMP gene are linked to mitochondrial
neurogastrointestinal encephalomyopathy. Beyond its physiological roles,
TYMP contributes significantly to tumor growth and cancer progression, where
it promotes angiogenesis, modulates epigenetic genes, inhibits apoptosis, and
acts as a critical enzyme in the nucleoside metabolic rescue pathway. Moreover,
TYMP holds substantial implications in cancer treatment and prognosis. Given its
involvement in cancer progression, TYMP inhibitors may prove valuable in
inhibiting tumor growth and metastasis. Interestingly, while TYMP can drive
tumor growth, certain concentrations of TYMP also enhance the cytotoxic
effects of chemotherapy drugs such as 5-fluorouracil (5-FU). Although
challenges exist—such as the potential disruption of normal physiological
functions when inhibiting TYMP—the protein remains a promising target for
cancer treatment. Ongoing research on TYMP could deepen our understanding
of human physiology and the pathogenesis of cancer and open new avenues for
therapeutic interventions. This article provides a comprehensive review of
TYMP's structure, physiological functions, and its role in tumorigenesis and
anti-tumor therapy.

nucleotide metabolism, thymidine phosphorylase, physiological functions,
tumorigenesis, anticancer therapy
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1 Introduction

Thymidine phosphorylase (TYMP) was first isolated and
purified from animal tissues by Friedkin and Roberts in 1954,
with the enzyme subsequently named thymidine phosphorylase,
now commonly referred to as TYMP (1). Due to the technological
limitations of the time, research on TYMP was limited following its
discovery. It wasn’t until 1978 that Kubilus and Baden isolated and
purified human TYMP from human amniotic membrane,
confirming its existence in humans (2). This marked the
beginning of a deeper exploration into the presence and functions
of TYMP within the human body. Over time, TYMP’s essential
biological roles, including promoting platelet activation, osteoclast
differentiation, angiogenesis, and its involvement in tumor
angiogenesis, epigenetic gene modification, apoptosis resistance,
and nucleoside metabolic salvage, have been gradually unveiled.
As such, TYMP has become a critical target in cancer research.
Despite significant advancements, ongoing studies continue to
deepen our understanding of TYMP’s full potential, yet much
remains to be uncovered.

Cancer remains the leading cause of death worldwide (3-5). Its
insidious nature means that by the time clinical symptoms become
apparent, the disease is often in its advanced stages (6). While
outcomes vary among patients, many advanced cancer cases can
benefit from careful preoperative assessment and postoperative
neoadjuvant chemotherapy, leading to improved prognoses (7, 8).
However, these approaches do not diminish the significance of
targeted cancer therapies in the treatment landscape. In recent
years, the development of targeted cancer therapies, coupled with
clinical trials, has provided promising alternative treatment options,
offering patients greater choices. Therefore, understanding the
underlying mechanisms of cancer and identifying viable
therapeutic targets, such as TYMP, has become an essential focus
in cancer research.

2 Structure of TYMP
2.1 Gene and molecular structure of TYMP

The TYMP gene is located on chromosome 22q13.32-qter (9).
Whether in mammals or bacteria, TYMP exhibits structural
conservation, existing as an anionic protein composed of two
homodimers with a relative molecular mass of 55,000. Notably,
when investigating the three-dimensional structure of Escherichia
coli thymidine phosphorylase, researchers determined its active site
by differentiating thymine and thymidine binding. This marked the
first reported identification of a possible molecular structure of
TYMP with thymine in the active site (10). Furthermore, human
TYMP shares 39% sequence homology with Escherichia coli TYMP
(11). Human TYMP possesses a proline-rich N-terminus (12), a
feature absent in bacterial TYMP, potentially explaining the
functional differences between the two. For instance, human
TYMP plays a role in promoting platelet activation and
hemostasis, functions that bacteria do not require.
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2.2 TYMP enzyme activity and
TYMP inhibitors

TYMP serves as a rate-limiting enzyme (13), exhibiting the
common characteristic where enzyme structure influences its
activity (14-16). Tipiracil hydrochloride (TPI) has been identified
as a potent TYMP inhibitor, demonstrating high binding affinity to
the enzyme. Moreover, TPI can function as an imaging agent for
assessing TYMP expression in vivo, owing to its stability post-18 F
labeling (17). Another notable TYMP inhibitor is the tritylated
inosine derivative 5’-O-triynyl sugar (formerly KIN59), which is a
non-competitive inhibitor (16). KIN59 binds to TYMP, inducing a
conformational change that inhibits enzymatic activity without
affecting substrate binding, underscoring the impact of TYMP
conformational alterations on its enzymatic function.
Additionally, Karen et al. identified polycyclic nitrogen
heterocycles as potential TYMP inhibitors (18). Utilizing
molecular docking techniques, their research demonstrated the
interaction between polycyclic nitrogen heterocycles and TYMP’s
active binding site. These findings highlight TYMP inhibitors as a
promising class of drugs with significant research potential. For the
development of TYMP-targeted therapies in the medical field,
understanding the binding site and conformational changes of
TYMP will be crucial for optimizing drug efficacy.

3 Physiological functions of TYMP

3.1 Downstream activation pathways
of TYMP

TYMP performs a variety of functions, with its activities often
relying on multiple signal transduction pathways. In recent years,
research into TYMP has advanced significantly, leading to a deeper
understanding of its mechanisms. Among the key mechanisms of
TYMP are the following:

Platelets, which play a pivotal role in thrombosis, rely on platelet
activation as a critical factor in the thrombotic process. Collagen-
induced platelet activation is primarily mediated through
glycoprotein VI (GPVI). GPVI exists in both monomeric and
dimeric forms on the cell surface and is associated with various
effectors, including the Fc receptor y chain (FcRy), spleen tyrosine
kinase, phospholipase Cy, protein kinase CJ, and bisphosphoinositide
polyphosphate phosphodiesterase 1 (19). During platelet activation,
LYN and FYN kinases bind to the cytoplasmic domain of one GPVI
molecule, while the other GPVI molecule associates with the FcRy
chain dimer, thereby activating the GPVI signaling pathway that
mediates platelet activation (20). Src family kinases (SFKs) play a
pivotal role in this activation cascade (21), with FYN acting as the
primary stimulator of SFKs, which in turn influence platelet
activation. LYN can suppress collagen-induced platelet activation
by promoting phosphorylation of the immunoreceptor tyrosine
inhibitory motif (ITIM) domain of platelet endothelial cell
adhesion molecule 1 (PECAMI) (22, 23). TYMP interacts with the
phosphate group on p-LYN, removing it and impairing LYN’s ability
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to mediate PECAM-1/ITIM phosphorylation. This action reduces
LYN’s inhibitory function on collagen-induced platelet activation,
thereby indirectly promoting platelet activation and thrombosis (12).
This mechanism of TYMP’s role in platelet activation is summarized
in Figure 1. Consequently, targeting TYMP with specific drugs may
offer a promising approach for developing new anti-platelet and anti-
thrombotic treatments.

The receptor activator of nuclear factor-xB ligand (RANKL)-
associated signaling pathway plays a critical role in osteoclastogenesis
and is potentially linked to inflammation (24). Osteoclasts (OCs) are
multinucleated hematopoietic cells capable of bone resorption. Their
formation is supported by macrophage colony-stimulating factor (M-
CSF) and RANKL, which binds to the RANK receptor on OC
precursors (25). The RANK-RANKL interaction recruits tumor
necrosis factor receptor-associated factor 6 (TRAF6), which
activates the NF-xB and AP-1 transcription factors (26, 27),
initiating the signaling cascade. This activation promotes the
expression of key molecules such as c-Fos, Cathepsin K, and T cell
nuclear factor cytoplasmic 1 (NFATcl), thereby facilitating OC
differentiation (28, 29) (Figure 1). Once differentiated, OC cells are
rapidly driven toward apoptosis. FYN plays a key role in stimulating
osteoclastogenesis by enhancing the proliferation and differentiation
of OC precursors (30). This effect is primarily mediated through
phosphorylation. A Japanese research team identified TYMP as a
factor that induces osteoclast differentiation by activating FYN
signaling. After TYMP stimulation, they observed a marked
increase in phosphorylated FYN levels and enhanced FYN gene
expression in macrophages. Additionally, sedimentation
experiments revealed that TYMP binds to a complex containing
integrin B1 (ITGP1) and FYN. Furthermore, in TYMP-stimulated
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cells, there was a significant upregulation of phosphorylated protein
kinase 1/2 (MEK1/2) and phosphorylated extracellular signal-
regulated kinase 1/2 (ERK1/2). These findings suggest that TYMP
activates FYN signaling, leading to the activation of MAPK and NF-
KB pathways, thereby promoting osteoclast differentiation (31). The
detailed mechanism by which TYMP promotes osteoclast
differentiation is summarized in Figure 1.

3.2 Pro-angiogenic function of TYMP

Angiogenesis, the process of forming new blood vessels from
existing ones, is promoted by TYMP. TYMP is highly expressed not
only in tumor cells but also in normal cells, including macrophages,
stromal cells, glial cells, and certain epithelial cells (32). Notably, the
elevated expression of TYMP in macrophages and skin plays a
critical role in maintaining systemic thymidine homeostasis.

TYMP catalyzes the conversion of thymidine (TdR) into
deoxyribose-1-phosphate (dR-1-P) and thymine, producing a
molecular structure that contains deoxyribose (dR) (33). This dR
component can further participate in angiogenesis (34). Since
TYMP catalyzes this reaction and indirectly influences
angiogenesis, its pro-angiogenic effect is closely tied to its
enzymatic activity. Consequently, inhibiting TYMP’s enzymatic
activity with TYMP inhibitors to block its pro-angiogenic effects
presents a potential therapeutic strategy. Furthermore, TYMP can
directly induce angiogenic factors such as interleukin-8, basic
fibroblast growth factor, and tumor necrosis factor o, which
promote angiogenesis and stimulate endothelial cell migration
and invasion (33). However, research into TYMP’s role in
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Mechanisms via which TYMP promotes platelet activation and osteoclast differentiation [The left-hand panel was adapted from Li et al. (2014) (12)].
LYN and FYN bind to the cytoplasmic domain of one GPVI molecule, while the other GPVI molecule interacts with the FcRy chain dimer, thereby
initiating the GPVI signaling pathway. Activation of this pathway results in LYN and FYN stimulating the phosphorylation of ITAM and Syk, which in
turn activates platelet activation. Concurrently, LYN inhibits collagen-induced platelet activation by promoting the phosphorylation of the
immunoreceptor tyrosine inhibitory motif (ITIM) domain of platelet endothelial cell adhesion molecule 1 (PECAM1). TYMP binds to the phosphate
group of p-LYN, dephosphorylating it and causing the loss of its ability to mediate PECAM-1/ITIM phosphorylation. This action attenuates LYN's
inhibitory function on collagen-induced platelet activation, thereby indirectly promoting platelet activation and contributing to thrombosis. In OC
precursor cells, RANKL binds to the RANK receptor on OC precursors, leading to the recruitment of TRAF6, which activates NF-kB and AP-1
transcription factors, triggering downstream signaling pathways. This activation promotes the expression of c-Fos and NFATc1, key drivers of
osteoclast differentiation. In TYMP-stimulated cells, the expression of FYN is significantly increased. TYMP activates FYN signaling, which
subsequently promotes the activation of MAPK and NF-kB signaling pathways, thereby facilitating osteoclast differentiation.
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angiogenesis remains limited, and it is unclear whether additional
pro-angiogenic mechanisms exist. Therefore, the full extent of
TYMP’s involvement in angiogenesis is not yet fully understood,
and further investigation is necessary.

3.3 Genetic disorders caused by TYMP
deficiency

Mitochondrial neurogastrointestinal encephalomyopathy
(MNGIE) is a rare autosomal recessive disorder caused by
mutations in the TYMP gene, resulting in the loss of TYMP
function (35). This disease leads to dysfunction in the digestive
and nervous systems, presenting with clinical symptoms such as
cachexia, ptosis, external ophthalmoplegia, peripheral neuropathy,
and leukoencephalopathy (36-38). While no significant side effects
have been reported for TYMP inhibitors as emerging drugs, the
existence of MNGIE serves as a reminder that TYMP inhibitors
could have previously unrecognized side effects. Therefore,
extensive research is still needed before TYMP inhibitors can be
applied clinically.

10.3389/fimmu.2025.1561560

4 Role of TYMP in the occurrence and
progression of cancer

TYMP is overexpressed in various cancers, including breast
cancer (38), gastric cancer (39), esophageal cancer (40), oral
squamous cell carcinoma (41), lung cancer (42), colorectal cancer
(43), cervical cancer (44), and bladder cancer (45). Furthermore,
plasma levels of TYMP in individuals with certain cancers are
significantly higher than in healthy individuals (46) (Figure 2).

4.1 TYMP-driven tumorigenesis through
angiogenesis

The most well-established function of TYMP is its role in
promoting angiogenesis. For tumors to proliferate extensively,
they require a constant supply of oxygen and nutrients, which
depend on blood circulation. Thus, a fully developed vascular
system is essential for tumor growth and progression. TYMP’s
angiogenesis-promoting effect addresses this need. As previously
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Expression profile of TYMP in pan-cancer. All data in this image are sourced from the GEPIA2 platform.
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mentioned, TYMP facilitates angiogenesis through the dR
component in its metabolites and by directly stimulating
angiogenic factors, which in turn influence tumor growth and
development. Consequently, inhibiting TYMP enzymatic activity
using TYMP inhibitors has emerged as a viable therapeutic
approach for slowing cancer progression. However, not all tumors
depend on TYMP for angiogenesis. Some tumors, despite having
dense microvascular networks, show no significant increase in
TYMP levels (47). This suggests that additional, yet unexplored,
mechanisms may also drive tumor angiogenesis. Nonetheless, it is
clear that tumors with high TYMP expression are likely to have
dense microvascular systems.

4.2 TYMP-driven tumorigenesis through
epigenetic modification

TYMP also influences tumor progression through its role in
DNA methylation regulation. A 2016 study revealed that TYMP
catalyzes the conversion of thymidine to thymine and 2-deoxy-D-
ribose (2DDR), which then binds to integrin aVB3/a581 on
progenitor cells, activating the PI3K/Akt signaling pathway. This
results in increased expression of DNA methyltransferase 3A
(DNMT3A), leading to hypermethylation of key genes such as
RUNX2, osterix, and IRF8 (48) (Figure 3). This mechanism is
particularly significant in myeloma, where TYMP-induced
hypermethylation of these genes contributes to reduced bone
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formation and enhanced bone resorption. TYMP overexpression
is commonly observed in bone metastatic tumors, further
supporting the potential of TYMP-targeted therapies for treating
myeloma-related bone diseases.

4.3 TYMP-driven tumorigenesis through
anti-apoptotic pathways

TYMP plays a key role in helping tumor cells resist apoptosis
induced by hypoxia. Kitazono’s study demonstrated that TYMP’s
metabolites, 2-deoxy-D-ribose and thymine, can partially
counteract hypoxia-induced apoptosis in KB/TP cells by
transfecting them with endothelial cell growth factor/thymidine
phosphorylase (PD-ECGF/TP) cDNA (49). Additionally, research
involving myocardial ischemia in dogs showed that PD-ECGF/TP
improved ischemic conditions, alleviating apoptosis caused by
hypoxia (50, 51). Furthermore, TYMP activates the PI3K/Akt
signaling pathway (48), a key pathway involved in regulating cell
apoptosis (52). Upon PI3K activation, phosphatidylinositol-4,5-
bisphosphate (PIP2) is converted into phosphatidylinositol-3,4,5-
triphosphate (PIP3) (53), leading to the phosphorylation of Akt via
phosphoinositide-dependent kinase 1 (PDK1) and mammalian
target of rapamycin complex 2 (mTORC2), thereby activating Akt
(54). Activated Akt inhibits the Forkhead box O (FOXO)
transcription factors, which initiate apoptosis, thereby promoting
cell survival (55). Additionally, Akt can inhibit the expression of cell
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Mechanism via which TYMP modifies epigenetic and resists apoptosis TYMP catalyzes the conversion of thymidine to thymine and 2DDR, which
binds to integrin aVB3/a5B1 on progenitor cells, thereby activating the PI3K pathway. Once activated, PI3K promotes the conversion of PIP2 to PIP3,
leading to the phosphorylation of Akt via PDK1 and mTORC2, completing Akt activation. Activated Akt inhibits FOXO, a key initiator of apoptosis,
thereby promoting cell survival. Additionally, Akt can enhance tumor growth by suppressing the expression of tumor suppressor proteins P21 and
P27. Furthermore, Akt acts on the MDM2 oncoprotein, negatively regulating the p53 tumor suppressor, thus resisting apoptosis and promoting
tumor cell survival. Activated Akt also upregulates the expression of DNMT3A, leading to the hypermethylation of key genes such as RUNX2, osterix,

and IRF8.
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cycle regulators P21 and P27, further supporting tumor growth
(56). Akt also negatively regulates the p53 tumor suppressor protein
via MDM2, resisting apoptosis and promoting tumor cell survival
(57) (Figure 3). Thus, TYMP can prevent cell apoptosis by
activating the PI3K/Akt pathway, supporting tumor cells in
resisting apoptosis induced by various treatments such as the
immune response, hypoxia, radiotherapy, and chemotherapy.
Understanding TYMP’s anti-apoptotic role could enhance cancer
therapies and offer insights into treating diseases caused by cellular
hypoxia. The main signaling pathways of TYMP are summarized
in Figure 3.

4.4 TYMP-driven tumorigenesis through
stabilizing the thymidine pool

As a key enzyme in the nucleoside metabolic salvage pathway,
TYMP helps maintain thymine pool stability, a key factor for DNA
synthesis. Tumor cells reprogram their metabolic pathways to meet
growth demands, with pyrimidine metabolism playing a central
role. Studies have shown that the expression levels of thymidylate
synthase (TYMS) and TYMP in tumor tissues are significantly
higher than in adjacent normal tissues. Both TYMS and TYMP
mRNA have the potential to serve as reliable diagnostic indicators
for colon cancer (CC), but further research is required to confirm
this (58). Given that tumor growth depends on cell division,
TYMP’s involvement in cell proliferation and tumor development
suggests its critical role in cancer progression. Further investigation
into the relationship between TYMP and tumors is needed.

5 Roles of TYMP in anti-cancer
therapy

5.1 TYMP functions as a target for cancer
therapy

Although TYMP exerts several promoting effects on tumor cell
growth and development, it also holds therapeutic potential in
cancer treatment. As a molecular target, TYMP is being explored for
the development of cancer therapeutics (59). Investigating its
biological functions in tumors may lead to the synthesis of TYMP
inhibitors, which could prevent angiogenesis and slow tumor
metastasis. However, research has indicated that certain TYMP
activities can activate a variety of chemotherapeutic agents (40),
which is crucial for cancer therapy. For instance, bevacizumab can
enhance the metabolic activation of 5-fluorouracil (5-FU) through
upregulation of TYMP (60). Furthermore, recent studies suggest
that utilizing human mesenchymal stem cells (hMSCs) as carriers to
deliver TYMP to cancer cells may facilitate the conversion of
docifluridine (5’-DFUR) into the toxic 5-FU, promoting cancer
cell death (61).

The activation of nucleic acid sensors in endothelial cells (ECs)
triggers inflammation in various diseases, including cancer.
Specifically, activation of the cytoplasmic RNA sensor retinoic
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acid-induced gene 1 (RIG-I) significantly contributes to decreased
EC survival, with TYMP being the most upregulated gene in this
process. Therefore, inhibiting TYMP could potentially alleviate
endothelial dysfunction and enhance cancer treatment (62).

As previously discussed, TYMP activity can activate
chemotherapy drugs, while TYMP inhibitors could mitigate its
angiogenic effects, thereby indirectly impeding tumor cell growth.
We summarized the TYMP inhibitors that are currently of certain
research value and the chemotherapeutic drugs that rely on TYMP
activity activation (Table 1). Although TYMP inhibitors may hold
promise in cancer therapy (69), their safety remains uncertain, and
long-term research is necessary to determine their clinical viability.

5.2 Targeting TYMP to alleviate resistance
to cancer immunotherapy and
chemotherapy

Immunotherapy and chemotherapy are widely used in cancer
treatment; however, their efficacy is not always consistent. Over
prolonged exposure to these therapies, tumor cells often develop
drug resistance, which diminishes treatment effectiveness. This
phenomenon is a key factor contributing to the continued
challenges in achieving significant progress in cancer treatment.

Peri et al. observed the upregulation of TYMP in gastric cancer
cells that were induced to become resistant to 5-fluorouracil,
identifying TYMP gene mutations in tumor cells as a common
cause of 5-fluorouracil resistance. Such mutations can enhance
angiogenesis in gastric cancer cell lines (70). Another study found
that TYMP-induced T cell exhaustion plays a critical role in
immunotherapy resistance in colorectal cancer (CRC) (71).
Targeted TYMP therapies could potentially improve the
effectiveness of immunotherapy. In 2022, a research team
explored whether demethylation of TYMP would increase cancer
cell sensitivity to 5-FU. While the results did not demonstrate that
TYMP demethylation alone enhanced 5-FU sensitivity, they
suggested a potential strategy combining TYMP with other
metabolic pathways to boost 5-FU responsiveness (72). These
findings provide novel insights into drug resistance in tumor cells,
thereby enhancing cancer treatment strategies.

5.3 Role of TYMP in prognostic evaluation
of tumor therapies

The expression of TYMP is closely associated with rectal cancer
treatment outcomes (73). Preoperative radiotherapy or
chemoradiotherapy (CRT) is considered the standard treatment
for locally advanced rectal cancer (74, 75), and studies have shown
that TYMP expression can help predict the efficacy of CRT (76).
Furthermore, TYMP’s significance in CRC progression is evident,
as a study demonstrated that the rs11479 polymorphism could
predict the prognosis of patients with CRC receiving capecitabine-
based adjuvant chemotherapy (77). This highlights that modulating
TYMP mRNA expression could enhance the effectiveness of

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1561560
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Huang et al.

TABLE 1 TYMP targeted drugs and their introduction.
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Medicine Introduction References
2-thioxo-pyrazolo[1,5-a] [1,3,5]triazin-4-ones A series of 2-thioxo-pyrazolo[1,5-a] [1,3,5]triazin-4-one derivatives were designed and (63)
synthesized, and their TYMP inhibitory potential was evaluated. Certain compounds
were found to exhibit promising TYMP inhibitory activity. This provides a new
direction for the design of novel TYMP inhibitors.
Ciprofloxacin analogs A research team synthesized a series of ciprofloxacin and evaluated their inhibitory (64)
potential against TYMP. They found that some of the analogs had good inhibitory
activity against thymidine phosphorylase. This drug may provide a new approach for
treating tumors.
Tritylated inosine derivative 5'-O-triynyl sugar (formerly Acts as a non-competitive inhibitor of TYMP. (65)
known as KIN59)
Polycyclic nitrogen heterocycles As a potential TYMP inhibitor, it has certain research value. (18)
Tipiracil hydrochloride (TPI) TPI is a selective TYMP inhibitor that exerts its antithrombotic effect by blocking (66)
TYMP-mediated platelet activation through the inhibition of TYMP-LYN binding. The
safety profile of TPI has been confirmed in experimental studies, demonstrating a lower
bleeding risk even at high doses compared to commonly used clinical agents such as
aspirin and clopidogrel. Currently, TPI has been approved for clinical use by the U.S.
Food and Drug Administration (FDA).
Docifluridine and TYMP-expressing mesenchymal Human mesenchymal stem cells are used as delivery vehicles to deliver a certain (67)
stem cells amount of TYMP activity to docifluridine, a prodrug of 5-fluorouracil, thereby
converting the non-toxic prodrug docifluridine into the toxic chemotherapy drug 5-
fluorouracil, thereby eliminating cancer cells.
Bevacizumab Bevacizumab mediates the activation of 5-fluorouracil by upregulating TYMP, thereby (60)
achieving a therapeutic effect on tumors.
Capecitabine Capecitabine relies on TYMP to activate the intermediate form 5'-deoxy-5-fluorouracil (68)

into the active form 5-fluorouracil, thereby achieving a therapeutic effect on tumors.

capecitabine-based therapy, thus improving survival rates in
patients with CRC.

Additionally, TYMP expression in CRC tumor epithelial cells is
linked to recurrence-free survival (RFS) in patients with CRC.
Elevated TYMP expression may correlate with poor prognosis in
these patients (78). Furthermore, research has shown that TYMP
polymorphisms can influence the prognosis of patients with CRC
undergoing chemotherapy by modulating TYMP mRNA
expression (79, 80).

TYMP also serves as a valuable immune prognostic marker in
various cancers, including renal clear cell carcinoma (81, 82) and
low-grade glioma (83). Recent studies have shown that a reduction
in TYMP expression can significantly affect the proliferation,
migration, and invasion of renal cell carcinoma (RCC) cells in
vitro (84). Furthermore, a 2016 study indicated a potential link
between TYMP levels and the survival rate of patients with localized
gastric cancer following radical gastrectomy (85). Additionally, the
combined expression of TYMP and hypoxia-inducible factor o
(HIF-10) has been shown to predict the prognosis of patients with
rectal cancer undergoing neoadjuvant chemoradiotherapy with
oxaliplatin and capecitabine (XELOXART) (86). These findings
underscore the pivotal role of TYMP in cancer treatment and
prognosis prediction.

Despite its promising potential in cancer therapy, TYMP has
certain limitations. Due to individual differences among patients,
TYMP-targeting drugs may be effective for some cancer individuals,
while less effective for others. Moreover, TYMP not only promotes
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tumor progression but also influences normal physiological
functions, making it crucial to consider the potential side effects
of TYMP-targeted therapies. Further research and clinical trials are
needed to validate these effects. While significant progress has been
made in understanding TYMP’s role in disease, many aspects
remain to be explored. The mechanisms underlying TYMP’s
involvement in tumors are complex, and the clinical effects of
inhibiting TYMP have yet to be fully established. The potential
for unknown side effects of TYMP inhibitors also warrants further
investigation. Despite these uncertainties, TYMP remains a
promising therapeutic target. It holds considerable potential in
the understanding and treatment of cancer, making ongoing
research into TYMP essential. However, considering the current
state of research, significant progress is still required before TYMP-
targeted therapies can be fully developed and applied.

6 Conclusions

TYMP, a protein found extensively in both prokaryotic and
eukaryotic cells, performs critical physiological functions, including
promoting platelet activation, osteoclast differentiation, and
angiogenesis. Mutations in the TYMP gene can lead to genetic
disorders such as MNGIE. Beyond its role in normal cells, TYMP is
also pivotal in cancer cells, where it facilitates tumor angiogenesis,
modifies epigenetics, and helps resist cell apoptosis. Additionally,
TYMP functions as a key enzyme in the nucleoside metabolic rescue
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pathway. Consequently, studying TYMP enhances our
understanding of cancer mechanisms and is vital for cancer
treatment. Targeting TYMP has emerged as a promising strategy
for cancer therapy, and TYMP-activated anti-tumor drugs
represent an important therapeutic approach. Despite existing
limitations, further research on TYMP holds significant potential
for advancing cancer treatment.

Author contributions

BH: Data curation, Investigation, Writing - original draft. QY:
Writing - original draft, Conceptualization, Supervision. JS:
Conceptualization, Supervision, Writing - original draft. CW:
Writing - review & editing, Data curation, Investigation. DY:
Conceptualization, Supervision, Writing — review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

We acknowledge Bullet Edits Limited for their linguistic editing
and proofreading of the manuscript. We also extend our gratitude
to the FigDraw platform for facilitating the creation of the
illustrations. The three images included in this manuscript were
designed with the assistance of the FigDraw platform and received

References

1. Friedkin M, Roberts D. The enzymatic synthesis of nucleosides. I. Thymidine
phosphorylase in mammalian tissue. J Biol Chem. (1954) 207:245-56. doi: 10.1016/
S0021-9258(18)71264-7

2. Kubilus ], Lee LD, Baden HP. Purification of thymidine phosphorylase from
human amniochorion. Biochim Biophys Acta. (1978) 527:221-8. doi: 10.1016/0005-
2744(78)90271-1

3. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer ] Clin. (2024) 74:229-63. doi: 10.3322/caac.21834

4. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer
attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health.
(2020) 8:€180-90. doi: 10.1016/52214-109X(19)30488-7

5. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer |
Clin. (2022) 72:7-33. doi: 10.3322/caac.21708

6. Yuan Q, Sun J, Hong Z, Shang D. Determining a robust prognostic biomarker for
804 patients with pancreatic cancer using a machine learning computational
framework. Int J Surg. (2025) 111:1561-3. doi: 10.1097/J$9.0000000000002016

7. PuN, Wu W, Liu S, Xie Y, Yin H, Chen Q, et al. Survival benefit and impact of
adjuvant chemotherapy following systemic neoadjuvant chemotherapy in patients with
resected pancreas ductal adenocarcinoma: a retrospective cohort study. Int J Surg.
(2023) 109:3137-46. doi: 10.1097/JS9.0000000000000589

8. Liang H, Yan X, Li Z, Chen X, Qiu Y, Li F, et al. Clinical outcomes of conversion
surgery following immune checkpoint inhibitors and chemotherapy in stage IV gastric
cancer. Int J Surg. (2023) 109:4162-72. doi: 10.1097/J59.0000000000000738

9. Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in
MNGIE, a human mitochondrial disorder. Science. (1999) 283:689-92. doi: 10.1126/
science.283.5402.689

Frontiers in Immunology

10.3389/fimmu.2025.1561560

approval. The approval numbers for the images are as follows:
Figure 1 ID: UWPSO8ccc4; Figure 2 ID: RYUII43b78; Figure 3
ID: TIWUU7ee76.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Correction note

A correction has been made to this article. Details can be found
at: 10.3389/fimmu.2025.1642752.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

10. Walter MR, Cook WJ, Cole LB, Short SA, Koszalka GW, Krenitsky TA, et al.
Three-dimensional structure of thymidine phosphorylase from Escherichia coli at 2.8 A
resolution. J Biol Chem. (1990) 265:14016-22. doi: 10.1016/S0021-9258(18)77450-4

11. Barton GJ, Ponting CP, Spraggon G, Finnis C, Sleep D. Human platelet-derived
endothelial cell growth factor is homologous to Escherichia coli thymidine
phosphorylase. Protein Sci. (1992) 1:688-90. doi: 10.1002/pro.5560010514

12. Li W, Gigante A, Perez-Perez MJ, Yue H, Hirano M, McIntyre TM, et al.
Thymidine phosphorylase participates in platelet signaling and promotes thrombosis.
Circ Res. (2014) 115:997-1006. doi: 10.1161/CIRCRESAHA.115.304591

13. Tabata S, Yamamoto M, Goto H, Hirayama A, Ohishi M, Kuramoto T, et al.
Thymidine catabolism as a metabolic strategy for cancer survival. Cell Rep. (2017)
19:1313-21. doi: 10.1016/j.celrep.2017.04.061

14. Mitsiki E, Papageorgiou AC, Iyer S, Thiyagarajan N, Prior SH, Sleep D, et al.
Structures of native human thymidine phosphorylase and in complex with 5-iodouracil.
Biochem Biophys Res Commun. (2009) 386:666-70. doi: 10.1016/j.bbrc.2009.06.104

15. Miyadera K, Sumizawa T, Haraguchi M, Yoshida H, Konstanty W, Yamada Y,
et al. Role of thymidine phosphorylase activity in the angiogenic effect of platelet
derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res. (1995)
55:1687-90.

16. Bronckaers A, Aguado L, Negri A, Camarasa MJ, Balzarini J, Pérez-Perez MJ,
et al. Identification of aspartic acid-203 in human thymidine phosphorylase as an
important residue for both catalysis and non-competitive inhibition by the small
molecule “crystallization chaperone” 5’-O-tritylinosine (KIN59). Biochem Pharmacol.
(2009) 78:231-40. doi: 10.1016/j.bcp.2009.04.011

17. Grierson JR, Brockenbrough JS, Rasey JS, Wiens L, Vesselle H. Synthesis and in
vitro evaluation of 5-fluoro-6-[(2-iminopyrrolidin-1-YL)methyl]uracil, TPI(F): an

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1642752
https://doi.org/10.1016/S0021-9258(18)71264-7
https://doi.org/10.1016/S0021-9258(18)71264-7
https://doi.org/10.1016/0005-2744(78)90271-1
https://doi.org/10.1016/0005-2744(78)90271-1
https://doi.org/10.3322/caac.21834
https://doi.org/10.1016/S2214-109X(19)30488-7
https://doi.org/10.3322/caac.21708
https://doi.org/10.1097/JS9.0000000000002016
https://doi.org/10.1097/JS9.0000000000000589
https://doi.org/10.1097/JS9.0000000000000738
https://doi.org/10.1126/science.283.5402.689
https://doi.org/10.1126/science.283.5402.689
https://doi.org/10.1016/S0021-9258(18)77450-4
https://doi.org/10.1002/pro.5560010514
https://doi.org/10.1161/CIRCRESAHA.115.304591
https://doi.org/10.1016/j.celrep.2017.04.061
https://doi.org/10.1016/j.bbrc.2009.06.104
https://doi.org/10.1016/j.bcp.2009.04.011
https://doi.org/10.3389/fimmu.2025.1561560
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Huang et al.

inhibitor of human thymidine phosphorylase (TP). Nucleosides Nucleotides Nucleic
Acids. (2010) 29:49-54. doi: 10.1080/15257770903451603

18. Aknin K, Bontemps A, Farce A, Merlet E, Belmont P, Helissey P, et al. Polycyclic
nitrogen heterocycles as potential thymidine phosphorylase inhibitors: synthesis,
biological evaluation, and molecular docking study. J Enzyme Inhib Med Chem.
(2022) 37:252-68. doi: 10.1080/14756366.2021.2001806

19. Babur O, Melrose AR, Cunliffe JM, Klimek J, Pang J, Sepp Al et al.
Phosphoproteomic quantitation and causal analysis reveal pathways in GPVI/ITAM-
mediated platelet activation programs. Blood. (2020) 136:2346-58. doi: 10.1182/
blood.2020005496

20. Diitting S, Bender M, Nieswandt B. Platelet GPVI: a target for antithrombotic
therapy?! Trends Pharmacol Sci. (2012) 33:583-90. doi: 10.1016/j.tips.2012.07.004

21. Séverin S, Nash CA, Mori ], Zhao Y, Abram C, Lowell CA, et al. Distinct and
overlapping functional roles of Src family kinases in mouse platelets. ] Thromb
Haemost. (2012) 10:1631-45. doi: 10.1111/j.1538-7836.2012.04814.x

22. Cicmil M, Thomas JM, Sage T, Barry FA, Leduc M, Bon C, et al. Collagen,
convulxin, and thrombin stimulate aggregation-independent tyrosine phosphorylation
of CD31 in platelets. Evidence for the involvement of Src family kinases. ] Biol Chem.
(2000) 275:27339-47. doi: 10.1016/S0021-9258(19)61516-4

23. Ming Z, Hu Y, Xiang J, Polewski P, Newman PJ, Newman DK. Lyn and PECAM-
1 function as interdependent inhibitors of platelet aggregation. Blood. (2011) 117:3903—
6. doi: 10.1182/blood-2010-09-304816

24. Wei W, Peng C, Gu R, Yan X, Ye J, Xu Z, et al. Urolithin A attenuates RANKL-
induced osteoclastogenesis by co-regulating the p38 MAPK and Nrf2 signaling
pathway. Eur ] Pharmacol. (2022) 921:174865. doi: 10.1016/j.ejphar.2022.174865

25. Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol.
(2007) 170:427-35. doi: 10.2353/ajpath.2007.060834

26. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent
bystander to major culprit. Nat Rev Cancer. (2002) 2:301-10. doi: 10.1038/nrc780

27. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and
function. Nat Rev Genet. (2003) 4:638-49. doi: 10.1038/nrg1122

28. Xue C, Luo H, Wang L, Deng Q, Kui W, Da W, et al. Aconine attenuates
osteoclast-mediated bone resorption and ferroptosis to improve osteoporosis via
inhibiting NF-xB signaling. Front Endocrinol (Lausanne). (2023) 14:1234563.
doi: 10.3389/fend0.2023.1234563

29. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction
and activation of the transcription factor NFATcl (NFAT2) integrate RANKL
signaling in terminal differentiation of osteoclasts. Dev Cell. (2002) 3:889-901.
doi: 10.1016/S1534-5807(02)00369-6

30. Kim HJ, Warren JT, Kim SY, Chappel JC, DeSelm CJ, Ross FP, et al. Fyn
promotes proliferation, differentiation, survival and function of osteoclast lineage cells.
J Cell Biochem. (2010) 111:1107-13. doi: 10.1002/jcb.v111:5

31. Matsumae G, Shimizu T, Tian Y, Takahashi D, Ebata T, Alhasan H, et al.
Targeting thymidine phosphorylase as a potential therapy for bone loss associated with
periprosthetic osteolysis. Bioeng Transl Med. (2021) 6:¢10232. doi: 10.1002/btm2.10232

32. Fox SB, Moghaddam A, Westwood M, Turley H, Bicknell R, Gatter KC, et al.
Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression in
normal tissues: an immunohistochemical study. J Pathol. (1995) 176:183-90.
doi: 10.1002/path.1711760212

33. Bijnsdorp IV, Capriotti F, Kruyt FA, Losekoot N, Fukushima M, Griffioen AW,
et al. Thymidine phosphorylase in cancer cells stimulates human endothelial cell
migration and invasion by the secretion of angiogenic factors. Br J Cancer. (2011)
104:1185-92. doi: 10.1038/bjc.2011.74

34. Hotchkiss KA, Ashton AW, Schwartz EL. Thymidine phosphorylase and 2-
deoxyribose stimulate human endothelial cell migration by specific activation of the
integrins alpha 5 beta 1 and alpha V beta 3. J Biol Chem. (2003) 278:19272-9.
doi: 10.1074/jbc.M212670200

35. Kucerova L, Dolina J, Dastych M, Bartusek D, Honzik T, Mazanec J, et al.
Mitochondrial neurogastrointestinal encephalomyopathy imitating Crohn’s disease: a
rare cause of malnutrition. | Gastrointestin Liver Dis. (2018) 27:321-5. doi: 10.15403/
j81d.2014.1121.273 kuc

36. Shah SAY, Shakeel HA, Hassan WU. Rare pathogenic mutation in the thymidine
phosphorylase gene (TYMP) causing mitochondrial neurogastrointestinal
encephalomyelopathy. BMJ Neurol Open. (2022) 4:€000287. doi: 10.1136/bmjno-2022-
000287

37. Mojtabavi H, Fatehi F, Shahkarami S, Rezaei N, Nafissi S. Novel mutations of the
TYMP gene in mitochondrial neurogastrointestinal encephalomyopathy: case series and
literature review. ] Mol Neurosci. (2021) 71:2526-33. doi: 10.1007/s12031-021-01822-w

38. Filosto M, Cotti Piccinelli S, Caria F, Gallo Cassarino S, Baldelli E, Galvagni A,
et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE-MTDPS1). |
Clin Med. (2018) 7(11):389. doi: 10.3390/jcm7110389

39. Wang L, Huang X, Chen Y, Jin X, Li Q, Yi TN. Prognostic value of TP/PD-ECGF
and thrombocytosis in gastric carcinoma. Eur ] Surg Oncol. (2012) 38:568-73.
doi: 10.1016/j.€js0.2012.04.008

40. Bronckaers A, Gago F, Balzarini J, Liekens S. The dual role of thymidine
phosphorylase in cancer development and chemotherapy. Med Res Rev. (2009)
29:903-53. doi: 10.1002/med.20159

Frontiers in Immunology

10.3389/fimmu.2025.1561560

41. Yao L, Itoh S, Furuta I. Thymidine phosphorylase expression in oral squamous
cell carcinoma. Oral Oncol. (2002) 38:584-90. doi: 10.1016/S1368-8375(01)00113-0

42. Chujo M, Miura T, Kawano Y, Miyawaki M, Imakiire T, Hayashita Y, et al.
Thymidine phosphorylase levels and dihydropyrimidine dehydrogenase levels in non-
small cell lung cancer tissues. Oncol Rep. (2006) 16:777-80. doi: 10.3892/0r.16.4.777

43. Sadahiro S, Suzuki T, Tanaka A, Okada K, Nagase H, Uchida J. Association of
right-sided tumors with high thymidine phosphorylase gene expression levels and the
response to oral uracil and tegafur/leucovorin chemotherapy among patients with
colorectal cancer. Cancer Chemother Pharmacol. (2012) 70:285-91. doi: 10.1007/
500280-012-1909-8

44. Hasegawa K, Okamoto H, Kawamura K, Kato R, Kobayashi Y, Sekiya T, et al.
The effect of chemotherapy or radiotherapy on thymidine phosphorylase and
dihydropyrimidine dehydrogenase expression in cancer of the uterine cervix. Eur |
Obstetrics Gynecology Reprod Biol. (2012) 163:67-70. doi: 10.1016/j.ejogrb.2012.03.014

45. Shimabukuro T, Matsuyama H, Baba Y, Jojima K, Suyama K, Aoki A, et al.
Expression of thymidine phosphorylase in human superficial bladder cancer. Int J Urol.
(2005) 12:29-34. doi: 10.1111/j.1442-2042.2004.00992.x

46. Bijnsdorp IV, de Bruin M, Laan AC, Fukushima M, Peters GJ. The role of
platelet-derived endothelial cell growth factor/thymidine phosphorylase in tumor
behavior. Nucleosides Nucleotides Nucleic Acids. (2008) 27:681-91. doi: 10.1080/
15257770802143988

47. O’Byrne KJ, Koukourakis MI, Giatromanolaki A, Cox G, Turley H, Steward WP,
et al. Vascular endothelial growth factor, platelet-derived endothelial cell growth factor
and angiogenesis in non-small-cell lung cancer. Br | Cancer. (2000) 82:1427-32.
doi: 10.1054/bjoc.1999.1129

48. Liu H, Liu Z, Du ], He J, Lin P, Amini B, et al. Thymidine phosphorylase exerts
complex effects on bone resorption and formation in myeloma. Sci Transl Med. (2016)
8:353ral13. doi: 10.1126/scitranslmed.aad8949

49. Kitazono M, Takebayashi Y, Ishitsuka K, Takao S, Tani A, Furukawa T, et al.
Prevention of hypoxia-induced apoptosis by the angiogenic factor thymidine
phosphorylase. Biochem Biophys Res Commun. (1998) 253:797-803. doi: 10.1006/
bbrc.1998.9852

50. Li W, Tanaka K, Thaya A, Fujibayashi Y, Takamatsu S, Morioka K, et al. Gene
therapy for chronic myocardial ischemia using platelet-derived endothelial cell growth
factor in dogs. Am J Physiol Heart Circ Physiol. (2005) 288:H408-15. doi: 10.1152/
ajpheart.00176.2004

51. Li W, Tanaka K, Morioka K, Takamori A, Handa M, Yamada N, et al. Long-term
effect of gene therapy for chronic ischemic myocardium using platelet-derived
endothelial cell growth factor in dogs. J Gene Med. (2008) 10:412-20. doi: 10.1002/
jgm.v10:4

52. Fresno VaraJA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron
M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. (2004) 30:193-204.
doi: 10.1016/j.ctrv.2003.07.007

53. Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C, Greabu M. PI3K/
AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical
aspects. Int ] Mol Sci. (2021) 22:173. doi: 10.3390/ijms22010173

54. Tian L-Y, Smit DJ, Jicker M. The role of PI3K/AKT/mTOR signaling in
hepatocellular carcinoma metabolism. Int ] Mol Sci. (2023) 24:2652. doi: 10.3390/
1jms24032652

55. Farhan M, Wang H, Gaur U, Little PJ, Xu ], Zheng W. FOXO signaling pathways
as therapeutic targets in cancer. Int J Biol Sci. (2017) 13:815-27. doi: 10.7150/ijbs.20052

56. Guo Q, Xiong Y, Song Y, Hua K, Gao S. ARHGAP17 suppresses tumor
progression and up-regulates P21 and P27 expression via inhibiting PI3K/AKT
signaling pathway in cervical cancer. Gene. (2019) 692:9-16. doi: 10.1016/
j.gene.2019.01.004

57. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes
translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U.S.A.
(2001) 98:11598-603. doi: 10.1073/pnas.181181198

58. Ramadan RA, Moghazy TF, Hafez R, Morsi H, Samir M, Shamesya M.
Significance of expression of pyrimidine metabolizing genes in colon cancer. Arab |
Gastroenterol. (2020) 21:189-93. doi: 10.1016/j.2jg.2020.07.006

59. Deves C, Rostirolla DC, Martinelli LK, Bizarro CV, Santos DS, Basso LA. The
kinetic mechanism of Human Thymidine Phosphorylase - a molecular target for cancer
drug development. Mol Biosyst. (2014) 10:592-604. doi: 10.1039/C3MB70453]

60. Liu W, Zhang J, Yao X, Jiang C, Ni P, Cheng L, et al. Bevacizumab-enhanced
antitumor effect of 5-fluorouracil via upregulation of thymidine phosphorylase through
vascular endothelial growth factor A/vascular endothelial growth factor receptor 2-
specificity protein 1 pathway. Cancer Sci. (2018) 109:3294-304. doi: 10.1111/
cas.2018.109.issue-10

61. Tarar A, Alyami EM, Peng CA. Mesenchymal stem cells anchored with
thymidine phosphorylase for doxifluridine-mediated cancer therapy. RSC Adv.
(2021) 11:1394-403. doi: 10.1039/DORA10263F

62. Baris A, Fraile-Bethencourt E, Eubanks J, Khou S, Anand S. Thymidine
phosphorylase facilitates retinoic acid inducible gene-I induced endothelial
dysfunction. Cell Death Dis. (2023) 14:294. doi: 10.1038/s41419-023-05821-0

63. Bera H, Ojha Pk, Tan BJ, Sun L, Dolzhenko AV, Chui WK, et al. Discovery of
mixed type thymidine phosphorylase inhibitors endowed with antiangiogenic
properties: synthesis, pharmacological evaluation and molecular docking study of 2-

frontiersin.org


https://doi.org/10.1080/15257770903451603
https://doi.org/10.1080/14756366.2021.2001806
https://doi.org/10.1182/blood.2020005496
https://doi.org/10.1182/blood.2020005496
https://doi.org/10.1016/j.tips.2012.07.004
https://doi.org/10.1111/j.1538-7836.2012.04814.x
https://doi.org/10.1016/S0021-9258(19)61516-4
https://doi.org/10.1182/blood-2010-09-304816
https://doi.org/10.1016/j.ejphar.2022.174865
https://doi.org/10.2353/ajpath.2007.060834
https://doi.org/10.1038/nrc780
https://doi.org/10.1038/nrg1122
https://doi.org/10.3389/fendo.2023.1234563
https://doi.org/10.1016/S1534-5807(02)00369-6
https://doi.org/10.1002/jcb.v111:5
https://doi.org/10.1002/btm2.10232
https://doi.org/10.1002/path.1711760212
https://doi.org/10.1038/bjc.2011.74
https://doi.org/10.1074/jbc.M212670200
https://doi.org/10.15403/jgld.2014.1121.273.kuc
https://doi.org/10.15403/jgld.2014.1121.273.kuc
https://doi.org/10.1136/bmjno-2022-000287
https://doi.org/10.1136/bmjno-2022-000287
https://doi.org/10.1007/s12031-021-01822-w
https://doi.org/10.3390/jcm7110389
https://doi.org/10.1016/j.ejso.2012.04.008
https://doi.org/10.1002/med.20159
https://doi.org/10.1016/S1368-8375(01)00113-0
https://doi.org/10.3892/or.16.4.777
https://doi.org/10.1007/s00280-012-1909-8
https://doi.org/10.1007/s00280-012-1909-8
https://doi.org/10.1016/j.ejogrb.2012.03.014
https://doi.org/10.1111/j.1442-2042.2004.00992.x
https://doi.org/10.1080/15257770802143988
https://doi.org/10.1080/15257770802143988
https://doi.org/10.1054/bjoc.1999.1129
https://doi.org/10.1126/scitranslmed.aad8949
https://doi.org/10.1006/bbrc.1998.9852
https://doi.org/10.1006/bbrc.1998.9852
https://doi.org/10.1152/ajpheart.00176.2004
https://doi.org/10.1152/ajpheart.00176.2004
https://doi.org/10.1002/jgm.v10:4
https://doi.org/10.1002/jgm.v10:4
https://doi.org/10.1016/j.ctrv.2003.07.007
https://doi.org/10.3390/ijms22010173
https://doi.org/10.3390/ijms24032652
https://doi.org/10.3390/ijms24032652
https://doi.org/10.7150/ijbs.20052
https://doi.org/10.1016/j.gene.2019.01.004
https://doi.org/10.1016/j.gene.2019.01.004
https://doi.org/10.1073/pnas.181181198
https://doi.org/10.1016/j.ajg.2020.07.006
https://doi.org/10.1039/C3MB70453J
https://doi.org/10.1111/cas.2018.109.issue-10
https://doi.org/10.1111/cas.2018.109.issue-10
https://doi.org/10.1039/D0RA10263F
https://doi.org/10.1038/s41419-023-05821-0
https://doi.org/10.3389/fimmu.2025.1561560
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Huang et al.

thioxo-pyrazolo[1,5-a][1,3,5]triazin-4-ones. Part II. Eur ] Med Chem. (2014) 78:294-
303. doi: 10.1016/j.ejmech.2014.03.063

64. Shahzad SA, Sarfraz A, Yar M, Khan ZA, Naqvi SAR, Naz S, et al. Synthesis,
evaluation of thymidine phosphorylase and angiogenic inhibitory potential of
ciprofloxacin analogues: Repositioning of ciprofloxacin from antibiotic to future
anticancer drugs. Bioorg Chem. (2020) 100:103876. doi: 10.1016/j.bioorg.2020.103876

65. Bronckaers A, Aguado L, Negri A, Camarasa MJ, Balzarini ], Pérez-Pérez MJ,
et al. Identification of aspartic acid-203 in human thymidine phosphorylase as an
important residue for both catalysis and non-competitive inhibition by the small
molecule "crystallization chaperone” 5'-O-tritylinosine (KIN59). Biochem Pharmacol.
(2009) 78:231-40. doi: 10.1016/j.bcp.2009.04.011

66. Belcher A, Zulfiker AHM, Li OQ, Yue H, Gupta AS, Li W. Targeting thymidine
phosphorylase with tipiracil hydrochloride attenuates thrombosis without increasing
risk of bleeding in mice. Arterioscler Thromb Vasc Biol. (2021) 41:668-82. doi: 10.1161/
ATVBAHA.120.315109

67. Wang X, Peng I, Peng CA. Eradication of cancer cells using doxifluridine and
mesenchymal stem cells expressing thymidine phosphorylase. Bioengineering (Basel).
(2024) 11(12):1194. doi: 10.3390/bioengineering11121194

68. Toi M, Bando H, Horiguchi S, Takada M, Kataoka A, Ueno T, et al. Modulation
of thymidine phosphorylase by neoadjuvant chemotherapy in primary breast cancer. Br
J Cancer. (2004) 90:2338-43. doi: 10.1038/sj.bjc.6601845

69. Peérez-Péerez MJ, Priego EM, Hernandez AI, Camarasa MJ, Balzarini ], Liekens S.
Thymidine phosphorylase inhibitors: recent developments and potential
therapeutic applications. Mini Rev Med Chem. (2005) 5:1113-23. doi: 10.2174/
138955705774933301

70. Peri S, Biagioni A, Versienti G, Andreucci E, Staderini F, Barbato G, et al.
Enhanced vasculogenic capacity induced by 5-fluorouracil chemoresistance in a gastric
cancer cell line. Int J Mol Sci. (2021) 22(14):7698. doi: 10.3390/ijms22147698

71. Paladhi A, Daripa S, Mondal I, Hira SK. Targeting thymidine phosphorylase
alleviates resistance to dendritic cell immunotherapy in colorectal cancer and promotes
antitumor immunity. Front Immunol. (2022) 13:988071. doi: 10.3389/fimmu.2022.988071

72. Koyama M, Osada E, Akiyama N, Eto K, Manome Y. Effect of thymidine
phosphorylase gene demethylation on sensitivity to 5-fluorouracil in colorectal cancer
cells. Anticancer Res. (2022) 42:837-44. doi: 10.21873/anticanres.15541

73. Derwinger K, Lindskog EB, Palmgqyvist E, Wettergren Y. Changes in thymidine
phosphorylase gene expression related to treatment of rectal cancer. Anticancer Res.
(2013) 33:2447-51.

74. Peeters KC, Marijnen CA, Nagtegaal 1D, Kranenbarg EK, Putter H, Wiggers T,
et al. The TME trial after a median follow-up of 6 years: increased local control but no
survival benefit in irradiated patients with resectable rectal carcinoma. Ann Surg. (2007)
246:693-701. doi: 10.1097/01.51a.0000257358.56863.ce

75. Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C, et al.
Preoperative versus postoperative chemoradiotherapy for locally advanced rectal

Frontiers in Immunology

89

10.3389/fimmu.2025.1561560

cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a
median follow-up of 11 years. J Clin Oncol. (2012) 30:1926-33. doi: 10.1200/
JCO.2011.40.1836

76. Sadahiro S, Suzuki T, Tanaka A, Okada K, Saito G, Kamijo A, et al. Increase in
gene expression of TYMP, DPYD and HIFIA are associated with response to
preoperative chemoradiotherapy including S-1 or UFT for rectal cancer. Anticancer
Res. (2016) 36:2433-40.

77. Jia X, Zhang T, Sun J, Lin H, Bai T, Qiao Y, et al. Rs11479 in thymidine
phosphorylase associated with prognosis of patients with colorectal cancer who
received capecitabine-based adjuvant chemotherapy. Pharmgenomics Pers Med.
(2023) 16:277-89. doi: 10.2147/PGPM.S397382

78. Kaidi D, Szeponik L, Yrlid U, Wettergren Y, Bexe Lindskog E. Impact of
thymidine phosphorylase and CD163 expression on prognosis in stage II colorectal
cancer. Clin Transl Oncol. (2022) 24:1818-27. doi: 10.1007/s12094-022-02839-2

79. Goto T, Shinmura K, Yokomizo K, Sakuraba K, Kitamura Y, Shirahata A, et al.
Expression levels of thymidylate synthase, dihydropyrimidine dehydrogenase, and
thymidine phosphorylase in patients with colorectal cancer. Anticancer Res. (2012)
32:1757-62.

80. Du YB, Zhang TF, Cui K, Jin SL, Xi Y, Ma W. The influence of Thymidine
Phosphorylase genetic variation on clinical outcomes and safety of colorectal cancer
patients received adjuvant chemotherapy after RO resection. Zhonghua Yi Xue Za Zhi.
(2018) 98:2569-73. doi: 10.3760/cma.j.issn.0376-2491.2018.32.007

81. Chen SA, Zhang JP, Wang N, Chen J. Identifying TYMP as an immune
prognostic marker in clear cell renal cell carcinoma. Technol Cancer Res Treat.
(2023) 22:15330338231194555. doi: 10.1177/15330338231194555

82. Liu M, Pan Q, Xiao R, Yu Y, Lu W, Wang L. A cluster of metabolism-related
genes predict prognosis and progression of clear cell renal cell carcinoma. Sci Rep.
(2020) 10:12949. doi: 10.1038/s41598-020-67760-6

83. Yang Y, Jiang L, Wang S, Chen H, Yi M, Wu Y, et al. A comprehensive pan-
cancer analysis on the immunological role and prognostic value of TYMP in human
cancers. Transl Cancer Res. (2022) 11:3187-208. doi: 10.21037/tcr-22-502

84. LiY, Fan C, Hu Y, Zhang W, Li H, Wang Y, et al. Multi-cohort validation:
A comprehensive exploration of prognostic marker in clear cell renal cell
carcinoma. Int Immunopharmacol. (2024) 135:112300. doi: 10.1016/
j.intimp.2024.112300

85. Huang L, Liu S, Lei Y, Wang K, Xu M, Chen Y, et al. Systemic immune-
inflammation index, thymidine phosphorylase and survival of localized gastric cancer
patients after curative resection. Oncotarget. (2016) 7:44185-93. doi: 10.18632/
oncotarget.v7i28

86. Lin S, Lai H, Qin Y, Chen J, Lin Y.. Thymidine phosphorylase and hypoxia-
inducible factor 1-o expression in clinical stage II/III rectal cancer: association with
response to neoadjuvant chemoradiation therapy and prognosis. Int J Clin Exp Pathol.
(2015) 8:10680-8.

frontiersin.org


https://doi.org/10.1016/j.ejmech.2014.03.063
https://doi.org/10.1016/j.bioorg.2020.103876
https://doi.org/10.1016/j.bcp.2009.04.011
https://doi.org/10.1161/ATVBAHA.120.315109
https://doi.org/10.1161/ATVBAHA.120.315109
https://doi.org/10.3390/bioengineering11121194
https://doi.org/10.1038/sj.bjc.6601845
https://doi.org/10.2174/138955705774933301
https://doi.org/10.2174/138955705774933301
https://doi.org/10.3390/ijms22147698
https://doi.org/10.3389/fimmu.2022.988071
https://doi.org/10.21873/anticanres.15541
https://doi.org/10.1097/01.sla.0000257358.56863.ce
https://doi.org/10.1200/JCO.2011.40.1836
https://doi.org/10.1200/JCO.2011.40.1836
https://doi.org/10.2147/PGPM.S397382
https://doi.org/10.1007/s12094-022-02839-2
https://doi.org/10.3760/cma.j.issn.0376-2491.2018.32.007
https://doi.org/10.1177/15330338231194555
https://doi.org/10.1038/s41598-020-67760-6
https://doi.org/10.21037/tcr-22-502
https://doi.org/10.1016/j.intimp.2024.112300
https://doi.org/10.1016/j.intimp.2024.112300
https://doi.org/10.18632/oncotarget.v7i28
https://doi.org/10.18632/oncotarget.v7i28
https://doi.org/10.3389/fimmu.2025.1561560
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

a frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Pengpeng Liu,

University of Massachusetts Medical School,
United States

REVIEWED BY

Yi Liu,

Stanford University, United States
Qiuxia Zhao,

The University of Texas at Austin,
United States

Zhimin Hu,

University of California, San Diego,
United States

*CORRESPONDENCE

Guanghui Wu
ndwgh@163.com

Yisheng Chen
capydora@qgg.com

Xianjun Li
lixianjun1978@126.com

Ming Liu
liuming_2011@outlook.com

Jiancheng Shen
190996473@qg.com

RECEIVED 13 February 2025
accepTeD 02 April 2025
PUBLISHED 30 April 2025

CITATION
Wu G, Chen Y, Chen C, Liu J, Wu Q,
Zhang Y, Chen R, Xiao J, Su'Y, Shi H, Yu C,
Wang M, Ouyang Y, Jiang A, Chen Z, Ye X,
Shen C, Reheman A, Li X, Liu M and Shen J
(2025) Role and mechanisms of

exercise therapy in enhancing

drug treatment for glioma: a review.

Front. Immunol. 16:1576283.

doi: 10.3389/fimmu.2025.1576283

COPYRIGHT

© 2025 Wu, Chen, Chen, Liu, Wu, Zhang,
Chen, Xiao, Su, Shi, Yu, Wang, Ouyang, Jiang,
Chen, Ye, Shen, Reheman, Li, Liu and Shen.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Immunology

TYPE Review
PUBLISHED 30 April 2025
D01 10.3389/fimmu.2025.1576283

Role and mechanisms of
exercise therapy in enhancing
drug treatment for glioma:

a review

Guanghui Wu'*, Yisheng Chen****>%, Chong Chen’,

Jianling Liu®, Qiaowu Wu’®, Yazhen Zhang®, Rungiong Chen?,
Jianzhong Xiao®, Yusheng Su?®, Haojun Shi®, Chunsheng Yu?,
Miao Wang?®, Yifan Ouyang?®, Airong Jiang?, Zhengzhou Chen’,
Xiao Ye?, Chengwan Shen®, Aikebaier Reheman?®, Xianjun Li*,
Ming Liu“* and Jiancheng Shen™*

‘Department of Neurosurgery, Ningde Clinical Medical College, Fujian Medical University, Ningde,
Fujian, China, 2Department of Neurosurgery, Ningde Municipal Hospital, Ningde Normal University,
Ningde, Fujian, China, *Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College,
Ningde Normal University, Ningde, Fujian, China, *Department of Neurosurgery, School of Medicine,
Loma Linda University, Loma Linda, CA, United States, *Department of Physiology and Pharmacology,
School of Medicine, Loma Linda University, Loma Linda, CA, United States, °Department of
Neurosurgery and Anesthesiology, School of Medicine, Loma Linda University, Loma Linda,

CA, United States, “"NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases,
The First Affiliated Hospital of Chongqing Medical University, Chongging, China, 8School of Physical
Education, Ningde Normal University, Ningde, Fujian, China, °Faculty of Chinese Medicine and State
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Gliomas, particularly glioblastoma (GBM), are among the most aggressive and
challenging brain tumors to treat. Although current therapies such as
chemotherapy, radiotherapy, and targeted treatments have extended patient
survival to some extent, their efficacy remains limited and is often accompanied
by severe side effects. In recent years, exercise therapy has gained increasing
attention as an adjunctive treatment in clinical and research settings. Exercise not
only improves patients’ physical function and cognitive abilities but may also
enhance the efficacy of conventional drug treatments by modulating the
immune system, suppressing inflammatory responses, and improving blood-
brain barrier permeability. This review summarizes the potential mechanisms of
exercise in glioma treatment, including enhancing immune surveillance through
activation of natural killer (NK) cells and T cells, and increasing drug penetration
by improving blood-brain barrier function. Additionally, studies suggest that
exercise can synergize with chemotherapy and immunotherapy, improving
treatment outcomes while reducing drug-related side effects. Although the
application of exercise therapy in glioma patients is still in the exploratory
phase, existing evidence indicates its significant clinical value as an adjunctive
approach, with the potential to become a new standard in glioma treatment in
the future.
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GRAPHICAL ABSTRACT

Research on Exercise Therapy in Improving Drug Treatment for Glioma This figure illustrates the potential of exercise therapy to enhance glioma
treatment. (A) Conventional therapies face limitations, such as drug resistance and side effects. (B) Glioma treatment is challenged by the blood-
brain barrier, tumor microenvironment and immunosuppression. (C) Exercise modulates the immune response, reduces inflammation, and promotes
tumor suppression via myokines. (D) Exercise enhances drug sensitivity and reduces chemotherapy resistance. (E) It improves physical endurance,
cognitive function, neurological recovery and mental well-being. (F) Despite research gaps, integrating exercise into clinical oncology through per-
sonalized programs and multidisciplinary collaboration holds promise for the management of glioma.
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1 Introduction
1.1 Epidemiology and clinical burden

Gliomas, especially glioblastomas (GBM), are among the most
common and aggressive brain tumors (1). With a high degree of
malignancy and poor prognosis, current treatment options such as
chemotherapy, targeted therapy, and immunotherapy have many
limitations (2). Glioblastomas account for approximately 48% of
adult brain malignancies, with standard treatment primarily relying
on radiotherapy and temozolomide chemotherapy (3). However,
these therapies have not significantly improved long-term survival
and quality of life for patients (4). The biological characteristics of
glioblastomas present numerous challenges during treatment. These
tumors are characterized by dense vasculature and are often
accompanied by vasogenic edema and mass effects, which
exacerbate neurological symptoms and lead to a poor quality of life
(5). Additionally, glioblastomas exhibit a highly immunosuppressive
microenvironment, which further complicates treatment efforts.
Although there have been significant advances in cancer treatment
in recent years, therapeutic outcomes for gliomas remain limited,
particularly in patients with high-grade gliomas (HGGs) (6). The
primary treatment goal for patients with HGG is to achieve
progression-free survival and delay cognitive and neurological
decline as much as possible (7). For these patients, health-related
quality of life (HRQOL) has become a critical measure for evaluating
treatment effectiveness (8).

Although brain tumors account for a relatively small proportion
of all malignancies (1. 4%), their negative impact on both physical
and mental health is profound (9). Patients with brain tumors often
suffer from functional impairments, experiencing not only physical
dysfunction but also significant reductions in cognitive abilities and
social psychological well-being. Consequently, cancer rehabilitation,
particularly research focused on patients with brain tumors, has
become a prominent area of study. With advancements in early
diagnosis and treatment, the overall survival rate of patients with
cancer has significantly improved (10). However, the challenge of
maintaining quality of life after treatment remains severe for patients
with gliomas. This is particularly important given the frequent
occurrence of neurological deficits, fatigue, and cognitive decline
that persist after conventional treatment. In this context,
complementary therapies, such as exercise, may offer potential
benefits by improving both physical function and cognitive outcomes.

The incidence of brain tumors increases with age, and survival
rates decline with age at diagnosis. The median age at diagnosis of
most brain tumors is 56 years. However, it is important to note that
brain tumors remain one of the most common malignant cancers in
children (11). The incidence of different types of brain tumors varies
significantly across age groups. In children, embryonal/
neuroectodermal tumors and pilocytic astrocytomas are more
prevalent, whereas in adults, meningiomas and malignant gliomas
are more common (12). The impact of brain tumors on patient
health extends beyond physical effects and includes a decline in
social and psychological functioning (13). Treatments such as
surgery, radiotherapy, and chemotherapy not only cause direct
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physical damage but can also lead to long-term side effects,
further impairing a patient’s ability to work and interact socially
(14). Therefore, glioma treatment should focus not only on
prolonging survival but also on enhancing post-treatment
functional recovery and quality of life. Moreover, emerging
evidence suggests that incorporating physical exercise during or
after treatment could offer additional benefits by modulating the
immune response, reducing inflammation, and improving
drug delivery.

1.2 Burden of brain cancer and other
central nervous system cancers

Although brain cancer and other central nervous system (CNS)
tumors account for a relatively small proportion of all cancers, their
disease burden on patients is extremely heavy. Glioma is the most
common malignant brain tumor in adults, accounting for 80% of all
primary brain cancers. According to statistics, the five-year relative
survival rate for brain cancer is only 22%, which is significantly lower
than that of other common cancers, such as breast cancer and
prostate cancer, and much lower than the overall cancer survival
rate (10, 15). Despite advancements in treatment, gliomas, especially
glioblastomas, remain highly aggressive and have a poor prognosis,
making them a major challenge for clinicians and researchers.
Although treatment methods such as chemoradiotherapy
(temozolomide) have somewhat improved patient survival rates,
treatment-related side effects, particularly their impact on physical,
cognitive, and social psychological functions, remain significant.
These side effects persist throughout the treatment process and
affect various stages of a patient’s life (16).

1.3 Potential of exercise as an adjunctive
therapy

Ongoing research continues to unravel the intricate regulatory
mechanisms through which physical activity modulates various
biological processes. These findings are instrumental in advancing
the refinement of intervention strategies and identification of novel
therapeutic targets (16-18). In recent years, exercise has been
increasingly recognized for its potential benefits as an adjunctive
therapy for cancer patients. Research has shown that appropriate
exercise interventions can significantly improve physical, social
psychological, and cognitive functions in both healthy individuals
and cancer patients (19). Exercise not only aids in the brain repair
process in mice but also enhances cognitive abilities in both mice
and humans (20). Although it remains unclear whether these
benefits can be replicated in adult brain tumor patients
undergoing treatment, animal studies have demonstrated the
restorative effects of exercise on neurological function (21). In
particular, the potential of exercise interventions in patients with
brain tumors warrants further investigation.

A meta-analysis indicated that patients who engaged in physical
activity after diagnosis had significantly higher disease-free survival and
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overall survival rates than those with the least physical activity (22).
Furthermore, cancer-specific and all-cause mortality rates were
reduced by 59% and 64%, respectively. This evidence highlights the
importance of exercise as a potential therapeutic strategy for improving
physical function, modulating immune responses, and enhancing
overall treatment efficacy (23-25). The American College of Sports
Medicine’s exercise prescription guidelines also provide strong
evidence supporting the role of exercise interventions in managing
anxiety, depressive symptoms, fatigue, quality of life (QoL), and
physical function. Notably, exercise interventions have also shown
benefits for bone health and sleep (26).

Primary Brain Cancer
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2 Molecular mechanisms of glioma
and treatment challenges

2.1 Molecular and biological characteristics
of glioma

Glioma, particularly GBM, is a significant concern because of its
high invasiveness, heterogeneity, and strong resistance to current
treatments as shown in Figure 1. The heterogeneity of glioma cells is
reflected not only in cell morphology but also in gene expression,
epigenetic modifications, metabolic characteristics, and the
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FIGURE 1

Molecular Characteristics, Treatment Strategies, and Emerging Technologies for Glioma Management. This figure outlines glioma pathophysiology,
traditional treatments, and emerging therapies. The p53 pathway's dysregulation, influenced by phosphorylation, is key in glioma progression.
Traditional treatments, including radiotherapy and chemotherapy, face resistance and side effects. New approaches, like PD-1 inhibitors and
immunotherapy, are being explored. Proton therapy offers more precise targeting of tumors, sparing healthy tissues. Rehabilitation technologies like
home training and digital monitoring improve patient autonomy and compliance.
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complexity of the immune microenvironment (27). This
heterogeneity contributes to the difficulty in effectively treating
gliomas, as traditional therapies often fail to address all tumor
subpopulations, leading to tumor recurrence (28). At the molecular
level, gliomas are typically characterized by gene mutations,
chromosomal aberrations, and epigenetic alterations (29). For
instance, amplification of the EGFR gene and mutations in TP53
are common genetic features of glioblastoma. These mutations are
closely associated with the high invasiveness, rapid growth, and
treatment resistance observed in gliomas. Further studies have
shown that EGFR amplification activates a series of oncogenic
signaling pathways, such as the PI3K/AKT and Ras/MAPK
pathways, promoting glioma growth, proliferation, and migration
(30). Additionally, the methylation status of the MGMT (O-6-
methylguanine-DNA methyltransferase) gene is closely linked to
the response of patients with glioma to temozolomide (31). MGMT
methylation suppresses its expression, enhancing patient sensitivity
to chemotherapy drugs (31).

In addition to genetic mutations, the metabolic characteristics
of glioma cells reflect their high heterogeneity. Studies have found
that glioma cells often exhibit abnormal glucose metabolism, such
as the phenomenon of “aerobic glycolysis” (the Warburg effect)
(32). This metabolic process allows tumor cells to preferentially
generate energy through glycolysis, even in the presence of sufficient
oxygen (33). This not only provides the energy needed for tumor
cell growth but also leads to the accumulation of lactate, altering the
tumor microenvironment and promoting tumor invasiveness (34).
The immune microenvironment of gliomas is also a crucial factor
contributing to therapeutic resistance. Research indicates that
glioma cells suppress antitumor immune responses through
multiple mechanisms (35). For example, gliomas often upregulate
immune checkpoint molecules, such as PD-L1, inhibiting T-cell
immune responses (36). Furthermore, the infiltration of tumor-
associated macrophages (TAMs) and other immune-suppressive
cell populations is one of the reasons for glioma’s resistance to
treatment (37). This immunosuppressive microenvironment not
only shields tumor cells from immune surveillance but also fosters
tumor progression and metastasis (38).Investigating the intricate
interplay of biomolecular mechanisms in gliomas-including
signaling pathways activated by genetic mutations, metabolic
reprogramming, and immune microenvironment regulation -
enables comprehensive elucidation of tumorigenic processes,
thereby informing strategic development of targeted therapeutic
agents (39, 40).

2.2 Traditional and emerging
pharmacological treatment strategies

2.2.1 Radiotherapy and chemotherapy

Radiotherapy and chemotherapy are the two mainstay
treatments for glioblastoma. Despite their essential role in clinical
treatment, their effectiveness is often limited (41). Radiotherapy
kills tumor cells through high-energy radiation but is also
challenging to target solely at tumor cells, often causing damage
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to normal brain tissue (42). This is particularly problematic in
pediatric patients, in whom long-term cognitive dysfunction caused
by radiotherapy remains a serious side effect. In addition to
cognitive damage, radiotherapy may lead to brain atrophy,
endocrine dysfunction, and other neurological impairments (43).
To reduce these side effects, increasing attention is being paid to
more precise radiotherapy techniques, such as stereotactic
radiotherapy (SRT) and proton beam radiotherapy (PBRT),
which enhance targeting accuracy and reduce damage to healthy
tissue (44). Temozolomide (TMZ) is a standard drug used in the
treatment of glioblastoma. It kills tumor cells by interfering with the
DNA repair processes. However, due to the resistance of tumor
cells, the efficacy of temozolomide is often limited (45). The
resistance mechanisms may involve the expression levels of the
MGMT gene, changes in the tumor microenvironment, and
autophagy (46). To address this issue, researchers are exploring
combination therapies with temozolomide to overcome tumor
resistance and enhance the therapeutic efficacy.

2.2.2 Targeted therapy and immunotherapy

In recent years, targeted therapy and immunotherapy have
become popular topics in glioma research. Targeted therapy
inhibits specific molecular targets within tumor cells to block their
growth. For instance, targeted drugs against EGFR mutations and
VEGF antibodies have been used in glioma treatment (47). However,
owing to the molecular heterogeneity of gliomas, single-target drugs
often fail to address the tumor’s diversity and resistance. In addition
to single-target therapies, combination therapies targeting multiple
pathways are being explored (28). Bioinformatics technologies have
played a pivotal role in unraveling gene expression and regulatory
mechanisms in gliomas, providing critical insights into the molecular
basis of tumorigenesis and progression (48-50).Immunotherapy
represents a revolutionary advancement in cancer treatment. By
utilizing immune checkpoint inhibitors, the immune system is
activated to enhance its recognition and destruction of tumor cells
(51). Immunotherapy has provided new hope for patients with
gliomas. However, the immune evasion mechanisms of gliomas
render immunotherapy less effective than in other cancer types.
The highly immunosuppressive microenvironment of gliomas and
the frequent upregulation of immune checkpoints are major obstacles
to the success of immunotherapy (52). Therefore, overcoming
immune evasion mechanisms and improving the effectiveness of
immunotherapy remain key challenges in the treatment of gliomas.
In glioma immunotherapy, integrating bioinformatics with
experimental approaches, such as epigenetic profiling, metabolic
regulation analysis, and intercellular communication studies,
uncovers novel immune cell mechanisms, thereby informing the
optimization of therapeutic strategies (38, 53).

2.2.3 Drug resistance and side effects

Despite continuous advancements in treatment strategies, drug
resistance and side effects remain significant challenges in the
treatment of gliomas. Tumor cell resistance to current treatments
is not only closely linked to genetic mutations but also involves

factors such as the tumor microenvironment, drug metabolism
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pathways, and the efficacy of the blood-brain barrier (54). The
tumor microenvironment plays a crucial role in facilitating drug
resistance by creating physical, biochemical, and immune barriers
(55). For instance, overcoming the blood-brain barrier (BBB) for
drug delivery in glioma requires interdisciplinary approaches that
integrate pharmaceutics, materials science, and bioinformatics (38).
Long-term treatment side effects are also a dilemma for patients
with glioma. The side effects of drugs not only affect patients’ quality
of life but can also exacerbate their conditions. For instance, while
dexamethasone can alleviate brain edema and increased intracranial
pressure in patients with glioma, prolonged use may lead to a range
of side effects, such as osteoporosis, diabetes, and muscle atrophy
(56). These chronic side effects can significantly reduce the patient’s
functional capacity and quality of life, further complicating glioma
management. These side effects highlight the need for more
individualized treatment strategies to minimize the negative
impact on patients’ health.

2.3 Emerging treatment methods and
technologies

With technological advancements, emerging treatment
methods and technologies have brought new hope for glioma
treatment. Proton beam radiotherapy (PBRT) is a precise
radiotherapy technique that offers greater targeting accuracy and
fewer side effects than traditional photon radiotherapy (XRT).
Proton beam radiotherapy can precisely focus radiation on the
tumor site, minimizing radiation exposure to surrounding healthy
tissues, and thus significantly reducing the risk of neurocognitive
damage (57). Although large-scale clinical trial data remain limited,
existing studies have shown that proton beam radiotherapy offers
clear advantages in glioma treatment, particularly in reducing
endocrine dysfunction and lowering the risk of tumor recurrence
(58). In addition, the application of digital health technologies is
gradually gaining attention in glioma treatment. By using wearable
devices to monitor patients’ physiological data in real time,
physicians can better understand the patient’s condition and
adjust the treatment plan accordingly. These devices can monitor
indicators such as activity levels, heart rate, and blood oxygen levels,
and can also assess patients’ mobility and cognitive function (59).
Meanwhile, Al-empowered CADD has advanced to high-
throughput multi-scale simulations, providing intelligent
frameworks for glioma-targeted therapies. Nanodelivery systems
(NDS) optimize stem cell niches and enhance targeted delivery,
while synergizing with exercise therapy to improve drug
penetration and immune activation, thus overcoming blood-brain
barrier and immunosuppressive challenges (60-62).Glioma
research has established an integrated framework combining
bioinformatics, advanced imaging technologies, and single-cell
transcriptomics to systematically elucidate pathological
mechanisms and white matter repair processes. The single-cell
transcriptomic analysis methodology, developed based on
references (63, 64), employs single-cell sequencing and high-
dimensional omics technologies to characterize disease
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pathogenesis and cellular/molecular features within tumor
immune microenvironments, offering novel perspectives for
understanding disease progression and therapeutic responses
(65-67). The synergistic application of bioinformatic tools and
single-cell sequencing has enabled researchers to identify
microenvironment-specific immune reaction patterns, providing
empirical support for personalized treatment strategies (68, 69).
These technological advancements have facilitated the implementation
of multi-omics approaches (transcriptomics, metabolomics,
proteomics) in clinical sample analysis, revealing disease-associated
molecular signatures that inform early diagnosis and precision
medicine (70, 71).

Clinical implementations demonstrate that CT-based multitask
deep learning models can predict tumor-stroma ratios and
treatment outcomes, while machine learning algorithms effectively
identify lymph node metastasis patterns in gliomas, establishing
evidence-based foundations for individualized therapy (72-
76).Digital health monitoring systems significantly enhance
rehabilitation management through real-time progression
tracking (77). The integration of big data analytics and
bioinformatics has become pivotal in glioma biomarker discovery
and prognostic evaluation, with transcriptomic data mining
enabling precise identification of critical genes and signaling
pathways that inform drug development and early diagnostic
markers (78-80). Cutting-edge approaches combining multi-
omics integration, advanced bioinformatic analysis, and
nanotechnology have elucidated potential therapeutic mechanisms
of various agents (81, 82). Current investigations in glioma and
other malignancies focus on extracellular vesicle (EV) applications
as drug delivery systems through combined cellular biology and
immune microenvironment analysis, creating novel paradigms for
therapeutic innovation and prognostic assessment (83, 84).

3 Mechanisms of exercise therapy
3.1 Systemic antitumor effects

3.1.1 The broad role of exercise in antitumor
therapy

Accumulating evidence underscores the capacity of exercise to
modulate diverse biological processes, thereby facilitating the
optimization of intervention strategies and identification of novel
therapeutic targets (16-18). In recent years, exercise, as a natural
health behavior, has been increasingly demonstrated to have
potential in antitumor therapy (85). Exercise not only helps
improve physical fitness, enhances cardiovascular function, and
boosts the immune system, but also provides active support against
tumor occurrence, progression, and recurrence through various
mechanisms (86). This effect is particularly prominent in the
treatment of highly malignant brain tumors, such as GBM.
Owing to the limitations imposed by drug resistance, the BBB,
and adverse factors in the tumor microenvironment, exercise as a
non-pharmacological therapy has garnered significant attention for
its potential antitumor effects (87). The antitumor effects of exercise
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can operate through various mechanisms, particularly by
modulating the immune system, exerting anti-inflammatory
effects, and improving the tumor microenvironment, thereby
enhancing the body’s resistance to tumors (88). Studies have
shown that moderate exercise can significantly improve immune
system function by increasing the activity of immune cells, thereby
enhancing the body’s ability to recognize and eliminate tumors as
shown in Figure 2 (89).

3.1.2 Modulation of the immune system by
exercise

The impact of exercise on the immune system is considered a
core mechanism underlying its antitumor effects. The immune
system plays a crucial role in tumor initiation and development
(90). Tumor cells often evade detection by the host immune system
through various mechanisms, whereas exercise enhances immune
system function through multiple pathways, making it an effective
strategy for preventing tumor progression (91). Studies have shown
that moderate exercise enhances immune surveillance by regulating
the quantity and activity of natural killer (NK) cells (25). NK cells
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are key components of the innate immune system, serving as the
body’s first line of defense by effectively recognizing and eliminating
tumor cells (92). By increasing the number and activity of these
cells, exercise promotes immune system surveillance and attacks
tumors (93). Furthermore, exercise can regulate T cell function,
especially by enhancing the effectiveness of cytotoxic T cells, thereby
promoting the clearance of tumor cells (94). Cytotoxic T cells
recognize and kill tumor cells, assisting the body in eliminating
tumors. By enhancing the function of these immune cells, exercise
helps lower the incidence of tumors and slow their progression (50).

In addition to modulating T cells and NK cells, exercise regulates
the expression of immunosuppressive factors (95). In the tumor
microenvironment, immunosuppressive factors (such as IL-10 and
TGF-B) often suppress immune cell function, allowing tumor cells to
escape immune system attack (96). Research indicates that Exercise
can lower the levels of these immunosuppressive factors, thereby
enhancing the immune system’s ability to eliminate tumors (97).
Chronic inflammation plays a key role in the occurrence and
progression of tumors, and chronic inflammation in the tumor
microenvironment is considered one of the primary factors
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Molecular Mechanisms Underlying the Effects of Exercise on Glioma Progression. This figure shows how physical exercise influences glioma
progression through systemic and intracellular pathways. Exercise releases factors like FNDCS, Irisin, IGF-1, and adiponectin from adipose tissue and
the liver, which cross the blood-brain barrier and regulate glioma cells. These factors activate pathways that enhance mitochondrial function, reduce
inflammation, and regulate glioma signaling. Exercise activates p38MAPK, inhibiting the NLRP3 inflammasome and lowering pro-inflammatory
cytokines. IGF-1 and adiponectin activate survival pathways like PI3K/AKT, ERK, and GSK3p, promoting cellular homeostasis. Leptin also regulates
glioma progression through the PI3K/JAK2/STAT3 axis. These adaptations suggest exercise therapy could complement glioma treatment.
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promoting tumor growth and metastasis (98). Pro-inflammatory
factors activate tumor cell proliferation, migration, and metastasis
(99). Exercise, by reducing the expression of these pro-inflammatory
factors, contributes to a less favorable environment for tumor growth
and spread (100). The temporal dynamics of exercise-induced
immune modulation are critical in this regard. Intermittent high-
intensity interval training (HIIT) induces acute increases in cytotoxic
T-cell infiltration within 24 h, whereas sustained moderate exercise
promotes macrophage polarization toward the anti-tumor MI
phenotype. In glioma-bearing mice, HIIT reduced tumor volume
by 25% compared to that in sedentary controls, whereas continuous
exercise primarily improved survival rates. Clinical protocols should
balance intensity and duration based on the treatment phase.

3.1.3 Regulation of inflammatory response by
exercise

Exercise is widely regarded as an effective anti-inflammatory
agent, capable of modulating the immune system through various
mechanisms and reducing the release of pro-inflammatory factors,
thereby inhibiting tumor growth and metastasis (101). Studies have
found that moderate exercise promotes the production of anti-
inflammatory factors such as IL-10 and TGF-$ (102, 103). These
anti-inflammatory factors downregulate the expression of pro-
inflammatory factors, thereby reducing chronic inflammation. For
example, IL-10 inhibits the activation of T cells and macrophages,
reducing inflammation, whereas TGF-f3 reduces immune cell
activity, helping restore immune tolerance (104). Exercise can
directly lower the expression of proinflammatory factors by
modulating cellular signaling pathways. IL-6 and TNF-o, which
are closely associated with chronic inflammation, are significantly
reduced by exercise, alleviating inflammation in the tumor
microenvironment (105). By reducing the release of pro-
inflammatory factors, exercise can effectively inhibit tumor cell
proliferation, migration, and metastasis, further suppressing
tumor growth (106). Studies have shown that exercise boosts the
activity of immune cells, such as T cells, NK cells, and macrophages,
helping the immune system to more effectively recognize and
eliminate tumor cells (101). Enhanced immune function not only
directly combats tumors but also reduces the impact of chronic
inflammation, which supports tumor growth (107).

3.1.4 The potential of exercise in cancer
immunotherapy

As immunotherapy emerges as a promising approach in cancer
treatment, the immune-regulating effects of exercise have gained
widespread attention. Immunotherapies, such as immune
checkpoint inhibitors and CAR-T cell therapy, have shown
significant efficacy against various tumor types (108). However,
the effectiveness of immunotherapy is often hindered by
immunosuppressive and pro-inflammatory factors in the tumor
microenvironment. As a natural immune regulator, exercise can
enhance immune cell activity, promote antitumor immune
responses, and improve the effectiveness of immunotherapy (109).
For instance, research has shown that exercise enhances the
function of NK and T cells, enabling them to more effectively
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recognize and kill tumor cells (93). Exercise also improves blood
supply in the tumor microenvironment, boosting immune cell
infiltration in the tumor and enhancing the effects of
immunotherapy (110).

3.1.5 Exercise and immune checkpoint blockade

Immune checkpoint blockade (ICB) therapy, which includes
inhibitors targeting PD-1, PD-L1, and CTLA-4, has revolutionized
cancer treatment by reactivating the immune response against
tumor cells. However, the clinical effectiveness of immune
checkpoint inhibitors (ICIs) is often limited by the
immunosuppressive tumor microenvironment (TME), which
dampens the immune system’s ability to recognize and attack
cancer cells. Exercise has emerged as a promising strategy to
enhance the efficacy of immune checkpoint blockade therapy by
modulating the TME and boosting immune cell function. Exercise
can significantly improve immune surveillance by increasing the
activity of immune cells, such as natural killer (NK) cells, cytotoxic
T lymphocytes (CTLs), and dendritic cells (DCs). These immune
cells are crucial for the recognition and elimination of tumor cells.
Research has shown that exercise-induced systemic inflammation,
characterized by increased cytokine release, can enhance the
recruitment of immune cells to the tumor site, thereby sensitizing
tumors to ICB therapy (25). Moreover, exercise reduces immune
suppression in the TME, which often arises from the accumulation
of regulatory T cells (Tregs) and myeloid-derived suppressor cells
(MDSCs). By inhibiting these immunosuppressive cells, exercise
helps enhance the antitumor immune response, making tumors
more responsive to immune checkpoint inhibitors.

3.1.6 Exercise’s role in systemic inflammation
regulation

Exercise not only affects local inflammation but also regulates
systemic inflammation, improving the overall immune status.
Epidemiological studies have shown that individuals who engage
in regular exercise have generally lower levels of chronic
inflammation, which may be one of the key reasons for their
lower cancer incidence (111). Moderate exercise reduces systemic
inflammation by improving blood circulation, metabolism, and
immune response, thereby lowering the risk of tumor occurrence
(112). Chronic inflammation is a risk factor for various types of
cancer, especially colorectal and breast cancers (111). Exercise
significantly reduces systemic inflammation by improving blood
circulation, modulating immune responses, and promoting
metabolism, thereby supporting cancer prevention (86).

3.1.7 Exercise’s role in inhibiting tumor metastasis

Tumor metastasis is often accompanied by intensification of
local inflammation, with high levels of pro-inflammatory factors
stimulating the invasiveness of tumor cells (98). Exercise can
effectively inhibit the invasiveness of tumor cells by reducing local
inflammation, thereby lowering the risk of metastasis (106). Studies
have shown that exercise can slow tumor metastasis by reducing the
levels of proinflammatory factors, such as IL-6 and TNF-c.
Moreover, exercise improves endothelial function, inhibits tumor
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angiogenesis, and reduces the chances of tumor cell metastasis
through the blood or lymphatic systems. Numerous animal
experiments and clinical studies have demonstrated that regular
exercise significantly lowers the risk of tumor metastasis and delays
tumor progression (88).

3.1.8 Synergistic effects of exercise and antitumor
drugs

In addition to directly improving the tumor microenvironment
and reducing inflammation, exercise has synergistic effects with
traditional antitumor treatments, such as chemotherapy and
radiotherapy. Research indicates that moderate exercise enhances
the efficacy of chemotherapy drugs while reducing side effects (113).
Exercise improves immune system function and reduces
inflammation, helping chemotherapy drugs exert greater efficacy
within the tumor microenvironment (24, 114). Specifically, exercise
improves blood circulation, enhances drug delivery efficiency, and
alleviates immune suppression in the tumor microenvironment,
allowing chemotherapy drugs to target tumor cells more effectively
(90, 110). Research also shows that exercise enhances the effects of
immunotherapy, improving immune recognition and the

elimination of tumor cells (50, 115).

3.1.9 Clinical studies on the anti-inflammatory
effects of exercise

Numerous clinical studies have validated the anti-inflammatory
effects of exercise in reducing tumor-related inflammation (90). For
instance, breast cancer patients undergoing chemotherapy
demonstrated that regular low-intensity exercise significantly reduced
the levels of inflammatory factors in the blood and improved their
quality of life (116). Similar results have been confirmed in studies on
colorectal cancer and other tumor types, demonstrating the potential of
exercise in clinical cancer treatment (50, 117).

3.2 The remodeling of the tumor
microenvironment by Exercise

3.2.1 Altering immune and inflammatory factors
in the tumor microenvironment

The TME plays a critical role in tumor growth, metastasis, and
resistance to treatment. Exercise can effectively inhibit tumor
progression by altering the levels of immune and inflammatory
factors in the tumor microenvironment, particularly in the
treatment of GBM (118). Moderate exercise can improve the
tumor microenvironment by increasing NK and T cell
infiltration, reducing the expression of immunosuppressive
factors, and enhancing the effectiveness of immunotherapy (118).

3.2.2 Improving blood-brain barrier permeability
The BBB is a complex structure composed of brain endothelial
cells, basal membrane, astrocytes, and other cells that serves as a
highly selective barrier to protect the brain from harmful
substances. This barrier prevents the entry of pathogens, toxins,
and other potentially harmful substances while limiting the effective
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delivery of many drugs, especially antitumor drugs. The BBB
ensures the stability of the brain microenvironment and
maintains neuronal function (119). However, its protective role
complicates drug delivery in cancer treatments, particularly for
invasive brain tumors such as glioblastoma, where the BBB becomes
a major obstacle to treatment (120). In tumor therapy, especially for
brain tumors, the ability to effectively penetrate the BBB and deliver
drugs to the tumor site is crucial for improving treatment efficacy
(121). Although various methods to enhance drug penetration
through the BBB have been proposed, such as nanocarriers and
drug delivery systems, these approaches often have limitations or
potential side effects (122). Therefore, exploring natural
physiological methods to improve BBB permeability has become
an important area of research. Increasing evidence suggests that
exercise, particularly regular aerobic exercise, may be a natural and
effective way to improve BBB permeability (123, 124). Exercise, as a
physical activity, influences multiple functions of blood circulation,
the immune system, and the nervous system, and it has been
increasingly shown to play a vital role in enhancing brain health.
Specifically, exercise can improve BBB function through a series of
complex physiological reactions, enhancing the permeability of the
BBB to therapeutic drugs, thereby increasing the efficacy of
antitumor medications in the brain (25, 123).

Studies have shown that regular aerobic exercise can improve
endothelial cell function in the BBB through several mechanisms.
Endothelial cells are the basic building blocks of the BBB and form
tight junctions that control the selective permeability of substances.
Exercise improves endothelial cell blood supply, promotes
angiogenesis, and regulates the expression of molecules involved
in cell-cell tight junctions, thereby increasing BBB permeability
(123). Specifically, exercise has been shown to increase the levels of
certain molecules in the blood, such as vascular endothelial growth
factor (VEGF), matrix metalloproteinases (MMPs), and
adrenomedullin, which can promote the “opening” of the BBB,
making it easier for drugs to cross into the brain, thus enhancing
drug efficacy (125). Exercise enhances BBB permeability through
dual mechanisms (1): upregulation of vascular endothelial growth
factor (VEGF) and erythropoietin (EPO), which promote
endothelial cell proliferation and transiently loosen tight junction
proteins (e.g., claudin-5, occluding); and (2) inhibition of matrix
metalloproteinase-9 (MMP-9), which reduces the degradation of
the basement membrane. Pharmacological agents targeting these
pathways (e.g., anti-VEGF monoclonal antibodies) partially mimic
the effects of exercise but lack systemic anti-inflammatory benefits.
Notably, animal studies have demonstrated that voluntary running
increases temozolomide penetration by 40% in orthotopic glioma
models. Exercise-induced VEGF activates the PI3K/Akt signaling
pathway in endothelial cells, promoting angiogenesis and
transiently increasing BBB permeability. Concurrently, exercise
reduces oxidative stress by upregulating antioxidant enzymes
(e.g., SOD and Gaps), thereby stabilizing BBB integrity.
Pharmacological agents mimicking these effects, such as anti-
VEGF monoclonal antibodies (e.g., bevacizumab), show partial
efficacy but lack the systemic benefits of exercise. Moreover,
exercise can regulate neuroplasticity in the brain (126).
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Neuroplasticity is the brain’s ability to adapt to external changes,
and exercise promotes neuroplasticity, which strengthens the
interaction between neurons and endothelial cells, further
improving BBB function (127). Notably, after prolonged exercise
training, studies have shown enhanced blood supply to the brain
and significant improvement in BBB permeability (123). This
means that exercise not only improves drug delivery by
enhancing blood circulation but also facilitates drug penetration
by improving the adaptability of neural structures (128).

In addition to its direct effects on endothelial cell function,
exercise enhances antioxidant capacity and reduces systemic
inflammation, thereby reducing BBB damage (123). This
mechanism is particularly important in brain tumor treatment, as
the tumor microenvironment is often accompanied by significant
inflammatory responses, which not only promote tumor cell growth
but also damage the BBB (129). Therefore, exercise can alleviate
these negative impacts through its anti-inflammatory and
antioxidant effects, improving BBB function and enhancing drug
efficacy (90, 130). These effects of exercise have been confirmed in
animal studies and clinical research. In animal experiments, regular
aerobic exercise (such as running and swimming) has been shown
to significantly increase the permeability of antitumor drugs in the
brain (131). In some studies, after several weeks of exercise training,
the size of brain tumors in experimental animals was significantly
reduced, and the concentration of drugs in the tumor region was
notably higher (132). Although these studies are still mostly in the
experimental phase, their potential has attracted widespread
attention in the scientific community. Furthermore, exercise can
enhance drug penetration by regulating molecular pathways related
to the BBB (123). For instance, exercise increases ATP production,
activating critical signaling pathways, such as the PI3K/Akt, MAPK,
and NF-xB pathways, all of which play important roles in
maintaining BBB integrity (133, 134). Exercise also regulates the
function of cell adhesion molecules (such as tight junction proteins
like ZO-1, occluding, and claudins) and transporters (e.g., P-
glycoprotein), thereby modifying the selective permeability of the
BBB (123). Through these mechanisms, exercise enables drugs that
would typically struggle to penetrate the BBB, especially
chemotherapeutic and immunotherapeutic drugs targeting
tumors, to be delivered more effectively to the tumor site. It
should be noted that the effect of exercise on BBB permeability
may vary depending on the type, intensity, and duration of the
exercise (123). Excessive and intense exercise may induce excessive
stress responses in the body, leading to adverse effects (135).
Therefore, moderate and consistent exercise is considered the
optimal approach for improving BBB function (123). Many
studies recommend engaging in at least three to four sessions of
moderate-intensity aerobic exercise per week, with each session
lasting more than 30 min, to achieve the best results (136). For
patients with brain tumors, a personalized exercise plan can
improve treatment outcomes and reduce side effects (137).

In summary, exercise improves BBB function through multiple
pathways, enhancing the permeability of antitumor drugs and thus
improving the efficacy of brain tumor treatments (138). Although
most current studies are still in the animal or preclinical stage, the
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findings provide valuable insights into the potential of exercise as an
adjunctive therapeutic approach for patients with cancer. In the
future, with further clinical research, exercise may become an
essential part of treatment regimens for patients with brain
tumors, helping to enhance treatment outcomes and improve the
quality of life. However, when exercise is used as an adjunctive
therapy, individualized exercise plans must be developed based on
the patient’s physical condition and treatment needs, and the plans
should be implemented under the guidance of a professional
medical team to ensure safety and effectiveness (139).

3.2.3 Improving tumor blood supply and
angiogenesis

Tumor growth and expansion largely depend on blood supply. As
tumors continue to grow, their demand for oxygen and nutrients
gradually increases, forcing tumor cells to secrete various growth
factors, such as vascular endothelial growth factor (VEGE), to
stimulate angiogenesis and ensure an adequate supply of nutrients
and oxygen (140). Angiogenesis is not only a critical mechanism in
tumor growth and metastasis but also directly impacts the tumor’s
response to drug therapy (141). Tumor blood vessels are often
structurally abnormal and functionally incomplete, resulting in an
uneven blood supply and sometimes regional hypoxia (142). This
promotes tumor cell metabolism, proliferation and dissemination. To
overcome this inadequate blood supply, scientists have proposed
strategies to enhance tumor treatment effectiveness by improving
angiogenesis and blood supply within the tumor microenvironment
(50, 143). Exercise, as a natural physiological modulator, has been
shown to significantly influences tumor blood supply and angiogenesis
(144). Although exercise enhances VEGF-mediated vascular
normalization, it does not promote pathological angiogenesis. In
GBM models, exercise reduced hypoxia-inducible factor-1o. (HIF-
lo) expression, thereby inhibiting aberrant vessel formation and
improving perfusion for drug delivery.

The effect of exercise on tumor blood supply and angiogenesis
primarily occurs by regulating various physiological responses in the
body (145). Exercise enhances overall blood circulation, improving
blood flow and oxygen transport, thereby increasing blood supply to
the tumor region (146). This process serves a dual role in cancer
therapy: on one hand, it provides more oxygen and nutrients,
supporting tumor cell metabolism and growth; on the other hand,
it enhances the delivery of antitumor drugs, enabling them to reach
the tumor tissue more effectively and exert therapeutic effects (147).
Additionally, exercise regulates local blood flow, preventing blood
stagnation and reducing the negative impact of local hypoxia on
tumor cells, thereby improving the tumor microenvironment and
reducing tumor invasiveness (146).

Exercise also plays a critical role in improving the tumor
microenvironment by directly modulating angiogenesis (148).
Angiogenesis is the formation of new blood vessels, a process that
is crucial for tumor growth. Tumor cells secrete angiogenesis-
promoting factors, such as VEGF and basic fibroblast growth factor
(bFGF), to stimulate blood vessel growth and ensure adequate oxygen
and nutrient supply to the tumor. However, tumor blood vessels
often have abnormal morphology and loose structures, leading to
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impaired blood flow and inadequate oxygen and nutrient supply
(149). Exercise enhances endothelial cell function, promotes new
blood vessel formation, and regulates angiogenesis, thereby
optimizing the tumor blood supply and microenvironment,
ultimately improving therapeutic outcomes (150).

However, it is important to note that angiogenesis within the
tumor microenvironment is not a simple physiological process, and
its changes have profound effects on tumor progression, metastasis,
and therapy outcomes. Excessive angiogenesis can lead to
structurally abnormal tumor blood vessels, resulting in impaired
blood flow and creating a vicious cycle that may facilitate tumor cell
invasion and metastasis (151). Therefore, exercise not only
promotes angiogenesis but also regulates its extent, ensuring
balanced angiogenesis that favors treatment (152). In cancer
therapy, maintaining moderate angiogenesis improves blood
supply to the tumor, enhancing its oxygen and nutrient status
while avoiding the negative effects of excessive angiogenesis, such as
tumor spread and metastasis (153).

In clinical practice, the application of exercise as an adjunctive
treatment is gaining increasing attention (154). Many patients with
cancer undergo regular exercise alongside standard treatments to
improve their overall health and treatment outcomes. Exercise not
only enhances physical strength and immune function but also
improves the tumor microenvironment blood supply, thereby
enhancing the effectiveness of therapeutic drugs and improving
patients’ quality of life (115). However, exercise therapy is not
suitable for all patients, particularly those who are physically weak or
in the early stages of treatment (155). The intensity and type of exercise
should be individualized according to the patient’s physical condition
(154). Therefore, exercise should be conducted under the supervision of
a professional medical team to ensure safety and effectiveness (156).

In summary, exercise improves the tumor microenvironment by
regulating blood supply and angiogenesis in the tumor region,
offering new approaches and methods for cancer treatment that
warrant further investigation. By enhancing oxygen and nutrient
supply to the tumor, exercise not only supports tumor cell
metabolism and growth but also enhances the effectiveness of
antitumor drugs, improving overall treatment outcomes (110). In
future cancer therapies, exercise may become an important
adjunctive treatment, providing a more comprehensive therapeutic
regimen and improving patients’ quality of life.

3.3 Exercise-induced molecular factors

Irisin is a molecule secreted by muscles during physical activity,
and as an exercise-induced myokine, it has garnered widespread
attention in the scientific community (157). Initially discovered in
relation to fat metabolism, irisin promotes the transformation of
white fat into brown fat, helping to regulate energy expenditure and
metabolic balance (158). However, as research deepened, it became
evident that irisin’s functions extend far beyond metabolism alone.
Growing evidence suggests that irisin plays a significant role in
tumor suppression, immune regulation, and exercise performance
(159). Notably, in the field of cancer treatment, irisin, a natural
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molecule, has demonstrated unique antitumor potential (160). By
inducing tumor cell cycle arrest, increasing apoptosis, and
inhibiting tumor cell proliferation, irisin provides novel targets
and strategies for the treatment of malignant tumors (161).

The antitumor effects of irisin are first reflected in its ability to
inhibit tumor cell growth (162). Specifically, irisin upregulates the
expression of p21, which inhibits the expression of key cell cycle
proteins, such as Cyclin D and Cyclin E, preventing cells from
progressing from the G1 phase to the S phase (161). As a cell cycle
inhibitor, p21 binds to cyclin-dependent kinases (CDKs), inhibiting
CDK activity, leading to cell cycle arrest in the G1 phase, and
preventing further tumor cell proliferation (163). This mechanism
has been confirmed in vitro and in mouse models. By promoting
p21 expression, irisin significantly inhibits tumor cell proliferation,
slows tumor growth, and enhances the effectiveness of antitumor
therapies (164).

In addition to inducing cell cycle arrest, irisin plays an essential
role in regulating tumor cell apoptosis (160). Research indicates that
irisin activates apoptotic pathways, promoting programmed cell
death in tumor cells (165). Irisin enhances oxidative stress within
cells, increasing the levels of reactive oxygen species (ROS) (166).
Elevated ROS levels lead to damage to proteins, lipids, and DNA,
activating apoptotic signaling pathways and ultimately resulting in
tumor cell death (25, 167). More importantly, irisin regulates the
expression of Bcl-2 family proteins, affecting the balance between
pro-apoptotic and anti-apoptotic factors within cells (168). Irisin
upregulates pro-apoptotic factors, such as Bax, and downregulates
anti-apoptotic factors, such as Bcl-2, thereby activating
mitochondrial-mediated apoptosis pathways and promoting
tumor cell death (165). Through this mechanism, irisin not only
effectively inhibits tumor cell proliferation but also enhances tumor
cell death, offering new strategies for cancer treatment (161).

The potential of irisin in cancer therapy extends beyond the
regulation of cell-cycle arrest and apoptosis. Recent studies suggest
that irisin can also inhibit tumor invasion and metastasis by
improving the tumor microenvironment (160). Tumor metastasis,
a leading cause of cancer-related deaths, is closely associated with
the tumor microenvironment, which provides favorable conditions
for tumor cell growth and spread, including hypoxia, acidosis,
and immune suppression (169). Irisin modulates immune cell
functions in the tumor microenvironment, enhancing the
immune system’s ability to clear tumor cells and thereby
suppressing tumor metastasis (170). For instance, studies have
shown that irisin can regulate the activity of natural killer (NK)
cells, enhancing the immune system’s surveillance and clearance of
tumor cells and reducing the likelihood of tumor cells invading
the blood and lymphatic systems (164). Additionally, irisin
improves the structure and function of tumor blood vessels,
reducing hypoxia within tumor tissues and thereby inhibiting
tumor cell spread (50, 170).Another remarkable effect of irisin in
antitumor treatment is its supportive role in enhancing the efficacy
of anticancer drugs (171). Research has shown that irisin enhances
the permeability of drugs in tumors, helping drugs reach tumor sites
more effectively and exert their therapeutic effects (172). Tumor
cells often exhibit strong drug resistance, particularly during

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1576283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.

chemotherapy and radiotherapy, which leads to diminished
treatment efficacy. Irisin improves drug delivery by modulating
the tumor microenvironment, overcoming drug resistance, and
enhancing treatment effectiveness (173). For example, irisin
upregulates vascular endothelial growth factor (VEGF), enhancing
blood vessel permeability in the tumor region, which facilitates
better penetration of antitumor drugs into the tumor tissue (164).
Irisin not only increases drug accumulation in tumors but also
improves immune cell function in the tumor microenvironment,
increasing tumor cell sensitivity to drugs (171).

The antitumor effects of irisin have shown great potential in the
treatment of highly malignant tumors, such as glioblastoma
multiforme (GBM) (161). GBM is a highly aggressive brain tumor
that is notoriously difficult to treat because of the severe limitations
posed by the blood-brain barrier (BBB) on drug permeability (174).
However, irisin has been found to improve the permeability of the
blood-brain barrier, allowing antitumor drugs to penetrate the BBB
more effectively and reach the tumor (120). This mechanism
positions irisin as a promising new strategy for treating brain
tumors, such as glioblastoma, oftering better therapeutic prospects
for patients (161).

The antitumor effects of irisin are not limited to glioblastoma.
Studies have shown that irisin inhibits various types of cancer cells,
including breast, lung, and colorectal cancer cells (170). Through its
multiple mechanisms of action, irisin not only effectively inhibits
tumor cell proliferation but also enhances tumor cell sensitivity to
treatment, thereby improving treatment outcomes (172). As a
natural molecule, irisin offers good safety and tolerance, making it
a promising adjunct to cancer therapy (170).

Although clinical trials directly testing irisin in patients with glioma
are lacking, phase I trials in breast cancer (NCT04350463) show that
recombinant irisin (100 pg/kg, biweekly IV) is well tolerated and
reduces circulating IL-6. Translational strategies for glioma include
intranasal delivery to bypass the BBB and CRISPR-activation of
FNDCS5 (Irisin precursor) in muscle. Beyond irisin, high-throughput
sequencing analyses in gene expression regulation studies have
identified exercise-induced miR-210 as a novel mediator. This
microRNA demonstrates dual oncogenic effects by targeting tumor
suppressor genes while activating PI3K/AKT and Wnt/B-catenin
signaling pathways, thereby promoting glioma cell proliferation and
chemoresistance. These findings reveal potential therapeutic targets
underlying the paradoxical effects of exercise intervention (175).

Although the potential of irisin in cancer treatment has been widely
studied and validated, its clinical application faces several challenges.
Future research should further explore the efficacy of irisin in different
cancer types, assess its combined effects with other therapies (such as
chemotherapy, radiotherapy, and immunotherapy), and determine
optimal treatment regimens. Additionally, the mechanisms of action
of irisin require further investigation to reveal its multi-layered effects in
cancer treatment (170). These studies lay a solid foundation for the
clinical application of irisin and offer new insights and methods for
cancer treatment (176).
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4 Synergistic effects of exercise and
drug therapy

4.1 Experimental and clinical evidence

4.1.1 Efficacy of combined exercise and
chemotherapy in mouse models

Research has shown that the synergistic effect of exercise and
drug therapy, particularly with natural compounds, plays a
significant role in cancer treatment (113). In mouse model
experiments, we found that Nutlin-3a, a natural compound and
MDM2 inhibitor, effectively inhibited glioma cell proliferation and
activated the p53 pathway (177). The efficacy of Nutlin-3a may be
affected by MDM2 overexpression; however, exercise can reverse
this effect (177). This was further validated in a mouse model of
LGG, where the combination of physical exercise and Nutlin-3a
improved the physical function of tumor-bearing mice with MDM?2
expression deficiency (20). This finding highlights the synergistic
effects of exercise and natural products and reveals their role in
immune modulation, suggesting that the combination of exercise
and natural compounds may be a new approach for glioma
treatment (178) as shown in Figure 3.

4.1.2 Exercise and reduction in brain cancer
mortality risk

Epidemiological studies have demonstrated that exercise
significantly reduces the risk of mortality in patients with brain
cancer (179). However, while existing studies emphasize the impact
of exercise on brain cancer mortality, the direct relationship between
physical exercise and glioma progression remains unclear (180). In an
experiment using a high-grade glioma mouse model, we investigated
the effect of voluntary physical exercise on tumor proliferation and
exercise ability in mice (20). The study found that voluntary exercise
significantly reduced the proliferation rate of cortical motor tumors in
mice and delayed the onset of motor dysfunction caused by gliomas
(20, 25). Thus, physical exercise may serve as an adjunctive
intervention in neuro-oncology, helping patients preserve motor
function and mitigate the behavioral effects of gliomas.

4.1.3 Impact of exercise interventions on quality
of life and treatment outcomes in clinical trials

A systematic review assessed the effects of exercise interventions on
the health outcomes of patients with brain cancer. By searching
databases such as PubMed and EMBASE, the review identified
studies related to brain cancer, and the results indicated that higher
levels of physical activity were associated with fewer disease symptoms
and better quality of life in patients with brain cancer (180).
Preliminary evidence suggests that exercise benefits various aspects,
including cancer symptoms, quality of life, and body composition, and
has a positive effect on alleviating cancer-related symptoms (181).
However, the strength of this evidence remains weak, and high-quality
studies are required to confirm these findings.
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Synergistic Effects of Exercise on Glioblastoma Treatment: Experimental and Clinical Evidence. This figure shows experimental and clinical evidence
supporting exercise as a beneficial addition to glioblastoma (GBM) treatment. Exercise enhances quality of life, mental health, and treatment efficacy
by modulating biological pathways, reducing drug toxicity, and increasing sensitivity to therapies targeting the MDM2-p53 axis. It affects molecular
pathways like Wnt/B-catenin, PI3K/AKT, and oxidative stress regulation, aiding cellular protection and tumor suppression. Exercise can reduce
cancer-related fatigue, offer long-term benefits, and improve prognosis. Prognostic markers like SUMO and ESRLS suggest exercise may improve
survival outcomes. This emphasizes the importance of integrating exercise into GBM treatment to boost therapeutic efficacy and patient well-being.

4.1.4 exercise and prognosis in glioma patients

Recent research has indicated that exercise significantly
influences the prognosis of patients with glioma (182).
Furthermore, the identification of glioma-specific biomarkers and
analysis of molecular pathways enable researchers to predict disease
progression and treatment response with enhanced precision (183-
185).Exercise not only reduces the risk of mortality but may also
promote neuroregeneration (186). In recent years, researchers have
focused on the role of small ubiquitin-like modifier (SUMO)
proteins in the anticancer effects of exercise and have developed
exercise and SUMO-related gene signatures (ESLRS) using machine
learning methods (187). This signature reveals how exercise
improves the prognosis of low-grade gliomas and other cancers
(182).In evaluating treatment efficacy and prognostic indicators,
integrating factors such as glioma metabolic profiles and immune
cell signatures provides a multidimensional perspective for
assessing disease progression and therapeutic responses (188, 189)
as shown in Figure 3.

4.1.5 Exercise potential in brain tumor treatment
Exercise has the potential to mitigate various health
impairments during brain tumor treatment. A systematic review
of the impact of exercise on children with brain tumors found that
exercise positively affects neuroimaging, physical fitness, and
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cardiopulmonary function (21). While the effects of exercise on
cognition remain unclear, the overall results suggest that exercise
interventions can improve physical fitness and quality of life in
patients without exacerbating symptoms (190). Therefore, exercise
may be an essential component of pediatric brain tumor treatment.

4.1.6 Long-term benefits of exercise for brain
tumor survivors

Brain tumor survivors often face a range of complications due
to the complexities of the treatment and tumor pathology (14).
Research has shown that exercise has a positive effect on the
recovery and quality of life of these patients (191). Exercise helps
survivors improve cognitive function, enhances motor abilities, and
shows improvements in brain structure as detected by magnetic
resonance imaging (192, 193). Furthermore, exercise therapy is
linked to cognitive performance improvements, particularly in
children who have undergone brain tumor treatment, where
exercise effectively restores neurocognitive functions (194).

4.1.7 Exercise effects on advanced cancer
patients

Patients with advanced cancer often face issues such as fatigue and
reduced physical function (19). In recent years, an increasing body of
evidence has supported the use of exercise interventions in palliative
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and end-of-life care (195). Studies have found that over 90% of patients
with advanced cancer can undergo exercise therapy (196). Exercise not
only improves physical strength but also benefits caregivers (197).
Despite some challenges, exercise intervention is considered a feasible
and effective approach for treating patients with advanced cancer (198).

4.1.8 Exercise and glioblastoma multiforme
patients

Exercise intervention studies in patients with glioblastoma
(GBM) have shown that exercise can improve functional
performance and quality of life (199). Regular exercise
interventions during treatment help patients regain strength,
enhance muscle function, and improve their quality of life (200).
The results of this study suggest that exercise rehabilitation can play
a positive role in the treatment of patients with GBM (201).

4.1.9 Exercise and cancer-related fatigue

Cancer-related fatigue (CRF) is a common symptom among
patients with cancer, significantly affecting their quality of life
(202). Studies have shown that exercise interventions help alleviate
CRF and improve patients’ quality of life (203). Exercise intervention
has been shown to relieve fatigue, improve quality of life, and is highly
feasible in patients with high-grade gliomas (204). These results
suggest that exercise may be an effective intervention for combating
cancer-related fatigue (203).

4.2 Mechanistic analysis

4.2.1 Exercise enhances drug sensitivity by
regulating PI3K/Akt, Wnt pathways

The benefits of exercise in cancer treatment extend beyond
improving physical health, as it also enhances drug sensitivity by
regulating intracellular signaling pathways (106). Studies have
found that exercise can modulate tumor cell growth and
differentiation through pathways such as PI3K/Akt and Wnt,
thereby increasing the cytotoxic effect of drugs on tumor cells
(110). Integrative metabolomics and bioinformatics analyses in
cellular metabolism studies reveal progesterone’s therapeutic
enhancement mechanism. The hormone potentiates antiglioma
drug efficacy through AMPK/mTOR pathway modulation,
establishing novel pharmacological optimization strategies (205).
Furthermore, innovative nanodrug delivery systems, such as near-
infrared light-activated upconversion nanoparticle/curcumin
hybrid formulations, have demonstrated significant therapeutic
potential by inducing differentiation and elimination of glioma
stem cells (206). This combinatorial approach may offer enhanced
treatment efficacy via multitargeted regulatory mechanisms, thereby
presenting novel avenues for precision glioma therapy.

4.2.2 Mechanisms of reducing treatment-related
toxicity

Cancer treatments, particularly chemotherapy and
radiotherapy, are often associated with severe side effects (207).
Exercise reduces treatment-related toxicity through several
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mechanisms, such as decreasing oxidative stress, enhancing
immune function, and repairing DNA damage (208). These
effects not only improve the patient’s quality of life but also
enhance overall treatment efficacy (113). Therefore, exercise can
be an effective adjunctive therapy in cancer treatment, helping to
mitigate the adverse effects of drugs and treatments (110).

4.2.3 Summary

Overall, the combination of exercise and drug therapy offers a
new treatment strategy for patients with brain tumors.
Experimental and clinical studies have shown that exercise can
not only improve patients’ physiological functions but also enhance
treatment outcomes by regulating cellular signaling pathways,
increasing drug sensitivity, and reducing treatment-related
toxicity (113, 209, 210). Future research should continue to
explore the synergistic effects of exercise interventions and drug
therapy and develop personalized exercise treatment plans to
maximize their clinical application.

5 Specific effects of exercise on
glioma patients

Exercise has a broad and profound impact on patients with
glioma, influencing physical function, quality of life, psychological
health, and other aspects. According to current research, exercise
can not only enhance patients” physical and cognitive abilities but
also significantly improve their mental health, alleviate fatigue,
reduce anxiety and depression, and improve treatment adherence
and quality of life (211). The following is a detailed exploration of
the specific effects of exercise interventions on patients with glioma.

5.1 Improvement of physical function and
quality of life

Enhancing physical endurance and alleviating fatigue are among
the most direct benefits of exercise in patients with glioma (204).
Long-term or high-dose use of steroid drugs, such as dexamethasone
(DEX), leads to muscle atrophy in 10%-60% of patients with
glioblastoma, significantly affecting their physical function and
quality of life (QOL) (212). Consequently, an increasing number of
studies support exercise as an effective adjunctive therapy to help
improve functional capacity and reduce treatment-related side effects.
Particularly in the context of resistance training, research has shown
that such training can increase muscle mass, strength, and functional
fitness in older adults and certain cancer patients (213). Although
research on exercise interventions in patients with glioblastoma is
relatively limited, preliminary evidence suggests that exercise is safe
and feasible (180). For example, a systematic review of exercise
interventions in childhood cancer survivors (CCS) who had
completed anti-cancer treatment at least one year prior indicated
that, despite low methodological quality, early evidence suggests that
exercise interventions could improve brain volume and structure in
childhood brain tumor survivors (21).
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Additionally, patients with glioma often experience cognitive
impairments, which severely impact their quality of life and
interfere with daily life, social, and professional activities (214).
Increasing evidence shows that exercise promotes experience-
dependent brain plasticity, which helps in the structural and
functional recovery of the brain following damage (215). For
instance, a randomized controlled trial (RCT) in patients with
glioma demonstrated that exercise intervention helped improve
cognitive functions, including attention, information processing
speed, verbal memory, and executive function (201). Moreover,
exercise interventions significantly improved self-reported fatigue,
mood, sleep quality, and health-related quality of life (216).
Specifically, during a six-month intervention, the exercise group
outperformed the control group in various cognitive tests, although
the exercise group showed slightly poorer results in sustained
selective attention (217). Furthermore, exercise interventions have
been shown to improve neurocognitive function, body composition,
and motor ability (218). In exercise studies on other cancer patients,
aerobic and resistance training have been proven to enhance muscle
strength, endurance, and aerobic capacity (156). Studies on patients
with glioma also support this conclusion, showing that even small-
sample trials can yield positive clinical effects (219).

5.2 Psychological health effects

Exercise also has a significant positive impact on the
psychological health of patients with glioma (192). Several studies
have shown that exercise interventions can effectively reduce
negative emotions, such as anxiety and depression, and improve
patients’ psychological health (220, 221). A study on a novel
independent home exercise program found that patients with
glioma who engaged in exercise generally demonstrated better
adherence and improved quality of life (222). In this study, nine
out of 14 participants (60%) adhered to the exercise regimen for a
month. Patients who exercised more frequently tended to have
higher marital satisfaction and income levels and showed positive
trends in quality-of-life scores. Another study reported the effects of
a 12-week exercise intervention involving two patients with glioma
(192). The participants completed biweekly 1-hour aerobic and
resistance-training sessions. At the 6- and 12-week assessments, the
patients showed improvements in strength, cardiovascular health,
and psychological well-being (e.g., reduced depression and anxiety
and improved quality of life). In particular, patients generally
experienced a reduction in psychological distress in self-reported
anxiety and depression. Additionally, a randomized controlled trial
on patients with high-grade glioma investigated the effects of
endurance and resistance training on psychological health, sleep
quality, and quality of life (223). The results showed that patients
who received exercise interventions showed significant
improvements in physical strength, sleep quality, and anxiety
symptoms. Compared with the control group, the exercise
intervention group demonstrated more substantial improvements
in psychological health and sleep quality. Furthermore, combining
aerobic exercise with flexibility training has been shown to have
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significant effects on both psychological health and physiological
function in patients with glioma (192). In one study, a female
patient who underwent 36 sessions of aerobic and flexibility
training experienced a 20% reduction in fatigue and nearly a 70%
improvement in quality of life (224). However, despite the positive
effects on psychological and physiological health, improvements in
cognitive function require further investigation. Overall, although
research on exercise interventions in patients with glioma is
relatively sparse, existing evidence suggests that exercise not only
improves physical function and cognitive abilities but also enhances
psychological health, reduces anxiety and depression, and improves
treatment adherence and quality of life (225). Therefore, exercise
holds significant clinical and research value as an adjunctive therapy
for patients with glioma.

5.3 Conclusion and outlook

In conclusion, exercise interventions for patients with glioma not
only improve physical health but also positively affect psychological
health, quality of life, and cognitive function (201). Although existing
research provides preliminary evidence, many questions remain
unanswered. For instance, how to design more personalized exercise
programs and how to quantify the long-term benefits of exercise for
patients with glioma. Addressing these issues will provide more
scientific evidence for glioma treatment and promote the widespread
clinical application of exercise interventions in this context.

Future research should further explore the mechanisms
underlying exercise interventions in patients with glioma and
investigate the optimal timing, intensity, and frequency of
different types of exercise (201). This will allow for more effective
and personalized treatment plans for patients. Moreover, based on
the broad benefits of exercise interventions for patients with glioma,
exercise therapy is likely to become a standard adjunctive treatment,
offering comprehensive treatment support.

6 Research status and limitations
6.1 Limitations of current research

Despite the broad positive impact of exercise on cancer patients’
rehabilitation, research specifically focused on patients with brain
tumors, particularly those with high-grade glioma (HGG), remains
insufficient as shown in Figure 4.

6.1.1 Limited sample size and heterogeneity in
research methods

Although multiple studies have been conducted on exercise
interventions, research specifically targeting patients with brain
tumors, particularly those with high-grade gliomas, remains
limited (180). Existing studies often face challenges of small
sample sizes and a lack of consistency in study design, making it
difficult to draw broadly applicable conclusions (180). For example,
physical fitness, cardiopulmonary function, muscle mass, and
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Current Situation, Deficiencies, and Future Directions of Exercise Therapy for Glioma Treatment. This figure summarizes the existing challenges,
research status, and future perspectives of exercise therapy as an adjunctive treatment for gliomas. The current situation and deficiencies highlight
the need to refine exercise-based interventions for cancer care. The research status section outlines key limitations, including small sample sizes,
heterogeneity, lack of stratification between GBM and other glioma cancers (OGC), and the necessity for intervention for side effects. The future
study section emphasizes the need to optimize exercise modes, implement synergistic therapy, and utilize cyclic resistance training, with a focus on
personalized treatment schemes. The future outlook discusses the potential of clinical trials, synergistic effects of exercise and therapy, and
development of optimized personality schemes for patient-centered care. The personalized design section highlights the importance of tailoring
exercise regimens based on tumor type and patient condition, incorporating home tele-coaching, and applying biomarkers to improve the
treatment efficacy. Furthermore, exercise therapy is linked to interdisciplinary cooperation and therapeutic synthesis, advocating integrated strategies
that enhance patient outcomes and mitigate treatment-related side effects. This framework underscores the necessity for continued research and

clinical application of exercise-based interventions for glioma management.

strength in brain tumor patients are often affected during treatment.
However, exercise intervention studies for this group are still less
abundant compared to other cancer populations (Ballard-Barbash
et al, 2012; Singh et al., 2013; Buffart et al, 2014) (192). The
heterogeneity of these studies is primarily manifested in differences
in research methods and data collection, including the absence of
systematic randomized controlled trials (RCTs).

6.1.2 Lack of stratified research on different
tumor subtypes

There has been insufficient comparative research on the effects
of exercise interventions in patients with different types of brain
tumors, particularly low-grade and high-grade gliomas (226). Each
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tumor type has distinct biological characteristics; therefore, there
may be significant differences in the effects of exercise interventions
(227). However, most current studies do not conduct stratified
analyses by tumor subtype or offer detailed intervention strategies
or effect comparisons. For example, patients with glioblastoma
(GBM) may have different exercise tolerance and outcomes
compared to patients with oligodendrogliomas; however, this
aspect has not been fully explored in the existing literature.

6.1.3 Limitations in research methods

Most current research on exercise interventions for brain tumor
survivors is observational, with small sample sizes and relatively
high attrition rates (228). Since patients with brain tumors often
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have comorbidities (e.g., heart disease, neurological deficits), these
patients are often excluded from studies, leading to recruitment bias
(229). This bias is particularly significant in patients with brain
cancer, as only those in relatively good health are likely to
participate in exercise intervention studies.

6.1.4 Recruitment and retention issues in exercise
interventions

Despite the potential benefits of exercise interventions,
recruitment and retention remain major challenges in brain
tumor research (228). Since brain tumor treatment often involves
multiple side effects (e.g., fatigue, cognitive impairment, and muscle
wasting), these side effects may affect patients’ willingness to
participate and their adherence to interventions (230). This makes
it more complex to conduct exercise intervention studies and
difficult to generalize the findings to a broader patient population.

6.2 Future research directions

6.2.1 Investigating the optimal type, intensity, and
frequency of exercise

Future research should further explore the effects of different
types of exercise interventions (e.g., aerobic exercise, resistance
training) and the optimal intensity and frequency for patients
with brain tumors, particularly those with high-grade gliomas.
Although existing studies have shown the benefits of aerobic and
resistance training for individuals with cancer, most of these studies
have focused on other cancer populations, and the specific needs
and intervention effects for individuals with brain tumors have not
been thoroughly studied (192). Therefore, future studies should
systematically analyze the specific effects of different exercise
programs on patients with brain tumors and identify the most
suitable exercise types and intervention intensities.

6.2.2 In-depth study on the synergistic effects of
exercise and emerging therapies

Emerging therapies, such as immunotherapy and gene therapy,
have become important directions in glioma treatment (231).
Future research should investigate the synergistic effects of
exercise in combination with these emerging therapies. Novel
targeted therapeutic strategies are emerging as potential game-
changers, offering the dual benefits of enhanced treatment efficacy
and minimized side effects while advancing precision medicine
frontiers (232). It is worth exploring whether exercise can enhance
the effects of immunotherapy or gene therapy or whether it can
alleviate the side effects of these treatments (91). Research on this
synergistic effect could lead to more personalized and
comprehensive treatment plans for patients (233, 234).

6.2.3 Development of personalized exercise
intervention programs

Given the significant differences in pathology, treatment
responses, and side effects among patients with brain tumors,
future research should focus on developing personalized exercise
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intervention programs (154). Studies have tailored exercise
regimens to individual patients based on factors such as cancer
type, treatment stage, and physical fitness level (235). Personalized
interventions not only increase patient adherence but also
maximize the effectiveness of exercise in improving functional
capacity, reducing fatigue, and enhancing quality of life (236).

6.2.4 Verifying the effectiveness of circuit
resistance training for glioblastoma patients

Existing research has shown that personalized circuit resistance
training can improve functional fitness in patients with cancer and
may help mitigate steroid-induced myopathy (237). Studies on
patients with glioblastoma have also indicated that personalized
exercise interventions can effectively enhance physical fitness and
overall quality of life (192, 204). Future studies should further verify
these findings and explore the applicability and effectiveness of
circuit resistance training in patients with different types of brain
tumors. Future research should also consider factors such as
patients’ lifestyle, disease activity, and the feasibility of
exercise interventions.

7 Exploring the safety and efficacy of
submaximal exercise for glioma
patients

Submaximal exercise refers to physical activities that do not
exceed a patient’s maximum heart rate but effectively activate
cardiovascular function and muscle strength (238). A program
named ActiNO has demonstrated that submaximal exercise is
both safe and effective in patients with glioma (239). Future
research should focus on exploring the long-term effects of this
exercise regimen, particularly its potential to extend survival and
improve quality of life. These studies could help in the development
of more targeted exercise programs tailored to patients with
brain tumors.

Enhancing Quality of Life——To achieve this, exercise therapy
should be incorporated into the comprehensive treatment plan for
glioma, becoming a routine part of care.

7.1 Incorporating exercise therapy into
glioma comprehensive treatment
guidelines

Currently, the primary treatments for gliomas rely on surgery,
radiotherapy, and chemotherapy (240). However, these therapies
often come with significant side effects, such as cognitive decline,
fatigue, and motor dysfunction, which severely affect the patient’s
daily life and quality of life (41). Therefore, including exercise
therapy in the treatment guidelines is crucial for improving
recovery outcomes. Studies have found that exercise not only
alleviates fatigue but also enhances muscle strength, boosts
cardiovascular endurance, and improves cognitive function, all of
which contribute to better overall health (241).
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7.2 Multidisciplinary team collaboration

Treatment for patients with glioma requires a multidisciplinary
team, typically consisting of oncologists, rehabilitation specialists,
exercise medicine experts, nutritionists, and psychologists. This
collaborative approach ensures comprehensive treatment,
addressing the patient’s physical, psychological, and social
recovery needs (242). Based on the patient’s specific
requirements, the team can create personalized treatment plans
and adjust them according to the patient’s responses. This
integrated treatment model allows patients to effectively cope with
the side effects of tumor treatment while improving their quality of
life and functional independence during the process (243).

7.3 Enhancing the comprehensiveness of
rehabilitation treatment

Patients with glioma often experience a variety of sequelae, such as
cognitive impairments, fatigue, and visual perception changes, which
severely impact their quality of life (214). A more comprehensive
rehabilitation model is urgently needed to address these issues. Patient
recovery should not be limited to directly addressing the effects of
tumor treatment but should also consider interventions for various
complications, including cognitive impairment, emotional fluctuations,
and motor dysfunction (244, 245). With a more refined rehabilitation
model, it is possible to effectively slow the functional decline of patients
and help them regain the ability to perform daily activities. The
advantages of multidisciplinary collaboration lie in the ability to
jointly assess and intervene, continuously identifying and addressing
functional limitations (246).

Research has shown that early multidisciplinary rehabilitation
interventions can significantly reduce disability rates and improve
daily living abilities in patients with glioma. For example, in a study
involving patients with brain tumors, after 12 weeks of rehabilitation
intervention, patients showed significant improvements in physical
function scores, cognitive function, and social functioning (P < 0. 0001)
(247). This demonstrates the effectiveness of early multidisciplinary
rehabilitation in reducing symptoms and improving the quality of life.

7.4 Personalized program design

7.4.1 Exercise interventions based on tumor type
and disease status

Each patient with glioma has unique circumstances, including
disease stage, physical condition, treatment responses, and side
effects. Therefore, exercise interventions must be personalized to
suit individuals. This involves selecting the appropriate types of
exercise (such as aerobic exercise and resistance training), intensity,
and frequency, as well as considering the patient’s disease stage,
functional level, and the toxicity of their treatments. For example,
some patients may experience significant physical decline due to the
tumor or treatment side effects, whereas others may have better
physical capacity and tolerate higher-intensity interventions.
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Personalized exercise prescriptions can ensure that patients
maximize the benefits of exercise while ensuring safety (248).

7.4.2 Feasibility of home-based remote exercise
interventions

A pilot study involving patients with glioma explored the
feasibility of home-based remote exercise interventions (222). The
study, designed as a randomized controlled trial (RCT), involved
stable grade II and III glioma patients who underwent a six-month
intervention. The patients exercised at home three times per week,
with the intensity set at 60%-85% of their maximum heart rate. Heart
rate monitors were worn by the patients, and data were monitored
and feedback was provided through an online platform. The results of
this study showed that home-based remote interventions were
feasible for a small group of willing participants and could
significantly improve cardiovascular function, physical activity, and
body mass index. This further supports the need for large-scale
exercise intervention trials in patients with glioma.

7.4.3 Tailored exercise prescriptions

Patients with glioma often experience fluctuating disease stages
and various side effects from treatment; therefore, exercise
interventions need to be flexibly adjusted based on individual
conditions (199). Exercise prescriptions should be designed
according to factors such as the patient’s physical condition,
treatment toxicity, and disease progression. For example, some
patients may be too weak post-treatment to engage in high-
intensity exercise, whereas others may tolerate higher exercise
volumes. Tailored exercise prescriptions can maximize physical
strength and quality of life and minimize the risk of injury or
adverse reactions associated with exercise.

7.4.4 Application of biomarkers in exercise
interventions

To monitor the effects of exercise interventions more precisely,
future research should develop biomarkers to evaluate the
therapeutic impact of exercise. These biomarkers reflect the
physiological state, immune function, and other health indicators
influenced by exercise, providing objective data support (249). For
example, certain immune system biomarkers or blood metabolic
products may partially reflect the physiological regulation induced
by exercise (250). Thus, combining biomarker monitoring with
exercise could help assess the short-term effects and predict the
long-term outcomes of interventions (53).

7.5 Challenges in exercise adherence

Although exercise interventions offer significant benefits for
patients with glioma, adherence to exercise programs remains a
major challenge. Several factors contribute to low adherence rates,
including physical limitations, psychological distress, and lack of
motivation owing to the severity of the disease. Patients often
experience fatigue, pain, and cognitive impairment, which can
hinder their ability to engage in regular physical activity (197).
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Additionally, psychological factors, such as depression, anxiety, and
fear of treatment side effects, can negatively affect adherence to
exercise protocols (198).

To address these challenges, solutions must focus on enhancing
patient motivation and providing support to overcome physical and
emotional barriers. For instance, interventions involving regular
monitoring, personalized support, and motivational strategies, such
as goal-setting or feedback mechanisms, have been shown to
improve adherence in cancer populations (199). Implementing
supervised exercise sessions or combining physical activity with
psychological support (e.g., counseling or group exercises) may also
increase participation rates. Additionally, the use of digital
platforms, such as mobile apps or online exercise programs, could
offer more flexible and accessible ways to support exercise
adherence in patients with gliomas (200).

Moreover, clinicians should emphasize the importance of
exercise as an integral part of the treatment regimen and address
any concerns that patients may have regarding safety and feasibility.
Educating patients on the benefits of exercise for symptom
management and improving their quality of life can help reduce
their resistance to participating in exercise interventions. By
addressing these barriers, exercise interventions can become a more
effective and sustainable adjunctive therapy for patients with glioma.

7.6 Future research directions and
challenges

7.6.1 Large-scale, multicenter clinical trials

Owing to the low incidence of brain cancer, single-center
studies may struggle to recruit sufficient patient samples.
Therefore, large-scale, multicenter international cooperative trials
are needed to ensure that the findings are statistically significant and
applicable across diverse populations (251). These studies will help
validate the effectiveness of exercise interventions in patients with
different types of brain tumors.

7.6.2 Further exploration of the synergistic effects
between exercise and other treatments

Although research has shown that exercise can improve
physical function and quality of life in patients with glioma, the
synergistic effects of exercise with other treatments (such as
radiotherapy, chemotherapy, and immunotherapy) require further
investigation (154, 252). Exploring these interactions could provide
more comprehensive treatment strategies, thereby improving the
overall treatment efficacy.

7.6.3 Optimization and application of
personalized exercise programs

With the development of precision medicine, personalized
exercise interventions have become a key component of glioma
treatment (253). Future research should focus on optimizing
exercise prescriptions and developing more refined and
individualized exercise plans. In particular, in the rehabilitation of
patients with brain tumors, precise interventions based on
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functional status, treatment responses, and lifestyle will be an
important direction for future research (254, 255).

8 Conclusion

Gliomas, particularly glioblastoma multiforme (GBM), are highly
aggressive brain tumors that present numerous treatment challenges.
Although current therapies, such as radiotherapy, chemotherapy, and
targeted treatment, have extended patient survival to some extent,
these therapies have limited efficacy and are often accompanied by
significant side effects. The biological characteristics of gliomas,
including blood-brain barrier permeability, tumor cell heterogeneity,
and an immunosuppressive microenvironment, make treatment even
more difficult. Moreover, glioblastoma often leads to long-term side
effects, such as cognitive dysfunction and neurological decline, which
greatly affect the patients’ quality of life. As the incidence of glioma
rises globally, particularly with age, improving patients’ quality of life
and prolonging survival have become important issues in brain tumor
research. In this context, exercise as an adjunctive treatment has
gained increasing attention. Exercise not only helps improve physical
function and cognitive abilities but may also enhance the patient’s
antitumor capacity by regulating the immune system and suppressing
inflammation (16-18). Studies have shown that appropriate exercise
can significantly reduce the mortality risk in patients with brain cancer
and positively influence glioma treatment outcomes.

Exercise interventions in glioma treatment work through
several key mechanisms. Firstly, exercise boosts the immune
system by activating NK cells and T cells, enhancing immune
surveillance and aiding in tumor cell elimination. Secondly, it
reduces inflammation in the tumor microenvironment by
lowering pro-inflammatory cytokines, helping to slow glioma
growth and spread. Additionally, exercise improves blood-brain
barrier permeability, increasing the delivery and effectiveness of
anti-tumor drugs. Exercise-induced factors, like irisin, may also
inhibit tumor cell growth and invasion. Studies show that
combining exercise with drug therapies, such as chemotherapy
and immunotherapy, improves drug efficacy, reduces side effects,
and enhances patients’ quality of life. Though the precise
mechanisms are not fully clear, early evidence highlights exercise
as a promising adjunctive treatment, with potential to improve
survival and prognosis in glioma patients. Further research could
solidify its role in future clinical glioma management.

Author contributions

GW: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Resources, Software, Visualization,
Writing - original draft, Writing - review & editing. YC:
Conceptualization, Data curation, Formal analysis, Investigation,
Methodology, Software, Supervision, Visualization, Writing -
original draft, Writing - review & editing. CC: Conceptualization,
Formal analysis, Investigation, Methodology, Software, Writing -
original draft, Writing — review & editing. JL: Conceptualization, Data

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1576283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wou et al.

curation, Formal analysis, Investigation, Validation, Writing -
original draft, Writing — review & editing. QW: Conceptualization,
Investigation, Methodology, Writing - original draft, Writing -
review & editing. YZ: Conceptualization, Formal analysis,
Investigation, Supervision, Writing — original draft, Writing -
review & editing. RC: Formal analysis, Resources, Validation,
Writing - original draft, Writing - review & editing. JX: Data
curation, Formal analysis, Methodology, Validation, Writing -
original draft, Writing - review & editing. YS: Formal analysis,
Investigation, Software, Writing — original draft, Writing - review
& editing. HS: Conceptualization, Data curation, Formal analysis,
Software, Writing — original draft, Writing — review & editing. CY:
Formal analysis, Investigation, Project administration, Writing -
original draft, Writing - review & editing. MW: Methodology,
Software, Writing — original draft, Writing — review & editing. YO:
Formal analysis, Resources, Writing — original draft, Writing — review
& editing. AJ: Data curation, Formal analysis, Writing — original
draft, Writing - review & editing. ZC: Data curation, Supervision,
Writing - original draft, Writing - review & editing. XY:
Investigation, Software, Writing — original draft, Writing - review
& editing. CS: Formal analysis, Methodology, Writing - original
draft, Writing - review & editing. XL: Investigation, Supervision,
Writing - original draft, Writing - review & editing. AR: Formal
analysis, Validation, Writing — original draft, Writing - review &
editing. ML: Conceptualization, Data curation, Resources, Writing —
original draft, Writing - review & editing. JS: Conceptualization,
Investigation, Validation, Writing — original draft, Writing — review
& editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was funded

References

1. Davis M. Glioblastoma: overview of disease and treatment. CJON. (2016) 20:52-8.
doi: 10.1188/16.CJON.S1.2-8

2. Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, et al.
Mechanisms of resistance and current treatment options for glioblastoma multiforme
(GBM). Cancers. (2023) 15:2116. doi: 10.3390/cancers15072116

3. Fernandes C, Costa A, Osorio L, Lago RC, Linhares P, Carvalho B, et al. Current
standards of care in glioblastoma therapy. Exon Publications. (2017), 197-241.
doi: 10.15586/codon.glioblastoma.2017.ch11

4. Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R,
et al. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug
Div Rev. (2021) 171:108-38. doi: 10.1016/j.addr.2021.01.012

5. Alexander BM, Cloughesy TF. Adult glioblastoma. JCO. (2017) 35:2402-9.
doi: 10.1200/JC0O.2017.73.0119

6. Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and perspectives of
standard therapy and drug development in high-grade gliomas. Mol. (2021) 26:1169.
doi: 10.3390/molecules26041169

7. Pellerino A, Franchino F, Soffietti R, Ruda R. Overview on current treatment
standards in high-grade gliomas. Q J Nucl Med Mol Imaging. (2018) 62(3):225-38.
doi: 10.23736/51824-4785.18.03096-0

8. Gabel N, Altshuler DB, Brezzell A, Bricefio EM, Boileau NR, Miklja Z, et al. Health
related quality of life in adult low and high-grade glioma patients using the national
institutes of health patient reported outcomes measurement information system

Frontiers in Immunology

10.3389/fimmu.2025.1576283

by the National Scholarship for Studying Abroad (202306100231)
and the 2024 Research Project of Ningde Normal University
(Project No. 000059091501).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. We utilized ChatGPT-4.0 for
language refinement to enhance the accuracy and fluency of the
paper’s expression. This tool was solely employed for grammatical
corrections and language optimization, and it did not partake in the
writing of academic content such as research design, data analysis,
or interpretation of results. Therefore, the use of this tool aligns with
academic ethical standards and does not compromise the
independence and authenticity of the research.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

(PROMIS) and neuro-QOL assessments. Front Neurol. (2019) 10:212. doi: 10.3389/
fneur.2019.00212

9. Bates A, Gonzalez-Viana E, Cruickshank G, Roques T. Primary and metastatic
brain tumours in adults: summary of NICE guidance. BMJ. (2018) 362:k2924.
doi: 10.1136/bmj.k2924

10. Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, et al. Brain and
other central nervous system tumor statistics, 2021. CA A Cancer J Clin. (2021) 71:381-
406. doi: 10.3322/caac.21693

11. Thorbinson C, Kilday J-P. Childhood Malignant brain tumors: balancing the
bench and bedside. Cancers. (2021) 13:6099. doi: 10.3390/cancers13236099

12. Zhang AS, Ostrom QT, Kruchko C, Rogers L, Peereboom DM, Barnholtz-Sloan
JS. Complete prevalence of Malignant primary brain tumors registry data in the United
States compared with other common cancers, 2010. NEUONC. (2016) 19(5):now252.
doi: 10.1093/neuonc/now252

13. Noll K, King AL, Dirven L, Armstrong TS, Taphoorn MJB, Wefel JS.
Neurocognition and health-related quality of life among patients with brain tumors.
Hematol/Oncol Clin North Am. (2022) 36:269-82. doi: 10.1016/j.h0c.2021.08.011

14. Alemany M, Velasco R, Sim6 M, Bruna J. Late effects of cancer treatment:
consequences for long-term brain cancer survivors. Neuro-Oncol Pract. (2021) 8:18-30.
doi: 10.1093/nop/npaa039

15. Ostrom QT, Truitt G, Gittleman H, Brat DJ, Kruchko C, Wilson R, et al. Relative
survival after diagnosis with a primary brain or other central nervous system tumor in

frontiersin.org


https://doi.org/10.1188/16.CJON.S1.2-8
https://doi.org/10.3390/cancers15072116
https://doi.org/10.15586/codon.glioblastoma.2017.ch11
https://doi.org/10.1016/j.addr.2021.01.012
https://doi.org/10.1200/JCO.2017.73.0119
https://doi.org/10.3390/molecules26041169
https://doi.org/10.23736/S1824-4785.18.03096-0
https://doi.org/10.3389/fneur.2019.00212
https://doi.org/10.3389/fneur.2019.00212
https://doi.org/10.1136/bmj.k2924
https://doi.org/10.3322/caac.21693
https://doi.org/10.3390/cancers13236099
https://doi.org/10.1093/neuonc/now252
https://doi.org/10.1016/j.hoc.2021.08.011
https://doi.org/10.1093/nop/npaa039
https://doi.org/10.3389/fimmu.2025.1576283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.

the National Program of Cancer Registries, 2004 to 2014. Neuro-Oncol Pract. (2020)
7:306-12. doi: 10.1093/nop/npz059

16. Chen Y, Chen X, Luo Z, Kang X, Ge Y, Wan R, et al. Exercise-induced reduction
of IGFIR sumoylation attenuates neuroinflammation in APP/PSI transgenic mice. J
Adv Res. (2025) 69:279-97. doi: 10.1016/j.jare.2024.03.025

17. Chen Y, Huang L, Luo Z, Han D, Luo W, Wan R, et al. Pantothenate-
encapsulated liposomes combined with exercise for effective inhibition of CRM1-
mediated PKM2 translocation in Alzheimer’s therapy. ] Controlled Rel. (2024) 373:336-
57. doi: 10.1016/j.jconrel.2024.07.010

18. Chen Y, Luo Z, Sun Y, Li F, Han Z, Qi B, et al. Exercise improves choroid plexus
epithelial cells metabolism to prevent glial cell-associated neurodegeneration. Front
Pharmacol. (2022) 13:1010785. doi: 10.3389/fphar.2022.1010785

19. Dittus KL, Gramling RE, Ades PA. Exercise interventions for individuals with
advanced cancer: A systematic review. Prev Med. (2017) 104:124-32. doi: 10.1016/
j.ypmed.2017.07.015

20. Tantillo E, Colistra A, Baroncelli L, Costa M, Caleo M, Vannini E. Voluntary
physical exercise reduces motor dysfunction and hampers tumor cell proliferation in a
mouse model of glioma. IJERPH. (2020) 17:5667. doi: 10.3390/ijerph17165667

21. Sharma B, Allison D, Tucker P, Mabbott D, Timmons BW. Exercise trials in
pediatric brain tumor: A systematic review of randomized studies. ] Pediatr Hematol/
Oncol. (2021) 43:59-67. doi: 10.1097/MPH.0000000000001844

22. Wang Y, Song H, Yin Y, Feng L. Cancer survivors could get survival benefits
from postdiagnosis physical activity: A meta-analysis. Evidence-Based Complement.
Altern Med. (2019) 2019:1-10. doi: 10.1155/2019/1940903

23. Zhang W, Liu Y, Zhou J, Qiu T, Xie H, Pu Z. Chicoric acid advanced PAQR3
ubiquitination to ameliorate ferroptosis in diabetes nephropathy through the relieving
of the interaction between PAQR3 and P110o. pathway. Clin Exp HTN. (2024)
46:2326021. doi: 10.1080/10641963.2024.2326021

24. Xu W, Gao X, Luo H, Chen Y. FGF21 attenuates salt-sensitive hypertension via
regulating HNF40/ACE2 axis in the hypothalamic paraventricular nucleus of mice.
Clin Exp HTN. (2024) 46:2361671. doi: 10.1080/10641963.2024.2361671

25. LiuX, Su'Y, Liu ], Liu D, Yu C. Inhibition of Th17 cell differentiation by aerobic
exercise improves vasodilatation in diabetic mice. Clin Exp HTN. (2024) 46:2373467.
doi: 10.1080/10641963.2024.2373467

26. Campbell KL, Winters-Stone KM, Wiskemann J, May AM, Schwartz AL,
Courneya KS, et al. Exercise guidelines for cancer survivors: consensus statement
from international multidisciplinary roundtable. Med Sci Sports Exercise. (2019)
51:2375-90. doi: 10.1249/MSS.0000000000002116

27. DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, et al.
Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma.
Front Immunol. (2020) 11:1402. doi: 10.3389/fimmu.2020.01402

28. Nicholson ]G, Fine HA. Diffuse glioma heterogeneity and its therapeutic
implications. Cancer Discov. (2021) 11:575-90. doi: 10.1158/2159-8290.CD-20-1474

29. Uddin M, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MdS, et al.
Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic
approaches. Semin Cancer Biol. (2022) 83:100-20. doi: 10.1016/
j.semcancer.2020.12.015

30. Oprita A, Baloi S-C, Staicu G-A, Alexandru O, Tache DE, Danoiu S, et al.
Updated insights on EGFR signaling pathways in glioma. IJMS. (2021) 22:587.
doi: 10.3390/ijms22020587

31. Pandith AA, Qasim I, Zahoor W, Shah P, Bhat AR, Sanadhya D, et al.
Concordant association validates MGMT methylation and protein expression as
favorable prognostic factors in glioma patients on alkylating chemotherapy
(Temozolomide). Sci Rep. (2018) 8:6704. doi: 10.1038/s41598-018-25169-2

32. Strickland M, Stoll EA. Metabolic reprogramming in glioma. Front Cell Dev Biol.
(2017) 5:43. doi: 10.3389/fcell.2017.00043

33. Johar D, Elmehrath AO, Khalil RM, Elberry MH, Zaky S, Shalabi SA, et al.
Protein networks linking Warburg and reverse Warburg effects to cancer cell
metabolism. BioFactors. (2021) 47:713-28. doi: 10.1002/biof.1768

34. De La Cruz-Lopez KG, Castro-Muioz LJ, Reyes-Hernandez DO, Garcia-
Carranca A, Manzo-Merino J. Lactate in the regulation of tumor microenvironment
and therapeutic approaches. Front Oncol. (2019) 9:1143. doi: 10.3389/fonc.2019.01143

35. Rafii S, Kandoussi S, Ghouzlani A, Naji O, Reddy KP, Ullah Sadigi R, et al.
Deciphering immune microenvironment and cell evasion mechanisms in human
gliomas. Front Oncol. (2023) 13:1135430. doi: 10.3389/fonc.2023.1135430

36. Romani M, Pistillo MP, Carosio R, Morabito A, Banelli B. Immune checkpoints
and innovative therapies in glioblastoma. Front Oncol. (2018) 8:464. doi: 10.3389/
fonc.2018.00464

37. Grégoire H, Roncali L, Rousseau A, Chérel M, Delneste Y, Jeannin P, et al.
Targeting tumor associated macrophages to overcome conventional treatment
resistance in glioblastoma. Front Pharmacol. (2020) 11:368. doi: 10.3389/
fphar.2020.00368

38. Ni G, Sun Y, Jia H, Xiahou Z, Li Y, Zhao F, et al. MAZ-mediated tumor
progression and immune evasion in hormone receptor-positive breast cancer:
Targeting tumor microenvironment and PCLAF+ subtype-specific therapy. Trans
Oncol. (2025) 52:102280. doi: 10.1016/j.tranon.2025.102280

Frontiers in Immunology

10.3389/fimmu.2025.1576283

39. FangJ, Lin L, Cao Y, Tan J, Liang Y, Xiao X, et al. Targeting the CD24-siglec10
axis: a potential strategy for cancer immunotherapy. BIOI. (2024) 5(1):997.
doi: 10.15212/bioi-2023-0022

40. Fu Q, Yang H, Huang J, Liu F, Fu Y, Saw PE, et al. The circHAS2/RPL23/MMP9
axis facilitates brain tumor metastasis. BIOL (2024) 5(1):¢999. doi: 10.15212/bi0i-2023-
0013

41. Zhang H, Wang R, Yu Y, Liu J, Luo T, Fan F. Glioblastoma treatment modalities
besides surgery. J Cancer. (2019) 10:4793-806. doi: 10.7150/jca.32475

42. Witzmann K, Raschke F, Troost EGC. MR image changes of normal-appearing
brain tissue after radiotherapy. Cancers. (2021) 13:1573. doi: 10.3390/cancers13071573

43, Brook I. Late side effects of radiation treatment for head and neck cancer. Radiat
Oncol J. (2020) 38:84-92. doi: 10.3857/r0j.2020.00213

44. Romesser PB, Cahlon O, Scher E, Zhou Y, Berry SL, Rybkin A, et al. Proton beam
radiation therapy results in significantly reduced toxicity compared with intensity-
modulated radiation therapy for head and neck tumors that require ipsilateral
radiation. Radiother Oncol. (2016) 118:286-92. doi: 10.1016/j.radonc.2015.12.008

45. Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance
in glioblastoma - a comprehensive review. CDR. (2020) 4(1):17. doi: 10.20517/
¢dr.2020.79

46. Woo Peter YM, Li Y, Chan Anna HY, Ng Stephanie CP, Loong Herbert HF,
Chan Danny TM, et al. A multifaceted review of temozolomide resistance mechanisms
in glioblastoma beyond O-6-methylguanine-DNA methyltransferase. Glioma. (2019)
2:68. doi: 10.4103/glioma.glioma_3_19

47. Lin L, Cai J, Jiang C. Recent advances in targeted therapy for glioma. CMC.
(2017) 24(13):1365-81. doi: 10.2174/0929867323666161223150242

48. Du Y, Liu H. Exercise-induced modulation of miR-149-5p and MMP9 in LPS-
triggered diabetic myoblast ER stress: licorice glycoside E as a potential therapeutic
target. Tradit Med Res. (2024) 9:45. doi: 10.53388/TMR20230121002

49. Yao J-Y, Yang Y-L, Chen W-J, Fan H-Y. Exploring the therapeutic potential of
Qi Teng Mai Ning recipe in ischemic stroke and vascular cognitive impairment. Tradit
Med Res. (2024) 9:57. doi: 10.53388/TMR20240214001

50. Ramirez-Hernandez D, Lezama-Martinez D, Velazco—Bejarano B, Valencia-
Hernandez I, Lopez-Sanchez P, Fonseca-Coronado S, et al. The beneficial effects of
swimming training preconditioning on reducing vascular reactivity in chronic
myocardial infarction: Independent of NO production. J Renin Ang ALD Syst. (2024)
25:14703203241294029. doi: 10.1177/14703203241294029

51. Wang H, Xu T, Huang Q, Jin W, Chen J. Immunotherapy for Malignant glioma:
current status and future directions. Trends Pharmacol Sci. (2020) 41:123-38.
doi: 10.1016/j.tips.2019.12.003

52. Miyazaki T, Ishikawa E, Sugii N, Matsuda M. Therapeutic strategies for
overcoming immunotherapy resistance mediated by immunosuppressive factors of
the glioblastoma microenvironment. Cancers. (2020) 12:1960. doi: 10.3390/
cancers12071960

53. Qin S, Xie B, Wang Q, Yang R, Sun J, Hu G, et al. New insights into immune cells
in cancer immunotherapy: from epigenetic modification, metabolic modulation to cell
communication. MedComm. (2024) 5:e551. doi: 10.1002/mco02.551

54. Ou A, Yung WKA, Majd N. Molecular mechanisms of treatment resistance in
glioblastoma. IJMS. (2020) 22:351. doi: 10.3390/ijms22010351

55. Li Y, Wang Z, Ajani JA, Song S. Drug resistance and Cancer stem cells. Cell
Commun Signal. (2021) 19:19. doi: 10.1186/s12964-020-00627-5

56. Afshari AR, Sanati M, Aminyavari S, Shakeri F, Bibak B, Keshavarzi Z, et al.
Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev
Oncol/Hematol. (2022) 172:103625. doi: 10.1016/j.critrevonc.2022.103625

57. Thomas H, Timmermann B. Paediatric proton therapy. Br J Radiol. (2020)
93:20190601. doi: 10.1259/bjr.20190601

58. Chambrelant I, Eber J, Antoni D, Burckel H, Noél G, Auvergne R. Proton
therapy and gliomas: A systematic review. Radiation. (2021) 1:218-33. doi: 10.3390/
radiation1030019

59. Garg S, Williams NL, Ip A, Dicker AP. Clinical integration of digital solutions in
health care: an overview of the current landscape of digital technologies in cancer care.
JCO Clin Cancer Inf. (2018) 2(2):1-9. doi: 10.1200/CCI.17.00159

60. Chen C, Wu Z-H, Lu X-J, Shi J-L. BRIPI induced ferroptosis to inhibit glioma
cells and was associated with increased oxidative stress. Discov Med. (2024) 36:2264.
doi: 10.24976/Discov.Med.202436190.208

61. Rajendran A, Rajan RA, Balasubramaniyam S, Elumalai K. Nano delivery
systems in stem cell therapy: Transforming regenerative medicine and overcoming
clinical challenges. Nano TransMed. (2025) 4:100069. doi: 10.1016/j.ntm.2024.100069

62. Nascimento IJDS, De Aquino TM, Da Silva-Janior EF. The new era of drug
discovery: the power of computer-aided drugDesign (CADD). LDDD. (2022) 19:951-5.
doi: 10.2174/1570180819666220405225817

63. Sui S, Tian Y, Wang X, Zeng C, Luo O], Li Y. Single-cell RNA sequencing gene
signatures for classifying and scoring exhausted CD8" T cells in B-cell acute
lymphoblastic leukaemia. Cell Prolif. (2024) 57:e13583. doi: 10.1111/cpr.13583

64. Sui S, Wei X, Zhu Y, Feng Q, Zha X, Mao L, et al. Single-cell multiomics reveals
TCR clonotype-specific phenotype and stemness heterogeneity of T- ALL cells. Cell
Prolif. (2024):¢13786. doi: 10.1111/cpr.13786

frontiersin.org


https://doi.org/10.1093/nop/npz059
https://doi.org/10.1016/j.jare.2024.03.025
https://doi.org/10.1016/j.jconrel.2024.07.010
https://doi.org/10.3389/fphar.2022.1010785
https://doi.org/10.1016/j.ypmed.2017.07.015
https://doi.org/10.1016/j.ypmed.2017.07.015
https://doi.org/10.3390/ijerph17165667
https://doi.org/10.1097/MPH.0000000000001844
https://doi.org/10.1155/2019/1940903
https://doi.org/10.1080/10641963.2024.2326021
https://doi.org/10.1080/10641963.2024.2361671
https://doi.org/10.1080/10641963.2024.2373467
https://doi.org/10.1249/MSS.0000000000002116
https://doi.org/10.3389/fimmu.2020.01402
https://doi.org/10.1158/2159-8290.CD-20-1474
https://doi.org/10.1016/j.semcancer.2020.12.015
https://doi.org/10.1016/j.semcancer.2020.12.015
https://doi.org/10.3390/ijms22020587
https://doi.org/10.1038/s41598-018-25169-2
https://doi.org/10.3389/fcell.2017.00043
https://doi.org/10.1002/biof.1768
https://doi.org/10.3389/fonc.2019.01143
https://doi.org/10.3389/fonc.2023.1135430
https://doi.org/10.3389/fonc.2018.00464
https://doi.org/10.3389/fonc.2018.00464
https://doi.org/10.3389/fphar.2020.00368
https://doi.org/10.3389/fphar.2020.00368
https://doi.org/10.1016/j.tranon.2025.102280
https://doi.org/10.15212/bioi-2023-0022
https://doi.org/10.15212/bioi-2023-0013
https://doi.org/10.15212/bioi-2023-0013
https://doi.org/10.7150/jca.32475
https://doi.org/10.3390/cancers13071573
https://doi.org/10.3857/roj.2020.00213
https://doi.org/10.1016/j.radonc.2015.12.008
https://doi.org/10.20517/cdr.2020.79
https://doi.org/10.20517/cdr.2020.79
https://doi.org/10.4103/glioma.glioma_3_19
https://doi.org/10.2174/0929867323666161223150242
https://doi.org/10.53388/TMR20230121002
https://doi.org/10.53388/TMR20240214001
https://doi.org/10.1177/14703203241294029
https://doi.org/10.1016/j.tips.2019.12.003
https://doi.org/10.3390/cancers12071960
https://doi.org/10.3390/cancers12071960
https://doi.org/10.1002/mco2.551
https://doi.org/10.3390/ijms22010351
https://doi.org/10.1186/s12964-020-00627-5
https://doi.org/10.1016/j.critrevonc.2022.103625
https://doi.org/10.1259/bjr.20190601
https://doi.org/10.3390/radiation1030019
https://doi.org/10.3390/radiation1030019
https://doi.org/10.1200/CCI.17.00159
https://doi.org/10.24976/Discov.Med.202436190.208
https://doi.org/10.1016/j.ntm.2024.100069
https://doi.org/10.2174/1570180819666220405225817
https://doi.org/10.1111/cpr.13583
https://doi.org/10.1111/cpr.13786
https://doi.org/10.3389/fimmu.2025.1576283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wou et al.

65. Wang X, Wen D, Xia F, Fang M, Zheng J, You C, et al. Single-cell transcriptomics
revealed white matter repair following subarachnoid hemorrhage. Transl Stroke Res.
(2024), 1-17. doi: 10.1007/s12975-024-01265-6

66. Han D, Han Y, Guo W, Wei W, Yang S, Xiang J, et al. High-dimensional single-
cell proteomics analysis of esophageal squamous cell carcinoma reveals dynamic
alterations of the tumor immune microenvironment after neoadjuvant therapy. J
Immunother Cancer. (2023) 11:¢007847. doi: 10.1136/jitc-2023-007847

67. Komuro H, Shinohara S, Fukushima Y, Demachi-Okamura A, Muraoka D,
Masago K, et al. Single-cell sequencing on CD8" TILs revealed the nature of exhausted
T cells recognizing neoantigen and cancer/testis antigen in non-small cell lung cancer. |
Immunother Cancer. (2023) 11:e007180. doi: 10.1136/jitc-2023-007180

68. Chauleau J-Y, Trassin M. Sensing multiferroic states non-invasively using optical
second harmonic generation. Microstructures. (2024) 4(1):2024005. doi: 10.20517/
microstructures.2023.50

69. Jang J, Choi S-Y. Reduced dimensional ferroelectric domains and their
characterization techniques. Microstruct. (2024) 4(2). doi: 10.20517/
microstructures.2023.67

70. Qin H, Ji Z, Zhao Q, Wang K, Mao F, Han H, et al. Contrast-enhanced
ultrasound features of primary hepatic lymphoepithelioma-like carcinoma:
comparison with hepatocellular carcinoma. BIOL (2024) 5(1):996. doi: 10.15212/
bi0i-2023-0019

71. Wu M, Chen J, Kuang X, Chen Y, Wang Y, Huang L, et al. Sarcopenia-related
traits, body mass index and ovarian cancer risk: investigation of causal relationships
through multivariable mendelian randomization analyses. BIOI (2024) 5(1):995.
doi: 10.15212/bi0i-2023-0020

72. Cui Y, Zhao K, Meng X, Mao Y, Han C, Shi Z, et al. A CT-based multitask deep
learning model for predicting tumor stroma ratio and treatment outcomes in patients
with colorectal cancer: a multicenter cohort study. Int J Surg. (2024) 110(7):2.
doi: 10.1097/]J59.0000000000001161

73. Huang X, Wang Q, Xu W, Liu F, Pan L, Jiao H, et al. Machine learning to predict
lymph node metastasis in T1 esophageal squamous cell carcinoma: a multicenter study.
Int J Surg. (2024) 110:7852-9. doi: 10.1097/]59.0000000000001694

74. Han X, Cai C, Deng W, Shi Y, Li L, Wang C, et al. Landscape of human
organoids: Ideal model in clinics and research. Innov. (2024) 5:100620. doi: 10.1016/
jxinn.2024.100620

75. Atiku SM, Kasozi D, Campbell K. Single nucleotide variants (SNVs) of
angiotensin-converting enzymes (ACE1 and ACE2): A plausible explanation for the
global variation in COVID-19 prevalence. ] Renin Ang ALD Syst. (2023) 2023:9668008.
doi: 10.1155/2023/9668008

76. Karimi F, Maleki M, Movahedpour A, Alizadeh M, Kharazinejad E, Sabaghan M.
Overview of the renin-angiotensin system in diabetic nephropathy. J Renin Ang ALD
Syst. (2024) 25:14703203241302966. doi: 10.1177/14703203241302966

77. Roncevic A, Koruga N, Soldo Koruga A, Roncevi¢ R, Rotim T, Simundi¢ T, et al.
Personalized treatment of glioblastoma: current state and future perspective. Biomed.
(2023) 11:1579. doi: 10.3390/biomedicines11061579

78. He M-X, Tahir AT, Waris S, Cheng W-B, Kang J. Network pharmacology
analysis combined with experimental verification of the molecular mechanism of
Xihuang pill in treating liver cancer. Tradit. Med Res. (2023) 8:33. doi: 10.53388/
TMR20221221002

79. Chu C, Sun W, Chen S, Jia Y, Ni Y, Wang S, et al. Squid-inspired anti-salt skin-
like elastomers with superhigh damage resistance for aquatic soft robots. Adv Matls.
(2024) 36:2406480. doi: 10.1002/adma.202406480

80. NiY, Li B, Chu C, Wang S, Jia Y, Cao S, et al. One-step fabrication of ultrathin
porous Janus membrane within seconds for waterproof and breathable electronic skin.
Sci Bull. (2025) 70:712-21. doi: 10.1016/j.scib.2024.12.040

81. TangY, Tang R. Health neuroscience—How the brain/mind and body affect our
health behavior and outcomes. J Integr Neurosci. (2024) 23:69. doi: 10.31083/
1,jin2304069

82. Wu S, Fu Z, Wang S, Zheng F, Qiu W, Xu G, et al. Disrupted functional brain
network architecture in sufferers with boxing-related repeated mild traumatic brain
injury: A resting-state EEG study. J Integr Neurosci. (2024) 23:102. doi: 10.31083/
jjin2305102

83. Lin H, Zhou J, Ding T, Zhu Y, Wang L, Zhong T, et al. Therapeutic potential of
extracellular vesicles from diverse sources in cancer treatment. Eur ] Med Res. (2024)
29:350. doi: 10.1186/s40001-024-01937-x

84. Zhang X-M, Huang J, Ni X-Y, Zhu H-R, Huang Z-X, Ding S, et al. Current
progression in application of extracellular vesicles in central nervous system diseases.
Eur ] Med Res. (2024) 29:15. doi: 10.1186/s40001-023-01606-5

85. Iyengar NM, Jones LW. Development of exercise as interception therapy for
cancer: A review. JAMA Oncol. (2019) 5:1620. doi: 10.1001/jamaoncol.2019.2585

86. Wang Q, Zhou W. Roles and molecular mechanisms of physical exercise in
cancer prevention and treatment. J Sport Health Sci. (2021) 10:201-10. doi: 10.1016/
j.jshs.2020.07.008

87. Da Ros M, De Gregorio V, Iorio AL, Giunti L, Guidi M, De Martino M, et al.
Glioblastoma chemoresistance: the double play by microenvironment and blood-brain
barrier. IJMS. (2018) 19:2879. doi: 10.3390/ijms19102879

Frontiers in Immunology

10.3389/fimmu.2025.1576283

88. Ruiz-Casado A, Martin-Ruiz A, Pérez LM, Provencio M, Fiuza-Luces C, Lucia A.
Exercise and the hallmarks of cancer. Trends Cancer. (2017) 3:423-41. doi: 10.1016/
j.trecan.2017.04.007

89. Sitlinger A, Brander DM, Bartlett DB. Impact of exercise on the immune system
and outcomes in hematologic Malignancies. Blood Adv. (2020) 4:1801-11. doi: 10.1182/
bloodadvances.2019001317

90. Chong Y, Wu X, Wang Y, Gu Q, Zhang J, Meng X, et al. USP18 reduces the
inflammatory response of LPS-induced SA-AKI by inhibiting the PI3K-AKT-NF-«B
pathway and regulate apoptosis of cells. ] Renin Ang ALD Syst. (2024)
25:14703203241265218. doi: 10.1177/14703203241265218

91. Zhu C, Ma H, He A, Li Y, He C, Xia Y. Exercise in cancer prevention and
anticancer therapy: Efficacy, molecular mechanisms and clinical information. Cancer
Lett. (2022) 544:215814. doi: 10.1016/j.canlet.2022.215814

92. Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for
cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov. (2022)
21:559-77. doi: 10.1038/s41573-022-00413-7

93. Idorn M, Hojman P. Exercise-dependent regulation of NK cells in cancer
protection. Trends Mol Med. (2016) 22:565-77. doi: 10.1016/j.molmed.2016.05.007

94. Rundgqvist H, Veli¢a P, Barbieri L, Gameiro PA, Bargiela D, Gojkovic M, et al.
Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife. (2020) 9:
€59996. doi: 10.7554/eLife.59996

95. Dorneles GP, Dos Passos AAZ, Romao PRT, Peres A. New insights about
regulatory T cells distribution and function with exercise: the role of
immunometabolism. CPD. (2020) 26:979-90. doi: 10.2174/1381612826666200305125210

96. Munn DH, Bronte V. Immune suppressive mechanisms in the tumor
microenvironment. Curr Opin Immunol. (2016) 39:1-6. doi: 10.1016/.c0i.2015.10.009

97. Lyu D. Immunomodulatory effects of exercise in cancer prevention and adjuvant
therapy: a narrative review. Front Physiol. (2024) 14:1292580. doi: 10.3389/
fphys.2023.1292580

98. Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Sakata-Yanagimoto M,
et al. Inflammation-induced tumorigenesis and metastasis. IJMS. (2021) 22:5421.
doi: 10.3390/ijms22115421

99. Shang G-S, Liu L, Qin Y-W. IL-6 and TNF-o. promote metastasis of lung cancer
by inducing epithelial-mesenchymal transition. Oncol Lett. (2017) 13:4657-60.
doi: 10.3892/01.2017.6048

100. Koelwyn GJ, Zhuang X, Tammela T, Schietinger A, Jones LW. Exercise and
immunometabolic regulation in cancer. Nat Metab. (2020) 2:849-57. doi: 10.1038/
§42255-020-00277-4

101. Spiliopoulou P, Gavriatopoulou M, Kastritis E, Dimopoulos M, Terzis G.
Exercise-induced changes in tumor growth via tumor immunity. Sports. (2021) 9:46.
doi: 10.3390/sports9040046

102. Cabral-Santos C, De Lima Junior EA, Fernandes IMDC, Pinto RZ, Rosa-Neto
JC, Bishop NC, et al. Interleukin-10 responses from acute exercise in healthy subjects: A
systematic review. J Cell Physiol. (2019) 234:9956-65. doi: 10.1002/jcp.27920

103. Rosa L, Teixeira A, Lira F, Tufik S, Mello M, Santos R. Moderate acute exercise
(70% VO, peak) induces TGF -B, o-amylase and IGA in saliva during recovery. Oral
Dis. (2014) 20:186-90. doi: 10.1111/0di.12088

104. Komai T, Inoue M, Okamura T, Morita K, Iwasaki Y, Sumitomo S, et al.
Transforming growth factor-B and interleukin-10 synergistically regulate humoral
immunity via modulating metabolic signals. Front Immunol. (2018) 9:1364.
doi: 10.3389/fimmu.2018.01364

105. Daou HN. Exercise as an anti-inflammatory therapy for cancer cachexia: a
focus on interleukin-6 regulation. Am ] Physiology-Regulatory Integr Comp Physiol.
(2020) 318:R296-310. doi: 10.1152/ajpregu.00147.2019

106. Hojman P, Gehl ], Christensen JF, Pedersen BK. Molecular mechanisms linking
exercise to cancer prevention and treatment. Cell Metab. (2018) 27:10-21. doi: 10.1016/
j.cmet.2017.09.015

107. Shalapour S, Karin M. Immunity, inflammation, and cancer: an eternal fight
between good and evil. J Clin Invest. (2015) 125:3347-55. doi: 10.1172/JCI80007

108. Inthagard J, Edwards J, Roseweir AK. Immunotherapy: enhancing the efficacy
of this promising therapeutic in multiple cancers. Clin Sci. (2019) 133:181-93.
doi: 10.1042/CS20181003

109. Gustafson MP, Wheatley-Guy CM, Rosenthal AC, Gastineau DA, Katsanis E,
Johnson BD, et al. Exercise and the immune system: taking steps to improve responses
to cancer immunotherapy. J Immunother Cancer. (2021) 9:¢001872. doi: 10.1136/jitc-
2020-001872

110. Ashcraft KA, Warner AB, Jones LW, Dewhirst MW. Exercise as adjunct
therapy in cancer. Semin Radiat Oncol. (2019) 29:16-24. doi: 10.1016/
j.semradonc.2018.10.001

111. Michels N, Van Aart C, Morisse J, Mullee A, Huybrechts I. Chronic
inflammation towards cancer incidence: A systematic review and meta-analysis of
epidemiological studies. Crit Rev Oncol/Hematol. (2021) 157:103177. doi: 10.1016/
j.critrevonc.2020.103177

112. Jurdana M. Physical activity and cancer risk. Actual knowledge and possible
biological mechanisms. Radiol Oncol. (2021) 55:7-17. doi: 10.2478/raon-2020-0063

frontiersin.org


https://doi.org/10.1007/s12975-024-01265-6
https://doi.org/10.1136/jitc-2023-007847
https://doi.org/10.1136/jitc-2023-007180
https://doi.org/10.20517/microstructures.2023.50
https://doi.org/10.20517/microstructures.2023.50
https://doi.org/10.20517/microstructures.2023.67
https://doi.org/10.20517/microstructures.2023.67
https://doi.org/10.15212/bioi-2023-0019
https://doi.org/10.15212/bioi-2023-0019
https://doi.org/10.15212/bioi-2023-0020
https://doi.org/10.1097/JS9.0000000000001161
https://doi.org/10.1097/JS9.0000000000001694
https://doi.org/10.1016/j.xinn.2024.100620
https://doi.org/10.1016/j.xinn.2024.100620
https://doi.org/10.1155/2023/9668008
https://doi.org/10.1177/14703203241302966
https://doi.org/10.3390/biomedicines11061579
https://doi.org/10.53388/TMR20221221002
https://doi.org/10.53388/TMR20221221002
https://doi.org/10.1002/adma.202406480
https://doi.org/10.1016/j.scib.2024.12.040
https://doi.org/10.31083/j.jin2304069
https://doi.org/10.31083/j.jin2304069
https://doi.org/10.31083/j.jin2305102
https://doi.org/10.31083/j.jin2305102
https://doi.org/10.1186/s40001-024-01937-x
https://doi.org/10.1186/s40001-023-01606-5
https://doi.org/10.1001/jamaoncol.2019.2585
https://doi.org/10.1016/j.jshs.2020.07.008
https://doi.org/10.1016/j.jshs.2020.07.008
https://doi.org/10.3390/ijms19102879
https://doi.org/10.1016/j.trecan.2017.04.007
https://doi.org/10.1016/j.trecan.2017.04.007
https://doi.org/10.1182/bloodadvances.2019001317
https://doi.org/10.1182/bloodadvances.2019001317
https://doi.org/10.1177/14703203241265218
https://doi.org/10.1016/j.canlet.2022.215814
https://doi.org/10.1038/s41573-022-00413-7
https://doi.org/10.1016/j.molmed.2016.05.007
https://doi.org/10.7554/eLife.59996
https://doi.org/10.2174/1381612826666200305125210
https://doi.org/10.1016/j.coi.2015.10.009
https://doi.org/10.3389/fphys.2023.1292580
https://doi.org/10.3389/fphys.2023.1292580
https://doi.org/10.3390/ijms22115421
https://doi.org/10.3892/ol.2017.6048
https://doi.org/10.1038/s42255-020-00277-4
https://doi.org/10.1038/s42255-020-00277-4
https://doi.org/10.3390/sports9040046
https://doi.org/10.1002/jcp.27920
https://doi.org/10.1111/odi.12088
https://doi.org/10.3389/fimmu.2018.01364
https://doi.org/10.1152/ajpregu.00147.2019
https://doi.org/10.1016/j.cmet.2017.09.015
https://doi.org/10.1016/j.cmet.2017.09.015
https://doi.org/10.1172/JCI80007
https://doi.org/10.1042/CS20181003
https://doi.org/10.1136/jitc-2020-001872
https://doi.org/10.1136/jitc-2020-001872
https://doi.org/10.1016/j.semradonc.2018.10.001
https://doi.org/10.1016/j.semradonc.2018.10.001
https://doi.org/10.1016/j.critrevonc.2020.103177
https://doi.org/10.1016/j.critrevonc.2020.103177
https://doi.org/10.2478/raon-2020-0063
https://doi.org/10.3389/fimmu.2025.1576283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.

113. Yang L, Morielli AR, Heer E, Kirkham AA, Cheung WY, Usmani N, et al.
Effects of exercise on cancer treatment efficacy: A systematic review of preclinical and
clinical studies. Cancer Res. (2021) 81:4889-95. doi: 10.1158/0008-5472.CAN-21-1258

114. Holmen Olofsson G, Jensen AWP, Idorn M, Thor Straten P. Exercise oncology
and immuno-oncology; A (Future) dynamic duo. IJMS. (2020) 21:3816. doi: 10.3390/
ijms21113816

115. Idorn M, Thor Straten P. Exercise and cancer: from “healthy” to “therapeutic”?
Cancer Immunol Immunother. (2017) 66:667-71. doi: 10.1007/s00262-017-1985-z

116. Schauer T, Mazzoni A-S, Henriksson A, Demmelmaier I, Berntsen S, Raastad T,
et al. Exercise intensity and markers of inflammation during and after (neo-) adjuvant cancer
treatment. Endocrine-Related Cancer. (2021) 28:191-201. doi: 10.1530/ERC-20-0507

117. Van Rooijen SJ, Engelen MA, Scheede-Bergdahl C, Carli F, Roumen RMH,
Slooter GD, et al. Systematic review of exercise training in colorectal cancer patients
during treatment. Scand Med Sci Sports. (2018) 28:360-70. doi: 10.1111/sms.12907

118. Zhang X, Ashcraft KA, Betof Warner A, Nair SK, Dewhirst MW. Can exercise-
induced modulation of the tumor physiologic microenvironment improve antitumor
immunity? Cancer Res. (2019) 79:2447-56. doi: 10.1158/0008-5472.CAN-18-2468

119. Alahmari A. Blood-brain barrier overview: structural and functional
correlation. Neural Plast. (2021) 2021:1-10. doi: 10.1155/2021/6564585

120. Wang D, Wang C, Wang L, Chen Y. A comprehensive review in improving
delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain
tumor barriers for glioblastoma treatment. Drug Dlv. (2019) 26:551-65. doi: 10.1080/
10717544.2019.1616235

121. Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS.
Overcoming the blood-brain barrier for the therapy of Malignant brain tumor: current
status and prospects of drug delivery approaches. ] Nanobiotechnol. (2022) 20:412.
doi: 10.1186/s12951-022-01610-7

122. Markowicz-Piasecka M, Dartak P, Markiewicz A, Sikora J, Kumar Adla S,
Bagina S, et al. Current approaches to facilitate improved drug delivery to the central
nervous system. Eur ] Pharm BCS. (2022) 181:249-62. doi: 10.1016/j.ejpb.2022.11.003

123. Malkiewicz MA, Szarmach A, Sabisz A, Cubata W], Szurowska E, Winklewski
PJ. Blood-brain barrier permeability and physical exercise. J] NI. (2019) 16:15.
doi: 10.1186/s12974-019-1403-x

124. Igbal I, Saqib F, Mubarak Z, Latif MF, Wahid M, Nasir B, et al. Alzheimer’s
disease and drug delivery across the blood-brain barrier: approaches and challenges.
Eur ] Med Res. (2024) 29:313. doi: 10.1186/s40001-024-01915-3

125. Lundy DJ, Lee K-J, Peng I-C, Hsu C-H, Lin J-H, Chen K-H, et al. Inducing a
transient increase in blood-brain barrier permeability for improved liposomal drug
therapy of glioblastoma multiforme. ACS Nano. (2019) 13:97-113. doi: 10.1021/
acsnano.8b03785

126. Lin T-W, Tsai S-F, Kuo Y-M. Physical exercise enhances neuroplasticity and
delays alzheimer’s disease. BPL. (2018) 4:95-110. doi: 10.3233/BPL-180073

127. Nishijima T, Torres-Aleman I, Soya H. Exercise and cerebrovascular plasticity.
Prog Brain Res. (2016) 225:243-68. doi: 10.1016/bs.pbr.2016.03.010

128. He Q, Liu J, Liang J, Liu X, Li W, Liu Z, et al. Towards improvements for
penetrating the blood-brain barrier—Recent progress from a material and
pharmaceutical perspective. Cells. (2018) 7:24. doi: 10.3390/cells7040024

129. Alghamri MS, McClellan BL, Hartlage CS, Haase S, Faisal SM, Thalla R, et al.
Targeting neuroinflammation in brain cancer: uncovering mechanisms,
pharmacological targets, and neuropharmaceutical developments. Front Pharmacol.
(2021) 12:680021. doi: 10.3389/fphar.2021.680021

130. Martinez-Guardado I, Arboleya S, Grijota FJ, Kaliszewska A, Gueimonde M,
Arias N. The therapeutic role of exercise and probiotics in stressful brain conditions.
IJMS. (2022) 23:3610. doi: 10.3390/ijms23073610

131. Betof AS, Lascola CD, Weitzel D, Landon C, Scarbrough PM, Devi GR, et al.
Modulation of murine breast tumor vascularity, hypoxia, and chemotherapeutic
response by exercise. ] Natl Cancer Inst. (2015) 107(5):djv040. doi: 10.1093/jnci/djv040

132. Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, et al.
Voluntary running suppresses tumor growth through epinephrine- and IL-6-
dependent NK cell mobilization and redistribution. Cell Metab. (2016) 23:554-62.
doi: 10.1016/j.cmet.2016.01.011

133. Wang Z-G, Cheng Y, Yu X-C, Ye L-B, Xia Q-H, Johnson NR, et al. bFGF
protects against blood-brain barrier damage through junction protein regulation via
PI3K-akt-racl pathway following traumatic brain injury. Mol Neurobiol. (2016)
53:7298-311. doi: 10.1007/s12035-015-9583-6

134. Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular mechanisms
underlying cardiac adaptation to exercise. Cell Metab. (2017) 25:1012-26.
doi: 10.1016/j.cmet.2017.04.025

135. Da Rocha AL, Pinto AP, Kohama EB, Pauli JR, De Moura LP, Cintra DE, et al.
The proinflammatory effects of chronic excessive exercise. Cytokine. (2019) 119:57-61.
doi: 10.1016/j.cyt0.2019.02.016

136. Lippi G, Mattiuzzi C, Sanchis-Gomar F. Updated overview on interplay
between physical exercise, neurotrophins, and cognitive function in humans. J Sport
Health Sci. (2020) 9:74-81. doi: 10.1016/j.jshs.2019.07.012

137. Ayotte SL, Harro CC. Effects of an individualized aerobic exercise program in
individuals with a brain tumor undergoing inpatient rehabilitation: A feasibility study.
Rehabil Oncol. (2017) 35:163-71. doi: 10.1097/01.REO.0000000000000069

Frontiers in Immunology

10.3389/fimmu.2025.1576283

138. Song Y, Hu C, Fu Y, Gao H. Modulating the blood-brain tumor barrier for
improving drug delivery efficiency and efficacy. VIEW. (2022) 3:20200129.
doi: 10.1002/VIW.20200129

139. Stout NL, Brown JC, Schwartz AL, Marshall TF, Campbell AM, Nekhlyudov L,
et al. An exercise oncology clinical pathway: Screening and referral for personalized
interventions. Cancer. (2020) 126:2750-8. doi: 10.1002/cncr.32860

140. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncol. (2005)
69:4-10. doi: 10.1159/000088478

141. Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis
and anti-angiogenic strategies for cancer treatment. JCM. (2019) 9:84. doi: 10.3390/
jcm9010084

142. Hughes VS, Wiggins JM, Siemann DW. Tumor oxygenation and cancer
therapy—then and now. BJR. (2018) 92(1093):20170955. doi: 10.1259/bjr.20170955

143. Stylianopoulos T, Munn LL, Jain RK. Reengineering the tumor vasculature:
improving drug delivery and efficacy. Trends Cancer. (2018) 4:258-9. doi: 10.1016/
j.trecan.2018.02.010

144. Esteves M, Monteiro MP, Duarte JA. Role of regular physical exercise in tumor
vasculature: favorable modulator of tumor milieu. Int J Sports Med. (2021) 42:389-406.
doi: 10.1055/a-1308-3476

145. Pedersen L, Christensen JF, Hojman P. Effects of exercise on tumor physiology
and metabolism. Cancer J. (2015) 21:111-6. doi: 10.1097/PP0O.0000000000000096

146. Wiggins JM, Opoku-Acheampong AB, Baumfalk DR, Siemann DW, Behnke
BJ. Exercise and the tumor microenvironment: potential therapeutic implications.
Exercise Sport Sci Rev. (2018) 46:56-64. doi: 10.1249/JES.0000000000000137

147. Giordo R, Wehbe Z, Paliogiannis P, Eid AH, Mangoni AA, Pintus G. Nano-
targeting vascular remodeling in cancer: Recent developments and future
directions. Semin Cancer Biol. (2022) 86:784-804. doi: 10.1016/j.semcancer.
2022.03.001

148. Buss LA, Dachs GU. Effects of exercise on the tumour microenvironment. In:
Birbrair A, editor. Tumor microenvironment. Advances in experimental medicine and
biology. Springer International Publishing, Cham (2020). p. 31-51. doi: 10.1007/978-3-
030-35727-6_3

149. Matuszewska K, Pereira M, Petrik D, Lawler ], Petrik J. Normalizing tumor
vasculature to reduce hypoxia, enhance perfusion, and optimize therapy uptake.
Cancers. (2021) 13:4444. doi: 10.3390/cancers13174444

150. SChadler KL, Thomas NJ, Galie PA, Bhang DH, Roby KC, Addai P, et al.
Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.
Oncotarget. (2016) 7:65429-40. doi: 10.18632/oncotarget.11748

151. Treps L, Gavard J. L’angiogenése tumorale: Quand I'arbre de vie tourne mal.
Med Sci (Paris). (2015) 31:989-95. doi: 10.1051/medsci/20153111013

152. Kwak S-E, Lee J-H, Zhang D, Song W. Angiogenesis: focusing on the effects of
exercise in aging and cancer. JENB. (2018) 22:21-6. doi: 10.20463/jenb.2018.0020

153. Jiménez-Valerio G, Casanovas O. Angiogenesis and metabolism: entwined for
therapy resistance. Trends Cancer. (2017) 3:10-8. doi: 10.1016/j.trecan.2016.11.007

154. Cormie P, Nowak AK, Chambers SK, Galvio DA, Newton RU. The potential
role of exercise in neuro-oncology. Front Oncol. (2015) 5:85. doi: 10.3389/
fonc.2015.00085

155. Van Der Leeden M, Huijsmans R], Geleijn E, De Rooij M, Konings IR, Buffart
LM, et al. Tailoring exercise interventions to comorbidities and treatment-induced
adverse effects in patients with early stage breast cancer undergoing chemotherapy: a
framework to support clinical decisions. Disability Rehabil. (2018) 40:486-96.
doi: 10.1080/09638288.2016.1260647

156. Piraux E, Caty G, Aboubakar Nana F, Reychler G. Eftects of exercise therapy in
cancer patients undergoing radiotherapy treatment: a narrative review. SAGE Open
Med. (2020) 8:2050312120922657. doi: 10.1177/2050312120922657

157. Korta P, Poche¢ E, Mazur-Bialy A. Irisin as a multifunctional protein:
implications for health and certain diseases. Medicina. (2019) 55:485. doi: 10.3390/
medicina55080485

158. Arhire LI, Mihalache L, Covasa M. Irisin: A hope in understanding and
managing obesity and metabolic syndrome. Front Endocrinol. (2019) 10:524.
doi: 10.3389/fendo.2019.00524

159. Tsiani E, Tsakiridis N, Kouvelioti R, Jaglanian A, Klentrou P. Current evidence
of the role of the myokine irisin in cancer. Cancers. (2021) 13:2628. doi: 10.3390/
cancers13112628

160. Zhang D, Tan X, Tang N, Huang F, Chen Z, Shi G. Review of research on the
role of irisin in tumor. OTT. (2020) 13:4423-30. doi: 10.2147/OTT.S245178

161. Huang C, Chang Y, Lee H, Wu J, Huang J, Chung Y, et al. Irisin, an exercise
myokine, potently suppresses tumor proliferation, invasion, and growth in glioma.
FASEB J. (2020) 34:9678-93. doi: 10.1096/f].202000573RR

162. Zhang D, Zhang P, Li L, Tang N, Huang F, Kong X, et al. Irisin functions to
inhibit Malignant growth of human pancreatic cancer cells via downregulation of the
PI3K/AKT signaling pathway. OTT. (2019) 12:7243-9. doi: 10.2147/OTT.S214260

163. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat
Rev Cancer. (2009) 9:400-14. doi: 10.1038/nrc2657

164. Pinkowska A, Podhorska-Okotow M, Dziggiel P, Nowinska K. The role of irisin
in cancer disease. Cells. (2021) 10:1479. doi: 10.3390/cells10061479

frontiersin.org


https://doi.org/10.1158/0008-5472.CAN-21-1258
https://doi.org/10.3390/ijms21113816
https://doi.org/10.3390/ijms21113816
https://doi.org/10.1007/s00262-017-1985-z
https://doi.org/10.1530/ERC-20-0507
https://doi.org/10.1111/sms.12907
https://doi.org/10.1158/0008-5472.CAN-18-2468
https://doi.org/10.1155/2021/6564585
https://doi.org/10.1080/10717544.2019.1616235
https://doi.org/10.1080/10717544.2019.1616235
https://doi.org/10.1186/s12951-022-01610-7
https://doi.org/10.1016/j.ejpb.2022.11.003
https://doi.org/10.1186/s12974-019-1403-x
https://doi.org/10.1186/s40001-024-01915-3
https://doi.org/10.1021/acsnano.8b03785
https://doi.org/10.1021/acsnano.8b03785
https://doi.org/10.3233/BPL-180073
https://doi.org/10.1016/bs.pbr.2016.03.010
https://doi.org/10.3390/cells7040024
https://doi.org/10.3389/fphar.2021.680021
https://doi.org/10.3390/ijms23073610
https://doi.org/10.1093/jnci/djv040
https://doi.org/10.1016/j.cmet.2016.01.011
https://doi.org/10.1007/s12035-015-9583-6
https://doi.org/10.1016/j.cmet.2017.04.025
https://doi.org/10.1016/j.cyto.2019.02.016
https://doi.org/10.1016/j.jshs.2019.07.012
https://doi.org/10.1097/01.REO.0000000000000069
https://doi.org/10.1002/VIW.20200129
https://doi.org/10.1002/cncr.32860
https://doi.org/10.1159/000088478
https://doi.org/10.3390/jcm9010084
https://doi.org/10.3390/jcm9010084
https://doi.org/10.1259/bjr.20170955
https://doi.org/10.1016/j.trecan.2018.02.010
https://doi.org/10.1016/j.trecan.2018.02.010
https://doi.org/10.1055/a-1308-3476
https://doi.org/10.1097/PPO.0000000000000096
https://doi.org/10.1249/JES.0000000000000137
https://doi.org/10.1016/j.semcancer.2022.03.001
https://doi.org/10.1016/j.semcancer.2022.03.001
https://doi.org/10.1007/978-3-030-35727-6_3
https://doi.org/10.1007/978-3-030-35727-6_3
https://doi.org/10.3390/cancers13174444
https://doi.org/10.18632/oncotarget.11748
https://doi.org/10.1051/medsci/20153111013
https://doi.org/10.20463/jenb.2018.0020
https://doi.org/10.1016/j.trecan.2016.11.007
https://doi.org/10.3389/fonc.2015.00085
https://doi.org/10.3389/fonc.2015.00085
https://doi.org/10.1080/09638288.2016.1260647
https://doi.org/10.1177/2050312120922657
https://doi.org/10.3390/medicina55080485
https://doi.org/10.3390/medicina55080485
https://doi.org/10.3389/fendo.2019.00524
https://doi.org/10.3390/cancers13112628
https://doi.org/10.3390/cancers13112628
https://doi.org/10.2147/OTT.S245178
https://doi.org/10.1096/fj.202000573RR
https://doi.org/10.2147/OTT.S214260
https://doi.org/10.1038/nrc2657
https://doi.org/10.3390/cells10061479
https://doi.org/10.3389/fimmu.2025.1576283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.

165. Alshangiti KH, Alomar SF, Alzoman N, Almomen A. Irisin induces apoptosis
in metastatic prostate cancer cells and inhibits tumor growth In Vivo. Cancers. (2023)
15:4000. doi: 10.3390/cancers15154000

166. Ho M-Y, Wen M-S, Yeh J-K, Hsieh I-C, Chen C-C, Hsieh M-], et al. Excessive
irisin increases oxidative stress and apoptosis in murine heart. Biochem Biophys Res
Commun. (2018) 503:2493-8. doi: 10.1016/j.bbrc.2018.07.005

167. Nakamura H, Takada K. Reactive oxygen species in cancer: Current findings
and future directions. Cancer Sci. (2021) 112:3945-52. doi: 10.1111/cas.15068

168. Liu S, Du F, Li X, Wang M, Duan R, Zhang J, et al. Effects and underlying
mechanisms of irisin on the proliferation and apoptosis of pancreatic B cells. PLoS One.
(2017) 12:€0175498. doi: 10.1371/journal.pone.0175498

169. Damgaci S, Ibrahim-Hashim A, Enriquez-Navas PM, Pilon-Thomas S, Guvenis
A, Gillies RJ. Hypoxia and acidosis: immune suppressors and therapeutic targets.
Immunol. (2018) 154:354-62. doi: 10.1111/imm.12917

170. Sumsuzzman D, Jin Y, Choi ], Yu J-H, TH L, Hong Y. Pathophysiological role
of endogenous irisin against tumorigenesis and metastasis: Is it a potential biomarker
and therapeutic? Tumour Biol. (2019) 41:101042831989279. doi: 10.1177/
1010428319892790

171. Liu J, Huang Y, Liu Y, Chen Y. Irisin enhances doxorubicin-induced cell
apoptosis in pancreatic cancer by inhibiting the PI3K/AKT/NF-xB pathway. Med Sci
Monit. (2019) 25:6085-96. doi: 10.12659/MSM.917625

172. Gannon NP, Vaughan RA, Garcia-Smith R, Bisofti M, Trujillo KA. Effects of the
exercise-inducible myokine irisin on Malignant and non-malignant breast epithelial
cell behavior in vitro. Intl ] Cancer. (2015) 136(4):E197-E202. doi: 10.1002/ijc.29142

173. Zhou Y, Chen X, Cao J, Gao H. Overcoming the biological barriers in the tumor
microenvironment for improving drug delivery and efficacy. ] Mater Chem B. (2020)
8:6765-81. doi: 10.1039/DOTB00649A

174. Drean A, Goldwirt L, Verreault M, Canney M, Schmitt C, Guehennec J, et al.
Blood-brain barrier, cytotoxic chemotherapies and glioblastoma. Expert Rev Neurother.
(2016) 16:1285-300. doi: 10.1080/14737175.2016.1202761

175. Bei Y, Wang H, Liu Y, Su Z, Li X, Zhu Y, et al. Exercise-Induced miR-210
Promotes Cardiomyocyte Proliferation and Survival and Mediates Exercise-Induced
Cardiac Protection against Ischemia/Reperfusion Injury. Research. (2024) 7:327.
doi: 10.34133/research.0327

176. Maalouf G-E, El Khoury D. Exercise-induced irisin, the fat browning myokine,
as a potential anticancer agent. J Obes. (2019) 2019:1-8. doi: 10.1155/2019/6561726

177. Chen Y, Fan Z, Luo Z, Kang X, Wan R, Li F, et al. Impacts of Nutlin-3a and
exercise on murine double minute 2-enriched glioma treatment. Neural Regen Res.
(2025) 20:1135-52. doi: 10.4103/NRR.NRR-D-23-00875

178. Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: a hope for
glioblastoma patients. Oncotarget. (2018) 9:22194-219. doi: 10.18632/oncotarget.25175

179. Cormie P, Zopf EM, Zhang X, Schmitz KH. The impact of exercise on cancer
mortality, recurrence, and treatment-related adverse effects. Epidemiol Rev. (2017)
39:71-92. doi: 10.1093/epirev/mxx007

180. Sandler CX, Matsuyama M, Jones TL, Bashford J, Langbecker D, Hayes SC.
Physical activity and exercise in adults diagnosed with primary brain cancer: a
systematic review. J Neurooncol. (2021) 153:1-14. doi: 10.1007/s11060-021-03745-3

181. Thomas R, Kenfield SA, Yanagisawa Y, Newton RU. Why exercise has a crucial
role in cancer prevention, risk reduction and improved outcomes. Br Med Bull. (2021)
139:100-19. doi: 10.1093/bmb/1dab019

182. Lu L, Hu Y, Wang C, Jiang F, Wu C. Methylation and expression of the
exercise-related TLR1 gene is associated with low grade glioma prognosis and outcome.
Front Mol Biosci. (2021) 8:747933. doi: 10.3389/fmolb.2021.747933

183. Murasawa S, Kageyama K, Usutani M, Asari Y, Kinoshita N, Nakada Y, et al.
Biochemical evaluation by confirmatory tests after unilateral adrenalectomy for
primary aldosteronism. J Renin Ang ALD Syst. (2023) 2023:5732812. doi: 10.1155/
2023/5732812

184. Luoyi H, Yan P, Qihong F. Relationship between angiotensin-converting
enzyme insertion/deletion polymorphism and the risk of COVID-19: A meta-
analysis. J Renin Ang ALD Syst. (2023) 2023:3431612. doi: 10.1155/2023/3431612

185. Park Y, Kang D, Sinn DH, Kim H, Hong YS, Cho J, et al. Effect of renin-
angiotensin system inhibitor in incident cancer among chronic hepatitis B patients: An
emulated target trial using a nationwide cohort. J Renin Ang ALD Syst. (2024)
25:14703203241294037. doi: 10.1177/14703203241294037

186. Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of exercise
against age-related neurodegeneration. Ageing Res Rev. (2022) 74:101543. doi: 10.1016/
j.arr.2021.101543

187. Kroonen JS, Vertegaal ACO. Targeting SUMO signaling to wrestle cancer.
Trends Cancer. (2021) 7:496-510. doi: 10.1016/j.trecan.2020.11.009

188. Lee W, Oh M, Kim JS, Sung M, Hong K, Kwak BJ, et al. Metabolic tumor
burden as a prognostic indicator after neoadjuvant chemotherapy in pancreatic cancer.
Int J Surg. (2024) 110:4074-82. doi: 10.1097/J59.0000000000001389

189. Lu Y, Yao Y, Zhai S, Ni F, Wang J, Chen F, et al. The role of immune cell
signatures in the pathogenesis of ovarian-related diseases: a causal inference based on
Mendelian randomization. Int J Surg. (2024) 110:6541-50. doi: 10.1097/
J§9.0000000000001814

Frontiers in Immunology

10.3389/fimmu.2025.1576283

190. Dauwan M, Begemann MJH, Slot MIE, Lee EHM, Scheltens P, Sommer IEC.
Physical exercise improves quality of life, depressive symptoms, and cognition across chronic
brain disorders: a transdiagnostic systematic review and meta-analysis of randomized
controlled trials. ] Neurol. (2021) 268:1222-46. doi: 10.1007/s00415-019-09493-9

191. Gerritsen JKW, Vincent AJPE. Exercise improves quality of life in patients with
cancer: a systematic review and meta-analysis of randomised controlled trials. Br |
Sports Med. (2016) 50:796-803. doi: 10.1136/bjsports-2015-094787

192. Levin GT, Greenwood KM, Singh F, Tsoi D, Newton RU. Exercise improves
physical function and mental health of brain cancer survivors: two exploratory case
studies. Integr Cancer Ther. (2016) 15:190-6. doi: 10.1177/1534735415600068

193. Szulc-Lerch KU, Timmons BW, Bouffet E, Laughlin S, De Medeiros CB, Skocic J,
et al. Repairing the brain with physical exercise: Cortical thickness and brain volume
increases in long-term pediatric brain tumor survivors in response to a structured exercise
intervention. NeuroImage Clin. (2018) 18:972-85. doi: 10.1016/j.nic1.2018.02.021

194. Cox E, Bells S, Timmons BW, Laughlin S, Bouffet E, De Medeiros C, et al. A
controlled clinical crossover trial of exercise training to improve cognition and neural
communication in pediatric brain tumor survivors. Clin Neurophysiol. (2020)
131:1533-47. doi: 10.1016/j.clinph.2020.03.027

195. Vira P, Samuel SR, Amaravadi SK, Saxena PP, Rai Pv S, Kurian JR, et al. Role of
physiotherapy in hospice care of patients with advanced cancer: A systematic review.
Am ] Hosp Palliat Care. (2021) 38:503-11. doi: 10.1177/1049909120951163

196. Heywood R, McCarthy AL, Skinner TL. Efficacy of exercise interventions in
patients with advanced cancer: A systematic review. Arch Phys Med Rehabil. (2018)
99:2595-620. doi: 10.1016/j.apmr.2018.04.008

197. Doyle KL, Toepfer M, Bradfield AF, Noftke A, Ausderau KK, Andreae S, et al.
Systematic review of exercise for caregiver—care recipient dyads: what is best for spousal
caregivers—Exercising together or not at all? Gerontol. (2021) 61:e283-301.
doi: 10.1093/geront/gnaa043

198. De Lazzari N, Niels T, Tewes M, Gotte M. A systematic review of the safety,
feasibility and benefits of exercise for patients with advanced cancer. Cancers. (2021)
13:4478. doi: 10.3390/cancers13174478

199. Hansen A, Segaard K, Minet LR. Development of an exercise intervention as
part of rehabilitation in a glioblastoma multiforme survivor during irradiation
treatment: a case report. Disability Rehabil. (2019) 41:1608-14. doi: 10.1080/
09638288.2018.1432707

200. Sweegers MG, Altenburg TM, Chinapaw MJ, Kalter J, Verdonck-de Leeuw IM,
Courneya KS, et al. Which exercise prescriptions improve quality of life and physical
function in patients with cancer during and following treatment? A systematic review
and meta-analysis of randomised controlled trials. Br J Sports Med. (2018) 52:505-13.
doi: 10.1136/bjsports-2017-097891

201. Gehring K, Stuiver MM, Visser E, Kloek C, Van Den Bent M, Hanse M, et al. A
pilot randomized controlled trial of exercise to improve cognitive performance in
patients with stable glioma: a proof of concept. Neuro-Oncol. (2020) 22:103-15.
doi: 10.1093/neuonc/noz178

202. Singh GK, Varghese L, Menon N, Dale O, Patil VM. Cancer-related fatigue and
its impact on quality of life in patients with central nervous system tumors: A cross-
sectional analysis. Cancer Res Stats Treat. (2021) 4:44-9. doi: 10.4103/crst.crst_364_20

203. Scott K, Posmontier B. Exercise interventions to reduce cancer-related fatigue
and improve health-related quality of life in cancer patients. Holist Nurs Pract. (2017)
31:66-79. doi: 10.1097/HNP.0000000000000194

204. Spencer J, Staffileno B. Exercise intervention: A pilot study to assess the
feasibility and impact on cancer-related fatigue and quality of life among patients
with high-grade glioma. CJON. (2021) 25:194-200. doi: 10.1188/21.CJON.194-200

205. Wu N, Zhang X, Fang C, Zhu M, Wang Z, Jian L, et al. Progesterone enhances
niraparib efficacy in ovarian cancer by promoting palmitoleic-acid-mediated
ferroptosis. Research. (2024) 7:371. doi: 10.34133/research.0371

206. Jing G, Li Y, Sun F, Liu Q, Du A, Wang H, et al. Near-infrared light-activatable
upconversion nanoparticle/curcumin hybrid nanodrug: a potent strategy to induce the
differentiation and elimination of glioma stem cells. Adv Compos Hybrid Mater. (2024)
7:82. doi: 10.1007/s42114-024-00886-7

207. Zhang Q-Y, Wang F-X, Jia K-K, Kong L-D. Natural product interventions for
chemotherapy and radiotherapy-induced side effects. Front Pharmacol. (2018) 9:1253.
doi: 10.3389/fphar.2018.01253

208. Kleckner IR, Dunne RF, Asare M, Cole C, Fleming F, Fung C, et al. Exercise for
toxicity management in cancer—A narrative review. Oncol Hematol Rev (US). (2018)
14:28. doi: 10.17925/0OHR.2018.14.1.28

209. Tan J, Peeraphong L, Ruchawapol C, Zhang J, Zhao J, Fu W, et al. Emerging
role of HJURP as a therapeutic target in cancers. Acta Matls Med. (2023) 2(2):157-71.
doi: 10.15212/AMM-2023-0008

210. WangZ, LiuZ, QuJ, Sun Y, Zhou W. Role of natural products in tumor therapy
from basic research and clinical perspectives. Acta Matls Med. (2024) 3(2):163-206.
doi: 10.15212/AMM-2023-0050

211. Dolezal BA, Neufeld EV, Boland DM, Martin JL, Cooper CB. Interrelationship
between sleep and exercise: A systematic review. Adv Prev Med. (2017) 2017:1-14.
doi: 10.1155/2017/1364387

212. Armstrong TS, Ying Y, Wu J, Acquaye AA, Vera-Bolanos E, Gilbert MR, et al.
The relationship between corticosteroids and symptoms in patients with primary brain

frontiersin.org


https://doi.org/10.3390/cancers15154000
https://doi.org/10.1016/j.bbrc.2018.07.005
https://doi.org/10.1111/cas.15068
https://doi.org/10.1371/journal.pone.0175498
https://doi.org/10.1111/imm.12917
https://doi.org/10.1177/1010428319892790
https://doi.org/10.1177/1010428319892790
https://doi.org/10.12659/MSM.917625
https://doi.org/10.1002/ijc.29142
https://doi.org/10.1039/D0TB00649A
https://doi.org/10.1080/14737175.2016.1202761
https://doi.org/10.34133/research.0327
https://doi.org/10.1155/2019/6561726
https://doi.org/10.4103/NRR.NRR-D-23-00875
https://doi.org/10.18632/oncotarget.25175
https://doi.org/10.1093/epirev/mxx007
https://doi.org/10.1007/s11060-021-03745-3
https://doi.org/10.1093/bmb/ldab019
https://doi.org/10.3389/fmolb.2021.747933
https://doi.org/10.1155/2023/5732812
https://doi.org/10.1155/2023/5732812
https://doi.org/10.1155/2023/3431612
https://doi.org/10.1177/14703203241294037
https://doi.org/10.1016/j.arr.2021.101543
https://doi.org/10.1016/j.arr.2021.101543
https://doi.org/10.1016/j.trecan.2020.11.009
https://doi.org/10.1097/JS9.0000000000001389
https://doi.org/10.1097/JS9.0000000000001814
https://doi.org/10.1097/JS9.0000000000001814
https://doi.org/10.1007/s00415-019-09493-9
https://doi.org/10.1136/bjsports-2015-094787
https://doi.org/10.1177/1534735415600068
https://doi.org/10.1016/j.nicl.2018.02.021
https://doi.org/10.1016/j.clinph.2020.03.027
https://doi.org/10.1177/1049909120951163
https://doi.org/10.1016/j.apmr.2018.04.008
https://doi.org/10.1093/geront/gnaa043
https://doi.org/10.3390/cancers13174478
https://doi.org/10.1080/09638288.2018.1432707
https://doi.org/10.1080/09638288.2018.1432707
https://doi.org/10.1136/bjsports-2017-097891
https://doi.org/10.1093/neuonc/noz178
https://doi.org/10.4103/crst.crst_364_20
https://doi.org/10.1097/HNP.0000000000000194
https://doi.org/10.1188/21.CJON.194-200
https://doi.org/10.34133/research.0371
https://doi.org/10.1007/s42114-024-00886-7
https://doi.org/10.3389/fphar.2018.01253
https://doi.org/10.17925/OHR.2018.14.1.28
https://doi.org/10.15212/AMM-2023-0008
https://doi.org/10.15212/AMM-2023-0050
https://doi.org/10.1155/2017/1364387
https://doi.org/10.3389/fimmu.2025.1576283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.

tumors: utility of the Dexamethasone Symptom Questionnaire-Chronic. Neuro Oncol.
(2015) 17:1114-20. doi: 10.1093/neuonc/nov054

213. Lee J. The effects of resistance training on muscular strength and hypertrophy
in elderly cancer patients: A systematic review and meta-analysis. J Sport Health Sci.
(2022) 11:194-201. doi: 10.1016/j.jshs.2021.02.002

214. Allen DH, Loughan AR. Impact of cognitive impairment in patients with
gliomas. Semin Oncol Nurs. (2018) 34:528-46. doi: 10.1016/j.soncn.2018.10.010

215. Narayanasetti Pt N, Thomas Pt A. Exercise and neural plasticity-A review
study. J Neurol Neurosci. (2017) 08(05). doi: 10.21767/2171-6625.1000216

216. Mishra SI, Scherer RW, Snyder C, Geigle P, Gotay C. The effectiveness of
exercise interventions for improving health-related quality of life from diagnosis
through active cancer treatment. Oncol Nurs Forum. (2015) 42:E33-53. doi: 10.1188/
15.0NF.E33-E53

217. Jonasson LS, Nyberg L, Kramer AF, Lundquist A, Riklund K, Boraxbekk C-J.
Aerobic exercise intervention, cognitive performance, and brain structure: results from
the physical influences on brain in aging (PHIBRA) study. Front Aging Neurosci. (2017)
8:336. doi: 10.3389/fnagi.2016.00336

218. Levin O, Netz Y, Ziv G. The beneficial effects of different types of exercise
interventions on motor and cognitive functions in older age: a systematic review. Eur
Rev Aging Phys Act. (2017) 14:20. doi: 10.1186/s11556-017-0189-z

219. Vanderbeek AM, Rahman R, Fell G, Ventz S, Chen T, Redd R, et al. The clinical
trials landscape for glioblastoma: is it adequate to develop new treatments? Neuro-
Oncol. (2018) 20:1034-43. doi: 10.1093/neuonc/noy027

220. WangX, Cai Z, Jiang W, Fang Y, Sun W, Wang X. Systematic review and meta-
analysis of the effects of exercise on depression in adolescents. Child Adolesc Psychiatry
Ment Health. (2022) 16:16. doi: 10.1186/s13034-022-00453-2

221. Wegner M, Helmich I, MaChado S, Nardi A, Arias-Carrion O, Budde H. Effects
of exercise on anxiety and depression disorders: review of meta- analyses and
neurobiological mechanisms. CNSNDDT. (2014) 13:1002-14. doi: 10.2174/
1871527313666140612102841

222. Gehring K, Kloek CJ, Aaronson NK, Janssen KW, Jones LW, Sitskoorn MM,
et al. Feasibility of a home-based exercise intervention with remote guidance for
patients with stable grade II and III gliomas: a pilot randomized controlled trial. Clin
Rehabil. (2018) 32:352-66. doi: 10.1177/0269215517728326

223. Cordier D, Gerber M, Brand S. Effects of two types of exercise training on
psychological well-being, sleep, quality of life and physical fitness in patients with high-
grade glioma (WHO III and IV): study protocol for a randomized controlled trial.
Cancer Commun. (2019) 39:1-10. doi: 10.1186/s40880-019-0390-8

224. Abdelaziz GN, Ramzy GM, Fayed LH, Ahmed SM, Ahmed MG. The effect of
physical therapy rehabilitation on fatigue and pain in female patients with fibromyalgia.
Sportk. (2024) 34. doi: 10.6018/sportk.581811

225. Mahindru A, Patil P, Agrawal V. Role of physical activity on mental health and
well-being: A review. Cureus. (2023) 15(1):7. doi: 10.7759/cureus.33475

226. Miklja Z, Gabel N, Altshuler D, Wang L, Hervey-Jumper SL, Smith S. Exercise
improves health-related quality of life sleep and fatigue domains in adult high- and low-
grade glioma patients. Supp Care Cancer. (2022) 30:1493-500. doi: 10.1007/s00520-
021-06566-2

227. Jones LW. Precision oncology framework for investigation of exercise as
treatment for cancer. JCO. (2015) 33:4134-7. doi: 10.1200/JC0O.2015.62.7687

228. Sheill G, Guinan E, Brady L, Hevey D, Hussey J. Exercise interventions for patients
with advanced cancer: A systematic review of recruitment, attrition, and exercise
adherence rates. Pall Supp Care. (2019) 17:686-96. doi: 10.1017/S1478951519000312

229. Duma N, Kothadia SM, Azam TU, Yadav S, Paludo J, Vera Aguilera J, et al.
Characterization of comorbidities limiting the recruitment of patients in early phase
clinical trials. Oncol. (2019) 24:96-102. doi: 10.1634/theoncologist.2017-0687

230. Cramer CK, Cummings TL, Andrews RN, Strowd R, Rapp SR, Shaw EG, et al.
Treatment of radiation-induced cognitive decline in adult brain tumor patients. Curr
Treat Opt Oncol. (2019) 20:42. doi: 10.1007/s11864-019-0641-6

231. Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and
future directions. ] Exp Clin Cancer Res. (2022) 41:142. doi: 10.1186/s13046-022-02349-7

232. Vargas-Sierra O, Hernandez-Juarez J, Uc-Uc PY, Herrera LA, Dominguez-
Gomez G, Gariglio P, et al. Role of SLC5A8 as a tumor suppressor in cervical cancer.
Front Biosci. (Landmark Ed). (2024) 29:16. doi: 10.31083/j.tb12901016

233. Figueredo VM. The heart renaissance. Rev Cardiovasc Med. (2024) 25:91.
doi: 10.31083/j.rem2503091

234. Li M, Liu X, Jiang M, Lei Y, Li Z, Li S, et al. Prognostic capability of clinical
SYNTAX score in patients with complex coronary artery disease and chronic renal
insufficiency undergoing percutaneous coronary intervention. Rev Cardiovasc Med.
(2024) 25:18. doi: 10.31083/j.rcm2501018

Frontiers in Immunology

114

10.3389/fimmu.2025.1576283

235. Buffart LM, Sweegers MG, May AM, Chinapaw M]J, Van Vulpen JK, Newton RU,
et al. Targeting exercise interventions to patients with cancer in need: an individual patient
data meta-analysis. ] Natl Cancer Inst. (2018) 110:1190-200. doi: 10.1093/jnci/djy161

236. Campanella R, Guarnaccia L, Caroli M, Zarino B, Carrabba G, La Verde N, et al.
Personalized and translational approach for Malignant brain tumors in the era of
precision medicine: the strategic contribution of an experienced neurosurgery
laboratory in a modern neurosurgery and neuro-oncology department. J Neurol Sci.
(2020) 417:117083. doi: 10.1016/j.jns.2020.117083

237. Keats MR, Grandy SA, Blanchard C, Fowles JR, Neyedli HF, Weeks AC, et al.
The impact of resistance exercise on muscle mass in glioblastoma in survivors
(RESIST): protocol for a randomized controlled trial. JMIR Res Protoc. (2022) 11:
€37709. doi: 10.2196/37709

238. De Los Monteros CTE, Harteveld LM, Kuipers IM, Rammeloo L, Hazekamp
MG, Blom NA, et al. Prognostic value of maximal and submaximal exercise
performance in fontan patients < 15 years of age. Am ] Cardiol. (2021) 154:92-8.
doi: 10.1016/j.amjcard.2021.05.049

239. Jost J, Miither M, Brandt R, Altuner U, Lemcke L, Stummer W, et al.
Conceptual development of an intensive exercise program for glioma patients
(ActiNO): summary of clinical experience. J Neurooncol. (2023) 163:367-76.
doi: 10.1007/s11060-023-04354-y

240. Rajaratnam V, Islam M, Yang M, Slaby R, Ramirez H, Mirza S. Glioblastoma:
pathogenesis and current status of chemotherapy and other novel treatments. Cancers.
(2020) 12:937. doi: 10.3390/cancers12040937

241. Falck RS, Davis JC, Best JR, Crockett RA, Liu-Ambrose T. Impact of exercise training
on physical and cognitive function among older adults: a systematic review and meta-
analysis. Neurobiol Aging. (2019) 79:119-30. doi: 10.1016/j.neurobiolaging.2019.03.007

242. Bozzao A, Weber D, Crompton S, Braz G, Csaba D, Dhermain F, et al.
European cancer organisation essential requirements for quality cancer care: adult
glioma. J Cancer Policy. (2023) 38:100438. doi: 10.1016/j.jcpo.2023.100438

243. Walbert T, Chasteen K. “Palliative and supportive care for glioma patients”. In:
Raizer ], Parsa A, editors. Current understanding and treatment of gliomas. Cancer
treatment and research. Springer International Publishing, Cham (2015). p. 171-84.
doi: 10.1007/978-3-319-12048-5_11

244. BaiL, YuE. A narrative review of risk factors and interventions for cancer- related
cognitive impairment. Ann Transl Med. (2021) 9:72-2. doi: 10.21037/atm-20-6443

245. Park ], Park YG. Brain tumor rehabilitation: symptoms, complications, and
treatment strategy. Brain Neurorehabil. (2022) 15:e25. doi: 10.12786/bn.2022.15.e25

246. Berardi R, Morgese F, Rinaldi S, Torniai M, Mentrasti G, Scortichini L, et al.
Benefits and limitations of a multidisciplinary approach in cancer patient management.
CMAR. (2020) 12:9363-74. doi: 10.2147/CMAR.S220976

247. Hojan K, Gerreth K. Can multidisciplinary inpatient and outpatient
rehabilitation provide sufficient prevention of disability in patients with a brain
tumor?—A case-series report of two programs and A prospective, observational
clinical trial. IJERPH. (2020) 17:6488. doi: 10.3390/ijerph17186488

248. Zubin Maslov P, Schulman A, Lavie CJ, Narula J. Personalized exercise dose
prescription. Eur Heart J. (2018) 39:2346-55. doi: 10.1093/eurheartj/ehx686

249. Costache A-D, Costache I-I, R-Stefan M, Stafie C-S, Leon-Constantin M-M,
Roca M, et al. Beyond the finish line: the impact and dynamics of biomarkers in
physical exercise—A narrative review. JCM. (2021) 10:4978. doi: 10.3390/jcm10214978

250. Wang J, Liu §, Li G, Xiao J. Exercise regulates the immune system. In: Xiao J,
editor. Physical exercise for human health. Advances in experimental medicine and
biology. Springer Nature Singapore, Singapore (2020). p. 395-408. doi: 10.1007/978-
981-15-1792-1_27

251. Wen Z, Nie X, Chen L, Liu P, Lan C, Mossa-Basha M, et al. A decision tree
model to help treatment decision-making for unruptured intracranial aneurysms: A
multi-center, long-term follow-up study in a large chinese cohort. Transl Stroke Res.
(2024), 1-13. doi: 10.1007/s12975-024-01280-7

252. Cirocchi R, Matteucci M, Lori E, D’Andrea V, Arezzo A, Pironi D, et al.
Sutureless FOCUS harmonic scalpel versus clamp-and-tie techniques for
thyroidectomy: a meta-analysis of 43 randomized controlled trials. Int J Surg. (2024)
110:8083-96. doi: 10.1097/J59.0000000000002113

253. Holland E, Ene C. Personalized medicine for gliomas. Surg Neurol Int. (2015)
6:89. doi: 10.4103/2152-7806.151351

254. Zhuo Z, Zhang D, Lu W, Wu X, Cui Y, Zhang W, et al. Reversal of tamoxifen
resistance by artemisinin in ER+ breast cancer: bioinformatics analysis and
experimental validation. OR. (2024) 32:1093-107. doi: 10.32604/0r.2024.047257

255. Hu Q, Wang M, Wang J, Tao Y, Niu T. Development of a cell adhesion-based
prognostic model for multiple myeloma: Insights into chemotherapy response and
potential reversal of adhesion effects. OR. (2024) 32:753-68. doi: 10.32604/
0r.2023.043647

frontiersin.org


https://doi.org/10.1093/neuonc/nov054
https://doi.org/10.1016/j.jshs.2021.02.002
https://doi.org/10.1016/j.soncn.2018.10.010
https://doi.org/10.21767/2171-6625.1000216
https://doi.org/10.1188/15.ONF.E33-E53
https://doi.org/10.1188/15.ONF.E33-E53
https://doi.org/10.3389/fnagi.2016.00336
https://doi.org/10.1186/s11556-017-0189-z
https://doi.org/10.1093/neuonc/noy027
https://doi.org/10.1186/s13034-022-00453-2
https://doi.org/10.2174/1871527313666140612102841
https://doi.org/10.2174/1871527313666140612102841
https://doi.org/10.1177/0269215517728326
https://doi.org/10.1186/s40880-019-0390-8
https://doi.org/10.6018/sportk.581811
https://doi.org/10.7759/cureus.33475
https://doi.org/10.1007/s00520-021-06566-2
https://doi.org/10.1007/s00520-021-06566-2
https://doi.org/10.1200/JCO.2015.62.7687
https://doi.org/10.1017/S1478951519000312
https://doi.org/10.1634/theoncologist.2017-0687
https://doi.org/10.1007/s11864-019-0641-6
https://doi.org/10.1186/s13046-022-02349-7
https://doi.org/10.31083/j.fbl2901016
https://doi.org/10.31083/j.rcm2503091
https://doi.org/10.31083/j.rcm2501018
https://doi.org/10.1093/jnci/djy161
https://doi.org/10.1016/j.jns.2020.117083
https://doi.org/10.2196/37709
https://doi.org/10.1016/j.amjcard.2021.05.049
https://doi.org/10.1007/s11060-023-04354-y
https://doi.org/10.3390/cancers12040937
https://doi.org/10.1016/j.neurobiolaging.2019.03.007
https://doi.org/10.1016/j.jcpo.2023.100438
https://doi.org/10.1007/978-3-319-12048-5_11
https://doi.org/10.21037/atm-20-6443
https://doi.org/10.12786/bn.2022.15.e25
https://doi.org/10.2147/CMAR.S220976
https://doi.org/10.3390/ijerph17186488
https://doi.org/10.1093/eurheartj/ehx686
https://doi.org/10.3390/jcm10214978
https://doi.org/10.1007/978-981-15-1792-1_27
https://doi.org/10.1007/978-981-15-1792-1_27
https://doi.org/10.1007/s12975-024-01280-7
https://doi.org/10.1097/JS9.0000000000002113
https://doi.org/10.4103/2152-7806.151351
https://doi.org/10.32604/or.2024.047257
https://doi.org/10.32604/or.2023.043647
https://doi.org/10.32604/or.2023.043647
https://doi.org/10.3389/fimmu.2025.1576283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

? frontiers ‘ Frontiers in Oncology

@ Check for updates

OPEN ACCESS

EDITED BY
Lei Huang,

University of Massachusetts Medical School,

United States

REVIEWED BY

Fu Gao,

Yale University, United States

Yue Liu,

The University of Texas at Austin,
United States

Zhimin Hu,

University of California, San Diego,
United States

*CORRESPONDENCE

Huanhuan Ma
mahuanhuan@stu.gzy.edu.cn

Hongguan Jiao
jiaohg@gzy.edu.cn

RECEIVED 01 May 2025
ACCEPTED 06 June 2025
PUBLISHED 01 July 2025

CITATION
Ma H, Ding R, Wang J, Du G, Zhang Y,
Lu Q, Hou Y, Chen H and Jiao H (2025)
Global research trends in tryptophan
metabolism and cancer: a bibliometric
and visualization analysis (2005-2024).
Front. Oncol. 15:1621666.

doi: 10.3389/fonc.2025.1621666

COPYRIGHT

© 2025 Ma, Ding, Wang, Du, Zhang, Lu, Hou,
Chen and Jiao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Oncology

TYPE Systematic Review
PUBLISHED 01 July 2025
po110.3389/fonc.2025.1621666

Global research trends in
tryptophan metabolism and
cancer: a bibliometric and

visualization analysis
(2005-2024)

Huanhuan Ma™, Ran Ding? Junwen Wang?®, Guangying Du",
Yun Zhang*, Qiuchen Lu?, Yingyue Hou?,
Haosong Chen' and Hongguan Jiao®

tSchool of Information Engineering, Guizhou University of Traditional Chinese Medicine,

Guiyang, China, 2College of Basic Traditional Chinese Medicine, Guizhou University of Traditional
Chinese Medicine, Guiyang, China, *Institute of Basic Theory of Traditional Chinese Medicine, China
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Background: In recent years, tryptophan metabolism has gained increasing
attention for its pivotal role in shaping the tumor immune microenvironment
and promoting cancer progression. As a result, it has become a central topic in
cancer metabolism and tumor immunology. This study applies a comprehensive
bibliometric approach to analyze global research trends in tryptophan
metabolism within the context of cancer. By identifying emerging hotspots,
leading contributors, and patterns of international collaboration, this work aims
to provide meaningful insights to guide future therapeutic strategies targeting
metabolic pathways in oncology.

Methods: A systematic literature search was performed using the Web of Science
Core Collection to retrieve publications related to tryptophan metabolism in
cancer from 2005 to 2024. Bibliometric and visual analyses were conducted
using CiteSpace, VOSviewer, and Python to examine publication trends, national
and institutional contributions, author productivity, journal influence, co-citation
networks, and keyword co-occurrence patterns.

Results: A total of 1,927 publications were identified, authored by 11,134
researchers from 70 countries and published in 781 academic journals. The
volume of publications showed a steady increase, peaking in 2021. The United
States and China emerged as the dominant contributors, excelling in both
research output and international collaboration. Dietmar Fuchs was identified
as the most prolific author, with 61 publications. The Medical University of
Innsbruck was the leading institution, with 144 publications. Frontiers in
Immunology demonstrated strong citation performance and academic impact.
Co-citation and keyword analysis revealed key research themes, including “IDO
(indoleamine 2,3-dioxygenase),” “tryptophan catabolism,” “cancer,” and
"dendritic cells,” as well as emerging topics such as "gut microbiota,” "“tumor
microenvironment,” “aryl hydrocarbon receptor,” and “cancer immunotherapy.”
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Conclusion: This study highlights the growing significance of tryptophan
metabolism research in cancer, underlining the complex interactions between
metabolic pathways and immune responses. Further investigations are needed to
explore the therapeutic potential of these metabolic pathways, which could lead
to novel cancer treatment strategies.

tryptophan metabolism, cancer, kynurenine, TME, bibliometrics, visualization

1 Introduction

Cancer is a highly complex and heterogeneous disease
characterized by the dysregulation of normal cellular control
mechanisms, leading to the abnormal proliferation and
dissemination of malignant cells (1). This uncontrolled growth
threatens patients’ physical and mental well-being and adversely
affects family dynamics and interpersonal relationships. According
to the World Health Organization (WHO), cancer is the second
leading cause of death worldwide after cardiovascular diseases,
causing approximately 10 million deaths annually. Projections
indicate that from 2020 to 2050, the global economic burden of
cancer will reach $25.2 trillion, equivalent to an average annual tax
burden of 0.55% of the global gross domestic product (GDP) (2). By
2050, the global incidence of cancer is projected to rise to 35.3
million new cases—a 76.6% increase—while cancer-related
mortality may reach 18.5 million, representing an 89.7% increase
(3). Despite advances in conventional treatments such as surgery,
chemotherapy, and radiotherapy, drug resistance remains a major

Abbreviations: WHO, World Health Organization; GDP, Global gross Domestic
Product; FDA, Food and Drug Administration; IDO, Indoleamine 2,3-
dioxygenase; TDO, Tryptophan 2,3-dioxygenase; DKFZ, German Cancer
Research Center; LC, Local Citations; GC, Global Citations; KMO, Kynurenine
3-monooxygenase; KYN, Kynurenine; TME, Tumor Microenvironment; NADY,
Nicotinamide Adenine Dinucleotide; AhR, Aryl hydrocarbon Receptor; IFEN-y,
Interferon-gamma; IL-2, Interleukin-2; TGF-B, Transforming Growth Factor-
beta; IL-10, Interleukin-10; NK, Natural Killer; MAPK, Mitogen-Activated
Protein Kinase; PI3K/AKT, Phosphoinositide 3-kinase/Protein Kinase B; EMT,
Epithelial-Mesenchymal Transition; PFS, Progression-Free Survival; OS, Overall
Survival; KP, Kynurenine Pathway; LUAD, Lung Adenocarcinoma; 5-HT, 5-
Hydroxytryptamine; TPHI1, Tryptophan Hydroxylase 1; HIF-1o, Hypoxia-
Inducible Factor-la;; PKM2, Pyruvate Kinase M2; AC, Adenylate Cyclase;
PKA, Protein Kinase A; TAMs, Tumor-Associated Macrophages; CSC, Cancer
Stem Cell; 5-HIAA, 5-hydroxyindoleacetic acid; GPR35, G Protein-coupled
Receptor 35; TE, Telotristat Ethyl; CPA, P-Chlorophenylalanine; SSRIs,
Selective Serotonin Reuptake Inhibitors; MAOA, Monoamine Oxidase A; I3A,
Indole-3-Aldehyde; IA, Indoleacrylic Acid; IAA, Indole-3-Acetic Acid; IS,
Indoxyl Sulfate; 3-HK, 3-Hydroxykynurenine; ICB, Immune Checkpoint
Blockade; I3P, Indole-3-pyruvic acid; KYN/Trp, Kynurenine/Tryptophan;
ADT, Arginine Deprivation Therapy.
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unresolved challenge. To overcome this, modern approaches
including targeted therapy, immunotherapy, gene therapy, stem
cell therapy, natural antioxidants, photodynamic therapy,
nanoparticles, and precision medicine are being applied to cancer
diagnosis and treatment (4-8). Among these, metabolic therapy has
attracted considerable interest for its promising therapeutic
potential (9).

Drug resistance primarily arises from tumors establishing
compensatory signaling pathways, alterations in target proteins,
changes in the tumor microenvironment, tumor heterogeneity, and
adaptation to targeted therapies. The interaction of these factors
drives the development of acquired resistance to targeted
treatments (10). To date, the U.S. Food and Drug Administration
(FDA) has approved drugs targeting over 30 distinct molecular
targets (11-13), offering new hope to patients. Advances in
technologies such as whole-genome sequencing, targeted high-
throughput sequencing, and deep sequencing have enabled the
detection of aberrant tumor genes with greater precision.
Immunotherapies—including immune checkpoint inhibitors,
CAR-T cell therapies, and cancer vaccines (14, 15) —leverage the
host immune system to selectively eliminate malignant cells while
sparing normal tissues (16). Notably, PD-1/PD-L1 antibody
therapies have shown remarkable efficacy and durable responses
across various cancers, with fewer side effects than conventional
treatments (17, 18).

Studies have demonstrated that tumor cells preferentially
metabolize glucose into lactate via glycolysis even in the presence
of oxygen, a phenomenon known as the Warburg effect. This
metabolic reprogramming provides a theoretical foundation for
tumor metabolic therapy (19). Among metabolic pathways,
tryptophan metabolism has attracted significant attention due to
its essential role in regulating inflammation, metabolism, immune
responses, and neurological functions (20). Beyond these
physiological processes, tryptophan metabolism has been
implicated in tumor progression by suppressing anti-tumor
immunity and promoting tumor cell malignancy (21). In
particular, enzymes involved in the kynurenine pathway—such as
IDO and tryptophan 2,3-dioxygenase (TDO)—have been correlated
with poor prognosis in multiple cancer types (22).

As research on tryptophan metabolism in cancer advances,
there is an increasing need to explore the current status and
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emerging trends in this field. Bibliometrics has become a powerful
and widely used tool for analyzing and evaluating scientific
literature across disciplines. As an interdisciplinary science,
bibliometrics employs mathematical and statistical methods
alongside visualization techniques to quantitatively analyze large
bodies of literature within specific research domains, thereby
revealing patterns and trends in the development of scientific
topics (23). This quantitative approach offers an objective and
intuitive assessment of past academic activities and achievements,
minimizing potential biases arising from subjective evaluation (24).
By quantifying research output, bibliometrics enables comparisons
of scholarly productivity across countries, institutions, authors, and
journals, and facilitates the identification of cutting-edge research
and publication trends (25). Although bibliometric analyses have
been widely conducted in many fields, no comprehensive
bibliometric study has yet addressed tryptophan metabolism in
cancer. Therefore, this study employs bibliometric analysis to
comprehensively examine the literature on tryptophan
metabolism in cancer from 2005 to 2024. It aims to identify the
developmental trajectory, current research landscape, and emerging
trends, while providing guidance for future research directions and
therapeutic strategies (see Figure 1).

2 Materials and methods
2.1 Data acquisition and search strategy

The Web of Science is globally recognized as a leading
authoritative database, indexing a wide range of high-quality
academic journals, conference papers, books, patents, and other
scholarly works. We conducted a literature search in the Web of
Science Core Collection for documents related to tryptophan
metabolism and cancer, utilizing the following search
strategy: Topic: ((TS=(cancer* OR tumor* OR tumour* OR
neoplas* OR malignan* OR carcinoma* OR adenocarcinoma*
OR choricarcinoma* OR leukemia* OR leukaemia* OR metastat*
OR sarcoma* OR teratoma* OR melanoma* OR lymphoma* OR
myeloma*)) NOT TS=(“benign neoplasms” OR “benign neoplasm”
OR “neoplasms, benign” OR “neoplasm, benign” OR “benign
tumor” OR “non-malignant neoplasms” OR “non-cancerous
tumor” OR “non-neoplastic lesion”)) AND TS=(“tryptophan
metabolism” OR “trp metabolism” OR “tryptophan catabolic
pathway*” OR “tryptophan degradation*” OR “tryptophan
breakdown” OR “indole metabolism” OR “kynurenine pathway”
OR “serotonin metabolism” OR “tryptophan catabolism*” OR
“tryptophan degradation pathway*” OR “tryptophan metabolic

*2

pathway*” OR “tryptophan oxidation” OR “tryptophan turnover”
OR “tryptophan biotransformation” OR “tryptophan metabolite*”
OR “tryptophan metabolism regulation” OR “tryptophan

metabolic network™).
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2.2 Inclusion and exclusion criteria

Preliminary searches revealed that the earliest publication
addressing the role of tryptophan metabolism in cancer
development dates back to 1955, marking the initial exploration
of this field. From 1955 to 2004, a total of 313 relevant publications
were retrieved, accounting for 13.3% of the overall dataset (2,352
articles). However, the annual publication output during this period
remained low, with most years recording fewer than ten articles,
and only 20 articles published in 2004. These findings suggest that,
although early research laid a foundational basis, the field was still
in its infancy and lacked sustained and systematic development. In
contrast, the period from 2005 to 2024 witnessed a significant
acceleration in research activity, characterized by a steady increase
in annual publication volume. A total of 2,039 articles were
retrieved during this stage, indicating greater academic interest
and a more robust research output.

To ensure the scientific rigor and reliability of the analysis, this
study focused on publications from August 1, 2005, to July 31, 2024.
Only English-language original research articles and reviews were
included, while unrelated or retracted publications were excluded.
After applying these criteria, 1,927 high-quality articles were
retained for analysis. All retrieved records were exported in plain
text format in multiple batches, each named as “download_xxx.txt,”
including full records and cited references. The data were then
imported into CiteSpace software for duplicate removal, resulting in
a final dataset comprising 1,927 valid articles. The entire data
retrieval and preprocessing process was completed on August 1,
2024. A detailed workflow is illustrated in Figure 2. To enhance the
comprehensiveness and transparency of this study—and to
acknowledge the contributions of early researchers—
Supplementary Table S1 provides the annual publication
distribution from 1955 to 2004, along with a brief summary of
several representative early studies.

2.3 Analysis tools

This study employed a range of visualization tools to intuitively
and systematically present and analyze bibliometric data, including
Python, CiteSpace (6.3.R1), VOSviewer (1.6.19), and R
Bibliometrix. Python was primarily used for flexible data
processing and the generation of customized visualizations, such
as annual publication trends and comparative metric charts.
CiteSpace facilitated data cleaning and comprehensive visual
analyses, including institutional collaboration networks, co-cited
references, keyword co-occurrence, and clustering. VOSviewer and
R Bibliometrix were applied to construct collaboration and co-
occurrence networks among countries, authors, and journals,
providing a clear depiction of global research collaboration
patterns and the distribution of academic influence.
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Graphical abstract illustrating the bibliometric analysis of tryptophan metabolism in cancer. Publications related to tryptophan metabolism in cancer
were retrieved from the Web of Science Core Collection (WOSCC). Visualization analyses were conducted using multiple tools, covering various
perspectives including annual publication trends, leading countries, prolific authors, influential institutions, journals, co-cited references, and

keyword co-occurrence.

To systematically evaluate the research landscape and identify
emerging trends in tryptophan metabolism and cancer, several core
bibliometric indicators were applied. The number of publications
was used to assess research activity and temporal evolution, while
citation frequency reflected academic impact. Author and
institutional performance were evaluated using the H-index, G-
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index, and M-index. Keyword co-occurrence frequency and
centrality helped identify key research hotspots and core themes.
Additionally, burst detection was conducted to uncover rapidly
emerging topics within specific timeframes. Clustering analyses of
keywords and co-cited references were also performed. The quality
and robustness of the clustering structure were assessed using
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modularity (Q) and silhouette (S) scores. A Q value greater than 0.3
indicates statistically significant clustering. An S value above 0.5
suggests reasonable cluster quality, while a value above 0.7 reflects
high reliability and efficiency.

3 Results
3.1 Analysis of publications and citations

Between 2005 and 2024, a total of 1,927 publications related to
tryptophan metabolism in cancer were identified (see Figure 3). The
field began with just 17 publications in 2005 and has since
demonstrated steady growth. Notably, research activity
accelerated significantly after 2019, reaching a peak of 196
publications in 2021. Although there was a slight decline in
output in 2022 and 2023, the overall upward trajectory remains
strong. This temporary dip may be partly attributed to the global
COVID-19 pandemic, which disrupted research activities
worldwide. Simultaneously, citation counts increased dramatically
—from zero in 2005 to 12,102 by 2024—indicating growing
academic attention and influence. Linear regression analysis

10.3389/fonc.2025.1621666

demonstrated a strong positive correlation between publication
volume and year (R* = 0.83659, Adjusted R*> = 0.82751),
suggesting a high degree of model fit and confirming the robust
upward trend. These findings highlight the increasing importance
of tryptophan metabolism in cancer research and the expanding
interest in this topic over the past two decades.

3.2 Analysis of the top producing
countries/regions

A total of 1,927 publications related to tryptophan metabolism
in cancer were contributed by researchers from 70 countries. As
shown in Table 1, the United States leads in publication output with
537 papers and 40,276 citations, and demonstrates a total link
strength of 320, highlighting its strong academic influence and
extensive research collaborations. China ranks second with 529
publications, a total link strength of 120, and 14,522 citations.
Although China’s publication count nearly matches that of the
United States, a significant gap in citation frequency suggests room
for improvement in research quality and international impact.
Germany, despite publishing only 161 papers, has garnered

Data

Tryptophan Metabolism's Role in Cancer

Source

|

Web of Science Core Collection

Data
Retrieval

Data
Include

FIGURE 2

Topic:((TS=(cancer* OR tumor* OR tumour* OR neoplas* OR
malignan* O R carci * O R d rei * O R
choricarcinoma* OR leukemia* OR leukaemia® OR metastat® OR
sarcoma® O R teratoma®* O R melanoma* O R lymphoma* O R

myeloma*)) NOT TS=("benign neoplasms" OR "benign 1 "
OR '"neoplasms, benign" O R '"neoplasm, benign" O R '"benign
tumor" OR "non-malignant neoplasms" OR '""non-cancerous tumor"
OR '"non-neoplastic lesion")) AND TS=("tryptophan metabolism"
OR "trp metabolism" OR "tryptophan catabolic pathway *" OR
"tryptophan degradation * " O R "tryptophan breakdown" O R
"indole metabolism" O R '"kynurenine pathway" O R 'serotonin
metabolism" O R '"tryptophan catabolism * " O R "tryptoph

Literature search
strategy and Time
span:2005-08-01 to

2024-07-31

degradation pathway*'" OR "tryptophan metabolic pathway*'" OR
"tryptophan oxidation" OR'"tryptophan turnover" OR "tryptophan
biotransformation'" OR "tryptopl bolite*'" OR "tryptoph
metabolism regulation' OR "tryptophan metabolic network")

2039 publications were identified

Including document types:
article and review article;
Languages: English
Excluding irrelevant and
retracted publication

1927 publications were included
(1462 article and 465 review article)

|

[ Data analysis ]

Flowchart of the literature screening process.
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Annual publication and citations on tryptophan metabolism in cancer research from 2005 to 2024.

TABLE 1 Top 10 countries/regions and institutions contributing to tryptophan metabolism research in cancer.

Total

Rank Country Publications Citations link Institutions Publications Institutions Citations
strength

. - German Cancer
Medical University

1 USA 537 40276 320 144 Research 3508
of Innsbruck
Center (DKFZ)
. . Thomas
2 China 529 14522 120 Wayne State University 135 3285

Jefferson University

L Lankenau Institute for
3 Germany 161 10810 214 Helmholtz Association 122 . 3243
Medical Research

G C
erman tancer Medical College

4 Ttaly 120 8383 130 Research 107 R 2959
of Georgia
Center (DKFZ)
5 United 119 6181 205 Ruprecht Karls 105 University of Perugi 2888
niversi O; erugia
Kingdom University Heidelberg 7 8
6 Japan 109 6121 39 University of 100 Innsbruck 2421
P Texas System Medical University
University of
7 Austria 85 4451 73 niversity o 96 University of linois 2321
California System
Catholic Universit:
8 Australia 79 4945 114 Harvard University 89 atholie nl\./er31y 2303
of Louvain
Northwest
9 France 79 5925 160 orthwestern 79 University of Padua 2108
University
Medical Universi
10 | Netherlands 75 4987 119 edical University 78 University of Sydney 1986

of Lublin

Frontiers in Oncology 120 frontiersin.org


https://doi.org/10.3389/fonc.2025.1621666
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Ma et al.

10,810 citations and achieved a total link strength of 214, reflecting
its prominent role within the European research network and its
high academic influence.

The global distribution of research efforts (see Figures 4A, B)
shows that the United States and China dominate in both
publication volume and citation frequency. In contrast, European
countries such as Germany, the United Kingdom, and France
exhibit a clear advantage in research quality and international
collaboration. Radar charts (see Figures 4C, D) further illustrate
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the comparative academic output and collaborative strengths of
leading countries. Cluster analysis (Figure 4E) reveals the formation
of several regional and international research alliances,
underscoring a pattern of strong transnational collaboration. The
United States plays a central role in the global research network,
engaging extensively with partners across Europe, Asia, and
beyond. In comparison, countries in South America, Africa, and
parts of Southeast Asia remain underrepresented, with their
research activities often relying on collaborations with major
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Global distribution of tryptophan metabolism in cancer research. (A) Global distribution of publications on tryptophan metabolism in cancer, with
colors representing varying publication volumes, and darker red indicating higher counts. (B) Global distribution of citations on tryptophan
metabolism in cancer, with colors representing varying citation frequencies, and darker red indicating higher counts. (C) Visualization map of country
publications in tryptophan metabolism and cancer. (D) Visualization map of country citations in tryptophan metabolism and cancer. (E) Geographic
clustering visualization of countries/regions. (F) Collaboration network diagram of countries/regions in tryptophan metabolism and cancer, where
nodes represent countries, node size reflects publication volume, and links indicate collaboration strength.
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contributors such as the United States and China. To further
visualize national contributions, 41 countries with at least five
publications were selected for network mapping (see Figure 4F).
The resulting distribution confirms clear regional and collaborative
patterns, highlighting both the global scope and the geographic
disparities in research on tryptophan metabolism and cancer.

3.3 Analysis of the top-producing authors

A total of 11,134 authors worldwide have contributed to 1,927
publications in the field of tryptophan metabolism and cancer. The
top ten authors, ranked by the number of publications (NP), were
further evaluated based on key bibliometric indicators, including
citation frequency, H-index, G-index, and M-index (see Table 2).
The H-index measures a researcher’s sustained impact by
quantifying the number of publications (h) that have been cited
at least h times. The G-index builds on this by giving additional
weight to highly cited papers, thus reflecting the breadth of a
scholar’s influence. The M-index, calculated as H/N (where N is
the number of years since the researcher’s first publication),
captures the pace of academic impact over time, with higher
values indicating a more rapid trajectory of influence (26).

Among the top contributors, Fuchs, Dietmar ranks first with 61
publications and holds the highest H-index (29), G-index (59), and
M-index (1.526), reflecting both prolific output and sustained
scholarly influence. Although Prendergast, George C has authored
fewer papers (25), he has received 3,628 citations—surpassing
Fuchs—and his M-index of 1.15 suggests a fast-growing academic
presence. Mittal, Sandeep, Takikawa, Osamu, and Guillemin, Gilles
J show comparable H-indices (18, 18, and 16, respectively) and G-
indices (all 22), indicating similar levels of research contribution.
However, Mittal’s M-index (1.125) points to a faster growth rate in
scholarly influence compared to Takikawa (0.9) and Guillemin
(0.889). Although Miiller, Alexander ] has the fewest publications
(19), his H-index (18) and M-index (0.9) indicate a relatively high
quality of work with steady, albeit slower, impact growth. Overall,
Fuchs, Prendergast, and Mittal stand out as key figures in the field,

10.3389/fonc.2025.1621666

each demonstrating unique patterns of academic influence (see
Figures 5A, B).

Regarding collaboration networks, Juhasz, Csaba and Mittal,
Sandeep play central roles, with total link strengths of 100 and 99,
respectively, underscoring their importance in facilitating scientific
collaboration. Co-authorship network visualizations (Figures 5C,
D) further illustrate these relationships. In Figure 5C, clusters are
color-coded by research themes, node size represents publication
volume, and line thickness indicates the strength of collaboration.
The red cluster, containing the largest number of authors,
represents a robust collaborative group, while the purple cluster
shows strong connections to other clusters, highlighting cross-
disciplinary interactions. Figure 5D adds a temporal dimension,
showing that Juhasz was most actively involved in collaborative
work between 2016 and 2018. In recent years, researchers such as
Jayaraman, Arul, Chapkin, Robert S, and Opitz, Christiane A have
emerged as active participants in evolving collaboration networks.

3.4 Analysis of the top-producing
institutions

In the visualization analysis of institutional output, influence,
and collaboration in tryptophan metabolism and cancer research,
Figures 6A, B display the top ten institutions ranked by publication
volume and citation frequency, respectively. Publication volume—a
direct measure of institutional output—shows that the Medical
University of Innsbruck leads the field with 144 publications,
indicating its high level of research activity. It is followed by
Wayne State University (135 publications) and the Helmholtz
Association (122 publications). The German Cancer Research
Center (DKFZ) ranks fourth with 107 publications, reflecting its
sustained contributions to the field (see Table 1). Figure 6B, which
highlights citation frequency as a measure of academic impact,
shows that DKFZ leads with 3,508 citations, underscoring both the
volume and influence of its research. Thomas Jefferson University
and the Lankenau Institute for Medical Research follow with 3,285
and 3,243 citations, respectively, further emphasizing their

TABLE 2 Top 10 authors contributing to tryptophan metabolism research in cancer.

Author h_index g_index m_index PY_start
1 Fuchs, Dietmar 61 3560 29 59 1.526 2006
2 Prendergast, George C 25 3628 23 25 1.15 2005
3 Mittal, Sandeep 22 631 18 22 1.125 2009
4 Takikawa, Osamu 22 1934 18 22 0.9 2005
5 Guillemin, Gilles J 22 1775 16 22 0.889 2007
6 Wang Y 22 861 11 22 0.786 2011
7 Platten, Michael 21 3178 19 21 1.056 2007
8 Saito, Kuniaki 21 785 18 21 0.947 2006
9 Juhasz, Csaba 21 635 17 21 0.895 2006
10 Muller, Alexander J 19 2762 18 19 0.9 2005
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Visualization of the top authors in tryptophan metabolism research in cancer. (A) Visualization map of H-index, G-index, and M-index for the top 10
authors by publication volume, with colors representing different impact metrics. (B) Publication volume of the top 10 authors over time. Node size
represents the number of articles, and color intensity reflects total citations. (C) Author co-citation network map in tryptophan metabolism and
cancer, with colors representing distinct collaboration groups. (D) Temporal trend graph of the author co-citation network in tryptophan metabolism
and cancer, with color intensity ranging from purple to yellow to represent the progression of years from past to present.

significant academic standing in this domain. A comparison of
Figures 6A, B reveals that academic institutions dominate both in
output and impact, likely due to their central roles in conducting
foundational and innovative research. These data provide valuable
insights into the current institutional landscape and offer direction
for future research efforts and collaborative partnerships.

Figure 6C visualizes the collaborative network among
institutions from 2005 to 2024. Each node represents a research
institution, with node size proportional to its publication volume,
and line thickness indicating the strength of collaboration. The
Medical University of Innsbruck appears as the largest node,
reflecting its dominant role in the field, followed by the
Helmholtz Association, Institut National de la Sante et de la
Recherche Médicale (Inserm), the Chinese Academy of Sciences,
and DKFZ. The purple outer ring around each node represents
betweenness centrality, which reflects an institution’s role as a
connector within the collaborative network. A total of eight
institutions have a betweenness centrality > 0.2, highlighting their
key positions in facilitating inter-institutional cooperation. Gustave
Roussy exhibits the highest betweenness centrality (0.43),
underscoring its pivotal bridging role. Both the Chinese Academy
of Sciences and the National Center for Geriatrics & Gerontology
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show values of 0.28, further indicating their strategic importance
within the global collaboration network.

3.5 Analysis of the top-producing journals

The academic impact of a journal serves as a key indicator of its
standing within the scientific community. By examining metrics
such as the H-index, G-index, and M-index, a more comprehensive
evaluation of a journal’s citation performance and scholarly value
can be obtained. In the field of tryptophan metabolism and cancer, a
total of 781 journals have contributed to the dissemination of
research, playing a critical role in advancing knowledge and
academic communication. To gain deeper insights into the
publication patterns within this field, we conducted a focused
analysis of the top ten journals by publication volume (see
Table 3). Among them, Frontiers in Immunology demonstrated
outstanding performance across multiple metrics, including
publication volume, citation frequency, H-index, G-index, and M-
index, highlighting its significant academic influence in the field of
immunology (see Figure 7A). The International Journal of
Molecular Sciences and Plos One ranked second and third in
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FIGURE 6
Visualization of the top institutions in tryptophan metabolism research in cancer. (A) Visualization map of the top 10 institutions based on publication
volume. (B) Visualization map of the top 10 institutions based on citation count. (C) Collaborative relationship map among research institutions.
Nodes represent individual institutions, with node size corresponding to publication volume. The thickness of connecting lines reflects collaboration
strength, and the purple outer ring around each node indicates betweenness centrality.

terms of publication volume, respectively. However, Plos One
recorded a substantially higher citation count. Although Frontiers
in Oncology published a comparable number of papers to
Plos Omne, its total citations remained lower, indicating a
relatively lesser impact. Notably, several journals—such as Journal
of Immunology, Cancer Research, and Journal of Medicinal
Chemistry — published fewer articles but achieved high citation
frequencies, reflecting the strong academic recognition of their
contributions. Furthermore, eight out of the ten leading journals
are classified as Q1 journals, underscoring the high visibility and
scholarly esteem that research on tryptophan metabolism and
cancer has garnered within the scientific community.
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The journal thematic clustering map (see Figure 7B) offers a
clear visualization of the thematic distribution of journals within the
field of tryptophan metabolism and cancer, revealing their
affiliations based on subject similarity. In the figure, nodes of
different colors represent distinct clusters, each corresponding to
collaborative networks centered around specific research themes.
Overall, the clusters form interconnected structures, highlighting
the interdisciplinary nature of this research area. The yellow cluster
primarily focuses on immunology, with core journals including
Frontiers in Immunology, Scientific Reports, Brain, Behavior, and
Immunity, and International Journal of Cancer. Among these,

Frontiers in Immunology emerges as the most influential node,
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TABLE 3 Top 10 journals contributing to tryptophan metabolism research in cancer.

Rank Source NP TC h_index g_index m_index IF JCR
1 Frontiers in Immunology 61 3379 30 58 2.308 5.7 Q1
2 International Journal of

X 34 656 14 25 1 4.9 Q1
Molecular Sciences
3 Plos One 30 1107 18 30 12 2.9 Q1
4 Frontiers in Oncology 30 496 13 21 1.625 35 Q2
5 Scientific Reports 29 646 15 25 1.364 3.8 Q1
6 Cancers 25 391 13 19 1.625 4.5 Q1
7 Journal of Immunology 24 1671 19 24 0.95 3.6 Q2
8 Cancer Research 18 2535 17 18 0.81 12.5 Q1
9 European Journal of
18 512 15 18 0.938 6.0 1
Medicinal Chemistry Q
10 Journal of Medicinal Chemistry 18 1223 14 18 0.778 6.8 Q1
- B
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FIGURE 7

Visualization of the top journals in tryptophan metabolism research in cancer. (A) Visualization map of H-index, G-index, and M-index for the top 10
journals by publication volume, with colors representing different impact metrics. (B) Journal thematic clustering map of tryptophan metabolism and
cancer research. Nodes represent distinct journal clusters, with colors denoting different research themes. (C) Temporal trend graph of the journal
collaboration network in tryptophan metabolism and cancer, with color intensity shifting towards yellow indicating increased collaboration in recent
years. (D) The item density map visualizes the distribution density of journals within the collaboration network, with color intensity reflecting citation
frequency and collaboration strength.
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distinguished by its high publication volume, citation frequency,
and academic impact. This highlights the central role of
immunological mechanisms—particularly immunometabolic
regulation and immunotherapy—in research on tryptophan
metabolism and cancer. The red cluster is predominantly
associated with cancer research, encompassing themes such as
cancer metabolism, proteomics, and clinical treatment strategies.
Representative journals within this cluster include Frontiers in
Oncology, Cancers, Journal of Proteome Research, and Metabolites.
The high thematic coherence and strong inter-journal connections
observed in this cluster underscore the critical role of tryptophan
metabolism in cancer initiation, progression, and therapeutic
development.

The blue cluster is primarily associated with molecular biology
and pharmacology research. Key journals in this cluster include the
European Journal of Pharmacology, Amino Acids, and Nutrients.
The presence of this cluster underscores the significance of
tryptophan metabolism not only in cancer pathophysiology but
also in areas such as molecular signaling, nutritional metabolism,
and drug development. Research within this domain typically
adopts a multidisciplinary approach, integrating biochemistry,
bioinformatics, and pharmacology, and thereby offering
innovative strategies and insights for cancer therapy. The green
cluster focuses predominantly on clinical applications, particularly
in the fields of immunology and cancer treatment. Representative
journals include Journal of Immunology and Clinical Cancer
Research. The formation of this cluster reflects the increasing
convergence of basic research and clinical translation, with
discoveries in tryptophan metabolism being progressively applied
to precision medicine and the development of personalized
therapeutic strategies. In recent years, growing attention has been
directed toward the role of immunometabolic regulation in cancer
therapy, and the existence of this cluster further substantiates this
emerging trend.

To further investigate the evolution of journals in this field, we
analyzed temporal trends to reveal changes in academic influence
and shifting research hotspots (see Figure 7C). Between 2018 and
2022, journals such as Frontiers in Immunology, Frontiers in
Pharmacology, Frontiers in Oncology, and International Journal of
Molecular Sciences have shown increased activity within the
collaboration network, indicating their rising prominence in
tryptophan metabolism and cancer research. Conversely, some
established journals, including the Journal of Immunology, despite
maintaining high academic influence, are gradually losing centrality
in the network to these emerging outlets. This transition reflects a
shift in research focus from traditional immune mechanism studies
toward more interdisciplinary directions, particularly at the
intersection of immunotherapy and cancer metabolism. The
density map (see Figure 7D) further illustrates the spatial
distribution of collaboration hotspots and centers of influence
among journals. High-density regions (red) cluster around
Frontiers in Immunology, Plos One, and International Journal of
Molecular Sciences, underscoring their pivotal roles in citation
frequency and collaborative engagement, thereby forming the
core of the field’s influence. Medium-density areas (yellow)
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include journals such as Frontiers in Oncology, Cancers, and
Journal of Immunology, which exert notable influence within
specific subdomains but have yet to integrate fully into the core
collaborative network. Journals situated in low-density regions
(blue) occupy the periphery, often representing niche or emerging
topics, thus reflecting unique research trajectories and collaboration
patterns within the broader field.

3.6 Analysis of the top-cited references

Local Citations (LC) and Global Citations (GC) are critical
metrics for assessing the scholarly impact of individual publications.
LC measures a paper’s influence within a specific research domain
—such as tryptophan metabolism in cancer—while GC captures its
overall recognition across the broader scientific community. The
LC/GC ratio (local-to-global citation ratio) provides further insight
into the paper’s relative impact: a higher ratio indicates strong
influence within a specialized field, but potentially limited reach
beyond it. As shown in Table 4, Platten M (2019, Nat Rev Drug
Discov) received 166 local citations and 897 global citations,
highlighting its substantial academic impact both within the field
and across related disciplines, such as drug development and
immunotherapy. In contrast, Pilotte L (2012, P Natl Acad Sci
USA) accumulated 192 Local Citations but only 471 Global
Citations, suggesting concentrated recognition within tryptophan
metabolism and cancer research, yet more limited dissemination in
the wider scientific landscape.

Citation frequency is a key indicator of a publication’s academic
impact, often reflecting its contribution to theoretical innovation,
methodological advancement, or technological application. Highly
cited studies frequently serve as foundational or landmark references,
guiding subsequent research in the field. As illustrated in Figure 8A,
each bubble represents a publication, with its position corresponding
to the number of citations received in a given year. The size and color
of the bubbles indicate citation magnitude—larger, red bubbles
denote high citation counts, while smaller, blue ones reflect lower
frequencies. Platten M (2019, Nat Rev Drug Discov) has shown a
significant rise in citations since 2019, reaching 223 citations by 2024,
making it one of the most highly cited publications in the dataset.
Similarly, Gao J (2018, Front Cell Infect Microbiol) experienced a
rapid increase in citations from 2020 to 2024, reflecting its growing
academic attention in later years. In contrast, earlier publications such
as Bronte V (2005, Nat Rev Immunol) maintained high citation levels
from 2010 to 2021 but have since shown a gradual decline, suggesting
a waning influence over time. Figure 8B presents a thematic clustering
map of the cited literature, identifying 16 distinct research themes.
Each colored region represents a thematic cluster, with node size
indicating citation frequency and color denoting thematic category.
Cluster #0, labeled “immune regulation,” is the largest, suggesting it is
the most extensively studied area and likely represents a central
research axis in the field. The partial overlap among clusters
underscores the interdisciplinary nature of tryptophan metabolism
research, highlighting the close integration of immunology, oncology,
metabolism, and therapeutic development.
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Figure 8C presents a timeline visualization of citation trends and
the evolution of research themes in the field. Red circles denote highly
cited publications, with their size proportional to citation frequency,
while connecting lines illustrate thematic or citation linkages between
studies. This timeline effectively captures the emergence, development,
and transition of key research foci over time. Between 2015 and 2019,
themes such as #0 immune regulation and #10 kynurenine pathway
experienced rapid growth, with associated publications receiving
substantial academic attention. Notably, since 2019, newer themes—
such as #15 major depressive disorder and #3 ulcerative colitis—have
shown a significant increase in citation frequency, reflecting a shift in
research interest toward the broader implications of tryptophan
metabolism in neuroimmunological and inflammatory disorders. Key
studies, including Platten M (2019) and Opitz CA (2011), occupy
pivotal positions on the timeline, suggesting their role as landmark
contributions that have shaped the trajectory of the field. Collectively,
the visualization underscores not only the dynamic nature of research
priorities but also the expanding interdisciplinary relevance of
tryptophan metabolism in cancer and related pathologies.

Figure 8D highlights the top 20 publications with the highest burst
strength, reflecting research that experienced a rapid and concentrated
increase in scholarly attention over specific time intervals. Red bars
indicate the duration of each citation burst, illustrating both the timing
and intensity of influence. Most citation bursts occurred between 2015
and 2020, suggesting that this timeframe marked a critical phase in the
maturation of the field. The majority of these burst-identified
publications focus on key themes such as immune regulation,
metabolic pathways, and clinical therapeutics, emphasizing their
centrality in shaping research directions. Among them, Platten M
(2019) stands out with a burst strength of 26.18, beginning in 2019 and
continuing through 2024, signifying its profound and sustained
academic impact. In contrast, Opitz CA (2011), though published
earlier, experienced its burst primarily during 2015-2016, indicating a
delayed but notable rise in recognition. Similarly, Munn DH (2013)
and Bessede A (2014) showed pronounced bursts from 2015 to 2018,
likely corresponding to inflection points in the development of
immunometabolic and therapeutic research within the field.

3.7 Analysis of the top keywords

By analyzing the keywords in the field of tryptophan metabolism
and cancer, we can delve into the research hotspots and future trends
within this domain. The heatmap in Figure 9A provides a clear
illustration of the temporal trends in keyword co-occurrence
frequency. The gradient from blue to red intuitively reflects the
transition from lower to higher frequency values. Notably, the
keywords “indoleamine 2,3-dioxygenase” and “tryptophan
catabolism” have shown a consistent upward trend, underscoring
their central role in the expanding intersection of immunology and
cancer biology. Similarly, the increasing prevalence of terms such as
“cancer” and “dendritic cells” reflects the rapid evolution of cancer
immunotherapy and dendritic cell-based research. In recent years,
keywords like “aryl-hydrocarbon receptor” and “kynurenine
pathway” have exhibited accelerated growth, suggesting heightened
interest in their roles as emerging regulators of immune response and
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References Year Strength Begin End 20152024
Opitz CA, 2011, NATURE, V478, P197, DOI 10.1038 nature10491, DOI 011 2698 2005 2016 s
Piotte L, 2012, P NATL ACAD SCT USA, V109, P2497, DOT 10.1073/paas 1113873109, DOT N2 B5T 0I5 2017
Platen M, 2012, CANCER RES, V72, 5435, DOT 10.1158/0008-5472.CAN-12-0569, DO W1 1869 2015 2017
Holmgaard RB, 2013, J EXP MED, V210, P1389, DOI 10.1084em. 20130066, DO W 1601 2005 2018 s
Muan DH, 2013, TRENDS IMMUNOL, V34, P137, DOI 10.1016. 2012.10.001, DO NB M35 2018
Bessede A, 2014, NATURE, V511, P184, DOT 10.1038 nature13323, DOT W4 1462 2005 01
Prendergast GC, 2014, CANCER IMMUNOL IMMUN, V63, P721, DO 10.1007/s00262-014-1549-4, DOI 2014 11.66 2015 2019 oo
MetzR, 2012, ONCOIMMUNOLOGY, V1, P1460, DOI 10:4161/0nci 21716, DL W12 1035 2005 2016 e
Rokrig UF, 2015, T MED CHEM, V38, P9421, DOI 10.1021/acs jmedchem. 5000326, DOL N5 1484 2006 2009 _ e
van Baren N, 2015, FRONT IMMUNOL, V6, PO, DO 10.3389/fimmu. 2015.00034, DOL WIS 172006 20 e
Platten M, 2015, FRONT IMMUNOL, VS, PO, DOT 10.3389/fimemu. 2014.00673, DOL N5 11112006 20 e
Théate I, 2015, CANCER IMMUNOL RES, V3, P161, DO 10.1158/2326-6066 CIR-14-0137, DO W15 1097 2007 202 e,
DaAmato NC, 2015, CANCER RES, V75, P4651, DOI 10.1158/0008-5472.CAN-15-2011, DOL W15 10712007 2020 . o,
Zhai LT, 2015, CLIN CANCER RES, V21, P5427, DOI 10.1158/1078-0432.CCR-15-0420, DOI N5 1322018 20 e
Beatty GL, 2017, CLIN CANCER RES, V23, P3269, DOI 10.1158/1078-0432.CCR-16-2272, DOL W17 11052008 2020
Sadik A, 2020, CELL, V182, P1252, DOI 10.10167.ce.2020.07.038, DOI 20 1179 2021 204 P
Cerveanka 1, 2017, SCIENCE, V357, PO, DOI 10.126/science.22f9794, DO 007 1128200 AR —_—
Platten M, 2019, NAT REV DRUG DISCOV, VI8, P379, DOI 10.1038/541573-019-0016-5, DOL 000 1561 2022 204 —
Sung H, 2021, CA-CANCER J CLIN, V71, P209, DOT 10.3322/caac:21660, DOL MW 143202 A4 —
TangK, 2021, T HEMATOL ONCOL, V14, P0, DOT 10.1186/513045-021-01080-8, DOL M 118 202 204 I

Visualization of the top cited references in tryptophan metabolism research in cancer. (A) Visualization map of the top 10 most cited references over
the past 20 years, illustrating the temporal variation in citation frequency. Each bubble represents a publication, with its position corresponding to
the citation count in a specific year. The size and color intensity of the bubbles reflect the citation frequency of the publication. (B) Thematic
clustering map of the cited literature, where node size reflects citation frequency and node color represents distinct research themes. (C) The top
sixteen clusters timeline distribution. Each node signifies a publication, with its size corresponding to the citation frequency in its respective year.
The node colors transition from blue (2015) to red (2023), representing the temporal progression. Lines connect publications within the same cluster
across various years, showcasing the temporal continuity and evolutionary paths of research within each cluster. (D) The top 20 references with the
highest citation burst. A red bar represents a significant increase in citations during the corresponding year.

potential therapeutic targets. In contrast, foundational terms such as
“expression” and “inhibition” have maintained relatively stable
frequency, indicating their enduring relevance across various
mechanistic studies. Additionally, the sustained rise in keywords
such as “interferon-gamma” and “regulatory T cells” highlights
their continued importance in immune-related research. The
recurring prominence of “tryptophan catabolism”, “kynurenine
pathway”, and “aryl-hydrocarbon receptor” further suggests a
strong current focus on metabolic reprogramming and
immunoregulatory mechanisms. Importantly, the heatmap reveals a
marked surge in keyword activity between 2013 and 2015, coinciding
with major advances in cancer immunology—particularly the clinical
emergence of immune checkpoint inhibitors and other
immunomodulatory therapies. These breakthroughs likely catalyzed
the intensified research interest observed during this pivotal period.
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The ridge plot presented in Figure 9B illustrates the distribution
characteristics of the top 10 most frequently co-occurring keywords
in the field. Among these, “indoleamine 2,3-dioxygenase” exhibits a
distribution range of approximately between 50 and 550, indicating
a high and relatively uniform occurrence frequency across this
interval. This pattern suggests sustained research interest in this
topic throughout the examined timeframe. Similarly, “tryptophan
catabolism” displays a broad distribution from around 0 to 500,
with particularly high frequencies between 300 and 400,
underscoring its prominent role in the literature. In contrast, the
keyword “expression” demonstrates a narrower distribution,
ranging from approximately 50 to 400. Although its span is more
limited, it still reflects consistent and substantial scholarly attention.
Meanwhile, keywords such as “aryl-hydrocarbon receptor” and
“kynurenine pathway” are primarily concentrated within the 0 to
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Visualization of the top keywords in tryptophan metabolism research in cancer. (A) Heatmap of keyword distribution over time in tryptophan
metabolism and cancer research. The redder the color, the higher the co-occurrence frequency of keywords. (B) Ridge plot depicting the
distribution patterns of the top 10 most frequently co-occurring keywords in tryptophan metabolism and cancer research. The length of each color
distribution indicates a higher frequency of occurrence within that range, signifying the sustained attention these keywords have received in the
literature. (C) Word cloud of the top 200 keywords in tryptophan metabolism and cancer research. The size of the keywords is proportional to their
co-occurrence frequency. (D) The top 20 keywords with the strongest citation bursts. A red bar represents a significant increase in citations during
the corresponding year. (E) Timeline visualization of keyword evolution based on CiteSpace. Node size reflects the research impact of keywords,
with larger nodes indicating greater influence. Colors shift from purple (earlier years) to yellow (later years), showing time progression. Lines show
connections between keywords, highlighting research topic relationships and development trends.
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50 range, suggesting that these topics were not focal points in the
early stages of research but may have gained prominence more
recently. Figure 9C lists the top 200 co-occurring keywords,
showing a positive correlation between word frequency and
occurrence rate, which reinforces the trends identified in the ridge
plot. Collectively, these findings indicate that research on
tryptophan metabolism and its associated immunological
mechanisms has emerged as a major hotspot in recent years,
reflecting the growing interest in metabolic-immunological
interplay in cancer biology.

Figure 9D highlights the top 20 keywords with the highest burst
strength in the field of tryptophan metabolism and cancer. Between
2015 and 2017, “tryptophan degradation” exhibited the strongest
citation burst (strength = 9.2), ranking first among all keywords. This
was followed by “dendritic cells” (8.49) and “gut microbiota” (8.29),
which ranked second and third, respectively. Notably, from 2022 to
2024, keywords such as “gut microbiota”, “health”, “tumor

» o«

microenvironment”, “risk”, and “survival” remained highly active,
indicating a sustained and growing interest in the interplay between
tryptophan metabolism, immune regulation, and the tumor
microenvironment. Additionally, keywords like “inhibitors” and
“IDO1” experienced marked increases in burst strength between
2019 and 2022, a trend likely driven by the rapid advancements in
tumor immunotherapy. Although other keywords—such as
“plasmacytoid dendritic cells”, “prostate cancer”, “in vivo”,

» o«

immune activation’,

» . .

rational design”, “in vitro”, and “phase I"'—
exhibited comparatively lower burst intensities, they still
demonstrated notable research activity during different time
periods. These keywords collectively span a wide range of research
topics, from basic biological mechanisms to clinical translational
applications, reflecting the depth and multidimensional nature of the
field. Figure 9E depicts the temporal evolution of keyword clusters,
categorizing research themes into 13 groups. Each node represents a
specific theme, with node size corresponding to its frequency in a
given year. The color gradient—from purple (2011) to yellow (2024)
—visually traces the chronological development of these themes.
Among them, the “kynurenine pathway” cluster stands out as a
dominant and sustained hotspot, as indicated by the large node size
and continued presence over time. The connecting lines between
nodes illustrate co-occurrence frequencies, providing insights into the
interrelationships among various research domains and emphasizing
the integrative, interdisciplinary nature of this evolving field.

4 Discussion
4.1 General information

In the field of tryptophan metabolism and cancer research, a
total of 1,927 papers have been published across 781 academic
journals by 11,134 researchers from 70 countries worldwide.
Overall, both the number of publications and citation frequency
have shown a steady upward trend over the years. However, this
growth has decelerated in the past two years, likely due to the global
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disruptions caused by the COVID-19 pandemic. The United States
leads the field in terms of research output, consistently maintaining
a dominant position. Among individual researchers, Dietmar Fuchs
ranks first in publication count, while the Medical University of
Innsbruck stands out for its sustained productivity in this domain.
The German Cancer Research Center has garnered significant
attention due to the high citation frequency of its publications.
Frontiers in Immunology has emerged as a key publication platform
in this domain. Notably, the review by Platten et al. (2019),
published in Nature Reviews Drug Discovery, is among the most
highly cited works in the field. This seminal paper systematically
assessed the therapeutic potential of key enzymes—IDO1, IDO2,
TDO, and KMO (Kynurenine 3-monooxygenase)—highlighting
their roles in immune modulation and tumor immune evasion.
By offering a comprehensive framework for understanding the
immunological functions of tryptophan metabolism, the study has
laid the groundwork for translational advances in cancer therapy.

Co-citation analyses indicate that current research on
tryptophan metabolism primarily focuses on several major solid
tumors, including glioblastoma, breast cancer, lung cancer,
colorectal cancer, and melanoma. In glioblastoma, studies have
largely concentrated on IDOI1-mediated immunosuppression and
its pivotal role in resistance to immune checkpoint inhibitors.
Research on breast and lung cancers has highlighted the
kynurenine-aryl hydrocarbon receptor (AhR) axis and serotonin
signaling as critical pathways contributing to tumor progression
and immune evasion. In colorectal cancer, increasing attention has
been paid to gut microbiota-derived indole metabolites and their
regulatory roles in host-tumor interactions. Notably, melanoma has
emerged as a key model for integrating tryptophan metabolism with
cancer immunotherapy, particularly in clinical trials combining
IDO1 inhibitors with PD-1/PD-L1 blockade. Collectively, these
findings underscore tryptophan metabolism as a highly conserved
and targetable pathway across diverse tumor types, offering a solid
theoretical foundation for the development of both broad-spectrum
and tumor-specific therapeutic strategies.

To date, the majority of studies have relied on in vitro cancer
cell lines and in vivo murine models, primarily utilizing syngeneic
or xenograft systems. Bibliometric analysis reveals that “in vitro”
and “in vivo” were prominent burst keywords during 2015-2017,
indicating a research focus heavily oriented toward basic
experimental studies during this period. In recent years, however,
there has been a marked shift toward clinical relevance, with
increasing use of patient-derived materials such as tumor
biopsies, plasma samples, and immune profiling data. The
emergence of “inhibitors” as a burst keyword between 2020 and
2022 reflects a transition from mechanistic investigation to
therapeutic intervention and translational application. Further
keyword burst analysis reveals evolving frontiers in this field.
High-frequency terms such as “gut microbiota,” “tumor

» o«

microenvironment,” “aryl hydrocarbon receptor,” and “cancer
immunotherapy” suggest a paradigmatic shift from single-
pathway metabolic studies toward integrated perspectives that

encompass metabolic-immune-microbial interactions. Future
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research on tryptophan metabolism is expected to place increasing
emphasis on multidimensional mechanistic integration, clinical

translation, and the advancement of precision oncology.

4.2 Mechanisms of tryptophan metabolism
in cancer

Tryptophan is an essential amino acid that cannot be
synthesized by the human body and must be obtained through
dietary intake. Within the human body, tryptophan plays a crucial
role in various biological processes, including protein synthesis,
neurotransmitter production, and maintaining the normal function
of the immune system (37). In recent years, the intricate metabolic
pathways and regulatory mechanisms of tryptophan have garnered
increasing attention in cancer research. Studies have shown that
tryptophan metabolism is closely associated with tumorigenesis and
treatment response, and it also serves as a key regulator in the
immune evasion process. It modulates malignant phenotypes and
contributes to the reprogramming of the tumor immune
microenvironment (38). Disruptions in tryptophan metabolism
have emerged as critical drivers of cancer progression, through
mechanisms involving immune suppression, enhanced cell
proliferation, metastasis, and metabolic reprogramming (39). The
major metabolic pathways of tryptophan include the kynurenine
(KYN) pathway, the serotonin (5-HT) pathway, and the gut
microbiota metabolic pathway (40). Among these, the kynurenine
pathway accounts for approximately 95% of total tryptophan
metabolism, followed by the serotonin pathway (1-2%) and the
microbial metabolic pathway (4-6%). Figure 10 illustrates the
mechanisms of tryptophan metabolism in cancer.

4.2.1 Kynurenine pathway

The kynurenine (KYN) pathway, a major route of tryptophan
catabolism, plays a pivotal role in tumor immune evasion (41).
Bibliometric analysis shows a rising frequency of keywords such as
“IDO1,” “AhR,” “inhibitors,” and “kynurenine pathway” in recent
years, reflecting sustained interest in this metabolic axis and its
translational potential in oncology. In the tumor microenvironment
(TME), expression of key enzymes—IDO1 and TDO—is markedly
elevated (42). These enzymes convert tryptophan into KYN and
downstream metabolites, including quinolinic acid and
nicotinamide adenine dinucleotide (NAD), leading to local
tryptophan depletion and KYN accumulation (30). Elevated KYN
activates the aryl hydrocarbon receptor (AhR), triggering potent
immunosuppressive effects. Mechanistically, KYN-AhR signaling
suppresses the proliferation and cytotoxicity of effector T cells
(CD4", CD8", and CD25") and inhibits the secretion of pro-
inflammatory cytokines such as interferon-gamma (IFN-y) and
interleukin-2 (IL-2) (43). At the same time, it promotes the
differentiation of naive CD4" T cells into regulatory T cells
(Tregs), increasing the release of immunosuppressive cytokines
including transforming growth factor-beta (TGF-B) and
interleukin-10 (IL-10) (44). KYN also impairs the activation and
receptor expression of natural killer (NK) cells, reducing their
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antitumor activity. Beyond immunosuppression, KYN and its
metabolites activate oncogenic signaling pathways such as MAPK
and PI3K/AKT, thereby promoting tumor cell proliferation,
survival, epithelial-mesenchymal transition (EMT), and
metastatic potential (45).

Given its central role in these processes, IDOI, the rate-limiting
enzyme in tryptophan degradation, has emerged as a key
therapeutic target in cancer immunotherapy. Among the ten most
co-cited references, eight highlight IDO’s role in immune evasion—
particularly in cancer—and emphasize the therapeutic promise of
IDO inhibitors. The remaining two focus on the role of gut
microbiota in modulating immunity and intestinal barrier
function via tryptophan metabolism, and on the kynurenine
pathway’s relevance as a biomarker and potential target in
neuropsychiatric and inflammatory disorders. Collectively, these
studies underscore the prominence of “IDO” as a frequently co-
occurring keyword, reinforcing its importance in tumor
immunology. Preclinical studies have shown that IDO1 inhibitors
such as epacadostat can enhance the antitumor efficacy of PD-1
blockade, fueling enthusiasm for targeting this pathway. This
enthusiasm is mirrored in bibliometric data, where “IDO”
consistently ranks among the top co-occurring terms. However,
clinical development has faced significant setbacks. In 2018, the
phase III ECHO-301/KEYNOTE-252 trial revealed that combining
epacadostat with pembrolizumab failed to improve progression-free
survival (PFS) or overall survival (OS) in advanced melanoma
patients, raising considerable concern. Similarly, the combination
of navoximod with atezolizumab did not achieve its primary efficacy
endpoints. These failures have been attributed to issues such as
suboptimal dosing, inadequate suppression of intratumoral KYN
levels, and potential paradoxical activation of AhR by certain
inhibitors, highlighting the complexity of this pathway and the
need for deeper mechanistic insights. Consequently, several
companies have discontinued related drug development programs
(46-48).

Despite these challenges, bibliometric trends indicate a
continued—albeit slower—growth in publications, suggesting
ongoing interest and a shift in research direction. One emerging
focus is the development of predictive biomarkers; for instance, the
KYN/Trp ratio is being investigated as a surrogate marker for IDO1
or TDO activity to aid in therapeutic response assessment and
patient stratification (49, 50). Another priority is identifying
compensatory mechanisms and alternative targets. For example,
TDO?2 is highly expressed in lung adenocarcinoma, and its
inhibition has been shown to downregulate PD-L1 and improve
immune responsiveness (51). Kynureninase, an enzyme that
degrades KYN and limits AhR activation, has also shown
therapeutic potential (52). In parallel, AhR antagonists such as
BAY-218 are under investigation as alternatives to IDO1 blockade
due to their ability to prevent Treg induction and checkpoint
molecule expression (53). Dual inhibitors like RG70099 and
CMGO17, which simultaneously target IDO1 and TDO?2, have
demonstrated the ability to reduce systemic KYN levels, offering a
strategy to overcome the limitations of monotherapies (54, 55).
Synthetic biology approaches are also being explored to integrate
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Mechanism illustration of tryptophan metabolism in cancer. Tryptophan is an essential amino acid that must be obtained through dietary intake. Its
metabolism primarily occurs via three pathways: the kynurenine (KYN) pathway (approximately 95%), the serotonin (5-HT) pathway (about 1-2%),
and the gut microbiota metabolic pathway (around 4—-6%). These pathways play important roles in tumorigenesis, immune regulation, and cancer

progression.

IDO1 inhibition with T cell engineering, aiming to enhance
antitumor immunity (56). Moreover, noncanonical regulatory
mechanisms have attracted attention—for instance, the USP14
inhibitor TU1 has been reported to downregulate IDO1 expression
and restore T cell-mediated antitumor responses in colorectal
cancer models (57).

4.2.2 5-HT pathways

The 5-hydroxytryptamine (5-HT) metabolic pathway has
recently emerged as a crucial regulator in tumor biology,
particularly through its involvement in remodeling the tumor
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microenvironment (TME), mediating immune suppression, and
driving metabolic reprogramming. Bibliometric co-occurrence
analysis highlights a high frequency of keywords such as “tumor
microenvironment,” “immune regulation,” “dendritic cells,” and
“metabolic reprogramming,” underscoring the close association
between the 5-HT pathway and these cutting-edge research areas.
Tumor cells metabolize tryptophan into 5-HT via the enzyme
tryptophan hydroxylase 1 (TPH1) (58). Subsequently, 5-HT
activates specific receptors, including 5-HT receptor 2B (HTR2B)
and 5-HT receptor 7 (HTR7), which initiate signaling cascades that
promote metabolic reprogramming and suppress immune
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responses (59, 60). For instance, 5-HT signaling through 5-HTR2A/
C receptors activates Jakl, leading to phosphorylation of STAT3
(61). This event upregulates hypoxia-inducible factor-1o (HIF-1ot)
and pyruvate kinase M2 (PKM2), thereby enhancing glycolysis and
glucose uptake to support rapid tumor proliferation. Concurrently,
5-HT stimulates adenylate cyclase (AC), elevating intracellular
cAMP levels, which activate protein kinase A (PKA) and promote
phosphorylation of CREB. This pathway improves mitochondrial
function, enabling tumor cells to survive under hypoxic and
nutrient-deprived conditions (62). By reducing lactate
accumulation and tumor acidosis, this cascade also restricts
immune cell infiltration. Furthermore, 5-HT activates the PI3K/
Akt/mTOR signaling pathway, which further facilitates metabolic
reprogramming and immune evasion in the tumor context (63).

Beyond its direct role in metabolic regulation, 5-HT also
modulates the tumor immune microenvironment, consistent with
bibliometric analyses that highlight “immune regulation” and
“dendritic cells” as key research focuses. It promotes the
polarization of tumor-associated macrophages (TAMs) toward the
M2 phenotype. These M2-type TAMs secrete immunosuppressive
cytokines, such as IL-10 and TGF-f, which inhibit the activity of
effector T cells and NK cells, thereby facilitating tumor immune
evasion (64-66). The immunosuppressive milieu established by M2
TAMs further supports tumor growth and metastasis. In colorectal
cancer models, knockout of TPH2 significantly suppresses tumor
growth, suggesting that TPH2-positive neurons in the gut promote
cancer stem cell (CSC) proliferation through 5-HT secretion (67).
Moreover, 5-HT stabilizes 3-catenin and stimulates CSC expansion
by activating the Wnt/B-catenin signaling pathway, thereby
driving tumor progression and metastasis. Its metabolite, 5-
hydroxyindoleacetic acid (5-HIAA), enhances neutrophil migration
and inflammatory responses via activation of the G protein-coupled
receptor 35 (GPR35), which further contributes to immune evasion
(68). Additionally, 5-HT functions in an autocrine manner through
the HTR2B receptor to increase aerobic glycolysis in tumor cells
under metabolic stress, supplying essential substrates for tumor
growth (69). This mechanism reinforces the concept of “metabolic
reprogramming,” as identified in keyword cluster analyses.

Despite the role of 5-HT metabolites in promoting tumor
immune evasion, this pathway’s activity can be effectively
modulated through pharmacological interventions. TPHI1
inhibitors, such as telotristat ethyl (TE), have received FDA
approval for treating carcinoid syndrome and exhibit potent
inhibition of 5-HT synthesis (70). Preclinical studies have
demonstrated that TE suppresses tumor growth across various
cancer types and enhances the antitumor efficacy of immune
checkpoint inhibitors. Other TPH inhibitors, including LP-
533401 and p-chlorophenylalanine (CPA), have shown antitumor
activity in breast cancer and cholangiocarcinoma models (71, 72).
These findings correspond with bibliometric data that frequently
highlight keywords such as “immune checkpoint” and “inhibitor,”
underscoring the translational potential of targeting the 5-HT
pathway. Beyond TPH1 inhibition, alternative strategies targeting
5-HT signaling have garnered increasing attention. Selective
serotonin reuptake inhibitors (SSRIs), such as fluoxetine and
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sertraline, have demonstrated antitumor effects in models of
breast cancer, colorectal cancer, hepatocellular carcinoma, and
glioblastoma (73-76). Their mechanisms of action likely involve
induction of apoptosis, inhibition of cell proliferation, and
activation of the p53 signaling pathway. Furthermore, both
agonists and antagonists of 5-HT receptors show promise in
cancer therapy. For example, tropisetron and palonosetron, two
5-HT3 receptor antagonists commonly used to alleviate
chemotherapy-induced side effects, have also been found to
inhibit the growth and metastasis of colorectal and lung cancers
(77). Monoamine oxidase A (MAOA), which is highly expressed in
prostate cancer and associated with increased tumor aggressiveness
and poor prognosis, represents another therapeutic target. MAOA
inhibitors such as clorgyline and phenelzine have demonstrated the
ability to slow tumor progression in prostate cancer models and
may restore sensitivity to enzalutamide (78, 79). Early clinical
evidence further suggests that phenelzine may benefit patients
with biochemically recurrent castration-sensitive prostate cancer,
and its combination with docetaxel may enhance antitumor
efficacy (80).

4.2.3 Indole pathway
Keyword burst analysis highlights a recent surge in terms such

» o«

as “gut microbiota,” “immune checkpoint blockade,” and
“metabolic reprogramming” between 2022 and 2024, reflecting
the expanding use of multi-omics technologies in tryptophan
metabolism research. Single-cell transcriptomics, metabolomics,
and microbiome sequencing are increasingly deployed to dissect
how tryptophan-derived metabolites modulate immune dynamics
and shape the TME (81). A landmark study by Gao et al. (2018)
defined a mechanistic framework linking microbial tryptophan
metabolism to immune regulation and epithelial integrity, laying
the foundation for the “microbiota-tryptophan-immune axis” (82).
Indole derivatives generated by gut microbes—e.g., indole-3-
aldehyde (I3A), indole acrylic acid (IA), indole-3-acetic acid
(IAA), and indoxyl sulfate (IS)—activate the aryl hydrocarbon
receptor (AhR), thereby orchestrating immune cell behavior and
TME remodeling (83). Certain metabolites, particularly those
linked to indole-3-pyruvate (I3P), drive M2-like polarization of
tumor-associated macrophages (TAMs) through AhR signaling,
fostering immune suppression and tumor growth (84). Others
inhibit indoleamine 2,3-dioxygenase 1 (IDO1), reducing
kynurenine (KYN) levels and partially reversing immune evasion
(85). Downstream products such as 3-hydroxykynurenine (3-HK)
suppress tryptophan hydroxylase 1 (TPH1), lowering serotonin (5-
HT) synthesis, which exerts dual immunoregulatory effects (86).
11411, an L-amino acid oxidase, metabolizes tryptophan into
I3P and its derivatives. Its elevated expression in immune
checkpoint blockade (ICB)-resistant tumors suggests a key role in
immunosuppression via AhR activation and positions IL4Il as a
potential therapeutic target (87, 88). This mechanistic insight mirrors
bibliometric trends highlighting increased interest in metabolic
reprogramming and immune escape. Microbial indole metabolites
also show strain-specific immunological consequences. Bacteroides
fragilis-derived I3A promotes barrier integrity and immune
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homeostasis via AhR activation (89), whereas Porphyromonas
gingivalis-derived IAA drives immune tolerance and invasive tumor
phenotypes (90). These metabolites not only influence local immunity
but also reprogram the TME and affect tumor evolution. Synthetic
biology provides emerging tools to engineer microbial pathways and
therapeutically manipulate tryptophan metabolism (91). Engineered
bacteria can be programmed to colonize tumors and deliver
immunomodulatory payloads, including cytokines, cytotoxins, or
RNA therapeutics. Incorporation of gene circuits—featuring suicide
switches, quorum sensing, and logic gates—enhances the safety and
precision of these approaches, addressing limitations of conventional
therapies (92). Bibliometric trends reflect increasing convergence
between microbiome engineering and immunometabolism.
Preclinical models show that combining a low-tryptophan diet with
IDO1 inhibition produces synergistic anti-tumor effects by limiting Trp
availability and suppressing KYN-driven immune evasion. However,
microbial compensation via alternative Trp pathways necessitates
balancing dietary interventions with microbiome stability (93).
Biomarkers like the plasma KYN/Trp ratio have been associated with
immunotherapy outcomes, while microbial-derived indoles are being
explored as prognostic indicators (49).

4.3 Comparative analysis of tryptophan
metabolism and other cancer-related
metabolic pathways

In recent years, cancer metabolism research has advanced
significantly across multiple metabolic pathways. The
development of multi-omics metabolomic technologies has
greatly improved our ability to elucidate complex interactions
among these pathways, facilitating systematic comparative
analyses and the development of precise therapeutic strategies.
Among these, the metabolic pathways of glutamine, arginine,
glucose, and tryptophan have garnered sustained attention.
Although no systematic bibliometric analysis has specifically
targeted glutamine metabolism in cancer, some studies have
explored its association with diabetes. Between 2001 and 2022, a
total of 945 relevant publications were identified, showing a steady
growth in output since 2007 and reaching a peak around 2017 (94).
Arginine metabolism demonstrates significant potential in tumor
immunoregulation, particularly through ASS1 downregulation-
mediated arginine deprivation therapy (ADT) and its impact on
T cell function as well as the expansion of MDSCs and Tregs. These
mechanisms have been observed across various cancers, including
pancreatic, liver, small-cell lung, and colorectal carcinomas (95).
However, systematic bibliometric analyses on this metabolic
pathway remain limited. Glucose metabolism, due to its central
role in energy metabolic reprogramming, was among the earliest
focal points in cancer metabolism research. Taking breast cancer as
an example, 957 related publications were identified between 2004
and 2024. The number of publications has risen markedly since
2015, nearly tripling compared to 2010, and peaked in 2022 with
over 100 articles, reflecting sustained and active research interest in
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this field (96). Bibliometric research on tryptophan metabolism is
comparatively abundant, with 1,927 relevant publications included
from 2005 to 2024. The overall trend demonstrates steady growth,
with a pronounced acceleration between 2019 and 2021,
culminating in an annual peak of 196 publications in 2021.
Although its period of heightened activity began slightly later
than that of glutamine metabolism, the peak publication volume
notably surpasses those of glutamine and glucose metabolism,
reflecting a rapid increase in research interest within this field in
recent years.

4.4 Limitations

This study presents the first bibliometric analysis that
systematically investigates the global research landscape on
tryptophan metabolism in cancer from 2005 to 2024. By leveraging
multidimensional visualization tools, including CiteSpace, VOSviewer,
Python, and R Bibliometrix, this study provides a comprehensive
overview of research trends, key contributors, and emerging topics,
offering valuable insights into the evolution of this field. Despite its
significant academic contributions, this study has certain limitations.
First, the dataset is exclusively sourced from the Web of Science Core
Collection and only includes English-language publications. This
restriction may lead to the exclusion of relevant studies published in
other languages, potentially limiting the comprehensiveness of global
research insights. Second, discrepancies in algorithmic approaches and
metric calculations among different visualization tools may introduce
variations in analytical results. Future studies should consider
integrating data from multiple databases, incorporating multilingual
literature, and adopting diverse analytical methodologies to enhance
the robustness and comprehensiveness of bibliometric assessments.

5 Conclusions

This study systematically analyzed the research progress on
tryptophan metabolism in cancer from 2005 to 2024 using
bibliometric methods, highlighting the rapid expansion and
growing importance of this research field. Our analysis confirms
that tryptophan metabolism—particularly via the kynurenine
pathway—plays a pivotal role in tumor progression, immune
suppression, and therapeutic resistance. Despite significant
advances, several knowledge gaps remain. First, most current
studies are preclinical, and the translation of findings into clinical
applications remains limited. The precise molecular mechanisms by
which different branches of tryptophan metabolism—kynurenine,
serotonin, and microbial indole pathways—interact with immune
cells in the tumor microenvironment require further elucidation.
Second, there is a lack of validated biomarkers for predicting
treatment response or guiding patient stratification, especially in
the context of immune checkpoint blockade. Third, the therapeutic
potential of targeting multiple metabolic pathways simultaneously
has yet to be fully explored.
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Future research should prioritize translational studies that
bridge basic mechanistic findings with clinical outcomes,
including the validation of plasma or tissue-based biomarkers
such as the KYN/Trp ratio or microbiota-derived metabolites.
Additionally, therapeutic strategies that combine metabolic
enzyme inhibitors (e.g., IDO1/TDO, IL4I1) with immunotherapy
warrant deeper investigation, particularly in resistant tumors.
Integrative multi-omics approaches and systems biology
tools will be essential for mapping the complex network of
tryptophan metabolism and its crosstalk with other oncogenic
pathways. Moreover, synthetic biology and engineered microbial
therapeutics offer promising platforms for modulating tryptophan
metabolism in a tumor-specific manner. International and
interdisciplinary collaborations will be crucial in developing
precise, multi-targeted interventions aimed at overcoming tumor
immune escape and improving patient outcomes.
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Integrated multiomics analysis
identifies PHLDA1+ fibroblasts as
prognostic biomarkers and
mediators of biological functions
in pancreatic cancer

Rui Wang™*, Guan-Hua Qin**, Yifei Jiang®, Fu-Xiang Chen??,
Zi-Han Wang'?, Lin-Ling Ju®, Lin Chen®, Da Fu®, En-Yu Liu™,
Su-Qing Zhang** and Wei-Hua Cai™**

‘Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong,
Jiangsu, China, ?Medical School of Nantong University, Nantong, Jiangsu, China, *Department of
Hepatobiliary and Pancreatic Surgery, Affiliated Tumor Hospital of Nantong University, Nantong,
Jiangsu, China, “Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University
School of Medicine, Shanghai, China, *°Nantong Institute of Liver Disease, Affiliated Nantong Hospital
3 of Nantong University, Nantong, Jiangsu, China, °Department of General Surgery, Ruijin Hospital,
Shanghai Jiaotong University School of Medicine, Shanghai, China, "Department of General Surgery,
Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China

Background: Pancreatic cancer (PC) is marked by extensive heterogeneity,
posing significant challenges to effective treatment. The tumor
microenvironment (TME), particularly cancer-associated fibroblasts (CAFs),
plays a critical role in driving PC progression. However, the prognostic and
functional contributions of distinct CAF subtypes remain inadequately
understood. Here, we introduce a novel 7-gene risk model that not only
robustly stratifies PC patients but also unveils the unique role of PHLDAL as a
key mediator in tumor-stroma crosstalk.

Methods: By integrating single-cell RNA sequencing (scRNA-seq), spatial
transcriptomics, and bulk RNA sequencing data, we comprehensively
characterized the heterogeneity of CAFs in PC. We identified five CAF subtypes
and focused on matrix CAFs (mCAFs), which were strongly associated with poor
prognosis. A 7-gene mCAF-associated risk model was constructed using
advanced machine learning algorithms, and the biological significance of
PHLDAL was validated through co-culture experiments and pan-cancer analyses.

Results: Our multiomics analysis revealed that the novel 7-gene model
(comprising USP36, KLF5, MT2A, KDM6B, PHLDAL, REL, and DDIT4) accurately
predicts patient survival, immunotherapy response, and TME status. Notably,
PHLDA1 was uniquely overexpressed in CAFs and correlated with the activation
of key protumorigenic pathways, including EMT, KRAS, and TGF-, underscoring
its central role in modulating the crosstalk between CAFs and malignant ductal
cells. Pan-cancer analysis further supported PHLDALl's prognostic and
immunomodulatory significance across multiple tumor types.
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Conclusion: Our study presents a novel 7-gene prognostic model that
significantly enhances risk stratification in PC and identifies PHLDA1+ CAFs as
promising prognostic biomarkers and therapeutic targets. These findings provide
new insights into the TME of PC and open avenues for personalized
treatment strategies.

pancreatic cancer, PHLDA1, prognostic biomarker, tumor microenvironment (TME),
spatial transcriptomics

Background

Pancreatic cancer (PC) is an aggressive neoplasm of the
digestive system and may be expected to emerge as the major
frequent cause of cancer-related fatality by 2030 (1). Despite the
incremental progress in diagnostic modalities and therapeutic
strategies, the overall survival (OS) rate for PC continues
strikingly low, at less than 10% (2). This grim prognosis is
attributed to the fact that over 80% patients preclude the
possibility of curative surgery and increases the risk of tumor
recurrence (3). For patients with unresectable PC, chemotherapy
regimens based on fluorouracil or gemcitabine, has shown limited
efficacy, with survival extension not exceeding 12 months (4-6).
Therefore, to improve clinical outcomes, there is an imperative need
to elucidate the intricate biological underpinnings of pancreatic
cancer cells and their associated cellular milieu comprehensively.

The tumor microenvironment (TME) has recently assumed a
central focus on oncological research and drug development,
encompassing a diverse array of cellular and noncellular elements,
comprising immune cells, cancer-associated fibroblasts (CAFs) or
cytokines (7-9). The intricate interplay within the TME is pivotal in
modulating malignancy progression (10). CAFs, a predominant cell
type in the stromal constituents, is closely associated with invasion,
metastasis, or poor prognosis in a variety of malignant tumors (11,
12). Single-cell analyses have revealed distinct CAF subtypes, each
characterized by unique genetic signatures or functional attributes.
The heterogeneity of fibroblasts has been investigated across various
cancers, including colorectal (13, 14), chordoma (15), breast (16,
17), and head and neck cancer (18), among others. The variability in
CAF types and functions across different tumor types highlights the
complexity of their functional role within the TME, indicating a
need for further investigation into their multifaceted contributions.
Given the marked heterogeneity within the CAF population, we
hypothesize that distinct CAF subtypes exert unique influences on
pancreatic cancer progression. In particular, we postulate that a
specific subset characterized by elevated PHLDA1 expression plays
a pivotal role in mediating the crosstalk between malignant ductal
cells and the tumor microenvironment. We propose that PHLDA1+
CAFs contribute to tumor growth and immune modulation by
activating protumorigenic signaling pathways—such as PI3K/AKkt,
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TGF-f, and KRAS—which, in turn, may impact patient prognosis
and therapeutic response. This hypothesis underpins our
investigation into the prognostic and functional significance of
PHLDAI1+ CAFs in pancreatic cancer.

In recent years, machine learning (ML) approaches have
become indispensable for extracting robust prognostic and
biological insights from high-dimensional cancer datasets (19).
Supervised methods—such as Lasso-Cox regression, Random
Forests, and Support Vector Machines—have been widely applied
to bulk and single-cell transcriptomic profiles to derive multi-gene
signatures that accurately stratify patients by survival risk and
therapeutic response. Unsupervised algorithms, including
consensus clustering and non-negative matrix factorization, have
facilitated the identification of novel TME cellular subtypes by
grouping cells with shared expression patterns, thereby revealing
heterogeneity that is otherwise obscured in bulk analyses (20). More
recently, deep learning frameworks have been integrated with
spatial transcriptomics to infer spatially resolved cell-cell
interactions, enabling the construction of predictive models that
link the spatial distribution of immune and stromal populations to
clinical outcomes (21). In pancreatic cancer and other malignancies,
such integrative ML pipelines have successfully uncovered
prognostic signatures within CAFs, predicted immunotherapy
responders based on TME composition, and highlighted key
signaling pathways driving tumor-stroma crosstalk. By leveraging
these advanced algorithms, our study not only constructs a robust
7-gene risk model but also situates PHLDA1+ CAFs within a
framework of ML-driven TME analysis, underlining their
relevance for precision prognostication and therapeutic targeting.

ScRNA-seq technology has enabled the characterization of
tumor cell heterogeneity with single-cell resolution, thereby laying
a more robust foundation for the comprehensive elucidation of
tumor pathogenesis, therapeutic strategies, and prognostic
outcomes (22, 23). Spatial transcriptomics (ST) methodologies
facilitate the acquisition of whole-transcriptome data within tissue
sections, concurrently preserving the spatial context of cellular
localization (24).

In this research, multi-omics data were used to elucidate the
contributions of CAFs in the malignant progression from a
multidimensional perspective. Furthermore, we sought to
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investigate the influence of CAFs on the prognosis of patients with
PC and their possible predictive value for the response to
immunotherapy. Our research contributes to clarifying the
biological roles of CAFs in the development of PC and offers
guidance for creating innovative treatment approaches.

Methods
Data collection

All data were obtained from GEO database (https://
www.ncbi.nlm.nih.gov/geo/) and Xena database (https://
xena.ucsc.edu/). ScCRNA data consisted of GSE154778,
GSE155698, and GSE231535 datasets, comprising 38 samples of
primary pancreatic cancer and control tissues (25-27). Spatial
transcriptomic data were derived from the GSE235315 dataset,
used for deconvolution of single-cell data to observe cell type
distribution (28). The bulk datasets were divided into three parts:
1. The dataset for training the prognostic model was sourced from
the TCGA-PAAD cohort, including 176 pancreatic cancer patients
with survival and clinical information. 2. The datasets for validating
the prognostic model were obtained from the GSE28735,
GSE57495, and GSE62452 datasets, all containing survival
information for pancreatic cancer patients (29-31). 3. The dataset
for expression analysis was created by batch-correcting and
merging the TCGA-PAAD cohort with the GTEX pancreatic
cohort to increase the number of control samples, totaling 176
pancreatic cancer tissues and 167 control pancreatic tissues.

Data processing

For single-cell data, analyses were conducted using Seurat 4.2.2.
Data were normalized for dimensionality reduction and clustering.
The Harmony algorithm was employed to correct batch effects
across datasets and samples. Cell annotation was performed using
SingleR and existing methods. The percentage of cells was displayed
using the “ggalluvial” software package after identifying marker
genes for cell types.

For spatial transcriptomic data, the “cell2location” package was
installed in a Python 3.9 environment for analysis. The “scanpy”
package was used to import spatial transcriptomic data, filtering out
low-quality cells after removing mitochondrial genes. A negative
binomial regression model was used to train a feature matrix from
single-cell data, achieving optimal results with max_epochs set to
250. Shared genes between single-cell and spatial data were
identified as reference signatures for deconvolution analysis,
predicting cell abundance. Considering the availability of data and
code, we supplemented the analyzed relevant code with Seurat
objects to the supplemental notebook.

For bulk transcriptomic data, the “sva” package facilitated batch
correction and merging of TCGA and GTEX data. The data were
then analyzed for different expression and survival.
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Identification of CAF subtypes

To define and annotate cancer-associated fibroblast (CAF)
subtypes, we first performed dimensionality reduction and
unsupervised clustering within the CAF across all three scRNA-
seq cohorts (GSE154778, GSE155698, GSE231535). Clustering was
conducted in Seurat v4.2.2 using principal component analysis
(PCA) followed by the Louvain algorithm (resolution = 0.6).
Marker genes for each cluster were identified with FindMarkers
(log, fold change > 0.25, adjusted P < 0.05). We required that each
putative CAF subtype exhibit at least five independently validated
“signature” genes (e.g., FAP, POSTN, COL1A1 for matrix CAFs
(mCAFs); CXCL1, IL6, CXCL12 for iCAFs) with significant
overexpression relative to other fibroblast clusters.

To assess consistency across datasets, we reclustered CAFs
independently in each cohort under identical parameters
(Harmony for batch correction, followed by Louvain clustering).
Each of the five subtypes (iCAFs, proCAFs, mCAFs, MT2A"
myCAFs, CXCL14* myCAFs) appeared in all three cohorts, and
the adjusted Rand index (ARI) between integrated and per-dataset
cluster assignments exceeded 0.85 in each case. Finally, to verify that
subtype definitions were not an artifact of a single clustering
technique, we repeated the CAF subtyping using a Leiden
algorithm (resolution = 0.5) and hierarchical clustering on z-
score-normalized expression profiles; subtype identities and
relative proportions differed by less than 5% compared to the
Louvain result.

Identification of malignant versus non-
malignant cells

First, we sorted the input expression matrix according to the
order of genes in the genome, followed by data normalization. The
cells were then clustered based on Euclidean distance or correlation.
A Gaussian mixture model (GMM) was used to estimate the variance
of each cluster, with the cluster showing the least variance serving as
the diploid reference (i.e., normal cells) for subsequent analysis.
When calculating copy number alterations (CNA) through gene
expression, CopyKAT grouped every 25 genes into a detection
window and assessed the significance of the mean expression
differences between adjacent windows. Windows with significant
differences were identified as chromosomal breakpoints. Finally,
hierarchical clustering using CNA data was performed to
distinguish between aneuploid tumor cells and diploid normal cells.
This process was carried out using the R package “CopyKAT”.

Inference of cell-cell communication
networks

The underlying mechanisms of cell-to-cell communication were

uncovered by the “CellChat” v1.5.0. The netVisual_circle function
visualized the number and strength of communications between
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cells, whereas the netAnalysis_computeCentrality function inferred
the input and output weights of specific signaling pathways.

Estimation of cell-type proportions in
TCGA-PAAD cohort

The deconvolution algorithm extracted representative features
from high-dimensional data and mapped them to a lower-
dimensional space to identify the proportions of elements in the
high-dimensional data. To perform deconvolution, the “IOBR”
package was used. First, the generateRef_seurat function extracted
feature genes from single-cell data to construct a deconvolution
feature expression matrix. The deconvo_tme function then applied
the SVR algorithm to deconvolve the abundance of all cell types in
the TCGA-PAAD dataset.

Identification of core gene modules
through high-dimensional co-expression
analysis

hdWGCNA (high-dimensional WGCNA) is a systems biology
method that analyzes high-throughput gene expression data to uncover
relationships between genes. Specifically, the SetupForWGCNA
function constructs a WGCNA object, and the MetacellsByGroups
function creates metacell information. Gene module analysis was
performed based on the soft threshold of the co-expression network,
and module eigengenes were calculated to identify core genes.

Machine learning and prognostic model
construction

To develop a prognostic risk model, ten machine learning
methods were used for selection and modeling: Lasso, Enet,
StepCox, SurvivalSVM, CoxBoost, SuperPC, Ridge, plsRcox, RSF,
and GBM. These were combined in various ways to create 101
different algorithms to assess the diagnostic efficiency of the models.

Cross-validation and model selection

To mitigate the risk of overfitting associated with testing 101
algorithms, we implemented a rigorous 10-fold cross-validation
procedure on the training set. Specifically, the TCGA-PAAD cohort
was randomly partitioned into 10 equal subsets. In each iteration, 9
folds were used to train the model, while the remaining fold served
as the validation set. We computed performance metrics, including
the concordance index (c-index) and the area under the receiver
operating characteristic curve (AUC), for each fold. The final model
was selected based on the highest average performance across the 10
folds. Additionally, sensitivity analyses were performed to assess the
stability of model parameters. The selected model was further
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validated using independent external datasets to ensure
its generalizability.

Immune infiltration and immunotherapy
assessment

To analyze the overall immune microenvironment and
potential for immunotherapy in high- and low-risk patients, the
CIBERSORT algorithm was performed. Additionally, the
expression of key factors such as chemokines, TNF family factors
and HLA family molecules in high- and low-risk groups was further
investigated. Overall activation of the immune microenvironment
was assessed by the “ESTIMATE” package.

The “IOBR” package was used for evaluating tumor TME-
related gene sets. The TIDE website (http://tide.dfci.harvard.edu/)
was subsequently performed to analyze immunoreactivity and to
assess immunotherapy sensitivity based on factors, such as co-
mutation frequency, tumor mutation burden, and immune
checkpoint expression. Finally, the external immunotherapy
datasets IMvigor210 and GSE91061 were used for validation (32).

Enrichment analysis

All genes were ranked by logFC values. HALLMARK
enrichment analysis was conducted using the “GSEA” and
“clusterProfiler” packages, with a significance threshold of
adjusted P < 0.05.

Drug screening and molecular docking

Drug screening was primarily conducted using the DSigDB
database available on the Enrichr website. Drugs with an adjusted P
< 0.01 were selected. The top 20 drugs were selected for display
according to the binding score. The topl drug was chosen for
further analysis. For molecular docking, AutoDock Tools 1.5.6 was
used to set charges, add polar and nonpolar hydrogens, and define
rotatable bonds. The receptor grid files were generated by
AutoDock Tools. AutoDock Vina 1.2.5 was then employed to
dock the ligand structures with the generated receptor grid files.
The results were visualized, analyzed, and plotted using PYMOL 3.2.

Pan-cancer analysis

Pan-cancer data were derived in accordance with UCSC Xena
(https://xenabrowser.net), encompassing 24 tumor types from
TCGA. The “Limma” package was used for uniform
standardization and normalization of all datasets. Survival
analysis was then performed. Gene sets related to angiogenesis,
cell cycle, and EMT were sourced from previous studies (33-35).
Correlation scatter plots were created using “ggplot2”.
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Clinical samples

Tumor tissues and paired adjacent tissues were obtained from
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine.
The detail patient clinicopathologic information can be viewed in
Supplementary Table S1. The research protocol was approved by
the Research Ethics Committee of Ruijin Hospital, Shanghai Jiao
Tong University School of Medicine. All the participants agreed to
participate in this cohort study and provided written

informed consent.

Cell culture and transfection

PATU-8988 and PANC-1 were purchased from the Cell Bank
of the Chinese Academy of Sciences. Cancer-associated fibroblasts
(CAFs) were obtained from the tumor tissues. The above were
cultured in RPMI-1640 medium containing 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin (P/S). The incubation
temperature was 37°C and the incubator was 5% CO,. Short
hairpin RNA of PHLDA1 was provided by Genechem (Shanghai,
China). For transfections, proper plasmids were introduced into the
supernatant using HilyMax (Dojindo,Japan). After 8-12 hours, the
medium was replaced and then validated.

Immunohistochemistry and
immunofluorescence

After being formalin-fixed and paraffin-embedded, the tumor
tissue samples were sectioned onto slides. IHC was then performed
to validate the expression of PHLDAI.

Following deparaffinization and rehydration, the slides were
subjected to antigen repair. This was subsequently followed by
antibody incubation, color development and sealing. Finally,
representative images were captured under a microscope. Similar
to the THC protocol, IF was carried out.

RNA extraction and real-time quantitative
PCR

Total RNA was abstracted by TRIzol reagent (Invitrogen, USA).
cDNA was gotten by reverse transcription using HiScript III RT
SuperMix (Vazyme, Nanjing, China). RT-qPCR was performed
with the ChamQ SYBR qPCR Master Mix (Vazyme Biotech,
China) according to the manufacturer’s instructions.

Patient-derived organoid construction and
evaluation

Pancreatic tumor tissues from patients were quickly separated

in RPMI-1640 medium that had been chilled beforehand and
digested for 30 minutes at 37°C using collagenase. Individual cells
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were subsequently placed into Matrigel (Corning, USA) and filtered
through a Falcon 40 pm cell screen (Corning, USA). They were then
grown in the full organoid medium (OmaStem, China). Following
the manufacturer’s instructions, the CellTiter-Glo 3D cell viability
assay (Promega, USA) was used to measure the relative activity of
the organoids after being co-cultured with CAFs.

Western blot

RIPA buffer (Epizyme, China) combined with protease
inhibitors (Epizyme, China) was used to extract proteins from
cells. Separated from 10% SDS-PAGE, proteins were transferred
to PVDF membranes. PHLDA1 primary antibody (Abcam, UK)
and the relevant secondary antibody were used for incubation.
Finally, protein expression levels were determined using ECL
reagents (Epizyme, China).

Cell proliferation assay

For the Cell Counting Kit-8 (CCK-8; MeilunBio, China) assay,
2000 cells were plated in a 96-well plate and then cultivated at 37°C
in an incubator with 5% CO2. Following the addition of 90 pL of
growth media and 10 pL of CCK-8 to each well at specified times,
the cells were cultured for an additional 2 hours, and the optical
density (OD) values of each group were measured at 450 nm. For
colony formation, the cells were seeded at a density of 1000 cells per
well in a 6-well plate, and the medium was replaced every three
days. The cells were subsequently fixed and stained with 0.1%
crystal violet at room temperature for 30 minutes. Image]
software was used to quantify the number of colonies after they
were imaged.

Cell migration assay

For the migration assay, the upper chamber was filled with
pancreatic cancer cells (5 x 10*) suspended in 200 uL of serum-free
media, while 1x10° CAFs were seeded in lower chamber culture
plates containing 700 pl of RPMI-1640 medium supplemented with
10% FBS. After 24 hours, the cells that had moved to the lower side
of the membrane were fixed and stained for 15 minutes at room
temperature with a 1% crystal violet solution. Image] software was
used to count the number of moving cells.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 9.0.
Continuous variables are presented as mean + standard deviation
(SD), and their distribution was assessed by the Shapiro-Wilk test.
For comparisons between two independent groups, an unpaired
two-tailed Student’s t-test was applied when data were normally
distributed; otherwise, the Mann-Whitney U test was used. For
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comparisons among three or more independent groups, one-way
analysis of variance (ANOVA) followed by Tukey’s multiple
comparisons test was employed. Categorical variables were
compared using Pearson’s chi-square test; when any expected cell
count was less than 5, Fisher’s exact test was used instead. Survival
curves were generated by the Kaplan-Meier method, and
differences between survival curves were evaluated by the log-
rank test. All statistical tests were two-tailed, and a P value < 0.05
was considered statistically significant.

Results

Characterization of the single-cell
landscape in pancreatic cancer

Based on methodological quality control standards, we retained
5,805 normal control group cells and 56,853 pancreatic cancer cells
for downstream analysis. These included 12,458 from GSE154778,
37,583 from GSE155698, and 12,617 from GSE231535. After batch
effect removal, 34 clusters of cells labeled 0-33 were identified
(Figure 1A). Using SingleR and existing methods, we annotated
these 34 clusters into 11 cell types. The markers for each cell type
included ductal cells (KRT19, KRT8, and CFTR), macrophages
(LYZ, CD68, and C1QB), T cells (CD3D, CD3E, and NKG?7), acinar
cells (CLPS, CELA2A, and CELA3A), cancer-associated fibroblasts
(FAP, COL1A1, and POSTN), endothelial cells (VWF, CDH5, and
ERG), plasma cells (JCHAIN, MZBI, and JSRP1), pericytes
(ACTA2, RGS5, and TAGLN), mast cells (KIT, CPA3, and
TPSAB1), B cells (CD79A, CD79B, and MS4A1), and endocrine
cells (GCG, INS, and GAS5) (Figures 1B, C). The changes in each
cell type of consistency were compared and we found that
proportions of ductal cells, CAFs, and plasma cells increased,
whereas those of acinar cells and pericytes decreased. These
findings suggested that ductal cells, CAFs, and plasma cells may
be associated with the malignant progression (Figure 1D).
Additionally, we found that most malignant cells originated from
ductal cells using the CopyKAT (Figure 1E). This raised the
question of whether malignant ductal cells have significant
biological differences from nonmalignant ductal cells, accelerating
progression of pancreatic cancer.

Crosstalk between cancer-associated
fibroblasts and malignant ductal cells

To address this, we divided the ductal cells in the single-cell data
into tumor-associated ductal cells and normal ductal cells based on
whether they were diploid and calculated their communication with
other cell components in the microenvironment. The results
revealed that CAF or pericytes were most closely interconnected
with malignant ductal cells (Figures 2A, B). In terms of specific
communication signals, tumor-associated ductal cells increase the
output of signals such as ALCAM and OCLN and the input of
signals such as CD96 and CD6 (Figure 2C). To explore whether
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CAFs or pericytes play a more important role in promoting disease,
we extracted a reference set of feature genes from the single-cell
expression matrix and deconvoluted them into ordinary
transcriptome data. We found that the abundance of CAFs was
significantly related to overall survival, with a higher proportion of
CAFs associated with worse overall survival (Figures 2D, E). In
addition, CAFs had a substantial positive correlation with the
quantity of tumor-associated ductal cells, suggesting that CAFs
may be the most important cells involved in malignant progression
via affecting ductal cells (Figure 2F). At the same time, CAFs were
also related to clinical stage, with worse stages such as G3/G4 or
Stage III/IV having a higher proportion of CAFs (Figures 2G-I).
Elucidating the characteristics and functions of CAFs may be
important for understanding pancreatic cancer.

MCAFs correlate with clinical prognosis in
pancreatic cancer

Next, by secondary dimensionality reduction and clustering on
the CAFs, and based on their respective expression characteristics,
five cell subgroups were derived: inflammatory CAFs (iCAFs),
progenitor CAFs (proCAFs), matrix CAFs (mCAFs), and
myogenic CAFs (two subtypes with high expression of MT2A
and CXCLI14 respectively) (Figures 3A, B). Univariate Cox
analysis revealed that among these five types of cells, only mCAFs
had a significant correlation with overall survival. The survival
curve also revealed that a greater abundance of mCAFs was related
to worse prognosis, suggesting mCAFs constituted the most
significant malignant CAF subtype (Figures 3C, D). HHOWGCNA
is an important means to mine core genes. To parse the
characteristic genes of mCAFs, hdWGCNA was performed. Given
a soft threshold of 12, we achieved the best attributes of the scale-
free topological network model and good connectivity (Figure 3E).
At this time, all genes were divided into eight color series module
genes, including yellow, blue, turquoise, green, pink, brown, red,
and black modules (Figures 3F, G). By calculating the correlation of
each module gene with different CAF subtypes, we found that the
black module genes had the highest correlation with mCAFs,
indicating that the module genes most closely fit the
characteristics of mCAFs (Figure 3H). This module gene has a
total of 125 genes. Through differential expression analysis, we
retained genes whose expression significantly differed, which will be
used as candidate genes for the next step of core prognostic gene
screening. (Figure 3I).

Performance of a prognostic model

Before constructing a prognostic model, we prescreened
survival for the candidate genes. By Univariate Cox regression
analysis, a total of 32 genes were substantial correlated with
overall survival (Figure 4A). We constructed a protein interaction
network of these 32 genes, and the MCODE algorithm extracted
two core submodules from it (Figure 4B). Enrichment analysis
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FIGURE 3

mCAFs are associated with poor prognosis in pancreatic cancer patients. (A) Expression levels of marker genes for 5 different CAF subtypes. The
color shading represents the intensity of expression. (B) UMAP plot demonstrating the distribution of the five different CAF subtypes. Histograms
indicate the number of cells in each type of subpopulation. (C) Univariate Cox analysis to assess the impact of five different CAF subtypes on the
prognosis of patients with pancreatic cancer. (D) Survival analysis revealed that the abundance of mCAFs was correlated with poor prognosis in
patients with pancreatic cancer. (E) The selection of the optimal soft threshold. (F) Scale-free topological network models were built using an ideal
soft threshold of 12, and genes were partitioned into modules to create gene clustering trees. (G) The feature-based gene connectivity for each
gene in the scale-free topological network analysis was calculated to determine the highly connected genes in each module. (H) Bubble plots
illustrating the associations of different color modular genes with different CAF isoforms, with the black module gene having the highest correlation
with mCAFs. (I) Differential expression analysis of black module genes.
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revealed that these survival-related mCAF characteristic genes were
enriched mainly in processes promoting tumors, such as hypoxia,
angiogenesis, and apoptosis (Figure 4C). The results of feature gene
screening and model construction based on 101 survival analyses
revealed that after CoxBoost was used for core gene screening and
StepCox was used for prognostic model construction, the best
prognostic model was obtained. The average concordance index
(C-index) reached 0.748, indicating excellent predictive
performance (Figure 4D). The genes involved in the construction
of this prognostic model included USP36, KLF5, MT2A, KDM6B,
PHLDAI, REL, and DDIT4. According to this prognostic model,
pancreatic cancer patients were stratified by disease status. Patients
in the low-risk group had a better prognosis than those in the high-
risk group (Figures 4E-H). The model exhibited consistently robust
predictive ability in both the training and validation cohorts,
particularly at the second and third years of follow-up, where the
area under the ROC curves (AUCs) exceeded 0.7 and even reached
above 0.8(Figures 41-L), suggesting that the reliability and accuracy
of the constructed prognostic model.

Immune atlas of high- and low-risk groups

Furthermore, we assessed the immune status of different groups
patients. CIBERSORT analysis revealed that high-risk patients had
fewer immune activation-related cells, such as memory B cells and
follicular helper T cells, but more mast cells. These findings suggested
that high-risk patients may have certain defects in assisting the
activation of adaptive immunity (Figure 5A). In terms of immune
activity factors, chemokines and the TNF family are common cell
factors that induce immune cell aggregation and activate
inflammatory responses. The risk score was markedly positively
corresponded to these two molecules, suggesting that high-risk
patients experienced a high degree of cytokine storm, which
strongly promoted continuous chronic progression and delay of
tumor development (Figure 5B). The HLA family comprises
common antigen-presenting-related molecules. Except for MT2A
and REL in the prognostic model, which are significantly positively
correlated with the HLA family, most molecules are unrelated or even
negatively correlated with the HLA family. These findings suggest
that there was no obvious antigen presentation activation in the high-
risk group (Figure 5C). Microenvironment scoring revealed a more
active immune status and a smaller proportion of tumor cells in the
low-risk group. Conversely, patients in the high-risk group exhibited
a state of immune deficiency and high tumor tissue infiltration
(Figures 5D-F). In addition, we evaluated many gene sets related to
the tumor microenvironment, including genes related to mismatch
repair, EMT, and various biological metabolisms, all of which had
positive risk scores (HRs). The high-risk group had higher CAF
scores, EMT scores, etc., suggesting that the high-risk group was
overall in a state of low antitumor immunity and an accelerated
protumor environment (Figures 5G, H).

Frontiers in Immunology

10.3389/fimmu.2025.1592416

Immunotherapy response assessment by
risk score

To further demonstrate the immunotherapy sensitivity of patients
by degree of risk, we first assessed their mutation status. The
proportion of mutations was higher in patients in the low-risk group
(92.77%), especially in KRAS, with a mutation rate reaching 81%.
Furthermore, the tumor mutational load is higher in low-risk
individuals, representing that immunotherapy may be more likely to
be beneficial for these patients (Figures 6A-C). Besides, the high-risk
group’s higher TIDE scores suggested a lesser chance of benefit since
they showed signs of rejection and immunological dysregulation.
(Figures 6D-F). The low-risk group also showed higher expression
of conventional immune checkpoints like CTLA-4 and PD1, indicating
that these patients are better suited to start immunotherapy.
(Figure 6G). To prove that the prognostic model could help assess
the possibility of immunotherapy, we used two external treatment
cohorts for validation. In the IMvigor210 cohort, high-risk patients
assessed by our prognostic model also had significantly lower overall
survival probabilities, and the risk scores of patients with complete
remission and partial remission were also significantly lower than those
of patients with stable disease and progressive disease (Figure 6H).
Another immunotherapy dataset also revealed that immunoreactive
patients had lower risk scores (Figure 6I), illustrating our model’s
strong immunological response prediction capabilities.

Crosstalk between PHLDA1" CAFs and
malignant ductal cells

Subsequently, we further confirmed the most important genes could
be used as molecular markers and intervention targets. Through the
examination of seven key genes’ expression levels, only PHLDA1 was
highly expressed in CAFs in the pancreatic cancer group, suggesting that
this gene could be a potential procancer CAF marker (Figure 7A). In
four pancreatic cancer datasets, including the TCGA-GTEX cohort,
PHLDAL expression was remarkably elevated in the pancreatic cancer
samples (Figures 7B-E). Meanwhile, PHLDA1 was related to TNM
stage, and poorer TNM stages are associated with higher PHLDALI
expression (Figures 7F-H). Further enrichment analysis demonstrated
that high PHLDAI expression activated classic protumor pathways
such as the EMT, KRAS, and TGFB pathways (Figure 7I). Moreover,
patients with high PHLDA1 expression also presented increased
expression of chemokines and TNF family members, including CCL5,
CCR1, and TNFRSF1B (Figures 7], K). Spatial transcriptome analysis
can better observe the spatial location of cells based on more spatial
information. Unrolling cell types into tissue sections revealed significant
colocalization of CAFs and ductal cells, indicating a clear spatial
interaction between the two (Figure 8A). Moreover, the expression of
PHLDALI and the CAF marker POSTN was also concentrated in the
colocalization area of CAFs and ductal cells, indicating that PHLDAL1
may mediate their interaction (Figures 8B, C).
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Establishment and testing of the prognostic model. (A) Univariate Cox analysis revealed 32 marker genes associated with survival in patients with
pancreatic cancer. (B) Network map of protein interactions of 32 survival-related genes. (C) Gene ontology enrichment analysis suggested that
survival-related mCAF marker genes activated protumor-related biological processes. (D) 101 machine learning algorithms for marker gene
screening and prognostic model construction. (E—H) Overall survival was compared between the high- and low-risk groups in K-M plots in both the
training (E) and validation cohorts (F=H). (I-L) Time-dependent ROC curves for estimating 1-, 3-, and 5-year overall survival in the training (I) and

validation (J—L) cohorts. * represents p<0.05; ** represents p<0.01; *** represents p<0.001.
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FIGURE 5

Assessment of the immune microenvironment in patients in high and low-risk groups. (A) The CIBERSORT algorithm demonstrated enrichment
levels of various types of immune cells in patients from different risk groups. (B) Correlation analysis of different immunoreactive factors with the risk
score. (C) Relationships of core genes with molecules associated with antigen presentation. (D—F) The ESTIMATE algorithm evaluated the
ImmuneScore (D), StromalScore (E), and ESTIMATEScore (F) in patients from the high- and low-risk groups. (G, H) Assessment of hazard ratios (HRs)
and activation levels for gene sets associated with the tumor microenvironment.
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Prediction of immunotherapy sensitivity. (A) Mutation analysis of patients in the high- and low-risk groups. (B) Correlation analysis of different
immunoreactive factors with the risk score. (C) Comparison of tumor mutation burden (TMB) in patients in the high- and low-risk groups. (D) TIDE
scores of high- and low-risk score patients. (E, F) Comparison of CAF (E) and TAM_M2 (F) infiltration levels in the immune microenvironment of
patients in the high- and low-risk groups. (G) Assessment of the expression abundance of immune checkpoint molecules. (H, 1) Prediction of
immunotherapy efficacy by risk score in immunotherapy cohorts. * represents p<0.05; ** represents p<0.01; *** represents p<0.001.
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FIGURE 7

Screening of key molecular markers and intervention targets. (A) Box plots representing the expression levels of 7 model genes in pancreatic cancer
and normal tissues. (B—E) Expression of PHLDAL in different datasets. (F—H) The expression levels of PHLDAL at different T stages (F), N stages (G),
and M stages (H) were compared. (I) GSEA revealed enriched pathways in patients with high or low PHLDAL expression in pancreatic cancer. (J, K)
Differences in the expression levels of chemokines (J) and TNF family molecules (K) in patients with high or low PHLDAL expression in pancreatic
cancer. * represents p<0.05; ** represents p<0.01; *** represents p<0.001.

Screening of small molecule d rugs and we carried out a drug screening based on DSigDB and identified the

molecular docking top 20 drugs according to their binding scores. Among them, three
drugs, TTNPB, securinine, and myricetin, had the highest binding
scores (Figure 8D). To further determine which drug has the best

binding rate with PHLDAI, molecular docking was performed

Drug screening is an essential step for the clinical translation of
molecular targets. To screen for potential drugs targeting PHLDA1,
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FIGURE 8

Spatial transcriptomic analysis and target molecule docking of PHLDAL. (A) Spatial distribution of CAFs and malignant ductal cells in pancreatic
cancer. (B, C) Distribution of PHLDAL (B) and POSTN (C) expression in the region of colocalization of CAFs with malignant duct cells. (D) Top 20
drugs targeting PHLDAL in the DSigDB database. (E, G) Three-dimensional structure of the molecular docking of PHLDA1 with TTNPB (E), securinine
(F) and myricetin (G).

separately for the three drugs with PHLDA1. As seen in Figures 8E- In our drug-screening pipeline, TTNPB emerged as the top
G, TTNPB presented the lowest binding energy of -6.816 kcal/mol,  candidate for PHLDA1 targeting based on its lowest docking energy
indicating that it bound most stably with PHLDA1 and could among the top 20 ranked compounds. TTNPB is a well-
potentially be a PHLDA1-targeted drug. characterized synthetic retinoic acid receptor (RAR) agonist that
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has previously been shown to modulate fibroblast differentiation
and extracellular matrix remodeling in various contexts. Although
no studies to date have directly linked TTNPB to PHLDAI
inhibition, several reports indicate that RAR activation can
suppress profibrotic signaling cascades (e.g., TGF-B/Smad) in
stromal fibroblasts, which raises the possibility that TTNPB may
indirectly attenuate PHLDAI1-driven CAF activation. Moreover,
retinoid signaling has been reported to downregulate key EMT-
associated transcription factors—many of which overlap with
PHLDA1 downstream effectors—thereby providing a mechanistic
rationale for TTNPB’s potential efficacy in disrupting CAF-tumor
crosstalk. Future work should therefore prioritize in vivo validation
of TTNPB in CAF-rich pancreatic cancer models, such as co-
implantation of PHLDA1-high CAFs with orthotopic tumor cells,
to assess whether pharmacologic RAR activation can reduce tumor
stiffness, limit desmoplasia, and enhance anti-tumor immunity.
Additionally, given the established immunosuppressive role of
CAFs, combining TTNPB with immune-checkpoint inhibitors
(e.g., anti-PD-1/PD-L1) or other stroma-modulating agents may
further potentiate therapeutic responses. Such combinatorial
strategies could help overcome the stromal barriers that
frequently limit drug delivery and immunotherapy efficacy in
pancreatic cancer.

PHLDA1" CAFs promote malignant
progression in pancreatic cancer

Next, we investigated the role of PHLDALI in the development
of pancreatic cancer. According to survival analysis, patients with
high PHLDA1 expression had a worse prognosis than patients with
low PHLDA1 expression, which suggested that PHLDA1 could be a
possible prognostic marker for pancreatic cancer (Figures 9A, B).
Also, the expression of PHLDA1 in clinical samples of patients with
pancreatic cancer was subsequently described. It could be observed
higher mRNA expression of PHLDA1 in tumor tissues (Figure 9C).
At the same time, it was linked to lymph node metastases and worse
pathological staging characteristics according to paired tumor
tissues and adjacent tissues (Figures 9D, E) (Supplementary Table
S1). Moreover, PHLDA1 was shown to be expressed differently in
tumor and adjuvant tumor tissues by further western blot and IHC
staining (Figures 9F, G). Following the previous analysis,
immunofluorescence was performed on the tumor sample and
adjuvant tumor sample, and the findings indicated that PHLDA1
was expressed primarily in CAFs in pancreatic cancer (Figure 9H).
As demonstrated in Figures 10A-C, downregulating PHLDA1 in
CAFs dramatically decreased tumor cell proliferation activity, and
similar results were achieved in colony formation assays.
Additionally, patient-derived organoids were cocultured with
CAFs, and we discovered that when PHLDAI1 expression was
reduced in CAFs, organoid proliferation ability was limited
(Figures 10D, E). To ascertain if PHLDA1 in CAFs aided in the
migration of pancreatic cancer cells, transwell experiments were yd.
As expected, PHLDA1 considerably increased the migration
capacity of PATU-8988 and PANC-1 cells (Figure 10F). Together,
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our findings suggest that PHLDA1 serves as a prognostic biomarker
in pancreatic cancer and influences tumor growth by modulating
cancer-cell proliferation and migration.

PHLDAI1 reflects prognosis and immune
status in multiple tumors

Finally, to broaden the application of PHLDA1, we analyzed its
applicability across various types of cancer. It could be seen that
melanomas exhibited the highest PHLDA1 expression, while
thymomas showed the lowest (Figure 11A). The expression of
this gene varies among different tumors. Specifically, PHLDA1
was highly expressed in the control group for bladder cancer,
breast cancer, cholangiocarcinoma, renal papillary cell carcinoma,
liver cancer, prostate cancer, and thyroid cancer, whereas it was
highly expressed in the tumor groups for colorectal cancer, glioma,
renal clear cell carcinoma, lung squamous cell carcinoma, rectal
cancer, and gastric cancer (Figure 11B). PHLDA1 was found to be
substantially associated with disease-free survival in patients with
thyroid cancer, head and neck squamous cell carcinoma, pancreatic
cancer, soft tissue sarcoma, bladder cancer, and endometrial cancer,
as well as with overall survival in these patients. It was also
significantly related to progression-free survival in patients with
colorectal cancer, lung adenocarcinoma, pancreatic cancer, lung
squamous cell carcinoma, thyroid cancer, and endometrial cancer
(Figures 11C-E), suggesting that this indicator could be used to
guide survival prognosis in these types of cancer. Additionally,
PHLDALI and the quantity of activated mast cells in practically all
cancer types showed a strong positive connection, according to
immune infiltration study, indicating that mast cells may contribute
to the development of cancer (Figure 11F). Finally, the correlation
analysis uncovered that angiogenesis, cell cycle, and EMT were
significantly positively correlated with PHLDA1 in all types of
cancer, further suggesting the cancer-promoting role of PHLDAL1
(Figures 11G-I).

Discussion

An increasing body of research has highlighted the pronounced
intratumoral heterogeneity within pancreatic cancer (PC), posing
significant challenges for the development of effective therapeutic
strategies. Therefore, finding innovative treatment strategies is
crucial to raising PC patients’ overall survival rates. A growing
body of research suggests that the complex tumor
microenvironment’s (TME) neoplastic and stromal cells’
intercellular communication is closely related to the tumor cells’
malignant biological activities (36-38). As essential components of
the TME, cancer-associated fibroblasts (CAFs) are known to
influence important facets of carcinogenesis, such as metastasis,
angiogenesis, proliferation, and resistance to different treatment
modalities in a variety of cancers (12, 39, 40). Additionally,
mounting data emphasizes how crucial CAFs are in initiating
drug susceptibility in pancreatic cancer to immunotherapy,
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PHLDAL is highly expressed and associated with poor prognosis in pancreatic cancer patients. (A, B) The overall survival (A) and disease-free survival
(B) analysis of PHLDAL in pancreatic cancer patients. (C) The mRNA expression level of PHLDAL in tumor tissues (n=30) and paired adjacent tumor
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showing the expression level of PHLDAL in tumor tissues and paracancerous tissues. (H) Colocalized distribution of PHLDAL with the CAF marker o.-
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FIGURE 10

PHLDAL" CAF facilitated malignant biological behavior in pancreatic cancer. (A) Knockdown efficiency of PHLDAL at the protein level in CAFs.

(B) When PHLDAL was inhibited, CCK8 assays were used to detect the proliferative activity of PANC-1 or PATU-8988 cells when cocultured with
CAFs. (C) Colony formation assays in PATU-8988 and PANCL1 cells after cocultured with CAFs (shNC, shl PHLDAL, sh2 PHLDAL). (D) Representative
images of PDO 1 or PDO 2 co-cultured with CAFs. (E) CTG assays revealed the proliferative capacity of different patient-derived organoids after
cocultured with CAFs in Days 1, 4, and 8. (F) Evaluation of the migration capacity of PATU-8988 and PANC-1 cells after cocultured with CAFs (shNC,
shl PHLDAL, sh2 PHLDAL). * represents p<0.05; ** represents p<0.01; *** represents p<0.001.
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represents p<0.001.

targeted treatment, chemotherapy, and radiation (41, 42).

According to certain report, the formation and spread of cancer

are directly linked to the interactions between various cell types
inside the TME (43). Our analysis of published single-cell RNA
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sequencing (scRNA-seq) data revealed an increased proportion of
ductal and CAF cells in PC tissues, along with enhanced
interactions between these cell types as shown by CellChat
analysis. In addition, a higher prevalence of CAFs was correlated
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with advanced disease stages and poorer overall survival. These
observations indicate a potential involvement of CAFs in
PC progression.

CAFs are a heterogeneous population arising from various cell
types across solid tumors, activated by multiple signaling pathways
(44). Their diverse origins and activation mechanisms generate a
spectrum of phenotypes, resulting in functional heterogeneity.
CAFs were first divided into two subgroups (CAF-A and CAF-B)
via single-cell sequencing in colorectal cancer (45). In recent years,
CAFs have been divided into three groups based on their roles in
lung, prostate, and triple-negative breast cancer: myofibroblastic
CAFs (myCAFs), inflammatory CAFs (iCAFs), and matrix CAFs
(mCAFs) (46-48). Our goal in this study was to clarify how CAFs
affect PC’s biological behavior. Comprehensive analysis revealed the
existence of five distinct CAF subpopulations, namely, iCAFs,
progenitor cell CAFs (proCAFs), mCAFs, MT2A-expressing
myofibroblastic CAFs (MT2A+ myCAFs), and CXCL14-
expressing myofibroblastic CAFs (CXCL14+ myCAFs). Among
these, mCAFs have emerged as the most critical malignant CAF
subgroup with the potential to predict the prognosis of PC patients.
We developed a 7-gene mCAF-related gene risk model, which
allowed us to accurately forecast the survival rates of patients by
classifying them into high-risk and low-risk groups. This
stratification approach holds promise for improving prognostic
accuracy and may inform personalized treatment strategies for
PC patients.

CAFs are intricately involved in the progression of PC and are
closely linked to metastasis, immune evasion, and resistance to
immunotherapy (49). Within the TME, CAFs engage tumor cells
and other stromal components, producing excess extracellular
matrix proteins, soluble mediators, and matrix-degrading
enzymes. These activities result in increased matrix deposition,
increased interstitial pressure, and compression of blood vessels,
which collectively contribute to hypoxia and nutrient deprivation
(50, 51). Consequently, this environment restricts the
administration of chemotherapeutic drugs and prevents immune
cells from infiltrating.

In this study, we employed our established risk model to assess
the immune profiles of patients, as well as their potential response
to immunotherapy. Our findings showed that high-risk patients
exhibited a pronounced inflammatory cytokine surge, which
correlates with chronic tumor progression (52). Moreover, the
high-risk group displayed immune dysfunction, weakened
antitumor responses, and an intensified protumorigenic
microenvironment. Our risk model demonstrated statistically
significant predictive accuracy for immunotherapy outcomes in
PC patients, suggesting its potential utility in guiding patient care
and clinical decision-making.

Prior investigation has emphasized how crucial the temporal
and spatial dynamics within the TME are in promoting tumor
heterogeneity (53). Malignant tumor invasiveness, metastatic
potential, and clinical outcomes have been found to be
substantially associated with the density and spatial distribution
of immune cells across different tissue subregions (54). These
conclusions are supported by published data, which also confirm
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that the spatial variability of CAFs significantly affects cancer
These observations highlight the
importance of considering the spatial architecture of the TME

patients’ survival (55).

when examining the biology of cancer and its response to
therapy. Although previous studies have characterized CAF
signatures based on a limited set of markers (56), our study
extends these findings by identifying a distinct PHLDA1-positive
CAF subtype that is significantly associated with poor prognosis
and tumor-stroma interactions. Recent advancements in single-cell
and spatial transcriptomic technologies have revealed that specific
CAF subpopulations play critical roles in mediating
immunotherapy resistance and overall patient outcomes (8, 17).
Importantly, our data suggest that targeting PHLDAI1-positive
CAFs could serve as a novel therapeutic strategy, thereby bridging
the gap between conventional CAF classifications and personalized
treatment approaches (16). In this context, our findings not only
refine the existing CAF paradigm but also enhance its clinical
applicability by providing a more robust biomarker for prognostic
stratification and therapeutic decision-making.

Consistent with these findings, our analysis revealed that
mCAFs are in close proximity to malignant ductal cells and that
their spatial distribution and density within tumor tissues are
correlated with the aggressiveness and prognosis of PC.
According to these findings, mCAFs most likely promote PC
development by having a direct impact on the biological activity
of ductal cells. Notably, mCAFs’ spatial heterogeneity may play a
role in the regulation of tumor behavior. Specifically, mCAFs
located at different spatial distances from ductal cells may carry
out unique biological tasks that could influence tumor growth and
invasion through a variety of mechanisms of action, ultimately
accelerating the advancement of the tumor. Further mechanistic
analysis revealed that elevated expression of PHLDA1 promotes
CAF activation and proliferation by activating key signaling
pathways such as TGF-B and KRAS, thereby inducing epithelial-
mesenchymal transition (EMT) and enhancing extracellular matrix
(ECM) deposition and remodeling. This ECM remodeling increases
tissue stiffness and density, creating physical barriers that restrict
immune infiltration and therapeutic drug penetration, consequently
facilitating invasion and migration of pancreatic cancer cells and
leading to poor patient prognosis. These findings uncover the
underlying mechanisms by which PHLDA1+ CAFs shape the
tumor microenvironment and drive pancreatic cancer progression.

To provide more direct evidence for PHLDA’s functional
involvement in key protumorigenic pathways, we examined both
published mechanistic studies and our own co-culture results.
PHLDALI has been identified as a direct TGF-B/SMAD target,
with TGF-B1 treatment increasing PHLDA1 mRNA expression
approximately threefold in keratinocyte models, and chromatin
immunoprecipitation confirmed SMAD3/SMAD4 binding to a
regulatory region upstream of PHLDAI1 (57). In addition,
PHLDA1 overexpression can induce P-catenin nuclear
localization, disrupt adherens junctions, and trigger EMT-
associated transcriptional programs—specifically upregulating
SNAIl and VIM—consistent with a functional role in EMT
induction (58). And, PHLDAI1 augments KRAS pathway activity
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by stabilizing the RAS-ERK axis: in glioblastoma, PHLDA1 binds to
Ras and competitively inhibits Src-mediated Ras phosphorylation,
resulting in sustained Ras-GTP levels, increased RAF/MEK/ERK
signaling, and elevated downstream MYC transcription; conversely,
PHLDA1 knockdown reduces phospho-ERK1/2 levels by
approximately 50 % (59).

PHLDALI (also known as TDAG51) is a pleckstrin homology
domain-containing protein originally implicated in regulating
apoptosis, cell proliferation, and cellular stress responses. Under
physiological conditions, PHLDA1 plays a role in maintaining
cellular homeostasis and signaling balance, as well as in specific
differentiation processes. Notably, prior studies have reported that
PHLDALI is involved in several key signaling pathways, including
the PI3K/Akt, TGF-f3, and KRAS pathways. In our study, elevated
PHLDA1 expression was associated with the activation of
protumorigenic pathways such as EMT, KRAS, and TGEF-f,
suggesting that it may contribute to the regulation of tumor cell
transformation, invasion, and migration. Moreover, the high
expression of PHLDA1 in CAFs and its significant correlation
with poor prognosis indicate that it plays an important role in
modulating the tumor microenvironment. Therefore, targeting
PHLDA1 might not only disrupt the detrimental crosstalk
between CAFs and tumor cells but also enhance the efficacy of
conventional therapies, offering a promising new avenue for
pancreatic cancer treatment. Further studies are needed to fully
elucidate its mechanisms and validate its potential as a
therapeutic target.

Although we applied established batch-correction tools (e.g.,
Harmony for single-cell data and sva for bulk RNA-seq), some
technical variability from library preparation, sequencing platforms,
and sample handling likely persists. These residual batch effects may
obscure subtle transcriptomic differences, especially among rare cell
populations. Moreover, although pan-cancer analysis highlights the
broad prognostic and immunomodulatory relevance of PHLDAL,
interpretation of these cross-tumor associations must be tempered
by the fact that expression patterns and downstream signaling
networks can vary dramatically between tumor lineages. In
particular, tissue-specific microenvironmental cues and distinct
oncogenic drivers in each cancer type may confound the
generalizability of PHLDATI’s functional role. Future work
incorporating uniformly processed samples and validation in
lineage-matched models will be essential to disentangle true
biological signals from cohort-specific artifacts.

Although our study focused on the enrichment of PHLDALI in
mCAFs and its association with ECM remodeling and tumor
invasion, it is important to place these findings within the broader
context of CAF heterogeneity. In contrast to inflammatory CAFs
(iCAFs), which are marked by high cytokine secretion, and
myofibroblastic CAFs (myCAFs), known for their contractile and
matrix-remodeling functions, our data indicate that PHLDAI+
mCAFs preferentially activate TGF-B and KRAS signaling
pathways. This suggests that targeting PHLDAI+ mCAFs, either
alone or in combination with interventions aimed at other CAF
subtypes, could provide a more comprehensive strategy for
disrupting tumor-stroma interactions and improving therapeutic
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outcomes in pancreatic cancer. Unlike traditional CAF markers
such as FAP and o-SMA—which mainly indicate matrix
remodeling and myofibroblastic activation, respectively—our results
show that PHLDALI specifically marks a CAF subset that is strongly
associated with protumorigenic pathways (e.g., EMT, KRAS, and
TGEF-B signaling). In our study, high PHLDAL1 expression correlated
with advanced TNM stage and poorer overall survival, a relationship
that was less pronounced for FAP and o-SMA. Furthermore,
PHLDA1 knockdown in CAFs significantly impaired tumor cell
proliferation and migration. These findings suggest that PHLDALI
not only offers superior prognostic value but also plays a direct role in
mediating tumor-stroma crosstalk, thereby representing a promising
therapeutic target.

In addition to molecular targeting of PHLDAI, recent
bioengineering platforms offer promising avenues to overcome
stromal barriers and reshape the tumor microenvironment. For
example, Huang et al. developed a Christmas tree-shaped
microneedle patch that achieved spatiotemporal delivery of
FOLFIRINOX directly into orthotopic pancreatic tumors by
layering oxaliplatin/leucovorin and irinotecan/fluorouracil within
hierarchical microneedle tiers, significantly enhancing intratumoral
penetration and drug retention. Such a device could be adapted to
co-deliver PHLDA1 inhibitors alongside chemotherapeutics or
CAF-modulating agents, thereby improving drug distribution in
desmoplastic lesions. Similarly, Zetrini et al. engineered polymer—
lipid manganese dioxide nanoparticles that consume hydrogen (60)
peroxide to generate oxygen and buffer acidity, reoxygenating
hypoxic tumors and driving macrophage polarization toward an
M1 phenotype when combined with radiotherapy (61). Translating
this platform to PHLDA1Ahigh CAF-rich pancreatic tumors could
normalize the microenvironment, attenuate CAF-mediated
immunosuppression, and potentiate the efficacy of PHLDAI-
targeted therapies and immune checkpoint blockade. Future
studies should investigate the integration of microneedle-based
spatiotemporal delivery and redox-active nanoparticle strategies
in lineage-matched pancreatic cancer models to evaluate
synergistic effects on stromal depletion and antitumor immunity.

In addition to molecular and delivery-based innovations,
emerging spatial genomics platforms and integrin-mTOR
signaling studies offer novel avenues for future PHLDA1 research.
For example, the recently described Perturb-DBiT technology
enables simultaneous in vivo CRISPR screening and spatial
transcriptomics, providing single-cell resolution maps of how
genetic perturbations affect both coding and noncoding RNAs
within their native microenvironment (62). By applying Perturb-
DBiT to CAF populations, researchers could uncover PHLDA1’s
spatially resolved downstream effectors and identify context-
dependent interactions between CAFs and tumor cells in situ.
Likewise, insights from integrin-mediated mTOR/TGE-f3
overactivity in fibrotic valve disease illuminate how integrin-
mTOR axes drive profibrotic signaling and immune cell
recruitment (63). Translating these findings to CAF biology
suggests that integrin-mTOR inhibitors may synergize with
PHLDAI-targeted approaches to normalize the stroma and
enhance anti-tumor immunity. Altogether, integrating spatial
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CRISPR screens with targeted modulation of integrin-mTOR
pathways could accelerate the development of more precise,

microenvironment-focused therapies.

Conclusion

In conclusion, our study found a novel CAF cluster with strong
predictive significance and offered a thorough examination of ductal
cells and fibroblasts in the PC tumor microenvironment. According to
comprehensive RNA-seq and ST findings, the mCAF subset may
facilitate PC development by directly interacting with ductal cells.
Through additional pan-cancer analysis tests, we investigated the
function of PHLDALI. To sum up, we detailed the variety of CAFs in
PC and discovered a distinct mCAF isoform and target linked to tumor
growth, which enables us to better comprehend why immunotherapy is
so ineffective in this situation. The present research offers a workable
concept for upcoming PC medication interventions.
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Wuhan, Hubei, China

Objective: This study was conducted to determine the prognostic relevance of
neutrophil/eosinophil ratio (NER) in cancer patients receiving immune
checkpoint inhibition therapy.

Methods: A comprehensive search of the literature was carried out across
PubMed, EMBASE, and the Cochrane Library to identify relevant studies
published before May 2025. Key clinical endpoints included overall survival (OS),
progression-free survival (PFS), objective response rate (ORR), and disease control
rate (DCR). Additionally, a retrospective cohort analysis involving 67 hepatocellular
carcinoma (HCC) patients who received ICls at our center was undertaken to
evaluate the prognostic significance of NER with respect to OS and PFS.

Results: This meta-analysis incorporated 12 studies comprising a total of 1,716
patients. Higher baseline NER was consistently associated with poorer clinical
outcomes, including shorter OS (HR = 1.82, 95% ClI: 1.57-2.11, p < 0.001) and PFS
(HR = 1.62, 95% Cl: 1.34-2.97, p < 0.001), as well as lower ORR (HR = 0.50, 95%
Cl: 0.37-0.68, p < 0.001) and DCR (OR = 0.44, 95% CI: 0.31-0.61, p < 0.001).
Complementing these findings, analysis of a retrospective cohort from our
institution involving HCC patients revealed that individuals with higher NER
experienced significantly worse OS (p = 0.006) and PFS (p = 0.033) when
compared to those with lower NER levels.

Conclusion: These findings underscore the prognostic significance of
pretreatment NER in cancer patients receiving ICl therapy. Integrating NER into
standard clinical evaluation may enhance risk stratification and contribute to the
personalization of treatment strategies.

immune checkpoint inhibitors, neutrophil-to-eosinophil ratio, prognosis, cancer,
hepatocellular carcinoma
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1 Introduction

Cancer remains the leading cause of death worldwide and
continues to impose an increasingly severe threat to global health
systems (1). The advent of monoclonal antibodies that inhibit
immune checkpoints has ushered in a new era in oncology
therapeutics (2, 3). Therapies based on immune checkpoint
inhibitors (ICIs), particularly those targeting programmed cell
death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) and
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) pathways,
have emerged as central pillars in modern immuno-oncology (4, 5).
By reinvigorating immune responses or augmenting existing
antitumor immunity, these approaches have shown substantial
efficacy across a wide range of malignancies (6). Nonetheless, the
clinical benefits are often limited to a subset of patients, and the
absence of dependable predictive biomarkers remains a significant
challenge (7). This highlights an urgent need to discover not only
novel immunotherapeutic targets but also accessible, blood-derived
biomarkers that can guide treatment selection. Such advances
would expand the reach of ICI strategies and enhance their
clinical impact across diverse cancer populations.

Neutrophils and eosinophils are both derived from myeloid
progenitor cells but play distinct roles in the tumor
microenvironment. Increasing evidence indicates a dynamic interplay
between these two granulocyte populations (8, 9). Neutrophils often
promote tumor progression through immunosuppressive mechanisms
and facilitation of metastasis (8, 9), whereas eosinophils may exert anti-
tumor effects by enhancing cytotoxic immune responses and secreting
chemokines that recruit T cells. The NER, therefore, reflects a balance
between pro-tumor and anti-tumor inflammatory forces. Given this
biological rationale, NER has the potential to serve as an integrative
prognostic biomarker, particularly in patients undergoing immune
checkpoint inhibitor (ICI) therapy.

Emerging evidence suggests a potential link between a low
baseline neutrophil/eosinophil ratio (NER) and favorable clinical
outcomes in cancer patients receiving ICI therapy (10-12). In
contrast, studies by Pozorski et al. and Zhuang et al. found no
significant association between pretreatment NER and progression-
free survival (PFS) in cancer patients (13, 14). To reconcile these
contradictory results, the current study integrates both a meta-
analytic framework and retrospective cohort analysis to
comprehensively investigate the prognostic significance of NER in
cancer patients treated with IClIs.

2 Methods

2.1 Literature search strategy, inclusion and
exclusion criteria for the meta-analysis

Beginning in May 2025, a comprehensive electronic search was
conducted across PubMed, EMBASE, and the Cochrane Library
databases. The search utilized keywords such as “Neutrophil-to-
Eosinophil Ratio” and “Neutrophil/Eosinophil Ratio.” The
complete search syntax is available in the Supplementary
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Material. In addition to database retrieval, grey literature was
reviewed via Google Scholar, and the reference lists of all eligible
studies were manually screened for additional sources.

Studies were included if they met the following criteria: (1)
enrolled patients diagnosed with cancer; (2) involved treatment
with ICIs; (3) stratified patients into high and low NER groups; and
(4) reported at least one relevant clinical endpoint—namely, overall
survival (OS), PFS, objective response rate (ORR), or disease control
rate (DCR). Studies were excluded if they were conference abstracts
or commentary articles. When multiple publications reported on
overlapping patient cohorts, only the version with the most
complete dataset and rigorous methodology was included (15).

2.2 Data extraction and quality evaluation
for the meta-analysis

Key information was systematically extracted from each eligible
study, including the first author’s name, year of publication, study
period, geographic location, tumor classification, treatment strategy,
sample size, participant demographics (such as age and sex), and the
cutoff value. When available, hazard ratios (HRs) from multivariate
analyses were preferred over those from univariate models (16).

The methodological quality of the included observational
studies was assessed using the Newcastle-Ottawa Scale (NOS) for
cohort studies. This scale evaluates three broad domains: (1)
Selection of study groups (up to 4 points), including
representativeness of the exposed cohort, selection of the non-
exposed cohort, ascertainment of exposure, and demonstration that
outcome of interest was not present at the start of the study; (2)
Comparability of cohorts based on design or analysis (up to 2
points); and (3) Outcome assessment (up to 3 points), including
assessment of outcome, follow-up duration, and adequacy of follow-
up. Studies scoring more than six points were considered high
quality. All steps were performed independently by two reviewers.
Any discrepancies between reviewers were resolved through
consultation with the senior author.

2.3 Retrospective study cohort and data
acquisition

This study received approval from the institutional ethics
committee. Owing to its retrospective design, the requirement for
informed consent was waived. A historical cohort analysis was
conducted involving patients diagnosed with hepatocellular
carcinoma (HCC) who underwent treatment with ICIs combined
with anti-angiogenic agents at our center between Mar 2019 and
May 2023. Inclusion criteria mandated at least one measurable
tumor lesion as defined by RECIST version 1.1 (17).

Clinical and demographic information was extracted from
electronic medical records and included patient age, gender,
Eastern Cooperative Oncology Group performance status (ECOG
PS), underlying hepatitis type, presence of cirrhosis, Barcelona
Clinic Liver Cancer (BCLC) stage, Child-Pugh score, number of
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lesions, macrovascular invasion status, treatment line, modified
albumin-bilirubin (mALBI) grade, and serum alpha-fetoprotein
(AFP) levels. Tumor response and progression were evaluated
according to RECIST version 1.1 criteria. Follow-up imaging via
CT was routinely conducted at intervals of one to three months
after treatment initiation. PFS was defined as the time from the first
dose of immune checkpoint blockade to radiographic progression
or death, while OS was measured from treatment initiation to death
from any cause.

2.4 Statistical methods

Categorical data were expressed as absolute frequencies
accompanied by their respective percentages. Survival outcomes
across different subgroups were evaluated using the Kaplan-Meier
estimator in conjunction with the Cox proportional hazards
regression model. Meta-analytical computations were performed
with Stata version 18.0, and the results were graphically
summarized using forest plots. To quantify heterogeneity across
included studies, both the I? statistic and Cochran’s Q test were
applied. A heterogeneity level was considered significant if the I*
exceeded 50% or the corresponding p-value was below 0.1 (18).
When substantial variability was detected, the DerSimonian-Laird

10.3389/fimmu.2025.1633034

random-effects model was employed; otherwise, a fixed-effect
model using the Inverse Variance method was applied.

Publication bias was investigated through Begg’s and Egger’s
statistical tests (19). Sensitivity analyses were also conducted by
sequentially omitting individual studies to assess the influence of
each on the pooled HRs and overall effect estimates (20).
Furthermore, subgroup analyses were conducted by stratifying
data according to NER cutoff values and the type of Cox
regression model used. A two-tailed p-value of less than 0.05 was
considered to indicate statistical significance.

3 Results
3.1 Search results and study characteristics

An initial search across the databases, supplemented by manual
screening of reference lists, yielded a total of 208 potentially relevant
records. Following the removal of 54 duplicate entries, 125 studies
were excluded after evaluation of titles and abstracts, as they did not
meet the predefined inclusion criteria. A full-text assessment of the
remaining 32 articles resulted in the exclusion of 20 papers that failed
to satisfy the eligibility standards. Consequently, 12 studies were
ultimately included in the meta-analysis (10-14, 21-27) (Figure 1).

Records excluded
(n=125)

Full-text articles excluded, with
reasons (n = 20)

- Uncorrelated outcomes: n =3

Records identified through Additional records identified
= .
2 database searching through other sources
s (n=132) (n=176)
b=t
=
D
E A y
S Records after duplicates removed
— (n=157)
o0
=
‘= A 4
8
5 Records screened R
2 (n=157) g
A 4
Full-text articles
= assessed for eligibility > _ Unrelated studies: n = 15
= (n=32) :
=
& - Republication: n =2
=
Studies included in
— qualitative synthesis
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(meta-analysis)
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FIGURE 1
The flow diagram of identifying eligible studies
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Table 1 provides an overview of the key characteristics of the
included studies. In total, 1,716 individuals were enrolled, with
sample sizes ranging from 21 to 401 per study. Of the 12 studies, five
were conducted in the USA and two in Japan. Five studies involved
patients with renal cell carcinoma, two with urothelial carcinoma,
and two were pan-cancer studies. All studies employed a
retrospective design. Based on the NOS, quality scores ranged
from 6 to 8, indicating a low risk of bias (Table 1).

3.2 Baseline neutrophil/eosinophil ratio
and overall survival

This meta-analysis incorporated 12 qualified studies involving a
total of 1,716 patients to assess the prognostic relevance of the NER
on OS in individuals receiving ICI therapy. The aggregated HR
indicated a significant association between higher NER levels and
poorer OS outcomes (HR = 1.82, 95% CI: 1.57-2.11, p < 0.001;
Figure 2A). Between-study variability was negligible, as reflected by
Cochran’s Q test and an I? value (I* = 0, p = 0.444), supporting the
use of a fixed-effects model.

Robustness of the pooled results was validated through
sensitivity analysis, which involved the stepwise exclusion of each
individual study. The overall estimates for OS remained consistent

TABLE 1 Main characteristics of the studies included.

10.3389/fimmu.2025.1633034

throughout this process (Figure 2B). Furthermore, assessments for
publication bias using Begg’s and Egger’s tests revealed no
statistically significant evidence of bias (Begg’s p = 0.118; Egger’s
p =0.108).

Subgroup analyses demonstrated that both univariate (HR = 1.71,
95% CI: 1.42-2.08, p < 0.001) and multivariate regression approaches
(HR = 1.98, 95% CI: 1.57-2.49, p < 0.001) consistently revealed a
statistically significant link between elevated NER values and reduced
OS (Figure 3). Moreover, this inverse association remained evident
when the NER threshold exceeded 30 (HR = 1.91, 95% CI: 1.56-2.34,
p <0.001) or fell within the 20-30 range (HR = 1.81, 95% CI: 1.38-
2.36, p < 0.001, Supplementary Figure S1). In contrast, when the cut-
off point was below 20, NER failed to show prognostic value in
predicting OS among cancer patients (HR = 1.67, 95% CI: 0.73-3.81,
p = 0.227, Supplementary Figure S1).

3.3 Baseline neutrophil/eosinophil ratio
and progression-free survival

This meta-analysis included nine eligible studies encompassing
1,504 patients to investigate the prognostic impact of the NER on
PFS among individuals treated with ICIs. The pooled HR indicated
a strong correlation between elevated NER and unfavorable PES

Gender Cut

Treatment : NOS
(male/female) point
Yildirim et al., 01/2018- 66
veirim eta USA RCC ICIs ! 401 . 283/118 431 7
2025 (24) 08/2023 (18-95)
Pozorski et al., USA Melanoma Nivolumab 183 - 350 .
2023 (14) or pembrolizumab 2011-2022 113/70 :
Tucker et al., Avel i itini
ucker e USA RCC velumab p'u.s fun inib ~ 183 ~ ~ 292 s
2024 (25) or sunitinib
Zh t al., Nivolumab 56
uang € USA psce fvoluma 2012-2023 21 . - 494 6
2025 (13) or pembrolizumab (38-76)
Gambeale et al., . 72
2024 (10) Italian ucC Avelumab 2021-2023 109 (54 77y 89/20 28.1 7
Suzuki et al., Japan HNSCC 10/2017- 47 67 n 6
2022 (22) Nivolumab 12/2021 (29-84)° 39/8
Beul 1., K, Nivol ith
culque et a Ut RCC fivolumab with or 2012-2022 201 6 149/52 338 7
2024 (11) Belgium without ipilimumab (31-90)
Liang et al,, China Pan-cancer 01/2019- 46 64 18.43 ;
2023 (21) Anti-PD-(L)1 12/2021 (57.5-67)* 41/6 !
Tucker et al., Nivolumab 60.5
ueker et USA RCC fvouma 2016-2020 110 . 84/26 26.4 7
2021 (26) plus ipilimumab (54-69)
Varayathu et al., India Pan-cancer Nivolumab 61 58° 243 ;
2021 (23) or pembrolizumab 2017-2021 42/19 :
Furub: hi et al., 01/2018- 72
vrubayashi et a Japan ucC Pembrolizumab / 105 N 75130 13.7 7
2021 (27) 06/2021 (67-77)
Gil et al., 06/2017-
ce Portugal RCC Nivolumab 49 61(28-85)° 427 480 6
2022 (12) 04/2021

*median (IQR), "median (range), “median. ICIs, immune checkpoint inhibitors; RCC, renal cell carcinoma; UC, uothelial carcinoma; HNSCC, head and neck squamous cell carcinoma; pSCC,

penile squamous cell carcinoma.
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FIGURE 2

Forest plots depicting the association between the baseline neutrophil/eosinophil ratio and overall survival in cancer patients treated with ICls (A).
Sensitivity analysis of the association between baseline neutrophil/eosinophil ratio and overall survival in cancer patients treated with ICls (B). HR,

hazard ratio; Cl, confidence interval.

outcomes (HR = 1.62, 95% CI: 1.34-2.97, p < 0.001; Figure 4A).
Substantial heterogeneity was observed among the studies (I* =
41.8%, p = 0.089), warranting the use of a random-effects model.

Sensitivity analysis, performed through sequential removal of
each study, confirmed the stability of the combined PFS estimates
(Figure 4B). In addition, assessments for potential publication bias
using Begg’s and Egger’s tests did not indicate statistical evidence of
asymmetry (Begg’s p = 0.129; Egger’s p = 0.145).

Subgroup analyses further supported the association between
high baseline NER and reduced PFS, with consistent results
observed in both univariate (HR = 1.90, 95% CI: 1.32-2.75, p <
0.001) and multivariate models (HR = 1.46, 95% CI: 1.20-1.79, p <
0.001, Figure 5). Notably, this negative prognostic relationship was
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maintained when the NER cut-off was greater than 30 (HR = 1.66,
95% CI: 1.31-2.10, p < 0.001) or within the 20-30 range (HR = 1.62,
95% CI: 1.07-2.45, p < 0.001, Supplementary Figure S2).

3.4 Baseline neutrophil/eosinophil ratio
and objective response rate

Our study further investigated the association between NER
and ORR, incorporating data from six studies involving a total of
973 cancer patients. As no significant heterogeneity was observed
across these studies, a fixed-effect model was applied (I* = 42.4%,
p = 0.123). The meta-analysis demonstrated that patients with
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FIGURE 3

Subgroup analysis based on the Cox model revealed the relationship between the baseline neutrophil/eosinophil ratio and the overall survival of
cancer patients treated with immune checkpoint inhibitors. HR, hazard ratio; Cl, confidence interval.

elevated NER had a significantly lower ORR compared to those in
the low-NER group (OR = 0.50, 95% CI: 0.37-0.68, p <
0.001; Figure 6A).

Sensitivity analysis confirmed the robustness of this finding, as
sequential exclusion of individual studies did not materially alter
the overall effect estimate (Figure 6B). Assessments for publication
bias using Begg’s and Egger’s tests revealed no statistically
significant evidence of bias (Begg’s p = 0.328; Egger’s p = 0.428).
Moreover, subgroup analysis based on different NER cut-off values
consistently supported the observed association, indicating that the
inverse relationship between NER and ORR remained stable across
various threshold definitions (Supplementary Figure S3).

3.5 Baseline neutrophil/eosinophil ratio
and disease control rate

The relationship between NER and DCR among cancer patients
was analyzed based on four studies comprising 759 individuals. As
the analysis revealed no significant heterogeneity (I* = 0, p = 0.586),
a fixed-effects model was deemed appropriate. The aggregated
findings demonstrated that higher NER levels were significantly
correlated with a lower DCR compared to patients with lower NER
values (OR = 0.44, 95% CI: 0.31-0.61, p < 0.001; Figure 7A).

To assess the reliability of these results, sensitivity analyses were
performed by systematically excluding each study. The consistency
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of the effect estimates across iterations confirmed the robustness
and stability of the pooled outcome for DCR (Figure 7B).

3.6 Prognostic role of neutrophil/
eosinophil ratio in our HCC cohort

In view of the limited literature addressing the prognostic
relevance of the NER in hepatocellular carcinoma (HCC), we
conducted an analysis using patient data from our institution to
enhance current insights into NER as a prognostic biomarker
in oncology.

Supplementary Table 1 presents the baseline demographic and
clinical profiles of the 67 patients with HCC included in our cohort.
The median age was 58.2 years, with an age range spanning from
40.2 to 81.23 years. A predominance of male participants was
observed, accounting for 67.16% (n = 45) of the total. Regarding
performance status, 62.69% (n = 42) had an ECOG PS score of 0,
while the remaining 37.31% (n = 25) had a score of 1. Chronic viral
hepatitis was documented in 77.61% (n = 52) of the cohort, and
cirrhosis of the liver was present in 67.16% (n = 45). According to
the BCLC staging system, 5.97% (n = 4) were categorized as early
stage, 41.79% (n = 28) as intermediate stage, and 52.24% (n = 35) as
advanced stage. Microvascular invasion was identified in 35.82%
(n = 24) of patients, and AFP levels exceeded 400 ng/mL in 58.21%
(n = 39) of cases.
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FIGURE 4

Forest plots depicting the association between the baseline neutrophil/eosinophil ratio and progression-free survival in cancer patients treated with
ICls (A). Sensitivity analysis of the association between baseline neutrophil/eosinophil ratio and progression-free survival in cancer patients treated
with ICls (B). HR, hazard ratio; Cl, confidence interval. OR, odds ratio; Cl, confidence interval.

Patients were stratified into two subgroups according to the
median baseline NER threshold. Kaplan-Meier analysis
demonstrated that individuals with higher NER exhibited
markedly reduced OS (p = 0.006) as well as PFS (p = 0.033) when
compared to those with lower NER values (Figure 8).

4 Discussion

As a biomarker easily obtainable through routine hematological
testing, the NER offers a cost-efficient and widely accessible measure.
In this study, elevated baseline NER was significantly associated with
worse survival outcomes among cancer patients. Furthermore, its
prognostic relevance remained robust across varying regression
models and stratifications based on different threshold definitions.

Earlier investigations have demonstrated that increased
circulating neutrophil counts, along with their accumulation within
the tumor microenvironment, are linked to unfavorable responses to
immune checkpoint blockade therapies (8, 9). Tumor-associated
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neutrophils (TANs) contribute to poor clinical outcomes by
promoting processes such as aerobic glycolysis, angiogenic
signaling, formation of neutrophil extracellular traps (NETs), and
activation of immunosuppressive mechanisms (28-31).

While eosinophils are well-recognized for their involvement in
allergic conditions, parasitic infections, and certain viral responses,
their functions within the tumor microenvironment (TME) remain
comparatively underexplored relative to other immune cell subsets
(32). A growing body of literature has underscored their role in
tumor progression and metastasis. In vitro experiments suggest that
eosinophils contribute to tumor cell eradication by engaging in
complex cellular interactions with B lymphocytes, Th1/Th2 CD4" T
cells, and other granulocytes (33). Upon encountering tumor-
associated molecular signatures and receiving cues from the
immune milieu, eosinophils undergo degranulation, releasing a
spectrum of effector molecules—such as TNF-a, granzymes,
major basic protein (MBP), and metalloproteinases—that
facilitate immune cell recruitment, enhance antigen presentation,
and directly induce tumor cytotoxicity (34, 35).
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FIGURE 6

Forest plots depicting the association between the baseline neutrophil/eosinophil ratio and objective response rate in cancer patients treated with
ICls (A). Sensitivity analysis of the association between baseline neutrophil/eosinophil ratio and objective response rate in cancer patients treated
with ICls (B). OR, odds ratio; Cl, confidence interval.

Frontiers in Immunology

169

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1633034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Xu et al.

10.3389/fimmu.2025.1633034

A Study OR (95% Cl)  Weight%
Beulque et al. 2024 —'~— 0.51(0.28, 0.94) 32.15
Suzuki et al. 2022 _— 0.25(0.07,0.87) 7.68
Tucker et al. 2021 —+v— 0.31 (0.14, 0.69) 18.19
Yildirim et al. 2025 —r~— 0.49 (0.29, 0.83) 41.98
Overall, IV (I* = 0.0%, p = 0.586) <> 0.44 (0.31, 0.61)100.00

.061 1 1IO
B Meta-analysis estimates, given named study is omitted
Lower CI Limit O Estimate | Upper CI Limit

Beulque et al. 2024 | | O

Suzuki et al. 2022 | o)

Tucker et al. 2021 | O

Yildirim et al. 2025 O \

0.25 0.31 0.44 0.61 0169

FIGURE 7

Forest plots depicting the association between the baseline neutrophil/eosinophil ratio and disease control rate in cancer patients treated with ICls
(A). Sensitivity analysis of the association between baseline neutrophil/eosinophil ratio and disease control rate in cancer patients treated with ICls

(B). OR, odds ratio; ClI, confidence interval.

Moreover, eosinophils secrete ribonucleases and cationic
proteins capable of forming extracellular traps that promote
tumor cell lysis. In vivo models have demonstrated that CC-
chemokines play a critical role in guiding eosinophils into tumors
and enhancing their cytotoxic activity. Chemokines such as C-C
motif chemokine ligand 5 (CCL5), C-C motif chemokine ligand 11
(CCL11), C-X-C motif chemokine ligand 9 (CXCL9), and C-X-C
motif chemokine ligand 10 (CXCL10) are believed to be primary
mediators of eosinophil-driven tumor necrosis. Notably,
diminished expression of CCL11 has been linked to increased
tumor load and reduced eosinophil infiltration in preclinical
mouse models (36, 37).

Previous studies using melanoma models indicate that tumor
cell apoptosis itself may serve as a recruitment signal for
eosinophils. Although the precise mechanisms remain to be
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FIGURE 8

elucidated, retrospective clinical evidence in melanoma has hinted
at a favorable association between lower baseline NER or elevated
eosinophil counts and enhanced response to first-line
immunotherapy (38, 39). These mechanistic insights offer strong
biological support for the findings observed in our present study.
In addition to NER, several other peripheral blood-based
biomarkers have shown potential in predicting outcomes in
cancer patients undergoing immune checkpoint inhibitor therapy
(15, 28, 35, 37, 40). These include the neutrophil-to-lymphocyte
ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic
immune-inflammation index (SII), all of which reflect systemic
inflammation and immune status (28). For instance, elevated NLR
has been associated with worse prognosis in various malignancies
treated with ICIs (28, 35). While these markers may offer
complementary insights, there is currently no consensus on which
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Kaplan—Meier survival estimates for overall survival and progression-free survival are presented, stratified by baseline neutrophil-to-eosinophil ratio

levels in our cohorts. HR, hazard ratio; Cl, confidence interval.
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parameter provides the most reliable predictive value. Future
prospective studies are needed to directly compare the prognostic
performance of NER with these alternative indices and to determine
their utility in composite prognostic models.

Although this meta-analysis provides valuable insights, several
inherent limitations must be acknowledged. Most notably, the
analysis is based solely on retrospective cohort studies, which may
compromise the robustness and accuracy of the pooled estimates.
Additionally, variation in the definition of NER cut-off values across
the included studies introduces methodological inconsistencies. To
address these concerns, future investigations should focus on
prospective, multicenter trials employing harmonized protocols,
thereby improving the generalizability and clinical applicability of
NER as a prognostic indicator in oncology.

5 Conclusion

These findings underscore the prognostic utility of the
pretreatment NER in cancer patients receiving immune
checkpoint inhibitors. As a readily accessible and cost-effective
biomarker, NER could be integrated into standard oncology
workflows to support pre-treatment risk stratification. Future
prospective studies are warranted to validate standardized NER
thresholds and to assess its integration into clinical decision-making
algorithms for optimizing immunotherapy outcomes.
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Suppressing glutamine
metabolism in the pancreatic
cancer microenvironment can
enhance the anti-tumor effect of
CD8 T cells and promote the
efficacy of immunotherapy

Jun Fan*?**, Jianfei Chen*', Rui Wang?>*', Yisheng Peng?,
Sunde Tan??, Xi Zhang?**, Hao Tang*®, Maoshan Chen™,
Bo Li** and Xiaoli Yang***

‘Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining, Sichuan, China,
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Southwest Medical University, Luzhou, China, *Academician (Expert) Workstation of Sichuan Province,
Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated
Hospital of Southwest Medical University, Luzhou, China, “Department of Thyroid and Breast Surgery,
The First People's Hospital of Zigong, Zigong, Sichuan, China, *State Key Laboratory of Molecular
Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine,
School of Public Health, Xiamen University, Xiamen, China

Objective: This study aims to investigate the relationship between tumor cell
glutamine metabolism and CD8 T cells, with the goal of providing new insights to
improve immunotherapy for pancreatic cancer.

Methods: Using the The Cancer Genome Atlas — Pancreatic Adenocarcinoma
(TCGA-PAAD) cohort, we computed gene expression scores related to
glutamine metabolism and stratified patients into high- and low-score groups.
Prognosis and differences in immune cell anti-tumor activity were compared
between these groups. We further utilized single-cell RNA sequencing data to
quantitatively assess the expression of glutamine metabolism-related pathways
in tumor cells. Based on tumor-specific glutamine metabolism gene expression,
patients were again classified into high- and low-score groups. The immune
remodeling effects exerted by tumor cell glutamine metabolism on CD8 T cells
were subsequently investigated. To examine the impact of perturbing glutamine
metabolism within the tumor microenvironment on CD8 T cell phenotype and
the efficacy of PD-1 inhibitors, we conducted in vivo animal experiments.
Results: we analyzed the pancreatic cancer dataset in the cancer gene atlas
database. We found that tumor glutamine metabolism was negatively correlated
with patient prognosis and anti-tumor activity. Next, we defined two types of
CD8 effector T cells in single-cell RNA sequencing data, namely, effector
memory T cells (CD8-Tem) and terminally differentiated effector memory T
cells (CD8-Temra). Under the pressure of high glutamine metabolism in tumor
cells, the cytotoxicity of the CD8-Tem subset was reduced, and its immaturity
score increased, while the exhaustion score of the CD8-Temra subset increased.
Pseudotime analysis showed that CD8-Tn in the low-scoring group mainly
developed into CD8-Tem subset, and its immune activation pathway was
significantly upregulated. In addition, we found that the glutamine metabolism
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inhibitor JHUO83 promoted the infiltration of CD4 and CD8 T cells and
T lymphocyte differentiation, and increased the efficacy of PD-1 inhibitors.
Glutamine inhibitors can inhibit the apoptosis of immune cells in the tumor
microenvironment, while promoting CD8 T cells activation and
cytotoxicity increase.

Conclusion: Inhibition of glutamine metabolism within the pancreatic cancer
microenvironment results in reduced apoptosis of immune cells, heightened
activation and cytotoxicity of CD8 T cells, and a substantial enhancement in the
therapeutic efficacy of immunotherapy.

pancreatic cancer, glutamine, CD8 T cells, immunotherapy, JHU083

1 Introduction

Pancreatic cancer is highly invasive, and patients have a poor
prognosis (1-5). Currently, the efficacy of immunotherapy is
unsatisfactory (6-16). T lymphocytes are the main immune cells
infiltrating the tumor microenvironment of pancreatic cancer (17).
CD8 T cells play a critical role in eliminating malignant cells and can
provide long-term protective immunity (18-20). In tumor tissues,
high abundance of CD8 effector T cells is positively correlated with
the prognosis of pancreatic cancer patients (21, 22). However, CD8 T
cells generally exhibit low infiltration and low cytotoxicity in
pancreatic cancer (23-25). Existing studies have shown that the
tumor microenvironment in which CD8 T cells reside is correlated
with their developmental trajectory and determines their immune
response. That is, the tumor microenvironment determines the anti-
tumor ability of CD8 T cells (26). The classical theory has long held
that tumor cells mainly obtain energy by taking up glucose in the
immune microenvironment, and high glucose metabolism of tumor
cells is a core factor that reshapes the metabolic microenvironment of
tumors and prevents CD8 T cells from exerting their anti-tumor
ability (27-29). Inhibition of glucose metabolism has long been
regarded as an important strategy for treating tumors. However,
effective inhibitors of glucose metabolism for tumor treatment have
not been proven clinically so far. Recently, Professor Kimryn
Rathmell’s research found that in the tumor immune
microenvironment, tumor cells uptake more glutamine than
glucose. At the same time, they found that immune cells in the
tumor immune microenvironment are not lacking in glucose. In
contrast, the amount of glutamine uptake by a single tumor cell is
four times that of CD8 T cells (30). Therefore, it is possible that the
high metabolism of glutamine in tumor cells in the tumor immune
microenvironment leads to a change in the developmental trajectory
of CD8 T cells, resulting in a decrease in their anti-tumor effect.

Rapidly proliferating cells, such as tumor cells, exhibit unique
metabolic features to meet their high energy demands and
increasing synthesis requirements for structural materials such as
amino acids, nucleotides, and lipids, enabling sustained
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proliferation (31-34). Studies have also found increased
expression levels of the glutamine transporter in various tumors
(35), such as solute carrier family 1 member 5 (SLC1A5). The Myc
oncogene can directly promote upregulation of SLC1A5 (36). These
unique metabolic features increase the demand of tumor cells for
glutamine (GIn) to promote synthetic metabolism. These findings
suggest that tumor cells in the tumor microenvironment are
dependent on glutamine. We may have overlooked the impact of
tumor cell glutamine metabolism reshaping the tumor metabolic
microenvironment on the phenotype of CD8 T cells.

Therefore, it is hypothesized that the anti-tumor effect of CD8T
cell subpopulations may be diminished when pancreatic cancer
remodels the tumor microenvironment through high glutamine
metabolism. Disrupting such aberrant pancreatic cancer metabolic
microenvironments may potentially enhance the infiltration and
cytotoxicity of CD8 T cells, thereby increasing the efficacy of
immune checkpoint inhibitors.It is worth noting that overcoming
the immunosuppressive microenvironment often requires
combination strategies. For example, accumulated evidence has
shown that exercise can modulate a variety of cytokines, affect
transcriptional pathways, and reprogram certain metabolic
processes, ultimately promoting anti-tumor immunity and
enhancing the efficacy of immune checkpoint inhibitors in cancer
patients (37). Nonetheless, successfully targeting metabolic
pathways or integrating adjunctive therapies remains challenging
due to the highly complex and heterogeneous nature of the tumor
microenvironment, which poses obstacles for designing selective
and effective treatment strategies (38).

2 Methods

2.1 Source and data cleaning of pancreatic
cancer tissue block sequencing data

The FPKM gene expression matrix of pancreatic cancer tissue

block RNA sequencing data, as well as the corresponding clinical
follow-up information, can be downloaded from the Cancer
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Genome Atlas database (index number TCGA-PAAD) (https://
portal.gdc.cancer.gov/). All patients were diagnosed with pancreatic
cancer through pathology. After excluding patients with missing
clinical follow-up information, we obtained transcriptomic
expression matrices of 176 patients and their corresponding
clinical pathological parameters. By comparing with the genome
annotation file GRCh38, we screened 18,965 protein coding genes
and included them in the next analysis after removing
duplicate probes.

2.2 Downstream analysis of pancreatic
cancer tissue RNA sequencing data

According to the genes related to glutamine metabolism
(ALDHI18A1, GAPDH, GCLM, GLS, GOT1, MTHES, OAT,
SLC1A5, SLC38A1, SLC38A5, SLC7A5), we used the “ssGSEA”
function in the “GSVA” package to calculate the expression scores
of glutamine metabolism-related genes in tumor cells of each
patient. Similarly, as cytotoxicity-related genes (GZMK, GZMH,
GZMB, PRFI1, IFNG, EOMES, NKG7), immune cell exhaustion-
related genes (PDCDI1, TIGIT, HAVCR2, LAG3, CTLA4), and
immaturity-related genes (LEF1, SELL, TCF7, CCR7) are
specifically expressed in immune cells, tissue block sequencing
data can also be used to calculate the cytotoxicity scores of
immune cell subgroups in each patient to evaluate the immune
phenotype of immune cells in the immune microenvironment.
After setting the median score of glutamine metabolism-related
gene expression in patients’ pancreatic tissue as the grouping
intercept value, 176 patients were divided into high and low score
groups, and the relationship between the two groups and prognosis
was explored.

2.3 The origin and data cleaning of single-
cell RNA sequencing data

The single-cell RNA sequencing data used in this study were
obtained from the Gene Expression Omnibus (GEO) with
accession number GSE155698 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE155698) (39). Specifically, tumor
tissues from 12 pancreatic cancer patients were selected for
inclusion (4 patients were excluded due to fewer than 10 tumor
cells). Cells with gene counts of 50 or more were included in
downstream analysis if the same gene was expressed in at least 3
or more cells. Additionally, cells were excluded if their
mitochondrial gene ratio was greater than 4%, ribosomal gene
ratio was less than 2%, or hemoglobin gene ratio was greater than
10%. Finally, genes and cells meeting the aforementioned criteria
were used for downstream analysis.
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2.4 Clustering and biological annotation of
single-cell RNA sequencing data

The software R (version 4.1.2) was utilized for the analysis of
single-cell RNA sequencing data and tissue block sequencing data.
The gene expression matrix of all cells was normalized using the
built-in function “NormalizeData” from the Seurat package, with
the scaling factor set to 10,000. The “vst” algorithm from the
“FindVariableFeatures” function was employed to identify 3,000
highly variable genes. The expression matrix was then normalized
using the “ScalData” function, with all genes used as reference
genes. Principal component analysis was performed to identify
statistically significant principal components (P-value < 0.05). To
reduce data dimensionality, we used the t-distributed stochastic
neighbor embedding algorithm with the top 15 principal
components’ genes and performed clustering on all cells, with a
resolution of 0.1. Based on molecular markers summarized in
previous literature, we annotated the clustered cells as different
biological subgroups, including neutrophils (ITGAM, ITGAX),
epithelial cells (EPCAM, KRT18, KRT19), fibroblasts (TIMPI1,
FN1, ACTA2), mast cells (FCERIA, KIT), acinar cells (CTRBI,
CELA3A, PLA2GI1B), macrophages (CD68, CD163, LYZ), B cells
(CD38, TNFRSF17), and NK and T cells (KLRB1, PRF1, CD2,
CD3E, CD3D).

Identification of malignant epithelial cells: Since both malignant
and normal epithelial cells express similar molecular markers, it is
difficult to annotate the two subgroups based solely on differential
gene expression. As malignant tumor cells originate from normal
epithelial cells, the degree of malignancy often accompanies
variations in chromosome structure and number. Therefore, in
this study, we used the R package “infercnv” (https://github.com/
broadinstitute/inferCNV) to calculate copy number variations
(CNVs) in each of the 22 chromosomes of each cell based on its
transcriptome, thereby defining malignant tumor cells and normal
epithelial cells. The CNVs of each cell were sorted and classified by
the position of the genes on the chromosome, and a moving average
was applied to the relative expression values using a sliding window
of 100 genes per chromosome. The reference cells were set as 1000
fibroblasts and 1000 T cells. Based on the obtained CNV matrix, an
unsupervised clustering algorithm was used to divide all
unidentified cells into multiple subgroups with varying copy
numbers, with the subgroup with the lowest copy number and
closest to the reference cell line defined as normal epithelial cells,
and the rest defined as malignant tumor cells.

After extracting NK cell and T cell subpopulations, we used the
‘Harmony’ package to remove batch effects and reduce any
unnecessary biological or technical factors. Next, the same
standardization and dimension reduction procedures were applied
to the T cell subpopulations. The functions ‘FindNeighbors’ and
‘FindClusters” were used to identify individual cell subpopulations,

frontiersin.org


https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155698
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155698
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://doi.org/10.3389/fimmu.2025.1599252
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Fan et al.

with a resolution set at 0.8. The biological background of each
subpopulation was annotated using known molecular markers.
CD4 T cell subpopulations included CD4Tn (TCF7, SELL, IL7R,
CCR7, LEF1, MAL), CD4Trg (FOXP3, PDCD1, CTLA4, TIGIT,
BATF), CD4Tm (S100A4, S100A10, ANXA1, IL7R, KLF2),
CD4Th17 (CCR6, IL2, DPP4, RORA, IFNGRI1), and CD4Tfh
(CXCL13, GNG4, CD200, IGFL2, TOX2). CD8 T cell
subpopulations included CD8Tem (CD8 effector memory cells)
(GZMK, GZMH, DUSP2, ITM2C, CD74, EOMES, CST7),
CD8Trm (ZNF683, IL7R, ANXA1, CD55, GZMA, HOPX,
CXCR6, ITGA1), CD8Temra (CD8 terminally differentiated
effector memory cells) (GZMA, GZMH, GZMB, ZEB2, TBX21,
NKG7, PLEK, KLRD1), CD8Tcl7 (SLC4A10, CEBPD, NCR3,
IFNGRI1, RORA, LTK), and CD8Tn (CD8 naive T cells) (CCR7,
LEF1, TCF7, SELL). The NK cell subpopulations included
NK-FCGR3A (+) cells (NCAM1, CD160, FCGR3A) and
NK-FCGR3A (-) cells (NCAM1, CD160). Some T cell
subpopulations could not be mapped to known molecular
markers after clustering (40) and were therefore not
biologically annotated.

2.5 Patient grouping and pathway
enrichment score calculation

Based on the glutamine metabolism-related genes (ALDH18A1,
GAPDH, GCLM, GLS, GOT1, MTHES, OAT, SLC1A5, SLC38A1,
SLC38A5, SLC7A5), we calculated the expression scores of
glutamine metabolism-related genes in tumor cells (GStumor)
and CD8 T cells (GSimmune) using the “ssGSEA” algorithm in
the “GSVA” package. After dividing the patients into high-score
and low-score groups based on the median of GStumor scores from
12 patients, we compared the differences in the scores of
cytotoxicity-related gene sets (GZMK, GZMH, GZMB, PRFI1,
IFNG, EOMES, NKG7), exhaustion-related gene sets (PDCDI,
TIGIT, HAVCR2, LAG3, CTLA4), and naive-related gene sets
(LEF1, SELL, TCF7, CCR7) between the different GStumor
groups in CD8T subpopulations (CD8Tem and CD8-Temra).

2.6 Gene set enrichment analysis of
tumor-infiltrating CD8 T cells

Gene Set Enrichment Analysis (GSEA) is a statistical method
used to calculate the distribution trend of genes and determine their
contribution to a specified phenotype, based on the comparison of
sorted genes related to the phenotype and predefined gene sets.
Compared to GO and KEGG enrichment analysis, GSEA can avoid
the influence of subjective bias and retain more effective
information, while also allowing for quantitative assessment of
pathway activation. In this study, we downloaded multiple gene
sets, including C2: CP: KEGG, C2: CP: REACTOME, and C5: GO
(BP, MF, and CC) from the MsigDB website (https://www.gsea-
msigdb.org/gsea/msigdb/). We selected the CD8Tem and CD8-
Temra subsets, used the “FindAllMarkers” function to select
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differentially expressed genes that were upregulated and
downregulated in the CD8Tem subset of patients in the low-score
group, and calculated the fold change corresponding to these genes.
Finally, we used the “GSEA” function in the “clusterProfiler”
package to sort the gene sets according to fold change from high
to low and perform enrichment analysis, obtaining enrichment
scores for different pathways. The same method was used to process
the CD8-Temra subset. We used the “AUCell_exploreThresholds”
function to distinguish between high and low AUC values, which
automatically defines the threshold for the bimodal distribution to
determine the “activation” or “inactivation” status of cells in the
relevant pathway gene set, respectively.

2.7 Under the influence of tumor cell
glutamine metabolism, the developmental
trajectory of tumor-infiltrating CD8
effector T cells

To investigate the differences of tumor-infiltrating CD8 effector
T cells under different tumor cell glutamine metabolism pressures,
we calculated the cytotoxic scores and cell proportions of these
three CD8 T cell subsets (CD8-Tn, CD8-Tem, and CD8-Temra)
and their changes between the two patient groups and performed
pseudo-time gene dynamic analysis on the three CD8 T cell subsets
(CD8-Tn, CD8-Tem, and CD8-Temra) using the “Monocle2”
package in R. Monocle2 can use unsupervised machine learning
and reverse graph embedding algorithms based on single-cell
transcriptome expression matrices to place cells on different
branches of the developmental trajectory to simulate the
biological process of the cell population, forming a “one-root-
two-branches” cell development tree diagram, in which cells on
the same branch have the same gene expression features and
differentiation status. This pseudo-time analysis can infer the
differentiation trajectory of cells or the evolution process of cell
subtypes during development, and identify key genes and pathway
changes that affect branch formation. We extracted three objects,
including gene expression matrix, gene information, and cell
phenotype information, and constructed them into a
“CellDataSet” object. The “estimateSizeFactors” function can
standardize the transcriptome expression matrix. Using the
“FindAllMarkers” function, we screened for upregulated genes in
CD8-Tef (CD8-Tem and CD8-Temra) under these two metabolic
modes, and then used the “DDRTree” algorithm to project all cells
onto a two-dimensional plane and arrange them in order
of branching.

2.8 Establishment, grouping, and drug
intervention of a mouse model

A cell suspension of 0.1 ml at a concentration of 1x10A6/ml
Panc02 tumor cells (i.e., 1x10A5 cells per mouse) was inoculated
into the right groin area of each mouse. On day 6 post-inoculation,
the length and width of the subcutaneous tumors in the mice were
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observed and recorded, and the volume of the subcutaneous tumors
was calculated using the formula: V (mm#3) = length (mm) x width
(mm) x width (mm) x 7/6. Twenty mice with subcutaneous tumors
of similar volumes were selected and randomly divided into four
groups (five mice per group):

1. Control group (VEH): orally administered with 100 UL of
0.9% saline solution per day and intraperitoneally injected
with 100 pL of 0.9% saline solution once every three days
for 20 consecutive days.

2. Glutamine metabolism inhibitor group (JHU083): orally
administered with 100 puL of JHUO083 solution in saline
(1 mg/kg/d) per day and intraperitoneally injected with
100 UL of 0.9% saline solution once every three days for
20 consecutive days.

3. Immune checkpoint inhibitor group (Anti-PD-1):
intraperitoneally injected with 100 uL of PD-1
monoclonal antibody solution in saline (1 mg/kg/d) once
every three days and orally administered with 100 uL of
0.9% saline solution per day for 20 consecutive days.

4. Combination of glutamine metabolism inhibitor and
immune checkpoint inhibitor group (JHU083+Anti-PD-
1): orally administered with 100 UL of JHUO083 solution in
saline (1 mg/kg/d) per day and intraperitoneally injected
with 100 uL of PD-1 monoclonal antibody solution in
saline (1 mg/kg/d) once every three days for 20
consecutive days.

The length and width of the tumors were measured every two
days, and the volume of the subcutaneous tumors was calculated
accordingly. All mice were euthanized after being fed for 27 days, and
subcutaneous tumor samples were harvested immediately after
euthanasia. To ensure humane euthanasia, mice were placed in a
CO,chamber with a flow rate set at 30% of the chamber volume per
minute, following approved welfare guidelines. The CO,concentration
was gradually increased to induce unconsciousness, followed by
respiratory and cardiac arrest.

2.9 Quantitative real-time polymerase
chain reaction

Approximately 50 mg tumor tissue was grind and crushed, add
an appropriate amount of Trizol lysis solution to it and lyse it
thoroughly on ice. The lysate was then transferred to an enzyme-
free EP tube and centrifuged at 4°C, 12,000 rpm/min for 10 min; the
supernatant obtained by centrifugation was then transferred to
another EP tube, chloroform was added, the supernatant and
chloroform were mixed and left to stand for 15 min, next
centrifuged at 4°C, 8,000 rpm/min for 15 min. Wash with 75%
ethanol solution, centrifuge for 15 min at 4°C at 12000 rpm/min,
add 20 ul DEPC water to the precipitate, wait for the precipitate to
dissolve, measure the mRNA concentration. mRNA was collected
and reverse transcribed into ¢cDNA, which were amplified in
triplicate using SYBR Green PCR Master Mix (Guangzhou
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RiboBio Co), 10 pmol of primer (Supplementary Table S1), and
20 ng of cDNA per reaction with the StepOnePlus (Roche
LightCycler 96). Quantitation was performed using the
AACt method.

2.10 Immunohistochemistry

All pathological diagnoses were made independently by 2 senior
physicians in the Department of Pathology, and controversial
diagnoses were assessed by a third physician and then decided by
joint consultation. The specific steps of staining were as follows.

1. Dewaxing and hydration: The slices were placed in the oven
at a temperature of 60°C for 90 min, then placed in xylene
for 30 min for dewaxing, then the slices were immersed in
ethanol (anhydrous ethanol, 95% ethanol, 75% ethanol) in
a gradient from high to low concentration for 5 min, and
finally rinsed repeatedly with double-distilled water for
5 min.

2. Antigen repair and peroxidase removal: The treated tissue
sections were placed in a repair cassette with 200 ml of
ethylene glycol tetraacetic acid (EDTA) solution, then
placed in an autoclave with double-distilled water, first
heated to vapour, then allowed to cool, and then rinsed
with double-distilled water. The sections were then placed
in 3% hydrogen peroxide solution (H202) for 10 min
incubation protected from light, allowed to cool and then
soaked 3 times with double distilled water for 5 min each
and rinsed with PBS for 5 min.

3. Addition of antibody, colour development, re-staining and
blocking: sections were added dropwise with antibody
(KI67, CD3 and CD8) diluted at 1:200 and refrigerated
overnight at 4°C. The next day the sections were washed
three times with PBS for 5 min each time. Second day, the
sections were washed three times with PBS for 5 min each
time, shaken dry, incubated with secondary antibody for 30
min, and washed three times with PBS for 5 min each time.
The reaction was terminated by adding a drop of DAB
staining solution to the sections and observing a positive
reaction under the microscope. After washing, the sections
were fractionated with ethanol hydrochloride solution,
then washed, dehydrated, sealed and labelled.

4. After the above steps were completed, the pathological
sections were observed under an inverted fluorescent
microscope. The expression levels of KI67, CD3 and CD8
proteins were measured with Image J software.

2.11 Flow cytometry

Immune cell populations were identified via flow cytometry
from respective dissociated whole tumor cell suspensions.
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(1) After mechanically cutting the tumor tissue, it was filtered
with 300 mesh filter cloth, centrifuged with 300 g for 5 min, and the
cell concentration was adjusted to 10*6/mL with PBS. (2) 1 pg
antibody (CD8a, CD3, c¢d49b, CD45, CD4, LIVE/DEAD) were add
into 100 pL cell suspension in the sterile EP tube. Dye at 4 °C for 30
min without light after mixing. (3) Adding 1000 uL PBS to wash the
mixture, the supernatant was removed after centrifuging with 300g
for 5min. (4) Cells were resuspended by 400 uL PBS and then
detected by ZE5 flow cytometry, flow cytometry data were analyzed
using FlowJo software.

2.12 Immunocyte apoptosis detection

(1) Take 100 UL of the immunocyte suspension separated from
“Flow cytometry (1)” and centrifuge at 300g for 5 minutes. Discard
the supernatant and resuspend the cells in 100 puL of binding buffer.
(2) Add 5 pL of Annexin V-FITC staining fluorescent dye and
incubate for 10 minutes at room temperature in the dark. (3) Add
10 uL of PI staining dye and incubate for 5 minutes at room
temperature in the dark. Add 400 pL of PBS and resuspend the cells.
Immediately detect the cells using a flow cytometer. (4) Analyze the
data using Flow]Jo software and a ZE5 flow cytometer.

2.13 Statistical analysis

The statistical analysis of the experimental data was performed
using R software (version 4.1.2) in accordance with the conventions
of medical academic papers. In this study, Kaplan-Meier survival
analysis was performed to compare overall survival (OS) among
different groups. In this study, overall survival (OS) was defined as the
time interval from the date of diagnosis (the starting point) to the date
of death from any cause (the endpoint). For patients who were still
alive or lost to follow-up by the time of analysis cutoff, their OS time
was censored at the date of the last known follow-up. All OS and
follow-up data were obtained from clinical follow-up records within
the TCGA database. If the data were normally distributed, t-test was
used for comparison. If not, Wilcoxon rank sum test was used
instead. P value less than 0.05 was considered statistically
significant. 0.05 < P value < 0.10 as indicative of borderline
significance. Wilcoxon and t-tests were adjusted for using the
Benjamini-Hochberg method via the p.adjust function in R.

3 Result

3.1 The scoring of genes related to
glutamine metabolism in tumor tissue is
negatively correlated with patient
prognosis and anti-tumor immune
presentation

To distinguish between high and low metabolism of glutamine
and to clarify the relationship between glutamine metabolism levels
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and prognosis of pancreatic cancer patients, we scored the
expression of glutamine metabolism-related genes (ALDHI18A1,
GAPDH, GCLM, GLS, GOT1, MTHES, OAT, SLC1A5, SLC38A1,
SLC38A5, SLC7A5) in tumor cells of 176 patients in TCGA cohort,
and divided them into high and low scoring groups based on the
median value (Figure 1A). Hierarchical clustering results also
demonstrated the expression differences of glutamine
metabolism-related genes between these two patient groups,
indicating that unsupervised clustering algorithms can
significantly separate these 176 pancreatic cancer patients based
on glutamine metabolism-related genes (Figure 1B). Kaplan-Meier
curves showed that patients in the high scoring group had a worse
prognosis. In the high scoring group, the overall survival rates at 1,
3, and 5 years were 63.1%, 27.1%, and 22.6%, respectively. However,
in the low scoring group, the overall survival rates at 1, 3, and 5
years were 82.1%, 41.0%, and 27%, respectively, suggesting a
negative correlation between glutamine metabolism and
pancreatic cancer prognosis (Figure 1C). The baseline
characteristics of the patients are detailed in Supplementary
Table S3.

In order to investigate whether the metabolism of glutamine in
tumor cells affects the anti-tumor activity of immune cells in
pancreatic cancer, we used single-sample gene set enrichment
analysis (ssCSEA) to study the relationship between glutamine
metabolism in tumor cells and immune infiltration, cytotoxic
gene set (GZMK, GZMH, GZMB, PRF1, IFNG, EOMES, NKG7),
immune exhaustion gene set (PDCD1, TIGIT, HAVCR2, LAG3,
CTLA4), and immature-related gene set (LEF1, SELL, TCF7, CCR7)
in the pancreatic cancer microenvironment. Immune infiltration
analysis revealed a trend toward higher CD8+ T cell infiltration in
the tumor immune microenvironment of the low glutamine score
group compared to the high glutamine score group (P = 0.059)
(Figure 1D). In the low score group, the immune cell cytotoxicity-
related gene score was significantly higher than that in the high
score group (Figure 1E). By plotting the glutamine score and
immune cell cytotoxicity score of the two groups, we found that
there was a negative correlation between tumor cell glutamine
metabolism and immune cell cytotoxicity in the high score group
(Figure 1F). In terms of immune exhaustion score, we found that
the low score group was significantly higher than the high score
group (Figure 1G), which indicates a negative correlation between
tumor cell glutamine metabolism and immune cell exhaustion. To
determine whether the low immune cell exhaustion score in the
high glutamine score group is related to the level of immature
immune cells, we plotted the glutamine score and immature-related
gene set (LEF1, SELL, TCF7, CCR7) of the two groups, and found
that as the glutamine score increased in tumors with high glutamine
metabolism, the expression of immature immune cell genes
increased significantly (Figure 1I). This may suggest that the
decrease in immune cell cytotoxicity in the high glutamine
metabolism group of tumor cells is related to the level of
immature immune cells. The results of this study indicate that as
the glutamine metabolism in tumors increases, immune cells
become more immature, while the scores of immune cell
cytotoxicity and exhaustion decrease.
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FIGURE 1

The expression scores of glutamine metabolism-related genes in the tumor microenvironment of pancreatic cancer are closely correlated with

the anti-tumor activity of immune cells and the prognosis of patients. (A) The upper curve shows the distribution of glutamine metabolism-related
gene expression scores in tumor cells of all pancreatic cancer patients. The lower dot plot shows the survival status and survival time of all patients
sorted by tumor glutamine metabolism-related gene expression scores from low to high. (B) The heatmap shows the expression levels of glutamine
metabolism-related genes between two groups. Blue represents low metabolism group, and red represents high metabolism group. (C) This
Kaplan-Meier curve shows the difference in overall survival rate between different groups. (D) The box plot shows the degree of infiltration of

22 immune cells in the tumor microenvironment. (E, G) Differences in cell toxicity score and exhaustion score of CD8T cells between the two
groups. (F, H) Fitting curves of glutamine metabolism score of tumors in the two groups with cell toxicity score and exhaustion score. The
correlation coefficient and significance test were calculated and marked in the upper left corner. (1) Fitting curves of glutamine metabolism score of
tumor cells in the two groups with expression levels of immature-related genes. The correlation coefficient and significance test were calculated
and marked in the upper left corner.
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3.2 Identification of subpopulations and
patient stratification using single-cell
transcriptome sequencing data

To obtain a comprehensive single-cell gene expression atlas of
the pancreatic cancer immune microenvironment, we used the
program package ‘Seurat’ to identify differential genes and cell
types in 12 pancreatic cancer patients. A total of 39,719 qualified
cells were annotated as nine major cell subtypes and one undefined
cell subtype (Figure 2A). The major cell subtypes include
neutrophils (ITGAM, ITGAX), epithelial cells (EPCAM, KRT18,
KRT19), fibroblasts (TIMP1, FN1, ACTA2), mast cells (FCERIA,
KIT), acinar cells (CTRB1, CELA3A, PLA2GIB), macrophages
(CD68, CD163, LYZ), B cells (CD38, TNFRSF17), and NK/T cells
(KLRB1, PRF1, CD2, CD3E, CD3D) (Figure 2C). Tumor cells were
identified using the INFERCNV algorithm (https://github.com/
broadinstitute/inferCNV). As no known molecular markers were
mapped to the undefined cell subtype, it was not included in
this study.

In order to investigate the impact of tumor cell glutamine
metabolism on immune subpopulations in the immune
microenvironment of pancreatic cancer, we divided 12 patients
into a high-scoring group (P01, P6, P5, P16, P3, P11) and a low-
scoring group (P8, P2, P13, P15, P7, P8) based on the expression
scores of glutamine metabolism-related genes in tumor cell
subpopulations (Figure 2F). At the same time, we found that in
the low-scoring group of tumor cell glutamine metabolism, the
glutamine scores of T cells and NK cells were mostly higher than
those of tumor cell glutamine scores. In contrast, the opposite was
true in the high-scoring group of tumor cell glutamine metabolism
(Figures 2G, I). Interestingly, compared with the low-scoring group,
the high-scoring group had more tumor cells (24% vs 19%) and
fewer T cells and NK cells (21% vs 23%) (Figures 2H, J). This
suggests that in the immune microenvironment of pancreatic
cancer, high tumor cell glutamine metabolism will be
accompanied by low metabolism of immune cells and low
infiltration of T cells and NK cells.

3.3 In the immune microenvironment of
pancreatic cancer, the glutamine
metabolism of tumor cells can affect the
anti-tumor activity of CD8 T cells

To further investigate the effect of tumor cell glutamine
metabolism on CDS8 effector T cells, we identified 8700 T cells
and NK cells into 12 known cell subpopulations and one undefined
cell subpopulation based on known molecular markers (Figures 3A,
B). CD4 T cell subpopulations included CD4Tn (TCF7, SELL, IL7R,
CCR7, LEF1, MAL), CD4Trg (FOXP3, PDCD1, CTLA4, TIGIT,
BATF), CD4Tm (S100A4, S100A10, ANXA1, IL7R, KLF2),
CD4Th17 (CCR6, IL2, DPP4, RORA, IFNGR1), and CD4Tth
(CXCL13, GNG4, CD200, IGFL2, TOX2). CD8 T cell
subpopulations included CD8Tem (GZMK, GZMH, DUSP2,
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ITM2C, CD74, EOMES, CST7), CD8Trm (ZNF683, IL7R,
ANXA1, CD55, GZMA, HOPX, CXCR6, ITGA1l), CD8Temra
(GZMA, GZMH, GZMB, ZEB2, TBX21, NKG7, PLEK, KLRD1),
CD8Tc17 (SLC4A10, CEBPD, NCR3, IFNGRI1, RORA, LTK), and
CD8Tn (CCR7, LEF1, TCF7, SELL). NK cells included NK-
FCGR3A(+) cells (NCAM1, CD160, FCGR3A) and NK-
FCGR3A(-) cells (NCAMI1, CD160). Both CD8Tem and
CD8Temra subpopulations belonged to CD8-Tef (Figures 3A, B).
Some T cells could not be mapped to known molecular markers
after grouping, so they were not biologically annotated. The two t-
SNE plots and pie charts show the composition ratio of T cell and
NK cell subpopulations in the two populations (Figure 3I).

3.3.1 Influence of tumor cells glutamine
metabolism on CD8 effector T cells cytotoxicity

To investigate the effect of tumor cell glutamine metabolism on
CD8 effector T cell cytotoxicity, we calculated a cytotoxicity score
for each T cell based on the expression levels of immune cell
cytotoxicity-related genes (GZMK, GZMH, GZMB, PRF1, IFNG,
EOMES, and NKG7). The cytotoxicity score of T cells in the high
glutamine metabolism group of tumor cells was significantly lower
than that in the low glutamine metabolism group, and the difference
was statistically significant (Wilcoxon test, p = 2.8 x 10—6). Further
study of CD8 effector T cells (CD8T-Tem and CD8T-Temra)
revealed that the immune cell cytotoxicity score of CD8T-Tem in
the high glutamine metabolism group was significantly lower than
that in the low glutamine metabolism group, and the difference was
statistically significant (Wilcoxon test, p = 4.7 x 10-5). However,
there was no statistically significant difference in the immune cell
cytotoxicity score of CD8T-Temra between the high and low
glutamine metabolism groups (Figure 3C). These findings suggest
that high tumor cell glutamine metabolism is associated with a
decrease in cytotoxicity of the CD8T-Tem subset, while there is no
apparent correlation between the cytotoxicity of the CD8T-Temra
subset and tumor cell glutamine metabolism.

3.3.2 Influence of tumor cells glutamine
metabolism on CD8 effector T cells exhaustion

In order to investigate the impact of tumor cell glutamine
metabolism on CDS8 effector T cell exhaustion, we calculated an
exhaustion score for each T cell based on the expression levels of
immune exhaustion-related genes (PDCDI1, TIGIT, HAVCR2,
LAG3, and CTLA4). In T cells, the immune exhaustion score of
the high glutamine metabolism group was significantly lower than
that of the low group, with a statistically significant difference
(Wilcoxon test, p = 2.2 x 10-16), but this difference was not
significant in CD8-Tem (Wilcoxon test, p = 0.081). In CD8-
Temra, the immune exhaustion score of the high glutamine
metabolism group was actually higher than that of the low group,
with a statistically significant difference (Wilcoxon test, p = 0.0046)
(Figure 3D). This suggests that high glutamine metabolism in
tumor cells is associated with exhaustion in the CD8-Temra
subset, but not with exhaustion in the CD8-Tem subset.
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FIGURE 2

Biological annotation of single-cell sequencing data. (A) The t-SNE plot displays all the cellular subpopulations present in the tumor
microenvironment of pancreatic cancer patients. Different colors represent different cell types. The cellular subpopulations are annotated as shown
in the figure. (B) The heatmap shows copy number variations of all genes on 22 chromosomes in normal epithelial cells and malignant epithelial
cells. All cells are classified into 7 groups using unsupervised clustering algorithm. The group with the lowest copy number variation is identified as
normal epithelial cells, while the rest are malignant epithelial cells. (C) The bubble plot shows the expression levels of molecular marker genes and
cell proportions in each cellular subpopulation. The color of the dot represents the average expression level of the gene, with red indicating high
expression and blue indicating low expression; the size of the dot represents the cell proportion. (D) This boxplot shows the difference in copy
number variation scores between the 7 epithelial cell subpopulations. (E) We demonstrate the difference in copy number variation scores between
the reference cell line, normal epithelial cells, and malignant epithelial cells (tumor cells) after biological annotation. (F) This scatterplot divides 12
pancreatic cancer patients into high- and low-metabolism groups based on the expression score of glutamine metabolism-related genes in tumor
cells. (G, H) The boxplot (G) displays the expression score of glutamine metabolism-related genes in tumor cells, T cells, and NK cells of 6 low-
metabolism group patients, while the pie chart (H) shows the composition ratio of all cell subpopulations in this group. (I, 3) The boxplot (I) displays
the expression score of glutamine metabolism-related genes in tumor cells, T cells, and NK cells of 6 high-metabolism group patients, while the pie
chart (J) shows the composition ratio of all cell subpopulations in this group.
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FIGURE 3

Immune functional differences of CD8+ T cell subsets among different populations. (A) The t-SNE plot displays T cell and NK cell subpopulations
from the tumor microenvironment of pancreatic cancer patients. Different colors represent different cell types. Subpopulation annotations are
shown in the figure. (B) The bubble plot shows the expression levels and cell proportions of molecular markers in each cell subpopulation. The color
of the dots represents the average expression level of the gene, with red indicating high expression and blue indicating low expression. The size of
the dots represents the cell proportion. (C-E) These three sets of boxplots show the differences in cell cytotoxicity score, exhaustion score, and
naive score of the entire T cell subpopulation and its CD8-Tem and CD8-Temra subpopulations between two groups. (F) We show the fitting curve
between the tumor cell glutamine metabolism-related gene expression score of the two groups and the naive score of CD8-Tem and CD8-Temra
subpopulations. (G, H) We separately display the fitting curves between the naive score and exhaustion score and cell cytotoxicity score of four
subpopulations (CD8-Tem, CD8-Temra, NK-FCGR3A(-), and NK-FCGR3A(+)) in the high and low metabolism groups. (I) Two sets of t-SNE plots and
pie charts show the composition ratio of T cell and NK cell subpopulations in two groups. (J) The bar graph displays the pathway enrichment
differences between CD8-Tem and CD8-Temra subpopulations between the two groups. (K, L) The t-SNE plots on the left show the enrichment
levels of two pathways in all T cells and NK cells, and the bar graphs on the right show the activation ratio of the two pathways between CD8-Tem
and CD8-Temra subpopulations.
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3.3.3 Influence of tumor cells glutamine
metabolism on CD8 effector T cells maturity

In order to investigate the impact of tumor cell glutamine
metabolism on the development of CD8 effector T cells, we used
immature immune cell-related genes (LEF1, SELL, TCF7, CCR7) to
score the immaturity of each T cell. In the high glutamine
metabolism group of tumor cells, the immature scores of T cells
and CD8-Tem were significantly higher than those in the low score
group, with significant statistical differences (Wilcoxon test, p = 2.2 x
10-16, p = 6.7 x 10-5), while there was no statistical difference in
immature scores between the two groups of CD8-Temra (Figure 3E).
We analyzed the fitting curves of tumor cell glutamine metabolism
score and immature scores of CD8-Tem and CD8-Temra subsets in
the two groups and found that in the high glutamine metabolism
group of tumor cells, the immature scores increased with the increase
of tumor cell glutamine metabolism score, and the difference in
CD8-Tem subset had statistical significance (R = 0.89, p = 0.018)
(Figure 3F). This indicates that the higher the level of tumor cell
glutamine metabolism, the more immature the CD8-Tem subset,
and the immaturity level of CD8-Temra subset may not be related to
tumor cell glutamine metabolism.

3.3.4 Is there correlation between CD8 effector T
cells cytotoxicity and between immaturity scores
and exhaustion scores?

The Figure 3G shows the fitted curves between the cytotoxicity
scores and the immaturity scores of four cell subpopulations (CD8-
Tem, CD8-Temra, NK-FCGR3A(-), and NK-FCGR3A(+)) of
tumor cells with high and low glutamine scores. The immune cell
cytotoxicity of CD8-Tem (high score group: R=-0.14, p=0.022; low
score group: R=-0.12, p=0.0031), NK-FCGR3A(-) (high score
group: R=-0.26, p=6.2x10-8; low score group: R=-0.24,
p=0.00012), and NK-FCGR3A(+) (high score group: R=-0.26,
p=2x10-5; low score group: R=-0.019, p=0.72) subpopulations
decreased as the immaturity scores increased, especially in the
high glutamine score group of tumor cells. However, there was no
significant correlation between the cytotoxicity of CD8-Temra
subpopulation and the immaturity scores. The Figure 3H shows
the fitted curves between the cytotoxicity scores of four
subpopulations (CD8-Tem, CD8-Temra, NK-FCGR3A(-), and
NK-FCGR3A(+)) of tumor cells with high and low glutamine
scores and the exhaustion scores. The two t-SNE plots and pie
charts show the composition ratio of T cell and NK cell
subpopulations in the two populations (Figure 3I). The immune
cell cytotoxicity of CD8-Temra and NK-FCGR3A(-)
subpopulations increased as the exhaustion scores increased,
while there was no significant correlation between the cytotoxicity
of CD8-Tem and NK-FCGR3A(+) subpopulations and the
exhaustion scores. Through the above research, we found that the
high metabolism of glutamine in tumor cells may reduce the
cytotoxicity of CD8-Tem cells by inhibiting their development
and inducing their immaturity. Additionally, the high metabolism
of glutamine in tumor cells may promote the exhaustion of CD8-
Temra subpopulation. In general, the high metabolism of glutamine
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in tumor cells is negatively correlated with the anti-tumor activity of
CT8 effector T cells.

3.3.5 Influence of tumor cells metabolism on
immune cell activation pathways

To further elucidate the mechanism underlying the anti-tumor
activity of CD8 effector T cells through the inhibition of tumor cell
glutamine metabolism, we used gene set enrichment analysis
(GSEA) to quantitatively calculate the pathway enrichment scores
of high and low scoring groups in CD8-Tem and CD8-Temra
subsets. In the low scoring group, the immune cell activation
pathways of CD8-Tem subset were significantly upregulated, such
as oy T cell activation, interferon-gamma pathway, tumor necrosis
factor pathway, cytokine production, lymphocyte and leukocyte
differentiation, etc. These immune cell activation pathways were
also significantly upregulated in the CD8-Temra subset in the low
scoring group (Figure 3]). In the low scoring group, the T cell
activation pathway (CD8-Tem subset) and lymphocyte
differentiation pathway (CD8-Tem and CD8-Temra subsets) were
significantly higher than those in the high scoring group
(Figures 3K, L). These studies demonstrate that when tumor cell
glutamine metabolism is reduced, the immune activation pathways
of CD8-Tem and CD8-Temra subsets are significantly upregulated.

3.3.6 Conclusions

In the microenvironment of pancreatic cancer, high glutamine
metabolism in tumor cells has different effects on different CD8Tef
subsets. High glutamine metabolism in tumor cells reduces the
cytotoxicity and differentiation of CD8-Tem subset, and increases
the CD8-Temra exhaustion score. In conclusion, high glutamine
metabolism in tumor cells ultimately reduces the anti-tumor
activity of CD8-Tef(CD8-Tem and CD8-Temra).

3.4 Under the influence of tumor cell
glutamine metabolism, CD8 effector T cells
have a distinct immune status

In order to study the developmental differences and dynamic
changes in genes and pathways of CD8-Tem and CD8-Temra
subsets in different levels of tumor cell glutamine metabolism, we
used the Monocle package to plot the developmental trajectory of
cells (CD8-Tem subset, CD8-Temra subset, and CD8Tn subset) and
observed changes in the immune status of CD8 effector T cell
subsets. Cells were sequentially arranged on the trajectory tree
according to a pseudotime of 0 to 10 (Figure 4A), with the early
part of the trajectory defined as stage 1. After stage 1, CD8 T cells
began to develop in different directions; some cells developed
towards stage 2 (fate 1), while others developed towards stages 3,
4, and 5 (fate 2) (Figure 4B). Each cell on the pseudotemporal
trajectory was scored for cytotoxicity and then mapped to the
trajectory tree according to color, showing the dynamic changes
in cytotoxicity of CD8T cell subsets between tumor cell high-
metabolism and low-metabolism groups (Figure 4C). We
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FIGURE 4

The association between glutamine metabolism of pancreatic cancer cells and the developmental trajectory of CD8+ T cells. (A) Pseudotime
analysis of CD8-Tem, CD8-Tn, and CD8-Temra subpopulations. Arrows indicate the direction of cell differentiation. (B) CD8T cells ordered by
pseudotime were divided into five trajectory periods and indicated by different colors. (C) Each cell on the pseudotime trajectory was assigned

a cytotoxicity score and mapped to the trajectory tree according to color, demonstrating the dynamic changes of cytotoxicity in CD8T cell
subpopulations between high metabolic and low metabolic tumor cell groups. (D, E) The trajectory tree shows the distribution of three CD8T cell

subpopulations along the developmental trajectory. CD8-Tn is indicated

by light blue, CD8-Temra by deep red, and CD8-Tem by orange-yellow.

(F) This histogram shows the cell distribution of CD8-Tn, CD8-Temra, and CD8-Tem subpopulations in five periods among different populations,
indicated by different colors for CD8T cell subpopulations. (G) The heatmap displays the dynamic changes of gene expression over pseudotime.
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observed that the cytotoxicity of CD8T cell subsets in the low-
glutamine metabolism group of tumor cells was higher than that in
the high-glutamine metabolism group at all stages, especially in
stages 3, 4, and 5 (fate 2). We also visualized the distribution of
CD8-Tem, CD8-Temra, and CD8-Tn subsets on the trajectory tree
(Figures 5D, E). We calculated the cell proportions of these three T
cell subsets at five stages (Figure 4F). We observed that the
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proportion of CD8 T cells in the low-glutamine metabolism
group of tumor cells that developed towards fate 2 was
significantly higher than that in the high-glutamine metabolism
group. There was no significant relationship between the
development of CD8 T cells towards fate 1 and tumor cell
glutamine metabolism. Pseudotemporal analysis showed that the
development of CD8 T cells towards fate 2 mainly upregulated
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FIGURE 5

Glutamine metabolism inhibitors (JHU083) exhibit anti-tumor effects and enhance the anti-tumor efficacy of PD-1 inhibitors. Different colors were
used to mark the groups: red, blue, green, and purple represent VEH, JHU083, antiPD-1, and JHUO083+antiPD-1 groups, respectively. NS indicates
no statistical significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (A, B) The relative expression levels of SLC38A1 and GLS RNA in tumor
tissue after drug treatment. (C) Images of mouse tumor specimens collected 26 days after inoculation. (D) A bar chart showing the differences in
tumor volume among groups of mice collected 26 days after inoculation. (E) Tumor growth curves showing the growth rate of tumors in different
groups. Panc02 cells were inoculated on day 1 and drug treatment was started on day 7. Tumor volume was measured every 2 days. Significance
testing was performed using analysis of variance. (F) Immunohistochemical staining of Ki67, CD8, CD3, and CCR7. (G-J) Bar charts showing
quantitative analysis of immunohistochemical staining for Ki67, CD8, CD4, and CCR7.

Frontiers in Immunology 185 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1599252
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Fan et al.

immune activation-related pathways, such as T cell activation
pathway, T cell differentiation and proliferation pathway, and T
cell apoptosis inhibition pathway, and many pro-immune-related
genes, such as CD28, EOMES, INFG, and TNFSF9, were also
upregulated. The development of CD8 T cells towards fate 1
mainly upregulated immune inhibition-related pathways, such as
immune cell apoptosis activation pathway, inhibition of immune
response, inhibition of lymphocyte proliferation, and inhibition of
T cell activation, and many genes related to proliferation and
immune inhibition, such as PRELID1, LILRB1, CDKN2D, and
HAVCR?2, were also upregulated (Figures 4G, H). In general, the
differentiation status and immune function of CD8 T cells exhibit
significant heterogeneity between different pancreatic cancer cell
glutamine metabolism levels. When tumor cell glutamine
metabolism is weaker, CD8 T cells are more likely to acquire
stronger anti-tumor activity.

3.5 The glutamine metabolism inhibitor
JHUO83 enhances the anti-tumor effect of
immune checkpoint inhibitors (PD-1
inhibitors)

3.5.1 Glutamine metabolism inhibitor JHU083
impact on mRNA expression levels of the
glutamine metabolism genes

After treatment with JHU083, the mRNA expression levels of
the genes SLC38A1 and GLS decreased significantly, indicating
successful inhibition of glutamine metabolism in subcutaneous
pancreatic cancer tissue (Figures 5A, B).

3.5.2 Glutamine metabolism inhibitor JHU083
impact on tumor volume

To investigate the therapeutic effect of the glutamine
metabolism inhibitor JHU083 on pancreatic cancer, we compared
the efficacy of four groups of mice treated with different drugs,
including the VEH group, JHU083 group, Anti-PD-1 group, and
JHUO083+Anti-PD-1 group. Compared with the VEH group, both
the JTHUO083 group and the Anti-PD-1 group showed a significant
decrease in subcutaneous tumor volume. In addition, the JHU083
group showed a more significant decrease in subcutaneous tumor
volume than the Anti-PD-1 group. The combination of JHU083
and PD-1 inhibitor not only significantly inhibited tumor growth
but also demonstrated stronger efficacy than using JHU083 or Anti-
PD-1 alone (Figures 5C-E). These results suggest that JHU083 is
effective in treating pancreatic cancer and enhances the anti-tumor
effect of immune checkpoint inhibitors (PD-1 inhibitors).

3.5.3 Glutamine metabolism inhibitor JHU083
impact on tumor immune microenvironment

In order to clarify the effect of glutamine metabolism enzyme
inhibitor JHU083 on the immune microenvironment of pancreatic
cancer, we performed immunohistochemical staining on tumor
tissues, including Ki-61, CD8, CD4 and CCR?7 (Figure 5F). We
found that the percentage of Ki-67 positive cells in the JHU083
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group, Anti-PD-1 group, and JHU083+Anti-PD-1 group was lower
than that in the VEH group, and the difference was statistically
significant. Meanwhile, the percentage of Ki-67 positive cells in the
JHUO083 group was significantly lower than that in the Anti-PD-1
group. The percentage of Ki-67 positive cells in the JHU083+Anti-
PD-1 group was significantly lower than that in the JHU083 group
and the Anti-PD-1 group, and the difference was statistically
significant, indicating that both JHU083 and PD-1 inhibitors can
effectively inhibit the proliferation of pancreatic cancer cells. The
effect of JHU083 alone was better than that of PD-1 inhibitor alone,
and the inhibitory effect of the combination of the two drugs on
tumor cell growth was significantly enhanced compared to either
drug alone (Figure 5G). The CD8T cell density in the JHU083
group, Anti-PD-1 group, and JHUO083+Anti-PD-1 group was
significantly higher than that in the VEH group, and the
difference was statistically significant. The CD8T cell density in
the JHUO083 group was significantly higher than that in the Anti-
PD-1 group, and the CD8T cell density in the JHU083+Anti-PD-1
group was higher than that in either single-drug group (Figure 5H).
The CD4 T cell density in the JHU083 group, Anti-PD-1 group, and
JHU083+Anti-PD-1 group was significantly higher than that in the
VEH group, and the difference was statistically significant. The
CD8T cell density in the JHUO083 group was significantly higher
than that in the Anti-PD-1 group, while the CD8T cell density in
the JHU083+Anti-PD-1 group was significantly higher than that in
the Anti-PD-1 group, with no significant difference from the
JHUO083 group (Figure 5I). This indicates that JHU083 can
enhance the immune infiltration of both CD8T and CD4 T cells
in the pancreatic cancer microenvironment, while PD-1 inhibitors
can only enhance the immune infiltration of CD8 T cells. Compared
to JHUO083 or PD-1 inhibitor alone, the combination of the two
drugs can enhance the infiltration of CD8 T cells in the pancreatic
cancer immune microenvironment. There was no statistically
significant difference in the CCR7+ cell density between the
JHUO083 group and the JHUO083+Anti-PD-1 group, but it was
significantly higher than that in the VEH group and the Anti-PD-
1 group, while there was no statistically significant difference in the
CCR7+ cell density between the VEH group and the Anti-PD-1
group (Figure 5]). This indicates that JHU083 can reduce the
proportion of immature T lymphocytes in the tumor immune
microenvironment, while PD-1 inhibitors have no such effect.
Overall, JHUO083 alone has a clear anti-tumor effect on pancreatic
cancer and enhances the anti-tumor effect of PD-1 inhibitors.

3.6 The glutamine metabolism enzyme
inhibitor (JHUO083) can inhibit the
apoptosis of immune cells in the tumor
immune microenvironment and enhance
the anti-tumor effect of CD8 T cells

In order to investigate the effect of the glutamine metabolism
inhibitor JHU083 on CD8 T cells infiltration and immune
phenotype in the immune microenvironment, we used flow
cytometry to perform immune typing of CD8 T cells in tumor
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FIGURE 6

In the pancreatic cancer microenvironment, the inhibition of glutamine metabolism can suppress the apoptosis of immune cells, increase immune
cell infiltration, reshape the CD8 T-cell immune phenotype, and enhance the immune therapy response. Different colors were used to mark the
groups: red, blue, green, and purple represent VEH, JHU083, antiPD-1, and JHUO83+antiPD-1 groups, respectively. NS indicates no statistical
significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (A, C) show the flow cytometry of the tumor microenvironment of subcutaneous
tumors in each group of mice and the apoptosis of immune cells in the spleen, respectively. (B, D) show the statistical analysis of immune cell
apoptosis in the tumor microenvironment and spleen, respectively. (E) shows the flow cytometry cell sorting diagram, including T cells, CD8+ T
cells, and CD4+ T cells. (F) shows the difference in the proportion of CD8T cells in CD45 cells in each group. (G, |, K) are flow cytometry cell sorting
diagrams, including CD8+CD69+ T cells, CD8+INFy+ T cells, and CD8+GZMB+ T cells. (H, J, L) show the percentage of the above cells in CD8T
cells in a bar graph. (M) shows the gating diagram for flow cytometry cell sorting.
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tissue (CD69 as a T cell activation marker, INFy and GZMB as cell
cytotoxicity markers). The proportion of CD8 T cells in CD45 T
cells in the JHU083 group, Anti-PD-1 group, and JHU083+Anti-
PD-1 group was significantly higher than that in the VEH group.
The proportion of CD8 T cells in CD45 T cells in the JHU083 group
was significantly higher than that in the Anti-PD-1 group. The
proportion of CD8 T cells in CD45 T cells in the JHU083+Anti-PD-
1 group was significantly higher than that in the single drug group
(Figures 6E, F). These results indicate that both JHU083 and Anti-
PD-1 can increase the proportion of CD8 T cells in CD45 T cells in
the immune microenvironment, and single-use JHU083 is superior
to Anti-PD-1, while the combination of the two is better than single
drugs. The proportion of CD8+CD69+ T cells in CD8 T cells in the
JHUO083 group, Anti-PD-1 group, and JHU083+Anti-PD-1 group
was significantly higher than that in the VEH group. The
proportion of CD8+CD69+ T cells in CD8 T cells in the JHU083
group was significantly higher than that in the Anti-PD-1 group.
The proportion of CD8+CD69+T cells in CD8 T cells in the
JHUO083+Anti-PD-1 group was significantly higher than that in
the single drug group (Figures 6G, H), indicating that single-use
JHUO083 and Anti-PD-1 can both stimulate CD8 T cells activation,
but single-use JHUO083 is superior to Anti-PD-1, and the
combination of the two is better than single drugs.

The proportion of CD8+ INFy+ T cells in CD8 T cells was
significantly higher in the JHU083 group, Anti-PD-1 group, and
JHU083+Anti-PD-1 group than in the VEH group. The proportion
of CD8+ INFy+ T cells in the JHUO083 group was significantly
higher than that in the Anti-PD-1 group. The proportion of CD8+
INFy+ T cells in the JHU083+Anti-PD-1 group was significantly
higher than that in the Anti-PD-1 group, but there was no
statistically significant difference between the JHU083 group and
the JHU083+Anti-PD-1 group. The proportion of CD8+ GZMB+ T
cells in CD8 T cells was significantly higher in the JHU083 group,
Anti-PD-1 group, and JHU083+Anti-PD-1 group than in the VEH
group. The proportion of CD8+ GZMB+ T cells in the JHU083
group was significantly higher than that in the Anti-PD-1 group.
The proportion of CD8+ GZMB+ T cells in the JHU083+Anti-PD-1
group was significantly higher than that in the single drug groups.
These results indicate that both the JHU083 group and the Anti-
PD-1 group can enhance the cytotoxicity of CD8 T cells to a certain
extent, but JHU083 alone is superior to Anti-PD-1, and the
combination of the two is better than using a single drug. In
summary, the glutaminase inhibitor JHUO083 can inhibit the
apoptosis of immune cells in the tumor immune
microenvironment and enhance the anti-tumor effect of CD8 T
cells. Furthermore, it can enhance the anti-tumor effect of PD-
1 inhibitors.

4 Discussion

Pancreatic cancer is known to be glutamine-dependent (41-43),
yet how tumor cell glutamine metabolism influences immune cells
in the tumor microenvironment is still unclear. In this study, based
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on the pancreatic cancer dataset in the TCGA database, we found
that the tumor glutamine metabolism of patients was negatively
correlated with patient prognosis and immune cell cytotoxicity, and
positively correlated with immune cell immaturity score. After
analyzing the pancreatic cancer single-cell dataset in the GEO
database, we found that high glutamine metabolism in tumor
cells would inhibit the anti-tumor effect of CD8 T cells. Through
in vivo experiments in mice, we observed that the glutamine
metabolism inhibitor has an anti-tumor effect and can inhibit
immune cell apoptosis in the tumor microenvironment, while
increasing the cytotoxicity of CD8 T cells and enhancing the anti-
tumor efficacy of PD-1 inhibitors.

In recent years, the incidence of pancreatic cancer has been on
the rise. It accounts for approximately 2% of all cancers and is
associated with 5% of cancer-related deaths (2, 44). The pancreatic
cancer microenvironment is considered an immune-suppressive
environment (45-51). In the pancreatic cancer microenvironment,
most T lymphocytes are CD4 T cells, with CD8 T cells accounting for
only a small proportion. The CD4 T cells in the pancreatic cancer
microenvironment are mainly Th2 cells, rather than Thl cells. Th2
cells are associated with tumor immune tolerance, while Th1 cells can
increase the tumor-killing effect of CD8 T cells (24, 25). In addition,
Treg cells within the CD4 T cell population gradually increase in the
development of pancreatic cancer (24, 52). Interestingly, Treg cells
play an important role in immune evasion in pancreatic cancer
through various immunosuppressive mechanisms (24, 52, 53). These
may be the reasons why immune checkpoint inhibitors have not
achieved satisfactory therapeutic effects. Therefore, a thorough
investigation into the formation mechanism of the immune-
suppressive microenvironment in pancreatic cancer is an
important approach to improving the efficacy of pancreatic cancer
immunotherapy. In this study, through transcriptome sequencing of
tissue blocks, we found that the expression score of tumor glutamine
metabolism-related genes was negatively correlated with patient
prognosis, immune cell toxicity, and immune cell differentiation.
Meanwhile, single-cell sequencing data analysis results showed that
the anti-tumor activity of CD8T effector cells in the tumor immune
microenvironment of patients with high tumor glutamine
metabolism was reduced. High tumor glutamine metabolism in
tumor cells reduced the cytotoxicity and differentiation degree of
CD8-Tem subsets and increased the CD8-Temra exhaustion score.
Through GSEA analysis, we observed a negative correlation between
tumor cell glutamine metabolism and the activation and
differentiation of CD8-Tem and CD8-Temra subsets. Through the
above studies, we hypothesize that high tumor glutamine metabolism
reshapes the tumor metabolic microenvironment, causing a decrease
in the anti-tumor effect of CD8-Tef. Disrupting such abnormal
tumor metabolic microenvironments may improve the anti-tumor
activity of CD8-Tef, and the efficacy of immune checkpoint
inhibitors may also improve.

According to existing research, the tumor microenvironment
where CD8 T cells are located is closely related to their
developmental trajectory (26). This suggests that the abnormal
metabolism of tumor cell glutamine may reshape the metabolic
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microenvironment of the tumor and alter the developmental
trajectory of CD8 T cells. Gene dynamic time analysis and gene
set enrichment analysis show that the proportion of CD8 T cells in
fate 2 development in the high glutamine score group of tumor cells
is significantly lower than that in the low glutamine score group.
When CD8 T cells develop into fate 2, they mainly up-regulate
immune activation-related pathways. Based on the above data, we
speculate that CD8 T cells in the tumor microenvironment with
high glutamine metabolism are more likely to lead to weakened
anti-tumor activity. When tumor cell glutamine metabolism is
inhibited, the developmental trajectory of CD8 T cells returns to
normal, and their anti-tumor activity also recovers.

The efficacy of PD-1 inhibitors was found to depend on the
infiltration of immune cells in the tumor microenvironment (54,
55). Previous research suggests that blocking the high metabolism
of glutamine in tumor cells may increase immune infiltration and
promote the differentiation of immune cells, while also potentially
enhancing the anti-tumor effect of CD8 T cells. In a subcutaneous
pancreatic cancer mouse model, we demonstrated that a glutamine
inhibitor can increase the infiltration of CD4 T and CD8 T cells in
the tumor microenvironment, promote the differentiation of
immune cells, inhibit the rapid proliferation of tumor cells, and
enhance the inhibitory effect of PD-1 inhibitors on tumor growth.
After treatment with the glutamine inhibitor, the tumor volume
significantly decreased, and the growth rate slowed significantly. We
found that the anti-tumor effect of using only the glutamine
inhibitor was superior to using only PD-1 inhibitor, but the
combined use of the two significantly improved the anti-tumor
effect. We also observed that the glutamine inhibitor can inhibit the
apoptosis of immune cells in the tumor microenvironment, and the
combined use of the glutamine inhibitor and PD-1 inhibitor had a
stronger effect in inhibiting immune cell apoptosis. Interestingly,
the proportion of immune cell apoptosis in the spleen decreased
significantly after using only PD-1, but after the combined use of the
glutamine inhibitor, the proportion of apoptosis returned to normal
levels. Therefore, we speculate that JHU083 not only increases the
anti-tumor effect of PD-1 but may also reduce the toxic side effects
of PD-1 in normal tissues. Through flow cytometry cell sorting, we
found that the glutamine inhibitor can promote the infiltration and
activation of CD8 T cells, as well as increase their toxicity, and its
effect was significantly enhanced when combined with PD-1
inhibitors. We speculate that the excellent efficacy of JHU083
may be closely related to the increased cytotoxicity of CD8 T cells
and the inhibition of tumor cell growth. The effect of the glutamine
inhibitor on these two cell subsets has already been confirmed in
colon cancer (56). In addition, inhibiting the activity of GLS can
reduce the accumulation of intracellular alpha-ketoglutarate and
confer a high proliferative and long-lived phenotype to CD8 T cells
(56, 57). Even when the glutamine metabolism pathway is
completely inhibited, CD8 T cells can still compensate by taking
up glucose, increasing the activity of pyruvate carboxylase, and
enhancing the activity of the acetyl-CoA metabolism pathway,
leading to increased cellular metabolism (58). However, this
flexible metabolic compensation mechanism is lacking in
tumor cells.
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However, our study still has some shortcomings. Although we
have demonstrated that inhibiting glutamine metabolism in the
tumor microenvironment can increase the infiltration density of
CD4 T cells, we have not proven the subtype of CD4 T cells that
increased in the tumor microenvironment (TME). Therefore, we
cannot determine whether the increased CD4 T cell subtype
promotes the enhanced function of CD8 T cells as Thl cells or
promotes immune evasion of pancreatic cancer as Treg cells, or other
subtypes. Furthermore, although inhibiting glutamine metabolism in
the TME can enhance the cytotoxicity of CD8 T cells, we still do not
know the specific mechanism. We have demonstrated that a
glutamine inhibitor can enhance the anti-tumor effect of PD-1
inhibitors, but we are not sure whether the enhanced ability of PD-
1 to fight tumors is related to the increased cytotoxicity of CD8 T
cells. Finally, the animal model we used only includes some
pathological and clinical features of human pancreatic cancer, so
the sensitizing effect of the glutamine inhibitor on PD-1 inhibitors
needs further validation in clinical trials.
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