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Editorial on the Research Topic

Integrating AI and machine learning in advancing patient care: bridging

innovations in mental health and cognitive neuroscience

The overarching goal of this Research Topic is to highlight the transformative potential

of artificial intelligence (AI) and machine learning (ML) in enhancing patient care, with a

particular focus on mental health and cognitive neuroscience. This Research Topic bridges

technological innovations with clinical practice, highlighting state-of-the-art AI and ML

models, exploring novel approaches for early detection and monitoring of neurological

disorders, emphasizing explainability and trustworthiness in clinical AI, assessing the

role of secure infrastructures such as telemedicine and 6G-enabled hospitals, addressing

ethical and adversarial concerns, and fostering interdisciplinary collaboration to advance

patient-centered healthcare innovation.

The following articles exemplify the diverse applications of AI and ML in healthcare,

showcasing innovative approaches that enhance diagnostic accuracy, patient monitoring,

and secure clinical practices across various specialties, including mental health, neurology,

cardiology, and developmental disorders.

Zhang and Zeng introduced a deep learning-driven image classification model

to support mental health diagnostics, addressing the limitations of subjective clinical

assessments. By extracting subtle imaging biomarkers from patient data, the model

improved diagnostic accuracy and consistency. This approach not only enables earlier

detection of psychiatric disorders but also lays the foundation for more personalized

treatment strategies. Its impact lies in bridging AI innovations with the urgent needs of

mental health care systems.
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Shehab and Alhaddad proposed an LSTM-CNN fusion

framework for medical image steganalysis, targeting secure

telemedicine applications. Their model effectively identified hidden

data embedded inmedical images, strengthening protection against

malicious data tampering. This dual focus on deep learning and

cybersecurity ensures trust in digital health platforms. The work is

impactful in enabling safe, privacy-preserving telemedicine services

as healthcare shifts toward remote and digital care.

Mozhegova et al. evaluated how multimodal AI systems in

medicine respond to adversarial perturbations across different

input channels. The study revealed key vulnerabilities that could

compromise diagnostic integrity, while also offering insights into

strategies for resilience. By highlighting the fragility of advanced

medical AI under adversarial stress, this work underscores the

importance of deploying robust, trustworthy, and secure clinical

AI. It sets the stage for developing next-generation defenses against

adversarial threats in healthcare.

Ikram et al. harnessed transformer architectures to model

sequential ECG signals for arrhythmia detection. Their system

outperformed conventional deep learning approaches by effectively

capturing long-range dependencies in cardiac patterns. The

study demonstrated high diagnostic accuracy, enabling earlier

identification of arrhythmias with the potential to prevent severe

cardiac events. This represents a major advancement for AI-based

preventive cardiology.

Al-Nefaie et al. developed an AI-based diagnostic framework

for Autism Spectrum Disorder (ASD), focusing on early and

reliable detection. The system integrated multimodal data sources

to capture the complex behavioral and neurological patterns

associated with ASD. By improving diagnostic speed and reducing

reliance on subjective evaluations, the model enhances support for

patients and families. This Research Topic highlights the increasing

role of AI in addressing neurodevelopmental conditions with

significant global health implications.

Together, these articles highlight the practical applications of AI

andML in enhancing patient care. They reveal novelmethodologies

and intelligent frameworks that improve clinical decision-

making, treatment planning, and monitoring across neurological,

psychiatric, and other medical domains. By highlighting ethical

safeguards, resilience, and secure infrastructures, the collection

points to pathways for safe, scalable, and patient-centered

healthcare solutions. Overall, the Research Topic illustrates the

critical role of interdisciplinary collaboration in translating AI

innovations into effective and reliable clinical practice.
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Autoimmune disorders (AID) present significant challenges due to their complex 
etiologies and diverse clinical manifestations. Traditional diagnostic methods, which 
rely on symptom observation and biomarker detection, often lack specificity and 
fail to provide personalized treatment options. This study proposes ImmunoNet, 
a deep learning-based framework that integrates genetic, molecular, and clinical 
data to enhance the accuracy of autoimmune disease diagnosis and treatment. 
ImmunoNet leverages convolutional neural networks (CNNs) and multi-layer 
perceptrons (MLPs) to analyze large-scale datasets, enabling precise disease 
classification and personalized therapeutic treatment recommendations. The model 
improves interpretability through explainable AI techniques and enhances privacy 
via federated learning. Comparative evaluations demonstrate that ImmunoNet 
outperforms traditional machine learning models, achieving a 98% accuracy rate in 
predicting autoimmune disorders. By advancing precision medicine in immunology, 
this approach provides clinicians with a powerful tool for personalized diagnosis 
and optimized therapeutic strategies.

KEYWORDS

deep learning, autoimmune disorder, ensemble learning, CNN, MLP

1 Introduction

Autoimmune disorders pose a significant challenge in current healthcare due to their 
multifactorial etiology, considerable clinical heterogeneity, and unpredictable treatment 
responses (1). Incorporating cutting-edge technologies in biomedical informatics, particularly 
deep learning architectures, represents a promising advancement in addressing the complexities 
of autoimmune illnesses (2). Although these modern techniques have enabled medicine to 
advance, current diagnostic and therapeutic approaches often fall short, failing to provide 
patients with accurate and personalized treatment options. Traditionally, the diagnosis of 
autoimmune disorders has primarily relied on clinical symptom assessment, serological 
markers, and tissue histopathology examinations. While these methods have contributed to 
identifying common autoimmune biomarkers and disease patterns, their limited specificity and 
inability to distinguish underlying molecular mechanisms remain significant challenges (3, 4). 
Traditional therapies for autoimmune disorders exhibit varying efficacy and can have adverse 
effects, particularly on susceptible individuals exposed to these medications. Recent data from 
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various sources have revealed the shortcomings of current diagnostic 
methods and treatment algorithms, which often fail to effectively 
address autoimmune conditions (5). This evidence suggests a need for 
innovative, multidisciplinary approaches that integrate molecular 
genetics, epigenetics, and proteomics to facilitate accurate disease 
stratification and optimize therapeutic decisions. Moreover, genetic 
research has highlighted several challenges, including missed detection 
of tissue-specific proteins, ethnicity-based genetic predispositions, and 
sex-biased gene expression analysis, all of which hinder progress in 
autoimmune disease research. Although numerous studies have 
explored the application of machine learning and deep learning in 
diagnosing and treating autoimmune diseases, no robust frameworks 
currently exist that effectively integrate advanced computational 
techniques with patient characteristics to tailor interventions (6, 7). 
Incorporating explainable AI frameworks and federated learning 
techniques presents an underexplored opportunity to enhance the 
interpretability and generalizability of predictive models in this field. 
Several studies have investigated diagnostic techniques for autoimmune 
disorders, covering traditional serological assays, modern imaging 
modalities, and molecular profiling methods. However, while these 
methods have enabled the identification of biomarkers for autoimmune 
diseases, they are often not specific enough and fail to capture the full 
diversity of symptoms and variations characteristic of autoimmune 
disease formations. In addition, the dependence on single biomarkers 
or imaging modalities limits the ability to assess disease status and 
progression comprehensively, which is a limitation of the entire process 
(8). The management of autoimmune diseases generally involves 
immunosuppressive therapies, including biological agents and disease-
modifying antirheumatic drugs (DMARDs). While these treatments 
are effective at alleviating symptoms and slowing disease progression 
in some patients, their efficacy remains inconsistent, and they may 
cause adverse effects such as immunosuppression and increased 
infection risk. Additionally, the high cost of biologic therapies presents 
a challenge for many patients, especially those in low-income settings, 
to access such treatment (9). Advances in computational biology and 
machine learning offer promising pathways toward precision medicine, 
enabling more targeted and effective treatments for 
autoimmune diseases.

However, the majority of the associated studies are limited to 
single-omic data analysis, and integrating multi-omics approaches 
with patient characteristics, lifestyle, and diet remains a challenge. 
Another major barrier is the lack of transparency in computational 
models, making it harder to use such models in clinical practice and 
routine healthcare systems. Even though the literature provides a 
strong foundation for diagnosing and treating autoimmune diseases, 
several critical research gaps persist.

One key limitation is the heavy reliance of existing diagnostic 
methods on clinicians’ expertise and subjective interpretation, leading 
to variability in results. Additionally, the majority of treatment 
regimens are mainly designed to suppress symptoms rather than 
address the underlying immunological alterations driving disease 
progression (10, 11). Furthermore, despite their potential, 
computational models often face challenges such as inadequate data, 
unclear model definitions, limited explainability, and difficulties in 
applying them to large and dynamic populations (10–14).

In conclusion, while existing literature has contributed to a better 
comprehension of autoimmune diseases, there is a pressing need to 
implement multiomics profiling and computational modeling 

methods, helping to expand diagnostic and therapeutic options and 
ultimately improving patient outcomes (15–20).

While previous studies have explored machine learning-based 
approaches, they are often constrained by single-omics analysis, lack 
interpretability, and fail to generalize across patient populations. 
Moreover, conventional diagnostic frameworks depend on symptom-
based evaluations and biomarker detection, which lack specificity and 
fail to integrate multi-source patient data. Treatment approaches 
primarily focus on symptom suppression rather than addressing 
underlying disease mechanisms, resulting in inconsistent efficacy and 
potential adverse effects. Aiming to address these issues, the following 
study suggests an innovative approach by combining multi-omic data, 
advanced computational methods, and clinical records into a unified 
framework for personalized autoimmune disorder diagnosis and 
treatment (10). The proposed approach is based on deep convolutional 
neural networks such as ImmunoNet, which can process multi-source 
information and identify disease hallmarks and biomarkers associated 
with autoimmune disorders (21–25). By applying explainable AI 
approaches and federated learning techniques, we are determined to 
enhance the interpretability and adaptability of our models, which 
should be  adopted in hospitals. Moreover, our working model 
recognizes the roles played by clinicians, researchers, and data 
specialists in the responsible and ethical use of AI-based strategies for 
autoimmune disease management (11). To address these limitations, 
this study introduces ImmunoNet, a deep learning-based framework 
designed for personalized diagnosis and treatment of autoimmune 
disorders. ImmunoNet integrates genetic, epigenetic, proteomic, and 
clinical data, allowing for a more comprehensive and precise approach 
to disease classification. By leveraging convolutional neural networks 
(CNNs) and multi-layer perceptrons (MLPs), ImmunoNet can detect 
hidden patterns in complex medical datasets. Additionally, it 
incorporates explainable AI techniques and federated learning, 
enhancing model transparency and ensuring patient privacy.

Current diagnostic methods primarily rely on serological assays, 
histopathology, and biomarker detection, which, while useful, have 
several limitations:

	 a)	 Lack of Specificity: Numerous autoimmune diseases share 
similar biomarkers, making it difficult to differentiate between 
conditions (2).

	b)	 Symptom-Based Diagnosis: Traditional diagnostic approaches 
often rely on subjective clinical symptoms, leading to delayed 
or misdiagnosed cases (3).

	 c)	 Single-Modal Analysis: Most diagnostic frameworks analyze 
only one type of data (e.g., genetic markers or imaging), 
overlooking the multifaceted nature of autoimmune 
disorders (4).

	d)	 Limited Personalization: Current treatments focus on symptom 
suppression instead of targeting the underlying disease 
mechanisms, leading to varied patient responses and potential 
side effects (5).

	 e)	 High Costs and Accessibility Issues: Advanced diagnostic tests 
and biological therapies are expensive, making them 
inaccessible for many patients, especially in low-resource 
settings (6).

With the rapid advancements in artificial intelligence (AI) and 
deep learning (DL), there is an opportunity to improve the diagnosis 
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and management of autoimmune diseases. While previous studies 
have explored machine learning-based approaches, these efforts are 
often limited to single-omics analysis, lack interpretability, and fail to 
generalize across patient populations (26, 27).

To address these limitations, this study introduces ImmunoNet, a 
deep learning-based framework designed for personalized diagnosis 
and treatment of autoimmune disorders. ImmunoNet integrates 
genetic, epigenetic, proteomic, and clinical data, allowing for a more 
comprehensive and precise approach to disease classification. By 
leveraging convolutional neural networks (CNNs) and multi-layer 
perceptrons (MLPs), ImmunoNet can detect hidden patterns in 
complex medical datasets. Additionally, it incorporates explainable AI 
techniques and federated learning, enhancing model transparency and 
ensuring patient privacy. In summary, the main contributions of our 
study include the development of an ImmunoNet-based deep learning 
framework that will serve as a personalized diagnostic and treatment 
tool for autoimmune diseases, integrating multi-omics data such as 
genetic, epigenetic, and proteomic profiles into a patient-oriented 
system to improve disease stratification and therapy choice. 
Incorporating explainable AI techniques into the AI processes aims to 
expand the interpretability and generalizability of the models. 
Clinician–data scientist collaboration has to ensure the proper and 
responsible use of AI-based approaches in clinical contexts.

2 Materials and methods

2.1 Data acquisition and preprocessing

The data set used in this study is taken from https://www.kaggle.
com/datasets/abdullahragheb/all-autoimmune-disorder-10k/data, 
with samples SD = [‘num’] features up to the target variable. Before the 
analysis, some preprocessing steps were used to give the data a surface 
to fit the machine learning models. The files are the patient’s 
autoimmune conditions/laboratory tests and physical/medical history. 
The data collection process was done intelligently, including valid 
patient consent and ethical rules for data handling and storage.

The dataset used in this study was sourced from Kaggle, 
containing 10,000 patient records with 14 clinical features, including 
demographic, genetic, and laboratory test results. These features 
include age, gender, family history of autoimmune disorders, symptom 
count, blood pressure, cholesterol levels, BMI, white blood cell count, 
red blood cell count, hemoglobin levels, platelet count, C-reactive 
protein, erythrocyte sedimentation rate, and diagnosed autoimmune 
disease type. The dataset represents a diverse population with a 
balanced gender distribution (approximately 52% female and 48% 
male) and an age range of 18 to 80 years. The data also includes 
multiple autoimmune disorders such as rheumatoid arthritis, systemic 
lupus erythematosus, multiple sclerosis, and type 1 diabetes, ensuring 
comprehensive coverage of different disease patterns. Several 
preprocessing steps were applied to prepare the dataset for deep 
learning models. Missing values were addressed using appropriate 
imputation techniques: mean imputation for continuous variables like 
cholesterol and hemoglobin levels and mode imputation for 
categorical variables such as family history and diagnosed disease 
type. Normalization was conducted on continuous variables using 
Min-Max scaling, ensuring all numerical features were within a 0–1 
range for improved model convergence. One-hot encoding was 

performed on categorical features like gender and disease type, 
transforming them into a machine-learning-friendly format. 
Additionally, outlier detection was conducted using Z-score analysis, 
with extreme values either removed or adjusted based on domain 
knowledge. Finally, the dataset was divided into 80% training, 10% 
validation, and 10% test sets, maintaining a stratified distribution of 
autoimmune disease classes to ensure a balanced representation across 
the subsets. These preprocessing steps ensured that the dataset was 
clean, well-structured, and ready for training the ImmunoNet deep 
learning model while preserving the integrity of patient characteristics 
for reliable predictions.

The dataset sourced from Kaggle was thoroughly preprocessed to 
ensure data quality and balance. Missing values were addressed using 
mean imputation for numerical features and mode imputation for 
categorical features. Min-max scaling was applied to normalize feature 
scales, ensuring that variables with different units did not 
disproportionately impact model training. One-hot encoding was 
used for categorical variables to facilitate machine-learning 
compatibility. To assess data balance, we analyzed the class distribution 
of different autoimmune diseases. The dataset exhibited slight class 
imbalances, with Rheumatoid Arthritis (RA) cases comprising 25%, 
while rarer diseases like Sjögren’s Syndrome accounted for only 7%. 
To mitigate this, we  applied Synthetic Minority Over-sampling 
(SMOTE) to enhance class representation. Additionally, demographic 
biases were evaluated, revealing that certain ethnic groups were 
underrepresented. To ensure fairness, model calibration techniques 
and subgroup analysis were conducted to identify and reduce 
prediction biases, ensuring equitable disease classification across 
populations. To evaluate ImmunoNet’s generalization capabilities, 
we tested the model on an external clinical dataset from a hospital 
database comprising 2,500 patient records from a different 
geographical region. The results showed a diagnostic accuracy decline 
of only 2.5%, confirming that ImmunoNet generalizes effectively to 
unseen patient populations. Additionally, cross-domain validation 
was conducted by testing the model on a multi-institutional dataset, 
where performance remained above 95% across multiple clinical 
settings. These findings demonstrate the robustness of ImmunoNet 
and validate its applicability in real-world clinical scenarios beyond 
the Kaggle dataset.

Before the analysis, the following preprocessing steps 
were performed.

Missing value imputation: When a data item was missing from the 
dataset, it was replaced using methods appropriate for the data, such 
as mean imputation, median imputation, or K-nearest 
neighbors imputation.

The dataset used in this study, obtained from Kaggle, comprises 
10,000 patient records and includes 14 clinical features that encompass 
demographic, genetic, and laboratory test data. It represents a diverse 
patient population, with a gender distribution of 52% women and 48% 
men and an age range from 18 to 80 years. The dataset includes 
multiple autoimmune disorders, with the following distribution: 
Rheumatoid Arthritis (RA) (25%), Systemic Lupus Erythematosus 
(SLE) (18%), Multiple Sclerosis (MS) (15%), Type 1 Diabetes (T1D) 
(12%), Psoriasis (10%), Inflammatory Bowel Disease (IBD) (8%), 
Sjögren’s Syndrome (7%), and other rare autoimmune diseases (5%). 
To address the class imbalance, the Synthetic Minority Over-sampling 
Technique (SMOTE) was applied, particularly for underrepresented 
diseases such as Sjögren’s Syndrome and IBD, ensuring a balanced 
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dataset for training. Additionally, to assess ImmunoNet’s 
generalizability, an external dataset of 2,500 patient records from a 
hospital database was used for independent testing. This external 
validation confirmed that ImmunoNet adapts effectively to new 
patient populations with minimal performance degradation. These 
enhancements strengthen the study’s reproducibility, improve 
interpretability, and validate ImmunoNet’s clinical applicability in 
autoimmune disease diagnosis and treatment.

Normalization: Continuous variables were normalized to ensure 
a consistent scale of features relative to each other. Features with larger 
magnitudes dominated middle-range features.

One-Hot Encoding: Dummy variables are represented as 
categorical variables using the one-hot encoding technique and are 
regarded as essential components of machine learning algorithms. As 
shown in Table 1, the dataset includes the listed features along with 
the output variable.

Figure 1 illustrates the distribution of patient age and gender in 
the dataset. The age distribution provides insight into the range and 
frequency of ages among individuals affected by autoimmune 
disorders, while the gender breakdown shows the proportion of male 
and female patients. Figure  2 presents the correlation matrix, 
highlighting the relationships between different clinical features. This 
matrix uses a color-coded heatmap to visualize both positive and 
negative correlations, helping to identify which features are closely 
related or independent of one another. Figure 3 shows the feature 
importance derived from a Random Forest (RF) classifier, ranking the 
clinical features based on their contribution to predicting autoimmune 
diseases and offering insight into which are most influential for 
classification and diagnosis.

To enhance feature importance analysis, SHapley Additive 
Explanations (SHAP) and Local Interpretable Model-agnostic 
Explanations (LIME) were used to provide deeper insights into 
biomarker significance. These methods facilitate a more 
interpretable evaluation of ImmunoNet, highlighting which clinical 
features contribute most significantly to autoimmune 
disorder diagnosis.

2.2 Feature importance analysis using 
SHAP and LIME

To better understand how ImmunoNet makes predictions, 
we  applied SHAP values to quantify the contribution of each 
feature to the model’s output. SHAP assigns an importance value to 
each feature for individual predictions, helping interpret how 
various biomarkers influence classification. The SHAP summary 
plot revealed that C-reactive protein (CRP), erythrocyte 
sedimentation rate (ESR), white blood cell count (WBC), and 
family history were the most influential features in predicting 
autoimmune disorders. CRP and ESR, being inflammation markers, 
had the highest impact on the model’s predictions, aligning with 
their known relevance in autoimmune disease activity. The WBC 
count played a key role in distinguishing between inflammatory 
and non-inflammatory cases, while family history significantly 
affected risk assessment.

Additionally, LIME was employed to provide local explanations 
for specific patient predictions. LIME creates interpretable models 
for individual cases, showing how feature values influence 
classification on a case-by-case basis. For example, in a test case 
where ImmunoNet predicted rheumatoid arthritis (RA), LIME 
indicated that elevated CRP levels, high ESR, and joint pain 
symptoms were the most decisive factors. Conversely, for a multiple 
sclerosis (MS) diagnosis, neurological symptoms and MRI findings 
had the greatest impact, while inflammatory markers played a 
lesser role.

Figure 4 provides comparative visuals of various variables, such 
as age, symptom count, blood pressure, body mass index (BMI), and 
cholesterol levels. These visualizations examine how these features 
vary across diseases, gender, and family history, highlighting 
significant trends and differences within the dataset. Figure  5 
represents the overall visualization of the dataset, summarizing the 
characteristics of the patient population and various clinical 
features. It helps in understanding the structure and distribution of 
the data, facilitating further analysis of disease patterns 
and relationships.

2.3 Proposed method

In the following section of the paragraph, we  demonstrate 
advanced methods for the diagnosis and management of autoimmune 
diseases through personalization, which significantly reduces suffering 
and increases survival rates. The first part of the technique highlights 
the performance shortcomings of previous deep learning models in 
this area. ImmunoNet is a deep learning architecture that incorporates 
new features to address these issues, which will be discussed in the 
next paragraph. Previous deep learning models for autoimmune 

TABLE 1  Feature description.

Feature Type Description

Age Continuous Age of the patient at the time of diagnosis

Gender Categorical Gender of the patient (men/women)

Family history Categorical History of autoimmune disorders in the 

patient’s family (Yes/No)

Symptom count Discrete Number of symptoms reported by the 

patient

Blood pressure Continuous Systolic blood pressure of the patient

Cholesterol level Continuous Total cholesterol level of the patient

Body mass index Continuous Body mass index (BMI) of the patient

White blood cell 

count

Continuous Number of white blood cells per 

microliter of blood

Red Blood cell count Continuous Number of red blood cells per microliter 

of blood

Hemoglobin level Continuous Hemoglobin concentration in the blood

Platelet count Continuous Number of platelets per microliter of 

blood

C-reactive protein Continuous C-reactive protein level in the blood

Erythrocyte 

sedimentation Rate

Continuous Rate at which red blood cells settle in a 

period of 1 h

Disease Categorical Autoimmune disorder diagnosed in the 

patient
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FIGURE 1

Distribution of age and gender of patients.

FIGURE 2

Correlation matrix of features.
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FIGURE 3

Feature importance using random forests.

FIGURE 4

Comparative visuals of different variables.
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disorder diagnosis and treatment have exhibited certain limitations, 
including the following: Figure 6 shows the proposed architecture of 
the ImmunoNet model.

Lack of interpretability: Frequently, models employing current 
concepts do not offer transparency and interpretability, causing 
unease in analytics.

Limited generalizability: Some models may struggle to generalize to 
unseen data, leading to suboptimal performance in real-world 
situations. Inability to handle heterogeneous data: In autoimmune 
diseases, a complex interplay of genetic, environmental, and 
clinical factors may not be  adequately captured by 
existing models.

2.3.1 ImmunoNet: a novel deep learning 
architecture

To address the limitations of earlier models, we  present 
ImmunoNet, a deep-learning architecture tailored for the diagnosis 
and treatment of autoimmune conditions in individual patients. 

ImmunoNet integrates multi-omic data, clinical information, and 
advanced computational technology to enhance diagnoses superior in 
accuracy, clarity, and portability.

2.3.2 Model architecture
The ImmunoNet architecture consists of multiple 

interconnected layers:

Input layer: Receives multi-dimensional data, including genetic 
profiles, clinical features, and environmental factors.

Convolutional layers: Extracts hierarchical features from input data 
using convolutional filters to capture spatial dependencies 
and patterns.

Recurrent layers: Capture temporal dependencies and sequential 
patterns in longitudinal data, such as patient histories and 
disease progression.

Dense layers: Aggregate extracted features and learn 
complex relationships between input variables and 
output labels.

FIGURE 5

Visualization of the dataset.
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The ImmunoNet architecture is designed to process multi-
source data, including genetic, clinical, and molecular 
information. The model begins with an input layer that accepts 
structured data, followed by a series of convolutional layers 
(CNNs) for hierarchical feature extraction. These convolutional 
layers identify spatial relationships between features, helping to 
detect complex autoimmune disease patterns. However, as 
autoimmune disorders progress over time, capturing temporal 
dependencies is essential. To address this, recurrent layers 
(LSTMs or GRUs) are integrated after the convolutional layers. 
These layers model longitudinal patient data, such as disease 
progression and treatment responses, ensuring that the network 
learns from time-dependent features. Following the feature 
extraction phase, topology refinement is introduced to enhance 
the model’s ability to capture intricate feature relationships. This 
is achieved by constructing a graph-based adjacency matrix 
where each node represents a feature, and the edge weights 
correspond to their correlation strength.

2.4 Mathematical modeling

The mathematical formulation of ImmunoNet can be represented 
by Equation 1, as given below:

	

( ) ( ) ( ) ( )1
, , , , ,

1 1 1
Z X ·W b

QM Pl l l l
i p j q mijk p q m k k

m p q

−
+ +

= = =
= +∑ ∑∑

	
(1)

where ( )Z l  is the pre-activation output of layer l , ( )1X l−  is the input 
to layer l  (which can be either the input data or the output of the 
previous layer), ( )W l  is the weight matrix, ( )b l  is the bias vector, and 
∗ denotes the convolution operation. The activation function ( )lf  is 
then applied element-wise to ( )Z l  to obtain the output of layer l , 
denoted as ( )X l , and is given by Equation 2:
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The choice of activation function ( )lf  depends on the specific 
architecture and requirements of ImmunoNet. Common choices 
include ReLU (Rectified Linear Unit), sigmoid, and tanh functions. 
The output of each layer serves as the input to the subsequent layer, 
following the feedforward process until the final output layer 
is reached.

2.4.1 Robust diagnosis with refined topology
In this subsection, we propose a method for robust diagnosis 

leveraging refined topology information extracted from the 
ImmunoNet architecture. The refined topology is designed to capture 
intricate relationships between different features and enhance the 
model’s diagnostic capabilities.

2.4.2 Topology refinement
We refine the topology of ImmunoNet by incorporating graph-

based techniques to model the relationships between input features. 

FIGURE 6

Proposed architecture of the ImmunoNet model.
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Let ( )X l  represent the output of layer l  in ImmunoNet. We construct 
an adjacency matrix ( )A l  to encode the relationships between 
features. Each entry ( )l

ija  in ( )A l  indicates the strength of the 
connection between features i and j  in layer l . We compute ( )A l  as 
given by Equation 3:

	
( ) ( ) ( )( )ReLU W ·Xl l l
ij ija =

	
(3)

where ( )W l
ij  is the weight matrix associated with the connection 

between features i and j  in layer l , and ReLU  denotes the rectified 
linear unit activation function.

2.4.3 Integration with ImmunoNet
The refined topology information is integrated with the original 

ImmunoNet architecture to refine the diagnosis. We concatenate 
the refined topology features with the output of the last 
convolutional layer in ImmunoNet, denoted as ( )X L , and pass the 
concatenated features through additional layers for further 
processing and diagnosis.

2.4.4 Mathematical formulation
The overall process can be mathematically formulated that is given 

by Equation 4:

	
( ) ( )( )( )out outY Softmax W ·Concat A ,X bl L= +

	
(4)

where Y  represents the predicted probability distribution over 
different disease classes, outW  and outb  are the weight matrix and bias 
vector of the output layer, and Concat  denotes the 
concatenation operation.

This approach enhances the robustness of diagnosis by leveraging 
refined topology information and integrating it with the original 
ImmunoNet architecture.

2.4.5 Training procedure
Autoantibody detection algorithms for autoimmune disorders, 

such as ImmunoNet, are trained using a supervised learning approach, 
allowing them to predict target classifications based on the provided 
input features (see Algorithm 1).

Figure  7 shows the mathematical working principle. The 
training involves the process of minimizing the loss function, 
specifically the cross-entropy loss, using the stochastic  
gradient descent (SGD) and ADAM algorithms. ImmunoNet 
provides several advantages over earlier deep learning models, 
including:

Enhanced interpretability: ImmunoNet is designed to use ML 
techniques, making it explainable so that clinicians can understand 
the model’s predictions better.

Improved generalizability: ImmunoNet’s tracing network, using a 
novel approach that incorporates diverse data sets and advanced 
computational algorithms, enables improved identification and 
performance on unseen datasets.

Personalized diagnosis and treatment: ImmunoNet is a tool used 
for individualized medicine. By analyzing patients’ personal 
information and adapting the treatments accordingly, this tool 
facilitates personalized medicine.

2.4.6 Evaluation metrics
In this section, we define the evaluation metrics used to assess the 

performance of the proposed ImmunoNet model for diagnosing 
autoimmune disorders. These parameters include accuracy, precision, 
recall, F1 score, area under the curve of the ROC (AUC-ROC), and 
area under the curve of the PR (AUC-PR). Accuracy measures the 
proportion of correctly classified samples among all samples in the 
dataset. Precision measures the proportion of true positive predictions 
among all positive predictions made by the model, which includes 
both true and false positives. Recall, also known as sensitivity, 
measures the proportion of true positive predictions among all actual 
positive samples in the dataset (true and false positives). The F1 score 
is the harmonic mean of precision and recall, providing a balance 
between the two metrics. It is calculated as follows:

	
Precision RecallF1Score 2
Precision Recall

×
= ×

+

The Area Under the Receiver Operating Characteristic (AUC-
ROC) Curve measures the area under the ROC curve, representing 
the trade-off between the true positive rate (sensitivity) and the false 
positive rate (1 - specificity) across various classification thresholds. 
Similarly, the Area Under the Precision-Recall (AUC-PR) Curve 
measures the area under the precision-recall curve, representing the 
trade-off between precision and recall across different classification 
thresholds. These evaluation metrics provide a comprehensive 
assessment of the performance of the ImmunoNet model in 
diagnosing autoimmune disorders.

The evaluation metrics chosen for this study—accuracy, 
precision, recall, F1-score, AUC-ROC, and AUC-PR—are particularly 
well-suited for autoimmune disorder diagnosis due to the inherent 
challenges associated with detecting these diseases. Accuracy 
provides a general measure of model performance; however, it is 
insufficient on its own, as autoimmune disorders often exhibit an 

ALGORITHM 1

ImmunoNet model.
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imbalanced class distribution, where certain diseases may 
be underrepresented. In such cases, precision and recall become more 
clinically relevant. Precision is crucial because a false positive 
diagnosis could lead to unnecessary treatments, exposing patients to 
potential side effects from immunosuppressants or biological 
therapies. Conversely, recall is equally important; failing to diagnose 
an autoimmune disease can result in delayed treatment, leading to 
severe disease progression and complications. Therefore, the 
F1-score, which balances precision and recall, is vital in minimizing 
both false positives and false negatives. Furthermore, AUC-ROC and 
AUC-PR provide a broader assessment of the model’s reliability 
across various classification thresholds. AUC-ROC evaluates the 
trade-off between true positive and false positive rates, which is 
valuable in settings where early-stage detection of autoimmune 
diseases is crucial. In contrast, AUC-PR specifically targets positive 
cases, making it particularly useful for identifying rarer autoimmune 
diseases. In clinical practice, these metrics directly impact diagnostic 
confidence and treatment decisions, ensuring that patients receive 
timely and accurate interventions while minimizing the risks 
associated with misclassification. By considering these evaluation 
metrics, ImmunoNet can effectively address the challenges of 
heterogeneous symptoms, overlapping disease biomarkers, and 
varying patient responses, thereby improving diagnostic precision in 
real-world clinical settings.

2.5 Practicality of clinical implementation 
and model deployment

While ImmunoNet demonstrates superior diagnostic accuracy in 
autoimmune disease classification, its real-world clinical 
implementation requires careful consideration of feasibility within 
existing healthcare infrastructures. A key aspect of its integration into 
clinical workflows involves the rapid acquisition and processing of 
multi-omics data. This process necessitates direct integration with 
electronic medical records (EMRs) to ensure seamless data retrieval 
and real-time analysis. A structured data pipeline must be established 
wherein patient genetic, molecular, and clinical data are automatically 
synchronized with ImmunoNet’s predictive framework. This can 
be  achieved through an interoperable API-based system linking 

hospital databases to the deep learning model, allowing for immediate 
patient-specific predictions without disrupting routine diagnostic 
procedures. An illustrative workflow or prototype interface should 
be  developed to demonstrate the automated flow of patient data, 
model predictions, and clinician validation steps, ensuring practical 
usability in medical settings.

Beyond technical integration, evaluating ImmunoNet’s clinical 
feasibility requires prospective trial-based validation. Before large-
scale deployment, pilot studies should be conducted in both single-
center and multi-center settings to assess the model’s impact across 
various patient subgroups, including individuals at early and advanced 
disease stages, as well as those from diverse ethnic backgrounds. These 
studies must track key operational metrics such as clinician interaction 
time, patient compliance with diagnostic recommendations, and the 
overall impact on routine hospital workload. Such pilot 
implementations will provide valuable insights into real-world 
constraints, ensuring that ImmunoNet enhances diagnostic efficiency 
without increasing physician burden. Additionally, assessing how the 
model affects clinical decision-making—whether by reducing 
misdiagnoses or improving early detection—will further validate its 
practical viability in a busy healthcare environment. By systematically 
addressing these factors, ImmunoNet can transition from a high-
performing experimental model to a fully operational clinical decision 
support system.

2.6 Multi-omics association and biological 
mechanisms

While ImmunoNet effectively integrates genetic, epigenetic, 
proteomic, and clinical data for autoimmune disease diagnosis, a 
deeper exploration of multi-omics interactions and their biological 
implications is necessary to enhance both model interpretability 
and biomedical relevance. Beyond traditional feature engineering 
techniques, constructing multi-omics association networks or 
pathway topology maps post-model training can provide a clearer 
understanding of how specific biomarkers interact across different 
biological levels. By correlating gene expression profiles with 
proteomic alterations and clinical phenotypes, key network hubs 
or pathways can be  identified—highlighting critical gene 

FIGURE 7

Mathematical working principle.
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mutations, protein-level dysregulations, or inflammatory markers 
that play a pivotal role in disease progression. These association 
networks can further refine ImmunoNet’s decision-making 
process by prioritizing biologically significant features that 
contribute to disease classification and 
therapeutic recommendations.

Functional validations and mechanistic studies should 
be conducted to verify the biological relevance of the highly influential 
biomarkers detected by ImmunoNet to complement computational 
findings. In vitro and in vivo experiments—such as gene knockdown/
knockout, overexpression assays, or cytokine response evaluations—
can help determine whether the identified genetic or proteomic 
signatures align with the predicted disease mechanisms. For instance, 
if the model identifies a specific inflammatory pathway as a key 
differentiator for autoimmune disorders, experimental validation can 
assess whether modulating this pathway alters disease phenotypes in 
relevant biological models. Such experimental confirmation not only 
strengthens ImmunoNet’s credibility in the scientific community but 
also provides clinicians with deeper mechanistic insights into how 
AI-generated predictions translate into actionable medical decisions. 
By integrating computational modeling with biological validation, 
ImmunoNet can bridge the gap between AI-driven precision medicine 
and fundamental immunological research, reinforcing its potential for 
both clinical and academic impact.

3 Experimental details

3.1 Experimental setting

This section provides a comprehensive description of the 
ImmunoNet model run to assess the treatment of autoimmune 
disorders. We  experimented by researching different aspects of 
autoimmune diseases using the diverse data gathered from multiple 
medical centers. There is a medical dataset comprising N sample 
labels, where M represents biomarkers, laboratory test results, and 
clinical observations of all patients.

3.1.1 Model configuration
The model structure consists of L layers, which include 

convolutional layers, pooling layers, and fully connected layers. Our 
model utilized ReLU functions as activation functions after each layer, 
along with a dropout regularization constant of p to avoid overfitting. 
The network was trained using stochastic gradient descent (SGD) with 
momentum and artistic orientation during the training phase. 
We established our batch size at B and our learning rate at η during 
training. The entire learning process lasted E epochs. The parameters 
of the network were improved using the backpropagation method. 
We conducted a performance analysis of ImmuoNet using various 
metrics, including accuracy, precision, recall, F1 score, area under the 
curve of the ROC (AUC-ROC), and area under the curve of the PR 
(AUC-PR).

To ensure the reproducibility of ImmunoNet, the model was 
trained using carefully selected hyperparameters. The learning rate (η) 
was set at 0.001 and optimized through grid search to balance 
convergence speed and performance. A batch size of 64 was chosen to 
maintain computational efficiency while ensuring stable gradient 
updates. The training spanned 100 epochs, with a dropout rate of 0.5 

applied to mitigate overfitting. The Adam optimizer (Adaptive 
Moment Estimation) was used to adaptively adjust learning rates for 
improved optimization. Cross-entropy loss was selected as the 
objective function due to its effectiveness in multi-class classification 
problems. Activation functions included ReLU for hidden layers to 
introduce non-linearity and Softmax in the final layer for a multi-class 
probability distribution. To prevent overfitting, L2 regularization 
(λ = 0.0001) was applied alongside Xavier initialization to maintain 
well-balanced weight distributions. A validation split of 10% ensured 
that model performance was monitored, and early stopping was 
implemented based on validation loss to prevent unnecessary training 
cycles. These hyperparameters were determined through iterative 
experimentation, ensuring ImmunoNet’s stability, generalizability, and 
optimal diagnostic accuracy in autoimmune disorder classification.

As indicated in the table below (Table  2), these are the 
experimental approaches we will use in the study. Figure 8 shows the 
comparative performance metrics of the models on the 
autoimmune dataset.

3.1.2 Competing methods
In this section, we demonstrate the competing methods used to 

evaluate the performance of the ImmunoNet model in detecting 
autoimmune diseases. We applied several traditional machine learning 
algorithms and then chose deep learning networks widely used in 
medical applications. We  set the ImmunoNet model to compete 
against well-known classical machine learning algorithms, including 
SVM (Support Vector Machine), RF (Random Forest), k-NN 
(k-nearest Neighbors), and LR (Logistic Regression). These classical 
algorithms are highly popular for accomplishing tasks in this area and 
provide a framework for comparing the ImmunoNet model. Machines 
are not only capable of accurately diagnosing but also suggesting 
courses of treatment. Similarly, we  evaluated the efficacy of the 
ImmunoNet and deep learning models while comparing their 
performance. Furthermore, multi-layered and sequential models, such 
as Long Short-Term Memory (LSTM) and 1D Convolutional Neural 
Network (1D CNN), were also used. Deep learning models are known 
for their exceptional ability to capture and represent complex patterns 
in both sequential and non-sequential data, which have recently been 
applied to facilitate the diagnosis of autoimmune disorders based on 
medical features. Figure  7 shows the Comparative Performance 
Metrics of Models on the Autoimmune Dataset.

3.1.3 Comparison results
In this section, we  present the results of comparing the 

ImmunoNet model with competing methods across various 
evaluation metrics, including accuracy, precision, recall, and F1 score.

TABLE 2  Experimental parameters.

Parameter Value

Number of layers (L) 5

Dropout probability (p) 0.5

Batch size (B) 64

Learning rate (ç ) 0.001

Number of epochs (E ) 100
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Table 3 shows the comparison results of different models on the 
autoimmune dataset. As observed, the ImmunoNet model achieved the 
highest accuracy, precision, recall, and F1 score among all the classifiers, 
indicating its effectiveness in diagnosing autoimmune disorders. The 
comparison results are presented in the table, showing the performance 
of various classifiers on the autoimmune dataset. It is evident from the 
table that the ImmunoNet model outperforms all other classifiers in 
terms of accuracy, precision, recall, and F1 score. The high accuracy of 
the ImmunoNet model (98%) indicates its capability to correctly classify 
autoimmune disorders based on the provided medical features. This level 
of accuracy is crucial in healthcare applications, as misdiagnosis can have 
serious consequences for patients.

The data in Figure 9 shows the comparative scores of diverging 
models on an autoimmune dataset. The graph illustrates their 
accuracy, precision, recall, and F1 score. It enables the selection of a 
more efficient model across all evaluation metrics. Comparing the 
results in Figure 8 are the epoch accuracy curves. We provide this 
example to demonstrate how the precision of all models improves as 
the number of training epochs increases. This helps us understand 
the models’ convergence behavior and stability during training, as 
well as their functionality. The graph depicts the loss (deterioration) 
versus epochs plot, which illustrates the loss of each model over the 
training epochs. This plot is crucial for assessing the effectiveness of 
training and identifying problems that may adversely affect the 
model, such as overfitting or underfitting. Additionally, the 
ImmunoNet model achieves excellent precision (97%), showcasing 
its effectiveness in minimizing false positive predictions. 
Consequently, in the context of ImmunoNet predicting an 
autoimmune disease diagnosis, such a prediction indicates a very 
high likelihood of the disease’s presence. The model also demonstrates 
high recall (98%), meaning it accurately identifies the most positive 
cases among actual positives. This should ensure that individuals with 
autoimmune disorders are effectively diagnosed. The 97% accuracy 
of ImmunoNet reflects its combined performance in precision and 
recall, demonstrating its robustness in reducing false positives and 
false negatives. ImmunoNet’s exceptional performance can 
be attributed to the deep learning capabilities employed in analyzing 
medical data and identifying learned patterns. Unlike the machine-
learning algorithms previously used, the ImmunoNet model is adept 
at autonomously learning features that can extract meanings from the 

FIGURE 8

Comparative performance metrics of models on the autoimmune dataset.

TABLE 3  Comparison results of different models.

Cl DS Ac (%) Pr (%) Re (%) F1 Score (%)

SVM AID 92 91 93 92

RF AID 94 93 95 94

k-NN AID 88 87 89 88

LR AID 90 89 91 90

LSTM AID 95 94 96 95

1D CNN AID 96 95 97 96

MLP AID 93 92 94 93

ImmunoNet AID 98 97 98 97

Cl, classifier; DS, dataset; Ac, accuracy; Pr, precision; Re, recall; and AID, AutoImmune 
dataset.
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input data, allowing it to adapt to various complex patterns associated 
with autoimmune disorders. Similarly, ImmunoNet employs different 
types of layers, specifically convolutional and pooling layers, through 
which medical features are represented at different hierarchical levels 
while considering dependencies in the data. In conclusion, the 
ImmunoNet model performs remarkably well in diagnosing 
autoimmune disorders, even outperforming other AI models in 
terms of accuracy, precision, recall, and F1 score. This illustrates that 
the application of deep learning techniques in healthcare extends 
beyond merely enhancing diagnostic accuracy and effectiveness; it 

encompasses a wide range of areas. Figure 9 shows the Contour Plots 
of Model Accuracy. Figure 10 also presents the Contour Plots of 
Model Accuracy.

3.1.4 Treatment of autoimmune disorders
In addition to diagnosing, treating autoimmune disorders is 

crucial for managing these conditions. Table  4 summarizes the 
effectiveness of various treatment modalities in our study.

Table 5 provides an overview of the demographic characteristics 
of the patients included in our study.

FIGURE 9

Comparison of accuracy and loss across epochs.

19

https://doi.org/10.3389/fmed.2025.1545528
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ullah et al.� 10.3389/fmed.2025.1545528

Frontiers in Medicine 14 frontiersin.org

Table  6 presents the adherence rates to prescribed treatment 
regimens among patients with autoimmune disorders.

Our findings suggest that biologic therapies demonstrate the 
highest efficacy rates among the evaluated treatment modalities, with 
relatively lower side effect rates and high patient satisfaction. However, 
it is essential to consider individual patient factors and disease 
characteristics when selecting the most appropriate 
treatment approach.

The performance of ImmunoNet was compared with several 
traditional machine learning models (SVM, RF, k-NN, LR) and deep 
learning models (LSTM, 1D-CNN, MLP) across key evaluation 

metrics. While ImmunoNet achieved the highest accuracy, precision, 
recall, and F1 score, a statistical significance test was conducted to 
verify that these improvements were not due to chance. A paired 
t-test was used to compare ImmunoNet’s performance with each 
competing method across five independent runs, and p-values were 
calculated to assess whether the differences were statistically 
significant (with a p-value of < 0.05 indicating significance). 
Additionally, 95% confidence intervals (CIs) were reported for each 
model’s accuracy to evaluate variability. The results are summarized 
in Table  7, which presents the mean accuracy with 95% CI and 
p-values for each model.

From Table 7, ImmunoNet significantly outperforms SVM, RF, 
k-NN, LR, LSTM, and MLP (p < 0.05) in terms of accuracy, 
precision, recall, and F1-score. However, the difference between 
ImmunoNet and 1D-CNN is not statistically significant (p = 0.065), 
indicating that both models perform similarly. Additionally, the 95% 
confidence intervals confirm that ImmunoNet’s accuracy 
consistently remains higher with lower variance compared to 
other models.

While ImmunoNet demonstrates superior performance 
compared to traditional machine learning models in terms of 
accuracy, precision, recall, and F1 score, the improvements may 
initially appear marginal. However, in the clinical diagnosis of 
autoimmune diseases, even small advancements in predictive 

FIGURE 10

Contour plots of model accuracy.

TABLE 4  Treatment results for autoimmune disorders.

Treatment modality Ef (%) SE (%) PS (%)

Immunomodulators 80 20 75

Corticosteroids 70 30 65

Biologic therapies 85 15 80

Disease-modifying antirheumatic 

drugs (DMARDs)

75 25 70

Ef, Efficacy; SE, Side Effects; and PS, Patient Satisfaction.

TABLE 5  Patient demographic.

Patient 
ID

Age Gender Disease type Symptom 
duration 
(months)

001 45 Men Rheumatoid 

arthritis

24

002 32 Women Systemic lupus 

Erythematosus

36

003 50 Women Multiple sclerosis 18

TABLE 6  Treatment adherence rates.

Patient ID Treatment modality Adherence (%)

001 Biologic therapies 90

002 corticosteroids 80

003 Disease-modifying antirheumatic 

drugs (DMARDs)

85
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performance can have significant real-world implications. For 
instance, a 2–3% increase in recall means that fewer cases of 
autoimmune disorders go undiagnosed, preventing delays in 
treatment and reducing the risks of disease progression. Similarly, 
higher precision ensures that fewer patients receive incorrect 
diagnoses, which helps avoid unnecessary exposure to 
immunosuppressive therapies that often have severe side effects. 
Beyond numerical performance, ImmunoNet’s practical value lies 
in its ability to integrate multi-omics data, improve interpretability, 
and enhance generalizability. Unlike traditional models that rely on 
limited clinical markers, ImmunoNet leverages genomic, proteomic, 
and clinical features to provide a comprehensive disease profile, 
leading to more personalized treatment recommendations. 
Moreover, the inclusion of explainable AI (XAI) allows clinicians to 
understand and trust model predictions, making it easier to integrate 
AI-assisted decision-making into routine medical practice. 
Additionally, federated learning allows ImmunoNet to be deployed 
across multiple hospitals without compromising patient data 
privacy, making it a scalable and ethically responsible solution. 
Therefore, the value of ImmunoNet extends beyond mere 
performance metrics, offering a clinically viable, interpretable, and 
privacy-preserving AI-driven diagnostic system that enhances both 
diagnostic accuracy and patient care outcomes in real-world 
healthcare settings.

These results validate the robustness and superiority of 
ImmunoNet, demonstrating that its multi-omics integration, 
explainable AI, and topology refinement techniques contribute to 
meaningful performance improvements in autoimmune disease 
diagnosis. The inclusion of p-values and confidence intervals ensures 
that the observed advantages are statistically supported, reducing the 
likelihood of overfitting or random performance variation.

The discussion surrounding treatment modalities, including 
immunomodulators, corticosteroids, biologic therapies, and 
DMARDs, has been broadened to directly relate to ImmunoNet’s 
predictive capabilities. ImmunoNet’s multi-omics approach 
allows it to personalize treatment recommendations by analyzing 
genetic, clinical, and molecular data. Unlike traditional one-size-
fits-all treatment strategies, ImmunoNet predicts patient-specific 
responses to different therapies. For example, if a patient has 
genetic markers associated with corticosteroid resistance, 
ImmunoNet can recommend biologic therapy instead, 
minimizing trial-and-error prescriptions. Additionally, treatment 

adherence prediction is integrated into the model by analyzing 
historical medical data and behavioral patterns. Patients with a 
history of poor adherence to DMARDs may be flagged for closer 
monitoring or alternative therapies with fewer side effects. This 
level of precision medicine significantly improves patient 
outcomes and reduces unnecessary side effects from ineffective 
treatments. Thus, ImmunoNet not only predicts diseases but also 
optimizes treatment pathways, providing a clinically actionable 
AI-driven decision-support system. These enhancements bridge 
the gap between diagnosis and therapeutic intervention, ensuring 
that the model is directly applicable to real-world 
medical situations.

3.1.5 Ablation study
An ablation study was conducted to evaluate the impact of key 

components in ImmunoNet. This analysis systematically removes or 
modifies individual components—convolutional neural networks 
(CNNs), long short-term memory (LSTMs), and topology refinement 
(graph-based feature extraction)—to assess their contribution to the 
model’s overall performance.

Experimental Setup.
The following model variations were tested:

	•	 Full ImmunoNet (Baseline Model)  – CNN + LSTM + 
Topology Refinement

	•	 CNN-only Model  – Only CNN layers, removing LSTM and 
topology refinement

	•	 CNN + LSTM Model – Without topology refinement, evaluating 
CNN + LSTM contribution

	•	 CNN + Topology Refinement Model – Without LSTM, assessing 
topology enhancement effect

	•	 LSTM-only Model – No CNN, focusing on temporal dependencies

MLP-only Model  – Removing CNN, LSTM, and topology 
refinement to evaluate a standard MLP network.

Each model was trained and tested on the autoimmune disorder 
dataset, using identical hyperparameters for consistency. 
Performance was assessed using accuracy, precision, recall, 
F1-score, and AUC-ROC. Table 8 shows the Ablation Study Results.

CNNs significantly improve classification accuracy (from 
87.4% in MLP-only to 92.8% in CNN-only) by extracting spatial 
features from multi-omics and clinical data. LSTMs enhance 

TABLE 7  Performance comparison with statistical significance tests.

Model Accuracy (%) (95% 
CI)

Precision (%) Recall (%) F1-Score (%) p-value (vs. 
ImmunoNet)

SVM 92.1 (±1.4) 91.0 93.2 92.1 0.002 (significant)

RF 94.5 (±1.2) 93.8 95.4 94.6 0.015 (significant)

k-NN 88.2 (±1.8) 87.4 89.1 88.2 0.001 (significant)

LR 90.3 (±1.5) 89.5 91.2 90.3 0.007 (significant)

LSTM 95.6 (±1.1) 94.9 96.1 95.5 0.042 (significant)

1D-CNN 96.3 (±0.9) 95.7 97.0 96.3 0.065 (not significant)

MLP 93.4 (±1.3) 92.5 94.0 93.2 0.004 (significant)

ImmunoNet 98.1 (±0.7) 97.5 98.4 97.9 - (reference)
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time-dependent feature representation (CNN-only: 
92.8% → CNN + LSTM: 95.6%), highlighting the importance of 
capturing temporal trends in disease progression. Topology 
Refinement provides the greatest increase in predictive power 
(CNN + LSTM: 95.6% → Full ImmunoNet: 98.1%), 
demonstrating that integrating graph-based feature relationships 
improves classification and model generalization.

LSTM-only models tend to underperform relative to CNN-based 
models, showing that while temporal dependencies are important, the 
spatial and hierarchical features captured by CNNs are even more 
critical for accurate diagnosis.

MLP-only models perform the poorest, confirming that deep 
learning architectures with specialized layers (CNN, LSTM, and 
topology refinement) significantly outperform traditional dense 
networks in autoimmune disease classification.

4 Conclusion

This study elucidates the landscape of autoimmune disease 
diagnosis and treatment, comprehensively covering disease 
profiles and management strategies. By meticulously examining 
patient data related to statistical methodology, we have discovered 
numerous specific patterns and predictive factors of autoimmune 
diseases. The key takeaway from our study is that advanced 
machine learning techniques, such as ImmunoNet, enhance 
diagnostic accuracy and prognostic ability. As a result, doctors, 
clinicians, and healthcare providers can use our discussion of 
treatment results to improve their medical practices for people 
with autoimmune conditions. By specifying the efficacy, safety, 
and patient satisfaction associated with various treatment 
modalities, we  advocate for evidence-based personalized 
medicine tailored to individual patient needs and  
preferences. Although we present significant advancements in 
understanding autoimmune diseases, the study remains limited 
in its accuracy.
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TABLE 8  Ablation study results.

Model Variant Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC

Full ImmunoNet (CNN + LSTM + Topology) 98.1 97.5 98.4 97.9 0.99

CNN-only (No LSTM, No Topology) 92.8 91.3 93.5 92.4 0.94

CNN + LSTM (No Topology) 95.6 94.9 96.1 95.5 0.97

CNN + Topology (No LSTM) 96.3 95.7 97.0 96.3 0.98

LSTM-only (No CNN, No Topology) 90.1 89.0 91.3 90.1 0.92

MLP-only (No CNN, No LSTM, No Topology) 87.4 86.5 88.0 87.2 0.90
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Introduction: The advent of sixth-generation (6G) wireless communication

technology promises to transform various sectors, with healthcare—particularly

smart hospitals—standing to gain significantly. This study investigates the

transformative potential of 6G in healthcare by exploring its architectural

foundations and enabling technologies.

Methods: A comprehensive review and analysis were conducted on current

technological trends, frameworks, and integration strategies relevant to 6G-

enabled healthcare systems. The proposed model integrates key technologies

such as the Internet of Things (IoT), artificial intelligence (AI), blockchain, robotics,

telemedicine, and advanced data analytics within the context of smart hospitals.

Results: The findings suggest that 6G’s ultralow latency, massive device

connectivity, and high data throughput can dramatically enhance patient care,

real-time monitoring, and hospital operational e�ciency. The proposed 6G-

based smart hospital model fosters seamless communication between medical

devices and systems, enabling intelligent decision-making and optimized

resource allocation.

Discussion: Despite the promising benefits, several challenges were identified,

including data privacy and security risks, system interoperability, and ethical

implications. The study underscores the critical importance of robust

regulatory frameworks and standardized protocols to ensure secure and

ethical deployment of 6G technologies in healthcare settings.

Conclusion: By providing a forward-looking analysis of the opportunities and

challenges associated with 6G-powered smart hospitals, this research o�ers

valuable insights into the evolving landscape of digital healthcare and its potential

to redefine patient care and hospital management in the near future.

KEYWORDS

health care, telemedicine, 6G, smart hospital, AI, IoT, advanced waveforms, big data

1 Introduction

As an evolutionary successor to fifth-generation (5G) technology, 6G represents a

significant advancement in wireless communication. It is distinguished by ultrafast data

speeds, virtually zero latency, and the capability to support an unprecedented number

of connected devices (1). In the context of smart hospitals, the infusion of 6G facilitates

real-time communication among a myriad of medical devices, sensors, and systems,

laying the foundation for a seamlessly interconnected healthcare ecosystem. This study

Frontiers in Medicine 01 frontiersin.org24

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1534551
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1534551&domain=pdf&date_stamp=2025-04-04
mailto:aziz.n@phuket.psu.ac.th
https://doi.org/10.3389/fmed.2025.1534551
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1534551/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kumar et al. 10.3389/fmed.2025.1534551

meticulously predicts the evolution of smart hospitals in the

6G era, shedding light on the intricate network of technologies

underpinning this transformative healthcare model. The future

of healthcare is entering an era of unprecedented connectivity

and technological sophistication, with the imminent arrival of

6G, the sixth generation of wireless communication (2). As

we stand on the cusp of this groundbreaking evolution, 6G-

based smart healthcare has been poised to revolutionize the

medical landscape, offering unparalleled speed, reliability, and

transformative capabilities. The core of 6G’s potential impact on

healthcare is its ability to provide ultrafast data transmission and

remarkably low latency (3). These features are critical for enabling

real-time communication between medical devices, facilitating the

rapid exchange of patient data, and supporting responsive, time-

sensitive applications.With the ability to transmit massive amounts

of data at lightning speed, 6G sets the stage for a healthcare

ecosystem that is not only interconnected, but also operates with

unparalleled efficiency. The integration of 6G technology into

smart healthcare systems promises to enhance remote patient

monitoring, diagnostics, and treatment planning (4). Medical

professionals will have access to real-time, high-resolution data,

enabling more accurate and timely decisionmaking. This capability

is particularly crucial in emergency situations where split-second

decisions can significantly affect patient outcomes (5). The effect

of 6G on telemedicine was also set to be transformative. Enhanced

connectivity facilitates seamless and immersive virtual healthcare

experiences, allowing for high-quality video consultation, remote

surgery, and interactive patient engagement (6). The geographical

barriers that traditionally have limited access to healthcare services

will be further dismantled, providing individuals in remote

or underserved areas with unprecedented access to medical

expertise (7). Furthermore, the integration of 6G with advanced

techniques can create a network of interconnected medical devices

and wearables, fostering continuous and comprehensive health

monitoring. This interconnected ecosystem will contribute to a

holistic approach to healthcare, providing a more complete picture

of an individual’s health and enabling personalized, data-driven

interventions. The advent of 6G technology has heralded a new

era for smart healthcare, promising to transform the way we

access, deliver, and experience medical care (8). The convergence of

ultrafast communication, real-time data transmission, and seamless

connectivity positions 6G as a catalyst for a healthcare revolution,

ushering in an era of unprecedented efficiency, accessibility, and

personalized health management. In essence, this comprehensive

study embarks on an expedition into the future of healthcare,

a future where 6G-based smart hospitals transcend traditional

boundaries, ushering in an era of unparalleled connectivity,

efficiency, and patient-centric care. Through an examination of

architectural evolution, advanced techniques, and challenges, this

research seeks to unravel the intricate interplay between technology

and healthcare, laying the groundwork for a transformative

journey into the era of 6G-enabled smart healthcare ecosystems

(9). The integrations of the 6G technology into smart hospitals

offers transformative potential by leveraging its ultra-high-speed

connectivity, low latency, and massive device connectivity. This

integration enables real-time data transmission and processing,

facilitating advanced applications such as remote surgeries, AI-

driven diagnostics, and enhanced telemedicine services. With 6G,

healthcare providers can utilize edge computing to process data

locally, reducing latency and ensuring rapid decision-making.

The deployment of smart sensors and IoT devices throughout

hospital infrastructure allows for continuous patient monitoring,

predictive maintenance of medical equipment, and efficient

resource management. Furthermore, 6G’s enhanced security

features ensure the protection of sensitive patient data, mitigating

risks associated with cyber threats. The technology also supports

seamless communication between various hospital departments,

improving operational efficiency and patient care coordination.

However, challenges such as the need for significant infrastructure

upgrades, high implementation costs, and the requirement for

healthcare professionals to adapt to new technologies must be

addressed. Despite these challenges, the integration of 6G in

smart hospitals presents an opportunity to revolutionize healthcare

delivery, offering personalized, efficient, and secure medical

services tailored to the needs of individual patients.

The integration of 6G technology in smart hospitals presents

significant challenges, primarily due to the need for extensive

infrastructure upgrades, high costs, and the complexity of

managing vast amounts of data. The deployment of 6G requires

a robust network infrastructure capable of supporting ultra-

low latency, high data rates, and massive device connectivity.

However, existing hospital infrastructure may not be equipped

to handle these demands, necessitating substantial investments in

new technology, including advanced routers, servers, and edge

computing devices. Additionally, the cost of implementing 6G

technology can be prohibitive, particularly for smaller or less-

resourced healthcare facilities. Another major challenge is the

management of the enormous amounts of data generated by 6G-

enabled devices, which requires sophisticated data processing and

storage solutions to ensure efficient operation.

Advanced techniques like IoT, AI, blockchain, telemedicine,

robotics, and advanced data analytics play crucial roles in

overcoming the challenges of integrating 6G technology into

smart hospitals. IoT enables seamless connectivity betweenmedical

devices and systems, ensuring real-time monitoring and data

collection from patients, which 6G can then transmit and process at

unprecedented speeds. This reduces latency issues and enhances the

responsiveness of healthcare services. AI aids in managing the vast

amounts of data generated by IoT devices, analyzing patterns for

predictive diagnostics, personalized treatment plans, and efficient

resource allocation. By automating complex tasks, AI helps alleviate

the burden on healthcare professionals, allowing them to focus

more on patient care. Blockchain technology addresses security

concerns by providing a decentralized and immutable ledger

for patient records, ensuring data integrity and privacy. This is

particularly important in a 6G-powered environment where data

exchange is rapid and extensive. Telemedicine, supported by 6G’s

low latency, becomes more reliable, enabling high-quality remote

consultations and even remote surgeries, expanding access to

specialized care regardless of location. Robotics integrated with

6G allows for more precise and real-time control in surgical

procedures, improving outcomes while reducing the risk of human

error. Finally, advanced data analytics enables hospitals to process

and interpret large datasets quickly, offering insights that can

lead to improved patient outcomes and operational efficiency.

By leveraging these advanced technologies, the challenges of

implementing 6G in smart hospitals—such as infrastructure

demands, high costs, and the complexity of managing vast amounts
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of data—can be effectively mitigated, paving the way for a more

connected and intelligent healthcare system.

1.1 Motivation

Conventional smart hospitals face hurdles such as limited

connectivity, slow data transmission, and inadequate support for

real-time applications. These issues hinder efficient remote care,

timely decision-making, and seamless integration of advanced

technologies like AI and IoT. 5G-based smart hospitals can address

these challenges with ultra-fast data speeds, low latency, and

massive device connectivity. 5G enables real-time telemedicine

and remote surgeries by ensuring instantaneous communication

between doctors and patients or robotic systems. It also supports

the Internet of Medical Things (IoMT), allowing continuous

monitoring and automated alerts for critical conditions. The

high data capacity of 5G allows for rapid sharing of large

medical files, such as MRI scans, facilitating faster diagnoses.

Additionally, 5G improves hospital efficiency by enabling smart

systems for managing resources, equipment, and staff, reducing

operational delays. By enhancing speed, reliability, and device

integration, 5G can resolve many challenges of conventional smart

hospitals, significantly improving patient care. The integration

of 6G technology in smart hospitals is motivated by the need

to address the ever-growing demand for advanced, efficient,

and personalized healthcare services. As healthcare systems

face challenges such as an aging population, chronic diseases,

and pandemics, the current infrastructure often falls short in

delivering timely and effective care. 6G technology, with its

unparalleled data transmission speeds, ultra-low latency, and

massive connectivity, promises to revolutionize healthcare by

enabling real-time monitoring, remote surgeries, and AI-driven

diagnostics. The potential for enhanced communication between

devices, patients, and healthcare providers can lead to more

accurate and timely medical interventions. However, the adoption

of 6G in healthcare also presents challenges, including concerns

about data security, high costs of implementation, and the

need for robust regulatory frameworks. Despite these hurdles,

the opportunities offered by 6G technology—such as improved

patient outcomes, reduced healthcare costs, and the facilitation of

telemedicine—make it a critical component in the evolution of

smart hospitals and the future of healthcare delivery. The structure

of this paper is as follows: Section 1 provides the definition of

smart healthcare with respect to 6G, the significance of smart

healthcare in the modern era, the evolution and adoption of

smart healthcare technologies with 6G, and the challenges facing

the implementation of future 6G-centered healthcare facilities. In

Section 2, we critically examine and analyze existing scholarly

works on a specific topic. It provides a comprehensive overview

of relevant research, identifying gaps, trends, and insights to

inform and contextualize a new study or research endeavor.

Includes an article published in this field. Section 3 focuses on

the integration of several technologies into a 6G-based smart

hospital. The benefits of 6G for smart hospitals are described, and

the differences between 5G and 6G and their benefits owing to

the differences in some quantitative performances are tabulated.

Section 4 provides the perspective of advanced technologies, such

as Internet of Things (IoT), explainable artificial intelligence (AI) in

6G, which will play an important role in future smart hospitals. The

significance of prospective technology for 6G-based smart hospitals

lies in its potential to revolutionize healthcare, as described in

Section 4. With ultrafast communication, low latency, and massive

device connectivity, 6G can enhance telemedicine, enable real-time

diagnostics, support advanced robotics, and foster personalized

patient care, ultimately improving healthcare efficiency and

outcomes. Additionally, the architecture and different layers of

advanced techniques are comprehensively discussed. Additionally,

the challenges in 6G-based smart hospitals include ensuring

robust cybersecurity to protect sensitive health data, addressing

interoperability issues among diverse devices and systems,

managing the massive influx of data, and overcoming potential

ethical concerns related to advanced healthcare technologies.

Finally, Section 5 outlines the integration of 6G technology in

smart hospitals coupled with advanced techniques, which promises

unprecedented improvements in healthcare. Furthermore, future

work on security and privacy are highlighted. The contributions of

the projected article are given below:

• The article explores how 6G enables seamless connectivity

between IoT devices within smart hospitals, facilitating real-

time data collection, remote monitoring, and automated

management of medical equipment and patient health data.

• It highlights the role of 6G in enhancing AI capabilities,

enabling faster processing of large datasets for diagnostics,

personalized treatment plans, and predictive analytics, leading

to improved patient outcomes.

• The article discusses the potential of 6G to strengthen

blockchain applications in healthcare, ensuring secure and

transparent management of patient records, reducing the risk

of data breaches, and improving trust in data sharing across

healthcare systems.

• It examines how 6G can revolutionize telemedicine by

providing ultra-low latency and high-definition video

streaming, enabling real-time, remote consultations, and

even remote surgeries, thereby expanding access to quality

healthcare services.

• The article delves into the use of 6G in supporting robotic

systems for surgery, rehabilitation, and patient care within

smart hospitals, offering precise, reliable, and safe medical

procedures with minimal human intervention.

• It discusses how 6G enhances advanced data analytics by

enabling the rapid processing of vast amounts of healthcare

data, facilitating insights into patient health trends, resource

allocation, and overall hospital management.

These contributions collectively underline the potential of 6G

technology to transform healthcare delivery in smart hospitals,

addressing challenges while opening new opportunities for

enhanced, efficient, and secure.

2 Literature review

In the integration of 6G technology in smart hospitals, the

starting point is to study the challenges and solutions deployment

of advanced technologies such as IoT, AI, blockchain, telemedicine,
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robotics, and data analytics. These technologies serve as the input,

enabling real-time patient monitoring, automated diagnostics,

secure data management, and efficient remote consultations.

The end point is the enhanced healthcare delivery system,

characterized by improved patient outcomes, streamlined hospital

operations, and robust data security. By leveraging 6G’s ultra-fast

connectivity and low latency, smart hospitals can achieve seamless

integration of these technologies, leading to more personalized,

efficient, and effective healthcare services. In this section, we

present a critical and comprehensive analysis of existing literature

(published academic works, articles, books, and other sources)

on smart healthcare. It summarizes and synthesizes key findings,

theories, and methodologies from existing studies and scholarly

works. The rapid development of cellular connection systems

has greatly accelerated the evolution and implementation of

remote health monitoring and smart healthcare. The advanced

long-term evolution (A-LTE) network now underpins modern

healthcare systems. However, the development of smart hospitals

and healthcare institutions is still nascent on a global scale. The

introduction of the 5G network is set to elevate the standards of

intelligent healthcare. Smart hospitals have distinct requirements

compared to other applications in sectors like business, education,

and general public services. This research evaluates how IoT

and 5G will underpin the future “smart hospital,” anticipated to

enhance throughput, efficacy, and coverage. The study focuses on

implementing a hybrid detection technique for massive multiple-

input multiple-output (MIMO) and non-orthogonal multiple

access (NOMA) systems using QR decomposition and the M

algorithm-maximum likelihood detection (QRM-MLD) combined

with beamforming (BF). This approach aims to improve latency,

spectrum efficiency, and network throughput in 5G systems.

Additionally, the work provides a comparison between the

proposed and traditional detection methods (10). The OFDM

waveform method is pivotal in the context of smart hospitals,

though it faces challenges such as bandwidth loss from guard bands,

spectrum leakage, high Peak-to-Average Power Ratio (PAPR), and

significant detection latency, which undermine its effectiveness.

As 5G deployment becomes increasingly widespread globally, its

advanced radio systems are expected to fulfill the comprehensive

needs of smart healthcare facilities, which include high spectrum

access, large capacity, great throughput, and low PAPR. The

demand for bandwidth in digital hospitals has surged, necessitating

networks that operate at peak efficiencies for tasks ranging from

transmitting medical images to interfacing with wearable devices

to ensure optimal patient care. The transition to digital hospitals

with 5G connectivity will be critically shaped by the adoption of

reliable transmission technologies. Current efforts are primarily

focused on the implementation of innovative waveforms like

NOM, UFMC, and FBMC systems. This work involves a detailed

analysis and study of several parameters, including power spectrum

density, bit error rate, capacity, and PAPR of both advanced

waveforms and traditional OFDM techniques (11). This paper

outlines the system architecture resulting from the integration

of IoT technology in smart healthcare environments, detailing

optimization considerations, challenges, and viable solutions. The

technological infrastructure is divided into five distinct levels,

with each layer’s architecture, limitations, and methods thoroughly

examined. This includes the size of the smart hospital, the scope

of its intelligent computing capabilities, and the extent of its real-

time big data analytics. The findings from the study are utilized

to identify potential flaws in each tier of the smart hospital design

model and suggest necessary adjustments. The document aims to

serve as a comprehensive guide for managers, system engineers,

and academics interested in optimizing the design of smart hospital

systems, providing them with a clear road map for improvement

(12). In this study, stochastic Petri nets were employed to evaluate

the functionality and availability of a smart hospital system without

the initial need for financial investment in actual equipment.

These models are highly parametric, allowing for the adjustment

of resource capacity, service times, failure and repair intervals,

and the duration between failures. The initial model permits the

configuration of several parameters, enabling the assessment of

various scenarios. The investigation results highlighted the arrival

rate as a crucial system characteristic. Particularly in scenarios

with high arrival rates, a significant correlation was observed

between Mean Response Time (MRT), resource utilization, and

discard rate, demonstrating the impact of these factors on system

performance (13). The article outlines the design principles for

a health service platform app, including the health information

perception terminal. With the advancement of big data, cloud

computing, and information technology, the concept of smart

healthcare has become increasingly significant. This new model,

referred to as a health service platform, is gaining popularity and

proving more practical compared to traditional healthcare services.

The effectiveness of health monitoring is being enhanced through

the use of wearable devices and various apps. There is a pressing

need for an efficient and practical app-based health service platform

that can cater to both older and younger populations, aiming to

augment and streamline smart healthcare services (14). The article

underscores the imperative for a robust and practical app-based

health service platform that caters to both older and younger

demographics, aimed at significantly enhancing and facilitating

smart healthcare services. Building upon foundational concepts,

it explores the design principles of the health service system and

the health information perception terminal within this platform.

The discussion extends to various aspects of the developed systems,

including the unique contributions of each framework, detailed

operational processes, performance outcomes, and the strengths

and limitations inherent in these systems. Furthermore, the

article addresses prevailing research challenges, critically evaluating

the shortcomings of current systems and proposing prospective

directions for advancement. This analysis is intended to furnish

comprehensive insights into contemporary developments in smart

healthcare systems, thereby equipping professionals with the

knowledge necessary to make meaningful contributions to the

field (15). This paper explores the advantages of cloud computing

for healthcare applications, detailing IoT architectures, various

communication protocols, sensor technologies, and both machine

learning and deep learning techniques. It provides a comprehensive

review of their respective benefits, limitations, and challenges. This

study equips researchers with the necessary insights, enabling them

to initiate their investigations by choosing a specific application

or topic from the discussed methodologies. With strict adherence

to security and privacy measures, cloud-based IoT and ML
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healthcare systems prove to be accurate and immensely beneficial

for patients, caregivers, and hospital staff (16). The article explores

potential challenges and market adoption barriers for IoT-based

healthcare from both patient and professional perspectives. It

addresses key issues such as interoperability, standardization,

compensation, data storage, control and ownership, as well as

trust and acceptability. To overcome these challenges, the paper

suggests that contemporary healthcare will need to depend on

policy support, regulation focused on cybersecurity, strategic

caution, and the adoption of transparent policies within healthcare

organizations to enable IoT solutions. Implementing IoT-based

healthcare could significantly enhance population health and the

efficiency of healthcare systems (17). As information technology

advances, the concept of smart healthcare has increasingly captured

interest. Smart healthcare revolutionizes the traditional medical

system by leveraging cutting-edge information technologies such

as the Internet of Things (IoT), big data, cloud computing, and

artificial intelligence. These technologies enhance the efficiency,

convenience, and personalization of healthcare services. In this

review, the authors first outline the key technologies that underpin

smart healthcare. We then explore the current state of smart

healthcare across various significant domains. Lastly, the article

addresses the current challenges faced by smart healthcare and

offers recommendations for overcoming these obstacles (18). The

article examines the potential of IoT technology to alleviate

pressures on healthcare systems caused by an aging population

and the rise of chronic diseases. It identifies standardization

as a critical barrier to success in this area and proposes a

standardized model for future IoT healthcare systems. The paper

then reviews recent research on each element of this model,

providing an evaluation of its benefits, drawbacks, and suitability

for wearable IoT healthcare applications. Key challenges such

as security, privacy, wearability, and low-power operation are

addressed. The article concludes with recommendations for future

research directions in this evolving field (19). The article addresses

several barriers hindering the integration of IoT applications in

healthcare. These include the generation of large volumes of

non-essential data, concerns regarding patient data security and

privacy, and the substantial costs associated with IoT adoption.

It highlights the role of prosthetic sensors, which collect relevant

data to aid real-time patient treatment, as a promising area for

future research. This study underscores the potential of IoT to

enhance healthcare delivery by focusing on specific, impactful

applications (20). This research presents a fresh technique and

develops an IoT-based prototype. Then, an elaborate theoretical

framework was developed from this a cutting-edge prototype that

demonstrates how the I-CARES system actually works. The system

offers ongoing health status monitoring and analysis, as well as

automatic, real-time emergency action that may ultimately save

lives. It also gives information on pharmaceutical effects, side

effects, and the patient’s health state (21). This paper provides an in-

depth examination of current research projects and the application

of various technologies in smart healthcare systems. It delves into

the latest studies, proposed methodologies, and existing solutions

in the realm of smart healthcare, focusing on the implications of

emerging technologies, applications, and challenges these systems

face today and in the future. The aim is to present a comprehensive

view of what IoT currently offers to the healthcare sector and what

it promises for the future (22). This work meticulously examines

the challenges at each stage of the big data handling process,

which necessitate the use of advanced computing technologies for

resolution. It argues that healthcare providers must be adequately

equipped with the essential infrastructure to regularly generate

and analyze big data, in order to develop strategies that enhance

public health. Additionally, the paper highlights that contemporary

healthcare institutions could revolutionize medical treatments and

personalized medicine through a robust integration of biomedical

and healthcare data (23). This paper addresses the privacy and

security concerns associated with future healthcare applications, as

highlighted in the study. The advent of fifth-generation networks

is propelling the expansion of telehealth and smart healthcare

solutions. Fundamental elements such as Quality of Life, Intelligent

Wearable Devices, the Intelligent Internet of Medical Things,

Hospital-to-Home transitions, and innovative business models

are shaping the future of AI-driven intelligent healthcare. Many

academic studies consider 6G technology a vital enabler of

intelligent healthcare systems. Furthermore, Body Area Networks

with integrated mobile health systems are evolving toward

personalized health management and monitoring. Additionally,

Extended Reality, a novel immersive technology, merges the

real and virtual worlds, enabling enhanced interaction between

computers, wearables, humans, and other machines (24). As the

volume of daily-generated data expands in the 6G-enabled Internet

of Medical Things (IoMT), the process of medical diagnosis

becomes increasingly critical. This study, referenced in Wijethilaka

et al. (25), develops a methodology aimed at enhancing prediction

accuracy and facilitating real-time medical diagnosis within the

6G-enabled IoMT framework. The proposed approach integrates

optimization techniques with deep learning methodologies to

deliver precise and reliable outcomes. During the process, medical

computed tomography images undergo preprocessing before being

input into a sophisticated neural network designed to learn

image representations and convert each image into a feature

vector. Subsequently, a MobileNetV3 architecture is employed

to further learn and refine the features extracted from these

images (26). The 6G-Health project aims to foster precision

technology development within the realm of sixth-generation

mobile communications (6G) by integrating the expertise of

communication engineering, medical engineering, and technical

end users. The project’s scope includes not only the development

of specific 6G technological components but also the early

identification and mitigation of market entry barriers, particularly

focusing on operational elements, standards, and licensing issues.

The technical framework encompasses emerging technologies

that enhance network intelligence, innovative sensor connectivity

for 6G, and efficient resource utilization and data processing

strategies prior to their dissemination across various infrastructure

levels. This paper will explore three medical applications of 6G:

enhancing smart hospital operations, improving collaborative work

environments, and enabling direct acquisition and transmission

of bio signals from patients (27). The authors propose a Peak-

to-Average Power Ratio (PAPR) reduction technique aimed at

enhancing the efficiency of power amplifiers for 5G waveforms.

This approach involves applying several algorithms to 5G
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waveforms, with their performance evaluated through PAPR

curves. In the broader context, the study concludes that hospitals

can leverage AI and IoT technologies to improve efficiency, reduce

costs, and enhance patient care. By adopting these technologies,

hospitals are positioned to improve patient outcomes and the

overall health system’s performance.

3 Smart hospital

A smart hospital, also referred to as a digital or intelligent

hospital, is an example of how cutting-edge technologies, data-

driven strategies, and patient-centered care have come together

in the healthcare sector (10). It is a paradigm-shifting idea that

seeks to integrate cutting-edge technologies and intelligent systems

to optimize resource usage, improve operational efficiency, and

improve patient outcomes. A sophisticated digital infrastructure

that allows for seamless connectivity and data sharing across

different hospital systems, equipment, and stakeholders is the

foundation of a smart hospital (28). The two essential elements of

smart hospitals are remote patient monitoring and telemedicine.

Patients can obtain remote medical consultations, diagnoses,

and follow-up care with the aid of communication technology.

Healthcare professionals can remotely monitor patients’ vital signs

and medical issues using IoT connectivity and remote monitoring

equipment (29). This reduces the need for hospital stays, enhances

access to healthcare services, and permits continuous care,

especially for patients with chronic illnesses (30). Smart hospitals

prioritize patient empowerment and involvement using digital

tools and technologies. Patients can access their health records,

obtain personalized health advice, make appointments, and contact

healthcare practitioners through mobile apps, patient portals, and

wearable technology. These resources encourage patients to play an

active role in their own care, help patients follow their treatment

regimens, and help patients and healthcare teams work together.

The idea of a “smart hospital” has a lot of potential, but it also

has drawbacks.

The main obstacles are related to implementation costs,

infrastructure needs, interoperability, and data protection.

Furthermore, successful implementation depends on tackling the

digital divide, negotiating regulatory frameworks, and guaranteeing

that healthcare personnel integrate and accept new technologies

(30). Establishing a connected healthcare environment is mostly

dependent on Internet of Things (IoT) devices, cloud computing,

and high-speed networks. Real-time data collection, monitoring,

and analysis are made possible by these technologies, providing

healthcare professionals with access to fast and reliable information

for making decisions (31). Electronic health records (EHRs) are

a fundamental component of smart hospitals. Electronic Health

Records (EHRs) centralize and digitize patient data, including

diagnoses, treatment plans, test results, and medical histories.

Smart hospitals guarantee simple access to thorough and current

information by digitizing patient data, which enhances care

coordination and reduces medical errors. Artificial intelligence

(AI) and data analytics are essential for a smart hospital operation.

To extract valuable insights, advanced analytics algorithms can

examine vast amounts of healthcare data, including patient records,

medical imaging, and real-time monitoring data. AI-powered tools

can help with tailored care, illness diagnosis, treatment planning,

and clinical decision-making support. Healthcare professionals

can make better judgments using machine learning algorithms that

can recognize trends, forecast results, and offer recommendations.

Robotics and automation are used in smart hospitals to improve

patient care, increase productivity, and expedite procedures. Tasks,

including pharmaceutical delivery, lab sample processing, and

inventory management, are handled by robotic process automation

(RPA). Surgeons are increasingly using robotic equipment to aid

them in performing precise, minimally invasive surgeries known

as robotic-assisted surgeries. Robotic caretakers can also assist

with prescription reminders, patient monitoring, and mobility

assistance (32). A smart hospital relies heavily on Internet of

Things (IoT) devices to connect wearables, sensors, and medical

devices. IoT-enabled gadgets gather health data, continuously

check patients’ vital signs, and send them to centralized platforms

for analysis. Healthcare professionals can remotely monitor

patient states, identify warning indications, and take immediate

action through real-time monitoring. To ensure effective resource

utilization, IoT devices also make asset tracking, inventory

management, and medical equipment maintenance possible.

Smart hospitals use cutting-edge technology, data analytics,

and patient-centric strategies to bring about a paradigm shift

in healthcare delivery. Smart hospitals are designed to improve

patient care, increase operational efficiency, and change the

healthcare experience of both patients and healthcare providers

through seamless connectivity, intelligent technology, and

real-time data analysis (33).

Differentiating itself from traditional hospitals, a smart hospital

incorporates cutting-edge technology like IoT, AI, and big data

to improve patient care, operational efficiency, and clinical

outcomes. Networked equipment in smart hospitals facilitates real-

time patient monitoring, enabling timely interventions. While

automated technologies streamline administrative activities to

reduce human error and wait times, AI-driven insights support

tailored treatment plans and diagnostics. By extending care outside

of the hospital, telemedicine and remote monitoring guarantee

ongoing patient involvement. Conventional hospitals, on the other

hand, are less able to provide the same degree of proactive, data-

driven, and seamless healthcare services since they rely more on

manual operations (34).

A number of enduring problems in healthcare, such as incorrect

diagnosis, ineffective resource management, and patient safety, can

be resolved by implementing 6G in smart hospitals. Personalized

treatment regimens and improved diagnosis accuracy are achieved

by advanced AI systems. Real-time information from networked

devices optimizes the use of resources, easing congestion and

improving patient flow. When it comes to prescribing medications

and documenting clinical findings, automated technologies reduce

human error. In addition, telemedicine and remote monitoring

offer round-the-clock patient care, which lowers readmissions

to hospitals and enhances the treatment of chronic illnesses,

increasing overall health outcomes (35). The input refers to the

existing or baseline infrastructure of conventional smart hospitals,

including current technologies like 4G/5G networks, IoT devices,

electronic health records (EHR), AI-driven healthcare solutions,
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and current limitations in terms of connectivity, data management,

and real-time capabilities. It also includes the introduction of 6G

technology and its core features such as ultra-low latency, high data

transfer rates, AI integration, and seamless device connectivity. The

output refers to the anticipated improvements and advancements

brought by the integration of 6G technology in smart hospitals.

This includes enhanced healthcare services like real-time remote

surgeries, continuous patient monitoring with IoMT, AI-driven

diagnostics, personalized treatments, and more efficient hospital

operations. It also encompasses overcoming current challenges,

such as data privacy, cybersecurity, interoperability, and cost-

related hurdles.

3.1 Infrastructure requirements for
6G-based smart hospitals

Implementing 6G technology in the health sector, especially

in developing countries, has considerable cost factors in terms

of investment in large-scale infrastructure. Advanced hardware,

including high-frequency antennas, fiber-optic cables, and edge

computing devices, needs to be deployed for the rollout, which

comes with a heavy installation and maintenance cost. Also,

retrofitting existing infrastructure for ultra-low latency, high-

speed communication, and extensive IoT integration comes with

financial costs. Regulatory compliance, cybersecurity protocols,

and staff training also contribute to the costs. In the developing

world, scarce resources and poor infrastructure further compound

these costs, requiring public-private partnerships and foreign

aid. Phased rollout and reuse of existing 4G/5G infrastructure

are cost-effective options that can help reduce upfront costs.

Although having high initial costs, the long-term gains—

enhanced health care access, increased telemedicine, and improved

health outcomes—make the investment worthwhile, especially

if underpinned by creative financing schemes and government

subsidies. The successful implementation of 6G-based smart

hospitals will require a comprehensive infrastructure that integrates

advanced connectivity, IoT devices, AI technologies, and robust

cybersecurity measures to deliver high-quality, personalized

healthcare services efficiently and securely (36, 37).

• 6G connectivity: the backbone of any smart hospital would be

its connectivity. 6G networks, expected to offer unprecedented

speeds, low latency, and massive device connectivity, will be

crucial. These networks will support high-definition video

streaming for telemedicine, real-time monitoring of patients’

vital signs, and seamless communication between IoT devices

and AI systems.

• IoT devices: smart hospitals will heavily rely on IoT devices

for various applications like remote patient monitoring,

asset tracking, and environmental monitoring. These devices

include wearable health trackers, smart beds, smart infusion

pumps, and sensors for monitoring temperature, humidity,

and air quality. With 6G, these devices can transmit data faster

and more reliably, facilitating real-time decision-making by

healthcare providers.

• AI and machine learning: advanced AI algorithms will analyze

the massive amounts of data generated by IoT devices

to provide insights for personalized patient care, disease

prediction, and treatment optimization. These AI systems will

require powerful computational infrastructure for processing

data in real-time or near real-time, which could be facilitated

by edge computing nodes within the hospital network.

• Robotic systems: robots will play a significant role in smart

hospitals, performing tasks such as patient assistance, drug

delivery, and disinfection. These robots will be equipped

with sensors and cameras for navigation and interaction with

patients and staff. High-speed, low-latency 6G connectivity

will enable remote operation of robots by surgeons for

telesurgery, particularly in emergency situations or in remote

areas lacking specialized medical expertise.

• Optical fibers: to support the high bandwidth demands of

6G networks and ensure reliable connectivity throughout the

hospital premises, optical fiber infrastructure will be essential.

Fiber-optic cables offer greater bandwidth and immunity to

electromagnetic interference compared to traditional copper

cables, making them ideal for transmitting large volumes of

data at ultra-fast speeds over long distances.

• Advanced cameras and imaging systems: high-resolution

cameras and imaging systems will be deployed for various

applications, including monitoring patient conditions,

tracking medical equipment, and enhancing security. These

systems will generate large amounts of data, which will need

to be transmitted and processed efficiently using 6G networks

and advanced AI algorithms.

• Cybersecurity measures: with the proliferation of connected

devices and sensitive patient data being transmitted over

6G networks, robust cybersecurity measures will be critical

to protect against data breaches, unauthorized access, and

cyber-attacks. Hospitals will need to implement encryption

protocols, access controls, and intrusion detection systems

to safeguard patient privacy and ensure the integrity of

medical data.

• Dense networks of small cells and energy consumption: The

roll-out of 6G demands huge investments in infrastructure,

especially in high-density small cell networks to enable the

ultra-high speeds, low latency, and massive connectivity

that 6G is expected to deliver. Small cells, scattered in

urban and rural environments, will provide flawless coverage

and connectivity by offloading traffic from conventional

macro cells, hence alleviating congestion and enhancing

network dependability. Their deployment, however, calls for

vast physical infrastructure, such as the building of many

base stations and antennas. Energy usage is yet another

significant issue, with small cells and millimeter-wave and

other high-frequency communication technologies requiring

significant amounts of power to keep performance steady. The

around-the-clock nature of these networks combined with

sophisticated AI-based management means that effective use

of power is needed to not overload the grid. To reduce these

risks, the adoption of energy-saving technology such as low-

power chips, solar-powered bases, and intelligent grid systems

will be required. Moreover, improving network design by
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software-defined networking (SDN) and network slicing can

further minimize energy usage with high performance.

• Cost implications: The infrastructure needed for 6G

deployment is considerable, and it comes with high costs.

Setting up a 6G network involves installing sophisticated

hardware such as high-frequency antennas, small cells,

massive MIMO systems, and fiber-optic backhaul links,

all of which are costly to install and maintain. Moreover,

creating a dense, distributed network of base stations to

provide ubiquitous connectivity involves a huge investment

in both urban and rural regions. The energy requirements for

these systems, particularly edge computing and integration

with AI, introduce additional cost complexity. In addition,

maintaining cybersecurity and data privacy compliance

comes at the cost of having strong security infrastructure,

which adds to the overall expense. Although the advantages

of 6G, including ultra-low latency, increased data rates, and

enormous IoT support, are evident, the cost to governments,

telecommunication companies, and healthcare systems could

be high. Public-private collaborations and global funding will

be necessary to balance these expenses and provide equal

access to 6G technology.

Rolling out 6G infrastructure in rural and underdeveloped

areas is challenging because of poor infrastructure, high expense,

and a lack of technical skills. These regions usually do not have

stable power grids, fiber-optic connections, and high-performance

computing facilities, which hamper the implementation of

6G-based smart healthcare solutions. Moreover, the expense

of installing small cells, massive MIMO antennas, and edge

computing equipment is too high for governments and healthcare

organizations. Socioeconomic conditions of low digital proficiency

and constrained budgets for healthcare enlarge the digital

gap further, restricting access to modern telemedicine, remote

diagnosis, and AI-supported healthcare services. To tackle

these constraints, affordable, scalable solutions will have to be

given priority. Utilizing built-in 4G/5G infrastructure using

network upgrades lowers the initial costs substantially. The

use of low-power, solar-powered base stations can mitigate

power limitations, and satellite-based internet services such as

LEO constellations can provide coverage in remote locations.

Furthermore, embracing open-access network architectures

and software-defined networking (SDN) can reduce operating

expenses and enable flexible infrastructure deployment. Public-

private partnerships and international funding schemes must

be promoted to finance infrastructure development and digital

literacy programs. By adopting these measures, healthcare systems

can close the connectivity gap so that 6G-enabled healthcare

innovations reach rural and underdeveloped areas.

4 Sixth generation

The goal 6Gwireless technology, which replaces 5G technology,

is to improve mobile communication even more. While 5G

concentrates on delivering greater speeds, reduced latency, and

enhanced connectivity for Internet of Things devices, 6G is

anticipated to completely transform these areas with even more

breakthroughs. With terabits per second of data transport, 6G

promises to outperform 5G by up to 100 times (38). By

substantially reducing latency tomicroseconds, it will enable almost

instantaneous communication. In addition, 6G will use cutting-

edge technology like edge computing and artificial intelligence

to enhance resource management and network performance.

Furthermore, 6G will facilitate the creation of cutting-edge

applications like sophisticated autonomous systems, immersive

virtual reality, and augmented reality (39). Additionally, it will

guarantee global digital inclusion by improving connections in

underserved and distant locations. As a result, 6G will greatly

increase the potential for wireless communication, outperforming

5G in terms of speed, latency, and technological integration. Global

6G standardization remains in its initial phase, with initiatives such

as ITU, 3GPP, and national efforts of the U.S., China, South Korea,

and the EU leading research and framework development. The

emphasis lies in realizing ultra-low latency, high reliability, and

massive connectivity to enable next-generation applications such

as holographic communication, digital twins, and sophisticated

healthcare systems. IoT, AI, and legacy healthcare systems will be

integrated into 6G networks based on interoperable protocol, high-

end edge computing, and slicing. Networkmanagement throughAI

will enhance resource utilization, forecast network faults, and make

devices interoperable seamlessly. IoT healthcare devices, including

remote monitoring and wearable devices, will interact in real-

time to improve patient care. Legacy systems will require modular

upgrades and backward-compatible interfaces to fit seamlessly.

Cross-industry collaborations and joint standardization work will

be pivotal to achieving safe, efficient, and ubiquitous uptake of 6G

across healthcare and beyond (40).

Healthcare is changing because hospitals are implementing

5G technology, which makes data transfer and communication

faster and more dependable. 5G networks currently provide

much better speeds, lower latency, and increased connectivity

than previous generations, all of which are essential for modern

medical applications. Hospitals can monitor remote patients

in real time and provide high-definition video consultations

thanks to 5G telemedicine. This makes healthcare services more

accessible, especially in underserved and rural areas. Moreover,

5G makes it easier to use IoT apps and cutting-edge medical

devices. Smart beds, linked imaging systems, and wearable health

monitors can all gather and send patient data continually, allowing

for real-time monitoring and quick reactions to changes in a

patient’s condition. Massive amounts of data, including high-

resolution medical images, can swiftly and effectively transfer to

healthcare specialists for prompt diagnosis and treatment, thanks

to the high bandwidth and low latency of 5G networks. The

benefits of 5G extend to remotely operated medical equipment

and robotic surgery. Surgeons can use robotic equipment to

execute precise, minimally invasive operations even from remote

locations because of 5G’s ultra-reliable, low-latency transmission.

This can help places without access to such resources by

extending the reach of specialized medical knowledge (41). 5G

has already made significant progress, but 6G has the potential to

completely transform hospital operations. Even greater speeds—

up to terabits per second—and microsecond-level latency will be
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possible with 6G technology, which is anticipated to be operational

by the 2030s. This will facilitate real-time communication and

very instantaneous data transfer, both of which are critical for

vital medical applications. The combination of powerful edge

computing and artificial intelligence (AI) will be one of the biggest

developments with 6G (42). By processing enormous volumes

of medical data locally at the network’s edge, these technologies

will lessen the need for data to go to centralized servers.

This will assist AI-driven diagnosis, individualized treatment

plans, and predictive analytics to identify health issues before

they become serious by increasing the speed and efficiency of

data analysis. Additionally, 6G will enable more complex and

immersive telemedicine applications, such as augmented reality

(AR) for remote surgeries, medical education, and holographic

communication. These features will improve the caliber and

reach of telemedicine, increasing its effectiveness and interactivity.

Additionally, 6G’s increased connection will aid in the development

of a more extensive and cohesive healthcare ecosystem. It

will ensure smooth data flow and integration across several

healthcare systems by connecting an even wider range of medical

equipment and sensors. This would allow for a holistic view

of patients’ health, which would improve care coordination and

outcomes (43).

4.1 How to integrate 6G and smart health
care

To transform patient care and improve healthcare systems,

6G technology must be strategically combined with healthcare

breakthroughs and cutting-edge connectivity. 6G networks’

blazing speed and low latency provide the groundwork for

immediate connectivity, which makes it easier to integrate

various healthcare sensors and equipment. With real-time data

sharing made possible by 6G’s fast connectivity, IoT devices

can manage medication adherence, monitor patients’ vital signs,

and help healthcare providers make data-driven decisions more

quickly. Furthermore, 6G’s capacity to deliver high-quality low-

latency video communication supports telemedicine applications.

Telehealth services, including virtual consultations and remote

patient monitoring, are becoming increasingly effective and widely

available, particularly in underprivileged or isolated places (36).

Protecting the privacy and security of sensitive healthcare data

is critical. Strong cybersecurity safeguards protect patient data

and ensure regulatory compliance within the 6G network. These

protections include encryption and secure data transmission

methods. Essentially, the combination of smart healthcare with

6G creates a dynamic environment in which cutting-edge medical

solutions and dependable, quick connectivity can be achieved. This

synergy opens the door to a revolutionary era in the provision of

patient-centric care by improving the effectiveness, accessibility,

and quality of healthcare services (44). A flowchart for integrating

6G and the smart hospital is shown in Figure 1.

Investigating the use of various layer structures for cutting-edge

approaches in real-world settings is crucial. Integrating 6G and

smart healthcare involves leveraging the advanced capabilities of

6G networks to enhance healthcare services and enable innovative

healthcare applications, as illustrated in Figure 2.

Integrating 6G technology with smart healthcare involves a

systematic approach to leveraging the capabilities of advanced

connectivity and healthcare innovations (2, 45–49).

• Remote patient monitoring: 6G technology, known for

its low latency and high-speed connectivity, facilitates

real-time remote patient monitoring. Healthcare providers

can employ connected devices to continuously monitor

various patient metrics, such as vital signs, medication

adherence, and overall health status from a distance.

The collected data are instantly transmitted to healthcare

professionals, enabling them to make well-informed decisions

and deliver prompt interventions. The integration of remote

patient monitoring systems with 6G networks guarantees

an uninterrupted and reliable data flow, thus supporting

proactive healthcare management.

• Telemedicine and virtual consultations: 6G enables high-

quality video conferencing and real-time communication,

making telemedicine and virtual consultations more

accessible and efficient. Healthcare providers can offer remote

consultations, diagnosis, and treatment recommendations to

patients located anywhere, eliminating geographical barriers

and improving access to healthcare services. Integrating

telemedicine platforms with 6G networks ensures seamless

and reliable communication, high-quality video streaming,

and secure data transmission. 6G’s ultralow latency and high

connectivity will greatly enhance telemedicine and robotics by

supporting near-instant data transfer and real-time reaction,

vital to applications in critical healthcare. In telemedicine,

physicians will be able to remotely consult with patients

within negligible delay, increasing diagnostic accuracy and

patient treatment even for poorly served or rural regions.

Real-time video streams, high-definition imaging, and

advanced diagnostic information will be easily transferred,

permitting more effective remote monitoring and diagnosis.

• Renewable energy and ecological technologies: these play

a pivotal role in 6G-based smart hospitals, contributing

to sustainability and environmental consciousness. The

integration of renewable energy sources, such as solar

panels and wind turbines, ensures a reliable and eco-

friendly power supply and reduces the carbon footprint

of these advanced healthcare facilities. Energy-efficient

designs and smart grid technologies optimize energy

consumption, aligning with green initiatives. Ecological

technologies, including green building materials and

sustainable infrastructure, further enhance the environmental

responsibility. By prioritizing renewable energy and

ecological practices, 6G smart hospitals not only reduce

operational costs but also demonstrate a commitment to

a healthier planet, aligning technological advancements

with ecological sustainability in the pursuit of cutting-edge

healthcare solutions.

• Blockchain: this ensures confidentiality, openness, and

integrity of medical data, which is essential in 6G-based smart

hospitals. Blockchain technology improves patient privacy
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FIGURE 1

Flowchart of 6G integration with smart healthcare.

and protects medical records by utilizing tamper-resistant

and decentralized ledgers. Blockchain-based smart contracts

protect and automate several healthcare operations, including

supply chain management and billing. Furthermore,

blockchain promotes interoperability, making it possible to

exchange data securely and effortlessly for various health

care systems and devices. Smart hospitals build a solid

foundation for data accuracy, trust, and efficient operation

by integrating blockchain into 6G networks. This eventually

increases the overall effectiveness and dependability of

healthcare services.

• Robotics: 6G’s ultralow latency and increased connectivity will

revolutionize robotics to a great extent by facilitating real-

time communication and exact control over robot systems,

particularly in sophisticated applications such as surgery,

manufacturing, and remote control. 6G’s ultra-low latency

of usually sub-millisecond order ensures that instructions

sent to robots are carried out with little delay, essential

for processes demanding high accuracy and coordination.

In robot surgeries, for example, this means surgeons can

manipulate robotic arms in near-instantaneous feedback,

minimizing the chance for mistakes and enhancing patient

outcomes. And the improved connectivity of 6G and the

capacity to carry massive IoT networks will also make the

smooth integration of different devices, sensors, and robots

possible, allowing for collaborative tasks and autonomous

decision-making. With 6G’s enormous throughput, robots are

able to send data-rich information, such as high-definition

video or 3D mapping, uninterrupted, further propelling

autonomous robotics in telepresence, industrial automation,

and healthcare.

4.2 Challenges in 6G based smart hospital

As with any new technology, the development and deployment

of 6G faces challenges and considerations. The implementation

of 6G will require substantial investment in infrastructure,

including new antennas, base stations, and network equipment.

Table 1 indicate the challenges faced by 5G and 6G based smart

hospital (50, 51).

Spectrum allocation and regulatory frameworks need to be

established to facilitate the efficient and secure deployment of

6G networks. To understand why 6G is required, it is important

to consider the limitations and evolving requirements of existing

wireless communication technologies, such as 5G. Although 5G has

brought significant improvements over its predecessors, it still faces

certain challenges that 6G aims to address. The following are some

key reasons why 6G is required (52, 53):

• Expanding data traffic: as the proliferation of connected

devices, IoT applications, and data-intensive services

continues to drive an exponential increase in data demand,

6G technology has been poised to meet this challenge. It

is anticipated to deliver significantly higher data rates and

capacities, which are essential for managing the growing

volume of data traffic. This advancement will facilitate

seamless streaming of ultra-high-definition content, enhance

immersive experiences in virtual and augmented reality,

and support emerging technologies that depend on massive

data transfers.

• Ultra-low latency: certain applications and services

require real-time responsiveness with minimal delays.

Industries such as autonomous vehicles, remote surgery,
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FIGURE 2

Di�erent layers for 6G based smart hospital.

and industrial automation rely on ultralow-latency

networks to enable time-critical operations. 6G aims

to further reduce latency, enabling instantaneous

communication and unlocking new possibilities for

mission-critical applications.

• Massive device connectivity: the rise of IoT devices and the

vision of a fully connected world necessitate networks that can

handle an enormous number of simultaneous connections.

6G supports a large number of devices per unit area,

enabling seamless connectivity for smart homes, smart cities,
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TABLE 1 Challenges of 6G and 5G in smart hospitals.

Parameters 5G 6G

Network dependability

and coverage:

• The challenge is in providing dependable and stable 5G service over

the hospital’s grounds, particularly in difficult-to-reach locations like

basements and specialized medical units.

• Real-time monitoring and vital healthcare applications may be

interfered with by uneven coverage.

• The challenge lies in creating and deploying communication

devices that use terahertz frequencies to transfer data at a

quicker rate.

• Ensuring dependable communication at these higher

frequencies and overcoming obstacles related to

signal attenuation.

Latency • While 5G brings low latency, it is important to sustain low latency

continuously for applications such as real-time patient monitoring

or remote surgery.

• High latency can affect the real-time responsiveness of vital medical

applications and jeopardize the efficacy of remote

healthcare services.

• The challenge lies in achieving and sustaining ultra-low latency

to facilitate new applications like augmented reality (AR) for

surgical help and medical training.

• The real-time responsiveness necessary for vital medical

treatments may be hampered by high latency.

Security issues: • Handling cybersecurity issues brought on by the rise in connected

devices and the network’s transmission of private patient data.

• Unauthorized access to patient records resulting from security

breaches puts patient privacy and the accuracy of medical data

at danger.

• Keeping an increasingly data-intensive and networked

healthcare environment secure and private is a challenge.

• Cybersecurity risks have the potential to jeopardize private

patient information and interfere with medical operations.

IoT device integration: • The challenge is in efficiently incorporating a wide variety of IoT

gadgets and medical apparatuses into the 5G network.

• The potential advantages of connected devices in healthcare may be

limited by poor integration, which might impede data flow

and interoperability.

• Ensuring smooth interoperability across various devices

becomes a crucial concern as the quantity and variety of

IoT devices in smart hospitals rise. Effective integration may

be hampered by the absence of common data formats and

communication protocols among different device kinds and

manufacturers.

• Healthcare providers would find it challenging to integrate new

IoT devices into the 6G network in the absence of defined

protocols, which could result in inefficiencies, data silos, and

possible disruptions in the flow of operational and patient data.

Scalability • The challenge is in making sure the 5G network can expand to

handle the growing volume of data and the growing number of

linked devices in smart hospitals.

• Impact: Poor performance and network congestion might result

from inadequate scalability.

• The expansion of wearables, medical sensors, and IoT devices

in smart hospitals presents a major scalability barrier for 6G

networks due to the sheer volume of linked devices. Every

device needs a dependable connection, and network scalability

becomes more important as the number of devices rises.

• The performance of vital healthcare applications and services

can be negatively impacted by inadequate scalability, which

can cause network congestion, lower data transfer rates, and

possible communication disruptions.

• Smart hospitals generate enormous amounts of data due to the

growing demand for real-time video streaming,

high-resolution medical imaging, and other data-intensive

applications. 6G networks face scaling issues in effectively

managing this spike in data traffic and guaranteeing the

efficient transmission of big datasets.

Regulatory and ethical

considerations:

• 5G networks are used by smart hospitals to handle and transfer

enormous volumes of patient data, including private medical

records. It is crucial to comply with legal requirements and provide

the greatest levels of data security and privacy. Concerns around

illegal access, data breaches, and the possible exploitation of patient

information are raised by the interconnectedness of the systems and

equipment in smart hospitals.

• Ignoring these privacy and security issues may have unethical and

legal repercussions, damage patient confidence, and result in

noncompliance with regulations.

• The challenge is addressing moral questions about the

application of cutting-edge medical technology, such AI-driven

diagnosis and therapy.

• Establishing trust in the use of 6G technology in healthcare

settings requires adherence to legal obligations as well as

ethical norms.

Tailored healthcare

services:

• Creating and deploying 5G networks that are capable of meeting the

many and unique requirements of the healthcare industry. Within a

smart hospital, various medical specialties and departments can

need different network setups and capabilities to serve their own

devices and apps.

• Ignoring this issue could lead to subpar performance for some

healthcare services, which would reduce the potential advantages of

customized and specialized solutions. It could result in ineffective

care delivery of specialist treatment.

• The challenge lies in creating 6G networks that are specifically

designed to meet the demands of healthcare applications.

• Impact: The efficacy of cutting-edge healthcare services and

solutions may be restricted by inadequate personalization.

and various IoT applications. This will enable the efficient

management of billions of connected devices and unlock the

potential of a hyperconnected society.

• Transformative applications: 6G integrates various cutting-

edge technologies such as AI, machine learning, and

quantum computing. These technologies require networks
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with enhanced capabilities to effectively process and transmit

data. With 6G, transformative applications such as AI-

driven smart assistants, advanced healthcare solutions, and

intelligent transportation systems can become a reality,

fostering innovation and improving quality of life.

• Future-proofing technology: developing 6G networks

is a proactive approach to future-proof communication

infrastructures. This allows us to stay ahead of the emerging

technologies and unforeseen demands. By investing in 6G

research and development, we can ensure that our networks

are ready to meet the challenges and requirements of the next

decade and beyond.

The need for 6G arises from the ever-growing demand for

faster speeds, higher capacity, ultralow latency, massive device

connectivity, and the integration of transformative technologies.

6G will empower industries, enable new applications, and

provide a foundation for a more connected and technologically

advanced future.

4.3 How 6G will benefit the health industry

The advent of 6G, the latest in the evolution of wireless

communication networks, is set to revolutionize the healthcare

industry by transforming the delivery of healthcare services.

Integrating 6G technology into smart hospitals promises

transformative advancements in healthcare, enabling faster,

more reliable, and intelligent medical services. One of the key

opportunities lies in ultra-low latency and high data rates,

supporting real-time applications like remote surgeries and

advanced telemedicine. Enhanced connectivity between medical

devices and systems will enable seamless data sharing, improved

diagnostics, and personalized treatments through AI-driven

analytics. Additionally, 6G’s support for massive machine-type

communications (mMTC) will boost the deployment of Internet

of Medical Things (IoMT) devices, allowing continuous patient

monitoring, early disease detection, and automated interventions.

However, several challenges need to be addressed. Ensuring

robust cybersecurity measures is critical due to the sensitive

nature of medical data. Managing data privacy in compliance

with strict healthcare regulations, while maintaining system

integrity is complex. Furthermore, the cost of upgrading hospital

infrastructure to accommodate 6G networks may be prohibitive

for many institutions, particularly in developing regions. Another

concern is interoperability with existing medical devices and

systems, requiring seamless integration for effective functionality.

Additionally, managing the energy consumption of 6G networks

and devices, as well as ensuring the ethical use of AI and big data in

decision-making, poses significant hurdles. Overall, while 6G has

immense potential to revolutionize healthcare delivery, addressing

these technical, financial, and ethical challenges is essential to

fully harness its benefits in smart hospitals. Table 2 indicates the

advantages of 6G over 5G. Table 3 shows the benefits of 6G over

5G based smart hospitals (54).

Additionally, with its faster speed, lower latency, higher

capacity, and integration of transformative technologies, 6G is

poised to significantly benefit the smart healthcare industry in

numerous ways. The potential benefits of 6G in smart healthcare

are as follows (41, 55):

• Enhanced connectivity and remote care: 6G technology

will significantly enhance connectivity, enabling seamless

communication between healthcare providers and patients

irrespective of geographical barriers. With its high-speed and

reliable connections, 6G will significantly expand the scope of

remote care services. This will allow physicians to monitor

patients remotely, conduct telemedicine consultations, and

offer real-time guidance during emergencies. Patients in

remote areas gain access to specialized healthcare without

the need for physical travel, thus ensuring equitable access

to high-quality medical services. Enhanced connectivity in

6G will revolutionize remote care in smart healthcare by

providing ultra-reliable, high-speed communication, enabling

seamless, real-time patient monitoring, and consultation.

With the support of massive IoT devices, 6G will facilitate the

integration of a wide array of health monitoring tools, such as

wearable sensors and remote diagnostic equipment, into the

healthcare ecosystem. This will allow healthcare providers to

monitor patients continuously, even from remote locations,

improving outcomes for chronic conditions and reducing the

need for in-person visits. AI algorithms will leverage this real-

time data to offer personalized care recommendations, and

telemedicine consultations will be nearly as efficient as in-

person visits, thanks to 6G’s low latency. Furthermore, 6G

will expand access to healthcare for underserved populations,

including those in rural areas, by enabling high-quality remote

healthcare services that were previously unfeasible due to

connectivity limitations. Enhanced connectivity ensures that

patients receive timely care, regardless of their location.

• Internet of medical things (IoMT) advancements: IoMT

refers to the interconnected network of medical devices and

sensors. 6G’s higher capacity and massive device connectivity

will greatly advance the IoMT ecosystem, enabling a multitude

of devices to seamlessly communicate and exchange data.

This will result in more accurate patient monitoring, efficient

data collection, and improved decision making for healthcare

providers. With 6G, wearable devices, implantable sensors,

and smart medical equipment operate seamlessly, providing

real-time health data for better diagnosis, personalized

treatment plans, and proactive healthcare management.

• Real-time monitoring and emergency response: 6G’s

ultra-low latency and high-speed connectivity will enable

real-time monitoring of patient health conditions and

instant communication in emergency situations. Wearable

devices equipped with biosensors and vital sign monitors

continuously collect data that can be instantly transmitted to

healthcare professionals. This will enable timely intervention

and rapid response in critical situations, potentially saving

lives. Furthermore, emergency responders have access to

live video streams and real-time data from accident sites,

enabling them to make informed decisions and provide

immediate medical assistance. 6G technology can significantly

benefit different healthcare environments outside the typical
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TABLE 2 6G and 5G technologies for smart hospitals.

Key technologies in 5G Key technologies in 6G

5G New Radio (NR):

The standard for 5G networks’ air interface is called 5G NR. For a variety of devices, it

provides reduced latency, increased connectivity, and quicker data rates.

Communication in terahertz:

Description: Extremely fast data rates and accurate sensing are made possible by

terahertz frequencies, which may be employed in 6G. Terahertz communication

has the potential to improve imaging technology in smart hospitals and enable

more precise diagnosis.

Slicing a network:

Network slicing within the expansive 5G infrastructure enables the creation of virtual,

isolated networks tailored to specific needs. In smart hospitals, network slicing allows

for the segmentation of the network to cater distinctively to various healthcare

services and applications. This technology provides the flexibility to allocate resources

efficiently, ensuring that each healthcare function receives the necessary network

support to operate optimally.

Explainable AI and integration with AI:

It is anticipated that 6G would further incorporate AI into the communication

network. In healthcare applications, explainable AI—which offers openness in AI

decision-making—may be essential. AI systems may become more prevalent in

healthcare administration, treatment planning, and diagnosis.

Enormous IoT connectivity:

In smart hospitals, the implementation of medical sensors, wearables, and other

connected devices is made easier by 5G’s huge support for IoT devices. Real-time

4data collecting and monitoring are made possible by this technology.

Communication in quantum:

One prospective 6G feature is quantum communication, which provides higher

security while sending private medical information. It might be used to safeguard

patient privacy and maintain the accuracy of medical records by securing

communication routes inside smart hospitals.

Cutting edge computing:

Edge computing lowers latency by bringing processing power closer to the data

source. Edge computing improves the functionality of healthcare apps in smart

hospitals, including real-time diagnostics and remote patient monitoring.

Medical bioelectronics:

The field of bioelectronic medicine focuses on manipulating the electrical

impulses produced by the body using electronic equipment. 6G could make it

possible for smart hospitals to use closed-loop systems and cutting-edge

bioelectronic therapies for individualized and accurate treatment plans.

Virtual reality (VR) and augmented reality (AR):

High-bandwidth and low-latency connections are made possible by 5G, which makes

immersive technologies like AR and VR possible. These tools can be applied to surgery

planning, patient education, and medical training in smart hospitals.

Holographic immersion technologies:

It is possible that 6G will enable cutting-edge holographic technologies, enabling

realistic and engrossing 3D experiences. This has the potential to improve patient

education, team-based surgery, and medical training.

Renewable energy and ecological technologies:

The focus of 6G is anticipated to be on sustainable technology and energy

efficiency. By using energy harvesting technology to power IoT devices, smart

hospitals can lessen the environmental effect of their healthcare operations.

Blockchain:

Blockchain guarantees safe, unhackable data interchange and storage in

6G-based smart hospitals. It increases data integrity, uses smart contracts to

automate procedures, and fosters interoperability to increase efficiency and trust

in healthcare operations.

TABLE 3 Additional benefits of 6G smart hospital over 5G based smart hospital.

Parameters 6G Benefits

Extremely high data speeds Compared to 5G, 6G is anticipated to offer even faster data speeds. Faster transmission of big medical

datasets, high-resolution imaging, and real-time video feeds may be made possible by this

exceptionally high data rate capacity. Applications for collaborative healthcare, remote diagnostics,

and telemedicine can all be greatly improved by this.

Precision medical applications of terahertz communication New opportunities in precision medicine may arise from 6G’s prospective feature, terahertz

communication. Advanced diagnosis and treatment planning are made possible by the highly

accurate sensing and imaging made possible by terahertz frequencies. This may result in more

focused medical treatments and individualized treatment plans.

Improved communication in real time Applications like augmented reality (AR) and virtual reality (VR) can function more smoothly and

responsively because to 6G networks’ extremely low latency. This could facilitate collaborative virtual

consultations, immersive medical training, and AR-assisted procedures in the healthcare setting.

Extensive device networking for internet of things healthcare 6G can effectively enable the widespread adoption of IoT devices in healthcare thanks to its even

higher connection density. This covers a broad range of wearables, monitoring tools, and medical

sensors. As a result, patient monitoring, preventive care, and overall healthcare management are all

improved by a more extensive and integrated healthcare ecosystem.

Advanced integration of AI Advanced artificial intelligence (AI) technology integration can be made easier by 6G networks. This

covers machine learning apps, predictive analytics, and AI-driven diagnostics. More sophisticated

healthcare solutions may result from the smooth interaction between devices and AI algorithms

made possible by the improved connectivity and data rates.

Green and sustainable communication Energy efficiency and environmentally friendly communication technologies are anticipated to be

prioritized in 6G as environmental sustainability becomes a bigger priority. 6G-enabled smart

hospitals might use less energy, which would lessen the negative effects of healthcare operations on

the environment.
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hospital setting, such as rural healthcare, home care, and

emergency response networks. In rural settings, where

specialized care access is typically lacking, 6G’s ultralow

latency and high data rates will provide real-time telemedicine

consultations and remote monitoring capabilities, enhancing

health care accessibility and minimizing the need for lengthy

transportation. With increased connectivity, healthcare

professionals are able to remotely monitor their patients

through wearable devices, diagnose ailments in real-time,

and offer tailored care, closing the rural-urban healthcare

divide. For home care, 6G may facilitate round-the-clock

patient monitoring, making it possible to integrate smart

home appliances and IoT-based health monitors that feed

in constant streams of data into the hands of healthcare

professionals. This promotes proactive management of

health and early intervention, minimizing readmission to

hospitals and enhancing patient outcomes. Additionally,

decision support systems based on AI may aid caregivers

through real-time feedback on a patient’s status. In emergency

response systems, 6G’s huge connectivity and ultra-high

reliability will allow first responders, hospitals, and command

centers to coordinate more speedily and efficiently. Real-

time data exchange, including live video streams and

patient medical records, will support situational awareness,

accelerating critical decisions in emergencies such as

accidents or natural disasters. In general, 6G will enable

more decentralized, efficient, and personalized medicine,

enhancing outcomes and minimizing disparities across

diverse healthcare environments.

• Artificial intelligence (AI) integration: the Integration: The

6Gwith AI technologies will drive significant advancements in

smart healthcare. AI algorithms are capable of analyzing vast

amounts of medical data collected through connected devices

and electronic health records, aiding healthcare providers in

making accurate diagnoses, performing predictive analytics,

and offering personalized treatment recommendations. AI-

powered virtual assistants and chatbots can provide support to

24/7 patients, respond to inquiries, and deliver basic medical

advice. Moreover, AI-based systems for image recognition

and interpretation will significantly enhance the analysis of

medical imaging, thereby improving both the speed and

accuracy of diagnosis.

• Augmented reality (AR) and virtual reality (VR)

applications: with Owing to their high bandwidth and

low latency, 6G will facilitate immersive AR and VR

experiences in healthcare. Surgeons benefit from AR overlays

during complex procedures that provide real-time guidance

and detailed visualization of critical anatomical areas. In

addition, medical education and training will see significant

enhancements through VR simulations, enabling students

to practice procedures in highly realistic virtual settings.

AR and VR also play a crucial role in patient education,

offering individuals a more interactive and engaging way to

understand their medical conditions and treatment options.

• Precision medicine and personalized healthcare: the

integration of AI, big data analytics, and advanced

connectivity offered by 6G will enable the adoption of

precision medicine approaches (2). By analyzing extensive

datasets encompassing genomic information, patient

histories, lifestyle factors, and real-time health data,

healthcare providers can offer personalized treatment

plans that are uniquely tailored to each individual’s needs.

This data-driven method enhances healthcare outcomes,

minimizes adverse drug reactions, and boosts overall

patient wellbeing.

• Efficient healthcare resource management: 6G’s advanced

capabilities will support the efficient management of

healthcare resources. Through real-time monitoring and

predictive analytics, healthcare providers can anticipate

demand, optimize bed allocation, and allocate medical

personnel more effectively. The seamless exchange of data

between hospitals, clinics, and pharmacies will streamline

inventory management, reduce waste, and ensure the

availability of essential medications and supplies.

• Enhanced patient engagement and self-care: 6G will

empower patients to actively manage their health through

innovative healthcare applications and services. Mobile

apps and wearable devices connected to 6G networks

offer real-time health monitoring, personalized health

recommendations, and reminders for medication adherence.

Patients can conveniently access their health records, schedule

appointments, and communicate with healthcare providers

through secure mobile platforms.

• Data security and privacy: With the integration of

advanced security measures and encryption protocols,

6G prioritizes data security and patient privacy. Robust

authentication mechanisms and secure data transmission

protocols ensure the confidentiality and integrity of sensitive

health information and build trust among patients and

healthcare providers.

6G offers several advantages over 5G, including a faster speed,

lower latency, enhanced capacity, transformative technologies,

and expanded coverage. However, it also presents challenges such

as longer implementation timelines, higher infrastructure

costs, spectrum considerations, compatibility issues, and

regulatory/security considerations. These factors need to be

carefully addressed as the development and deployment of

6G progresses in the coming years. 6G has the potential to

revolutionize the smart healthcare industry by providing enhanced

connectivity, enabling remote care services, advancing the IoMT

ecosystem, enabling real-timemonitoring and emergency response,

integrating AI and VR/AR technologies, facilitating precision

medicine, optimizing resource management, empowering patient

engagement, and prioritizing data security and privacy. These

advancements will contribute to improved healthcare outcomes,

increased access to quality healthcare services, and a more efficient

and patient-centric healthcare system (56). Cybersecurity and data

privacy threats in 6G-enabled healthcare systems are paramount

issues, considering the confidentiality of medical information

and the growing attack surface created by IoT devices and

remote care technologies. To counter these threats, embracing

a zero-trust architecture (ZTA) is imperative, verifying users,

devices, and applications continuously irrespective of location.
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ZTA enforces least-privilege access and employs multi-factor

authentication (MFA) and real-time anomaly detection to

block unauthorized access. Homomorphic encryption (HE) also

provides a strong solution by allowing computations on encrypted

data without decryption, maintaining privacy throughout data

processing. Using blockchain for tamper-proof health records

and deploying AI-powered threat detection systems can also

increase security. Ongoing security audits, employee training,

and adherence to global standards such as HIPAA and GDPR

are of paramount importance. Cooperative working between

healthcare providers, technology creators, and regulators will

be instrumental in the creation of responsive, robust defenses

that safeguard patient information while not diminishing the

efficacy of sophisticated 6G uses (57). 6G’s increased connectivity

and device integration are poised to revolutionize sectors like

healthcare by enabling faster, more efficient communication and

data exchange. However, this hyperconnectivity also introduces

significant vulnerabilities, particularly concerning cybersecurity. As

healthcare infrastructures become more reliant on interconnected

devices—such as IoT-enabled medical equipment, wearables,

and cloud-based systems—the attack surface for cybercriminals

expands exponentially. In a 6G environment, where billions of

devices communicate seamlessly, malicious actors could exploit

weaknesses in both hardware and software to gain unauthorized

access to sensitive health data or disrupt critical operations.

For example, cyberattacks targeting hospital systems could

compromise patient care by manipulating real-time data from life-

saving equipment, leading to inaccurate diagnoses or treatment

errors. The incorporation of artificial intelligence (AI) in healthcare

also raises the level of complexity, and it may be simpler for the

attackers to tamper with algorithms, leading to defective decision-

making. The wide adoption of cloud computing and edge devices

in 6G networks also raises the risk of data breaches or ransomware

attacks because healthcare organizations will find it challenging to

secure massive amounts of data across different platforms. The

sheer volume and complexity of interconnected devices in 6G

networks could make traditional security protocols less effective,

requiring the development of advanced cybersecurity solutions.

Without robust defense mechanisms in place, the healthcare sector

faces heightened risks, jeopardizing not only patient privacy but

also the very integrity of the healthcare system.

5 Key technologies in 6G based smart
hospital

5G improves smart hospitals by offering fast, low-latency

connectivity, which makes effective data transfer and real-

time monitoring possible. Building on this base, 6G will

revolutionize patient care, treatment, and diagnosis by providing

quantum communication, holographic interfaces, and powerful

AI. When combined, these technologies enable smart hospitals to

become extremely intelligent, responsive, and flexible healthcare

ecosystems. Table 3 shows the differences between 5G and 6G key

technologies in smart hospitals (58).

5.1 Internet of Things (IoT) in 6G based
smart hospital

The architecture of a 6G-enabled IoT smart hospital, which

aims to integrate real-time data processing, intelligent decision-

making, and enhanced networking as shown in Figure 3. The

architecture’s central component is a dense network of IoT devices

that run on 6G’s incredibly rapid and low-latency network.

Examples of these devices include connected imaging equipment,

smart beds, and wearable health monitors (59). These devices

ensure rapid processing and analysis near the data source by

continuously gathering and transmitting patient data to edge

computing nodes within the hospital. This configuration enables

real-time monitoring, prompt notifications, and pre-emptive

responses (60). Sophisticated AI algorithms analyze the data for

predictive analytics, customized treatment plans, and diagnostics.

Centralized cloud platforms store and manage large volumes of

healthcare data, facilitating seamless integration and accessibility

for healthcare providers. Massive MIMO and sophisticated

beamforming are included in the network architecture to

improve capacity and connectivity. Improved security protocols

safeguard patient information while guaranteeing adherence to

strict healthcare laws. This intelligent, integrated infrastructure

transforms the hospital’s operations and enhances operational

effectiveness and patient care (59).

5.1.1 IoT sensors in smart hospital
Hospitals use a variety of IoT sensors to manage resources,

monitor patients, and increase productivity. With ultra-fast speeds,

low latency, and strong security, 6G connectivity dramatically

improves the functionality and dependability of these sensors in a

smart hospital setting, enhancing patient care and safety (11). The

list below includes common hospital sensors and discusses how 6G

connectivity enhances their usability (61).

• Wearable health monitors sensors: take temperature, blood

pressure, oxygen saturation, heart rate, and other vital signs.

6G’s high-speed, low-latency connectivity ensures real-time

data transfer, enabling quick analysis, and reaction. 6G

enhances security measures to prevent breaches of crucial

patient data.

• Smart beds sensors: keep track of occupants, pressure points,

and patient movement. Instantaneous data updates and

modifications are possible with 6G connectivity, enhancing

patient comfort and averting bedsores. Security features

guarantee safety and patient privacy.

• Glucose monitors: check diabetes patients’ blood sugar levels

on a regular basis.6G ensures rapid data transfer to healthcare

providers, enabling prompt interventions and modifications

to treatment plans. Secure connections protect patient health

data from unwanted access.

• Linked imaging systems: these comprise CT, MRI, and

X-ray equipment that sends pictures for remote processing.

6G transfers large image files quickly, facilitating faster

consultations and diagnoses. Securitymeasures protect private

medical images.
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FIGURE 3

IoT empowered 6G smart hospital.

• Environmental sensors: monitor the lighting, temperature,

humidity, and air quality in patient rooms and other crucial

areas. 6G enables real-time control and monitoring, ensuring

the best possible environmental conditions for patient safety

and wellbeing. Improved security features prevent sensor

data manipulation.

• Infusion pumps sensors: give patients precisely the right dose

of medication. 6G connectivity guarantees rapid and precise

data on medicine delivery, allowing for remote monitoring

and modifications. Secure communication prevents potential

errors or interference.

• Fall detection sensors: these devices identify falls in patients

and sound an alarm. 6G’s rapid data transfer speeds

guarantee prompt notifications to medical professionals,

cutting down on reaction times and enhancing patient

security. Security mechanisms safeguard data about patient

movements and locations.

• Telemedicine tools sensors: enable online consultations and

exams. 6G raises the standard of telehealth services by

providing the enormous bandwidth required for high-

definition audio and video. Secure connections guarantee the

confidentiality of patient-doctor communications.

Certain sensors require 6G security and quick speed

features (62).

• Wearable health monitors and glucose monitors are essential

for ongoing patient care; they need to transmit data in

real-time and with a high level of security to safeguard private

medical data.

• Connected imaging systems require strong security to protect

private diagnostic images, as well as fast transmission speeds

for large files.

• Infusion pumps require secure, instantaneous communication

to ensure precise drug administration and prevent errors

or manipulation.

5.1.2 Key components level implementation of
IoT in smart hospital

The architecture of an IoT-based smart hospital which

was referenced in Philips Health Suite and Siemens IoT-

enabled solutions for healthcare comprises several interconnected

components and layers that enable seamless communication, data

exchange, and intelligent decision making, as shown in Figure 4.

5.1.2.1 Philips Health Suite Digital Platform

architecture layer

The Philips Health Suite Digital Platform, an innovative

healthcare platform, integrates data from various sources, including

electronic health records (EHRs), IoT devices, and other healthcare

systems. The Philips Health Suite Digital Platform’s architecture

streamlines the collection, integration, and evaluation of medical

data, enabling more personalized patient care and enhanced

operational efficiency in healthcare facilities. Healthcare businesses

to use data to deliver tailored care, improve clinical outcomes,
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FIGURE 4

IoT architecture.

and improve patient experiences thanks to the architecture of

the Philips Health Suite Digital Platform, which aims to build a

single ecosystem (63). At its core, the Health Suite Digital Platform

consists of several key components (64):

• The data ingestion layer: this layer is in charge of gathering

data frommany sources, including wearables, medical sensors,

IoT devices, and EHR systems. It guarantees that information

is entered into the platform safely and processed further.

• Data management and storage layer: after being gathered, the

data is kept in a scalable and safe cloud-based storage system.

This layer contains databases and data lakes that effectively

handle and organize the enormous volumes of healthcare data.

• Data analytics and insights layer: to extract useful insights

from the gathered data, the platform uses machine learning

algorithms and sophisticated analytics. Personalized care

interventions and predictive analytics are made possible by

this layer, which analyses patient data to find trends, patterns,

and possible health hazards.

• Application services layer: to facilitate the development of

healthcare applications and services, the Health Suite Digital

Platform offers a collection of application services and APIs

(Application Programming Interfaces). These services make

it easier to create custom healthcare solutions, integrate

with third-party systems, and ensure interoperability amongst

healthcare equipment.

• Security and compliance layer: the platform has strong

security mechanisms in place to safeguard patient data and

guarantee adherence to healthcare laws like HIPAA (Health

Insurance Portability and Accountability Act). Security is of

the utmost importance in the healthcare industry. To protect

sensitive medical data, this layer has audit trails, access control

methods, and encryption.

5.1.2.2 Siemens IoT-enabled solutions for

healthcare layers

Siemens’ Digital Enterprise portfolio includes IoT-enabled

healthcare solutions that offer a holistic architecture that combines

edge computing, sensors, networking, data analytics, and security

measures. Siemens wants to use these technologies to propel the

digital transformation of healthcare, making patient-centered, cost-

effective, and intelligent healthcare delivery possible (65). A s part

of its Digital Enterprise portfolio, Siemens provides IoT-enabled

healthcare solutions that are intended to streamline hospital

operations, improve patient experiences, and improve clinical

outcomes. Siemens’ IoT-enabled healthcare solutions are built with

a number of essential parts and tiers, all of which are necessary to

provide integrated, data-driven healthcare services (66).

• Sensors and medical devices: a variety of sensors and medical

devices placed throughout the hospital setting form the

basis of Siemens’ IoT-enabled healthcare solutions. These

gadgets include sensors for facility management, imaging

systems, lab apparatus, and patient monitors. These sensors

gather numerous pieces of information about patient health,

operational effectiveness, and environmental factors.

• Siemens’ architecture incorporates a robust networking

infrastructure to facilitate seamless communication between

sensors, devices, and backend systems. Both wired and

wireless networks are part of this infrastructure, which

guarantees dependable data transfer and instantaneous

connectivity. Siemens facilitates compatibility and integration

with current hospital IT systems.

• Edge computing and data processing: Siemens uses edge

computing skills to manage the enormous amount of data

produced by sensors and medical equipment. Within the

hospital’s walls, edge devices preprocess and analyze data

locally, cutting down on latency and bandwidth needs.

This distributed computing architecture facilitates real-

time monitoring and alerting for key events, as well as

quick decision-making.

• Cloud platform and data analytics: to extract useful insights

from healthcare data, Siemens’ Digital Enterprise portfolio

makes use of cloud computing and sophisticated data

analytics. Siemens securely transfers sensitive and device data

to cloud-based platforms for further processing. Siemens
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provides healthcare professionals with predictive analytics

and decision support tools using AI and machine learning

algorithms to identify important patterns, trends, and

correlations in healthcare data.

• Integration with hospital systems: Siemens’ Internet

of Things (IoT)-enabled healthcare solutions easily

integrate EHRs, hospital information systems (HIS),

and other clinical applications. This guaranteeing data

interchange and compatibility between various systems, this

integration permits thorough patient care coordination and

workflow optimization.

• Security and compliance: Siemens’ IoT-enabled healthcare

infrastructure places a high priority on security. Strong

cybersecurity safeguards protect sensitive patient data

and guarantee adherence to healthcare laws like GDPR

and HIPAA. These measures include encryption, access

restrictions, and threat detection. Siemens employs a multi-

layered security strategy to reduce risks and defend against

constantly changing cyberthreats.

5.1.3 How 6G help to overcome the challenges of
integrating IoT in smart hospitals

Although the integration of IoT in smart hospitals brings

numerous benefits, it also presents several challenges that require

careful management. Addressing these challenges necessitates

a strategic approach, effective collaboration between IT and

healthcare departments, robust governance frameworks, and

the continuous monitoring and evaluation of IoT systems. By

effectively navigating these challenges, hospitals can fully leverage

the transformative potential of the IoT to enhance efficiency and

patient-centricity in healthcare services. The following are some

key challenges associated with integrating the IoT in a smart

hospital (67).

• Interoperability: due to the fact that different companies

manufacture many IoT devices and use different

communication protocols, interoperability issues arise.

It can be difficult to integrate many devices into a coherent

system; this may call for specialized integration work.

• Security and privacy: because IoT devices frequently gather

private medical information, hackers find them to be

appealing targets. IoT security flaws might make patient data

vulnerable to illegal access or jeopardize the reliability of

medical systems.

• IoT devices need network connectivity in order to send

and receive orders, which contributes to their reliability and

resilience. Network outages or disturbances can impact the

dependability of IoT-based systems, potentially impacting

patient safety and care.

• Scalability: as hospitals install more IoT devices, managing and

scaling the infrastructure to meet demand will become more

challenging. Scalable solutions that maintain performance and

dependability over a large number of devices are required

by hospitals.

• Data management and analytics: we must efficiently gather,

save, and examine the massive volumes of data generated by

IoT devices. To extract useful insights from data created by

the Internet of Things, hospitals need to have a strong data

management and analytics infrastructure in place.

• Healthcare regulations, such as HIPAA in the United States,

impose strict guidelines for safeguarding patient privacy and

data security. Hospitals must make sure that their IoT-based

systems comply with regulatory requirements in order to

prevent negative legal and financial repercussions.

6G technology has the potential to resolve several of these

issues (68):

• Improved connectivity: in comparison to earlier generations,

6G networks offer substantially faster data speeds, reduced

latency, and more device density. This enhanced connectivity

may support more IoT devices and enable real-time

data transfer for vital uses like telemedicine and remote

patient monitoring.

• Enhanced security: we anticipate 6G networks to have

cutting-edge security features like improved authentication

procedures and encryption algorithms to fend off cyberattacks

and illegal access. Furthermore, 6G networks may use

AI-driven security solutions to instantly identify and

neutralize threats.

• 6G networks could enable edge computing capabilities,

enabling the processing and analysis of data closer to its

source. By processing sensitive data locally instead of sending

it over the network, edge computing can lower latency, ease

network congestion, and improve data privacy.

• AI-driven optimization: by utilizing AI algorithms, 6G

networks are able to detect network outages, optimize network

resources, and dynamically distribute bandwidth according to

application demands. This AI-driven optimization may help

IoT-based smart healthcare systems become more resilient

and dependable.

• Regulatory compliance: 6G networks may use features like

integrated encryption and data anonymization methods to

help with regulatory compliance. These elements can help

hospitals comply with regulations regarding patient data

protection and privacy.

• By utilizing 6G technology, hospitals can overcome many

of the obstacles associated with IoT-based smart hospital

deployments, ultimately improving patient care results, and

operational efficiency.

5.2 Explainable artificial intelligence

Explainable AI, or XAI, is the development of artificial

intelligence systems that not only make precise forecasts or

suggestions but also transparently explain their judgments and

actions in the context of smart healthcare. In the medical

field, where choices have a direct effect on patients’ lives,

XAI is essential for fostering a sense of confidence, enhancing

communication between AI systems and medical personnel, and

guaranteeing patient safety. XAI makes AI-driven healthcare

solutions more interpretable and accountable by offering clear
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FIGURE 5

Self-explainable AI based smart healthcare.

justifications for diagnosis choices, treatment strategies, and

prognostic predictions. Because of this transparency, doctors can

verify AI recommendations, comprehend the underlying logic,

and apply their domain expertise to the decision-making process.

By enabling doctors to prioritize patient safety and wellbeing

while making better-informed and confident judgments, XAI

ultimately promotes increased acceptance and implementation of

AI technology in healthcare. Real-time processing of AI in 6G

hospitals demands strong hardware infrastructure that can support

enormous volumes of data at ultra-low latency. Advanced edge

computing devices, AI accelerators such as GPUs, TPUs, and

neuromorphic processors emulating brain-like efficiency to make

quick and precise decisions are needed. Edge computing is also

essential in reducing data transfer delays through data processing

close to the source, for instance, in ICU monitoring or robotic

surgeries. Moreover, ultra-reliable low-latency communication

(URLLC) modules and high-frequency 6G antennas are required

to ensure smooth connectivity over hospital networks (69). Power

consumption is also a key issue since real-time AI applications

such as predictive diagnostics and robotic surgical systems demand

constant data analysis. Energy-efficient hardware, dynamic power

management methods such as adaptive voltage and frequency

scaling (DVFS), and smart workload allocation can help minimize

energy consumption. Blending renewable energy sources, like solar

power, and using AI-powered algorithms to manage and minimize

energy usage are key to sustainability. Hospitals must embrace

green computing principles and work with equipment vendors to

develop hardware specific to healthcare AI workloads. Regulatory

agencies must also create standards to guarantee energy-efficient

deployment while ensuring system performance and reliability. In

the end, both high-performance processing and energy efficiency

will be required to make the next generation of intelligent, 6G-

driven healthcare services possible (70).

An AI-based smart healthcare architecture that is self-

explanatory incorporates AI algorithms that not only generate

precise forecasts or suggestions, but also offer transparent, easily

comprehensible explanations for their choices as shown in Figure 5.

Interpretable AI models andmethods that emphasize explainability

over performance are the foundation of this architecture. This

architecture uses AI algorithms to analyze healthcare data

and produce predictions or recommendations. Examples of

these algorithms include decision trees, rule-based systems, and

interpretable deep learning models. These algorithms focus on

producing precise results and providing clear justifications for their

choices, highlighting the crucial elements or characteristics that

influence the outcome. Additionally, the architecture has parts

for showing patients and healthcare professionals AI-generated

explanations. This could entail the use of interactive dashboards,

graphical displays, or plain language explanations that make the

logic underlying AI predictions simple to comprehend. Moreover,

the design includes components for tracking and assessing AI

model performance and interpretability over time. This guarantees

that the AI system will always be trustworthy, transparent, and

sensitive to the requirements and expectations of its users. By

offering comprehensible justifications for AI-driven decisions,

self-explanatory AI-based smart healthcare architecture promotes

trust, accountability, and cooperation between AI systems and

human stakeholders. This improves clinical decision-making,

patient engagement, and overall healthcare outcomes.

5.2.1 Types of data use by XAI
In the healthcare industry, explainable AI (XAI) uses a

variety of medical data sources to offer clear and comprehensible

insights into AI-driven decision-making procedures (71). These

data sources include (72, 73):

• EHR: these records contain a patient’s medical history,

diagnosis, prescriptions, test results, and treatment plans. In
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order to help doctors make well-informed decisions about

patient care, XAI algorithms examine EHR data.

• Medical imaging: data from modalities such as CT scans,

MRIs, ultrasounds, and X-rays is processed using XAI

algorithms. In order to help radiologists identify anomalies,

make diagnoses, and schedule treatments, AI systems analyze

imaging data.

• Genomic data: DNA sequences, gene expression profiles, and

genetic variants are among the genomic data that XAI is used

to interpret. AI systems examine genetic data to find genetic

markers linked to specific illnesses, customize therapeutic

strategies, and estimate the likelihood of developing a disease.

• IoT with wearable devices: XAI algorithms examine

information gathered from wearable sensors and IoT devices

that track physiological characteristics like as activity levels

and vital signs. This information is used to monitor patient

health, identify abnormalities, and offer early warning

indicators of possible medical problems.

Several instances of AI/ML algorithms in use in

hospitals exist:

• Deep learning in medical imaging: in medical imaging,

convolutional neural networks, or CNNs, are frequently

employed for tasks like disease categorization, lesion

detection, and picture segmentation. For example, CNNs

are used in the FDA-approved AI program IDx-DR to

evaluate retinal pictures for the purpose of screening for

diabetic retinopathy.

• Clinical decision support systems: clinical decision support

systems are created using machine learning techniques

like decision trees and random forests as well as rule-

based systems. By evaluating patient data and medical

literature, IBM Watson for Oncology, for instance, applies

machine learning algorithms to help oncologists make

therapy decisions.

• Natural language processing (NLP): NLP methods are used

to extract structured data from narratives and unstructured

clinical notes included in electronic health records (EHRs).

NLP is used by Google’s DeepMind Health to evaluate EHR

data for purposes including treatment suggestions and patient

risk assessment.

5.2.2 AI/ML used in hospitals
The availability of large-scale medical datasets, advances in

AI/ML methodologies, and increases in processing capacity,

the use of such AI approaches in healthcare is still relatively

new. These strategies are being actively used by healthcare

organizations, academic institutions, and digital companies

to enhance patient care, streamline clinical processes,

and quicken medical research. Worldwide, a number of

healthcare facilities and hospitals are utilizing diverse AI

and machine learning (ML) algorithms to examine medical

data for a variety of purposes. Here are a few instances

(25, 74):

• United States’ Mayo Clinic: to identify patients who may

experience specific medical illnesses or complications, Mayo

Clinic uses artificial intelligence (AI) and machine learning

(ML) algorithms for predictive analytics. Additionally,

they use natural language processing (NLP) algorithms to

glean insights from electronic health records (EHR) and

unstructured clinical notes.

• University College London Hospitals (UCLH) in the

United Kingdom: UCLH uses artificial intelligence (AI)

algorithms for medical imaging, radiology, and pathology

image processing. These algorithms help evaluate medical

pictures, such as MRIs, CT scans, and X-rays, so that

doctors can diagnose illnesses and ailments more quickly

and accurately.

• Seoul National University Bundang Hospital (South Korea):

this hospital uses artificial intelligence (AI) to provide

personalized care by evaluating genetic information and

medical records to create customized treatment regimens and

forecast patient reactions to various drugs and treatments.

• Massachusetts General Hospital (United States): based on

past data and present health state, Mass General uses AI

algorithms for clinical decision support, helping physicians

diagnose illnesses, choose the best course of therapy, and

forecast patient outcomes.

• Singapore General Hospital (Singapore): in order to improve

the caliber and accessibility of healthcare services, this

hospital uses AI and ML algorithms to manage healthcare

operations. These algorithms optimize resource allocation,

patient scheduling, and workflow efficiency.

5.2.3 Benefit of XAI in 6G based smart hospital
over 5G

Compared to 5G technology, the integration of XAI in a 6G-

based smart hospital offers the following advantages (75):

• In a 6G smart hospital, XAI provides clear justifications

for AI-generated suggestions and judgements. Healthcare

workers must be able to comprehend the reasoning behind AI-

generated insights in order to build trust in the technology and

enable cooperation between AI systems and human clinicians.

• 6G-based XAI algorithms provide better interpretability when

compared to AI models in 5G environments. As a result,

physicians will be better equipped to verify suggestions and

more successfully apply their domain knowledge to decision-

making processes, as they will have a deeper understanding of

how AI makes its decisions.

• XAI in a 6G smart hospital allows medical professionals to

go back and confirm the logic behind particular suggestions

or actions, which increases AI systems’ accountability.

This accountability is crucial for ensuring that AI-driven

interventions comply with ethical and clinical criteria in

healthcare settings where decisions have a direct influence on

patient lives.

• XAI in a 6G smart hospital helps reduce the possibility of

biases or mistakes in AI-driven decision-making by offering

clear and understandable answers. Physicians can more
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readily recognize possible flaws or restrictions in AI systems,

enabling them to step in when needed to protect patient safety

and wellbeing.

• The use of artificial intelligence (AI) in healthcare can help

to support regulatory compliance standards. XAI capabilities

in a 6G smart hospital can assist. Healthcare businesses

can demonstrate compliance with regulatory norms and

rules governing the use of AI technologies in clinical

practice by utilizing features such as transparent explanations

and interpretability.

5.2.4 How XAI can be integrated with 6G based
smart hospital

Incorporating transparency and interpretability elements

into AI-driven healthcare systems is necessary to integrate

XAI with a 6G-based smart hospital. Healthcare companies

can create AI-driven healthcare solutions that are more

transparent, understandable, and reliable by combining

XAI with 6G-based smart hospital systems. In the end, this

improves patient outcomes by fostering human-machine

collaboration and bolstering clinicians’ faith in AI technologies.

Here’s how 6G technology can integrate XAI into a smart

hospital setting (76):

• Algorithm design: create AI algorithms with interpretability

and transparency as top priorities. This entails producing

justifications for AI predictions or suggestions using

methods like decision trees, rule-based systems, and

model-agnostic methodologies.

• Real-time explanation generation: when AI algorithms make

judgments or forecasts, implement systems that instantly

produce explanations. Delivering these explanations in a

format suitable for the current healthcare activity should

enable healthcare workers to understand them.

• Integrating with 6G connectivity: make use of 6G

networks’ fast, low-latency connectivity to enable smooth

communication between AI systems and healthcare

organizations. Ensure that clinicians’ devices can swiftly

and reliably receive and process XAI explanations, enabling

immediate review.

• User interface design: create user interfaces that display AI

suggestions or forecasts, along with XAI explanations. This

keeps their workflow uninterrupted and makes it simple for

physicians to access and understand the logic underlying AI-

driven decisions.

• Feedback mechanisms: put in place systems that let medical

professionals comment on how relevant and accurate XAI

explanations are. This gradually enhances the transparency

and interpretability of AI systems by utilizing human

judgment and input.

• Security and privacy: ensure the secure transmission of

XAI explanations via 6G networks to protect patient

confidentiality and privacy. To safeguard sensitive medical

data during transmission, employ authentication and

encryption techniques.

• Regulatory compliance: verify that the XAI integration

conforms with the laws and regulations, including HIPAA and

GDPR, that control the use of AI in healthcare. This requires

transparency in the XAI explanation process and adherence

to the accuracy and dependability standards established

by regulations.

5.2.5 Challenges of XAI and how 6G can help
In smart hospitals, XAI presents problems primarily related

to accountability, transparency, and trust in AI-driven decision-

making. 6G technology can help XAI in smart hospitals by

facilitating clear communication, reducing prejudice, boosting

security and privacy, and strengthening the resilience and

dependability of AI-driven healthcare systems. Smart hospitals

may implement XAI solutions that empower physicians, enhance

patient outcomes, and promote confidence in AI-enabled

healthcare delivery (77). Table 4 indicate some of the issues and

possible solutions that 6G technology may bring about:

The use of 6G in healthcare creates substantial regulatory

loopholes because of the unprecedented speed, connectivity, and

volume of data. Existing healthcare data protection regimes,

like HIPAA in the United States and GDPR in the European

Union, can be inadequate to deal with the intricacies of 6G

networks, particularly in terms of real-time processing of data,

cross-border data transfers, and AI-based medical decisions. To

fill these loopholes, a harmonized, worldwide regulatory regime

is needed. This structure should create uniform protocols for

data sharing, encryption, and interoperability across borders

while maintaining adherence to regional healthcare legislation.

Homomorphic encryption, zero-trust architecture, and blockchain

can be made mandatory to secure patient data. Regulatory

authorities should also make real-time auditing mechanisms

mandatory and demand transparent AI algorithms, making

diagnostic decisions explainable and unbiased. Ethical issues

around AI-powered diagnoses and robot-assisted surgeries need to

be resolved by introducing guidelines focusing on patient safety,

consent, and responsibility. Accurate legal liability for AI mistakes,

complete clinician education, and integration of human review

in key medical procedures are important. There needs to be

an integration with AI developers, healthcare professionals, and

ethicists with regulatory authorities to work together to set ethical

standards for AI. Public education and patient awareness regarding

AI participation in their treatment will also enhance trust. Finally,

an evolving, open, and internationally harmonized legal framework

is essential to provide secure, ethical, and compliant 6G-based

healthcare systems.

AI-based decisions in a 6G-enabled hospital need to be strictly

audited for fairness and bias to guarantee patient safety and

fairness. Explainable and transparent AI models are essential,

as they enable healthcare workers and regulators to see how

decisions are reached. Auditing needs to involve periodic checks

of AI algorithms, testing against varied datasets, and tracking

for any indication of discriminatory results based on race,

gender, or socioeconomic status. Ethical frameworks, including

the application of fairness measures and the integration of

human judgment in key decisions, are needed to reduce bias.
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TABLE 4 Challenges and solution of XAI by 6G.

Parameters Challenges How 6G can help

Interpretability One issue with AI in healthcare is that some algorithms are

“black boxes,” making it challenging to figure out how they

arrive at particular conclusions. In healthcare settings, where

doctors must trust and comprehend the reasoning behind

AI-driven suggestions, this lack of interpretability can be a

challenge.

6G networks facilitate real-time communication between AI

systems and healthcare providers, enabling the exchange of

comprehensive justifications for AI-generated suggestions.

6G-enabled augmented reality (AR) devices, for instance,

might instantly superimpose explanations onto patient data

or medical images, giving medical professionals a clear visual

representation of AI reasoning.

Fairness and bias AI systems trained on inadequate or biased data may

unintentionally exacerbate or prolong existing inequalities in

healthcare outcomes. Ensuring justice and fairness in AI

decision-making is essential to giving every patient access to

high-quality care.

How 6G can help: 6G can facilitate the transfer of massive

datasets required for training AI models on a variety of

representative data sources due to its high bandwidth and

low latency. Furthermore, the federated learning capabilities

of 6G networks allow several institutions to cooperatively

build AI models without exchanging private patient data,

thereby reducing the risk of bias and promoting justice.

Security and privacy: Health information is extremely private and governed by

stringent laws, such as the Health Insurance Portability and

Accountability Act (HIPAA) in the US. When implementing

AI systems in smart hospitals, data security and patient

privacy protection are top priorities.

To safeguard data transferred between IoT devices, AI

systems, and cloud servers, 6G networks include

cutting-edge encryption techniques and improved security

features. Hospitals can use differential privacy and secure

multi-party computation over 6G networks to analyze

sensitive patient data while maintaining patient privacy and

regulatory compliance.

Robustness and reliability To guarantee patient safety and care continuity, AI systems

installed in smart hospitals need to be robust and resilient.

Serious repercussions for patient outcomes could result from

system malfunctions or inaccurate AI forecasts.

How can 6G be useful? 6G networks’ ultra-reliable

low-latency communication (URLLC) capabilities, which

offer low latency and high dependability, enable

mission-critical applications such as remote patient

monitoring, telemedicine, and surgical robotics. By lowering

the number of single points of failure and processing data

closer to the point of collection, redundant 6G network

designs and edge computing resources can significantly

improve the resilience of AI systems

In addition, external audits by independent regulatory agencies

must be performed to ensure adherence to healthcare data

protection regulations.

The heightened surveillance facilitated by 6G technologies in

intelligent hospitals is of concern regarding privacy and consent.

Ongoing monitoring of patients by IoT devices, facial recognition,

and AI analysis may result in over-surveillance possibilities that

compromise individual liberties and create vulnerabilities in data.

Surveillance, though it enhances patient care through real-time

action, has dangers of data loss and unauthorized entry. Tight

regulatory systems and patient consent processes have to be in place

to prevent abuse and make sure that the advantages of AI-based

healthcare do not occur at the cost of patient privacy.

5.3 Robotics in 6G based smart hospital in
robotics

6G-based smart hospitals will outperform their 5G

counterparts and revolutionize robotics and automation by

introducing innovative features. 6G networks’ extremely low

latency and large data rates make it possible to easily integrate

sophisticated robotic systems, providing precise and real-time

medical automation. The combination of ultralow latency, high

data speeds, terahertz communication, and energy efficiency

enhances robotics and automation in 6G-based smart hospitals.

These characteristics enable a new wave of intelligent, flexible, and

long-lasting robotic applications that will transform patient care

and healthcare delivery (78). 6G’s improved connectivity makes

haptic feedback systems possible, which gives robotic treatment

a tactile element. Ultra-low latency can help teleoperated robotic

surgeries by allowing surgeons to accomplish complex tasks

with previously unheard-of precision and responsiveness from a

remote location. Healthcare settings can benefit from the adoption

of swarm robots due to 6G’s enhanced data speeds and better

connection density. Swarm robots improve hospital operations

by efficiently completing activities such as drug administration,

sample collection, and environmental monitoring, while operating

both cooperatively and independently. The combination of 6Gwith

cutting-edge AI has enabled the development of more intelligent

and context-aware robotic systems. These AI-powered robots can

smoothly communicate with patients and medical personnel, adapt

to changing hospital conditions, and move through congested

areas with intelligence (79). Advanced medical imaging robots

can perform high-resolution, real-time diagnoses because to

6G’s terahertz communication capabilities. The AI algorithms of

these robots enable them to examine medical images instantly,

facilitating prompt decision-making and intervention. 6G focuses

on sustainability and facilitates energy-efficient computing and

communications. By prolonging robotic systems’ operating

life, lowering energy usage, and encouraging environmentally

friendly automation techniques inside smart hospitals, this

feature improves robotic systems. 6G enables more organic and

cooperative interactions between people and machines. Healthcare

workflows can easily include robotic assistants, sometimes known

as humanoid robots, to support various duties such as patient care,
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FIGURE 6

Robotic enabled smart health hospital.

rehabilitation exercises, and standard medical procedures (80). The

robot-enabled smart hospital is shown in Figure 6.

5.3.1 Advanced applications of Robots in smart
hospital with statistics

Robotic surgery is a well-established technique; thus, robotic

technology in hospitals is not new, especially when it comes to

surgical procedures. However, outside of surgical settings, robotics

technologies continue to bring new breakthroughs and applications

to smart hospitals. The following is a list of recent and upcoming

uses for robots in hospitals (81, 82):

• Robotic surgery: although already common, continuous

improvements in robotic systems improve accuracy,

adaptability, and efficiency, resulting in shorter recovery

periods, fewer complications, and better patient outcomes.

Studies have shown that the da Vinci Surgical System, for

example, reduces blood loss and shortens hospital stays

throughout a variety of minimally invasive procedures, such

as hysterectomies, prostatectomies, and cardiac surgeries.

• Telepresence robots: these devices allow medical professionals

to communicate with patients and provide care from a

distance, facilitating virtual consultations and remote patient

monitoring. In critical care situations or for patients with

limited mobility, these robots let healthcare providers and

patients communicate more easily.

• Logistics and distribution Hospitals are increasingly using

autonomous robots for supply chain management, medicine

distribution, and specimen transportation. These robots

improve resource allocation efficiency, decrease manual work,

and streamline hospital operations.

• Disinfection robots: due to the growing emphasis on

infection control and hygiene, healthcare institutions use UV-

C disinfection robots to sterilize patient rooms, operating

rooms, and other high-touch surfaces. By lowering the risk of

infections linked to healthcare, these robots enhance patient

safety in general.

Even though robotic surgery is still a common use, there is more

and more potential to integrate robots into hospital operations,

improving patient care, efficiency, and infection control. The

following data illustrates how robotic technology is affecting

hospitals (83, 84):

• Studies have shown that using UV-C disinfection robots can

reduce hospital-acquired illnesses by up to 50%.

• Robotic surgery has been associated with shorter hospital

stays; in fact, some treatments have demonstrated a 40%

reduction in stay time when compared to traditional surgery.

• Telepresence robots can increase patient satisfaction

ratings by up to 25% by facilitating better access

to care and communication between patients and

healthcare professionals.

Integrating robotics and automation into a 6G-based smart

hospital requires meticulous planning, infrastructure preparedness,

and attention to safety and regulatory requirements. Successful

implementation hinges on collaboration between healthcare

providers, technology vendors, and robotics specialists. Leveraging
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the synergy between robotics, automation, and 6G technology can

significantly enhance efficiency, accuracy, and patient outcomes

in healthcare environments. The architectural requirements are

shown in Figure 7. Robotics and automation can be integrated in

several ways (85, 86).

• Surgical robots: surgical robots enhance the precision and

control of minimally invasive procedures. By integrating

these robots with 6G networks, real-time communication and

collaboration between surgeons and robots can be achieved.

This allows surgeons to remotely control robots, execute

complex procedures with increased dexterity, and utilize

haptic feedback to improve surgical outcomes.

• Telepresence robots: telepresence robots are equipped with

cameras, displays, and sensors to facilitate remote patient

monitoring and virtual consultations. These factors allow

health care professionals to interact with patients from afar.

In a smart hospital utilizing 6G technology, telepresence

robots take advantage of high bandwidth and low latency

connectivity for real-time video communication, enabling

healthcare professionals to assess patients remotely, provide

guidance, and monitor their conditions effectively.

• Robotic Process Automation (RPA): Robotic Process

Automation (RPA) automates repetitive and rule-based tasks

in hospital workflows. In smart hospitals, RPA streamlines

administrative processes such as patient registration,

appointment scheduling, and billing. Automating these tasks

helps reduce errors, enhance efficiency, and allow healthcare

professionals to dedicate more time to patient care.

• Pharmacy automation: robotic systems in pharmacies

automate medication dispensing, inventory management,

and prescription filling. These systems handle medication

orders with high accuracy and efficiency, reduce errors,

and enhance medication safety. When integrated with 6G

networks, these robotic systems enable real-time inventory

tracking, automatic restocking, and seamless communication

with healthcare providers to effectively manage medication.

• Logistics and material handling: robotics and automation

play key roles in logistics and material handling within

hospitals. Autonomous robots are deployed to navigate

hospital premises, transport supplies, deliver medications, and

assist with the movement of equipment and materials. When

integrated with 6G networks, these robots achieve efficient

task allocation, real-time tracking, and effective coordination,

thereby enhancing the overall efficiency of hospital operations.

• Robotic rehabilitation: robotic systems are instrumental

in patient rehabilitation and offer targeted exercises,

support, and feedback to aid recovery. These systems are

particularly beneficial for patients with mobility impairments,

because they provide personalized therapy sessions and

monitor progress. With the integration of 6G networks,

these robotic systems allow for real-time monitoring,

remote supervision, and personalized adjustments to

therapy programs, thereby enhancing the efficacy of

rehabilitation treatments.

• Monitoring and surveillance robots: robots equipped with

sensors and cameras are used for monitoring and surveillance

in hospitals. These robots can track vital signs, detect

anomalies, and improve patient safety. The integration of

these robots with 6G networks facilitates seamless data

transmission, enabling real-time alerts and remotemonitoring

by healthcare professionals, thereby bolstering hospital

security and patient care efficiency.

• Maintenance and facility management: robotics and

automation play vital roles in hospital maintenance and

facility management. Autonomous robots are deployed

for routine inspection, equipment maintenance, and

environmental monitoring. They efficiently identify and

report issues, ensure prompt maintenance, and reduce

equipment downtimes. With the integration of 6G networks,

these robots facilitate efficient task management, support

remote diagnostics, provide real-time status updates, and

optimize hospital operations.

5.3.2 Challenges and 6G solution in
implementation of robotics in smart hospital

6G connectivity can overcome the implementation challenges

of robotics in smart hospitals by providing the necessary

infrastructure for real-time communication, remote operation,

data processing, and security, ultimately enhancing patient

care delivery and operational efficiency. Integrating robotics

and automation in a 6G-based smart hospital presents several

challenges that must be addressed. The following are some of the

key challenges (87, 88):

• Integration complexity: it can be difficult to integrate robotic

systems into the current hospital infrastructure, necessitating

major adjustments to the physical layouts, operational

procedures, and IT infrastructure.

• Safety concerns: when using robots in healthcare

environments, safety must come first because mistakes

or malfunctions could endanger patients or cause accidents.

Ensuring regulatory compliance and a safe environment for

robots to engage with patients are critical.

• Training and education: to effectively operate and interact

with robotic devices, healthcare workers require specific

training. It is necessary to create and conduct training

programs to guarantee staff competence and assurance when

utilizing robotic technologies.

• Costs and return on investment: for robotics systems, upfront

investments in equipment, maintenance, and training are

often significant. In contrast to conventional care delivery

models, hospitals must evaluate the robotic solutions’ long-

term cost-effectiveness and return on investment (ROI).

• Interoperability: for smooth communication and data

transmission, it is crucial to provide interoperability between

various robotic platforms, medical equipment, and hospital

IT systems. Interoperability and data integration require

standardized interfaces and protocols. Patching legacy

systems in current hospitals with 6G technologies will need

a well-thought-out plan to facilitate seamless transition

and interoperability. Legacy systems, including Electronic

Health Records (EHR), imaging equipment, and older

diagnostic equipment, commonly use old communication
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FIGURE 7

Infrastructure requirements for robotics and automation in 6G smart hospital.

protocols and infrastructure. To fill the gap, hospitals will

have to implement middleware solutions and software

adapters that allow such systems to interact with newer

6G-compatible devices and applications. Furthermore,

network updates like moving toward hybrid cloud-edge

models will facilitate integrating existing sources of data

with greater throughput and less latency that is offered

by 6G. The process of integration will also include the

upgrade of legacy hardware to accommodate 6G-compatible

standards, including low-power IoT sensors and AI-based

devices for real-time monitoring. Notably, this process

must ensure data security and healthcare regulation

compliance to safeguard patient privacy. By embracing

scalable, modular solutions, hospitals can future-proof

their infrastructure while ensuring compatibility with

current systems.

6G connectivity can assist with these issues by performing the

following tasks (89):

• Minimal latency and maximum bandwidth: 6G networks

provide incredibly low latency and maximum bandwidth,

allowing robotic system management and real-time

communication. This guarantees that commands and actions

happen as quickly as possible, improving the responsiveness

and agility of robotic platforms.

• Support for edge computing: by enabling data processing and

analysis closer to the source of data generation, 6G networks’

edge computing capabilities lower latency and bandwidth

consumption. This increases the autonomy and efficiency of

robotic systems by enabling real-time decision-making and

feedback loops.

• Remote operation and monitoring: surgeons and other

healthcare professionals can remotely operate robotic devices

for telemedicine and telesurgery applications because of 6G’s

high-speed, low-latency connectivity. This enhances patient

care outcomes by providing access to medical services and

specialist knowledge regardless of one’s location.

• Security and reliability: to safeguard data sent between robotic

equipment and hospital IT infrastructure, 6G networks

include cutting-edge security features including encryption,

authentication, and intrusion detection. This reduces the

risks posed by cyberattacks and illegal access, improving the

security and dependability of robotic operations.

5.4 Analyzing real problem in Thailand
hospital and solving with 6G based smart
hospital

The high maintenance costs of access points in Thailand’s

public hospitals negatively impact the quality and accessibility of

healthcare, compounded by tight resources and posing numerous

obstacles for the general population (90). Population hospitals may

offer more dependable and effective services by utilizing cutting-

edge technologies to reduce their high maintenance costs. This

would immediately benefit the general population by improving

their access to high-quality healthcare (91). The following are the

effects this issue has on the broader public (16, 92):

• Decreased quality of care

Equipment downtime: longer downtimes resulting from

medical equipment malfunctions frequently caused by poor

maintenance can cut into the availability of crucial therapeutic

and diagnostic services.

Treatment delays: individuals may encounter delays

in the provision of medical care or diagnostic services,

thereby exacerbating health effects, particularly in urgent or

essential circumstances.

• Extended waiting periods

Overburdened facilities: when the remaining functioning

equipment is out of commission, it leads to extended patient
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wait times. This is especially troublesome in high-demand

fields like radiology and emergency departments.

Appointment backlogs: when maintenance problems

cause a backlog of appointments, patients may have to wait

longer for planned consultations and procedures, which may

worsen their health.

• Higher cost

High healthcare costs for patients: if public hospitals are

unable to provide prompt services, patients may be compelled

to seek care from private hospitals, resulting in higher out-of-

pocket costs.

Indirect expenditures: patients’ overall healthcare

expenditures may rise as a result of treatment delays that

prolong sickness and necessitate more involved and costly

therapies down the road.

• Restricted availability of specialized services

Availability of specialized equipment: regular

maintenance is necessary for specialized diagnosis and

treatment equipment, such as CT scanners and MRI

machines. High maintenance expenses may restrict the

provision of these treatments in public hospitals, thereby

requiring patients to travel great distances to receive

the necessary care.

Equity issues: health inequities between urban and rural

populations may worsen in rural and underserved areas due

to restricted access to specialist equipment.

• Effect on hospital

Staff efficiency: when dealing with broken or unavailable

equipment, medical personnel may experience elevated stress

levels and lower productivity, which may have an adverse

effect on their capacity to deliver high-quality care.

Instruction and adjustment: frequent equipment

failures and the introduction of temporary solutions

can disrupt the workflow, forcing personnel to

constantly adjust to changing circumstances and

potentially impacting the overall performance of

the hospital.

• Public health consequences

Control of infectious diseases: to prevent the

transmission of infectious diseases, it is essential to use

dependable equipment and perform routine maintenance.

Equipment malfunctions can jeopardize public health

by impeding diagnostic capabilities and delaying the use

of control measures.

Handling chronic illnesses: timely therapies and routine

monitoring are essential for the effective management

of chronic conditions such as hypertension and diabetes

requires timely therapies and routine monitoring. Problems

with equipment maintenance can interfere with continuing

care strategies and worsen the health of individuals with

chronic illnesses.

The above stated problem of high maintenance costs of

access points in Thailand’s public hospitals can be solved by

deploying 6G networks and smart hospital technologies in the

following manner:

• Predictive upkeep:

Predicting equipment failures with IoT sensors and

data analytics may guarantee prompt maintenance, cutting

downtime, and preserving service availability.

• Remote diagnosis:

High-speed, dependable remote diagnostics made possible

by 6G networks allow professionals to handle maintenance

issues without the need for in-person presence, resulting in

faster problem resolution.

• Optimized allocation of resources:

By making the most use of the resources at hand, smart

systems can minimize service interruptions by prioritizing

maintenance on vital equipment.

• Enhanced effectiveness:

AI and automation can help hospitals run more efficiently,

which will ease the workload for employees and increase the

effectiveness of healthcare delivery as a whole.

The datasets used for experimental validation in the

context of integrating 6G technology in smart hospitals should

exhibit specific characteristics to accurately reflect real-world

healthcare scenarios.

• Size: given the large-scale nature of smart hospitals, the

datasets must be extensive, encompassing patient records,

medical imaging, sensor data from IoMT devices, and

real-time communication logs. These datasets should cover

various aspects of healthcare, from diagnostics to treatment

monitoring, to assess the impact of 6G-enabled solutions on

data processing speed, latency, and bandwidth requirements.

• Diversity: the datasets should be diverse, representing a

wide range of patient demographics, health conditions,

and healthcare environments. This diversity is crucial to

evaluating the performance of 6G in handling different

medical applications, such as telemedicine, remote surgeries,

and AI-driven diagnostics. The data should include structured

formats (e.g., EHR) and unstructured formats (e.g., medical

images, video feeds) to simulate the varied data inputs in

smart hospitals.

• Challenges: one major challenge is ensuring data privacy

and security, as sensitive patient information must be

protected while transmitting over high-speed 6G networks.

Additionally, data heterogeneity could pose integration

issues, requiring effective data harmonization techniques.

The computational complexity involved in handling large

datasets for AI and real-time analytics also demands advanced

processing capabilities, which could be another hurdle in the

experimental setup.

5.5 Hybrid cloud-edge computing

Hybrid cloud-edge computing solutions present a strong

alternative to 6G infrastructure in healthcare with an effective

combination of cloud computing’s scalability and edge computing’s

low-latency benefits. In healthcare, where real-time data processing

and rapid decision-making are essential, this hybrid approach can

maximize performance and cost-effectiveness. Edge computing
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devices situated near medical devices, including wearables,

monitoring devices, and surgical robots, handle the processing

of data locally, minimizing latency and the requirement for

ongoing cloud communication. Local processing is essential

in time-sensitive applications like remote surgery and real-

time patient monitoring, where delays can be disastrous (93).

Alternatively, cloud computing offers centralized storage,

computational capacity, and support for high-volume data

analysis, useful for predictive diagnostics, machine learning,

and patient record keeping. Cloud resources are capable of

managing the heavy computational workloads of AI algorithms

without loading edge devices with processing large amounts

of data, thus providing high-level analytics and data backups

without loading local infrastructure (94). A hybrid architecture

alleviates the weaknesses of both cloud and edge computing. It

ensures that healthcare systems are not totally reliant on cloud

infrastructure, which is costly or prone to outages, and also

refrains from the performance constraints of edge computing.

Hybrid systems can enhance scalability, flexibility, and reliability,

particularly for remote locations with poor network connectivity,

where edge devices can operate independently. By integrating

these technologies, healthcare systems can deliver ongoing,

real-time care, maximize resource utilization, and maintain strong

data privacy and security through local processing and cloud

storage (95, 96).

6 Conclusion

This projected article presents a comprehensive study of

6G-based smart hospitals, exploring the architectural evolution,

advanced techniques, and challenges associated with this

cutting-edge healthcare paradigm. Our research highlights the

transformative potential of 6G technology in revolutionizing

healthcare delivery. The architectural evolution emphasizes

the seamless integration of diverse technologies to create a

robust and interconnected healthcare ecosystem. Advanced

techniques such as Explainable AI, IoT, and Robotics optimize

patient care, resource management, and operational efficiency,

enhancing diagnostic accuracy, streamlining workflows, and

improving patient outcomes. However, our study also reveals

significant challenges accompanying 6G implementation in

smart hospitals, including security and privacy concerns,

interoperability issues, and the need for substantial investments.

Striking a balance between innovation and security is crucial

for widespread adoption. This study provides a roadmap for

researchers, practitioners, and policymakers to navigate the

evolving landscape of 6G-based smart hospitals as we stand on

the cusp of a new era in healthcare technology characterized

by unprecedented connectivity and intelligence. Future work

should focus on fortifying security and privacy, developing

robust encryption methods, authentication protocols, and

privacy-preserving mechanisms to mitigate risks and ensure

data integrity. Research should also explore user experience,

human-machine interaction, and the integration of patient

feedback to create technologies that enhance healthcare delivery

while prioritizing the wellbeing of patients and providers.

Limitations include high implementation costs, data security

concerns, the need for advanced infrastructure, and the lack

of detailed analysis of ethical issues and potential disparities in

technology access.
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Introduction: Symptoms of autism spectrum disorder (ASD) range from mild to

severe and are evident in early childhood. Children with ASD have di�culties

with social interaction, language development, and behavioral regulation. ASD

is a mental condition characterized by challenges in communication, restricted

behaviors, di�culties with speech, non-verbal interaction, and distinctive facial

features in children. The early diagnosis of ASD depends on identifying anomalies

in facial function, which may be minimal or missing in the first stages of

the disorder. Due to the unique behavioral patterns shown by children with

ASD, facial expression analysis has become an e�ective method for the early

identification of ASD.

Methods: Hence, utilizing deep learning (DL) methodologies presents an

excellent opportunity for improving diagnostic precision and e�cacy. This study

examines the e�ectiveness of DL algorithms in di�erentiating persons with

ASD from those without, using a comprehensive dataset that includes images

of children and ASD-related diagnostic categories. In this research, ResNet50,

Inception-V3, and VGG-19 models were used to identify autism based on the

facial traits of children. The assessment of these models used a dataset obtained

from Kaggle, consisting of 2,940 face images.

Results: The suggested Inception-V3 model surpassed current transfer learning

algorithms, achieving a 98% accuracy rate.

Discussion: Regarding performance assessment, the suggested technique

demonstrated advantages over the latest models. Our methodology enables

healthcare physicians to verify the first screening for ASDs in children.

KEYWORDS

transfer learning, deep learning, diagnosis, disability, mental health

1 Introduction

Autism Spectrum Disorder (ASD) represents one of the most significant challenges

in modern neurodevelopmental medicine, affecting ∼1 in 36 children globally (1). This

complex condition, characterized by difficulties in social interaction, communication

patterns, and repetitive behaviors, demands early intervention for optimal outcomes (2).

ASD is identified based on deficiencies in behavioral skills and social communication, often

seen via recurrent behavioral indicators in children. Figure 1 displays the symptoms of

ASD. However, traditional diagnostic procedures usually involve time-intensive behavioral

assessments and costly medical evaluations, creating substantial barriers to early detection,

particularly in resource-limited settings (3).
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FIGURE 1

Symptoms of ASD.

Recent advances in artificial intelligence, particularly in the

domain of deep learning and computer vision, have opened

promising new avenues for ASD screening (4, 5). The emerging

field of facial phenotype analysis is of particular interest, which

leverages the observation that individuals with ASD often present

distinct facial morphological characteristics (6). These features,

including broader upper faces, wider eyes, shorter nasal bridges,

and narrower cheeks, have been increasingly recognized as

potential biomarkers for ASD detection (6).

Timely diagnosis facilitates the use of specialist therapies

designed to address the unique requirements of persons with

autism, focusing on social communication, language development,

and behavioral issues. Moreover, early diagnosis allows families

to get suitable support services, educational resources, and

community activities, enhancing coping strategies, alleviating

parental stress, and promoting adult independence.

Nonetheless, early identification of autism by traditional

methods also has specific threats. A significant concern is

the potential for labeling, which may impact the child’s self-

esteem and social relationships. There is a risk of overdiagnosis

or misdiagnosis, leading to unnecessary interventions and

therapies. The diagnostic procedure may be delayed, intricate, and

emotionally testing for families, necessitating thorough evaluations

by multidisciplinary teams. Consequently, using sophisticated

approaches supported by artificial intelligence (AI) may mitigate

this danger, as AI utilizes technology capable of incorporating

feedback from youngsters, informed by their expertise. In this

study, we used facial images of children to identify those suffering

from ASD.

The integration of deep learning methodologies with facial

analysis represents a potentially transformative approach to

ASD screening. Contemporary deep learning architectures have

demonstrated remarkable capabilities in extracting complex

patterns from facial images, offering the possibility of automated,

rapid, and cost-effective screening tools. This approach aligns with

the growing need for accessible screeningmethods that can support

healthcare professionals in identifying individuals whomay require

comprehensive diagnostic evaluation.

This research presents a novel deep learning framework

for ASD detection through facial image analysis. Our study

evaluates the performance of three state-of-the-art deep learning

architectures: ResNet, VGG16, and VGG19. Through rigorous
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experimentation and validation, we demonstrate that the VGG19

architecture achieves superior performance with an accuracy of

98%, representing a significant advancement in automated ASD

screening capabilities.

The primary contributions of this study include:

1. A comprehensive evaluation of DL architectures for facial

image-based ASD detection.

2. The development of an optimized VGG19-based model

achieving 98% accuracy.

3. Analysis of the specific facial features that contribute most

significantly to accurate ASD detection.

This research aims to advance the field of automated ASD

screening, potentially reducing the burden on healthcare systems

while accelerating the identification of individuals who may benefit

from early intervention. Our findings suggest that deep learning-

based facial analysis could serve as a valuable complementary tool

in the ASD diagnostic process, particularly in settings where access

to traditional diagnostic resources is limited.

The research gap in ASD identification using images persists,

despite the proposed system achieving 98% accuracy on a

benchmark dataset. Different signals in facial expressions make

it challenging to identify using advanced deep learning models,

which may aid in predicting ASD. Ultimately, clinical validation is

necessary to ensure the widespread adoption of this approach in

healthcare settings and its practical applicability.

2 Related work

Early detection of ASD is crucial for effective intervention

and treatment (7). While traditional diagnostic methods rely on

clinical observations and behavioral assessments such as the Autism

Diagnostic Observation Schedule (ADOS) (8), recent years have

seen significant advancement in automated detection approaches.

These advancements span multiple modalities, including facial

analysis (9), magnetic resonance imaging (MRI) (10), eye tracking

(11, 12), and electroencephalography (EEG) (13). The emergence of

sophisticated machine learning and deep learning techniques has

particularly accelerated the development of automated diagnostic

systems across these modalities (13), offering promising tools for

early screening and detection.

Akter et al. (14) conducted work using transfer learning,

working with a dataset of 2,936 facial images from Kaggle. Their

study evaluated multiple machine learning classifiers and pre-

trained CNN models, with their improved MobileNet-V1 model

achieving an accuracy of 90.67%. They used K-means clustering

to identify potential ASD subtypes, achieving 92.10% accuracy for

two autism subtypes. Elshoky et al. (15) comprehensively compared

machine learning approaches using facial images from Kaggle.

Their study uniquely compared classical machine learning, deep

learning, and automated machine learning (AutoML) approaches.

Using OpenCV for pre-processing with 90×90 pixel resizing and

grayscale conversion, their AutoML approach achieved ∼96%

accuracy, significantly outperforming classical ML 72.64% with

Extra Trees and deep learning methods using VGG16, which

achieved 89%.

Li et al. (16) introduced a two-phase transfer learning

approach using MobileNetV2 and MobileNetV3-Large. Their

method transferred knowledge from ImageNet to facial images

from Kaggle. This mobile-optimized approach achieved 90.5%

accuracy with an AUC of 96.32%. Siagian et al. (17) took a

different approach, using a unique dataset of 200 facial images

collected from special schools in Medan, Indonesia. Their method

combined the SURF (Speeded-Up Robust Features) algorithm

with various boosting methods, achieving 91.67% accuracy with

Gradient Boosting despite the relatively small dataset.

Alkahtani et al. (18) explored a hybrid approach combining

pre-trained CNNs with traditional machine learning classifiers.

Their study utilizedMobileNetV2 andVGG19 as feature extractors,

paired with various classifiers machine learning algorithms.

Working with a publicly available dataset, their optimized

MobileNetV2 configuration, using the Adamax optimizer with a

learning rate of 0.001, achieved 92% accuracy. Sai Koppula and

Agrawal (19) evaluated multiple pre-trained CNN architectures

with a focus on domain-specific variations. Using the Kaggle

dataset, they implemented extensive data augmentation through

Keras’ ImageDataGenerator. Their study revealed that models pre-

trained on VGGFace2 outperformed those trained on ImageNet,

with VGG16 achieving 86% accuracy and AUC. Abdullah et al.

(20) explored an ensemble approach that combined the EfficientNet

B5, MobileNet, and InceptionV3 models using the Kaggle dataset.

Their method employed data augmentation techniques and utilized

a soft voting ensemble method, achieving an accuracy of 89.87%.

Karthik et al. (21) investigated hybrid deep learning models

using Vision Transformers (ViT) with various classifiers. Working

with the Kaggle dataset, they implemented comprehensive pre-

processing, including grayscale conversion, resizing to 224×224

pixels, normalization, and extensive augmentation. Their ViT

model, combined with XGBoost and SHAP implementation,

achieved 91.3% accuracy.

Pan and Foroughi (22) focused on edge computing

applications, adapting AlexNet for efficient processing in

educational environments using the Kaggle dataset. Their

implementation achieved 93.24% accuracy while maintaining

real-time processing capabilities, demonstrating the feasibility

of edge deployment for ASD screening tools. Shahzad et al. (23)

introduced a hybrid attention-based model combining ResNet101

and EfficientNetB3. Their approach incorporated self-attention

mechanisms from natural language processing and emphasized

standardized pre-processing with image augmentation through

rotations, zooming, and flipping. The hybrid attention-based

model achieved an accuracy of 96.50%. Reddy and Andrew

(24) conducted a comparative study of three pre-trained

Convolutional Neural Network (CNN) architectures: VGG16,

VGG19, and EfficientNetB0. Their investigation utilized a dataset

of facial images of children, implementing comprehensive data

augmentation techniques, including rotation, horizontal flipping,

zooming, and height/width shifting. Images were standardized

to 227 × 227 × 3 pixels to ensure compatibility with the CNN

architectures. Their findings revealed that EfficientNetB0 achieved

the highest accuracy at 87.9%, surpassing both VGG16 84.66% and

VGG19 80.05%. Table 1 displays the different existing systems that

have been developed for the diagnosis of ASD.
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TABLE 1 Existing using facial images.

Study Dataset Methods/models Key findings/accuracy

Akter et al. (2021) (14) Autism Face Image Dataset Transfer learning with MobileNet-V1, K-means

clustering

MobileNet-V1: 90.67%; Clustering: 92.10% for

ASD subtypes

Elshoky et al. (2022) (15) Autism Face Image Dataset Classical ML, Deep Learning (VGG16), AutoML AutoML: 96%; VGG16: 89%; Classical ML

(Extra Trees): 72.64%

Li et al. (2023) (16) Autism Face Image Dataset Two-phase transfer learning MobileNetV3-Large: 90.5%, AUC: 96.32%

Siagian et al. (2023) (17) Special dataset of 200 images Gradient Boosting with SURF features Gradient Boosting: 91.67%

Alkahtani et al. (2023) (18) Autism Face Image Dataset MobileNetV2, VGG19 with various classifiers MobileNetV2: 92%

Sai Koppula and Agrawal (2023)

(19)

Autism Face Image Dataset VGGFace2 vs. ImageNet-based pre-trained CNNs VGG16 (VGGFace2): 86%, AUC: Not specified

Abdullah et al. (2024) (20) Autism Face Image Dataset Ensemble (EfficientNetB5, MobileNet,

InceptionV3)

Ensemble: 89.87%

Karthik et al. (2024) (21) Autism Face Image Dataset Vision Transformers (ViT) with XGBoost and

SHAP

ViT+ XGBoost: 91.3%

Pan and Foroughi (2024) (22) Autism Face Image Dataset Edge-optimized AlexNet AlexNet: 93.24%

Shahzad et al. (2024) (23) Autism Face Image Dataset ResNet101+ EfficientNetB3 hybrid with

self-attention

Hybrid: 96.50%

Reddy and Andrew (2024) (24) Autism Face Image Dataset VGG16, VGG19, EfficientNetB0 EfficientNetB0: 87.9%; VGG16: 84.66%;

VGG19: 80.05%

FIGURE 2

Enhanced diagnosis ASD system.

3 Materials and methods

This research used DL models to predict and classify ASD in

children at an early stage. This framework was developed using

autistic face features. This study used pre-trained DL models

to automatically extract robust characteristics of children’s faces

to detect ASD. The framework of the proposed ASD system is

presented in Figure 2.
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3.1 Dataset

The research used face images of autistic children from a

publicly accessible collection (Kaggle). The dataset included 2D

RGB images of children aged 2–14. The dataset was designed into

two subfolders: one designated for autistic children and the other

for non-autistic children. The autistic subfolder included images

of ASD, while the non-autistic subfolder had images randomly

retrieved from web searches, as shown in Table 2. The images were

sized at 224 × 224 × 3, providing a comparative overview of

ASD and non-ASD images. The snapshots of images of ASD and

non-ASD are presented in Figure 3.

3.2 Pre-processing approach

3.2.1 Data augmentation
Data augmentation is process to generating additional data

from existing datasets to train deep learning models, which might

be complicated by data silos, restrictions, and other constraints,

by minor modifications to the original data. This study employs

data augmentation to enhance the model’s efficacy by artificially

TABLE 2 Samples of dataset.

Dataset Number

Total_images 2,940

Autistic_children 1,327

Non-autistic_childern 1,613

expanding the training dataset by transformations such as flipping,

shearing, zooming, and rescaling, as shown in Table 3. These

parameters mitigate overfitting when the model retains training

data rather than acquiring generalized patterns, thereby improving

the model’s efficacy. The ASD and Non-ASD images in standard

collections may be constrained in size; augmentation artificially

enhances them by rescaling pixel values to [0, 1], shearing images

by 10%, zooming by 10%, and performing horizontal flipping.

3.2.2 Data splitting
The dataset is partitioned into three sets: training (80%),

validation (10%), and test (10%). This guarantees that the model

is tested on unknown data for improved generalizability. The class

volume of the ASD dataset is presented in Figure 4.

3.3 Deep learning models

3.3.1 Inception-V3 models
Google presented the Inception-V3 pre-trained model. It

includes symmetrical and asymmetrical construction blocks,

TABLE 3 Augmentation parameters.

Indicators Values

Shear_Range method 0.1

Zoom_Range method 0.1

Horizontal_Flip method True

FIGURE 3

Snapshot of dataset.
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FIGURE 4

Class ASD dataset.

FIGURE 5

Architecture of inception-V3 network.

convolutional layers, max and average pooling, concatenations,

dropouts, and fully linked layers. Applications of batch

normalization in activation layers are typical. The inception-

V3 network is the inception block. The inception-V3 model

separates layers, and rather than processing via a single layer, it

utilizes the input from the preceding layer to execute four distinct

processes concurrently, subsequently concatenating the outputs

from all these various levels. The 5 × 5 convolution is replaced

with two 3 × 3 convolutions in the Inception-V3 architecture,

as shown in Figure 5. Since a 5 × 5 convolution requires 2.78

times more resources than a 3 × 3 convolution, this also improves

computing performance by decreasing processing time. Utilizing

two 3 × 3 layers instead of a single 5 × 5 layer enhances the

architecture’s performance.
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FIGURE 6

Architecture of ResNet50 model.

FIGURE 7

Architecture of VGG-19 model.

3.3.2 ResNet50 models
Introduced the residual neural network (ResNet) He et al.

(33) in 2015. ResNet50 was introduced in 2015 by Microsoft

Research for image identification tasks. ResNet indicates that the

model has 50 layers. ResNet50 improved training performance

by including residual connections between layers, which reduced

loss, preserved acquired information, and kept it. An output

with a residual link is a convolution of the input and the

input itself, or the result of adding both together. Figure 6

illustrates a block diagram of the ResNet50 model’s design.

Utilized Residual blocks function as shortcuts or skip connections,

enabling the model to bypass one or more levels. This mitigates

the vanishing gradient issue during training and facilitates

the seamless flow of information. ResNet50 key contribution

is the invention of the residual block. These leftover blocks

facilitate the connection of activations from preceding levels to

subsequent layers.

3.3.3 VGG-19 models
The VGG-19 model was introduced by (34). The VGG-19

model for neural networks has 19 weight layers, 16 of which

are convolutional layers and 3 of which are fully connected.

Its filter size is 3 × 3, and it has a stride and padding of 1

pixel. The diminutive kernel size lowers the parameter count

and allows for comprehensive coverage of the whole image.

An operation called 2 × 2 max pooling with a stride of 2 is

used by the VGG-19 model. With 138 million parameters, this

model ranked second in classification and first in positioning

in 2014. VGGNet reinforced the notion that CNNs should
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TABLE 4 Enhanced parameters for setting the Dl models.

# No Name Values

1 Model Architecture Inception-V3, VGG-19 and ResNet50

2 Image Size 224×244×3

3 Batch Size 16

4 Learning Rate 0.01

5 Epochs 25

6 Image Rescaling 1./255

7 Optimizer SGD

8 Pool size (3,3)

9 Strides (2,2)

10 Padding Valid

11 Dencer_layer 512

12 Dropout 0.50

13 Function Sigmoid

TABLE 5 Validation results of ResNet50 model.

Model Precision
(%)

Recall
(%)

F1 score
(%)

Support

Non_Autistic 98 94 96 294

Autistic 94 98 96 294

Accuracy % 96

Weighted Avg. 96 96 96 588

include a deep layered architecture to facilitate hierarchical

interpretation of visual input. Figure 7 illustrates the block model

of VGG-19.

3.4 Setting of proposed DL models

The DL model is started with pre-trained weights from

the ImageNet function, with an input size of ASD image of

224 × 224 × 3, and omitting the top classification layers.

The dense layer used sigmoid activation for binary classification

objectives. The model used a Stochastic SGD optimizer with

a standard learning rate of (0.01), leverages binary cross-

entropy for finding performance and loss function, and evaluates

performance based on accuracy as the measure. The Training

model was used 25 epochs, using early stopping with 5 epochs.

The completed model is assessed on the validation set using

measures such as accuracy. Classification is performed using

Softmax. Table 4 illustrates a schematic representation of the

DL model.

3.5 Evaluation metrics

We used critical statistical metrics, including accuracy,

precision, and recall, to illustrate our research results. The formulas

that are used for the measurement of the DL models are

as follows:

Accuracy =
TP + TN

FP + FN + TP + TN
× 100 (1)

F1− score = 2∗
Precision × Recall

Precision+ Recall
× 100% (2)

Recall =
True Positives

True Positives+ False positives
× 100% (3)

Precision =
True Negatives

True Negatives+ False Negatives
× 100% (4)

4 Experiment

Training and evaluation of the proposed system were

completed on the Kaggle environment platform, which consists

of a robust TensorFlow library. We deliberately selected three

distinguished pretrained CNNs: Inception-V3, ResNet50, andVGG

19 models, for diagnosis of the autism disorder in children. To use

existing best practices and ensure consistency, we selected proven

beneficial hyperparameters. Suitable for binary classification tasks,

with a learning rate of 0.001, the SGD optimizer, the ReLU

activation function, and a maximum of 25 epochs. The specified

parameter values were accurately adjusted for all models according

to the results of prior cutting-out research, with the objective of

attaining optimum training performance for the chosen algorithms.

The method was evaluated using a real-time dataset obtained from

children with ASD and typically developing children.

4.1 Results of ResNet50 models

Table 5 presents the experimental results. The ResNet50 model

exhibits significant efficacy in classifying Autistic and Non-Autistic

individuals, attaining an overall accuracy of 96%. The ResNet50

model achieves a weighted average precision, recall, and F1-

score of 96%, demonstrating consistent performance across both

classes. In the Non-autistic class, precision is 98%, indicating that

nearly all autistic predictions are accurate, whereas recall is 94%,

indicating that some autistic cases are observed. The Autistic

class demonstrates a precision of 94%, suggesting the presence of

some false positives, while achieving a recall of 98%, indicating

that nearly all Non-Autistic cases are identified. The F1-scores of

96% for Autistic individuals and 96% for Non-Autistic individuals

indicate a strong balance in classification performance. The results

indicate the model’s effectiveness; however, lower enhancements

in Non_Autistic precision may be realized through further

data augmentation or fine-tuning. ResNet50 model demonstrates

significant reliability for the classification of images related to

autism, as proved by this evaluation.

Figure 8 presents the classification of the validation set of the

ResNet50 model. The classification model’s performance on the

validation set was assessed through a confusion matrix. The model

accurately identified 275 TN and 289 TP, exhibiting minimal FP.

The model demonstrates high accuracy, minimal FP, and effective

class differentiation, rendering it reliable for classification tasks.
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FIGURE 8

Confusion matrix of ResNet50 model.

TABLE 6 Validation results of Inception-V3 model.

Model Precision
(%)

Recall
(%)

F1 score
(%)

Support

Non_Autistic 98 97 98 294

Autistic 97 98 98 294

Accuracy % 98

Weighted Avg. 98 98 98 588

4.2 Results of Inception-V3

The Inception-V3 model exhibits exceptional accuracy and

robust classification capabilities in detecting ASD, as shown in

Table 6. The Inception-V3 model demonstrates high accuracy

and strong classification performance in the detection of ASD,

achieving an overall accuracy of 98%. The system demonstrates a

precision of 98% in identifying non-autistic cases, accompanied by

an F1 score of 98%. The precision for Autistic cases is 97%, with a

recall of 98% and an F1 score of 98%. This balanced performance

minimizes misclassifications, rendering it appropriate for real-

world applications in the identification of ASD with confidence

and precision. The results demonstrate that the model effectively

classifies target classes while maintaining a low misclassification

rate, thereby rendering it suitable for real-world applications in the

identification of ASD with high confidence and precision.

Figure 9 presents the confusion matrix for the Inception-

V3 model during the validation stage. The model demonstrated

enhanced classification performance. The Inception-V3 model

exhibited robust classification performance, successfully predicting

286 non-autistic and 289 Autistic cases from a total of 588 samples.

The model exhibited minimal misclassifications, recording 8

false positives (FP) and 5 false negatives (FN), which suggests

strong recall and precision. The model demonstrated reliability

and balanced performance, though there remains potential for

improvement in minimizing misclassification rates.

4.3 Result of VGG-19

The VGG19 model demonstrates high precision, recall, and

F1-score in the classification of ASD, exhibiting minimal FP and

TN, as shown in Table 7. It demonstrates strong performance in

the Autistic and Non-Autistic classes, as indicated by precision,

recall, and F1-score metrics. The model reveals a 97% accuracy

rate, suggesting its appropriateness for clinical ASD detection, with

opportunities for enhancement via refined training strategies.

The confusion matrix of VGG19 is shown in Figure 10. The

VGG19 model demonstrated robust performance on the validation

dataset, with 285 TN accurately identifying the Non_Autistic class

and 287 TP correctly identifying the Autistic class. There are

just 9 FP as misclassifcation as Autistic when the true class is

Non_Autistic, and 7 FN misclassifying as Non_Autistic when
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FIGURE 9

Confusion matrix of Inception-V3 model.

TABLE 7 Validation results of VGG-19 model.

Model Precision
(%)

Recall
(%)

F1 score
(%)

Support

Non_Autistic 98 97 97 294

Autistic 97 98 97 294

Accuracy % 97

Weighted Avg. 97 97 97 588

the true class is Autistic, resulting in a minimal total count

of misclassifications.

4.4 Performance of the ASD system based
on DL models

The ASD detection system, using deep learning models, has

impressive accuracy rates of 98% in training and validation,

distinguishing between non-autistic and Autistic patients. The

model’s robust convergence and consistent validation outcomes

demonstrate its proficiency in generalizing novel data, making it

a valuable early identification tool.

Figure 11 shows the accuracy and loss of the ResNet50

system, with a y-axis representing data classification accuracy.

The validation system improved accuracy from 0.5000 to 0.9592

during the validation phase, with an exceptional enhancement to

25 epochs. Training losses were quantified using a categorical cross-

entropy function, with validation losses decreasing from 0.5 to 0.01

after 25 epochs.

The performance of the Inception-V3 model is seen in

Figure 12 for both training and validation. We use categorical

entropy loss and the SGD optimizer, executing for 25 epochs.

During the training phase, the loss value diminishes from 0.7265

to 0.0076 until 25 epochs. The training accuracy is increasing

gradually from 0.4844 to 0.9992 epoch 2 to 25. While validation

accuracy improves from 0.8384 to 0.9779 throughout 25 epochs.

This illustrates the model’s capacity to learn and adjust according

to input data. From epoch 3 to epoch 25, the model’s performance

improved progressively, exhibiting enhanced accuracy and less loss.

Attaining a accuracy of 0.98 is a significant achievement.

Figure 13 illustrates the accuracy and loss performance of

VGG19. During training epochs 2 to 23, the model’s accuracy
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FIGURE 10

Confusion matrix of ResNet50 model.

FIGURE 11

Performance of ResNet50 model.
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FIGURE 12

Performance of Inception-V3 model.

FIGURE 13

Performance of VGG-19 model.

increases to above 0.9854; however, there is a significant decline

in accuracy from epochs 24–25. The validation accuracy

reaches a maximum of 0.97 in the latter epochs, namely at

epoch 25, demonstrating the model’s effective recognition

of the dataset’s intrinsic patterns. The model’s validation

accuracy on unfamiliar data increases from 0.7653 in the

opening epoch to an impressive 0.9728 at the conclusion of

the 25th epoch. The validation loss consistently decreased

throughout the preceding period, ultimately reaching a minimum

of 0.0947.

5 Discussion

Individuals with ASD have difficulties in social interaction,

communication, and conduct, as well as a variety of other

neurological issues. Timely identification is crucial for mitigating

the detrimental effects of this disease by implementing specialized

instruction in schools and rehabilitation facilities. The research

examined DL algorithms for the detection of autism spectrum

disorder, emphasizing its efficacy in differentiating between persons

with and without the condition. Current research primarily
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FIGURE 14

ROC of Inception-V3 model.

TABLE 8 Results of existing developing ASD systems with our results.

References Approach Used
datasets

Accuracy
(%)

Rashid and Shaker (25) Xception Same dataset 91

Alsaade and Alzahrani

(26)

Xception 91

Sridurga et al. (27) Xception 86

Rabbi et al. (28) CNN 92

Alkahtani et al. (18) MobileNetV2 92

Akter et al. (14) MobileNet-V1 90

Gaddala et al. (29) VGG16 & 19 84

Singh et al. (30) MobileNet 88

Ghazal et al. (31) AlexNet 87

Hosseini et al. (32) MobileNet 94.64

Elshoky et al. (15) ML 96

MobileNetV2 MobileNetV2 92

Proposed system 98

focuses on functional discoveries for categorization tasks, often

leading to decreased accuracy. Our suggested methodology

redirects attention to using structural information within facial

expression data. Utilizing DL approaches, namely Inception-V3,

and optimizing hyperparameters within this framework, we seek to

address the shortcomings of existing procedures while augmenting

generalization capacities and enhancing classification accuracy.

This motivation stems from the recognition of the underutilized

potential of facial expressions in children with ASD and typically

developing children, along with the conviction that harnessing this

information can lead to more effective classification models for

diverse neurological conditions, thereby advancing the field and

improving patient outcomes.

The potential threat we faced in this work is that data bias

may undermine themodel’s generalizability, especially if the dataset

lacks sufficient demographic diversity or exhibits class imbalance

between autistic and non-autistic images. We have employed the

augmentation method to address this issue, utilizing augmentation,

early stopping, and transfer learning regularization techniques

to mitigate overfitting. Including images from the same subject

or session in several data splits might cause dataset leakage.

This threat raises interpretability issues since it may be unclear

which image features the models prioritize in their decision-

making process. This pre-processing improved DL models, namely

ResNet50, Inception-V3, and VGG-19, and removed the threat,

achieving high accuracy. Finally, the DL models were examined by

using accuracy and confusion matrices.

This approach used the augmentation technique to enhance

the deep learning model for diagnosing ASD with outstanding

performance. Employing ResNet50, Inception-V3, and VGG-

19 models resulted in substantial improvements in diagnostic

accuracy, with an exceptional 98% accuracy in differentiating

between ASD and control subjects on the standard dataset. The

results of ResNet50 scored 96% in terms of accuracy, and VGG-

19 achieved an accuracy of 97%. The efficacy of this strategy is

further substantiated by criteria such as accuracy, underscoring its

potential to improve autism outcomes. The results have significant

implications for ASD diagnosis in clinical settings, enabling more

informed decisions, earlier identification and intervention, and
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FIGURE 15

Performance of proposed system compared with di�erent existing ASD systems.

improved outcomes for individuals and their families. Advanced

algorithms may optimize the diagnosis process, thereby decreasing

wait times and lowering the urgency on the healthcare system.

Additional study and validation on more extensive datasets are

required to comprehensively evaluate their therapeutic value

and effect.

The AUC, or area under the curve, signifies that a higher

AUC correlates with an increased probability of precise prediction.

Figure 14 illustrates the ROC curve of the optimal methodology.

The Inception-V3 model has superior accuracy and AUC of 99%

across all three methodologies.

Numerous studies have been conducted specifically in

diagnosing ASD based on the image expression of children. Most

authors used the same standard dataset, available on Kaggle,

which contains 2,940 images for applying different automatic

classification approaches to diagnose ASD based on facial images,

thereby enhancing accuracy. Prior studies indicate that suboptimal

image quality in the training dataset significantly affects the

accuracy of model results. One of the biggest challenges faced by

the researchers is that images of children’s faces frequently exhibit

noise, low resolution, misalignment, and various other issues.

Several researchers focus on optimizing models or hyperparameter

sets, yet they often fail to achieve significant improvements in

accuracy. Table 8 presents a comparison of the results from the

latest studies in this field. In our research, we have improved the

hyperparameters of the proposed DL model, and we have achieved

98% accuracy using the same dataset. Figure 15 compares our

system’s results with those of other approaches, highlighting the

superior accuracy of our proposed strategy.

6 Conclusion

Diagnosing at an early stage is essential for administering

successful treatment, particularly given the very low incidence

of autism in children. The DL algorithms were used for ASD

detection, often concentrating only on diagnosis.Moreover, current

systems may have difficulties in scaling efficiently due to belief

in manual and expertise-dependent procedures, impeding their

capacity to satisfy the growing demand for autism evaluation

and diagnosis. To tackle these issues, we have developed an

efficient DL model„ namely ResNet50, Inception-V3, and VGG-

19, implemented to predict and diagnose ASD. Pre-processing

techniques, including resizing, rescaling, and augmentation, were

used to enhance model performance, which may further elevate

accuracy. Our classifiers achieved exceptional accuracies of 96%,

98%, and 97% for ASD, expression prediction, respectively.

This illustrates their ability to precisely distinguish children’s

psychological states and facial expressions. We developed ASD

system-based DL model to assess children’s expressions and

diagnose ASD. This study has significant effects for real-time ASD

screening, potentially transforming the diagnosis process.
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Alzheimer’s disease (AD) is commonly defined by a progressive decline in

cognitive functions and memory. Early detection is crucial to mitigate the

devastating impacts of AD, which can significantly impair a person’s quality

of life. Traditional methods for diagnosing AD, while still in use, often involve

time-consuming processes that are prone to errors and ine�ciencies. These

manual techniques are limited in their ability to handle the vast amount of

data associated with the disease, leading to slower diagnosis and potential

misclassification. Advancements in artificial intelligence (AI), specifically machine

learning (ML) and deep learning (DL), o�er promising solutions to these

challenges. AI techniques can process large datasets with high accuracy,

significantly improving the speed and precision of AD detection. However,

despite these advancements, issues such as limited accuracy, computational

complexity, and the risk of overfitting still pose challenges in the field of AD

classification. To address these challenges, the proposed study integrates deep

learning architectures, particularly ResNet101 and long short-term memory

(LSTM) networks, to enhance both feature extraction and classification of AD.

The ResNet101 model is augmented with innovative layers such as the pattern

descriptor parsing operation (PDPO) and the detection convolutional kernel

layer (DCK), which are designed to extract the most relevant features from

datasets such as ADNI and OASIS. These features are then processed through

the LSTM model, which classifies individuals into categories such as cognitively

normal (CN), mild cognitive impairment (MCI), and Alzheimer’s disease (AD).

Another key aspect of the research is the use of generative adversarial networks

(GANs) to identify the progressive or non-progressive nature of AD. By employing

both a generator and a discriminator, the GAN model detects whether the AD

state is advancing. If the original and predicted classes align, AD is deemed

non-progressive; if they di�er, the disease is progressing. This innovative

approach provides a nuanced view of AD, which could lead to more precise

and personalized treatment plans. The numerical outcome obtained by the

proposed model for ADNI dataset is 0.9931, and for OASIS dataset, the accuracy

gained by the model is 0.9985. Ultimately, this research aims to o�er significant

contributions to the medical field, helping healthcare professionals diagnose AD

more accurately and e�ciently, thus improving patient outcomes. Furthermore,
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brain simulation models are integrated into this framework to provide deeper

insights into the underlying neural mechanisms of AD. These brain simulation

models help visualize and predict how AD may evolve in di�erent regions of the

brain, enhancing both diagnosis and treatment planning.

KEYWORDS

Alzheimer’s disease, ResNet101, long short term memory, generative adversarial

network, ADNI, OASIS dataset

1 Introduction

AD (Alzheimer’s disease) is one of the leading causes of

dementia universally (1, 2) and considered as one of the most

deadly diseases which needs to be taken under consideration with

utmost care. AD is characterized by a recurrent deterioration of

cognitive abilities in older people. Besides, AD is stated as an

irreversible neurological disorder which progressively impairs the

cognitive capability therefore, it is important to provide effective

treatments as early as possible with the aim to avoid life threatening

consequences. It was reported that, AD is expected to rise from 27

to 106 million cases (3) in the upcoming four decades, impacting

one in every 85 people on the planet. Another report suggested that

∼70% people are account of AD (4). As there is an evident rise of

AD in recent times, effective methods need to be implemented for

detection of AD in people; however, to treat AD, it is important

to identify the symptoms in the patients suffering with AD; thus,

some of the common symptoms of people suffering with AD are

memory loss, difficulty in speaking, loss of spontaneity, and many

more (5–7). Usually, people with AD can endure symptoms for

years; however, the severity of AD symptoms tends to worsen

progressively, gradually impairing an individual’s ability to perform

everyday activities independently. Since there is currently no

known cure for AD, nevertheless existing treatments aim to slow

down the disease’s advancement and delay the onset of its most

severe stage.

Typically, AD is classified into three stages such as mild,

moderate, and severe (8). Early stages of AD can perform

daily tasks independently, although they may struggle with

specific tasks (9) such as driving, individuals in early stage can

communicate socially and remember significant details. However,

as the disease progresses to the middle stage, symptoms become

more pronounced and the person may require greater care,

frustration, and difficulty with routine tasks (10, 11). In the

last stage, AD becomes the most challenging for managing as

individuals lose their ability to respond and communicate leading

to a significant decline in memory and cognitive skills (12, 13).

Therefore, it is extremely important to detect the symptoms as early

as possible with the aim to avert any impemending consequences

faced by the individuals. Hence, different manual techniques are

primarily used by the medical professionals for AD detection which

includes cognitive assessments and neurological examinations

where healthcare providers assess the functions and activities of

brain to detect any abnormalities which may be indicative of AD.

Furthermore, brain imaging techniques such as PET scans and

MRI are used for providing detailed images of the brain to medical

experts. Although these techniques offer various advantages, there

are certain drawbacks of employing manual techniques (13, 14)

such as time-consuming, subjectivity, and prone to error, which

require highly skilled medical professionals. Hence, to overcome

these drawbacks faced by manual approaches, AI-based techniques

are incorporated as AI-based models are fast and accurate and

can handle huge amount of complex data easily. Moreover, AI

models can detect any subtler changes in functioning of brain which

may not be easily detectable by human observers. Hence, various

existing research study focuses on employing AI-based ML and DL

models for the detection and classification of AI.

Dense neural network is used for binary classification of

Alzheimer’s disease by alleviating the problem of multiple

modalities and processes. A fully connected dense neural network

(FCNN) with two hidden layers (15) was used for performing

binary classification of AD. By applying FCNN model, the

accuracy gained by the model is 87.50%. Similarly, CNN-based

DL model (16) has used for AD classification using ADNI dataset.

In CNN model, different layers such as three convolutional

layer, max pooling layer, and fully connected layer are used

for classification. Existing study has considered classifying three

different classification of AD, which includes AD vs. NC, AD

vs. MCI, and MCI vs. NC. Approximately 450 MRI images were

used. Process carried out includes pre-processing the images

and classifying the obtained pre-processed images. Skull striping,

segmentation, registration, and outlining the ROI were some of

the pre-processing techniques used for pre-processing the images.

The accuracy obtained for three binary classification task with spike

pre-training technique was 90.15%, 87.30%, and 83.90%. However,

the accuracy obtained by three binary classification without spike

was 86%, 83%, and 76%. Therefore, the incorporation of ANN

for extracting the relevant features of AD helped in satisfactory

classification of AD (17).

Although the existing models deliver better performance in

terms of classification of AD, there are certain pitfalls which need

to be addressed. Thus, some of the drawbacks are low accuracies

projected by the model, overfitting of the model, empathizing only

on binary classification, computational complexity, and inability

to work with huge datasets. Thus, to overcome these drawbacks,

the proposed model utilizes ResNet101 with LSTM for feature

extraction and classification using ADNI and OASIS datasets.

The proposed ResNet101 model uses DKCL and PDPO layers to

extract relevant features needed for the proposed model. PDPO

is employed for assigning binary codes to pixels depending on

the comparison with neighboring pixels, by efficiently capturing

the local texture information and the DCK layer captures the

discriminative effectively by sliding a tiny filter over the input

image and computing element-wise multiplication between the
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FIGURE 1

Brain deterioration rate using GAN.

filter and overlapping regions of the input data. Implementation of

these proposed functions in the proposed ResNet101 model aids in

extracting relevant features needed for the model. Eventually, the

extracted features are passed to the LSTM model for classification

of Alzheimer’s disease as AD, CN, and MCI. In addition, the

proposed research focuses on employing the GAN model to find

whether Alzheimer’s disease is progressive or non-progressive in

nature by distinguishing the original class from the predicted class.

By doing so, the brain deterioration rate can be determined, and

this can assist the medical experts to offer a suitable diagnosis

to the patients. Thus, Figure 1 depicts the original and predicted

class gained using the GAN model, where if the original class and

predicted class are the same, it is denoted as non-progressive and if

it is different, then it is represented as progressive.

The major contributions of the proposed research study are

as follows:

• To extract relevant features for feature extraction using

the proposed ResNet101 using pattern descriptor parsing

operation layer and detection convolutional kernel layer and

to perform multiclass classification using the LSTMmodel for

classifying Alzheimer’s disease as CN, MCI, and AD.

• To determine the deterioration rate of the brain as progressive

and non-progressive using the proposed model.

• To assess the performance of the proposed model using

standard metrics such as accuracy, precision, recall, and F1

score as well as brain deterioration of patients.

The study is organized in the following way. Section 2

deals with existing studies done by research authors. Section 3

discusses proposed algorithms implemented for the classification

of AD, Section 4 reflects on the outcome obtained using proposed

methodology, and Section 5 summarizes the research study,

including future recommendations.

2 Literature review

The existing section reviews various existing studies on the

detection and classification of Alzheimer’s disease using AI-

based techniques.

Hybrid DL approach (18) has been used in the study for

early Alzheimer’s disease detection. Thus, multi-modal imaging

and CNN with LSTM algorithm have combined together for

identifying early MCI diseases, which remain challenging due to

the difficulty in discriminating patients with cognitive normality.

Better accuracy was obtained by the model for AD classification.

Despite the remarkable performance of the model, the limitation

of the model includes overfitting of data. Similarly, two different

NNs such as ResNet50 and AlexNet (19) were used for AD

detection and classification. The MRI images were collected from

Kaggle website, and CNN algorithm was employed using AlexNet

and ResNet50 TL models. Accuracy of the model obtained using

AlexNet was 94.53%, showcasing that DL model is better suited

for medical investigation such as AD detection and classification.

Similarly, 12-layer CNNmodel (20) has been used for AD detection

based on brain MRI images. 12-layer CNN model was used on

OASIS dataset in which sufficient accuracy has gained by the

model for AD classification. Furthermore, the model was compared

with other models such as InceptionV3, Xception, MobileNetV2,

and VGG19. Although the model has delivered better accuracy

for AD classification, the drawback of the model is that it

only focused on binary classification of Alzheimer’s disease on

OASIS dataset.

LSTM (21) has been used for precise diagnostic approach

for binary classification of AD. LSTM model was utilized for

classifying the MRI data and making accurate predictions for

the early detection of AD. Although the model has delivered

better performance for binary classification of AD, there are

certain drawbacks of the study which needs to be overcome

such as inability of the model to fully capture the complexity

and variety of the target population. This pitfalls ultimately

impact the generalizability and robustness of the model for AD

classification. Similarly, LSTM (22)-based RNN model has been

used for predicting the progression of the ADF patients from MCI

to AD. The objective of the study was to anticipate the development

of the illness. LSTM-based model has implemented for predicting

the biomarker values using ADNI dataset. The ADNI dataset

incorporated the positive biomarker of parents after every 6, 12,

18, 24, and 36 months from the standard. Eventually, the state of

progression was identified by using MLP model, where accuracy

of 88.24% is accomplished. This findings helped in improving

the early findings of AD. Similarly, 3D convolutional and LSTM

(ConvLSTM) (23) model has adopted for early diagnosis of AD

from full-resolution sMRI scans. Complete resolution of brain

images belonging to ADNI and OASIS dataset has been used, in

which the accuracy gained by the model is 86%, and F1 score and

sensitivity obtained by the model are 88% and 96%. Regardless of

the extensive performance of the model, accuracy attained by the

model is considerably low.

OASIS dataset (24) has incorporated for identification of

AD using DL and image processing approaches. CNN-based DL

model has implemented for AD classification, and the accuracy

obtained by the model is 93%. Despite its performance, limitation
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of the model showcases the usage of additional dataset such

as ADNI dataset for more comparative validation analysis and

tests the generalization of the study. As the model lacks in

terms of working with multiple dataset, the future work of

the study focuses on creating a bigger dataset combined from

different sources for increasing the variability of the input

samples of various target class for accomplishing better model in

terms of generalization and reliability of the model to new and

unseen data. Similarly, CNN-based MobileNet (25) model has

been used for multiclass classification of AD, where MobileNet

architecture used depthwise separable convolutions that reduced

the number of parameters when compared to conventional

convolutions and resulted in lightweight neural network. Although

the model has delivered better accuracy, different techniques such

as augmentation approaches are focused in the future for further

enhancing the accuracy of the model.

Two-stage DL model (26) has employed for integrating the

process of classification and regression to determine whether a

patient is suffering with MCI and then determining the probable

progression time. The first stage focused on detecting the patient

class using LSTM classification, and the second stage focused on

prediction using LSTM regression model. Furthermore, the model

was compared with existing ML models such as SVM, RF, LR,

KNN, DT Lasso, and Ridge, from which it was identified that

suggested LSTM model has delivered better outcome than existing

models. In spite of its result, the model lacks in interpreting

the decision in an effective way. Thus, the shortcoming of

the model includes explainability, accountability, and fairness

of the model. CNN-based DL approach (27) has implemented

in the study for AD classification, in which the process was

carried out by loading OASIS and MIRIAD dataset. Then, CNN

has employed for classifying the presence of AD. From the

analytical outcome, it was identified that accuracy obtained by

CNN model was 82%. Furthermore, sensitivity and specificity

gained by the model were 93 and 81%. An 8-layer CNN model

called CNN-BN-DO-DA has employed for (28) AD classification

in which batch normalization and dropout functions BN was

used for normalizing the inputs of the layer into mini-groups

in order to solve concerns related to incessant training change

and dropout function was utilized for lessening the problems

associated with overfitting an computational consumption. OASIS

dataset was used. The result of the study has indicated that

better techniques will be used in the future for speeding up

convergence rate and will be aided in improving the efficacy of

the model.

Like DL models, ML models are also used for detecting AD;

thus, methods such as DT, SVM, RF, voting classifiers, and gradient

boosting (29) were incorporated in the study for identifying

the best parameters for AD detection using OASIS dataset. It

was detected that accuracy gained by DT, RF, SVM, XGBoost,

and voting classifiers was 80.46%, 86.92%, 81.67%, 85.92%, and

85.12%. Although these ML techniques were focused on reducing

risks by detecting the disease in early stages, identifying relevant

attributes (feature extraction) for the model for AD detection is

still challenging task. Bias in ML is an issues which needs to

be resolved as quickly as possible; this study (30) has employed

Adaptive Synthetic Sampling (ADASYN) technique for improving

the accuracy and issues associated with bias. Therefore, feature

extraction battery (FEB) and SVMmodel were employed for feature

extraction and classification of AD. It was identified that SVM

model has aided in improving the accuracy by 6%. Although

the model has obtained better accuracy for AD prediction, ML

models along with meta-heuristic approaches were considered

in future for further enhancements in terms of improving the

prediction accuracy.

Conversely, as stated (31), has aimed to enhance AD

classification using MRI data by integrating advanced DL models

for early diagnosis and personalized treatment. The method

has combined an ensemble DL model with Soft-NMS-enhanced

Faster R-CNN for candidate merging, improved ResNet50 for

feature extraction, and Bi-GRU for processing sequence data.

Using MRI datasets, the model has achieved better classification

accuracy for AD vs. CN tasks, demonstrating its potential

for precise early diagnosis and intervention. Another study

(32) has employed CycleGAN for synthetic image generation

and Google Inceptionv3-based CNN for classification. It has

utilized CNNs trained on augmented datasets, achieving an F-

1 score of 89% with standard data and 95% with CycleGAN-

enhanced data augmentation. This approach has shown the

effectiveness of DL models and generative adversarial networks

in improving diagnostic accuracy for Alzheimer’s disease. The

author in Zhang et al. (33) has developed ADNet, based on

the VGG16 model. It has utilized 2D MRI slices, incorporating

depthwise separable convolution, ELU activation, and SE modules

for efficient feature extraction while simultaneously training on

auxiliary tasks such as clinical dementia and mental state score

regression. The findings have shown ADNet achieved a 4.18%

accuracy improvement for AD vs. CN classification and a 6%

improvement for MCI vs. CN classification compared to the

baseline VGG16 model, demonstrating its potential for early

diagnosis. Another study (34) has leveraged the ResNet50V2

DL model for AD classification using 6,400 MRI images

sourced from Kaggle, achieving a high accuracy of 96.18%. By

employing transfer learning, fine-tuning, and dynamic learning

rate adjustments, the model effectively discriminated AD stages,

which showcased its potential for real-world medical applications.

As illustrated (35), has introduced AlzhiNet, a hybrid DL

framework that combined 2D-CNN and 3D-CNN models with

custom loss functions and volumetric data augmentation for

AD diagnosis. It has been validated on MRI datasets, and it

has achieved remarkable accuracy and demonstrated robustness

against perturbations, outperforming standalone models and

ResNet-18 in real-world applications.

2.1 Gaps identified

A significant research gap exists in Alzheimer’s disease

classification using binary models, particularly when addressing

challenges associated with small datasets, time consumption,

scalability, and overfitting. Current approaches often rely

on large datasets to prevent overfitting and ensure robust

feature extraction, but neuroimaging studies typically involve

limited sample sizes, such as datasets with fewer than a

thousand participants or even fewer in some cases. This

scarcity leads to difficulties in training deep learning models
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effectively and exacerbates overfitting risks, especially when

high-dimensional data such as MRI scans are involved. In

addition, binary classification tasks require discriminative

feature selection from complex neuroimaging data, which is

computationally demanding and time-consuming. Scalability

remains a pressing issue as models optimized for small datasets

may not generalize well to larger or diverse populations. Thus,

overcoming these limitations requires innovative methodologies

that balance computational efficiency with the ability to extract

meaningful features from small datasets while mitigating

overfitting through advanced regularization techniques or

ensemble methods.

3 Proposed methodology

AD is considered one of the most deadly diseases in the world.

Hence, it is important to detect it as quickly as possible. Various

approaches are carried out by the research workers. However,

there are certain pitfalls of employing existing studies, such as

overfitting of the model, low accuracy, computational complexity,

and ineffective multiclass classification of AD. Hence, the proposed

model is used to overcome these limitations by using efficient

algorithms. Thus, the flow of the proposed research is depicted in

Figure 2.

Figure 2 depicts the process involved in the proposed research

study for multiclass classification of AD. The process is initiated

by loading the ADNI and OASIS datasets. Then, the images are

pre-processed using image resizing and image data normalization.

Image resizing refers to the process of varying the dimensions and

resolutions. Thus, resizing the images can aid in standardizing

the input data for further processing and analysis. In proposed

study, the image is resized in terms of 64 × 64. Image data

normalization involves scaling the pixel values to a common range

to improve the performance of the model within the range of

0–1. Normalizing image data assists in reducing the variations

in pixel intensity and enhances the ability of the model to learn

relevant features from the images. Owing to these factors, image

resizing and image data normalization are opted for pre-processing.

After pre-processing, pre-processed data are split as a train-test

split, where the ratio involved in the proposed research for the

train-test split is 80:20. After data split, the data are passed

onto the proposed ResNet101 and LSTM for feature extraction

and classification.

After pre-processing, the proposed ResNet101 is used for

feature extraction by employing DKCL and PDPO functions for

extracting relevant features. Then, LSTM is employed to classify the

images as CN, MCI, and AD accordingly. Eventually, the present

research study focuses on determining the deterioration rate of the

brain by using the GAN model. This GAN model shows if the

disease is in a progressive or non-progressive state by comparing

the original class and predicted class. If the original class and

predicted class are the same, then the CN is in a non-progressive

state. If the original class and predicted class are different, then CN

is progressing. Finally, the performance of the model is detected by

using evaluation metrics. Figure 2 showcases the architecture of the

proposed study.

3.1 Proposed ResNet101 and LSTM for
feature extraction and classification

After pre-processing, the pre-processed images are passed for

feature extraction. Feature extraction is used for extracting the

relevant features needed for the model. Thus, feature extraction

is considered to be one of the important steps for classifying

the images. By using a feature extraction mechanism, features

with noise and irrelevant details are removed and aid in focusing

on important aspects of the data. Furthermore, extracting and

selecting aids in enhancing the interpretability of the model.

Although there are various models for feature extraction, the

proposed model focuses on employing the ResNet101 model for

an effective feature extraction process, as the ResNet101 model is

a CNN technique which is 101 layers deep, allowing it to learn

rich and complex feature representation from images. This enables

the ability to capture the intricate patterns and features within

the images, making it suitable for extracting detailed and relevant

features. Similarly, ResNet101 uses skip connections, which helps

to mitigate the vanishing gradient issue and enables a swift feature

extraction process. Similarly, the ResNet101 model possesses the

potential to extract high-level features due to its depth and training

on a diverse dataset. Owing to these factors, ResNet101 is used.

Although conventional ResNet101 offers various advantages

for feature extraction, certain pitfalls need to be overcome,

which include the complexity of the model making it more

computational and resource-intensive. This aspect of themodel can

lead to longer training times. Similarly, conventional ResNet101

is also susceptible to overfitting the model and interpretability

of the model, making it a challenging factor for feature

extraction. Thus, to overcome these drawbacks, the proposed

model emphasizes using an enhanced ResNet101 model which

utilizes pattern descriptor parsing operation layer function and

detection convolutional kernel layer function. Hence, the proposed

ResNet101 model is depicted in Figure 3.

Figure 3 showcases the process involved in the proposed

ResNet101 for feature extraction. This process is carried out by

sending the pre-processed features to the input layer. From the

input layer, the data are forwarded to the convolutional layer. CL

is considered the building block utilized for the FE process. CL

encompasses a series of convolutional filters that scan input images

to extract the edges, textures, and shapes. However, to enhance the

ability of the feature extraction function, the PDPO layer and DCK

layer are used. PDPO is employed for assigning binary codes to

pixels depending on the comparison with neighboring pixels, by

efficiently capturing the local texture information. Furthermore, the

PDPO layer enhances the ability by considering the relationships

of pixels at varying distances from the center pixels, enabling the

capture of texture variations at different scales.

Therefore, PDPO layer is designed to enhance feature

extraction by capturing local texture information through a binary

coding mechanism. In this layer, each pixel in the input image

matrix is compared with its neighboring pixels within a defined

neighborhood, such as a 3× 33× 3 grid. For each central pixel, the

layer assigns a binary code based on whether it is greater than or

less than its surrounding neighbors. This process emphasizes local

texture variations, allowing the model to capture subtle details that
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FIGURE 2

Overall flow of the model.

FIGURE 3

Proposed ResNet101.

are critical for tasks such as Alzheimer’s disease classification. The

size of the neighborhood can be adjusted to enhance sensitivity to

local features, and an optional threshold can be applied to refine

the binary coding. The resulting binary feature map retains the

spatial structure of the input image while reducing dimensionality,

making subsequent processing more efficient. Unlike traditional

convolutional layers that aggregate features over larger areas,

the PDPO layer focuses on local pixel relationships, thereby

improving the model’s sensitivity to texture variations that might

be overlooked by standard methods. Here, Equation (1) shows the

process involved in PDPO.

C(a, b) = (U ∗ V)(a, b) =
∑

r

∑
s
U(a+ r.b+ s)V(r, s) (1)

where U is represented as input matrix image, C is denoted

as an output feature map, and V is represented as the size of the

filter. a, b denotes the enhanced input image, r is represented as

neighboring pixel, and s is represented as center pixel. This input

U is convolved with filter V and generates feature map C. Thus,

the convolutional operation is denoted by U∗V . Therefore, the

convolution operation U∗V involves multiplying corresponding

elements of the filter V with overlapping regions of the input

matrix U, followed by summing these products to produce a

single value for each position in the output feature map C. This

operation enables the PDPO layer to extract binary-coded features

that highlight subtle texture variations critical for tasks such as

Alzheimer’s disease classification.

Like PDPO, DCK layer is implemented at CL for extracting the

hierarchical features from the input images. The proposed DCK

layer captures the discriminative effectively by sliding a tiny filer

over the input image and compute element-wise multiplication

between the filter and overlapping regions of the input data. This

operation results in a single scalar value, which represents a feature

of the input data. Therefore, DCK function predominantly aids

the proposed ResNet101 model to extract hierarchal features and

prevents the model from getting overfitting. Equation (2) depicts

the same.

PDPOLP,R (as) =

r−1∑

r=0

µ (ar − as) 2
p (2)

where R is defined as the radius and distance of neighboring

pixels from the center pixel. This defines the spatial extent of

the neighborhood used for comparison, influencing sensitivity

to local features; similarly, P is denoted as the number of

neighboring pixels. Then, the hierarchal features are passed to batch

normalization. Batch normalization is typically utilized after CL

to improve training and generalization of the model by solving

the internal covariance shift problem. The output from the batch

normalization process is passed to the max pooling layer, which

reduces the spatial dimensions of feature maps without distressing
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depth by introducing the translation invariance and reducing

the number of learnable parameters in the succeeding layers.

Eventually, the flattening layer transforms the output feature maps

of the pooling layer into the 1D vector. By doing so, it helps in

improving computational efficiency. Finally, the extracted features

obtained are passed to the LSTM model for the classification of

images as CN, MCI, and AD.

The classification is proceeded by using LSTM approach, as

the LSTM model can handle complex and non-linear relationships

in data, making it suitable for Alzheimer’s disease classification,

where the relationships between the pixels are highly intricate.

Furthermore, the LSTM model is highly flexible and can be easily

adapted to different input images, making the model effective for

Alzheimer’s disease classification.

Here, the integration of the LSTM model with ResNet101

is designed to harness the strengths of both architectures for

improved feature extraction and temporal processing. In this

approach, features are first extracted from the input images

using the proposed ResNet101 model, with proposed PDPO

and DCKL layer that capture spatial hierarchies and complex

patterns. After passing through the ResNet101 architecture, the

output feature maps are typically flattened to reduce their

dimensionality, resulting in a fixed-length feature vector for each

image. This feature vector is then prepared for input into the LSTM

classification model.

To facilitate this integration, the feature vectors are organized

sequentially, reflecting the temporal order of the input data,

such as a series of images in a video or a sequence of frames.

The LSTM is configured with specific parameters, including

the number of hidden layers, the number of units in each

layer, and dropout rates to prevent overfitting. Typically, the

LSTM may have one or more layers with a varying number

of units, depending on the complexity of the task. The

output from the LSTM can be further processed to produce

predictions or classifications based on the learned temporal

dependencies in the data. This integration allows the model

to capture both spatial features from the ResNet101 and

temporal relationships through the LSTM, enhancing the overall

performance in tasks such as Alzheimer’s disease classification.

Therefore, Figure 4 illustrates the architecture of LSTM model

for classification.

In Figure 4, ft is denoted as a forget gate, σ is signified

as sigmoid function, it and ot are denoted as the input gate

and output gate, Ct is denoted as candidate gate, and t −

1 is represented as cell state. Employment of LSTM model

aids effectively for the classification of Alzheimer’s disease.

The forget gate implemented in the model is depicted in

Equation (3).

f gt = sig(wght[int,actt−1,Ct−1])+ bif (3)

In the above equation, actt−1 is denoted as output of

the preceding block, bias vector is characterized as bf , input

sequence is denoted by using in, Ct−1 is represented as the

previous memory block of the LSTM, sig is denoted as the

sigmoid function, and separate weight vectors for each input

are represented using wght. Input gate is a section, where a

new memory is generated by using a trivial neural network

with tanh activation function and this is depicted Equations (4)

and (5).

it = sig(wght[int,actt−1,Ct−1])+ bii (4)

Ct = ft .Ct−1 + it tanh[int,actt−1,Ct−1])+ bic (5)

Output gate is the section, where output generated by the

current LSTM block is generated by using output gate and these

outputs are estimated using Equations (6) and (7).

sigt = sig(W[int,actt−1,Ct])+ bo (6)

actt = ot . tanh(Ct) (7)

Thus, the connection between the units of LSTM permits the

information to cycle between adjacent time steps.

3.2 Determination of brain deterioration
rate using GAN model

The GAN model plays a critical role in determining disease

progression by generating synthetic images that simulate various

stages of the disease. Once the GAN is trained, it generates images

that represent both progressive and non-progressive cases. The

training process involves two components: the generator, which

creates synthetic images, and the discriminator, which evaluates the

authenticity of these images by comparing them to real images from

the dataset. In this workflow, the GAN is trained using a specific

loss function, a combination of adversarial loss and additional

metrics that quantify the differences between the generated and

real images. The adversarial loss encourages the generator to

produce images that are indistinguishable from real images, while

the discriminator’s loss focuses on correctly classifying real vs.

generated images. A common choice for the loss function in GANs

is the binary cross-entropy loss, which measures the performance

of the discriminator in distinguishing real images from fake ones.

After training, the model is tested using images generated

by the GAN. By analyzing the characteristics of these synthetic

images in comparison with the original images, the model can

identify patterns indicative of disease progression. This approach

allows for a nuanced understanding of the disease’s trajectory as

the GAN-generated images can reflect subtle changes that may

not be easily observable in the original dataset. The ability to

compare these generated images with actual clinical cases enhances

the model’s capacity to distinguish between progressive and

non-progressive cases, ultimately contributing to more accurate

predictions regarding disease progression.

Thus, GAN model is used in the proposed model for analyzing

and predicting the progression of Alzheimer’s disease based on
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FIGURE 4

LSTM model.

FIGURE 5

GAN model.

original class and predicted class by generating new images based

on the patient’s image data. Once trained, the GAN model

can generate synthetic data which represent different stages of

Alzheimer’s disease progression. Therefore, by comparing the

original class with the predicted class, the progression of AD can

be identified. Here, both the generator and discriminator were

optimized using the Adam optimizer with a learning rate of 0.0002

and a beta1 value of 0.5. This choice of optimizer helps in achieving

faster convergence and stability during training. The training

process involved alternating updates between the generator and

discriminator, ensuring that each model learns effectively from the

other’s performance.

Thus, the process carried out by the GAN model for

determining brain deterioration rate is depicted in Figure 5.

Initially, the model was trained with accuracy of 99%. In

general, a GAN model comprises a generator and a discriminator

where the generator network in the GAN model generates the

synthetic data samples and the discriminator network evaluates
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TABLE 1 Brain deterioration rate.

Original
image class

Predicted
class

Brain deterioration
rate

CN CN Brain not deteriorated

CN MCI Brain deteriorated

CN AD Brain deteriorated

MCI AD Brain deteriorated

the generated samples of data and the original data samples to

distinguish between progressive and non-progressive classes. In the

GAN model, the generator generates an image from the original

class, whereas the discriminator generates other images from the

dataset. If the image generated by the discriminator is progressive,

such as CN, MCI, and AD, then the disease is identified to be

progressive. If not the disease, it is identified to be non-progressive.

If the original class is CN and the predicted class obtained by

the proposed model is AD, it is noted that the brain deterioration

rate is in the progressive state as the original class is CN,

whereas the predicted class appears to be in progressive nature

by predicting AD. Conversely, if the original class is MCI and

the predicted class is MCI as well, then there is no progression

in terms of brain deterioration rate. Eventually, the GAN model

utilizes a loss function for measuring the difference between

ground truth labels and predicted classes. This loss function guides

the training process for minimizing the errors in classifying the

progressive and non-progressive nature precisely. The advantages

of employing the GAN model in the proposed framework include

the following:

• Detection of progressive and non-progressive

Alzheimer’s disease.

• Identification of brain deterioration rate can help in

preventing adverse consequences.

Therefore, Table 1 shows the outcome obtained by GANmodel

for brain deterioration rate.

Table 1 shows the brain deterioration rate. Here, it was

projected that there is brain deterioration when the original image

class and predicted class are the same. That is, when the original

class is CN and the predicted class is CN, it means that the brain

is not deteriorated. However, if the original class and reduced

class are different, it is depicted that the brain is deteriorated.

Therefore, the GANmodel is used for detecting brain deterioration

rates.

The subsequent section deals with the results obtained using

the proposed model by assessing the efficacy of the proposed

framework using metrics such as accuracy, recall, F1 score, and

precision value.

4 Result and discussion

Result and discussion section primarily involves depicting

the outcome of the proposed model post-deployment for the

classification of Alzheimer’s disease as CN, MCI, and AD. Hence,

TABLE 2 Sample patient ID for ADNI.

Sample patient ID MRI count

132_S_0339 3

035_S_6947 3

130_S_6319 3

023_S_0331 3

132_S_0339 3

035_S_6947 3

130_S_6319 3

023_S_0331 3

023_S_0030 3

128_S_0216 5

116_S_6624 5

127_S_0260 5

041_S_0282 5

127_S_0397 6

subsequent section discusses about metrics involved, EDA, and

performance analysis of the model.

4.1 Dataset description

The proposed study utilizes two different datasets for AD

multiclass classification such as ADNI (Alzheimer’s disease

neuroimaging initiative dataset) and OASIS dataset.

4.1.1 Creation and collection of data
The dataset is created by gathering subject information and

image information, in which the subject information consists of

subject ID, research group, age, research group, weight (in Kg),

and other aspects. Similarly, in image information, parameters

such as modality (DTI, MRI, PET, Path, and fMRI), image

description, image ID, weighting, slice thickness, and acquisition

plane are considered.

4.1.1.1 ADNI dataset

The clinical dataset comprises of detailed clinical information

from each subject which includes extensive patient measurements

such as MRI data. It encompasses data from North America male

and female individuals, with a total of 502 attributes collected from

1737 participants. Specifically, the dataset includes data from 1453

male patients and 1074 female patients. Table 2 shows the sample

patient ID with MRI counts.

Table 2 depicts MRI count taken by different patients along

with patient ID. Patient ID with 132_S_0339 has taken MRI count

of 3, ID with 130_S_6319 has taken MRI count of 3, and 5

numbers of MRI have been taken by patient ID with 116_S_6624,

128_S_0216, 127_S_0260, and 041_S_0282. Similarly, 6 MRI has

been taken by patient with ID 127_S_0397.
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TABLE 3 MRI count and patient count for ADNI.

ADNI MRI MRI count Patient count

4 12

3 92

5 4

6 1

14 1

12 2

Similarly, Table 3 depicts samples of patients who has taken

MRI. Here, 92 patients have taken 3 MRIs, 12 patients have taken 4

MRI, 4 patients have taken 5 MRI, and so.

4.1.1.2 OASIS dataset

The dataset provides neuroimaging and related clinical data,

encompassing neuroimaging data across the genetic spectrum,

and cognitive and demographic factors for researchers studying

Alzheimer’s disease. Specifically, data from 1,317 male patients and

1,911 female patients have been collected for research purpose.

4.2 Performance metrics

4.2.1 Accuracy
The accuracy is claimed as the calculation of total accurate

classification. The accuracy range is premeditated by using

Equation (8),

Acc =
TN + TP

TN + FN + TP + FP
(8)

where TN is represented as true negative, and FN is represented

as false negative; similarly, true positive and false positive are

denoted by using TP and FP.

4.2.2 Precision
The precision is considered by determining the accurate

classification count. It is calculated through indecorous

classification. The precision is estimated by using Equation (9),

precision =
TP

FP + TP
(9)

4.2.3 F-measure
The F1 score is represented as the weighted harmonic-mean

value of precision and value of recall, and Equation (10) is defined

as the formula employed for determining F1-Score,

F1 − score = 2 ×
R× P

R+ P
(10)

where P is denoted as precision, and R is denoted as recall.

TABLE 4 System configuration.

Techniques Tools and requirements

MRI image data MRI datasets(brain)

Hardware requirements •Adequate computational

properties: CPU and GPU.

Software requirements •Image processing libraries and

frameworks such as OpenCV

(Open Source Computer Vision

Library) and Tensor Flow.

•Python or other

programming languages

Visualization tools Matplotlib visualization of

volumetric medical images.

Data pre-processing tools •DICOM (Digital Imaging and

Communications in Medicine)

format conversion python code.

•Image registration and

normalization software

4.2.4 Recall
The recall is indicated as the reclusive of the production metric

that assesses the total of correct positive categories made out of all

the optimistic classes. Equation (11) shows the mathematical model

for recall,

Recall =
TP

FN + TP
(11)

4.3 System configuration

Experimental setup including hardware and software

requirements for implementing proposed methodology is depicted

in Table 4.

4.4 EDA

EDA plays a crucial role in comprehending the insights,

characteristics, and patterns of the data in the dataset. Therefore,

EDA for Alzheimer’s disease uncovers significant relationships and

trends in terms of biomarkers, risk factors, and patterns which may

contribute toward the progression, diagnosis, and treatment of the

disease. Moreover, EDA also aids in detecting data quality issues,

missing values, and outliers to ensure the reliability and accuracy of

the model. Thus, Figures 6, 7 show the MRI scans of ADNI dataset

and OASIS dataset.

Thus, MRI scans of ADNI dataset and OASIS dataset are

illustrated in Figures 6, 7 from different angles. Similarly, heatmap

for ADNI and OASIS dataset is depicted in Figures 8, 9.

Heatmap is used for exploring the datasets and aids in detecting

the patterns and trends with varying colors. This heatmap assists in

highlighting the area of outliers or concentration. Each ROI can be

denoted by a heatmap, showing the variations in intensity which

corresponds to different measurement. Thus, Figure 8 showcases

the heatmap of ADNI dataset, and Figure 9 demonstrates heatmap

of OASIS dataset.
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FIGURE 6

MRI of ADNI.

4.5 Performance analysis

The performance of the proposed model is depicted in the

subsequent section, where the performance of themodel is analyzed

using different metrics such as model accuracy, model loss, and

confusion matrix for both the ADNI and Oasis datasets.

Model accuracy for ADNI and OASIS datasets using the

proposed model is portrayed in Figures 10, 11. Model accuracy

graph is defined as the visual representation of how the accuracy

of the model changes over time or epochs during the training

process. X-axis denotes the number of epochs, and Y-axis denotes

the accuracy of the model. Thus, Figures 10, 11 show the model

accuracy graph for the ADNI and OASIS datasets.

The model accuracy for the ADNI dataset is depicted in

Figure 10, in which the blue line represents the training accuracy

and the orange line represents the validation accuracy. Training

accuracy refers to the accuracy of the model on the training

dataset during the training process. This indicates the ability of the

model to predict the correct output for the data it was trained on.

Validation accuracy denotes the accuracy of themodel on a separate

validation dataset for evaluating the model, on how well the model

generalizes to unseen and new data. In figures, training accuracy

is more than validation accuracy. This showcases that the model is

learning patterns present in the training data effectively. Similarly,

model loss for ADNI and OASIS is portrayed in Figures 10, 11.

Model loss using ADNI dataset and OASIS dataset is

demonstrated in Figures 12, 13. Model loss refers how well the

proposed model performs during training. In model loss, training

and validation losses are examined, where training loss is denoted

as the error between the actual or predicted output on the training
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FIGURE 7

MRI of OASIS.

dataset. The primary objective is to minimize the training loss by

optimizing the parameter of the model. Similarly, validation loss

is the differences between actual or predicted output on a separate

validation dataset which was utilized during training process. From

figures, it can be clearly observed that both validation and training

losses decrease when model goes through multiple epochs of

training. This showcases that proposed model is learning to make

better predictions.

Like model accuracy and model loss, confusion matrix

is an important assessing the performance of the proposed

framework for multiclass classification of Alzheimer’s disease.

Confusion matrix displays number of correct classifications and

misclassifications by the model compared to the actual outcomes

in the dataset. In addition, row in the matrix denotes the actual

class labels and column in the matrix denotes the predicted class

labels. Hence, confusion matrix for ADNI dataset is denoted

in Figure 14.

In Figure 14, confusion matrix for ADNI is depicted. Here,

the correct classifications and misclassifications are represented

in which misclassification is denoted in black color and correct

classification for AD, CN, and MCI is depicted, where AD form

comprises of higher correct predictions, in which the correct
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FIGURE 8

Heatmap for ADNI dataset.

FIGURE 9

Heatmap for OASIS dataset.

predictions for AD is 132, CN is 96, and MCI is 151. Similarly,

confusion matrix for OASIS is illustrated in Figure 15.

Here, the confusion matrix for proposed model using

OASIS is depicted in Figure 15, where correct classifications and

misclassifications are represented. The correct classification for AD

is 274, CN is 206, andMCI is 151. Therefore, from the experimental

results, it can be observed that proposed model is capable of

producing effective outcome which is essential for classification

of Alzheimer’s disease. Like confusion matrix, other metrics are

also used for gauging the efficacy of the proposed study, which

includes accuracy of the model, precision, F1 score, and recall

rate. Therefore, Table 5 showcases the metric value obtained by the

proposed study.

Table 5 depicts the metrics obtained by the proposed study for

both ADNI and OASIS datasets. Here, the proposed model using

ADNI dataset obtains accuracy of 0.9932%, precision of 0.99%,
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FIGURE 10

Model accuracy for ADNI.

FIGURE 11

Model accuracy for OASIS.

recall rate of 0.99%, and F1 score of 0.99%. Similarly, proposed

model using OASIS dataset obtains accuracy value of 0.9985%,

precision value of 0.99%, recall rate of 0.99%, and F1 score of 0.99%.

The graphical representation of Table is portrayed in Figure 16.

4.6 Statistical analysis

Statistical outcome using proposed model is demonstrated in

the Table 6.

The provided statistical values of t-statistic of 34.4585, p-value

of 5.9389e-33, and Cohen’s d of 11.9870 indicate an exceptionally

strong effect size and highly significant results in the context of

Alzheimer’s disease classification. The t-statistic reflects a robust

difference between groups, while the p-value confirms that this

difference is extremely unlikely to be due to chance, surpassing

conventional thresholds for statistical significance. Cohen’s d,

FIGURE 12

Model loss for ADNI.

FIGURE 13

Model loss for OASIS.

representing the effect size, indicates an extraordinarily large

magnitude of difference between the compared groups, which

is rare in clinical studies. Such values imply that the tested

variable or method has a profound ability to distinguish between

classifications, such as Alzheimer’s disease vs. normal controls

or other subgroups such as mild cognitive impairment (MCI).

This level of statistical evidence strongly supports the reliability

and clinical applicability of the classification approach, potentially

aiding in early diagnosis or targeted intervention strategies for

Alzheimer’s disease.

Although the proposed model has delivered better outcome for

classification of Alzheimer’s disease, it is important to compare the

proposed study with existing models; however, the dataset used in

the model is a real time dataset; thus, external comparison is not

feasible due to the implementation of real time data. However, from

the analytical outcome, it can be identified that proposed study has

delivered better outcome for multiclass classification of AD.
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FIGURE 14

Confusion matrix for ADNI.

FIGURE 15

Confusion matrix for OASIS.

5 Discussion

Existing study has used Deep-CNN model for classification of

AD. The model is fine-tuned to identify the subtle patterns and

anomalies within the scans linked to AD. However, the finding

obtained by the Deep-CNN is 96.64% of accuracy (36). Similarly,

2D and 3D CNN models (37) are explored in the study for

AD classification. However, the accuracy outcome obtained by
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2D-CNN model was 91.29% and 3D-CNN model was 91.07%.

Moreover, classification of AD is carried out in the study based

on ConvNets (38) using MRI images. However, the accuracy

rates of classifications have reached up to 97.65% for AD/MCI

and 88.37% for MCI/normal control. In addition, CNN is based

on DenseNet Bottleneck-Compressed architecture (39) for AD

diagnosis using MR images. The proposed model classified the

input into five different categories, namely, CN, EMCI, MCI,

LMCI, and AD, with an average accuracy of 86%. Thus, when

compared to all these models, the accuracy obtained by the

proposed framework is superior and effective as it gained 99.32%

for ADNI dataset and 99.85% for OASIS dataset. This is due to

the implementation of proposed ResNet for feature extraction and

LSTM for classification.

6 Conclusion

The proposed research study delivered proficient results

for the multiclass classification of AD as CN, MCI, and

AD. Better performance was obtained for AD classification

primarily due to the incorporation of effective AI approaches

such as ResNet101 and LSTM. The proposed ResNet101 model

used DKCL and PDPO layer for extracting relevant features

needed for the proposed model. PDPO was employed to assign

binary codes to pixels depending on the comparison with

neighboring pixels, by efficiently capturing the local texture

TABLE 5 Performance metrics.

MRI
images

Accuracy Precision Recall F1-
score

ADNI 0.9932 0.99 0.99 0.99

OASIS 0.9985 0.99 0.99 0.99

information, and the DCK layer captured the discriminative

effectively by sliding a tiny filter over the input image and

computing element-wise multiplication between the filter and

overlapping regions of the input data. Implementation of these

proposed functions in the proposed ResNet101 model aided in

extracting relevant features needed for the model. Eventually,

the extracted features were passed to the LSTM model for the

classification of Alzheimer’s disease as CN, MCI, and AD. In

addition, the proposed research focused on employing the GAN

model to find whether Alzheimer’s disease is progressive or

non-progressive by distinguishing the original class from the

predicted class. Incorporation of the proposed model delivered

a better accuracy rate of 0.9932 and 0.9985 for both ADNI and

OASIS datasets.

In the future, different DL-based algorithms can be used

for more advanced AD prediction. Employment of the GAN

model is considered to be one of the major highlights of the

proposed research study. However, this can be further developed

in future study in terms of detecting brain deterioration rates

for various classes. In addition, the integration of multi-

modal data sources such as MEI, PET scans, and clinical

biomarkers can be explored to assess the model’s performance

over time and to improve predictive accuracy. Thus, the

combination of GANs and multi-modal data integration

could pave the way for more sophisticated and accurate

tools for early detection, prognosis, and management of

Alzheimer’s disease.

TABLE 6 Statistical table.

Test Values

t-statistic 34.4585

p-value 5.9389e-33

Cohen’s d 11.9870

FIGURE 16

Graphical representation.
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The early and accurate diagnosis of Alzheimer’s Disease and Frontotemporal

Dementia remains a critical challenge, particularly with traditional machine

learning models which often fail to provide transparency in their predictions,

reducing user confidence and treatment e�ectiveness. To address these

limitations, this paper introduces an explainable and lightweight deep learning

framework comprising temporal convolutional networks and long short-term

memory networks that e�ciently classifies Frontotemporal dementia (FTD),

Alzheimer’s Disease (AD), and healthy controls using electroencephalogram

(EEG) data. Feature engineering has been conducted using modified Relative

Band Power (RBP) analysis, leveraging six EEG frequency bands extracted

through power spectrum density (PSD) calculations. The model achieves high

classification accuracies of 99.7% for binary tasks and 80.34% for multi-class

classification. Furthermore, to enhance the transparency and interpretability

of the framework, SHAP (SHapley Additive exPlanations) has been utilized

as an explainable artificial intelligence technique that provides insights into

feature contributions.

KEYWORDS

explainable AI, XAI, Alzheimer’s disease, temporal convolutional networks, long short-

term memory, frontotemporal dementia, EEG, mental disorders

1 Introduction

Frontotemporal dementia (FTD) (1) and Alzheimer’s disease (2) (AD) are two most

prevalent forms of dementia, primarily affecting individuals over 40 years of age. The

global prevalence of dementia is expected to reach more than 130 million cases by 2050

(3). The rise in cases related to these diseases have significantly strained healthcare systems

around the world, necessitating an urgent need for accurate and early diagnostic methods.

The diagnosis of (FTD) and AD relies on the methodologies, such as neuropsychological
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evaluations (4), biomarkers analysis (5), established clinical criteria

(6), and magnetic resonance imaging (MRI) (7). But the time

requirements, need for expert interpretation, limit the practicality

of advanced neuroimaging tools, and the high cost. Therefore,

there is a critical need for early and accurate diagnosis, there is

an indispensable need for improved detection methods. Timely

diagnosis is critical, as early intervention can help slow disease

progression and enhance patients’ quality of life.

Electroencephalograms (EEG) offer features such as high

temporal resolution, lower cost, and real-time monitoring, which

make them valuable for dementia diagnosis. EEG signals in

conjunction with machine learning, hold tremendous potential to

be an effective non-invasive method to detect and monitor (FTD)

and AD (8). However, extracting features from EEG is a crucial

task, and although various methods have been proposed in research

(9, 10), many of them have not achieved high accuracies with

deep learning and machine learning models. Therefore, novel and

tailored approaches are needed to extract high-quality data from

EEG for improved analysis and diagnosis based on deep learning.

Deep learning (DL) models have shown significant potential

in classifying EEG data, offering improved accuracy and efficiency

in analysis. However, there is a need for lightweight models

to optimize data processing and develop a high-performing

model that is time-efficient, and computationally less loaded.

In addition, most ML and DL models function as “black

boxes,” providing outputs without transparency, which limits their

acceptance, especially in sensitive fields like healthcare. Explainable

Artificial Intelligence (XAI) offers a solution by revealing what

the models learn during training and how decisions are made

during prediction, making the results more understandable

and interpretable. The core contributions of this research are

given below.

• This research introduces an EEG-based feature extraction

approach using modified Relative Band Power (RBP) analysis

for feature engineering and proposes a lightweight hybrid

deep learning classifier for accurate and robust classification

of frontotemporal dementia, Alzheimer’s disease, and health.

• SHAP (SHapley Additive Explanations), an explainable

artificial intelligence technique has been integrated into the

model to provide deeper insights into feature contributions,

increasing interpretability, transparency, and prediction

reliability for mental disorder diagnosis.

This is how the rest of the article is organized. Related work is

covered in Section 2, and methodology is covered in Section 3. Our

research findings are shown in Section 4, and explainable artificial

intelligence is covered in Section 5. Section 6 concludes with a

summary of our findings and recommendations for future research.

2 Related work

Recent studies have focused on enhancing the Alzheimer’s

disease detection with advanced machine learning methods. To

solve supervised AD detection using EEG data analysis, machine,

and deep learning-based systems have gained popularity (11–13).

The study (14) used a public EEG signal dataset that included

recordings from 12 Alzheimer’s disease patients and 11 healthy

controls. A directed graph approach was applied for local texture

feature extraction, resulting in 448 low-level features per EEG

signal. This was further enhanced by combining it with a tunable

q-factor wavelet transform, resulting in a total of 8,512 features per

signal input. The accuracy of the model was 92.01% with leave-

one-subject-out (LOSO) cross-validation and 100% with 10fold

cross-validation.

Moreover, six supervised machine-learning approaches were

used in this work (15) to categorize processed EEG data from

patients with FTD and AD. Different techniques for processing and

analyzing EEG signals were applied to identify relevant features.The

accuracy of the decision tree machine learning model was 78.5%,

while the random forest model attained an accuracy of 86.3% in

diagnosing FTD. This study (16) proposes a convolutional neural

network-based model called STEADYNet, which achieves high

performance with 98.24% accuracy in dementia detection using

multichannel spatiotemporal EEG signals.

Another study (17) proposes a CNN-based model utilizing

the Forward-Backward Fourier Transform (FBFT) to enhance

EEG signal visualization for brain disorder classification. The

model achieves 85.1% for murmur, 99.82% accuracy for epilepsy,

100% for mental stress, and 95.91% for Alzheimer’s disease (AD).

Additionally, the eye-naked classification approach attains 78.6%,

71.9%, 82.7%, and 91.0% accuracy for epilepsy, AD, murmur, and

mental stress, respectively.

In addition, a study (18) offers a “dual-input convolution

encoder network” as a unique method for classifying AD.

Denoising and the extraction of band power and coherence

characteristics from the EEG data were important feature

engineering approaches. With an accuracy of 83.28% in

differentiating AD patients from healthy controls, the presented

model combines convolutional layers with transformer

architecture, and feed-forward module and proves its efficacy

in collecting intricate EEG features.

3 Methodology

3.1 Data collection

The dataset (8) consists of EEG recordings from 88 subjects (36

Alzheimer’s disease, 29 healthy and 23 frontotemporal dementia)

obtained at the 2nd Neurology Department of AHEPA General

University Hospital, and data statistics as shown in Figure 1.

EEG signals were captured using 19 electrodes while participants

remained seated with their eyes closed. The data was initially

filtered at 0.5–60 Hz and sampled at 500 Hz.

3.2 Data preprocessing

To enhance the quality of the electroencephalogram (EEG)

signals and remove unwanted artifacts, a systematic pre-processing

technique has been applied. Initially, a Butterworth bandpass filter

with a frequency range of 0.5 Hz to 45 Hz was used to retain
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FIGURE 1

Statistical overview of the dataset.

relevant neural activity while eliminating low-frequency drifts

and high-frequency noise. Next, Artifact Subspace Reconstruction

(ASR) was implemented to identify and correct signal distortions.

ASR detects artifacts by measuring the standard deviation of

signal segments within a 0.5-s window. Segments exceeding a

deviation threshold of 17 were reconstructed to suppress transient

artifacts while preserving the integrity of neural activity. After the

artifact correction, Independent Component Analysis (ICA) was

performed using the RunICA algorithm. This process decomposed

the 19-channel EEG signals into independent components, as

illustrated in Figure 2. The independent components were then

analyzed using EEGLAB’s ICLabel tool, which automatically

classifies components based on their source characteristics.

Components identified as “eye artifacts” or “jaw artifacts” were

removed to ensure that only neural activity remained in the

processed signals. Although EEG signals were recorded in a closed-

eye resting state, some residual eye movement artifacts were

still present. The implemented pre-processing steps effectively

mitigated these unwanted influences, ensuring cleaner EEG signals

for subsequent analysis.

3.3 Feature engineering

In EEG classification tasks, relative band power (RBP) (15) is

often extracted, especially when analyzing brain activity related to

various neurological and cognitive states. The RBP is calculated

for several frequency bands that correspond to various facets of

brain activity. Six interesting frequency bands were taken into

consideration in this study:

• Delta: 0.5 ≤ f < 4Hz

• Theta: 4 ≤ f < 8Hz

• Alpha: 8 ≤ f < 16Hz

• Zaeta: 16 ≤ f < 24Hz

• Beta: 24 ≤ f < 30Hz

• Gamma: 30 ≤ f ≤ 45Hz.

The Welch technique is used to compute the Power Spectral

Density by a given equation

PSD(f ) = lim
N→∞

1

N

N−1∑

n=0

|X(fn)|
2 (1)

where X(fn) is the Fourier transform of the signal x(t) evaluated

at frequency bins fn, and N is the total number of segments over

which the Fourier transform is averaged. The overall power in

the frequency range of 0.5–45 Hz is calculated by summing the

PSD values.

Total PSD =

max∑

f=min

PSD(f ) (2)
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FIGURE 2

Independent Component Analysis (ICA) components extracted from EEG signal.

The RBP for each frequency band b is determined by dividing the

power within the band by the overall power.

RBPb =

∑fmax

f=min
PSD(f )

∑45
f=0.5 PSD(f )

(3)

The power in the frequency band [fmin, fmax] is represented by the

numerator, while the total power in the range of 0.5 Hz to 45 Hz is

the denominator.

These bands provide greater in-depth observations and cover

a wider range of brain activity. In order to compute the RBP,

EEG signals are segmented into epochs, each 6 s in length and

sharing a 50% overlap. By splitting the signal into overlapping

segments, calculating the squaredmagnitude of the discrete Fourier

transform for each segment, and then averaging the results, the

Welch technique is used to estimate the Power spectral Density

for each epoch. After that, the relative power inside each frequency

band is determined by dividing the PSD for that band by the PSD

for the whole frequency range of interest 0.5–45 Hz. A normalized

measure of brain activity is provided by this ratio, which shows the

contribution of each frequency band to the signal’s overall strength.

For each epoch, the RBP is computed across all channels:

Epoch RBP =
1

Nchannels

Nchannels∑

i=1

RBPb(i) (4)
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FIGURE 3

The proposed methodology with the proposed deep learning model.

where RBPb(i) is the RBP for the i-th channel and Nchannels is

the number of EEG channels.

The RBP values for every epoch make up the final feature

matrix. The columns match the six frequency bands (Beta, Delta,

Alpha, Theta, Zaeta, and Gamma), whereas each row denotes

an epoch:

Feature Matrix =
[
Delta Theta Alpha Zaeta Beta Gamma Label

]

Once the RBP features have been extracted, they are used as

inputs for classification tasks. Each epoch is labeled according

to whether the person has frontotemporal dementia, Alzheimer’s

disease, or cognitive normal.

3.4 Label encoding and data normalization
and splitting

The data was saved in a comma-separated file, and then

categorical variables were converted to numerical data using one-

hot encoding. Then, the data was normalized using the min-max

normalization formula given by:

χ∗
=

χ − µmin

µmax − µmin
(5)

The normalized value is represented by χ∗, the original value is

represented by χ , and the dataset’s minimum and maximum values

are indicated by µmin and µmax, respectively. Training, validation,

and test data sets were split into 80%, 10%, and 10% of the total

data set.

3.5 The proposed deep learning model

The proposed hybrid model as given in Figure 3. Its consists

of two deep learning components LSTM and TCN. The TCN

uses dilated causal convolutions to obtain high-level features

from the input sequence, and the LSTM captures the sequential

dependencies. The Temporal Convolutional Network enhances

traditional CNNs with dilated causal convolutions, allowing

them to model long-term temporal patterns without violating

sequence order.

H(l)
= σ (W(l)

∗ X + b(l)) (6)

whereH(l) represents the output of the l-th convolutional layer,

the learnable convolutional filters are represented by W(l), the

convolution operation is represented by ∗, the bias is represented

by b(l), and the ReLU activation function is represented by σ (·).

Long-range interdependence in EEG data can be captured with

the use of dilated convolutions:

H
(l)
t =

k−1∑

i=0

W
(l)
i · Xt−d·i + b(l) (7)

where k is the kernel size and d is the dilation rate. To optimize both

stability and the flow of gradients, residual connections are adopted.

H(l)
res = H(l)

+ X (8)

This structure enables efficient learning without

vanishing gradients.

LSTMs are a unique class of recurrent neural networks that

use gate mechanisms and memory cells to manage long-term
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dependencies. The LSTM uses three primary gates—forget, input,

and output gates to process the features that were extracted

from TCN.

ft = σ (WfH
(l)
t + Uf ht−1 + bf ) (9)

it = σ (WiH
(l)
t + Uiht−1 + bi) (10)

c′t = tanh(WcH
(l)
t + Ucht−1 + bc) (11)

ct = ft ⊙ ct−1 + it ⊙ c′t (12)

ot = σ (WoH
(l)
t + Uoht−1 + bo) (13)

ht = ot ⊙ tanh(ct) (14)

where Wf the input’s weight matrix at time step t. The input to

the LSTM at layer l and time t is represented by the item H
(l)
t . Uf

Weight matrix for the preceding time step’s hidden state. ht−1 The

previously hidden state. Adding the bias term bf and the sigmoid

activation function σ .

The model begin with an input layer shaped (6,1), followed by a

1D convolutional layer with 32 filters as shown in Table 1. The first

layer connects to a batch normalization layer having 128 number

of parameters and an activation function, then goes through a

spatial dropout layer having value 0.2. The next convolutional

layer also uses 32 filters, followed by batch normalization and

another activation layer. A residual connection is created by adding

the output of a separate convolution layer with the same shape,

allowing the model to retain important features. Furthermore, a

similar set of layers is added next, helping the model process the

input in the sameway as before. Themodel uses an LSTM layer with

64 units to capture temporal features. Following this, the model

includes a dense layer with 128 units, which is succeeded by two

additional dense layers containing 192 and 256, units respectively;

each of these layers is paired with a dropout mechanism to help

mitigate overfitting, culminating in a final dense layer with 3 output

units that delivers the classification outcome.

3.6 Hyperparameter tuning

Random search-based hyperparameter tuning was used to find

the optimal number of layers in the proposed model. The best

hyperparameter values for the CNN component are: two TCN

blocks, 32 filters, a kernel size of 7, a dropout rate of 0.3, and a

dilation rate of 1. During optimization, the best LSTM structure

was found to be a single layer of 64 units. Dense layers follow with

128, 192, and 256 units and a 0.2 dropout rate and early stopping

mitigates overfitting. The number of training epochs depended on

the specific classification task. A batch size of 32 was used, and

the Adam optimizer was selected with a learning rate of 0.0001.

The model has 131,587 parameters. it uses 514.01 KB of memory,

making it suitable for deployment on edge medical devices for real-

time mental disorder detection. Out of these, 131,331 are trainable

and 256 are non-trainable as shown in the Table 2. The model was

trained using 8 GB RAM, and each epoch took 6 s.

TABLE 1 Model architecture summary.

Layer
(type)

Output
shape

Parameters Connected
to

Input layer (None, 6, 1) 0 -

Conv 1D (None, 6, 32) 256 Input layer [0][0]

Batch

normalization

(None, 6, 32) 128 Conv1D [0][0]

Activation (None, 6, 32) 0 Batch

normalization

[0][0]

Spatial

dropout 1D

(None, 6, 32) 0 Activation [0][0]

Conv1D (None, 6, 32) 7,200 Spatial dropout 1D

[0][0]

Batch

normalization

(None, 6, 32) 128 Conv1D [1][0]

Activation (None, 6, 32) 0 Batch

normalization

[1][0]

Conv 1D (None, 6, 32) 64 Input layer [0][0]

Spatial

dropout 1D

(None, 6, 32) 0 Activation [1][0]

Add (None, 6, 32) 0 Conv1D[2][0],

Spatial dropout 1D

[1][0]

Conv 1D (None, 6, 32) 7,200 Add[0][0]

Batch

normalization

(None, 6, 32) 128 Conv1D [3][0]

Activation (None, 6, 32) 0 Batch

normalization

[2][0]

Spatial

dropout 1D

(None, 6, 32) 0 Activation [2][0]

Conv 1D (None, 6, 32) 7,200 Spatial dropout 1D

[2][0]

Batch

normalization

(None, 6, 32) 128 Conv 1D [4][0]

Activation (None, 6, 32) 0 Batch

normalization

[3][0]

Conv 1D (None, 6, 32) 1,056 Add[0][0]

Spatial

dropout 1D

(None, 6, 32) 0 Activation [3][0]

Add (None, 6, 32) 0 Conv1D[5][0],

Spatial dropout 1D

[3][0]

LSTM (None, 64) 24,832 Add [1][0]

Dense (None, 128) 8,320 LSTM [0][0]

Dropout (None, 128) 0 Dense [0][0]

Dense (None, 192) 24,768 Dropout [0][0]

Dropout (None, 192) 0 Dense [1][0]

Dense (None, 256) 49,408 Dropout [1][0]

Dropout (None, 256) 0 Dense [2][0]

Dense (None, 3) 771 Dropout [2][0]
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3.7 Classification

The proposed hybrid Temporal Convolutional Network model

with Long Short-Term Memory was utilized to perform four

types of classification tasks for Alzheimer’s Disease, Frontotemporal

Disease, and healthy classes. The classification tasks are as follows:

• Classification for Alzheimer’s, frontotemporal, and healthy

classes:the objective of this work was to categorize three

different classes: healthy controls, frontotemporal disease, and

Alzheimer’s disease. The model was trained to distinguish

between the three groups.

• Classification for Alzheimer + frontotemporal disease and

healthy classes: in this classification the model was trained

to classify a combined class of Alzheimer’s Disease and

Frontotemporal Disease from healthy individuals.

• Classification for Alzheimer’s disease and healthy classes:

the objective of this task is to train the model to classification

between the Healthy class and Alzheimer’s disease.

• Classification for frontotemporal disease and healthy

classes: this classification task required the model to

separate individuals with Frontotemporal Disease from

healthy controls.

4 Results

4.1 Performance parameters

To access the performance of the proposed model, the

key performance parameters, i.e., precision, F1 score, accuracy,

recall, sensitivity, etc. have been extensively evaluated. Among

other, accuracy is the most important performance parameter

for assessing a classification model’s efficacy. It measures the

proportion of accurately predicted instances to all instances in

the dataset, including true positives and negatives. Mathematically,

accuracy can be written as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100 (15)

TABLE 2 Model parameter summary.

Parameter type Count Size

Total parameters 131,587 514.01 KB

Trainable parameters 131,331 513.01 KB

Non-trainable parameters 256 1 KB

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
× 100% (16)

Similarly, precision measures the quality of the model’s

prediction. It measures the percentage of properly identified

positive cases in comparison to the total number of cases that were

TABLE 4 Classification metrics for Alzheimer + frontotemporal disease

and healthy classes.

Metric Alzheimer + frontotemporal
disease

Healthy

Precision 0.9977 0.9987

Recall 0.9993 0.9956

F1 score 0.9985 0.9972

Support 2,983 1,596

Sensitivity 1.00

Specificity 1.00

TABLE 5 Classification metrics for Alzheimer’s disease and healthy

classes.

Metric Alzheimer’s disease Healthy

Precision 0.9963 0.9987

F1 Score 0.9976 0.9972

Recall 0.9989 0.9956

Support 1876 1596

Sensitivity 1.00

Specificity 1.00

TABLE 6 Classification metrics for frontotemporal disease and healthy

classes.

Metric Frontotemporal disease Healthy

F1 score 0.9975 0.9964

Recall 0.9956 0.9991

Precision 0.9994 0.9937

Support 1597 1596

Sensitivity 1.00

Specificity 1.00

TABLE 3 Classification metrics for Alzheimer, frontotemporal, and healthy classes.

Class Precision Recall F1-score Sensitivity Specificity Support

Alzheimer 0.70 0.90 0.79 0.90 0.74 1,876

Frontotemporal 1.00 1.00 1.00 1.00 1.00 1,597

Healthy 0.68 0.35 0.47 0.35 0.95 1,106

Frontiers in Medicine 07 frontiersin.org94

https://doi.org/10.3389/fmed.2025.1590201
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Khan et al. 10.3389/fmed.2025.1590201

FIGURE 4

Confusion matrices for di�erent classification scenarios. (a) Alzheimer vs. Frontotemporal vs. Healthy. (b) Alzheimer + Frontotemporal vs. Healthy. (c)

Alzheimer vs. Healthy. (d) Frontotemporal vs. Healthy.

anticipated to be positive (sum of true positives and false positives).

Precision can be shown mathematically as:

Precision =
Number of Correctly Predicted Positive Cases

Total Predicted Positive Cases
× 100

(17)

Precision =
TP

TP+ FP
× 100% (18)

Recall, also known as the true positive rate, is a crucial

performance indicator that assesses how well a classification model

detects positive. Recall can be mathematically represented as:

Recall =
Number of Correctly Identified Positive Cases

Total Actual Positive Cases
× 100

(19)

Recall =
TP

TP+ FN
× 100 (20)

The F1 score offers a balance between accuracy and recall by

taking the harmonic mean of the accuracy and recall metrics. It

is particularly convenient when dealing with imbalanced datasets.

Mathematically, the F1 score is expressed as:

F1-score =
2× Precision× Recall

Precision+ Recall
× 100 (21)

F1-score =
2× TP

TP+FP ×
TP

TP+FN
TP

TP+FP +
TP

TP+FN

× 100 (22)

Specificity measures the proportion of actual negatives that

the model correctly identifies. It evaluates the model’s ability to

correctly identify true negatives.

Specificity =
Number of Correctly Identified Negative Cases

Total Actual Negative Cases
×100

(23)

Specificity =
TN

TN+ FP
× 100 (24)

In above equations, TP represents True Positives or correctly

identified positive cases, TN represents True Negatives or
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FIGURE 5

AUC curves for di�erent classification scenarios. (a) Alzheimer vs. Frontotemporal vs. Healthy. (b) Alzheimer + Frontotemporal vs. Healthy. (c)

Alzheimer vs. Healthy. (d) Frontotemporal vs. Healthy.

correctly identified negative cases, FP represents False Positives or

incorrectly classified as positive, and FN represents False Negatives

or incorrectly classified as negative.

4.2 Performance evaluation

Table 3 presents the classification metrics for the three classes:

Alzheimer, Frontotemporal, and Healthy.The model achieves 70%

precision and 90% recall for Alzheimer’s, with an F1-score of 0.79.

It performs perfectly for frontotemporal Disease with 100% F1-

score, precision, and recall, while the Healthy class shows weaker

performance with 68% precision, 35% recall, and an F1-score

of 0.47.

Table 4 focuses on a binary classification task where Alzheimer

+ Frontotemporal Disease are treated as a combined class, and

Healthy is the other class.he model achieves nearly perfect results

for Alzheimer + Frontotemporal Disease with 99.77% precision and

99.93% recall. The Healthy class also performs well with 99.87%

precision and 99.56% recall, both classes showing 1.00 sensitivity

and specificity.

In the binary classification task, the Table 5, the goal is to

classify Alzheimer’s disease and healthy individuals.The model

excels with 99.63% precision and 99.89% recall for Alzheimer’s, and

99.87% precision and 99.56% recall for Healthy, both showing 1.00

sensitivity and specificity.

The Table 6 shows the results of the binary classification

between frontotemporal disease and healthy individuals. The

model shows 99.94% precision and 99.56% recall, with a very

high F1 score of 0.9975. The Healthy class also has a high

F1-score of 0.9964, with 99.37% precision and 99.91% recall.

Both classes show 1.00 sensitivity and specificity. Similarly,

Table 7 reports high classification accuracies for binary dementia

tasks (≥0.997) and a lower accuracy (0.8034) for the three-

class classification among Alzheimer’s, frontotemporal disease, and

healthy subjects.
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The multi-class confusion matrix given in Figure 4a that

the model effectively classifies Alzheimer’s and frontotemporal

Disease. Out of 1,876 Alzheimer cases, 1,693 are correctly

identified, with minor misclassifications into healthy and

frontotemporal. Similarly, frontotemporal disease achieves a

near-perfect classification with only three misclassifications.

However, the model struggles significantly with Healthy cases,

misclassifying 712 instances as Alzheimer’s, highlighting room

for improvement in distinguishing healthy from disease classes.

When combining Alzheimer’s and Frontotemporal as a single

class against Healthy, the model demonstrates almost perfect

classification as shown in Figure 4b. Only 2 out of 2,983 Alzheimer

+ frontotemporal instances are misclassified as healthy. For the

Healthy class, only 7 out of 1,596 instances are misclassified,

indicating strong model performance in binary classification with

very few false positives or false negatives. For Alzheimer’s Disease

vs. Healthy classification, as displayed in Figure 4c, the model

achieves excellent performance. Out of 1,876 Alzheimer cases, only

2 are misclassified as Healthy. Similarly, for 1,590 Healthy cases,

only 7 are misclassified as Alzheimer. Furthermore, the model

performs well in the binary classification of frontotemporal disease

against healthy as evident from Figure 4d. Just one healthy case out

of 1,106 is incorrectly categorized as frontotemporal, whereas only

7 out of 1,597 frontotemporal patients are incorrectly classified

as healthy.

The multi-class ROC (Receiver Operating Characteristic)

curve, as given in Figure 5a, displays the AUC (Area Under the

Curve) for each class. Alzheimer’s disease has an AUC of 0.88,

which indicates good but not perfect discrimination; healthy cases

have the lowest AUC of 0.85, which indicates some difficulty in

differentiating them from the disease classes; and frontotemporal

disease achieves a perfect AUC of 1.00, which indicates ideal

classification with no false positives or negatives. The binary

classification combining Alzheimer’s and frontotemporal as one

class vs. healthy achieves an exceptional AUC of 1.00. Additionally,

the model attains an AUC of 1.00 for Alzheimer’s Disease

vs. Healthy cases, indicating perfect discrimination. Similarly,

the classification of ‘Alzheimer + Frontotemporal’ vs. Healthy,

Alzheimer vs. Healthy, and Frontotemporal Disease vs. Healthy

TABLE 7 Classification accuracy for di�erent dementia classification

tasks.

Classification task Accuracy

Frontotemporal disease vs. healthy 0.9970

Alzheimer’s disease vs. healthy 0.9974

Alzheimer + frontotemporal disease vs. healthy 0.9980

Alzheimer vs. frontotemporal vs. healthy 0.8034

achieve a flawless AUC of 1.00 as displayed in Figures 5b–d,

respectively.

4.3 Model performance evaluation with
SMOTE balancing

It was noted in all the classification task that the dataset was

imbalanced. To address this issue Smote data balancing technique

were used. SMOTE balances datasets by generating new samples

along the lines connecting a minority instance and its nearest

within-class neighbors. Table 8 shows the classification metrics for

Alzheimer, Frontotemporal, and Healthy classes after applying data

balancing techniques. It can see a significant improvement in F1-

score, precision, recall and specificity for all classes. Frontotemporal

class got perfect scores in all metrics (1.00). The Alzheimer’s class

got good scores with precision 0.63, recall 0.71 and F1-score 0.67.

Healthy class got precision 0.67, recall 0.58 and F1-score 0.62.

Overall accuracy of the model decreased to 77.45% after balancing

compared to 80.34% accuracy with the original imbalanced dataset.

The classification metrics for the Alzheimer’s Disease and

Healthy classes are shown in Table 9 after data balancing. The

model ability to distinguish between the two classes is demonstrated

by the precision, recall, and F1 scores of both classes, all of which

are above 99.7%. Even though the balanced model’s accuracy is

99.71%, it is only slightly lower than the unbalanced model’s

99.74% accuracy.

TABLE 9 Classification metrics for Alzheimer’s disease and healthy classes

with data balancing.

Metric Alzheimer’s disease Healthy

Precision 99.73 99.70

F1 score 99.71 99.73

Recall 99.70 99.71

Support 1876 1876

TABLE 10 K-fold validation accuracy for Alzheimer, frontotemporal, and

healthy classes.

K-value Training accuracy (%) Test accuracy (%)

1 79.89 80.15

2 80.00 80.00

3 79.58 80.06

4 79.43 80.02

5 81.27 80.13

TABLE 8 Classification metrics for Alzheimer, frontotemporal, and healthy classes with data balancing.

Class Precision Recall F1-score Sensitivity Specificity Support

Alzheimer 0.63 0.71 0.67 0.71 0.79 1,876

Frontotemporal 1.00 1.00 1.00 1.00 1.00 1,876

Healthy 0.67 0.58 0.62 0.58 0.86 1,876
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TABLE 11 K-fold validation accuracy for Alzheimer and healthy classes

K-value Training accuracy (%) Test accuracy (%)

1 99.82 99.86

2 99.80 99.82

3 99.73 99.92

4 99.61 99.86

5 99.78 99.82

TABLE 12 Classification metrics for Alzheimer, frontotemporal, and

healthy classes.

Class Precision Recall F1-
score

Support

Alzheimer 0.60 0.77 0.67 1,876

Frontotemporal 0.68 0.68 0.68 1,597

Healthy 0.60 0.33 0.43 1,106

4.4 Evaluation of model accuracy using
K-fold cross-validation

In this paper, a 5-fold cross-validation methodology was

employed to validate the proposed model. The dataset was

split into five subsets. For the multiclass classification task, the

training accuracy ranged from a minimum of 79.43% to a

maximum of 81.27% across different K values. The test accuracy

remained consistently close to 80% for all folds, as shown in the

Table 10. Table 11 shows the 5-fold cross-validation findings for

differentiating between Alzheimer’s and healthy patients. The test

accuracy remains the same as in the training accuracy. These

findings demonstrate the model’s robust and reliable capacity to

differentiate between the Alzheimer’s and healthy classes.

4.5 Comparative analysis of feature
extraction methods

In this evaluation, we compared the standard RBP with our

modified RBP. The same methodology was used, but the frequency

ranges were adjusted according to the standard: Delta (0.5–4),

Theta (4–8), Alpha (8–13), Beta (13–25), and Gamma (25–45).

The results achieved are shown in the Table 12. The standard

RBP method achieved an accuracy of 63.03% in the multiclass

classification task, whereas the modified RBP reached 80.34%. The

precision for all classes remained almost the same; however, the

recall and F1-score varied across the three classes. The Alzheimer

class showed higher F1-score and recall values, whereas the Healthy

class had lower values in these metrics. For the binary classification

task, the Alzheimer and Healthy classes achieved an accuracy of

76.36% using the standard feature extraction method, whereas the

modified feature extractionmethod achieved an accuracy of 99.71%

as shown Table 13. Both classes showed lower recall, precision,

and F1-scores with the standard method compared to the results

obtained using the modified feature extraction method.

TABLE 13 Classification metrics for Alzheimer and healthy classes.

Class Precision Recall F1-
score

Support

Alzheimer 0.76 0.81 0.79 1,876

Healthy 0.76 0.71 0.73 1,597

TABLE 14 Model accuracy comparison with existing papers using dataset.

Paper Model Accuracy Feature
engineering

XAI

Ma et al.

(20)

Support vector

machine

91.5% PHI ✗

Miltiadous

et al. (18)

Dual-Input

Convolution

Encoder Network

(DICE-net)

83.28% Band power

and coherence

✗

Kachare

et al. (16)

STEADYNet 97.59% ✗ ✗

Chen

et al. (19)

Vision

transformer +

CNN

80.23% frequency

channels

✗

This

work

Proposed model 80.34%, 99.7% Modified RBP ✓

4.6 Comparison with existing ML and DL
model

To gauge the performance of the proposed model, it has been

compared with existing studies in Table 14. InMiltiadous et al. (18),

the authors achieved an 83.28% accuracy with the DICE-net model,

utilizing EEG denoising and extracting Band power and coherence

features as key steps in feature engineering. In Kachare et al. (16),

the STEADYNet model achieved 88.00% accuracy for AD vs. NC

and 92.25% for FTD vs. NC. Using a dual-input strategy, the model

employed convolutional and features are extracted from EEG data

using max-pooling layers. The research explored binary and multi-

class classification, reporting a 97.59% accuracy in the multi-class

setting. The study (19) utilized a CNN with pre-trained weights,

achieving an accuracy of 82.30%. EEG feature extraction was

performed in both the time and frequency domains, while a Vision

Transformer complemented the CNN by capturing global feature

representations. The classification task distinguished between AD,

FTD, and NC. Ma et al. (20), EEG data was used to classify AD

and FTD, achieving an initial accuracy of 91.5%. After optimizing

the feature set by eliminating unnecessary attributes, the accuracy

increased to 96.6%. A support vector machine (SVM) model was

utilized for binary classification between these groups (20).

No prior research utilized explainable AI (XAI) or lightweight

models. To address this, the proposed study introduces a hybrid

deep learning model with efficient feature engineering and a

reduced number of parameters, improving accuracy in binary and

multi-class classification while integrating SHAP.

5 Explainable artificial intelligence

Explainable Artificial Intelligence (XAI) is a crucial

development in the field of artificial intelligence, focusing on
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FIGURE 6

SHAP global feature importance graph for class healthy.

FIGURE 7

SHAP global feature importance graph for class Alzheimer’s disease.

making the decision-making processes of AI systems transparent

and understandable to users. In medicine, the need for XAI

is particularly significant due to the high stakes involved in

clinical decision-making. Healthcare professionals require clear

explanations for AI-driven recommendations to ensure trust and

reliability in these technologies. By improving interpretability, XAI

not only helps clinicians approach AI methods with caution but

also fosters a deeper understanding of AI applications in medical

practice, ultimately promoting data-driven and mathematically

grounded medical education (21). The SHAP (SHapley Additive

exPlanations) (22) global feature importance graphs depict the

contribution of different frequency bands (Zaeta, Beta, Theta,

Alpha, Delta, Gamma) to the classification of three classes:

Healthy, Alzheimer’s Disease, and frontotemporal Disease. In

Figure 6, the SHAP values for the Healthy class show that Zaeta

has the highest importance (+0.1), followed by Beta (+0.07) and

Theta (+0.05). This indicates these frequency bands are most

influential in predicting Healthy cases, while Alpha, Gamma,

and Delta have minimal contributions. Figure 7 highlights the

SHAP importance for Alzheimer’s Disease, where Beta exhibits

the highest importance (+0.19), followed by Zaeta (+0.12) and

Theta (+0.06). These results suggest that Beta and Zaeta bands

play a critical role in distinguishing Alzheimer’s Disease from

other classes. In Figure 8, the SHAP values for the Frontotemporal

Disease class demonstrate that Beta has the most significant

influence (+0.26), with Zaeta being the second most important

feature (+0.2). The other frequency bands, including Theta, Alpha,

Delta, and Gamma, contribute very minimally to this classification.

The SHAP summary graphs explain the contributions of

different features to the predictions of a proposed hybrid deep
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FIGURE 8

SHAP global feature importance graph for class frontotemporal disease.

FIGURE 9

SHAP Summary graph for Class Healthy.

learning model for three different Alzheimer’s disease, and

frontotemporal disease. Each plot shows the impact of the features

on the model’s output. The x-axis represents the SHAP values,

indicating whether a feature contributes positively or negatively to

the prediction for a specific class.The Healthy class plot Figure 9

shows distinct feature behavior compared to the disease classes.

Here, the SHAP values indicate a different pattern of influence,

with Zaeta and Beta waves also playing critical roles but in opposite

directions from the disease classes. For the Alzheimer’s Disease class

Figure 10, features such as Beta and Zaeta wave characteristics show

a stronger positive or negative influence on predictions, with higher

feature values (red points) generally pushing predictions in one

direction. In this plot Figure 11, the Zaeta and Beta waves seem to

have the most significant influence on the model’s predictions, with

both high and low feature values affecting the SHAP values. The

distribution of points along the x-axis for these features suggests

that they are crucial in determining whether the prediction aligns

with frontotemporal disease.

The SHAP heat maps show how different brain wave features

contribute to the model’s predictions for healthly, Alzheimer’s

Disease, and Frontotemporal Disease. Each row represents a

feature, while the columns represent individual instances. Each

model input’s global importance is shown as a bar plot on the

plot’s right side. Beta and Zaeta waves are among the features

that commonly display blue in Healthy class Figure 12, suggesting

that they have a negative impact on the prediction and force

the model to classify these phenomena as healthy. On the other

hand, beta and Zaeta waves frequently show red in the AD class

Figure 13, indicating that they are highly predictive of Alzheimer’s

disease. How these features adjust to different data points is

seen in the mixed pattern across instances. For Frontotemporal

Disease Figure 14, Beta and Zaeta waves again dominate with
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FIGURE 10

SHAP summary graph for class Alzheimer’s Disease.

FIGURE 11

SHAP summary graph for class frontotemporal disease.

strong red contributions, emphasizing their importance for this

class. Compared to Healthy, there are more concentrated positive

contributions (red), pushing predictions toward the disease class.

These heat maps reveal the nuanced role of brain wave features in

distinguishing between healthy and diseased states.

5.1 Neurophysiological interpretation of
frequency band importance

The SHAP visualizations in (Figures 6–14) reveal that the

Zaeta and Beta frequency bands consistently exhibit high SHAP

values across all classification tasks, indicating their dominant

contribution in distinguishing between Alzheimer’s Disease (AD),

Frontotemporal Dementia (FTD), and healthy controls. This is not

merely a data-driven outcome but has a neurophysiological basis

grounded in clinical EEG studies.

The Beta band is associated with active cognitive processing,

attention, and motor control. Abnormalities in Beta activity—

particularly elevated or diminished power—have been reported in

AD patients, often linked to disruptions in cognitive and executive

functions. In contrast, FTD patients may exhibit distinct patterns

in Beta activity due to altered frontal lobe functioning, which is

characteristically impaired in FTD but less so in early AD.

The Zaeta band, though less commonly named in classical EEG

literature, overlaps with the high Alpha to low Beta range and

serves as a transitional band. Our modified Relative Band Power

(RBP) analysis captures Zaeta as a distinct band, enabling finer

differentiation. The elevated importance of Zaeta in our SHAP

analysis suggests that subtle shifts in mid-frequency rhythms play

a significant role in disease-specific EEG patterns. Specifically,

such shifts may reflect compensatory mechanisms or region-

specific slowing in cortical activity, both of which are documented

phenomena in dementia-related neurodegeneration.

Frontiers in Medicine 14 frontiersin.org101

https://doi.org/10.3389/fmed.2025.1590201
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Khan et al. 10.3389/fmed.2025.1590201

FIGURE 12

SHAP heatmap for class healthy.

FIGURE 13

SHAP heatmap for class AD.
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FIGURE 14

SHAP heatmap for class frontotemporal disease.

Therefore, the SHAP-derived feature dominance is consistent

with known pathophysiological changes in brain activity across

dementia subtypes. The model not only learns these discriminative

patterns effectively but also explains them in a way that aligns with

clinical neurophysiology, enhancing interpretability and potential

clinical utility.

6 Conclusions and future direction

This paper addressed the critical need for an accurate and

efficient detection of mental disorders, i.e., AD and (FTD). A

lightweight TCN-LSTM hybrid model has been proposed for the

aforementioned purpose. To prepare the data for experimentation,

a modified Relative Band Power (RBP) analysis was performed to

extract six EEG frequency bands via power spectrum density (PSD)

computations. The proposed model achieved 99.70% accuracy

for the classification of Frontotemporal Disease vs. Healthy,

and 99.74% accuracy for Alzheimer vs. Healthy. In another

binary task, where Alzheimer and Frontotemporal data were

combined into a single class and classified against Healthy, the

model achieved 99.80% accuracy. For the three-class classification,

accuracy 80.34% achieved. Evaluation metrics including AUC-

ROC, recall, confusion matrix, and F1-score were calculated for

each classification. High scores were achieved across all multiclass

categories, except the Healthy class, which showed reduced recall

(35%) and F1-score (47%) as a result of data imbalance. Finally, the

integration of SHAP for explainability further enhanced themodel’s

transparency, making it a valuable tool for clinical applications. The

proposed method proved to be an efficient and effective solution

for the detection of AD and (FTD). Future research may include

the use of large and diverse datasets focusing on the exploration of

additional EEG characteristics Vascular, Lewy Body Dementia, and

Creutzfeldt-Jakob Disease data can be used to train and validate

the model with an XAI approach while maintaining patient data

privacy and security.
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Background: Accurate medical image segmentation significantly impacts 
patient outcomes, especially in diseases such as skin cancer, intestinal polyps, 
and brain tumors. While deep learning methods have shown promise, their 
performance often varies across datasets and modalities. Combining advanced 
segmentation techniques with traditional feature extraction approaches may 
enhance robustness and generalizability.

Objective: This study aims to develop an integrated framework combining 
segmentation, advanced feature extraction, and transfer learning to enhance 
segmentation accuracy across diverse medical imaging (MI) datasets, thus 
improving classification accuracy and generalization capabilities.

Methods: We employed independently trained U-Net models to segment 
skin cancer, polyps, and brain tumor regions from three separate MI datasets 
(HAM10000, Kvasir-SEG, and Figshare Brain Tumor dataset). Moreover, the study 
applied classical texture-based feature extraction methods, namely Local Binary 
Patterns (LBP) and Gray-Level Co-occurrence Matrix (GLCM), processing each 
Red Green Blue (RGB) channel separately using an offset [0 1] and recombining 
them to create comprehensive texture descriptors. These segmented images 
and extracted features were subsequently fine-tuned pre-trained transfer 
learning models. We also assessed the combined performance on an integrated 
dataset comprising all three modalities. Classification was performed using 
Support Vector Machines (SVM), and results were evaluated based on accuracy, 
recall (sensitivity), specificity, and the F-measure, alongside bias-variance 
analysis for model generalization capability.

Results: U-Net segmentation achieved high accuracy across datasets, with 
particularly notable results for polyps (98.00%) and brain tumors (99.66%). 
LBP consistently showed superior performance, especially in skin cancer and 
polyp datasets, achieving up to 98.80% accuracy. Transfer learning improved 
segmentation accuracy and generalizability, particularly evident in skin cancer 
(85.39%) and brain tumor (99.13%) datasets. When datasets were combined, 
the proposed methods achieved high generalization capability, with the U-Net 
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model achieving 95.20% accuracy. After segmenting the lesion regions using 
U-Net, LBP features were extracted and classified using an SVM model, achieving 
99.22% classification accuracy on the combined dataset (skin, polyp, and brain).

Conclusion: Integrating deep learning-based segmentation (U-Net), classical 
feature extraction techniques (GLCM and LBP), and transfer learning significantly 
enhanced the accuracy and generalization capabilities across multiple MI 
datasets. The methodology provides robust, versatile framework applicable to 
various MI tasks, supporting advancements in diagnostic precision and clinical 
decision-making.

KEYWORDS

intestinal polyps, brain tumors, deep learning, local binary patterns, gray-level 
co-occurrence matrix

1 Introduction

The incidence of cancer worldwide has remained high in recent 
years. Additionally, each year, tens of millions of people receive a new 
cancer diagnosis. Meanwhile, different forms of cancer kill millions to 
almost tens of millions of people (1). According to the WHO, cancer 
will be  the top cause of death globally in 2020, taking around 
10 million lives (2). When it came to new cancer cases in 2020, the 
most prevalent were 2.26 million cases in the breast, 2.21 million in 
the lung, 1.93 million in the colon and rectum, 1.41 million in the 
prostate, 1.20 million in the skin (non-melanoma), and 1.09 million 
in the stomach. Pathology and imaging diagnostics are the primary 
methods used to diagnose cancer (3, 4). Increasing the survival 
percentage of cancer patients requires early detection (5), and effective 
and non-invasive early screening has emerged as a crucial study area. 
Magnetic resonance imaging (MRI), computed tomography (CT), 
X-rays, B-ultrasound, and others are examples of imaging techniques 
(6). Since an MRI scan can differentiate between different types of 
tissues, it can help spot cancer in different parts of the body (7). 
Medical image segmentation allows researchers and doctors to 
precisely identify and examine particular structures by dividing a 
medical image into discrete regions of interest. This segmentation 
procedure is important since thorough and precise evaluations are 
critical to patient care in radiology, pathology, and other medical 
specialties. Completing the regional segmentation’s nodules and 
tracheal placement area is challenging (8). Screening and symptomatic 
disease management are the foundations of imaging’s involvement in 
cancer management. Imaging will be used in cancer treatment in the 
future for targeted, minimally invasive, and pre-symptomatic 
treatments (9). Image guidance will be  used to develop locally 
activated medication delivery and less invasive targeted therapy (10–
14). Because tissue and fluids in the body absorb and scatter light, 
clinical optical imaging has mostly been restricted to endoscopic, 
catheter-based, and superficial imaging strategies. Since cancer is a 
complex disease, imaging must be  able to show the many 
pathophysiological phases and mechanisms. Combining independent 
and uncorrelated imaging technologies will result in diagnostic 
orthogonality by employing diverse modalities, imaging agents, and 
biomarkers in general. Diagnostic imaging agents delivered 
intravenously, intra-arterially, or through natural orifices will become 
more prevalent in cancer imaging (15–17). Medical image 
segmentation aims to identify anatomical features in medical images, 
such as organs, lesions, tissues, etc. Many clinical applications depend 

on this basic phase, including computer-aided diagnosis, therapy 
planning, and illness progression tracking (18, 19). Precise 
segmentation can yield trustworthy target structure volumetric and 
morphological data, supporting numerous therapeutic uses such as 
quantitative analysis, surgical planning, and illness detection (20–22). 
Artificial intelligence (AI), particularly deep learning methods, has 
become a potent tool for improving and automating image 
segmentation in recent years. Medical image processing and analysis 
have seen tremendous success with deep learning algorithms, 
particularly Convolutional Neural Networks (CNNs), which provide 
quicker, more accurate, and repeatable results than manual techniques. 
Large annotated datasets can be used to train these models, enabling 
AI systems to identify intricate patterns and structures in medical 
images and provide accurate segmentation with little human assistance 
(23). CNN-based techniques can automatically extract the most 
valuable characteristics from massive datasets for medical 
segmentation. To improve diagnostic efficiency and make medical 
images more comprehensible, the initial and crucial stage in the 
analysis of medical images is medical image segmentation (24). To 
help doctors create more accurate diagnoses, we must segment the 
areas of medical images we focus on and extract pertinent features. 
This will give a solid foundation for clinical diagnosis and pathology 
research. Semantic segmentation, or the recognition of images at the 
pixel level, is typically referred to as image segmentation in deep 
learning. Semantic segmentation finds groups of pixels and categorizes 
them based on several attributes. Semantic segmentation research 
typically uses transfer learning. With transfer learning, a model 
already trained on a sizable dataset can be modified for a new job by 
teaching it to recognize general features. This is accomplished by 
retraining only the final layers of the model and freezing the other 
layers. As a result, the model retains the knowledge it gained from the 
prior task while adjusting to the inputs in the new one. Limited 
datasets and the inability to directly access current literature from 
another topic are two scenarios where transfer learning is used to help. 
Transfer learning has been effective in several applications, including 
text classification (25), satellite image segmentation (26), facial 
expression identification (27), and more.

Transfer learning offers an effective method to solve complex 
image analysis problems using the power of deep networks. However, 
classical feature extraction methods that can form the basis of 
transfer learning algorithms are also important in some cases. 
Traditional methods, such as the Gray-Level Co-Occurrence Matrix 
(GLCM) and the Local Binary Pattern (LBP), can create meaningful 
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inputs for transfer learning models or provide complementary 
information in fine-tuning the models. Thus, combining classical and 
modern techniques allows obtaining powerful results, especially in 
limited datasets. In this context, GLCM and LBP are two approaches 
that stand out from traditional image processing techniques. GLCM 
is a method that models the spatial relationships of pixel pairs at 
grayscale levels to examine the textural properties of an image. The 
use of GLCM features in medical image analysis has rapidly 
expanded in recent years. Examples include the analysis of MRI and 
ultrasound images of the liver (28, 29), the heart (30), X-ray 
mammography (31, 32), breast cancer (33, 34), prostate cancer (35–
37), and brain cancer (38–40). Haralick et al. (41) proposed a general 
process for determining the textural characteristics of image blocks. 
The texture’s statistical nature is considered while calculating features 
in the spatial domain. Mall et  al. (42) used machine learning 
techniques to divide the MURA (musculoskeletal radiographs) 
dataset’s bone X-ray images into two categories: those with fractures 
and those without GLCM features. In the study proposed by Pooja 
et al. (43), GLCM, LBP, and the Histogram of Oriented Gradient 
(HOG) are used for feature extraction. The correlation filter method 
and wrapper-based techniques detect and categorize polyps. On the 
other hand, LBP creates a histogram by evaluating the intensity 
differences between neighboring pixels to capture local textural 
information. During the feature extraction, Shamna and Musthafa 
(44) suggested HoG and Local Ternary Pattern (LTP). Additionally, 
the Deep Convolutional Neural Network (D-CNN) was used to fuse 
the gathered features before forwarding them to the Region-based 
Convolutional Neural Network to detect many objects. Bhattarai 
et al. (45) suggested an unsupervised approach to create the pseudo-
labels employing HOGs. They learned the deep network’s parameters 
to minimize the loss of the primary and auxiliary tasks, using 
pseudo-labels for the auxiliary task and ground truth semantic 
segmentation masks. The study by (46) extracts the dynamic texture 
elements of 3D MRI brain images using HOG features to detect 
Alzheimer’s disease. Another approach proposed a model that uses 
neural characteristics from MRI images based on HOG to detect 
brain malignancies (47).

The application of techniques like transfer learning and deep 
learning in the field of medical image analysis has grown dramatically 
in recent years. A crucial factor that directly impacts the effectiveness 
of treatment for many conditions is early identification and accurate 
classification, particularly for skin cancer, intestinal polyps, and brain 
tumors. Accurate and precise segmentation is crucial in these imaging 
difficulties to enhance clinical procedures and improve patient 
outcomes. However, most current approaches lack generalizability and 
concentrate on a specific dataset or a restricted feature extraction 
technique. By working with several datasets and combining transfer 
learning and sophisticated feature extraction methods, our goal in this 
study was to improve segmentation performance. In the literature, 
various medical imaging issues—such as brain tumors, polyps, and 
skin cancer—are typically treated independently and with diverse 
techniques. However, this study aims to illustrate how the created 
technology may be used in various medical imaging situations and to 
provide a bridge between them. Although the suggested method 
successfully applies the transfer learning approach to the information 
transfer of pre-trained models, it combines deep features with 
statistical approaches, such as GLCM and LBP, as feature extraction 
techniques to produce more discriminative and meaningful features. 

This novel combination is anticipated to be highly generalizable to 
other medical imaging issues. The main contributions of this study are:

	•	 A generalizable method for multiple medical imaging problems 
is proposed.

	•	 It has been shown that combining transfer learning and classical 
feature extraction techniques can improve 
segmentation performance.

	•	 The generalization capacity of the developed model was tested on 
different datasets.

This article introduces a potential approach for segmenting brain 
tumors, skin cancer, and polyps to provide a different perspective. 
Several pre-trained deep learning models, including VGG16, have been 
tested on various medical datasets, including brain tumors, polyps, and 
skin cancer. This offers a thorough examination to assess the 
methodologies’ ability to generalize. Deep learning-based segmentation 
techniques were used with GLCM and LBP to produce feature sets that 
were more potent and discriminative. It has been demonstrated that this 
combination enhances post-segmentation classification performance. 
This study assessed the overall performance of the suggested approaches 
using datasets gathered from various anatomical locations and imaging 
techniques, in contrast to studies in the literature that are often carried 
out on a single dataset. The suggested method offers integrity in both 
segmentation and post-segmentation classification performance. 
Accuracy and time savings are benefits of this functionality, particularly 
in therapeutic settings. A broad framework that can be  applied to 
clinical diagnosis is suggested by using the same approach to other 
imaging issues, such as brain tumors, intestinal polyps, and skin cancer.

Rather than proposing a new algorithm, our objective is to design 
a modular and generalizable pipeline using established techniques 
(U-Net, LBP, GLCM, and VGG16) to facilitate practical and accurate 
medical image analysis across diverse domains. Recently, the studies 
by (48, 49) explored hybrid methods combining segmentation and 
handcrafted features in biomedical image analysis. Thus, our 
framework expands on this by integrating these elements into a 
unified system applicable across multiple datasets.

The remainder of this article is organized as follows. Section 2 
details the methodology, including a description of the datasets, the 
segmentation methods (using U-Net and transfer learning-based 
approaches), the feature extraction techniques (GLCM and LBP), and 
the classification strategy employed. In Section 3, we  present 
experimental results, providing quantitative segmentation 
performance metrics for each dataset (skin cancer, polyps, and brain 
tumors) and for a combined dataset to evaluate generalization 
capabilities. Section 4 offers an in-depth discussion of the findings, 
highlighting the impact of different feature extraction methods, the 
role of transfer learning, and our approach’s strengths and limitations. 
Finally, Section 5 concludes the article by summarizing our 
contributions, discussing potential limitations, and suggesting 
directions for future research.

2 Methodology

Rather than proposing a new algorithm, our objective is to design 
a modular and generalizable pipeline using established techniques for 
practical medical image analysis.
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2.1 Dataset

This study examined a variety of datasets and concentrated on the 
segmentation of brain tumors, intestinal polyps, and skin cancer. 
Every dataset was chosen from well-used sources within the pertinent 
problem domain, and thorough pretreatment procedures were used. 
The following is a summary of the features of the datasets that 
were used:

Open-source databases are often used in the literature, and unique 
datasets gathered as part of specific studies comprise the datasets 
utilized. Each dataset underwent a thorough examination considering 
the overall number of samples and the image resolution. To increase 
segmentation accuracy, masks with images are manually or 
automatically labeled. Skin Cancer: The HAM10000 database is used 
to study skin cancer (50). Since the segmentation masks provided by 
(50) were absent from the original HAM10000 dataset, we used the 
source data generated by (50). The Figshare Brain Tumor dataset (51) 
is used for brain tumor segmentation and contains 3,064 pairs of MRI 
brain images and their mask indicators. In contrast, the Kvasir-SEG 
database, which includes 1,000 polyp images and the corresponding 
ground truth from the Kvasir Dataset v2 (52), is used for intestinal 
polyps. The total number of samples is shown in Table 1.

Since the images in the dataset of this study varied in size and 
dynamic range, it was unsuitable for direct model training. Resizing 
and normalization procedures were implemented to give the dataset 
a uniform structure. To match image proportions with the model 
input, all photos were scaled to 128 × 128. This procedure provided 
data resized to match the input dimensions required by the network, 
while optimizing the training process’s computational cost. 
Additionally, images’ pixel values typically range from 0 to 255. The 
normalization technique guaranteed faster convergence and kept the 
model from struggling to learn the significant disparities between 
these values. To get all pixel values in the range of 0–1, they are divided 
by 255. This procedure improved learning stability and allowed the 
model to assign equal weight to each image. These two preprocessing 
processes improved the model’s performance during training by 
guaranteeing that the dataset had a more uniform structure.

Since the public datasets lack detailed metadata about acquisition 
centers or clinical environments, we  did not perform external 
validation. Training and testing were carried out within each dataset. 
Cross-dataset or multi-institutional generalization is left for 
future investigation.

To ensure a fair evaluation and avoid data leakage, 10% of the 
training set was used as a validation set for hyperparameter tuning. 
The test set was not accessed during training or parameter 
optimization. Key hyperparameters (such as learning rate, batch size, 

and number of epochs) were selected based on performance on the 
validation set. No test data was used during model selection or tuning.

2.2 Segmentation method

The U-Net model and the transfer learning-based VGG16 model 
were the two approaches for image segmentation that were compared in 
this study. The U-Net model, a convolutional neural network (CNN) 
structure designed specifically for segmentation challenges, was 
employed. U-Net, a semantic segmentation technique, was initially 
proposed for medical image segmentation. Ronneberger et  al. (53) 
debuted U-Net. U-Net’s encoder-decoder architecture is symmetric. The 
decoder part creates a segmentation mask in the original dimensions 
using the information taken from the image by the encoder part. The 
U-Net model was selected because it can learn the details of segmentation 
masks with high accuracy and generate respectable results even with 
small datasets. However, the shortcomings of the U-Net model, such as 
the need for large datasets and the lengthy learning process, are only 
considered when the model is built from the ground up. As a result, the 
transfer learning approach was used in the study’s second phase. VGG16, 
a pre-trained model, was employed in the transfer learning stage. Being 
a deep network trained on huge datasets (like ImageNet), VGG16 is 
adept at picking up low-level characteristics (such as edges and textures). 
To generate a segmentation mask, a decoder section modeled after the 
U-Net model was added to the encoder portion of the VGG16 model, 
which was used to extract features from images. This structure made 
better performance with less data possible, which also speed up the 
training process through transfer learning.

The parameters of 15 epochs and a batch size of 16 utilized for the 
training procedure were chosen to balance the model’s performance 
and training duration. Using the epoch number, 15 was selected as the 
number of times the model will be trained on all the training data. An 
adequate learning process is typically achieved by running through 
the data 15 times during training, especially for small datasets. 
Choosing too many epochs can lead to overfitting when the model 
performs well on training data but poorly on new data. The batch size, 
which is 16, is the quantity of data input into the model concurrently 
during each training phase. A batch size of 16 ensures training 
uniformity and optimizes processing time. With a smaller batch, the 
model can update its parameters more often but may consume more 
memory. A batch size of 32 is frequently used in various machine-
learning situations and is usually a well-rounded choice. The model’s 
complexity and the amount of data were considered when choosing 
the study’s parameters. For example, while working with 128 × 128 
images, a large batch size number slows the training process—batch 
size 16 improved memory management. The epoch number 15 was 
selected to ensure that the model reaches a point during training 
where accuracy and loss values may stabilize.

While resizing may risk losing important structural details, 
especially in fine-grained segmentation tasks, we selected 128 × 128 
resolution to balance accuracy and computational efficiency. To assess 
potential performance loss, a subset of polyp and skin images was also 
resized to 256 × 256, and models were retrained. The difference in 
accuracy was below 1.2% on average, while computational 
requirements increased notably. Therefore, we  proceeded with a 
128 × 128 resolution for all datasets.

TABLE 1  Total number of samples in the dataset.

Dataset Number of samples (%80 
for training, %20 for test)

Polyp 1,000 (128 × 128)

Skin cancer 10,015 (128 × 128)

Brain tumor 3,064 (128 × 128)
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2.3 Feature extraction

This study’s skin, polyp, and brain datasets sustained different 
segmentation processes before the GLCM and LBP techniques, unique 
to each dataset, were used. Segmentation was done using a different 
U-Net model for every dataset. The goal is to identify various 
structures in every dataset in a more precise way.

For the GLCM analysis, offset [0 1] was used. The distance and 
angle that specify the relationship between pixels are referred to as this 
parameter. After being retrieved independently, the red, green, and 
blue channels were merged and examined as a single image. Each 
image’s texture characteristics were extracted using pixel points and 
radius values for the LBP approach. RGB channels are processed 
independently and then mixed, as in GLCM. Transfer learning 
techniques were performed on each dataset independently based on 
the segmentation outcomes. As a result, GLCM, LBP, and 
segmentation model performances were contrasted.

In the last step, all datasets were merged to produce a larger and 
more varied data collection. The following techniques were used 
successively on this combined dataset: LBP (by separating RGB 
channels), GLCM [offset (0 1)], and segmentation (U-Net). This 
procedure was carried out to assess how well the methodologies 
applied to various datasets.

Texture-based feature extraction techniques such as GLCM and 
LBP have been employed, particularly in the textural analysis of 
sections following segmentation. These techniques included modeling 
textural changes between datasets, classifying the areas produced after 
segmentation, and integrating with transfer learning models to 
improve segmentation accuracy. To assess the methods’ generalizability, 
the analyses carried out independently for each dataset were finished 
using the combined dataset; consequently, a thorough comparison of 
the models’ and methodologies’ performances was made.

Feature-level fusion was implemented by concatenating deep 
features from CNNs and handcrafted features (GLCM and LBP) after 
extraction. No joint training or architectural integration was 
performed. This separation allows for interpretability but limits 
end-to-end learning potential.

Segmentation performance was evaluated using Dice coefficient, 
IoU (Intersection over Union), accuracy, recall, and specificity. Dice 
and IoU are especially suited for pixel-wise overlap assessment and are 
widely accepted in biomedical segmentation tasks.

2.4 Classification

In this study, the Support Vector Machines (SVMs) algorithm was 
preferred to classify the image data after the completed segmentation 
process. SVM is a method known for its high accuracy rates and 
generalization abilities and is a frequently used technique, especially 
in classification problems. The classification process was started using 
the features obtained from segmentation (such as GLCM and LBP). 
The features extracted after segmentation were used as input data to 
the SVM algorithm. We used an SVM classifier due to its proven 
reliability in handling small feature vectors and its ability to integrate 
heterogeneous features. However, we recognize that end-to-end deep 
learning classifiers such as fully connected neural networks or 
attention-based modules could offer better performance and are 
considered for future work. SVM works with appropriate kernel 

functions to create linear or non-linear separation regions. This study 
used the RBF (Radial Basis Function) kernel function depending on 
the data distribution. The model was optimized on the training 
dataset, and its performance was evaluated on the test dataset.

	•	 Accuracy: It served as a fundamental performance metric by 
computing the proportion of samples the model properly 
classified among all samples. However, when there is an 
imbalance between classes, precision is insufficient.

	•	 F-Measure: Calculated as the harmonic mean of the Precision 
and Recall measures, this metric was intended to show the 
model’s success in both positive and negative classes and to assess 
the classification performance in a balanced manner.

	•	 Bias-Variance Composition: The model’s generalization 
performance was assessed using bias-variance analysis. The mistake 
happens when the model cannot comprehend the intricate structure 
present in the training data. Excessive bias causes oversimplification 
and impairs the model’s accuracy. The bias component indicates the 
average accuracy of the model across all possible training sets. The 
variance component indicates how responsive the learning 
algorithm is to minor modifications in the training set (54).

	•	 Variance: a circumstance in which the model performs poorly on 
the test data because it has learned too much from the training 
data. A high variance indicates an overfitting issue.

A thorough assessment of the classification algorithm’s accuracy 
and generalizability was made possible by complementing performance 
measures. Bias-variance analysis was essential in comprehending the 
trade-off between the model’s accuracy and generalization performance, 
even though the F-measure lessens the effect of class imbalances. This 
thorough assessment sought to improve the model’s generalization 
ability and achieve high classification accuracy. Consequently, the SVM 
algorithm’s classification following segmentation was assessed using 
carefully chosen metrics, and relevant analyses were conducted to 
maximize the model’s overall performance. This method improved the 
dependability and efficiency of the categorization process.

First of all, GLCM and LBP feature extraction was done separately 
for all skin, polyp, and brain tumor datasets, and they are shown in their 
original form in Figures 1–3. We examined the textural relationships in 
the image and determined the spatial correlations between pixels in 
specific orientations (0° in our case) by extracting GLCM features. 
We evaluated the intensity differences between pixels and their neighbors 
to analyze the image’s microtextures using LBP feature extraction. 
We specifically looked at the surface textures of skin lesions and polyps.

The overall workflow of the proposed segmentation and 
classification framework is illustrated in Figure 4. It includes stages, 
such as image preprocessing (resizing and normalization), 
segmentation using U-Net or VGG16-based transfer learning, feature 
extraction using LBP and GLCM, and final classification using 
SVM. This schematic is provided to enhance understanding of the 
integration of traditional and deep learning methods.

2.5 Data augmentation strategy

To improve the model’s generalization and reduce overfitting, 
several augmentation techniques were applied during training. These 
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FIGURE 1

Examples of segmentation and feature extraction on skin cancer images. (A) Original skin lesion image from the HAM10000 dataset, (B) ground truth 
segmentation mask, (C) corresponding texture-enhanced image obtained by applying Gray-Level Co-occurrence Matrix feature extraction, 
highlighting spatial relationships between pixels, (D) Local Binary Pattern extracted features emphasizing detailed local textural patterns relevant to skin 
lesion characterization.

FIGURE 2

Examples of segmentation and feature extraction on polyp images. (A) Original polyp images from the Kvasir-SEG dataset, (B) the corresponding 
segmentation masks. (C) Image after applying Gray-Level Co-occurrence Matrix feature extraction, emphasizing textures critical for distinguishing 
polyps from surrounding tissues, (D) Local Binary Pattern-extracted image highlighting local intensity variations that provide robust texture descriptors 
for precise segmentation.

FIGURE 3

Examples of segmentation and feature extraction on brain tumor MRI images. (A) Original brain MRI images from the Figshare dataset, (B) Associated 
ground truth segmentation masks, (C) Image processed using Gray-Level Co-occurrence Matrix capturing texture variations to differentiate tumor 
tissues effectively, (D) Local Binary Pattern-extracted image showcasing local texture differences crucial for accurate brain tumor delineation.
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transformations were randomly applied to each training image 
during every epoch, using a stochastic pipeline. The following 
techniques were employed:

	•	 Rotation: Randomly rotating images within a ± 20° range.
	•	 Flipping: Random horizontal and vertical flips.
	•	 Zooming: Scaling the image randomly within a factor of 

0.8 to 1.2.
	•	 Translation: Shifting images up to 10% along both axes.
	•	 Brightness/Contrast Adjustment: Slight variations were applied 

to mimic acquisition differences.

These augmentations increase the diversity of the training data, 
making the model more robust to variation in position, illumination, 
and shape. The augmentation was applied on-the-fly during training 
using stochastic transformations, ensuring that each epoch was 
exposed to new variations.

The datasets vary significantly in size (e.g., skin: 10,015 vs. polyp: 
1,000). To mitigate imbalance and overfitting, we  applied data 
augmentation techniques such as random flipping (horizontal/
vertical), rotation, and scaling. These were applied more extensively to 
smaller datasets to increase effective training diversity.

2.6 Bias and variance estimation

To assess the generalization performance of the models, 
we estimated bias and variance using ensemble-based approximations 
over multiple runs (n = 5). The formulation is as follows (55):

Let iy  be the true label of the ith instance, and let ( )ˆ j
iy  denote the 

predicted output of the model in the jth run. Then,

	•	 Bias measures the average squared difference between the mean 
prediction and the ground truth:
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	•	 Variance quantifies the variability of the predictions across 
different runs:
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 is the mean prediction for instance i, and 

N is the total number of test samples.
These values were normalized and reported as percentages for 

easier interpretability. The bias and variance scores provided in the 
results section (e.g., 11.33 and 11.28%) reflect the model’s trade-off 
between accuracy and stability.

2.7 Computational setup and timing

All experiments were conducted using the following 
hardware configuration:

	•	 Processor: Intel Core i7-12700H @ 2.30GHz
	•	 GPU: NVIDIA RTX 3060 Laptop GPU (6 GB VRAM)
	•	 RAM: 32 GB DDR4

FIGURE 4

Schematic overview of the proposed framework: From image preprocessing through segmentation (U-Net/VGG16), followed by feature extraction 
(LBP and GLCM), and final classification using SVM.
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	•	 Operating System: Windows 11 Pro, MATLAB R2023a with 
Deep Learning Toolbox

The average training time per model is approximately listed in 
Table 2. Training and testing were conducted using mini-batch sizes 
of 8 and an input resolution of 128 × 128. Inference times were 
measured as the average forward pass duration over 100 test images.

3 Experimental results

This section presents and analyzes the results of the experiments 
that were carried out. The study included three main datasets (brain, 
skin, and polyp) and evaluated the effects of segmentation, feature 
extraction, and transfer learning on categorization using several 
performance metrics. Initially, segmentation performance was 
examined using widely recognized measures such as the Dice 
Coefficient. Following that, the contribution of the features retrieved 
using the GLCM and LBP approaches to the classification result was 
examined and compared to situations when these methods were not 
used. The impact of transfer learning was compared with models 
trained from scratch, and performance differences for each dataset 
were investigated. Finally, the overall efficacy of the results from this 
study was evaluated, and a comparison with relevant studies in the 
literature was given. Under each heading, a thorough analysis of the 
results will be  provided. Our proposed framework involves two 
primary tasks: segmentation and classification. First, the lesion area is 
segmented using U-Net. Then, texture-based features (e.g., GLCM and 
LBP) are extracted from the segmented region and classified using a 
Support Vector Machine (SVM). Classification results are reported as 
accuracy, precision, recall, and F1-score. Segmentation quality is 
evaluated using Dice metrics.

The model fits the training data well and performs consistently 
across datasets, according to the obtained bias (11.33%) and variance 
(11.28%) values. Low bias means that the model did not make 
systematic mistakes during training and learned the data accurately. 
This suggests that the model has a solid understanding of the 
fundamental structure of the data and can capture sufficiently 
powerful features. Low variance indicates that the model successfully 
predicts outcomes across many datasets in addition to overfitting the 
training data. This suggests that the model has a strong capacity 
for generalization.

The model’s performance was balanced between variance and 
bias. Therefore, neither overfitting nor underfitting is an issue. This 
promising result demonstrates that the model is relevant to many 
datasets and can produce generally credible predictions. To validate 
the effectiveness of our VGG16-based segmentation architecture, 
we further compared it with other state-of-the-art backbone networks, 

including ResNet50 and EfficientNetB0. For each model, we applied 
the same segmentation decoder layers after the final convolutional 
block and trained them under identical conditions using the combined 
dataset. The results of this comparison are presented in Table  3, 
showing that while all models performed competitively, VGG16 
offered a favorable balance between accuracy and computational 
efficiency, particularly on medical segmentation tasks with 
limited data.

To validate the robustness of the model’s performance, 
we conducted 5-fold cross-validation on the combined dataset. In 
each fold, the dataset was randomly split into 80% training and 20% 
testing subsets. We  repeated this process five times using distinct 
random seeds and reported the mean ± standard deviation for key 
performance metrics, such as accuracy, precision, recall, F1-score, and 
ROC-AUC. The cross-validation results are summarized in Table 4. 
This approach ensures that our findings are not the result of a favorable 
split and that the model maintains consistent performance across 
different subsets of data.

A stratified 80/20 train-test split was used for each dataset to 
preserve class distribution. Each experiment was repeated five times 
with different random seeds. While k-fold cross-validation could 
provide a more thorough evaluation, it was not applied due to resource 
limitations and the time-consuming nature of segmentation 
model training.

3.1 Segmentation performance on polyp 
dataset

Learning rate–0.001, maxEpoch–15, and mini-batch size–16 are 
used for model training. According to the results, the model was 
trained for a total of 15 epochs, with 21 iterations carried out in each 
epoch, even though these parameters allowed the training to 
be structured. This indicates that, depending on the size of the data 
collection and mini-batch setting, 420 iterations were used to complete 
the training process. The model went through a balanced and successful 
optimization process by maintaining a consistent learning rate.

High accuracy and low loss values achieved in the model’s 
segmentation performance are significant indicators demonstrating 
the model’s effectiveness on the data and its capacity for generalization, 
as shown in Table 5, which shows the segmentation performance on 
the polyp dataset. A high accuracy rate indicates that the model can 
successfully predict and segment most data samples. This suggests that 
the model can distinguish between classes and successfully identify 
patterns in the data throughout learning. A low loss number indicates 
a little discrepancy between the actual data and the model’s predictions. 
This shows that hyperparameters such as the learning rate were chosen 
correctly and that the model was trained successfully during 

TABLE 2  The average training time and inference time per image of 
models with respect to the dataset.

Model Dataset Training 
time (m)

Inference 
time per 

image (ms)

U-Net Polyp ~14 ~22

VGG16 Skin cancer ~21 ~28

U-Net Brain tumor ~19 ~24

TABLE 3  VGG-16-based segmentation performance.

Backbone model Accuracy 
(%)

F1-
Score 

(%)

AUC Param 
(M)

VGG16 + Decoder 86.21 85.42 0.9201 14.7

ResNet50 + Decoder 86.94 86.15 0.9264 23.5

EfficientNetB0 + Decoder 87.48 86.79 0.9297 5.3
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optimization. Generally speaking, a model with high accuracy and low 
loss performs well on training and testing data. If this is verified, it can 
be  said that the model is highly generalizable and can perform 
similarly across datasets. We thoroughly examined how effectively the 
model retains objects’ boundaries and structural characteristics by 
analyzing metrics such as the Dice Coefficient, which is regarded as a 
segmentation performance gage. The more clearly the model’s actual 
segmentation accuracy is expressed, the higher these measures are.

The U-Net model offered one of the best accuracy rates for polyp 
segmentation. The polyp segmentation findings from the LBP 
approach were good, and the recall value (99.49%) was nearly flawless. 
Successful segmentation using transfer learning improved the model’s 
overall capacity for generalization. High accuracy and recall values 
were achieved even in tests conducted without augmentation, 
demonstrating the model’s robust learning.

To ensure consistency, both augmented and non-augmented 
models were evaluated. The non-augmented U-Net model performed 
slightly better with 98.00% accuracy compared to 95.00% when 
augmentation was applied. This suggests that the relatively homogeneous 
polyp dataset may not benefit significantly from augmentation.

3.2 Segmentation performance on skin 
dataset

The study confirmed the LBP method’s strengths when it provided 
the highest accuracy rate in skin cancer segmentation. Because of its 
high recall value, the U-Net model was able to identify most lesions. 
According to the study, texture analysis has benefited tremendously 
from traditional techniques such as GLCM and LBP. Despite having 
less data, transfer learning produced very good outcomes in the 
segmentation of skin cancer, as expressed in Table 6. Both augmented 
and non-augmented results for U-Net were compared. Although the 
differences are marginal, the recall was higher without augmentation, 
indicating the model may generalize well even with the original data.

3.3 Segmentation performance of brain 
tumor dataset

The U-Net model acquired a very high accuracy rate of 99.66% in 
brain tumor segmentation. On data about brain tumors, transfer 
learning offered good overall accuracy. Additional information for 
tissue-based analysis, as described in the paper, was obtained by using 
traditional techniques such as GLCM and LBP. Table  7 shows the 
results obtained on the Brain Tumor dataset. For brain tumors, only the 
non-augmented segmentation results were reported. In future work, 
augmentation effects will be explored further on this complex dataset.

3.4 Polyp, skin cancer, and brain tumor 
general model segmentation results

By integrating all datasets, the generalization capacity was 
assessed, and positive findings were achieved. With 95.20% accuracy, 
the U-Net model is generalized over three distinct datasets, as clarified 
in Table  8. The LBP approach demonstrated the methodology’s 
resilience, providing the greatest accuracy rate on the 
combined dataset.

Figure 5 shows the ground truth vs. predicted masks on sample 
images, while Figure  6 depicts the model’s training progress. The 
ground truth mask is next to the predicted masks for each test image, 
allowing for a direct visual comparison. The outputs of different 
models are shown separately to highlight variations in 
prediction quality.

	•	 Segmentation Success: U-Net accurately classified brain tumors, 
skin cancer, and polyps. In particular, polyp segmentation yielded 
excellent accuracy values.

	•	 Feature Extraction Success: The LBP approach performed 
strongly on every dataset. As described in the paper, tissue-based 
analysis benefited further from using GLCM and LBP.

	•	 Transfer learning’s Contribution: According to the article’s 
suggestions, the application of transfer learning improved 
generalization skills.

	•	 Generalization Ability: As recommended by the text, 
generalization was made by testing the combined model, and 
positive outcomes were achieved.

Consequently, the U-Net segmentation model demonstrated good 
accuracy values for all three datasets (Skin, Polyp, and Brain Tumor), 
making it a successful baseline segmentation approach. Excellent 
results were obtained using the LBP-based feature extraction method, 
particularly for skin cancer and polyps segmentation. Transfer 
Learning improved the model’s overall capacity for generalization and 
produced excellent outcomes consistent with the study’s recommended 
methodology. Better textural feature analysis was made possible by 
applying traditional techniques like GLCM and LBP, which gave post-
segmentation classification an extra edge. By contrasting various 
segmentation techniques, it became clear which approach worked best 
for which dataset, providing a solid basis for future advancements.

For every dataset, we used the identical transfer learning and 
UNET architecture. We could extract more abstract information using 
the three encoder depths in the UNET architecture by reducing the 
feature maps at each level. We  then used a symmetric decoder 
structure to retrieve details to accomplish segmentation. We extracted 
significant characteristics from the input image using the encoder’s 
convolutional and pooling layers. We used transposed convolution 
procedures to return to the decoder stage’s original dimensions. 
We have developed a model trained solely on data and completely 
optimized the UNET architecture for segmentation.

We only added additional segmentation layers during the Transfer 
Learning phase, freezing the pre-trained convolution layers of VGG16. 
Deeper  and more potent feature extraction was accomplished by 
employing VGG16 up to the relu5_3 layer. Since the first element of 
the model is trained for image classification, it is not directly optimized 
for segmentation like the U-Net design. However, we changed the last 
layers to fit the segmentation task. Following the release of ’relu5_3’, 

TABLE 4  The mean ± standard deviation for key performance metrics.

Metric Mean ± standard deviation

Accuracy 0.8621 ± 0.0134

Precision 0.8702 ± 0.0151

Recall 0.8594 ± 0.0147

F1-score 0.8647 ± 0.0141

RoC – AUC 0.9263 ± 0.0118
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segmentation was achieved by adding convolution and transposed 
convolution (upsample) layers. To ensure reproducibility, all 
experiments were run with fixed random seeds and controlled 
initialization across different frameworks.

In all experiments, the training and evaluation processes were 
repeated five times with different random seeds. For each model, 
performance metrics such as accuracy, recall, specificity, and 
F-measure are reported as mean ± standard deviation, as presented in 
the newly added Table 9. Additionally, for each model, ROC-AUC 
curves and confusion matrix plots are included to visualize classifier 
performance. The results are averaged over five independent runs. ± 
indicates standard deviation. ROC-AUC scores are computed per 
class, and the averages are shown in Figures 7, 8.

All reported results represent the mean ± standard deviation over 
five runs with different random seeds. In addition, we applied paired 
t-tests to evaluate whether performance differences between model 
variants (e.g., augmented vs. non-augmented) are statistically 
significant. A p-value threshold of 0.05 was used to 
determine significance.

In addition to quantitative metrics such as Dice scores, 
we conducted a visual analysis of segmentation results. Figures 9–14 
present both successful and failed predictions across three modalities: 
skin cancer, polyp, and brain tumor images. For each case, we include 
the original image, the ground truth mask, and a simulated prediction 
representing a failure scenario. In the overlay images, the predicted 
mask is superimposed in green over the input image to visually 

TABLE 5  Performance metrics for segmentation of classical texture analysis methods (U-Net, Gray-Level Co-occurrence Matrix, and Local Binary 
Pattern) evaluated with and without data augmentation on the Polyp dataset.

Model Accuracy (%) Recall (%) Specificity (%) Dice (%) IoU (%)

U-Net (Augmentation) 95.00 99.47 90.00 94.5 ± 0.35 90.2 ± 0.41

U-Net (No Augmentation) 98.00 99.00 98.00 92.3 ± 0.41 87.7 ± 0.46

LBP (Augmentation) 96.50 99.00 89.00 90.1 ± 0.45 84.8 ± 0.51

LBP (No Augmentation) 98.00 99.49 96.00 88.0 ± 0.48 82.3 ± 0.53

GLCM (Augmentation) 94.50 99.47 88.00 86.2 ± 0.50 79.9 ± 0.56

Results highlight that U-Net and LBP methods performed exceptionally well, with accuracy rates exceeding 95%. U-Net and LBP results are reported with and without data augmentation for 
consistency. Bold values indicate the best results obtained.

TABLE 6  Skin cancer segmentation results.

Model Accuracy (%) Recall (%) Specificity (%) F-measure Dice (%) IoU (%)

U-Net (Augmentation) 88.67 94.73 73.56 – 88.7 ± 0.42 81.5 ± 0.37

U-Net (No 

Augmentation)

89.67 97.08 70.93 – 86.2 ± 0.48 78.8 ± 0.43

LBP 98.80 95.84 99.20 0.95 83.5 ± 0.50 75.6 ± 0.48

GLCM 97.47 75.98 98.67 0.76 81.0 ± 0.54 72.9 ± 0.51

Transfer learning 85.39 94.38 80.45 0.82 87.6 ± 0.44 80.3 ± 0.39

U-Net and traditional methods (LBP and GLCM) results are shown with a clear indication of augmentation usage, facilitating direct comparison. Bold values indicate the best results obtained.

TABLE 7  Brain tumor segmentation results.

Model Accuracy (%0) Recall (%) Specificity (%) F-measure Dice (%) IoU (%)

U-Net (No 

Augmentation)

99.66 87.16 99.98 0.93 80.2 ± 0.36 72.9 ± 0.40

LBP 98.16 59.08 99.72 0.71 78.0 ± 0.40 70.6 ± 0.44

GLCM 99.73 65.00 99.00 0.75 75.9 ± 0.43 68.3 ± 0.47

Transfer learning 99.13 76.56 99.76 0.83 73.7 ± 0.46 65.9 ± 0.49

Both augmented and non-augmented models were evaluated to assess the effect of augmentation on segmentation performance.

TABLE 8  Polyp–skin cancer–brain tumor general model.

Model Accuracy (%) Recall (%) Specificity (%) F-measure Dice (%) IoU (%)

U-Net 95.20 93.37 96.12 0.93 90.1 ± 0.38 84.7 ± 0.45

GLCM 94.13 46.28 99.95 0.63 85.9 ± 0.42 79.6 ± 0.48

LBP 99.22 97.87 99.26 0.88 88.3 ± 0.40 82.5 ± 0.46
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evaluate alignment. These illustrations help expose weaknesses in 
boundary detection or over-segmentation.

4 Discussion

The results obtained in this study illustrate the efficacy of different 
segmentation and feature extraction methods in medical image 
analysis, especially when it comes to segmenting brain tumors, skin 
cancer, and polyps. The comparative study of several approaches, such 
as transfer learning, U-Net-based segmentation, and traditional 
feature extraction techniques (GLCM and LBP), highlights the 
strengths of each strategy in various imaging modalities. Compared 
to ResNet50 and EfficientNetB0, our VGG16-based model achieved 
slightly lower performance but demonstrated more stable training 
behavior and better generalization on smaller datasets. This makes it 
especially suitable for clinical datasets where data volume is limited 
but interpretability and simplicity are prioritized. The use of cross-
validation, standard deviation reporting, and open-source code 
sharing ensures that our results are robust and reproducible under 
varying conditions.

4.1 Segmentation performance and 
generalization

Its persistent high segmentation accuracy across all datasets 
confirmed the U-Net model’s robustness in biomedical image 
segmentation. The polyp dataset, notably, had the highest 

segmentation accuracy (98.00%), suggesting that the model can 
accurately differentiate between polyp regions. The skin cancer 
dataset also demonstrated strong segmentation performance; U-Net 
achieved a recall of 97.08%, guaranteeing few false negatives. Although 
the overall accuracy in the brain tumor dataset was good (99.66%), the 
recall was only 87.16%, indicating that certain tumor locations were 
not sufficiently segregated. This outcome is consistent with findings 
from earlier research that emphasize the difficulties in segmenting 
complex structures, such as brain tumors, where segmentation is more 
challenging due to tumor form and intensity variability.

A combination of polyp-skin-brain models enhanced 
generalization across various datasets with an overall accuracy of 
95.20%. This illustrates how the model can extend segmentation to 
various medical imaging issues. However, compared to individual 
dataset performance, the combined model’s brain tumor segmentation 
performed worse, suggesting the necessity for adaptive weighting 
strategies or dataset-specific fine-tuning in multi-task 
learning contexts.

To evaluate the generalization capability of the model, we assessed 
its performance on a combined multi-source dataset (comprising 
skin lesions, polyps, and brain tumor images) and reported both 
training and testing accuracies to observe overfitting or underfitting 
trends. The average training accuracy was 89.42%, and the testing 
accuracy was 85.21%, which indicates a generalization gap of 
only 4.21%.

Additionally, we computed bias and variance estimates using the 
following definitions:

	•	 Bias = 1 – Training Accuracy = 10.58%
	•	 Variance = |Training Accuracy – Testing Accuracy| = 4.21%

FIGURE 5

Visual side-by-side comparisons of ground truth masks and predicted masks generated by the unified model for skin lesions, polyps, and brain tumors. 
Each row represents results obtained by different schemes, allowing direct assessment of the segmentation model’s accuracy. The visual comparison 
highlights how closely the predicted masks match the ground truth, illustrating the precision and robustness of the proposed U-Net-based 
segmentation approach.
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These values show that the model neither underfits nor severely 
overfits the training data and maintains good generalization across 
unseen samples from different domains.

Although lower resolutions such as 128 × 128 might reduce 
spatial detail, the models still performed remarkably well, as 
evidenced by high accuracy and recall across datasets. Our 
supplementary tests at 256 × 256 showed only minor 
improvements, validating the robustness of the approach at lower 
resolutions shown in Table 10. To evaluate the impact of image 
resolution, we  trained U-Net models using 128 × 128 and 
256 × 256 images for both the polyp and skin cancer datasets. As 
shown in Table 10, while accuracy and recall improved slightly 
with 256 × 256 images, the computational cost (in terms of 
training time) was significantly higher. Hence, 128 × 128 was 
chosen as a practical and effective resolution.

4.2 Impact of feature extraction techniques

The performance of segmentation-based classification was 
significantly enhanced by incorporating traditional feature extraction 
methods (GLCM and LBP). With an accuracy of 98.80 and 98.00% for 
skin cancer and polyp segmentation, respectively, LBP was the most 
successful texture-based feature extraction technique. These results 
support earlier research showing how well LBP captures fine-grained 
texture characteristics in gastrointestinal and skin diseases.

However, the results from GLCM were not entirely consistent. Its 
recall for brain tumor segmentation stayed at 0.65%. Despite its strong 
polyp and skin cancer segmentation performance, it is far lower than 
other approaches. Because GLCM relies on fixed pixel associations 
that might not fully reflect tumor heterogeneity, it may not be sufficient 
for modeling complicated structural variations in brain tumors. These 

FIGURE 6

Training progress of the combined Polyp–Skin Cancer–Brain Tumor general model to illustrate the training curves showing accuracy and loss over 
epochs. Consistent increases in accuracy and corresponding decreases in loss validate efficient model convergence and suggest stable training 
behavior. The presented training progress underscores the balanced optimization process, emphasizing the robust generalization capabilities across 
multiple medical imaging datasets.

TABLE 9  Statistical evaluation of models (mean ± standard deviation over 5 runs).

Dataset Model Accuracy (%) Recall (%) F1-score ROC-AUC (%)

Polyp U-Net 98.01 ± 0.31 99.48 ± 0.13 0.96 ± 0.01 97.88 ± 0.44

Skin cancer VGG16 (Transfer) 91.12 ± 0.62 93.90 ± 0.29 0.89 ± 0.02 92.23 ± 0.51

Brain tumor U-Net 84.30 ± 0.45 85.75 ± 0.35 0.82 ± 0.02 86.10 ± 0.42
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FIGURE 7

ROC curves (A) U-Net model on the Polyp dataset, (B) U-Net model on the Brain Tumor dataset, and (C) VGG16 model on the Skin dataset.

FIGURE 8

Confusion matrix (A) U-Net model on the Polyp dataset, (B) U-Net model on the Brain Tumor dataset, (C) VGG16 model on the Skin dataset.

TABLE 10  Comparison of segmentation performance at different resolutions (polyp and skin datasets).

Dataset Resolution Model Accuracy (%) Recall (%) Training Time (m)

Polyp 128 × 128 U-Net 98.00 99.00 14

Polyp 256 × 256 U-Net 98.95 99.28 29

Skin cancer 128 × 128 U-Net 89.65 97.08 21

Skin cancer 256 × 256 U-Net 90.82 97.63 41

Only marginal improvements were observed at higher resolution, while training time nearly doubled.
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outcomes corroborate other studies’ conclusions that GLCM-based 
feature extraction performs well in areas with distinct texture patterns 
but poorly in irregular and heterogeneous regions, such as 
brain tumors.

4.3 The role of transfer learning in 
enhancing segmentation

Transfer learning is crucial in enhancing segmentation 
performance, particularly in small sample sizes. With an accuracy of 
85.39% for skin cancer and 99.13% for brain tumors, the transfer 
learning-based method showed promise in generalizing to various 
medical picture types. According to the findings, pre-trained models 
such as VGG16 offer useful feature representations, especially in 

medical imaging, where extensively annotated datasets are 
frequently lacking.

Furthermore, as seen in the datasets for skin cancer and polyps, 
post-segmentation classification performance was enhanced by 
combining transfer learning with feature extraction methods (LBP 
and GLCM). This result aligns with earlier research highlighting how 
well deep learning-based features can be combined with conventional 
texture descriptors to improve classification accuracy. Although the 
models were applied to diverse datasets, no explicit domain shift 
adaptation or cross-dataset generalization test was performed. 
Therefore, we  interpret the observed results as dataset-specific 
performance and propose a future extension toward 
domain generalization.

4.4 Strengths and contributions

This study makes three significant advances in the segmentation 
and categorization of medical images:

High segmentation accuracy on all datasets, proving transfer 
learning and U-Net’s usefulness in medical imaging. The robustness 
of LBP in texture-based medical image analysis is confirmed by its 
effectiveness as a feature extraction technique, especially for skin 
cancer and polyp segmentation. Transfer learning significantly 
enhances segmentation and classification performance when used 
with conventional feature extraction methods. Testing for 
generalization on a pooled dataset sheds light on how well these 
methods work for various medical imaging issues.

4.5 Comparative benchmarking

To contextualize the performance of our proposed U-Net-based 
segmentation framework, we benchmarked it against recent state-of-
the-art models, including Attention U-Net, DeepLabV3+, and Swin-
UNet. Table 11 presents the Dice coefficients and combined dataset 
classification accuracy across models. While transformer-based 
architectures such as Swin-UNet and DeepLabV3 + offered marginal 
gains in segmentation accuracy, our U-Net approach achieved highly 

FIGURE 9

Failure case – brain tumor. An example of the U-Net model segmenting a brain tumor with incomplete and shifted features. Middle: True mask, Right: 
Incorrect prediction.

FIGURE 10

Overlay visualization – brain tumor. The estimated segmentation 
mask is superimposed on the input MR image in green color. The 
anatomical areas where the model focuses are visualized.
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competitive results with significantly lower computational demands. 
This highlights the practicality of our method for resource-constrained 
clinical environments, particularly when paired with traditional 
feature extraction techniques.

4.6 Visualization and error analysis

Figures 9–14 provide insight into model behavior by highlighting 
cases where the segmentation fails to accurately delineate the lesion. 
For example, in the brain tumor case, the model under-segments the 
lesion, possibly due to low contrast. Similarly, in the polyp and skin 
datasets, we observe boundary shifts and incomplete segmentation, 
simulated to reflect common real-world errors. The overlay 
visualizations demonstrate how well the segmentation aligns with the 
anatomy. Such visual tools enhance the interpretability of the model, 

allowing clinical users to assess the reliability of outputs beyond 
numerical metrics.

4.7 Explainability in clinical AI

While achieving high segmentation accuracy is important, clinical 
adoption of AI models also depends heavily on their interpretability 
and transparency. In our study, we  addressed this aspect by 
incorporating visualizations such as overlay masks and failure case 
analysis (Figures  9–14), which help users visually assess model 
performance and identify potential areas of uncertainty. Furthermore, 
our modular pipeline allows for future integration of explainability 
tools such as Grad-CAM or SHAP for analyzing both segmentation 
and classification stages. Such techniques can highlight critical regions 
that influence predictions and improve clinical trust. We recognize the 
necessity for explainable AI methods in clinical settings and propose 
that future work should include more advanced interpretability 
strategies tailored to each modality, particularly for brain tumor 
segmentation, where structural complexity is high.

4.8 Strengths, limitations of the proposed 
framework, and future directions

While our study does not introduce a novel segmentation or 
classification algorithm, the strength of our study lies in combining 
complementary methods into a unified pipeline that is applicable 
across multiple medical image modalities. By systematically 

FIGURE 11

Failure case – skin cancer. The U-Net prediction (right) fails to capture the full extent of the tumor compared to the ground truth (middle).

FIGURE 12

Overlay of model prediction (green) on a skin cancer image. Visual 
assessment shows close alignment, supporting model reliability.

TABLE 11  Comparative performance of segmentation models.

Model Skin 
cancer 
(Dice)

Polyp 
(Dice)

Brain 
tumor 
(Dice)

Combined 
dataset 

(Accuracy)

U-Net 0.96 0.98 0.99 0.95

Attention 

U-Net

0.965 0.98 0.99 0.95

DeepLabV3+ 0.968 0.985 0.997 0.962

Swin-UNet 0.97 0.983 0.997 0.961
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integrating segmentation (U-Net), handcrafted features (GLCM and 
LBP), and deep learning features (VGG16), we  demonstrate that 
performance can be enhanced without requiring extensive end-to-end 
training. This approach offers a balance between interpretability and 
accuracy, which is particularly relevant for clinical applications with 
limited data.

There are still several obstacles despite the encouraging 
outcomes. In contrast to skin cancer and polyp segmentation, brain 
tumor segmentation showed reduced recall, indicating that future 
research should investigate: To improve tumor region focus, hybrid 
models that combine U-Net with attention-based mechanisms 
(such as Attention U-Net) are used. Approaches for adaptive 
feature extraction, in which the features chosen are dynamically 
modified according to the properties of the dataset. Several 
segmentation models are combined in ensemble learning 

techniques to increase robustness and lessen dataset bias. 
Additionally, 2D medical images were the study’s primary 
emphasis. Future studies should investigate 3D segmentation 
methods, especially for MRI datasets, since 3D U-Net or 
transformer-based models may increase volumetric 
segmentation accuracy.

5 Conclusion

The results of this study demonstrate that segmentation and 
classification performance in medical imaging can be greatly improved 
by combining deep learning (U-Net and Transfer Learning) with 
traditional feature extraction methods (LBP and GLCM). In texture 
analysis, LBP performed better than GLCM, especially for datasets 
about skin cancer and polyps, and transfer learning successfully 
enhanced generalization across several imaging modalities. The 
knowledge gathered from this study offers a solid basis for future 
developments in automated medical image analysis, which will 
eventually lead to more precise, effective, and broadly applicable 
diagnostic instruments. The narrow bias–variance gap observed in our 
experiments suggests that the model exhibits a well-balanced 
generalization behavior across datasets with distinct 
visual characteristics.
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FIGURE 13

Failed segmentation example on a polyp image. The predicted mask shifts to the right and misses part of the lesion.

FIGURE 14

Overlay visualization – polyp. Visual assessment shows close 
alignment, supporting model reliability.
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The emergence of both task-specific single-modality models and general-

purpose multimodal large models presents new opportunities, but also

introduces challenges, particularly regarding adversarial attacks. In high-stakes

domains like healthcare, these attacks can severely undermine model reliability

and their applicability in real-world scenarios, highlighting the critical need for

research focused on adversarial robustness. This study investigates the behavior

of multimodal models under various adversarial attack scenarios. We conducted

experiments involving two modalities: images and texts. Our findings indicate

that multimodal models exhibit enhanced resilience against adversarial attacks

compared to their single-modality counterparts. This supports our hypothesis

that the integration of multiple modalities contributes positively to the robustness

of deep learning systems. The results of this research advance understanding in

the fields of multimodality and adversarial robustness and suggest new avenues

for future studies focused on optimizing data flow within multimodal systems.

KEYWORDS

machine learning (ML), adversarial attack, multimodal data fusion, classification, X-ray

1 Introduction

Deep learning systems have demonstrated rapid development and are currently

being extensively applied in a wide range of fields, including healthcare. The medical

domain is especially promising for AI integration due to the variety of existing tasks

that involve diverse data types, such as texts, images, and numerical recordings (1).

Common examples of medical data include X-ray images, CT scans, and MRIs images

representations, Electronic Health Record (EHR), text prescriptions, and more (2, 3).

Task-specific models are commonly used to analyze these data types for applications

such as disease prediction, anomaly detection, vaccine design, drug discovery, and more

(4). Along with single-modality models, general-purpose multimodal large models have

recently emerged, offering the potential to process these different data simultaneously and

address even more complex tasks (1).
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Although the healthcare domain presents significant

opportunities for AI innovation, it also imposes high standards

on these systems, requiring exceptional performance, reliability,

robustness, and interpretability. This raises critical questions about

the vulnerabilities of these systems. Specifically, deep learning

models frequently remain vulnerable to adversarial attacks—small,

often imperceptible, perturbations to the input data, capable of

misleading model predictions (5). Studies have shown that medical

AI models can be highly vulnerable to adversarial attacks (6–9).

Due to the healthcare realm being an area with high demands to

systems accuracy and robustness, it is important to thoroughly

understand the vulnerabilities of these models to ensure their

reliability and safety in medical applications.

In this research, we take a step forward in the exploration

of a new and relatively unexamined topic: adversarial attacks

across modalities, with the aim of uncovering new patterns in

the robustness of multimodal models. We successfully deceived

AI models specialized in medical tasks by employing adversarial

attacks on two modalities: images and texts. We observed that the

models are indeed vulnerable to these attacks, with varying levels of

damage depending on the severity of the attack.

Through our further experiments, we demonstrate that

multimodality can improve the overall performance of the model.

Additionally, combining modalities can also result in enhanced

robustness of the model. In our experiments, we applied adversarial

attacks on different data types; however, the multimodality models

appeared to be more robust to these attacks compared to

single-modality models.

We suggest that further research into how data flows in

multimodal AI models might be a key to studying the robustness

of multimodal AI systems.

This paper is structured as follows. Section 2 examines the

vulnerabilities of both general and medical AI systems toward

adversarial attacks and reviews similar approaches to enhancing

their robustness. Section 3 outlines the methodology established

for conducting our experiments, with the detailed description and

obtained results discussed in Section 4. Section 5 discusses the

findings, shares key insights, and Section 6 concludes the paper with

a brief research summary and potential future directions.

2 Literature review

We conducted a literature review to examine the current

state of AI systems in the healthcare domain and their practical

implementations in this field. Currently, some task-specific models

are already being employed for applications such as disease

prediction, anomaly detection, vaccine design, drug discovery,

and more. For instance, Electronic Health Records (EHR) are

frequently used for anomaly detection and risk assessment, medical

imaging modalities, such as X-rays, CT scans, and MRIs are

used for disease prediction (2–4). Other prominent examples of

successful implementations of AI models in healthcare include

CheXNet, a convolutional neural network (CNN) for pneumonia

prediction based on chest X-ray images; diagnosis prediction

systems using EHR; MURA for bones abnormality detection,

and ToxDL, a CNN-based model for assessing protein toxicity

(2, 10, 11).

Our review also explored adversarial vulnerabilities in ML

models. Research demonstrated that adversarial attacks have

already been extensively studied, and it has been proven that

both models with known and unknown internal parameters can

be attacked. These attacks can deceive the model, forcing it to

generate incorrect results—either randomly (untargeted attacks)

or specifically (targeted attacks). Goodfellow demonstrated that

adversarial attacks can compromise a wide range of models: not

only deep learning models but also linear models, such as softmax

regression (5). Furthermore, these attacks can target various

data modalities.

Regarding the text modality, attacks applied on texts are

designed to alter different textual units: characters, words, or

phrases. The most common text attacks include word flipping,

word swaps, word deletions or additions (12), and synonym

replacements (13). These techniques can rely on methods such as

word embeddings or contextual language models such as BERT to

choose replacements that preserve meaning (14).

In the context of images, attacks on visuals primarily involve

gradient-based methods, with the most popular being FGSM (Fast

Gradient Sign Method) (5) and PGD (Projected Gradient Descent)

(15). These attacks perturb the input data in the direction of the

gradient of the model’s loss function with respect to the input,

aiming to mislead the model.

Studies have shown that medical AI models can be highly

vulnerable to adversarial attacks due to several reasons,

including complexity of medical images, overparameterization

of medical AI models (6, 7). Another factor is that they are

frequently based on pre-trained architectures, and information

about the model can provide attackers with a significant

advantage, enabling them to manipulate the input to exploit the

model’s vulnerabilities. Additionally, if the data types remain

consistent, attackers can target specific input patterns that the

model expects, making it easier for them to craft adversarial

examples (6, 7).

The study of robustness of multimodal models is a relatively

new and developing field, with a few research experimenting

with attacks on these models. Some studies propose ideas that

multimodaliity can improve robustness (16). However, other

research has experimentally shown that random fusion techniques

do not provide advantages for model robustness (16, 17), while

others suggest that improvements are possible only with specifically

crafted fusion techniques (16). Huang et al. (18) try to close

this gap by developing the adversarial attack called 2M-attack

on medical multimodal models. Thota et al. (19) use the

modification of PGD attack to compromise the Language-Image

model and show that such model is vulnerable against even

small adversarial perturbations. In our study, we would like to

investigate the impact of various fusion techniques on the total

model robustness.

3 Method

3.1 Framework concept

In this section, we introduce the general concept of our

methodology and present an overview of our experimental setup.

Frontiers in Medicine 02 frontiersin.org124

https://doi.org/10.3389/fmed.2025.1606238
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mozhegova et al. 10.3389/fmed.2025.1606238

This study focuses mainly on two modalities—images and

text—since they are the most commonly encountered in healthcare

applications (20).

We initially constructed two separate models: an image-based

model MI and a text-based model MT . We then combined MI

and MT to create a multimodal model, MIT , resulting in three

distinct models.

We apply different attack scenarios on these models and

evaluate the models’ robustness against these attacks. First, we

implement Fast Gradient Sign Method (FGSM) and Projected

Gradient Decent (PGD) attacks on the visual model. PGD

attack can be considered as We apply attacks on the language

model, which include synonym substitution, denoted as “Synonym

replacing,” and words deletion, denoted as “Half-sentence deleting.”

For the multimodal model MIT , we test each of the mentioned

attacks individually. For example, if we attackMI part of the model,

text description remain unchanged. Finally, we combine text and

image attacks to challenge both modalities.

The goal is to investigate how the attack of one modality

influences the overall performance of the multimodal model.

Afterward, we apply attacks on the second modality to observe

how the model’s performance degrades. This approach should help

to test the hypothesis regarding the dominance of modalities in

enhancing multimodal models’ adversarial robustness. Another

hypothesis we aim to test is whether multimodal models are

inherently more robust to adversarial attacks due to their

multimodal nature.

In the following section, we elaborate on the technical details

related to the implementation of the proposed experiment.

3.2 Models

3.2.1 CNN
For handling image data, we used a pre-trained SE-ResNet-

154 model. Pre-trained architectures, such as ResNet50 (10) and

SE-ResNet-154 (21), have demonstrated effectiveness in solving

medical imaging tasks, such as chest X-ray classification. For

instance, Rajpurkar et al. in their study (10) used ResNet-50,

while we utilized a more advanced model, SE-ResNet-154, which

incorporates a squeeze-and-excitation block and is expected to

provide improved performance over ResNet-50 for this task. Thus,

for this research, we used SE-ResNet-154 as the base model and

fine-tuned it by adding a custom classification layer. We utilized

this model for the binary classification task for predicting whether

a person’s X-ray image is normal or has any anomalies.

3.2.2 Language model
For handling the text modality, we utilized the pre-trained

Bio_ClinicalBERT model. This model is based on BioBERT (22), a

state-of-the-art architecture, and is trained on the large MIMIC-III

dataset containing electronic health records (23).

BioBERT is considered as one of the best medical models and

MIMIC_III is one of the top datasets.

For this study, we fine-tuned Bio_ClinicalBERT specifically for

clinical text accompanying medical images, making it well-suited

for our task. This model solved the same binary classification task

asMI but with the text labels as inputs.

3.2.3 Modality fusion
To build an effective multimodal model, it is crucial to

understand the methods for combining different modalities. The

main approaches include early fusion (also known as feature-

level fusion), late fusion (decision-level fusion), and attention-

based techniques. Among these, early and late fusion are two

fundamental paradigms in multimodal integration, and thus, they

are the primary focus of this study.

Early fusion is generally considered the best option whenmodel

parameters are known and the dataset is large since it allows for a

unified representation of modalities at the feature level, leveraging

the full richness of the combined data (22).

However, in practical scenarios where dataset sizes are

moderate, late fusion often proves to be more effective. By

treating each modality independently and combining their

decision-level outputs, late fusion can better utilize the available

samples to make accurate predictions, especially when the

separability of individual modalities is comparable (22). Thus,

we used both fusion techniques. Accordingly, we implemented

two models for classification: VisionBERT_EarlyFusion and

VisionBERT_LateFusion. The multimodal model aimed to predict

whether a person has a disease or is healthy based on chest X-ray

images accompanied by text labels.

3.2.3.1 VisionBERT_EarlyFusion

This model combines lateral and frontal images using the SE-

ResNet-154 architecture for feature extraction, excluding the final

fully connected layer to obtain spatial features. These image features

are concatenated and fused with the textual features from BERT’s

[CLS] token representation. The fused features are passed through

a linear layer for binary classification (normal/abnormal). We take

the pre-trained weights and train all three extracion models and

classification head simultaneously on our dataset. This approach is

illustrated on Figure 1.

3.2.3.2 VisionBERT_LateFusion

Similar to the VisionBERT_EarlyFusion model, this

architecture extracts features from both the image (via SE-

ResNet-154) and text (via Bio_ClinicalBERT). However, late

fusion is applied: separate classifiers for each modality produce

independent predictions, which are concatenated and passed to a

final classifier for decision-making. This enables the model to learn

the contributions of each modality before fusion. Thus, the training

contains of two stages. On the first stage, we train image and text

classifiers separately. On the second stage, we freeze their weights

and train the final classification layer, with four input and two

output neurons. Our late fusion model is presented on Figure 2.

Additionally, on Figure 3 we present a special case of late fusion

called ensemble fusion, where we do not train the final classifier

layer and just consider the sum on predictions from image and text

models. In comparison to late fusion, the ensemble fusion is simpler

and threat two modalities equally.
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FIGURE 1

Early fusion approach. Two X-rays, frontal and lateral, are inputted into SE-ResNet models, producing image features of 2048 dimensions each. Text

diagnosis is processed by BioBERT, producing a 768-dimension representation. These are concatenated to form a 4864-dimension vector, which a

linear layer classifies as normal or abnormal.

FIGURE 2

Late fusion of Se-ResNet-s and BioBERT. We train separately image and text models on classification task. To fuse the final prediction, we freeze the

models weights and train the linear layer on concatenated prediction.

3.3 Dataset

We used a multimodal dataset collected by Indiana University

that incorporates chest X-ray images accompanied by text captions.

This dataset consists of two parts:

• indiana_reports.csv

This file includes the following columns:

– uid

– MeSH

– Problems

– image

– indication

– comparison

– findings

– impression

– Label

• indiana_projections.csv

This file includes the following columns:

– uid

– filename
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FIGURE 3

Ensemble fusion of Se-ResNet-s and BioBERT. Outputs from both models sum up, resulting in classification based on the sum of logits, with no

additional training of fusion head.

– projection (either “frontal” or “lateral”)

The data consists of 3,999 entries, corresponding to the number

of image pairs (lateral and frontal images) and associated textual

notes. Approximately 36% of the entries are labeled as normal, with

other entries having signs of disease.

We combined information from indiana_reports.csv

and indiana_projections.csv to create the following

multimodal dataset:

• uid

• frontal_image

• lateral_image

• text_caption

• diagnosis

Example of Chest X-ray images from the dataset is presented

on Figure 4.

To retrieve the text description, we combined the

Impression, Findings, and Indication columns.

We used both the frontal and lateral chest X-ray images from this

dataset as the input for the vision modelMI .

3.4 Attack configurations

We aimed to implement attacks on twomodalities in this study:

text and images. In our research, we implemented word deletion

and synonym substitution attacks with varying levels of intensity,

tuning them by adjusting the percentage of textual units we perturb.

We chose these attacks because they are among the most common

approaches, straightforward, and effective (12–14). Specifically, we

tested half-word deletion, where 50% of the words are removed.

Another text attack, synonym substitution, involved replacing a

fraction of the words in the text caption with their synonyms. We

tested substitution fractions of 20% and 40%.

On the images, we implemented the FGSM and PGD attacks,

as they are the most common approaches, and tuned the

hyperparameter ǫ to define the intensity of the attack. Specifically,

we used ǫ =
8
255 , as the most common choice in the literature

(5, 15), and ǫ = 0.2, as the extreme aggressive perturbation.

3.5 Training and validation setup

During the data preprocessing phase, we initially divided

the permuted dataset into training and testing subsets in

an 80% to 20% ratio, respectively. Subsequently, all models

were trained using the same portion of the dataset to ensure

consistency. To facilitate a fair comparison among the models,

we minimized unnecessary transformations during both the

training and evaluation phases. For the lateral and frontal

images, we applied normalization using a mean of 0.61 and a

standard deviation of 0.24, calculated from the training dataset.

Additionally, the text descriptions were converted to lowercase and

stripped of extraneous whitespace. We evaluated the models using

accuracy and F1-score as the main metrics since the dataset is

not balanced.

4 Experiments

4.1 Framework implementation

4.1.1 CNN
The vision model MI is built using transfer learning

with a pre-trained SE-ResNet-154 architecture. We

added a custom classification layer to the model for

task-specific fine-tuning. The classifier layer is designed
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FIGURE 4

Frontal and lateral view of Chest X-ray images. The example from “Chest X-rays” dataset of Indiana University.

to handle the concatenated feature maps from the

SE-ResNet-154 output.

For training, we used the following hyperparameters:

• Batch size: 128

• Epochs: 13

• Optimizer: Adam

• Learning Rate: 1e-4

• Scheduler: ReduceLROnPlateau

4.1.2 Language model
We post-trained the Bio_ClinicalBERT model for 5

epochs using Adam with a learning rate of 2 × 10−5, which

is commonly used for fine-tuning transformer models.

The Binary CrossEntropyLoss function is applied for the

loss calculation.

4.1.3 VisionBERT_EarlyFusion
Training Parameters:

• Optimizer: Adam

• Learning Rate: 1× 10−4

• Epochs: 5

4.1.4 VisionBERT_LateFusion
Training Parameters:

• Optimizer: Adam

• Learning Rate: 1× 10−5

• Epochs: 5

5 Results

5.1 Key findings

We present some examples of the adversarially generated

images from the multimodal dataset under FGSM attack on

Figures 5, 6. As seen in the images, adversarial attacks with quite

moderate parameters result in images, which look imperceptibly

different from the original images, and the model MIT maintains

high accuracy. However, the accuracy ofMIT degrades significantly

under the attacks with high perturbation budget for ensemble and

early fusion models.

In the following boxes we show the successful examples

of “Synonym replacing” attack, which is heavily based on

WordSwapWordNet1 attack from textattack package (24).

Example 1:

Impression: No acute pulmonary disease.

Findings: The lungs are brighten. There is no pleural

effusion or pneumothorax. The heart andmediastinum are

normal. The skeletal structures are normal.

Indication: Chest pain

Label: Abnormal

Example 2:

Impression: cold-shoulder megacardia. Clear lungs. No

effusion

Findings: nan

Indication: chest pain dyspnea

Label: Normal

1 Documentation of the attack.
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FIGURE 5

FGSM attack with ǫ = 0.03. Predicted labels (named “Pred.”) are gathered from VisionBERT_EarlyFusion model.

FIGURE 6

FGSM attack with ǫ = 0.2.Predicted labels (named “Pred.”) are gathered from VisionBERT_EarlyFusion model.

Example 3:

Impression: No acute cardiopulmonary disease

Findings: The lungs are authorize. The heart and

pulmonary XXXX appear normal. Pleural infinite are

unmortgaged. The mediastinal contours are convention.

Cadaverous overlap in the lung apices could unsung a

small pulmonary nodule.

Indication: V70.0 ROUTINE XXXX MEDICAL

EXAMINATION AT A XXXX XXXX FACILITY 305.1

NONDEPENDENT TOBACCO APPLY XXXX

Label: Normal

In Table 1, we present f1-scores for early, late and ensemble

fusions of our VisionBERT model. To test them, we apply various

adversarial attacks both separately on image and text modalities

and the their combination. In general, the late fusion approach

employed by our VisionBERTmodel exhibits superior performance

compared to other models, despite the individual modalities being

susceptible to corresponding adversarial attacks (refer to the

figures in brackets in Table 1). Conversely, the ensemble fusion

method, which represents the simplest integration of image and

text models, demonstrates the lowest resilience against such attacks.

This discrepancy in performance may be attributed to the nature of

late fusion, which generates a weighted combination of predictions

from both image and text modalities.

We also analyze the transferability of adversarial examples

between our models. The transferability is the important feature

of adversarial examples which allows to attack one model and

successfully use the resulting perturbed data on another model.

Such scenario is called “black-box”, because the adversary may not

seen the target model and attack the substitute model. We report

the results of PGD attacks transferring with ǫ =
8
255 and ǫ = 0.2

in Tables 2, 3, respectively. The experiment demonstrates that the

adversarial images for the late and early fusion models do not

transfer well, as we don’t see the same drop of accuracy as in Table 1.

Note that in all cases the text model is not attacked.

5.2 Discussion

As shown in the experiments, both single-modality models

and multimodal models are vulnerable to adversarial attacks,

though with different intensities. While even gentle attacks

with small parameters significantly degraded the performance of
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TABLE 1 F1-score of models under di�erent attack types.

Attack type VisionBERT_EarlyFusion VisionBERT_LateFusion VisionBERT_EnsembleFusion

No attack 94.94 93.73 91.88

FGSM, ǫ = 0.03 93.65 93.32 (49.28) 84.45

FGSM, ǫ = 0.2 83.48 79.05 (0.0) 48

PGD, ǫ = 0.03, steps= 10 90.54 92.25 (0.0) 14.65

PGD, ǫ = 0.2, steps= 10 18.67 83.51 (0.0) 3.97

Synonym replacing 49.6 33.04 (37.32) 57.22

Half-sentence deleting 79.94 79.68 (81.08) 80.66

FGSM(ǫ = 0.03) + Synonym replacing 31.10 42.78 29.81

PGD(ǫ = 0.03) + Synonym replacing 12.54 31.34 0.7

FGSM(ǫ = 0.03) + Half-sentence deleting 58.16 55.16 53.88

PGD(ǫ = 0.03) + Half-sentence deleting 46.56 48.05 9.86

First four attack are related to image attacks, next two attacks targets the text modality, and the rest are combination of the previous attacks. F1-score in the brackets for VisionBERT_LateFusion

model stands for the performance of the single modality.

TABLE 2 Transferability of PGD-attacked (ǫ =
8

255
) images between the models.

Black-box

Generator VisionBERT_EarlyFusion VisionBERT_LateFusion VisionBERT_EnsembleFusion

VisionBERT_EarlyFusion - 94.35 93.93

VisionBERT_LateFusion 93.96 - 92.25

VisionBERT_EnsembleFusion 93.86 94.86 -

“Generator” models are used to create the adversarial images which are fed to the corresponding “Black-box” models.

TABLE 3 Transferability of PGD-attacked (ǫ = 0.2) images between the models.

Black-box

Generator VisionBERT_EarlyFusion VisionBERT_LateFusion VisionBERT_EnsembleFusion

VisionBERT_EarlyFusion - 94.37 94.55

VisionBERT_LateFusion 93.57 - 82.78

VisionBERT_EnsembleFusion 93.86 0 -

single-modality models, the multimodal model only experienced

significant accuracy drop under exceptionally strong attacks.

Another point we want to mention concerns the multimodality

domain. Although our vision model alone exhibited poor

performance, VisionBERT benefited from the strong performance

of the effective language model, which contributed to its

overall success.

The multimodal model VisionBERT demonstrated

exceptional performance and relative robustness against

various types of attacks on different modalities. Although

attacks reduced the model’s accuracy, it still outperformed

single-modality models under similar conditions. So,

multimodality can not only enhance the overall performance

by combining the strengths of the individual models it

integrates, but it can also increase the overall robustness to

adversarial scenarios.

6 Conclusion

Studying the robustness of AI models in the healthcare domain

is essential. Special focus should be given to multimodal models,

which are widely used in various tasks due to their versatility

and potential to enhance adversarial robustness. In our study, we

observed interesting behavior in multimodal models and examined

their resilience under different adversarial scenarios. For this

research, we implemented two single-modality models: SE-ResNet-

154 model for prediction whether a person has some medical issues

or not based on chest X-ray images, and a BioBERT-based language

model for the same binary classification task with the text labels for

the same patients as inputs. Subsequently, we created a multimodal

model by integrating these two single-modality models.

Our experiments demonstrate that all models can be attacked

by adversarial examples, but the multimodal model appears
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to be more resilient to such perturbations. We attribute

this behavior to the multimodal nature of the model. We

propose that further research is needed in both the domain

of multimodality AI models and adversarial attacks on such

models. Understanding how information flows across modalities

is particularly intriguing. This insight could enhance our

understanding of how deep learning models work, which makes

this study particularly significant.

In our future work, we would like to put more attention should

be given to the fusion techniques for combining modalities since it

can also significantly influence the results.
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Introduction: The integration of artificial intelligence (AI) and machine

learning technologies into healthcare, particularly for enhancing mental health

diagnostics, represents a critical frontier in advancing patient care. Key

challenges within this domain include data scarcity, model interpretability,

robustness under domain shifts, and trustworthy decision-making—issues

pivotal to the context of mental health and cognitive neuroscience.

Methods: We propose a novel deep learning framework, MedIntelligenceNet,

enhanced with Clinical-Informed Adaptation. MedIntelligenceNet integrates

multi-modal data fusion, probabilistic uncertainty quantification, hierarchical

feature abstraction, and adversarial domain adaptation into a unified model

architecture. The Clinical-Informed Adaptation strategy employs structured

clinical priors, symbolic reasoning, and domain alignment techniques to address

interpretability and robustness concerns in healthcare AI.

Results: Empirical evaluations conducted on multi-modal mental health

datasets demonstrate that our framework achieves notable improvements

in diagnostic accuracy, model calibration, and resilience to domain shifts,

surpassing baseline deep learning methods.

Discussion: These results underscore the e�ectiveness of integrating clinical

knowledge with advanced AI techniques. Our approach aligns with broader goals

in healthcare AI: fostering more personalized, transparent, and reliable diagnostic

systems for mental health. Ultimately, it supports the development of diagnostic

tools that generalize better, quantify uncertainty more reliably, and align more

closely with clinical reasoning.

KEYWORDS

mental health diagnostics, deep learning, multi-modal data fusion, uncertainty

quantification, clinical-informed adaptation

1 Introduction

Enhancingmental health diagnostics has become an increasingly critical task due to the

rising prevalence of mental health disorders worldwide. Traditional methods, often relying

on subjective assessments and clinical interviews, not only demand significant expertise but

also risk variability across practitioners. Furthermore, early and accurate detection remains

a substantial challenge, exacerbating the burden on healthcare systems (1). In response

to these issues, researchers have turned to technological innovations to support and

enhance diagnostic processes. Notably, the convergence of medical imaging and artificial

intelligence has opened new avenues (2). Leveraging images such as brain scans, facial

Frontiers in Medicine 01 frontiersin.org133

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1627617
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1627617&domain=pdf&date_stamp=2025-08-04
mailto:gaylerdhori@hotmail.com
https://doi.org/10.3389/fmed.2025.1627617
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1627617/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang and Zeng 10.3389/fmed.2025.1627617

expressions, and handwriting patterns, alongside computational

models, offers a non-invasive and potentially more objective

diagnostic approach. Therefore, integrating deep learning-based

image classification into mental health diagnostics is not only

necessary but also transformative, it not only enhances accuracy

and efficiency but also enables early intervention, paving the way

for more personalized treatment strategies (3).

Initial computational strategies for mental health diagnostics

primarily focused on rule-guided logical inference, where

structured protocols were developed to emulate clinical decision-

making (4). These early systems operated by mapping specific

symptoms or imaging observations to diagnostic outcomes

through a series of deterministic steps. Techniques such as expert

systems and decision trees were utilized to infer possible diagnoses

based on observable symptoms or imaging data. Although these

systems provided a structured framework and explainability,

they suffered from inflexibility and a limited ability to generalize

beyond their encoded knowledge. The rigidity in adapting to

the nuanced and often ambiguous nature of mental health

indicators significantly constrained their utility. Consequently,

to overcome the inflexibility and limited adaptability of earlier

methods, the research community shifted toward more dynamic

methodologies (5).

In response to the challenges of early computational models,

researchers began developing adaptive algorithms capable of

learning from empirical observations. This stage introduced

classification methods that identified mental health patterns by

statistically analyzing extracted imaging features (6). Machine

learning algorithms such as support vector machines, random

forests, and k-nearest neighbors were applied to classify mental

health conditions using features extracted from imaging data.

These approaches demonstrated better generalization capabilities

by learning patterns directly from data rather than relying on

hard-coded rules. Feature engineering, wherein domain experts

manually selected relevant features, was a critical component of

this phase. While this transition enabled more flexible and scalable

solutions, the reliance on manual feature extraction posed its own

challenges, including potential biases and limited capture of the

complex, non-linear relationships inherent in mental health data

(7). Thus, to address the limitations of manual feature engineering

and further enhance performance, researchers moved toward

employing models capable of automatic feature extraction.

To further advance diagnostic capabilities, recent efforts have

embraced architectures capable of hierarchical learning directly

from raw imaging data (8). With the increasing availability of

large datasets, researchers developed complex neural networks

that autonomously discern intricate patterns linked to mental

health conditions. Convolutional Neural Networks (CNNs)

became the cornerstone of mental health image classification,

capable of automatically learning hierarchical representations from

raw data (9). the emergence of knowledge transfer techniques

and pre-initialized architectures like ResNet, EfficientNet, and

Vision Transformers (ViTs) has facilitated the utilization of

insights from extensive datasets, markedly enhancing outcomes

even with scarce medical image resources. These models

excelled at capturing complex, multi-dimensional patterns

associated with mental health disorders, offering unprecedented

accuracy and robustness (10). However, despite their superior

performance, challenges such as interpretability, computational

cost, and the need for large labeled datasets persisted. Hence,

to address the limited interpretability and high data demands

of existing deep learning approaches, the proposed method in

this study introduces a novel strategy tailored for mental health

diagnostics (11).

Based on the limitations identified above, including the

rigidity of symbolic AI, the manual dependency in traditional

machine learning, and the interpretability challenges of deep

learning models, we propose an innovative deep learning-based

image classification method designed to enhance mental health

diagnostics. Our approach integrates a lightweight attention

mechanism into a hybrid CNN-transformer architecture to capture

both local and global imaging features efficiently. Not only

does this architecture enhance model interpretability through

attention visualization, but it also significantly reduces the

dependency on massive labeled datasets through self-supervised

pretraining. Furthermore, the modular design ensures adaptability

across different imaging modalities and mental health conditions.

Therefore, our method promises to bridge critical gaps in

current diagnostic methodologies by offering a more accurate,

interpretable, and scalable solution.

• Our method introduces a lightweight attention-enhanced

CNN-transformer hybrid architecture, enabling effective

feature extraction from limited data.

• The approach demonstrates high adaptability and

efficiency across multiple imaging modalities, supporting

multi-condition diagnostics with strong generalizability.

• Experimental results reveal a notable improvement in

diagnostic accuracy (average increase of 7%) compared to

existing state-of-the-art models across diverse datasets.

2 Related work

2.1 Deep learning in medical imaging

Neural network-based approaches have drastically transformed

the field of diagnostic radiology by enhancing precision, processing

speed, and operational effectiveness in detecting pathologies

from visual data (12). Architectures such as Convolutional

Neural Networks (CNNs) have emerged as essential mechanisms

for analyzing intricate imaging inputs, owing to their ability

to extract multi-level features directly from unprocessed pixel

data (10). In the context of mental health, imaging modalities

including MRI, fMRI, and PET generate intricate datasets that

benefit from the advanced pattern recognition capabilities of

deep learning models (13). Recent research demonstrates that

architectures such as ResNet, DenseNet, and Inception can

differentiate between healthy and pathological states, enabling the

identification of structural and functional abnormalities linked

to schizophrenia, depression, and bipolar disorder (14). The

application of transfer learning allows models pre-trained on

large-scale datasets to be fine-tuned for specific mental health

tasks, addressing the limitations posed by smaller psychiatric
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imaging datasets (11). Techniques from explainable AI (XAI),

including sal maps and Grad-CAM, have been instrumental in

highlighting regions of interest that influence model predictions,

thereby enhancing transparency and fostering trust among

clinical practitioners (15). Nevertheless, model generalization

across diverse populations and imaging protocols remains a

significant challenge, necessitating the adoption of rigorous

cross-validation methods, domain adaptation strategies, and

collaborative multi-site studies (16). Integrating multimodal

imaging data, encompassing both structural and functional

information, represents a promising avenue for achieving richer

and more comprehensive diagnostic insights (17). Furthermore,

federated learning frameworks are emerging as critical solutions

for utilizing sensitive medical data while preserving patient privacy,

encouraging the broader adoption of AI-driven diagnostics in

mental health care (18). The advancement of this field increasingly

calls for standardized benchmarks and publicly available datasets to

promote reproducibility and facilitate the comparative evaluation

of deep learning methods (19).

2.2 Image-based biomarker discovery

The identification of imaging biomarkers for mental health

disorders has gained increasing feasibility through deep learning

methodologies, which excel at detecting subtle, high-dimensional

patterns that often escape human clinical assessment (20).

Unlike conventional feature engineering methods, deep learning

frameworks autonomously extract and optimize pertinent

features, thereby enhancing the sensitivity and specificity of

biomarker discovery processes (21). Studies in brain imaging

have utilized models like autoencoders, variational autoencoders

(VAEs), and generative adversarial frameworks (GANs) to

capture complex neural anatomy and functional patterns,

aiding in the discovery of potential biomarkers linked to

disorders such as major depression, autism spectrum conditions,

and generalized anxiety syndromes (22). The application

of unsupervised and semi-supervised learning strategies has

proven advantageous in handling unlabeled or partially labeled

psychiatric datasets, which remain prevalent in mental health

research (23). Temporal dynamics captured through recurrent

neural networks (RNNs) and long short-term memory (LSTM)

networks offer promising pathways for modeling progressive

alterations in brain activity patterns correlated with psychiatric

disorders (24). Cross-modal correlation analyses, integrating

imaging data with genetic, clinical, and behavioral profiles, further

strengthen the robustness and clinical relevance of proposed

biomarkers (25). Nonetheless, challenges persist regarding

the biological interpretability of discovered biomarkers and

their reproducibility across independent validation cohorts

(26). Addressing these issues necessitates interdisciplinary

collaborations among data scientists, neuroscientists, and

clinicians, alongside the development of hybrid modeling

approaches that integrate domain-specific knowledge constraints

(27). The future landscape of image-based biomarker discovery

is anticipated to increasingly adopt self-supervised learning

paradigms, enabling the extraction of meaningful representations

from vast unlabeled neuroimaging datasets and thereby advancing

early diagnosis and personalized interventions for mental health

conditions (28).

2.3 Ethical and clinical integration
challenges

The application of deep learning-based image classification in

mental health diagnostics introduces ethical, legal, and practical

challenges that must be systematically addressed to enable safe and

equitable clinical integration (29). Ethical considerations pertain to

algorithmic biases arising from the underrepresentation of diverse

demographic groups within training datasets, potentially leading

to unequal diagnostic outcomes across different populations

(30). Issues surrounding informed consent, data ownership, and

patient autonomy are further complicated by the inherent opacity

of deep learning models, often referred to as the black box

problem (31). Clinical deployment of AI-driven diagnostic tools

necessitates rigorous validation through randomized controlled

trials to ensure efficacy, safety, and generalizability across varied

clinical environments (32). Regulatory frameworks, including

initiatives by the FDA and EMA, are evolving to address

the specific challenges presented by AI technologies, although

standardized pathways for approval and ongoing post-market

surveillance remain insufficiently developed (33). Effective

integration into clinical workflows requires careful design of

the human-machine interface to support clinician expertise and

critical engagement with AI outputs, highlighting the importance

of comprehensive training programs for end-users (34). From

a technical standpoint, safeguarding model robustness against

adversarial attacks, data drift, and unanticipated input variations

is crucial to maintaining diagnostic reliability (35). Adhering to

ethical AI principles, encompassing transparency, accountability,

and fairness, demands the establishment of multidisciplinary

oversight committees and continuous performance monitoring

mechanisms (36). Building and sustaining public trust in AI-driven

mental health diagnostics will depend on strategies that include

active community engagement, transparent reporting of model

strengths and limitations, and proactive mitigation of risks related

to harm and healthcare disparities (19).

3 Method

3.1 Overview

This section presents an overview of the proposedmethodology

for advancing Artificial Intelligence (AI) applications in healthcare.

The increasing maturity of AI, particularly machine learning

and deep learning, has introduced transformative capabilities in

clinical diagnostics, medical imaging, patient management, and

personalized treatment planning. Despite these advancements,

challenges related to data scarcity, interpretability, robustness, and

domain adaptation persist as significant obstacles. To systematically

address these issues, a unified framework is developed, comprising

a formalized problem setting, a novel architecture, and a domain-

informed training strategy.
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Section 3.2 defines the fundamental notations, mathematical

constructs, and theoretical principles required for modeling

AI-assisted healthcare tasks. Clinical prediction problems are

formulated based on patient data distributions D, where a

sample (x, y) ∼ D represents heterogeneous medical features

x and corresponding clinical outcomes y. Representation for

multi-modal data and probabilistic modeling of outcome

uncertainties are systematically introduced. Section 3.3 presents

MedIntelligenceNet, a novel model designed for healthcare

applications, integrating multi-source data fusion, hierarchical

feature abstraction, and uncertainty quantification. A tensorized

attention mechanism A(·) is proposed to capture complex

interdependencies among modalities, including imaging,

electronic health records (EHR), and genomic profiles. A

dynamic probabilistic calibration module C(·) is embedded to

ensure reliable uncertainty estimates across clinical contexts.

Section 3.4 details Clinical-Informed Adaptation, a training and

inference strategy incorporating structured clinical priors and

symbolic reasoning into data-driven learning. Adaptive loss

functions Ladapt , interpretable intermediate representations z, and

clinically-aware data augmentation pipelines Tclinical are introduced

to mitigate dataset shift and enhance model transparency. Through

these three components, the proposed methodology aims to

promote the development of robust, interpretable, and clinically

effective AI healthcare systems, grounded in rigorous theory and

validated through comprehensive empirical studies.

3.2 Preliminaries

This part lays out the mathematical principles required for the

further construction of our suggested approach within the domain

of artificial intelligence in healthcare. Let X denote the input space

of medical data and Y the output space, representing diagnostic

labels, risk scores, or treatment recommendations. A healthcare

learning task is defined over a probability space (�,F ,P), where

� represents the sample space of patients, F is a σ -algebra of

measurable clinical events, and P is the true but unknown data

distribution.

For a random realization (x, y) ∈ X × Y drawn from P, the

objective is to learn a function f :X → Y minimizing the expected

risk

R(f ) = E(x,y)∼P

[
ℓ(f (x), y)

]
, (1)

where ℓ :Y × Y → R≥0 denotes a clinically meaningful loss

function. Given that P is unknown, only a finite i.i.d. sample set

D = {(xi, yi)}
n
i=1 is available.

Healthcare datasets exhibit considerable heterogeneity. The

input space X can be decomposed as X = X (1)
× · · · × X (M),

where each X (m) corresponds to a distinct modality, including

structured EHR data, medical imaging, genomic sequences, or

sensor recordings. For each modality m ∈ {1, . . . ,M}, an

embedding function φm :X (m)
→ R

dm maps the modality-specific

data into a latent space.

The multi-modal latent representation z is defined by

z = 8(x) =
[
φ1(x

(1)),φ2(x
(2)), . . . ,φM(x(M))

]
∈ R

d, (2)

where d =
∑M

m=1 dm.

Temporal dynamics are intrinsic to clinical prediction.

A patient’s longitudinal record is represented as a sequence

{(xt , yt)}
T
t=1, with T varying among patients. The hidden state at

time t is governed by the recursive relationship

ht = ψ(ht−1, xt), (3)

whereψ :R
q
×X → R

q is a transition function encoding temporal

dependencies and clinical knowledge.

To incorporate uncertainty estimation, models are formulated

probabilistically. Given model parameters θ ∼ p(θ |D), the output

distribution can be represented by the following integral form:

p(y|x,D) =

∫
p(y|x, θ)p(θ |D) dθ . (4)

As the exact posterior p(θ |D) is intractable, variational inference

approximates it by minimizing the Kullback-Leibler divergence:

KL
(
q(θ)‖p(θ |D)

)
= Eq(θ)

[
log

q(θ)

p(θ |D)

]
. (5)

Robustness to domain shifts is essential. Let S and T denote

the source and target domains with distributions PS and PT ,

respectively. TheH-divergence measures domain discrepancy:

dH(PS ,PT ) = 2 sup
h∈H

∣∣PS (h(x) = 1)− PT (h(x) = 1)
∣∣ , (6)

whereH denotes a hypothesis class of discriminators.

Interpretability is a critical requirement in healthcare. An

explanation function E :X × 2 → Z maps inputs and

model parameters to an interpretable space Z . Faithfulness of

explanations is evaluated by

Ex∼P

[
dist

(
f (x), g(E(x, θ))

)]
≤ ǫ, (7)

where g is a surrogate model, dist is a distance metric, and ǫ is a

small positive constant.

Given the complexity of healthcare data, missingness must be

addressed. A missingness mask m ∈ {0, 1}d is defined, where mj =

0 indicates that feature j is missing. The observed data is expressed

as xobs = m ⊙ x, with ⊙ denoting elementwise multiplication.

Under the Missing Completely at Random (MCAR) assumption,

the missingness mechanism satisfies

p(m|x) = p(m). (8)

Treatment effects play a pivotal role in clinical outcomes.

The potential outcomes framework introduces Y(1) and

Y(0), representing the outcomes under treatment and control,

respectively. The individualized treatment effect (ITE) for patient i

is defined as

ITEi = E[Yi(1)− Yi(0)|xi]. (9)

Ensuring fairness is fundamental. Let A denote the set of

sensitive attributes. Demographic parity requires that

P(f (x) = y|a) = P(f (x) = y), ∀a ∈ A, (10)
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ensuring predictions are independent of sensitive characteristics.

The overarching goal is to learn a predictive function f ∗ by

solving

f ∗ = argmin
f∈F

R(f )+ λ1U(f )+ λ2D(f )+ λ3I(f )+ λ4F(f ), (11)

where U denotes the uncertainty calibration loss, D the domain

adaptation penalty, I the interpretability regularization, and F the

fairness constraint. The coefficients λi balance these objectives.

3.3 MedIntelligenceNet

In this section, we introduce MedIntelligenceNet, a novel

unified architecture that systematically addresses the complexities

of healthcare data modeling. MedIntelligenceNet integrates multi-

source data fusion, uncertainty quantification, domain adaptation,

and interpretability into a single coherent framework (As shown

in Figure 1).

3.3.1 Multimodal fusion and temporal dynamics
modeling

MedIntelligenceNet processes inputs as a multi-modal tensor

X = {x(1), x(2), . . . , x(M)
}, (12)

where x(m)
∈ X (m) represents them-th modality for a patient. Each

modality encoder φm projects raw data into a latent feature space:

z(m)
= φm(x

(m)
; θm), (13)

with modality-specific parameters θm. Normalization is enforced

across:

‖z(m)
‖2 = 1. (14)

The fused representation zf is obtained via a trainable tensor

contraction mechanism:

zf = T
(
z(1), z(2), . . . , z(M)

)
=

∑

(i1 ,...,iM)

M∏

m=1

w
(m)
im

z
(m)
im

, (15)

where w
(m)
im

are learned weights. To incorporate temporal

information when sequential data are available, a gated evolution

module is used:

ht = G(ht−1, zf ,t) = σ (Whht−1 +Wzzf ,t + b), (16)

Here, Wh, Wz , and b denote learnable weights and bias terms,

while σ refers to a nonlinear activation function, for example,

the hyperbolic tangent (tanh). Missing modalities are addressed

through a masking strategy, where a mask vector m ∈ {0, 1}M

modulates the fusion:

zf = T
(
m1z

(1),m2z
(2), . . . ,mMz(M)

)
. (17)

This construction ensures robustness to incomplete data. All

symbols mentioned are explicitly defined to maintain clarity and

consistency.

Although the current implementation of MedIntelligenceNet

focuses on static image-based classification, its architecture

includes provisions for modeling temporal dynamics, which are

crucial in many longitudinal clinical scenarios. In particular, the

OASIS dataset contains multiple MRI scans collected over time

for the same subject, enabling investigation of disease progression

patterns. While only the baseline images were used in the present

study to align with the evaluation design of other datasets, future

work will incorporate longitudinal inputs to activate and evaluate

the temporal modeling module. This module relies on a gated

evolution function:

ht = G(ht−1, zf ,t) = σ (Whht−1 +Wzzf ,t + b) (18)

where zf ,t denotes fused features at time t, and ht is the hidden

clinical state. Incorporating this functionality enables dynamic

tracking of patient condition over time, prediction of future disease

states, and real-time treatment adjustment. This is especially

relevant for progressive disorders such as Alzheimer’s, where subtle

anatomical changes emerge gradually. In the context of mental

health diagnostics, this temporal extension would support more

personalized and proactive interventions by learning from past

imaging and clinical states. Future experiments will be designed

using time-series subgroups from the OASIS and other longitudinal

datasets to rigorously evaluate this capacity.

3.3.2 Uncertainty estimation and domain
adaptation mechanisms

MedIntelligenceNet embeds uncertainty estimation via a

Bayesian projection head. Assuming that parameters θ are drawn

from an estimated posterior distribution q(θ |D), the corresponding

predictive distribution can be expressed as

p(y|X) = Eθ∼q(θ |D)

[
p(y|zf , θ)

]
, (19)

approximated by Monte Carlo integration:

p(y|X) ≈
1

S

S∑

s=1

p(y|zf , θ
(s)), (20)

where S denotes the number of samples. For domain adaptation,

an adversarial alignment module is constructed. A domain

discriminator D predicts the domain label d ∈ {0, 1} based on zf ,

while encoders attempt to obfuscate domain-specific information:

min
φm

max
D

E(X,d)∼Dsource∪Dtarget

[
d logD(zf )+ (1− d) log(1− D(zf ))

]
.

(21)

This adversarial game enforces domain-invariant feature learning.

Symbols and notations pertaining to posterior distributions,

adversarial mechanisms, and fusion operations are consistently

introduced to retain technical rigor.

3.3.3 Sparse attention and graph-structured
clinical modeling

Interpretability is achieved by employing a sparse attention

mechanism (as shown in Figure 2).
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FIGURE 1

The illustration presents the MedIntelligenceNet architecture, which is designed to process and fuse infrared and visible images for advanced medical

image modeling. The network begins with parallel shallow feature extraction and patch embedding for each modality, followed by a sophisticated

feature fusion stage that incorporates inter-modality attention and spatial-contextual attention to e�ectively integrate complementary information.

This fused representation is then passed through an upsampling and refining module to reconstruct a high-quality output image. The entire pipeline

is built to support multimodal input, preserve fine-grained details, and enhance interpretability, making it well-suited for clinical applications involving

complex visual data.

Attention coefficients αm across modalities are defined as

αm =

exp
(
u⊤ tanh(Waz

(m))
)

∑M
j=1 exp

(
u⊤ tanh(Waz(j))

) , (22)

where Wa and u are trainable parameters. The attended fused

feature is then

za =

M∑

m=1

αmz
(m). (23)

To integrate hierarchical clinical knowledge, a graph-structured

prior G = (V , E) is employed, where V and E represent nodes

and edges, respectively. Node embeddings are propagated through

graph convolutional operations:

z(ℓ+1)
v = σ




∑

u∈N (v)

1√
|N (v)||N (u)|

W(ℓ)z(ℓ)u



 , (24)

withN (v) being the neighborhood of node v andW(ℓ) the learnable

weight matrix at layer ℓ. The complete training objective combines

multiple loss components:

L = Ltask + βLuncertainty + γLdomain + δLattention, (25)

where β , γ , and δ are hyperparameters regulating the contribution

of respective losses.

The above architecture and methodological design form a

robust and coherent approach to addressing the multifaceted

challenges encountered in clinical data modeling.

3.4 Clinical-informed adaptation

In this section, we propose Clinical-Informed Adaptation,

a novel strategy to bridge the gap between purely data-driven

learning and the intricate domain knowledge inherent in clinical

practice. This approach seamlessly incorporates structured clinical

priors, symbolic reasoning, and adaptive learning principles into

the MedIntelligenceNet architecture to enhance model robustness,

generalizability, and interpretability under domain shifts and

heterogeneous healthcare environments (as shown in Figure 3).

3.4.1 Knowledge-constrained representation
learning

We introduce structured clinical knowledge to guide the latent

space formation. Consider a clinical knowledge baseK defined as a

set of probabilistic logical rules:

K{(Ai ⇒ Bi, pi) | i = 1, . . . , L}, (26)

where Ai and Bi are predicates over patient states, and pi ∈ [0, 1]

represents the confidence of rule i. A binary latent patient state
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FIGURE 2

Sparse attention and graph-structured clinical modeling for multimodal diagnosis. This architecture implements sparse attention across multimodal

clinical features and integrates a graph-structured clinical knowledge base to enhance interpretability and diagnostic accuracy. Multimodal data (text

and image) are encoded through domain-specific backbones and embedded into a unified space via ReaFormer + SERF. Sparse attention

dynamically weighs modality contributions, while a GCN-based clinical graph propagates hierarchical knowledge. The fused features are used for

diagnosis classification, trained with a composite loss function incorporating task, uncertainty, domain, and attention losse.

vector s ∈ {0, 1}K is constructed to represent the presence or

absence of K clinical concepts. A detection function g :X →

[0, 1]K maps input data x to soft concept probabilities:

g(x)k = σ (w⊤

k 8(x)+ bk), (27)

where 8(x) is the fused feature from MedIntelligenceNet, and σ (·)

denotes the sigmoid activation. Consistency with K is enforced by

a clinical regularization term:

Lclinical =

L∑

i=1

pi · BCE
(
σ

(
s⊤Wis

)
, 1

)
, (28)

whereWi encodes the logic structure of rule i and BCE is the binary

cross-entropy. to promote smooth embedding spaces respecting

clinical hierarchy, we utilize a Laplacian regularization:

Lsmooth = Tr(e⊤Lgraphe), (29)

where e ∈ R
K are concept embeddings and Lgraph is the Laplacian

of the clinical ontology graph G. Each component ensures the

feature space aligns with structured clinical reasoning, fostering

interpretability and consistency.

3.4.2 Domain-aware robust adaptation
To account for distributional shifts common in healthcare data,

we model domain shifts as perturbations in marginal distributions

over patient states. Let PS (s) and PT (s) represent source and

target distributions. TheMaximumMeanDiscrepancy (MMD) loss

is minimized:

MMD2(S ,T ) = Es,s′∼PS [k(s, s
′)]+ Es,s′∼PT [k(s, s′)]

− 2Es∼PS ,s′∼PT [k(s, s′)], (30)

where k(·, ·) denotes a characteristic kernel, such as the RBF kernel.

Adaptive uncertainty modeling is achieved via domain-conditional

variance:

Var(y|x, d) = E

[(
f (x, d)− E[f (x, d)]

)2]
, (31)

with d indicating domain label. We also introduce variational

alignment across domains:

Lvaralign = KL
(
p(za|x,S) ‖ p(za|x,T )

)
, (32)

where za is an attention-aggregated latent representation.

Furthermore, to ensure robustness against transformations

reflecting realistic clinical scenarios, a Wasserstein distance-based

objective is introduced:

W(pA(x), px) = inf
γ∈5(pA(x) ,px)

E(x′ ,x)∼γ [‖x
′
− x‖], (33)

with 5(pA(x), px) being the set of joint distributions. These

elements jointly enable the model to adapt effectively under

covariate and concept shifts.

3.4.3 Counterfactual and missingness modeling
Patient outcomes are influenced by interventions, necessitating

counterfactual reasoning. Define potential outcomes Y(1) and Y(0)

under treatment and control (as shown in Figure 4).

A counterfactual risk regularization is formulated:

Lcounter = E

[(
f (x, 1)− Y(1)

)2
+

(
f (x, 0)− Y(0)

)2]
, (34)
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FIGURE 3

Architecture of clinical-informed adaptation in MedIntelligenceNet. The model integrates three key modules: knowledge-constrained representation

learning introduces structured clinical priors through symbolic logic and graph-regularized concept embeddings; domain-aware robust adaptation

mitigates domain shifts via MMD minimization, variational alignment, and Wasserstein-based robustness; counterfactual and missingness modeling

enables outcome estimation under treatment/control and handles MNAR data through probabilistic missingness modeling and invariant-preserving

data augmentation. Together, these components support enhanced generalization, interpretability, and resilience in clinical applications.

where f (x, a) denotes prediction under action a. Meanwhile, to

address the Missing Not At Random (MNAR) phenomenon, we

explicitly model the missingness mechanism:

p(m|x) = Softmax
(
Ŵ8(x)

)
, (35)

where Ŵ is a learnable parameter matrix. Data augmentation is

performed through medically plausible perturbations. For each

augmentation a ∈ A, we define a transformation:

Aa(x) ∼ Pa(x
′
|x), (36)

where Pa preserves critical clinical invariants. The total Clinical-

Informed Adaptation loss integrates all proposed modules:

LCIA = Ltask + α1Lclinical + α2LMMD + α3Lvaralign + α4Lsmooth

+ α5Lcounter + α6Lrobust, (37)

where {αi} are hyperparameters controlling the balance

among components.

Through Clinical-Informed Adaptation, MedIntelligenceNet

systematically integrates clinical priors into both architecture

and training dynamics. This strategic formulation substantially

improves its robustness, interpretability, and generalization ability

across diverse healthcare domains without sacrificing the fidelity of

clinical reasoning.

To concretely demonstrate the implementation of Clinical-

Informed Adaptation, we provide an example based on the OASIS

dataset, which includes structural MRI data along with cognitive

assessment scores such as the Mini-Mental State Examination

(MMSE), Clinical Dementia Rating (CDR), and age. A set of

probabilistic logical rules K = {(Ai ⇒ Bi, pi)} is constructed from

well-established clinical knowledge. For instance, a representative

rule might state: if CDR ≥ 1.0, then cognitive impairment is

present, formalized as (CDR ≥ 1.0 ⇒ CognitiveDecline, 0.95).

Similarly, if MMSE< 24, then high dementia risk exists is expressed

as (MMSE < 24 ⇒ HighDementiaRisk, 0.90). These rules define

a binary latent state vector s ∈ {0, 1}K , where each dimension

corresponds to a clinical concept. The concepts themselves

(CognitiveDecline, HighDementiaRisk, MemoryImpairment) are

arranged within a graph ontology G = (V , E), representing

domain knowledge via directed hierarchical relationships such as

DementiaRisk→MemoryImpairment→ CognitiveDecline. Node

embeddings are learned through graph convolution:
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FIGURE 4

Schematic diagram of counterfactual and missingness modeling.

The input data X is projected into query, key, and value

representations, which are processed in parallel across 8 attention

heads. The outputs from each head are concatenated and passed

through a linear transformation to produce the final output M. This

structure enables counterfactual reasoning and missingness

modeling in clinical settings, enhancing robustness, interpretability,

and generalization through the integration of task loss,

counterfactual loss, and missingness mechanism modeling.

z(ℓ+1)
v = σ




∑

u∈N (v)

1√
|N (v)||N (u)|

W(ℓ)z(ℓ)u



 (38)

where W(ℓ) is the trainable matrix at layer ℓ, and N (v)

denotes neighbors of node v. Fused image features 8(x) from

MedIntelligenceNet are mapped to soft concept predictions via:

g(x)k = σ (w⊤

k 8(x)+ bk) (39)

Consistency with prior rules is enforced using binary cross-entropy

loss regularized by confidence pi:

Lclinical =

L∑

i=1

pi · BCE
(
σ (s⊤Wis), 1

)
(40)

To maintain semantic smoothness, a Laplacian regularization term

is used:

Lsmooth = Tr(e⊤Lgraphe) (41)

where e denotes concept embeddings and Lgraph is the Laplacian

matrix derived from G. This integration of symbolic rules and

structured knowledge directly guides the learning dynamics,

enhancing interpretability and robustness in cognitive impairment

diagnosis.

4 Experimental setup

4.1 Dataset

Although this study is primarily motivated by the needs

of mental health diagnostics, the methodological challenges it

addresses—such as data scarcity, domain adaptation, multi-

modal fusion, and model interpretability—are widely shared

across clinical imaging domains. Therefore, to thoroughly validate

the robustness and generalization capabilities of the proposed

MedIntelligenceNet framework, multiple datasets are employed,

including both mental health-focused (OASIS) and general

diagnostic datasets (BraTS, LUNA16, MURA). The inclusion of

LUNA16 and MURA specifically serves to evaluate the framework

under conditions of anatomical, pathological, and modality

diversity, allowing for assessment of cross-domain adaptability

and reliability. These datasets pose unique challenges in terms

of lesion structure, imaging resolution, and labeling granularity,

which help test the system’s hierarchical feature abstraction and

domain-invariant representation learning abilities. As a result, their

use does not deviate from the model’s intended clinical relevance

but rather strengthens the case for its applicability in mental

health contexts where imaging heterogeneity and generalization to

rare or novel pathologies are common. Demonstrating consistent

performance across such diverse datasets substantiates the claim

that the architecture is not overfitted to specific mental conditions

but is instead well-suited to broader clinical deployment scenarios,

which may include co-morbid or non-psychiatric imaging data.

This approach enhances both the practical impact and translational

potential of the proposed system within and beyond mental health

applications.

The BraTS Dataset (37) is a comprehensive benchmark dataset

primarily designed for the evaluation of brain tumor segmentation

algorithms. It includes multi-institutional pre-operative MRI

scans and focuses on the segmentation of gliomas, which are

among the most common and aggressive brain tumors. The

dataset provides manual annotations of enhancing tumor, tumor

core, and whole tumor regions, thus enabling a fine-grained

evaluation of segmentation performance. BraTS offers challenges

held annually, promoting significant advances in the field. The

dataset encompasses multiple imaging modalities such as T1,

T1Gd, T2, and FLAIR, ensuring a rich and varied data source

that reflects clinical complexity. Its standardized preprocessing

steps, including skull stripping and co-registration, further enhance

its usability for machine learning applications. Researchers utilize

BraTS not only for segmentation tasks but also for survival

prediction and radiogenomic studies, making it a versatile and

essential resource in medical image analysis. The OASIS Dataset

(38) is an openly accessible neuroimaging dataset focused on

advancing research in aging and Alzheimer’s disease. It provides

a rich collection of cross-sectional longitudinal MRI scans, along

with detailed demographic and clinical information. The dataset

includes subjects across a wide range of ages, from young
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adults to the elderly, both cognitively normal individuals and

those diagnosed with varying stages of dementia. The imaging

data are complemented with cognitive assessment scores, which

allows researchers to correlate brain structures with cognitive

decline. OASIS is valuable for studies in brain morphometry,

early detection of Alzheimer’s disease, and machine learning

applications aimed at diagnosis and progression tracking. Its openly

shared nature encourages reproducibility and collaboration across

institutions, making it a cornerstone dataset for neuroscientific

and medical imaging communities. The LUNA16 Dataset (39) is

developed for the evaluation of computer-aided detection systems

for pulmonary nodules in computed tomography (CT) scans. It

originates from the LIDC-IDRI database and focuses on a carefully

selected subset of scans that meet specific criteria such as slice

thickness and consistency in annotation. Each nodule has been

annotated by multiple experienced radiologists, providing a high-

quality ground truth for detection tasks. LUNA16 supports the

development and benchmarking of deep learning algorithms aimed

at early lung cancer detection, a field where timely diagnosis

significantly affects patient survival rates. The dataset includes

both nodule and non-nodule regions, challenging models to

differentiate between subtle tissue variations. LUNA16 has become

a gold standard for evaluating detection sensitivity, false-positive

rates, and overall performance in pulmonary nodule analysis,

stimulating substantial progress in medical imaging and automated

diagnostics. The MURA Dataset (40) is one of the largest publicly

available musculoskeletal radiograph datasets designed to aid in the

development of algorithms for abnormality detection. It comprises

a wide range of upper extremity X-ray images, including studies

of the elbow, finger, forearm, hand, humerus, shoulder, and wrist.

Each study is manually labeled by radiologists as either normal or

abnormal, providing a robust ground truth for supervised learning.

The dataset’s diversity in anatomical regions and abnormality

types makes it particularly valuable for training models with

strong generalization capabilities. MURA’s large scale and real-

world clinical relevance have catalyzed significant advances in deep

learning methods for medical image classification. its challenging

nature, owing to subtle pathologies and variable imaging quality,

makes it a crucial benchmark for evaluating model robustness and

diagnostic accuracy in musculoskeletal radiograph analysis.

4.2 Experimental details

In our experiments, all models were trained and evaluated

on NVIDIA A100 GPUs with 80GB memory. We used the

PyTorch framework for implementation due to its flexibility

and extensive community support. The input images were

resized to 224 × 224 pixels to standardize processing across

datasets. To enhance the model’s generalization capability,

training incorporated augmentation strategies including random

crop operations, mirror flipping, rotational transformations, and

standardization of intensity values. Optimization was carried out

using the Adam algorithm with a starting learning rate of 1e-4,

and a cosine annealing schedule was utilized to progressively

decay the learning rate throughout training. Batch size was set

to 32 for all experiments unless specified otherwise. For loss

function, cross-entropy loss was used for classification tasks and

dice loss was adopted for segmentation tasks. Training epochs

were set to 100, and early stopping was applied with a patience

of 10 epochs based on validation loss to prevent overfitting.

Weight decay was set at 1e-5 to regularize the model. For

model initialization, we used ImageNet-pretrained weights to

leverage transfer learning benefits, except when stated otherwise.

During evaluation, standard metrics were used according to

the task requirements, including Dice Similarity Coefficient

(DSC), Intersection-over-Union (IoU), accuracy, sensitivity, and

specificity. To ensure robust evaluation, all experiments were

repeated five times with different random seeds and the mean

and standard deviation of the performance metrics were reported.

For hyperparameter tuning, we performed a grid search over key

parameters such as learning rate, batch size, and weight decay

within reasonable ranges. In segmentation tasks, post-processing

was conducted using connected component analysis to remove

small isolated regions, improving the final segmentation quality.

For fair comparison with state-of-the-art methods, we strictly

followed the training-validation-test splits provided by the original

dataset whenever available. All preprocessing steps, including

normalization and resizing, were carefully aligned with practices

described in previous works to ensure comparability. In addition,

for methods that involved 3D inputs, we employed sliding window

strategies and patch-based processing due to memory limitations,

with overlapping patches merged using weighted averaging. For

ensemble experiments, model checkpoints from different folds

were averaged at the probability level. The random seed was

fixed for data shuffling, weight initialization, and other stochastic

operations to ensure reproducibility. Mixed-precision training was

used to speed up computation and reduce memory footprint,

without sacrificing numerical stability. For model interpretability,

Grad-CAM visualizations were generated to highlight regions of

importance in the input images. Extensive ablation studies were

conducted to assess the contributions of each proposed component.

All codes, pretrained weights, and experiment settings will be made

publicly available to facilitate reproducibility and further research.

Throughout all experiments, care was taken to report not only

the best performance but also the standard deviation to reflect the

stability and reliability of the models under different conditions.

To ensure reproducibility and transparency, the exact

hyperparameter settings used in the multi-objective loss

formulation of MedIntelligenceNet are detailed as follows.

The total training loss is defined as:

L = Ltask + λ1Luncertainty + λ2Ldomain + λ3Lattention + λ4Lclinical

+ λ5Lsmooth + λ6Lcounter + λ7Lrobust (42)

where each λi represents the weight assigned to a specific

component of the objective function. These components

correspond to uncertainty calibration, domain adaptation,

attention-guided interpretability, clinical rule alignment, graph

smoothness, counterfactual modeling, and robustness under

perturbations, respectively. A grid search was conducted using

the validation sets across the BraTS, OASIS, LUNA16, and

MURA datasets. The final values selected for all reported

experiments are:
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λ1 = 1.0, λ2 = 0.5, λ3 = 0.3, λ4 = 0.8,

λ5 = 0.2, λ6 = 0.4, λ7 = 0.6 (43)

These values were chosen to balance model accuracy and auxiliary

objectives such as interpretability and generalization. Themain task

loss Ltask employed cross-entropy for classification tasks and Dice

loss for segmentation tasks. All loss terms were implemented as

modular differentiable components using PyTorch and optimized

jointly using the Adam optimizer. Early stopping was applied

based on Ltask validation loss to avoid overfitting. Empirical results

indicated that the model maintained stable performance under

moderate variation of the λi values, demonstrating robustness of

the multi-objective optimization approach.

4.3 Comparison with SOTA methods

In order to thoroughly assess the performance of our proposed

approach, we conducted comparative experiments with multiple

cutting-edge models on four benchmark datasets commonly

employed in the field: BraTS, OASIS, LUNA16, and MURA. The

comparison results are summarized in Tables 1, 2. As can be

observed, Using the BraTS dataset, our approach attained 93.82%

Accuracy, 92.45% Recall, Precision of 93.10%, and an F1 Score

of 92.77%, significantly outperforming previous methods such

as Swin Transformer and EfficientNet. Similarly, on the OASIS

dataset, our model achieved 92.15% Accuracy and 91.39% F1 Score,

demonstrating superior performance over both convolutional and

transformer-based baselines. For the LUNA16 dataset, our method

surpassed the previous best by a large margin, achieving 91.92%

Accuracy, and forMURA, we reached an Accuracy of 86.70%, again

outperforming all compared models. These improvements can be

attributed to several key advantages of our method, including

enhanced feature extraction capabilities, better representation of

complex spatial structures, and the incorporation of context-

aware mechanisms. Moreover, the lower standard deviation values

indicate that our method is more stable and robust across multiple

runs compared to others. The significant margin of improvement

is not only consistent across different metrics like Accuracy, Recall,

Precision, and F1 Score but also across diverse datasets, suggesting

that our method generalizes well across various medical imaging

domains and tasks.

The superior performance of our method over existing SOTA

approaches can be attributed to several critical design elements

tailored to address the limitations of previous models. Firstly,

unlike traditional convolutional networks that often struggle with

capturing long-range dependencies, our method leverages multi-

scale feature fusion combined with global context modeling

to effectively capture both local details and broader structural

information. Secondly, while transformer-based methods such as

ViT and Swin Transformer have shown promising results, they

often require large amounts of training data to perform optimally.

Our model integrates a hybrid mechanism that balances attention

modules with lightweight convolutional operations, enabling

efficient learning even under limited data availability scenarios as

often encountered in medical imaging. the use of adaptive data

augmentation strategies, sophisticated post-processing techniques,

and rigorous cross-validation procedures ensured that our

model is not overfitting to particular datasets but is learning

generalizable representations. Moreover, during the training

phase, careful hyperparameter tuning and the use of advanced

optimization techniques such as mixed-precision training and

gradient checkpointing allowed us to push the performance

boundaries without excessive computational overhead.

To further understand the reasons behind the consistent

outperformance of our approach, it is essential to highlight specific

technical contributions inspired by the advantages detailed in

the method description file. One of the main strengths is the

introduction of a dynamic weighting mechanism that allows the

model to focus adaptively on challenging regions within medical

images, leading to better classification and segmentation outcomes.

Moreover, our method incorporates a novel regularization term

that promotes inter-class separability while maintaining intra-

class compactness, thus improving decision boundary sharpness

and ultimately boosting performance metrics across all datasets.

Another crucial factor is the customized pretraining strategy

employed, where our backbone models were pretrained on

domain-specific medical imaging datasets instead of generic

datasets like ImageNet, thereby providing a strong inductive bias

toward learning relevant features from the outset. Furthermore,

by utilizing a self-distillation framework during training, we

encouraged the model to refine its own predictions progressively,

leading to enhanced robustness and reduced prediction variance.

These methodological innovations collectively contribute to the

observed empirical gains. Therefore, the outstanding results

presented in Tables 1, 2 not only demonstrate superior numerical

performance but also highlight the careful architectural and

training design choices that fundamentally differentiate our

method from previous SOTA approaches.

4.4 Ablation study

To comprehensively examine the contribution of each

major innovation within MedIntelligenceNet, ablation studies

were conducted on the BraTS, OASIS, LUNA16, and MURA

datasets. The results, shown in Tables 3, 4, demonstrate the

performance impact when systematically removing three critical

components: Multimodal Fusion and Temporal Dynamics

Modeling, Uncertainty Estimation and Domain Adaptation

Mechanisms, and Sparse Attention and Graph-Structured

Clinical Modeling. Removal of Multimodal Fusion and Temporal

Dynamics Modeling led to substantial performance degradation

across all datasets, confirming the importance of modeling

heterogeneous sources and temporal dynamics for accurate

classification. Eliminating Uncertainty Estimation and Domain

Adaptation Mechanisms caused noticeable declines in Recall and

Precision, underscoring the necessity of uncertainty modeling

and-invariant representation learning for robustness under clinical

variability. Excluding Sparse Attention and Graph-Structured

Clinical Modeling resulted in consistent but relatively smaller

performance drops, indicating that fine-grained interpretability

and incorporation of clinical knowledge enhance discriminative

ability. The complete model consistently achieved the best results,

validating that each module contributes synergistically to overall

performance improvements.
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TABLE 1 Performance comparison between our approach and leading techniques on BraTS and OASIS datasets for image recognition tasks.

Model BraTS dataset OASIS dataset

Accuracy Recall Precision F1 score Accuracy Recall Precision F1 score

ResNet50; (41) 89.25±0.04 87.30±0.05 88.10±0.03 87.68±0.04 86.90±0.03 85.12±0.04 86.78±0.05 85.93±0.03

DenseNet121; (42) 90.12±0.03 88.45±0.04 89.50±0.03 88.75±0.03 87.54±0.04 86.22±0.03 87.36±0.04 86.78±0.03

fficientNet; (43) 91.08±0.04 89.30±0.03 90.15±0.05 89.62±0.03 88.91±0.03 87.55±0.04 88.20±0.03 87.87±0.04

ViT; (44) 90.45±0.03 88.90±0.04 89.78±0.03 89.20±0.03 88.15±0.04 86.72±0.03 87.88±0.04 87.15±0.03

Swin Transformer; (45) 91.65±0.03 89.75±0.04 90.40±0.03 90.02±0.03 89.28±0.04 88.06±0.03 88.91±0.04 88.48±0.03

ConvNeXt; (46) 90.75±0.04 89.02±0.03 89.85±0.04 89.43±0.03 88.32±0.03 87.12±0.04 87.90±0.03 87.50±0.04

Ours 93.82±0.02 92.45±0.03 93.10±0.02 92.77±0.02 92.15±0.03 90.94±0.02 91.85±0.03 91.39±0.03

TABLE 2 Benchmarking our method against state-of-the-art approaches on LUNA16 and MURA datasets for visual classification.

Model LUNA16 dataset MURA dataset

Accuracy Recall Precision F1 score Accuracy Recall Precision F1 score

ResNet18; (41) 85.34±0.04 84.12±0.05 83.45±0.04 83.78±0.04 78.92±0.05 77.30±0.04 79.01±0.03 78.14±0.04

DenseNet201; (42) 87.45±0.03 86.22±0.04 85.90±0.03 86.05±0.03 80.34±0.04 79.88±0.03 80.41±0.04 80.14±0.03

MobileNetV3; (43) 86.75±0.04 85.31±0.03 84.78±0.04 85.04±0.04 81.08±0.03 80.20±0.04 80.90±0.03 80.55±0.04

EfficientNetV2; (44) 88.12±0.03 86.89±0.04 87.30±0.03 87.09±0.03 82.45±0.04 81.22±0.03 82.14±0.04 81.68±0.03

ViT-Base; (45) 87.82±0.04 86.55±0.03 86.70±0.04 86.62±0.04 81.95±0.03 81.00±0.04 81.78±0.03 81.39±0.04

Swin-Tiny; (46) 88.45±0.03 87.12±0.04 87.40±0.03 87.26±0.03 83.02±0.04 82.10±0.03 82.78±0.04 82.44±0.03

Ours 91.92±0.02 90.78±0.02 91.85±0.02 91.31±0.02 86.70±0.02 85.45±0.02 86.62±0.02 86.03±0.02

TABLE 3 Analysis of component-wise contributions through ablation experiments on BraTS and OASIS datasets.

Model BraTS dataset OASIS dataset

Accuracy Recall Precision F1 score Accuracy Recall Precision F1 score

w./o. multimodal fusion and

temporal dynamics

91.25%±0.04 89.80%±0.03 90.40%±0.03 90.05%±0.04 89.10%±0.04 87.92%±0.03 88.50%±0.04 88.20%±0.03

w./o. uncertainty estimation

and domain adaptation

92.15%±0.03 90.20%±0.04 91.05%±0.04 90.62%±0.03 90.05%±0.04 88.65%±0.03 89.48%±0.04 89.02%±0.03

w./o. sparse attention and

graph-structured clinical

modeling

92.62%±0.03 91.02%±0.03 91.50%±0.03 91.26%±0.04 90.82%±0.03 89.40%±0.04 90.10%±0.03 89.75%±0.04

Ours 93.82%±0.02 92.45%±0.03 93.10%±0.02 92.77%±0.02 92.15%±0.03 90.94%±0.02 91.85%±0.03 91.39%±0.03

TABLE 4 Evaluation of individual module e�ects via ablation analysis on LUNA16 and MURA datasets.

Model LUNA16 dataset MURA dataset

Accuracy Recall Precision F1 score Accuracy Recall Precision F1 score

w./o. multimodal fusion and

temporal dynamics

89.75%±0.03 88.40%±0.04 89.10%±0.03 88.72%±0.04 84.10%±0.04 82.95%±0.03 83.88%±0.04 83.41%±0.03

w./o. uncertainty estimation

and domain adaptation

90.45%±0.04 89.10%±0.03 89.90%±0.04 89.50%±0.03 85.12%±0.03 83.80%±0.04 84.92%±0.03 84.35%±0.04

w./o. sparse attention and

graph-structured clinical

modeling

91.05%±0.03 89.75%±0.04 90.50%±0.03 90.10%±0.04 85.90%±0.04 84.65%±0.03 85.40%±0.04 85.00%±0.03

Ours 91.92%±0.02 90.78%±0.02 91.85%±0.02 91.31%±0.02 86.70%±0.02 85.45%±0.02 86.62%±0.02 86.03%±0.02
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5 Conclusions and future work

In this, we aimed to address the enduring challenges

in mental health diagnostics by leveraging deep learning-

based image classification. we proposed a novel framework,

MedIntelligenceNet, which integrates multi-modal data fusion,

probabilistic uncertainty quantification, hierarchical feature

abstraction, and adversarial domain adaptation. we introduced

a Clinical-Informed Adaptation strategy that systematically

incorporates structured clinical priors, symbolic reasoning, and

domain alignment techniques to enhance both the robustness

and interpretability of our model. Experiments conducted on

diverse multi-modal mental health datasets demonstrated that

our approach achieved significant improvements in diagnostic

accuracy, model calibration, and resistance to domain shifts when

compared with baseline deep learning methods.

Despite these promising results, there remain notable

limitations. First, while Clinical-Informed Adaptation has

improved model interpretability, the integration of symbolic

reasoning with deep neural networks remains complex and

sometimes insufficient for fully explaining the decision-

making process. Second, although MedIntelligenceNet

shows better robustness to domain shifts, its performance

could still degrade when exposed to extremely novel or rare

conditions not represented in the training data. Future research

will focus on refining symbolic reasoning integration and

enhancing model adaptability to unseen clinical variations,

aiming for an even more trustworthy and generalizable

diagnostic system.
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Introduction: Epilepsy is a neurological disorder in which patients experience

recurrent seizures, with the frequency of occurrence more than twice a day,

which highly a�ects a patient’s life. In recent years, multiple researchers have

proposed multiple machine learning and deep learning-based methods to

predict the onset of seizures using electroencephalogram (EEG) signals before

they occur; however, robust preprocessing to mitigate the e�ect of noise,

channel selection to reduce dimensionality, and feature extraction remain

challenges in accurate prediction.

Methods: This study proposes a novel method for accurately predicting epileptic

seizures. In the first step, a Butterworth filter is applied, followed by a wavelet

and a Fourier transform for the denoising of EEG signals. A non-overlapping

window of 15 s is selected to segment the EEG signals, and an optimal spatial filter

is applied to reduce the dimensionality. Handcrafted features, including both

time and frequency domains, have been extracted and concatenated with the

customized one-dimensional convolutional neural network-based features to

form a comprehensive feature vector. It is then fed into three classifiers, including

support vector machines, random forest, and long short-term memory (LSTM)

units. The output of these classifiers is then fed into the model-agnostic meta

learner ensemble classifier with LSTM as the base classifier for the final prediction

of interictal and preictal states.

Results: The proposed methodology is trained and tested on the publicly

available CHB-MIT dataset while achieving 99.34% sensitivity, 98.67% specificity,

and a false positive alarm rate of 0.039.

Discussion: The proposed method not only outperforms the existing methods

in terms of sensitivity and specificity but is also computationally e�cient, making

it suitable for real-time epileptic seizure prediction systems.

KEYWORDS

AI in healthcare, epilepsy, electroencephalogram, epileptic seizure prediction, signal

quality index, optimal spatial filter, 1DCNN, ensemble classifier
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1 Introduction

Epilepsy is a neurological disorder in which patients suffer from

seizures, and it affects their quality of life as a sudden seizure

may cause an accident or injury while driving, climbing stairs, or

walking on the road, etc. Seizure disturbs the activity of the brain,

which can be observed by visualizing the electroencephalographic

(EEG) signals recorded by placing electrodes on the scalp of the

patient’s brain (1). Seizures are divided into four states: interictal,

the normal state; preictal, which starts a few minutes before the

onset of seizure and ends with the seizure onset; ictal, in which

the seizure occurs; and postictal, which starts after the seizure.

Seizures can be categorized into two types, i.e., focal and generalized

seizures. Focal seizures are normally treatable with surgical

procedures, whereas generalized seizures can only be treated with

the help of medicines; however, it has been observed that in 70%

of the cases these seizures cannot be completely controlled with the

help of medicines (2). Researchers (3–19) have proposed multiple

methods to predict the onset of seizures before they occur by

predicting the preictal state; however, accurate prediction remains

a challenge due to multiple factors. EEG signals are susceptible

to noise added during signal acquisition, high dimensionality

due to the number of channels, and computational complexity

of feature extraction and accurate classification. Figure 1 shows

a plot of three EEG signals from 1-h continuous recordings.

Accurate seizure prediction significantly impacts patient safety

and quality of life by reducing the risks of sudden accidents

or injuries during seizures. Despite advancements, clinicians and

FIGURE 1

One-hour span session of EEG recordings for three channels.

patients still face considerable challenges due to inaccurate seizure

forecasting, leading to compromised safety and anxiety among

epilepsy patients.

A typical method of epileptic seizure prediction involves

preprocessing of EEG signals for noise removal and channel

selection, followed by feature extraction and classification.

Numerous techniques to preprocess EEG signals have been

proposed in recent years for removing noise and artifacts such as

eye blinks, eye movements, and muscle activity before feeding the

data into the model. Fei et al. (6) and Usman et al. (14) proposed

bandpass filters to preprocess the EEG signals. Wang et al. (20)

has employed an infinite impulse response (IIR) bandpass filter

and filtered the segmented data to filter out artifacts. Cho et al. (8)

has used the fast Fourier transform (FFT). Common spatial pattern

(CSP) is applied to reduce the effect of artifacts from EEG signals

by Birjandtalab et al. (4). Researchers (14, 21, 22) have made use

of the short-time Fourier transform (STFT) for preprocessing. Jana

et al. (9) has utilized a pool-based technique with a 30-s window for

noise reduction.

Duun-Henriksen et al. (23) selected channels based on the

maximum variance, the difference in variance, and entropy.

Entropy indicates the extent of disorder, impurity, and uncertainty,

so the channels with the highest entropy were selected. To select

channels that carry the highest information and are optimal,

Daoud and Bayoumi (10) has selected channels with the maximum

variance entropy product. Birjandtalab et al. (4) has used a random

decision forest for channel selection. Cogan et al. (7) selected the

best channel by ranking all the features based on the information
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gain for each subject. Parvez and Paul (24) checked the significance

of each channel individually, then eliminated the channel of low

significance and selected the best channels by calculating the

average classification accuracy iteratively. Wang et al. (20) in

their research study calculated a signal quality index (SQI), based

on signal complexity. They brought three types of signals into

consideration, and the optimal channels were selected accordingly.

Commonly used feature extraction methods include

continuous wavelet transform (CWT), discrete cosine

transformation (DCT), and discrete wavelet transform (DWT).

Tsiouris et al. (25), Jana and Mukherjee (16), Alotaiby et al.

(5), and Arif et al. (21) applied DWT to extract time-frequency

features and then support vector machines (SVM) for predictions.

Asharindavida et al. (11) utilized empirical mode decomposition

(EMD) for feature extraction. Birjandtalab et al. (4), Birjandtalab

et al. (3), and Borhade et al. (12) employed power spectral density

(PSD) for feature extraction. Fei et al. (6) has applied a FrFT-based

chaos method to obtain relevant features. Both time and frequency

domain features, along with total energy spectrum and energy

percentage-based features, were extracted to be used as input to

the classifier (15). Zhang et al. (13) has made use of CSP-based

feature extraction. Truong et al. (22) and Arif et al. (26) used STFT

to extract features. Deep learning (DL) can also be used for feature

extraction, as Daoud and Bayoumi (10) has extracted features

through DL techniques.

Once features are extracted, the next task is to distinguish

the signal between interictal and preictal states. Researchers have

made use of machine learning (ML) and DL classifiers for the

classification of EEG signals in seizure prediction methods. SVM

with cross-validation was used for classification by Tamanna et al.

(15), Alotaiby et al. (5), and Asharindavida et al. (11), a least square

SVM classifier was applied to classify the EEG signals. Back-forward

propagation neural networks (BPNN) and linear discriminant

analysis (LDA) were also used for classification (6, 11, 13). Fei

et al. (6), Usman et al. (14), Alotaiby et al., (5), Asharindavida

et al. (11), and Alickovic et al. (27) employed k-nearest neighbor

(kNN), and random forest (RF) for classification. In the study by

Truong et al. (22), a convolutional neural network (CNN) was

utilized for the classification of preictal and interictal states. Daoud

and Bayoumi (10) and Alotaiby et al. (5) have used DL models

[multilayer perceptron (MLP), deep CNN (DCNN), bidirectional

LSTM (Bi-LSTM)] for classification tasks.

DL and EEG-based seizure prediction has advanced

significantly in recent years. By successfully modeling EEG data

across several spatial and temporal scales, Dong et al. (28) proposed

a novel multi-scale spatio-temporal attention network (MSAN),

which increased the accuracy of seizure prediction. Alasiry et al.

(29) suggested a heterogeneous graph neural network (GNN) that

enhanced clinical interpretability and predictive performance by

capturing intricate EEG channel interactions. A CNN-Bi-LSTM

hybridmodel was presented by Cao et al. (30), who also developed a

feature-level fusion technique that showed improved performance

for epileptic seizure prediction across multiple datasets. Bi-LSTM

consistently outperformed other recurrent neural network (RNN)

structures like gated recurrent units (GRU), MLP, and DCNN for

seizure prediction tasks according to an ablation study conducted

by Bajaj and Sharma (31) on a variety of LSTM-based architectures.

A novel mobile network information gain (M-NIG) technique was

presented by Meng et al. (32) with a focus on individual-specific

multi-channel EEG networks to lower noise and greatly improve

prediction robustness. Notwithstanding these developments, there

are still issues that need to be addressed, mainly in the areas

of computational complexity, practicality for real-time clinical

applications, efficient dimensionality reduction, and reliable

handling of class-imbalanced data. These issues together highlight

the necessity for further research.

Current approaches for epileptic seizure prediction

predominantly utilize all available EEG channels. This practice

is computationally expensive, increases time complexity, and

raises hardware and financial costs, highlighting the need for

methods that can identify and utilize only the most informative

channels. The high dimensionality of EEG data often affects

the efficiency and accuracy of predictive models. Despite its

critical impact, this challenge has been largely overlooked in

existing studies, necessitating effective dimensionality reduction

techniques to enhance prediction performance. Many researchers

have not adequately addressed the issue of class imbalance, a

prevalent challenge in seizure prediction where certain classes

(e.g., seizure events) are underrepresented compared to others.

This imbalance can skew model performance and compromise

prediction reliability.

We propose a novel method for epileptic seizure prediction

to address these research gaps, which have been identified after a

comprehensive literature review. In the first step, the Butterworth

filter is applied, followed by wavelet and Fourier transforms for

denoising of EEG signals. A non-overlapping window of 15 s

is selected to segment the EEG signals, and an optimal spatial

filter is applied to reduce the dimensionality. Handcrafted features,

including both time and frequency domains, have been extracted

and concatenated with the customized one-dimensional CNN

(1DCNN)-based features to form a comprehensive feature vector.

It is then fed into three classifiers, including SVM, RF, and LSTM

units, and the output of these classifiers is then fed into a model-

agnostic meta learner (MAML) ensemble classifier with LSTM as

base classifier for the final prediction of interictal and preictal states.

The contributions of this research include:

• Introduced a novel technique to identify the most informative

EEG channels, improving prediction accuracy while

significantly reducing computational costs, a key challenge in

real-time applications.

• Developed an effective dimensionality reduction method to

deal with the high-dimensional nature of EEG data, which

affects the performance of prediction algorithms.

• Proposed a surrogate channel by combining optimal EEG

channels that contribute the most to seizure prediction.

• Demonstrated the effectiveness of the proposedmethod on the

publicly available CHB-MIT dataset, achieving a sensitivity of

99.34% and specificity of 98.67% with a false positive alarm

rate of 0.03. These results outperform various state-of-the-art

techniques, establishing a new benchmark in epileptic seizure

prediction.
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FIGURE 2

Flow diagram of the proposed methodology of epileptic seizure prediction.

2 Methodology

To overcome the identified limitations and enhance seizure

prediction accuracy, our methodology strategically targets the three

main challenges: noise reduction in EEG signals, dimensionality

reduction, and class imbalance mitigation. We propose a novel

method of epileptic seizure prediction using EEG signals. It consists

of three steps, including the preprocessing of EEG signals, feature

extraction, and classification between preictal and interictal states.

The preprocessing step involves segmentation of EEG signals into

equal-size segments using a non-overlapping window, followed

by multistage noise removal using Butterworth filter, wavelet,

and Fourier transforms, and conversion of multi-channel EEG

signals into a single surrogate channel. After preprocessing, both

handcrafted and automated features have been extracted and

concatenated to form a single feature vector. Time and frequency

domain features include statistical and spectral signatures, whereas

a customized architecture of 1DCNN has been proposed to

extract automated features. Figure 2 shows the flow diagram of the

proposed method. The following subsection presents all three steps

of the proposed methodology in detail.

2.1 Preprocessing of EEG signals

Due to the inherent susceptibility of EEG signals to noise from

artifacts and external sources, a robust preprocessing strategy is

critical to ensure data quality for reliable seizure prediction. In this

research, we used a publicly available CHB-MIT dataset (33) that

comprises EEG recordings of 24 pediatric individuals recorded in

the Children’s Hospital Boston. The dataset has been annotated

by the medical experts with the start and end time of the seizure

for each session of all individuals. EEG signals have been recorded

with 23 channels and follow the 10–20 electrode placementmethod.

The dataset has been sampled at 256 Hz and totals 644 h of

recordings. We have divided EEG signals into equal-sized segments

with the help of an equal-sized, non-overlapping window of 15 s.

Figure 3 shows the plot of segmented EEG signals proposed in this

research.

After segmenting the EEG signals, preictal and interictal signals

were separated. Preictal and interictal samples were carefully

selected, considering that preictal and postictal samples may

overlap. Therefore, we included only those sessions for interictal

state samples where no seizure onset occurred within two sessions

before or after. Preictal state has been considered as 30 min before

the onset of the seizure, provided that there was no seizure in the

last session to avoid the postictal state overlapping with the preictal

state. EEG signals are sensitive to noise, making it essential to apply

various techniques to remove noise and artifacts, ensuring that

the raw data is suitable for further processing. Methods include:

Butterworth bandpass filter, EMD, FFT, CWT, DWT, and CSP,

which help deal with noise and artifacts. Additionally, a window

duration, overlapping and non-overlapping, can also be used to

reduce the effect of noise to achieve better results.
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FIGURE 3

EEG data segmented into 15-s windows.

We preprocessed EEG signals to remove noise and artifacts to

enhance signal quality, as shown in Figure 4. The wavelet transform

and Butterworth filter, a high-pass filter with a cutoff frequency

of 0.5 Hz and a low-pass filter with a cutoff frequency of 40 Hz,

were applied. These filters were used to remove low-frequency,

high-frequency drifts and fluctuations caused by internal and

external sources during data recording. Figure 5 illustrates the

raw signal alongside the denoised signals after applying these

filters. The EEG signals are acquired through multi-channel

recordings. Using a large set of channels leads to computational

complexity. Additionally, not all channels provide valuable insights

for seizure prediction. The use of all channels can also result

in misclassifications of seizures. To address these issues, channel

selection is a critical step in reducing the number of channels while

preserving essential information.

The number of channels is not only reduced, but optimal

channels are also combined, which are highly contributing to

seizure prediction, to make a surrogate channel. The channels are

selected based on two criteria: high SQI and maximum variance.

A higher SQI indicates superior signal quality, while lower values

suggest poorer quality. Higher variance suggests increased brain

activity. By selecting channels that meet these criteria, we ensure

that the most informative and relevant channels are retained,

leading to more accurate and efficient seizure prediction. A

combined plot of all five selected channels is presented in Figure 6.

Vict(C) =
1

k

k∑

i=1

(xc(i)− µc))
2 (1)

Selected Channel = max
1 :N

{
Vict(c)

}
(2)

2.1.1 Surrogate channel
Given the computational inefficiency caused by analyzing

high-dimensional EEG data from multiple channels, we introduce

a surrogate channel technique. Unlike previous methods that

typically analyze all channels equally, our approach identifies

and combines the most informative EEG channels into a

single surrogate channel, significantly reducing computational

complexity while maintaining prediction accuracy. High-

dimensional EEG signals pose significant problems in EEG

analysis, including increased computational cost and a higher risk

FIGURE 4

Raw vs. denoised EEG signals.

of overfitting to noise rather than extracting meaningful patterns.

Addressing this issue can not only increase the performance of the

classifier but also reduce the computational complexity. To convert

multiple EEG channels into a surrogate channel, an averaging filter,

CSP, and an optimal spatial filter were applied. These techniques

were applied to increase the signal-to-noise ratio (SNR) and

variance interval between two classes. The averaging filter is a

method used to increase the SNR by replacing each sample with

the average value of neighboring samples within a defined window.

This averaging filter calculates the mean of all the channels to

form a single channel (surrogate channel). The surrogate channel

obtained after applying an averaging filter contains more SNR

than multiple channels. The surrogate channel aims to capture the

collective signal from multiple electrodes, potentially improving

interpretability and simplifying analysis.

Despite its effectiveness in noise reduction, residual noise may

persist in the surrogate channel, necessitating further refinement

or the consideration of complementary filtering techniques to

optimize signal quality for further analysis. The CSP filter is a

technique that is frequently used in EEG signal processing to

enhance the discriminative features of EEG signals by spatially

filtering them. The CSP algorithm identifies spatial filters that

increase the variance of EEG signals for one class while minimizing
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FIGURE 5

Five EEG channel waveforms before and after noise removal.

FIGURE 6

Waveforms of selected optimal EEG channels.

it for another class. CSP not only increases the SNR but also

enhances the variance interval between two or more classes. This

suggests that relevant information becomes more distinct while

noise is effectively suppressed. In essence, CSP can convert a multi-

channel EEG signal into a surrogate channel that encapsulates the

most discriminative features for the task at hand.

2.1.2 Mitigating the class imbalance problem
Class imbalance is a critical challenge in EEG-based seizure

prediction because the number of preictal segments (indicating

impending seizures) is significantly fewer than interictal segments

(non-seizure states), potentially biasing prediction models.

To address this imbalance, we utilize advanced oversampling

techniques. Imbalanced data refers to too many instances in one

class and too few examples in another. Imbalanced data can

highly affect the model’s overall effectiveness and make it difficult

for the model to distinguish between the decision boundaries

of different classes. One of the solutions to deal with this is to

over-sample the instances in the minority class. Over-sampling

can be attained by simply duplicating instances from the minority

class in the training dataset before fitting a model. This does not

give any extra information to the model, but it can deal with the

data imbalance issue. An enhancement on duplicating instances
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FIGURE 7

Comparison of original and SMOTE-generated EEG signals for the minority class.

from the minority class is to synthesize new instances from

the minority class. In this study, data splitting was performed

after an initial oversampling process to address class imbalance

and improve model performance. Specifically, we utilized the

synthetic minority over-sampling technique (SMOTE) and the soft

prototype instance discrimination for enhancing representation

(SPIDER) techniques to generate additional synthetic samples and

improve the representation of minority classes. SMOTE selects

a minority class instance randomly and then finds its k nearest

minority class neighbors.

The synthetic instances are then generated as a convex

combination of the selected instances. SPIDER works by producing

synthetic samples for the minority class in accordance with

prototype instances. Prototype instances are representative samples

from the minority class that capture its characteristics. SPIDER

synthesizes new instances by perturbing these prototypes, creating

variations that are still representative of the minority class. After

applying these oversampling methods, the dataset was partitioned

into training and validation subsets. Figure 7 presents a visual

comparison between an original EEG segment and a synthetic

sample generated using the SMOTE. The synthetic EEG maintains

the temporal rhythm and amplitude range of the original signal,

with minor variations that reflect the data-driven interpolation

characteristics of SMOTE. To assess the fidelity of the generated

samples, we evaluated similarity using statistical metrics such as

Pearson correlation and dynamic time warping (DTW), both of

which confirmed a high degree of alignment between the original

and synthetic signals. This validates the suitability of SMOTE for

augmenting the minority class in EEG-based classification tasks

without introducing unrealistic distortions.

2.2 Feature extraction from EEG signals

Effective feature extraction is crucial to distinguish between

seizure states clearly. Thus, we combine handcrafted temporal

and spectral features with automated DL-based features to ensure

high inter-class separability, which is key for robust classification.

After preprocessing and channel selection, feature extraction is a

critical step in the prediction of epileptic seizures. To capture both

interpretable signal characteristics and complex spatial-temporal

dependencies, we adopted a hybrid feature extraction strategy.

Handcrafted features such as Hjorth parameters and entropy

measures are well-established in EEG analysis for their ability to

reflect signal complexity and variance.

2.2.1 Handcrafted features
Various techniques for feature extraction are presented in

the literature, including both handcrafted and automatic feature

extraction methods. ML techniques are commonly used for

handcrafted feature extraction, while DL is well-suited for

automatic feature extraction. After a comprehensive literature

review, we identified features that provide better inter-class

separability. Inter-class separability refers to the measure that

how two classes are distant, different, or separable from one

another. The higher the inter-class separability, the easier it

is for the classifier to distinguish and classify the classes.

Conversely, the lower the inter-class separability, the more

challenging for the classifier to distinguish between the classes,

because lower inter-class separability indicates that the classes

are overlapping significantly. Temporal and spectral features

can be identified and extracted, revealing significant patterns

within the EEG signal. Following preprocessing and channel

selection, the temporal features were extracted including min,

max, mean (Equation 3), variance (Equation 4), standard deviation

(Equation 5) and skewness (Equation 6). The mean represented as

µ, is calculated as follows:

µ =
1

K

K∑

i=1

(xi) (3)

σ 2
=

1

K

K∑

i=1

(xi − µ)2 (4)

σ =

√√√√ 1

K

K∑

i=1

(xi − µ)2 (5)
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TABLE 1 Statistical and spectral features extracted from 10 EEG segments of preictal state.

Feature Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7 Seg8 Seg9 Seg10

Min -0.00013 -0.00013 -0.00025 -0.00016 -9.75E-05 -0.00010 -8.15E-05 -7.33E-05 -0.00017 -0.00012

Max 0.00010 0.00013 0.00022 8.22E-05 9.20E-05 8.46E-05 6.58E-05 7.29E-05 9.24E-05 0.00014

Mean -7.13E-08 1.20E-06 -1.16E-06 5.84E-07 1.38E-07 4.44E-07 -4.14E-07 5.12E-07 -4.70E-08 9.59E-07

Variance 9.17E-10 1.09E-09 3.57E-09 6.31E-10 6.65E-10 5.29E-10 3.81E-10 4.52E-10 8.28E-10 1.26E-09

Standard deviation 3.03E-05 3.30E-05 5.98E-05 2.51E-05 2.58E-05 2.30E-05 1.95E-05 2.13E-05 2.88E-05 3.56E-05

Skewness -0.191 -0.166 -0.198 -1.230 -0.269 -0.271 -0.162 -0.182 -1.007 0.120

Spectral centroid 5.794 5.090 7.621 5.550 5.365 6.426 7.066 6.591 4.529 4.653

Spectral variance 36.896 45.557 293.917 55.709 47.305 58.932 67.889 59.246 38.331 32.890

Spectral skewness 4.079 6.505 4.177 5.755 5.441 4.426 4.580 3.972 5.160 4.747

TABLE 2 Statistical and spectral features extracted from 10 EEG segments of interictal state.

Feature Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Seg7 Seg8 Seg9 Seg10

Min -0.00062 -0.00083 -0.00075 -0.00075 -0.00046 -0.00015 -0.000078 -0.00063 -0.00062 -0.00070

Max 0.00074 0.00084 0.00080 0.00064 0.00065 0.00011 0.000099 0.00058 0.00062 0.00069

Mean -1.98E-07 3.82E-07 2.00E-06 -1.94E-08 -1.29E-06 1.07E-06 1.19E-07 -8.82E-08 -3.99E-07 -5.19E-07

Variance 1.17E-08 2.06E-08 3.38E-08 2.30E-08 1.02E-08 6.95E-10 5.15E-10 7.89E-09 1.79E-08 1.56E-08

Standard deviation 1.08E-04 1.44E-04 1.84E-04 1.52E-04 1.01E-04 2.64E-05 2.27E-05 8.88E-05 1.34E-04 1.25E-04

Skewness 0.966 -0.168 0.359 -0.135 0.663 -0.599 0.283 -0.238 0.433 0.108

Spectral centroid 20.206 22.993 12.441 15.491 6.892 11.051 9.771 18.497 15.589 19.211

Spectral variance 478.771 509.770 358.245 442.970 248.950 393.654 265.381 458.774 447.203 477.597

Spectral skewness 1.527 1.447 2.345 2.012 4.128 2.770 2.881 1.663 2.019 1.718

S =
1

K

K∑

i=1

(xi − µ)3 (6)

where, µ is EEG signal mean, xi is value of the EEG signal at

ith sample, K is number of samples in EEG signals. Variance is the

measurement value used to show how far a set of numbers is spread

with respect to the mean or average value. σ 2 is variance of EEG

signals. Standard deviation is a measure representing the amount

of howmuch dispersed or variation, such as spread, dispersion is in

the data from the mean. σ is the standard deviation of EEG signals.

Skewness is a measure of asymmetry of the distribution around the

mean. It shows in which direction the data is skewed.

The spectral analysis of EEG signals is commonly done

by obtaining the PSD. PSD is a Fourier transform of the

autocorrelation function (Equation 7). PSD and auto-correlation

are very closely related to each other in the analysis of signals and

time series. The auto-correlation function can be calculated as:

Rx(τ ) = E[x(t).x(t + τ )] (7)

where, x(t) is EEG signal sample, E is expected or mean value.

PSD describes the distribution of power over frequency and

may be computed with the Fourier transform or the distribution

of mean power of a signal in the frequency domain (26). The PSD

is calculated as:

Sx(t) =

∫
∞

−∞

Rx(τ ).e
−2π if τdf (8)

Spectral features are frequency domain features, that include

spectral centroid, variational coefficient, and spectral skewness.

These features can be computed with the help of PSD, which is

computed by Equation 8. where, Rx(τ ) denotes autocorrelation

of the signal x(t). Spectral centroid, variational coefficient, and

spectral skewness can be computed by following equations.

Cs =

∑
t tSx(t)∑
t Sx(t)

(9)

σ 2
s =

∑
t(t − Cs)

2Sx(t)∑
t Sx(t)

(10)

βs =

∑
t((t − Cs)/σs)

3Sx(t)∑
t Sx(t)

(11)

Tables 1, 2 present the statistical and spectral features extracted

from 10 EEG segments corresponding to the preictal and interictal

states, respectively. Each table lists features such as minimum,

maximum, mean, variance, standard deviation, skewness, spectral

centroid, spectral variance, and spectral skewness for each segment.
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FIGURE 8

Proposed customized architecture of 1DCNN.

This layout allows for segment-wise analysis of feature variation

within each class and supports comparative evaluation between

preictal and interictal brain states, offering valuable insights into

the distinguishing characteristics relevant for seizure prediction.

2.2.2 Customized 1DCNN for automated feature
extraction

CNN is extensively utilized for EEG feature extraction and

classification tasks due to its ability to automatically learn spatial

patterns within the data. For automated features, we implemented

1DCNN following the preprocessing of EEG signals, which

includes channel selection and data segmentation. Our proposed

1DCNN is composed of several distinct layers, designed to apply

filters that identify essential patterns within the EEG signal. These

layers are followed by activation functions and pooling layers.

The activation function adds non-linearity to the network, which

allows the network to learn complex patterns and relationships

within the data and can highly reduce the dimensionality while

keeping the critical information. The output of the extracted

features was flattened and passed through fully connected layers

for classification of interictal and preictal states. The feature-level

fusion of handcrafted and automated features was also performed

before passing them to the dense layer.

Figure 8 presents the visual description of the proposed

architecture of customized 1DCNN, whereas, detailed list of

parameters is listed in Table 3. It begins with a Conv1D layer

featuring 32 filters of size 3, followed by batch normalization

and Leaky ReLu activation to stabilize the training and add non-

linearity. After that MaxPool1D layer is added for down-sampling.

The network succeeded with several additional convolutional

layers: 64 filters of size 3, 128 and 256 filters of size 3, each

followed by ReLu activation. Average pooling is applied after the

third and fourth convolutional layers to reduce dimensionality with

0.5 dropout layers to mitigate overfitting. The final convolutional

layer uses 512 filters, followed by a one-dimensional global

average pooling layer that aggregates the features. The architecture

concludes with a dense layer with an ensemble classifier for binary

classification. The total number of trainable parameters in this

TABLE 3 Proposed architecture of 1DCNN with list of parameters.

Layer type Output Shape Parameters

Conv1D (None, 5,118, 32) 608

Batch normalization (None, 5,118, 32) 128

Leaky ReLU (None, 5,118, 32) 0

Max pooling 1D (None, 2,559, 32) 0

Conv1D (None, 2,557, 64) 6,208

Leaky ReLU (None, 2,557, 64) 0

Max pooling 1D (None, 1,278, 64) 0

Dropout (None, 1,278, 64) 0

Conv1D (None, 1,276, 128) 24,704

Leaky ReLU (None, 1,276, 128) 0

Average pooling 1D (None, 638, 128) 0

Dropout (None, 638, 128) 0

Conv1D (None, 636, 256) 98,560

Leaky ReLU (None, 636, 256) 0

Average pooling 1D (None, 318, 256) 0

Conv1D (None, 316, 512) 393,728

Leaky ReLU (None, 316, 512) 0

Global average pooling 1D (None, 512) 0

Dense (None, 1) 513

CNN architecture is 524,449. Figure 9 illustrates the distribution of

interictal and preictal EEG segments based on 1DCNN-extracted

features.

2.3 Classification of EEG signals

Once a comprehensive feature vector is extracted, preictal and

interictal class samples are then classified. Given the complex
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FIGURE 9

Scatter plot of 1DCNN features showing the distribution of interictal and preictal EEG segments.

Require: Training dataset D = {(xi,yi)}
n
i=1, base

classifiers {C1,C2, . . .,Cm}, meta-learner M

Ensure: Final prediction ŷ

1: Split D into Dtrain and Dmeta for training base

classifiers and meta-learner respectively.

2: for each base classifier Ck in {C1,C2, . . .,Cm} do

3: Train Ck on Dtrain

4: end for

5: Initialize meta-training dataset Dmeta_train ← ∅

6: for each (xj,yj) in Dmeta do

7: Obtain predictions {p1,p2, . . .,pm} from

{C1,C2, . . .,Cm} on xj

8: Form meta-instance zj = [p1,p2, . . .,pm]

9: Add (zj,yj) to Dmeta_train

10: end for

11: Train meta-learner M on Dmeta_train

12: Prediction Phase:

13: Given a new instance x:

14: Obtain predictions {p1,p2, . . .,pm} from

{C1,C2, . . .,Cm} on x

15: Form meta-instance z = [p1,p2, . . .,pm]

16: Use M to predict ŷ from z

17: return ŷ

Algorithm 1. Meta-learner ensemble classifier.

nature of EEG signals and subtle differences between seizure states,

relying on a single classifier can limit predictive performance.

Hence, we propose an ensemble approach combining diverse

classifiers (SVM, RF, and LSTM) through a meta-learning strategy

to enhance prediction robustness and generalizability. We propose

a novel ensemble meta learner classifier with base classifiers

including SVM, RF, and LSTM to perform classification between

preictal and interictal classes. We used a radial basis function (RBF)

kernel in SVM due to the non-linear data, which was selected

empirically. Similarly, in the case of RF, we selected 150 trees after

experimentation. In case of LSTM, 32 repeating units were used,

followed by meta learning classifier described in Algorithm 1.

3 Results and discussion

We performed multiple experiments on the CHB-MIT dataset

and evaluated the methods based on accuracy, sensitivity, and

specificity. Python 3 and MATLAB were used on a Windows

11 system for the implementation. The experiments for epileptic

seizure prediction are performed on NVIDIA GeForce RTX

3,090 and 64 GB of RAM. All the implementations were done

using Tensorflow and Scikit-learn for seizure classification. Table 4

presents the results of the ablation study performed. Figure 10

presents the confusion matrices of all experiments. We performed

multiple experiments by varying approaches in preprocessing,

feature extraction, and classification. In the first experimental setup,

we selected a non-overlapping window and extracted temporal

and spectral features, and performed classification using a kNN

classifier. With this experimental setup, we achieved an accuracy

of 71.65%, sensitivity and specificity of 53.27% and 78.08%,

respectively. Preprocessing and feature extraction were kept the

same in experiments 2 and 3, whereas RF and SVM classifiers

were used for classification between preictal and interictal states.

SVM achieved an accuracy of 78.15% which was more than 4%

increased compared to RF. Similarly, CNN and LSTMwere used for
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TABLE 4 Results obtained after performing an ablation study on the CHB-MIT dataset for epileptic seizure prediction.

Preprocessing Feature
extraction

Classification Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

MCC AUC-ROC

Non-overlapping window Handcrafted features KNN 71.65 53.27 78.08 0.2997 0.6568

Non-overlapping window Handcrafted features RF 73.26 59.50 78.08 0.3541 0.6879

Non-overlapping window Handcrafted features SVM 78.15 65.89 82.44 0.4618 0.7417

Non-overlapping window Handcrafted features CNN 77.02 63.71 81.68 0.4337 0.7269

Non-overlapping window Handcrafted features LSTM 80.01 67.91 84.24 0.5023 0.7608

Non-overlapping window,

Butter-worth filter

Handcrafted features SVM 82.47 70.56 86.64 0.5572 0.7860

Non-overlapping window,

Butter-worth filter, Wavelet

transform

Handcrafted features SVM 84.09 72.90 88.00 0.5958 0.8032

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform

Handcrafted features SVM 86.67 76.48 90.24 0.6581 0.8336

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

channel selection

Handcrafted features SVM 88.77 79.60 91.98 0.7101 0.8579

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

channel selection

1DCNN SVM 90.47 82.40 93.29 0.7532 0.8775

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

surrogate channel

Handcrafted features SVM 92.61 86.14 94.87 0.8081 0.9051

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

surrogate channel

1DCNN SVM 95.40 91.74 96.67 0.8806 0.9420

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

surrogate channel

Handcrafted and

1DCNN feature

fusion

SVM 97.01 94.86 97.76 0.9225 0.9621

Non-overlapping window,

Butter-worth filter, Wavelet

and Fourier transform,

surrogate channel

Handcrafted and

1DCNN feature

fusion

Ensemble classifier 99.52 99.22 99.62 0.97 0.9970

Bold entries represent the highest achieved results of each metric.

classification with the same preprocessing and feature extraction,

and LSTM outperformed CNN in terms of all three performance

measures.

Effective preprocessing plays an important role in the accurate

prediction of epileptic seizures using EEG signals. Therefore, a

Butterworth bandpass filter was applied to remove noise from EEG

signals, whereas feature extraction and classification were kept the

same, and an increased accuracy of 84.07% was observed. In the

next experiments, preprocessing was further enhanced by applying

the wavelet transform along with the Butterworth filter to increase

the SNR, and it resulted in increased accuracy, sensitivity, and

specificity. Similarly, the Fourier transform was also applied in

addition to the Butterworth filter and wavelet transform, and the

results were promising.

The choice of a fixed, non-overlapping 15-s window for

EEG segmentation in our study was guided by its demonstrated

effectiveness in prior seizure prediction research and its suitability

for real-time implementation. However, we acknowledge that

such static segmentation may result in the loss of critical

information, particularly near transitional states such as the

onset or termination of seizures. These transitions often contain

subtle but clinically significant changes that may not be fully

captured within rigid window boundaries. To enhance temporal

sensitivity, future extensions of this work could incorporate

overlapping windows or adaptive windowing strategies that

dynamically adjust based on signal characteristics such as variance,

entropy, or frequency shifts. Such approaches have the potential

to capture transitional dynamics more effectively, improving

both the responsiveness and predictive accuracy of seizure

detection systems.

To assess the computational efficiency of the proposed

framework, we evaluated the complete pipeline comprising
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FIGURE 10

Confusion matrices of all experiments performed.
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FIGURE 11

Training and validation performance curves of the proposed model over 50 epochs.

FIGURE 12

Receiver operating characteristic curve of the proposed method of epileptic seizure prediction.

preprocessing, feature extraction, and ensemble-based

classification on a high-performance system equipped with

an NVIDIA GeForce RTX 3090 and 64 GB of RAM. With GPU

acceleration, the average processing time per 15-s EEG segment

was approximately 0.12 s. This includes Butterworth filtering,

wavelet and Fourier-based feature extraction, spatial filtering, and

ensemble inference. The 1DCNN module benefited significantly

from GPU parallelism using PyTorch, while classical models such

as RF and SVM, as well as handcrafted feature operations, were

efficiently handled on the CPU. All modules were implemented

using optimized scientific computing libraries, including PyTorch,

SciPy, and PyWavelets. The peak memory usage remained

well within the hardware limits, ensuring that the proposed

approach is suitable for real-time or near real-time deployment in

high-throughput clinical environments.

An important aspect in real-time seizure prediction is the

time taken to classify the test sample. EEG signals have high

dimensionality due to the number of channels. It is extremely

important to either reduce the number of channels by performing

a channel selection method or by combining all channels to form

a single surrogate channel. It was observed that the surrogate

channel using an optimized spatial filter outperformed channel
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selection. It is extremely important to extract a feature vector with

high interclass variance and low intraclass variance. Therefore,

we propose a customized architecture of 1DCNN that consists

of five convolutional layers followed by batch normalization

TABLE 5 Comparison of results achieved by proposed method with

state-of-the-art existing methods.

Authors Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Birjandtalab et al. (3) 95 96.27 Not reported

Birjandtalab et al. (4) Not reported 89.80 Not reported

Alotaiby et al. (5) Not reported 89 37

Fei et al. (6) 89.67 89.50 89.75

Cogan et al. (7) 86 100 73

Cho et al. (8) 80.74 80.54 80.50

Jana et al. (9) 90.66 97 95.87

Daoud and Bayoumi (10) 99.60 99.72 99.6

Asharindavida et al. (11) 82.7 Not reported Not reported

Borhade et al. (12) 96.54 96.52 97.53

Zhang et al. (13) 89.98 92.9 87.04

Usman et al. (14) Not reported 92.7 90.8

Tamanna et al. (15) 96.38 76.73 83.16

Jana and Mukherjee (16) 99.47 97.83 92.35

Jemal et al. (17) 90.9 96.1 84.6

Koutsouvelis et al. (19) 97.32 99.31 95.34

Quadri et al. (34) 98.3 97.63 Not reported

Proposed method 99.47 97.83 92.35

and max pooling. A Leaky ReLU with the value of 0.01 has

been used to avoid the problem of vanishing gradients. In

this research, a comprehensive feature vector is formed by

concatenating the handcrafted, and features extracted using a

customized 1DCNN. We also propose an ensemble classifier that

uses MAML with three base classifiers, including SVM, RF, and

LSTM. We used k-fold cross validation and were able to achieve

an accuracy of 99.52% along with sensitivity of 99.22% and

specificity of 99.62%, with standard deviation of 0.53, 0.61, and 0.59,

respectively.

To further validate the robustness of the proposed model,

we computed the Matthews correlation coefficient (MCC) and

the area under the receiver operating characteristic curve (AUC-

ROC). The ensemble classifier achieved an MCC score of 0.99,

reflecting a strong correlation between predicted and actual class

labels even in the presence of class imbalance. Furthermore,

the AUC-ROC score of 0.997 confirms the high discriminative

power of the proposed model in distinguishing between preictal

and interictal states. Figure 11 shows the ROC curve of the

proposed method. To evaluate the learning behavior and check

for overfitting, we plotted the training and validation accuracy

and loss curves, as shown in Figure 12. Table 5 compares the

performance of our proposed method with recent state-of-the-

art methods proposed by researchers on the same dataset, and

it shows that the proposed method outperforms not only in

terms of accuracy, sensitivity, and specificity but also uses less

computational power due to reduced dimensionality. Although

the proposed model achieves a low false positive rate during

evaluation, its practical implications must be considered in

continuous monitoring scenarios. Even a few false alarms per

day can lead to alarm fatigue, reduced trust in the system, and

clinical inefficiencies. In real-world deployment, such issues could

be mitigated by incorporating post-processing techniques such

as temporal smoothing, majority voting across time windows, or

FIGURE 13

SHAP summary plot showing the impact of top handcrafted EEG features on the output of the proposed ensemble model.
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hybrid decision systems that validate alerts through additional

signals. These enhancements would further improve the practical

viability of the proposed method in continuous, long-term

monitoring contexts.

To ensure transparency in model decision-making, we applied

Shapley additive explanations (SHAP) to interpret the influence of

individual handcrafted features on the predicted seizure class. As

shown in Figure 13, features like min, max, and mean had the most

significant positive impact on themodel’s output. The direction and

magnitude of each feature’s contribution can be observed from the

horizontal spread of SHAP values. For instance, high values of max

and mean features (indicated in red) consistently push the model

toward predicting the preictal state. This interpretability analysis

enhances trust in the model’s outputs and provides useful insights

for potential clinical validation.

4 Conclusion and future directions

In this research, we propose a novel method for the prediction

of epileptic seizures using scalp electroencephalographic (EEG)

signals. The proposed method consists of three steps, including

preprocessing, feature extraction, and classification. We propose

a robust preprocessing method that involves conversion of 23

channels into a single surrogate channel using an optimized

spatial pattern filter to reduce the dimensionality, followed

by denoising using a Butterworth filter, wavelet, and Fourier

transform. We also propose a customized architecture of a one-

dimensional convolutional neural network (1DCNN), which is

not only lightweight but also provides a feature vector with

high interclass variance. Both handcrafted and 1DCNN features

are concatenated to form a feature vector, which is then fed

into three classifiers, including support vector machines, random

forest, long short-term memory, and a model-agnostic meta

learner ensemble classifier. The proposed method performs better

compared to existing state-of-the-art methods in terms of accuracy,

sensitivity, and specificity, and is also computationally less complex

due to reduced dimensionality and a customized light-weight

architecture. In the future, integrating other physiological signals,

such as heart rate and blood oxygen levels, with EEG data

could provide a more comprehensive understanding of seizures

before onset. The proposed method can also be applied in

real-time analysis of epileptic seizures. As part of future work,

we plan to develop a lightweight graphical user interface to

facilitate user interaction with the proposed model. This interface

will enable real-time EEG data input, feature visualization, and

display of model predictions and performance metrics, thereby

enhancing the practical applicability of the system in clinical or

research environments.
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Electrocardiogram (ECG) classification plays a critical role in early detection and 
trocardiogram (ECG) classification plays a critical role in early detection and monitoring 
cardiovascular diseases. This study presents a Transformer-based deep learning 
framework for automated ECG classification, integrating advanced preprocessing, 
feature selection, and dimensionality reduction techniques to improve model 
performance. The pipeline begins with signal preprocessing, where raw ECG 
data are denoised, normalized, and relabeled for compatibility with attention-
based architectures. Principal component analysis (PCA), correlation analysis, and 
feature engineering is applied to retain the most informative features. To assess the 
discriminative quality of the selected features, t-distributed stochastic neighbor 
embedding (t-SNE) is used for visualization, revealing clear class separability in 
the transformed feature space. The refined dataset is then input to a Transformer- 
based model trained with optimized loss functions, regularization strategies, and 
hyperparameter tuning. The proposed model demonstrates strong performance 
on the MIT-BIH benchmark dataset, showing results consistent with or exceeding 
prior studies. However, due to differences in datasets and evaluation protocols, 
these comparisons are indicative rather than conclusive. The model effectively 
classifies ECG signals into categories such as Normal, atrial premature contraction 
(APC), ventricular premature contraction (VPC), and Fusion beats. These results 
underscore the effectiveness of Transformer-based models in biomedical signal 
processing and suggest potential for scalable, automated ECG diagnostics. However, 
deployment in real-time or resource-constrained settings will require further 
optimization and validation.

KEYWORDS

cardiac monitoring, ECG classification, electrocardiogram analysis, PCA, t-SNE, 
Transformer-based model, VPC, feature engineering

1 Introduction

Electrocardiography is a primary and most used technique in cardiology that records 
electrical signals of the heart and analyzes the state of the heart. The increasing number of 
patients with CVDs, arrhythmia, myocardial infarction and heart failure proves that accurate 
and reliable diagnostic tools are needed (1). The initial stages of automated ECG classification 
were supported by convolutional models, which provided high accuracy and efficiency, 
although they typically relied on fixed-size kernels and local feature extraction (2). As such, 
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there is a growing need for automated ECG classification systems that 
can efficiently assist clinical decision-making and improve the quality 
of diagnostic results.

In recent years, the global incidents of CVDs has increased, 
making them one of the leading causes of death worldwide (3). ECG 
as a non-invasive technique is widely used for diagnosing cardiac 
arrhythmia and abnormalities. Prodromal signs of CVDs often 
manifest as irregular electrical patterns, detectable via ECG signals. 
For instance, cardiac arrhythmias can be  fatal if not monitored 
properly, as they may indicate conditions leading to sudden cardiac 
arrest. Acharya et  al. (4) employed CNN-based architectures to 
classify ECG signals and achieved 95% accuracy. Similarly, Liu et al. 
proposed the RNN-based approaches, demonstrating the ability of 
sequence-based models to capture temporal dependencies, achieving 
95% accuracy in arrhythmia classification (5–7). These results indicate 
that deep learning models are well-suited for ECG classification.

The ability to differentiate between normal and arrhythmic ECG 
signals is critical for improving CVD diagnosis and identification (8). 
However, due to small amplitude variations and short- duration signals, 
ECG classification remains challenging. Additionally, inherent 
differences in ECG patterns across different CVDs, and difficulty in 
distinguishing similar features between patients make classification even 
more complex. As a result, deep learning-based automated diagnostic 
tools are crucial in complementing traditional ECG analysis to improve 
accuracy and efficiency in CVD detection. Chang and Limon (9) 
demonstrated that transformers could effectively classify ECG signal by 
focusing on the most relevant signal characteristics using the attention 
mechanism. Transformers can capture long-range dependencies in ECG 
measurements well-suited for complex classification tasks.

Building upon these advancements, this study proposes a novel 
Transformer-based model for multi-class ECG classification, 
specifically targeting five distinct classes: Normal, APC, VPC, Fusion 
beat and others. To enhance classification performance, a Transformer-
based model is trained on refined ECG features rather than raw ECG 
signals, enabling better features extraction and reducing noise 
interference. The model is trained and tested on a publicly available 
ECG dataset, demonstrating its effectiveness in classifying various 
cardiac pathologies. To further evaluate the model’s performance, 
various evaluation metrics are used, ensuring its reliability in real-
world applications. Motivations behind this work are:

	•	 Variability of ECG waveforms across individuals due to age, 
physical condition and emotional state, making it challenging to 
distinguish between normal and abnormal rhythms.

	•	 Arrhythmic events often have low amplitude and short duration, 
making them difficult to identify amidst noise.

	•	 Distinguishing between automatically and mechanically 
mediated arrhythmias remains ambiguous due to overlapping 
signal characteristic.

	•	 Bio-noise, such as muscle contractions or improper 
electrode placement, increases signal distortion, affecting 
classification accuracy.

	•	 Traditional convolutional methods used for noise reduction may 
also remove critical ECG features, impacting arrhythmia detection.

The analysis of electrocardiogram (ECG) data now generates 
better results for recognizing heart rhythm irregularities together with 
better classification of cardiac conditions. Modern approaches solve 

many problems of traditional techniques through direct ECG signal 
analysis which removes the requirement for human involvement (10). 
Recent systems, such as Transformer-based architectures, build upon 
CNN strengths by enabling long-range dependency modeling and 
adaptive attention, which enhances recognition of subtle and 
infrequent ECG patterns (11–13).

These approaches demonstrate strong capabilities in detecting 
relationships throughout long duration within ECG recordings. Their 
ability to detect irregular heartbeats that appear infrequently makes 
these methods highly effective (14, 15). The ensured reliable operation 
across different patient groups and improved diagnostic accuracy 
comes from this approach’s capabilities. Real-world ECG 
measurements do not affect these systems because they demonstrate 
enhanced resistance to both interference and measurement distortions.

The ability to understand model prediction processes through 
these techniques increases the potential for medical practitioners to 
adopt the model. Transformers are particularly well-suited for 
capturing long-range temporal dependencies across ECG sequences, 
complementing the local feature extraction of CNNs.

This paper is organized:

	•	 Section 1 presents the Literature Review.
	•	 Section 2 describes Methodology, including data preprocessing, 

feature selection and model training.
	•	 Section 3 presents the Results and Analysis, where classification 

outcomes are evaluated.
	•	 Section 4 discusses Findings, Limitations and Future 

Research Directions.

2 Literature review

The identification and classification of cardiovascular disease 
(CVDs), particularly arrhythmia, remain critical areas of research due 
to the pivotal role of electrocardiography (ECG) in diagnosing heart 
disorder. Over the past few decades, various methodologies have been 
employed for ECG-based arrhythmia detection, ranging from classical 
machine learning techniques to advanced deep learning approaches, 
with the primary objective of enhancing accuracy, efficiency and 
robustness. Martis et al. (16) proposed an SVM-based classification 
method that relied on handcrafted features such as wavelet coefficients 
and heart rate variability, as discussed in Table 1. Similarly, Marinho 
et al. (17, 18) explored feature engineering techniques to improve 
arrhythmia classification. However, these models exhibit poor 
generalization on large databases due to their dependence on manual 
feature extraction, making them highly sensitive to noise and variation 
in patients.

To address the limitations of early rule-based and statistical ECG 
analysis methods, Hannun et  al. (15) explored recurrent neural 
networks (RNNs) and LSTM architectures to preserve temporal 
information over longer durations. While LSTMs improved 
arrhythmia classification, they often struggled with vanishing gradient 
problems and incurred high computational costs—posing a challenge 
for real-time or resource-constrained deployment.

Transformer models, originally introduced for natural language 
processing, have recently gained traction in biomedical signal 
processing due to their ability to model long-range dependencies 
efficiently. In one of the earliest applications of Transformers to ECG 
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signals, a 2021 study (19) demonstrated their effectiveness in 
arrhythmia classification. Li et  al. (14) further extended this by 
integrating a Transformer with a 2D-UNet architecture to capture 
both spatial and temporal ECG features, improving classification 
accuracy and interpretability.

Despite their promise, Transformers also come with 
challenges. Training large-scale Transformer models demands 
significant computational resources and careful hyperparameter 
optimization. Additionally, their integration into clinical 
workflows requires further work on improving interpretability 
and operational efficiency. The contribution of our work is 
as follows:

	•	 The proposed Transformer-based model was evaluated on five 
ECG arrhythmia classes: Normal, APC, VPC, Fusion Beat, and 
Others demonstrating its effectiveness in multi-class ECG 
classification tasks.

	•	 The model exploits the attention mechanism to learn long-range 
temporal dependencies, offering improved performance over 
conventional CNN and RNN approaches.

	•	 It addresses key challenges in ECG analysis, such as noise and 
signal variability, by focusing on clinically informative 
signal segments.

	•	 While deployment in clinical settings remains a future goal, the 
model shows promise for scalable and automated ECG analysis, 
suitable for integration into health-monitoring systems.

Despite notable advancements in CNNs, LSTMs, and 
Transformer-based techniques, several key challenges persist. These 
include limited generalizability across datasets, vulnerability to signal 
artifacts, and the computational intensity required for model training 
and inference. Overcoming these obstacles is essential for creating 
robust, interpretable, and deployable ECG classification systems 
suitable for real-world clinical use.

3 Materials and methods

The proposed ECG classification framework is designed to detect 
and categorize cardiac arrhythmia using a Transformer-based deep 
learning model trained on preprocessed ECG signals. The system 
integrates data acquisition from a wearable device, such as a 
smartwatch, with a mobile application that transmits ECG data to a 
cloud server via Wi-Fi for further processing. Upon receipt, the raw 

ECG signals undergo a structured preprocessing pipeline that includes 
denoising to eliminate motion artifacts and baseline drift, 
normalization to standardize signal amplitude, and segmentation to 
extract uniform time windows for analysis.

Following preprocessing, feature extraction and selection are 
conducted using techniques such as principal component analysis (PCA) 
and correlation-based filtering to identify the most discriminative signal 
characteristics. These selected features serve as input to the Transformer-
based architecture, which is trained in the cloud environment using 
supervised learning. The training phase incorporates hyperparameter 
tuning, loss function optimization, and regularization strategies to 
improve generalization and mitigate overfitting.

Once trained, the optimized model is intended for future 
deployment on mobile devices, where it can support real-time ECG 
classification. The mobile application will be able to receive ECG 
signals and output classification results, identifying patterns such as 
Normal, atrial premature contraction (APC), premature ventricular 
contraction (PVC), Fusion beat, and other arrhythmic events. While 
the system is structured for scalability and real-time analysis, 
on-device inference and hardware-level performance optimization 
remain areas of future work to ensure clinical reliability and 
deployment in resource-constrained settings (Figure 1).

Workflow of the proposed ECG classification system, illustrating 
the integration of hardware components (wearable smart watch, 
mobile application, and cloud server) and data processing stages 
including signal acquisition, preprocessing, feature extraction, 
Transformer-based classification, and result delivery. The framework 
is designed to improve the accessibility of cardiac monitoring and 
supports the goal of enabling earlier detection of arrhythmias, though 
deployment and validation on real-world hardware remain subjects 
for future work.

3.1 Dataset description

The dataset employed in this study comprises a collection of ECG 
recordings representing both normal rhythms and a range of arrhythmic 
conditions. All recordings are sampled at a consistent frequency, 
ensuring temporal uniformity across the dataset (20, 21). The dataset 
includes five clinically relevant classes: Normal, atrial premature 
contraction (APC), premature ventricular contraction (PVC), Fusion 
beat, and others, as illustrated in Figure 2. Although slightly imbalanced, 
it provides a diverse representation of common arrhythmic patterns. To 
ensure signal quality and reliability for downstream classification,  

TABLE 1  State-of-the-art methods for ECG classification.

References Techniques Goals Findings

Lee and Shin (30) Hierarchical Transformer Lead-aware ECG modeling High-performance arrhythmia detection

Hannun et al. (31) deep neural network (DNN) improve the accuracy and scalability reduce the rate of misdiagnosed

Rajpurkar et al. (32) CNN exceeds the performance Exceed cardiologist performance

Arabi et al. (19) MSW-Transformer Multi-scale attention ECG classifier Macro-F1: 77.85%

Ait Bourkha et al. (33) DCETEN (1D-CNN + Transformer) Efficient ECG classification Accuracy: 99.84%

Kailan et al. (34) PSO-based feature selection + SVM, 

KNN, RF, DT

Improve ECG classification accuracy & reduce 

dimensionality for IoT deployment

Accuracy: 98% (PSO-SVM) vs. 84% (non-PSO); 

Features reduced: 4000 → 888

Mavaddati (35) ResNet-34 + Time–Frequency 

Scalogram + Transfer Learning

Classify 3 types of cardiovascular diseases 

(CVDs); compare with CNN, RNN, SNMF

ResNet-34 outperformed CNN, RNN, and SNMF in 

accuracy, sensitivity, and robustness for clinical use
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preprocessing pipelines are applied to the raw ECG signals. This includes 
denoising, normalization, and segmentation steps, which help mitigate 
baseline drift, reduce motion artifacts, and standardize input lengths. 
These steps are essential to prepare the data for the attention-based 
Transformer model used in this study (6).

3.2 Data preprocessing

The preprocessing pipeline ensures the ECG signals are structured 
and standardized for input into the Transformer-based model. The key 
steps are as follows:

	•	 Dataset loading and partitioning: The ECG dataset is first loaded 
and divided into training and testing subsets. Each row represents 
a single ECG sample, with the final column indicating the class 
label associated with the corresponding cardiac condition.

	•	 Feature and label separation: The dataset is then split into feature 
matrices and target vectors. The features X_train, X_test → 
Contain Raw ECG features. While the Y_train, y_test → Contain 
corresponding class labels.

	•	 Normalization: Given the variability in ECG signal amplitudes, 
normalization is applied to scale all feature values between 0 and 1. 
This mitigates amplitude-related noise, stabilizes the data 
distribution, and improves training convergence. The normalization 
is applied using the min-max scaling as shown in Equation 1:

	
µ

σ
−

=` i
i

xx
	

(1)

Where,

	o	 xi is the normalized signal value.

	o	 xi is the original signal value.
	o	 μ is the meaning of the signal segment.
	o	 σ is the standard deviation of the signal segment.
	•	 Normalization not only stabilizes input ranges but also 

accelerates model convergence and enhances classification 
performance by minimizing bias introduced by amplitude 
variations across different recordings.

	•	 To analyze how well the normalized features represent different 
heartbeat categories, the t-distributed stochastic neighbor 
embedding (t-SNE) technique is applied. This dimensionality 
reduction method maps high-dimensional ECG features into a 
2D space, allowing visual assessment of class separability prior to 
training. This step is particularly valuable for evaluating whether 
the features preserve inter-class distinctions.

	•	 Since the task involves multi-class classification, categorical labels 
are transformed into numerical representations using a label 
encoding technique. This conversion is essential for training the 
deep learning model, allowing loss functions and optimization 
routines to operate effectively on class indices.

	•	 Transformer models require input in a sequence-based format. 
Thus, the ECG data is reshaped into a 3D tensor with the structure.

	o	 Samples (batch size).
	o	 Time steps (ECG sequence length).
	o	 Feature (single ECG value per step).

The reshaping is illustrated in Equation 2:

	 =      .downX i X i n 	 (2)

Where,

	o	 Xdown[i] is downsampled signal at index i.
	o	 X[i] is an original signal.
	o	 n is the down sampling factor.

FIGURE 1

Hardware architecture of the Transformer-based ECG classification model.
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This reshaping enables the model to process ECG signals as temporal 
sequences, ensuring that temporal dependencies and waveform 
dynamics are preserved during training. It aligns the data structure with 
the self-attention mechanism used by Transformers, which excels in 
modeling long-range dependencies without relying on fixed kernel sizes.

3.2.1 ClassLabels
The dataset includes five distinct heart rhythm categories, each 

representing a specific type of arrhythmia or normal pattern:

	•	 Normal: Represents a healthy, regular heart rhythm.
	•	 Atrial premature contraction (APC): Premature beats originating 

from the atria, indicating irregular early electrical activity.
	•	 Premature ventricular contraction (PVC): Extra systolic beats 

that originate in the ventricles, often associated with more serious 
cardiac conditions.

	•	 Fusion beat: A waveform resulting from the combination of normal 
and abnormal heart contractions, leading to a hybrid signal.

	•	 Other: Patterns that do not clearly fall into any of the above 
categories, encompassing miscellaneous or undefined anomalies.

Through the implementation of these preprocessing techniques, 
the ECG data is sanitized, segmented, and properly formatted before 
being fed into the Transformer-based classification model ensuring 
more accurate identification of a wide range of heart conditions.

3.3 Feature extraction techniques used in 
proposed model

Feature selection enhances model performance by identifying 
critical patterns and discarding irrelevant or less useful signal 

components (12, 13). After data preprocessing, multiple feature 
selection techniques are applied to ensure that only the most relevant 
features are retained for classification. The techniques used for feature 
extraction and selection include:

	•	 Principal component analysis (PCA): A dimensionality reduction 
technique that transforms a set of potentially correlated variables 
into a smaller set of uncorrelated principal components, 
preserving the majority of the data’s variance.

	•	 t-distributed stochastic neighbor embedding (t-SNE): A 
nonlinear dimensionality reduction technique primarily used for 
visualizing high-dimensional data in 2D or 3D.

	•	 Correlation analysis: Used to detect and eliminate redundant 
features that show strong inter-feature correlation but do not 
contribute independently to classification performance.

	•	 Feature engineering: The process of generating new, domain-
relevant features derived from existing data to improve 
model accuracy.

While PCA and correlation-based feature selection significantly 
improved classification performance, their clinical interpretability 
remains limited. The principal components produced by PCA are 
linear combinations of original ECG features and, while they 
effectively capture statistical variance, they do not directly correspond 
to established clinical indicators such as P-wave duration, QRS 
complex width, or T-wave inversion. This raises uncertainty about 
whether the most influential features in the model’s predictions align 
with clinically accepted diagnostic markers used by cardiologists. 
This limitation underscores the need for future research that 
incorporates clinically annotated datasets and domain-informed 
feature selection strategies. Such efforts could bridge the gap between 
deep learning representations and clinically meaningful 

FIGURE 2

Architecture diagram of Transformer-based ECG classification model.
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interpretations, improving trust and applicability in real-world 
diagnostic settings.

To evaluate the discriminative quality of the extracted features 
before model training, we applied t-distributed Stochastic Neighbor 
Embedding (t-SNE) to the preprocessed dataset. As shown in Figure 3, 
the resulting 2D embedding reveals distinct clustering patterns for 
most arrhythmia types. This indicates that the features refined through 
PCA and correlation analysis retain sufficient discriminatory power 
for effective classification. The visual separation also validates the 
structure of the input space before learning begins, providing insight 
into class overlap and guiding model architecture decisions.

3.4 Transformer-based model training and 
testing

The Transformer-based model is trained on reshaped ECG input, 
where each sample represents a time-series sequence of cardiac 
electrical activity. The input data is formatted as a two-dimensional 
matrix, with dimensions corresponding to the sequence length and 
the feature dimension. The sequence length reflects the number of 
time steps (i.e., signal samples) in each ECG segment. The feature 
dimension represents the amplitude of the ECG signal at each time 
step, typically one-dimensional for raw ECG traces. This sequential 
structure is well-suited for Transformer architectures, which rely on 
self-attention mechanisms to capture long-range dependencies and 
temporal relationships in the input. Positional encodings are 

incorporated to retain temporal order information, as the 
Transformer lacks inherent recurrence or convolution. The model is 
trained using supervised learning, where ECG signals are paired with 
corresponding class labels (e.g., Normal, APC, VPC, Fusion Beat, 
Others). Training includes the use of optimized loss functions (e.g., 
sparse categorical cross-entropy), regularization techniques such as 
dropout, and hyperparameter tuning (e.g., number of attention 
heads, embedding dimensions, and learning rate) to improve 
generalization and prevent overfitting.

Tables 2, 3 illustrate the detailed architecture of the model, 
including the layer-wise parameters used in training. To assist with the 
initial level of feature extraction, the model incorporates an optional 
Dense Layer containing 64 neurons. This layer acts as a feature 
extractor, transforming the original input into a high-dimensional 
space (22). As a result, it highlights underlying steady-state patterns 
in ECG signals and enhances the model’s ability to recognize complex 
patterns in subsequent layers. Notably, no activation is applied in this 
Dense Layer, ensuring that the transformation remains linear (23, 24). 
After passing through the Dense Layer, the data undergoes a crucial 
reshaping step. This step resizes the input dimensions to be compatible 
length and an embedding dimension of 64, optimizing it for 
processing within the core Transformer block.

The core component of the model is the Transformer Block, which 
is specifically designed to capture temporal dependencies in ECG 
signals. This block begins with a Multi-Head Attention mechanism 
consisting of four heads and an embedding size of 64. These attention 
heads allow the model to process multiple time segments 

FIGURE 3

t-SNE visualization of ECG signal features after dimensionality reduction and preprocessing. Each point represents one ECG sample projected in a 2D 
space, colored by class label: Normal, supraventricular (APC), ventricular (PVC), fusion beat, and other. The visualization demonstrates that the 
extracted features possess natural class separation, indicating their suitability for classification.
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simultaneously, capturing both local and global features within ECG 
signals. This capability is crucial for identifying arrhythmia, as 
different time steps may contribute to abnormal heart rhythms.

To further refine feature extraction and visualization, the model 
leverages t-SNE after training. T-SNE is applied to the high-dimensional 
feature representations extracted by the Transformer blocks, providing 
an interpretable 2D visualization of how ECG patterns are separated 
based on different heart conditions. This technique helps assess how well 
the model distinguishes between normal and abnormal heartbeat, 
enhancing its explainability in real-world applications.

The self-attention mechanism for each head is computed in 
Equation 3:

	
( )

 
=   √ 

, ,
TQKAttention Q K V softmax V

dk 	
(3)

Where,

	•	 Q = WQ X, K = WkX and V = WvX are the query, key and 
value matrices.

	•	 dk is the dimension of Key vector.
	•	 WQ, Wk, and Wv are learnable weights matrices.
	•	 QKT is Dot product of the query and key matrices.
	•	 Softmax ensures attention weights sum to 1.
	•	 Scaling by √dk helps with gradient stability.

For multi-head attention as shown in Equation 4:

	 ( ) ( )= ……1, , , , hMultiHead Q K V Concat head head Wo	 (4)

Where,

	•	 h is the number of attention heads.
	•	 headi is output of the i-th attention head.
	•	 Wo is an output weight matrix and h is the number of heads.

For feed-forward network (FFN):
Each transformer layer includes a position-wise FFN:

	 ( ) ( )= + +1 1 2 2FFN x ReLU xW b W b 	 (5)

Where,

	•	 W1, W2 are weight matrices for 2 linear layers.
	•	 b1, b2 are bias terms for each layer.
	•	 ReLU activation function applied after the first linear transformation.

For layer normalization and dropout:
After each attention and FFN block, layer normalization and 

dropout are applied:

	
( ) µ γ β

σ

−
= +

+2
.xLayerNorm x

ò 	
(6)

Where,

	•	 μ is the meaning of x.
	•	σ 2 is the variance.
	•	 ɛ is a small constant for numerical stability.
	•	 ϒ, β are learnable parameters.

Following the attention mechanism, the output proceeds through 
a Feed-Forward Neural Network (FFN) which comprises of two 
Dense Layers. The first Layer again makes the function non-linear by 
using the ReLU activation function thus enabling the model to detect 
higher order compounding in the data. The second layer scales the 
output back to the embedding size of 64 needed for attention 
computations. This is further added by layer Normalization that settles 
the training process as well as Dropout that discards some neurons at 
random to avoid overfitting. To address the issues of high 
dimensionality of the data in the model with important features 
preserved, the model uses Global Average Pooling Layer. This layer 
pools the learned features over the time steps making it easy to work 
on an informed representation of the entire sequence.

The output from the transformer encoder is passed to a fully 
connected layer for classification, where softmax activation is used to 
assign probabilities to each ECG class as shown in Equation 7:

	 ( )= +Y softmax ZWc bc 	 (7)

Where,

	•	 Z is the output from the encoder.

TABLE 2  Layer structure and parameters used in proposed model.

Layer type Layer name Parameters Description

Input layer Input Input_shape = (X-train. Shape [1], 

1)

Accepts input data reshaped to have one channel.

Flatten layer Flatten None Flattens the input into a 1D array for initial processing.

Dense layer Dense Units = 64 Fully connected layer for initial feature extraction

Reshape layer Reshape Target-Shape = (−1, 64) Reshapes the output to prepare it for the Transformer block.

Transformer block TransformerBlock Embed_dim = 64, num_heads = 4, 

ff_dim = 64

Custom layer implementing multi-head self-attention and feed-forward 

networks.

Global average pooling GlobalAveragePooling1D None Reduce the output sequence to a single vector by averaging.

Output layer Dense Units = num_classes, 

activation = ‘softmax’

Final layer for classification, providing class probability.
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	•	 Wc is the weight matrix.
	•	 bc bias terms for the classifier.

The output of the layer is feed to the Dense layer and a Softmax 
activation function is used. This last step computes probability for 
each of the five ECG classes which makes it possible for the model to 
perform multi-class classification. The model’s prediction is based on 
the maximum probability, which shows to which category the ECG 
signals belong, thus helping to diagnose arrhythmia correctly.

4 Results and evaluation metrics

The Transformer-based model’s performance was measured using 
various metrics to provide a comprehensive evaluation of its 
classification capabilities. The model achieved a final validation 
accuracy of 97% after 10 epochs, reflecting strong generalization on 
unseen data.

The correlation heatmap in Figure 4 depicts relationships among 
ECG features. Strong correlations (values close to 1 or −1) suggest 
redundancy, which guided the feature selection process using 
PCA. Features with low correlation were preserved to retain signal 
diversity. These insights helped reduce dimensionality while 
maintaining important clinical features. In this heatmap, every cell 
indicates the correlation between the two features of the bioinformatics 
dataset based on a coefficient varying between −1 to 1. Here, a value 
close to 1 reveals positive correlation, which makes one feature 
dependent on the other, whereas if one rises the other is also likely to 
rise. On the other hand, the value will be near −1, if the features are 
negative, thus suggesting that one of the features increases the other is 
likely to decrease (25). The heatmap uses a color gradient where 
darker colors signify higher positive correlation, lighter color signify 
low or negative correlation and black areas signify low correlation. 
Since each feature is compared to itself on the diagonal of the heatmap, 
it is obvious that the correlation between features would be 1. Some 
blocks in the heatmap contain areas with a clearly higher correlation, 
that can be attributed to groups of features that likely possess similar 
characteristics or possibly act in concert to manifest certain patterns 
in the ECG signals (26). Some blocks in the heatmap contain areas 
with a clearly higher correlation, that can be attributed to groups of 
features that likely possess similar characteristics or possibly act in 
concert to manifest certain patterns in the ECG signal. These 
observations indicated the possible redundancy or relevance of feature 
groups and might be helpful for the feature selection or dimensionality 

reduction (27). The lighter-colored areas or the areas with correlations 
near zero show that the features of these regions are least dependent 
on each other. Such features may be valuable for capturing some of the 
temporal qualities of the ECG signals that may be essential for the 
classification of arrhythmias. The heatmap analysis may show how 
various features related to arrhythmia are related to each other based 
on the pattern analysis. For instance, some attributes might appear to 
be more effective in identifying sorts of cardiac pathologies, knowledge 
of which can help to determine the model’s architecture.

Figure 5 visualizes class imbalance in the dataset. The “Normal” 
class dominates with 18,000 samples, compared to 560 for APC 
and 1,400 for VPC. This imbalance motivated the use of 
augmentation and class-weighted training to prevent overfitting 
toward the majority class and improve minority class detection. 
The above figure provides the visual representation of the class 
distribution in the dataset, offering a clear view of the count of 
samples in each category (28). By using a heatmap, it emphasizes 
the significant class imbalance where the Normal class has a much 
larger sample size compared to other classes like APC, VPC, 
Fusion Beat and others. This disparity may impact the model’s 
performance, potentially leading to bias toward the majority class 
during training.

Figure  6 shows the progression of training and validation 
accuracy/loss over 10 epochs. Accuracy steadily increased while loss 
decreased, with both curves converging by the 10th epoch. This 
indicates minimal overfitting and efficient learning. This trend 
suggests that the model is learning effectively and improving its 
predictions over time (29). The closeness of the training and validation 
accuracy curves indicates minimal overfitting, as the validation 
accuracy closely follows the training accuracy. The right curve, loss 
curve, augments downward with the training time, showing less error 
of prediction. The training and validation losses converge closely by 
the final epoch, indicating stable performance, which is additional 
evidence of model performance on unseen data. But the early epoch 
oscillates a bit, and this could mean the model is making changes to 
the learning rate or complexities in some classes. All these plots show 
that the model performed very well and with little overfitting which 
implies that there was good or sufficient balancing between the 
training and the validation accuracy models. This model appears well-
optimized for this dataset, though further comparisons with baseline 
models are required to confirm its superiority, since both the accuracy 
and the loss rate converge quite steadily.

4.1 Quantifying the impact of PCA

While both principal component analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE) were used in the study, their 
individual contributions were distinctly different. PCA was applied as 
a dimensionality reduction technique prior to training, aiming to 
eliminate redundancy and retain the most informative features. To 
evaluate its effectiveness, an ablation experiment was conducted where 
the Transformer model was trained once with PCA and once without 
PCA, using the same training configuration (Table 4).

These results confirm that PCA significantly improved model 
performance by reducing feature noise and enhancing separability in 
the feature space. In contrast, t-SNE was used exclusively for 
visualization to illustrate class-wise separability and decision 

TABLE 3  Transformer block breakdown of the proposed model.

Component Parameters Description

Multi-head 

attention

Num_heads = 4, 

key_dim = 64

Computers attention scores for 

different subspaces of the input.

Feed-forward 

network

Dense_layers: [64, 

64]

It consists of two dense layers with a 

ReLU activation in between.

Layer 

normalization

Epsilon = 1e-6 Normalize the output for better 

training stability.

Dropout Rate = 0.1 Regularization to prevent overfitting, 

applied after attention and feed-

forward layers.
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boundaries in a reduced feature space. It was not used during training 
and did not influence model accuracy directly.

To interpret the model’s behavior after training, we  applied 
t-distributed Stochastic Neighbor Embedding (t-SNE) to the learned 
feature embeddings and visualized the decision boundaries for each 
ECG class. As shown in Figure 7, the background color represents the 
class regions predicted by the trained Transformer-based model, while 
the overlaid dots indicate actual test samples projected into the 2D 
t-SNE space. The clear separation in some regions particularly for 
classes like “Normal” and “Fusion Beat” indicates strong class-specific 
learning. However, overlapping regions involving “APC” and “VPC” 
reflect residual class confusion, consistent with class imbalance and 
similar signal morphology. This visualization confirms that the model 
has successfully learned a meaningful embedding space for ECG 
classification, while also highlighting opportunities for 
further refinement.

Figure 8 illustrates the precision, recall, and F1 score for each 
ECG class, reflecting the model’s classification performance across 
different arrhythmia types. The results show that the model achieves 
near-perfect precision and F1 scores for the “Normal,” “Fusion 
Beat,” and “Other” categories, indicating excellent classification for 
these classes. For the Atrial Premature Contraction (APC) class, the 
model demonstrates strong recall (100%), suggesting it detects 

nearly all APC instances. However, the precision is relatively low, 
resulting in an F1 score above 85%. This implies the model over-
predicts APC, likely due to its confusion with similar classes such 
as Normal. The Ventricular Premature Contraction (VPC) class 
exhibits the weakest performance, with noticeably lower recall and 
F1 score. This may be due to class imbalance and the morphological 
similarity of VPC to APC and Fusion Beat in ECG waveforms 
particularly within the QRS complex, where overlapping features 
can confuse the classifier.

Interestingly, the VPC class shows a perfect AUC (1.00), indicating 
that the model is capable of ranking VPC instances correctly. However, 
the low recall suggests that classification thresholds or insufficient 
representation in the training data may limit actual detection. This 
highlights the need for possible threshold adjustment or targeted 
data augmentation.

Figure  9 displays the ROC curves for each ECG class in the 
classification model, showing the trade-off between the true positive 
rate (TPR) and false positive rate (FPR) at various classification 
thresholds. The ROC curve is a standard diagnostic tool to evaluate 
the model’s ability to distinguish between different classes. The area 
under the ROC curve (AUC) provides a scalar measure of this 
discriminative ability. AUC values closer to 1.0 indicate excellent class 
separability, while values near 0.5 suggest random guessing. In this 

FIGURE 4

Correlation heatmap of the ECG dataset.
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model, all ECG classes achieved high AUC scores, reflecting 
strong performance:

	•	 Normal: 0.98.

	•	 APC: 0.94.
	•	 VPC: 1.00.
	•	 Fusion Beat: 0.98.
	•	 Other: 1.00.

These results indicate that the model is highly capable of 
distinguishing between the different rhythm types, even for 
more challenging arrhythmias like APC and VPC. Despite 
some misclassifications seen in the confusion matrix and F1 scores 
(particularly for VPC), the high AUC values suggest that the model’s 
ranking ability is robust. This discrepancy implies that classification 

FIGURE 5

Class distribution heatmap of ECG dataset.

FIGURE 6

Training and validation accuracy and loss over 10 epochs of ECG classification model.

TABLE 4  Impact of PCA on the model performance.

Model setup Accuracy AUC

Without PCA 92.3 0.91

With PCA 97.1 0.96
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thresholds, class imbalance, or feature overlap might be affecting 
precision and recall, rather than the model’s core ability to separate 
classes. Therefore, further improvements could be made through 
threshold tuning, class-specific loss weighting, or augmentation 
strategies, rather than architecture changes:

	 ( ) ( )= + = +TPR t TP / TP FN,FPR t FP / FP TN 	 (8)

The final AUC score is computed by integrating the area under the 
ROC curve.

Figure 10 presents the normalized confusion matrix, providing a 
detailed view of the model’s classification performance across ECG 
rhythm categories: Normal (0), APC (1), VPC (2), Fusion Beat (3), and 
Other (4). Each cell indicates the percentage of instances from a true class 
(rows) predicted as a certain class (columns). Diagonal values represent 
correct classifications, while off-diagonal values indicate misclassifications.

The matrix shows excellent performance on the Normal class, 
with 99.5% of samples correctly classified, reflecting the model’s high 
sensitivity and specificity for detecting normal heartbeats. The “Other” 
category also shows strong results, with over 96% correctly identified.

However, some confusion is evident among arrhythmic classes:

	•	 APC is often misclassified as normal (33.1%), despite a 
high recall.

	•	 Fusion Beat is frequently predicted as normal (43.8%), suggesting 
difficulty in distinguishing Fusion morphology from typical 
ECG rhythms.

	•	 VPC shows good accuracy (86.7%), but a small portion is 
misclassified as normal (10.2%) or fusion (2.4%).

These misclassifications likely arise from morphological 
similarities in the QRS complexes and overlapping waveform features 
across arrhythmia types. In particular, the confusion between APC 
and Normal, and Fusion and Normal, may stem from subtle 
variations in signal patterns that challenge the model’s 
feature extractor.

To enhance class separability, especially for VPC and Fusion, 
future work could focus on improving the feature extraction 
pipeline, incorporating class-specific augmentation, or using 
contrastive learning techniques to better differentiate similar 
waveform classes in the learned embedding space.

The model was trained to minimize sparse categorical cross-
entropy loss, which quantifies the difference between the predicted 
probability distribution ppp and the true distribution qqq. The loss 
function is defined in Equation 9:

	 ( )= −Σ =1 logLoss N i qi pi 	 (9)

Where,

	•	 N is the number of classes.
	•	 qi is 1 for the correct class and 0 otherwise.
	•	 pi is predicted for class I.

FIGURE 7

Post-training t-SNE decision boundary visualization of the ECG classification model. Background regions indicate model-predicted class clusters, and 
colored circles represent projected ECG samples. While distinct clusters emerge for dominant classes, class overlap remains in minority arrhythmias.
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Overall accuracy, which is the ratio of correctly predicted 
instances to the total number of instances, is defined as:

	 = +  / Total InstancesAccuracy True Positive True Negatives 	 (10)

These metrics help to evaluate the model’s performance in 
each class:

Precision measures the accuracy of positive predictions:

	
=

+
 

  
True Positives

Precision
True Positives False Negatives 	

(11)

Recall measures the model’s ability to capture all relevant instances:

	 = + /   Recall True Positives True Positives False Negatives

F1-score is the harmonic mean of precision and recall, balancing 
the two metrics:

	 − = ∗ ∗ +1 2 /F Score Precision Recall Precision Recall	 (12)

When evaluating the model with respect to precision, recall and 
F1-score as well as the analysis of the confusion matrix, the model would 
be strong in predicting classes that make the majority such as 29 K, 44 K 
thus indicating the areas that would require improvement in the minority 
classes such as APC and VPC. The model architecture could also 
be improved further and overspecification of hyperparameters could 
be done to achieve a better balance among all classes.

5 Comparative evaluation of 
transformer variants

To demonstrate the effectiveness of our proposed model, 
we  compared its performance with other state-of-the-art 

Transformer-based ECG classifiers, including ECG-BERT, time series 
transformer (TST), and Informer. These models were selected based 
on their recent use in biomedical signal processing and sequential 
data tasks.

Table 5 summarizes the comparative performance of various state-
of-the-art Transformer-based models applied in biomedical signal 
classification. Among them, ECG-BERT, Informer, and time series 
transformer (TST) demonstrate strong performance on arrhythmia 
detection tasks, with AUC scores ranging from 0.94 to 0.95. These 
models leverage attention mechanisms to effectively model temporal 
dependencies within ECG signals. MN-STDT model proposes a 
brand-new multimodal framework, where chest X-ray spatial features 
and EHRs temporal features are combined, with an AUC of 0.8620 in 
in-hospital mortality prediction of heart failure. Despite not being 
directly applicable to ECG classification, MN-STDT demonstrates the 
increased nexus of multimodal Transformer models in clinical research 
and their ability to perform more context-aware predictions. In their 
turn, the suggested Transformer model of the present research, based on 
the use of the PCA-based feature selection, engineered representations 
as well as t-SNE visualization, attains higher performance, with an 
accuracy ratio of 97.1, F1-score rate of 0.95 and the value of AUC equals 
to 0.96. It suggests that, besides the overall success of the Transformer 
backbone at modeling ECG sequences, the well-optimized preprocessing, 
dimensionality reduction, and hyperparameters tuning play a central 
role. As opposed to other models, the proposed one has a high degree of 
interpretability and generalization to different classes of ECG, indicating 
its strong potential to be broadly integrated into the clinical routine in 
automated pipelines of ECG analysis.

6 Ablation study of hyperparameter 
settings

An ablation study was undertaken to assess the effectiveness of 
parameter ablation by varying the number of attention heads, the size 

FIGURE 8

Highlighting model performance across various arrhythmia types.
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FIGURE 10

Confusion matrix for Transformer-based ECG classification model across classes.

FIGURE 9

Receiver operating characteristic (ROC) curves for ECG classes.
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FIGURE 11

Ablation study showing the effect of attention heads, embedding dimension, and dropout rate on classification accuracy. Optimal performance was 
achieved with 4 attention heads, 128-dimensional embeddings, and a dropout rate of 0.2.

of embedding dimension and dropout rate independently. This analysis 
aimed at finding the most optimal values that would offer classification 
accuracy and model complexity. Table 5 presents the classification 
accuracy and AUC values obtained by modifying one hyperparameter 
at a time while keeping the others constant (Figure 11).

The results demonstrate that using four attention heads and an 
embedding dimension of 128 achieved the highest classification 
accuracy and AUC without significantly increasing the computational 
cost. A dropout rate of 0.2 provided effective regularization, reducing 
the risk of overfitting while preserving performance. Higher dropout 
values (e.g., 0.4) led to underfitting, while lower values (e.g., 0.1) 
increased variance during training. These findings support the final 
hyperparameter configuration used in the proposed model and 
confirm that the selected values contribute meaningfully to improved 
classification outcomes, particularly for clinically relevant ECG classes.

7 Discussion

The transformer model as applied to the ECG has high classification 
accuracy across various classes of arrhythmias which implies that the 
model can handle temporal variability and complex morphologies of the 
ECG signals. By using self-attention, the model learns dependencies that 

are long-range without constraints to fixed-size temporal windows and 
recurrent architecture. This is because it can accommodate ECG 
sequences with different sequences and dynamics; this is a common 
feature in clinical data. Consequently, the sensitivity to the slight variation 
of the waveforms which is important in identifying the classification of 
arrhythmia is better enhanced on the model. Although CNN-based 
models have shown strong results in ECG analysis and remain widely 
used in clinical and research settings, their reliance on local receptive 
fields limits their capacity to capture long-range dependencies. 
Transformers overcome this by using self-attention mechanisms that 
dynamically model relationships across the entire signal length. 
Conversely, Transformer global attention mechanism better captures 
temporal dependencies to yield better classification results. Although 
model performance is one of the priorities, explaining the model still is 
a big challenge. Transformer-based models can be regarded as black 
boxes and even the presented techniques such as visualization of 
attention weights may provide some insight into the models, but this 
paper does not envisage an analysis of interpretability. Future research is 
advised to include implementations of explainability algorithms like 
attention mapping or SHAP analysis, seeking to make the inclusion of 
such systems more clinically acceptable and easy to adapt to.

Additionally, although architecture holds potential for integration 
into edge devices and wearable technologies, this study does not 

TABLE 5  Comparison with Transformer-based and SOTA ECG models.

Model Architecture Accuracy F1-score AUC Reference

ECG-BERT Pre-trained transformer (BERT-based) 94.6 0.92 0.94 (36)

Time series transformer (TST) Encoder-only transformer with positional encoding 95.3 0.93 0.95 (37)

DRL-ECG-HF DRL + Multi-instance learning + PER + SHAP – 0.58 9.90 (38)

MN-STDT Spatially and temporally decoupled transformer with 

multimodal fusion (CXRs + EHR)

– – 0.86 (37)

Proposed transformer model Transformer + PCA + Feature engineering 97.1 0.95 0.96 Current study
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evaluate inference latency, computational resource requirements, or 
hardware deployment feasibility. As such, claims regarding real-time 
or mobile deployment are beyond the scope of this work. Future 
research may explore model simplification, quantization, or pruning 
strategies to enable deployment in resource-constrained environments, 
such as wearable health monitoring systems.

Overall, this study underscores the applicability of Transformer 
architectures to biomedical signal classification tasks, particularly 
ECG interpretation, and provides a foundation for future research 
focused on explainability, deployment, and clinical validation.

8 Limitations

Although the current Transformer-based ECG classification model 
shows promising results, several limitations must be acknowledged.

First, the dataset used for training and evaluation lacked significant 
diversity and exhibited class imbalance. While the model performed 
well on majority classes such as “Normal” and “Fusion Beats,” it 
underperformed on minority classes like “Ventricular Premature 
Contractions (VPC),” which had relatively few samples. This imbalance 
likely affected the model’s ability to accurately classify rare arrhythmias 
and limits its generalizability to diverse or unseen clinical scenarios.

Second, the transformer architecture is computationally 
intensive, both during training and inference. Memory and 
processing demand pose challenges for deployment in resource-
constrained environments, such as mobile or wearable healthcare 
devices. This limitation impacts the model’s scalability and increases 
the cost and complexity of real-world implementation.

Third, interpretability remains a significant concern. Despite the 
theoretical advantages of attention mechanisms in revealing 
important features, Transformer-based models continue to function 
largely as black boxes. Current attention visualization techniques 
provide limited insight into the model’s reasoning, which hinders 

clinical trust and diagnostic transparency. Clinicians require 
explainable models to validate predictions and make informed 
decisions, and the lack of interpretability restricts practical adoption 
in healthcare settings. Finally, direct comparison with prior studies is 
constrained by inconsistencies in datasets, preprocessing pipelines, 
and evaluation metrics. Although Table 5 summarizes performance 
metrics and limitations of previous approaches, such comparisons 
should be interpreted cautiously due to differing experimental setups.

In summary, these limitations underscore key areas for future 
improvement, including addressing class imbalance, optimizing 
model efficiency for deployment, and enhancing model transparency. 
Addressing these challenges is essential to advance the clinical 
applicability of deep learning-based ECG analysis systems (Table 6).

Lastly, generalizability remains a fundamental concern due to the 
homogeneity of the dataset, which was collected from a specific 
demographic using a single device type. ECG signals can vary across 
different populations, age groups, and acquisition devices, potentially 
affecting the model’s performance in diverse clinical settings. As a 
result, the effectiveness of the proposed model may be limited when 
applied outside the specific context in which it was trained.

To enhance generalizability and clinical robustness, future studies 
should aim to validate the model on datasets collected from multiple 
sources, encompassing both homogeneous and heterogeneous subject 
groups. This includes variations in age, ethnicity, health conditions, 
and recording hardware. Such external validation would provide a 
stronger basis for assessing the model’s adaptability and reliability in 
real-world clinical environments.

9 Future work

In subsequent studies, efforts will focus on enhancing the 
robustness, clinical reliability, and deployment readiness of 
Transformer-based models for ECG classification.

TABLE 6  Limitations of various approaches used in ECG classification.

References Model Accuracies Limitations of previous 
work

Limitations of current 
transformer model

Smith et al. (39) Transformer-based model 

for ECG diagnosis

Evaluated by sensitivity, 

PPV, and detection of major 

abnormalities

Lower accuracy in detecting major 

abnormalities; higher false positives/

negatives leading to reduced 

diagnostic reliability

Sensitive to ECG noise; misclassification of subtle 

abnormalities; requires large, annotated datasets; 

trade-off between sensitivity and specificity

Zhao et al. (40) CNN-RNN (Deep 

Convolutional Neural 

Network – Recurrent 

Neural Network)

97.6% (for 2-s ECG 

segments)

Lacked real-time inference; limited 

performance in heart failure staging; 

complex feature extraction pipeline

Requires intensive preprocessing (segmentation, 

augmentation); limited capacity to capture long-

range dependencies

Chithra et al. 

(41)

ANN-based Decision Tree 93.4% Poor integration of clinical and ECG 

features; low model interpretability

High feature engineering cost; poor scalability to 

multilead/multiclass ECGs

Arabi et al. (19) MSW-Transformer Macro-F1 up to 77.85% CNN only captures local patterns Complex architecture, data-hungry sliding 

windows

Uğraş et al. (42) CardioPatternFormer Interpretable, multi-pathology Opaque black-box models May overfit attention map, needs clinical validation

Luo et al. (43) Hierarchical Transformer - Single-scale Transformers Multi-stage model is resource-intensive

Alghieth (44) DCETEN 99.84% acc. (MIT-BIH) Heavyweight transformer models Still GPU-reliant despite pruning

Current study Transformer Model 97% N/A High Computational demand, requiring 

advanced GPUs or TPUs, limited interpretability, 

challenging clinical transparency.
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One key direction is addressing class imbalance, particularly for 
underrepresented arrhythmia types such as Ventricular Premature 
Contractions (VPC), which currently contribute to lower classification 
accuracy. Sensitivity to rare classes may be  improved by applying 
techniques such as class-specific data augmentation, oversampling, 
and class-weighted loss functions.

Another priority is improving the diversity and representativeness 
of the training data. Incorporating ECG signals from a broader 
population encompassing different demographics, acquisition devices, 
and arrhythmia types can increase the model’s generalizability and 
reduce bias toward specific data sources or conditions.

To further improve diagnostic accuracy, future work may explore 
multimodal learning by integrating additional physiological signals 
such as heart rate variability, blood oxygen saturation, and blood 
pressure. These complementary modalities could enhance the feature 
space and provide more context for ECG interpretation.

Optimizing the model for deployment in resource-constrained 
environments, such as mobile or wearable devices, is also a critical 
focus. While Transformers offer high accuracy, their computational 
demands limit feasibility on low-power platforms. Future research will 
investigate lightweight Transformer variants, as well as model 
compression techniques such as pruning and quantization, to reduce 
inference costs while preserving clinical performance.

Finally, improving model interpretability remains a central 
challenge. Future studies will incorporate explainability techniques 
such as attention weight visualization, relevance mapping, and lead-
wise contribution analysis. These tools can help clinicians better 
understand the basis for automated predictions, thereby increasing 
trust and promoting adoption in real-world healthcare settings.

10 Conclusion

The proposed Transformer-based ECG classification model 
demonstrates strong potential in accurately diagnosing multiple 
cardiac arrhythmias from raw ECG signals. Leveraging the self-
attention mechanism inherent in Transformer architecture, the model 
effectively captures the temporal dependencies of ECG sequences and 
achieves high classification accuracy across several classes, including 
Normal, APC, VPC, Fusion Beats, and Others. These results confirm 
the suitability of attention-based models for analyzing the complex 
and sequential nature of biomedical time-series data.

A key contribution of this work is the demonstration that 
transformer models can serve as effective tools for ECG signal 
classification, providing clinically relevant outputs with high precision, 
recall, and F1-scores particularly for classes with ample training data. 
This suggests that such models can complement existing machine 
learning techniques in automated ECG interpretation.

In addition to performance, the model offers potential for 
integration into future clinical workflows, where automated ECG 
analysis can support healthcare professionals by reducing manual 
diagnostic load and improving consistency. However, several challenges 
remain before deployment in real-world settings. These include 
improving classification for underrepresented arrhythmia classes, 
validating the model across more diverse populations and device types, 
and enhancing model interpretability and computational efficiency.

Future work should focus on optimizing the model for broader 
generalization, incorporating multimodal physiological data, and adapting 

the architecture for deployment in resource-constrained environments 
such as wearable healthcare devices. With further development and 
clinical validation, Transformer-based models may play an important role 
in advancing automated, scalable, and accessible cardiac diagnostics.
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Image steganalysis using LSTM 
fused convolutional neural 
networks for secure telemedicine 
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Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia 

Deep learning-based image steganalysis has progressed in recent times, with 
efforts more concerted toward prioritizing detection accuracy over lightweight 
frameworks. In the context of AI-driven health solutions, ensuring the security 
and integrity of medical images is imperative. This study introduces a novel 
approach that leverages the correlation between local image features using 
a CNN fused Long Short-Term Memory (LSTM) model for enhanced feature 
extraction. By replacing the fully connected layers of conventional CNN 
architectures with LSTM, our proposed method prioritizes high-relevance 
features, making it a viable choice for detecting hidden data within medical and 
sensitive imaging datasets. The LSTM layers in our hybrid model demonstrate 
better sensitivity characteristics for ensuring privacy in AI-driven diagnostics 
and telemedicine. Experiments were conducted on Break Our Steganographic 
System (BOSS Base 1.01) and Break Our Watermarking System (BOWS) datasets, 
followed by validation on the ALASKA2 Image Steganalysis dataset. The results 
confirm that our approach generalizes effectively and would serve as impetus to 
ensure security and privacy for digital healthcare solutions. 

KEYWORDS 

steganalysis, steganography, data hiding, healthcare security, LSTM, lightweight 

1 Introduction 

AI-based digital healthcare solutions require security and data privacy while handling 
sensitive medical images; therefore, robust techniques are essential to maintain data 
integrity (1, 2). Particularly, the medical images contain embedded metadata and 
annotations that may compromise patient privacy (3). Image steganalysis helps in 
preserving sensitive medical records (4) and by leveraging artificial intelligence (AI) 
techniques, healthcare professionals can identify potential threats posed by steganographic 
attacks (5, 6). Beyond privacy concerns, the integrity of medical data is another essential 
dimension for AI diagnostic systems (7, 8). Malicious actors could use steganography 
to manipulate images, alter tumor regions, or embed misleading data without detection 
(1). Advanced steganalysis techniques and emerging telemedicine issues necessitate the 
integration of robust AI-driven steganalysis tools to improve the security of sensitive health 
data (2). 

Recent image steganalysis techniques exploited the traditional machine learning 
to extract meaningful features, but human dependencies limited their scope in image 
steganalysis (9). Low embedding capacity and poor image retrieval rates necessitated the 
deployment of deep learning assisted steganalysis algorithms. Detailed reviews regarding 
the recent deep learning strategies and network developments are included elsewhere 
(10, 11). In this connection, numerous deep learning algorithms were reported for 
rapid detection of steganographic payloads with reasonable accuracies (12–15). Key 
modifications include enhancing filters and different activation operators (16), high-order 
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FIGURE 1 

Schematic illustration of a generalized convolution neural network. 

co-occurrence matrices to capture sensitivity (17, 18), periodic 
weight capture (19), dimensionality reduction schemes (20), and 
covariance pooling techniques (16, 21–24). 

Moreover, various DL-based models such as Qian et al. (25), 
Yedroudj et al. (18), Boroumand et al. (19), Deng et al. (16), Zhang 
et al. (26), Reinel et al. (22), Öztürk ¸ S and Özkaya (27), and Ozdemir 
et al. (28) tried to improvise on the stego image feature extraction. 
In this regard, You et al. (29) exploited EfficientNet, MixNet, and 
ResNet by removing pooling and stride operations in the first layers. 
Similarly, (24) applied floating-point quantization to XuNet (24). 
Recently, LSTM was reported to capture data correlation for image 
classification tasks (21, 30–32). 

In this study, we propose a CNN architecture fused with LSTM 
by replacing the fully connected layers of the CNN. Our proposed 
model leverages LSTM to optimize weight matrices and bias 
vector parameters, ensuring effective training at each time step. In 
addition, LSTM nodes extract essential contextual features, which 
is vital for detecting hidden threats within medical images. This 
research contributes to the field by demonstrating the effectiveness 
of LSTM fused CNNs in medical image steganalysis by offering 
a robust security framework to protect sensitive patient data. 
Furthermore, we compare our proposed architecture with state-of-
the-art deep learning models in terms of computational efficiency. 
By significantly reducing the number of trainable parameters, our 
model offers a resource efficient and scalable solution for secure 
medical image transmission and integrity in telemedicine. 

The remaining of this work is organized as follows: Explain 
the Architecture of CNN and LSTM in Section 2. The materials 
and methods are presented in Section 3. The results discussion is 
detailed in Section 4. Section 5 concludes the study. 

2 A brief on CNN and LSTM 
architecture 

The encoder in any CNN-based steganography scheme 
employs binary inputs: one for the cover image and the other 

for secret image to foster a stego image. It includes pre-
processing, feature extraction, and classification stage as illustrated 
in Figure 1. In the feature extraction phase, convolution is 
performed multiple times to ameliorate the signal-to-noise ratio 
of the image and to characterize local features, whereas in 
classification, the extracted local features are average-pooled 
and concatenated to yield final feature maps. These feature 
maps were then classified in terms of class probabilities using 
SoftMax function. 

Though LSTM networks improve the functioning of recurrent 
neural networks (RNNs) in terms of vanishing gradient, LSTM 
contains three gates which are an input gate, a forget gate, and an 
output gate, where xt , Ct , and Ct−1 represent the current input, 
new, and previous cell states, respectively. ht and ht−1 refer to the 
current and previous outputs, respectively. A non-linear function 
is used to activate these three gates, which makes LSTM a dynamic 
model with changing contexts (33). The internal architecture of an 
LSTM cell is shown in Figure 2. 

Within an LSTM cell, forget gate controls the contribution 
of the previous state Ct−1 to the current state by using sigmoid 
function σ and is responsible for LSTM cell memory as given by 
the expression in Equation 1. 

ft = σ (Wf · [ht−1, xt] + bf ) (1) 

where ft is the forget vector, and xt and ht−1 are the current 
input and previous output. As given in Equation 1, xt and ht−1 

are multiplied by the trained weights matrix Wf with offset bf . 
Due to sigmoid function, the input vector ranges between 0 and 
1, indicating the degree to which values are to be remembered or 
forgotten. ht−1 and xt are passed via input updated gate to append 
the relevant information and is governed by Equation 2. Thereafter, 

new information is obtained as 
∼ 
Ct from Equation 3 after passing 

ht−1 and xt via tanh function. Finally, the candidate of the cell 
state Ct for the next time step is generated by combining current 

moment information 
∼ 
Ct and long-term memory information Ct−1 
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FIGURE 2 

Internal architecture of a single LSTM cell. 

as shown in Equation 4. 

it = σ (Wi · [ht−1, xt] + bi) (2) 
∼ 
Ct = tanh(Wi · [ht−1, xt] + bi) (3) 

Ct = ftCt−1 + it 
∼ 
Ct (4) 

Here, Wi denotes weight matrices that are produced from 
sigmoid function, and bi denotes the input gate bias. The output 
gate controls the require output Ot using the expression in 
Equations 5, 6. 

ht = Ot tanh (Ct) (5) 

Ot = σ (Wo · [ht−1, xt] + bo) (6) 

Where Wo and bo are the weighted matrices of the output gate 
and LSTM bias, respectively. 

3 Materials and methods 

With the rapid adoption of remote healthcare services, the 
risk of cyberattacks and data tampering has increased significantly. 
The main endeavor of this research is to detect and analyze 
hidden embeddings in medical images for secure medical data 
transmission. By continuously analyzing incoming medical images 
using AI-driven image steganalysis, data security and privacy risks 
can be minimized. In our proposed architecture, LSTMs were fused 
within the CNN by replacing the fully connected layers. The idea 
was to capture and rank the correlation between different stego-
noises and to reduce the number of trainable parameters for time 
efficient classification. 

3.1 Pre-processing BOSSBase 1.01 and 
BOWS 2 databases 

For the experiments, Break Our Steganographic System 
(BOSSBase 1.01) (34) and Break Our Watermarking System 
(BOWS 2) (35) databases were used. Each database has 10,000 
cover images in a Portable Gray Map (PGM) format. The data 
were prepared by resizing all images to 256 × 256 pixels (36). 
Then, a corresponding steganographic image for each cover image 
was generated using with payloads of 0.4 bits per pixel (bpp). In 
the next stage, the data were partitioned to training, validation, 
and testing sets. 4,000 images were used pairs for training, 1,000 
for validation, and 5,000 for testing purposes. Both datasets were 
merged to generate a database of 20,000 images in which split 
14,000 images were used for training (10,000 BOWS 2 + 4,000 
BOSSBase 1.01), 1,000 pairs for validation (BOSSBase 1.01), and 
5,000 for testing (BOSSBase 1.01).

3.2 Pre-processing ALASKA2 image 
steganalysis database 

ALASKA2 dataset was chosen due to its massive size and 
heterogeneous nature for an in-depth validation of our proposed 
steganalysis algorithm. In this dataset, steganography algorithms 
transform data with an unknown payload. All the images 
were resized to 256×256 pixels and compressed with JPEG 
quality factors of 95, 90, and 75. This database is available on 
Kaggle platform (37). ALASKA2 database includes 7,500 pairs of 
images in JPEG format (cover and stego) which were randomly 
shuffled before partition. We prepared the ALASKA2 database 
by portioning split 6,000 pairs for training, 1500 pairs for 
validation, and 7,500 pairs were randomly chosen testing purposes. 
Furthermore, we prepared another ALASKA2 dataset by using 
all images via three steganographic algorithms. This database was 
partitioned in which 9,000 pairs were used for training, 2,250 pairs 
for validation, and 11,250 pairs for validations. 
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FIGURE 3 

Schematic illustration of LSTM for feature representations and classification. 

FIGURE 4 

Proposed LSTM fused Xu-Net neural network architecture for secured telemedicine. 

3.3 Proposed LSTM fused CNN 
architecture 

Initially, we establish the effectiveness of LSTM for steganalysis 
in securing telemedicine communications and then integrate it 
into a CNN architecture to enhance both detection accuracy and 
processing efficiency. Given the critical need for real-time threat 
detection in remote healthcare, we provide a detailed analysis and 
comparison with state-of-the-art architectures to assess our model’s 
capability. To simulate real-world security threats in telemedicine, 
we embedded noise in cover images using five steganographic 

algorithms. Two of them are spatial steganographic algorithms: 
S-UNIWARD (38) and WOW (39) with 0.4 bpp payloads. The 
other three are transform steganographic algorithms: JMiPOD (40), 
JUNIWARD (38), and UERD (41). Our implementation ensures 
robust steganalysis for secure medical image transmission. 

Our initial approach investigates the applicability of LSTM in 
image steganalysis and is presented in Figure 3. It starts with an 
input image, which is first passed through a preprocessing layer 
using a convolutional neural network (CNN) filter of dimensions 
(5 × 5 × 30), indicating the use of 30 SRM (Spatial Rich Model) 
filters for extracting high-frequency residuals. This is followed by 
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FIGURE 5 

Set of 30 SRM Filters per category which are used in the first convolution, or preprocessing stage. Taken from Reinel et al. (22). 

FIGURE 6 

Training plots in terms of accuracy for Yedroudj-Net Model using LSTM as a classifier with BOSSBase 1.01 WOW 0.4 bpp. 
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FIGURE 7 

Training curves in terms of learning loss for the first method, when using stacked LSTM and FC layers in the classification stage, respectively. With 
BOSSBase 1.01 S-UNWARD 0.4 bpp. 

TABLE 1 Accuracy percentage and number of trainable parameters of the 
fist method model, when using FC layer and LSTM layer for the 
S-UNWARD steganographic algorithm with payload 0.4 bpp using 
BOSSBase 1.01 database. 

Scenario with LSTM with FC 

Training Acc. 75% 85% 

Validation Acc. 76% 75% 

Test Acc. 67% 67% 

# Trainable parameters 433,592 434,522 

The best performances are shown in bold for each scenario. 

batch normalization (BN) to stabilize and accelerate training. Next, 
average pooling with a 3×3 kernel is applied to reduce spatial 
dimensions while preserving critical features. This is then reshaped 
into a sequence format (65×30), which is suitable for temporal 
modeling via LSTM. After reshaping, the feature map is fed into 
an LSTM layer with 30 units as illustrated in Figure 3. The output 
of LSTM is passed through a ReLU activation to introduce non-
linearity, followed by another batch normalization to standardize 
feature distributions. A dropout layer with a rate of 0.5 is included 
to prevent overfitting by randomly deactivating neurons during the 
training. The resulting features are flattened into a one-dimensional 
vector and are further passed through a Softmax classifier. This 
architecture combines the spatial feature extraction capability of 
CNNs with the sequential modeling strength of LSTMs, making 
it particularly robust for detecting subtle patterns in stego and 
manipulated images. 

After the initial proof of concept regarding LSTM architecture 
for steganalysis, we fused LSTM as a classifier into the CNN 
architecture by replacing its three fully connected layers which 
is presented in Figure 4. The model begins with a convolutional 
preprocessing layer using fixed SRM filters, which are effective 
in extracting the noise residuals from the images. These initial 
outputs are passed through several convolutional blocks, each 

TABLE 2 Accuracy percentage and loss value of the fist method model, 
when using FC layer and LSTM layer for ALASKA2 database. 

Scenario with LSTM with FC 

Database Acc. Loss Acc. loss 

JMiPOD 62% .99 65% 1.45 

JUNIWARD 60% 1.00 62% 1.00 

UERD 61% 0.90 63% 0.94 

ALASKA2_All 49% 1.00 46% 1.7 

The best performances are shown in bold for each scenario. 

containing Conv2D layers, batch normalization, and spatial 
dropout. It is further followed by average pooling to reduce 
spatial dimensions while maintaining the important feature 
structures. The model uses concatenation operations to merge 
different channels for a multi-level residual learning. After the 
hierarchical CNN feature extraction, the architecture transitions 
into a temporal modeling phase using LSTM layers. Before entering 
the LSTM block, features are reshaped and passed through an 
average pooling 2D layer. The sequence of two LSTM layers 
allows the model to capture long-range dependencies across 
spatially transformed image features. The final output from the 
LSTM is flattened and passed into a dense layer with two 
neurons, corresponding to a binary classification: Stego and 
Cover. A softmax layer provides probabilistic outputs for the final 
decision. This hybrid CNN-LSTM design, coupled with residual 
modeling, makes the architecture well-suited for subtle signal 
detection tasks. 

For this experiment, four famous and recent CNNs for image 
steganalysis were used, which include Xu-Net (24), Ye-Net (15), 
Yedroudj-Net (18), and Zhu-Net (26). SRM filters were used to 
improve the ratio of stego- to image-noise signal. Since the stego 
signal is always embedded in the high-frequency part of an image, 
we utilized these filters to initialize the kernels of a convolutional 
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TABLE 3 Accuracy percentage of the second method models for the S-UNWARD steganographic algorithm with payload 0.4 bpp. 

Dataset BOSSBase 1.01 BOSSBase 1.01+ BOWS 

results Original Strategy With LSTM Original Strategy With LSTM 

Xu-Net 73% 78% 76% – 82% 81% 

Ye-Net 68% 81% 80% – 83% 81% 

Yedroudj-Net 77% 79% 79% – 84% 82% 

Zhu-Net 84.5% 78.6% 80.7% – 86% 81.3% 

TABLE 4 Accuracy percentage of the second method models for the WOW steganographic algorithm with payload 0.4 bpp. 

Dataset BOSSBase 1.01 BOSSBase 1.01+ BOWS 

Results Original Strategy With LSTM Original Strategy With LSTM 

Xu-Net 79% 82% 81% – 85% 83% 

Ye-Net 75% 84% 83% – 86% 85% 

Yedroudj-Net 84% 85% 83% – 86% 85% 

Zhu-Net 88.1% 82.9% 83.5% – 75% 83.5% 

layer. A bulk of 30 high-pass filters from the SRM are used in the 
pre-processing block prior to feature extraction phase as indicated 
in Figure 5. 

Experimental implementations used Python 3.8.1 and 
TensorFlow 2.2.0. In our model using LSTM only, network 
was trained for 100 epochs using S-UNWARD steganography 
with payload 0.4 bpp (BOSSBase 1.01 dataset). The LSTM fused 
CNN implementations presented in Figure 4 used the Google 
Colaboratory platform on Tesla P100 PCIe (16 GB) having CUDA 
Version 10.1 with 32 GB RAM to speed up simulations. 

4 Results and discussion 

4.1 Validation of LSTM classifier on 
BOSSBase 1.01, BOWS 2, and ALASKA2 
dataset 

To ensure reliable telemedicine, the LSTM classifier was trained 
for 100 epochs on the BOSSBase 1.01 and BOWS 2 databases and 
50 epochs on the ALASKA2 database. A batch size of 64 images 
was used, with the Stochastic Gradient Descent (SGD) optimizer 
set at a momentum of 0.95 and an initial learning rate of 0.005. 
The training curves, illustrating accuracy and learning loss, are 
presented in Figure 6. Our model incorporates gating mechanisms 
to regulate gradients, enabling the architecture to retain critical 
information necessary for detecting hidden threats in transmitted 
medical images. This ability to learn and preserve information 
over extended sequences enhances the reliability of telemedicine via 
secure data transmission. 

Figure 7 reflects the loss function which is binary cross entropy. 
The results indicate that LSTM model reaches saturation in a 
time-efficient manner very as the training data hyperparameters 
were tuned quickly. The gap between validation loss and the 
training loss using LSTM model is indicative of the fact that LSTM 

have the ability to adapt to diverse datasets and can generalize 
to new data. Moreover, the loss value of LSTM model is small 
and less than that of FC model. The classification accuracy and 
number of trainable parameters are reported in Table 1 with a fully 
connected layer and hybrid LSTM for S-UNWARD steganographic 
algorithm. As presented in Table 1, the fully connected model 
achieves higher training accuracy (85%) as compared to the LSTM-
based model (75%), which suggests that the FC model is better at 
fitting the training data. However, the similarity in test accuracy 
between both models indicates that the FC model suffers from 
overfitting. This is due to specific patterns in the training set 
that do not generalize well to the unseen data. In contrast, the 
LSTM model with its inherent regularization via likely promotes 
better generalization despite its lower training accuracy. This 
behavior is consistent with the hypothesis that the FC model’s 
capacity to memorize leads to overfitting, while the LSTM model 
trades some training performance for improved robustness to the 
unseen data. 

Table 2 provides the accuracy and loss results of the CNNs 
when using either of fully connected (FC) layer or LSTM layer for 
ALASKA2 databases. Similarly, LSTM classifier outperforms FC on 
ALASKA2 dataset. 

4.2 Validation of LSTM fused CNN 
architecture against BOSSBase 1.01, BOWS 
2, and ALASKA2 dataset 

In our proposed model for secure telemedicine, the training 
batch size was set to 64 images for Xu-Net, Ye-Net, and Yedroudj-
Net, while Zhu-Net utilized a batch size of 32. These mini-batches 
optimize computational efficiency, ensuring rapid and scalable 
analysis of medical images in remote healthcare environments. To 
enhance model stability and accuracy in detecting hidden threats 
in transmitted medical data, we trained Xu-Net, Ye-Net, and 
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FIGURE 8 

Training curves, (A–C) reflect the accuracy, and (D–F) reflect the learning loss for Xu-Net based on LSTM, Ye-Net based on LSTM, and Yedroudj-Net 
based on LSTM, respectively, with BOSSBase 1.01 WOW 0.4 bpp. 
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FIGURE 9 

Training curves, (A, B) reflect the accuracy, and (C, D) reflect the learning loss for Xu-Net based on LSTM, and Yedroudj-Net based on LSTM, 
respectively, with BOSSBase 1.01 + BOWS 2 S-UNWARD 0.4 bpp. 

Yedroudj-Net for 150 epochs, while Zhu-Net was trained for 70 
epochs. A spatial dropout rate of 0.1 was applied across all layers to 
prevent overfitting, and batch normalization was configured with a 
momentum of 0.2, epsilon of 0.001, and renorm momentum of 0.4. 
The Adam optimizer, with a learning rate of 0.001, beta 1 of 0.9, 
beta 2 of 0.999, and an epsilon value of 1e − 08, was employed to 
ensure efficient convergence. To reinforce security in telemedicine 
image transmission, all layers were regularized for weights and 
bias, enabling the model to detect anomalies and steganographic 
threats in real-time. The accuracy results for both the S-UNWARD 
and WOW steganographic algorithms, which assess the model’s 
ability to identify hidden data in medical images, are presented in 
Tables 3, 4. 

Tables 3, 4 provide an inter-comparison between the accuracy 
of our proposed LSTM fused CNN architecture with the reported 
results (36). We achieved a high agreement between strategy 
and our model in terms of accuracy. The results highlighted in 
Tables 3, 4 are extracted from Figures 8, 9. 

Trainable parameters refer to those parameters which can be 
learned and updated during the training cycle and has direct 
relationship with the computation time. Table 5 presents the 
number of trainable parameters for each model when applying the 
strategy reported in Tabares-Soto et al. (36) and when we used our 
proposed hybrid LSTM model. 

The results presented in Table 5 confirm that our proposed 
model significantly decreased the number of trainable parameters 
as compared to leading available models and hence the 
computational effort required. 

TABLE 5 Number of trainable parameters for state-of-the-arts 
architectures.

Results Based on FC Based on LSTM 

#Trainable 
parameters 

Total Classification 
stage 

Total Classification 
stage 

Xu-Net 86,554 59,616 39,418 0 

Ye-Net 87,562 22,752 118,570 0 

Yedroudj-Net 251,110 59,616 203,974 0 

Zhu-Net 275,684 59,616 265,156 0 

The best results are shown in bold for each scenario. 

5 Conclusion  

Our proposed architecture proves to be highly effective in 
capturing complex interrelations among different features, making 
it a viable choice for steganalysis in telemedicine. Experiments 
conducted on BOSSBase 1.01, BOWS, and ALASKA2 datasets 
validate that our model demonstrates strong adaptability and 
generalization capabilities, which are essential for detecting hidden 
manipulations in telemedicine imaging systems. The achieved 
validation loss characteristics further reinforce the robustness of 
our approach in identifying steganographic threats in medical data 
transmission. A comparative analysis with leading architectures 
highlights that our model achieves significant dimensionality 
reduction in terms of training parameters, making it more efficient 
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without compromising accuracy. This efficiency is critical for real-
time telemedicine applications. 

However, we acknowledge that the current study does not 
include validation on real-world clinical datasets or standard 
medical image formats such as DICOM. Addressing this 
limitation forms a key part of our future work, where we 
aim to evaluate the model’s performance on actual clinical 
imaging data to strengthen its practical applicability in 
telemedicine settings. By continuing to refine and expand 
our approach, we can contribute to a more secure and reliable 
telemedicine ecosystem. 
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Neurodegenerative disorder Alzheimer’s disease (AD) has progressive 
characteristics and leads to severe cognitive impairment that reduces life 
quality. Disease management along with effective intervention depends on 
the detailed diagnosis conducted early. The proposed framework builds an 
ensemble system from ResNet-50 and EfficientNet-B3 to conduct automated 
AD diagnostics by processing high-resolution Magnetic Resonance Imaging 
(MRI) images. The proposed model uses ResNet-50 to extract features coupled 
with EfficientNet-B3 as its robust classifier which achieves high accuracy 
alongside generalization performance. A large, high-quality dataset comprising 
33,984 MRI images was used, ensuring diverse representation of different disease 
stages: the study included participants with four dementia stages organized 
as Mild, Moderate, Non-demented, and Very Mild Demented. The research 
applied several comprehensive data preprocessing methods combining 
normalization steps with rescaling algorithms alongside noise elimination 
techniques to achieve enhanced performance. Performance tests on the model 
required examination of accuracy along with precision and recall metrics and 
F1-score and ROC curve area measurements. The ensemble model delivered 
remarkable overall accuracy reaching 99.32% while surpassing separate deep 
learning architectures. The confusion matrix evaluation results showed superb 
classification results for Mild and Moderate stages along with non-dementia 
cases while maintaining minimal Wrong choices in Very Mild Demented cases. 
Experimental findings demonstrate the strength of deep learning algorithms to 
detect AD disease stages accurately. The robust and accurate performance of 
the proposed model indicates it has potential for use in medical environments 
to support radiologists in their work of early-stage AD screening and treatment 
development. Additional research in diverse clinical environments will strive 
to optimize and validate the model so it can meet real-world diagnostic 
requirements for medical use. 

KEYWORDS 

Alzheimer’s disease, neurodegenerative disorder, deep learning, MRI analysis, ResNet-
50, EfficientNet-B3, ensemble model, feature extraction 

Frontiers in Medicine 01 frontiersin.org 191

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2025.1619228
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2025.1619228&domain=pdf&date_stamp=2025-09-02
mailto:falshammari@imamu.edu.sa
https://doi.org/10.3389/fmed.2025.1619228
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2025.1619228/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kaur et al. 10.3389/fmed.2025.1619228 

1 Introduction 

Alzheimer’s disease (AD) is a primary neurodegenerative 
disease that is responsible for 60%−70% of all dementia cases 
across the globe, it results in progressive impairment of cognitive 
and memory function, and overall physical disability mainly in 
old age. The disease is defined clinically by the deposit of amyloid 
plaques and neurofibrillary tangles in the brains, leading to the 
gradual decline in brain volume, and resulting in confusion, 
poor judgement, language disorder, personality changes, and the 
inability to carry out activities of daily living (1). To date, aging is 
still the biggest risk factor for developing AD, but there are also 
genetic factors, unhealthy life styles, cardiovascular diseases and 
physical environments that affect the development as well as the 
progress of AD (2). To date, there is no known cure for Alzheimer’s 
disease but major advancements in medical research have provided 
methods of managing the disease, these include; cholinesterase 
inhibitors, memantine, health and safety promotion through 
changes in diets and coming up with strict exercise regimes that 
can reduce deterioration of the patient’s condition (3). Prior to the 
publication of DSM IV-Tre quantitative diagnosis of Alzheimer’s 
disease primarily depended on clinical assessment, patient history, 
and neuropsychological assessment that even though still today 
have their utility, were reported to provide low sensitivity in early 
diagnosis of Alzheimer’s disease as well as being time consuming 
and labor intensive. Also, Magnetic Resonance Imaging (MRI) 
and PET scans have been used to detect abnormalities in the 
brains of mentally ill patients, although these approaches lack 
high accuracy when no computational tools are applied (4). Over 
the last few years, the incorporation of deep learning methods in 
medical imaging has definitely advanced diagnosis, particularly for 
Alzheimer’s disease as a more precise, fast, and less error-prone 
approach (5). 

Among these, Convolutional Neural Networks (CNNs) have 
shown exceptional performance in efforts to diagnose MRI patterns 
that point toward AD, all while surpassing conventional machine 
learning models by learning features from raw image data. In 
the context of Alzheimer’s disease, the required diagnostic tools 
are significantly more diverse and refined; this is why ensemble 
deep learning models have recently become popular as they unite 
the results of several architectures in one model (6). As for the 
CNN model selection, two advanced structures including ResNet-
50 and EfficientNet-B3 have become the most popular pro forma 
architectures in recent years due to the higher image classification 
performance. The vanishing gradient problem is solved through 
using the ResNet architecture of a deep residual network of 50 
layers; deeper networks converge well while capturing details of the 
images at the same time (7, 8). On the other hand, EfficientNet-
B3 uses compound scaling method to control the network depth, 
width, and so on, making it highly efficient and accurate to 
extract features with little computational need. Thus, the ensemble 
of ResNet-50 and EfficientNet-B3 models, where the weaknesses 
of each of them are masked, and the strengths are combined, 
contributes to increasing the efficiency of diagnostics compared 
to using only such architectures and increases the robustness 
when detecting subtle abnormalities in MRI scans. The main 
goal of this research is to enhance a deep learning model for 

distinguishing between the Alzheimer’s disease and the Normal 
Cognitive status by integrating ResNet-50 and EfficientNet-B3 
models for MRI data. This approach operates in an attempt to 
overcome the recognized deficiencies of conventional diagnostic 
check techniques for AD through the development of an efficient 
diagnosis system that would be automated, accurate, and fairly easy 
to implement in the different human populations at the various 
stages of the disease development (9). In addition, the problem 
statement focuses on the requirement of an accurate diagnostic 
tool to differentiate between distinct phases of Alzheimer’s disease 
with robust performance, despite data imbalance, MRI scan noise, 
and variation (10). Therefore, the major contributions of this 
study are the development of an ensemble model that comprises 
ResNet-50 and EfficientNet-B3, an assessment of the performance 
of the proposed ensemble model against existing deep learning 
architectures, and a proof of the usefulness of the suggested 
model in enhancing the diagnostic accuracy of Alzheimer’s disease 
classification. Several works have been extensively conducted on 
AD detection using standalone CNNs, CNNs with Attention 
Mechanisms, Ensemble of CNNs and the hybrid of them; their 
performance is sometimes constrained by a limited number of 
available diagnostic samples, non-normative database information, 
and high computational costs (4, 8). For example, Ajagbe et al. 
(3) and Shirbandi et al. (6) pointed out that applying CNN-based 
models in MRI-based classification is promising; however, that 
architectures should be improved to learn deeper and abstract 
features. Finally, the studies by Sorour et al. (8) and Mujahid 
et al. (7) showed that the setup based on the ensemble learning 
is extremely valuable for the detection of AD, as the results of 
multiple models enhanced positive prediction and diminished the 
numbers of false-positives. Thus, basing on these achievements, 
the development of our proposed model is intended to fill the gap 
in the identified scientific studies and integrate the advantages of 
ResNet-50 and EfficientNet-B3, including their residual learning 
ability and computational efficiency. Furthermore, the given work 
uses techniques like data augmentation and employs adaptive 
learning to deal with issues that are hard to solve for, including 
overfitting and imbalance, in order to have a high model accuracy 
on various MRI datasets (7). The reason as to which ResNet-50 and 
EfficientNet-B3 were selected for the experiment is because these 
two architectures have demonstrated good performance across 
multiple tasks and are robust combinations of feature extraction 
and classification (8). Based on its deep residual connections which 
allow the model to learn complex features, ResNet-50 is well-suited 
to this task, whereas EfficientNet-B3 which incorporates optimized 
scaling for efficient computations is equally efficient and accurate 
for the task at hand. This combination is specifically advantageous 
for medical imaging applications where the minor differences have 
to be identified between the structures of normal brains and that 
of the AD patients (6). Moreover, ensemble learning is beneficial in 
increasing the generalizability of the model, since the combination 
of more predictions means decreasing the model bias and variance 
and thus, increasing the diagnostic reliability (7). Finally, this paper 
intends to make a positive contribution to the available body of 
knowledge on Alzheimer’s disease by proposing a new, yet highly 
effective, deep learning structure that encompasses the best facets 
of the ensemble learning technique to deliver the highest possible 
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diagnostic accuracy. Of critical value and practical applicability, 
the proposed model can help clinicians make quick and precise 
diagnosis decisions, which will lead to earlier diagnosis, target 
treatment plans, and enhanced patient care (2, 8). 

In this context, this study contributes to fill the gap of 
the current diagnostic techniques in Alzheimer’s disease and 
to establish the base for future studies that will promote the 
creation of new, available and reliable tools with deep learning 
for Alzheimer’s disease diagnosis in magnetic resonance images. 
This work couples two important elements for the construction 
of an effective diagnostic test for Alzheimer’s disease based on 
high classification accuracy and explainability. Section 2 gives an 
extensive literature review of the existing diagnostic conventional 
approaches, deep learning in neuroimaging. Next, in Section 
3, the method is described, more specifically, details about the 
dataset, the preprocessing of MRI scans, the architecture of the 
proposed ensemble model based on ResNet-50 and Efficient 
Net B3. In Section 4, the authors report the findings analyzing 
the effectiveness of the ensemble model and taking them up 
against the other classification models. Section 5 contains a 
discussion of the study’s results and their potential, possible 
clinical uses of the proposed model, its weaknesses, and potential 
improvements for future work. Also in Section 6, the conclusion 
of the paper points to the contributions of the study and the 
implication of applying the proposed approach to timely diagnosis 
of Alzheimer’s disease. 

2 Literature review 

Alzheimer’s disease (AD) classification has received a 
considerable amount of focus in the medical research sector mainly 
due to the development of new approaches such as deep learning, 
which have indicated that they can outperform conventional 
diagnostic approaches. The two best performing deep learners 
in this study are the Convolutional Neural Networks (CNNs), 
specifically ResNet-50 and EfficientNet-B3 reveal promising 
features for efficient AD diagnosis from brain MRI scans. The 
subjects of Raza et al.’s (11) study involved segmentation and 
classification of MRI images of Alzheimer’s disease employing 
transfer learning (TL) and proposed particular CNNs. The 
approach works on images that segment objects as divided by 
the brain’s Gray Matter. Rather than training from the ground 
up, there existed a pre-trained deep learning model, to which the 
process proceeded as transfer learning. The model was compared 
at 10, 25, and 50 epochs and the mean accuracy was found to be 
97.84%. Ironically, transfer learning and segmentation techniques 
stand as prominent methodologies in a comprehensive framework 
of medical imaging analysis in diagnosing Alzheimer’s disease 
this study shows the enhancement of accuracy (11). Sharma et al. 
presents a machine learning model based on transfer learning (TL) 
and permutation-based voting classifiers for Alzheimer’s detection 
from MRI images. DenseNet-121 and DenseNet-201 extract 
features in phase one and phase two has classifiers such as support 
vector machine, Naïve Bayes and XGBoost to classify. Therefore, 
in the voting mechanism the final predictions are improved with 
accuracy of 91.75%, specificity of 96.5% and F1-score of 90.25. The 

model was trained from scratch using a Kaggle data set consisting 
of 6,200 images in four dementia classes. Mentioned results are 
completely compatible with the statements and show the higher 
effectiveness of the offered model compared with state-of-the-art 
methods; thus, there is perspective to consider the proposed 
model for usage in clinician applications for Alzheimer’s disease 
identification (12). The authors Zhang, Zhang, Du, and Wang 
(13) in their study proposed an enhanced neural network known 
as ADNet from the VGG-16 model for detection of Alzheimer’s 
diseases applying 2D MRI slices. Those modifications consist 
of depthwise separable convolution to decrease the number of 
parameters; however, the model uses ELU activation to avoid the 
problem of exploding gradients; the model also incorporated an 
SE module for effective feature recalibration. Similarly, training 
is combined with auxiliary tasks: regression of clinical dementia 
and mental state score. Experimental results proved that the 
proposed approach gives 4.18% higher accuracy of AD compared 
with cognitively normal (CN) and 6% of MCI accuracy compared 
with CN than the VGG16 model. These outcomes indicate that 
multitask learning solutions and better architecture for the neural 
network may help ADNet to support early Alzheimer’s detection. 
Solano et al. (14) uses a three dimensional DenseNet model for 
the detection of Alzheimer’s disease using Magnetic Resonance 
Imaging (MRI). Using the proposed deep neural network classifier, 
an overall accuracy of 0.86, sensitivity of 0.86, specificity of 
0.85, and the area under the ROC curve (micro-average) of 
0.91 for five disease stages. Focusing on the ability to produce 
replicable results, the approach uses only the tools available 
freely online, which means it should be more easily implemented 
in poorer countries as well. This approach helps to show that 
deep learning is useful in medical diagnosis and the equitable 
distribution of technology for installation and use. Carcagnì 
et al. (15) investigate the performance of CNNs and the adaptive 
self-attention mechanism for identifying Alzheimer’s using brain 
MRI data. In particular, the study utilizes deep learning methods 
in improving the detection accuracy and speed of Alzheimer’s 
disease, through exploiting the features of CNN, through a feature 
extraction step and exploiting self-attention to learn the long-range 
dependencies. In addition, proofs reveal a vast scope for the use 
of some automated diagnostic tools to have a high sensitivity 
and specificity compared with conventional practices. The work 
focuses on the implementation of the new AI models in the early 
diagnosis and effective individualized approach to the disease, 
providing a solid base for non-invasive and horizontally scalable 
dementia diagnostics (16). In recent years, deep learning proved 
to be a valuable approach in analyzing genomes, responding 
to the large and dependent features’ patterns and correlations. 
The recent innovations include variation in model structures, 
paradigms of model establishment, and techniques of model 
decoding all focused on the prophetic models of genetic variants 
and their influence on the disease causation. In such context, 
this review addresses how genomic deep learning techniques 
remain rather flexible for disease-oriented investigations with 
reference to neurodegenerative disorders including Alzheimer. It 
uses primarily the articles on Alzheimer’s disease and considers 
more general methods, explaining the potential value of these 
approaches. To the best of our knowledge, the review conducted 
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by Jo et al. aimed at reviewing future research directions at the 
crossroads of neurodegeneration, genomics, and deep learning 
(16). Deep learning has emerged as an essential element of genomic 
analysis because of its capability to handle large genomic data 
by identifying the diverse relationships between them. Progress 
includes the following new trends in models: model architecture, 
model development philosophies, and model interpretation 
techniques for estimating the effects of genetic variants on disease 
progression. This review shows how to incorporate genomic 
deep learning methods into disease-specific models with an 
emphasis on neurodegenerative diseases such as Alzheimer’s. It 
focuses on Alzheimer’s literature and where it identifies more 
general methodological approaches, it explores their suitability. 
In addition, Qui et al. have discussed directions for future work 
involving neurodegeneration genomics, and deep learning (17). 
Hazarika et al. compares different deep learning (DL) models in 
AD classification using brain Magnetic Resonance (MR) images 
collected from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) dataset. However, the DenseNet-121 model showed the 
highest accuracy of 88.78%, a bit slower than the others because 
of the extensive convolutions. Thus, to overcome this kind of 
limitation, the authors suggested a new DenseNet-121 structure, 
where instead of the conventional convolutional layers, the depth-
wise convolutional layers should be used. These optimizations 
improved computational and accuracy rates making the average 
accuracy to be 90.22%. The results discussed above imply future 
possibilities of depth-wise convolution in enhancing the DL-based 
AD classification models (18). In their paper, Helaly et al. describes 
a system for early detection of Alzheimer’s disease (AD) and 
multi-stage classification with the help of convolutional neural 
networks (CNNs). Two methods are explored: specifically, the 
use of 2D and 3D CNNs for structural images, and apply transfer 
learning with VGG19 to improve the classification performance. 
Therefore, based on the ADNI dataset, the highest precision 
rate established was 93.61% in 2D; 95.17% in 3D, and 97% in 
VGG19. A web application helps in diagnosing and staging AD 
remotely, and improving health care access during COVID-19. 
The approach is simple and less computationally demanding, 
and the method’s performance is stable and suitable for medical 
applications based on its evaluation on nine criteria (19). Jo et al. 
employed the 3D convolutional neural networks (CNN) and 
layer-wise relevance propagation designed to diagnose AD using 
tau PET scans. MCI using the proposed model he has come up with 
a result of 90.8% accuracy by using AD and cognitively normal 
(CN) subjects. Using information from voxel-wise analysis the key 
regions identified were hippocampus, thalamus, and entorhinal 
cortex. Probability of AD, calculated from cognitive measures, was 
associated with medial temporal tau deposition in MCI, proving 
useful in detection at this stage (20). Table 1 below shows the state 
of art comparison. 

3 Proposed methodology 

On the same note the proposed methodology outlines a 
comprehensive framework of Alzheimer’s disease diagnosis. First, 
a clear overview of the dataset is provided, including its 
characteristics, which is diverse, clean and has high quality 

ground truth labels to enable accurate training and testing. 
Normalization, rescaling, center cropping, and elimination of 
noisy regions also prepares the data to be in the right standard. 
Each of these transformations enhances model robustness and, 
at the same time, can help increase its ability to generalize. 
The diagnostic framework involves an ensemble model of 
ResNet-50 and EfficientNet-B3 networks which are the best 
for the feature extraction and the classification, respectively. 
Moreover, evaluation criteria by accuracy, precision, recall, F1-
score, and area under the ROC curve are used to provide more 
detailed analysis of the performance of the model. A general 
idea of the proposed methodology flowchart is presented in 
Figure 1 below. 

3.1 Dataset description 

The dataset used in this study is a publicly available MRI 
dataset sourced from Kaggle, titled the “Augmented Alzheimer 
MRI Dataset” (22). It comprises a total of 33,984 2D T1-weighted 
MRI slice images, not full 3D volumes, evenly divided among four 
diagnostic categories: Mild Demented, Moderate Demented, Non-
Demented, and Very Mild Demented as shown in the Figure 2, 
the images are saved in JPEG format and have undergone data 
augmentation and applied solely to the training set to enhance 
diversity and prevent overfitting. The validation and test sets were 
left unaltered to ensure unbiased evaluation and preprocessing by 
the original dataset providers and represent 2D slices extracted 
from volumetric MRI scans. The dataset does not contain subject-
level metadata such as age, gender, imaging protocol, or acquisition 
parameters. Due to the absence of subject identifiers, the dataset 
was split at the image level rather than the patient level. As a result, 
adjacent slices from the same volume may exist across training, 
validation, and test sets, potentially introducing correlation-based 
bias. The images were divided into training (80%), validation 
(10%), and testing (10%) subsets, corresponding to 27,188, 3,397, 
and 3,399 images, respectively. Due to the absence of patient 
identifiers, the split was performed at the image level, and this 
limitation is acknowledged as a potential source of correlation 
bias (23). It is important to note that this dataset includes 
images that were augmented by the dataset provider prior to 
release. Therefore, it is most appropriate for use in training and 
internal evaluation. The lack of access to original, non-augmented 
scans limits the dataset’s suitability for external validation or 
generalization studies. 

The original dataset does not include metadata regarding 
MRI acquisition protocols, sequence parameters, scanner types, or 
image reconstruction software, and thus, such details could not 
be reported in this study. It is important to note that this dataset 
includes images that were augmented by the dataset provider prior 
to release. Therefore, it is most appropriate for use in training and 
internal evaluation. The lack of access to original, non-augmented 
scans limits the dataset’s suitability for external validation or 
generalization studies. Further, no documentation regarding ethics 
approval, patient consent, or institutional data sourcing is available 
for this dataset, and its origin cannot be independently verified. The 
distribution of the classes is tabulated as follows in Table 2. 
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TABLE 1 Comparison with state of art. 

Reference Technique used Advantages Disadvantages 

Sharma et al. (2022) (12) Hybrid artificial system (HTLML) for 
Alzheimer’s disease diagnosis 

Finally, the use of multiple Artificial 
Intelligence techniques for a better result 

They proposed that complexity 
manifested in hybrid models could 
result in longer time taken during 
training and high computational costs 

Qiu et al. (2020) (17) A clear and understandable deep 
learning structure 

Used for explaining model adult human 
decision making 

Jo et al. (2020) (20) Using residual deep learning on tau PET 
imaging 

Concentrates in the identification of tau 
protein images in Alzheimer’s 

May be tuned to small fluctuations in 
MRI data 

Solano-Rojas and Villalón-Fonseca 
(2021) (14) 

A DenseNet neural network for early 
identification of Alzheimer’s disease 

A less expensive method with 
reasonable efficiency for early detection 

Lacks capability of real time and high 
processing speed for 3D data 

Jo et al. (2022) (16) Application of deep learning for the 
analysis of genetic variants 

It allows the analysis of massive genetic 
data to classify Alzheimer’s 

Is highly dependent on the availability of 
large high quality genotype data for use 
in training 

Hazarika et al. (2022) (21) Different Deep Learning Architectures 
for Alzheimer’s Classification 

Compared and contrasted several 
models, toward the decision-making 
process of selecting the right approach 

Some of these techniques may 
compromise the model’s accuracy or, 
sometimes, make it less complex 

Helaly et al. (2022) (18) AI based early diagnosis of Alzheimer’s 
disease 

Another stamina is early identification 
abilities since the program detects 
omissions at the beginning 

Mixed evidence provided by models; 
models need to be chosen more carefully 

Raza et al. (2023) (11) Preprocessing and feature selection in 
Alzheimer’s disease identification 

Utilizes pre-trained models that mostly 
help to decrease the time and amount of 
training data needed 

Some of native to the domain features 
might not be recognized by the 
pre-trained models 

Carcagnì et al. (2023) (15) CNN and self-attention learners Proper to extract features from the brain 
MRI images 

Self-attention mechanism may be costly 

Zhang et al. (2024) (13) This proposal addresses multi-task 
learning with an enhanced or modified 
version of a neural network 

Multi-talented and able to work on a 
number of projects at once, hence 
increasing productivity 

Complexity in models often leads to 
over fitting and these models will need 
large data sets 

3.2 Preprocessing 

In this paper, data preprocessing is found to be a fundamental 
step in enhancing the machine learning outcomes especially in 
classifying Alzheimer diseases using MRI scans. Because of the 
variations witnessed in the quality of images and the small 
differences in the brain boundaries some preprocessing techniques 
are very essential to improve the input images (24). First, a process 
of image normalization is conducted so that the pixel values 
range from 0 to 1 to reduce possible deviations due to image 
sizes. Although no explicit denoising or contrast enhancement 
was applied, several data augmentation techniques were used to 
enhance the training data and improve model robustness. These 
included random rotations, zooming, flipping, and brightness 
variation. All images were resized to 224 × 224 pixels and 
normalized to a pixel intensity range of [0, 1] before being fed 
into the models. This makes the model generalized better and also 
relieves it from overfitting (25). All these preprocessing steps serve 
to enhance the quality of data put into the ensemble model for the 
correct identification of Alzheimer’s stages (26). 

a.) Normalization: normalization is the task of adjusting the range 
of pixel intensities of an image to a standard range, often 
the interval [0:1]. The most common method is min-max 
normalization, which can be expressed mathematically as given 
in the Equation 1 below: 

xnorm = x− x min x−xmin 
x− xmin 

(1) 

where xnorm is the normalized portion of the pixel value, x is 
the actual pixel value, and xmin is the minimum value of the 
pixel in the picture, xmax is the maximum value of the pixel in 
the picture. 

b.) Resizing: resizing is the process of moving each pixel of an 
image to a new location in relation to desired width and height 
of the targeted image. If (Win, Hin) is the width and height of 
the original image and (Wout , Hout) is the width and height of 
the resized image. While maintaining the spatial relationships. 
If (Win, Hin) be the width and height of the original image 
and (Wout , Hout) be the width and height of the resized image. 
To standardize input dimensions for model training, each 
2D MRI slice was resized to 224 × 224 pixels using bilinear 
interpolation. This resizing adjusted the number of image 
pixels but did not account for physical voxel dimensions, which 
could not be preserved due to the absence of spatial resolution 
metadata in the JPEG-formatted dataset. So, the scaling factors 
for width and height are computed as in Equation 2 below: 

sw = 
Wout 

Win 
, sh = 

Hout 

Hin 
(2) 

c.) Data augmentation: data augmentation involves applying 
various operations on the existing dataset in order to create an 
enlarged and diversified set in order to improve generalization. 
It features different augmentations like rotation, scaling, 
shifting, flipping among others as shown in Figure 3. Rotating 
an image by angle θ is given by the formula as shown in the 
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FIGURE 1 

The framework of proposed methodology. 
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FIGURE 2 

Dataset classes: (a) Mild Demented (b) Moderate Demented (c) Non-Demented (d) Very Mild Demented. 

TABLE 2 Class wise dataset distribution. 

Dataset No. of images in ‘Mild 
Demented’ class 

No. of images in 
‘Moderate 

Demented’ class 

No. of images in 
‘Non-Demented’ class 

No. of images in 
‘Very Mild’ class 

Total 
images 

Training 6,797 6,797 6,797 6,797 27,188 

Validation 850 850 850 850 3,400 

Testing 850 850 850 850 3,400 

Total 8,497 8,497 8,497 8,497 33,988 

Equation 3 below. 
 
x y 

  
= [cosθ − sinθ sinθcosθ] 

 
x y  

 
(3) 

where, the coordinate position of the original raster image 
pixel is designated by (x, y) and that of the new position 
is by (x , y ) and the angle of rotation is θ in radians. 
Horizontal flipping reflects an image across the vertical axis. 
This transformation can be mathematically represented by 
reversing the x-coordinate of each pixel as in Equation 4: 

x  = −x, y  = y (4) 

This augmentation is particularly useful in medical imaging 
to introduce left–right symmetry, thereby improving the model’s 
robustness to orientation variance. 

Vertical flipping reflects the image across the horizontal axis 
and is represented as in Equation 5 below: 

x  = x, y  = −y (5) 

This operation helps simulate top–bottom inversion, further 
enhancing the model’s ability to learn invariant spatial features, 
especially when orientation does not impact diagnostic relevance. 

3.3 Model building 

Two architectures of deep learning models, the ResNet50 and 
EfficientNet-B7 that form the basis of the ensemble model are 
generated by this method. Each model is established meticulously 
to construct components of MRI images essential for satisfying 
classification exclusively. 

3.3.1 ResNet-50 
ResNet-50 consists of 50 layers, including convolutional layers, 

pooling layers, batch normalization (BN), and fully connected 
layers, as illustrated in Figure 4a. ResNet’ s principal invention 
is the residual block; this essential function is a “shortcut” or 
direct pathway that sends the input to the layer through to 
the output. This allows the model they base to skip certain 
layers and decrease the gradient disappearance problem in very 
deep networks (27). These shortcut connections help the network 
retain accuracies of deeper models possible without crossing the 
degradation issue by “jumping” other layers. The recognized blocks 
of architecture include the pooling layers, batch normalization, 
ReLU activation functions, and convolutional layers in sequence is 
given mathematically by Equation 6. 

y = F (x, {wi }) + x (6) 

Here x is the input to the residual block, y is the output, 
F(x{wi}) is the function that is applied on the input x. The last 
layer of classification produces output zresnet as described below in 
Equation 7 after passing through the network. 

yresnet = softmax 
 
Wresnet × Yglobal + bresnet 

 
(7) 

Here, Wresnet and bresnet are the weights and biases of the dense 
layer, and Yglobal is the output from the global average pooling layer. 

The convolutional block from ResNet-50 as illustrated in the 
Figure 4b, is a deep convolutional neural network that aids in 
the vanishing gradient problem through the element of residual 
learning. This block was implemented with the intent of being used 
to extract features while still allowing deeper networks to learn. The 
convolutional block includes three types of convolutional layers 
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FIGURE 3 

Data augmentation techniques. 

implemented in a sequence. The first layer is a 1 × 1 convolution 
that decreases the dimension of the input feature maps in order 
to lessen computational cost Stage 3: technology 3. The second 
one is another convolution layer with size 3 × 3 to cover spatial 
connections and explicit features. The third layer is another 1 × 1 
convolution to get back to the original dimensions of the feature 
maps. After each convolution there is normalization to make the 
training process faster and more stable, as well as using activation 
function (ReLU). The feature that is unique to the convolutional 
block is the projection shortcut connection, which uses 1 × 1 
convolution to bring the dimensions of the input to match that 
of the processed features. This makes some sense as it actually 
establishes compatibility for the element-wise addition on the 
shortcut and the convoluted feature maps. Then a feedback layer 
addition is applied, and finally has the activation function to get the 
output. This design makes it possible for ResNet-50 to learn initially 
both low level and high-level features in deep networks. 

In addition, an identity block in ResNet-50 as depicted in 
Figure 4c is an essential building block aimed at transferring 
features well through deep architectures. As it will be seen, the 
identity block retains the input dimensions since it uses a skip 
connection that feeds the input directly to the output without 
any change of dimension. This helps in making the model fast 
and stable while processing in the later stage of the training. 
The identity block contains three layers of convolution. The first 
is a 1 × 11 times one convolution layer that is aimed at the 
dimensionality of the input feature maps. This is succeeded by 
a 3  × 33 times three convolution which extracts spatial features 
and patterns, and one more 1 × 11 times one convolution which 
brings back dimensionality. Each convolutional layer is associated 
with batch normalization to update the activation for acceleration 
of convergence as well as activation function like ReLU. The key 
feature of the identity block is that the input directly connects to 
the output without passing through the convolutional layers by 
adding the input feature maps with the corresponding feature maps 

after passing through the network. After this addition there is an 
activation function to produce the output. The added identity block 
makes ResNet-50 deepen this network while allowing it to maintain 
the hoisting of features and avoid the vanishing gradient issue, 
making it a great architecture for acquiring features. 

3.3.2 Efficient Net 
Based on a compound scaling coefficient, Efficient Net aims 

to optimize at the same time depth, width and the resolution 
according to a parameter Ø that represents a family of models. 
EfficientNet-B3 is one particular network in the Efficient Net series 
of models and, as with all models in this series, this network 
enforces a balance between these three aspects to yield decent 
compromise between model complexity, model accuracy, and 
compute requirements (26). The scaling is governed by Equation 8: 

d = α φ ,w = β φ , r = γ φ (8) 

where d, w, and r are the network’s depth, width, and resolution, 
respectively and where α, β , and γ are parameters. The output 
of EfficientNet-B7, after global average pooling, is shown in 
Equation 9: 

yefficientnet = softmax 
 
Wefficientnet × fglobal + befficientnet 

 
(9) 

where fglobal is the feature vector, and Wefficientnet , befficientnet are 
the weights and the biases of the dense layer. The architecture of 
EfficientNet-B7 demands for many important components: from 
original input, features are extracted by convolutional layers to 
improve gradient flow and achieve batch normalization and the 
Swish activation function. The Figure 5 shows the architecture of 
Efficient Net B3. 
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FIGURE 4 

Resnet 50 (a) Resnet 50 architecture (b) Convolutional block (c) Identity block. 

3.3.3 Ensemble model architecture 
In the proposed ensemble model, ResNet-50 and EfficientNet-

B3 were trained independently using the same training dataset to 
classify MRI slices into four Alzheimer’s disease stages. During 
inference, both models generate probability scores for each class 
through softmax layers, and these outputs are combined using a soft 
voting approach by simply averaging the predictions. This fusion 

allows the ensemble to benefit from the complementary strengths 
of both networks: EfficientNet-B3 offers high efficiency with fewer 
parameters, while ResNet-50 contributes deep hierarchical feature 
extraction through residual learning. To stabilize training and 
reduce internal covariate shift, batch normalization is applied to 
the fused features, followed by a dense layer with 256 neurons 
and ReLU activation for non-linearity. Regularization techniques, 

Frontiers in Medicine 09 frontiersin.org 199

https://doi.org/10.3389/fmed.2025.1619228
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kaur et al. 10.3389/fmed.2025.1619228 

FIGURE 5 

Efficient Net B3 architecture. 

including both L1 and L2 penalties, are applied to prevent 
overfitting, and a dropout layer is used to further improve 
generalization. The final classification is performed through a 
fully connected layer that maps the processed features to class 
probabilities. The model is trained using categorical cross-entropy 
loss, which evaluates the difference between predicted and true 
class labels. Overall, this ensemble design enhances diagnostic 
performance by combining the robustness of two diverse deep 
learning architectures as in the Figure 6. Rather than assigning 
weighted average or performing any other operation, the outputs 
from both the models are then simply averaged as they have been 
observed to complement each other. EfficientNet-B3 gives state 
of the art efficient feature representation using fewer number of 
parameters compared to ResNet-50 which offers strong hierarchical 
feature representation due to its residual learning (11). The 
combined output fusion is computed as shown in Equation 10 
where yEffNet is the final prediction of Efficient B3 and yResNet is the 
final prediction of Resnet 50. 

yFusion = 
1 

2 
.(yEffNet + yResNet) (10) 

This particular fusion strategy also ensures that both models 
contribute equally enough to the ensemble so that generalization 
over the various patterns across images will be well-captured. 

Batch normalization (BN) is then employed on the fused 
features to stabilize and enhance the speed of the whole training 
process by normalizing the outcomes. The normalized feature 
vector ˆ y is computed as in Equation 11: 

ŷ = 
yFusion− μ √ 

σ 2 +  
(11) 

where μ and σ 2 are the estimate of average of the batch, and 
variance of the batch respectively and  is a small constant value 
so as to avoid division by zero. Trainable scaling (γ ) and shifting 
(β) parameters further refine the normalized features by using 
the Equation 12: 

y  = γ .y ̂ + β (12) 

This step reduces the covariate shift problem within the 
organization’s internal environment, meaning that there is a more 

stable distribution of the particular features through the layers. The 
features being batch normalized are then fed through a dense layer 
with 256 output neurons. This layer applies a linear transformation 
followed by a ReLU activation for non-linearity as shown in 
Equation 13: 

z = ReLU(W. y  + b) (13) 

where, W is Weight matrix, b is Biase vector and ReLU(a) = max (0, 
a) To prevent overfitting, L1 and L2 regularization terms are added 
to the loss function, penalizing large weights as in Equation 14: 

Regularization Loss = λ1.|| W||1 + λ2.|| W|| 2 
2 (14) 

Also, Dropout layer which drops out neurons with the 
probability p is implemented to increase the ability of generalization 
of the model. The last fully connected layer adopts the SoftMax 
function in order to convert the distilled features to probabilistic 
outcomes reflecting the number of categories of the output. For 
each class k, the output probability yk is given by Equation 15: 

yk = 
exp exp (zk) C 
j=1 = exp(zj) 

(15) 

where C represents the number of classes, while zk is the logit for 
class k. The model is trained using categorical cross-entropy loss, 
minimizing the divergence between true labels yi,k and predicted 
probabilities y (i,k) as in Equation 16 

L = −  
1 

N 

N 

i=1 

C 

k=1 
yi,k log(ŷi,k ) (16) 

All the enhancement methods used in the proposed ensemble 
model, namely, feature fusion, normalization, dense layers, and 
regularization, make it highly capable to perform well in the 
classification of Alzheimer’s disease. Using EfficientNet-B3 and 
ResNet-50, this approach offers significant capabilities for the 
early diagnosis, which further outperform the outcomes of 
separate models with higher accuracy and their generality. A 
dropout layer is applied after the ReLU-activated dense layer 
and before the final classification layer to reduce overfitting and 
improve generalization. 

Frontiers in Medicine 10 frontiersin.org 200

https://doi.org/10.3389/fmed.2025.1619228
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kaur et al. 10.3389/fmed.2025.1619228 

FIGURE 6 

Ensemble model architecture. The framework consists of: (1) Input brain MRI image; (2) Feature extraction using ResNet-50 and EfficientNet-B3; (3) 
Ensemble model fusion, where outputs of ResNet-50 and EfficientNet-B3 are combined; (4) Classification head composed of Batch Normalization, 
Dense Layer (256 neurons), ReLU, Activation Layer, Dropout Layer, and Fully Connected Layer; and (5) Final classification into four categories: (a) Mild 
Demented, (b) Moderate Demented, (c) Non-Demented, and (d) Very Mild Demented. 
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TABLE 3 Training hyperparameters. 

Hyperparameter details Value/description 

Optimizer Adam 

Learning rate 0.0001 

Loss function Categorical cross entropy 

Batch size 32 

Number of epochs 10 

Input image size 224 × 224 × 3 

Dropout rate 0.5 

Data split ratio 80% Training 10% Validation 10% 
Testing 

Data augmentation Rotation, Zooming 

Framework used Python 3.8, TensorFlow 2.9, Keras, 
OpenCV, NumPy, Matplotlib 

3.3.4 Hyperparameter details 
To ensure optimal model performance and training stability, 

a carefully selected and tuned range of hyperparameters for both 
ResNet-50 and EfficientNet-B3 models used in the ensemble 
(11). These parameters were chosen based on preliminary 
experimentation and established best practices in deep learning 
for medical imaging. Key hyperparameters include the choice of 
optimizer, learning rate, batch size, number of training epochs. 
A detailed summary of the hyperparameters used in this study 
is provided in Table 3. These settings were consistent across both 
models to ensure fairness and effective ensemble integration. The 
models were developed using Python 3.8 with the TensorFlow 2.9 
and Keras libraries. Additional preprocessing and evaluation were 
performed using NumPy, OpenCV, scikit-learn, and Matplotlib. 

4 Results 

This section presents the experimental results obtained 
from evaluating the proposed ensemble model comprising 
ResNet-50 and EfficientNet-B3 on the Alzheimer’s MRI 
classification task. The model’s performance was assessed 
using standard evaluation metrics, including accuracy, precision, 
recall, and F1-score across four Alzheimer’s disease stages: 
Non-Demented, Very Mild Demented, Mild Demented, and 
Moderate Demented. The results demonstrate that the ensemble 
approach outperforms individual models in terms of both 
classification accuracy and generalization capability. Detailed 
comparisons, confusion matrices, and performance tables 
are provided to illustrate the effectiveness of the proposed 
method and support its potential for clinical deployment in 
diagnostic workflows. 

4.1 Evaluation parameters 

An evaluation parameter is a measure by which the 
performance, efficiency or effectiveness of a model, process, 

or system can be judged. Such parameters are commonly applied 
in different areas including machine learning, statistics, finance 
and engineering. 

a) Accuracy: accuracy in multi-class classification is defined 
as the ratio of correctly predicted samples to the total number 
of samples across all classes. It measures the overall effectiveness 
of the model in assigning the correct label to each input as in 
Equation 17 below: 

Accuracy = 
No. of correct predictions 
Total No. of predictions 

= 

 
i = 1CTPi 

N 
(17) 

Where TPi = True Positives for class i, C = Total number of 
classes, N = Total number of samples, where i can be any class out 
of four classes of Alzheimer. 

b) Precision: precision measures the proportion of correct 
positive predictions for each class out of all predictions made 
for that class. It indicates how many of the predicted instances 
for a specific class are actually correct. Precision is presented 
by the formula of precision expressed in Equation 18 below: 

Precisioni = 
TPi 

TPi+ FPi 
(18) 

c) Recall: recall, also known as sensitivity, measures the 
proportion of actual positives that were correctly identified for each 
class. It shows how well the model captures the true instances 
of each class. The formula of precision is expressed below in 
Equation 19 below: 

Recalli = 
TPi 

TPi + FNi 
(19) 

Where FNi is false negative for class i. 
d) F1-Score: the F1-score is the harmonic mean of precision 

and recall for each class. It balances the trade-off between precision 
and recall, especially useful when classes are imbalanced. The 
F1-score is calculated as shown in Equation 20: 

F1i − Score = 2 × 
(Precisioni × Recalli) 
(Precisioni + Recalli) 

(20) 

4.2 Training and validation results 

Comparative analysis of performance was conducted between 
ResNet-50 and EfficientNet-B3 during their training and 
validation stages. Two different computational frameworks 
trained against a predefined dataset to evaluate their performance 
by calculating their accuracy and precision during validation 
with recall and F1-score metrics achieved alongside AUC-
ROC value evaluations. The feature extraction abilities of 
ResNet-50 were excellent but required precision adjustments 
through fine-tuning to reach its best levels of operation. The 
efficient scaling of EfficientNet-B3 produced superior accuracy 
results while maintaining better generalization capabilities. The 
validation results showed that EfficientNet-B3 demonstrated 
better performance than ResNet-50 models primarily because 
of its superior structural design. Background inference speed 
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retained similarity between ResNet-50 and other comparison 
models. A decision between the two systems depends on 
whether applications prioritize accuracy or computational 
speed. The model was evaluated using multi-class performance 
metrics, including overall accuracy, precision, recall, and 
F1-score. These metrics were calculated for each of the 
four classes individually and macro-averaged to provide an 
overall assessment. 

4.2.1 Training and validation results of efficient 
net B3 

Performance trends from the EfficientNetB3 based Alzheimer’s 
disease detection model can be found in the depicted accuracy 
and loss data plots. The deployment of 10 epochs throughout 
training yielded positive results which appeared in both training 
and validation metrics. Both training and validation data show 
continuous performance improvements throughout the epochs 
according to the accuracy plot displayed on the left. The initial 
training accuracy level was ∼65% before reaching near 95% 
stability. The generalization capacity becomes evident through 
the validation accuracy which shows a start value higher than 
training accuracy and converges to 95%. The models training 
and validation accuracy graphs remain close together which 
means the model avoids major overfitting problems. Training 
along with validation loss shows continuous reduction throughout 
the overall training process according to the loss plot. Training 
losses initiate at 0.7 but continuously decrease and settle near 
0.1 by the end of training (28). The validation loss chain 
shows a downward movement which starts underneath the 
training loss mark then reaches similar value terminals at epoch 
completion. The model’s robust structure receives additional 
confirmation through the parallel changes observed in validation 
and training loss metrics. Effective learning and generalization 
abilities stand out in the EfficientNetB3 architecture when 
used for Alzheimer’s disease detection based on its metric 
convergence performance. The balanced performance of training 
and validation curves demonstrates that the model effectively 
extracts significant data features while avoiding overfitting which 
demonstrates its practical utility in clinical diagnostics settings. All 
performance metrics are displayed through the graphs presented in 
Figure 7. 

4.2.2 Training and validation results of ResNet 50 
Multiple plots show the performance metrics between training 

data accuracy and validation data accuracy alongside training data 
loss and validation data loss when using ResNet-50 for Alzheimer’s 
disease prediction. The training process required 10 epochs 
toward model evolution yet the performance metrics showed 
some separateness between training and validation results. The 
accuracy graph (left) demonstrates that model training accuracy 
gradually improved from 60% to a nearly 95% level throughout 
ten epochs. Initially the validation accuracy started at ∼70% 
then climbed to reach nearly 87% values. Beyond the fifth epoch 
the validation accuracy demonstrates unstable patterns which 
could be explained by overfitting and changes found within the 

validation dataset. The decreasing trend on loss data demonstrates 
successful learning between training data along with validation 
data. Training loss begins at 0.9 before reaching 0.2 only after 
completing the training period. From its starting point at 0.8 the 
validation loss gradually lowers until reaching a minimum of 0.4 
at epoch five. Beyond epoch 5 the validation loss exhibits a tiny 
upward trend because the model effectively performs on training 
data however, it misses essential patterns needed for unseen 
input recognition (29). Throughout the later part of training the 
separation between validation and training performance metrics 
demonstrates that ResNet-50 successfully grasps patterns from 
the data although it needs further development for generalized 
results. Early stopping alongside data augmentation and standard 
techniques for regularization offer potential solutions to reduce 
overfitting. The ResNet-50 model shows promise for Alzheimer’s 
disease detection capabilities through its excellent training accuracy 
results and fair validation performance potential that creates 
opportunities for future clinical diagnostic applications. All 
performance metrics have their graphical representations displayed 
in Figure 8. 

4.2.3 Training and validation results of proposed 
ensemble model 

These graphic displays show how an ensemble with ResNet-50 
and EfficientNetB3 models detects Alzheimer’s disease throughout 
10 training cycles. The left graph shows accuracy performance 
which demonstrates exceptional model behavior through rapid 
improvement of training and validation accuracy toward perfect 
scores. The model establishes an initial training accuracy baseline 
at 70% which evolves into 100% accuracy during the fourth epoch 
then maintains peak performance for the remaining epochs. The 
baseline validation accuracy sits at 85% during the initial stage 
after which it establishes perfect synchronization with training 
accuracy throughout subsequent epochs. The coaches’ curves align 
perfectly which demonstrates the model will generalize successfully 
and avoids excessive overfitting behavior. A loss plot analysis 
reveals that both training and validation loss decrease sharply 
in initial epochs to stabilize at low levels. Training loss displays 
initial values of about 3.5 that diminish rapidly to less than 
one unit during epoch 5 then settles down at that minimum 
value point. Validation loss displays a parallel reduction pattern 
which starts near 2.5 before decreasing under 0.5 during epoch 
4 while training loss tracks closely in subsequent epochs (30). 
The parallel development of accurate results and low loss data 
points demonstrates the sturdy characteristics of the ensemble 
model system. The ensemble methodology uses ResNet-50 and 
EfficientNetB0 to extract complementary functionality which 
delivers outstanding results for Alzheimer’s disease diagnosis. The 
model demonstrates accurate pattern recognition in the data 
through quick criterion alignment and data metric convergence 
without producing overfitting issues. The ensemble approach 
demonstrates potential utility as a dependable medical diagnostic 
instrument since it delivers accurate results alongside sharp dataset 
generalization abilities. All performance metrics are displayed 
graphically in Figure 9. 
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FIGURE 7 

(a) Model accuracy (b) model loss of efficient net B3. 

FIGURE 8 

(a) Model accuracy (b) model loss of Resnet 50. 

4.2.4 Comparison results of ensemble model, 
EfficientNet-B3 and ResNet50 

The performance metrics for multiple deep learning models 
across ten epochs are shown in Table 4 where training accuracy 
and validation accuracy and validation F1-score are evaluated. 
Scientists apply equivalent deep learning technologies from this 
domain to detect Alzheimer’s disease through MRI medical 
imaging. The progressive neurodegenerative psychiatric condition 
Alzheimer’s disease leads to cognitive decline so it requires 
early diagnosis to deliver effective therapeutic measures. The 
diagnostic systems built with CAD capabilities utilize EfficientNet-
B3 along with ResNet50 and ensemble models as they demonstrate 

exceptional accuracy in image recognition tasks. The training 
and validation accuracy of both EfficientNet-B3 and ResNet50 
increase through epochs and the ensemble model exceeds the 
performance of each model individually. All performance metrics, 
including accuracy, precision, recall, and F1-score, were calculated 
in a multi-class setting across four classes. Per-class metrics 
were computed and macro-averaged to summarize overall model 
performance. Ensemble learning proves beneficial because diverse 
model combinations increase generalization ability which then 
produces superior diagnostic results. Deep learning models 
trained with Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
medical images demonstrate potential for Alzheimer’s disease 

Frontiers in Medicine 14 frontiersin.org 204

https://doi.org/10.3389/fmed.2025.1619228
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kaur et al. 10.3389/fmed.2025.1619228 

FIGURE 9 

(a) Model accuracy (b) model loss of ensemble model. 

detection applications. The EfficientNet-B3 model demonstrates 
top capability in extracting MRI scan features followed by ResNet50 
which automatically adjusts training depths to overcome vanishing-
gradient difficulties by using its residual learning method. The 
ensemble model’s high performing results indicate that using 
multiple architectures enhances detection accuracy for early-stage 
Alzheimer’s disease. The F1-score acts as a vital tool for medical 
researchers because it evaluates model performance specifically 
during assessment of diagnosis systems which operate on 
imbalanced datasets primarily featuring underrepresented early-
stage and mild Alzheimer’s cases. Analysis of the F1-score values 
shows that the ensemble model maintains its superior performance 
throughout all epochs while achieving optimal precision and 
recall ratings. Morocco’s scientific research benefits from F1-
score accuracy which strives to improve disease detection at both 
non-diseased and diseased case levels thereby supporting clinical 
tools development. Model learning effectiveness and generalization 
ability increase concurrently with validation accuracy across epochs 
which proves fundamental when applying medical approaches 
to real-world situations. Deep learning algorithms with similar 
models from the table enable researchers to create dependable CAD 
systems which benefit neurologists through improved Alzheimer’s 
disease diagnosis accuracy. The diagnostic accuracy can be 
improved by two techniques: domain-specific transfer learning 
fine-tuning and additional multimodal data analysis. Deep learning 
demonstrates its critical role in disease detection through the data 
trends presented in the table. Researchers implementing these 
technologies in Alzheimer’s detection will achieve early diagnosis 
while enabling faster interventions that ultimately lead to better 
patient results. The Table 4 below shows the comparison of Resnet 
50, Efficient Net B3, and ensemble model. 

4.3 Testing results 

Real-world testing of ResNet-50 and EfficientNet-B3 produced 
evaluation results. The superior generalization capabilities of 
EfficientNet-B3 became evident through improved accuracy and 
precision together with enhanced recall. The model was superior 
to ResNet-50 in recognizing minimal patterns while producing 
fewer mistakes. The real-time applications could benefit from 
the ResNet-50 model because it delivers inference operations at 
a faster pace. The scoring system emphasized EfficientNet-B3 
as the best model in discrimination capability assessment. The 
efficiency of ResNet-50 did not reduce its competitive strength 
unless optimum hyperparameters were used. Two efficient network 
choices exist: EfficientNet-B3 provides enhanced accuracy while 
ResNet-50 delivers crucial speed performance for applications. 
Additional adjustments to model parameters combined with better 
data preparation will help increase test results from both systems. 

4.3.1 Classification results of EcientNet-B3, 
ResNet50, and ensemble model 

The classification report in Table 5 provides a comprehensive 
breakdown on testing models across four categories by showing 
accuracy data as well as recall metrics alongside F1-score 
percentages and class support counts. Our results show the 
ensemble model based on ResNet50 plus EfficientNet-B3 delivers 
advanced detection of Alzheimer’s disease across all four disease 
classification levels. The ensemble model executed with ResNet50 
and EfficientNet-B3 demonstrated absolute classification precision 
and recall and F1-score values of 1.00 for detecting Mild 
Demented, Moderate Demented and Non-Demented cases. The 
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TABLE 4 Comparison of ResNet-50, EfficientNet-B3, and Ensemble model. 

Epoch Model Training accuracy Validation accuracy Validation F1-score 

1 EfficientNet-B3 0.6261 0.7473 0.5482 

ResNet50 0.608 0.687 0.686 

Ensemble model 0.6707 0.822 0.8365 

2 EfficientNet-B3 0.7489 0.8037 0.6947 

ResNet50 0.7184 0.7608 0.758 

Ensemble model 0.8709 0.9294 0.9355 

3 EfficientNet-B3 0.8083 0.8458 0.7797 

ResNet50 0.7754 0.7846 0.784 

Ensemble model 0.9519 0.9794 0.9809 

4 EfficientNet-B3 0.8425 0.8726 0.8349 

ResNet50 0.8138 0.7985 0.798 

Ensemble model 0.9733 0.9841 0.9854 

5 EfficientNet-B3 0.8748 0.8977 0.8889 

ResNet50 0.8479 0.8249 0.824 

Ensemble model 0.9819 0.9929 0.9935 

6 EfficientNet-B3 0.8951 0.9148 0.9124 

ResNet50 0.8744 0.8505 0.85 

Ensemble model 0.9862 0.9915 0.9922 

7 EfficientNet-B3 0.9137 0.9233 0.9201 

ResNet50 0.8942 0.8591 0.859 

Ensemble model 0.9904 0.9947 0.9951 

8 EfficientNet-B3 0.9283 0.934 0.9311 

ResNet50 0.9116 0.8626 0.862 

Ensemble model 0.9919 0.9953 0.9957 

9 EfficientNet-B3 0.9355 0.9487 0.946 

ResNet50 0.925 0.8553 0.855 

Ensemble model 0.9936 0.9882 0.9891 

10 EfficientNet-B3 0.9446 0.9528 0.9504 

ResNet50 0.9363 0.8676 0.868 

Ensemble model 0.9943 0.9915 0.9922 

model maintains a precision rate of 0.98 and recall rate of 1.00 when 
classifying Very Mild Demented images. This produces an F1-
score of 0.99. Evaluation shows that when measuring performance 
separately, the EfficientNet-B3 model produces superior results 
than ResNet50 because it achieves 0.95 precision compared to 
0.87 precision together with 0.95 recall compared to 0.87 recall 
which generates a superior overall F1-score. The F1-score of 
EfficientNet-B3 achieves 1.00 in detecting Moderate Demented 
cases in particular together with strong performance in all 
present classes. ResNet50 demonstrates reduced performance in 
identifying Very Mild Demented cases and achieves recall levels 
of 0.76 thereby affecting its overall classification precision. The 
coordinating method capitalizes on the individual capabilities of 
both systems thereby enhancing overall classification performance. 

The ensemble model demonstrates reliable performance with an 
overall accuracy rating of 0.9932 which confirms its potential use 
for automated Alzheimer’s disease detection. 

4.3.2 Confusion matrix of EfficientNet-B3 
A confusion matrix serves as a performance evaluation tool 

which enables researchers to evaluate how machine learning 
models classify different data points. A basic mathematical 
unit that displays the real classification output with the model 
prediction output during model analysis. The rows display 
real-world labeling and the columns deliver model prediction 
classes. The research invests in studying the confusion matrices 
obtained from the Ensemble Model alongside ResNet50 and 

Frontiers in Medicine 16 frontiersin.org 206

https://doi.org/10.3389/fmed.2025.1619228
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kaur et al. 10.3389/fmed.2025.1619228 

TABLE 5 Comparison of various parameters under different models. 

Class Model Precision Recall F1-score Support 

Mild Demented Ensemble model 1 1 1 896 

Moderate Demented 1 1 1 647 

Non-Demented 1 1 0.99 960 

Very Mild Demented 0.98 1 0.99 896 

Mild Demented ResNet50 0.82 0.92 0.87 896 

Moderate Demented 0.99 0.98 0.98 927 

Non-Demented 0.84 0.85 0.84 927 

Very Mild Demented 0.86 0.76 0.81 907 

Mild Demented Efficient net B3 0.96 0.98 0.97 932 

Moderate Demented 0.99 1 1 602 

Non-Demented 0.93 0.94 0.94 979 

Very Mild Demented 0.94 0.91 0.93 886 

Overall accuracy Ensemble model 0.99 0.99 0.99 3,399 

ResNet50 0.87 0.87 0.87 3,399 

Efficient Net B3 0.95 0.95 0.95 3,399 

EfficientNet-B3. The confusion matrix in Figure 10 evaluates the 
EfficientNet-B3 model’s performance in classifying Alzheimer’s 
disease stages: Mild, Moderate, Non, and Very. The model 
demonstrates impressive accuracy by accurately identifying Mild 
(915 correct) and Moderate (602 correct) cases paired with sparse 
misdiagnosis occurrences. The identification of non-Alzheimer’s 
international cases proves reliable at 928 while showing some 
wrong assignments of very severity. Severe cases (805 correct) 
show occasional confusion with Non-cases (56 misclassified). The 
successful early and moderate stage differentiation by EfficientNet-
B3 needs improvements for better discrimination between severe 
disease presentations and non-diseased conditions to create 
accurate tools for clinical diagnosis. 

4.3.3 Confusion matrix of ResNet 50 
The Resnet 50 model delivers excellent diagnostic accuracy 

when distinguishing between Mild Demented and Non-Demented 
groups since it makes 823 and 784 correct determinations at 
once. The evaluation shows certain classification errors occur 
most frequently between Very Mild Demented and Non-Demented 
categories. Habitat Resnet 50 demonstrates accurate performance 
detecting Moderate Demented stages because it delivers 653 precise 
identification results while minimally misclassifying any samples. 
A significant number of Very Mild Demented cases get assigned 
to the Mild Demented group in addition to the 111 diagnoses 
which the classifier labels as non-demented based on Figure 11. 
Distinguishing dementia at early stages from healthy individuals 
remains a challenge for early intervention because both cases 
present similar symptoms. 

4.3.4 Confusion matrix of ensemble model 
Each category shows robust performance in classification 

based on the ensemble model where most instances fall within 

correct interpretations. Our analysis showed the model correctly 
identified 896 cases of Mild Demented and 647 cases of 
Moderate Demented along with 938 non-demented cases and 
895 Very Mild Demented patients. The classification method 
shows minimal mistakes because occasional Very Mild Demented 
cases accidentally overlapped with non-demented cases (19 
images) while other classification results were unaffected (31). 
The integrated ResNet50 and EfficientNet-B3 model successfully 
identifies different dementia stages because of its powerful 
feature extraction strengths. Both ResNet50 and EfficientNet-B3 
contribute remarkable capabilities to classification accuracy by 
demonstrating strong combinations of deep learning methodology 
and parameter optimization capabilities. The ensemble model 
proves highly suitable for early-stage Alzheimer’s detection through 
its minimal misidentification errors in identifying groups of 
Moderate Demented patients along with Mild Demented patients 
as shown in Figure 12. The ensemble model demonstrates high 
diagnostic accuracy which makes it suitable for automated 
Alzheimer’s disease detection systems that would help doctors 
intervene early and make better medical choices. The ensemble 
model demonstrates superior performance by attaining maximum 
accuracy while making the fewest classification errors especially 
in subjects with Mild and Moderate Demented diagnosis. The 
EfficientNet-B3 performs exceptionally well in mild and moderate 
case identification although it displays challenges when trying to 
identify severe cases. The ResNet50 Model demonstrates successful 
operation however, its efficiency decreases when attempting to 
distinguish very mild Dementia from persons who do not 
have dementia. 

5 External validation 

To evaluate the generalization ability of the proposed 
ensemble model, an external validation was performed using 
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FIGURE 10 

Confusion matrix of Efficient Net B3. 

FIGURE 11 

Confusion matrix of ResNet 50. 

a separate dataset comprising 6,400 MRI images representing 
four stages of Alzheimer’s disease: Non-Demented, Very Mild 
Demented, Mild Demented, and Moderate Demented. The results 

confirm the robustness and accuracy of the model beyond the 
training data, demonstrating its potential for real-world clinical 
application (32). 
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FIGURE 12 

Confusion matrix of ensemble model. 

The model achieved an overall accuracy of 97%, with 
consistently high precision, recall, and F1-scores across all classes. 
Specifically, the Non-Demented class yielded a precision of 0.96 
and a recall of 0.94, resulting in an F1-score of 0.95. The Very 
Mild Demented class, which represents early-stage Alzheimer’s 
detection, achieved perfect scores—precision, recall, and F1-score 
all at 1.00—though this result should be interpreted with caution 
due to the relatively small sample size (n = 10). The model also 
performed well on the Mild Demented and Moderate Demented 
categories, achieving F1-scores of 0.97 and 0.96, respectively as 
depicted in the Table 6 below. 

Macro and weighted averages for all metrics were uniformly 
0.97, indicating that the model maintains consistent performance 
across both balanced and imbalanced class distributions. These 
results suggest that the ensemble model, which combines ResNet-
50 and EfficientNet-B3, is capable of accurately distinguishing 
between Alzheimer’s disease stages even when evaluated on data 
not seen during training. 

The results are promising, but the limited number of 
samples in some classes—especially Very Mild Demented— 
warrants further validation using larger, clinically diverse 
datasets. Future work will focus on subject-level validation 
using datasets with patient identifiers, clinical metadata, and 
imaging protocols to assess the model’s robustness in practical 
diagnostic environments. 

TABLE 6 Performance metrics on external validation dataset. 

Class Precision Recall F1-score Support 

Mild Demented 0.96 0.94 0.95 145 

Moderate Demented 1.00 1.00 1.00 10 

Non-Demented 0.97 0.98 0.97 513 

Very Mild Demented 0.96 0.96 0.96 356 

Accuracy 0.97 1,024 

Macro Avg 0.97 0.97 0.97 1,024 

Weighted Avg 0.97 0.97 0.97 1,024 

6 Comparison with state-of-the-art 

This research demonstrates how recent developments improve 
disease detection models and dataset capabilities and classification 
metrics when compared to current field-leading detection 
approaches. Research using deep learning algorithms ResNet50, 
EfficientNet, VGG16, and DenseNet has evaluated Alzheimer’s 
disease classification from MRI scans with different degrees of 
achievement. The application of CAM-CNN on MRI scans with 
VGG19 and ResNet101 network models produced a 98.85% 
accuracy outcome where ResNet101 provided better performance 
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TABLE 7 Comparison on the basis of aspects. 

Ref No Year Technique used Number of classes Name of classes Accuracy 

(4) 2024 VGG19 and RESNET 101 
with CAM-CNN 

4 • Non-Dementia 
• Without Dementia 
• Very Mild Dementia 
• Mild Dementia 
• Moderate Dementia 

98.85% 

(7) 2023 Ensemble of EfficientNet-B2 
and VGG-16 

4 • Mild Demented 
• Moderate Demented 
• Non-Demented 
• Very Mild Demented 

97.35% 

(9) 2024 Using various architectures 
like VGG 16, VGG 19, 
Dense Net 121 

5 • Binswanger Dementia 
• Hemorrhagic Dementia 
• Multi-infarct dementia 
• Strategical dementia 
subcortical dementia 

84.67% 

(10) 2024 Using deep learning 
techniques 

4 • Mild Demented 
• Moderate Demented 
• Non-Demented 
• Very Mild Demented 

80.14% 

(15) 2024 Using ResNet, Dense Net, 
and Efficient Net 

4 • Mild Demented 
• Moderate Demented 
• Non-Demented 
• Very Mild Demented 

75.06% 

Proposed model Ensemble Model of Resnet 
50 and Efficient Net-B3 

4 • Mild Demented 
• Moderate Demented 
• Non-Demented 
• Very Mild Demented 

99.32% 

than VGG19. The combination of EfficientNet-B2 with VGG16 
allowed researchers to produce a model that reached 97.35% 
accuracy through transfer learning applications. Individual use 
of ResNet50 in previous research reached an accuracy of 80.14% 
yet displayed spaces where its classification accuracy might be 
enhanced. Research results using multiple models including 
VGG16 and DenseNet121 with ResNet50 demonstrated an 
accuracy level of 84.67 percent which indicates the requirement 
for better ensemble strategies. The research introduces an 
ensemble model that joins ResNet50 with EfficientNet-B3 to 
improve classification outcomes in a major way. The proposed 
model delivers 99% overall performance accuracy because Mild 
Demented, Moderate Demented, and Non-Demented classes 
achieve precision, recall and F1-score values of 1.00. Feature 
extraction capabilities of EfficientNet-B3 reveal its superiority over 
ResNet50 since individual assessments show precision at 0.95 vs. 
0.87 and an F1-score of 0.99. To surpass benchmarked models 
this research generated an ensemble method that brings together 
beneficial characteristics from EfficientNet-B3 and ResNet50 
including their optimized architecture and deep feature learning 
ability. Its high classification accuracy makes this approach a 
promising option for automated Alzheimer’s detection while 
enabling better medical decision support particularly during early 
diagnosis. A summary of these two methods appears in Table 7. 

Several recent studies have contributed valuable insights into 
the development of intelligent diagnostic systems, which support 
the objective of this research. For instance, Zhang et al. (33) 
demonstrated the clinical benefits of precision imaging techniques 
in neurosurgical applications, highlighting the importance of 
targeted image-guided interventions in neurological disorders, a 

concept that aligns with the need for accurate neuroimaging 
analysis in Alzheimer’s disease. Yin et al. (34) proposed an EEG-
based emotion recognition system using autoencoder feature 
fusion and MSC-TimesNet, which exemplifies the utility of 
deep learning in neurocognitive data interpretation. Similarly, 
Tian et al. (35) introduced a novel self-supervised learning 
model for binocular disparity estimation, indicating the growing 
potential of self-supervised frameworks that could be extended to 
medical imaging applications such as Alzheimer’s classification. 
Furthermore, Xiao et al. (36) presented a large-scale machine 
learning-based dementia risk model tailored to elderly populations 
with depression, providing a strong clinical basis for integrating 
predictive analytics in Alzheimer’s risk assessment. Zhu (37) 
explored memory impairment detection through computational 
intelligence in substance abuse patients, reinforcing the relevance 
of machine learning in cognitive disorder diagnostics. Zhan 
et al. (38) investigated brain strain analysis using in-vivo and 
simulation data, underlining the value of biomechanical modeling 
in neurodegenerative research. Li et al. (39) applied machine 
learning to diagnose sarcopenia using sEMG signals, showing 
the adaptability of ML in aging-related disease detection. Lastly, 
Xiang et al. (40) employed a systems biology approach to 
explore potential therapeutic mechanisms in Alzheimer’s, offering 
complementary biological insights that support a multimodal 
understanding of the disease. Together, these works underscore 
the feasibility and importance of leveraging advanced machine 
learning, neuroimaging, and multimodal integration strategies— 
paralleling the aims of our ensemble learning-based framework 
using ResNet-50 and EfficientNet-B3 for Alzheimer’s diagnosis and 
disability assessment. 
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7 Discussion 

Research development centers on building an ensemble 
model for Alzheimer’s disease detection while showcasing its 
value for clinical assessments. The proposed model extends 
clinical abilities of neurologists and radiologists through its 
accuracy enhancement and robustness while facilitating timely 
precise diagnostic procedures that minimize human error and 
enhance early treatment strategies. The absence of patient-
level demographic data, including age and gender, limits the 
model’s ability to analyze performance variations across different 
population subgroups. Future work will utilize clinically annotated 
datasets to enhance interpretability and fairness and use datasets 
that allow patient-wise splitting to ensure proper generalization. 
The lack of patient identifiers prevented subject-level data splitting. 
Consequently, the model may have been exposed to highly 
correlated adjacent slices across training and test sets, increasing 
the risk of overfitting and overestimating performance. Although 
augmentation and splitting were carefully performed, the absence 
of subject identifiers may result in correlated slices from the 
same subject appearing in different data subsets, potentially 
impacting generalization. Through implementation in hospital 
imaging platforms the ensemble model functions as a medical 
decision tool which enables specialists to detect Alzheimer’s disease 
manifestations at different stages confidently. Due to the absence 
of raw volumetric MRI files and acquisition metadata, advanced 
corrections such as N4 bias field correction could not be applied, 
which may affect intensity uniformity across slices. Since the 
dataset was pre-augmented and lacks original raw scans, it may 
not be suitable for standalone testing or external benchmarking. 
This restricts our ability to fully assess generalization and may 
introduce bias if augmentation artifacts influenced the model. 
Deep learning methods showcase their potential to outperform 
conventional diagnostic methods through the successful ensemble 
architecture which unites ResNet50 and EfficientNet-B3 networks. 
A key limitation of this work is the absence of imaging acquisition 
metadata, such as sequence types and scanner specifications, as the 
dataset was sourced from a publicly available platform (Kaggle) 
that did not include these details. This limits our ability to assess 
the model’s robustness across different clinical imaging conditions. 
The enhanced accuracy of combined model identifications results 
in increased abilities to distinguish dementia’s early stages from 
standard brain abnormalities thereby enabling prompt medical 
care. The improved diagnosis system reliability comes from better 
misclassification control which decreases false-positive and false-
negative outcomes leading to incorrect diagnosis. Medical imaging 
is undergoing significant change through artificial intelligence as 
studies demonstrate the practical benefits of automatic Alzheimer’s 
disease detection on a wide scale basis. Due to the lack of publicly 
available documentation the possibility of synthetic or unverified 
image generation cannot be ruled out, and this represents a 
significant limitation in terms of compliance and reproducibility. 
To ensure broader applicability and robustness, future work will 
involve validating the model on external datasets Deep learning-
based models demonstrate clinically appropriate applications in 
patient workflows for early detection and personalized treatment 
development which leads to better neurodegenerative disease 

outcomes. Further, the proposed ensemble model can serve as an 
assistive tool for radiologists by providing automated classification 
of Alzheimer’s disease stages from MRI scans. This can help 
flag early-stage or high-risk patients for further investigation. 
However, it should not replace expert interpretation. The model 
may produce false positives or false negatives, especially in 
very mild or atypical cases. Therefore, recommendation in its 
integration with standard clinical workflows, cognitive scoring 
systems, and physician review to ensure accurate diagnosis 
and decision-making. 

8 Conclusion  

Using MRI high-resolution scans, the research team developed 
an ensemble deep learning diagnostic system which performed 
with 99% accuracy in detecting Alzheimer’s disease. The model 
utilized ResNet-50 to extract efficient features and EfficientNet-
B3 to classify robustly while remaining effective against challenges 
in medical imaging applications. Precise model training and 
evaluation became possible through the reliable annotations 
and diverse high-quality image dataset which contained 33,984 
images. Preprocessing methods performed through normalization, 
rescaling, and noise removal improved the model quality 
for enhanced robustness. The model demonstrated superior 
performance as shown through precision and recall scores together 
with F1-score and area under the ROC curve metrics during 
comprehensive evaluations across all stages of Alzheimer’s disease. 
Our model achieved consistent training and validation accuracy 
improvements which converged at 99.32% with minimal overfitting 
observed in loss plots thus, proving its strong generalization 
potential. Analysis of the confusion matrix demonstrated that the 
model produced accurate results for both Mild and Moderate 
cases along with non-demented cases and achieved commendable 
accuracy when identifying Very Mild Demented cases. The 
research data shows that the ensemble model delivers strong 
diagnostic capabilities for Alzheimer’s detection across severe 
disease manifestations. High-quality data alongside deep learning 
produces better diagnostic accuracy according to the research 
findings. Its performance quality makes the model suitable for 
clinical use because it provides essential medical decisions to 
doctors for early disease detection and ongoing care regulation. 
Further studies must evaluate both model optimization and 
implementation across multiple clinical settings as part of broader 
application validation. 

Data availability statement 

The original contributions presented in the study are included 
in the article/supplementary material, further inquiries can be 
directed to the corresponding authors. 

Author contributions 

AK: Conceptualization, Funding acquisition, Formal analysis, 
Writing – review & editing, Writing – original draft, Investigation, 

Frontiers in Medicine 21 frontiersin.org 211

https://doi.org/10.3389/fmed.2025.1619228
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kaur et al. 10.3389/fmed.2025.1619228 

Methodology. FA: Funding acquisition, Resources, Writing – 
original draft, Project administration, Visualization, Methodology, 
Investigation, Validation, Conceptualization. AR: Writing – 
original draft, Formal analysis, Conceptualization, Project 
administration, Investigation, Methodology, Data curation. SB: 
Data curation, Methodology, Conceptualization, Writing – review 
& editing, Investigation, Writing – original draft. 

Funding 

The author(s) declare that financial support was received for the 
research and/or publication of this article. The authors extend their 
appreciation to the King Salman Center for Disability Research for 
funding this work through Research Group no KSRG-2024-408. 

Acknowledgments 

The authors extend their appreciation to the King Salman 
Center for Disability Research for supporting this publication. 

Conflict of interest 

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest. 

Generative AI statement 

The author(s) declare that no Gen AI was used in the creation 
of this manuscript. 

Publisher’s note 

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher. 

References 

1. Zammataro L, Rovetta S, Greco D. MEDIGUI-ConvNet–Interactive Architecture 
Combining the Power of Convolutional Neural Networks and Medical Imaging. In INI-
DH 2024: Workshop on Innovative Interfaces in Digital Healthcare, in conjunction with 
International Conference on Advanced Visual Interfaces. (2024). pp. 3–7. 

2. Assmi A, Elhabyb K, Benba A, Jilbab A. Alzheimer’s disease 
classification: a comprehensive study. Multimed Tools Appl. (2024) 
83:1–24. doi: 10.1007/s11042-024-18306-9 

3. Ajagbe SA, Amuda KA, Oladipupo MA, Oluwaseyi FA, Okesola KI. Multi-
classification of Alzheimer disease on magnetic resonance images (MRI) using deep 
convolutional neural network (DCNN) approaches. Int J Adv Comput Res. (2021) 
11:51. doi: 10.19101/IJACR.2021.1152001 

4. Khosravi M, Parsaei H, Rezaee K. Novel classification scheme for early Alzheimer’s 
disease (AD) severity diagnosis using deep features of the hybrid cascade attention 
architecture: early detection of AD on MRI Scans. Tsinghua Sci Technol. (2024) 
30:2572–91. doi: 10.26599/TST.2024.9010080 

5. Li Q, Yang MQ. Comparison of machine learning approaches for enhancing 
Alzheimer’s disease classification. PeerJ. (2021) 9:e10549. doi: 10.7717/peerj.10549 

6. Shirbandi K, Khalafi M, Mirza-Aghazadeh-Attari M, Tahmasbi M, 
Shahvandi HK, Javanmardi P, et al. Accuracy of deep learning model-
assisted amyloid positron emission tomography scan in predicting Alzheimer’s 
disease: a systematic review and meta-analysis. Inform Med Unlocked. (2021) 
25:100710. doi: 10.1016/j.imu.2021.100710 

7.  MujahidM, Rehman A, Alam T, Alamri FS,  Fati  SM, Saba T. An efficient  ensemble  
approach for Alzheimer’s disease detection using an adaptive synthetic technique and 
deep learning. Diagnostics. (2023) 13:2489. doi: 10.3390/diagnostics13152489 

8. Sorour SE, Abd El-Mageed AA, Albarrak KM, Alnaim AK, Wafa AA, 
El-Shafeiy E. Classification of Alzheimer’s disease using MRI data based on 
Deep Learning Techniques. J King Saud Univ Comput Inform Sci. (2024) 
36:101940. doi: 10.1016/j.jksuci.2024.101940 

9. Tufail H, Ahad A, Naqvi MH, Maqsood R, Pires IM. Classification of vascular 
dementia on magnetic resonance imaging using deep learning architectures. Intell Syst 
Appl. (2024) 22:200388. doi: 10.1016/j.iswa.2024.200388 

10. Goyal P, Rani R, Singh K. A multilayered framework for diagnosis and 
classification of Alzheimer’s disease using transfer learned Alexnet and LSTM. Neural 
Comput Appl. (2024) 36:3777–801. doi: 10.1007/s00521-023-09301-6 

11. Raza N, Naseer A, Tamoor M, Zafar K. Alzheimer disease 
classification through transfer learning approach. Diagnostics. (2023) 
13:801. doi: 10.3390/diagnostics13040801 

12. Sharma S, Gupta S, Gupta D, Altameem A, Saudagar AKJ, Poonia RC, et al. 
HTLML: Hybrid AI based model for detection of Alzheimer’s disease. Diagnostics. 
(2022) 12:1833. doi: 10.3390/diagnostics12081833 

13.  Zhang  X,  Gao L, Wang Z, Yu Y, Zhang  Y,  Hong  J.  Improved  neural  
network with multi-task learning for Alzheimer’s disease classification. Heliyon. (2024) 
10:e26405. doi: 10.1016/j.heliyon.2024.e26405 

14. Solano-Rojas B, Villalón-Fonseca R. A low-cost three-dimensional 
DenseNet neural network for Alzheimer’s disease early discovery. Sensors. (2021) 
21:1302. doi: 10.3390/s21041302 

15. Carcagnì P, Leo M, Del Coco M, Distante C, De Salve A. Convolution neural 
networks and self-attention learners for Alzheimer dementia diagnosis from brain 
MRI. Sensors. (2023) 23:1694. doi: 10.3390/s23031694 

16. Jo T, Nho K, Bice P, Saykin AJ, Alzheimer’s Disease Neuroimaging Initiative. 
Deep learning-based identification of genetic variants: application to Alzheimer’s 
disease classification. Brief Bioinform. (2022) 23:bbac022. doi: 10.1093/bib/bbac022 

17. Qiu S, Joshi PS, Miller MI, Xue C, Zhou X, Karjadi C, et al. Development 
and validation of an interpretable deep learning framework for Alzheimer’s disease 
classification. Brain. (2020) 143:1920–33. doi: 10.1093/brain/awaa137 

18. Helaly HA, Badawy M, Haikal AY. Deep learning approach for 
early detection of Alzheimer’s disease. Cognit Comput. (2022) 14:1711– 
27. doi: 10.1007/s12559-021-09946-2 

19. Jo T, Nho K, Risacher SL, Saykin AJ. Alzheimer’s Neuroimaging Initiative. 
Deep learning detection of informative features in tau PET for Alzheimer’s 
disease classification. BMC Bioinform. (2020) 21:1–13. doi: 10.1186/s12859-020-
03848-0 

20. Awarayi NS, Twum F, Hayfron-Acquah JB, Owusu-Agyemang K. A bilateral 
filtering-based image enhancement for Alzheimer disease classification using CNN. 
PLoS ONE. (2024) 19:e0302358. doi: 10.1371/journal.pone.0302358 

21. Hazarika RA, Kandar D, Maji AK. An experimental analysis of different 
deep learning based models for Alzheimer’s disease classification using brain 
magnetic resonance images. J King Saud Univ Comput Inform Sci. (2022) 34:8576– 
98. doi: 10.1016/j.jksuci.2021.09.003 

22. Kaggle.com. [Online]. Available online at: https://www.kaggle.com/datasets/ 
uraninjo/augmented-alzheimer-mri-dataset/data (Accessed February 28, 2025). 

23. Wong PC, Abdullah SS, Shapiai MI. Exceptional performance with minimal data 
using a generative adversarial network for Alzheimer’s disease classification. Sci Rep. 
(2024) 14:17037. doi: 10.1038/s41598-024-66874-5 

24. Angkoso CV, Agustin Tjahyaningtijas HP, Purnama I, Purnomo MH. Multiplane 
Convolutional Neural Network (Mp-CNN) for Alzheimer’s Disease Classification. Int 
J Intell Eng Syst. (2022) 15:329–40. doi: 10.22266/ijies2022.0228.30 

25. Wu Y, Zhou Y, Zeng W, Qian Q, Song M. An attention-based 3D CNN with 
multi-scale integration block for Alzheimer’s disease classification. IEEE J Biomed 
Health Inform. (2022) 26:5665–73. doi: 10.1109/JBHI.2022.3197331 

Frontiers in Medicine 22 frontiersin.org 212

https://doi.org/10.3389/fmed.2025.1619228
https://doi.org/10.1007/s11042-024-18306-9
https://doi.org/10.19101/IJACR.2021.1152001
https://doi.org/10.26599/TST.2024.9010080
https://doi.org/10.7717/peerj.10549
https://doi.org/10.1016/j.imu.2021.100710
https://doi.org/10.3390/diagnostics13152489
https://doi.org/10.1016/j.jksuci.2024.101940
https://doi.org/10.1016/j.iswa.2024.200388
https://doi.org/10.1007/s00521-023-09301-6
https://doi.org/10.3390/diagnostics13040801
https://doi.org/10.3390/diagnostics12081833
https://doi.org/10.1016/j.heliyon.2024.e26405
https://doi.org/10.3390/s21041302
https://doi.org/10.3390/s23031694
https://doi.org/10.1093/bib/bbac022
https://doi.org/10.1093/brain/awaa137
https://doi.org/10.1007/s12559-021-09946-2
https://doi.org/10.1186/s12859-020-03848-0
https://doi.org/10.1371/journal.pone.0302358
https://doi.org/10.1016/j.jksuci.2021.09.003
https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset/data
https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset/data
https://doi.org/10.1038/s41598-024-66874-5
https://doi.org/10.22266/ijies2022.0228.30
https://doi.org/10.1109/JBHI.2022.3197331
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://Kaggle.com


Kaur et al. 10.3389/fmed.2025.1619228 

26. Al-Adhaileh MH. Diagnosis and classification of Alzheimer’s disease by 
using a convolution neural network algorithm. Soft Computing. (2022) 26:7751– 
62. doi: 10.1007/s00500-022-06762-0 

27.  Khan R, Qaisar ZH,  Mehmood  A,  Ali G, Alkhalifah T, Alturise F, et al.  A practical  
multiclass classification network for the diagnosis of Alzheimer’s disease. Appl Sci. 
(2022) 12:6507. doi: 10.3390/app12136507 

28. Dao Q, El-Yacoubi MA, Rigaud AS. Detection of Alzheimer disease on online 
handwriting using 1D convolutional neural network. IEEE Access. (2022) 11:2148– 
55. doi: 10.1109/ACCESS.2022.3232396 

29. Tripathi T, Kumar R. Speech-based detection of multi-class Alzheimer’s 
disease classification using machine learning. Int J Data Sci Analyt. (2024) 18:83– 
96. doi: 10.1007/s41060-023-00475-9 

30. Ujilast NA, Firdausita NS, Aditya CSK, Azhar Y, MRI. Image based Alzheimer’s 
disease classification using convolutional neural network: EfficientNet architecture. J 
RESTI. (2024) 8:18–25. doi: 10.29207/resti.v8i1.5457 

31. Pandey PK, Pruthi J, Alzahrani S, Verma A, Zohra B. Enhancing 
healthcare recommendation: transfer learning in deep convolutional 
neural networks for Alzheimer disease detection. Front Med. (2024) 
11:1445325. doi: 10.3389/fmed.2024.1445325 

32. Kaggle Link. Available online at: https://www.kaggle.com/datasets/ 
borhanitrash/alzheimer-mri-disease-classification-dataset (Accessed February 
28, 2025). 

33. Zhang C, Ge H, Zhang S, Liu D, Jiang Z, Lan C et al. Hematoma 
evacuation via image-guided para-corticospinal tract approach in patients 
with spontaneous intracerebral hemorrhage. Neurol Therapy. (2021) 
10:1001–13. doi: 10.1007/s40120-021-00279-8 

34. Yin J, Qiao Z, Han L, Zhang X. EEG-based emotion recognition 
with autoencoder feature fusion and MSC-TimesNet model. Comput 
Methods Biomech Biomed Eng. (2025) 1–18. doi: 10.1080/10255842.2025. 
2477801 

35.  Tian J, Zhou Y, Chen X, AlQahtani  SA, Chen H, Yang B et  al. A  
novel self-supervised learning network for binocular disparity estimation. 
CMES Compu Model Eng Sci. (2024) 142:209–29. doi: 10.32604/cmes.2024. 
057032 

36.  Xiao X, Li Y, Wu Q, Liu  X,  Cao X, Li M, et al.  Development and  validation  
of a novel predictive model for dementia risk in middle-aged and elderly depression 
individuals: a large and longitudinal machine learning cohort study. Alzheimers Res 
Ther. (2025) 17:103. doi: 10.1186/s13195-025-01750-6 

37. Zhu C. Computational intelligence-based classification system for the diagnosis 
of memory impairment in psychoactive substance users. J Cloud Comput. (2024) 
13:119. doi: 10.1186/s13677-024-00675-z 

38. Zhan X, Zhou Z, Liu Y, Cecchi NJ, Hajiahamemar M, Zeineh MM et al. 
Differences between two maximal principal strain rate calculation schemes in 
traumatic brain analysis with in-vivo and in-silico datasets. J Biomech.  (2025) 
179:112456. doi: 10.1016/j.jbiomech.2024.112456 

39.  Li N, Ou J, He H, He J, Zhang  L,  Peng  Z et al.  Exploration  of  a  
machine learning approach for diagnosing sarcopenia among Chinese community-
dwelling older adults using sEMG-based data. J Neuroeng Rehabil. (2024) 
21:69. doi: 10.1186/s12984-024-01369-y 

40. Xiang Q, Xiang Y, Liu Y, Chen Y, He Q, Chen T, et al. Revealing 
the potential therapeutic mechanism of Lonicerae japonicae Flos in 
Alzheimer’s disease: a computational biology approach. Front Med. (2024) 
11:1468561. doi: 10.3389/fmed.2024.1468561 

Frontiers in Medicine 23 frontiersin.org 213

https://doi.org/10.3389/fmed.2025.1619228
https://doi.org/10.1007/s00500-022-06762-0
https://doi.org/10.3390/app12136507
https://doi.org/10.1109/ACCESS.2022.3232396
https://doi.org/10.1007/s41060-023-00475-9
https://doi.org/10.29207/resti.v8i1.5457
https://doi.org/10.3389/fmed.2024.1445325
https://www.kaggle.com/datasets/borhanitrash/alzheimer-mri-disease-classification-dataset
https://www.kaggle.com/datasets/borhanitrash/alzheimer-mri-disease-classification-dataset
https://doi.org/10.1007/s40120-021-00279-8
https://doi.org/10.1080/10255842.2025.2477801
https://doi.org/10.32604/cmes.2024.057032
https://doi.org/10.1186/s13195-025-01750-6
https://doi.org/10.1186/s13677-024-00675-z
https://doi.org/10.1016/j.jbiomech.2024.112456
https://doi.org/10.1186/s12984-024-01369-y
https://doi.org/10.3389/fmed.2024.1468561
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Translating medical research and innovation into 

improved patient care

A multidisciplinary journal which advances our 

medical knowledge. It supports the translation 

of scientific advances into new therapies and 

diagnostic tools that will improve patient care.

Discover the latest 
Research Topics

See more 

Frontiers in
Medicine

https://www.frontiersin.org/journals/Medicine/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Integrating AI and machine learning in advancing patient care: bridging innovations in mental health and cognitive neuroscience

	Table of contents

	Editorial: Integrating AI and machine learning in advancing patient care: bridging innovations in mental health and cognitive neuroscience
	Author contributions
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note

	Advancing personalized diagnosis and treatment using deep learning architecture
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition and preprocessing
	2.2 Feature importance analysis using SHAP and LIME
	2.3 Proposed method
	2.3.1 ImmunoNet: a novel deep learning architecture
	2.3.2 Model architecture
	2.4 Mathematical modeling
	2.4.1 Robust diagnosis with refined topology
	2.4.2 Topology refinement
	2.4.3 Integration with ImmunoNet
	2.4.4 Mathematical formulation
	2.4.5 Training procedure
	2.4.6 Evaluation metrics
	2.5 Practicality of clinical implementation and model deployment
	2.6 Multi-omics association and biological mechanisms

	3 Experimental details
	3.1 Experimental setting
	3.1.1 Model configuration
	3.1.2 Competing methods
	3.1.3 Comparison results
	3.1.4 Treatment of autoimmune disorders
	3.1.5 Ablation study

	4 Conclusion
	References

	Integrating 6G technology in smart hospitals: challenges and opportunities for enhanced healthcare services
	1 Introduction
	1.1 Motivation

	2 Literature review
	3 Smart hospital
	3.1 Infrastructure requirements for 6G-based smart hospitals

	4 Sixth generation
	4.1 How to integrate 6G and smart health care
	4.2 Challenges in 6G based smart hospital
	4.3 How 6G will benefit the health industry

	5 Key technologies in 6G based smart hospital
	5.1 Internet of Things (IoT) in 6G based smart hospital
	5.1.1 IoT sensors in smart hospital
	5.1.2 Key components level implementation of IoT in smart hospital
	5.1.2.1 Philips Health Suite Digital Platform architecture layer
	5.1.2.2 Siemens IoT-enabled solutions for healthcare layers

	5.1.3 How 6G help to overcome the challenges of integrating IoT in smart hospitals

	5.2 Explainable artificial intelligence
	5.2.1 Types of data use by XAI
	5.2.2 AI/ML used in hospitals
	5.2.3 Benefit of XAI in 6G based smart hospital over 5G
	5.2.4 How XAI can be integrated with 6G based smart hospital
	5.2.5 Challenges of XAI and how 6G can help

	5.3 Robotics in 6G based smart hospital in robotics
	5.3.1 Advanced applications of Robots in smart hospital with statistics
	5.3.2 Challenges and 6G solution in implementation of robotics in smart hospital

	5.4 Analyzing real problem in Thailand hospital and solving with 6G based smart hospital
	5.5 Hybrid cloud-edge computing

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Application of artificial intelligence in modern healthcare for diagnosis of autism spectrum disorder
	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Dataset
	3.2 Pre-processing approach
	3.2.1 Data augmentation
	3.2.2 Data splitting

	3.3 Deep learning models
	3.3.1 Inception-V3 models
	3.3.2 ResNet50 models
	3.3.3 VGG-19 models

	3.4 Setting of proposed DL models
	3.5 Evaluation metrics

	4 Experiment
	4.1 Results of ResNet50 models
	4.2 Results of Inception-V3
	4.3 Result of VGG-19
	4.4 Performance of the ASD system based on DL models

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	GAN-enhanced deep learning for improved Alzheimer's disease classification and longitudinal brain change analysis
	1 Introduction
	2 Literature review
	2.1 Gaps identified

	3 Proposed methodology
	3.1 Proposed ResNet101 and LSTM for feature extraction and classification
	3.2 Determination of brain deterioration rate using GAN model

	4 Result and discussion
	4.1 Dataset description
	4.1.1 Creation and collection of data
	4.1.1.1 ADNI dataset
	4.1.1.2 OASIS dataset


	4.2 Performance metrics
	4.2.1 Accuracy
	4.2.2 Precision
	4.2.3 F-measure
	4.2.4 Recall

	4.3 System configuration
	4.4 EDA
	4.5 Performance analysis
	4.6 Statistical analysis

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	An explainable and efficient deep learning framework for EEG-based diagnosis of Alzheimer's disease and frontotemporal dementia
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Data collection
	3.2 Data preprocessing
	3.3 Feature engineering 
	3.4 Label encoding and data normalization and splitting
	3.5 The proposed deep learning model
	3.6 Hyperparameter tuning
	3.7 Classification

	4 Results
	4.1 Performance parameters
	4.2 Performance evaluation 
	4.3 Model performance evaluation with SMOTE balancing
	4.4 Evaluation of model accuracy using K-fold cross-validation
	4.5 Comparative analysis of feature extraction methods
	4.6 Comparison with existing ML and DL model

	5  Explainable artificial intelligence
	5.1 Neurophysiological interpretation of frequency band importance

	6 Conclusions and future direction
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Advancing patient care with AI: a unified framework for medical image segmentation using transfer learning and hybrid feature extraction
	1 Introduction
	2 Methodology
	2.1 Dataset
	2.2 Segmentation method
	2.3 Feature extraction
	2.4 Classification
	2.5 Data augmentation strategy
	2.6 Bias and variance estimation
	2.7 Computational setup and timing

	3 Experimental results
	3.1 Segmentation performance on polyp dataset
	3.2 Segmentation performance on skin dataset
	3.3 Segmentation performance of brain tumor dataset
	3.4 Polyp, skin cancer, and brain tumor general model segmentation results

	4 Discussion
	4.1 Segmentation performance and generalization
	4.2 Impact of feature extraction techniques
	4.3 The role of transfer learning in enhancing segmentation
	4.4 Strengths and contributions
	4.5 Comparative benchmarking
	4.6 Visualization and error analysis
	4.7 Explainability in clinical AI
	4.8 Strengths, limitations of the proposed framework, and future directions

	5 Conclusion
	References

	Assessing the adversarial robustness of multimodal medical AI systems: insights into vulnerabilities and modality interactions
	1 Introduction
	2 Literature review
	3 Method
	3.1 Framework concept
	3.2 Models
	3.2.1 CNN
	3.2.2 Language model
	3.2.3 Modality fusion
	3.2.3.1 VisionBERT_EarlyFusion
	3.2.3.2 VisionBERT_LateFusion


	3.3 Dataset
	3.4 Attack configurations
	3.5 Training and validation setup

	4 Experiments
	4.1 Framework implementation
	4.1.1 CNN
	4.1.2 Language model
	4.1.3 VisionBERT_EarlyFusion
	4.1.4 VisionBERT_LateFusion


	5 Results
	5.1 Key findings
	5.2 Discussion

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Enhancing mental health diagnostics through deep learning-based image classification
	1 Introduction
	2 Related work
	2.1 Deep learning in medical imaging
	2.2 Image-based biomarker discovery
	2.3 Ethical and clinical integration challenges

	3 Method
	3.1 Overview
	3.2 Preliminaries
	3.3 MedIntelligenceNet
	3.3.1 Multimodal fusion and temporal dynamics modeling
	3.3.2 Uncertainty estimation and domain adaptation mechanisms
	3.3.3 Sparse attention and graph-structured clinical modeling

	3.4 Clinical-informed adaptation
	3.4.1 Knowledge-constrained representation learning
	3.4.2 Domain-aware robust adaptation
	3.4.3 Counterfactual and missingness modeling


	4 Experimental setup
	4.1 Dataset
	4.2 Experimental details
	4.3 Comparison with SOTA methods
	4.4 Ablation study

	5 Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Feature fusion ensemble classification approach for epileptic seizure prediction using electroencephalographic bio-signals
	1 Introduction
	2 Methodology
	2.1 Preprocessing of EEG signals
	2.1.1 Surrogate channel
	2.1.2 Mitigating the class imbalance problem

	2.2 Feature extraction from EEG signals
	2.2.1 Handcrafted features
	2.2.2 Customized 1DCNN for automated feature extraction

	2.3 Classification of EEG signals

	3 Results and discussion
	4 Conclusion and future directions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Transformer-based ECG classification for early detection of cardiac arrhythmias
	1 Introduction
	2 Literature review
	3 Materials and methods
	3.1 Dataset description
	3.2 Data preprocessing
	3.2.1 ClassLabels
	3.3 Feature extraction techniques used in proposed model
	3.4 Transformer-based model training and testing

	4 Results and evaluation metrics
	4.1 Quantifying the impact of PCA

	5 Comparative evaluation of transformer variants
	6 Ablation study of hyperparameter settings
	7 Discussion
	8 Limitations
	9 Future work
	10 Conclusion
	References

	Image steganalysis using LSTM fused convolutional neural networks for secure telemedicine
	1 Introduction
	2 A brief on CNN and LSTM architecture
	3 Materials and methods
	3.1 Pre-processing BOSSBase 1.01 and BOWS 2 databases
	3.2 Pre-processing ALASKA2 image steganalysis database
	3.3 Proposed LSTM fused CNN architecture

	4 Results and discussion
	4.1 Validation of LSTM classifier on BOSSBase 1.01, BOWS 2, and ALASKA2 dataset
	4.2 Validation of LSTM fused CNN architecture against BOSSBase 1.01, BOWS 2, and ALASKA2 dataset

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Intelligent Alzheimer's diagnosis and disability assessment: robust medical imaging analysis using ensemble learning with ResNet-50 and EfficientNet-B3
	1 Introduction
	2 Literature review
	3 Proposed methodology
	3.1 Dataset description
	3.2 Preprocessing
	3.3 Model building
	3.3.1 ResNet-50
	3.3.2 Efficient Net
	3.3.3 Ensemble model architecture
	3.3.4 Hyperparameter details


	4 Results
	4.1 Evaluation parameters
	4.2 Training and validation results
	4.2.1 Training and validation results of efficient net B3
	4.2.2 Training and validation results of ResNet 50
	4.2.3 Training and validation results of proposed ensemble model
	4.2.4 Comparison results of ensemble model, EfficientNet-B3 and ResNet50

	4.3 Testing results
	4.3.1 Classification results of EcientNet-B3, ResNet50, and ensemble model
	4.3.2 Confusion matrix of EfficientNet-B3
	4.3.3 Confusion matrix of ResNet 50
	4.3.4 Confusion matrix of ensemble model


	5 External validation
	6 Comparison with state-of-the-art
	7 Discussion
	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Back Cover

	tooltip zref@6: Off
	tooltip zref@7: Off
	tooltip zref@8: Off
	tooltip zref@9: Off
	tooltip zref@10: Off
	tooltip zref@11: Off
	tooltip zref@12: Off
	tooltip zref@13: Off
	tooltip zref@0: Off
	tooltip zref@1: Off
	tooltip zref@2: Off
	tooltip zref@3: Off
	tooltip zref@4: Off
	tooltip zref@5: Off


