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Editorial on the Research Topic

Bispecific antibodies and their conjugates in solid tumors and
hematological malignancies

Bispecific antibodies and related multispecific formats have evolved remarkably quickly
from conceptual immuno-oncology tools to routine components of therapeutic algorithms
in hematology and, increasingly, in solid tumors (1-3). This Research Topic was conceived
to capture that transition across the full translational continuum: from antibody
engineering and mechanistic studies in complex preclinical models, through early and
late-phase clinical data, to systematic syntheses and critical evaluation of real-world and
trial-based evidence. The articles collected here illustrate how rapidly the field is evolving,
but also how heterogeneous the underlying biology, clinical development strategies and
toxicity profiles remain.

Several contributions focus on acute leukemia, where bispecific T cell engagers were
first clinically established. Cao et al. summarize the most recent bispecific antibody data
presented at the 66th American Society of Hematology meeting, encompassing both acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia, as well as combinations with
chemotherapy and other targeted agents. Their conference-based overview highlights not
only consistently high measurable residual disease (MRD) negativity rates in relapsed/
refractory B-ALL but also the diversification of targets and platforms entering clinical
testing, as well as the operational challenges of delivering these agents outside highly
specialized centers.

Blinatumomab, as the prototypical Cluster of differentiation (CD)19xCD3 T cell
engager, is examined in depth in two complementary articles focused on pediatric B-
ALL. Cheng and Liu provide a structured review of clinical trials of blinatumomab in
children, emphasizing how disease burden, endogenous T cell competence, CD19 antigen
modulation and lineage switch influence efficacy and relapse patterns, and how cytokine
release syndrome and neurotoxicity can be anticipated and managed in this age group. In
parallel, Zhang et al. report a multicenter pediatric cohort in which blinatumomab was used
both as preemptive therapy in MRD-positive or chemotherapy-delayed patients and as
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reinduction in relapsed/refractory disease. They document high
MRD-eradication rates in chemotherapy-delayed and MRD-
positive cohorts, response rates in frank relapse comparable to
those seen in registrational trials, and identify adverse cytogenetics,
CD19 loss and Breakpoint cluster region-Abelson 1 fusion
positivity as predictors of inferior response. Together, these two
articles illustrate how a single bispecific antibody can be integrated
at different decision points along the paediatric ALL treatment
trajectory, and how careful characterization of response
determinants can guide patient selection and sequencing with
transplantation or Chimeric antigen receptor T cell therapy.

In multiple myeloma, Li et al. present a systematic review and
meta-analysis of teclistamab, a B cell maturation antigenxCD3
bispecific antibody, across clinical trials and real-world cohorts.
Their synthesis confirms a survival advantage over existing
regimens in relapsed/refractory disease, with robust response rates
and deep remissions, while also demonstrating that patients treated
outside of trials tend to have somewhat lower survival outcomes,
likely reflecting shorter follow-up and higher baseline risk.
Subgroup analyses suggest that combination regimens can further
enhance response depth, at the cost of added toxicity. At the
opposite end of the evidence spectrum, Chu et al. describe the
successful use of the CD20xCD3 bispecific antibody glofitamab as
salvage therapy in a patient with primary refractory diffuse large B
cell lymphoma/high-grade B cell lymphoma-MYC proto-oncogene/
B cell lymphoma 2 transformed from follicular lymphoma and
resistant to modern chemoimmunotherapy. This carefully
documented case illustrates how bispecific antibodies can provide
meaningful disease control even in highly adverse biological subsets
and argues for their timely consideration in transformed and
double-hit lymphomas.

Beyond hematologic malignancies, several articles address dual-
target and multispecific strategies in lung cancer and other solid
tumors. Zhang et al. conducted a systematic review and meta-
analysis of phase III randomized trials of dual-target
immunotherapies in advanced non-small cell lung cancer,
including bispecific antibodies and other dual-pathways. Their
analysis shows improvements in progression-free survival and
objective response compared with conventional regimens, but no
clear overall survival benefit to date, and a consistent increase in
treatment-related toxicity, particularly with Epidermal growth
factor receptor/MET proto-oncogene-directed strategies. These
findings underscore the need for better biomarker-driven patient
selection and rational toxicity mitigation when multiple signaling or
immune pathways are targeted simultaneously. Complementing
this, Chen et al. provide a focused review of bispecific antibodies
in lung cancer, describing the structural diversity of these agents,
the range of antigen combinations under clinical investigation, and
the mechanistic rationale for engaging immune effector cells or co-
targeting oncogenic drivers. The accompanying correction, in
which the authors amend the global lung cancer incidence figure,
serves as a reminder that the rapid pace of progress must be
matched by equal rigor in epidemiological and contextual reporting.

Three contributions illustrate how antibody engineering is
being used to refine the balance between potency, selectivity and
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developability of next-generation molecules. Lin et al. characterize
JS207, a bispecific antibody targeting Programmed cell death
protein 1 and Vascular endothelial growth factor A, designed to
deliver localized dual checkpoint and anti-angiogenic blockade.
They show preserved binding to both targets, effective T cell
activation, favorable internalization properties and encouraging
antitumor activity in preclinical models, together with enhanced
thermal stability relevant for manufacturing and shelf life. Ma et al.
develop B7 homolog 6-targeted bispecific antibodies combined
with Interleukin-15 receptor alpha chain sushi fusion to co-
engage T and Natural killer cells against solid tumors resistant to
chemotherapy. In xenograft models, they demonstrate dose-
dependent tumor suppression and synergistic effects of combining
two B7-H6-directed formats, supporting the concept that
simultaneous recruitment of distinct effector compartments may
overcome resistance in heavily pretreated disease. Loffler et al.
introduce an engineered Fab-Fab-engineered immunoglobulin
(eFab-elg) trispecific platform that incorporates one classical Fab
and two eFab moieties to achieve co-targeting of the human
epidermal growth factor receptor 2 (HER2)/human epidermal
growth factor receptor 3 (HER3) with CD3 engagement. Using
two-dimensional and three-dimensional cancer models, they show
that this modular architecture enables potent T cell retargeting
against HER2/HER3-expressing tumor cells, while illustrating how
stoichiometry and spatial arrangement can be exploited to tune
activity and potentially reduce off-tumor effects.

This Research Topic shows bispecific and other multispecific
antibodies that move from hematologic malignancies into lung and
other solid tumors, including heavily pretreated, high-risk patients.
They enable MRD-focused strategies, options for such disease and
precision use guided by immunophenotype and genetics, but at the
price of immune toxicities, serious infections and infusions that
require close monitoring (4, 5). Translational work on cytokine-
fusion, trispecific and other advanced formats shows how they
remodel the tumor microenvironment, mobilize effector cells and
counter immune escape and other resistance. Meta-analyses, real-
world cohorts and smaller clinical series define priorities:
biomarker-based target selection, integration with cellular
therapies and radiation therapy, and long-term safety, sequencing,
and survivorship study. Built to bridge diseases and disciplines, this
2024-2025 snapshot spans diverse cancers and study stages and
aims to inform the next generation of bispecific and
multispecific therapies.
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BCL2 transformed from FL using
glofitamab: a case report

12,34
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Diffuse large B-cell lymphoma/high-grade B-cell lymphoma with MYC and BCL2
rearrangements (DLBCL/HGBL-MYC/BCL?2) represents a distinct entity of mature
aggressive B-cell lymphoma, constituting a substantial gap in the clinical
management of DLBCL. Conventional R-CHOP-like chemoimmunotherapy
regimens have demonstrated limited efficacy in DLBCL/HGBL-MYC/BCL2, and
the clinical outcome remains poor, with a median overall survival of less than 2
years, and even shorter in cases transformed from indolent lymphoma. We
reported a 66-year-old female was firstly diagnosed with follicular lymphoma,
but presented with disease progression to DLBCL/HGBL-MYC/BCL2 during the
treatment with BR regimen. Moreover, the patient was also primary refractory to
Pola-R-CHP. The patient achieved partial response following treatment with the
CD20xCD3 bispecific antibody glofitamab and maintained long-term remission.
Although only one successful case is presented, glofitamab could be considered
as salvage therapy for transformed relapsed/refractory DLBCL/HGBL-
MYC/BCL2.

KEYWORDS

DLBCL/HGBL-MYC/BCL2, transformed, primary refractory, glofitamab, case report

Introduction

Diffuse large B-cell lymphoma/high-grade B-cell lymphoma with MYC and BCL2
rearrangements (DLBCL/HGBL-MYC/BCL2) represents a distinct entity of mature
aggressive B-cell lymphoma, which is either de novo DLBCL or transformed from
indolent lymphoma (1, 2). The efficacy of R-CHOP-like chemoimmunotherapy regimens
in these patients has been demonstrated to be limited (3-5). The median overall survival
(OS) of these patients is less than 2 years, shorter than in patients with single or no MYC
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rearrangements (6, 7). In the patients who have transformed from
follicular lymphoma (FL), the median OS is only 7.9 months (8).
The inferior clinical outcomes of these patients are attributed to
distinctive cytomolecular genetics (9), with MYC and BCL2
rearrangements having been revealed as pivotal contributors to
the evolution of resistance (10). The median OS of the primary
refractory patients was only 7.1 months (11). To address this
dilemma, a range of treatment strategies are currently being
investigated, including the dose-adjusted chemotherapy regimens,
the incorporation of targeted agents, bispecific antibodies and
chimeric antigen receptor T-cell (CAR-T). Few prospective trials
have been reported for treating DLBCL/HGBL-MYC/BCL2
patients. Although, in the ZUMA-12 trial, outcomes for patients
with double-hit lymphoma were analyzed as a prespecified
subgroup, showing high efficacy following axi-cel treatment,
larger validation in ongoing phase 3 trials is critical given the
limited subgroup size in this single-arm study (12, 13). Herein,
we reported a case of DLBCL/HGBL-MYC/BCL2 transformed from
FL during the treatment with BR (bendamustine and rituximab)
regimen, was primary refractory to Pola-R-CHP (polatuzumab
vedotin, rituximab, cyclophosphamide, doxorubicin, and
prednisone), and ultimately responded to the CD20xCD3
bispecific antibody glofitamab with a long-term partial response.

Case report

A 66-year-old Chinese woman was presented to our hospital on
November 28, 2023, with a three-day history of abdominal pain. The
patient had no significant medical history. No personal or family
history of malignancies was documented. Psychosocial assessment
revealed a retired factory worker living with spouse, with no history of
smoking, alcohol use, or psychotropic medication. Physical
examination showed that the bilateral supraclavicular lymph nodes
were enlarged. Abdominal computed tomography (CT) scan showed
multiple enlarged lymph nodes with partially fused, located around
the abdominal cavity, along the retroperitoneal abdominal aorta, and
adjacent to bilateral iliac arteries. Laboratory data showed that lactate
dehydrogenase was elevated (760 U/L). Epstein-Barr virus-DNA test
was positive (11200 copies/mL). Positron-emission tomography-
computed tomography (PET-CT) showed high uptake of '®F-
fluorodeoxyglucose in multiple lymphadenopathies distributed
across the abdominal, retroperitoneum, left upper mediastinum, left
cervical III and V regions, left peri-clavicular and bilateral
diaphragmatic feet posterior regions (Figure 1A). Then, the
abdomen lymph node biopsy was performed. Histopathological

Abbreviations: DLBCL/HGBL-MYC/BCL2, diftuse large B-cell lymphoma/high-
grade B-cell lymphoma with MYC and BCL2 rearrangements; FL, follicular
lymphoma; DHIT, double-hit; GCB, germinal center B-cell-like; CAR-T,
chimeric antigen receptor T-cell; FLIPI, FL International Prognostic Index; SD,
stable disease; PR, partial response; PD, progressive disease; OS, overall survival;
R/R, relapsed/refractory; CT, computed tomography; PET-CT, positron-emission
tomography-computed tomography; IHC, immunohistochemical; BM, bone

marrow; IQR, Interquartile Range.
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examination confirmed low-grade FL in the lymph nodes. The
immunohistochemical (IHC) results were as follows: CD20 (+),
Ki67 (30%+), CD10 (+), Bl2 (+), CD3 (-), CK (-), CD56 (-), Cyclin
D1 (-), CD5 (-), PAX5 (-), c-Myc (-), Bcl6 (-) and MUM-1 (-). The
bone marrow (BM) examination did not reveal any lymphoma cells
infiltration. The patient was diagnosed with FL (stage III, group A),
classified as high risk by the FL International Prognostic Index [FLIPI
(score 3)] and low risk by FLIPI-2 (score 1). Subsequently, the patient
was treated with BR (rituximab 600mg day 0 and bendamustine 125
mg day 1-2) and continued this protocol for 3 cycles. No adverse
events were observed in this treatment.

The patient was assessed in progressive disease (PD) after 3
cycles of BR therapy by PET-CT with a substantial increase in the
size of the formed enlarged lymph nodes (Figure 1B). Consequently,
a second abdominal lymph node biopsy was conducted. The lymph
nodes pathology was high-grade B-cell lymphoma with a tendency
toward DLBCL originating within germinal center B-cell-like
(GCB). The IHC results were as follows: CD20 (diffuse +), CD3
(scatter +), Ki67 (60%+), CD10 (+), Bcl2 (+), Bcl6 (+), CD30 (-),
CD5 (-), MUM-1 (-), Cyclin D1 (-) and c-Myc (-), and. BM
examination revealed no lymphoma cells infiltration. The patient
was diagnosed with DLBCL/tFL (GCB, stage III, group A), classified
as high intermediate risk by the National Cancer Institute-
International Prognostic Index (score 4), and low intermediate
risk by Central Nervous System-International Prognostic Index
(score 3). The patient was subsequently treated with Pola-R-CHP
(rituximab 600mg day 0, polatuzumab vedotin 90mg day 1,
cyclophosphamide 1000mg day 1, epirubicin 90mg day 1 and
prednisone 85 mg day 1-5). On day 10 following the first cycle of
Pola-R-CHP therapy, the patient developed grade 4 neutropenia
(Common Terminology Criteria for Adverse Events v5.0), which
resolved promptly with granulocyte colony-stimulating
factor support.

Unfortunately, the patient was assessed in PD after 2 cycles of
Pola-R-CHP by PET-CT (Figure 1C). Subsequent cell-free DNA
detection revealed that the molecular subtype was LymphGen-EZB/
MYC" with EZH2, TNFRSF14, ETV6, SOCSI, BCL2 and MYC
mutations. The fluorescence in situ hybridization revealed MYC
and BCL2 rearrangements without BCL6 translocation, thus leading
to the diagnosis of DLBCL/HGBL-MYC/BCL2. Given the primary
refractory status of this patient to first-line therapy and the double-
hit (DHIT) of MYC and BCL2 rearrangements, the prognosis was
considered adverse, and salvage treatment was only possible if a new
treatment scheme was adopted. After a thorough deliberation, the
CD20xCD3 bispecific antibody glofitamab was administered in a
step-up dosage regimen, with 2.5 mg on day 8 and 10 mg on day 15
(cycle 1) followed by a 30 mg flat dose on day 1 (cycle 2-12) with
each cycle spanning 21 days. The patient developed only grade 1
cytokine release syndrome (CRS) during cycle 1, which resolved
with symptomatic management. No other significant adverse events
(e.g., neurotoxicity, prolonged cytopenia) or unanticipated
complications were observed. A partial response (PR) was
observed on PET-CT evaluation after 3 and 6 cycles of glofitamab
treatment (Figure 1D, E). In order to enhance the effect of
glofitamab, the immunomodulatory agent lenalidomide was
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FIGURE 1
A dynamic evaluation of enlarged lymph nodes with PET-CT. The enlargement and reduction of lymph nodes at initial diagnosis (A), PD following BR
treatment (B), PD following Pola-R-CHP treatment (C), PR following glofitamab treatment (D, E), respectively.

included in the treatment. Subsequently, the patient received the median Functional Assessment of Cancer Therapy-
glofitamab in combination with lenalidomide maintenance  Lymphoma (FACT-Lym) total score significantly increased
therapy until December 6th, 2024. The most recent CT scan  from 93 [Interquartile Range (IQR): 86-110] to 140 (IQR: 131-
revealed that the enlarged lymph nodes had ongoing shrunk after ~ 155) at 6-month follow-up. The timeline of therapy is shown
eight cycles of glofitamab therapy. Following glofitamab therapy,  in Figure 2.

Pola- .
BR PD R-CHP PD Glofitamab PR

\ Glofitamab
FL DLBCL maintance
L

¢ L 4 ¢ ¢ ® >

<2 2
%
0, Qs

FIGURE 2
The timeline of treatment process in this case. FL, Follicular lymphoma; BR, bendamustine and rituximab; PD, progressive disease; DLBCL, Diffuse

large B-cell lymphoma; Pola-R-CHP, polatuzumab vedotin, rituximab, cyclophosphamide, doxorubicin, and prednisone; PD, progressive disease; PR,
partial response.
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Discussion

The available treatment options for relapse/refractory (R/R)
DLBCL include second-line immunochemotherapy without cross-
resistance, targeted therapy, immunotherapy, autologous
hematopoietic stem cell transplantation and CAR-T (9, 11).
However, the clinical outcome of R/R DLBCL remains
unsatisfactory, particularly for those who are refractory to
frontline treatment with an objective response rate of merely 20%
and 1-year survival rate of only 29% (14). Herein, we present an
elderly DLBCL patient who experienced transformation from FL,
accompanied by DHIT, MYC and BCL2 mutations, and
LymphGen-EZB/MYC" subtype. Transformed FL (tFL) has been
observed to exhibit worse clinical outcomes, particularly in cases of
histological transformation following frontline treatments (15-17).
However, there is an absence of a consensus regarding therapeutic
regimens for primary refractory DLBCL/HGBL-MYC/BCL2 (18).

A paucity of prospective trials has been reported for the treatment
of DHIT patients, of which extant reports on such patients are
predominantly constituted by retrospective analyses or empirical
treatments. Currently, precision and targeted therapy is a
promising strategy to delay and overcome treatment resistance. For
R/R DLBCL, current developments are focused on the utilization of
CAR-T cell treatment and bispecific antibodies (19). CAR-T cell
treatment has been demonstrated to be efficacious in R/R DLBCL
with durable remission in 30%-40% (19). However, hindrance of
CAR-T broader application is its intricate manufacturing process
with a minimum of 3-4 weeks of production time and a high cost.
Actually, these R/R patients exhibit rapid clinical progression and
necessitate more expeditious treatment. Bispecific antibodies offer a
distinct advantage in this regard, as they are readily available. To date,
two bispecific antibodies, epcoritamab and glofitamab, have been
granted approval by the Food and Drug Administration for use in
DLBCL patients who have received 23 prior lines of therapy (20, 21).

A recent phase III controlled clinical trial confirmed a superior
efficacy of the combination with glofitamab in R/R DLBCL (22).
However, it should be noted that the tFL and DHIT patients were
excluded from this clinical trial. Several retrospective clinical
analyses have revealed that glofitamab improves the prognosis of
R/R DLBCL, including tFL and DHIT patients (23-26). However,
these analyses were conducted on small clinical cohorts, with even
fewer cases of tFL and DHIT. We hereby present a complex case
with multiple adverse events in addition to DHIT, as well as
primary resistance to front-line intensive chemoimmunotherapy.
In the present report, we applied glofitamab to an elderly patient
with refractory DLBCL/HGBL-MYC/BCL2. The patient exhibited
PR following 3 cycles of glofitamab treatment and was subsequently
treated with glofitamab for a period exceeding 7 months. Currently,
the patient is assessed as maintain the PR and continues to benefit
from glofitamab therapy. The incorporation of lenalidomide into
the Glofitamab formulation may have facilitated disease
management through its immunomodulatory properties,
encompassing heightened T-cell activation and a synergistic effect
with bispecific antibodies. The present case demonstrates the
efficacy of glofitamab in DLBCL/HGBL-MYC/BCL2, thereby
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establishing a foundation for subsequent studies in this field.
Nevertheless, further clinical trials with larger sample sizes are
required to ascertain the efficacy of these bispecific antibodies in
these specific subtypes of DLBCL/HGBL patients. Such trials should
address the diagnostic challenges inherent to this entity, which
require integration of histopathology with molecular techniques
(e.g., Fluorescence in situ hybridization for MYC/BCL2
rearrangements or next-generation sequencing) to avoid
misclassification. To ensure meaningful results, study designs
should prioritize multicenter collaboration to overcome
recruitment barriers and incorporate adaptive trial frameworks
with biomarker-driven stratification. Potential feasibility
challenges include centralized molecular profiling to confirm
eligibility, management of bispecific antibodies related CRS in
high-risk populations, and long-term follow-up to assess delayed
neurotoxicity. Addressing these considerations will be essential to
translate targeted immunotherapies into clinically actionable
strategies for this molecularly defined subgroup.

In this case report, a patient with primary refractory DLBCL/
HGBL-MYC/BCL2 achieved PES of over 7 months (ongoing) with
glofitamab, exceeding the median OS of 6.3 months reported in the
international SCHOLAR-1 study (11). Notably, this response aligns
with the subset of patients in Hsu et al. (60% 1-year PFS in
responders) and Shumilov et al. (19% with sustained complete
remission at 6 months) (24, 25), demonstrating durable benefits in
aggressive, heavily pretreated disease. The outcome highlights the
potential of glofitamab to induce prolonged disease control even
after multiple prior therapies, including CAR-T and bendamustine-
based regimens.

Conclusion

In conclusion, we successfully treated a patient with
transformed primary refractory DLBCL/HGBL-MYC/BCL2 using
the CD20xCD3 bispecific antibody glofitamab. Although only one
successful case is presented, glofitamab could be considered as
salvage therapy for transformed R/R DLBCL/HGBL-MYC/BCL2.
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Bispecific antibodies (BsAbs) are cutting-edge immunotherapy agents that can
bind two distinct antigens or epitopes simultaneously. They hold significant
potential in targeting leukemic cell markers and activating immune cells like T
cells or NK cells to eliminate malignant cells. BsAb treatments showed
encouraging outcomes for both acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL). In relapsed/refractory (R/R) ALL, BsAbs improved
overall survival (OS) and achieved measurable residual disease (MRD) negativity in
most patients. Blinatumomab plus standard chemotherapy or in combination
with other treatments, such as Mini-Hyper-CVD and Inotuzumab Ozogamicin,
improved disease-free survival (DFS) in B-ALL. In AML and related conditions,
novel BsAbs like AFM28 (CD123xCD16A) and Vibecotamab (CD123xCD3) showed
promising efficacy in heavily pretreated R/R AML and in MDS/CMML following the
failure of treatment with hypomethylating agents (HMA). The meeting
underscored the transformative potential of BsAbs, especially in ALL-focused
trials, with ongoing research aiming to evaluate their safety and efficacy in
broader patient populations and combination regimens. This summary
highlights the latest progress in BsAb-based immunotherapy presented at the
ASH 2024 meeting, held from December 7-10 in San Diego, California.

KEYWORDS

bispecific antibodies, acute lymphoblastic leukemia, acute myeloid leukemia,
myelodysplastic syndrome (MDS), immunotherapy
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Introduction

Bispecific antibodies (BsAbs) offer a novel and promising
approach in cancer immunotherapy. With two distinct binding
domains, these antibodies can simultaneously target either two
different antigens or two epitopes of a single antigen. Recently,
various BsAbs, such as CD19xCD3, CD123xCD16A, and
CD123xCD3, have been developed to target specific B-cell
markers or myeloid-cell markers on malignant leukemic cells
with the goal of eradicating leukemic cells by engaging T cells or
NK cells. These BsAbs have previously shown encouraging
outcomes in heavily pretreated patients with relapsed/refractory
(R/R) acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML) (1, 2). This summary highlights the latest
advancements in BsAb-based immunotherapy for acute leukemia,
as presented at the 66th American Society of Hematology (ASH)
2024 annual meeting, held from December 7-10 in San Diego,
California. Using the words “antibody” and “acute leukemia”,
“Bispecific” and “acute leukemia” combination search, we found
161 and 78 abstracts, respectively. We have selected 9 representative
abstracts from these abstracts to summarize the novel bispecific
antibodies and bispecific T-cell engagers (BITEs) that have entered
clinical trials for the treatment of acute leukemia.

BsAb immunotherapy in ALL

Blinatumomab, a bispecific antibody (BsAb), helps CD3-positive
T cells recognize and eliminate CD19-positive ALL. It has been
approved for use in patients with R/R ALL. Research has shown that
blinatumomab treatment significantly improves overall survival (OS)
compared to chemotherapy in R/R B-ALL patients. Additionally, it
has proven to be both safe and effective as a first-line therapy for
children and young adults with B-ALL who are either resistant or
intolerant to chemotherapy (1, 2). Numerous clinical trials are also
underway to assess its use in R/R B-ALL, particularly in Philadelphia
chromosome-positive (Ph+) ALL (Table 1).

A phase 1b trial with long-term follow-up found that
subcutaneous (SC) blinatumomab treatment in heavily pretreated
patients with R/R B-ALL resulted in high response rates and
sustained remissions. Among the 27 patients, 24 (89%) achieved
complete remission (CR) or CR with partial/incomplete
hematological recovery (CRh/CRi) within two treatment cycles. In
the 2501g/500pg dose group, 86% reached remission, while 92% in
the 500ug/1000pg group did the same. In terms of measurable
residual disease (MRD), 83% and 100% of responders in the two
respective groups were MRD-negative (MRD <107*). After a median
follow-up of 5.0 months (range 0.49-10.9), 88% of patients
remained relapse-free, with a median overall survival (OS) of 9.8
months (range 6.5-14.3 months) (3).

A phase II trial investigating the combination of Mini-Hyper-
CVD, Inotuzumab Ozogamicin (INO), and blinatumomab in R/R
B-ALL patients showed promising results. The overall response rate
(ORR) was 86%, with 65% achieving CR, among the 132 evaluable
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patients. Assessed by flow cytometry, MRD negativity was observed
in 53% of patients following the first treatment cycle and in 85%
overall. Following a median follow-up of 40 months (range 3-136),
the 3-year OS and relapse-free survival (RFS) rates were 45% and
44%, respectively. The “dose-dense” (D-D) regimen, which involved
administering Mini-Hyper-CVD and INO along with blinatumomab
from day 4 to day 21 in a 28-day cycle for up to 6 cycles, yielded
significantly improved outcomes. The 1-year OS rate for the D-D
regimen was 94%, compared to 51% in Cohort 1 (Mini-Hyper-CVD
and INO) and 66% in Cohort 2 (Mini-Hyper-CVD, INO, and
blinatumomab for 4 cycles). The combination of blinatumomab
and fractionated INO improved both safety and efficacy. The D-D
approach showed high rates of early and deep MRD responses,
suggesting it could be more effective than sequential treatment with
these agents (4). A phase II trial combining Mini-Hyper-CVD,
rituximab, INO, and blinatumomab in pediatric R/R B-ALL is also
ongoing, with results pending (5).

A phase II study of Hyper-CVAD, with or without INO, and
sequential blinatumomab in newly diagnosed B-ALL patients
demonstrated that adding INO to the Hyper-CVAD +
blinatumomab regimen improved overall OS in 75 patients with
Ph-negative B-ALL. With a median follow-up of 38 months (range,
5-91 months), the 30-month RES rates were 91% in the INO group
versus 74% in the non-INO group (P=0.05), and OS rates were
100% versus 82% (P=0.008). In high-risk patients, the 30-month
RFS was 92% in the INO group compared to 67% in the non-INO
group (P=0.07), with OS rates of 100% versus 76% (P=0.05) (6).

A study evaluating the combination of Olverembatinib,
Blinatumomab, and Chidamide (ABC regimen) in older patients
with newly diagnosed Ph+ ALL demonstrated strong efficacy and
safety. Among 9 patients, the regimen achieved an 88.8% complete
molecular response (CMR) rate at 3 months. Additionally, the 1.5-
year OS and event-free survival (EFS) rates were both 100%, with no
relapses or deaths observed. These promising results suggest that
the ABC regimen may significantly improve long-term survival in
this patient population (7).

A phase III trial demonstrated that adding blinatumomab to
chemotherapy improves DES in newly diagnosed pediatric B-ALL
with standard-risk. With a median follow-up of 2.5 years (IQR =
1.6-3.2) and 1440 evaluable patients, the 3-year DFS was 96.0
1.2% for those in the blinatumomab group, compared to 87.9

+

I+

2.1% in the control group. This addition represents a significant
breakthrough, establishing a new standard of care with important
implications for treating children with newly diagnosed B-ALL (8).

Another phase III trial evaluating frontline ponatinib plus
blinatumomab in adult Ph+ ALL patients showed promising
results. Among 95 evaluable patients, 93 (98%) achieved complete
hematologic remission (CHR), and 73% had a MRD response,
including CMR and positive non-quantifiable results. After a
median follow-up of 6.4 months (range 0.1-32.3), the estimated
18-month OS rate was 91.6%. These findings highlight the
feasibility and efficacy of a chemo-free induction and
consolidation regimen with ponatinib and blinatumomab in
adults with Ph+ ALL, regardless of age. The combination was
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TABLE 1 Clinical trials investigating bispecific antibodies for patients with acute leukemia.
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— 0 & % generally well tolerated, with few treatment discontinuations, e\.ren
-'g 2 '§ < : g in elderly patients. This suggests that adjusting ponatinib dosing
- 5 B & gfg based on age may help reduce severe toxicities (9).
6 E x " ?:,: ° Overall, subcutaneous blinatumomab demonstrated similar or
ég better efficacy than IV blinatumomab with a more convenient
_ < E 2, é administration route. Mini-Hyper-CVD with inotuzumab and
uo)‘% g E . Z g blinatumomab improved outcomes, with 1-year OS of 94% vs
g € j%é = :gz% _ 51% in control group. Hyper-CVAD with blinatumomab and
€ 8 % g, E ; E % inotuzumab showed high MRD-negative rates and superior OS,
m& i § z %g with a 30-month OS of 100% vs 76% in control group.
£cT ; g 'g Blinatumomab significantly improved DFS in pediatric ALL, with
[OR= 2 'g § = a 3-year DFS of 96% vs 87.9% in control group, prompting early
% g 2 ‘é ; jé termination of randomization. Ponatinib + blinatumomab achieved
g =§ g excellent CR and OS rates in Ph+ ALL, outperforming prior
= g& E ponatinib-based regimens.
TS5 8 .
E¢ BsAbs immunotherapy in acute
-] . .
;a : myeloid leukemia
SEE
»;:f %g AFM28, a bispecific tetravalent innate cell engager (ICE)
"j% §£§ targeting CD123 and CDI16A, was evaluated in a first-in-human
% § g phase 1 study among 24 R/R AML patients. AFM28 monotherapy
% g é 5 demonstrated early clinical efficacy and a manageable safety profile
é g E é at doses up to 300 mg per week. In the two highest dose cohorts, 4
& ?D é out of 12 patients (33.3%) achieved either CR or CRi. At the highest
é %% dose (300 mg), 3 out of 6 patients achieved CR or CRi. These
<Z\: o £E findings suggest that AFM28 may hold potential as a treatment for
2ET R/R AML (10).
’é% E Results from a phase II study of Vibecotamab, a CD123xCD3
< 5 %% bispecific T-cell engager (TCE) antibody, were reported in 37
“ § g 05 patients with myelodysplastic syndrome (MDS), chronic
:32 8 myelomonocytic leukemia (CMML) following hypomethylating
5 - af g Eﬂ agent (HMA) treatment failure, and MRD-positive AML. Among
2 é 5 Z & g é the 19 MDS/CMML patients, 13 (68%) responded, with 12 (63%)
=0% g —g -é: achieving marrow complete remission (mCR) and 1 (5%) showing
© = ’% o j? § fg. hematologic improvement (HI). Of the 16 MDS patients, 9 (56%)
'g @ [Lj ) g‘ % E 2z ig achieved mCR, 4 of whom (31%) also showed HI, and 1 (6%) had
‘§ S ”§ E.Z E £ 2 3; i :i_ gg HI alone. For responders, the median duration of response was 5.2
é 5 z H s z g g < _ifo & months, and the overall survival (OS) was 10.3 months. In the 18
- %; é g AML MRD-positive patients, 5 (28%) achieved MRD negativity, all
_9 35 L after just 1 cycle. At the last follow-up, 2 responders relapsed after
g2 _ < = g 2 completing protocol therapy (1.2- and 5.6-months post-treatment),
£ TQU- h “ '§ £ E while 3 remained in MRD-negative remission, with durations of 4.1,
= = E 5% 24.6, and 25.6 months. This study showed that Vibecotamab was
:8;% 5 safe and effective for treating low-blast, high-risk myeloid diseases,
'E » i g4 achieving a 68% response rate in MDS/CMML following HMA
£ § § i 23 treatment failure and a 27% response rate in MRD-positive AML.
§ = .T?g ;“ Notably, 8 of the 10 relapses happened following the protocol
§EF therapy completion. As a result, the protocol was amended to
§ % * ;i é é allow indefinite treatment with Vibecotamab for responders. The
"E S 8 = g § 5 clinical activity of Vibecotamab, particularly in high-risk patients
S 3 § E/ ; f;,;%j and its lack of significant myelosuppression, suggests it may be a
W ; “3 = -§ g 5; promising candidate for combination therapy in AML, MDS, and
E“' << Ii¢ CMML (11).
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Both studies highlight the potential of targeting CD123 in
hematological malignancies, with encouraging results in patient
subsets that are typically hard to treat. The therapies could be
promising options in relapsed or refractory settings and warrant
further investigation, especially in combination strategies.

In summary, the 66th ASH annual meeting showcased
encouraging outcomes for various BsAbs in treating R/R ALL and
R/R AML, with particularly notable success in R/R ALL trials. These
therapies demonstrated significant potential, especially in heavily
pretreated patients. Ongoing large-scale studies aim to further
assess the efficacy, safety, and toxicity of BsAbs across different
treatment settings and in combination with other therapeutic
agents. Blinatumomab have received FDA approval for treating
relapsed/refractory B-ALL (BLINCYTO® injection for the
treatment of adults and children with CD19+B-cell precursor
ALLin first or second CR with MRD >0.1%, or RR CD19+B-cell
precursor ALL). Integrating BsAbs/BITEs into standard treatment
regimens has demonstrated improved efficacy, the ability to
overcome resistance, and synergy with other immunotherapies.
These therapies may also serve as a bridge to CAR-T or
hematopoietic stem cell transplantation in relapsed patients.
Although challenges such as toxicity—particularly cytokine
release syndrome (CRS)—and logistical issues persist,
advancements in engineering longer-lasting molecules and
combination approaches could help establish them as a
cornerstone of cancer treatment.
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Glossary
ALL

AML

ASH

BsAbs

CHR

CMML

CMR

CR

CRh

CRi

acute lymphoblastic leukemia

acute lymphoblastic leukemia

American Society of Hematology

bispecific antibodies

complete hematologic remission

chronic myelomonocytic leukemia

complete molecular response

complete response

complete remission with partial hematological recovery
complete remission with incomplete hematological recovery

dose-dense
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HI
HMA
ICE
INO
mCR
MDS
MRD
(e
RES

R/R
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hematologic improvement
hypomethylating agents
innate cell engager
Inotuzumab Ozogamicin
marrow complete remission
myelodysplastic syndrome
minimal residual disease
overall survival

relapse-free survival

relapsed or refractory
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Background: Multiple myeloma (MM) is a hematological malignancy with limited
treatment options for patients with relapsed/refractory MM (RRMM). Teclistamab,
a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, has shown
promising results in clinical trials and real-world studies.

Methods: PubMed/MEDLINE, Web of Science, EMBASE, Cochrane Library,
ClinicalTrials.gov, and meeting libraries were searched from inception to 14
November 2024. The assessed outcomes included overall survival (OS),
progression-free survival, time to next treatment, duration of response, overall
response rate (ORR), >complete response (>CR), >very good partial response
(>VGPR), VGPR, partial response, and adverse events.

Results: In total, 34 studies involving 4,064 patients were included. In pairwise
meta-analysis, teclistamab demonstrated superior OS [hazard ratio (HR) = 0.69, 95%
confidence interval (Cl): 0.54-0.89; p = 0.037] compared to existing RRMM
treatments. Real-world studies showed comparable ORR (62%, 95% Cl. 58%—
66%) but slightly lower survival outcomes, possibly because of shorter follow-up
times and higher-risk populations. Subgroup analyses revealed enhanced efficacy
with combination therapies (ORR: 85% vs 62%, p < 0.0001) and notable clinical
benefits in the China cohort (>VGPR: 77%, >CR: 58%). Safety profiles indicated
manageable cytokine release syndrome and immune effector cell-associated
neurotoxicity syndrome, though infection risks required vigilant management.

Conclusions: Teclistamab continues to be a promising and effective treatment
option for RRMM patients, including those previously exposed to BCMA-targeted
therapies, and offers new hope for overcoming resistance and achieving better
early disease control. Further research is needed to optimize its application in
diverse populations, particularly in Asian cohorts.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/
#myprospero, identifier CRD42025633838.
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teclistamab, relapsed or refractory multiple myeloma, meta-analysis, bispecific
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1 Introduction

Multiple myeloma (MM) is a plasma cell malignancy
characterized by uncontrolled overproduction of monoclonal
immunoglobulin protein (M protein) and accounts for nearly
12% of hematological cancers (1, 2). Standard treatments for MM
include proteasome inhibitors (PIs), immunomodulatory imide
drugs (IMiDs), and anti-CD38 monoclonal antibodies. However,
despite significant advancements in treatment options, MM
remains an incurable disease. Available therapies for patients who
are refractory to at least three drug classes (PIs, IMiDs, and anti-
CD38 monoclonal antibodies) are limited, and their outcomes are
generally poor (2-5). With a deepening understanding of disease
biology, innovative therapeutic approaches continue to emerge.

In recent years, B-cell maturation antigen (BCMA)-directed
therapies, including antibody-drug conjugates, chimeric antigen
receptor (CAR) T-cells, and bispecific antibodies (BsAbs), have offered
a new era of hope to patients with relapsed or refractory MM (RRMM).
Teclistamab (JNJ-64007957, Janssen) is a bispecific antibody that targets
the CD3 receptor complex on T cells and BCMA on MM cells (6).
Preclinical studies have demonstrated the potent activity of teclistamab in
MM cell lines, patient samples, and in vivo xenograft models (7).
Teclistamab monotherapy was first demonstrated by the European
Medicines Agency (EMA) on 23 August 2022 for the treatment of
patients with RRMM who had received at least three prior lines of
therapies including a PI, an IMiD, and an anti-CD38 antibody (8). Based
on the positive response rates observed in the phase I/II MajesTEC-1
trial, the U.S. Food and Drug Administration (FDA) subsequently
granted accelerated approval for teclistamab in patients with RRMM
who had received at least four prior lines of therapy (9). Since the
approval of teclistamab, many real-world studies have been conducted
across various regions, including populations that did not meet the
eligibility criteria of the MajesTEC-1 trial. Additionally, MajesTEC-1 also
targeted another cohort of patients previously treated with BCMA-
targeted therapies and reported promising efficacy (10).

With the increasing use of teclistamab in real-world settings, the
number of related publications has also been steadily rising. Therefore,
we conducted a comprehensive systematic review and meta-analysis
aiming to compile and summarize the key data from all compared
studies, clinical trials, and newly published real-world studies to
deepen our clinical understanding of these therapies and provide
significant insights into real-world physicians’ decision-making.

2 Materials and methods

This systematic review and meta-analysis adhered to the
PRISMA guidelines. The analysis was registered in PROSPERO
(CRD42025633838).

2.1 Data source and search strategy

Eligible studies were identified by searching databases including
PubMed/MEDLINE, Web of Science, EMBASE, Cochrane Library,
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and ClinicalTrial.gov. The main international hematology meetings,
including the American Society of Clinical Oncology (ASCO), the
American Society of Hematology (ASH), and the European
Hematology Association (EHA), were also searched to identify
additional newly published relevant studies. The search only
included articles published before 14 November 2024. Search
terms included (“Multiple Myeloma” OR “Kahler Disease” OR
“Plasma Cell Myeloma” OR “Myelomatose”) AND (“Teclistamab”
OR “INJ-64007957” OR “Bispecific antibody”). The specific search
terms and strategies are listed in Supplementary Table SI.

2.2 Study selection

Potential trials were screened according to the following criteria:
(1) patients diagnosed with RRMM; (2) randomized controlled
trials (RCTs) and cohort studies; (3) teclistamab monotherapy or
combined therapy was under investigation, with no restrictions on
drug dosage; (4) clinical outcomes including any one or more of the
following: overall survival (OS), progression-free survival (PES),
time to next treatment (TTNT), duration of response (DOR),
overall response rate (ORR), >complete response (=CR), >very
good partial response (>VGPR), VGPR, partial response (PR),
and adverse events (AEs); (5) studies published in English
language only.

The exclusion criteria were: (1) patients diagnosed with MM but
not RRMM; (2) animal studies, comments, letters, reviews, and case
reports; (3) the control arm was another CD3 x BCMA drug; (4)
unpublished clinical trials; and (5) studies in which outcome data
could not be extracted from texts, tables, or figures. Given the
relatively short time since the approval of teclistamab, many clinical
trials and real-world studies have presented their findings in the
form of conference abstracts which were not excluded from
the study.

2.3 Data extraction and quality assessment

Two authors (Li and Zhao) independently screened the
literature and extracted the data, with any disagreements resolved
by a third author (Jiao). The following extracted data were sorted
into designed spreadsheets. (1) General study information
including first author, publication years, article type, trial phase,
National Clinical Trial (NCT) number, drug usage, and country. (2)
Basic patients’ information included age, sex, refractory status, time
to onset years, Eastern Cooperative Oncology Group (ECOG)
scores, cytogenic risk status, International Staging System (ISS)
stage, lines of previous therapies, and anti-BCMA exposure rate. (3)
The main outcomes assessed were OS, PFS, TTNT, and DOR
[hazard ratio (HR) and 95% confidence interval (CI)]; ORR, >CR,
>VGPR, VGPR, and PR [relative risk (RR) or odds ratio (OR)]; and
any-grade or grade >3 AEs, ie., infection, neutropenia, anemia,
cytokine release syndrome (CRS). and immune effector cell-
associated neurotoxicity syndrome (ICANS). For articles that did
not report OR or RR, the results were calculated using the MedCalc
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website (11). The extracted raw data can be found in Supplementary
Tables S2 and S3. To avoid duplicate data, only the most recent
records were included and the long-term follow-up and subgroup
analysis of the MajesTEC-1 trial were not included in the
subsequent analysis. Most of the included studies were derived
from conference abstracts, therefore, it was challenging and
inaccurate to conduct a quality assessment.

2.4 Statistical analysis

Statistical analysis was performed using R 4.3.2 software.
Because of the expected heterogeneity across the included studies,
we chose a random-effects model over a fixed-eftects model (12).
HRs for survival outcomes (OS, PFS, TTNT, and DOR) and RRs
and ORs for binary outcomes (ORR, >CR, 2VGPR, VGPR, PR, and
any-grade and severe-grade AEs) were calculated, along with their
95% Cls. The single-arm meta-analysis was conducted to calculate
the overall rates of objective response and AEs of each treatment
strategy from all eligible studies. Statistical heterogeneity among the
studies was evaluated using the I” statistic (13). Subgroup analyses
were performed based on common characteristics across the
included trials, such as region, study design, anti-BCMA
exposure, and mono- or combined therapy. To address potential
publication bias, weight functions were incorporated into the
models to adjust the overall effect size estimates, and sensitivity
analyses were conducted to assess their impact. Publication bias was
corrected using a trim-and-fill method, which accounted for funnel
plot asymmetry (14).

3 Results
3.1 Study selection and characteristics

A total of 2,674 studies describing teclistamab for RRMM
were found, with 581 studies from PubMed, 822 from Web of
Science, 1,134 from EMBASE, 58 from Cochrane Library, and 79
from ClinicalTrials.gov. Furthermore, 12 additional records were
identified through hand-searching conference abstracts. After
removing 721 duplicate records, we reviewed the titles and
abstracts of 1,065 articles, identifying 91 articles as potentially
relevant for further analysis. After the application of the eligibility
criteria to full-text review, 34 studies were included, with 9
studies that compared the efficacy and safety of teclistamab
with currently and commonly used treatments for RRMM (15-
23); 11 studies that were single-arm teclistamab clinical trials (9,
10, 24-32); and 14 studies that focused on real-world applications
of teclistamab monotherapy (33-46). The complete screening
process is listed in Figure 1, and the titles of excluded articles and
the reasons for their omission are listed in Supplementary Table
S4. There was a total of 4,064 patients in the included studies,
with an average age of ~66 years. The baseline characteristics are
summarized in Table 1.
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3.2 Efficacy and safety of teclistamab in
compared studies

To compare the efficacy between teclistamab and currently used
treatments for RRMM, we synthesized data on OS, PFS, TTNT, and
DOR. The treatment measurements for the control group included
selinexor plus dexamethasone (15), daratumumab (DARA) trials
(18), belantamab mafodotin (19), pomalidomide plus
dexamethasone (22), CAR-T (21, 23), and real-world clinical
practice (16, 17, 20). Eight studies reported OS, six studies
described PFS, four studies reported TTNT, and three studies
reported DORs. In terms of survival outcomes, teclistamab
demonstrated superior therapeutic advantages (Figure 2). The HR
values for pooled OS, PFS, TTNT, and DOR were 0.69 [(95%CI:
0.54-0.89), p = 0.037], 0.49 [(95%CI: 0.42-0.57), p < 0.0001], 0.38
[(95%ClI: 0.30-0.48), p < 0.0001], and 0.19 [(95%CI: 0.06-0.59), p =
0.0044], respectively. Considering the differences in variability in the
data sources and the lack of baseline characteristic balancing in some
studies, we conducted subgroup analyses of OS (Supplementary
Figure S1). Four studies reported ORs (15, 18, 19, 21) and three
studies describe RRs (16, 20, 21), respectively. As for the ORs, no
significant differences were observed for ORR [effect size (ES) = 1.69,
95%CI: 0.51-5.58] and >CR (ES = 2.67, 95%CIL: 0.31-24.25). As for
RR, there was no statistically significant difference in ORR (ES = 1.51,
95%CI: 0.64-3.53) and >CR (ES = 7.39, 95%CI: 0.03-1810.94) as well
(Figures 3A, B). However, after excluding the study that did not
balance the baseline characteristics (21), regardless of whether OR or
RR was reported, both ORR and >CR showed statistically significant
differences (Supplementary Figure S2), suggesting that teclistamab
achieved a higher response rate compared with existing treatment
options. Compared to current treatments, teclistamab demonstrated
superior outcomes in 2VGPR (ES for RR = 5.94, 95% CI: 4.39-8.03;
ES for OR = 6.55, 95% CI: 1.87-22.96) (Figure 3C). In the safety
analysis, no significant differences were observed for any-grade
ICANs (ES = 0.81, 95% CI: 0.53-1.25). However, compared to
CAR-T, teclistamab was associated with lower incidences of any-
grade CRS (ES = 0.77, 95% CI: 0.64-0.93) (Figure 3D).

3.3 Efficacy and safety of teclistamab in
real-world events

In the real-world events meta-analysis, 11 studies reported
ORRs (33-41), 7 studies reported >VGPRs (33, 36, 38, 40, 44—
46), 6 studies reported >CRs (33, 37-39, 44, 45) and 7 studies
reported PRs (33, 36, 38, 40, 44-46). Across all the teclistamab
studies, regardless of region and ethnicities, the pooled ORR was
62% (95%CI: 58%-66%), 2VGPR was 43% (95% CI: 36%-50%)
(Figures 4A, B), 2CR was 22% (95%CI: 16%-28%), and PR was 10%
(95% CI: 7%-13%) (Supplementary Figure S3). The pooled
incidence of any-grade CRS was 57% (95%CI: 53%-61%) and
any-grade ICANs was 9% (95%CIL: 7%-13%) (Figures 4C, D).
Other AEs were all pooled and are shown in Supplementary
Figure S4.
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FIGURE 1

PRISMA flow diagram.

3.4 Subgroup analysis of single-arm studies

First, to explore whether there were differences in efficacy and
safety between teclistamab monotherapy and combination therapy,
we conducted a subgroup analysis. Three clinical trials reported a
combination therapy with teclistamab (24, 25, 28). The
combination therapy group displayed a higher ORR (85% vs 62%,
p < 0.0001) and a higher 2VGPR (68% vs 48%, p = 0.0247) than
monotherapy while showing a similar >CR with monotherapy (29%
vs 28%, p = 0.8481) (Supplementary Figure S5). For AEs, no
statistically significant differences were observed for any-grade
anemia, CRS, infection, and neutropenia, and grade 23 anemia,
CRS, ICANS, infection, and neutropenia (Supplementary
Figure S6).

Second, there were no significant differences in efficacy between
clinical trials and real-world studies, except for 2VGPR (60% vs
48%, p = 0.0247) and 2CR (41% vs 22%, p = 0.0052). The pooled
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ORR, VGPR, and PR were 63% versus 62% (p = 0.7992), 19% versus
25% (p = 0.4222), and 13% versus 10% (p = 0.8171), respectively.
The forest plot can be found in Supplementary Figure S7. For
hematological AEs, compared to clinical trials, real-world studies
exhibited a lower risk of neutropenia (any-grade: 79% vs 45%, p =
0.0017; grade =3: 66% vs 33%, p = 0.0001). No significant
differences were observed in the risk of anemia (any-grade: 63%
vs 66%, p = 0.8549; grade >3: 39% vs 23%, p = 0.1003). For non-
hematological AEs, real-world studies had a lower risk of any-grade
CRS (79% vs 58%, p = 0.0301), a lower risk of infection (any-grade:
81% vs 47%, p = 0.0002; grade 23: 50% vs 24%, p = 0.0003), and a
higher risk of ICANS (any-grade: 3% vs 10%, p= 0.0297)
(Supplementary Figure S8).

Third, compared with a Western population, the China cohort
demonstrated superior 2VGPR (77% vs 45%, p = 0.0021) and >CR
(58% vs 25%, p = 0.0020). There were no statistically significant
differences in ORR (77% vs 62%, p = 0.1098). As for AEs, the China
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TABLE 1 Characteristics of the included studies.

A)

Comparative studies

Year Article type Drug Patient Age Sex (F/ Refractory status (5/4,3/ Time to ECOG scores (0/ Cytogenic risk status (high/standard/ ISS stage (I/11/ Lines of previ-
name (n) (years) M, n) other, n) onset (years) 1n) unknown, n) I, n) ous therapy
. Tec 37
Bahlis, N. 200y | Conference NR NR NR NR NR NR NR >3 prior LOT
J (15). abstract Sel+ Dex 122
Tec 165
Delforge, 2003 | Conference NR NR NR NR NR NR NR >3 prior LOT
M (16). abstract RWPC 112
>65: .
Tec 165 47.9% 69/96 50/78/37 26: 50.9% 55/110 38/110/17 87/58/20 > 4 prior LOT: 52.7%
irz};’;a“’ 2023 | Article
. >65:
RWPC 326 48.1% 152/174 107/151/68 26: 52.3% 112/214 74/217/35 172/116/38 > 4 prior LOT: 56%
1%
>65: .
Tec 165 47.9% 69/96 50/78/37 26: 50.9% 55/110 38/110/17 87/58/20 > 4 prior LOT: 52.7%
J
xa\;e‘(’lss) 2023 Article
) D 265:
fira 264 65 133/131 75/120/69 >6: 47.5% 119/145 58/179/27 142/94/28 > 4 prior LOT: 52.5%
trials 46.9%
Tec 165 NR NR NR NR NR NR NR >3 prior LOT
Moreau, 2003 Conference
P (19). abstract BM 97
>65: .
Tec 165 47.9% 69/96 50/78/37 >6: 50.9% 55/110 NR 87/58/20 > 4 prior LOT: 52.7%
Moreau, 2023 Article
P (20). e
RWPC 302 ;4 l% 132/170 108/129/64 26: 54.3% 93/209 NR 163/104/35 > 4 prior LOT: 55.9%
Rakesh . Conference Tec 165 NR NR NR NR NR NR NR >3 prior LOT
Popat (22) abstract Pom<+Dex 645
Median: . . .
Tec 45 P 19/26 Penta:26 NR >2:16 High:25 1I:16 Median 6 prior LOT
Dima, D (21). | 2004 Conference
abstract Median:
CAR-T 65 62 : 28/37 Penta:26 NR >2:9 High:19 1I1:17 Median 6 prior LOT
Median:
Tec 458 S 3917458 NR NR NR NR NR >4 prior LOT
Song, ] (23) 2024 Conference 66
& | abstract
CAR-T 391

24
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Author Year Trial # Study Design Patient Median = Median Refractory Time to ECOG Cytogenic ISS stage Lines of Anti-BCMA
(n) age in follow- status (5/4,3/ onset scores risk status (171711, n) previous exposed
years up in other, n) (years) (0/1, n) (n) therapy (%)
(range) months
(range)
MajesTEC-1: Open label, 64.0 14.1 .
M N 69, 6 Median 5
, E’;)ea" 2022 NCT03145181  single-arm, phase 1-  Tec SC 1.5mg/kg 165 (33.0- 03- 0 6/ 50/78/37 (08227 | /10 High:3 85/57/20 rie r‘aL" or Not allowed
: NCT04557098 | 2 study 84.0) 24.4) Gt prio
Rodriguez Dara: SC 1800 72
) Phase 1b multicohort Tec mg/schedule 67 ) 24/ Median 6
Otero, 2022 NCT04108195 46 0.1- NR NR NR NR NR 15%
€ro TRIMM-2 study +Dara | Tec: SC 153 o-79) | ¢ 2 prior LOT
P (24). 16.6)
mg/kg
Cohen,Y. Phase 1b RedirecTT- Tec 67 144 Triple-class Median 5
o 2023 NCT04586426 ) NR 63 0.5- NR ) NR NR High: 1 NR R
C (25). 1 trial + Tal (39-81) ; 19) refractory: 49 igh: 15 prior LOT N
Donk, Subgrou; 640 69/ 6 Median 5
2023 MajesTEC-1 group Tec SC 1.5mg/kg 165 (33.0- 23 50/78/37 55/110  High: 38 85/57/20 ) Not allowed
N.1 (26) analysis 84.0) 96 (0.8-22.7) prior LOT
Donk, 640 69/ 6 Median 5
N2 (26) 2023 | MajesTEC-1 MajesTEC-1 Update Tec SC 1.5mg/kg 165 ;z?’o(;- 22 % 50/78/37 (0.8-22.7) 55/110 High: 38 85/57/20 prior LOT Not allowed
Seatle, MajesTEC- Opel}-label, Tec+ TE(} 0.72/1.5 mg/kg with step-up 5.78 m Median 2
E (28) 2023 2 multi-arm, phase Dara dosing+ Dara 1800 mg+ LEN 32 62 (1.0- 28 NR NR NR NR NR prior LOT Not allowed
: NCT04722146  1b study + Len 25 mg 10.4)
. Open-label, Triple-class .
Du MajesTEC-1 . 19/ ) Median 5
juan (32) 2024 China cohort single-arm, phase 1- Tec SC 1.5mg/kg 26 66 15 - refractory: NR NR High: 15 17 prior LOT Not allowed
2 study 16
Garfall, A. 640 69/ 6 Median 5
T 2024 MajesTEC-1 MajesTEC-1Updat T SC 1.5 165 33.0- 30.4 50/78/37 55/110 High: 7/2 Not all
L (9). ajes’ ajes’ pdate ec mg/kg 24 . 9% /78/. (0822.7) / igh: 38 85/57/20 prior LOT ot allowed
J Costa Subgroup 640 69/ 6 Median 5
L (30). 2024 MajesTEC-1 analysis Tec SC 1.5mg/kg 165 ;.130(;- 30 9% 50/78/37 (0.8-22.7) 55/110 High: 38 85/57/20 prior LOT Not allowed
) Open-label, 28 Triple-class X
Touzeau, MajesTEC-1 64 15/ 6.5 Median 6
2024 ingle-: , phasel- T 1. k 4 .7- fi f N High: 12 21/9/1 1
C o). 0. Cohort C single-arm, phase ec SC 1.5mg/kg 0 (32-82) (0.7 25 refractory: (11-241) R igh /9/10 prior LOT 00%
2 study 311) 34
Phase 2, multicenter, 8.1 Triple-class .
D T 72 M 4
onk, 2024 NCT05972135  prospective | SC1.5mg/kg +IV Toci 8 mg/kg 24 09- NR | refractory: NR NR Standard:18 | I/IL: 23 edian Not allowed
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Q)

Real world experiences

A Year Country Article type Patient Median Refractory status Time to ECOG Cytogenic risk Lines of Anti-BCMA
(n) age (range) (n) onset scores status previous therapy exposed (%)
(years) (n) (VA]
Conf Triple-cl: Median 9
Uttervall, K. (33) 2021 | Sweden onterence 17 62 (43-83) 7110 rplecass NR NR NR NR edian NR
abstract refractory: 15 prior LOT
fi
Asoori, S (34). 2023 | USA Conference 37 71 (50-89) 20/17 NR NR NR NR NR NR NR
abstract
. Conference Triple-class . Median 6
Dima, D (35). 2023 A 102 75 (71-87 NR NR NR High: 58 NR 58
ima, D (35) us abstract ( ) refractory: 99 '8 % prior LOT %
Conf 0: 14 Median 6
Gordon, B (36). 2023 | USA onterence 45 66 (45-88) 24/21 NR 49 (11-258) | 1:19 High: 42.2% 11/13/12 edian 42.2%
abstract prior LOT
>2: 12
jales-Cruz, A. f Penta-cl Medi
Grajales-Cruz 2023 | USA Conference 2 66 (48-81) 913 enta-class NR 22:3 High: 50% 11 10 edian § 100%
F (37). abstract refractory: 11 prior LOT
Us, Conference Triple-class Median 6
Maringanti, $. A (38). | 202 91 44 N High: 259
aringant, $. A (38) 023 Greece, Spain abstract 80 69 (38-91) 36/ refractory: 49 NR R igh: 25% NR prior LOT 0%
Triple-class 0-1: 71 Median 6
Dima, D (39). 2024 | USA Articl 106 66.5 (35-87 57/49 5.4 (0.5-20 High: 59% NR 53%
ima, D (39) ieie (35-87) ! refractory: 97 (0520 2.4:35 g 7 prior LOT
Penta-class 0:8 Median 7
) ) ! ) . .
Firestone, R. S (40). 2024 USA Article 52 70 (39-88) NR refractory: 35 6.3 (0.7-29) S1: 44 High: 33% NR prior LOT 52%
Ghamsari, F (41). 2024 | USA Conference 18 67 (50-83) NR Triple-class NR NR High: 72% NR Median 6.5 39%
abstract refractory: 18 prior LOT
Penta-cl Median 5
Graf, K. C (42). 2024 | USA Article 25 66 (37-78) 12/13 enta-ciass NR NR High: 36% NR edian 44%
refractory: 12 prior LOT
All:27 69 12115 1:13
L35 69 914 1:12 Median 5
Kawasaki, Y (43). 2024 | USA Article days:23 NR NR : NR NR ‘ NR
prior LOT
L47 64 31 11
days:4 :
Penta-cl Median 6
Mohan, M. (44) 2024 | USA Article 110 68 (37-89) 54/56 enta-ciass NR NR High: 62% NR edian 35%
refractory: 84 prior LOT
Penta-cl Median 6
Riedhammer, C (45). 2024 | Germany Article 123 67 (35-87) 53/70 enta-ciass 65(05187) | NR High: 36.8% 25/35/31 edian 37.4%
refractory: 74 prior LOT
Confe
Tan, C. R (46). 2024 | USA alfs 't‘r::““ 77 70 (63-77) 3542 NR NR NR High: 42% NR NR NR

Sel, selinexor; Dex, dexamethasone; Tec, teclistamab; RWPC, real-world physician’s choice; LOT, lines of therapy; Dara, daratumumab; Pom, pomalidomide; BM, belantamab mafodotin; CAR-T, chimeric antigen receptor T cell; LEN, lenalidomide; Tal, talquetamab;
Toci, tocilizumab; SC, subcutaneous; IV, intravenous; NR, not reported.
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The pooled (A) OS, (B) PFS, (C) TTNT, and (D) DOR in patients treated with teclistamab in the compared studies.

cohort experienced a higher rate of any-grade anemia (88% vs 60%,
p = 0.0078), any-grade CRS (96% vs 60%, p < 0.0001), any-grade
infection (96% vs 53%, p < 0.0001), and any-grade neutropenia
(96% vs 55%, p < 0.0001). The forest plots are listed in
Supplementary Figure S9.

Fourth, five studies reported the outcomes of teclistamab
treatment in populations previously exposed to BCMA-targeted
therapies (10, 38-40, 45), and six studies reported the outcomes
of populations with no prior BCMA exposure (9, 32, 38-40, 45).
The non-BCMA-exposed group displayed a higher ORR than the

anti-BCMA-exposed group (67% vs 56%, p = 0.0205). For the
anti-BCMA exposed group, the pooled 2VGPR, =CR, VGPR, and
PR were 46% (95%CI: 38%-55%), 28% (95%CI:19%-38%), 25%
(95%CI: 11%-43%), and 23% (95%CI: 2%-55%), respectively.
For the non-BCMA exposed group, the pooled 2VGPR, >CR,
VGPR and PR were 59% (95%CI: 42%-75%), 41% (95%CI: 30%—
52%), 19% (95%CIL: 14%-25%) and 4% (95%CL: 0%-12%),
respectively. The results are shown in Supplementary Figure
S10. No statistical differences were observed for AEs
(Supplementary Figure S11).
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The pooled (A) ORR, (B) >CR, (C) >VGPR, and (D) AE in patients treated with teclistamab in the compared studies.
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The pooled (A) ORR,

3.5 Sensitivity analysis and publication bias

The sensitivity analysis of OS in the compared studies
confirmed that when Song, J. (2024) was individually excluded, I’
changed to 23.8% (Supplementary Figure S12). For PFS, when each
trial was individually excluded, only minimal changes were
observed. Egger’s test showed no indication of publication bias
for OS (p = 0.0751) and PES (p = 0.4676) (Supplementary
Figure S13).
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(B) >VGPR, (C) any-grade CRS, and (D) any-grade ICANS in patients treated with teclistamab in the real-world studies.

4 Discussion

MM is the second most common hematological malignancy,
and during its course, almost all patients experience one or more
relapses (47). Patients with RRMM frequently face the challenges of
undergoing multiple lines of treatment with limited clinical success,
underscoring the need to explore innovative and effective
therapeutic options (48). Teclistamab, a BCMA x CD3-directed
bispecific antibody, showed high response rates and durable
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remissions in the MajesTEC-1 trial in patients with RRMM. In this
large-scale systematic review and meta-analysis, we quantified the
reported efficacy and safety of teclistamab in RRMM.

In the pairwise meta-analysis, compared with existing treatment
options for RRMM, teclistamab demonstrated superior efficacy,
except for two articles comparing teclistamab with CAR-T therapy
(21, 23). The inferior responses and survival outcomes of the
teclistamab group may have been due to the variations in baseline
characteristics across populations and can be explained by the more
aggressive disease biology, as evidenced by poorer performance
status, and higher rates of high-risk cytogenetics. Regarding AEs,
CRS was only reported with CAR-T cell therapies. Despite the more
aggressive disease biology observed in the teclistamab group, the
incidence of CRS was still lower compared to the CAR-T group,
suggesting that teclistamab offers better tolerability, even in patients
in poorer physical condition. According to preliminary results from
the KarMMa study, idecabtagene vicleucel (ide-cel) demonstrated
an ORR of 73% in patients who had received at least three prior
lines of therapy (8). In the CARTITUDE-1 trial, ciltacabtagene
autoleucel (cilta-cel) showed an ORR of 98% in patients treated with
at least three prior lines of therapy (49). Although CAR-T therapy
has shown impressive response rates, the interval between
leukapheresis and CAR-T cell infusion can pose challenges,
especially for patients with rapidly progressing disease who may
experience worsening cytopenia, progressive organ dysfunction,
and declining functional status. In contrast, teclistamab offers the
advantage of rapid treatment initiation in cases of rapidly
progressing disease and demonstrates better tolerability in
patients in a compromised physical condition (45). Therefore,
given that both CAR-T and T-cell engagers (TCEs) have their
respective advantages and disadvantages, and in the absence of
direct head-to-head comparisons, it is reccommended that CAR-T
therapy be prioritized for eligible candidates when both CAR-T and
TCE are equally accessible. However, TCEs, due to their greater
accessibility and quicker initiation, should be preferred for patients
with rapidly progressing disease who are unlikely to tolerate
leukapheresis or bridging therapies. This recommendation is
based on the activity data of TCEs following CAR-T treatment,
and the longer treatment-free interval after CAR-T therapy, which
provides more time for the administration of additional treatment
options when relapse occurs (50).

In the real-world study analysis, the pooled ORR for the entire
cohort was 62%, which was nearly equal to the ORR of 63% in the
MajesTEC-1 trial (9). It is noteworthy that almost half of the real-
world studies’ patients did not meet the key inclusion criteria of the
clinical trial and also had high-risk features such as ISS 3, high-risk
cytogenetic aberrations, extramedullary disease (EMD), or high
bone marrow infiltration. This could explain why the median PFS
in the real-world studies ranged from 5.4 to 12.7 months, with most
results slightly lower than the 11.3 months observed in MajesTEC-
1. Additionally, the lower rates of 2VGPR (43%) and >CR (22%)
observed in the real-world studies could also be attributed to these
baseline differences, as patients with more high-risk features tend to
have poorer responses. Other factors contributing to these
differences could include the shorter median follow-up time in
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real-world settings, as responses have been shown to deepen over
time, and differences in treatment adherence between real-world
patients and those in clinical trials. Common AEs of BsAbs therapy
included CRS, infections, and neutropenia. In the real-world
studies, same as MajesTEC-1, CRS and ICANS were
predominantly low-grade and effectively manageable in most
cases. The pooled any-grade CRS rate was 57%, lower than that
reported in the MajesTEC-1 trial (72%), and could be well managed
by antipyretics, analgesics, corticosteroids, and tocilizumab.
However, our results demonstrate that the risk of severe CRS and
ICANS (grade >3) with teclistamab in the real-world setting is
higher compared to that noted in clinical trials (1.9% vs 0.6%; 2% vs
0.6%). This is mainly because of the higher tumor burden, which is
an important predictor of severe CRS with BsAbs and CAR-T
therapy (51). Moreover, cytopenia in real-world studies, such as
neutropenia and anemia, were mainly high-grade, which may lead
to an increased risk of serious opportunistic infections. Though the
any-grade infection rate was lower than MajesTEC-1 (47% vs
76.4%), this may have been associated with the shorter follow-up
time in the real-world studies or the primary intravenous
immunoglobulin (IVIG) prophylaxis administration (44, 52). Our
analysis showed that grade 23 infections occurred in 24% of
patients treated with teclistamab. The common infections were
COVID-19, pneumonia, and upper respiratory tract infection.
Dima and colleagues reported three deaths from severe infection
while on teclistamab without any evidence of disease progression
(39), hence, there is a need for close surveillance and adequate
preventive measures for the high rates of infections (53). Better
infection risk management is highly suggested for the future use of
teclistamab to prevent patients from serious or even fatal outcomes.

This study also presented interesting findings in the subgroup
analysis. First, compared to teclistamab monotherapy, the ORR rate
increased from 63% to 78% when combined with DARA and
further rose to 90% when combined with both DARA and
lenalidomide (LEN). Both DARA and LEN possess
immunomodulatory effects that may enhance the activity of
teclistamab. This might be explained by the immunomodulatory
effects of LEN when combined with DARA. The combination can
enhance T and NK cell-mediated cytotoxicity and induce in vivo T
cell proliferation (54). Furthermore, teclistamab can recruit CD3+ T
cells to the vicinity of BCMA-positive clonal plasma cells,
enhancing targeted cytotoxicity against myeloma cells (6). As for
AEgs, the combination therapy shows no statistic differences in any-
grade anemia, any-grade CRS, any-grade infection, any-grade
neutropenia, grade >3 anemia, grade =3 CRS, grade >3 ICANS,
grade >3 infection, and grade >3 neutropenia, and an even lower
rate of any-grade ICANS was observed in the pooled studies. These
results indicate that the combination therapy had tolerable safety,
no overlapping toxicities, and promising efficacy. Further studies
are warranted to evaluate the potential role of teclistamab
combination therapy on enhanced early disease control or newly
diagnosed MM.

Second, another clinically relevant observation was the efficacy
of teclistamab in patients previously treated with anti-BCMA
therapies. Median PFS in this population was 4.5 months, which
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is lower than the 11.3 months observed in BCMA-naive patients in
the MajesTEC-1 RP2D cohort (10). However, our study showed
that even ORRs with BCMA-targeted therapies were generally
lower in patients who had prior anti-BCMA therapies as
compared with BCMA-naive patients (56% vs 67%), however, the
>VGPR and 2>CR rates showed no statistical differences. It is
important to note that prior anti-BCMA-treated patients may
present with more severe disease compared to BCMA-naive
patients, as they are typically in a more refractory state due to the
progression of the disease. As such, the outcomes of prior BCMA-
treated patients were generally less favorable. For patients who
achieved >CR after prior anti-BCMA-targeted therapy, the median
duration of response (DOR) was 16.7 months, demonstrating the
durability of deep responses. Additionally, in cohort C, the efficacy
outcomes of patients who had previously received anti-BCMA ADC
therapy were similar to those of patients who had received CAR-T
therapy (ORR: 55.2% vs 53.3%) (10). A similar finding was reported
in a real-world study by Dima et al. (ORR: 50% vs 57%) (39). This
finding suggests that teclistamab can achieve good responses even in
patients who have previously undergone T-cell redirection
therapies. Furthermore, the safety profile of teclistamab in anti-
BCMA-exposed patients was generally consistent with that of
BCMA-naive patients. Overall, our data suggest that teclistamab
remains a viable treatment option following BCMA-targeted ADC
or CAR-T therapy. BCMA loss may be a potential mechanism of
primary resistance to teclistamab after BCMA-directed treatments
(55). Therefore, combining teclistamab with agents such as
talquetamab (a bispecific antibody targeting the novel myeloma
antigen GPRC5D) may improve outcomes by overcoming
resistance mechanisms, such as antigen escape, and enhancing
survival in this subgroup of patients.

Furthermore, in July 2024, Johnson & Johnson announced that
the marketing application for a teclistamab injection had been
approved by the National Medical Products Administration
(NMPA) of China, therefore, our study included the only
reported Asian (China) cohort to evaluate the differences in the
efficacy of teclistamab across ethnicities. Compared to the pivotal
recommended phase 2 dose (RP2D) cohorts, while the baseline
characteristics of the China cohort were generally consistent, some
numerical differences were observed (56).The China cohort
included fewer patients aged >75 years (7.7% vs 14.5%), fewer
penta-exposed patients (53.8% vs 70.3%), and fewer patients with
prior transplantation (11.5% vs 81.8%). In contrast, a higher
proportion of patients in the China cohort presented with
baseline features associated with a poorer prognosis, including
high-risk cytogenetics (57.7% vs 25.7%), =1 extramedullary
plasmacytoma (34.6% vs 17.0%), and ISS stage 3 disease (26.9%
vs 12.3%). Despite these differences, the China cohort demonstrated
a higher ORR rate (77%), and all patients achieved >VGPR. With a
median follow-up of 15 months, the median DOR, PFS, and OS
were not reached. The 12-month DOR, PFS, and OS rates were
78.5%, 68%, and 83.5%, respectively, demonstrating that Chinese
patients treated with teclistamab can achieve deep and durable
responses (32). Although the AE rate was higher than in the
Western populations, no patients experienced a dose reduction or
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discontinuation due to AEs. The AEs decreased over time and were
clinically managed with supportive care. Although some PIs, IMiDs,
and monoclonal antibody drugs have been approved in China,
unmet treatment needs still exist for patients with RRMM. Older
MM patients, those with comorbidities such as renal impairment,
patients with extramedullary involvement, and high-risk patients
who relapse after transplantation require innovative treatments like
teclistamab. However, studies in Asian populations remain limited,
and more robust clinical research is needed to confirm the efficacy
of teclistamab. In the future, we look forward to the publication of
more data on teclistamab in Asian populations to further support its
feasibility as a treatment option for RRMM.

In addition, compared with a recently published systematic
review and meta-analysis by Qureshi et al., our current meta-
analysis includes more studies, encompassing 4,064 patients (57).
This notable difference in the number of included studies and
patients, despite only a 4-month difference in search cut-off dates,
can be attributed to the broader scope of our review. We
systematically searched ClinicalTrials.gov and included relevant
conference abstracts to capture the most recent and comprehensive
evidence. Furthermore, our analysis also incorporated studies
investigating teclistamab in combination regimens, providing a
more extensive overview of its clinical potential. Therefore, our
work not only complements the findings of Qureshi et al. but also
further supports the growing body of evidence that highlights
teclistamab as a promising and increasingly studied therapeutic
option for patients with RRMM.

Our study had some limitations. First, the data for teclistamab in
the pairwise meta-analysis mainly came from the MajesTEC-1, so
there was unavoidable data redundancy. Second, due to the relatively
short time since the approval of the drug, the follow-up periods in all
real-world studies were relatively brief, which may have imposed
certain limitations on our findings. Third, the heterogeneity in the
results largely stemmed from differences in sample sizes and baseline
characteristics among studies. At this stage, there is still a lack of
large-scale, head-to-head randomized controlled trials to definitively
establish the therapeutic advantages of teclistamab. Although this
study did not fully meet all the above limitations, the overall risk of
bias in study quality was considered acceptable.

5 Conclusion

Teclistamab has demonstrated favorable efficacy in real-world
studies and clinical trials and remains a viable and effective
treatment option for patients with RRMM previously exposed to
BCMA-targeted therapy. Additionally, teclistamab combination
therapies can improve response rates and maintain a favorable
safety profile, offering new hope for overcoming BCMA resistance.
Additionally, compared to Western populations, the China cohort
showed better clinical benefits, although they were associated with a
higher incidence of AEs. Therefore, we eagerly anticipate the future
application of teclistamab in Asian RRMM populations, with the
hope of bringing more treatment options and hope to patients in
need. Our research indirectly supports the potential of teclistamab
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in clinical applications. However, there is still a lack of direct head-
to-head studies to demonstrate the efficacy, therefore, we call for
more direct comparative clinical trials or real-world studies in the
future to validate this conclusion.
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Lung cancer is a refractory malignancy. Although various therapeutic options,
including targeted therapies, immune checkpoint inhibitors, and systemic
chemotherapy, have significantly improved the prognosis of lung cancer
patients, five-year survival rates are still low. Bispecific antibodies have
attracted much attention because of their ability to bind different antigens or
epitopes on the same antigen at once and because of their multiple novel
functional mechanisms. Recently, three bispecific antibodies have been
successively approved for lung cancer treatment, demonstrating the potential
of bispecific drugs in lung cancer therapy. Various bispecific antibodies are
currently under clinical trials to evaluate their safety and efficacy in lung
cancer. In this review, we provide an overview of these antibodies’ structure
and mechanism of action, summarize their clinical progress in lung cancer
treatment, and discuss and analyze the challenges and future directions of
bsAbs application in lung cancer.
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1 Introduction

Lung cancer is one of the world’s most common cancers and the leading cause of
cancer-related deaths, with an estimated 2.2 million new cases and 1.79 million deaths
annually (1). In most parts of the world, the 5-year survival rate for lung cancer patients is
only 10-20% (2). Non-small cell lung cancer (NSCLC) is one of the most common types of
lung cancer, accounting for about 85% of lung cancers (1). The treatment landscape for
NSCLC has changed dramatically over the past decade by introducing several new targeted
and immunotherapeutic agents. Patients treated with protein kinase inhibitors [especially
tyrosine kinase inhibitors (TKIs)] and monoclonal antibodies [e.g., immune checkpoint
inhibitors (ICIs)] may have a relatively good prognosis. However, although the above
treatment strategies significantly prolong the overall survival of patients, a common
problem is drug resistance (3, 4). Small cell lung cancer (SCLC) is another type of lung
cancer that accounts for 10-15% of all lung cancers (5-7). It is even a tumor type with an
inferior prognosis and limited therapeutic options, with a median survival of 2 years for
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most patients with early-stage disease and 1 year for patients with
metastatic disease (8). Therefore, there is still a significant unmet
medical need in the field of lung cancer.

Bispecific antibodies (bsAbs) have been described as “next-
generation antibodies” that overcome the limitation of natural
monoclonal antibodies to bind only a single epitope (9).
Amivantamab is the first bispecific antibody approved for the
treatment of lung cancer. The drug was initially approved for
treating adult patients with locally advanced or metastatic NSCLC
harboring epidermal growth factor receptor (EGFR) Exon 20
insertion mutations whose disease has progressed on or after
platinum-based chemotherapy (10). Several bsAbs with potential
for lung cancer therapy are currently undergoing clinical trials, and
many have produced exciting results. This review provides an
overview of the bsAbs that have shown promise in treating
lung cancer.

2 Bispecific antibody formats and
mechanisms

One of the significant challenges of dual antibodies, which took
about half a century to move from concept to the clinic, is that only
12.5% of the target molecules can be obtained by conventional
production means, with the rest being mostly nonfunctional or
monospecific molecules (11, 12). To address this challenge,
researchers have developed various strategies based on natural
antibodies such as IgG and heavy-chain antibodies (Figure 1A).
These strategies aim to increase the proportion of the target
molecule and facilitate its separation and purification, while
enabling the modular combination of distinct antibody functional
domains as required. Today, more than 100 types of bsAbs are
known (9) and can be briefly classified into three categories: no IgG-
like bsAbs (Figure 1B), asymmetric IgG-based bsAbs (Figure 1C),
and symmetric IgG-based bsAbs (Figure 1D). No IgG-like bsAbs
consist of combinations of partial structures of antibodies. Among
them, bsAbs designed based on single-chain variable fragment
(scFv) (e.g., BiTE, DART, etc.) are the simplest and the least
difficult to generate. Moreover, due to their low molecular weight,
they have better tissue permeability. However, the absence of
fragment crystallizable (Fc) structure results in a short plasma
half-life of these molecules and a lack of Fc-mediated effector
function [e.g., antibody-dependent cell cytotoxicity (ADCC) or
antibody-dependent cell phagocytosis (ADCP)]. To extend the
half-life of such bsAbs, a common strategy is to fuse Fc fragments
(including HEL-BiTE, Tetravalent DART Fc, VHH-Fc, etc.) or
conjugate fragments of anti-human serum albumin (HSA)
antibodies (e.g., TRACTT, TriTAC) with the bsAbs protein. IgG-
based bsAbs retain Fc and have a longer half-life, and Fc function
can be adjusted to enhance the therapeutic effect of the molecule
according to specific needs. However, there will be more factors to
consider in the molecular design of the protein. For example,
asymmetric IgG-based antibodies are closer in form to natural
IgG. However, as mentioned above, the target molecule content is
only 12.5% when produced by conventional means, and it is not
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easy to purify the target molecule from the system to obtain a high-
purity target molecule. Therefore, a series of molecular
modifications are needed to promote the correct pairing of light
and heavy chains to increase the target molecule content, and these
strategies include knob-into-hole, DEKK mutation, common light
chain, and the addition of alternative interchain disulfide.
Symmetric IgG-based bsAbs are made by fusing another antigen-
binding fragment to the conventional antibody (e.g., Tetrabody,
IgG-VHH, FIT-Ig, etc.) or by mutating Fc to form a new antigen-
binding site (e.g., mAb2) and thus do not need to consider the
correct pairing of light and heavy chains. However, such
modifications can change physicochemical properties such as
antibody stability and solubility (13, 14). In addition, antigen-
antibody binding is affected by the position of the fused
fragment (15).

3 The mechanisms of action of
bispecific antibodies in lung cancer

Unlike the simple mixing of antibodies, bsAbs have become a
primary focus of drug developers because they have new
mechanisms of action (MOA) different from those of the parent
antibody combination. Currently, bsAbs used in lung cancer
therapy include three main mechanisms: dual inhibition
(Figure 2A), engaging immune cells and tumor cells (Figure 2B),
and immune cytokines (Figure 2C).

By targeting two antigens at the same time, dual-inhibition
bsAbs inhibited the pathways of two signals that are related to each
other, exerting the effect of 1 + 1>2. More than half of the bsAbs
currently applied in lung cancer treatment mainly exert anti-tumor
effects by this mechanism of action. They can be further categorized
into three types according to the difference in the signals they block:
(i) simultaneous targeting of two surface receptors with specific
signaling and functional overlap associated with tumorigenesis and
progression, mainly ErbB family proteins; (ii) dual immune
checkpoint molecule blockade; (iii) simultaneous inhibition of
immune checkpoints and tumor microenvironmental pro-tumor
growth factors.

Immune cell engagers (ICEs) redirect cytotoxic immune cells to
disease-associated target cells that play a key role in the disease
process to achieve direct killing of these cells by immune cells.
Among them, T cell engagers (TCEs) are the typical application of
bsAb, and about half of the bsAbs currently evaluated in clinical
trials are TCEs (16). Recently, researchers have also been
experimenting with Natural Killer cell engagers (NKCEs) based
on the recruitment of cytotoxic NK cells (17, 18).

Immunocytokines are a type of antibody-cytokine fusion
protein. Mechanistically, immunocytokines fuse a therapeutic
cytokine to one end of an antibody. Through the specific
targeting function of the antibody, the cytokine is specifically
delivered near tumor cells, allowing it to bind to specific cytokine
receptors on the surface of surrounding immune cells, thus
significantly reducing non-specific toxicity (19, 20). Structurally,
immunocytokines have a symmetric or asymmetric structure based

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1572802
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

\ S =
a7

Fe
Heavy chain l I

Conventional IgG

Heavy-chain Antibody

Legend
~- ~ .
p— n
scFvA  scFvB VHHA i heavy “hcnvy
chain AJjll chain B
- = i

FabA  FabB VHHB 'C

~— peptide linker

55y interchain
disulphide bonds

Cleavable

Anti-human

Mask
P': finker II i serum albumin

(©

§ /v
Co—,

TRACTr

LN

A

Anti-human

serum albumin

VHH II

(e)Tetravalent
DART Fc

(d) THTAC

Q¢

Alternative
Interchain
disulfide

(h) DuteMAb

[H koobinotole | DEKK
dimerization

(i) Biclonic:

(f) VHH-Fc

N
hE
Common
I light chain

(g) Half-life
extend-BiTE

S

\, N, 4
R S

‘: Knob into hole

(j) Xmab

K409R I I Fai

AR
RV

E !_ receptor’s

domain

N ¢
\‘ 'I
A
A 2 4
(1) Tetrabody

(mAb-Trap)

PN AN,
PRV SR

(m) IgG-fusion protein

N Y
\\}(’I

0SL

(k) Duobody

Ny L
X

A

(n) IgG-VHH

II 2 new Fc antigen
binding sites

(0) FIT-Ig

FIGURE 1

(p) mAD,

10.3389/fimmu.2025.1572802

D

Schematic overview of the antibody structure and representations of several classical bsAbs formats; (A) Conventional IgG consists of 2 heavy chains
and two light chains, while heavy-chain antibodies are only comprised of heavy chains; (B) No IgG-Llike bsAbs; those bsAb consist of antibody-based
fragments, such as scFv, VHH, Fab, Fc; (C) Asymmetric IgG-based bsAbs; the molecules may contain mutations, knob-into-hole or DEKK for
example, that affect chain pairing and other manufacturability parameters. (D) Symmetric IgG-based bsAbs; Symmetric bispecific antibodies are
generated by a fusion of an additional binding site to the heavy/light chains or by making differential but overlapping use of the light and heavy
complementarity determining regions as primary contacts for each antigen. scFv, single-chain variable fragment; Fab, antigen-binding fragments;

VHH, variable heavy domain of heavy chain; Fc, fragment crystallizable.
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Simplified schematic overview of the proposed mechanisms of action for bispecific antibodies (bsAbs) in clinicals for lung cancer treatment. (A)
Blocking signaling. Two targets are being disrupted by the bsAb. (B) Engagement of immune cells to the tumor cell. Immune cells can be engaged
to tumor cells by bsAbs. (C) Immunocytokine. Increase cytokine accumulation within the tumor and block immune checkpoint. cMET,
mesenchymal-epithelial transition; EGFR, epidermal growth factor receptor; HER2, human-epidermal growth factor receptor 2; HER3, human-
epidermal growth factor receptor 3; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; CTLA-4, cytotoxic T-lymphocyte-
associated protein 4; TIGIT, T cell immunoglobulin and ITIM domain; LAG-3, lymphocyte activation gene 3; VEGF, vascular endothelial growth
factor; TGF-B, transforming growth factor B; DLL3, Delta-like ligand 3; IL-2, interleukin-2.

on IgG (21). Therefore, in some literature and this article,
immunocytokines are classified as a type of bispecific antibody
with a special mechanism (22, 23).

The following is a further discussion and analysis of bispecific
antibodies in lung cancer according to the different mechanisms of
action described previously.

4 Dual inhibition bispecific antibodies

4.1 Dual receptors inhibition bispecific
antibodies

The ErbB family of transmembrane receptor tyrosine kinases
consist of four members: EGFR/ErbB1/HER1, ErbB2/Neu/HER2,
ErbB3/HER3, ErbB4/HER4. ErbB receptors are activated upon
homo-or heterodimerization, which activates many downstream
signaling pathways, primarily the mitogen-activated protein kinase
(MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(PKB/AKT), and Janus kinase (JAK) and signal transducer/
activator of transcription (STAT) signaling pathways (24).
Moreover, all these pathways regulate cell metabolism, growth,
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and survival. Overexpression and overactivation of ErbB receptors
are associated with poor prognosis, drug resistance, tumor
metastasis, and lower survival in a variety of cancers, including
lung cancer. There are two clinically important ErbB inhibitors:
humanized antibodies targeting the extracellular structural domains
of EGFR or HER2 and small-molecule TKIs that compete with
adenosine triphosphate in the structural domain of the receptor
tyrosine kinase. Eventually, however, a significant proportion of
tumor cells develop resistance through the activation of another
ErbB receptor signal or the activation of bypass pathways (25, 26).
BsAbs inhibit tumor growth more effectively by simultaneously
targeting two ErbB members or related bypass pathways, thereby
blocking overlapping downstream signals.

4.1.1 EGFR X cMET

EGFR mutations exist in approximately 50% of Asian NSCLC
patients and 11-16% of European NSCLC patients (27-29).
Currently, the US Food and Drug Administration (FDA) has
approved six EGFR TKIs, as well as a fully humanized
monoclonal antibody targeting EGFR, as the standard of care for
the first-line treatment of NSCLC patients with EGFR mutations
(30). However, the selection pressure exerted by the above drugs
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inevitably leads to treatment resistance. Among cases of acquired
resistance to EGFR TKIs, 5-10% are mesenchymal-epithelial
transition factor (MET) amplified, which activates the EGFR-
independent PI3K-AKT signaling pathway by driving ErbB3
dimerization and signal transduction (31, 32). Drug-resistant
tumors are also able to activate the cMET pathway through
increased cMET expression and/or increased cMET ligand
expression, which provides an alternative mechanism for tumor
cells to bypass the TKI blockade of EGFR and promote cancer cell
survival (33-36). Due to the signaling crossover between EGFR and
cMET, combined inhibition of both receptors may limit the
activation of the compensatory pathway and improve
overall efficacy.

Amivantamab (JNJ-61186372; RybrevantTM) is a fully
humanized bsAb targeting EGFR and cMET and is the first
approved therapeutic agent for NSCLC patients with EGFR exon
20 insertion (EGFR ex20ins) after failure of platinum-containing
chemotherapy. In addition to its ability to block both EGFR- and
cMET-mediated downstream signaling, the antibody exerts its anti-
tumor effects through various Fc-mediated mechanisms, such as
ADCC and ACDP (37, 38). The CHRYSALIS (NCT02609776)
analyses the efficacy and safety of amivantamab in post-platinum
NSCLC patients with EGFR Exon20ins. In the efficacy population,
the reported overall response rate (ORR) was 40%, the median
duration of response (mDOR) was 11.1 months, and the median
overall survival (mOS) was 22.8 months, respectively (10, 39, 40).
Besides, the drug has a favorable safety profile, with the most
common side effects including rash (89%) and infusion-related
events (67%). Based on the above data, the FDA approved the new
drug application of amivantamab in 2021 (41). In a subsequent
clinical trial called PAPILLON (NCT04538664), researchers
analyzed the anti-tumor activity of amivantamab in combination
with carboplatin-pemetrexed. Among treatment-naive NSCLC
patients with EGFR ex20ins, the progression-free survival (PES)
in the amivantamab plus chemotherapy group was significantly
longer than that of the chemotherapy group (median, 11.4 months
and 6.7 months, respectively) (42). Based on this clinical result, the
FDA approved amivantamab plus chemotherapy as a first-line
therapy for advanced NSCLC with EGFR ex20ins mutation (43).

The efficacy of amivantamab is not limited to EGFR ex20ins
mutation. However, it has shown positive clinical benefits for the
larger population of patients with other EGFR and MET mutations.
For patients with locally advanced or metastatic NSCLC with EGFR
mutations (Ex19del or L858R) (NCT06120140), compared to those
receiving osimertinib, patients treated with amivantamab plus
lazertinib had longer mPFS (23.7 months vs. 16.6 months,
HR=0.7) and longer mDoR (25.8 months vs. 16.8 months) (44,
45). For primary METex14 patients with advanced NSCLC treated
with amivantamab (NCT02609776), an ORR of 33% (56% in the
treatment-naive population) with a mDOR of 11.2 months was
observed (46). In addition, a subcutaneous formulation of
amivantamab, based on human hyaluronidase, was developed to
improve patient tolerability and reduce administration time (47). It
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was shown (NCT05388669) that when administered
subcutaneously, the drug was not only pharmacokinetically non-
inferior to intravenous administration, but fewer patients in the
subcutaneous group experienced infusion-related reactions (13% vs.
66%) and venous thromboembolism (9% vs. 14%). Concurrently
subcutaneously administered patients had prolonged mPFS (6.1
months vs. 4.3 months, HR=0.84), prolonged mDOR (11.2 months
vs. 8.3 months), and significantly prolonged OS (HR=0.62).

EMB-01 is an EGFR- and cMET-targeted bispecific antibody
based on the FIT-Ig technology platform, which fuses the Fab of an
anti-cMET antibody to the variable region of an anti-EGFR antibody
to form a tetravalent bispecific antibody. EMB-01 induces
endocytosis of EGFR and ¢MET receptors on the cell surface and
their degradation. Preliminary clinical (NCT03797391) data suggest
an ORR of 5.3% and a DCR of 42.1% in 38 evaluable patients with
advanced NSCLC (48).

MCLA-129 is a 1 + 1 form of asymmetric Ig-G-like bispecific
antibody designed based on the biclonics common light chain
platform (49). It targets both EGFR and c¢cMET and has a
mechanism of action similar to amivantamab. Preliminary clinical
data (NCT04930432) on fortnightly intravenous administration of
1,500 mg MCLA-129 in different NSCLC patients were recently
published: for patients with METex14 mutation, the ORR was
43.5%, and the DCR was 95.7%; for EGFR20ins-mutated patients,
the ORR was 28.6% and DCR of 84.1%; for patients with sensitized
EGFR-mutated, ORR was 21.8% and DCR was 69.1% (50). In
addition, this bispecific antibody in combination with osimertinib
was observed in treatment-naive patients with advanced EGFRmut
NSCLC (NCT04868877) with an ORR of 75.0% and a DCR of
93.8%; in patients who progressed on osimertinib, the ORR was
35.3%, and the DCR was 73.5% (51).

4.1.2 HER2 x HER3

As a member of the ERBB receptor family, HER2 alterations are
involved in the oncogenic process in a variety of solid tumors,
mainly including HER2 mutation, HER2 amplification, and HER2
overexpression, with corresponding incidence rates of 1%-6.7%,
2%-22%, and 7.7%-23%, respectively, in NSCLC and all of them are
associated with poor prognosis (52-55). HER3 is overexpressed in
83% of primary NSCLC tumors and is associated with advanced
disease, shorter time to metastasis, and lower survival (56). HER2 is
activated by dimerization or with other ERBB family members and
further activates downstream signaling pathways. Of all possible
EGEFR family dimers, the HER2:HER3 heterodimer has the highest
translational capacity (57-59). When HER3 binds to its ligands
(neuregulinl-4, NRG1-4), its conformation is altered, exposing its
dimerization sites with other proteins of the EGFR family,
predominantly EGFR and HER2, which induces phosphorylation
events downstream of the protein (60). Notably, NRGI can form
fusion proteins with various membrane proteins, which provide a
transmembrane structural domain to anchor NRGI to the
membrane, thus enabling NRG1 to bind to HER3 in its own or
neighboring cells (61). NRG1 fusions have been detected in a wide
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range of tumors, with the highest number of cases reported in
NSCLC (62). Early reports observed relatively poor NRG1 fusion-
positive (NRG1") lung therapy outcomes. The ORR of those
patients treated with platinum-doublet and taxane-based (post-
platinum-doublet) chemotherapy was only 13% and 14%, with
mPFS of 5.8 and 4.0 months, respectively (63).

Zenocutuzumab (MCLA-128) is an IgG-like asymmetric bsAb
targeting HRE2 and HER3. The antibody preferentially binds to
more abundant HER2 proteins on the cell surface via the higher
affinity HER2-targeting arm, providing a high concentration of
local antibody while at the same time positioning the HER3-
targeting arm to block NRG1 or NRGI fusion proteins binding to
HER3 (64). Thereby, the formation of HER2:HER3 heterodimers is
potently inhibited, preventing subsequent phosphorylation of the
HER3 cytoplasmic structural domain and downstream oncogenic
signaling. In addition, glycoengineering modifications enhanced the
antibody’s ADCC activity (64). The FDA recently granted
accelerated marketing approval for zenocutuzumab based on
clinical results from a study called eNRGy (NCT02912949) (65).
In 64 evaluable patients with NRG1" advanced NSCLC, the
confirmed ORR was 34% (22/64; [95% CI| 23-47), and the
mDOR was 12.9 months, with responses ongoing in 11/22 (50%)
patients (66). The drug’s safety profile was favorable, with <4% of
patients experiencing grade >3 adverse events (66).

4.1.3 EGFR x HER3

In addition to HER3 forming dimers with HER2 to deliver
proliferation and survival signals to the cells, another important
dimerization partner is EGFR. It has been found that regardless of
the type of EGFR-TKIs resistance mechanisms, such as EGFR
T790M mutation, MET amplification, and HER2 amplification,
HER3 amplification is observed in EGFR-mutated NSCLC tumors
that progress after EGFR-TKI treatment (67). HER3 can also be
activated independently of ligand binding through dysregulation of
other tyrosine kinase receptors. For example, in NSCLC carrying
activating EGFR mutations, EGFR can transactivate HER3 via
heterodimers (68). In the presence of EGFR-TKIs, MET
amplification activates HER3, thereby initiating a downstream
PI3K/AKT survival mechanism (31).

Izalontamab (SI-B001) is a tetravalent symmetric bsAb
targeting EGFR and HER3. The antibody is cetuximab-based and
contains an anti-HER3 scFv at the end of the constant region of
cetuximab (69). Since the antibody has a significantly lower affinity
for the HER3 arm than the EGFR arm, the antibody can only bind
to HER3 after definitive binding to the EGFR (69). As a result, it
effectively inhibits tumor cells that express both EGFR and HER3,
minimizing the effect on functioning HER3 in normal tissues. In a
phase II clinical trial (NCT04603287), researchers enrolled 55
patients with locally advanced or metastatic EGFR/anaplastic
lymphoma kinase (ALK) wild-type NSCLC who had failed first-
line anti-PD-1/L1 therapy with or without platinum-based
chemotherapy (PBC) to receive SI-B001 combined with docetaxel
(70). Of the 48 evaluable patients, the ORR and the DCR were
31.3% and 77.1%, respectively (63). Among the patients in Cohort B

Frontiers in Immunology

10.3389/fimmu.2025.1572802

who failed first-line anti-PD-1/L1 combined with PBC, 22 of the
evaluable patients in this cohort were on a regimen of 16 + 9 mg/kg/
week. These patients’ reported ORR and DCR were 45.5% and
68.2%. Among all, the most common>grade 3 treatment-related
adverse events (TRAEs) were myelosuppression (17%), decreased
neutrophil count (15%), and decreased white blood cell
count (12%).

4.2 Dual immune checkpoints inhibition
bispecific antibodies

The immune system is an elaborate and complex network of
multiple signals that activate immune cells to accurately recognize
and eliminate pathogenic microorganisms and mutated cells in the
body. At the same time, to avoid damage to normal tissues and
organs by excessive immune response, the immune system has
evolved a series of checkpoints to modulate the duration and
amplitude of the immune response. However, tumor cells will
hold these checkpoints hostage to escape immune surveillance
(71). Reactivating or enhancing the immune system’s innate or
adaptive immune response to strengthen the attack on cancer cells
is an important strategy for cancer treatment.

4.2.1 PD-1/L1 x CTLA-4

Programmed cell death protein 1 (PD-1), programmed death-
ligand 1(PD-L1), and cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) are the relatively well-studied and most maturely applied
immune checkpoints. Currently, immune checkpoint inhibitors are
approved for treating various solid and hematological malignancies
(72). Despite the success of anti-CTLA-4 and anti-PD-1/L1
therapies, only 10-25% of patients benefit from such treatments
(73). Because of the similarities and differences between the CTLA-
4 and PD-1 pathways and some complementarity between them
(74), combination therapy with anti-PD-1/L1 and anti-CTLA-4
clinically improves overall survival. The combination of these two
classes of antibodies has been approved for the treatment of various
tumors, including non-small cell lung cancer. However, at the same
time, the toxicities of the combination are more intense than those
of the single agent (75-79). On the other hand, PD-1 and CTLA-4
are co-expressed in a high percentage of tumor-infiltrating
lymphocytes (80). Therefore, it is possible to maximize clinical
benefit and minimize additional toxicity by designing bispecific
antibodies that can specifically target such tumor-infiltrating
lymphocytes and avoid activation of immune cells in other
normal tissues by the bsAbs.

Cadonilimab (AK104; FFiEE(@) is a humanized tetravalent
symmetric bispecific antibody incorporating an anti-CTLA-4 scFv
fragment at the C-terminus of each of the two heavy chains of the
anti-PD-1 antibody (81). Also, to avoid T-cell depletion and adverse
immune responses caused by Fc-mediated immune cell activation,
the Fc segment was mutated to completely remove ADCC, ADCP,
and CDC effects (81). Cadonilimab has a higher affinity at high PD-
1 concentrations and a relatively low binding capacity at lower PD-1
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concentrations (82). As a result, the antibody has higher activity in
high PD-1-expressing tumor microenvironments and weaker
activity in normal tissues. It received conditional approval for
marketing in China in June 2022 for the treatment of patients
with recurrent or metastatic cervical cancer who have failed prior
treatment with platinum-containing chemotherapy (83). Several
clinical trials of cadonilimab alone or combined with other drugs
for treating NSCLC and SCLC are underway (83). A clinical trial
called AK104-208 (NCT04646330) evaluated the efficacy of
cadonilimab in combination with anilotinib, an anti-angiogenic
drug, in treatment-naive patients with NSCLC. In 69 evaluable
patients, the overall ORR was 53.6% (95% CI, 41.2-65.7), the DCR
was 92.8% (95% CI, 83.9-97.6), and grade 3" TRAEs occurred in
49.3% of patients (84). Another study called AK104-IIT-018
(NCT05816499) included patients with histologically or
cytologically confirmed stage IIIB/IIIC or IV NSCLC without
sensitizing EGFR/ALK/ROSI mutations, who must have
progressed during or after a PD-1/L1 inhibitor and platinum-
based chemotherapy and were treated with three-drug
combination therapy (cadonilimab plus anilotinib plus docetaxel)
(85). Among 33 evaluable patients, the overall ORR was 30.3% (95%
CI:15.6-48.7%), the DCR was up to 94.0% (95% CI:79.8-99.3%), the
mPFS was 6.5 months, and the proportion of > grade 3 TRAEs was
only 17.4% (85). Patients with advanced driver-negative NSCLC
have limited therapeutic options after progression on first-line
immune-combination chemotherapy (86). The standard of care
recommended by the NCCN guidelines is chemotherapy
monotherapy, such as docetaxel, gemcitabine, and albumin-
conjugated paclitaxel. However, the efficacy was minimal, with
ORR of 14%-17% and mPFS of 4.0-5.4 months (87-89).
Therefore, combining cadonilimab with anlotinib and docetaxel
offers a potentially attractive treatment option for this group of
patients. The LungCadX study (NCT06424821)evaluated the
efficacy and safety of cadonilimab in combination with
chemotherapy as first-line treatment for patients with driver-
negative, PD-L1-negative advanced NSCLC (90). Among 30
evaluable patients, the overall ORR was 66.7%, with an ORR of
93.3% in squamous cancer, 40% in non-squamous cancer, and a
DCR of 100% (90). The drug safety was good, with an overall TRAE
incidence of 61.4%, including 34.1% of > grade 3 TRAEs (90). The
above results indicate that the first-line treatment of PD-LI-
negative advanced NSCLC with cadonilimab in combination with
chemotherapy shows an auspicious therapeutic effect, especially in
patients with squamous carcinoma.

MEDI5752 is a 1 + 1 form of an asymmetric bispecific antibody
that preferentially binds CTLA-4 from PD-1" T cells by reducing
the affinity to the CTLA-4 (80). In a head-to-head comparative trial
with Keytruda, patients treated with carboplatin plus pemetrexed
plus MEDI5752 had better DOR, PES, and OS than those treated
with carboplatin plus pemetrexed plus Keytruda (mDOR: 20.5% vs.
9.9%, mPFS: 15.1 vs. 8.9 months, mDOR: NR vs. 16.5 months) (91).
In addition, bsAbs based on PD-1 and CTLA-4 targeting include
XmAb20717, SI-B003, and MGDO019, some of which have published
preliminary clinical data (Table 1). These bispecific antibodies,
although not aligned with AK104 as well as MEDI5752 in terms
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of the specific protein sequences and format, are all designed to
target both PD-1 and CTLA-4 and to bind PD-1/CTLA-4 double-
positive cells to reduce CTLA-4 toxicity preferentially (124-126).

Erfonrilimab (KN046) is a tetravalent symmetric bsAb targeting
PD-L1 and CTLA-4, consisting of two identical chains, each
consisting of a PD-L1 single-domain antibody, a CTLA-4 single-
domain antibody, and a Fc domain (87). By design, the antibody has
a higher affinity for PD-L1 and, therefore, can preferentially target
the tumor microenvironment with high PD-L1 expression to reduce
toxicities (96). At the same time, the antibody retains the function of
Fc to remove CTLA-4-expressing Treg in the tumor
microenvironment (127). In the study named KN046-201
(NCT03838848), a total of 26 advanced NSCLC patients with
EGFR sensitivity mutation who had failed EGFR-TKI(s) and
without platinum-based chemotherapy were enrolled and were
given KN046 in combination with pemetrexed and carboplatin as
a second-line treatment (95). The reported ORR was 26.9%, mPES
was 5.5 months, and mOS was 20.2 months (95). And 57.7% of the
patients experienced grade 3 or higher TRAEs (95). In another
phase II study evaluating KN046 in combination with
chemotherapy for the first-line treatment of patients with
metastatic NSCLC (NCT04054531), the ORR was 46.0%, with a
mPFS of 5.8 months and a mOS of 26.6 months (96). In addition,
for patients with metastatic NSCLC who had failed previous
immunotherapy and platinum-based chemotherapy, the mOS of
patients given KN046 was up to 13.3 months (97). In a study
evaluating KN046 in combination with axitinib in advanced
NSCLC (NCT05420220), for previously untreated patients with
PD-L1 TPS >1% and patients treated with CPIs, the ORR after
receiving the combination therapy was 56.8% and 9.4% respectively,
and the DCR was 90.9% and 81.3%, showing promising
efficacy (98).

4.2.2 PD-1 x PD-L1

IBI318/LY3434172 is an IgG-like dual antibody targeting PD-
L1 and PD-1, and preclinical data suggest that it has significant
tumor-suppressive effects and is superior to equivalent doses of
monoclonal antibodies, as well as the combination of PD-1 and PD-
L1 monoclonal antibodies (128). Preliminary phase Ib clinical
(NCT03875157) data suggests that this drug has significant
efficacy in immunotherapy-naive NSCLC patients who had failed
or were intolerant to first-line chemotherapy. Its ORR in patients
with PD-L1 scores of 1-49% and >50% was 12.5% (1/8) and 45.5%
(5/11), respectively, and its DCR was 50% (4/8) and 81.8% (9/11),
respectively (99).

4.2.3 PD-1/(L1 x TIGIT

T cell immunoglobulin and ITIM domain (TIGIT) is an
immune checkpoint that has recently attracted attention. TIGIT
interacts with CD155 (poliovirus receptor, PVR, or NECL-5) on the
surface of antigen-presenting cells or tumor cells and inhibits the
anti-tumor response of T cells and NK cells (129). TIGIT is
expressed in various lung cancers, including NSCLC, and
overexpression of TIGIT/CD155 is an unfavorable prognostic
factor in lung adenocarcinoma (130). TIGIT is generally co-
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TABLE 1 Clinical results of bsAbs in lung cancer.

Targets INN

Sponsor

Format

Phase

Pts
characteristics
and
intervention

10.3389/fimmu.2025.1572802

Key results

JNJ-61186372 EGFR Amivantamab
cMET

EMB-01 EGFR Bafisontamab
cMET

MCLA-129 EGFR /
cMET

Janssen

EpimAb

Merus

Duobody
(1+1)

FIT-Ig
2+2)

Biclonics
(1+1)

approved
(American)

Pts with EGFR
Exon20ins advanced
NSCLC who
progressed after
platinum-based
chemo;

Amiv mono; N=81;

ORR: 40%; (39)
mDOR: 11.1 mos.;
mPES: 8.3 mos.;
mOS: 22.8 mos;
TRAEs: 99%;
Grade 3"

TRAEs: 35%;

Pts with EGFR
Exon20ins advanced
NSCLC who had not
received previous
systemic therapy;
Amiv + Chemo,
N=151;

Chem, N=155;

Pts with treatment-
naive, EGFR-mutated
(Ex19del or L858R)
locally advanced or
metastatic NSCLG;
Amiv + Lazertinib,
N=429;

Osimertinib, N=429;

mPFS: 11.4 mos. vs. | (42)
6.7 mos.;

PFS reported at 18
mos.: 31% vs. 3%;
mOS: NR vs. 24.4
mos. (HR=0.67, 95%
CI, 0.42-1.09);
TRAEs: 100% vs.
98%

Grade 3" TRAEs:
75% vs. 54%

(Amiv + Chem

vs. Chemo)

ORR: 86% vs. 85%; (44)
mDOoR: 25.8 mos.vs. (45)
16.8 mos.;

mPES: 23.7 mos. vs.
16.6 mos. (HR=0.70,
95% CI, 0.58-0.85);
Grade 3" TRAEs:
75% vs. 43%

(Amiv + Lazertinib
vs. osimertinib)

Pts with relapsed or
refractory NSCLC
with MET exon 14
skipping mutation;
Amiv mono; N=97;

Pts with EGFR-
mutated advanced
NSCLC who
progressed after
osimertinib and
platinum-based
chem;

Amiv subcutaneous
combined with
Lazertinib, N=206;
Amiv intravenous
combined with
Lazertinib, N=212;

Pts with advanced
solid tumors;
EMB-01

mono; N=38;

Pts with relapsed or
refractory NSCLG;
MCLA-129 mono;
METex14 mutation,

ORR: 33%; (46)
mDoR: 11.2 mos.;
CBR: 69%;

Grade 3"

TRAEs: 42%;

ORR: 30% vs. 33%; (47)
mPES: 6.1 mos. vs.
4.3 mos.;
mDoR:11.2 vs 8.3
mos.;

OS: significantly
longer (HR 0.62,
95% CI, 0.42- 0.92);
IRRs: 13% vs. 66%;
VTE: 9% vs. 14%;

ORR: 5.3%; (48)
SD: 36.8%;

DCR: 42.1%;
Grade 3" TRAEs:
8.3% (rash);
1.7%(others);

ORR: 43.5%; 28.6%; (50)
21.8%;
DCR: 95.7%; 84.1%;
69.1%;
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TABLE 1 Continued

10.3389/fimmu.2025.1572802

Targets Sponsor Format Phase Pts Key results
characteristics
and
intervention
N=23; EGFR mDoR: 6.3 mos.; 7.2
Exon20ins, N=63; mos.; 9.8 mos.;
sensitized EGFR- Grade 3"
mutated, N=55; TRAEs: 51.6%;
Pts with advanced/ ORR: 75.0%; 35.3%; (51)
metastatic EGFRmut DCR: 93.8%; 73.5%;
NSCLC who were Grade 3" TRAEs:
treatment-naive or 23%; 38%;
progressed on
osimertinib;
MCLA-129 +
Osimertinib;
treatment-naive,
N=16; progressed on
Osimertinib, N=34;
MCLA-128 HER2 Zenocutuzumab | Merus Biclonics 11 Pts with relapsed or ORR: 34%; (66)
HER3 1+1) refractory advanced mDoR: 12.9 mos.;
NRG1" NSCLG; Grade 3"
MCLA-128 TRAEs: <4%;
mono; N=64;
SI-B001 EGFR Izalontamab Baili 1gG1- 111 Patients with locally ORR: 31.3%; (70)
HER3 scFv, advanced or DCR: 77.1%;
2+2) metastatic EGFR/ALK |~ Grade 3" TRAEs:
wild-type NSCLC 17%
who had failed first- (myelosuppression);
line anti-PD-1/L1 15% (decreased
therapy; neutrophil count);
SI-B001+ PBC/ 12% (decreased
docetaxel; N=48; white blood
cell count);
AK104 PD-1 Cadonilimab Akeso Tetrabody | approved Pts who had failed ORR: 10%; (92)
CTLA-4 2+2) (China) previous platinum- DCR: 40%;
based doublet chemo mOS: 19.6 mos.;
and were Grade 3"
immunotherapy TRAEs: 11.3%;
naive;
AK104 mono; N=30;
Pts with advanced ORR: 70.6%; 16.7%; (93)
NSCLG; DCR: 94.1%; 100%;
AK104 + anlotinib; Grade 3" TRAEs:
treatment naive, 14.3%; 5.9%;
N=17; anti-PD-1/L1
resistant, N=6;
Treatment naive Pts ORR: 53.6%; (84)
with advanced DCR: 92.8;
NSCLC; AK104 + mDoR: NR;
anlotinib; N=69; Grade 3"
TRAEs: 49.3%;
Pts with histologically = ORR: 30.3%; (85)
or cytologically DCR: 94.0%;
confirmed stage IIIB/ | mPFS: 6.5 mos.;
1IC or IV NSCLC Grade 3"
without sensitizing TRAEs: 17.4%;
EGFR/ALK/ROS1
mutations must had
progressed during or
after a PD-1/L1
(Continued)
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TABLE 1 Continued

10.3389/fimmu.2025.1572802

Targets Sponsor Format Pts Key results
characteristics
and
intervention
inhibitor and a
platinum-based
chemotherapy;
AK104 + anlotinib +
docetaxel; N=33;
MEDI5752 PD-1 Volrustomig AstraZeneca DuetMab 111 Pts with NSCLC who =~ ORR: 50%; 47.6%; (91)
CTLA-4 1+1) were treatment-naive; =~ ORR in PD-L1<1%:
carboplatin/ 55.6%; 30.0%;
pemetrexed + mPFS: 15.1 mos.;
MEDI5752, N=20; 8.9 mos.;
carboplatin/ mPES in PD-
pemetrexed + L1<1%: 13.4 mos.;
pem, N=21; 9.0 mos.;
mOS: NR; 16.5
mos.;
Grade 3" TRAEs:
32%,
TEAE-D/C: 20%
SI-B003 PD-1 / Baili IgG1- I Pts with recurrent or ORR: 16.1%; (94)
CTLA-4 scFv, (2 metastatic solid DCR: 50.0%;
+2) tumors who had
failed standard
therapy;
SI-B003
mono; N=56)
KNo046 PD-L1 Erfonrilimab Alphamab VHH-Fc 111 Pts with EGFR ORR: 26.9%; (95)
CTLA-4 2+2) sensitizing mutation DCR: 84.6%;
(Ex19del or L858R), CB: 38.5%;
and failed from prior =~ mPFS: 5.5 mos.;
EGFR-TKI(s) without = mOS: 20.2 mos.;
platinum-based Grade 3" TRAEs:
chemo; 19.2% (infusion
KNO046 + Pemetrexed = reaction); 15.4%
+ carboplatin (decreased platelet
AUC5; N=26; count);
11.5% (anemia);
Pts with advanced ORR: 43.1%; 52.9% (96)
NSCLG; CBR: 50%; 61.1%;
KNO046+ chemo; non- = mDOR: 9.1 mos.;
squamous NSCLC, 7.3 mos.;
N=51; squamous mPFS: 5.8 mos.; 5.7
NSCLC, N=36; mos.;
mOS: 27.2 mos;
26.6 mos.;
Grade 3"
TRAEs: 66.7%;
Pts had NSCLC that ORR: 3.2%; 97)
had progressed after DCR: 38.7%;
ICI(s) and platinum- mPES: 2.8 mos.;
based chemotherapy, = mOS: 13.3 mos.;
excluding EGFR Grade 3" TRAEs:
mutation and/or ALK = 9.7% (anemia); 3.2%
translocation; KN046 (febrile
mono; N=31; neutropenia);
3.2% (fatigue);
Pts with stage IIIB-IV. | ORR: 56.8%; 73.3%; (98)
NSCLC and without 9.4%;
(Continued)
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TABLE 1 Continued

10.3389/fimmu.2025.1572802

Targets Sponsor Format Phase Pts Key results
characteristics
and
intervention
EGFR activating DC: 90.9%; 93.3%;
mutation and ALK 81.3%;
rearrangement; mDOR: 13.2 mos.;
KNO046 -+axitinib; NE; 7.4 mos.;
treatment-naive and mPES: 8.3 mos.;
PD-L1 expression 12.4 mos.; 5.6 mos.;
>1%, N=44; Grade 3" TRAEs:
treatment-naive and 58.5%;
PD-L1 expression 59.4%; 58.8%;
>50%, N=15;
progressed on
CPIs, N=32);
1BI318/LY3434172 PD-1 / Innovent/Lilly | IgG like 1I Pts with advanced ORR: 0%; 12.5%; (99)
PD-L1 (1+1) NSCLC; 45.5%;
IBI318/LY3434172 DCR: 30%; 50%;
mono;[0-failed 81.8%;
NSCLC, N= 10; Grade 3"
immunotherapy- TRAEs: 8.2%;
naive NSCLC pts
with a PD-L1 TPS of
1-49%, N=8;
treatment-naive
NSCLC pts with a
PD-L1 TPS =
50%, N=11;
AZD2936 PD-1 Rilvegostomig AstraZeneca DuetMab 111 Pts with advanced ORR:29%; 61.8%; (100)
TIGIT 1+1) NSCLC who had 36.7%;
prior CPIs treatment DCR:64.5%; 88.3%;
and a PD-L1 tumor 66.7%;
proportion score mDoR (all
>1%; confirmed
AZD2936 mono; PD- | responders): 10.5
L1 TPS=1-49%, mos.;
750mg, N=31; PD-L1  discontinued due to
TPS=50%, 750mg, TRAEs: 4.2%;
N=34; PD-L1 Grade 3"
TPS=50%, TRAEs: 10.5%
1500mg, N=30;
PM1022 PD-L1 / Biotheus IgG-VHH Pts with advanced ORR: 7.1%; (101)
TIGIT 2+2) solid tumors; DCR: 35.7%;
PM1022 TRAESs: 53.3%;
mono; N=15;
MDG103 PD-1 Tebotelimab MacroGenics DART-Fc 111 Pts with advanced or ORR: 14.3%; 0; (102)
LAG-3 2+2) metastatic NSCLC; DCR: 64.3%; 53.3%;
MDG103 mono; CPIs = Grade 3 +
naive, N=14; post- TRAEs: 50.5%;
CPI, N=15;
AK112 PD-1 Ivonescimab Akeso/Summit = Tetrabody | approved NSCLC pts with ORR: 50.6% vs. (103)
VEGF-A 2+2) (China) EGFR mutations who = 35.4%;
had failed prior mPFS: 7.06 mos. vs.
EGFR-TKIs therapies; = 4.80 mos.;
Ivon + chemo, mDOR: 6.6 mos. vs.
N=161; placebo + 4.2 mos.;
chemo, N=161; PFS: significantly
improved (HR 0.46,
0.34-0.62);
OS: significantly
improved(HR 0.8,
95% CI, 0.59-1.08)
(Continued)
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TABLE 1 Continued

10.3389/fimmu.2025.1572802

Targets Sponsor Format Phase Pts Key results
characteristics
and
intervention
Grade 3" TEAEs:
61.5% vs. 49.1%;
(Ivon + chemo vs.
placebo + chemo)
Pts with previous ORR: 50.0% vs. (104)
untreated stage IITB 38.5%;
to IV advanced DCR: 89.9% vs.
NSCLC (EGFR/ALK 70.5%;
wild-type and PD- mPFS: 11.14 mos.
L1=1%); vs. 5.82 mos.; (HR
Ivon, N=198; 0.51; 0.38-0.69)
Pemb, N=200; TEAEs: 89.8% vs.
81.9%
Grade 3" TEAEs:
29.4% vs. 15.6%;
(Ivonescimab
vs Pembrolizumab)
PM8002 PD-L1 / Biotheus/ IgG-VHH  III Pts with advanced ORR: 47.1%; 19.4%; = (105)
VEGF-A BioNTech 2+2) NSCLG; 12.5%;
PM8002 mono; mPFES: 10.9 mos.;
Treatment-naive no- 4.9 mos.; 6.7 mos.;
$q-NSCLC with 6 mos. PFS: 82.4%;
EGFR/ALK wild-type 43.8%; 62.5%;
and PD-L1%, N=17; Grade 3"
EGRE-TKI treated TEAEs: 18%;
n0-sq-NSCLC, N=36;
10 and PBC treated
NSCLC with EGFR/
ALK wild-type, N=8;
Pts with advanced ORR: 72.7%; (106)
SCLC who failed DCR: 81.8%;
first-line platinum- mPFS: 5.5 mos.;
based chemo with or  Grade 3"
without CPIs therapy; =~ TEAEs: 18%
PM8002
mono; N=22;
IMM2510 PD-L1 / ImmuneOnco/ | IgG-fusion | Ib/I Pts with advanced ORR: 12% (3/25); (107)
VEGFs Instil Bio protein solid tumors; DOR: 40% (10/25);
2+2) IMM2510 Grade 3+
mono; N=25; TEAEs: 33.3%;
SHR-1701 PD-L1 Retlirafusp alfa Suzhou IgG-fusion | III Pts with advanced/ ORR: 36.8%; 19.5%; (108)
TGF-B Suncadia protein metastatic NSCLG; 9.1%
2+2) SHR-1701 mono; DCR: 66.7%; 46.3%;
Treatment-naive 54.5%
NSCLC with PD-L17, mPFS: 5.3 mos.; 1.4
N=57; EGFR TKIs mos.; 2.1 mos.;
treated or no mOS: 24.2 mos.;
standard EGFR TKIs 14.4 mos.; 16.1
were available mos.;
NSCLC, N=41; CPIs Grade 3"
treated pts who had TEAEs: 22.9%;
received up to 3
previous lines of
treatments, N=33;
Pts with unresectable post-induction (109)
stage ITI NSCLC; ORR: 58%;
SHR-1701 plus chem = 18-month EFS:
followed by surgery 56.6%;
(Continued)
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Targets Sponsor Format Phase Pts Key results
characteristics
and
intervention
or radiotherapy, and Pts underwent
then consolidation surgery: 25%;
SHR-1701; N=107; Pts achieved RO
resection: 25%;
mPR: 12%;
cPR: 6.5%;
AMG757 DLL3 Tarlatamab Amgen HEL-BIiTE | approved Pts with advanced ORR:40%; 32%; (110)
CD3 1+1) (American) | SCLC previously mPFS: 4.9 mos; 3.9
treated with two or mos.;
more lines of therapy; = mOS: 14.3 mos.;
Tarl mono; 10mg- NE;
group, N=100; CRS: 51%; 61%
100mg-group, N=88; = Grade 3" TEAEs:
59.4%; 64%;
Fatal: 5.3%; 6%;
Pts with previously ORR:25%; 35.3%; (111)
treated SCLC; mDOR: 11.2 mos.;
Tarl mono; 19.4 mos.;
Tarl>10mg, N=152; mOS: 17.5 mos.;
10 mg Tarl Q2W, 20.3 mos.;
n=17; ) Intracranial DCR
(all): 87.5% (14/16);
BI-764532 / OBT-620 DLL3 / Boehringer IgG like I Pts with locally PR: 26%; 19%; 60%; | (112)
CD3 Ingelheim/ 1+1) advanced/metastatic 25%;
Oxford DLL3" (confirmed DCR: 51%; 44%;
Bio centrally) solid 100%; 52%;
Therapeutics tumors; Grade 3" TEAEs:
BI-764532 mono; 27%
SCLC, N=39; epNEC, = Discontinued due to
N=27; LCNEC, N=5; = TRAEs: 4%;
ALL, N=71;
HPN328/MK6070 DLL3 / Harpoon/ TriTAC /11 Pts with relapsed/ ORR: 39%; 46%; (113)
CD3 Merck (1 +1+1) refractory, metastatic DCR:71%; 46%;
HSA SCLC and other NEN = Grade 3" TEAEs:
associated with DLL3 = 26%;
expression; HPN328 discontinued due to
mon; SCLC, N=28; TRAES: 4%;
other NEN, N=13; death due to
TRAEs: 2%;
Pts with relapsed/ ORR:37%; 19%; (114)
refractory, metastatic DCR: 78%; 48%;
SCLC; HPN328
mono; Brain
metastases, N=28; No
brain
metastases, N=21;
JANX008 EGFR / Janux TRACTr I Pts with advanced or one Pt with NSCLC (115)
CD3 (1 + 1+1) metastatic solid had a confirmed PR
tumors known to with 100%
express high levels of  reduction of the
the EGFR target target lung lesion
JANX008 and elimination of
mono; N=11; liver metastasis;
Grade 1 CRS in
2 Pts;
GEN1046 PD-L1 Acasunlimab Genmab Duobody 111 Pts with advanced DCR: 65.6%; (116)
4-1BB 1+1) solid tumors; Grade 3" TEAEs:
(Continued)
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TABLE 1 Continued

Format Phase Pts

Targets

Sponsor Key results

characteristics
and
intervention

GEN1046 21.3%;
mono; N=61; DLT: 9.8%
Pts with PD-L1* ORR: 12.5%; 18.2%; (117)
metastatic NSCLC 16.7%;
who had disease DCR: 50%; 59.1%;
progression following = 75%;
one or more prior mDOR: 2.0 mos.;
lines of anti-PD-1/ 5.2mos.; NR mos.;
L1-containing mOS: 5.5 mos.; 8.6
treatment; arm A, mos.; 17.5 mos.;
GEN1046 100 mg Grade 3" TEAEs:
Q3W x 2 cycles then  liver reated events
500 mg Q6W, N=16; (9.1%; 16.7%;
arm B, GEN1046 100 12.2%); anemia
mg + pemb 200 mg (4.5%; 2.4%; 0%);
Q3W, N=22; arm C,
GEN1046 100 mg +
pemb 400 mg
Q6W, N=24;
FS222 PD-L1 F-star mAb2 I Pts with pretreated ORR: 15.7% (118)
4-1BB 2+2) advanced solid (include NSCLC);
tumors; FS222 Grade 3" TEAEs
mono; N=90; (210% of pts): AST
(13.3%);
ALT (11.1%);
AFM24 EGFR Affimed IgGl1- 11T Pts with EGFR DCR: 50%; (119)
CD16 scFv, (2 mutant NSCLC, Grade 3" TEAEs:
+2) relapsed or refractory = 40%;
to =1 prior lines of Grade 5
therapy; pneumonitis: 1/10
AFM24 mono, N=10;
Pts with advanced or ORR: 26.7%; (120)
metastatic EGFR-WT DCR: 73.3%
NSCLC who Grade 3+
progressed on =1 TEAEs: 13.3%
prior line of therapy,
including at least a
platinum doublet and
a CPI;
AFM24
+atezolizumab, n=15;
1BI363 PD-1 Innovent IgG-fusion | 1II Pts with advanced ORR: 24.1%; (22)
1L-2 protein non-small cell lung DCR: 68.4%;
(1+1) cancer IBI363 Grade 3" TEAEs:
mono, N=79; 19.1%;
discontinued due to
TRAEs: 4.5%;
death due to
TRAEs: 1.1%;
PF-07209960 PD-1 Pfizer IgG-fusion | I Pts with advanced or ORR: 6.9%; (121)
IL-15 protein metastatic solid DCR: 48.3%
2+1) tumors, N=29; Grade 3"
TEAEs: 778.4%;
SAR44587/KD055 PD-1 Sanofi IgG-fusion | I / / (122)
IL-15/IL15-Rou protein
2+1)
(Continued)
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TABLE 1 Continued

Targets

Sponsor

10.3389/fimmu.2025.1572802

Phase Pts
characteristics
and

intervention

Format Key results ref

TIAP0971 PD-1

IL-15/IL15-Ra

SunHo Bio

IgG-fusion | I / /
protein
2+1)

(123)

bsAb, bispecific antibody; INN, international nonproprietary name; pts, patients; ref, reference; EGFR, epidermal growth factor receptor; cMET, c-mesenchymal-epithelial transition factor;
NSCLC, no small cell lung cancer; chemo, chemotherapy; amiv, amivantamab; mono, monotherapy; N, number of efficacy population; ORR, objective response rate; CI, confidence interval;
mDOR, median duration of response; mos., months; NR, not reached; mPFS, median progression-free survival; mOS, median overall survival; TRAE, treatment-related adverse events; CBR,
clinical benefit ratio; VTE, venous thromboembolism; SD, stable disease; DCR, disease control rate; NRG1, neuregulin 1; PD-1, programed cell death protein 1; PD-L1, programed death-ligand 1;
PBC, platinum-based chemotherapy; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; HER2, human epidermal growth factor receptor-2; HER3, human epidermal growth factor receptor-
3; pemb, pembrolizumab; ICI, immune checkpoint inhibitor; TIGIT, T cell immunoreceptor with Ig and ITIM domains; CPIs, checkpoint inhibitors; LAG3, lymphocyte activation gene-3; VEGF-
A, vascular endothelial growth factor A; Ivon, Ivonescimab; no-sq-NSCLC, non-squamous NSCLC; TGF-p, transforming growth factor-B; DLL3, delta-like protein 3; SCLC, small cell lung
cancer; Tarl, tarlatamab; Q2W, once every two weeks; CRS, cytokine-release syndrome; epNEC, extrapulmonary neuroendocrine carcinoma; LCNEC, large cell neuroendocrine carcinoma; NEN,

neuroendocrine neoplasms; PR, partial response.

expressed with immunosuppressive molecules, such as PD-1, on
various T cells, and both inhibit CD8" T cell activity through
different mechanisms (131, 132). TIGIT blockade is a promising
immunotherapy in terms of molecular mechanisms. However,
vibostolimab and tiragolumab, two monoclonal antibody drugs
targeting TITGI, are ineffective as monotherapy (133, 134).
However, tiragolumab in combination with atezolizumab had an
overall ORR of 37% and an ORR of 66% in the PD-L1 TPS>50%
subgroup, which exceeded atezolizumab monotherapy (21% and
24%, respectively) (135). Therefore, developing bsAb targeting PD-
1 and TIGIT is also interesting to researchers.

Rilvegostomig (AZD2936) is an asymmetric dual antibody
targeting PD-1 and TIGIT. The initial efficacy of rilvegostomig in
patients with advanced NSCLC treated with CPIs has been
published (NCT04995523). Patients with PD-L1 TPS >50%
treated with rilvegostomig 750mg had an ORR of 61.8% and a
DCR of 88.3%, and the drug had a favorable safety profile, with a
grade 3 or higher adverse events rate of 10.5% (100). The company
developing the drug is currently conducting a head-to-head clinical
trial with Keytruda, which shows the drug developer’s confidence in
this drug.

PM1022 is a bispecific antibody targeting PD-L1 and TIGIT,
with VHH targeting PD-L1 fused to the C-terminus of the anti-
TIGIT antibody. The antibody is currently undergoing a dose
extension clinical study (NCT05867771), and preliminary results
show an ORR of 7.1%, a DCR of 35.7%, and an overall TRAE rate of
53.3% in treated patients (101). One of the NSCLC patients had
received prior treatment, including chemotherapy and anti-PD-1
therapy, and had a 56.8% reduction in lesion size (101).

4.2.4 PD-1 x LAG-3

Lymphocyte activation gene 3 (LAG-3), the third-generation
immune checkpoint receptor, is highly up-regulated on exhausted T
cells in the tumor microenvironment (136). The binding of LAG-3
to its classical ligand, the major histocompatibility complex-II, leads
to the down-regulation of T cell activation, proliferation, and
cytokine production, ultimately causing T cell dysfunction (137).
Immunohistochemistry analysis revealed that LAG-3 is expressed
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in various cancer tissues, with 90% of NSCLC and 52% of SCLC
samples having detectable positive LAG-3 expression (102). In
NCSLC, co-expression of PD-1 and LAG-3 was detectable in 59%
of samples (102). Moreover, it was found that LAG-3 and PD-1
synergize on CD8" T cells to drive T cell exhaustion (138).
Currently, the FDA approved Opdualag (consisting of a fixed-
dose combination of relatlimab and nivolumab) for treating
unresectable or metastatic melanoma in 2022 (139). In addition,
it was shown that compared to nivolumab combination
chemotherapy, Opdualag combination chemotherapy improved
ORR (53.2% vs. 40.8%), prolonged mPFS (9.8 vs. 6.1 months),
and had an HR of 0.63 in this group of NSCLC patients with PDL1
> 1%; and, for non-squamous NSCLC (non-sq-NSCLC) patients
with PD-L1 TPS>1%, the ORR improved to 58%, the mPFS
increased to 11.6 months, and the HR was further reduced to
0.55 (140). The above study demonstrated that dual immune
checkpoint therapy with LAG-3 and PD-1 has a better prospect
in lung cancer treatment.

MGD103 (Tebotelimab) is a tetravalent DART-Fc (IgG4k)
fusion protein that blocks PD-1 and LAG-3. In vitro studies have
shown that this bsAbs is significantly more potent than the
combination of nivolumab and relatlimab in stimulating IFN-y
secretion (102). Tebotelimab had an ORR of 14.3% and a DCR of
64.3% in NSCLC patients who did not receive CPIs; however, no
remission was observed in NSCLC patients who had previously
received CPIs (NCT03219268) (102). Interestingly, there was a
correlation between objective response to tebotelimab and LAG-3
expression (P < 0.05), but no statistical association between PD-1
and clinical response was observed (102).

In addition to the aforementioned immunomodulatory targets
with more basic and clinical studies, some new immune checkpoint
molecules (e.g., OX40, TIM3) have also attracted the attention of
researchers in the past decade (141, 142). Moreover, there is much
clinical or preclinical evidence that these new immune checkpoints
synergize with anti-PD-1/L1 and/or anti-CTLA-4 monoclonal
antibodies (143). Therefore, it is worth waiting for the final clinical
outcome based on these newly discovered immune checkpoints
combined with PD-1/L1 or anti-CTLA -4 to form a bsAbs.
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4.3 Dual inhibition of tumor
microenvironment and immune
checkpoints

A tumor is a heterogeneous complex of tumor cells, various
non-malignant cells (e.g., immune cells, stromal cells, endothelial
cells, cancer-associated fibroblasts), and various non-cellular
components (e.g., vascularised extracellular matrix, exosomes,
cytokines) (144). The tumor microenvironment (TME) influences
tumor growth, metastatic spread, and response to therapy.
It has become common knowledge that TME-mediated
immunosuppression impairs beneficial responses.

4.3.1 PD-1/L1 x VEGF

In NSCLC, high vascular endothelial growth factor (VEGFs)
expression is associated with tumor recurrence, low survival,
metastasis, and death in patients (145, 146). Overexpression of
VEGF induces a reduction in the expression of endothelial cell
adhesion molecules, which severely impairs T-cell homing and
reduces the number of T lymphocytes entering the TME (147). It
has been shown that VEGF-A also enhances the expression of PD-1
and other inhibitory checkpoints, such as CTLA-4, on the surface of
T cells and inhibits the activity of CD8" T cells, leading to a
blockade of the effector function of T cells (148-150). Therefore,
combining anti-angiogenic drugs with immunotherapy, which
normalizes tumor vasculature through anti-angiogenic drugs and
promotes the increase of tumor immune cells (e.g., tumor-
infiltrating lymphocytes) in NSCLC, and utilizing immune
checkpoint inhibitors which can unlock the functional inhibition
of T cells by PD-1 and PD-L1, both act synergistically with
each other thus showing better therapeutic effects within solid
tumors (151-153). In the IMpower-150 trial, researchers tested
atezolizumab plus bevacizumab plus chemotherapy as a first-line
treatment for non-squamous NSCLC (non-sq-NSCLC), with an
ORR and PFS of 63.5% and 8.3 months, respectively (154). Still, the
incidence of adverse events in grades 3 or higher was as high as
58.5% (154). The FDA has approved atezolizumab, bevacizumab,
and chemotherapy as first-line treatment for advanced non-
squamous NSCLC (155).

AK112 (Ivonescimab) is a humanized anti-PD-1/VEGF-A
bispecific monoclonal antibody in which an anti-PD-1 scFv fused
to the end of each of the two heavy chains of the anti-VEGF-A
antibody (bevacizumab) to form a tetravalent bis-antibody.
This bispecific antibody can accumulate in the tumor
microenvironment, effectively blocking both the PD-1 and VEGF
pathways, inhibiting PD-1-mediated immunosuppression, and
blocking tumor angiogenesis in the microenvironment (156, 157).
In May 2024, China approved AK112 in combination with
chemotherapy (pemetrexed + carboplatin) for patients with
locally advanced or metastatic non-sq-NSCLC who are EGFR
mutation-positive and have progressed after treatment with EGFR
TKIs (158). The approval was based on a phase III clinical trial
called HARMONIi-A (NCT05184712), which showed that in
patients resistant to EGFR TKIs, AK112 in combination with
chemotherapy was sufficient to significantly prolong mPFS
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compared to placebo combination chemotherapy (7.06 months
vs. 4.08 months; HR 0.46) and patients had a higher ORR (50.6%
vs. 35.4%) (103). The primary results of HARMONI-2
(NCT05499390), a trial comparing the efficacy of ivonescimab
with that of pembrolizumab, were also presented. It showed that
in patients with previously untreated stage IIIB to IV advanced
NSCLC who were EGFR/ALK wild-type and with PD-L1 TPS>1%,
AK112 significantly prolonged their mPFS compared to
pembrolizumab (11.14 vs. 5.82 months; HR, 0.51; p<0.0001),
increasing their ORR (50.0% vs. 38.5%) and DCR (89.9% vs.
70.5%) (104). Although the rate of serious adverse events in
patients treated with AK112 was slightly higher than with
pembrolizumab (Grade 3" TRAEs: 29.4% vs. 15.6%), the results
of HARMONI-2 are still encouraging (104). It is expected that
AK112 will become a potential clinical option in the first-line
treatment of lung cancer.

PM8002 is a humanized anti-PD-L1/VEGF-A bispecific
antibody with the variable region of a humanized anti-PD-L1
nanobody fused at the end of the two heavy chains of the anti-
VEGEF-A antibody. Preliminary published data (NCT05918445)
showed that in untreated EGFR/ALK wild-type and PD-L1"
patients who received PM8002, the ORR is 47.1%, the mPFS is
10.9 months, and the incidence of grade >3 TRAEs was 18% (105).
In addition, another study (ChiCTR2200059911) demonstrated the
efficiency of PM8002 combined with paclitaxel for second-line
treatment of SCLC. It was reported that the ORR was 72.7% (16/
22), the DCR was 81.8% (18/22), and the mPFS was 5.5 months
(106). Notably, the reccommended drug for second-line treatment of
SCLC is topotecan, with an ORR of 22% and a mDoR of 7.6 months
(159). Therefore, further observing the subsequent clinical efficacy
of PM8002 in SCLC is worthwhile.

IMM2510 is a bispecific antibody targeting PD-L1 and VEGFs
that incorporates a VEGF receptor 1 domain 2 (VEGFR1-D2) at the
C-terminus of each of the two heavy chains of the anti-PD-L1
antibody, forming a VEGF trap capable of binding a wide range of
VEGF receptor ligands in addition to VEGF-A (160). IMM2510 is
currently in the preliminary phase I clinical studies
(NCT05972460). As of 21 December 2023, 33 patients with
advanced solid tumors were treated with IMM2510 at nine doses
(0.007-20.0 mg/kg) (107). Among the 25 patients whose conditions
were evaluable, 3 patients had achieved confirmed partial response,
and 7 patients had stable disease (107). Among the PR patients, one
patient with sq-NSCLC (onco-driver gene negative, previous 10
treatment failure) who was treated with 3 mg/kg IMM2510
achieving tumor shrinkage of 46% and still on the treatment with
treatment duration over 20 months; one sq-NSCLC treated with 10
mg/kg showed a tumor shrinkage of about 32% and a treatment
duration of 9.4 months (107). TRAEs occurred in 32 pts (97.0%),
and most were grade 1 or 2. Grade >3 TRAEs occurred in 11 pts
(33.3%), and no DLT occurred (107).

4.3.2 PD-L1 x TGF-B

A central factor in tumor immune resistance is
immunosuppressive cytokines in the tumor microenvironment, a
major component of which is transforming growth factor § (TGF-
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B). It has been shown that TGF-f3 upregulates PD-L1 transcription
in tumors (161). Besides, TGF-3-mediated T-cell rejection is one of
the mechanisms by which tumors become resistant to anti-PD-L1
therapy (162). TGF-P also induces the release of PD-L1-containing
exosomes by tumor cells, and PD-L1 exosomes in tumor regions
hamper the effector activity of CD8" T cells (163). In addition, there
is a bidirectional interaction between TGF-f and tumor-area
hypoxia, where hypoxia is considered a key inducer of TGF-f,
and the activity of the latter further enhances tumor-area hypoxia
(164). Hypoxia induces upregulation of PD-L1 expression on tumor
cells and upregulation of PD-1 expression on immune cells (e.g.,
TAMs, DCs, Tregs) in the tumor microenvironment (165, 166).
Aberrant TGF- activity is associated with immunosuppressive
TME, promoting progression and metastasis in NSCLC (167).
Several companies have developed drug molecules with dual
inhibitory effects on PD-1/L1 and TGF-f, among which M7824
and SHR1701 were developed earlier and have more preclinical and
clinical data.

M7824 is a bifunctional fusion protein, a molecule that fuses a
TGF-P receptor II (a TGF- ‘trap” which is capable of trapping all
TGEF-B) to the end of the constant region of avelumab via a flexible
linker (168). M7824 has been noticed and given high expectations
based on its phase I clinical (NCT02517398) results released in
2018. Among 40 patients with advanced NSCLC who relapsed after
standard therapy treated with 1200 mg of M7824, the ORR was
40.7% for PD-L1-positive patients and 71.4% for patients with high
PD-L1 expression (169). However, the subsequent publication of
several clinical data has overshadowed M7824’s prospects. In the
phase III clinical trial (NCT03631706) using either M7824 or
pembrolizumab as first-line treatment for patients with advanced
PD-L1 high-expression (TPS 280%) NSCLC, the results showed
that first-line treatment with M7824 did not demonstrate superior
efficacy compared to pembrolizumab and had a higher frequency of
associated adverse events (170). Combined with unsatisfactory
results from multiple other clinical trials, the outlook for M7824
is troubling, and clinical trials for the drug have now primarily
been terminated.

SHR-1701 is also a bifunctional fusion protein that fuses an
extracellular TGF-f receptor II structure to the C-terminus of a
monoclonal antibody against PD-L1 (171). At the ESMO 2023
meeting, researchers preliminarily presented the results of SHR-
1701 in 3 NSCLC clinical expansion cohorts (NCT03774979). For
patients who had not received systemic chemotherapy and had a
PD-L1 TPS >1%, ORR was 36.8%, DCR was 66.7%, and mOS was
24.2 months; for patients with an EGFR mutation who had failed
prior treatment with standard EGFR TKIs or had no standard
EGFR TKIs available, ORR was 19.5%, DCR was 46.3%, and mOS
was 14.4 months; for patients who experienced disease progression
after recent anti-PD-1/PD-L1 therapy and had received up to 3 lines
of prior therapy ORR was 9.1%, DCR was 54.5%, mOS was 16.1
months (108). In this trial, 76.3% of patients treated with SHR-1701
experienced TRAEs, including 22.9% with grade >3 TRAEs (108).
In addition, a trial (NCT04580498) was conducted to assess
neoadjuvant SHR-1701 with or without chemotherapy, followed
by surgery or radiotherapy, and then consolidation SHR-1701 in
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unresectable stage III NSCLC, and preliminary clinical results were
recently published. Of the 97 evaluable patients treated with SHR-
1701 plus chemotherapy, the postinduction ORR was 58%, and the
18-month event-free survival rate was 56.6% (109). Regarding
safety, the rate of patients with grade >3 TRAEs was 75% in the
SHR1701 plus chemotherapy arm (109). The drug is currently
undergoing multiple multi-center phase III clinics, and there is
much interest in the final outcome, especially as M7824 has been
terminated from the clinic.

5 Immune cell engagement bispecific
antibodies

5.1 T cell engagement

TCE is a typical application of bsAbs, with one targeting arm of
most TCEs designed to bind specifically to selected tumor-
associated antigen (TAA) on the surface of tumor cells and the
other targeting arm designed to target the CD3¢ chain in the TCR
complex. Due to the signaling capacity of the CD3e chain, TCEs can
bypass the major histocompatibility complex restriction and,
independently of the epitope specificity of the TCR, elicit T-cell
activation and proliferation, as well as the subsequent release of
transient inflammatory cytokines induced by the TCR and trigger
tumor apoptosis via perforin and granzyme release (172). In
addition, bsAbs targeting TAA and co-stimulatory receptors on T
cells (e.g., 4-1BB, CD40, CD28, etc.) have a mechanism similar to
that of a TCE.

5.1.1 DLL3 x CD3

Delta-like ligand 3 (DLL3) is a TAA highly expressed on the
surface of tumor cells in patients with SCLC, with high expression
detected in approximately 85%-94% of SCLC patients (173, 174).
Under normal conditions, DLL3 is mainly localized in the Golgi
apparatus and cytoplasmic vesicles and is hardly expressed on the
surface of normal cells (175). In contrast, in cells of SCLC and other
high-grade neuroendocrine tumors, DLL3 is highly up-regulated
and aberrantly expressed on the cell surface, leading to abnormal
growth of neuroendocrine tumor cells (176). Thus, DLL3 has
become a potential target for treating SCLC.

Tarlatamab (AMG757) is a DLL3-based TCE. According to
published data from the clinical trial called Delphi -301
(NCT05060016), patients with SCLC who had received two or
more systemic therapies benefited significantly from fortnightly
intravenous treatment with Tarlatamab (110, 177). This study
demonstrated a more significant benefit in patients treated with
10 mg of Tarlatamab compared to 100 mg, with an ORR of 40.0%,
mPES of 4.9 months, and mOS of 14.3 months (110, 177). The most
common adverse events were cytokine release syndrome (in 51% of
the patients in the 10-mg group), decreased appetite (29%), pyrexia
(35%), constipation (27%), and anemia (26%) (110, 177). Grade 3 or
higher adverse events occurred in 59% of the patients in the 10-mg
group (110, 177). Based on the clinical data published in Delphi-
301, the FDA granted tarlatamab accelerated approval in May 2024
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for the treatment of extensive-stage SCLC, where disease
progression occurs during or after platinum-based chemotherapy
(178). In addition, newly published long-term follow-up data from
Delphi-300 (NCT03319940) showed that the overall ORR for
patients treated with more than 10 mg of tarlatamab was 25%,
with an mDOR of 11.2 months (111). Patients with brain metastases
also showed significant benefits after treatment with tarlatamab,
with intracranial disease control occurring in 87.5% (111). Safety
data were consistent with Delphi -301, with no new safety signals
(111). TCEs in solid tumors have long been considered challenging
(172), and tarlatamab is the first TCE therapy to be approved for
treating a solid tumor, marking a critical step forward.

BI764532 is an IgG-like TCE that induces strictly DLL3-
dependent tumor killing (179). BI764532 is currently in phase I
clinical trial (NCT04429087), and preliminary clinical data have
been published. Of 71 evaluable patients treated with no less than
90ug/kg of BI764532, 25% achieved partial response, with a DCR of
52%, and tumor shrinkage was observed in all patients (112). A total
of 86% of patients experienced adverse events of any grade, with
37% experiencing grade 3" TRAEs and four non-Asian patients
discontinuing due to TRAEs (112).

PN328/MK6070 is a TCE targeting DLL3 and CD3. In addition, to
prolong the half-life of this TCE as well as to maintain its most
substantial direct T-cell killing ability, an anti-HSA single-domain
antibody was fused in the middle of the DLL3 and CD3 targeting
arms (see Figure 1) (180). It is currently enrolling participants with
SCLC, neuroendocrine prostate cancer, and other high-grade
neuroendocrine neoplasms in a phase I/II clinical trial
(NCT04471727). The data showed that in the dose-optimized cohort
(1-mg priming dose and a 12- or 24-mg target dose), patients with
SCLC had an ORR of 39% and a DCR of 71% (113). In addition, the
data showed that SCLC patients with brain metastases also responded
well to HPN328 (ORR of 37% and DCR of 78%) (114). In terms of the
safety of the drug, the incidence of TRAEs at any grade was 93%, with
grade 3" TRAESs occurring in 26%, with four patients discontinuing the
drug due to TRAEs and two patients dying (113).

5.1.2 EGFR x CD3

As mentioned earlier, EGFR is highly expressed in a variety of
tumors. Meanwhile, EGFR regulates the development and homeostasis
of regulated epithelial tissues in normal tissues and plays a key role in
epithelial cell physiology (181). Therefore, a variety of drugs targeting
EGEFR have some skin toxicity (182, 183). In contrast, TCE-induced
tumor cell killing is highly efficient, as TCE enables individual T cells to
connect with multiple tumor cells, resulting in sequential killing (184).
In addition, cytokines released from activated T cells can generate a
cascade amplification effect to achieve a more excellent range of tumor
cell killing (185). Therefore, TCEs targeting EGFR face more severe on-
target off-tumor toxicity, resulting in a limited therapeutic window.
However, suppose TCEs are engineered with a modified design to
specifically recognize EGFR on tumor cells and bind no or less EGFR
on normal tissues. In that case, they can significantly enhance the
efficacy and expand the drug’s therapeutic window.

JANXO008 is a prodrug form of TCE that targets EGFR and
contains an EGFR-binding domain, a CD3-binding domain, and a
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HAS-binding domain that serves to extend the half-life of the
molecule (see Figure 1c) (186). In addition, a mask is fused to
each of the EGFR and CD3 binding domains through tumor
protease cleavable linkers, and only when the molecule enters the
tumor site and is recognized by the tumor protease can the peptide
masks be released, ultimately generating the active molecules (186).
The drug currently enrolls patients with advanced or metastatic
cancers with high EGFR expression in a clinical phase Ia trial. It has
been observed to achieve partial remission in one NSCLC subject,
with a 100% reduction in targeted lung lesions and the elimination
of liver metastases (115). Notably, JANX008 had a favorable safety
profile, with grade 1 CRS observed in only 2 of 11 subjects at doses
up to 1.25 mg (significantly higher than the expected maximum
tolerated dose of the parental T-cell articulator) (115).

5.1.3 PDL-1 x 4-1BB

4-1BB [also known as CD137 or TNF receptor superfamily
member 9 (TNFRSF9)] is an inducible co-stimulatory receptor
expressed on activated T cells and NK cells (187, 188). The agonism
of 4-1BB avoids tumor-infiltrating lymphocyte exhaustion and
enhances the antitumor activity of ICIs (189, 190). Although
preclinical results have shown excellent efficacy of anti-4-1BB
antibodies in different tumors, the development of 4-1BB-based
monoclonal antibodies has successively failed either because of fatal
side effects (urelumab) or because of limited efficacy (utomilumab)
(191). Therefore, preserving the efficacy of anti-4-1BB antibodies while
reducing their toxicity is a priority for subsequent development. One
such strategy is the use of bsAb, which minimizes off-target tumor
toxicity by designing the antibody to preferentially bind specifically to
tumor cells and be enriched in the tumor microenvironment, and then
to bind to 4-1BB and achieve activation of 4-1BB signaling. In this
strategy, the most studied is the PD-L1/4-1BB bispecific antibody.
Because PD-L1 is not only expressed on the surface of a wide range of
cancer cells, a variety of host cells in the TME and lymph nodes,
including dendritic cells, macrophages, fibroblasts, and T cells, also
express PD-L1 to reduce antitumor immunity. In addition, PD-L1
blockade combined with 4-1BB agonistic antibodies has shown
enhanced antitumor responses in preclinical cancer models (189,
190, 192). Thus, dual targeting of PD-L1 and 41BB by bispecific
antibodies may permit tumor cell-dependent 4-1BB activation of T
cells and allow optimal antitumor immunity.

GEN1046 (acasunlimab) is currently the fastest advancing bsAb
targeting PD-L1 and 4-1BB. It is an IgG-like bsAb, with one arm
targeting PD-L1 to block PD-1/PD-L1 inhibitory signals and another
targeting 4-1BB to activate co-stimulatory signals in immune cells
(116). A clinical trial (NCT05117242) evaluating acasunlimab
monotherapy and acasunlimab in combination with pembrolizumab
in metastatic NSCL patients who were resistant to anti-PD-1/L1
antibodies is currently underway, and preliminary results have been
published. The data showed that patients treated with GEN1046 100
mg Q6W in combination with pembrolizumab 400 mg Q6W had a
favorable treatment outcome (117). This subset of patients had an
ORR of 16.7%, a DCR of 75%, a mOS of 17.5 months, and a 12-month
OS rate of 69% (117). The most common adverse events (all grades;
grade >3) in patients treated with the combination therapy included
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liver-related events (18.7%; 13.3%), fatigue (14.7%; 0%), malaise
(13.3%; 0%), and diarrhea (12%; 0%) (117).

FS222 is a 2 + 2 tetravalent bsAbs constructed on a platform called
mADb2. The antibody is based on a PD-L1 antibody, engineered to
make its Fc recognize 4-1BB (193). The antibody is, therefore, similar
in size to a conventional monoclonal antibody. Additionally, the
antibody undergoes Fc mutation to reduce associated effects such as
ADCC and CDC. FIH (NCT04740424) is an ongoing phase I clinical
trial investigating the efficacy of FS222 in advanced solid tumors.
Currently, interim results from the Q4W cohorts have been reported.
The cohort had a total of 90 patients enrolled, with a median of 2 (1-7)
regimens previously treated. At the cut-off date (05 Dec 2023), 20
(22.2%) patients were still on treatment, and objective remissions (CR,
PR) were observed in patients with melanoma, NSCLC, ovarian,
triple-negative breast, liposarcoma, and colon cancer with an ORR
of 15.7% (118). The most common TRAEs grade =3 (=10% of pts)
were increased AST (13.3%) and ALT (11.1%) (118).

5.2 NK cell engagement

NK cells are innate immune cells with cytotoxicity. NKCEs have
one targeting arm targeting tumor cell surface-specific antigens and
the other targeting arm targeting activating receptors on the surface
of NK cells, such as CD16a, NNKG2D (atural Killer Group 2
Member D), NKp30 (Natural Killer cell p30), etc., resulting in the
formation of antigen-specific immune synapses between the NK cells
and the tumor cells that which in turn triggers NK cell-mediated
killing of tumor cells (194). NKCEs are a new exploration, and several
drugs of this type are undergoing preclinical or clinical evaluation.

5.2.1 EGFR x CD16a

AFM24 is a tetravalent bispecific antibody in which the anti-
EGEFR scFv is fused to the c-terminus of the anti-CD16a antibody via
a connector, which mediates the killing of tumor cells by NK cells in
an EGFR-dependent manner (195). Studies have demonstrated the
preliminary efficacy of AMF24 in NSCLC patients with EGFR mutant
NSCLGC, relapsed or refractory to =1 prior lines of therapy. Of the 10
evaluable patients, 1 patient suffered a 45% reduction in tumor
volume, and 4 had stable disease with a 50% tumor control rate
(119). However, a high proportion of patients experienced TRAEs
(13/14), with grade >3 TRAEs occurring in 4 patients and grade 5
pneumonitis occurring in 1 patient (13/14) (119). In NSCLC patients
with EGFR-WT who relapsed after one or more first-line therapies,
the combination of AFM24 and atezolizumab led to 1 complete
response, 3 partial responses, and 7 cases of stable disease among the
15 evaluable patients (120). Moreover, this combination therapy was
well tolerated. The main adverse events that occurred in the patients
were infusion-related reactions (10/17) (120).

6 Immunocytokines

Cytokines are mediators and modulators of the innate and
adaptive immune systems, and immunotherapy based on cytokines
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such as interferon and interleukin-2 (IL-2) has been used in the
treatment of cancer as early as the end of the 20th century (196).
However, the short half-life of cytokines results in the need for short
periods of high-dose administration, which can lead to severe non-
specific toxicity. In addition, the cytokine’s inhibitory or activating
effect on immune cells is also related to the concentration and the
environment of action. Therefore, engineering cytokines to
preferentially target disease sites and to activate only specific
lymphocyte types can increase the tolerability of cytokine therapy.
The specific targeting of antibodies naturally makes them ideal
‘carriers’ for targeted delivery of therapeutic cytokines. In many
mouse models, antibody-cytokine fusion proteins targeting tumor
markers increase the selective accumulation of the corresponding
cytokines at the tumor site (19, 20). Such antibody-cytokine fusion
proteins, also known as immunecytokines, are another significant
application of bispecific antibodies and have been called the next
generation of cytokine products.

6.1 PD-1 x IL-2

High-dose recombinant IL-2 (Proleukin) was approved by the
FDA for treating metastatic renal cell carcinoma in 1992, followed
by metastatic melanoma in 1998 (197, 198). However, recombinant
natural IL-2 is dose-limited (0.037 mg/kg admitted) and causes
severe non-specific extravasation toxicity (197-199). In addition,
IL-2 has two opposing functions: at low doses, IL-2 tends to
stimulate Treg cells expressing high-affinity trimeric receptors
(IL-2RaBy), resulting in immunosuppression (200, 201); at high
doses, after saturation of the receptor on Treg cells, excess IL-2 also
interacts with effector T cells via intermediate affinity receptors (IL-
2RPBY) binds to effector T and NK cells, promoting immune
activation and anti-tumour responses (202). To improve the
therapeutic index, researchers have engineered IL-2 through
various strategies to promote a longer half-life of the modified
drug and specific binding to IL2-Rfy (197) without binding to IL2-
Ro (203), expressed on Treg. However, these bias-modified drugs
did not achieve better clinical results (204).

IBI363 is a PD-1/IL-20-bias bispecific antibody fusion protein.
Unlike the mainstream IL2-RBy-biased design, IBI363 fused an IL-
2Ra-biased engineered modified IL-2 at the end of the anti-PD-1
antibody. This design was based on a preclinical correlative study, in
which researchers found that newly activated tumor-specific CD8"
T cells expressed PD-1 while upregulating IL-2Ro and that the anti-
tumor effect of anti-PD-1 was dependent on the activation of PD-1"
CD25" CD8" T cells via autocrine IL-2/IL2-Ro signaling (205).
Thus, through specific guidance of PD-1, PD-1/IL-20--bias can
selectively stimulate and expand T cells expressing both PD-1 and
IL-2Ro. within the tumor, leading to more precise and effective
targeting and activation of this T cell subpopulation. At WCLC
2024, researchers presented a phase I clinical study (NCT05460767)
of IBI363 in advanced non-small cell lung cancer. The data showed
an ORR of 24.1% and a DCR of 68.4% in 79 patients who received
doses higher than 0.3 mg/kg and an ORR of 85.7% (6/7) in the 3
mg/kg dose group (22). The drug’s safety profile was good, with
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87.6% of patients experiencing any grade of TRAEs and 19.1% of
patients experiencing grade 3" TRAEs (22). From the preliminary
clinical data, it can be seen that IBI363 was administered at an
unprecedented dose (3mg/kg) and demonstrated a favorable safety
profile, breaking through the safety concerns of IL-2 therapy.
Combined with its preliminary published efficacy data, the
clinical results of subsequent treatments with IBI363 are promising.

6.2 PD-1 x IL-15

Interleukin 15 (IL-15) is an IL2-related cytokine. Both can bind
IL-2RPY, but the high-affinity forms of both IL2 and IL15 receptors
contain IL2-Rol (CD25) or IL-15Ro (CD215), respectively (206).
IL-15 is produced by dendritic cells, macrophages, and stromal
cells, and, like IL-2, IL-15 can stimulate T-cell proliferation, induce
cytotoxic T lymphocyte production, and promote the maintenance
of NK cells (207, 208). In addition, the unique role of IL-15 is to
maintain NK cell and CD8"CD44" memory T cell function to
provide a long-term immune response to pathogen (208). Like IL-2,
IL-15 therapy was initially limited by the short molecular half-life
and toxicity associated with systemic immune activation (209).
Anktiva (N-803) is a recombinant IL-15 superagonist protein
complex consisting of a high-affinity IL-15 mutant and IL-15Ro
fused to Fc (and thus with an extended half-life). 2024 The FDA
approved Anktiva in combination with Bacillus Calmette-Guerin
(BCG) for treating adult BCG-naive patients with non-muscle
invasive bladder cancer with carcinoma in situ with or without
papillary tumors (210). Animal studies have demonstrated that the
combination of N-803 and anti-PD-L1 antibody can activate NK
and CD8* T cells and induce the production of immunostimulatory
cytokines, demonstrating significant efficacy in various models that
do not respond or respond poorly to monotherapy (211). Clinical
studies have demonstrated that patients with >2nd line NSCLC who
failed CPI therapy treated with Anktiva in combination with CPI
have an mOS of up to 11.4 months (212).

PF-07209960 is a cytokine fusion protein fused with mutated IL-
15 at the end of one of the heavy chains of the anti-PD-1 antibody
(213). The mutation in IL-15 is designed so that PF-07209960 does
not bind to IL-15Ro and has a significantly reduced affinity for IL-2/
15RBy. The molecule, therefore, explicitly delivers IL-15 to CD8+ T
cells with high PDI expression in tumors without binding to IL-
15Ro-expressing cells and PD1-negative IL-15RBy-positive NK cells
(213). Preclinical studies demonstrated that PF-07209960 could
increase the number of CD8* TILs within tumors specifically, had
excellent anti-tumor activity, and significantly reduced adverse effects
(213). Researchers recently published preliminary clinical data on PF-
07209960. Of the 29 evaluable patients, two patients, both with
microsatellite-stable colorectal cancer, were confirmed to be in
partial remission, with an ORR of 6.9% and a DCR of 48.3% (121).
Regarding safety, 97.3% of patients experienced one or more adverse
events, of which 78.4% experienced grade 3 or higher TRAEs, with a
serious adverse events rate of 70.3% (121).

SAR44587, or KDO050, consists of an Fc-silenced high-affinity
human anti-PD-1 antibody (IgG1 subtype) fused to a mutated IL-15/
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IL-15Ro sushi domain (122). Through its anti-PD1 portion,
SAR44587 binds to PD-1-expressing T cells and NK cells and may
result in the specific expansion and activation of CD8" T cells and NK
cells expressing PD-1 and IL-2/15Rfy (214). In preclinical models of
PD-1 resistance, SAR445877 had a stronger tumor suppressive effect
compared to pembrolizumab, increasing the ratio of CD8"/CD4" T
cells in tumors and significantly increasing the percentage of effector
memory CD8" T cells in tumors (215). The drug is currently
undergoing a clinical phase I study (NCT05584670), which is
planned to enroll 240 adult patients with advanced unresectable or
metastatic solid tumors to confirm the safety, tolerability,
pharmacokinetics, pharmacodynamics, and antitumor activity (214).

IAP0971 is an immunocytokine that binds specifically to PD-1
and fused IL-15/IL-15Ra complex (123). Mechanistically, IAP0971
can deregulate the immunosuppression of the PD-1/PD-L1 axis while
increasing the targeting of IL-15 to the tumor microenvironment and
avoiding systemic non-specific activation; furthermore, IAP0971 has
an IgG4-based structure, resulting in a weak effect such as ADCC and
ADCP, and a long half-life (123). In preclinical studies, IAP0971 can
stimulate the proliferation of CD8" T cells and NKT cells, activate NK
cells to kill tumor cells, and significantly inhibit tumor growth in mice
at as low as 0.1 mg/kg without affecting their body weights (123).
IAP0971 is currently in Phase I/ITa clinical trial (NCT05396391) to
evaluate its safety, tolerability, and preliminary efficacy in patients
with locally advanced or metastatic malignancies (216). Indications
include a variety of malignancies, including lung cancer, cervical
cancer, squamous cell carcinoma of the head and neck, hepatocellular
carcinoma, and lymphoma.

7 Challenges and limitations

BsAbs show great potential in lung cancer therapy, and several
key clinical advances are exciting. However, as described below, the
therapeutic use of bsAbs in lung cancer faces many challenges.

7.1 Production challenges

Compared with monoclonal antibodies, the challenges facing
the development and industrialization of bsABs are enormous.
Unlike the standardized preparation process of monoclonal
antibodies, the expression titer of bsABs is usually lower than that
of monoclonal antibodies if the traditional process is directly
followed (217), and they are prone to the formation of by-
products such as aggregation and mismatch products (218-220).
Although it is possible to increase the content of target products
through various engineering modification strategies, bsAb-specific
by-products are generally present at low levels in the cell culture
supernatant of bsAb. It is necessary to rely on multiple purification
strategies (e.g., a combination of affinity chromatography, ion-
exchange chromatography, and size-exclusion chromatography)
in order to obtain high purity of the target products, which
significantly prolongs the development cycle and increases the
cost of production (221).
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7.2 Immunogenicity risk

Immunogenicity is one of the key challenges in the development of
bsAbs. While some bispecific antibodies, such as amivantamab, have a
very low incidence of anti-drug antibodies (ADAs), other bispecific
antibodies show a high incidence of ADAs and neutralizing antibody
positivity (222). These antibodies, which, due to drug immunogenicity,
will directly affect the pharmacokinetics, pharmacodynamics, and
safety of the drug (223). How to reduce the ADAs of a drug is a
relatively complex issue, which needs to start from the initial molecular
design (e.g., optimization of humanized modified epitopes), early in
vitro immunogenicity assessment (based on in silico algorithms, and in
vitro T cell-based assays), manufacturing process improvement (e.g.,
reduction of drug aggregation tendency, reduction of impurity
residues), and clinical intervention (e.g., adjustment of drug
immunogenicity), production process improvement (e.g., reducing
drug aggregation tendency, reducing impurity residues), and clinical
interventions (e.g., adjusting drug dosage, dosing regimen, and route of
administration) are multifaceted and synergistic, which is complex and
time-consuming (224).

7.3 Side effects

The adverse effects of bsAbs are closely related to their mechanism
of action. Among them, cytokine release syndrome (CRS) is a
common adverse reaction of TCE. For example, 49% of patients
receiving AMG757 developed CRS, and 26% of them had severe
symptoms (110). BsAbs based on a dual blocking mechanism show
adverse reactions that are superimposed on the two targets (although
they can be significantly lower than the parent antibody combination).
For example, adverse reactions such as rash, pruritus, and diarrhea
associated with EGFR and hypoproteinemia and peripheral edema
associated with cMET have been observed with amivantamab (42).

Researchers are currently attempting various strategies to reduce
the adverse effects of bsAbs and expand the therapeutic window. For
example, by lowering the affinity of CD3 to increase the tissue
distribution of bispecific antibodies in tumors and significantly
reduce the level of cytokine release in normal tissues (225-227);
and by restricting the activity of bsAbs in normal tissues through
shielding techniques (186, 228); or by using tumor poxviruses as
vectors to deliver dual antibodies to tumor sites in a targeted manner
(229). However, drugs based on these strategies are currently in the
preclinical or early clinical stage, and more clinical data are needed to
analyze their safety and efficacy more correctly. Another strategy is to
change the mode of administration. Currently, bsAbs are
administered mainly by intravenous infusion, but data have shown
that subcutaneous administration improves patient compliance and
reduces the incidence of adverse events. For example, subcutaneous
administration significantly reduced the incidence of infusion-related
reactions and venous thromboembolic events with amivantamab
compared with intravenous administration (47). Besides, some
TCEs have also been shown through clinical studies to have a
lower incidence of CRS with subcutaneous administration (230).
However, subcutaneous administration is currently not widely used
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in solid tumors, and adequate subsequent validation is needed before
widespread use. Intervention by the clinical therapist is the final
barrier against adverse reactions. Real-time monitoring,
pretreatment, and symptomatic management can enhance the
patient experience (172, 231). However, it then requires clinicians
to individualize the assessment of the patient and adjust the treatment
regimen, which undoubtedly adds to the widespread use of the drug.
Finally, it is worth noting that pneumonia is a particular concern in
the lung cancer population, as lung cancer patients often have poor
lung reserve due to current or past smoking history (232, 233). Drug-
induced pneumonitis can, therefore, severely compromise their
already poor lung reserve, which, in some cases, can be fatal.

7.4 Tumour heterogeneity and
microenvironmental limitations

The complexity of lung cancer itself also poses a challenge for
drug development. Lung cancer, as a very heterogeneous type of solid
tumor, has differences in response to the same drug in different
patients (as seen in Table 1). Thus, screening the most appropriate
target population for bsAbs will be a significant challenge. In
addition, the TME plays a central role in the genesis and
progression of primary lung cancer, where cancer cells can
reprogram tumor-infiltrating stromal cells, thereby promoting
carcinogenesis (234, 235). In lung cancer, tumors can reprogram
the lung microenvironment, which in turn promotes inflammation,
angiogenesis, immunosuppression, and unresponsiveness to therapy,
ultimately leading to lung metastasis from both primary and
extrapulmonary tumors (236). Moreover, the disturbed and
inefficient vascular supply of the TME and the elevated interstitial
fluid pressure due to lymphovascular dysfunction greatly limit tumor
penetration and T-cell infiltration into the tumor by dual antibodies.
Small molecular weight dual antibodies (e.g., BiTE) that have better
penetration but short half-lives (e.g., blinatumomab has a half-life of
2-4 hours (172)) require repeated administration. Small molecular
weight dual antibodies (e.g., BiTE) that have better penetration but
short half-lives (e.g., blinatumomab has a half-life of 2-4 hours (167))
require repeated administration. Fusing the VHH fragment of anti-
HSA is a strategy that prolongs the drug’s half-life while maintaining
high drug penetration, and several such bispecific antibodies are
currently under clinical investigation. Finally, the current bsAbs are
mainly targeted at some mature targets (e.g., EGFR, PD1, etc.), and
breakthroughs are urgently needed in the mining of new lung cancer-
specific targets (e.g., c-MET, HER3) and TME regulation strategies
(e.g., combining with anti-angiogenic drugs).

7.5 Pharmacoeconomic considerations

In addition to the technical challenges discussed above,
pharmacoeconomic considerations are also a key obstacle to the
widespread application of bsAbs in treating lung cancer. Compared
with conventional antibody drugs, bispecific antibodies have higher
production costs and greater clinical development risks, resulting in
higher drug prices. Moreover, adverse reactions caused by the drugs
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require additional symptomatic medications, which further increase
the treatment costs for patients. Therefore, balancing the cost of the
drug and its corresponding therapeutic effect is a huge challenge.
Some researchers have noted that although the treatment regimens
of amivantamab in combination with chemotherapy or
amivantamab in combination with lazertinib provide significant
benefits to patients, when the economic costs are considered, they
are higher than the cost-effectiveness thresholds given current US
pricing (237, 238). Therefore, how to balance the cost and pricing to
benefit more patients is an issue that needs to be addressed. In
addition, the treatment cost can be reduced by further optimising
the drug dosage. For example, compared with the recommended
treatment regimen, using an optimised alternative dosing regimen
can save 16% of the treatment cost of Amivantamab (239).

8 Conclusion

BsAbs have ushered in significant development, with more than
110 in clinical development and nearly 180 in preclinical
development (240). There are three drugs approved for lung
cancer treatment, of which the launch of AMG757 is a
breakthrough in the field of small-cell lung cancer treatment for
many years, and AK112 beat Keytruda in head-to-head clinical
studies, both of which are of landmark significance. In the next
phase of drug development, the therapeutic potential of bsAbs will
be further unlocked through research to optimize the production of
CMC, reduce the adverse effects, and research into the pathogenesis
of lung cancer itself, enhancing the cost-effectiveness of the drugs,
which is of great significance, and discovering new therapeutic
targets. In conclusion, more new drugs will be developed for more
lung cancer patients with unmet needs for quite some time to come.
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previously stated:

“Lung cancer is one of the world’s most common cancers and the leading cause of
cancer-related deaths, with an estimated 22 million new cases and 1.79 million deaths
annually (1).”

The corrected sentence appears below:

“Lung cancer is one of the world’s most common cancers and the leading cause of
cancer-related deaths, with an estimated 2.2 million new cases and 1.79 million deaths
annually (1).”

The original version of this article has been updated.
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Introduction: Cancer immunotherapy has been revolutionized by targeting PD-1
to restore antitumor T-cell activity and blocking VEGF to attenuate
immunosuppressive tumor angiogenesis. While combining PD-1 and VEGF
inhibition has shown promise in enhancing antitumor responses, co-
administration of two or more monoclonal antibodies face several challenges,
including distinct pharmacokinetics, complex dosing, and toxicity. A bispecific
antibody (BsAb) targeting both PD-1 and VEGF pathways could overcome these
limitations by enabling simultaneous, localized blockades of PD-1 and VEGF
signaling within the tumor microenvironment (TME) as both PD-1 and VEGF are
usually co-expressed in the TME.

Methods: Here, we describe the in vitro characterization, functional and
preclinical evaluation of JS207, a novel BsAb targeting PD-1 and VEGFA with
high antigen binding affinity. JS207 matched or surpassed the activity of
benchmarks antibodies in several in vitro binding assessments, T cell activation,
VEGF signaling inhibition, cytokines (IL-2 and IFN-7) release.

Results: JS207 showed significant anti-tumor efficacy in mouse MC38 colon
cancer model and A375 melanoma tumor model. Investigation into the
mechanism of action revealed that VEGFA could significantly promote JS207's
antigen binding activity, T cell activation potency, and internalization of cell
surface PD-1. In vivo results demonstrated that JS207 was well-tolerated and
presented remarkable anti-tumor efficacy. In addition, JS207 showed enhanced
thermal stability as evidenced by retained potency under heat stress, a critical
factor for CMC (Chemistry, manufacturing and control) manufacture, storage
and drug shelf life.

Conclusion: JS207 is a promising therapeutic candidate that may address unmet
clinical needs in cancer immunotherapy.

KEYWORDS

PD-1/PD-L1, vascular endothelial growth factor A (VEGFA), tumor microenvironment
(TME), bispecific antibody, JS207, internalization, thermal stability
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1 Introduction

Cancer persists as a leading cause of global mortality, with
conventional therapies often failing to control advanced or
metastatic diseases. The immune checkpoint inhibitors (ICIs)-
based cancer immunotherapies have achieved remarkable success
across cancers (1). Among these, targeting programmed cell death
protein 1 (PD-1) and its ligand (PD-L1), have shown remarkable
efficacy in various cancers (2). Yet, intrinsic, and adaptive resistance
limits the efficacy of ICIs, with only 20-40% of patients achieving
long-term remission (3, 4). A key driver of this resistance is the
immunosuppressive tumor microenvironment (TME), a dynamic
ecosystem comprising cancer cells, stromal cells, immune infiltrates,
endothelial cells and aberrant vasculature that collaboratively foster
immune evasion, angiogenesis, and metastatic spread (5, 6).

Within the TME, vascular endothelial growth factor (VEGF)
plays a dual role, promoting tumor angiogenesis while suppressing
antitumor immunity, such as, inhibiting dendritic cell maturation,
recruiting regulatory T cells, and impairing cytotoxic T-cell activity
(7). Vascular endothelial growth factor A (VEGFA) is a key member
of the VEGF family proteins that can be secreted by various types of
cells, including endothelial cells and tumor cells (8). VEGFA
promotes angiogenesis mainly by binding to VEGF receptor-2
(VEGFR2). The engagement of VEGFR2 by VEGFA causes
dimerization and intracellular autophosphorylation of VEGFR2,
thereby activating downstream signaling pathways (9). This
signaling cascade drives endothelial cell proliferation, migration,
and survival, establishing a chaotic vascular network that sustains
tumor growth and metastasis (6, 10). In solid tumors, angiogenesis
plays a key role in tumor uptake of nutrients and oxygen, followed
by proliferation and metastasis (11). Therapeutic antibodies against
VEGFA specifically block the binding of VEGFA to VEGFR2 and
exert anti-tumor effects (10).

Despite the success of PD-1 inhibitors and anti-VEGF
therapies, significant challenges persist in monotherapies resulting
in limited efficacy due to the complex and adaptive nature of tumors
(12). Resistance mechanisms, such as upregulation of alternative
angiogenic pathways or immune evasion tactics, frequently
diminish the long-term effectiveness of these treatments (13).
Additionally, the heterogeneity of tumors and TME mean that a
single therapeutic target may not be sufficient to achieve
comprehensive tumor control (14). The need for combination
therapies has become evident, yet the concurrent administration
of multiple agents can lead to increased toxicity and adverse effects
(AEs), complicating patient management and reducing quality of
life (15, 16).

PD-(L)1 and VEGF have been shown to be co-expressed in the
TME of various tumor types. The expression of PD-(L)1 and VEGF
could be used as biomarkers for selecting patients who may benefit
from PD-(L)1 and VEGF inhibitors (17, 18). The concentration of
VEGEF is significant higher in the TME than in plasma (17, 19). This
elevated concentration is due to the increased secretion of VEGF by
tumor cells, which promotes angiogenesis and supports tumor growth
(20, 21). Numerous studies have demonstrated that blocking VEGFA/
VEGER signal pathway could induce tumor regression by not only
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inhibiting the proliferation of endothelial cells and the formation of
new blood vessels in the TME but also improving the infiltration of
cytotoxic lymphocytes into the TME, while PD-1/PD-L1 pathway
blockade could activate the infiltrated cytotoxic lymphocytes by
removing the immunosuppressive effect mediated by this pathway
(22). Dual targeting-PD-1 and VEGFR2 significantly inhibited
primary tumor growth and doubled survival in murine models of
hepatocellular carcinoma (23). Combining anti-VEGFA and anti-PD-
1/L1 agents has shown promise in clinical beneficials, as seen in
clinical trials pairing bevacizumab with atezolizumab (24, 25).
However, conventional combination therapies face challenges,
including discordant pharmacokinetics, overlapping toxicities, and
dosing complexities (26, 27). The Food and Drug Administration AEs
reporting system database showed that the combination of PD-(L)1
inhibitors with bevacizumab provided a survival benefit but
significantly increased the risk of various AEs, including fever,
neutropenia, nephritis, and thrombocytopenic purpura, which were
attributed to the combination therapy as an independent risk factor
for these AEs (27). Bispecific antibodies (BsAb), engineered to
simultaneously target two antigens, represent a promising solution
to these challenges by simultaneously targeting two distinct pathways
(28). This dual-targeting approach can enhance therapeutic efficacy
while potentially reducing toxicity and the likelihood of resistance
development (29). In the context of cancer therapy, particularly in
solid tumors, BsAbs provide a multifaceted approach to
immunotherapy by simultaneously targeting PD-(L)1 and other
immune regulatory molecules, such as anti-CD47/PD-L1, anti-PD-
1/CTLA-4, and anti-4-1BB/PD-L1. This strategy could enhance
antitumor immunity, mitigate immune evasion, and overcome the
limitations of monotherapy approaches (19). BsAb that combine
immune checkpoint inhibition with anti-angiogenic effects hold
particular promise (28). Combinations of anti-PD-(L)1 and VEGFA
inhibition have been clinically validated and approved for the
treatment of solid tumors (30). For example, AK112, also known as
ivonescimab, is the first-in-class humanized IgG1 bispecific antibody
that targets PD-1 and VEGFA by inhibiting PD-1-mediated
immunosuppression and simultaneously blocking tumor
angiogenesis in the TME (31). By concurrently blocking PD-1-
mediated immune evasion and VEGFA-driven angiogenesis, AK112
has demonstrated potent anti-tumor efficacy in both preclinical and
clinical settings (31-33). Thus, through dual targeting PD-1-
expressing T cells and VEGF-rich vasculature, dual target approach
via BsAb could exert a more comprehensive anti-tumor effect.
Here, we describe a novel BsAb, JS207, designed to overcome
resistance mechanisms in cancer therapy. JS207 is a recombinant
humanized anti-PD-1 and VEGFA bispecific antibody of 1gG4 «
subtype constructed in a tetravalent IgG-VHH format combining
full-length anti-PD-1 IgG with VEGFA-targeting Variable domain
of Heavy chain-only (VHH) antibody. This study characterized the
physiochemical and biological properties of JS207 and evaluated the
therapeutic potential of this novel anti-PD-1/anti-VEGF BsAb
through assessing antigen binding affinity, T cell activation,
HUVEC proliferation inhibition, and in vivo anti-tumor efficacy.
Through these studies, we seek to establish a foundation for the
clinical translation of this promising therapeutic approach,
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contributing to more effective and durable cancer treatments. In
addition to extensive characterization studies, we compared JS207
with AK112 to assess the similarities and differences of these two
BsAbs using a variety of methods to delineate the structural-
functional relationships and antitumor activities. Our results
demonstrated that engaging PD-1 and VEGFA by JS207 can
significantly enhance antigen binding and PD-1 internalization, T
cell activation, and anti-tumor activities.

2 Materials and methods
2.1 Materials, cell lines, and animals

The list of materials, cell lines and animals used in this study is
available in the Supplementary Materials in Supplementary
Data Sheet.

2.2 Enzyme-linked immunosorbent assay

Binding to PD-1: To assess the binding of JS207 to PD-1 and
related proteins, 0.3 ng/mL of target protein (PD-1, BTLA, PD-L1,
PD-L2 and ICOS, all from human) was coated onto 96-well plates.
After blocking with 2%BSA, test samples were then added. Bound
antibody was detected using an HRP-goat anti-human IgG (Fc-
specific) antibody. Absorbance was measured at 450 nm/620 nm.
To assess the species cross-reactivity, PD-1 proteins from rat,
mouse, Cynomolgus monkey and human were used
(Supplementary Data Sheet).

Binding to VEGFA: To evaluate the binding of JS207 to VEGFA
and related proteins, 0.3 pug/mL of target protein (VEGFA, VEGFB,
VEGFC, VEGFD, VEGFE and PLGF, all from human) was coated
onto 96-well plates. After blocking with 2% BSA, test samples were
added. Detection was carried out using an HRP-goat anti-human
IgG (Fc-specific) antibody. To assess the species cross-reactivity,
VEGFA proteins from rat, mouse, human and Cynomolgus
monkey were used (Supplementary Data Sheet).

Blocking the interaction between human PD-1 with PD-L1/PD-
L2: Inhibition of the interaction between human PD-1 and its
ligands (PD-L1 and PD-L2) was assessed using blocking ELISAs.
Human PD-1 protein (1.5 pug/mL) was coated on the plate and
blocked with 2% BSA. Test samples were prepared in assay buffer
containing biotin-PD-L1 hFc (4.0 ug/mL). After detection with
HRP-streptavidin, absorbance was read at 450 nm/620 nm
(Supplementary Data Sheet).

Blocking the interaction between human VEGFA and VEGFR2:
To assess JS207’s competitive inhibition of the VEGFA-VEGFR2
interaction, 0.5 pug/mL of human VEGFA was coated on 96-well
plates and blocked with 2% BSA. Test samples (JS207, VEGEF-
DotAb, AK112) were added in assay buffer containing biotin-
VEGFR2 (0.3 pg/mL). After detection with HRP-streptavidin,
absorbance was read at 450 nm/620 nm (Supplementary
Data Sheet).
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2.3 Surface plasma resonance binding
assays

Binding to human PD-1: The binding affinity of JS207 to human
PD-1 was measured by Biacore T200. 40 pg/mL of anti-human Fc
antibody was coated to CM5 chip, and then 2 ug/mL of JS207 were
captured. Serially diluted human PD-1 was then applied, and the
kinetic model was analyzed, and the binding affinity (K, value) was
calculated (Supplementary Data Sheet).

Binding to human VEGFA: The binding affinity of JS207 to
human VEGFA was determined by the Biacore T200. 40 ug/mL of
anti-human Fc antibody was coated to CM5 chip, and test samples
were added. The kinetic model was analyzed, and the binding
affinity (Kp, value) was calculated (Supplementary Data Sheet).

Binding of JS207/VEGFA complex to human PD-1: The
binding of pre-formed JS207/VEGFA complex to human PD-1
was assessed using the Octet RED96e system. 20 pg/mL of human
PD-1-mFc was immobilized on an AMC biosensor, then incubated
with JS207/VEGFA complex. Kinetic parameters were analyzed
using Data Analysis 11.1 software (Supplementary Data Sheet).

Simultaneous binding of JS207 to human PD-1 and VEGFA:
The ability of JS207 to simultaneously bind to human PD-1 and
human VEGFA was measured using the Biacore T200. Two
different experimental formats were used: (1) PD-1 first, then
VEGFA, and (2) VEGFA first, then PD-1 (Supplementary
Data Sheet).

2.4 Luciferase reporter gene assays

PD-1 reporter gene assay: Jurkat/PD-1-NAFT-Luc (Jurkat/PD-
1) cells and PD-L1 aAPC/CHO-K1 (CHO/PD-L1) cells were used
in this assay. JS207 inhibits the binding of PD-1 in Jurkat/PD-1 cells
to PD-L1 in CHO/PD-L1 cells leading to NFAT/luciferase reporter
gene activation, and the anti-PD-1 potency was determined via
bioluminescent measurement (Supplementary Data Sheet). The
signal to noise (S/N) ratio was generated by dividing the Top
response by Bottom response. ECsq or ICs, is the concentration
of an antibody required to achieve 50% of its maximum
biological effect.

VEGF reporter gene assay: H293/VEGFR2 cell that was
engineered to express VEGFR2/NFAT-luciferase was used in this
assay. When VEGFA binds to VEGFR2 to initiate the signaling
pathway, the NFAT-luciferase reporter gene is activated. The anti-
VEGFA potency of JS207 was determined via bioluminescent
measurement (Supplementary Data Sheet).

2.5 HUVEC proliferation inhibition assay

VEGFA at 10 ng/mL and the test antibody solutions at 0.004
nM-10 nM were added to 96-well plate and incubated at 37°C for 30
minutes. Then, HUVECs at 3x10°> cells/well were seeded and
incubated at 37°C for 96 hours. Cell counting-Lite luciferase assay
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reagent was added and chemiluminescence signals were measured
(Supplementary Data Sheet).

2.6 Flow cytometry binding experiments

Internalization assay using cell surface residual PD-1
quantification method: H293/PD-1 cells were seeded at 1x10°
cells/well in a 96-well plate. Serially diluted test samples were
added in the absence or presence of VEGFA. After incubation at
4°C for 30-minutes, the cells were divided into two aliquots and
incubated at 37°C and 4°C for 0.5, 1, 2, and 4 hours, respectively. All
cells were stained with an anti-human IgG-PE antibody for 30
minutes at 4°C. The samples were then analyzed by flow cytometry.
The mean fluorescence intensity (MFI) was determined, and the
internalization index was calculated using the following formula
(Supplementary Data Sheet):

Internalization Index = [1 — (MFI at 37°C)/(MFI at 4°C)] x 100.

Internalization assay using intracellular fluorescence method:
JS207 and other test antibodies were conjugated with CypHer5E
follow manufacture’s instruction (GE Healthecare). The conjugated
antibodies were serially diluted and incubated with or without
VEGFA, then incubated with Jurkat/PD-1 cells for 4 hours at either
4°C or 37°C. Cells were washed with cold medium and subsequently
stained with a PE-labeled noncompetitive anti-PD-1 antibody (MIH4
PD-1 PE, BD Biosciences). Samples were then analyzed on a BD
FACSCanto II flow cytometer (Supplementary Data Sheet).

Cell-based PD-1 binding: To assess the effect of VEGFA on cell-
based PD-1 binding, H293/PD-1 cells were seeded at 1x10° cells/
well in a 96-well plate. Test samples were added in the absence or
presence of VEGFA. The cells were incubated at 4°C for 30 minutes,
stained with mouse anti-human Fc-PE antibody for 30 minutes at
4°C and then analyzed by flow cytometry. Data analysis was
performed using FlowJo (Supplementary Data Sheet).

2.7 Mixed lymphocyte reaction assays

The effect of JS207 on IL-2 and IFN-y release was evaluated
using a mixed lymphocyte reaction (MLR) system. Peripheral blood
mononuclear cells (PBMCs) resuspended in EasySep buffer and
CD4" T cells were isolated. Mature dendritic cells (mDCs) and
purified CD4" T cells were then seeded into 96-well plates at
densities of 10,000 mDCs/well and 100,000 CD4" T cells/well,
respectively. Test samples were added with a final concentration
ranging from 150 nM to 15 pM. The cells were incubated at 37 °C
for 5 days. Supernatants were collected on days 3 and 5 for IL-2 and
IFN-y measurement (Supplementary Data Sheet).

2.8 Thermal stability assessment

Test samples were first diluted to 2 mg/mL in cell culture
medium and then subjected to heat stress at 40°C for 0-96 hr, 55°C
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for 0 - 48hr, and 65°C for 0-4 hr to assess the impact of heat-stress
on anti-PD-1 activity. To assess the impact of heat-stress on anti-
VEGFA activity, samples were stressed at 40°C and 50°C for 0-6
days. The potency values of stressed samples was compared with the
respective control samples (Time 0).

2.9 Anti-tumor activity studies

Mouse colon cancer MC38 model in B-hPD-1 humanized mice:
MC38 cells were implanted subcutaneously in the right flank of
C57BL/6-Pdcd1tm(PPEDDBegen/Begen i (B_hPD-1 humanized
mice) at 1x10° cells/mouse. When the mean tumor volume reached
approximately 115 mm?®, mice were randomly assigned into seven
groups (n = 8 per group): (1) saline, (2) toripalimab 0.6 mg/kg, (3)
VEGEF-DotAb 0.33 mg/kg, (4) toripalimab 0.6 mg/kg + VEGF-DotAb
+0.33 mg/kg, (5) JS207 0.75 mg/kg, (6) JS207 1.5 mg/kg, and (7) JS207
4.5 mg/kg. Treatments were administered intraperitoneally twice
weekly for a total of 6 doses. Tumor volumes and animal body
weights were recorded (Supplementary Data Sheet).

Malignant melanoma A375 model in NDG mice: A375 cells at
5x10° cells/mouse were suspended mixed with Matrigel and
implanted subcutaneously into NDG mice. When the average
tumor volume reached approximately 137 mm? 10x10° PBMCs
in 0.2 mL were injected intravenously. Two days after PBMC
administration, the tumor-bearing mice were randomly assigned
to five groups (n = 8 per group): (1) saline control group, (2) AK112
11.1 mg/kg, (3) JS207 1.0 mg/kg), (4) JS207 3.0 mg/kg, and (5) JS207
10.0 mg/kg. All the treatments were administered intraperitoneally
twice a week for a total of 6 doses (Supplementary Data Sheet).
Tumor volumes and animal body weights were recorded, and tumor
growth inhibition rate (TGIyy) was calculated as:

TGlpy(%) = [1 - (Ti-T0)/(Vi-V0)] x 100 %

Where: Ti = mean tumor size of the treatment group on the i-th
day of administration, TO = mean tumor size of the treatment group
on day 0 of administration; Vi = mean tumor size of the negative
control group on the i-th day of administration, VO = mean tumor
size of the negative control group on day 0 of administration.

All animals of the above in vivo studies were housed in an SPF-
grade facility of Suzhou Junmeng Biopharmaceuticals. The housing
conditions were maintained at a temperature of 20-26 °C, relative
humidity of 40%-70%, with 12-hour light/dark cycle. All protocols and
procedures are approved by the local Institutional Animal Care and Use
Committee (IACUC) under permit number YTSYDWIACUC202401.

2.10 Statistical analysis

Statistical significance was determined using Microsoft Excel
and GraphPad Prism software. Comparisons between groups were
performed using a two-tailed Student’s t-test. Data are presented as
the mean * standard deviation, and differences between groups
were considered statistically significant when p < 0.05 (*p < 0.05;
“p < 0.01, **p < 0.001, ***p < 0.0001).
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3 Results

3.1 Structure and antigen binding profile of
JS207

JS207 is a recombinant humanized bispecific antibody that
targets both PD-1 and VEGFA and belongs to the IgG4 k subtype.
It was independently developed by Shanghai Junshi Biosciences
Co., Ltd. for the treatment of advanced malignancies. JS207
comprises two identical light chains (LC) and two identical
heavy chains (HC), which are linked by intra— and inter—chain
disulfide bonds. The molecule incorporates the Fab, hinge, and Fc
regions derived from an anti-PD-1 monoclonal antibody, with
an anti-VEGFA nanobody fused to the hinge region of
the heavy chain via flexible linkers ((G4S); and (G4S),)
(Figure 1A). The intact molecular weight of JS207 is approximately
180.5 kDa.

3.2 Binding of JS207 to human PD-1
related immune proteins

The binding activity of JS207 to human PD-1 and a panel of
related immune proteins was examined by ELISA. As shown in
Figures 1B, C, JS207 exhibited concentration—dependent binding to

10.3389/fimmu.2025.1612547

human PD-1. In contrast, it did not bind to human BTLA, CTLA
-4, CD28, PD-LI1, PD-L2, or ICOS. Comparative analysis using
toripalimab (an in—house, commercially approved anti-PD-1
antibody, also known as JS001) and AK112 demonstrated that all
three antibodies specifically bound to human PD-1. The calculated
ECs, values were 10.4 ng/mL (58.6 pM) for JS207, 8.9 ng/mL (60.5
pM) for toripalimab, and 20.1 ng/mL (100.0 pM) for AK112.

3.3 Binding of JS207 to human VEGF family
proteins

The binding of JS207 to human vascular endothelial growth
factor (VEGF) family proteins, including VEGFA, VEGFB, VEGFC,
VEGFD, VEGFE, and placental growth factor (PLGF), was
evaluated by ELISA. As shown in Figures 1D, E, JS207 specifically
bound to human VEGFA, with no detectable binding to human
VEGEFB, VEGFC, VEGFD, VEGFE, or PLGF.

3.4 Blocking of PD-1/PD-L1, PD-1/PD-L2
and VEGFA/VEGFR2 by JS207

The ability of JS207 to inhibit the binding of human PD-1 to its
ligands (PD-L1 and PD-L2) and to block the interaction between

A Domain organization of JS207 Binding of JS207 to PD-1-Related Proteins (1) c Binding of JS207 to PD-1-Related Proteins (2)
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FIGURE 1

Structure and binding profile of JS207. (A) Domain organization of JS207. (B) JS207 binds to human PD-1 but not to BTLA, CTLA-4, or CD28. (C)
JS207 binds to human PD-1 but not to PD-L1, PD-L2, or ICOS. (D) JS207 binds to human VEGFA but not to VEGFB, VEGFC, or VEGFD. (E) No
binding of JS207 to human PLGF (placental growth factor) or VEGFE. (F) Blocking of PD-1/PD-L1 interaction by JS207 and toripalimab (positive
control). (G) Blocking of PD-1/PD-L2 interaction by JS207. (H) Blocking of VEGFA/VEGFR2 interaction by J5207 and VEGF-DotAb (positive control).

An anti-KLH hlgG4 antibody served as the negative control in experiments (F—H).

Frontiers in Immunology 67

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1612547
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Lin et al.

human VEGFA and VEGFR2 was assessed using blocking ELISA.
In these assays, toripalimab and VEGF-DotAb (an in-house anti-
VEGFA Dotbody) served as positive controls, while an anti-KLH
hIgG4 antibody was used as the negative control.

As presented in Figures 1F, G, JS207 effectively blocked the
interaction between human PD-1 and PD-L1 with an ICs, of 1149
ng/mL (6.37 nM) and between PD-1 and PD-L2 with an ICs, of
776.6 ng/mL (4.3 nM). Moreover, JS207 inhibited the binding of
human VEGFA to VEGFR2 with an ICs; of 603.9 ng/mL (3.35 nM).
In contrast, toripalimab only blocked the PD-1/PD-L1 and PD-1/
PD-L2 interactions, with IC5, values of 883.7 ng/mL (5.56 nM) and
587.7 ng/mL (3.92 nM), respectively, but did not block the VEGFA/
VEGFR?2 interaction. VEGF-DotAb specifically inhibited VEGFA
binding to VEGFR2, with an ICso of 221.6 ng/mL (1.48
nM) (Figure 1H).

3.5 Species cross-reactivity of JS207

To evaluate the cross-species reactivity, the binding of JS207 to
PD-1 proteins from different species was assessed by ELISA. As
shown in Figures 2A-C, JS207 bound potently to human PD-1 and
cynomolgus (cyno) PD-1 with ECs, values of 8.2 ng/mL (45 pM)
and 17.2 ng/mL (95 pM), respectively, while no binding was
observed for rat or mouse PD-1. The negative control anti-KLH
IgG4 exhibited no binding.

Similarly, the cross-species binding of JS207 to VEGFA was
examined. As depicted in Figures 2D, E, JS207 bound to human and
cyno VEGFA with an ECs, of 4.2 ng/mL (23 pM) and also
recognized rat and mouse VEGFA with ECs, values of 5.3 ng/mL
(29 pM) and 4.8 ng/mL (27 pM), respectively.

10.3389/fimmu.2025.1612547

3.6 Binding affinity to human PD-1 and
VEGFA

The binding affinity and kinetics of JS207 toward human PD-1
were characterized using surface plasmon resonance (SPR).
Figure 3A shows the binding profile of JS207 to human PD-1,
which is similar to that of toripalimab (Figure 3C), a finding that is
consistent with the fact that the anti-PD-1 domain of JS207 is
derived from toripalimab. In contrast, AK112 displayed a distinct
profile (Figure 3B), with slower association and faster dissociation
kinetics compared to JS207 and toripalimab. The equilibrium
dissociation constant (Kp) for JS207 binding to human PD-1 was
determined to be 4.60x107'° M, approximately 11-fold higher
affinity than that of AK112 (5.05x10° M). In addition, the PD-1
binding affinity of JS207 was comparable to that of toripalimab
(5.55x107'° M) (Figure 3G).

The binding profile of JS207 to human VEGFA was similarly
assessed by SPR. As shown in Figures 3D-F, the binding traces of
JS207 were similar to those observed for AK112 and VEGF-DotAb.
All three antibodies exhibited very high affinities for human
VEGFA, with Kp, values of 9.00x10™* M for JS207, <2.59x10™!!
M for AK112, and <7.14x10"'* M for VEGF-DotAb (Figure 3H).

3.7 Binding of JS207/VEGFA complex to
human PD-1

Because JS207 exhibits high affinity for human VEGFA,
intravenous administration is expected to result in the rapid
formation of a JS207/VEGFA complex in circulation prior to its
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FIGURE 2

Species cross-reactivity of JS207. (A) No binding of JS207 to rat PD-1. (B) No binding of JS207 to mouse PD-1. (C) JS207 binding to human and
Cynomolgus Monkey (Cyno) PD-1. (D) JS207 binding to human and rat VEGFA. (E) JS207 binding to Cyno and mouse VEGFA. Anti KLH higG4 was

used as negative control.
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FIGURE 3

Antigen binding characteristics of JS207 in comparison with AK112, toripalimab and VEGF-DotAb. (A) JS207 binding to human PD-1. (B) AK112
binding to human PD-1. (C) Toripalimab binding to human PD-1. (D) JS207 binding to human VEGFA. (E) AK112 binding to human VEGFA. (F) VEGF-
DotAb binding to human VEGFA. (G) Binding affinity of JS207, AK112 and toripalimab to human PD-1. (H) Binding affinity of JS207, AK112 and VEGF-
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not PD-1. (V) No binding signal for buffer control.
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engagement with PD-1 within the tumor microenvironment. To
determine whether this preformed complex retains its ability to
bind human PD-1, we employed an Octet-based assay (Figure 3I).
In this experiment, human PD-1 conjugated with a mouse Fc
fragment was immobilized on an AMC biosensor. Next, JS207,
the preformed JS207/VEGFA complex, AK112, and the AK112/
VEGFA complex were injected (Figures 3I-N). As shown in
Figure 3K, the JS207/VEGFA complex produced a strong binding
signal to human PD-1, with a Kp value of <1.0x107'2 M,
comparable to JS207 alone (Figures 3J-L). Similarly, the AK112/
VEGFA complex bound to PD-1 with an affinity similar to that of
AK112 alone (Figures 3L-N). These results indicate that both
JS207/VEGFA and AK112/VEGFA complexes maintain robust
binding activity to human PD-1.

3.8 Simultaneous binding of JS207 to
human PD-1 and human VEGFA

To assess whether JS207 can bind human PD-1 and human
VEGFA simultaneously, we designed an SPR assay. In this
experiment, AK112 was used as a comparator, while toripalimab
and VEGF-DotAD served as positive controls for PD-1 and VEGFA
binding, respectively. In one format, human PD-1 was first captured;
subsequent injection of JS207, followed by VEGFA, produced an
additional binding response (Figure 30), demonstrating that JS207
can engage both antigens simultaneously. A similar dual-binding
profile was observed for AK112 (Figure 3P). In contrast, toripalimab
bound exclusively to PD-1 (Figure 3S), and no binding was detected
in the buffer control (Figure 3T). In a complementary approach,
when human VEGFA was immobilized first, JS207 was subsequently
able to bind human PD-1, further confirming JS207’s dual-binding
capability (Figures 3Q, R). AK112 exhibited a similar binding pattern
as JS207 (Figures 3P, R). As expected, toripalimab bound only to PD-
1, while VEGF-DotAb bound exclusively to VEGFA (Figure 3U); no
binding signal was observed in the corresponding buffer
control (Figure 3V).

3.9 Anti-PD-1 potency of JS207 using PD-1
reporter gene assay

The anti-PD-1 potency of JS207 was evaluated using a PD-1/
PD-L1 reporter gene assay (RGA). Jurkat effector cells stably
overexpressing human PD-1 and an NFAT-driven luciferase
reporter were co—cultured with CHO target cells expressing
human PD-LI1. JS207 effectively blocked the PD-1/PD-LI
interaction, thereby promoting T cell activation. The ECs, value
for JS207 was 2.89 nM with a signal-to-noise (S/N) ratio of 4.95. In
parallel, the EC5, values and S/N ratios for AK112 and toripalimab
were 8.34 nM, 4.47 and 3.49 nM, 6.0, respectively. Hence, the anti
—PD-1 potency of JS207 is comparable to that of toripalimab and
superior to that of AK112 (Figure 4A).
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3.10 Anti-VEGFA potency of JS207 in
VEGFA reporter gene assay

The anti-VEGFA activity of JS207 was assessed using a VEGFA/
VEGFR2 RGA in H293 cells engineered to overexpress VEGFR2. As
shown in Figure 4B, JS207, AK112, and VEGF-DotAb effectively
inhibited the binding of VEGF to VEGFR2. The ICs, value for JS207
was 0.773 nM with an S/N ratio of 4.49; for AK112, the corresponding
values were 1.131 nM and 4.79; and for VEGF-DotAb, 0.479 nM and
4.83, respectively. Thus, JS207 exhibited anti-VEGF activity
comparable to or slightly better than that of AK112 but was
marginally less potent than VEGF-DotAb (Figure 4B).

3.11 HUVEC proliferation inhibition by
JS207

The ability of JS207 to inhibit human umbilical vein endothelial
cell (HUVEQ) proliferation was examined in vitro. HUVECs were
cultured in the presence of 10 ng/mL VEGFA along with serial
dilutions of JS207, AK112, and VEGF-DotAb (0.005-10.0 nM).
The ICs, values and S/N ratios were determined to be 0.296 nM,
2.76 for JS207, 0.328 nM, 2.41 for AK112, and 0.243 nM, 3.22 for
VEGF-DotAb. These data indicate that the inhibitory effect of
JS207 on HUVEC proliferation is comparable to or marginally
better than that of AK112, albeit somewhat less potent than VEGF
—-DotAb (Figure 4C).

3.12 VEGFA enhances JS207's cell-based
binding and anti-PD-1 potency

The effect of VEGFA on the anti-PD-1 activity of JS207 was
investigated using the PD—-1 RGA. As indicated in Figure 4D, the
presence of 20.8 nM VEGFA markedly enhanced the anti-PD-1
activity of JS207 compared with JS207 alone. Further increasing the
VEGFA concentration to 333.3 nM elevated the maximum response
(upper asymptote) of JS207’s anti—-PD-1 potency. VEGFA at 1000 nM
also enhanced the anti-PD-1 potency of AK112 with similar extent as
JS207, whereas toripalimab remained unaffected (Figure 4E).

Cell-based binding studies using H293/PD-1 cells
demonstrated that VEGFA enhanced the binding of both JS207
and AK112 to PD-1, while toripalimab showed no such effect
(Figure 4F). Similar results were observed in PD-1 expressing
Jurkat/PD-1 cells (Supplementary Figure S1 in Supplementary
Data Sheet).

3.13 JS207 induces IL-2 and IFN-y in the
mixed lymphocytes reaction

The mixed lymphocyte reaction (MLR) system was used to
assess JS207’s effect on T cell activation. In this assay, in vitro-
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FIGURE 4

Cell-based biological activity of JS207. (A) Anti-PD-1 potency of JS207 in PD-1 reporter gene assay (RGA). (B) Anti-VEGFA potency of JS207 in
VEGFA RGA. (C) HUVEC proliferation inhibition by JS207. (D) The impact of VEGFA concentration on JS207's anti-PD-1 potency. (E) VEGFA

enhanced anti-PD-1 activity of JS207 and AK112 but not toripalimab. (F) VEGFA enhanced cell-based PD-1 binding by JS207 and AK112. (G) JS207,
AK112, toripalimab, and toripalimab plus VEGF-DotAb at 1.5 nM or higher significantly enhanced IL-2 levels. (H) JS207, AK112 and toripalimab at 15
nM or higher significantly enhanced IFN-y levels. Toripalimab plus VEGF-DotAb at 1.5 nM significantly enhanced IFN-y release in the MLR system.
*p < 0.05; **p < 0.01, ***p < 0.001, ****p < 0.0001 vs negative control (anti-KLH IgG4) group.

induced mature dendritic cells and CD4" T cells from four donors
were co—incubated with JS207 and control antibodies over a
concentration range of 15 pM to 150 nM. JS207 significantly
promoted the release of IL-2 and IFN-y in a dose—dependent
manner. The cytokine responses induced by JS207 were comparable
to those observed for AK112, toripalimab, and the combination of
toripalimab plus VEGF-DotAb (Figures 4G, H). Notably, VEGF
—-DotAb alone did not induce IL-2 or IFN-Y release relative to the
anti—-KLH hIgG4 control.

3.14 3S207 induces PD-1 internalization

To investigate PD-1 internalization, two complementary
methods were employed: the cell surface residual PD-1 assay and

the intracellular fluorescence assay.
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Cell Surface Residual PD-1 Method: Human PD—1-expressing
H293 cells were incubated at 4°C with 30 nM of JS207, AK112, or
toripalimab for 30 minutes in the presence or absence of VEGFA
(60 nM). After washing to remove unbound antibodies, cells were
stained with PE-labeled anti-PD-1 human IgG to quantify the
residual cell surface-bound PD-1. In the absence of VEGFA,
approximately 16-20% of surface PD-1 was internalized within
30 minutes, increasing to 21-32% after 60-240 minutes of
incubation for all three antibodies. However, in the presence of
VEGFA, JS207— and AKl112-treated cells exhibited a marked
increase in PD-1 internalization, reaching 46-50% within 30
minutes and up to 65% after 4 hours, while toripalimab was
unaffected (Figures 5A-C).

Intracellular Fluorescence Method: JS207, AK112, toripalimab,
and JS501 (an anti-VEGFA mAb) were conjugated with CypHer5E,
a pH-sensitive cyanine dye that exhibits enhanced fluorescence in

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1612547
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Lin et al.

acidic intracellular compartments. Jurkat/PD—1 cells were incubated
with serial dilutions of these CypHer5E—conjugated antibodies at 37°
C for 4 hours. At the end of incubation, a noncompetitive anti—-PD-1
antibody (MIH4 PD-1-PE) was added to measure the remaining
cell surface PD-1. As shown in Figures 5D-F, the intracellular
fluorescence intensity of CypHer5E—labeled JS207 and AK112
increased in a dose—dependent manner, while the cell surface PD
-1 signal detected by MIH4 PD-1-PE concomitantly decreased,
providing further evidence of PD-1 internalization. In the presence
of VEGFA, both fluorescence intensity and PD-1 internalization
were further enhanced for JS207 and AKI112. In contrast,
toripalimab-induced internalization was not affected by VEGFA
(Figure 5F). Only minimal internalization was observed when cells
were incubated at 4°C (Figure 5G).

In the absence of VEGFA, JS207 and toripalimab exhibited
comparable internalization activities with ECs, values of 62.3 ng/mL
(0.35 nM) and 58.4 ng/mL (0.39 nM), respectively, both of which were
more potent than AK112 (ECs, = 322.7 ng/mL, or 1.61 nM). To assess
the impact of varying VEGFA concentrations on PD-1 internalization,
a PD-1 RGA was performed using a fixed concentration of JS207 (25
nM) and AK112 (25 nM). As shown in Figure 5I, when VEGFA

10.3389/fimmu.2025.1612547

(111.1 nM and 333.3 nM), both antibodies demonstrated comparable
anti-PD-1 potencies, with ECs, values of 11.52 nM for JS207 and
11.62 nM for AK112 (Figure 5I).

3.15 Thermal stability assessment

The thermal stability is an important factor to be considered
during antibody CMC manufacturing and storage. In general, due
to multiple domain composition, BsAbs tend to have lower thermal
stability compared to conventional monoclonal antibodies that add
additional challenge during BsAb development (34, 35). The
thermal stability of JS207 was evaluated using two potency assays:
anti-PD-1 RGA and anti-VEGFA RGA.

At 40°C, neither JS207 nor AK112 exhibited significant changes
in anti-PD-1 potency after 24, 48, or 96 hours of heat stress
(Figures 6A, B). Similarly, at 40°C, no significant changes in anti
—VEGFA potency were observed for JS207 and AK112 after 1, 4, and
6 days of incubation (Figures 6E, F). Under extended periods of high
temperature (50°C, up to 6 days), JS207 showed a time-dependent
increase in IC50 values (potency decrease) but retained an

concentrations were low (0.017-1.37 nM), JS207 exhibited higher anti-
PD-1 potency than AK112. However, at high VEGFA concentrations

unchanged S/N ratio for anti-VEGFA potency (Figure 6G). Under
the same stress condition (50°C, up to 6 days), AK112 exhibited
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FIGURE 5

PD-1 internalization assessment using the cell surface residual PD-1 method in PD-1 expressing H293 cells (A-C) and the intracellular fluorescence
method in Jurkat/PD-1 cells (D-H). (A) VEGFA enhanced PD-1 internalization induced by JS207. (B) VEGFA enhanced PD-1 internalization induced by
AK112. (C) VEGFA did not impact PD-1 internalization induced by toripalimab. (D) VEGFA enhanced JS207-induced PD-1 internalization with
increased intracellular fluorescence and decreased cell surface PD-1 signal. (E) VEGFA enhanced AK112-induced PD-1 internalization with increased
intracellular fluorescence and decreased cell surface PD-1 signal. (F) VEGFA did not impact PD-1 internalization induced by toripalimab. (G) Minimal
PD-1 internalization was seen in cells incubated at 4°C. (H) JS207 and toripalimab showed comparable PD-1 internalizations, which are stronger
than AK112. (I) VEGFA concentration-dependently enhanced anti-PD-1 potency of JS207 and AK112. The concentration of JS207 and AK112 used in

this study was 25 nM.
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FIGURE 6

Thermal stability assessment for JS207 using PD-1 RGA and VEGFA RGA. (A) Anti-PD-1 potency of JS207 after 40°C stress for 24, 48 and 96 hr.
(B) Anti-PD-1 potency of AK112 after 40°C stress for 24, 48 and 96 hr. (C) Anti-PD-1 potency of JS207 after 55°C stress for 24 and 48 hr. (D) Anti-
PD-1 potency of AK112 after 55°C stress for 24 and 48 hr. (E) Anti-VEGFA potency of JS207 after 40°C stress for 1, 4 and 6 days. (F) Anti-VEGFA
potency of AK112 after 40°C stress for 1, 4 and 6 days. (G) Anti-VEGFA potency of JS207 after 50°C stress for 1, 4 and 6 days. (H) Anti-VEGFA

potency of AK112 after 50°C stress for 1, 4 and 6 days.

increases in IC50 values (potency decrease) and a decrease in the S/N
ratio for anti-VEGFA potency (Figure 6H).

At 55°C, AK112 lost nearly all anti-PD—-1 activity by 24 hours
and completely lost anti-PD-1 activity by 48 hours. In contrast,
JS207 maintained relatively strong anti—PD-1 activity, retaining
65% potency at 24 hours and 31% at 48 hours compared to time 0.
Furthermore, even after 4 hours at 65°C, JS207 retained 15.5% anti-
PD-1 activity while AK112 had no activity at all (Supplementary
Figure S2 in Supplementary Data Sheet). These results demonstrate
that JS207 possesses enhanced thermal stability in anti-PD-1
potency. These results support previous finding that Fab format
(anti-PD-1 domain of JS207) is more stable than scFv format (anti-
PD-1 domain of AK112) (36).

3.16 Anti-tumor efficacy in mouse MC38
tumor model in B-hPD-1 humanized mice

To evaluate the in vivo anti-tumor activity of JS207, mouse
colon cancer MC38 cells were subcutaneously implanted
into C57BL/6-Pdcd1'™! (PPCPDBeEr /Begen humanized mice
(abbreviated as B-hPD-1 mice). As shown in Figures 7A, C, JS207
significantly inhibited tumor growth in a dose-dependent manner
when administered at 0.75, 1.5, and 4.5 mg/kg, achieving tumor
growth inhibition (TGI) rates of 76.1%, 78.0%, and 84.4%,
respectively, at day 20 post—treatment. At equivalent molar doses,
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JS207 (0.75 mg/kg) exhibited superior anti—tumor activity
compared to toripalimab monotherapy (0.6 mg/kg) or
toripalimab plus VEGF-DotAb combination therapy (0.6 mg/kg
+ 0.33 mg/kg). Notably, none of the treatment groups showed
significant body weight loss or other overt side effects, indicating
that JS207 was well tolerated (Figure 7E).

3.17 Anti-tumor efficacy in malignant
melanoma A375 model in NDG mice

The anti—tumor efficacy of JS207 was further examined in a
human malignant melanoma A375 model using human PBMC
transplanted NDG mice. In the saline—treated group, the mean
tumor volume reached 585 + 83 mm?® at day 21. In contrast, mice
treated with JS207 at doses of 1, 3, and 10 mg/kg exhibited mean
tumor volumes of 362 + 38 mm?, 344 + 32 mm?, and 262 + 25 mm?®,
corresponding to TGI rates of 49.6%, 53.7%, and 72.0%, respectively
(Figures 7B, D). Additionally, mice treated with AK112 at 11.1 mg/
kg displayed a mean tumor volume of 349 + 62 mm?® with a TGI of
52.7%. At equivalent molar doses (AK112 at 11.1 mg/kg versus
JS207 at 10 mg/kg), JS207 demonstrated superior anti-tumor
efficacy compared with AK112. Importantly, the body weights of
animals in the treatment groups did not significantly differ from
those in the saline group, underscoring the favorable tolerability of
both JS207 and AK112 (Figure 7F).
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FIGURE 7

Anti—tumor efficacy of J5207 in the MC38 mouse colon cancer model in C57BL/6-Pdcd1mMiPPCDVBegen Begen myjce (B—hPD-1 humanized mice) and
the A375 malignant melanoma model in NDG mice. (A) Tumor growth curves for MC38 hPD-1 tumors treated with JS207, toripalimab, and
toripalimab plus VEGF-DotAb. (B) Tumor growth curves for A375 hPD-1 tumors in mice treated with JS207 and AK112. (C) Significant decrease in
MC38 tumor weight in animals treated with JS207, toripalimab, and toripalimab plus VEGF-DotAb (mean + SEM, n = 8; *p < 0.05, **p < 0.01 vs
Saline). (D) Significant reduction in A375 tumor weight in animals treated with JS207 and AK112 (mean + SEM, n = 8; *p < 0.05 vs Saline). (E) Average
body weight of animals in the MC38 tumor model. (F) Average body weight of animals in the A375 tumor model.

4 Discussion

The combination of PD-(L)1 and VEGF inhibition has
exhibited considerable potential in amplifying antitumor
responses. Nevertheless, the co-administration of monoclonal
antibodies poses several challenges, including intricate dosing
schedules, distinct pharmacokinetics, and increased toxicity risks.
Bispecific antibodies (BsAbs) provide a streamlined solution by
facilitating dual targeting within a single molecular construct.
Interestingly, investigations into HB0025 (anti-PD-L1/VEGFRI
BsAb), CVL006 (anti-PD-L1/VEGFA BsAb) and AK112 (anti-
PD-1/VEGFA BsAb) have demonstrated promising preclinical
and clinical efficacy, further underscoring the feasibility and
potential of this innovative therapeutic approach (31, 33, 37, 38).
As summarized in Table 1, these BsAbs, whether in an anti-PD-L1/
VEGFA format or an anti-PD-1/VEGFA format, can enhance T cell
activation and in vivo antitumor activity, regardless of the Fc region
configuration, whether IgG4, or IgG1l with or without ADCC
(antibody-dependent cellular cytotoxicity). This study introduces
JS207, a novel BsAb targeting PD-1 and VEGFA, engineered to
overcome resistance mechanisms in cancer therapy by concurrently
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inhibiting immunosuppressive and angiogenic pathways. JS207
demonstrated high-affinity binding to human PD-1 (Kp
4.60x10"° M) and potent inhibition of VEGFA activity (ICso =
0.773 nM), effectively blocking both PD-1/PD-L1 and VEGFA/
VEGEFR?2 interactions. Notably, JS207 exhibited an 11-fold higher
PD-1 binding affinity compared to AK112 (Kp = 5.05x10° M)
while maintaining comparable VEGFA binding activity. JS207
could bind to human PD-1 either by itself or as JS207/VEGFA
complex. Furthermore, JS207 could simultaneously bind to human
PD-1and VEGFA (Figure 3). Mechanistically, JS207 induced robust
PD-1 internalization, a process augmented by VEGFA, and

sustained T-cell activation. In preclinical models, JS207 achieved
remarkable anti-tumor efficacy, with tumor growth inhibition
(TGI) rates of 84.4% in the MC38 colon cancer model and 72.0%
in the A375 melanoma model at 10 mg/kg, outperforming AK112 at
equivalent molar doses (11.1 mg/kg). Collectively, these findings
underscore JS207’s dual mechanism of action and its promise as a
next-generation therapeutic agent in cancer immunotherapy.

The TME and aberrant angiogenic signaling represent major
hurdles to achieving durable responses with current cancer
immunotherapies (39). Although ICIs such as PD-1 blockers (e.g.,
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TABLE 1 Comparison of JS207, AK112, HB0025 and CVLO006.

Structural Format

Binding Affinities

10.3389/fimmu.2025.1612547

Biological Activities

JS207 *  PD-1/VEGFA BsAb *  High affinity for PD-1 and VEGFA *  Enhances T-cell activation, cytokine release, and
o IgG4 * KD values by SPR assay PD-1 internalization
*  MMW. =180 kDa m PD-1 = 4.60E-10 M *  Blocks VEGF-induced HUVEC proliferation
= VEGFA = 9.00E-12 M *  Enhances in vivo anti-tumor activities
AK112 *  PD-1/VEGFA BsAb *  High affinity for PD-1 and VEGFA *  Enhances T-cell activation, PD-1 internalization and
»  IgGl, ADCC silenced * KD values by SPR assay *: inhibits tumor angiogenesis

*  MW. =200 kDa

m PD-1 = 5.05E-09 M .
m VEGFA = <2.59E-11 M

Enhances in vivo anti-tumor activities

HB0025 *  Fusion protein-based PD-L1/ *  High affinity for PD-L1 and VEGFRI =+  Enhances T-cell activation
VEGFR1 BsAb + KD values by SPR assay ": *  Blocks VEGF-induced HUVEC proliferation
e IgG4 = PD-L1 = 1.76E-9 M and migration
*  MW.=171 kDa m VEGFA = 4.72E-12 M *  Enhances in vivo anti-tumor activities

CVL006 *  PD-LI1/VEGFA BsAb *  High affinity for PD-L1 and VEGFA |+  Enhances T-cell activation
*  IgGl, ADCC active ¢ KD values by SPR assay *  Blocks VEGF-induced HUVEC proliferation
+ MW. =150 - 200 kDa ¢ = PD-L1 = 1.55E-10 M *  Enhances in vivo anti-tumor activities

m VEGFA = 1.50E-11 M

 Results of current study; ® Data from Cui et al.,, 2021 (Reference 36); . Data from Wang et al., 2024 (Reference 37); 4 the exact molecular weight is not publicly available.

pembrolizumab) and anti-VEGFA agents (e.g., bevacizumab)
have revolutionized cancer treatment, their efficacy is often
compromised by resistance mechanisms, including compensatory
angiogenic pathways and immune evasion (2, 40). Several studies
using patient-derived xenografts and tumor tissue analyses indicate
that tumors with elevated VEGFA levels foster a microenvironment
rich in PD-1-positive immune cells. For example, Voron et al.
demonstrated that VEGFA modulates inhibitory checkpoint
expression on CD8" T cells, thereby providing a mechanistic basis
for combining anti-angiogenic therapy with immune checkpoint
blockade (41). Huang et al. showed that anti-angiogenic treatment
normalizes tumor vasculature and reprograms the TME to enhance
immune cell infiltration (42). Allen et al. reported that pairing
antiangiogenic with anti-PD-L1 therapies synergistically stimulates
tumor immunity through complementary mechanisms (43). These
findings underscore the translational relevance of our work,
suggesting that anti-PD-1/VEGFA BsAbs could potentially
generate a more effective antitumor response. Moreover,
preclinical and clinical evidence supports the rationale for
combining PD-1 and VEGFA blockade, as VEGFA not only
drives angiogenesis but also impairs dendritic cell maturation and
cytotoxic T-cell activity (25, 41). It has been shown that dual PD-1
and VEGFR-2 blockade promotes vascular normalization and
enhances anti-tumor immune responses in murine hepatocellular
carcinoma models (23). Clinical studies using combinations such as
bevacizumab (anti-VEGFA) with atezolizumab (anti-PD-L1) have
validated this approach, although challenges related to discordant
pharmacokinetics and overlapping toxicities remain (24).

JS207’s efficacy arises from its ability to engage PD-1 and
VEGFA, disrupting two critical TME pathways. Interestingly, our
results revealed that exogenous VEGFA enhanced JS207’s cell-based
binding (Figure 4F) and anti-PD-1 activity (Figures 4D, E). Several
mechanisms may contribute to this phenomenon: (i) Target
Upregulation: VEGFA may upregulate PD-1 expression on target
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cells, amplifying the impact of dual blockade (21). (ii) Avidity
Effects: VEGFA binding could stabilize JS207 near PD-1-
expressing cells, increasing local antibody concentration and
blockade efficiency (44). (iii) Feedback Modulation: Neutralizing
VEGFA may reduce immunosuppressive PD-L1 expression,
indirectly enhancing PD-1 blockade (45), (iv) Receptor
Clustering: Dual binding may facilitate PD-1 cross-linking and
sustaining T-cell activation (37), (vi) Enhanced PD-1
Internalization: JS207 achieved 65% PD-1 internalization in the
presence of VEGFA (vs. 32% without) (Figures 5A-I), and (vii)
Synergistic Pathway Inhibition: Concurrent PD-1/VEGFA blockade
elevated IL-2 and IFN-y secretion in mixed lymphocyte reactions,
mirroring effects seen with toripalimab + VEGF-DotAb
combination therapy (Figures 4G, H).

While BsAbs offer a versatile platform, selecting the optimal
BsADb format is critical because its structural design directly impacts
efficacy, safety, and CMC manufacturability by influencing
production complexity, yield, and scalability. While scFv is widely
used in BsAb development (e.g., IgG-scFv) due to its versatility and
compact structure, VHH format (e.g., IgG-VHH) could serve as a
good alternative because of its superior chemical and physical
properties such as smaller size, higher solubility and lower
production cost (46). Previous studies have shown that VHH
antibodies have better stability compared to scFv antibodies due
to the structural differences in domain composition, hydrophobic
interactions, disulfide bonds and evolutionary adaptation (36, 47,
48). Our findings demonstrated that anti-PD-1/VEGFA BsAb in an
IgG-VHH form like JS207 could simultaneously block PD-1 and
VEGFA with high affinity and biological activities while
maintaining good thermal stability. In terms of anti-PD-1 activity,
JS207 was extremely stable under heat tress retaining good activity
after 48 hours at 55°C (Figure 6C) and measurable activity after 4
hours at 65°C (Supplementary Figure S2). For anti-VEGFA activity,
JS207 also showed good heat resistance for extended periods. After
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6 days of heat stress, there was no change in its anti-VEGFA
potency at 40°C and retained measurable activity at 50°C
(Figures 6E, G). Thus, JS207 demonstrates an excellent heat
stability profile, a critical factor for CMC manufacture, storage
and drug shelf life.

The rationale for using NDG mice in the A375 model and B-
hPD-1 mice in the MC38 model for JS207 efficacy studies is based
on their distinct immunological characteristics. NDG mice are
highly immunocompromised, allowing human tumor cell lines
such as A375 melanoma to engraft and proliferate without
immune rejection. This model helps isolate the effects of the anti-
VEGE/PD-1 bispecific antibody on tumor vascularization and
growth while eliminating the confounding influence of an active
adaptive immune response. In contrast, B-hPD-1 mice carry a
human PD-1 gene and support syngeneic MC38 tumors within a
fully functional immune system. This setup more accurately mimics
the human TME, enabling the evaluation of immune checkpoint
inhibition effects on T cell activation, cytokine secretion, and overall
antitumor activity. While NDG mice cannot model immune-
mediated responses due to their lack of adaptive immunity, B-
hPD-1 mice provide a more physiologically relevant immune
setting—though many aspects of their biology remain murine.
JS207’s preclinical profile positions it as a promising candidate for
clinical translation. Delivering dual targeting in a single agent could
mitigate toxicity and dosing complexities inherent to combination
therapies (28). Key implications include (i) Potency at Lower Doses:
JS207 achieved significant TGI at 0.75 mg/kg in the MC38 model,
outperforming toripalimab monotherapy (Figure 7A); (ii) Broad
Applicability: Cross-reactivity with cynomolgus PD-1/VEGFA
supports non-human primate toxicology studies; and (iii)
Enhanced Stability simplifies storage and distribution
requirements (49). These attributes could address unmet needs in
oncology, particularly for tumors with high PD-L1/VEGF co-
expression or resistance to single-agent immunotherapies (50).

While this study establishes JS207’s therapeutic potential,
several limitations warrant attention, such as, (i) Model
Constraints: The use of immunocompromised NDG mice limits
assessment of adaptive immunity; humanized models with intact
immune systems are warranted (51); (ii) Mechanistic Clarity: The
structural basis for VEGFA-enhanced PD-1 internalization remains
unclear, necessitating crystallography or cryo-EM studies (52). One
hypothesis is that VEGFA directly interacts with PD-1 or associated
adaptor proteins, triggering conformational changes that promote
receptor internalization. Structural studies, such as cryogenic
electron microscopy (cryo-EM) and co-crystallization, could
elucidate whether VEGFA binds directly to PD-1 or alters the
surrounding membrane microenvironment. These methods might
reveal specific binding interfaces, conformational shifts, or protein-
lipid interactions that facilitate internalization. Future directions
include mutagenesis experiments based on structural data to
validate these mechanisms, paving the way for targeted therapies
that modulate immune checkpoint recycling and optimize the
antitumor immune response; and (iii) Biomarker Validation: PD-
L1/VEGF co-expression levels should be evaluated as predictive
biomarkers in clinical trials (53). Given these encouraging
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preclinical findings, JS207 is advancing into clinical development
to assess safety, pharmacokinetics, and efficacy in cancer patients.
Future studies exploring combinations with chemotherapy or
immunomodulators (e.g., CTLA-4, BTLA inhibitors) could
further enhance therapeutic outcomes (12, 54, 55).

In conclusion, JS207 represents a significant advancement in
bispecific antibody therapeutics by integrating potent PD-1 and
VEGFA blockade into a single and stable molecule with high affinity
for target antigens. Its ability to enhance PD-1 internalization,
synergistically inhibit immunosuppressive/angiogenic pathways,
and achieve robust anti-tumor efficacy in preclinical models
underscores its therapeutic potential. By addressing limitations of
existing therapies, such as resistance mechanisms, pharmacokinetic
discordance, and formulation instability, JS207 offers a promising
strategy for improving outcomes in advanced cancers. Clinical
validation is now imperative to translate these preclinical
advantages into patient benefits. Given the well-documented
toxicity concerns associated with anti-VEGF and anti-PD-(L)1
combination therapy, dual-targeting VEGF/PD-(L)1 BsAb may
pose potential immune, vascular, and inflammatory risks.
Therefore, careful monitoring, optimized dosing strategies, and
rigorous clinical validation are essential to ensuring their safe and
effective therapeutic application.
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Blinatumomab, a bispecific T-cell engager, has demonstrated substantial clinical
benefits in treating pediatric patients with relapsed or refractory B-cell acute
lymphoblastic leukemia (R/R B-ALL). Approved by FDA for several indications,
blinatumomab is now integral to therapeutic protocols for specific pediatric
cohorts, with real-world applications steadily increasing. As one of the
representatives of cutting-edge immunotherapy for pediatric ALL, blinatumomab
plays a crucial role in precision medicine against the backdrop of current genetic
testing. Clinical efficacy is influenced by factors such as tumor burden, endogenous
T-cell function, CD19 antigen loss, and lineage switch. Treatment-related
complications, such as cytokine release syndrome (CRS), neurotoxicity (ICANS),
and infections, necessitate vigilant monitoring. Administration involves continuous
intravenous infusion, with consideration for drug interactions. Despite proven short-
term efficacy and tolerability, long-term impacts on pediatric patients warrant further
investigation. Current studies refine dosing strategies and combinational approaches
to enhance therapeutic precision for pediatric patients. This review synthesizes
selected literature related to clinical trials of blinatumomab, emphasizing
determinants of clinical efficacy and adverse events associated with treatment.

KEYWORDS

blinatumomab, pediatric B-ALL, immunotherapy, efficacy, toxicity

1 Introduction

Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in children,
with precursor B-cell lineage (B-ALL) being the predominant form, accounting for over
75% of all pediatric leukemia (1, 2). As the leading childhood hematologic malignancy, B-
ALL is responsible for about one-third of all pediatric cancers. Over the past few decades,
the treatment efficacy of pediatric ALL has seen a substantial improvement, largely due to
advancements in clinical trials and enhanced supportive care. Survival rates have surged
from below 10% in the pre-1970s era to approximately 70% by the 1980s, with current
long-term survival exceeding 85% (3-5).

Despite modern therapies achieve cure rates approaching 90%, a subset of pediatric
patients continues to encounter challenges such as intrinsic drug resistance or post-
remission relapse. For these refractory and relapsed cases, immunotherapy and
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hematopoietic stem cell transplantation (HSCT) have become main
treatment methods. As a representative of immunotherapy,
blinatumomab has demonstrated significant efficacy and safety.
Current data indicate that the complete remission (CR) rate for
refractory or relapsed patients in children treated with conventional
chemotherapy is only 20-30%, with a median overall survival (OS)
time of only 2 to 4 months (6). In contrast, the CR rate for R/R ALL
treated with blinatumomab monotherapy can reach 43-69%, with a
median OS time of 6.1 to 13 months (7), which is significantly better
than traditional chemotherapy. The efficacy is better with lower
tumor burden, and outcomes are even better for MRD+ patients (7).

Blinatumomab functions as a bispecific T-cell engager (BiTE),
targeting tumor cells for destruction by simultaneously blinding to
tumor-specific antigens (CD19 antigen on malignant B cells) and
patients’ own T-cell receptors (typically CD3¢) (8). It not only targets
tumor cells but also enhances T-cell activity, modifies the tumor
microenvironment to reduce immunosuppression, and improves
anti-tumor effects. Since its initial application in 2011 on three
pediatric patients, blinatumomab has been found to improve
disease remission rates and survival rates, effectively clear minimal
residual disease (MRD), and ofter higher safety compared to cytotoxic
drugs through a series of clinical trials. Currently, the focus of
pediatric ALL is on precision medicine. Based on the classification
of different subtypes of pediatric ALL through genetic testing
methods such as Next-Generation Sequencing (NGS), more
targeted therapeutic approaches are then adopted, including
blinatumomab. Specifically, in several retrospective assessments,
children with R/R ALL have shown treatment response rates to
blinatumomab ranging from 34-38% to approximately 60% (9). Up
to now, almost all published articles indicate that connecting
blinatumomab treatment before or after allo-HSCT will improve
the survival rate of pediatric patients (9). Furthermore, for children
with poor prognosis who have rare genetic variant subtypes, such as
germline TP53 mutations and MYC/BCL2 rearrangements, although
there is currently limited reported data, blinatumomab represents
another potential option beyond cytotoxic drugs (10). In a report
regarding nine pediatric patients with TCF3-HLF positive ALL (11),
most children experienced durable remissions after using
blinatumomab early in the first consolidation as a bridge to HSCT.
This rare subtype of childhood ALL is typically characterized by a
high rate of treatment failure.

Notably, since its approval by the US Food and Drug
Administration (FDA) for the treatment of pediatric ALL,
blinatumomab progressively extended its clinical utility. Its
favorable efficacy and relative manageable toxicity profile have
reshaped treatment paradigms, offering new hope for pediatric
patients with R/R ALL (12).

2 Clinical adaptations
2.1 Official approvals
Blinatumomab (blincyto®) has achieved sequential regulatory

milestones since its first accelerated approval in 2014 by the US
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Food and Drug Administration (FDA) for adult and pediatric
(Z1month old) patients with relapsed or refractory CD19+ B-cell
precursor acute lymphoblastic leukemia (ALL). Subsequent
expansion of its indications include:

2018 Authorization: Approval extended to adult and pediatric
(Z1month old) patients with CD19+ B-ALL in first or
second complete remission exhibiting minimal residual
disease (MRD) greater than or equal to 0.1%.

2024 Update: FDA clearance for incorporation into consolidation
therapy protocols targeting adult and pediatric (21month
old) patients with Philadelphia chromosome-negative CD19+
B-ALL during multiphase chemotherapy.

2.2 Clinical recommendations

Based on the research and real-world data of blinatumomab in
pediatric patients, guidelines from different countries have made
relevant recommendations for the application of blinatumomab in
pediatric B-ALL.

The 2025, 2nd edition NCCN Guidelines (13) suggest that for
newly diagnosed Ph-negative children who achieve a complete
response (CR) with minimal residual disease (MRD) positivity after
induction therapy, blinatumomab treatment can be recommended,
followed by a bridge to allogeneic Hematopoietic Stem Cell
Transplantation (allo-HSCT). For high-risk Ph-positive children
who fail to achieve CR with induction therapy or still have MRD at
the end of consolidation therapy, blinatumomab treatment is also
recommended, followed by a bridge to allo-HSCT. For infants with
newly diagnosed leukemia accompanied by KMT2A rearrangements,
the Interfant chemotherapy regime can be recommended, either
alone or in combination with blinatumomab, followed by
continuation of the Interfant intensive chemotherapy consolidation
protocol. For those without KMT2A rearrangements, blinatumomab
treatment is recommended after induction if MRD is positive,
followed by a bridge to allo-HSCT. For children with B-ALL
experiencing a first relapse, blinatumomab treatment can be
used after achieving CR with induction therapy, regardless of MRD
status, with consideration given to a bridge to allo-HSCT. For those
who relapse after transplantation, as well as those with multiple
relapse or refractory disease, blinatumomab can be used for re-
induction therapy.

In the 2024 Chinese Expert Consensus (14), the expert panel’s
treatment recommendations are as follows: For newly diagnosed high-
risk, chemotherapy-intolerant, and infant patients with leukemia, the
use of blinatumomab in combination with chemotherapy for
induction of remission and consolidation therapy is recommended;
for patients with relapsed/refractory (R/R), the earlier blinatumomab
is used, the greater the benefit. Blinatumomab is recommended for
salvage therapy of the first relapse and for consolidation therapy in
patients with early relapse and positive MRD after induction,
corresponding to patients considered as intermediate to high risk.
Following this, a bridge to allo-HSCT can lead to longer survival.
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2.3 Real-world supplementary applications

Since the approval by FDA, blinatumomab has gained
widespread recognition for its efficacy in several clinical scenarios.
Based on instructions and expert consensus, blinatumomab plays
an important role in the real-word clinical treatments and also
holds clinical significance in other supplementary situations.

2.3.1 First-line treatment for children

Blinatumomab has been explored as a first-line treatment,
particularly for infants with KMT2A rearrangements (15). The
Interfant-06 study demonstrated a significant improvement in 2-
year disease-free and OS rates compared to historical controls (15).
Additionally, ongoing clinical trials, such as the AIEOP-BFM ALL
2017 (NCT03643276) and the St. Jude protocols (NCT031177510),
as well as the recently finished COG AALL1731 (US), are
evaluating its efficacy in the high-risk pediatric B-ALL population.
In China, collaborative studies have further extended its
application to intermediate-risk cases, marking a shift from its
original use in relapse/refractory disease to frontline settings.
However, critical questions regarding optimal dosing schedules,
treatment duration, and synergistic chemotherapy combinations
remain under investigation.

2.3.2 Post-HSCT relapse prevention

Blinatumomab has emerged as a valuable adjunct for
preventing relapse following HSCT. When combined with donor
lymphocyte infusions, it can effectively help children who are MRD-
positive after HSCT to become MRD-negative again. However, its
efficacy appears limited in preventing relapses in the central nervous
system (16).

2.3.3 Bridging therapy for alleviating
chemotoxicity

Blinatumomab has been applied in pediatric ALL patients with
severe chemotherapy-related toxicities or those who are intolerant to
chemotherapy, and this preliminary exploration has shown a
promising outlook. A small proportion of pediatric ALL patients
experience overwhelming chemotherapy-related toxicities or
temporary contraindications to chemotherapy after receiving
chemo, leading to interruptions and delays in chemotherapy or
prompting changes in chemotherapy dosages, thereby resulting in
treatment failure or relapse. Elitzur et al. (17) reported 11 pediatric
patients who received blinatumomab treatment due to severe
chemotoxicities, and all patients successfully recovered and
transitioned to further therapy. Daniel et al. (18) introduced 15
pediatric ALL cases with invasive fungal disease (IFD) caused by
chemotherapy, and these patients received blinatumomab as a bridge
treatment, allowing for continued targeted treatment for ALL while
recovering from IFD. Another study involving a 10-month-old
female patient and a 4-year-old female patient (19) also
demonstrated that blinatumomab can improve the toxic state to
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continue chemotherapy and that blinatumomab treatment is safe
even in the presence of infectious complications. In a retrospective
analysis conducted by Beijing Children’s Hospital of 23 children
treated with blinatumomab (18), 20 were intolerant to chemotherapy,
mainly due to pancreatitis, mucositis, cerebral venous thrombosis,
infectious shock, and so on. After 1 to 2 cycles of blinatumomab
treatment, all children achieved molecular biological remission with
negative MRD. Among them, 4 children with relapse subsequently
underwent HSCT, and the remaining children received maintenance
therapy. Blinatumomab bridge therapy shortens the duration of
chemotherapy interruption and provides a novel treatment option
for pediatric ALL patients who cannot tolerate cytotoxic therapy.
However, experience and data on the use of blinatumomab in
pediatric patients with severe chemotherapy-related toxicities are
limited, and prospective clinical studies are needed to determine
the exact and optimal role of blinatumomab in improving treatment
and reducing treatment-related toxicities.

3 Treatment response across different
subtypes

With the continuous advancement of molecular technology and
the application of NGS technology, both the International
Consensus Classification (ICC) and the World Health
Organization (WHO) have conducted detailed molecular
subtyping of B-ALL. Although this has increased the complexity
of subtyping diagnosis, it has significant implications for
personalized precision treatment and prognostic management.
Comprehensive genomic analysis of large cohorts of ALL,
through the identification of novel clonal, subtype-defining
chromosomal alterations, has reduced the proportion of patients
previously classified as “others” from 25% to approximately 5%
(20), thereby expanding the scope of precision medicine treatment
for pediatric ALL. Children with different subtypes of B-ALL harbor
distinct abnormal molecular signaling pathways or other biological
pathways, which correspond to varying degrees of prognosis. The
identification of clear subtypes provides definite abnormal targets,
facilitating the selection of targeted drugs and offering the
opportunity for preemptive treatment planning for subtypes with
poor prognosis. There is currently evidence that ETV6-RUNXI,
high hyperdiploidy of chromosomes 4, 10, and 17, or double/triple
trisomies are associated with a favorable prognosis, whereas
hypodiploidy, BCR-ABL1, KMT2A rearrangements (KMT2AR),
TCF3-HLF, and intrachromosomal amplification of chromosome
21 are associated with an adverse prognosis (21). Recently identified
novel subtype-defining chromosomal alterations, some of which
have prognostic and/or therapeutic implications, may involve
multiple rearrangements of a single partner gene, sequence
mutations of transcription factors, or a spectrum of genomic
alterations within a single group (20), such as the MYC
rearrangement subtype, which has an extremely poor prognosis.
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Meanwhile, the molecular subtypes also provide a platform for
understanding the genetic basis and clonal architecture of R/R B-
ALL, contributing to the progress in the mechanisms of relapse. The
mutations in relapsed ALL often originate from minor clones that
exist at diagnosis, which survive therapy and acquire additional
cooperating mutations, thereby becoming the founding clones of
relapse (22). These founding clones may arise as a result of
chemotherapy-induced selection, and thus are drug-resistant,
rendering the original chemotherapy ineffective. Targeted
therapies, such as tyrosine kinase inhibitors (TKIs), can effectively
inhibit tumor progression and exert antitumor effects by interfering
with molecular signaling pathways, but they face the problems of
drug resistance and relapse. At this point, immunotherapy, which is
not dependent on specific genetic abnormalities, can overcome the
chemotherapy-resistant mutations that are enriched in relapsed
ALL (22). Specifically, blinatumomab bridging to HSCT has
demonstrated high efficacy and low toxicity in children with
intermediate and high-risk first relapse of B-ALL (23).

3.1 B-ALL with BCR::ABL1 fusion

The BCR:ABL1 fusion gene is generated by a reciprocal
translocation between chromosomes 9 and 22, which results in
the formation of the Philadelphia chromosome (Ph). Pediatric Ph+
B-ALL is a subtype with a poor prognosis, accounting for 2%-5% of
childhood ALL (24). The BCR-ABLI1 fusion event leads to the
abnormal activation of tyrosine kinase, which in turn causes
the dysregulation of its downstream pathways. Therefore, the
application of TKIs has brought significant improvement for
children, with the survival rate of pediatric Ph+ ALL achieving a
leap from 20% to over 60% (25). At present, the treatment of
pediatric Ph+ ALL has formed a comprehensive strategy centered
on the combination of TKIs and chemotherapy, and is gradually
evolving towards precision stratification and targeted
immunotherapy. Blinatumomab has been applied in the
consolidation phase of children with Ph+ ALL and in those with
relapsed/refractory disease. In patients with relapsed/refractory Ph+
B-ALL, blinatumomab monotherapy has demonstrated a high CR
rate and molecular complete remission (CMR) rate. Besides, the
RIALTO study showed that blinatumomab had a significant effect
on MRD remission, with an MRD remission rate of 79% in children
with a baseline blast count of >5%, and an MRD remission rate as
high as 92% in children with a baseline blast count of <5%.

3.2 B-ALL with BCR::ABL1-like features

BCR::ABL1-like ALL, also termed as Ph-like ALL, is a high-risk
B-ALL, which is characterized by adverse clinical features and a
poor relapse-free survival rate, even when treated with risk-adapted
multi-agent chemotherapy regimens. The advent of NGS
technology has unveiled the diversity of kinase-activating genetic
drivers in Ph-like ALL, which may be amenable to “personalized”
molecularly targeted therapies. Ph-like ALL is characterized by a
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variety of kinase-activating alterations, leading to a gene expression
profile similar to that of Ph+ ALL, but lacking the typical BCR:
ABL1 fusion. The proportion of this subtype in pediatric B-ALL is
10-13%. Blinatumomab is primarily used in the treatment of
pediatric Ph-like ALL for continuous administration during the
consolidation phase until minimal residual disease (MRD) is
negative, followed by allogeneic hematopoietic stem cell
transplantation (allo-HSCT), which helps to improve the
remission rate and survival rate.

3.3 Novel molecular subtypes

The molecular heterogeneity of B-ALL is far more complex than
previously recognized. As research continues to delve deeper, an
increasing number of novel molecular subtypes are emerging. The
discovery of these new subtypes further expands the boundaries of
our understanding of the molecular characteristics of B-ALL and
also brings new opportunities and challenges for future therapeutic
strategies. This review mainly focuses on the rare (with a frequency
of only 1- 9%) but extremely poor-prognosis MYC-rearranged
subtype. This subtype was initially described in Burkitt lymphoma
(BL). In ALL, it represents a rare molecular subtype characterized
by MYC rearrangement, positive expression of TdT, optional CD34
expression, frequent absence of surface immunoglobulin (sIg) and
CD20, and potential Burkitt-like morphological features (26). In
children with this subtype of B-ALL, the MYC gene is typically
overexpressed. Studies have shown that intrinsic defects in the B-
ALL microenvironment lead to reduced production of type I
interferons (IFN-Is) by plasmacytoid dendritic cells and/or
autocrine IFN-Is from B cells, resulting in impaired IFN-I-driven
immune responses that promote tumor progression in the MYC
subtype (27). The abnormality of IFN-Is further diminishes IL-15
transcription, leading to impaired maturation of natural killer (NK)
cells in the microenvironment. Consequently, these NK cells cannot
lyse NK cell-sensitive targets as efficiently as normal NK cells. An
increased frequency of abnormal NK cells is independently
associated with heightened disease severity and poor prognosis in
patients (28). Meanwhile, MYC overexpression enhances the
sensitivity of B-ALL cells to NK cell-mediated cytotoxicity. Thus,
NK cells secreting IL-15 may serve as a therapeutic approach for the
MYC subtype, a hypothesis validated in in vitro experiments (27).
Regarding blinatumomab, while current research has not proven its
specific efficacy against this subtype, its mechanism of action—
promoting the release of various cytokines to modulate the immune
microenvironment—suggests that if used during the consolidation
phase, it could effectively maintain the activity and quantity of IL-
15-secreting NK cells. Blinatumomab has synergistic effects with
NK cell therapy, which may enhance treatment tolerance in
children and reduce therapy-related toxicity. Ocadlikovad et al.
found that after treatment with blinatumomab, there was a
persistent increase in NK cells, such as the cytotoxic CD56dim
NK cell subset, but this upregulation was only observed in
peripheral blood, not in the bone marrow (29). The mechanism
behind this upregulation of NK cells is not clear and may be related
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to the off-target effects of blinatumomab (29). Blinatumomab, as
one of the cutting-edge immunotherapeutic modalities, can be
combined with targeted therapy in rare subtypes such as MYC-
rearranged to enhance efficacy and treatment safety. However, due
to the limited number of clinical samples, further studies are needed
to confirm this. International cooperation to design prospective
clinical trials can be carried out to achieve this goal.

4 Factors impact on efficacy

Clinical evidence demonstrates superior efficacy of
blinatumomab compared to conventional chemotherapy in
relapsed/refractory B-ALL. A phase III multicenter randomized
clinical trial reported significantly improved outcomes with
blinatumomab, including 2-year overall survival (OS) rates of
81% versus 56% with chemotherapy, and MRD remission rates of
93% versus 24% after one treatment cycle (30). Extended follow-up
data revealed that patients receiving blinatumomab consolidation
therapy maintained event-free survival (EFS) exceeding 50% and
OS surpassing 80% at 57 months, with consistent hazard ratios 0.33
for both EFS (95%CI: 0.19 - 0.59) and OS (95% CI: 0.15 - 0.72)
compared to chemotherapy controls (30). Blinatumomab provides
higher health benefits in treating R/R ALL compared to traditional
chemotherapy. Blinatumomab has a clear clinical significance, with
prominent therapeutic effects, filling a gap in clinical treatment,
achieving rapid and high-quality hematological remission,
effectively clearing MRD, offering more HSCT possibilities for
patients, and improving their long-term survival. Its efficacy has
been verified in adult patients in China.

Blinatumomab treatment responses exhibit interpatient
variability influenced by complex multifactorial interactions.
However, because of the complex interplay between external
environmental factors and leukemia-intrinsic factors, the
predication of efficacy remains limited. Unlike conventional
chemotherapy regimens where treatment efficacy correlates with
established predictors including patient’s age, duration of prior
remission, chemosensitivity profiles, and post-transplant relapse
status, these conventional parameters demonstrate limited
predictive value for blinatumomab outcomes (31). The
observation that traditional efficacy prediction indicators do not
match the response to blinatumomab is consistent with the fact that
blinatumomab works by CD3/CD19 bispecific targeting to lyse
tumor cells, thereby bypassing many mechanisms associated with
chemotherapy resistance (32). Therefore, traditional indicators for
predicting chemotherapy efficacy are not applicable for predicting
the efficacy of blinatumomab. Currently, new biomarkers are being
explored to better predict the efficacy of blinatumomab. Apart from
the known T-cell subsets and CD19 status, some new molecular
markers (such as specific gene mutation or immune cell surface
markers) may help identify patients who are more likely to benefit
from the treatment. Tumor burden, the function of endogenous T-
cell and status of T-cell subset, loss/decrease of CD19 antigen are
important factors affecting the efficacy of blinatumomab. The rare
phenomenon of lineage switch can also lead to treatment failure.
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Moreover, the efficacy may also be influenced by the drug’s specific
impact on particular patients and individual differences among
patients, including genetic background, immune status, and prior
treatment history.

4.1 Tumor burden

Tumor burden serves as an important clinical indicator for
assessing disease severity and predicting therapeutic outcomes in
pediatric B-ALL. This quantitative measure reflects both the
absolute number and anatomical distribution of malignant cells
within the patient’s hematopoietic system. In clinical practice,
tumor burden assessment employs a multimodal diagnostic
approach incorporating the MICM model (morphological
examination, immunophenotypic characterization, cytogenetic
analysis, and molecular genetic profiling), complemented by bone
marrow aspiration and biopsy procedures, comprehensive
immunophenotyping panels, advanced genetic testing
methodologies, and sensitive minimal residual disease (MRD)
monitoring techniques. These diagnostic tools collectively provide
a robust framework for accurate disease quantification and
characterization. Current risk stratification protocols universally
incorporate tumor burden measurements as a key determinant of
disease classification. The National Cancer Institute (NCI) risk
stratification system categorizes patients into two distinct groups:
standard-risk and high-risk, based on predefined tumor burden
thresholds. Alternative classification systems employed by various
international cooperative groups further refine this approach by
implementing three-tiered stratification schemes (low-risk,
intermediate-risk, and high-risk categories). These risk-adapted
classifications serve critical functions in clinical management by
guiding therapeutic intensity selection, informing prognostic
predictions, and facilitating comparative outcome analyses across
treatment protocols and clinical trials.

Extensive clinical investigation has established a strong inverse
correlation between baseline tumor burden and treatment efficacy.
Several prospective studies and retrospective analyses have
consistently demonstrated that pediatric patients presenting with
lower initial disease burdens achieve significantly higher rates of
complete hematological remission following blinatumomab therapy
(30, 32, 33). This relationship extends to long-term clinical
endpoints in adult patients, with lower tumor burden cohorts
exhibiting superior relapse-free survival and overall survival rates
compared to their high-burden counterparts (34). The biological
underpinnings of this clinical observation involve several
interrelated mechanisms. From a pharmacological perspective, the
bispecific T-cell engager mechanism of blinatumomab requires
adequate T-cell to tumor cell ratios for optimal cytotoxic activity.
Excessive leukemic cell populations may overwhelm endogenous T-
cell effector capacity through numerical superiority and potential
immune exhaustion phenomena, thereby limiting therapeutic
effectiveness. Meanwhile, the rapid cytoreduction characteristic of
blinatumomab therapy in high tumor burden patients precipitates
substantial cellular destruction, triggering massive release of
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intracellular contents and proinflammatory cytokines. This
pathophysiological cascade manifests clinically as an increased
incidence and severity of cytokine release syndrome (CRS), a
potentially life-threatening treatment complication (35).
Furthermore, the abrupt liberation of cellular metabolites from
lysed leukemic cells may overwhelm normal homeostatic
mechanisms, resulting in tumor lysis syndrome (TLS)
characterized by dangerous electrolyte disturbances and acute
kidney injury (36). Adverse reactions have a negative impact on
the treatment effect and reduce the safety of treatment. In response
to these challenges, contemporary treatment algorithms have
incorporated strategic pretreatment approaches for high tumor
burden patients in order to make the treatment process safer,
enable patients to better tolerate the treatment, and improve
treatment compliance and the overall therapeutic effect. Clinical
evidence from adult populations demonstrates that preliminary
cytoreduction with conventional chemotherapy or targeted
debulking regimens prior to blinatumomab initiation significantly
reduces the incidence and severity of CRS events while
simultaneously improving rates of MRD negativity (37). In
pediatric patients, individuals with a higher tumor burden may
require more aggressive pretreatment to improve the treatment
efficacy. The development of refined tumor burden assessment
techniques and corresponding treatment algorithms continues to
represent an active area of clinical investigation in pediatric B-
ALL management.

4.2 Endogenous T-cell function and T-cell
subset impact

Blinatumomab activates T cells by targeting them, thereby
attracting leukemic cells. After the use of this frug, the patient’s
immune system is activated, capable of activating different T-cell
subset. Although blinatumomab can activate T cells, the patients’
immune status, such as the basal function and number of T cells,
will still affect the treatment outcome. Growing evidence suggests
that endogenous T-cell function and T-cell subsets influence the
response to blinatumomab immunotherapy. The baseline
functionality of endogenous T cells, such as their ability to
produce cytokines like IFN-y upon initial exposure to antigens,
can significantly impact how well blinatumomab works. T cells with
higher pre-treatment IFN-y production were associated with a more
robust anti-leukemia response after blinatumomab treatment (38).

Recent single-cell transcriptomic studies have provided
comprehensive insights into the complex immunological
mechanisms underlying blinatumomab’s therapeutic effects in B-
ALL. These investigations have identified four different T-cell
subsets activated by blinatumomab, including CD8+ effector
memory T cells (TEM), CD4+central memory T cells (TCM),
naive T cells, and regulatory T cells (Tregs). Detailed analysis of
gene expression patterns in these activated clusters have revealed
significant upregulation of multiple critical pathways, including
immune system activation, glycolytic metabolism, interferon-
alpha (IFNA) signaling, gap junction communication, and

Frontiers in Immunology

10.3389/fimmu.2025.1611701

interferon-gamma (IFNG) signaling pathways, reflecting the
multifaceted nature of T-cell activation induced by blinatumomab
therapy (39). The activation of these T-cell populations following
blinatumomab administration leads to substantial production of
proinflammatory cytokines, which mediates the drug’s therapeutic
effects. Among these subsets, CD8+ TEM cells demonstrate
particularly robust activation, exhibiting markedly higher
expression of cytotoxic factors such as perforin (PRFI),
interferon-gamma (IFNG), and FAS ligand (FASLG), along with
numerous cytokines and chemokines such as CCL2, CCL3,
CCL3L1, CCL4 and TNFSF9 compared to other T-cell subsets
(39). This distinct cytokine secretion profile suggests that different
T-cell populations contribute variably to target cell lysis, thereby
influencing the overall treatment efficacy in a subset-specific
manner. CD4+ TCM cells, for example, are crucial for
maintaining a long-term immune response. They can rapidly
proliferate and differentiate into effector cells upon re-
encountering the antigen. Patients with a higher proportion of
CD4+ TCM cells at the start of treatment are more likely to achieve
long-term remission, suggesting their importance in sustaining the
anti-leukemia immune attack (38). Interestingly, transcriptomic
analysis of responding patients has revealed enrichment of tumor
cell immune response genes, suggesting that the efficacy of
blinatumomab-induced T-cell activation may be modulated by
leukemia-intrinsic factors (31). Furthermore, clinical observations
have identified that increased frequencies of Tregs in peripheral
blood can predict in vitro response to blinatumomab, likely
mediated through interleukin-10-dependent suppression of T-cell
activity (31). Additional investigations focusing on Tregs,
specifically those identified by CD4, CD25 and FOXP3 expression
makers, have demonstrated that blinatumomab-activated Tregs
promote immunosuppressive effects through IL-10 production,
which subsequently inhibits general T-cell proliferation and
reduces CD8+ T-cell-mediated lysis of ALL cells, ultimately
impacting treatment outcomes (40). Understanding these
complex interactions between different T-cell subsets and
blinatumomab can potentially lead to more personalized
treatment strategies for patients.

4.3 CD19 antigen loss/decrease

The CD19 antigen is the target site for blinatumomab’s action.
However, leukemic cells may develop resistance through either
complete loss of CD19 expression or significant reduction in
antigen density, thereby impairing T-cell recognition and
cytotoxic attack against malignant cells. This immune evasion
mechanism can manifest as either complete immunological
escape or progressive T-cell exhaustion, both of which
substantially compromise treatment outcomes. A comprehensive
retrospective analysis of real-world data from adult patients
receiving blinatumomab revealed that 9.8% of cases experienced
relapsed with CD19-negative disease, representing 34.2% of all
relapsed events, with similar patterns observed in pediatric
patients (41). These findings confirm CD19 antigen loss as a
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major pathway for leukemic cells to evade CD19-directed
immunotherapies. Analysis of patient samples with antigen loss
after blinatumomab treatment conclude that possible mechanisms
leading to CD19 antigen loss include acquired mutations in the
CD19 gene itself, alterations in CD81 (a crucial chaperone protein
required for CD19 membrane expression), and other chromosomal
causes (31). In addition, a high tumor burden is independently
associated with CD19 loss and is related to a poor EFS (42). This
relationship suggests that patients presenting with extensive disease
may be at heightened risk for developing this resistance mechanism
during treatment. The clinical impact of CD19 loss has been
extensively documented across pediatric studies. A comprehensive
single-center retrospective analysis incorporating data from
multiple trials confirmed that diminished or absent CD19
expression represents a major contributor to treatment failure in
pediatric B-ALL (30). Across various pediatric cohorts, a substantial
proportion of poor responders exhibited either reduced CD19
antigen density or complete antigen loss, with this phenomenon
being strongly associated not only with diminished initial response
rates but also with increased risk of disease recurrence. These
observations underscore the universal significance of CDI9
antigen modulation as a key determinant of treatment outcomes
across all age groups. Further complicating this picture, pediatric
patients demonstrating poor response to blinatumomab frequently
exhibit concurrent upregulation of T-cell exhaustion markers,
particularly PD-1 and TIM-3 (43). This dual phenomenon of
CD19 loss combined with T-cell exhaustion creates a synergistic
immunosuppressive environment that further facilitates leukemic
cell escape from immune surveillance. The co-occurrence of these
mechanisms suggests a potential feedback loop where CD19 loss
reduces antigenic stimulation while exhaustion markers dampen
remaining T-cell activity, collectively crippling the anti-leukemic
immune response. However, t the clinical consequences of CD19
loss appear somewhat less severe in blinatumomab therapy
compared to CDI19-directed CAR-T cell treatments (44). This
differential impact stems from fundamental mechanistic
distinctions between these immunotherapeutic approaches. CAR-
T cells rely exclusively on direct CD19 recognition for target cell
engagement, making them particularly vulnerable to antigen loss
variants. In contrast, bispecific antibody design of blinatumomab
may retain partial efficacy even in the face of CD19 modulation, as
its T-cell activating capacity persists independently of absolute
antigen density. This relative advantage may explain why some
patients with partial CD19 loss can still derive clinical benefit from
blinatumomab despite suboptimal responses.

4.4 Lineage switch

Lineage switch is a rare phenomenon observed in patients after
receiving blinatumomab treatment, where lymphoid tumor cells
transdifferentiate into myeloid tumor cells that do not express
CD19. The phenomenon is particularly well-documented in cases
harboring mixed lineage leukemia (MLL) rearrangements, where
the leukemic cells demonstrate inherent lineage plasticity and may
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undergo myeloid conversion under therapeutic pressure. While
lineage switching has been historically associated with
conventional chemotherapy regimens, emerging evidence
confirms its occurrence following blinatumomab treatment, with
the most common transformation being to acute myeloid leukemia
(AML) (45). A comprehensive multicenter study involving 182
pediatric BCP-ALL patients treated with blinatumomab provided
detailed insights into the incidence and molecular characteristics of
this phenomenon (46). The investigation identified six confirmed
cases of lineage switch occurring either during active blinatumomab
treatment or in the post-therapy period. These cases represented
17.2% (4/23) of all documented treatment-resistant instances and
3.2% (2/63) of relapse events, establishing lineage conversion as an
important mechanism of therapeutic failure. The phenotypic
manifestations of lineage switch exhibited considerable
heterogeneity among affected patients. Approximately half of the
cases demonstrated complete conversion from BCP-ALL to CD19-
negative AML, while the remainder displayed more complex
immunophenotypic patterns characterized by the coexistence of
residual CD19-positive B lymphoblasts with newly emergent CD19-
negative blast populations of either myeloid or unclassifiable
lineage. The transdifferentiated myeloid tumor cells no longer
express CD19, thereby evading the targeted therapy of
blinatumomab and leading to a decrease in treatment efficacy.
The mechanisms of lineage switch are currently unclear and may
be related to cytogenetic abnormalities (45).

4.5 Other factors

Several additional clinical considerations also impact the
therapeutic effectiveness of blinatumomab in B-ALL management.
The drug’s pharmacokinetic properties, particularly its central
nervous system (CNS) penetration capabilities and activity against
extramedullary disease, represent important determinants of
clinical outcomes. In the ALL1331 clinical trial, it was indicated
that the efficacy of blinatumomab within the CNS may be limited,
leading to poorer prognosis for patients with isolated CNS disease.
Additionally, the efficacy of blinatumomab in extramedullary sites
may be limited, resulting in a poorer prognosis for low-risk patients
with isolated extramedullary relapse, especially those with isolated
CNS disease. In actual treatment, Patient tolerance represents
another critical factor influencing blinatumomab treatment
success. Clinical experience has shown that adverse event profiles
frequently necessitate dose modifications or temporary treatment
interruptions, potentially compromising therapeutic efficacy.
Optimizing the dose adjustment strategy and managing adverse
reactions, patients’ tolerance and treatment compliance can be
improved, thus enhancing the overall efficacy. Pediatric and adult
patients have different tolerances to the drug. Pediatric patients
generally have better tolerance to immunotherapy but this
enhanced tolerance coexists with unique vulnerabilities, including
increased susceptibility to specific developmental toxicities such as
growth impairment and delayed maturation processes (9).
Moreover, the strategic positioning of blinatumomab within
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comprehensive treatment algorithms represents an additional
variable affecting clinical outcomes. Emerging evidence supports
multiple effective sequencing approaches for blinatumomab
administration in R/R ALL management. The agent has
demonstrated significant utility when employed as consolidation
therapy following successful induction remission, where it may
deepen molecular responses and prolong remission duration.
Alternatively, pre-transplant administration has shown efficacy in
reducing tumor burden prior to allo-HSCT, thereby potentially
enhancing engraftment success rates and reducing post-transplant
relapse risk (37). Blinatumomab has also been successfully
incorporated as a bridging therapy preceding CAR-T cell
interventions, where its tumor-reducing effects can create more
favorable conditions for subsequent cellular therapy, improving
both safety profiles and treatment success rates (37).

5 Toxicity

Current clinical trials indicate that the toxicity of
blinatumomab, the adverse events (AE) produced in clinical
applications, is less than that of traditional chemotherapy in
general. The most common adverse reactions include fever,
headache, infection, and febrile neutropenia, with fever being the
most common AE at the recommended dose (80%) (47). Other
more common side effects include dizziness, tremors or ataxia,
nausea, hypokalemia, fatigue, constipation, and diarrhea. More
serious AE include cytokine release syndrome (CRS) and
neurological AE, which often require immediate discontinuation
of the drug and corresponding treatment. Although blinatumomab
is generally well-tolerated, serious adverse reaction such as CRS,
immune effector cell-associated neurotoxicity syndrome (ICANS)
and infections have been identified in clinical trials and real-world
studies, necessitating discontinuation of the drug.

5.1 cytokine release syndrome

CRS is considered a clinically significant systemic inflammatory
response associated with blinatumomab immunotherapy (48),
mediated by elevated levels of cytokines and other inflammatory
markers. CRS is characterized by fever and multi-organ
dysfunction. The NCCN 2025 second edition describes CRS as a
spectrum of clinical symptoms ranging from fever or hypothermia
in mild cases to potentially life-threatening hypotension and end-
organ damage in severe manifestations (13). The American Society
for Transplantation and Cellular Therapy (ASTCT) has established
a standardized five-grade classification system for CRS severity,
with grade 1 representing mild febrile reactions and grade 5
indicating fatal complications requiring immediate intervention
(49). Clinical management strategies vary according to severity,
with grades 1-2 typically managed through symptomatic support,
while grades 3-5 necessitate treatment interruption combined with
corticosteroids, vasopressors, and IL-6 receptor antagonists such as
tocilizumab following manufacturer guidelines. Epidemiological

Frontiers in Immunology

10.3389/fimmu.2025.1611701

data indicate that CRS occurs in 4-22% of pediatric patients
receiving blinatumomab, though high-grade (=3) events are less
frequent (approximately 3%) (29). Interestingly, a 2022 meta-
analysis found comparable CRS incidence rates between
blinatumomab and conventional chemotherapy groups when
evaluating pediatric safety profiles (12).

The pathophysiological mechanisms underlying CRS involve
complex cytokine networks activated during blinatumomab
therapy. When the bispecific antibody engages T-cells with CD19+
leukemic cells, massive T-cell activation triggers an exaggerated
release of proinflammatory mediators including IFN-y, IL-6 and
TNE. These cytokines normally help with immune response, but in
CRS, their release far exceeds physiological levels, leading to a
systemic inflammatory response. Cytokines such as IFN-y and
GM-CSF can further stimulate macrophages and monocytes to
release more IL-1 and IL-6. IL-6 plays a key role in CRS. It nor
only directly mediates acute inflammatory response but also induces
the expression of Vascular Endothelial Growth Factor (VEGEF),
increasing vascular permeability and leading to capillary leak and
hemodynamic instability (50). CRS is a target phenomenon
associated with multiple cytokines, most notably IFN-y and IL-6,
with a lesser association with TNF (51). Several risk factors influence
CRS development, with baseline tumor burden representing a
particularly important modifiable predictor. Clinical evidence
confirms that cytoreductive strategies implemented prior to
blinatumomab initiation can mitigate both CRS incidence and
severity (51). Most CRS is reversible, and effective prevention can
be achieved by identifying high-risk patients before blinatumomab
administration, premedication with dexamethasone, and stepwise
dose escalation. After CRS occurs, most patients can continue
blinatumomab treatment after CRS subsides by interrupting
blinatumomab therapy, administering corticosteroids and IL-6
receptor antagonists according to graded assessment, and/or
supportive care (50). However, accurate diagnosis remains
challenging due to significant symptom overlap with other
conditions including infusion reactions, systemic infections,
capillary leak syndrome, and hemophagocytic lymphohistiocytosis/
macrophage activation syndrome (14). The NCCN 2025 guidelines
emphasize the importance of thorough infectious disease evaluation
in suspected CRS cases, recommending empirical antimicrobial
therapy when appropriate given the potential for concurrent severe
infections to mimic CRS presentation (13). This diagnostic
complexity underscores the need for comprehensive clinical
assessment and multidisciplinary management approaches when
addressing potential CRS events during blinatumomab treatment.

5.2 Immune effector cell-associated
neurotoxicity syndrome

Immune effector cell-associated neurotoxicity syndrome (ICANS)
represents a clinically significant neurological complication observed
in patients undergoing T-cell activating immunotherapies such as
blinatumomab for B-cell malignancies. This neuropsychiatric
syndrome, first formally characterized by the ASTCT in 2019,
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typically manifests during the initial treatment cycle with symptom
duration varying from transient to prolonged depending on severity
(48). The clinical presentation encompasses a spectrum of
neurological disturbances including confusion, dysphasia,
somnolence, ataxia, tremors, seizures, and syncopal episodes.
Neurological adverse events are common in therapies that utilize
activated T cells to destroy malignant B-cell tumors, often occurring in
the early stages of the first treatment cycle, with short symptom
duration and most being reversible. ICANS is a common and
potentially life-threatening adverse reaction associated with T-cell
involvement in immunotherapy. These symptoms reflect the
complex interplay between activated immune effectors and the
central nervous system, with pathophysiological mechanisms that
may overlap with concurrent cytokine release syndrome (CRS)
while maintaining distinct clinical features (52). Blinatumomab, by
activating T cells, leads to the release of a large number of cytokines.
These cytokines may disrupt the blood-brain barrier, exposing brain
tissue to circulating cytokines and thereby inducing neurotoxicity.
Cytokines like IL-6 may affect the integrity of the blood-brain barrier,
leading to brain tissue edema and neurological dysfunction.
Additionally, activated T-cells themselves may transmigrate across
the compromised blood-brain barrier, establishing localized
inflammatory foci within the CNS parenchyma that further
exacerbate neurotoxicity (52). These mechanisms collectively
contribute to the diverse neurological manifestations observed in
clinical practice. The ASTCT has established a standardized five-tier
grading system for ICANS severity assessment (49). Grade 1 events
typically involve mild symptoms such as headache or subtle tremors,
while grade 5 represents life-threatening complications including
status epilepticus or cerebral edema. Clinical management strategies
are severity-dependent, with grades 1-2 generally managed through
supportive measures and close monitoring, whereas grades 3-5
necessitate immediate treatment interruption combined with high-
dose corticosteroids and other neuroprotective interventions.
Epidemiological analyses reveal important age-related differences in
ICANS presentation and outcomes. Pediatric populations
demonstrate lower overall incidence rates (3.7-24%) compared to
adults, with severe (grade >3) events occurring in only 2-3.6% of cases
(29). However, children exhibit distinct clinical characteristics
including earlier symptom onset and more rapid progression
timelines, potentially increasing acute life-threatening risks despite
lower absolute frequencies (33). A comprehensive 2022 systematic
review of published clinical trials demonstrated comparable seizure
risks between blinatumomab and conventional chemotherapy, but
identified significantly higher encephalopathy rates with
blinatumomab-based immunotherapy (53). These findings highlight
the need for age-specific monitoring protocols and management
algorithms. ICANS is one of the common reasons for discontinuing
blinatumomab therapy, and the drug should be stopped immediately
upon the appearance of grade >3 neurological symptoms, followed by
appropriate treatment. Due to the short elimination half-life of
blinatumomab, most neurotoxic symptoms can disappear after
discontinuation of the drug and initiation of steroid therapy.
Seizures are a relatively rare symptom, and the use of antiepileptic
drugs should be cautious, with routine use of antiepileptic drugs for
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prophylaxis not recommended. To prevent the occurrence of ICANS,
it is first necessary to identify high-risk patients, such as those with a
high tumor burden or a history of neurological disease, and to adopt
more cautious treatment strategies for these patients. Before
treatment, corticosteroids such as dexamethasone can be used for
pre-treatment, and a stepwise dose-escalation approach can be
employed to reduce the risk of ICANS occurrence.

5.3 Infections

Infections is currently one of the most significant adverse
reactions in patients receiving blinatumomab treatment. Patients
with leukemia have various risk factors for infection, including
immunosuppression, hematological toxicity, concomitant use of
immunosuppressants, and catheter-related infection. As an
immunomodulatory antibody, blinatumomab may suppress the
immune functions of B cells and T cells, leading to
hypogammaglobulinemia and immune dysregulation, thereby
increasing the risk of infection. Blinatumomab has myelosuppressive
effects, causing persistent cytopenia, and may also lead to B-cell
aplastic anemia; meanwhile, treatment-related neutropenia is a
common phenomenon in immunotherapy, making patients more
susceptible to infections. However, blinatumomab’s myelosuppressive
effect is weaker than traditional chemotherapy, and the suppression is
mostly transient. The patient’s weakened immune system, coupled
with the use of corticosteroids or tocilizumab for infection.
Additionally, since blinatumomab is typically administered through
long-term continuous infusion, requiring the establishment of a
venous infusion pathway, catheter-related infections must also be
vigilantly monitored. To prevent severe infections or life-threatening
conditions, routine blood tests should be conducted for pediatric
patients, and attention should be paid to the emergence of infection-
related clinical symptoms. If symptoms and signs of suspected
infection appear, empirical antimicrobial treatment should be
initiated immediately, and pathogen testing should be completed as
soon as possible.

6 Administration

The clinical management of blinatumomab is decisive for its
efficacy and the incidence and severity of adverse events. The
appropriate route of administration is determines based on
pharmacokinetic characteristics and the patient’s specific
condition, a course of treatment is selected and planned, and
adverse events that occur after medication are managed.

6.1 Route of administration and course of
treatment selection

In studies conducted over 4~8 hours under continuous

intravenous infusion, it was confirmed that blinatumomab
exhibits linear pharmacokinetic characteristic, which means that

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1611701
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Cheng and Liu

its clearance rate and distribution volume remain constant across
different dosage ranges. The average systemic clearance of 2.92 L/
hour reflects rapid elimination from circulation, while the average
volume of distribution of 4.52 L confirms predominantly
intravascular compartmentalization. These predictable
pharmacokinetic parameters contribute significantly to both the
therapeutic efficacy and safety profile of blinatumomab in clinical
applications. The standard administration protocol for both adult
and pediatric patients involves continuous intravenous delivery
using precision infusion pumps to maintain constant flow rates.
Particular attention must be given to pediatric dosing regimens to
minimize adverse events while maintaining therapeutic
effectiveness. For pediatric patients with body weight below 45 kg,
a carefully titrated dose-escalation approach is implemented,
typically progressing through 5, 10, and 15 pug/m? dose levels with
close monitoring for toxicity. Patients weighing 45 kg or more
receive fixed dosing according to established protocols. The
conventional treatment cycle consists of 4 weeks of continuous
infusion followed by a 2-week treatment-free interval, a schedule
designed to achieve and maintain therapeutic serum concentrations
while allowing for physiological recovery. Recent clinical
investigations have explored alternative administration routes to
potentially improve treatment convenience and accessibility. A
multicenter phase 1b trial expansion cohort evaluated
subcutaneous blinatumomab administration in adults with
relapsed/refractory B-ALL, demonstrating both feasibility and
acceptable safety profiles with this delivery method (54). The
subcutaneous route offers potential advantages in outpatient
management and reduced healthcare resource utilization.
However, it is important to note that comparable studies in
pediatric populations have not yet been conducted, and
intravenous infusion remains the only approved administration
method for children at present. This represents an important area
for future clinical investigation, particularly given the potential
benefits of subcutaneous administration in pediatric oncology
care settings.

6.2 Drug interactions

Blinatumomab had drug interactions with other medications,
which may affect its efficacy or lead to adverse drug events.
Common drug interactions include the following. Blinatumomab
can increase blood glucose levels, so when used with glucose-
lowering agents or insulin, it is necessary to carefully monitor
blood glucose levels and adjust medication doses as needed. The
use of white blood cell growth factors (such as filgrastim) in
combination with blinatumomab may increase the risk of severe
infection during treatment. Sedatives, hypnotics, or anesthetic drugs
used in conjunction with blinatumomab may increase the risk of
adverse reactions such as somnolence, fatigue, dizziness, and
confusion. As an immunotherapy, blinatumomab may interact
with other immunosuppressants such as cyclosporine, tacrolimus,
and methotrexate. These immunosuppressants may reduce the
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immunostimulatory effects of blinatumomab, thereby weakening
its therapeutic effect. Therefore, when treating with blinatumomab,
it is important to carefully consider other medication choices and
conduct monitoring.

7 Conclusion

Blinatumomab is the world’s first and only approved BiTE
therapy drug. One end is bound to CD19 expressed on the surface
of B cells, and the other end to CD3 expressed on the surface of T
cells, activating T cells and enabling them to exert cytotoxic effects,
thus lysing B lymphoid leukemic cells. It is used for the treatment of
adult and pediatric B-ALL. As clinical researches continue to
advance, the clinical application of blinatumomab is expanding,
and the management of its side effects is becoming increasingly
refined. Meanwhile, efforts are being made to further clarify the
factors affecting efficacy and to optimize treatment plans or adopt
combination therapy strategies, in order to better ensure its
therapeutic effectiveness. In the application of treating pediatric
B-ALL, blinatumomab has shown significant efficacy and safety
compared to traditional chemotherapy in treatments such as R/R B-
ALL and MRD clearance. However, due to the limitations of
pediatric clinical research duration, the long-term effects of
treatment in children are currently unclear. Currently,
blinatumomab is being explored as part of first-line treatment
regimen, especially in “chemotherapy-free” protocols. In the
ongoing phase III clinical trials NCT04530565, the efficacy of
conventional treatment with chemotherapy and corticosteroids
along with a tyrosine kinase inhibitor (TKI) is being compared to
that of the same regimen augmented with blinatumomab. The
primary objective is to compare OS following induction with
corticosteroids + TKI + blinatumomab versus induction with
corticosteroids + TKI + chemotherapy. The outcomes of this
study may help determine whether the combination of
corticosteroids, TKI, and blinatumomab is more effective than the
standard of care. Moreover, this “chemotherapy-free” approach
may reduce the toxicity and side effects associated with
chemotherapy while improving patients’ survival rates and quality
of life. However, no definitive results have been reported yet, and
the study remain in the realm of adult applications. Since the launch
of blinatumomab, the timing of drug administration, course of
treatment, and scope of application for pediatric patients have all
been continuously explores, and methods to reduce drug
production costs are also being sought. Research on
blinatumomab is continuously being updated, and it is believed
that in the future this drug will bring more benefits to
pediatric patients.
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Introduction: B7-H6, a tumor-specific immune checkpoint molecule within the
B7 family, represents a promising therapeutic target due to its selective
overexpression in malignancies and negligible expression in normal tissues.
Method: Here, we developed bispecific antibodies (BsAbs) targeting B7-H6 to
redirect T and NK cells against solid tumors. Through phage display, 15 high-
affinity B7-H6 monoclonal antibodies were generated.

Results: Two optimized BsAbs, B7-H6M4-OKT3 (T cell-engaging) and B7-
H6M4-LC21 (NK cell-engaging), were constructed in and scFv-hFc-scFv
format. Both demonstrated nanomolar affinity (EC50: 0.04-1.22 nM) and
selective cytotoxicity against B7-H6+ cells (H446, Huh-7, HepG2), while
showing minimal cytotoxicity against B7-H6-negative cells (A431). B7-
H6M4LC21 exhibited enhanced tumor-killing efficacy (IC50: 5 ng/mL)
compared to B7H6M4-OKT3(IC50: 1 ng/mL) when combined with an IL-15/IL-
15Ra sushi fusion protein, which augmented NK cell proliferation and
cytotoxicity. In H446 xenograft models, both BsAbs suppressed tumor growth
in a dose-dependent manner (0.1-20 mg/kg) without significant toxicity.
Combination therapy with B7-H6M4-LC21 (10 mg/kg) and B7-H6M18/IL-15/IL-
15Ra sushi (0.03 mg/kg) achieved synergistic tumor inhibition (p<0.05),
surpassing the efficacy of T cell-based combinations.

Discussion: These findings establish B7-H6-targeted BsAbs combined with
cytokine engineering as a viable strategy for treating refractory solid tumors.
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1 Introduction

The B7 family of immune checkpoint proteins plays critical
roles in tumor immune evasion, among which B7-H6 (NCR3LG1)
has garnered significant attention as a tumor-selective antigen due
to its minimal expression in healthy tissues and aberrant
overexpression across multiple malignancies, including lung,
hepatic, and pancreatic carcinomas (1-3). Distinct from PD-L1 or
CTLA-4 that predominantly regulate T cell activity, B7-H6 directly
activates natural killer (NK) cell cytotoxicity via NKp30
engagement—a mechanism circumventing T cell-centric
immunosuppression (4, 5). This unique biological property
positions B7-H6 as a strategic target for bispecific antibody
(BsAb) platforms designed to coordinate innate and adaptive
immune responses.

Despite the clinical success of CD3-directed BsAbs (e.g.,
mosunetuzumab, teclistamab) in hematologic malignancies, their
efficacy in solid tumors remains constrained by insufficient T cell
infiltration, immunosuppressive stromal components, and cytokine
depletion (6-8). While CD16-targeted BsAbs (e.g., AFM13)
demonstrate enhanced safety and allogeneic potential for NK cell
engagement, their therapeutic impact is limited by poor NK cell
persistence within hostile tumor microenvironments (TMEs) (9,
10). These challenges highlight the imperative for combinatorial
approaches integrating BsAb-mediated tumor targeting with
cytokine support to sustain effector cell functionality. IL-15, a
pleiotropic cytokine essential for NK and CD8" T cell
homeostasis, holds therapeutic potential but is hampered by
systemic toxicity and transient bioavailability (11, 12). Engineered
IL-15/IL-15Ra heterodimers (e.g., N-803) mitigate but
incompletely resolve these limitations through stabilized receptor
interactions, while lacking spatial control over cytokine activity
(13-16). Unrestricted IL-15 delivery risks off-target Treg activation,
underscoring the necessity for tumor-localized cytokine delivery
systems (17).

Recent advances in antibody-cytokine fusion technology,
exemplified by PD-L1/IL-12 conjugates, demonstrate enhanced
therapeutic precision through tumor-directed cytokine activation
(18, 19). However, this paradigm remains unexplored for B7-H6-
targeted therapies. To address this gap, we developed a modular
immunotherapy platform combining B7-H6-specific BsAbs with a
tumor-anchored IL-15/IL-15Ro sushi fusion protein. Through
phage display screening, we identified 15 high-affinity B7-H6
monoclonal antibodies and engineered T/NK cell-engaging BsAbs
(B7-H6M4-OKT3 and B7-H6M4-LC21, scFv-hFc(N297A)-scFv
architecture) with nanomolar binding affinity. The B7-H6M18/IL-
15/IL-15Ra sushi fusion protein enables tumor-localized cytokine
activation while preserving effector cell specificity. Our findings
demonstrate superior synergy between NK cell-redirected BsAbs
and IL-15 fusion, achieving >90% tumor lysis in vitro and
significant regression in xenograft models. This work establishes
three key advances: (1) B7-H6-dependent spatial restriction of IL-
15 activity, (2) dual T/NK cell engagement to combat effector
heterogeneity, and (3) modular designs permitting flexible
cytokine pairing. By simultaneously addressing spatial, temporal,
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and cellular barriers to immune efficacy, this strategy transforms
B7-H6 from a passive target into an active orchestrator of
precision immunotherapy.

2 Materials and methods
2.1 Cell lines and culture conditions

Human hepatocellular carcinoma (HepG2, Hep3B, Huh-7),
pancreatic adenocarcinoma (PANC-1, KLM-1, T3M4, MiaPaCa-
2), breast carcinoma (SKBR-3, ZR75, MCF-7, MDA-MB-231), lung
carcinoma (H446, H82, H196, H226, H1975, H1299, PC9, H292,
H358), and epidermal carcinoma (A431) cell lines were procured
from the Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). All lines underwent short tandem repeat (STR)
authentication and mycoplasma screening (PlasmoTest'
Invivogen). Cells were maintained in DMEM or RPMI-1640
medium (Invitrogen) supplemented with 10% fetal bovine serum
(HyClone), 1% L-glutamine, and 1% penicillin-streptomycin at 37°
C under 5% CO,. Lentiviral transduction using a full-length human
B7-H6 construct (GeneChem) generated stable B7-H6-expressing
A431(B7-H6) cells, with parental A431 serving as negative controls.

2.2 Western blot

Cells were washed twice with PBS and lysed in buffer containing
50 mM Tris-HCI (pH 7.5), 50 mM NaCl, 5 mM EDTA, 1% Triton
X-100, and protease inhibitor cocktail (Roche Applied Science).
Lysates were agitated at 4°C for 30 min, centrifuged at 12,000 x g for
15 min, and protein concentrations determined via BCA assay
(Pierce). Fifty micrograms of total protein per sample was resolved
by SDS-PAGE under reducing conditions and transferred to PVDF

membranes for immunoblotting.

2.3 Isolation of lymphocyte populations

Human PBMCs were isolated from whole blood of healthy
donors (Wuhan Blood Center) by Ficoll separation (Stem Cell
Technologies, Vancouver, BC, Canada) according to the
manufacturer’s instruction. Total T cells were then isolated using
a Pan T Cell Isolation Kit IT (human, Miltenyi Biotec) through
negative selection. Human NK cells were isolated from PBMCs by
negative selection using magnetic-activated cell sorting (MACS)
with a human NK Cell Isolation Kit (Miltenyi Biotec).

2.4 Dual-color flow cytometry for
detection of CD69* T and NK cells in
PBMC co-cultures

Following 24-hour treatments, PBMCs per group were harvested
and washed twice by centrifugation (300 x g, 5 min at 4°C), then
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resuspended in ice-cold PBS containing 5% BSA. For the purpose of
T cell analysis, PBMCs were initially incubated with b12-OKT3
(anti-CD3, 5 ug/mL) in PBS/5% BSA for 30 minutes on ice, followed
by a single wash with 2 mL cold PBS via centrifugation (300 x g, 5
minutes, 4°C). Subsequently, the samples were incubated with Cy5-
conjugated goat anti-human IgG (1:500; Sangon Biotech, Shanghai)
on ice under conditions that protected them from light. Following an
additional PBS wash, final staining was performed using mouse anti-
human CD69-FITC (1:100 dilution; ZenBio) for 30 minutes on ice
prior to flow cytometric analysis. For the purpose of NK cell analysis,
PBMC:s were initially incubated with CD16M39-HisFlag (20) (5 ng/
mL) in PBS/5% BSA for 30 minutes on ice, followed by a single wash
with 2 mL cold PBS via centrifugation (300 x g, 5 minutes, 4°C).
Subsequently, the samples were subjected to incubation with an
Alexa Fluor 647-conjugated anti-Flag antibody (1:500 dilution;
BioLegend) for a duration of 30 minutes at 0°C under conditions
that provided protection from light. This antibody was designed to
target the Flag-tag of bound CD16M39-HF. Following an additional
PBS wash, final staining was performed using mouse anti-human
CD69-FITC (1:100 dilution; ZenBio) for 30 minutes on ice prior to
flow cytometric analysis. Immediate analysis of all samples was
conducted on a CytoFLEX S flow cytometer (Beckman Coulter,
USA) utilizing a gating strategy that firstly categorized lymphocytes
as live singlets, followed by the identification of the CD3 positive
population for T cells (CD69 quantification) or the CD16 positive
population for NK cells (CD69 quantification). A minimum of
10,000 gated events per sample were collected for the analysis.

2.5 Antibody development

2.5.1 B7-H6 monoclonal antibody production

The extracellular domain of human B7-H6 (NP_001189368.1,
a.a. 25-262) was fused with 6 x His tag and expressed in HEK-293F
cells and purified using Ni-NTA affinity chromatography (Qiagen).
The Amino acid sequence of the B7-H6 extracellular domain:
DLKVEMMAGGTQITPLNDNVTIFCNIFYSQPLNITSMGITWEF
WKSLTFDKEVKVFEFFGDHQEAFRPGAIVSPWRLKSGDASL
RLPGIQLEEAGEYRCEVVVTPLKAQGTVQLEVVASPASRLLLD
QVGMKENEDKYMCESSGFYPEAINITWEKQTQKFPHPIEISED
VITGPTIKNMDGTENVTSCLKLNSSQEDPGTVYQCVVRHA
SLHTPLRSNFTLTAARHSLSETEKTDNES. BALB/c mice (n=6)
were immunized subcutaneously with 50 ug B7-H6-His
emulsified in Freund’s adjuvant (Sigma) over six weeks. Splenic
mRNA was reverse-transcribed, and scFv phage display libraries
were constructed for three rounds of panning against immobilized
B7-H6-His as previously described (21). Phage display yielded 15
high-affinity mAbs. And the antibody produced as scFv-rFc.

2.5.2 Bispecific antibody construction

Variable domains from B7-H6 mAbs (M4 for NK-targeting
BsAbs, Mx for T-cell targeting BsAbs), CD3¢e (OKT3), and CD16a
(LC21) were cloned into a scFv-hFc(N297A)-scFv backbone. The
B7-H6M18/IL-15/IL-15Ra. sushi fusion protein was engineered
with human Fc(N297A) linking the B7-H6M18 scFv and IL-15/
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IL-15Ro sushi domain. Anti-HIV scFv b12 (VH and VL sequences
are from 2NY7_H and 2NY7_L, respectively) was used to make an
irrelevant control. Constructs were transiently transfected into
HEK-293F cells using polyethylenimine (PEI, Polysciences), with
culture supernatants harvested at 120 h post-transfection. Proteins
were purified by Protein A affinity chromatography (Cytiva) and
analyzed via non-reducing SDS-PAGE.

2.6 Binding characterization

2.6.1 ELISA

96-well plates (Corning) were coated with 5 pg/mL B7-H6-His
overnight at 4°C, blocked with 5% BSA, and incubated with serially
diluted antibodies (0.001-100 nM). Binding was detected using
HRP-conjugated goat anti-human IgG (1:5,000; Sangon Biotech)
and TMB substrate (Thermo Fisher), with absorbance measured at
450 nm (BioTek Synergy H1).

2.6.2 Flow cytometry

Cells (1x10°/mL) were stained with 5 pg/mL antibodies in PBS/
5% BSA for 30 min at 4°C. After washing, samples were incubated
with Cy5-conjugated goat anti-human IgG (1:500; Sangon Biotech)
and analyzed on a CytoFLEX S flow cytometer (Beckman Coulter).
Data processing utilized FlowJo v10 software.

2.7 Functional assays

2.7.1 In vitro cytotoxicity

Tumor cells stably expressing firefly luciferase (ffLuc2) were
plated in 96-well plates (5x10° cells/well). Freshly isolated human
PBMCs (Wuhan Blood Center) were added at effector-to-target
(E:T) ratios of 10:1. This outcome was attributed to the laboratory’s
prior publication on bispecific antibodies (22). The findings
indicated that an effector-to-target ratio of 10:1 was an optimal
choice, as it exhibited substantial tumor-killing capability against
positive tumor cells, i.e., antibody dose-dependent cell killing, while
concomitantly evading pronounced non-specific killing. Antibodies
or fusion proteins were incubated with the cells at variable
concentrations starting from 10,000 ng/mL and followed by 1:10
serial dilutions. After 48 h, residual luciferase activity was quantified
using the Bright—GloTM Assay System (Promega) on a SpectraMax
M5 microplate reader (Molecular Devices). Cytotoxicity was
calculated as: Cytotoxicity (%) = [(1 - (luminescencesmple/

luminescenceoniro)] X 100.

2.7.2 In vivo efficacy

All animal procedures were approved by the Huazhong
Agricultural University Animal Care Committee. Female NSG mice
(6-week-old, Vital River Laboratories) received subcutaneous injections
of 5x10° H446 cells. When tumors reached ~100 mm?, mice were
pretreated with intraperitoneal cyclophosphamide (100 mg/kg) for
lymphocyte depletion. Weekly intravenous PBMC infusions (1x10
cells) and bispecific antibody administration (0.1-20 mg/kg every 4
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days) were performed. Tumor volumes were calculated as (length x
width?)/2 using caliper measurements. Body weights were monitored
biweekly for toxicity assessment.

2.8 Statistical analysis

Data represent mean + SEM. Two-group comparisons utilized
unpaired Student’s t-tests (two-tailed). Multiple groups were
analyzed by one-way ANOVA with Tukey’s post hoc test
(GraphPad Prism 9). Statistical significance was defined as p < 0.05.

3 Results

3.1 Tumor-selective B7-H6 expression
patterns

Western blot and flow cytometry analyses revealed differential
B7-H6 expression patterns across solid tumor cell lines (Figure 1).
Among lung cancer models, nine cell lines (H446, H82, H196,
H226, H1975, H1299, PC9, H358, H292) demonstrated detectable
B7-H6 expression, while A549 and H1703 remained negative
(Figure 1A). Hepatocellular carcinoma (Hep3B, Huh-7, HepG2),
pancreatic adenocarcinoma (PANC-1, KLM-1, T3M4, MiaPaCa-2),
and MCF-7 breast cancer cells exhibited strong B7-H6 positivity,
contrasting with negative expression in SKBR-3, ZR75, and MDA-
MB-231 lines. Lentiviral-transduced A431(B7-H6) cells served as
stable overexpression controls, while parental A431 cells confirmed
baseline negativity (Figure 1B). This expression profile corroborates
previous reports of tumor-restricted B7-H6 distribution (4).

3.2 Development and characterization of
B7-H6-specific mAbs

The recombinant B7-H6 extracellular domain (B7-H6-His)
expressed in HEK-293F cells showed an apparent molecular
weight of ~42 kDa via SDS-PAGE (theoretical 28.1 kDa),
consistent with post-translational glycosylation (Figure 2A). The
phage display library was subjected to four rounds of panning, with
the input and output of each round illustrated in Figure 2B. It was
observed that there was an enrichment of specific antibody
sequences at various points throughout the panning rounds.
Phage display yielded 15 high-affinity mAbs (M4, M9, M14, M18,
M26, M39, M44, M49, M53, M56, M59, M65, M73, M88, M90)
(Figure 2C). The antibody produced as scFv-rFc fusions with >90%
purity (Figure 2C). ELISA quantification revealed sub-nanomolar
binding affinities (EC50: 0.02-0.43 nM; Figure 2D). Flow cytometric
screening confirmed tumor-specific recognition, with M4
demonstrating superior specificity, while M90 was excluded due
to non-specific binding (Figure 2E).
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3.3 Bispecific antibody binding
characteristics

Ten scFv-hFc(N297A)-scFv format B7-H6/CD3 bispecific
antibodies (BsAbs) demonstrated proper assembly and >90%
purity by SDS-PAGE (Figures 3A, B). ELISA binding analyses
showed nanomolar-range affinity for B7-His (EC50: 0.04-1.22
nM; Figure 3C). Flow cytometry confirmed dual specificity: B7-
H6M53-OKT3 selectively bound B7-H6" tumor cells (A431(B7-
H6), H446, Huh-7) and PBMCs, while maintaining specificity
against B7-H6-negative controls (Figure 3D).

3.4 T B7-H6/CD3 BsAb cytotoxic activitys

At 10:1 E:T ratio, B7-H6M4-OKT3 induced significant target
cell lysis in B7-H6" lines (H446: 85% + 3.2%; A431(B7-H6): 78% +
2.8%; Huh-7: 72% =+ 4.1%; HepG2: 68% + 3.5%), while showing
minimal activity against B7-H6-negative A431 cells (Figures 4A-F).
Dose-response analyses revealed superior potency of B7-H6M4-
OKTS3 (IC50: 1.0 nM) compared to other BsAbs (IC50: 2.5-8.0 nM).

3.5 NK cell synergy with IL-15 fusion
protein

Purified proteins (>90% purity by SDS-PAGE; Figure 5A)
demonstrated high B7-H6-His affinity (EC50: 0.01-0.1 nM), with
control b12/CD3 showing no binding (Figure 5B). B7-H6M4-LC21
(NK-engaging BsAb) mediated 60% + 2.3% H446 lysis at 10 ng/mL
(IC50: 5 ng/mL). Co-administration with B7-H6M18/IL-15/IL-15Rat
sushi (0.1 nM) enhanced cytotoxicity to 90% + 1.8% (p < 0.01 vs
monotherapy; Figures 5D, E). Flow cytometry confirmed simultaneous
engagement of B7-H6" tumors and PBMCs (Figure 5C).

3.6 Bispecific antibodies M4-OKT3 and
M4-L.C21 mediate targeted engagement
and functional activation of T and NK
effector cells

Flow cytometry analysis confirmed specific binding of M4-
OKT3 to purified T cells and M4-LC21 to purified NK cells
(Figure 6A), demonstrating effective target engagement by both
bispecific antibodies. To assess functional activation, surface CD69
expression—an early activation marker—was quantified on T cells
(gated as CD3" lymphocytes) and NK cells (gated as CD16"
lymphocytes) in PBMC-tumor co-culture systems using
multiparameter staining with anti-CD3/anti-CD69 and anti-
CD16/anti-CD69 antibody pairs.B7-H6M4-OKT3 significantly
upregulated CD69 on T cells (Figure 6B), while B7-H6M4-LC21
potently induced CD69 expression on NK cells (Figure 6C). The B7-
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FIGURE 1

B7-H6 Binding (APC-A)

Comparative analysis of B7-H6 protein expression across solid tumor cell lines. (A) Western blot analysis of B7-H6 protein expression in lung cancer
(H446, H82, H196, H226, H1975, H1299, PC9, H1703, H358, H292, A549), hepatocellular carcinoma (Hep3B, Huh7, HepG2), pancreatic
adenocarcinoma (PANC-1, KLM-1, T3M4, MiaPaCa-2), and breast carcinoma (SKBR-3, ZR75, MCF-7, MDA-MB-231) cell lines. A431 epidermal
carcinoma cells served as B7-H6-negative controls, while lentiviral-transduced A431(B7-H6) stable transfectants were used as positive controls.
Total protein lysates (50 ug/lane) were resolved by SDS-PAGE under reducing conditions and probed with HRP-conjugated goat anti-rabbit IgG
(1:5,000). B-Actin served as the loading control. (B) Flow cytometric quantification of surface B7-H6 expression. Cells were incubated with 5 pg/mL
primary B7-H6-specific antibody followed by Cy5-conjugated goat anti-rabbit IgG (1:500). Shaded histograms represent untreated controls; red lines

indicate antibody-treated groups.

H6MI18/IL-15/IL-15Ro. sushi activated both T and NK cell
populations (Figures 6C, D). Consistent with these findings, B7-
H6M4-OKT3 showed the highest CD69 induction among T cell-
targeting agents (Supplementary Figure S1), and B7-H6M4-LC21
demonstrated superior activation of NK cells (Supplementary
Figure S2). Collectively, these results establish that M4-OKT3 and
M4-LC21 bispecific antibodies selectively engage and activate their
respective effector cells (T and NK lymphocytes) within PBMC,
enabling potent cytotoxic function against tumor targets.

3.7 Combination therapy efficacy and
safety profile

In H446 xenografts, B7-H6M4-OKT3 (1.0 mg/kg) and B7-H6M4-
LC21 (10 mg/kg) monotherapies achieved 69.5% + 10.2% and 66.9% +
11.2% tumor growth inhibition, respectively, versus PBS (p < 0.05;
Figures 7A, B). B7-H6M18/IL-15/IL-15Ra. sushi demonstrated dose-
dependent efficacy (0.06 mg/kg: 25.0% + 7.4% inhibition; 0.5 mg/kg:
57.5% * 9.0%) with associated toxicity at higher doses (7.4% * 2.2%
weight loss; p < 0.05; Figures 7C, D). The combination regimen (B7-
H6M4-LC21 + IL-15 fusion) significantly enhanced tumor suppression
versus monotherapies (achieved 76.1% * 14.8% tumor growth
inhibition; p < 0.05; Figures 7E, F) without significant weight
changes at therapeutic doses.
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4 Discussion

This study establishes B7-H6 as a therapeutically actionable
immune checkpoint in solid malignancies through three principal
advances: (1) development of high-affinity bispecific antibodies
(BsAbs) redirecting T/NK cells against B7-H6+ tumors, (2)
design of a tumor-localized IL-15/IL-15Ro. sushi fusion protein to
amplify effector cell activity, and (3) identification of NK cell-
redirected therapy as the optimal strategy for overcoming
immunosuppressive tumor microenvironments (TMEs). Phage
display-derived B7-H6M4-OKT3 (T cell-targeting) and B7-
H6M4-LC21 (NK cell-targeting) BsAbs demonstrated tumor-
selective cytotoxicity with nanomolar binding affinity (EC50:
0.01-1.22 nM). Notably, B7-H6M4-LC21 combined with IL-15
fusion protein elicited synergistic tumor lysis (>90% at 10 ng/mL
in vitro) and enhanced in vivo antitumor efficacy, surpassing T cell-
based modalities. These observations align with emerging evidence
supporting NK cell engagement to bypass T cell exhaustion and
stromal resistance in solid tumors (9, 23). The effectiveness of our
B7-H6/IL-15/IL-15Ro. sushi fusion further underscores the value of
spatial cytokine regulation—a concept validated in recent PD-L1/
IL-12 fusion studies (24, 25). Tumor-restricted IL-15 delivery
reduced systemic toxicity while enhancing effector cell
persistence, a critical advantage for treating chemoresistant
malignancies like small-cell lung cancer (SCLC).
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FIGURE 2

Phage display-derived B7-H6-specific monoclonal antibodies show nanomolar affinity. (A) SDS-PAGE analysis of purified recombinant B7-H6-His
protein under reducing conditions. (B) Phage display library screening. Input and output phage titers were quantified via bacterial colony counts.
(C) Non-reducing SDS-PAGE of scFv-rFc monoclonal antibodies (2 pg/lane), confirming dimeric assembly. (D) ELISA-based affinity measurement.
Plates coated with 5 pg/mL B7-H6-His were incubated with serially diluted antibodies (0.01-100 nM) and detected using HRP-conjugated goat
anti-rabbit IgG (1:5,000). (E) Flow cytometric validation of antibody specificity. A431(B7-H6)+ (red line) and A431- (shaded histogram) cells were
stained with 5 pg/mL B7-H6 mAbs and Cy5-conjugated goat anti-rabbit IgG (1:500).

4.1 B7-H6 as a tumor-restricted immune
checkpoint for solid cancers

B7-H6 has been identified as a marker in various types of
cancer, including non-small cell lung cancer (26), small cell lung
cancer (2), gastric cancer, pancreatic cancer, colorectal cancer (3),
oral squamous cell carcinoma (27), and cervical cancer (28). This
finding indicates the possible utilization of B7-H6-targeted therapy
in a range of solid tumor indications. Conversely, B7-H6 expression
is minimal in normal human tissues. Quantitative RT-PCR analysis
of 48 normal human tissues did not detect B7-H6 mRNA
expression (4). Immunohistochemistry (IHC) analysis has
confirmed that normal pancreatic, colonic, and gastric tissues do
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not express B7-H6 membrane protein (29). B7-H6/CD3 T cell
conjugates (for example, BI 765049) have been shown to bind
specifically to tumor cells that express B7-H6. In addition, they have
been demonstrated to have no cytotoxic effect on B7-H6-negative
cells, thereby reducing off-target toxicity (3).

Systematic analysis of B7-H6 expression confirms its tumor-
selective distribution, with negligible detection in normal tissues.
Elevated expression in lung (H446, H1299), hepatic (Hep3B, Huh-
7), and pancreatic (PANC-1, MiaPaCa-2) carcinomas supports
prior associations between B7-H6 and epithelial-mesenchymal
transition-driven metastasis (30-32). Heterogeneity observed in
breast cancer lines (e.g., MCF-7+ vs. MDA-MB-231-) suggests
context-dependent regulation, potentially involving STAT3 or
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FIGURE 3
Design framework and functional validation of B7-H6/CD3 bispecific antibodies. (A) Schematic of the B7-H6/CD3 bispecific antibody (BsAb)
architecture. (B) Non-reducing SDS-PAGE of purified BsAbs (2 pg/lane), confirming dimeric assembly. (C) ELISA affinity assessment. Plates coated
with 5 pg/mL B7-H6-His were incubated with serially diluted BsAbs (100 nM starting concentration) and detected using HRP-conjugated goat anti-
human IgG (1:5,000). (D) Flow cytometric validation of BsAb binding to B7-H6™ tumor cells (A431(B7-H6), H446, H226, Huh7) and healthy donor
PBMCs. Cells were stained with 5 pug/mL BsAbs followed by Cy5-conjugated goat anti-human IgG (1:500). Shaded profiles: unstained controls; solid
lines: BsAb-treated groups. Isotype control (pooled human IgG).

Wnt/B-catenin signaling (33, 34). This tumor-restricted expression
profile, coupled with B7-H6’s role in NKp30-mediated NK cell
activation (4), establishes its dual utility as both a therapeutic target

4.2 Dual-arm immunotherapy: NK cell

engagement outperforms T cell strategies
and diagnostic biomarker. In summary, the low toxicity of B7-H6- While T cell-redirecting BsAbs (e.g., B7-H6M4-OKT3)
exhibited potent in vitro cytotoxicity (IC50: 1 ng/mL), their in
vivo efficacy plateaued—likely due to limited T cell infiltration, a

targeted therapy is primarily attributable to its tumor-specific
expression and precise targeting mechanism, thus rendering it a

promising low-toxicity immunotherapy strategy. well-documented challenge in solid tumors (35). In contrast, NK
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cell-engaging B7-H6M4-LC21 achieved superior tumor control
with reduced cytokine release risk, mirroring outcomes of CD16-
targeted BsAbs in lymphoma models (9, 10). This advantage may
stem from NK cells’ intrinsic ability to lyse MHC-I-deficient tumors
and resist TME-mediated suppression (23, 36). Furthermore, IL-15
fusion synergized more robustly with B7-H6M4-LC21 (>90% lysis)
than T cell-BsAbs, likely attributable to IL-15’s preferential
enhancement of NK cell metabolic fitness and granzyme B
production (13, 37, 38).

In this study, both T/NK cell-type bispecific antibodies
demonstrated significant cytolytic activity and tumor growth
inhibition in NSG mice in both in vitro experiments and in vivo
experiments in NSG mice. When the M18 antibody was combined
with the IL-15/IL-15Ro fusion protein and the two types of
bispecific antibody, significant activity was observed both in vivo
and in vitro. The combination with the NK cell-type bispecific
antibody proved to be the most significant. Interleukin-15 (IL-15) is
a cytokine that plays a pivotal role in regulating the development,
balance, and function of natural killer (NK) cells and T cells (39).
The IL-15/IL-15Ro complex signaling pathway is stimulated,
thereby promoting the survival, proliferation, and effector
functions of NK cells and T cells (39). Consequently, therapeutic
IL-15 pathway agonists have the potential to enhance the activity of
immunotherapies that induce NK and T cell activity, such as
monoclonal antibodies, immune checkpoint inhibitors, and T cell
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bispecific antibodies, by expanding NK/T cell expansion and
enhancing antitumor immune responses.

As demonstrated in previous studies, the combination of
XmAb24306 (IL-15/IL-15Ro Fc fusion protein) with T cell
bispecific antibodies has been shown to enhance the proliferation
and expansion of CD8+ and CD4+ T cells induced by these
antibodies (40). The present study hypothesizes that T cell
bispecific antibody stimulation can serve as an initiator for
XmAb24306, thereby enhancing T cell responsiveness to IL-15. It
has been reported that IL-15 can promote TCR sensitization,
resulting in stronger T cell responses (41). NK cells have been
observed to constitutively overexpress IL-2/15RBy (CD122/CD132)
on their surface, and it has been demonstrated that IL-15/IL-15Ro
can directly bind to this receptor, resulting in the rapid activation of
the JAK-STAT5 pathway and the subsequent expression of
perforin/granzyme B. In contrast, T cells require higher
concentrations of IL-15 and are inhibited by Tregs. Consequently,
the combination of NK cell-type bispecific antibodies has been
demonstrated to be the most efficacious approach (23, 42).

4.3 Spatial control of IL-15 activity through
tumor anchoring

The B7-H6M18/IL-15/IL-15Ra. sushi fusion represents an
innovative cytokine delivery paradigm. Unlike systemic IL-15

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1625813
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ma et al.

10.3389/fimmu.2025.1625813

A Non-reducing Reducing B
kDa 1 2 3 12 3 5
200
10 2 >
75 25 154
55 g © —4—  M4-OKT3
42 s L 1.0 —¥— M4-LC21
5 —— MI&-L15
30 o 054 —— bi2-LC21
23 6
N N (N N N Q
$ & L ° N
1.M4-OKT3 2.M4-LC21 3.M18/IL-15 & o N
C BsAb Conc.(nM)
A431 Sample Name m. Mean , 431 7_H6) Sample Name eom. Mean , |
PC-A [ C-A
t ——JA431_M4-OKT3.fcs 0207 € ——|A431(B7H6)_M4-OKT3.fcs 1133
g A431_M4-LC21 fes -1.56) 3 ——]A431(B7H6)_M4-LC21 fcs 1219
o [jpd31_M18-IL15.fcs 0239 O [A431(B7HB)_M18-IL15.fcs 1484
[~ JA431_b12-LC21 fos 0.737 - - |n431(B7H6) b12:LC21 fos 5.18
) TAd31. Isotype.fes -0.013 ) —1a431(87Hs)_lsotype.fcs 358
010° 10° 10° 10° 010> 10° 10° 10°
APC-A:: APC-A APC-A:: APC-A
Sample Name eom. Mean , Sample Name eom. Mean ,
PBMC e H446 APC-A
€ PBMC_M4-OKT3.fcs 2713 H446_M4-OKT3.fcs 34.9)
3 PBMC_M4-LC21.fcs 183 3 H446_M4-LC21.fcs 36.5
[3) PBMC_M18-IL15.fcs 149 O H446_M4-IL15.fcs 42.8)
F - JPBMC_b12-LC21.fcs 215 - - |H446_b12-LC21.fcs 0.439)
0 . PBMC_lIsotype.fcs -0.455) 0 H446_lIsotype.fcs 0.220)
0102 16° 10° 10° 010° 10° 10* 10°
APC-A:: APC-A APC-A:: APC-A
D
—_ A431 —_ A431(B7H6 —_ H446
Q\i 100 M4-OKT3 > 100 ( ) 100
g 754 —* M4-LC21 %, 75 % 75
En —o— Db12-OKT3 > >
© 509 —o— b12-LC21 © 50 *[ Kk o 50 *x
S s £
g 3 25 g 25
n 0 %)
0 0
NAANANL O NANNLOD O AAANNLILLSD
PO NSRS AN )
N TS SO S ST TS
BsAb Conc.(ng/mL) BsAb Conc.(ng/mL) BsAb Conc.(ng/mL)
E
A431(B7H6 - H446
100 A \gnas 100 ®7HO) R 100
o
3(; 754 1ng/mL M4-OKT3 + M18/IL-15 " 75 2 75
@ |- 5ng/mLM4-LC21 + M18/IL-15 2, P
=50 = 50 o 50
) ) 5 **
S 25 S 25 g 25
8 @
2 o 7]
»n 9 ®» 0 0
Q> X N PA NS O™ XN PR N2 QM M P N2
SRS O RS O RS
M18/IL-15/IL-15Ra sushi Conc.(ng/mL) M18/IL-15/IL15Ra sushi Conc.(ng/mL)  M18/IL-15/IL15-Ra sushi Conc.(ng/mL)
FIGURE 5
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therapies (e.g., ALT-803) that promote Treg expansion and  the sushi domain stabilizes IL-15 binding to CD122/CD132 on
hepatotoxicity (14, 43, 44), our design confines IL-15 activity to ~ NK cells, prolonging STATS5 activation without requiring
B7-H6+ tumors, analogous to PD-L1-targeted IL-12 strategies  dendritic cell-mediated trans-presentation (45-47). Dose-
that improve tumor-specific immunity (18, 19). Mechanistically, — dependent toxicity at 0.5 mg/kg underscores the necessity for
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FIGURE 6
Target binding and functional activation of bispecific antibodies. (A) Flow cytometric binding specificity of NK/T cells purified from healthy donor
PBMCs. NK cells were stained with 5 pg/mL M4-LC21 followed by Cy5-conjugated goat anti-human IgG (1:500). T cells were stained with 5 pg/mL
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PBMC alone (control). Dashed line: PBMC+antibody co-culture. Solid line: PBMC+tumor cells+antibody triple co-culture (B) CD69 expression on T
cells (gated as CD3" lymphocytes). (C) CD69 expression on NK cells (gated as CD16" lymphocytes). (D, E) CD69 co-expression profiles on T and NK
cell subsets.
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Dose-dependent tumor suppression by B7-H6-targeted bispecific antibodies in xenograft models. (A, B) Tumor growth curves in H446 xenografts
treated with escalating doses of B7-H6M4-OKT3 or B7-H6M4-LC21. Controls: untreated mice and PBMC-only groups. (C, D) Dose-dependent
efficacy of B7-H6M18/IL-15/IL-15Ra sushi. (E, F) Combination therapy (B7-HE6M4-OKT3: 1.0 mg/kg; B7-HE6M4-LC21: 10.0 mg/kg; IL-15 fusion:
0.03 mg/kg). Arrows: treatment timepoints of antibodies (intravenous injection via tail vein). PBMCs (1x10” cells) administered weekly (x2). Tumor
volume calculated as V=lengthxwidth?/2. Body weight monitored for toxicity. Data: mean + SEM. Significance determined by unpaired t-test. *p<0.05.

precise cytokine dosing—a challenge mitigated by tumor-
localized delivery.

4.4 Clinical translation and therapeutic
implications

Our findings position B7-H6 as a pivotal target in refractory

solid tumors, particularly cisplatin-resistant SCLC (H446 model).
The observed tumor regression parallels PD-1 inhibitor efficacy in
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similar models (2), suggesting complementary innate-adaptive
immune mechanisms. Clinically, this regimen could benefit
patients with B7-H6+ tumors identifiable via standard
immunohistochemistry—a feasible approach using existing
diagnostic antibodies (1). The modular BsAb platform also
permits rapid integration with alternative cytokines (e.g., IL-18,
IFN-), costimulatory molecules (4-1BB, OX40), or nanoparticle-
based delivery systems such as microrobots, which show promise in
enhancing tumor-targeted drug penetration and overcoming
biological barriers (48), enabling tailored combination therapies.
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4.5 Limitations and future perspectives

Despite promising results, several limitations require resolution.
First, validation in patient-derived xenograft (PDX) models of B7-H6+
pancreatic/hepatic cancers is essential. Second, the role of endogenous
immune cells in PBMC-humanized NSG mice remains unclear; single-
cell RNA sequencing of tumor-infiltrating lymphocytes could clarify
NK/T cell interactions. Third, IL-15 fusion dosing optimization
demands comprehensive pharmacokinetic studies in non-human
primates to balance efficacy and safety. Finally, issues related to
treatment safety were explored. With regard to the weight loss
phenomenon referenced in Figure 7, it is imperative to elucidate its
correlation with cytokine storms. It is regrettable that, owing to an
absence of foresight regarding the possibility of toxicity risks during the
study design stage, serum or tissue samples were not retained for the
purpose of cytokine detection. Nevertheless, the controllability of
toxicity is a pivotal focal point of subsequent analyses. The extant
data support the hypothesis that toxicity is unrelated to the storm, with
limited weight loss: the maximum recorded weight loss was 15% of
initial body weight (Figure 7F), consistent with temporary stress
responses (e.g. suppression of appetite) rather than the explosive
characteristics of a storm (49). No clinical symptoms related to the
storm were observed in the subjects. The experimental mice
administered the treatment did not display the customary indications
of the storm, including hair erection, lethargy, or respiratory distress
(50). A review of the clinical data for analogous bispecific antibodies
(for example, CD3xCD19 Blinatumomab) yielded the following results:
The incidence of weight loss was approximately 18% (CTCAE Grade
1-2) (51). The incidence of cytokine storm was only 3-5% (= Grade 3)
(51). Therefore, weight loss is not necessarily storm-related and is more
likely attributed to energy expenditure caused by T-cell activation.

5 Conclusion

This study establishes an integrative platform for solid tumor
immunotherapy combining B7-H6-targeted bispecific antibodies
with tumor-anchored cytokine delivery. High-affinity NK cell-
engaging B7-H6M4-LC21 (IC50: 5 ng/mL) and T cell-redirecting
B7-H6M4-OKT3 (IC50: 1 ng/mL) demonstrate the therapeutic
versatility of B7-H6, a tumor-selective immune checkpoint. Co-
administration of B7-H6M4-LC21 with IL-15/IL-15Ro sushi fusion
achieved synergistic tumor inhibition, outperforming T cell-based
strategies and emphasizing NK cells’ unique capacity to overcome
stromal immunosuppression. Tumor-localized IL-15 delivery
minimized systemic toxicity—a critical advancement given the
dose-limiting hepatotoxicity of conventional IL-15 therapies.

These results hold immediate clinical relevance for cisplatin-
resistant SCLC (H446 model) and other B7-H6+ malignancies
where current immunotherapies show limited efficacy. The
modular BsAb design facilitates adaptation to alternative
cytokines (e.g., IL-18, IFN-) or costimulatory molecules (4-1BB,
0X40), providing a framework for personalized regimens. Future
priorities include (1) biomarker-driven patient stratification via B7-
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Hé6 THC, (2) pharmacokinetic optimization of IL-15 fusion dosing,
and (3) combinatorial trials with PD-1/CTLA-4 inhibitors to exploit
innate-adaptive immune synergy. By unifying targeted antibody
engineering with precision cytokine delivery, this work repositions
B7-H6 as both a diagnostic marker and therapeutic cornerstone in
immuno-oncology.
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Trispecific antibodies have emerged as molecules for enhanced cancer
immunotherapy by addressing the complexity of cancer cell biology and anti-
cancer immune responses. Here, we present a novel approach to generate
trispecific antibodies based on the previously developed elg technology. These
trispecific antibodies comprise one Fab and two eFab moieties, fused to obtain
an asymmetric eFab-elg molecule. The design principle employs two different
efFab building blocks, characterized by divergent arrangements of
heterodimerizing hetEHD2 domains. Specifically, the first (inner) eFab arm
comprises the hetEHD2-1 domain in the heavy chain and the corresponding
hetEHD2-2 domain in one of the light chains, while in the second eFab (outer)
this arrangement is reversed. The feasibility of this approach was demonstrated
for a trispecific eFab-elg T-cell engager (TCE) targeting HER2, HER3, and CD3.
Importantly, the trispecific TCE retained binding activity for all three antigens and
was capable of recruiting T-cells to HER2 and/or HER3-expressing cancer cells
and mediating effective cancer cell killing, as shown in 2D and 3D model systems.
Due to the modular architecture, this approach should be suitable to generate
trispecific antibodies of any specificity and for a multitude of applications.

KEYWORDS

trispecific antibody, T-cell retargeting, antibody engineering, HER2, HER3,
CD3, hetEHD2

Introduction

Bispecific antibodies have found increasing applications in cancer therapy (1). The
majority of the approved bispecific antibodies is designed as T-cell engagers (TCEs) that
simultaneously bind to a tumor-associated antigen (TAA) on the cancer cells and to the
CD3 chain of the T-cell receptor (TCR) complex on T-cells. Many of these TCEs utilize a
1 + 1 stoichiometry for the TAA and CD3 chain. However, recently TCEs with a 2 + 1
stoichiometry containing two identical binding sites for the TAA have demonstrated
increased tumor cell binding and killing. This superior efficacy can be explained by avidity
effects, whereas the monovalent CD3-binding is maintained to prevent systemic T-cell

105 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1642454/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1642454/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1642454/full
https://orcid.org/0009-0003-2258-3470
https://orcid.org/0000-0003-1093-263X
https://orcid.org/0000-0001-7139-1350
https://orcid.org/0000-0003-1876-4212
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1642454&domain=pdf&date_stamp=2025-08-27
mailto:oliver.seifert@izi.uni-stuttgart.de
https://doi.org/10.3389/fimmu.2025.1642454
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1642454
https://www.frontiersin.org/journals/immunology

Loffler et al.

activation (2-6). For example, avidity-driven activation and killing
of solid tumors was shown for the 2 + 1 bispecific TCE, AMG 509
(xaluritamig), targeting STEAP1, which allowed to discriminate
between high target expressing cancer cells and normal cells (7). A
first 2 + 1 TCE, glofitamab, directed against CD20 and CD3 was
approved in 2023 for the treatment of patients with relapsed or
refractory diffuse large B-cell lymphoma (DLBCL) (8).

Various formats are utilized to generate bispecific 2 + 1 TCEs
(9, 10). Several of these formats have further been adapted for the
generation of trispecific 1 + 1 + 1 TCEs targeting two different TAAs
(11). From a design point of view, the generation of such 2 + 1
trispecific antibody molecules requires further engineering to allow
pairing of the three different V; domains with their cognate Vi
domains. Examples of such engineering approaches include Fab-
IgG molecules assembled from half-antibodies (12), Fab-IgGs
comprising a common light chain (13), OrthoTsAbs built from
orthogonal Fabs (14), trispecific CODV-Igs comprising a Fab
moiety and a defined arrangement of Vi and Vi domains fused
to Cyl and C; domains which assemble into a bispecific binding
moiety (15), and scFvs or single-domain antibodies used as building
blocks (16, 17).

We have recently developed a novel technology, the elg
technology, to generate bispecific antibodies, including TCEs (18,
19). Central to this technology is the heavy chain domain 2 of the
IgE (EHD2) which naturally forms disulfide-stabilized homodimers
acting as a hinge-like structure in the IgE. The covalent linkage is
based on two disulfide bonds at the interface of the two domains
formed between two different cysteine residues. This EHD2 can be
used as a versatile building block to generate homodimeric fusion
proteins (20). Substitution of one of the two cysteine residues in the
first EHD2 (hetEHD2-1) and substitution of the other cysteine
residue in the second EHD2 (hetEHD2-2), e.g. by serine residues,
results in efficient formation of disulfide-linked hetEHD2-1 x
hetEHD2-2 heterodimers, while homodimers lacking disulfide
bonds are instable (21). These heterodimerizing hetEHD2-1 and
hetEHD2-2 domains were developed further, generating Fab-like
moieties (eFab) as versatile building blocks for the generation of
bispecific antibody molecules. Thus, bispecific bivalent molecules

Abbreviations: TCE, T-cell engager; TAA, tumor-associated antigen; TCR, T-cell
receptor; STEAPI, six transmembrane epithelial antigen of the prostate 1;
DLBCL, diffuse large B cell lymphoma; Vi, variable domain of the light chain;
Vy, variable domain of the heavy chain; Fab, fragment antigen binding; Ig,
immunoglobulin; OrthoTsAbs, orthogonal Fab-based trispecific antibodies;
CODV, cross-over dual variable; Cy, constant domain of heavy chain; Cp,
constant domain of light chain; scFv, single-chain fragment variable; elg,
bispecific Ig domain containing hetEHD2; hetEHD2, heterodimerized second
domain of IgE; DLS, dynamic light scattering; CD, cluster of differentiation; eFab,
Fab with hetEHD2; HER2, HER3, epidermal growth factor receptor 2, 3; moFc,
mouse fragment crystalline; hetEHD2-1, hetEHD2 domain with C102S;
hetEHD2-2, hetEHD2 domain with C14S and N39Q; PBMC, peripheral blood
mononuclear cell; Rg, Stokes radius; EHD2, heavy chain domain 2 of IgE; SEC,
size-exclusion chromatography; GBM, glioblastoma multiforme; EGFRVIII,
epidermal growth factor variant III; DLS, dynamic light scattering; TNF,

tumor-necrosis-factor; IL, interleukin.
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(eIg) were generated by fusing a natural Fab and an eFab moiety to
heterodimerizing Fc-chains (18). Furthermore, trivalent bispecific
molecules, so-called 2 + 1 formats, were generated by fusing an
additional Fab to one of the elg chains (i.e. the N- or C-terminus of
one of the heavy chains or one of the light chains) (19).

In the present study, we have extended the elg technology to
generate trispecific eFab-elg molecules comprising one natural Fab
arm and two different eFab arms (1 + 1 + 1 format). The first (inner)
eFab arm comprises the hetEHD2-1 domain in the heavy chain and
the corresponding hetEHD2-2 domain in one of the light chains,
while in the second eFab (outer) this arrangement is reversed.
Recently, we have published a bivalent bispecific antibody for dual-
targeting of HER2 and HER3 and confirmed strong activity against
tumor cells in vitro and in vivo (22). Based on the excellent
inhibitory effect of this bispecific antibody, the feasibility was
evaluated for a trispecific eFab-elgs TCE targeting HER2, HER3
and CD3. The Fc part for the generation of bi-or trispecific TCEs is
silenced (FcAab) and is not able to exert Fc-mediated effector
functions (23). This trispecific eFab-elg TCE was compared to
bispecific elgs targeting both HER2 or HER3 with respect to
binding of antigen and antigen-expressing tumor cell lines and to
CD3 for T-cell engagement. Finally, dual targeting of both antigens
and efficient killing of HER2 and HER3 expressing tumor cells was
demonstrated using 2D and 3D cell culture models.

Materials and methods
Materials

For the different in vitro experiments, we used BT474 cells
(ATCC HTB-20), LIM1215 (Sigma-Aldrich Cat#10092301), MDA-
MB-468 (CLS Cat#C0006003) and Jurkat cells (provided by Dr.
Ammon Altman form the La Jolla Institute for Allergy &
Immunology) were cultivated in RPMI 1640, 10% FCS. For the
production of antibodies, we used HEK293-6E cells provided by
National Research Council of Canada (Ottawa, Canada) and
cultivated in F17 Freestyle expression medium (ThermoFisher)
supplemented with 0.1% Kolliphor P-118 (Sigma), 4 mM
GlutaMAX (ThermoFisher), and 25 ug/ml G418. Human
peripheral blood mononuclear cells (PBMC) were isolated from
buffy coat of healthy donors (Klinikum Stuttgart/Institut fiir
Klinische Transfusionsmedizin und Immungenetik Ulm
gemeinniitzige GmbH, Germany) by Ficoll density gradient
centrifugation (Lymphocyte Separation Medium 1077, Promocell,
C-44010) and cultivated in RPMI 1640, 10% FCS.

Antibody production and purification

All antibodies were produced in HEK293-6E cells cultivated in
F17 Freestyle medium (ThermoFischer). Transient transfection with
pSecTagA vectors carrying the genes for light and heavy chains of the
different antibodies was performed with polyethyleneimine (PEL 25
kDa, linear, Polysciences). 24 h after transfection, 2.5% (v/v) TN1
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(20% (w/v) tryptone N1 (Organotechnie S.A.S.) in F17 Freestyle
expression medium) was added and cells were incubated for
additional four days before supernatant harvest and antibody
purification via protein A affinity chromatography (Cytiva). Bound
antibodies were eluted using 100 mM glycine pH 3.5 and dialyzed
against phosphate-buffered saline at 4°C. A preparative FPLC size-
exclusion chromatography (SEC) step was included for the elg
molecules targeting HER2xCD3 and elg HER3xCD3.

Antibody characterization

Purified antibodies were analyzed by SDS-PAGE (3 pg for non-
reducing, 6 pg for reducing conditions) using 12% (v/v)
polyacrylamide gels and staining proteins with Coomassie-
Brilliant Blue G-250. Analytical SEC was performed using a
VANQUISH (Thermo Fisher Scientific GmbH) HPLC in
combination with a TSKgel SuperSW mAb HR column (Tosoh
Bioscience) at a flow rate of 0.5 or 0.4 mL/min using 0.1 M
Na,HPO,/NaH,PO,4, 0.1 M Na,SO,, pH 6.7 as mobile phase.
Standard proteins: thyroglobulin (669 kDa, Rs 8.5 nm),
apoferritin (443 kDa, Rg 6.1 nm), B-amylase (200 kDa, Rg 5.4
nm), bovine serum albumin (67 kDa, Rg 3.55 nm) and carbonic
anhydrase (29 kDa, Rg 2.35 nm). For elg HER2xCD3 and elg
HER3xCD3 we further purified the molecules with a preparative
SEC by FPLC. The thermal stability of molecules was analyzed by
dynamic light scattering (DLS) using ZetaSizer Nano ZS (Malvern).
Purified proteins were exposed to increasing temperature (30°C to
85°C) in 1°C intervals with 2-minute equilibration steps. The
aggregation point was defined by the starting point of the
increase in the mean count rate.

Enzyme-linked immunosorbent assay

High-binding 96-well plates were coated with 3 pg/mL HER2-
moFc and HER3-moFc (22) at 4°C overnight. Residual-binding
sites were blocked with 2% (w/v) skim milk in PBS (MPBS).
Antibodies were titrated (1:4) in MPBS starting from 400 nM
(sequential binding of eFab-elg) or 100 nM (binding of eFab-elg
and elg molecules) and incubated for 1 h at RT. A human Fc-
specific HRP-conjugated secondary antibody (A0170, Sigma
Aldrich) was added for detection of bound antibodies or a mouse
anti-His HRP-conjugated secondary antibody (9991, Cell Signaling)
for detection of bound receptors and incubated for 1 h at RT. TMB
was used as substrate (1 mg/mL TMB; 0.006% (v/v) H,0O, in 100
mM Na-acetate buffer, pH 6.0) and reaction was stopped using
50 pL 1 M H,SO, and absorption was measured at a wavelength of
450 nm.

Flow cytometry analysis

Serial dilutions of antibodies in PBA (PBS + 2% (v/v) FCS +
0.02% (w/v) sodium azide) were added to a 96-well U-bottom plate
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containing 1x10°> CD3-expressing Jurkat or HER2- and HER3-
expressing tumor cells (BT474, LIM1215, MDA-MB-468) per
well. Bound antibodies were detected using a R- phycoerythrin
(PE)-labeled anti-human Fc antibody (109-115-098, Jackson
ImmunoResearch) diluted in PBA. For the sequential binding of
HER2 and HER3 using the trispecific antibody bound to Jukrat
cells, we detected the receptors with an FITC-labeled anti-murine
IgG antibody (F0257; Sigma Aldrich). Before every step, cells were
washed three times via centrifugation at 500 x g/4°C for 3 min and
resuspension in 150 uL PBA. Binding of the antibodies to the cells
was analyzed using a MACSQuant VYB (Miltenyi Biotec) and
FlowJo (BD Biosciences). The relative median fluorescence
intensity (MFI) was calculated as followed: relative MFI =
((MFIgample-(MFlgetection-MFIcepts) )/ MFI ).

2D cytotoxicity assay

Tumor cells (7,500 to 15,000 cells/well) were seeded per 96-well
in RPMI containing 10% (v/v) FCS and P/S (1:100) and were
incubated 24 h at 37°C/5% (v/v) CO,. In addition, PBMCs were
thawed and cultivated in a cell culture dish (10 cm) in 10 mL RPMI
with 10% (v/v) FCS overnight. Serial dilutions of tri- or bispecific
antibodies in RPMI containing 10% (v/v) FCS and P/S (1:100) were
pre-incubated with the tumor cells for 15 min. Subsequently,
PBMC:s from different donors were added to the tumor cells in an
effector-to-target ratio of 10:1 and incubated for 3 days. Supernatant
was then discarded and remaining viable tumor cells were stained
with crystal violet and optical density at 550 nm was measured
using the Tecan Spark (Tecan).

3D spheroid killing assay

BT474 cells (1,000 cells/well) were seeded on poly-HEMA
coated U-bottom 96-well plates to prevent cell attachment in
RPMI + 10% (v/v) FCS + P/S (1:100) and left 24 h at 37°C/5%
(v/v) CO, to form compact spheroids. In addition, PBMCs were
thawed and cultivated in a cell culture dish (10 cm) in 10 mL RPMI
with 10% (v/v) FCS overnight. The next day, spheroids were treated
with difterent dilutions of tri- or bispecific antibodies as well as 1 pg/
mL PI and pre-incubated for 15 min at 37°C/5% (v/v) CO,.
Different numbers of PBMCs were added to the spheroids. Target
cell killing was observed via PI staining intensity at the IncuCyte
every 2 h for two days. Images were analyzed using Fiji
(Open Source).

IL-2, IFNY, IL-6 and TNFo release

Target cells were incubated with bi- or trispecific antibodies and
PBMCs at an effector-to-target ratio of 10:1. After 24 h or 48 h,
supernatants were harvested for quantification of IL-2, IL-6 and
TNFo or IFNY, respectively. Supernatant cytokine levels were
quantified via by sandwich ELISA following the manufacturer’s
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instructions (IL-2/IENY/TNFo Duo Set ELISA; R&D Systems;
ELISA MAX Standard Set human IL-6; BioLegend).

Statistics

All data are represented as mean + SD for n=3 if not indicated
otherwise. For co-culture experiments analyzing the T-cell
activation, two different donors were tested. Significances were
analyzed with GraphPad Prism 8 using an unpaired two-tailed t
test for the analysis of two samples or a one-way ANOVA followed
by Tukey multiple comparison test (posttest) for the analysis of
more than two samples.

Results

Generation of bivalent bispecific and
trivalent trispecific antibodies

A trispecific, trivalent eFab-elg molecule was generated by fusing
a Fab directed against HER2 [derived from trastuzumab (24)] to a Fc-
hole chain and a tandem arrangement of eFabs (eFabl-eFab2) to a
Fc-knob chain. The first (inner) eFab-1 is directed against CD3 using
a humanized version of UCHT1 (25) and the second (outer) eFab-2
derived from the antibody 3-43 is directed against HER3 (26). In this

10.3389/fimmu.2025.1642454

design, each eFab comprises two heterodimerizing EHD2 (hetEHD2
domains substituting Cyl and Cp). In the eFabl, the heavy chain
hetEHD2 carries a C14S mutation, thus possessing only C102 at the
interphase, while the light hetEHD2 carries a C102S mutation, thus
possessing only C14 at the interphase. In eFab2 these mutations are
reversed. As control proteins, bispecific, bivalent elg molecules
directed against HER2 and CD3, or HER3 and CD3, respectively,
were generated (Figures 1A, B). All three molecules were produced in
transiently transfected HEK293-6E cells and purified from the
supernatant with yields of 6.4 mg/L supernatant for the eFab-elg,
6.7 mg/L for elg HER2xCD3, and 9.2 mg/L for eIlg HER3xCD3. SDS-
PAGE analyses confirmed correct assembly into elg molecules and
the presence of the individual polypeptide chains (Figure 1C). Purity
of >95% was further confirmed by size-exclusion chromatography
showing a single main peak with an apparent molecular mass of
approximately 190 to 200 kDa for both elgs and approximately 310
kDa for the eFab-elg (Figure 1D). In addition, we have also tested the
thermal stability of the different molecules by dynamic light scattering
(DLS) (Supplementary Figure S1). Here, we calculated an aggregation
point of the trispecific eFab-elg molecule with 75°C (as well as for
trastuzumab, IgG huU3 and eIlg HER2xCD3), while one of the
parental monospecific antibody IgG 3-43 and the bispecific elg
HER3xCD3 showed a lower aggregation point at 64°C and 63°C,
respectively. Thus, the aggregation point originating from variable
domains of targeting HER3 was not observed for the trispecific eFab-
elg molecule.

A B
bispecific - bivalent
elg HER2xCD3 elg HER3xCD3 eFab-elg HER2xHER3xCD3
C D
elg elg eFab-elg elg elg eFab-elg
HER2xCD3 HER3xCD3 HER2xHER3xCD3 HER2xCD3 HER3xCD3 HER2xHER3xCD3
kba R M NR kba R M NR kba R M NR
L 40000
S 1% 158
100- 100-
70- 70- 30000
55- 55-
40- 40- 3 20000
35- 35-
2. 25 10000
o4 : H
15 15- 0 10 20 30 0 10 20 30
time [min] time [min] time [min]
FIGURE 1

Composition and biochemical analysis of bi- and trispecific molecules. (A) Composition of bispecific bivalent elg molecules directed against HER2
and CD3 as well as HER3 and CD3, respectively. (B) Composition of trispecific trivalent eFab-elg molecules directed against HER2, HER3 and CD3.
(C) SDS-PAGE of bispecific bivalent elg molecules and trispecific trivalent molecule under reducing (R) and non-reducing (NR) conditions. (D) SEC
analysis of elg HER2xCD3 and HER3xCD3 as well as of eFab-elg HER2xHER3xCD3.
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Binding of bi- and trispecific antibodies to
HER2 and HER3

First, binding of the bi- and trispecific elg antibodies was
analyzed by ELISA using immobilized recombinant extracellular
regions of HER2 and HER3 fused to a mouse Fc region (HER2-
moFc and HER3-moFc). In this assay, all antibodies showed a
concentration-dependent binding (Figures 2A-C) with EC5, values
of 0.7 nM for HER2 and 5.6 nM for HER3 for the trispecific eFab-
elg, 0.4 nM for HER?2 for elg HER2xCD3 and 1.9 nM for HER3 for
elg HER3xCD3. Thus, compared to the bispecific elgs, the ECs,
values of the trispecific eFab-elg were slightly lower than those
observed for the bispecific antibodies (Table 1). A significantly
different binding was calculated for the trispecific eFab-eIg molecule
compared to the bispecific elg HER2xCD3 molecule (p=0.03).
Furthermore, binding to both antigens was analyzed by a
sandwich ELISA using either immobilized HER2-moFc or HER3-
moFc followed by incubation with the eFab-elg HER2xHER3xCD3
and subsequent incubation with either HER3-His or HER2-His,
respectively (Figure 2D). In both setups, binding to both antigens
was observed for the trispecific eFab-elg.
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FIGURE 2
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Binding of bi- and trispecific antibodies to
CD3

Next, antibody binding to CD3 was analyzed by flow cytometry
using CD3-expressing Jurkat cells. For all antibodies a concentration-
dependent binding was observed (Figure 3A). The trispecific eFab-elg
HER2xHER3xCD3 bound to the cells with an ECs, value of 45.8 nM,
while the control antibodies bound with an ECs, value of 7.0 nM for
elg HER2xCD3 and 4.4 nM for elg HER3xCD3 (Table 2). The reduced
binding of eFab-elg HER2xHER3xCD3, which reached significance
(p<0.004 for elg HER2xCD3 and p<0.003 for elg HER3xCD3) is most
likely due to the N-terminal fusion of the eFab moieties, sterically
interfering with the binding to CD3. We additionally analyzed the
sequential binding of HER2-moFc or HER3-moFc to the trispecific
eFab-elg bound to Jurkat cells (Figure 3B). After incubation of Jurkat
cells with 400 nM of eFab-elg HER2xHER3xCD3, soluble HER2-moFc
or HER3-moFc was added and bound antigens were detected with a
FITC-labeled anti-murine Fc antibody. Both antigens, HER2 and
HER3, were bound to the cells incubated with eFab-elg
HER2xHER3xCD3, demonstrating the sequential binding of CD3-
expressing cells with HER2 or HER3 as antigen.
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Binding of bi- and trispecific molecules to HER2 and HER3 in ELISA. (A) Binding of elg HER2xCD3 to HER2 and HER3. (B) Binding of elg HER3xCD3
to HER2 and HER3. (C) Binding of eFab-elg HER2XxHER3xCD3 to HER2 and HER3. (D) Binding of HER3-His to eFab-elg HER2XxHER3xCD3 bound to

immobilized HER2-moFc, or vice versa. Mean + SD; n=3.
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TABLE 1 Antigen binding from ELISA experiments.

Antigen elg elg eFab-elg

9 HER2xCD3 HER3xCD3 HER2xHER3xCD3
HER2-moFc 04 +0.1 nd. 0.7 02
HER3-moFc n.d. 19+ 1.1 56 2.1

ECs values in nM. Mean + SD, n.d., not determined, n=3.

Target cell binding with varying surface
expression of HER2

To investigate target cell specificity, binding of the antibodies to
HER2- and HER3-expressing cell lines was analyzed by flow
cytometry using tumor cell lines expressing different surface levels
of HER2 and HER3 (BT474: >572,000 HER2/cell and ~11,000
HER3/cell; LIM1215: ~33,000 HER2/cell and ~20,000 HER3/cell;
MDA-MB-468: ~1,700 HER2/cell and ~6,000 HER3/cell). In all
cases, binding to the target cells occurred in a concentration-
dependent manner (Figure 4A, Supplementary Figure S2). For all
three cell lines strongest binding was observed for elg HER3xCD3
with EC5, values in the range of 0.3 to 0.6 nM. For BT474 cells,
which express very high amount of HER2 and comparable low

A

Jurkat

-o- eFab-elg HER2xHER3xCD3
—4— elg HER2xCD3
- elg HER3xCD3

140
120
100

relative MFI

10 102 10" 10° 10' 10%2 103

protein [nM]

FIGURE 3
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amount of HER3, binding of elg HER3xCD3 was detected with
lower fluorescence intensity compared to the trispecific antibody
and elg HER2xCD3 binding to HER3 and/or HER2 and is
highlighted in Supplementary Figure S3. The elg HER2xCD3
bound best to LIM1215 (2.6 nM) followed by BT474 (6.2 nM)
and MDA-MB-468 cells (EC5, value was not determined). The
trispecific antibody showed similarly strong binding to LIM1215
(1.4 nM) followed by MDA-MB-468 (7.0 nM) and BT474 cells (10.9
nM). A significant difference was determined for the elg
HER3xCD3 compared to elg HER2xCD3 using LIM1215 cells
(p=0.008) and BT474 cells (p=0.016) and to trispecific antibody
using BT474 cells (p=0.002) and MDA-MB-468 cells (p<0.001). In
general, MFI signal intensity and thus binding efficacy correlated
with HER2 and HER3 expression levels. Of note, the trispecific
eFab-elg consistently gave rise to strong signals, while maximal MFI
signals of the bispecific eFabs varied, depending on the antigen
expression levels. For example, elg HER2xCD3 showed very low
binding to MDA-MB-468 cells, which express low levels of HER2,
while eIlg HER3xCD3 showed low binding to BT474 cells. In
summary, binding to all three different cancer cell lines with
varying amounts of HER2 and HER3 was detected for the
trispecific antibody.

B

Jurkat
eFab-elg HER2xHER3xCD3
8_
i 67
E -
[
2
% 47
[
2_
1_
104 HER2- HER3-
moFc moFc

Binding to CD3-expressing Jurkat cells. (A) Flow cytometry analysis of binding of eFab-elg HER2xHER3xCD3 as well as elg HER2xCD3 and
HER3xCD3 to CD3-expressing Jurkat cells. (B) Flow cytometry analysis of binding of 400 nM of eFab-elg HER2xHER3xCD3 to Jurkat cells followed
by incubation with either HER2-moFc or HER3-moFc (300 nM), respectively, to analyze sequential binding to CD3-expressing cells and either HER2

or HER3. Mean + SD, n=3.

TABLE 2 Cell binding from flow cytometry analysis.

Cell line elg HER2xCD3 elg HER3xCD3 eFab-elg HER2xHER3xCD3
Jurkat 7.0 0.6 4426 ‘ 45.8 + 14.8
MDA-MB468 nd. 03+0.1 ‘ 7.0 0.8

LIM1215 26+08 0.6+ 0.1 ‘ 14404

BT474 62+15 05+05 ‘ 109 + 2.8*

ECs, values in nM. Mean + SD, n.d., not determined, *n=2, n=3.).
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FIGURE 4

Target cell binding and cytotoxicity. (A) Binding of different elg molecules (eFab-elg HER2xHER3xCD3; elg HER2xCD3; elg HER3xCD3) to BT474,
LIM1215 and MDA-MB-468 cells was analyzed via flow cytometry. (B) Killing of target cells (BT474, LIM1215 and MDA-MB-468) incubated with bi- or

trispecific elg molecules and PBMCs (donor: HN#7 for BT474; HN#6 for LIM1215 and AH#1 for MDA-MB-468) at an effector-to-target (E:T) ratio of
10:1 for 3 days. Mean of duplicates + SD, n=1.

TABLE 3 Tumor cell killing from cell viability assay.

Cell line elg HER2xCD3 elg HER3xCD3 eFab-elg HER2xHER3xCD3
MDA-MB468 8.6+ 23 143 +17.3 ‘ 237 + 150

LIMI1215 0.1+0.1 127 0.1 ‘ 03+03

BT474 0.0001 + 0.0001 388 +227 ‘ 0.0022 + 0.0017

ECs, values in nM. Mean + SD, n=3.
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Functional anti-tumor activity of the bi-
and trispecific antibodies in 2D and 3D
model system

To assess the cytotoxic activity of the antibodies, we co-cultured
cancer cells with PBMCs at a effector to target cell ratio of 10:1 in
the presence of the bi- and trispecific antibodies. (Figure 4B,
Supplementary Figure S4). The bispecific elg HER3xCD3
molecule showed the lowest activity on all tumor cell lines with
ECsy values in the range of 12.7 to 38.8 nM, as the surface
expression of HER3 of all tumor cell lines is in a similar range
(from 6,000 to 20,000 HER3 receptors/cell). The HER2 expression
of the different tumor cell lines strongly differs (from less than 1,700
to more than 578,000 HER2 receptors/cell) and showed strong
cytotoxic effect of the bispecific HER2xCD3 and the trispecific

10.3389/fimmu.2025.1642454

eFab-elg molecule with dependency of target cell binding. For
MDA-MB-468 cells with low HER2 levels, ECs, values of 12.3
nM for the bispecific and 23.7 nM for the trispecific molecule were
calculated, while stronger activity was detected for LIM1215 cells
with moderate HER2 levels (ECs, values of 100 pM for elg
HER2xCD3 and 300 pM for eFab-elg). Strongest killing with
ECsq values of 0.1 pM for elg HER2xCD3 and 2 pM for eFab-elg
were observed for the BT474 cells with high HER?2 levels (Table 3).
For BT474 cells, a significance between elg HER3xCD3 (p=0.03)
compared to the trispecific eFab-elg and the HER2xCD3 elg
molecule was calculated. In addition, we used the T-cell activation
system by using LIM1215 cells upon T-cell engagement to ensure
and quantified immunostimulatory factors, like IL-2, IFNy, IL-6
and TNFaq, to analyze effects on the immune system (Figure 5,
Table 4). In line with the cytotoxic activity of the bi- and trispecific
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T-cell activation by TCEs. Release of IL-2, IL-6 and TNFa. after 24 h and IFNy after 48 h by PBMCs co-cultured with LIM1215 using an effector-to-
target ratio of 10:1 analyzed by sandwich ELISA. Mean + SD, n=2 - two individual donors).

TABLE 4 T-cell activation.

Cell line elg HER2xCD3 elg HER3xCD3 eFab-elg HER2xHER3xCD3
IL-2 0.08 + 0.03 nd. 0.1 +0.01

IFN-y 07 +0.7 50.3 + 49.9 34+44

IL-6 1.0 £ 0.01 51+5.1 1.0+038

TNFo* 0.1 9.7 46

ECs values in ECs; values in nM. Mean + SD, n.d., not determined, n=2; *calculation of ECs, was based on both experiments.
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antibodies, strong concentration-dependent release of IL-2, IFNY,
IL-6 and TNFa, was observed for the bispecific elg targeting HER2
and CD3, and the trispecific antibody, while the bispecific
HER3xCD3 elg triggered only a marginal cytokine response.

Finally, we employed a 3D co-culture assay to evaluate the
cytotoxic activity of the trispecific antibody under conditions that
more closely mimic the situation found in vivo. We first generated
cancer cell spheroids by seeding BT474 cells into ultra-low
attachment plates. Once they reached a size of approximately 250
pm, spheroids were incubated with varying numbers of PBMCs/
well and different concentrations of the trispecific eFab-elg for up to
2 days (Figure 6). Dead cells were visualized by PI staining. In the
absence of PBMCs, the antibody neither had effects on spheroid
morphology, nor did it induce cell killing. In agreement with the 2D
experiments, cell death was effectively induced in the presence of
PBMCs, to a greater extent and with faster kinetics when using
higher numbers of PBMCs and higher antibody concentrations. In
summary, our data demonstrate that the trispecific antibody
showed strong T-cell activation and subsequential tumor cell
killing in the 2D and 3D model system.

Discussion

Here, we have advanced the elg technology to generate
trispecific trivalent antibodies with an extended Ig-like structure.
The underlying design principle utilizes heterodimerizing EHD2

10.3389/fimmu.2025.1642454

domains derived from the homodimerizing heavy chain domain 2
of IgE (EHD2) to generate Fab-like building blocks (eFabs). The
EHD2 homodimers are normally covalently linked by two disulfide
bonds formed between C14 and C102. Substituting Cys14 in a first
EHD2 (EHD2-1) and C102 in a second EHD2 (EHD2-2) by serine
residues results in efficient heterodimerization since only
heterodimers are capable of forming a single disulfide bond while
homodimers cannot do so and are thus unstable (18, 20). These
hetEHD2 domains are used to replace Cy1 and Cj, in a normal Fab
to obtain Fab-like moieties (eFabs). In comparison to other
antibody fragments, e.g. scFv molecules, as building blocks for
multispecific antibodies, the usage of the disulfide-linked constant
domains in the elg technology increases the thermal stability and
the solubility of multispecific molecule and lowers the potential for
aggregations (27, 28). In the present study it was found that placing
the EHD2-1 and EHD2-2 domains on different chains mediates
correct pairing of cognate Vi and Vp, in co-expressed eFab-1 and
eFab-2 moieties without further modifications of the variable
domains. Proof of concept was obtained for a trispecific eFab-elg
targeting HER2, HER3 and CD3. The molecule retained binding
activity for its target antigens and was capable of recruiting T-cells
to tumor cells and mediating T-cell-induced killing of tumor cell
lines with varying levels of HER2 and HER3 expression.

The majority of trispecific antibodies in preclinical and clinical
development aim at directing immune effector cells to tumor cells
(10). Combining T-cell engagement with the targeting of two
different surface antigens can result in improved tumor selectivity

no PBMCs 0.5k PBMCs

0nM

0.005 nM

0.5nM

FIGURE 6

1k PBMCs

Killing of BT474 spheroids. BT474 spheroids with a diameter of approximately 250 pm were used as target cells and incubated with different amount
of trispecific eFab-elg antibodies as well as different number of PBMCs (donor: AL#1). In addition, the induction of apoptosis was analyzed using
propidium iodide (PI; 1 pg/mL). Cells were incubated with antibodies and the PBMCs for 48 h at 37°C. n=1.
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by avidity-driven on-target activity. This was, for example, shown
for a trispecific TCE targeting Lys6E, B7-H4 and CD3, mediating
strong killing of breast cancer cells simultaneously expression Ly6E
and B7-H4 in vitro and in vivo (12). Furthermore, a trispecific TCE
targeting EGFR and a NY-ESO-1 showed strongly increased efficacy
and anti-tumor activity compared to TCEs targeting single antigens
(29). In another study, Tapia-Galisteo and coworkers used a
trispecific (EGFRxEpCAMxCD3) TCE and modified the affinity
for both TAAs. For EGFR- and EpCAM-positive HCT116 cells, a
100-fold increased cell killing activity was detected compared to
EGFR-positive or EpCAM-positive tumor cells (30). However, the
trispecific eFab-eIg molecule described here did not exhibit
increased cell binding and cytotoxicity compared to the 1 + 1
bispecific TCEs targeting either HER2 or HER3, but rather
combined both activities within one molecule without causing an
avidity-driven increase of activity. This can be explained by sterical
hindrance, impairing the simultaneous binding to HER2 and HER3
on the same cell, and further interacting with CD3 on T-cells.
Indeed, we previously reported that the format matters, ie. the
geometry and architecture of trivalent bispecific TCEs targeting
EGFR affected the degree of target cell killing by the T-cells (19).
Since CD3 binding by the inner eFab was hampered by the outer
eFab targeting HER3, as shown by flow cytometry assays using
Jurkat cells, in future studies trispecific molecules with altered
arrangements of the three binding sites might identify formats
with increased binding and activity.

Nevertheless, the trispecific eFab-eIg TCE molecule was capable
of efficiently killing tumor cells with varying levels of HER2 and
HER3. Specifically, BT474 cells which express high levels of HER2
and low levels of HER3, and therefore are less susceptible to HER3
targeting alone, were efficiently killed by the trispecific TCE. HER3
expression is often elevated as a compensation mechanism in
HER2-resistant tumor cells (31, 32). It is known that the HER
family of receptor tyrosine kinases displays a high degree of
plasticity which can provide compensatory signaling associated
with acquired resistance to treatment (33). Thus, HER3 can be
expressed as a compensatory signal in HER2-resistant tumor cell
lines. In such settings, a trispecific TCE that targets both HER2 and
HER3 might prove beneficial, by preventing or prolonging the
development of acquired resistance.

The beneficial effects of dual targeting are further supported by
findings for a DNA-encoded trispecific TCE targeting IL13Ro.2,
EGFRVIII and CD3. This trispecific TCE was designed to address
the tumor heterogeneity of glioblastoma and demonstrated efficient
tumor growth control in a GBM model with heterogenous
expression of ILI3R02 and EGFRVIII, resembling the complex
tumor environment in human GBM (34). In addition, the
superiority of dual targeting TCEs was demonstrated for a
trispecific TCE targeting CD3, BCMA, and CD38 (ISB 2001),
utilizing a common-light chain approach to generate a trispecific
Fab-IgG molecule (35).

Furthermore, trispecific antibodies allow to address tumor
escape mechanisms, e.g. resulting from the downregulation or
loss of a target antigen. For example, treatment with the bispecific
TCE blinatumomab targeting CD19 and CD3 resulted in the
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appearance of CD19-negative leukemic blasts in approximately
30% of patients (36). This antigen loss was circumvented by
integration of binding sites for a CD20 fragment (37) or CD22
(38) as a second tumor cell targeting element. Similarly, down-
regulation of HER2 was detected in cell lines treated with a
trastuzumab-ADC T-DMI1 as well as in four patients after
receiving the dual trastuzumab/pertuzumab combination therapy
(39). Adding a HER3 binding site to a HER2-targeting TCE could
address the tumor heterogeneity and exploit the potential
emergence of HER3 expression as compensatory signal (33, 40).
Of note, a first bispecific antibody (zenocutuzumab) targeting HER2
and HER3 was recently approved for cancer therapy (41).

In summary, by adapting our elg technology, we were capable
of generating a trivalent trispecific eFab-elg molecule for T-cell
engagement. Using two different eFab building blocks (eFab-1,
eFab-2) together with a normal Fab moiety allows the generation
of trispecific molecules with varying valency and geometry. This
was also exemplarily shown for bispecific elg variants targeting
EGFR and CD3, either comprising or lacking an Fc region (19).
Thus, the elg technology represents a versatile platform for
the generation multispecific antibodies for a multitude
of applications.
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Background: Despite advances in targeted therapies and immune checkpoint
inhibitors (ICls), the prognosis for advanced non-small cell lung cancer (NSCLC)
remains poor. Bispecific antibodies (BsAbs) represent an emerging class of dual-
target immunotherapies, yet their comparative efficacy and safety profiles lack
comprehensive quantitative synthesis.

Methods: This systematic review and meta-analysis (PROSPERO CRD420251005168)
adhered to PRISMA guidelines. We systematically searched PubMed, Web of Science,
Scopus, and Embase through March 2025 for phase Il randomized controlled trials
(RCTs) comparing dual-target immunotherapies with conventional therapies in
advanced NSCLC. Primary outcomes were progression-free survival (PFS) and
overall survival (OS); secondary outcomes included objective response rate (ORR),
disease control rate (DCR), and treatment-related adverse events (AEs). Risk of bias
was assessed using Cochrane RoB 2.0. Random-effects models were used for
data synthesis.

Results: Six RCTs (n=3,063 patients) were included. Dual-target immunotherapies
significantly improved PFS (HR= 0.58, 95% CI: 0.43-0.78; p<0.001) and ORR
(RR=1.29,95%Cl: 1.01-1.64; p=0.04) compared to conventional therapies. No
significant OS (HR=0.84,95% CI: 0.68-1.05; p=0.13) or DCR (RR=1.09, 95% ClI:
0.92-1.30; p=0.30) benefits were observed. Subgroup analyses stratified by
mechanism showed no statistically significant differences in efficacy and safety
between dual-target immunotherapies with different targets of action. Safety
analyses revealed increased risks of any adverse events (RR=1.05; 95%Cl: 1.02-
1.09), grade>3 AEs (RR=1.63; 95% Cl: 1.37-1.94), serious AEs (RR=1.49; 95%Cl:1.31-
1.69) and AEs leading to treatment discontinuation (RR=2.49; 95% Cl: 1.72-3.62)
with dual-target immunotherapies.

Conclusion: Our findings, based on phase Il RCTs, are limited by substantial
heterogeneity among included studies. Dual-target immunotherapies demonstrate
superior PFS and ORR in NSCLC but are associated with increased toxicity,
particularly with EGFR/MET-targeted agents. While offering a promising
therapeutic advance, safety optimization and biomarker-driven patient selection
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are critical for clinical translation. Further trials are needed to validate long-term
survival benefits and refine risk-benefit profiles.

Systematic review registration: https://www.crd.york.ac.uk/prospero/,
identifier CRD420251005168.

bispecific antibodies, NSCLC, immunotherapy, meta-analysis, dual-target immunotherapies

Introduction

Lung cancer remains the leading cause of cancer-related
mortality worldwide, with non-small cell lung cancer (NSCLC)
accounting for approximately 85% of all cases (I, 2). Despite
advancements in targeted therapies and immune checkpoint
inhibitors (ICIs), the prognosis for advanced or metastatic
NSCLC remains poor, with a 5-year survival rate below 20% (3).
While therapies targeting EGFR, ALK, and PD-1/PD-L1 pathways
have improved outcomes in specific patient subsets, intrinsic or
acquired resistance, limited biomarker-driven eligibility, and
heterogeneous treatment responses persist as major clinical
challenges (4). These unmet needs underscore the urgency to
develop novel therapeutic strategies with enhanced efficacy and
tolerable safety profiles.

Dual-target immunotherapies represented by bispecific
antibodies (BsAbs) is a promising class of immunotherapies
designed to engage two distinct molecular targets simultaneously.
By bridging tumor-associated antigens (TAAs) with immune
effector cells or dual-blocking immune checkpoints, dual-target
immunotherapies aim to amplify antitumor activity while
overcoming resistance mechanisms observed with monoclonal
antibodies (5). For instance, amivantamab, a BsAb targeting
EGFR and MET, has demonstrated clinical activity in EGFR exon
20 insertion-mutated NSCLC, leading to its recent regulatory
approval (6). Similarly, PD-1/CTLA-4-targeting BsAbs are being
explored to enhance immune activation compared to monotherapy
approaches (7). Despite this progress, the clinical benefits of dual-
target immunotherapies in NSCLC remain inconsistent across
trials, with variability in patient selection, dosing regimens, and
endpoint definitions. Furthermore, safety concerns like adverse
events (AEs) need systematic evaluation to optimize risk-
benefit assessments.

Existing meta-analyses have primarily focused on monoclonal
antibodies or small-molecule inhibitors in NSCLC, leaving the role
of dual-target immunotherapies inadequately synthesized (8-11).
Therefore, there is no clear conclusion whether dual-target
immunotherapies can achieve an equal or superior effect
compared to conventional therapies. A comprehensive evaluation
of randomized controlled trials (RCTs) is critical to quantify pooled
efficacy outcomes and safety profiles across diverse dual-target
immunotherapies platforms. This systematic review and meta-

Frontiers in Immunology

analysis aims to consolidate evidence from RCTs to address two
key questions: (1) What is the magnitude of clinical benefit offered
by dual-target immunotherapies compared to standard therapies in
NSCLC? (2) How do safety profiles vary among dual-target
immunotherapies with conventional therapies? The findings will
inform clinical decision-making, guide future trial design, and
identify knowledge gaps for further investigation.

Methods
Search strategy

The present study strictly complied with the relevant
requirements of the PRISMA guidelines and completed the
PRISMA checklist (12). The study protocol was prospectively
registered in the PROSPERO database (registration number:
CRD420251005168) and was previously published. A systematic
literature search was conducted in Pubmed, Web of Science, Scopus
and Embase for studies published before March 2025 that
compared dual-target immunotherapies and conventional
therapies, using the following searching terms: Bispecific
antibodies, BsAbs, lung cancer, NSCLC. The detailed search
strategy is available in Supplementary Material. In addition, the
references of all relevant articles were also searched to find
additional literature. Only the studies in English were included.

Inclusion criteria and exclusion criteria

Studies were selected based on the following inclusion criteria:
(1) Phase III randomized controlled trials (RCTs) comparing dual-
target immunotherapies with conventional therapeutic regimens in
non-small cell lung cancer (NSCLC) populations; (2) Availability of
essential statistical parameters for meta-analysis, including at
minimum one clinically validated endpoint: progression-free
survival (PFS), overall survival (OS), objective response rate
(ORR), or disease control rate (DCR); (3) Peer-reviewed full-text
manuscripts with extractable outcome data; (4) Publications in
English with accessible methodological details.

Exclusion criteria comprised: (1) Early-phase clinical trials (phase I/
IT studies); (2) Non-original research including editorials, narrative
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reviews, preclinical investigations, case reports, and commentary
articles; (3) Therapeutic interventions utilizing non-BsAb-based
strategies or studies lacking comparator arms; (4) Trials with
incomplete statistical reporting preventing quantitative synthesis.

Data extraction

Two investigators independently performed study screening
and data extraction in duplicate following the predefined
inclusion/exclusion criteria. All pertinent data were systematically
extracted using standardized forms, followed by cross-verification
of the results. Any discrepancies in data interpretation were
resolved through consensus discussions, with unresolved cases
adjudicated by a third senior researcher. The following data were
collected from each study: first author, publication year, NCT
identifier, sample size, sex, age, PFS, OS, ORR, DCR, any adverse
events (AEs), grade 23 AEs, serious AEs and AEs leading to
treatment discontinuation.

Risk of bias assessment

The methodological quality of included studies was evaluated
using the Cochrane Collaboration’s Risk of Bias Tool (RoB 2.0)
through RevMan 5.4 software. Two independent reviewers assessed
seven domains: (1) random sequence generation (selection bias); (2)
allocation concealment (selection bias); (3) blinding of participants
and personnel (performance bias); (4) blinding of outcome
assessment (detection bias); (5) incomplete outcome data
(attrition bias); (6) selective reporting (reporting bias); (7) other
potential sources of bias. Each domain was judged as “low risk”,
“unclear risk”, or “high risk” (13). Discrepancies were resolved
through consensus or consultation with a third investigator.

Statistical analysis

Hazard ratios (HRs) with corresponding confidence intervals
(CIs) were extracted as primary measures for overall survival (OS)
and progression-free survival (PFS). Binary endpoints including AEs
and DCR were quantified using risk ratio (RR) with 95% CIs. The P
statistics were utilized to evaluate the heterogeneity. I” < 25%, 25% < I
< 50%, and I > 50% were regarded as low, moderate, and high
heterogeneity. Given the substantial variability in methodological
approaches observed across enrolled trials, a random-effects model
was employed for all quantitative syntheses to account for potential
between-study heterogeneity, irrespective of initial heterogeneity
assessment results. To assess the robustness of outcomes with
statistically significant and substantial heterogeneity (p < 0.05, I* >
50%), leave-one-out sensitivity analyses were performed. Pooled
estimates (HR for PFS; RR for dichotomous outcomes) and I°
statistics were recalculated after sequentially excluding each included
trial, maintaining original random-effects models (14, 15). Subgroup
analyses stratified according to the different mechanisms of dual-target
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immunotherapies were performed to assess differences between
different BsAbs or bifunctional fusion protein while mitigating the
impact of heterogeneity. Subgroup analyses were performed only for
categories with >2 studies. Subgroups with a single study were
described qualitatively.

Results
Selected studies and study characteristics

A total of 4,337 potential articles published before March 2025
were identified from databases. After removing 658 duplicates,
3,215 articles were excluded by reviewing the titles and abstracts
because they were a review, summary, case report, animal
experimental study, comments, or meta-analysis. 458 articles were
removed because they were phase I/II trials or did not focus on
NSCLC. Finally, 6 phase IIT RCTs met the eligibility criteria and
were included in the present meta-analysis (16-21). A flow diagram
of the search strategies, which includes reasons for the exclusion of
articles is shown in Figure 1.

6 studies with a total of 3,063 patients, of which 1,224 patients
were in the BsAbs group and 1,360 patients in the conventional
therapy group, were involved (16-21). All the eligible studies were
published between 2023 and 2025. The detailed characteristics of
the included publications are summarized in Table 1.

Efficacy of dual-target immunotherapies

All of the 6 studies reported the PFS and ORR as the main
outcomes of tumor immunotherapy. 3 of the studies reported DCR
(16, 20, 21), and 4 studies reported OS (17-20). Figure 2 shows the
results of the meta-analysis for the efficacy of dual-target
immunotherapies. The pooled analysis revealed a statistically
significant improvement in PFS with bispecific antibody therapy
compared to conventional therapy, with a hazard ratio (HR) of 0.58
(95% CI: 0.43-0.78; P < 0.001). Substantial heterogeneity was
observed across studies (I* = 85%; P < 0.00001), necessitating a
random-effects model. The meta-analysis of four randomized trials
revealed no statistically significant improvement in OS (HR = 0.84;
95% CI: 0.68-1.05; P = 0.13) and DCR (RR = 1.09; 95% CI: 0.92-
1.30; P = 0.30) with bispecific antibody therapy compared to
conventional treatment. A random-effects model was applied due
to clinical diversity in trial designs and patient populations. The
meta-analysis demonstrated a statistically significant improvement
in ORR with bispecific antibodies (RR = 1.29, 95% CI: 1.01-1.64; P
= 0.04). Due to the high heterogeneity (I’ = 92%; P = 0.04), a
random-effects model was applied.

Safety of dual-target immunotherapies

Figure 3 shows the results of the meta-analysis for the safety of
dual-target immunotherapies. The meta-analysis of six randomized
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FIGURE 1

Flow diagram for study identification and selection process.

trials (dual-target immunotherapies group: n = 1,211; conventional
therapy: n = 1,338) revealed a statistically significant increase in the
risk of any adverse events (AEs) with dual-target immunotherapies
(RR = 1.05, 95% CI: 1.02-1.09; p = 0.003), though with substantial
heterogeneity (I* = 81%, p < 0.0001). dual-target immunotherapies

TABLE 1 Main characters of included studies.

Therapeutic

significantly increased the risk of grade > 3 AEs (RR = 1.63, 95% CI:
1.37-1.94; p < 0.00001; I = 76%; p = 0.0008), serious AEs (RR = 1.49,
95% CI: 1.31-1.69; p < 0.00001; I* = 9%; p = 0.36), and AEs led to
treatment discontinuation (RR = 2.49, 95% CI: 1.72-3.62; p <
0.00001; I* = 67%; p = 0.01). Supplementary Table S6 quantifies

Study Year
agent
Zhou (19) 2023 Amivantamab Amivantamab-chemotherapy
chemotherapy
Byoung (20) 2023 Bintrafusp Alfa Bintrafusp Alfa
Pembrolizumab
Fang (16) 2024 Ivonescimab Ivonescimab-chemotherapy
placebo-chemotherapy
Passaro (17) 2024 Amivantamab én?ivantamab—
lazertinib—chemotherapy
Amivantamab-chemotherapy
Chemotherapy
Byoung (18) 2024 Amivantamab Amivantamab-Lazertinib
Osimertinib
Lazertinib
Xiong (21) 2025 Ivonescimab Ivonescimab
Pembrolizumab
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Cases . Age, Sex (Male _ NCT

median (range) vs Female) identifier

153 61 (27-86) 68 vs 85 NCT04538664

155 62 (30-92) 62 vs 93

152 68 (62-73) 110 vs 42 NCT03631706

152 68 (61-75) 116 vs 36

161 59.6 (32.3-74.9) 77 vs 84 NCT05184712

161 59.4 (36.2-74.2) 79 vs 82

263 61 (23-83) 95 vs 168 NCT04988295

131 62 (36-84) 50 vs 81

263 62 (31-85) 106 vs 157

429 64 (25-88) 178 vs 251 NCT04487080

429 63 (28-88) 154 vs 275

216 63 (31-87) 80 vs 136

198 65 (37-85) 164 vs 34 NCT05499390

200 66 (35-83) 169 vs 31
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FIGURE 2

Favours [Bispecific antibody] Favours [Conventional therapy]

Forest plot of the meta-analysis for the efficacy of dual-target immunotherapies. (a) progression-free survival (PFS); (b) overall survival (OS);

(c) disease control rate (DCR); (d) objective response rate (ORR).

AEs frequencies, revealing that non-chemotherapy dual-target
immunotherapies regimens exhibited dermatologic event
predominance, whereas BsAb-chemotherapy combinations showed
hematologic burden. These findings suggest that bispecific antibody
therapy is consistently associated with elevated AE risks across
severity grades and clinically significant endpoints compared to
conventional therapy.

Sensitivity analysis

Sensitivity analyses (Supplementary Tables S1-S5) demonstrated
consistent PFS benefit across all exclusions (HR range: 0.51-0.63, 95%
ClIs excluded 1), with heterogeneity decreasing from 85% to 68% when
excluding Byoung 2023 (20). ORR significance was lost upon excluding
Passaro 2024 (17) (RR = 1.21, 95% CI: 0.96-1.51) or Fang 2024 (16)
(RR=1.26, 95% CI: 0.97-1.66), though directional consistency persisted

Frontiers in Immunology

(RR range: 1.21-1.38; I? > 88%). Safety signals remained robust: any
AEs (RR = 1.05-1.07), grade > 3 AEs (RR = 1.52-1.73, all p < 0.001),
and treatment-discontinuing AEs (RR = 2.24-2.73) showed persistent
risk elevations, with Byoung 2023 (20) exclusion reducing
heterogeneity for grade > 3 AEs from 76% to 62%.

Subgroup analysis

Subgroup analyses by dual-target immunotherapies mechanism
demonstrated comparable PFS benefits between PD-1/VEGE-
targeted agents (HR = 0.48, 95% CI: 0.39-0.60; I* = 0%, 2 trials)
and EGFR/MET-targeted agents (HR = 0.52, 0.37-0.74; I?=82%, 3
trials), with no significant subgroup differences (y* = 0.11, df = 1,
P = 0.74; I = 0%). For PD-L1/TGF-B-targeted agents (1 trial),
the HR of PFS was 1.23 (0.88-1.72). ORRs showed a similar
situation across subgroups: PD-1/VEGF agents achieved a RR of
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FIGURE 3
Forest plot of the meta-analysis for the safety of dual-target immunotherapies. (a) any AEs; (b) Grade > 3 AEs; (c) serious AEs; (d) AEs led to
treatment discontinuation.

1.39 (1.18-1.65; I* = 0%), while EGFR/MET agents showed an RRof  2.56, 1.73-3.80) compared to PD-1/VEGF agents (RR = 1.12, 0.26-

1.40 (0.89-2.18; I* = 96%), with no subgroup interaction (y* = 0.00,  4.82), though the subgroup difference was nonsignificant (> = 1.15,

P =1.00) (Supplementary Figures S1, S2). P =0.28; I’ = 13.2%). All analyses utilized random-effects models
Analyses stratified by mechanism revealed homogeneous risks ~ (Supplementary Figures S3-S6).

for any-grade adverse events (AEs) (PD-1/VEGF: RR = 1.05, 0.93-

1.19; EGFR/MET: RR = 1.05, 1.02-1.08; subgroup P = 0.93; I> = 0%)

and serious AEs (PD-1/VEGF: RR = 1.48, 1.15-1.92; EGFR/MET: ~ Risk of bias

RR = 1.44, 1.26-1.65; subgroup P = 0.83; I’ = 0%). For grade >3 AFEs,

both subgroups exhibited elevated risks (PD-1/VEGF: RR = 1.49, The methodological quality of included randomized trials was

0.98-2.25; EGFR/MET: RR = 1.56, 1.37-1.79; subgroup P = 0.83;  assessed using the Cochrane Risk of Bias Tool (Figure 4). Four

I’ = 0%). EGFR/MET-targeted agents demonstrated a higher  studies met > 5/7 low-risk criteria (16, 19-21). Major limitations

numerical risk for treatment discontinuation due to AEs (RR =  involved blinding deficiencies in 50% of trials.
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FIGURE 4

Quality assessment of the included studies according to the
Cochrane Collaboration'’s risk of bias tool 2 (RoB2).

Discussion

This systematic review and meta-analysis of 6 randomized
controlled trials involving 3,063 patients provides the first
comprehensive evaluation of dual-target immunotherapies in
advanced or metastatic NSCLC. Our findings demonstrate that dual-
target immunotherapies significantly improve PFS (HR = 0.58; 95% CI:
0.43-0.78) and ORR (RR = 1.29; 95% CI: 1.01-1.64) compared to
conventional therapies, though no statistically significant benefits were
observed for OS (HR = 0.84; 95% CI: 0.68-1.05) or DCR (RR = 1.09;
95% CI: 0.92-1.30). These results suggest that dual-target
immunotherapies confer clinically meaningful antitumor activity,
particularly in delaying disease progression and enhancing tumor
shrinkage, but their impact on long-term survival outcomes remains
uncertain. Safety analyses revealed increased risks of any adverse events
(RR = 1.05; 95% CI: 1.02-1.09) with dual-target immunotherapies and
statistically significant differences in grade > 3 AEs (RR = 1.63; 95% CI:
1.37-1.94) and serious AEs (RR = 1.49; 95% CI: 1.31-1.69). Moreover,
treatment discontinuation rates (RR = 2.49; 95% CI: 1.72-3.62) also
showed a significant difference. Collectively, these findings position
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dual-target immunotherapies as a dual-edged therapeutic advance in
NSCLC, offering clinically meaningful antitumor activity that
necessitates judicious integration into treatment algorithms through
biomarker-guided patient selection and proactive toxicity mitigation
strategies. A previous Meta-analysis of BsAbs for the treatment of solid
tumors illustrated no significant improvement in safety or efficacy
outcomes for BsAbs compared to conventional therapies and is not
consistent with the results presented here (22), a discrepancy that may
be the result of strong confounding factors introduced by multiple
cancers. In addition, BsAbs led to an increased incidence of adverse
events represented by infections when treating lymphoma (23). This is
consistent with our findings, revealing that the incidence and severity of
adverse events should be considered when assessing the benefit of these
therapies. Previous reviews on the application of BsAbs in the
treatment of NSCLC have mainly focused on the mechanism of
action of BsAbs, and this narrative approach lacks a quantitative
description of their clinical efficacy and safety (24-28). Furthermore,
comprehensive reviews exist that delve into the synergistic potential of
BsAbs when combined with chemotherapy, while also offering more
thorough analyses of the future challenges confronting BsAbs
development and clinical implementation (29, 30). The majority of
current meta-analyses for BsAbs focus predominantly on
hematological malignancies (31-35), while investigations into solid
tumors, particularly NSCLC, remain comparatively scarce (22). This
meta-analysis significantly advances the understanding of dual-target
immunotherapies in NSCLC beyond existing reviews by consolidating
diverse clinical datasets to establish a quantitative efficacy-toxicity
framework, bridging mechanistic insights with clinically actionable
evidence for treatment decision-making.

The analysis revealed substantial heterogeneity across studies (I =
85% for PFS, P < 0.001; I” = 92% for ORR, P < 0.001), a critical
methodological challenge that complicates the interpretation of pooled
efficacy outcomes. The sensitivity analyses (Supplementary Tables S1-
S5) collectively affirm the robustness of PES benefit (HR consistently <
0.63 despite high baseline heterogeneity I” = 85%), with Byoung 2023
(20) identified as a key contributor to variability potentially attributable
to its PD-L1-enriched cohort design. ORR fragility manifested as loss of
statistical significance when excluding Passaro 2024 (17) (RR = 1.21,
95%CIL: 0.96-1.51) or Fang 2024 (16) (RR = 1.26, 95%CI: 0.97-1.66)
exposing critical limitations in response assessment standardization
across trials (residual I > 88%). Most critically, immutable safety
signals persist with treatment-discontinuing AEs maintaining RR >
2.24 in all iterations (peaking at RR = 2.73 when excluding Zhou 2023
(19)), demanding proactive toxicity management protocols irrespective
of trial heterogeneity. These findings validate the random-effects
model’s adequacy while underscoring biological diversity in dual-
target immunotherapies mechanisms as the primary heterogeneity
source, necessitating biomarker-stratified studies for future precision
applications. This heterogeneity likely originates from fundamental
differences in therapeutic mechanisms among evaluated dual-target
immunotherapies. The three agents (two BsAbs + one bifunctional
fusion protein) involved in this study can be found shown in Table 1.
Ivonescimab simultaneously blocks the binding of PD-1 to its ligand
(PD-L1), thereby alleviating PD-1/PD-L1-mediated
immunosuppression, and the binding of vascular endothelial growth
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factor (VEGF)-A to its receptor (VEGFR2), thereby blocking tumor
angiogenesis in the tumor microenvironment (36). Amivantamab is a
BsAb targeting EGFR and MET, which can bind to both EGFR and c-
MET sites outside of tumor cells and also kill tumor cells through
mechanisms such as Fc-mediated antibody-dependent cell-mediated
cytotoxicity (ADCC) effect (37). Bintrafusp Alfa is an innovative
bifunctional fusion protein consisting of the extracellular structural
domain of human transforming growth factor beta receptor II (TGF-
BRII) fused to an IgGl antibody that blocks PD-L1. This unique
design enables it to inhibit TGF-f3 and PD-L1 immunosuppressive
pathways, thereby enhancing anti-tumor immune responses (38).
The mechanisms of action of the three dual-target immunotherapies
were well illustrated in Figure 5.

Substantial heterogeneity arose from divergent mechanisms:
Amivantamab’s efficacy was mutation-dependent, Ivonescimab
relied on PD-L1 expression, and Bintrafusp Alfa’s dual pathway
inhibition lacked predictive biomarkers. Variability in trial designs
(e.g., combination therapies, line of treatment) and patient
populations (e.g., EGFR/ALK status, cancer grading) further
contributed to heterogeneity. In addition, the mode of
administration is an important factor affecting the safety. A phase
III study comparing subcutaneous and intravenous Amivantamab
demonstrated that subcutaneous administration had a longer OS,

a. Mechanism of lvonescimab
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lower risk of infusion-related reactions (IRRs), and higher end-of-
treatment rates, demonstrating non-inferiority overall (39). However,
our meta-analysis is fundamentally limited by the exclusive use of
intravenous therapy across all included trials. This uniform delivery
method restricts the generalizability of our safety and efficacy findings
to subcutaneous formulations, which are emerging as a clinically
advantageous alternative due to reduced IRRs and improved patient
compliance (40). Although all six included trials exclusively utilized
intravenous infusion for dual-target immunotherapies, which
somewhat attenuated the heterogeneity, differences in the dose
ranges of the therapies and the dosing cycles still contribute to the
heterogeneity of the study. Critically, the exclusive intravenous
administration in all trials may confound safety outcomes.
Subcutaneous delivery—with slower drug release and lower peak
concentrations—potentially reduces acute toxicities like cytokine
release syndrome (40, 41). Conversely, intravenous infusion likely
amplified the elevated AE risks observed in our pooled analysis. This
implies our reported toxicity profiles may partially reflect delivery
methods rather than inherent therapeutic effects. Direct comparisons
of administration routes are urgently needed. A notable source of
heterogeneity stems from the inclusion of structurally distinct agents,
such as bifunctional fusion proteins (e.g., bintrafusp alfa targeting PD-
L1/TGEF-B) alongside canonical bispecific antibodies. Although these

b. Mechanism of Bintrafusp Alfa
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agents share a common mechanistic principle of dual-target
engagement, differences in molecular architecture may influence
pharmacokinetics, effector functions, and toxicity profiles (42). This
heterogeneity is an inherent limitation of our broadened scope but
reflects real-world clinical diversity in emerging immunotherapies.

We acknowledge the limitations highlighted by the RoB2
assessment and their potential impact on the interpretation of our
findings (43). As noted in Figure 4, the primary methodological
concerns arose from deficiencies in blinding (performance bias) and,
to a lesser extent, potential attrition bias in some trials. The lack of
blinding could amplify efficacy estimates for investigator-assessed
endpoints: awareness of treatment allocation may systematically
influence tumor response evaluations, potentially inflating observed
PES benefits (HR = 0.58) and ORR advantages (RR = 1.29).
Concurrently, heightened AE vigilance in the dual-target
immunotherapies arm may overstate safety risks (e.g, any-grade AE
RR = 1.05; grade > 3 AE RR = 1.63). Attrition bias warrants
consideration given significantly higher dual-target immunotherapies
discontinuation rates (RR = 2.49). Disproportionate dropout may dilute
survival signals—as subsequent therapies could obscure true OS benefits
(HR = 0.84)—and skew time-to-event analyses. While these biases
preclude definitive quantification, they necessitate cautious
interpretation: efficacy advantages may be overestimated, and AE
magnitudes may reflect detection artifacts. Consequently, our results
should be contextualized as potentially influenced by inherent trial
limitations, underscoring the need for future studies to prioritize
blinding strategies and rigorous attrition management.

While exploratory subgroup analyses suggested potential efficacy
differences by dual-target immunotherapies mechanism, the small
number of studies per subgroup (n < 3) precludes definitive
conclusions. Given the limited studies per subgroup, these findings are
hypothesis-generating and require validation in larger cohorts (44, 45).

Most of the current clinical studies on dual-target
immunotherapies are in phase I or II, which have a limited role
in assessing the benefits and risks of this therapy (46-52). Further
high-quality randomized controlled trials of dual-target
immunotherapies in solid tumors are strongly recommended to
better evaluate the clinical potential of this therapy.

Conclusion

Dual-target immunotherapies confer superior efficacy in
delaying disease progression and tumor response compared to
conventional NSCLC therapies, but their elevated toxicity risk
profiles require biomarker-driven patient selection to optimize

clinical implementation.
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Shanghai, China, *Department of Pediatric Hematology and Oncology, Shandong Provincial Hospital
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Background: Blinatumomab, a bispecific T-cell engager targeting CD3+ and CD19+,
promotes T cell-mediated cytotoxicity against B-cell precursor acute
lymphoblastic leukemia (B-ALL). While its efficacy is established in relapsed/
refractory (R/R) disease, its role as preemptive therapy for minimal residual disease
(MRD)-positive patients or those experiencing chemotherapy delays remains
undefined. Predictors of treatment failure also require further investigation.
Methods: In this multicenter retrospective study, 105 patients who received
blinatumomab were enrolled. Of these, 30 had R/R ALL, 21 were in complete
remission (CR) with MRD positivity (CR-MRDP®®), and 54 experienced
chemotherapy delays. Eight patients received blinatumomab directly as
reinduction therapy and 22 patients received burden-reduction chemotherapy
prior to blinatumomab. In total, 11 children were in R/R status and 40 were in CR-
MRDP®* before treatment. Patients were subsequently bridged to stem cell
transplantation, chimeric antigen receptor T-cell therapy (CAR-T), or protocol
continuation. Treatment response was analyzed across CR-MRDP®®, R/R, and CR
with MRD negativity (CR-MRD"®9). Immune reconstitution profiles (T-cell
subsets, cytokine dynamics), cytogenetic markers, and clinical outcomes were
assessed to identify predictors of treatment resistance.

Results: The CR rate was 81.8% in R/R and 82.5% in CR-MRDP®® patients (P =
1.000). Of 74 courses with CR-MRD"®9, 73 remained MRD-negative during
treatment. Univariate analysis revealed poor cytogenetics (P = 0.0001), CD19+
B-cell loss (P = 0.046), and BCR-ABL1 positivity (P = 0.002) as predictors of poor
response. Cox regression analysis identified high MRD (P = 0.014), BCR/ABL1 (P =
0.065), and poor cytogenetics (P = 0.025) as independent risk factors.
Blinatumomab significantly increased CD3+ T cells [0.96 (0.03-3.79) to 1.13
(0.26-7.74) x10°/L, P = 0.016], along with CD4+ [0.35 (0.01-1.39) to 0.47 (0.07—
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2.94) x10/L] and CD8+ T cells [0.41 (0.01-2.39) to 0.56 (0.07-6.07) x10%/L] (P =
0.005 and P = 0.006, respectively). The 1-year event-free survival for CR-MRD"®9,
CR-MRDP®®, and R/R patients was 97.8% + 2.2%, 86.7% + 6.2%, and 73.3% + 8.1%,
respectively (P = 0.001), while overall survival was 97.8% + 2.2%, 100%, and 93.3%

+4.6% (P = 0.029).

Conclusions: Blinatumomab effectively clears MRD as preemptive therapy and
serves as a bridging strategy during chemotherapy delays in pediatric B-ALL,
while maintaining high response rates in R/R cases.

blinatumomab, B-cell acute lymphoblastic leukemia, children, minimal residual disease,
relapsed/refractory, T cell activation

Introduction

Survival rates for B-cell acute lymphoblastic leukemia (B-ALL)
have significantly improved in recent years. However, approximately
15% of children with B-ALL experience relapse after frontline
chemotherapy (1). Based on the site and timing of relapses, these
children are classified as having standard- or high-risk first-relapse B-
ALL (2).

Blinatumomab is a bispecific T-cell-engaging antibody that
binds CD3+ T cells and CD19+ leukemia cells, inducing cytotoxic
immune responses that lyse CD19-expressing B cells via activated T
cells (3). Meta-analyses have demonstrated the potent therapeutic
efficacy and favorable safety profile of blinatumomab in children
with relapsed/refractory (R/R) B-ALL (4). It has also induced high
rates of complete minimal residual disease (MRD) response in both
adults and children with molecularly resistant B-ALL.

Nevertheless, 10%-15% of patients exhibit primary resistance to
blinatumomab. Emerging evidence has identified several
mechanisms contributing to treatment failure. Elevated levels of
regulatory T cells, characterized by CD4/CD25/FOXP3 expression
and interleukin-10 (IL-10)-mediated suppression of T-cell
proliferation, have been associated with reduced response (5).
Increased expression of programmed death ligand 1 (PD-L1), the
binding ligand of the inhibitory checkpoint molecule programmed
death 1 (PD-1), has also been linked to impaired T-cell function and
diminished efficacy (6). Additionally, KMT2A-rearranged ALL
lineage switch may induce resistance (7, 8). Lower blast counts in
bone marrow (BM) (<50%) have been associated with better
response than higher disease burden (9, 10).

Despite these insights, the mechanisms underlying blinatumomab
resistance remain incompletely elucidated. With the expanding
application of blinatumomab as frontline preemptive therapy,
particularly for patients with persistent complete remission with
MRD positivity (CR-MRDP®®) or chemotherapy delays, its
therapeutic scope has broadened. In this study, we comprehensively
analyzed treatment response across three cohorts: CR-MRDP®, R/R,
and CR with MRD negativity (CR-MRD"®). Through systematic
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evaluation of immune reconstitution profiles (T-cell subsets, cytokine
dynamics), cytogenetic markers, and clinical outcomes, we aimed to
identify key predictors of treatment resistance.

Methods
Patients

This multicenter retrospective study was approved by the
institutional review boards (No. 2025R022-E01) following
discussion in a multicenter advisory panel across four pediatric
medical centers: Shanghai Children’s Hospital, Shanghai Children’s
Medical Center, Anhui Children’s Hospital, and Shandong
Provincial Hospital. Patients <18 years old with R/R B-ALL and
MRD positivity at any time who received blinatumomab therapy
were enrolled. Patients with chemotherapy intolerance or severe
infection who received blinatumomab as bridging therapy were
enrolled as the control group. The exclusion criteria were as follows:
(i) patients with severe infection and cardiac, liver, or kidney
insufficiency who had an expected survival time of less than 3
months; and (ii) those who received blinatumomab for fewer than 7
days. Patient enrollment lasted from September 2021 to June 2024,
with follow-up through March 2025. A total of 105 patients
were enrolled.

Treatment strategy

Blinatumomab was administered via a stepwise dose-escalation
protocol during the initial cycle: 5 ug/m?*/day as continuous
intravenous infusion on days 2-7, followed by escalation to 15
ug/m?/day for a total cycle duration of 14-28 days. The infusion
duration depended on family financial conditions and physician
discretion. In some cases, BM aspiration was performed on day 15,
and treatment was discontinued upon achieving BM remission.
Each treatment cycle was separated by a 14-day treatment break.
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Dexamethasone prophylaxis (5 mg/m?*/day for 1 day) was
routinely administered. Subsequent treatment cycles commenced
directly at 15 pg/m*/day. Adverse events (AEs) were managed
according to the manufacturer’s instructions. BM assessment was
performed upon completion of the infusion cycle. Intrathecal
injections of methotrexate, cytarabine, and dexamethasone were
administered before, during, or after blinatumomab cycles. Upon
achieving BM remission, patients proceeded to hematopoietic stem
cell transplantation (HSCT), continued the original protocol, or
received alternative treatment. Non-responders were transitioned to
salvage protocols, chimeric antigen receptor T-cell (CAR-T)
therapy, or palliative HSCT, as clinically indicated.

Some patients received reinduction therapy to reduce tumor
burden. The reinduction therapy followed the initial induction
regimen: dexamethasone 6 mg/m® on days 1-4; vincristine 1.5
mg/m* on days 5, 12, 19, and 26; prednisone 45 mg/m* on days
5-28; daunorubicin 25 mg/m> on days 5 and 12; and peg-
asparaginase 2,000 U/m” on days 6 and 26.

For patients with Philadelphia chromosome-positive (Ph+)
disease, a tyrosine kinase inhibitor (TKI) was added, with
dasatinib 80 mg/m? preferred. Bridging chemotherapy prior to
blinatumomab included induction chemotherapy or continued
consolidation chemotherapy consisting of cyclophosphamide
1,000 mg/m* on day 1, cytarabine 50 mg/m? on days 1-7, and
mercaptopurine 40 mg/m* on days 1-7.

Definition

Patients were divided into three groups: CR-MRD", CR-
MRDP®, and R/R. Response was categorized as either cytological
CR or MRD CR. Cytological CR was defined as <5% BM blasts in
patients with R/R status. MRD CR, detected by flow cytometry
(FCM), was defined as a reduction in MRD to <0.01% or
maintenance of MRD negativity in patients with CR-MRD**. No
response was defined as partial remission (PR) or no remission
(NR) in R/R patients, and persistent MRD >0.01% in patients with
CR-MRDP*,

Poor cytogenetics were defined as KMT2Ar, BCR-ABLI, and
TCF3-HLF, according to the Chinese Children’s Cancer Group ALL
(CCCG-ALL) 2015 protocol. Event-free survival (EFS) was defined
as the time from diagnosis to relapse, death, secondary cancer, or
last contact for those who were event-free. Overall survival (OS) was
defined as the time from diagnosis to death from any cause or last
contact if alive.

Cytokine detection

Serum concentrations of target cytokines [IL-1p, IL-2, IL-4, IL-
5, IL-6, IL-8, IL-10, IL-12p70, IL-17, interferon (IFN)-y, tumor
necrosis factor (ITNF)-o, and IFN-o] were measured using a
multiplex microsphere-based flow immunofluorescence assay (12-
cytokine kits, Raisecare, China) according to the manufacturer’s
instructions. Cytokines were assessed before blinatumomab
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infusion, at the onset of cytokine release syndrome (CRS) or
immune effector cell-associated neurotoxicity syndrome (ICANS),
and at the end of blinatumomab treatment.

T- cell and B-cell subsets

Basic lymphocyte subpopulations were analyzed using a
FACSCalibur flow cytometer (BD Biosciences) and reported as
both percentages and absolute counts. FCM with CellQuest
software (BD Biosciences) was used for analysis of lymphocyte
subsets (CD3/CD45/CD4/CD8/CD16CD56/CD19, BD
Biosciences), including T cells (CD3+CD45+), cytotoxic T cells
(CD3+CD8+CD45+), helper T cells (CD3+CD4+CD45+), NK cells
(CD16+CD56+CD3-CD45+), and B cells (CD19+CD45+). A total
of 15,000 lymphocytes were acquired for analysis. Data were
collected at baseline and on days 14, 21, and 28 (end of
treatment). T-cell activation magnitude was defined as the
difference between post-blinatumomab and baseline (pre-
treatment) measurements.

Statistical analysis

Quantitative data with a Gaussian distribution were presented
as mean * standard deviation (SD) and compared using the t-test.
Non-normally distributed data were presented as medians with full
ranges. Comparisons between two groups were performed using the
Mann-Whitney U test or Wilcoxon matched-pairs test.
Comparisons involving two or more factors were conducted using
one-way or two-way analysis of variance (ANOVA). Categorical
variables were presented as percentages and compared using
Fisher’s exact test or the chi-square ()*) test. Patients lost to
follow-up were censored at the last date they were known to be
alive. OS and EFS were estimated by the Kaplan-Meier method, and
curves were compared using the log-rank test. The Cox
proportional hazards model was used for univariate and
multivariate analyses. All statistical analyses were performed
using GraphPad Prism version 9 (GraphPad Software Inc., La
Jolla, CA, USA) and SPSS version 19.0 (SPSS Inc., Chicago, IL,
USA). All tests were two-sided, and P < 0.05 was considered
statistically significant.

Results
Patients’ characteristics

A total of 105 patients with B-ALL received blinatumomab
across 125 cycles, following standardized clinical practice. The
median age was 72 months (range, 5-210 months). Sixty-four
patients (61%) were male and 41 (39%) were female.

Thirty cases were diagnosed with R/R ALL, including 23 with
relapse and seven with induction failure. Eight patients received
blinatumomab directly as reinduction therapy, and 22 patients
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received burden-reduction chemotherapy prior to blinatumomab.
Among these, three patients failed to reduce tumor burden, with
blast levels remaining above 5%.

Ten patients achieved CR-MRDP®, and nine patients achieved
CR-MRD". An additional 21 patients had CR-MRDP®* following
induction or developed MRD positivity during treatment. Fifty-four
patients received blinatumomab due to chemotherapy delay caused
by chemotherapy intolerance or severe AEs, among whom nine
patients had CR-MRDP,

At the initial cycle of blinatumomab, 40 patients had CR-MRDP*,
11 patients had R/R status, and 54 patients had MRD negativity.
Among the latter, four cases had BM blasts ranging from 5%-9.5%,
while seven had blasts >20%. For these 51 patients, the median BM
blast percentage was 2% and the median MRD percentage was 0.52%
(Table 1). In patients achieving MRD negativity, a total of 74 cycles
were administered. The demographic and clinical characteristics of the
R/R, CR-MRDP*, and CR-MRD"* groups are summarized in Table 1.

Response rate

The CR rate of R/R patients was 81.8% (9/11), while the MRD-
negative CR rate was 72.7% (8/11). MRD CR was achieved in 33 of
40 cases (82.5%) with CR-MRDP®. The overall CR response rate
was 82.4%.

Among the R/R and CR-MRDP®* patients, 31 received a 14-day
infusion and 20 received a 3-4-week infusion. The response rate
was 83.9% for the 2-week regimen and 80% for the 3-4-
week regimen.

Of the 74 MRD-negative cycles, 73 patients remained MRD
negative until the follow-up day. Only one patient experienced
central nervous system (CNS) relapse 14 months after blinatumomab.

TABLE 1 Patient characteristics of those treated with blinatumomab.

10.3389/fimmu.2025.1607138

In nine cases with NR after the first blinatumomab cycle, three
received a second cycle of blinatumomab, two patients underwent
HSCT (achieving CR), three patients with persistent MRD continued
chemotherapy (achieving CR), and one patient discontinued treatment
and subsequently died. Among the three patients receiving a second
cycle of blinatumomab, one achieved CR and bridged to HSCT. The
remaining two patients failed to achieve remission and continued
treatment with CAR-T. All three patients remained alive.

T-cell response after blinatumomab

CD3+ T cell activation

We compared data obtained before and after 2-4 weeks of
blinatumomab infusion. The data exhibited a non-Gaussian
distribution and were expressed as median (range). Comparisons
were performed using the Wilcoxon matched-pairs test. Detailed
data are shown in Supplementary Table SI.

The absolute count of CD3+ T cells significantly increased from
0.96 (0.03-3.79) x 10°/L to 1.13 (0.26-7.74) x10°/L (P = 0.016;
Figure 1A). The CD3+ percentage also rose significantly (P = 0.008;
Supplementary Table S1, Figure 1D).

CD4+ and CD8+ T cells also increased, from 0.35 (0.01-1.39) to
0.47 (0.07-2.94) x10°/L, and from 0.41 (0.01-2.39) to 0.56 (0.07-
6.07) x10°/L, respectively (P = 0.005 and P = 0.006; Figures 1B, C).
The percentages of CD4+ and CD8+ T cells also increased (P =
0.025 and P = 0.054; Supplementary Table S1, Figures 1E, F).

The CD4/CDS8 ratio exhibited a nonsignificant decrease from
0.85 (0.37-4.92) to 0.78 (0.21-4.84) (P = 0.532; Figure 1I). The
CD16+CD56+/CD3— NK cell count increased from 0.12 (0.00-
0.63) x10°/L to 0.15 (0.03-0.74) x10°/L (P = 0.024; Figure 1G),
although the percentage remained unchanged (Figure 1J).

Characteristics All patients R/r, CR-MRDP®® CR-MRD"¢? P value
Numbers, n 105 51 54 -
Gender (M/F), n 64/41 34/17 30/24 0.317
Age, median (range), mons 72 (5-210) 69 (5-208) 73.5 (5-210) 0.593
BM blasts, median (range), % 2 (0-80) 2 (0-80) - -
BM MRD, median (range), % 0.52 (0.004-63) 0.52 (0.004-63) - -
Cytogenetic characteristics

t(9;22), BCR/ABLL, n (%) 12 (11.4) 5(9.8) 7 (13.0) 0.762
t(v;11q23), KMT2Ar, n (%) 11 (10.5) 7 (13.7) 4(74) 0.350
TCF3/HLE, n (%) 1(1.0) 1 (2.0) 0 0.486
t(12;21), ETV6/RUNXL, n (%) | 21 (20.0) 5(9.8) 16 (29.6) 0.014
E2A/PBX1, n (%) 1(3.8) 2(3.9) 2(3.7) 1.000
ZNF384r, n (%) 5 (4.8) 2 (3.9) 3 (5.6) 1.000
PAXG5r, n (%) 2 (1.9) 1(2.0) 1(1.9) 1.000

MRD, minimal residual disease; R/R, relapsed/refractory; CR-MRDP®, complete remission with MRD positive; CR-MRD"“, complete remission with MRD negative; BM, bone marrow; M/F,

male/female.
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FIGURE 1

T-cell activation and B-cell depletion following blinatumomab therapy. (A, D) The absolute count and percentage of CD3+ T cells significantly
increased after blinatumomab. (B, E) The absolute count and percentage of CD4+ T cells significantly increased after blinatumomab. (C, F) The
absolute count of CD8+ T cells elevated significantly, while the percentage remained stable. (G, J) NK cell counts showed a significant increase,
though the percentage remained unchanged. (H, K) B cells were depleted profoundly in both absolute and percentage. (I) The CD4+/CD8+ ratio
exhibited a non-significant decrease. (L) Total lymphocyte count remained stable throughout treatment. *P< 0.05; **P< 0.01; ****P< 0.0001.

B cells were completely depleted, with absolute counts decreasing
from 0.007x10°/L (0.00-1.12) to undetectable levels 0.00x10°/L (0.00—
0.11) (P <0.0001; Figure 1H), and percentages falling from 1.39%
(0.00-34.48) to 0% (0.00-2.43) (P < 0.0001; Figure 1K). Total
lymphocyte counts remained stable throughout the observation period.

In patients receiving a 14-day infusion, CD3+, CD4+, and CD8+
T cells had already increased compared with baseline (Supplementary
Table S1). A subset of NK cells also expanded significantly, from 0.12
(0.00-0.63) to 0.18 (0.03-0.74) x10°/L (P = 0.013).

In patients receiving a 21/28-day infusion, CD3+ T cells
continued to increase, rising from 0.80 (0.03-1.86) to 1.01 (0.33-
7.74) x10°/L (P = 0.033; Supplementary Table S1). CD4+ T cells
showed a sustained elevation from 0.42 (0.01-0.72) to 0.47 (0.12-
1.25) x10°/L (P = 0.092), while CD8+ and NK cells declined (P =
0.470 and P = 0.850; Supplementary Table S1).

Levels of Immunoglobulin (Ig)
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Levels of G, IgA, and IgM were assessed before and after
therapy. Following blinatumomab, IgG levels went down from
9.23 (2.28-18.50) to 7.05 (1.61-18.00) g/L (P = 0.0005). IgA levels
and IgM levels also declined from 0.78 (0.12-2.39) to 0.27 (0.03-
0.92) g/L (P < 0.0001) and from 0.41 (0.11-1.31) to 0.19 (0.01- 0.56)
g/L, respectively (both P < 0.0001).

CD3+ T cell activation in MRDP°*+R/R and
MRD"®9 patients

When patients with R/R and CR-MRDP** status were compared
with those with CR-MRD", notable differences in the immune cell
repertoire were observed. The data exhibited a non-Gaussian
distribution and were expressed as median (range), with
comparisons performed using the Mann-Whitney U test.
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The increase in CD3+ T cells was significantly greater in the R/R +
CR-MRDpos group than in the CR-MRD" group [0.57 (-1.08 to
6.07) vs. 0.12 (-1.83 to 3.34)x10%/L; P = 0.047; Figure 2A]. CD4+
cells expanded more significantly in the R/R + CR-MRDpos group
than in the CR-MRD"® group [0.24 (—0.55 to 1.81) vs. 0.03 (—0.73
to 1.19) x 10A9/L; P = 0.039; Figure 2B]. In contrast, no significant
difference in CD8+ T-cell expansion was observed between the two
cohorts [0.16 (—0.48 to 5.21) vs. 0.11 (-0.58 to 1.33) x 10A9/L; P =
0.174; Figure 2C].

Enhanced B-cell eradication was observed in the R/R + CR-
MRDP** group compared with the CR-MRD"*¢ group [-0.03 (-1.12
to 0.00) vs. —0.004 (—=0.35 to 0.08)x10°/L, P = 0.017; Figure 2G]. No
significant intergroup differences were detected in NK cells, total
lymphocytes, CD4+/CD8+ ratio, neutrophils, or platelets
(Figures 2D-F, H, I; Supplementary Table S2).

Cytokine level following CRS

At the onset of CRS, significant elevations in serum levels of IL-
2,IL-5, IL-10, and IFN-y were observed. The data were expressed as
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median (range), and comparisons were performed using the
Wilcoxon matched-pairs test.

IL-10 increased from 2.4 (0.3-8.3) to 2.4 (0.3-34.3) pg/mL (P <
0.0001; Figure 3A). IL-5 rose from 2.7 (0.3-9.6) to 2.7 (0.5-205.6)
pg/mL (P = 0.0006; Figure 3B). IFN-y increased from 4.6 (1.0-84.5)
to 12.3 (1.3-328.3) pg/mL (P = 0.003; Figure 3C). IL-2 rose from 2.4
(0.5-17.3) to 2.4 (0.7-22.8) pg/mL (P = 0.001; Figure 3D).

No significant changes were observed in IL-6, IL-8, IL-4, IL-1f3,
IL-12p70, IL-17, TNF-q, or IEN-o between pre-blinatumomab and
CRS onset (Figures 3E-L).

Overall survival and event free survival

In total, nine patients had NR after the first cycle of
blinatumomab. During follow-up, four relapses and one death
were documented. Among the relapses, three occurred in the R/R
group and one in a CR-MRDP® patient with subsequent MRD
reversion to positivity. Of these, three were BM recurrences and one
was a CNS relapse. Additionally, one CR-MRD"® patient died from
CNS-invasive aspergillosis.
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FIGURE 2

T-cell activation and B-cell depletion in R/R+MRDP°* and CR-MRD"? groups. (A, B), Greater increases in CD3+ and CD4+ T-cell counts were
observed in the R/R+MRDP®* cohort. (C-F), CD8+, CD4+/CD8+ ratio, NK cells, and lymphocytes showed mild fluctuations. (G), Enhanced B-cell
depletion was observed in R/R+MRDP®® patients. (H, 1), No significant intergroup differences were observed in neutrophils or platelets. *P< 0.05.
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Cytokine dynamics during blinatumomab therapy. (A-D) IL-10, IL-5, IFN-y, and IL-2 increased significantly at CRS-onset. (E-H) IL-6, IFN-o, IL-1B, and
IL-8 levels remained stable during blinatumomab. (I-L) No significant alterations occurred in IL-17, IL-12p70, TNF-o, and IL-4. **P< 0.01; ***P<

0.001; ****P< 0.0001

In patients with and without R/R status, the 1-year EFS rates
were 73.3% + 8.1% and 93.3% + 2.9%, respectively (P = 0.0004;
Figure 4A). The 1-year OS rates were 93.3% * 4.6% and 98.6% *
1.3%, respectively (P = 0.009; Figure 4B).

In patients with CR-MRD"*® and CR-MRDP** status, the 1-year
EFS rates were 97.8% * 2.2% and 86.7% + 6.2%, respectively (P =
0.001; Figure 4C). The 1-year OS rates were 97.8% + 2.2% and
100%, respectively (P = 0.029; Figure 4D).

In patients with R/R and CR-MRDP® status at initial classification,
the 1-year EFS was 94.0% * 3.4% for those achieving MRD negativity
versus 10.0% + 9.5% for those not achieving MRD negativity after
blinatumomab (P < 0.0001). The corresponding 1-year OS rates were
100% and 78.8% + 13.4% (P = 0.001).

In the R/R ALL subgroup, the 1-year EFS was 87.5% + 6.8% for
patients who achieved MRD negativity after blinatumomab therapy,
compared with 16.7% + 15.2% for those who remained MRD positive
(P < 0.0001). The 1-year OS rates were 100% and 66.7% * 19.2%,
respectively (P = 0.002).

In the CR-MRDpos cohort, the 1-year EFS was 100% for
patients who achieved MRD negativity versus 0% for those who
remained MRD positive (P < 0.0001). The 1-year OS was 100% in
both groups (P = 1.000).
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Risk factors of treatment failure

Among the 51 cases with CR-MRDP®* or R/R status, nine cases
failed to respond. Univariable analysis revealed poor cytogenetics,
BCR-ABLI fusion, and low absolute B-cell count as risk factors for
treatment failure (Table 2). Multivariable analysis using a Cox
regression model further demonstrated that high MRD level (P =
0.014), BCR-ABLL1 fusion (P = 0.065), and poor cytogenetics (P =
0.025) were independent risk factors.

To evaluate the impact on MRD negativization, univariable
analysis revealed poor cytogenetics (P = 0.0003), BCR-ABLI1 fusion
(P =0.004), and low absolute B-cell count (P = 0.065) as risk factors
(Supplementary Table S3). The Cox regression model showed that
high MRD level (P = 0.014) and poor cytogenetics (P = 0.009) were
independent risk factors.

In the initial cohort of 30 patients with R/R disease, 22 patients
receiving bridging therapy demonstrated a CR rate of 86.4% (19/22),
while the CR rate was 75.0% (6/8) in patients without bridging therapy
(P = 0.589). Details of bridging therapy and response for R/R patients
are presented in Supplementary Table S4. A subset of eight patients
received bridging chemotherapy following induction therapy, with
cyclophosphamide administered at doses of either 1,000 mg/m* or
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Survival outcomes of ALL patients receiving blinatumomab. (A) EFS in patients with and without R/R ALL. (B) OS in patients with and without R/R ALL.
(C) EFS in patients with CR-MRD"®9, CR-MRDP®®, and R/R ALL. (D) OS in patients with CR-MRD"9, CR-MRDP*, and R/R ALL.

300 mg/m® No statistically significant difference in CR rate was
observed between patients receiving cyclophosphamide-containing
bridging chemotherapy (87.5%, 7/8) and those who did not undergo
lymphodepleting chemotherapy (81.8%, 18/22; P = 1.000;
Supplementary Table S4).

Adverse events

Each patient received one to four courses of blinatumomab,
with a total of 125 cycles across the entire cohort. The most
common AEs were CRS and hematologic toxicity. The incidence
of severe CRS and ICANS in the R/R and CR-MRDP* groups was
comparable to that in the CR-MRD"® group (3.9% vs. 0% and 0%
vs. 5.4%, respectively; P = 0.146 and P = 0.399; Table 3).

Among the six patients who developed ICANS, the median age
was 160 months, significantly older than that of patients without
ICANS [160.5 (69-210) vs. 73 (5-212) months; P = 0.014]. Four
patients underwent serum cytokine profiling both before and at
ICANS onset, while three patients additionally received
cerebrospinal fluid (CSF) cytokine profiling. During ICANS onset,
CSF showed a white blood cell count of 0-40 cells/uL, albumin
levels between 300-783 mg/L, and cytokine profiling in three
patients revealed elevations of IL-5, IL-6, and IL-8, while IL-2, IL-
10, and IFN-y remained within reference ranges. Meanwhile, most
serum cytokines showed no abnormal elevations; however, elevated
IL-8 was observed. Detailed data are shown in Table 4.

Five of six patients with ICANS underwent T-cell subset analysis.
A more pronounced inversion of the CD4+/CD8+ ratio—particularly
with higher CD8+ proportions, together with lower absolute B-cell
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counts and reduced B-cell percentages—was implicated in a higher
risk of ICANS (Supplementary Table S5).

Severe neutropenia occurred more frequently in the CR-
MRD"™® group compared with the high-MRD group (32.4% vs.
17.4%; P = 0.003). Thrombocytopenia was more common in the R/
R plus MRDP*® group than in the CR-MRD"® group (16.4% vs.
1.4%; P = 0.003).

Discussion

Blinatumomab, the first bispecific T-cell engager approved for
R/R B-ALL, has demonstrated remarkable clinical outcomes across
multiple cohorts. In our study, we observed a high overall response
rate of 82.4% in B-ALL, including both R/R and MRDP* cases. The
1-year EFS and OS for R/R patients were 73.3% and 93.3%,
respectively. These favorable outcomes may be attributed to the
robust response to blinatumomab, often followed by HSCT or
CAR-T therapy. Compared with standard salvage chemotherapy,
patients with R/R B-ALL treated with blinatumomab exhibited
significantly improved OS (11, 12). In the Children’s Oncology
Group AALLI1331 study, patients with low-risk first relapse of B-
ALL were randomized to receive either chemotherapy cycles or
chemotherapy intercalated with three blocks of blinatumomab. The
4-year disease-free survival (DES)/OS for 255 patients were 61.2%
and 90.4% in the blinatumomab group, compared with 49.5% and
79.6% in the chemotherapy group (P = 0.089 and 0.11) (13). In
another study evaluating blinatumomab as consolidation, children
with high-risk first-relapse B-ALL were randomized to receive one
cycle of blinatumomab or a third course of consolidation
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TABLE 2 Factors for blinatumomab treatment response in B-cell ALL.

10.3389/fimmu.2025.1607138

Features CR, n=42 P value
Gender, F/M, n 14/28 3/6 1.000
Age, median (range), mons 72.5 (6.0-208.0) 64.0 (5.0-152.0) 0.539
BM Blasts, median (range), % 0 (0-80) 1 (0-63) 0.345
MRD value, median (range), % 0.51 (0.004-62.69) 0.98 (0.012-63) 0.228
Risk 0.001
Poor cytogenetic, n (%) 8 (19.0) 7 (77.8)
Good cytogenetic, n (%) 34 (81.0) 2 (22.2)
Fusion gene
KMT2Ar, n (%) 5(11.9) 2(222) 0.592
Non- KMT2Ar, n (%) 37 (88.1) 7 (77.8)
ETV6/RUNXI, n (%) 5(11.9) 0 (0) 0.571
Non-ETV6/RUNXI, n (%) 37(88.1) 9 (100)
BCR/ABLL, n (%) 1(24) 4 (44.4) 0.002
Non- BCR/ABLI, n (%) 41 (97.6) 5 (55.6)
T and B cell subtype*
Lymphocyte, median (range), 10°/L 0.96 (0.05-4.44) 0.19 (0.10-1.81) 0.270
CD3+ value, median (range), 10°/L 0.71 (0.03-3.79) 0.24 (0.08-1.67) 0.359
CD3+, % 78.59 (42.49-94.64) 85.80 (62.78-94.62) 0.443
CD4+, median (range), 10°/L 0.39 (0.01-1.12) 0.11 (0.03-0.72) 0.358
CD4+, % 33.24 (15.98-66.30) 38.25 (20.75-49.90) 0.696
CD8+, median (range), 10°/L 0.36 (0.01-2.39) 0.09 (0.02-0.94) 0.480
CD8+, % 34.19 (9.82-60.20) 34.72 (22.62-54.91) 0.856
CD19+ B cell, median (range), 10°/L 0.03 (0.00-1.12) 0.001 (0.00-0.02) 0.046
CD19+ B, % 3.01 (0.00-38.30) 0.27 (0.00-1.40) 0.041

CR, Complete remission; NR, no remission; MRD, minimal residual disease; BM, bone marrow; F/M, female/male; *defined as the value before blinatumomab treatment.

chemotherapy prior to HSCT. A higher MRD remission rate was
observed in the blinatumomab group compared with chemotherapy
(90% [44/49] vs. 54% [26/48]), along with improved EFS (14). In a
randomized phase 3 clinical trial, patients received either two cycles
of blinatumomab or two cycles of multiagent chemotherapy after
reinduction chemotherapy, followed by transplantation. With a
median follow-up of 2.9 years, 2-year DFS and OS were superior
in the blinatumomab group compared with the chemotherapy
group (54.4% vs. 39.0%, P = 0.03; 71.3% vs. 58.4%, P = 0.02) (15).

Persistence or recurrence of CR-MRDP®*® was mainly attributed
to delayed MRD clearance and subsequent re-emergence, primarily
due to adverse cytogenetic profiles and delays in chemotherapy
administration. In our study, these patients received blinatumomab
as a preemptive intervention. Although CR-MRDP®* patients
demonstrated inferior 1-year EFS compared with CR-MRD"®
patients (86.7% vs. 97.8%), their outcomes were better than those
of R/R patients. Notably, the 1-year OS for CR-MRDP®* patients was
100%, higher than the 97.7% observed in CR-MRD"® patients.

pos
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These findings indicate that blinatumomab was both safe and
effective in patients with chemotherapy intolerance or resistance.
In a matched cohort study evaluating blinatumomab as an
alternative to intensive post-remission chemotherapy for
chemotherapy-intolerant or resistant patients, comparable 2-year
EFS and OS rates were seen between the blinatumomab-treated
cohort (n = 80) and conventional chemotherapy controls (n = 192):
95% vs. 90% and 97% vs. 94%, respectively (16).

The mechanisms underlying blinatumomab resistance remain
incompletely understood. Our study identified adverse cytogenetics,
BCR-ABL1 fusion, and low absolute CD19+ B-cell counts as
significant predictors of treatment failure. Furthermore, elevated
MRD burden, BCR-ABL1 positivity, and high-risk cytogenetic
profiles emerged as independent risk factors. Previous studies
have shown that lower tumor burden is associated with higher
CR rates (14, 17, 18), which in turn influence DFS and OS (18).
Consistent with prior findings, our data confirm the association
between elevated MRD levels and suboptimal treatment response
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TABLE 3 Adverse effects in ALL patients receiving blinatumomab.

10.3389/fimmu.2025.1607138

Adverse events Total, n CR-MRD"9, n R/r, CR-MRDP®3, n P value
CRS 0.146
Go 69 55.2 45 60.8 24 47.1
Gl-2 54 432 29 392 25 490
G3-4 2 16 0 0 2 39
ICANS 0399
Go 119 95.2 69 932 50 98.0
Gl-2 2 16 1 14 1 20
G3-4 4 32 4 54 0 0
Infection 17 136 10 135 7 137 1.000
TLS 0 0 0 0 0 0 -
Neutropenia 0.004#
Go 62 51.7 41 55.4 21 45.7
Gl-2 26 21.7 9 122 17 37.0
G3-4 3 26.7 24 324 8 174
Thrombocytopenia 0.003*
Go 112 92.6 71 98.6 41 83.7
G1-2 5 4.1 1 1.4 4 8.2
G3-4 4 33 0 0 4 8.2

ALL, acute lymphoblastic leukemia; MRD, minimal residual disease; R/R, relapsed/refractory; CR-MRDP®, complete remission with MRD positive; CR-MRD"8, complete remission with MRD
negative; G, grade; TLS, tumor lysis syndrome; CRS, cytokine release syndrome; ICANS, Immune Effector Cell-Associated Neurotoxicity Syndrome; *analysis GO with G1-4; # analysis GO with

G1-2 and G3-4.

(19). Our findings also suggest that low absolute CD19+ B-cell
count contributes to blinatumomab resistance. In line with earlier
investigations, pre-blinatumomab absolute lymphocyte count
(ALC) and the MRD/ALC ratio were associated with MRD
response. Analysis revealed prognostic associations for pre-
blinatumomab MRD level, ALC, MRD/ALC ratio, and post-
blinatumomab MRD remission with OS and EFS (19). Among
the poor cytogenetics, BCR-ABLI fusion was the main predictor of
blinatumomab resistance in our cohort.

Outcomes in patients with Philadelphia chromosome (Ph)-
positive ALL have improved with the use of TKIs. A chemotherapy-
free induction and consolidation regimen combining dasatinib and
blinatumomab reported a high induction CR rate of 98%. The
molecular response at the end of dasatinib induction therapy (29%)
increased to 60% after two cycles of blinatumomab (20).
Nevertheless, its application remains rare in the pediatric setting.

The MRD monitoring in this research was performed using
FCM and applied to all cases, with a sensitivity of 0.01%. The MRD
cut-off was appropriate according to the recommendation of the
2024 European LeukemiaNet (ELN) (21). FCM can be applied to
most ALL cases (>90%), and the results are promptly available.
Molecular MRD monitoring of fusion genes (e.g., BCR-ABL1) has a
sensitivity of around 0.01%. However, its accuracy is hampered by
the variability in the number of RNA transcripts in leukemic cells.
In extremely low-burden cases, novel techniques such as digital
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droplet PCR and next-generation sequencing (NGS) could be used.
The use of QPCR measurement of clonal immunoglobulin/T-cell
receptor (IG/TR) in Ph’- ALL could be more precise, as
recommended in ELN 2024. Despite the promising efficacy of
blinatumomab, its impact on host immune cell dynamics remains
incompletely understood. T-cell activation may play a critical role
in modulating blinatumomab responsiveness. To address this, we
systematically characterized the immune cell repertoire at baseline,
throughout treatment, and post-therapy. Our immunophenotyping
data demonstrated significant temporal expansion of CD3+, CD8+,
CD4+ T cells, and NK cells by day 14, with sustained elevation
through days 21-28, consistent with prior observations (22). Recent
studies have further elucidated blinatumomab-mediated
modulation of peripheral blood T-cell subset distribution during
therapy (20, 23-25). Circulating T cells were found to decrease
within the first day of infusion and then recover to baseline after
approximately one week, likely due to increased T-cell adhesion to
blood vessel endothelium (25). During the T-cell activation phase,
we observed near-complete depletion of circulating B lymphocytes
across nearly all cases. In vitro coculture experiments have shown
that blinatumomab can induce redirected lysis of CD19+ B
lymphocytes and malignant B-cell lines by previously resting
peripheral T cells (26).

Notably, blinatumomab exhibited differential immunomodulatory
effects across distinct patient subgroups, with marked variations
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Treatment failure occurred in approximately 10-15% of cases, with
growing evidence suggesting that intrinsic disease biology, including
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