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Editorial on the Research Topic
Emerging techniques in Arabic natural language processing

Introduction

Arabic Natural Language Processing (NLP) is a rapidly growing field focusing on the
unique computational and linguistic challenges of the Arabic language. Recent progress has
been driven by deep learning approaches and the increasing use of large language models
(LLMs), which have improved applications such as sentiment analysis, text processing,
speech recognition, and machine translation (Haboussi et al., 2025; Abdu et al., 2025).
Despite these advances, the field still faces critical obstacles, including a shortage of
annotated datasets, insufficient tools for dialect handling, and the limited availability of
Arabic-oriented LLMs (Mashaabi et al., 2024; Dahou et al., 2025; Abudalfa et al., 2024). This
Research Topic presents studies covering various aspects of Arabic NLP, such as syntactic
analysis, dialect identification, stance classification, and other tasks that contribute to
practical real-world solutions.

Key contributions

The studies featured in this Research Topic highlight advancements in Arabic NLP
and introduce innovative approaches within this field. The following subsections provide
a concise overview of each paper included.

Syntactic analyzers

Syntactic analysis is a core task in NLP, particularly vital for morphologically rich
languages like Arabic. Saadiyeh et al. compared a range of Arabic syntactic analyzers,
from rule-based, statistical, and machine learning approaches to hybrid, neural, and
transformer-based models, examining their strengths, weaknesses, and trade-offs. The
complexity of Arabic morphology and syntax makes accurate parsing challenging, which
they address through a detailed evaluation of algorithms and their reliance on high-quality
annotated resources.
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Machine translation

Algaraady and Mahyoob conducted a study comparing
Arabic translations of Google Translate after post-editing by
two professional translators and ChatGPT-4o, with three experts
evaluating the final output. Quality was assessed through fluency,
accuracy, coherence and efficiency, and a paired ¢-test analyzed the
differences. Human post-editing generally yielded superior quality,
while ChatGPT-40 stood out for speed and produced fluently
flowing coherent translations.

In a related line of research, Beidas et al. examine the
performance of GPT-3.5, GPT-4, and Bard (Gemini) on the
QADI and MADAR datasets, whereas GPT-5 was tested solely on
MADAR, which covers data from more than 15 countries. The
evaluation relied on several metrics, including cosine similarity,
the universal similarity encoder, sentence-BERT, TER, ROUGE,
and BLEU. Two prompting strategies were applied: zero-shot and
few-shot.

Opinion mining

Alkhathlan et al. presented ArabicStanceX, a large dataset for
stance detection with 14,477 tweets covering 17 topics. Using the
transformer-based MARBERTv2 model and a Multi-Topic Single
Model approach, they achieved an F1 score of 0.74 for “favor” and
“against” categories and 0.67 overall. Their results reveal strengths
in stance classification but also difficulties with neutral labels and
unseen topics. Additional zero-shot and few-shot learning tests
show the model’s flexibility in adapting to new subjects.

Jaber et al. explored the use of ensemble-based machine
learning approaches for Arabic sentiment classification. A range
of homogeneous ensemble models is developed and tested on two
corpora: the balanced ArTwitter dataset and the highly skewed
Syria_Tweets dataset. To address the imbalance problem, the
Synthetic Minority Over-sampling Technique (SMOTE) is applied.
The experiments combine unigram features with pre-trained word
embedding representations.

Arabic poetry

Mutawa and Alrumaih presented a deep learning technique
for identifying the meter of Arabic poetry using a large annotated
dataset. Text was encoded at the character level to classify
full and half verses without removing diacritics, ensuring that
essential linguistic features were preserved. Various neural network
architectures, including LSTM, GRU, and Bi-LSTM, were explored.
This framework demonstrates a robust approach to Arabic meter
recognition and highlights the potential of AT in NLP.

Dialect detection

Saleh et al. presented a stacking-based technique to improve
dialectal Arabic classification by combining two transformer
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Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-
Base. The technique involves two layers: the first generates

models,

class probabilities from the transformers, which are then
used by a meta-learner in the second layer. This technique
was benchmarked against individual models such as LSTM,
GRU, CNN, and single transformers with various embeddings.
Experimental results demonstrated that the combined model
outperforms single-model methods by capturing a wider
range of linguistic features, improving generalization across

Arabic varieties.

Speech recognition

Al-Anzi
recognition framework that begins by extracting Mel-frequency

and Thankaleela presented an Arabic speech

cepstral coefficients (MFCCs) from audio signals. These features
are then grouped through K-means clustering, and the resulting
clusters are classified using methods such as Decision Trees,
Random Forests, K-Nearest Neighbors, and XGBoost. For
demonstration purposes, both Euclidean Distance and Dynamic
Time Warping (DTW) are employed. Additionally, the research
highlights the effectiveness of Mozilla’s DeepSpeech framework in
handling Arabic speech recognition.

Cyberbullying detection

Allwaibed et al. reviewed 35 scholarly articles addressing
the detection of cyberbullying in Arabic-language texts. From
a methodological standpoint, traditional machine learning
approaches that leverage Arabic-specific linguistic features
continue to perform well on smaller datasets. However, more
advanced deep learning models and transformer-based frameworks
such as AraBERT achieve stronger results, especially when
challenges like dialectal variation and orthographic inconsistencies
are reduced.

Conclusion

The studies gathered in this Research Topic illustrate the
diversity and dynamism of ongoing efforts in Arabic NLP.
Collectively, these contributions showcase how deep learning
and LLMs are driving progress in Arabic NLP, while also
pointing to persistent obstacles such as dialectal differences,
scarcity of annotated data, and specialized domain challenges. By
introducing innovative approaches, releasing new datasets, and
offering comparative assessments, the featured works not only
push the field forward but also stress the importance of sustained
collaboration, resource creation, and tool development to enhance
Arabic NLP and extend its practical impact.
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The rapid expansion of dialectally unique Arabic material on social media and
the internet highlights how important it is to categorize dialects accurately
to maximize a variety of Natural Language Processing (NLP) applications.
The improvement in classification performance highlights the wider variety of
linguistic variables that the model can capture, providing a reliable solution
for precise Arabic dialect recognition and improving the efficacy of NLP
applications. Recent advances in deep learning (DL) models have shown
promise in overcoming potential challenges in identifying Arabic dialects. In this
paper, we propose a novel stacking model based on two transformer models,
i.e., Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base, to enhance the
classification of dialectal Arabic. The proposed model consists of two levels,
including base models and meta-learners. In the proposed model, Level 1
generates class probabilities from two transformer models for training and
testing sets, which are then used in Level 2 to train and evaluate a meta-learner.
The stacking model compares various models, including long-short-term
memory (LSTM), gated recurrent units (GRU), convolutional neural network
(CNN), and two transformer models using different word embedding. The
results show that the stacking model combination of two models archives
outperformance over single-model approaches due to capturing a broader
range of linguistic features, which leads to better generalization across different
forms of Arabic. The proposed model is evaluated based on the performance
of IADD and Shami. For Shami, the Stacking-Transformer achieves the highest
performance in all rates compared to other models with 89.73 accuracy, 89.596
precision, 89.73 recall, and 89.574 F1-score. For IADD, the Stacking-Transformer
achieves the highest performance in all rates compared to other models
with 93.062 accuracy, 93.368 precision, 93.062 recall, and 93.184 F1 score.
The improvement in classification performance highlights the wider variety of
linguistic variables that the model can capture, providing a reliable solution for
precise Arabic dialect recognition and improving the efficacy of NLP applications.

KEYWORDS

Arabic dialects, Bert-Base-Arabertv02, Dialectal-Arabic-XLM-R-Base, transformer,
Knowledge representation, NLP, deep learning, stacking model
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Saleh et al.

1 Introduction

Dialects within a language are crucial as they represent the
various cultural and regional variances within that language
(Gregory and Carroll, 2018). As languages change and spread
over different geographic areas, dialects naturally arise. Dialects
may have their idiomatic phrases, distinct vocabulary, syntax,
and pronunciation. Learning dialects has multiple benefits,
including better communication, a greater understanding of
culture, potential for employment, and increased interaction with
media and literature (Zhang and Hansen, 2018). It makes it more
straightforward to comprehend the variety within a language and
makes it easier to build genuine connections with individuals from
various geographical areas (Samih, 2017).

Given the large geographic area in which Arabic is spoken,
dialects are essential for the Arabic language. Arabic dialects
vary considerably from Modern Standard Arabic (MSA), the
standard form for the language (Zaidan and Callison-Burch, 2014).
Understanding the regional slang, customs, and traditions specific
to each Arabic dialect is possible through understanding dialects.
This improves comprehension of culture and makes handling social
situations easier. Being fluent in a particular dialect pertinent to
your line of work can help you get better employment and more
significant support to Arabic-speaking communities (Alosaimi
et al., 2024).

Gather a wide range of Arabic language samples across several
dialects. The relevant dialect information needs to be labeled on
the dataset. The data should be preprocessed by dividing it into
training, validation, and test sets, tokenizing the text, and turning
it into numerical representations (Haque et al., 2018). Learn a
transformer model to identify dialects in Arabic. After the input
text has been tokenized, the model should be able to predict the
dialect label. Dialect identification requires contextual information
captured by the transformer’s self-attention mechanism (Lin et al.,
2020). The labeled dataset is used to train the model employing
optimization techniques (Chapelle et al., 2008).

Deep Learning (DL) and Machine Learning models (ML) have
demonstrated promise in processing complicated linguistic data
and dialects of Arabic. For example, Elaraby and Abdul-Mageed
(2018) applied different ML models: SVM, RF, NB, and LR. Alzu’bi
and Duwairi (2021) applied Recurrent Neural Networks (RNN)
to support multiple classes of dialects. Alansari (2023) analyzed
characteristics of dialects using CNN and RNN. Other authors
proposed a hybrid model such as CNN-RNN (Abdelazim et al.,
2022). These studies used classical DL models, which cannot
capture the long-term dependencies over long sequences.

Therefore, the transformer model has attention features that
allow the model to focus on the most relevant parts of the
input sequence, capturing long-range dependencies and complex
relationships between words (Zhang et al., 2019; Hafiz et al., 2021).
For example, Alghamdi et al. (2022) applied two transformer
models, MARBERT and ARBERT, using two publicly available
Arabic Online Commentary (ADC) (Elaraby and Abdul-Mageed,
2018). In our work, we use recent IADD datasets that were
combined from datasets such as (ADC), Dialectal ARabic Tweets
dataset (DART) (Alsarsour et al., 2018), the authors in Alghamdi
et al. (2022) and Elaraby and Abdul-Mageed (2018) used AOC
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dataset is published at 2018, and is a subset of IADD, and do not
apply stacking model. As a result, the novelty of this paper lies in
the combination of transformer models and a meta-learner in a
stacking framework designed for Arabic dialect classification. The
proposed hybrid model greatly improves the state-of-the-art Arabic
dialect detection, outperforms conventional methods, and captures
a greater range of linguistic features.

1.1 Motivations and contributions

The motivation behind the paper is the increasing amount of
dialectal Arabic information produced by social networks and the
need to improve Natural language processing (NLP) functions such
as knowledge representation and machine translation. NLP faces
challenges due to the fast expansion of dialectal Arabic material
on social networks. Substantial language disparities between Arabic
dialects and Modern Standard Arabic (MSA) present serious
challenges for current NLP models, while this rise provides
a wealth of resources for linguistic and computational study.
Critical NLP applications like knowledge representation, sentiment
analysis, and machine translation are hampered by the models’
frequent difficulties with accurate classification and generalization
across languages. Classical DL models: CNN, GRU, and LSTM
have demonstrated promise in processing complicated linguistic
data. Still, these techniques cannot adequately capture the subtle
and nuanced differences across Arabic dialects. Furthermore, a
significant research vacuum restricts NLP models’ wider usability
and resilience in Arabic contexts due to the absence of customized
solutions to handle these dialectal variances.

To address this gap, we propose a novel stacking model that
combines a meta-learner with two transformer architectures: Bert-
Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base. By collecting
a wider variety of linguistic variables, the proposed models
improve dialect categorization, performance, and generalization
across different Arabic dialects. Improved classification accuracy,
useful applications in machine translation, sentiment analysis,
conversational A, and a strong framework that can be modified to
operate with additional low-resource or linguistically challenging
languages are some of the added values. The contributions
improve the usability and effectiveness of NLP systems for Arabic-
speaking regions. The proposed model delivers better performance
across different Arabic dialects, increased generalization, and
superior dialect classification by integrating various linguistic
characteristics. ~ The main contributions of this paper are
summarized as follows:

e We introduce a novel stacking model that incorporates
two transformer architectures, Bert-Base-Arabertv02 and
Arabic-XLM-R-Base, as base models with combined Random
Forest (RF) as a meta-learner to enhance classification. The
proposed model performs more efficiently than the state-
of-the-art models, including LSTM, GRU, CNN, and two
transformer models.

e We evaluate the proposed model performance across two
datasets to demonstrate the performance in classifying four
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and five Arabic dialects. Stacking-Transformer has the highest
performance in all rates compared to other models.

e The combination of Transformer in stack modeling with
a meta-learner helps to capture more linguistic features,
enhance generalization, and accurate dialect detection
of Arabic.

1.2 Paper structure

The remainder of the paper is organized into sections. Section
2 presents related works on Arabic dialects. Section 3 outlines the
primary steps for classifying Arabic dialects and introduces the
proposed model. Section 4 presents the results and discussion,
followed by the conclusion in Section 5.

2 Related work

This section presents different researcher have been applied DL,
ML, and transformer models to classify Arabic dialects.

Lulu and Elnagar (2018) recognized dialects in Arabic
using Four DL models CNN, LSTM, Bidirectional LSTM (Bi-
LSTM), and Convolutional LSTM (CLSTM). The authors made
use of the Arabic Online Commentary (AOC) dataset, which
classifies Arabic into three main dialects: Gulf (including Iraqi),
Levantine (LEV), and Egyptian (EGP). LSTM produced the
most accurate results. Alsaleh and Larabi-Marie-Sainte (2021)
utilized Genetic Algorithms (GA) to optimize the parameters
of CNN for Arabic Text Classification. GA was employed to
tackle the challenge of randomly initialized weights in CNN.
The study utilized two extensive datasets that support text
classification. Various pre-processing steps were applied: cleaning,
normalization, tokenization, and stemming. The results were
improved by 4% using GA with CNN. Alzu’bi and Duwairi
(2021) applied RNN to support multiple classes of classification
models for dialects. They utilized 110000 sentences from the
MADAR corpus, including Maghreb, Levantine, Gulf, and Iraqi
dialects. Cotterell and Callison-Burch (2014) proposed Arabic
dialects dataset collected from newspaper websites and Twitter,
including five Arabic dialects: Levantine, Gulf, Egyptian, Iraqi, and
Maghrebi. They utilized unigram, bigram, and trigram models
and SVM and NB algorithms. NB with trigram achieved the best
accuracy. In addition, Kwaik et al. (2018) proposed the Shami
corpus for four Arabic dialects in Palestine, Jordan, Lebanon,
and Syria. They explored the effects of pre-processing dialectal
Arabic using n-gram and NB models. Various pre-processing
steps were applied: cleaning, normalization, tokenization, and
stemming. The results showed that NB recorded the highest
accuracy. Alansari (2023) captured the semantic and phonological
characteristics of dialects using CNN, and RNN. The proposed
model comprises six stages: preprocessing, feature engineering,
neural networks, optimization techniques, and evaluation methods.
Shatnawi et al. (2023) applied different DL models: CNN-
BiLSTM, Pooling-BiGRU, and AraBERT with different pre-
trained word embedding FastText, AraVec, and AraBERT using
a mix of a Katherine dataset that covers the dialects of
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eight nations and a NADI dataset acquired via Twitter that
includes the dialects of twenty-one countries. In addition, they
applied various data augmentation to handle unbalanced data.
The results showed that models with AraBERT achieved the
height performance.

Other researchers have suggested hybrid models, and attention
mechanisms and transformer models to classify Arabic dialects.
For example, Abdelazim et al. (2022) proposed a hybrid
model (CNN-RNN) to classify three dialects: Gulf, Egypt, and
Levantine. CNN-RNN, compared with NB, SVM, and CNN,
recorded the best accuracy. Alsuwaylimi (2024) proposed two
hybrid models that combined BiLSTM with CAMeLBERT and
the second model that combined the BiLSTM model with
AIBERT. In addition, the conducted dataset includes 121289
collected from comments from various social media platforms
and classified into four Arabic dialects (Egyptian, Jordanian,
Gulf, and Yemeni). Two models compared with different ML
and DL models. Experiment results showed that two hybrid
models recorded the best performance. Elaraby and Abdul-
Mageed (2018) applied various ML models: SVM, RE NB,
LR, and different DL models: LSTM, GRU, Bi-LSTM, Bi-GRU,
and Attention-BiLSTM using various word embedding. Results
showed that attention-based BiLSTM work well compared to
other models. Alghamdi et al. (2022) applied two transformer
models, MARBERT and ARBERT, using two publicly available
Arabic-dialect classification datasets such as AOC. They explored
results for binary, three, and multi-class dialect classification.
The results showed that MARBERT achieved higher performance
than ARBERT.

Table 1 compares different models used in research. It outlines
the methods, advantages, limitations, and datasets referenced in
the studies.

3 Methodology

Figure 1 shows the main steps of classifying Arabic dialects:
Data collection, Data pre-processing, Classification models,
feature representation methods, classification models, and

evaluation models.

3.1 Datasets

Two benchmark Arabic dialect datasets are wused for
the experiment.

e Shami is a corpus of Levantine Arabic dialects (Kwaik
2018)
classes: Jordinian, Lebanees, Palestinian, and Syrian.
The unbalanced dataset includes 37,758, 10,828, 10,642,
and 7,017 rows for Syrian, Lebanese, Palestinian, and

et al, includes 66,245 rows with four dialect

Jordanian, respectively.

e IADD is Arabic dialect identification (Zahir, 2022) is used
and includes five dialects: Maghrebi (MGH), Levantine (LEV),
Egypt (EGY), Iraq (IRQ), Gulf (GLF), and general. It was
collected from tweets and Facebook.
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TABLE 1 Comparison of existing work.
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References Method Advantages Limitations Dataset
Lulu and Elnagar, 2018 LSTM Proposing benchmark dataset Applying the classical DL models AOC
Accuracy was lowest
Alsaleh and GA with CNN Applying GA to optimize parameters of CNN | Applying the classical DL models Text classification
Larabi-Marie-Sainte, Supporting text classification
2021
Alzu’bi and Duwairi, RNN — Applying single DL MADAR corpus
2021 Using one dataset
Obtaining the lowest accuracy
Cotterell and NB with Bi-gram Proposing benchmark dataset Applying ML models IADD

Callison-Burch, 2014

Using one dataset
Obtaining the lowest accuracy

Abdul-Mageed, 2018

Kwaik et al., 2018 NB Proposing benchmark dataset Applying single model is NB Shami
Obtaining the lowest accuracy

Alansari, 2023 CNN and RNN - The results of the models have not been -
registered.
Applying classical DL models

Shatnawi et al., 2023 AraBERT Applying different wor-embedding Obtaining the lowest accuracy NADI

Applying AraBERT Model
Abdelazim et al., 2022 RF Proposing hybrid model Applying classical DL models Own
Elaraby and Attention BiLSTM Proposing model based attention Applying classical ML models. ADO

Using one dataset.

model based on two transformer models

Alsuwaylimi, 2024 CAMeLBERT with Proposing benchmark dataset No applying stacking models ADO
BiLSTM Applying transformer models
Alghamdi et al., 2022 MARBERT Applying transformer models No applying stacking models Own
Our work Stacking-Transformer Applying transformer to learn complex - IADD
patterns in datasets.
Stacking-Transformer Applying generalization using stacking - Shami

3.2 Data pre-processing

Pre-processing the input data before starting to implement .
any model that processes text data is vital due to the various
problems inherent, particularly in text data (Chai, 2023). Therefore,
it is necessary to effectively rely on pre-processing the input text
data to achieve a clear and accurate exploration of Arabic dialects
based on stacked transformers. Data processing of the data aims to
prepare and improve the quality of the input data to enhance the
performance of the model. The four pillars of the pre-processing
steps include Tokenization, data cleaning, stop word removal,
and stemming (Kathuria et al., 2021). Carrying out these steps
carefully will ultimately ensure that we obtain input data useful
for accurately detecting the distinction between different Arabic .
dialects and obtaining a successful model in natural language
processing tasks.

e Tokenization represents the first step in preparing
textual data specifically, where the text is divided into
smaller parts based on language-specific characteristics
such as grammar and morphology (Khallaf, 2023).
Tokenization comprises two types: word and sub-word
Tokenization. In word tokenization, the result of this °
step is a set of separate words in addition to diacritics
and linking marks. While Sub-word Tokenization is
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employed to handle out-of-vocabulary words and improve
model robustness.

Data Cleaning: The importance of this step lies in obtaining
accurate data after removing irrelevant or confusing data that
may hinder the performance of the model used. To accomplish
this step, a normalization process must first be performed
to convert different forms of the same word to its standard
form, then deal with punctuation marks and special characters
by removing or unifying them, especially those that do not
affect the meaning (Berrimi, 2024). Also, deal with incorrect or
incomplete data by neutralizing or removing them. After this
step, we will ensure obtaining data of acceptable quality and
consistency in its context, contributing to the model’s success.
Removing Stop Words enables the model to focus more on
the main distinguishing features of dialects in the text. It
thus improves the accuracy of the model in identifying and
distinguishing them. Stop words represent a group of words
that do not carry a critical or influential meaning in the
context, and excluding them will positively reduce dimensions
such as prepositions and articles (Khurana et al., 2023). These
words are collected in a list to be excluded from the input
data list.

Stemming is a vital necessary process that reduces the expected
complexity in the input data by converting words to their
root form, which will allow better generalization when using
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( Step 3: Feature representation

FIGURE 1

Arabic dialects classification framework.

the model to explore dialects (Farghaly and Shaalan, 2009).  while guaranteeing reliable model training. Methods for feature
Many algorithms can be used during this step, some of which  representation are customized for the datasets.

are designed specifically for the Arabic language due to its
richness in morphology, which helps in grouping different
morphological variants of a word. in this paper, stemming 3.4 Feature representation methods

applies using Arabic-specific stemming algorithms to handle

the morphological richness of Arabic. The algorithms are While conventional DL models employed CBOW for word

embeddings, transformer-based models like Bert-Base-Arabertv02
and Dialectal-Arabic-XLM-R-Base are utilized to generate high-
quality contextual embeddings.

chosen carefully to prevent mistakes like confusing words with
the same root but distinct meanings. In the context of Arabic
dialects, this guarantees the results’ validity and correctness.

e Word2Vec is a widely used technique for learning word

3.3 Dataset splitting embeddings from large volumes of textual data (Karani, 2018).
This approach generates embeddings by considering the

Each dataset is split into a 75% training set and a 25% testing context in which words appear, enabling the representation
set. The split preserves enough data for objective assessment of words in a continuous vector space that captures semantic
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relationships (Karani, 2018). Word2Vec effectively reduces the
dimensionality of the word space while preserving meaningful
relationships between words, offering a computationally
efficient solution for processing language data (Dwivedi
and Shrivastava, 2017). One variant of Word2Vec is the
Continuous Bag-of-Words (CBOW) model (Sivakumar et al.,
2020). CBOW predicts a target word based on its surrounding
context words within a fixed-size window. The model is
designed to maximize the probability of correctly predicting
the target word, leveraging contextual information to enhance
its learning capability (Melamud et al., 2016).

Bidirectional Encoder Representations from Transformers
(BERT) is the open-source transformer-based model that is
renowned for its ability to model contextual relationships
among words within a sentence through self-attention
mechanisms (Vig, 2019). Thanks to this architecture,
BERT excels at capturing contextual information and long-
range dependencies (Wu et al, 2021). BERT profoundly
comprehends linguistic subtleties by being pre-trained on vast
volumes of unlabeled text data utilizing two unsupervised
tasks. Namely, masked language modeling (MLM) and next
sentence prediction (NSP) (Kryeziu and Shehu, 2022). In
MLM, words from the input text are randomly masked. BERT
is subsequently taught to predict these masked words through
analysis of the surrounding context (Devlin et al., 2018).
BERT can improve its skills on particular tasks by employing
relatively more minor labeled datasets, even when pre-trained
on massive quantities of data (Devlin et al., 2018). Bert-base-
Arabic refers to the BERT model specially trained on the
Arabic language, offering pre-trained representations that
encapsulate both syntactic and semantic nuances of Arabic
words (Chouikhi et al., 2021). This model accepts Arabic text
as input and outputs contextualized word representations,
which can be further refined using task-specific training data
or directly utilized in downstream NLP tasks (Peters et al.,
2019).

Dialectal Arabic XLM-R Base represents a multilingual
transformer model customized to comprehend and interpret
several Arabic dialects (Khalifa et al., 2021). An expansion
of the BERT architecture called the Cross-lingual Language
Model (XLM-R) is intended to function with various
languages, including dialects and languages with limited
resources (Boudad et al., 2023). This transformer can cope
with multiple Arabic dialects alongside other languages since it
has been taught on many datasets. Conversational agents can
be upgraded to more effectively comprehend and respond to
dialectal Arabic more Base using the dialectal Arabic XLM-R
Base (Joshi et al., 2024).

By refining the translations between dialects and standard
Arabic, it will be feasible to assess the thoughts and feelings
expressed across dialects on social media or in reviews. Built
on top of the XLM-R architecture, the Dialectal Arabic XLM-
R Base architecture preserves the transformer architecture’s
scalability and efficacy while being tailored for the complex
structure of dialectal Arabic. The model can figure out
the word order in a sentence by mapping input tokens
to dense vectors and then adding positional information
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to token embeddings (Qwaider and Abu Kwaik, 2022).
Multi-head Self-Attention has been included to allow the
model to concentrate on various segments of the input
stream concurrently, thereby capturing contextual linkages. A
feedforward network processes each attention output before
applying it separately to each point. Improves training stability
and convergence via normalizing the inputs to each layer
(Berrimi, 2024).

3.5 Deep learning models
GRU, LSTM, and CNN are used for DL models.

e GRU is a recurrent architecture with update and reset gates
intended to handle sequential data. The update gate controls
how much past knowledge remains intact, whereas the Reset
gate governs whether earlier data is forgotten (Dey and
Salem, 2017). GRU has a hidden state that blends the current
input and the prior hidden state, permitting information
to flow through time. GRU is appropriate for tasks that
need time series data and sequential information, such as
language modeling and machine translation (Zargar, 2021). It
is beneficial for determining context in textual data.

e LSTM is a more complicated recurrent architecture having
forgotten, input, and output gates suitable for learning long-
term dependencies (Okut, 2021). The forget gate regulates
what information to exclude from the cell state, whereas
the input gate determines what latest data to store in the
cell state. The output gate determines which information
to output based on the cell state (Okut, 2021). The cell
state sustains long-term dependencies, allowing gradients to
propagate throughout multiple time steps. LSTM can be
utilized for text synthesis, machine translation, and speech
recognition (Van Houdt et al., 2020). Also, it is competent
at predicting potential outcomes using historical and time
series data.

e CNN is a type of neural network that comprises convolutional
and pooling layers, which help generate features from spatial
data. CNN leverages convolution processes to extract features
from input data, often images or sequences (Pinaya et al.,
2020). It mitigates the spatial dimensions via down-sampling
while maintaining the most significant features and then
connects the pooled information to the output layer for
classification or regression. CNN is frequently implemented
for object detection and image segmentation. It also works for
sentiment analysis and spam identification since it treats text
data as a series (Bhuvaneshwari et al., 2021).

3.6 Proposed model

By integrating the strengths of various models, the stacking
approach reflects a wide range of linguistic features, resulting
in improved dialect detection. Figure2 shows the central
architecture’s two levels. Level 1 provides the base models with
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FIGURE 2
Proposed model.

TABLE 2 The number of rows in each dataset.

Datasets Labels Training set Testing set Total ‘

Shami Syrian 28,318 9,440 37,758
Lebanees 8,121 2,707 10,828
Palestinian 7,981 2,661 10,642
Jordinian 5,263 1,754 7,017
Total 49,683 16,562 66,245

TIADD LEV 65,605 21,864 87,469
MGH 21,037 7,076 28,113
GLF 5,011 1,671 6,682
EGY 3,626 1,209 4,835
general 1,873 625 2,498
Total 97,152 32,445 129,597

the two transformers that produce class probabilities for training
and testing datasets. The second level serves as a meta-learner,
which is trained using Level 1’s outputs, resulting in enhanced
classification performance.

In Level 1, class probabilities are generated by the two
transformer models for the training and testing sets and are stored
in the stacking training and stacking testing datasets, respectively.
In level 2, RF as a meta-learner is trained by stacking training and
evaluated by stacking testing to get the final classification decision.
RF is an ensemble technique that uses several decision trees during
training and combines their outputs for more accurate and stable
predictions (Feng et al., 2015).
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‘ Models Parameters Specifications ‘

LSTM Number of nodes 200

Dropout 0.2

Activation function Relu

Optimizer Adam

Loss function CrossEntropyLoss
GRU Number of nodes 200

Dropout 0.2

Activation function Relu

Optimizer Adam

Loss function CrossEntropyLoss
CNN Filter size 3x3

Kernel size 4

Dropout 0.2

Optimizer Adam

Loss function CrossEntropyLoss
Bert-Base- Number of transformer layers | 12
Arabertv02

Hidden Size 768 dimensions

Attention Heads 12 per layer

Optimizer Adam

Loss function CrossEntropyLoss

Dropout rate 0.1

Dialectal-Arabic- Number of transformer layers | 12

XLM-R-Base
Hidden Size 768 dimensions
Attention Heads 12
Optimizer Adam
Loss function CrossEntropyLoss

3.7 Models evaluation

The F1-score, Accuracy, Precision, and Recall metrics are used
to assess the models. Where TN indicates the aggregate amount
of accurate negative predictions, FP is the total number of false
positive estimations, while FN stands for the overall number of false
negative predictions.

A TP+ TN 0
ccuracy =
= TP FP+IN + EN
TP
Recall = —— (2)
TP + FN
. TP
Precision = ——— (3)
TP + FP
FL — score — 2 - precision - recall @)

precision + recall
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TABLE 4 Proposed model performance in Shami dataset.

10.3389/fnhum.2025.1498297

Approaches Models Classes Precision Recall F1-score
DL models GRU Jordinian 60.84 55.53 58.06
Lebanees 77.05 77.39 77.22
Palestinian 69.22 73.28 71.19
Syrian 91.28 91.13 91.21
LST™M Jordinian 62.25 50.40 55.70
Lebanees 73.45 75.03 74.23
Palestinian 72.37 65.54 68.78
Syrian 87.59 92.48 89.97
CNN Jordinian 62.25 50.40 55.70
Lebanees 73.45 75.03 74.23
Palestinian 72.37 65.54 68.78
Syrian 87.59 92.48 89.97
The transformer model Base-Arabert Jordinian 80.16 61.52 69.61
Lebanees 84.64 79.61 82.05
Palestinian 77.64 82.60 80.04
Syrian 92.07 95.96 93.98
Arabic-XLM-R-Base Jordinian 79.77 60.03 68.51
Lebanees 84.49 79.09 81.70
Palestinian 77.34 82.60 79.88
Syrian 91.82 95.96 93.85
The proposed model Stacking-Transformer Jordinian 80.16 61.52 69.61
Lebanees 84.64 79.61 82.05
Palestinian 77.64 82.60 80.04
Syrian 92.07 95.96 93.98
4 Results and discussion 4.2 Results

We applied different experiments using various models and two
datasets to prove that the Stacking-Transformer model achieved the
best performance compared to other models.

4.1 Experimental setup

The experiment was conducted on a laptop with an Intel Core
i7 10750H and 16GB memory. The execution environment for
the training and validation of the networks was set to a single
GPU: Nvidia GeForce GTX 1650 with 4GB VRAM. The models
were evaluated by two datasets: Shami with four classes (Jordinian,
Lebanees, Palestinian, and Syrian) and IADD with five classes (EGY,
GLEF, LEV, MGH, and general). Base-Arabert and Dialectal-Arabic-
XLM-R-Base are used as feature representations for transformer
models, and CBOW is used for DL models. The datasets are split
into 75% training set and 25% testing set and the number of rows
in each dataset is shown in Table 2. The setting of parameters of
models are presented in Table 3.
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Two subsections present the results of Shami and IADD based
on precision, recall, F1-score in each class, and confusion matrices.
Furthermore, the average accuracy, precision, recall, and F1-score
of each dataset is presented.

4.2.1 Proposed model performance in Shami
dataset

The results of models based on precision, recall, and F1-
score for different classes: Jordinian, Lebanees, Palestinian, and
Syrian as shown in Table 4. We can see that GRU, LSTM, and
CNN score the lowest in performance compared to transformer
models because CNN models focus on local feature extraction but
fail to capture complex, long-term relationships. GRU and LSTM
handle sequential data, and they have limits to capturing long-
term dependencies, especially with large datasets. Transformer-
based models leverage self-attention mechanisms to learn both
local and global patterns in parallel dynamically, and capture
long-term dependencies.
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FIGURE 3
Confusion matrices of models for Shami.

The following summarizes the results models with Jordinian
record the lowest rates compared to other classes. Models with
Syrian class record the highest rate. GRU with Syrian has
the highest precision, recall, and Fl-score at 91.28, 91.13, and
91.21, respectively. LSTM with Syrian records 91.13 recall higher
than GRU. GRU with Lebanees class has the second-highest
performance compared to CNN and LSTM with 77.05 precision
and 77.22 with Fl-score. CNN and LSTM with Lebanees and
Palestinian have the same approximate results. Base-Arabert and
Arabic-XLM-R-Base with Syrian class record the same recall at
95.96. Both record the same precision, recall, and Fl-score at
84.49, 79.09, and 81.70, respectively with Lebanees class. Stacking-
Transformer records the highest performance in all classes
compared to other models. The best precision, recall, and F1-score
are achieved by Stacking-Transformer with Syrian, at 92.07, 95.96,
and 93.98, respectively.

Figure 3 comprises six confusion matrices, each of which shows
how various models performed in a classification exercise aimed
at classifying data into one of four groups: Syrian, Palestinian,
Lebanese, or Jordanian. Four groups are created from the models:
Syrian, Palestinian, Lebanese, and Jordanian. Darker colors indicate
higher counts. The color intensity in each confusion matrix reflects
the number of samples sorted into each class. Classifying the Syrian
category appears to be generally easier across all models, but the
Palestinian and Jordanian categories are more difficult.

4.2.2 Proposed model performance in IADD
dataset

Table 5 presents the precision, recall, and F1-score for different
classes: EGY, GLE, LEV, MGH, and general for each model. The
best precision, recall, and F1-score are achieved by GRU and LSTM
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with LEV, at 93.19, 93.01, and 93.10, respectively. GRU and LSTM
general EGY record the same approximate results. In comparison
to CNN and LSTM, GRU with MGH class has the second-highest
precision (90.67) and Fl-score (89.51). Of all the models based
on each class, CNN yields the lowest results. Base-Arabert with
GLF records precision, recall, and Fl-score at 73.43, 62.18, and
67.34, respectively, compared to DL models. Arabic-XLM-R-Base
with LEV and MGH classes records the same precision at 94.
The stacking Transformer records the highest performance in all
classes compared to other models. The best precision, recall, and
F1-score are achieved by Stacking-Transformer with LEV, at 95.90,
95.6, and 95.76, respectively. Also, it has significant performance
in the general class compared to other models. Figure 4 comprises
six confusion matrices, each of which shows how various models
performed in a classification exercise aimed at classifying data into
one of five groups: EGY, GLE, LEV, MGH, and general. Darker
colors indicate higher counts. The color intensity in each confusion
matrix reflects the number of samples sorted into each class.

4.2.3 Discussion
Transformer state-of-the-art

performance across various tasks compared to traditional DL

models  have  achieved
models for several key reasons the self-attention mechanism
in transformers allows them to consider all parts of the input
sequence simultaneously. This enables the model to capture
long-range dependencies more effectively than traditional
recurrent, which are typically limited by sequential processing or
fixed-size filters. Figure 5 shows the average accuracy, precision,
recall, and Fl-score of DL models, transformer models, and the
proposed model (Stacking-Transformer) for classifying Syrian,

Lebanees, Palestinian, Jordinian. From the table, transformer
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TABLE 5 Performance of proposed model in Shami dataset.

10.3389/fnhum.2025.1498297

Approches Models Precision Recall F1-score ‘
DL models GRU EGY 67.16 56.82 61.56
GLF 63.49 59.01 61.17
LEV 93.19 93.01 93.10
MGH 88.37 90.67 89.51
general 17.89 22.56 19.96
LSTM EGY 66.60 55.42 60.50
GLF 60.16 58.29 59.21
LEV 93.16 93.01 93.08
MGH 87.93 89.36 88.64
general 17.25 22.08 19.37
CNN EGY 66.30 54.51 59.83
GLF 59.32 58.29 58.80
LEV 93.11 92.67 92.89
MGH 87.50 89.36 88.42
general 16.20 21.28 18.40
The transformer model Base-Arabert EGY 71.24 68.24 69.71
GLF 73.43 62.18 67.34
LEV 94.07 95.56 94.81
MGH 94.17 91.72 92.93
general 23.61 29.12 26.07
Arabic-XLM-R-Base EGY 74.71 78.91 76.75
GLF 75.80 66.37 70.77
LEV 94.64 95.62 95.13
MGH 94.44 91.72 93.06
general 27.59 32.80 29.97
The proposed model Stacking-Transformer EGY 80.41 91.65 85.66
GLF 81.75 80.67 81.20
LEV 95.90 95.62 95.76
MGH 94.87 91.72 93.27
general 43.94 54.56 48.68

models record the best performance compared to deep learning
models and improve results by improving results above 5%.
The transformer models have the attention that can capture
long-range dependencies more effectively than DL models.
Arabic-XLM-R-Base has the highest performance compared to
Base-Arabert, LSTM, GRU, and CNN with accuracy = 87.495,
precision = 87.278, recall = 87.495, and Fl-score = 87.209.
CNN has the worst all measures with 80.842 of accuracy and
80.363 of Fl-score. Stacking-Transformer has the highest
performance in all rates with 89.73 of accuracy and 89.574
of f1-score.

Figure 6 shows the average accuracy, precision, recall, and F1-
score of DL models, transformer models, and the proposed model
(Stacking-Transformer) for classifying EGY, GLF, LEV, MGH,
and general. From the table, transformer models record the best
performance compared to DL models and improve results by
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improving results above 2%. Arabic-XLM-R-Base has the highest
performance compared to Base-Arabert, LSTM, GRU, and CNN
with accuracy = 91.432, precision = 91.595, recall = 91.432, and
fl-score = 91.485. CNN has the worst of all measures with 87.382
of accuracy and 87.492 of Fl-score. Stacking-Transformer has
the highest performance in all rates with 93.062 of accuracy and
93.184 of fl-score, and improve performance by 2 compared to
Arabic-XLM-R-Base.

4.3 Comparison of the proposed model
with existing work

Table 6 compares our work with the state-of-the-art based on
dataset and results. The proposed model, Stacking-Transformer,
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Confusion matrices of models for IADD.
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is based on two transformer models as the

baseline and

an RF as the meta-learner. It achieves the highest accuracy
due to the advantages of the attention mechanism in the
transformer, which extracts long dependencies between text, and
the generalization capability of stacking models. For IADD,
Stacking-Transformer recorded the highest accuracy at 93.062
compared to NB with Bi-gram, which was recorded at 70 in
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Cotterell and Callison-Burch (2014). For Shami, the Stacking-
Transformer recorded the highest accuracy at 89.73 compared
to NB in Kwaik et al. (2018). For ADO as a subset of Shami,
LSTM was used in Lulu and Elnagar (2018) and recorded 71.4
accuracy. In Elaraby and Abdul-Mageed (2018), Attention BiLSTM
recorded 87.81 of accuracy. CAMeLBERT with BiLSTM was
recorded at 87.
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TABLE 6 Comparison with existing work and the proposed models based
on models and performance.

References Methods Results  Datasets

Lulu and Elnagar, LSTM 71.4 AOC

2018

Cotterell and NB with Bi-gram 87.00 IADD

Callison-Burch, 2014

Kwaik et al., 2018 NB 70 Shami

Elaraby and Attention BiLSTM 87.81 ADO

Abdul-Mageed, 2018

Alsuwaylimi, 2024 CAMeLBERT with 87 ADO
BiLSTM

Our work Stacking-Transformer 93.062 IADD
Stacking-Transformer 89.73 Shami

4.4 Implication and challenges

The proposed investigation has important ramifications for
expanding NLP applications and improving Arabic dialect
identification. The paper shows improved accuracy, precision,
and recall in dialect classification via a hybrid stacking model
that incorporates the advantages of transformer designs such as
Dialectal-Arabic-XLM-R-Base and Bert-Base-Arabertv02. Given
the increasing amount of dialectal material on social media and
other platforms, the development fills a significant gap in NLP
for managing the linguistic variety of Arabic. The model’s cross-
dialect generalization establishes a new standard for datasets like
Shami and IADD, providing a solid basis for further study and
advancement. Additionally, the study has practical applications,
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such as enhancing conversational Al, sentiment analysis, and
machine translation systems to better interpret a variety of complex
language inputs.

The paper points out several challenges, including substantial
differences in syntax, vocabulary, and semantics between regional
dialects and Modern Standard Arabic (MSA) pose a difficult
obstacle for models to overcome, especially when generalizing
across underrepresented dialects; data imbalance, as seen in
the Shami dataset, makes this problem worse and restricts
the performance of models on less represented classes, like
Jordanian dialects; and the computational demands of training
and fine-tuning stacked transformer models demand a significant
amount of resources, which may limit accessibility for researchers
with limited financial resources. Challenges with scalability
and practical implementation also exist, especially for real-
time applications that may encounter resource constraints and
latency, such as chatbots and virtual assistants. Tokenization,
stemming, and stop-word deletion are examples of preprocessing
processes that increase complexity since they might not
adequately capture the subtle differences present in dialectal
Arabic. Even if the model produces state-of-the-art results
on certain datasets, there is still a need for more research in
generalizing Arabic dialects or languages with equally complex
linguistic patterns.

5 Conclusion

In this paper, we introduced a unique stacking model that
combines two potent transformer models, Bert-Base-Arabertv02
and Dialectal-Arabic-XLM-R-Base, with a meta-learner to improve
the categorization of Arabic dialects. The model formed involved
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two levels: base models and meta-learners. Within level one, the
two transformer models yield class probabilities for the training
and testing sets, which are retained in stacking training and
stacking testing, respectively. Level 2 meta-learners with machine
learning models are trained and tested using stacking. The stacking
model has been contrasted against multiple models, including
LSTM, GRU, CNN, and two transfer models with distinct word
embedding. Models were assessed on two benchmark datasets
to classify four and five dialects of Arabic, featuring various
evaluation matrices, including accuracy, precision, recall, F1-score,
and confusion matrix. The results proved that the stacking model
outperformed single-model techniques. The proposed model
addressed a wider spectrum of linguistic traits, allowing for more
accurate generalization across different varieties of Arabic. Shami
dataset testing reveals that the Stacking-Transformer outperforms
all other models in accuracy, precision, recall, and fl-score,
with 89.73, 89.596, and 89.574, respectively. For IADD, Stacking-
Transformer outperforms other models in all rates, with 93.062
accuracy, 93.368 precision, 93.062 recall, and 93.184 Fl-score. In
the future, we will concentrate on developing this method to handle
other dialects and investigating whether it can be used in other
low-resource languages with comparable linguistic complexity.
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Determining the meter of
classical Arabic poetry using deep
learning: a performance analysis
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!Department of Computer Engineering, College of Engineering and Petroleum, Kuwait University,
Safat, Kuwait, 2Department of Computer Sciences, University of Hamburg, Hamburg, Germany

The metrical structure of classical Arabic poetry, deeply rooted in its rich literary
heritage, is governed by 16 distinct meters, making its analysis both a linguistic
and computational challenge. In this study, a deep learning-based approach was
developed to accurately determine the meter of Arabic poetry using TensorFlow
and a large dataset. Character-level encoding was employed to convert text into
integers, enabling the classification of both full-verse and half-verse data. In
particular, the data were evaluated without removing diacritics, preserving critical
linguistic features. A train—test—split method with a 70-15-15 division was utilized,
with 15% of the total dataset reserved as unseen test data for evaluation across all
models. Multiple deep learning architectures, including long short-term memory
(LSTM), gated recurrent units (GRU), and bidirectional long short-term memory
(Bi-LSTM), were tested. Among these, the bidirectional long short-term memory
model achieved the highest accuracy, with 97.53% for full-verse and 95.23% for
half-verse data. This study introduces an effective framework for Arabic meter
classification, contributing significantly to the application of artificial intelligence
in natural language processing and text analytics.

KEYWORDS

Arabic poetry, Arabic meters, Bi-LSTM, deep learning, machine learning, natural
language processing

1 Introduction

Arabic prosody (Arud) has been studied for many years in morphology and phonetics.
The study of meters in poetry enables us to determine whether the poetry is sound or broken
(Jones, 2011). Some of the terminology used most frequently in Arabic prosody are as follows:
a single line of the poetry comprises two verses, each half-verse called a “bayt” The first verse
is “sadder;” and the second is “ajuz” Classical Arabic poetry, defined by units called meters,
was analyzed by the famous lexicographer and grammarian Al-Khalil ibn Ahmad al-Farahidi
in the eighth century (Alnagdawi et al., 2013). The meter is based on the syllables in a word
and consists of two parts: short and long syllables. The 16 meters are Tawil, Basiit, Madid,
Wafir, Kamil, Hazaj, Rajaz, Ramal, Munsarih, Khafif, Muqtadab, Mujtath, Mudari, Sarif,
Mutagqarib, and Mutadarik. The ode may consist of 120 lines, split into two half-lines
characterized by their meters, repeated for the whole verse. Al-Farahidi represented some feet
provided in a rhythmic to make it easy to remember the meter (fauulun, mafaaiilun).

Poetry is a way of communication and interaction and an essential aspect of any language
and literature. Communities, nations, and societies have expressed themselves through poetry
for ages (Lavzheh, 2009). Poetry is hard to understand as it has a specific pattern and
underlying meanings in its words and phrases, making it different from prose. It is necessary
to understand the structure to understand the poetry completely. Bahar is the meters in Arud
science. Arud science helps divide Arabic poems into 16 meters, making them easy to
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understand without referring to the context (Alnagdawi et al., 2013).
Classical Arabic poetry can be recognized and understood using
various methods and tools. Arud is the rule and regulations of poems
used in many languages (Abuata and Al-Omari, 2018). Poetry is
different from prose, mainly because of its form and structure. Poetry
consists of tone, metrical forms, rhythm, imagery, and symbolism. In
Arabic poetry, each line ends with a specific tone. The field that studies
rhyme and rhythm is called prosody and is complex due to many
overlapping rules (Khalaf et al., 2009).

There are two vowels in modern and classical Arabic: long and
short. The long vowels are explicitly written, and short vowels are also
called diacritic. Various attempts have been carried out to implement
Arabic text. A proposal was made to use Arabic diacritics or ‘harakat’
for text hiding for security purposes (Ahmadoh and Gutub, 2015). The
diacritics in Arabic are split into three parts as shown in Table 1. The
majorty of studies in this field use a deep learning method to diacritize
the Arabic text before loading it into the model (Abandah et al., 2022;
Abandah et al., 2020; Kharsa et al., 2024).

Artificial intelligence (AI) has become exponentially more
practical and significant over the last few years. The Al-enabled state-
of-the-art technologies have expanded substantially and shown
effective results in almost every industry, such as security (Wu et al.,
2020), surveillance, health (Davenport and Kalakota, 2019),
automobiles (Manoharan, 2019), fitness tracking (Fietkiewicz and
Ilhan, 2020), and smart homes (Gochoo et al., 2021). In general, AI
and machine learning (ML) are correlated. They are primarily used to
develop intelligent systems (Das et al., 2015). Deep learning (DL) is a
type of ML that allows computers to learn from data representation
with more neural levels. Convolutional neural networks (CNN) have
revolutionized image, video, and audio processing, and recurrent
neural networks (RNN) have gained insight into text and speech
sequential data (LeCun et al., 2015). The design of any deep learning
model must consider the choice of algorithm. Most sequential
applications follow the RNN model (Igbal and Qureshi, 2022), and it
has the context of previous input but not the future context of the
speech or text data. Bidirectional recurrent neural networks (Bi-RNN)
extract the context of data in both forward and backward directions
(Schuster and Paliwal, 1997).

The proposed research offers substantial contributions to text
analytics and natural language processing (NLP), particularly focusing
on the complex issue of classifying Arabic poetry meters. This study
employed Arabic text without removing diacritics from the poetry
dataset. The 14 meters of the Arabic poem were considered. Two
meters were removed because of very little data compared to other
meters. The RNN models such as long short-term memory (LSTM),
gated recurrent units (GRU), and Bi-RNN models, such as
bidirectional LSTM (Bi-LSTM), are used to implement the proposed
study. Despite the long history of Arabic poetry, automated techniques

TABLE 1 Arabic diacritic types.

Diacritic ‘ Types ‘ Example

Harakat “fatha” “dahmmah” “kasrah” Culall Jakall sy
“sukon”

Tanween Tanween fateh, tanween dham and 20k, 300
tanween kasr

Dhawabet Shad, mad Al el

Frontiers in Artificial Intelligence

10.3389/frai.2025.1523336

for meter classification have not received much attention. The
proposed study utilized a large dataset and advanced neural network
models. The main contribution of the study is defined as follows:

» Development of a DL framework utilizing TensorFlow for the
categorization of Arabic poetry meter. The framework is
specifically designed to categorize Arabic poetry meters, a field
that presents linguistic and structural difficulties because of the
complexity and variety of the Arabic language.

« Employing character-level encoding to transform text into
integers for efficient categorization. This encoding enables the
model to discern complex language patterns and nuanced
differences at the character level, facilitating more
efficient classification.

« To strengthen the robustness and usefulness of the classification
methodology, the study employed both full-verse and half-verse
types of Arabic poetry. This analysis allows the model to
accurately identify poetry of diverse lengths and structural
complexities, offering a thorough comprehension of Arabic
poetic traditions.

o The research conducts an extensive assessment of several DL
architectures, including LSTM, GRU, and Bi-LSTM, to determine
the most efficient model for Arabic meter categorization. The
Bi-LSTM model exhibited exceptional performance, attaining the
greatest classification accuracy and highlighting its proficiency in
managing the sequential and contextual intricacies of
Arabic poetry.

« The findings of the study highlight the efficacy of DL techniques
in tackling the complex nature of Arabic poetry meter
classification. The research utilizes neural architectures and
encoding methodologies to provide useful insights into the
adaptation of existing NLP methods for the linguistically rich and
morphologically complicated Arabic language.

The remaining section of this paper is organized into five sections.
Section 2 explains the literature review, including Arabic meter and
DL models. Section 3 describes the methodology used and the model
algorithm. Section 4 presents the results in detail, with a discussion in
section 5. Section 6 describes the conclusion with future study.

2 Literature review

Alnagdawi et al. (2013) used another tool for language recognition
to find the meter of Arabic poems. This tool works in three steps: first,
it converts poetry into Arud form. The second step is the segmentation
of the Arud form. In this phase, the Arud state is divided into sounds,
such as short sounds, vowel or long sounds, and consonants. The
sound string was sent to the final stage at the end of the second step,
and the poetry meter was detected. It is compared with grammar to
check its validity. If the grammar is valid, the verse belongs to 16
meters. The meter patterns match the poem’s words, identifying the
meter’s name.

A considerable body of literature is on recognizing Arabic poetry
using deep learning algorithms. Baina and Moutassaref (2020)
developed an algorithm that accurately identifies the meter of the
poem and outputs the ‘Arud’ writing in addition to the meter. The
algorithm follows five phases. First, it adds diacritics to the verse. This
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step is significant as it might impede moving to the next step. Second,
it transforms the diacritics into ‘Arud’ writing. Third, it utilizes binary
representation to convert the ‘Arud’ writing, where 1 represents a
‘haraka’ and 0 illustrates a ‘sukon’ Fourth, the algorithm identifies the
meter based on the binary representation. The fifth and final step
includes detecting the errors and ensuring the meter matches
the poem.

Furthermore, Albaddawi and Abandah (2021) proposed a narrow,
deep neural network with significantly high accuracy. The proposed
network consists of an embedding layer at its input, five Bi-LSTM
layers, a concentration layer, and an output layer with softmax
activation. Similarly, Abandah et al. (2020) suggested improving the
recognition of diacritics via a specific neural network. This strategy
tries to enhance readability and recognition accuracy. Moreover,
identifying the meter of an Arabic poem may be a long and
complicated process that involves a few steps (Al-shaibani et al., 2020).
A study by Ahmed et al. (2019) utilized ML algorithms to identify and
classify Arabic texts. The study supports linear vector classification
and naive Bayes classification, which showed the highest precision.
Many studies have been conducted on analyzing Arabic poetry.
Formulating one system or technique to identify meters in Arabic
poetry is challenging. A study on identifying Arabic poetic meter
(Saleh and Elshafei, 2012) suggested a method that produces coded
Al-Khalili transcriptions of Arabic.

Abuata and Al-Omari (2018) electronically analyzed the Arud
meter of Arabic poetry. They introduced an algorithm to determine
the meter of Arud for any Arabic poetry. The algorithm works on
well-defined rules applied only to the first part of the poem verse.
Moreover, some of the most outstanding works in Arabic poetry are
the computerization of Arabic poetry meters (Khalaf et al., 2009). It
focuses on computerizing El-Katibs method for analyzing Arabic
poetry. The linguist El-Katib proposed a study in which poetry is
converted into binary bits and given decimal codes. This system was
helpful for educational purposes. Many students and teachers use it to
understand prosody. The computerized and systematic analysis of
prosody also minimizes the chance of error.

Attempts have been made to develop algorithms that recognize
modern Arabic poetry meters (Abandah et al., 2022; Abandah et al.,
20205 Al-shaibani et al., 2020). For instance, an algorithm has been
introduced to identify standard features of classical Arabic poems
(Zeyada et al., 2020). These features include rhyme, rhythm,
punctuation, and text alignment. This algorithm can only recognize
whether the Arabic piece is poetic or non-poetic but cannot
acknowledge its meter. Furthermore, an algorithm has been developed
to detect the Arabic meter of certain poetry and convert the verse into
‘Arud’ writing (Al-Talabani, 2020). It classifies Arabic poetry using
meters or ‘Bahr’ and investigates methods of detecting Arabic poems
in rhythm, rhyme, and meter. It utilizes time and non-time series
representation of the Mel-frequency cepstral coefficients (MFCC) and
linear predictive cepstral coefficients (LPCC) features to recognize
automated ‘Arud’ meters. Arabic ‘Arud’ meters seem to possess a time-
series nature; however, the non-time series representation
performs better.

Another detection method includes a comparison that has been
conducted between modern and classical Arabic poetry (Almuhareb
etal,, 2015). The results reveal that contemporary Arabic poetry lacks
more distinctive features than classical poetry. For instance, modern
Arabic poetry is characterized by partial meter, the uneven lining of
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verses, word repetition, usage of punctuation, and irregular rhyming.
At the same time, classical Arabic poetry is characterized by a regular
rhyme, a single meter, even lining of verses, and self-contained lines.
Similarly, Berkani et al. (2020) notes that extracting the meter of the
poem using automatic meter detection methods requires challenging
data collection and processing efforts. Syllable segmentation and
similarity checks are performed. This method has further proven the
high accuracy of meter detection. Finally, creating detecting
algorithms may considerably improve the efficiency and accuracy of
Arabic poetry identification methods.

The LSTM model is one of the most widely used RNN systems for
vanishing gradients (Hochreiter and Schmidhuber, 1997). In addition,
these networks have several advantages compared to conventional
RNN systems, including the ability to sustain prolonged
interrelationships and exhibit a stochastic nature when dealing with
time-series input data. With RNN or LSTM, the uniform weight is
retained across all layers, limiting the number of parameters the
network must learn. The LSTM model had more parameters, which
made it slower.

Later, GRUs were proposed as a better alternative to LSTMs and
have gained significant recognition (Cho et al., 2014). In addition,
GRUs have been recognized to be effective in numerous applications
using sequential or time-series input (Dey and Salem, 2017). For
instance, they have been incorporated in diverse areas such as speech
synthesis, NLP, and signal processing. Furthermore, LSTM, RNN,
and GRUs have been exhibited to operate better in long-sequence
applications. In GRUs, gating network signaling plays a significant role
as it controls how inputs and memory are used to update current
activations. Each gate has weights that are adapted and modified in the
learning phase. However, these systems enable effective learning in
RNNG, increasing parameterization. It leads to a simpler RNN model
with a higher computational cost. The LSTM and GRU differ because
the former utilizes three novel gate networks, whereas the latter
uses only 2.

The Bi-LSTM neural network comprises LSTM units that operate
in both directions to exploit contextual information from the past and
future (Liang and Zhang, 2016). In addition, with Bi-LSTM, long-term
dependencies can be learned without maintaining redundant
background information. Thus, it has projected significant
performance for sequential modeling issues and is generally used for
text classification (Huang et al., 2015; Al-Smadi, 2024). Bi-LSTM
networks transmit forward and reverse phases in both directions,
unlike LSTM networks, which communicate only in one direction.

Many NLP sequences-to-sequence methods use LSTM, GRU,
Bi-LSTM, and Bi-GRU deep learning models (Liang and Zhang, 2016;
Wazery et al., 2022; Yin et al,, 2017; Huang et al.,, 2015). In recent
years, ML has become a formidable method for text analysis,
exhibiting adaptability across several applications. Diverse ML
methodologies have been effectively utilized in tasks such as dialect
detection, spam detection, poetry classification, text classification, and
sentiment analysis (Ahmed et al., 2019; El Rifai et al., 2022; Chen et al.,
2022; Abdulghani and Abdullah, 2022; Alqasemi et al., 2021; Zivkovic
et al,, 2021), demonstrating their proficiency in managing intricate
textual data.

An important use of ML is sentiment categorization, employed for
the identification of insider threats. Recent studies by Mladenovic
etal. (2024) have illustrated that sentiment analysis can be augmented
through optimized classifiers, thereby enhancing the precision of
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threat detection in organizational contexts. In spam email screening,
NLP combined with ML has shown success (Bacanin et al., 2022). It
explains how swarm intelligence can maximize conventional ML
techniques, thereby improving user experience and spam detection
accuracy. Another study by Kozakijevic et al. (2024) examined the
incorporation of sentiment analysis in e-commerce, highlighting its
significance in assessing seller reputation and influencing consumer
choices. They attained a maximum accuracy of 88% by integrating
transformer embeddings with an efficient extreme gradient boost
model, refined via a modified firefly approach.

3 Materials and methods

The methodology of the study is shown in Figure 1. The key
phases of the study include fetching the dataset, preprocessing and
splitting the data, and developing and applying the DL models. The
results were evaluated using a combination of accuracy, precision,
recall, and the F1 score.

3.1 Dataset and preprocessing

The dataset contains 1,862,046 verses with 22 meters (Yousef
et al., 2019). The data are in a well-structured format. The central
16 meters consist of a data size of 1,647,854. Two meters with
fewer verses are avoided when classifying the meters. After
eliminating the empty cells, the total number of verses in the 14
meters of data, which include both right and left verses, is
1,646,771. The count of each meter label with a full-verse is
depicted in Figure 2. The minimum count is for the Mutadarik
meter, 4,507 verses, and the maximum is for the Tawil meter,
398,239 verses. To address data scarcity for certain meters and
improve the robustness of the models, half-verse data were
doubled during training by treating the left and right verses of each
meter as independent samples.

The dataset underwent a thorough cleaning process to enhance its
quality and suitability for deep learning. Non-Arabic characters,
symbols, and other irrelevant text artifacts were systematically
removed. This step ensured that only meaningful linguistic content

10.3389/frai.2025.1523336

remained, aligning the dataset with the methodological requirements.
The preprocessing methodology closely follows the approach
described in Al-shaibani et al. (2020) including the construction of a
character-level vocabulary. The character-level encoding uses the
index value for each cleaned text and implements DL models.
Parameter tuning was conducted for each deep learning model to
optimize performance, with attention to hyperparameters such as
learning rate, batch size, and sequence length. The data are split into
70% training and 15% validation; the remaining 15% are set as unseen
data for testing.

3.2 Deep learning models

This study uses the deep neural network (DNN) architecture. The
two main architectures of DNN are RNN and CNN (Yin et al., 2017).
LSTM, GRU, and Bi-LSTM are models under RNN (Sherstinsky,
2020). The base model for LSTM consists of four layers. The first
layer of the sequential model is the input layer with the size of the
padded sequence, which is then given to the embedding layer with
the output dimension kept as 64. The embedding layer will learn how
to map the characters to vectors. The output from the embedding
layer is fed into the LSTM layer with units 256, recurrent, and the
activation function is set as the default. The LSTM layer is added
accordingly to increase the hidden layers. At this moment, the return
sequence parameter should be set as “True The GRU model is like
the LSTM model. In both models, sentence processing is only in
one direction.

The LSTM layer is depicted in Figure 3. It allows the model to
store the information for future access and has a hidden state: short-
term memory. There are three gates for LSTM such as input (i),
output (O,), and forget gate (f). A time step is indicated by the
subscript ‘¢ The LSTM has three inputs: an input vector at the current
time stamp (X)), a cell or memory state vector (C,,), and a hidden
state vector at the previous time stamp (h, ;). The symbol X<’ denotes
the element-wise product or the Hadamard product. C, is the cell
state activation vector or the candidate memory vector (Harrou
etal., 2021).

As a first step, what information the cell state should discard
should be determined. It is accomplished by the sigmoid activation

Data cleaning
Vocabulary building
Character encoding

Parameter
tuning

—————— N
Data
Preprocessing

14 meters

Train-Validate-Test split
(70-15-15)

Develop classification
models

]

Arabic poem
dataset

Accuracy
Precision
Recall
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FIGURE 1
Overview of the research methodology.
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Full-verse count of the 14 meters in the dataset.
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FIGURE 3
Internal architecture of the LSTM layer.

function (o) in the forget gate and applies the sigmoid function to the
current input vector X, and the past hidden state vector h, , as shown
in Equation 1. Input activations activate memory cells through
input gates.

fi=c(wrX,+ush_+bs) (1)

where f, = forget gate, w; and u, are the weight matrices of the forget
gate, X, is the actual input, b is the bias vector, h,, is the hidden state
output from the previous time stamp, and ¢ is the sigmoid activation
function. The result from Equation 1 is in the range of 0 and 1. The
element-wise product of C,, and f; decides what information to retain
and forget.

The second step is to update the memory cell with an input gate
as shown in Equation 2. The sigmoid function indicates two values: if
itis 1, the actual data are unchanged, and if it is 0, it will be dropped.
A tanh function is applied to the selected input values, which indicates
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a range from —1 to +1. It creates a new vector of values, a candidate
memory cell (Equation 3).

it = O'(WlXt + M,’ht_l + bl)

2

where i, = input gate, w; and u; are the weight matrices of the input
gate, b; is the bias vector, X, is the actual input, h,, is the hidden state
output from the previous time stamp, and o is the activation function.

a = O'(WcXt +uch 1 + bc) (3)

where a = candidate memory cell, w. and u. are the weight matrices,
b. is the bias vector, X, is the actual input, hy, is the hidden state output
from the previous time stamp, and ¢ is the activation function.

The following step involves updating and converting the previous
cell state C,, to the new C,. Equation 4 is defined as:

Cr=fir-Ca+ip- G (4)
where f, = forget gate calculated from Equation 1, C., is the
memory state vector of the previous time stamp, i, = input gate
calculated from Equation 2, and C, is the candidate memory cell
from Equation 3.

The final stage is to decide what portion of the output will
be selected. It is done in two steps. First, the sigmoid function is
performed with the input to determine the quantity of cell state to
transmit as the output (Equation 5). The tanh operation is then
applied to the new cell state C,, and the sigmoid result is multiplied by
the result (Equation 6). Thus, the outcome is based only on the
selected portions.

Ot = O-(WoXt + Moht_l + bO) (5)
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where O, = output gate, w, and u, are the weight matrices of the output
gate, b, is the bias vector, X, is the actual input, h, , is the hidden state
output from the previous time stamp, and o is the activation function.

ht = tanh(C, ) . Ot (6)

where O, = output gate calculated from Equation 5, and new cell state
C, calculated from Equation 4.

The GRU layer is illustrated in Figure 4. A reset gate and an update
gate are two gates. However, the GRU requires fewer parameters to
train than the LSTM model, which runs faster. The reset gate (R,
regulates the amount of the initial state that needs to be remembered.
Similarly, an update gate (Z,) enables us to assess how much the new
form replicates the previous one. As each hidden unit reads/generates
a sequence, these two gates control how much of it is remembered or
forgotten (Harrou et al., 2021).

The reset gate performs similar functions to the forgotten gate of
LSTM (Equation 7). It manages the short-term memory of the network.
A decision is made regarding what information should be forgotten.

Rl‘ = O'(WrXt + Mrht_l + br) (7)

where R, = reset gate, w, and u, are the weight matrices of the reset
gate, b, is the bias vector, X is the actual input, and h,, is the hidden
state output from the previous time stamp.

The update gate manages the long-term memory of the network.
It accomplishes a similar task as the forget and input gates of an
LSTM. It determines what data should be removed and what new data
should be added (Equation 8).

Zt :O-(Wth+uzht_1+bz) (8)

where Z, = update gate, w, and u, are the weight matrices of the update
gate, b, is the bias vector, X, is the actual input, and h,, is the hidden
state output from the previous time stamp.

The hidden state (iz; ) of the candidate is also called an intermediate
memory unit, which combines the previously hidden state vector in
the reset gate with the input vector (Equation 9).

ht—l
| | tanh
4 J J
X
FIGURE 4
Internal structure of GRU layer.
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By =tanh(tht+uh (R -ht,1)+b;,) )

where E = candidate hidden state vector, wy, and u,, are the weight
matrices, by, is the bias vector, R, =reset gate calculated from
Equation 7, X, is the actual input, and h,, is the hidden state output
from the previous time stamp.

The final hidden state is determined based on the update gate and
candidate hidden state. The update gate is multiplied elementwise and
summed with the candidate vector (Equation 10).

he=(1-2) bt + by - Z, (10)

where h, is the hidden state output, Z, = update gate calculated from
Equation 8, h,, is the hidden state output from the previous time
stamp, and E = candidate hidden state vector calculated from
Equation 9.

The Bi-LSTM model processes the sequence in both directions
of a text. One hidden layer is in the forward movement, and the
other is backward. These LSTM layers are concatenated for the final
output of the Bi-LSTM layer. Hence, unit 256 is doubled in this
model. The return sequence parameter of LSTM is set to “True’ if
two or more layers need to be added. The dropout parameter in the
Bi-LSTM layer is set to 0.2, which helps prevent the training model
from overfitting. The hidden layers are tuned from 1 to 3 in all three
models. A better iteration of LSTM is the Bi-LSTM layer, which
processes the sequence in forwarding and backward directions, as
shown in Figure 5. The Bi-LSTM can understand the context better
than the LSTM and GRU models (Li et al., 2020), as it processes
input sequences in both forward and backward directions. This
architecture builds upon the traditional LSTM model, enhancing
its ability to capture dependencies in sequential data. In the
Bi-LSTM framework, X, and X;,, are the input vectors at time
frame t.

While calculating the forward output sequence (%), the positive
sequence is used, and when calculating the backward output
sequence, (E), the reverse inputs are used. The output vector, y,, is
obtained by combining the forward and backward output sequences
(Equation 11).

v =1(h) (11)

where f; is the forward output sequence and %, is the backward output
sequence. The symbol " can have different operations, such as
summation, multiplication, concatenation, and average function. The
default function in TensorFlow is concatenation.

The optimizer used for the compilation is adaptive moment
estimation (Adam). This memory-light optimization algorithm works
well with large datasets (Kingma and Jimmy, 2014). As the method
label-encoder provides a sparse array of targets, the loss function uses
a sparse-categorical cross-entropy.

3.2.1 Hyperparameter tuning

The tuned parameters are the hidden layer and learning rate for
the above models. The hidden layers are tuned from 1 to 3 in all three
DL models. EarlyStopping is used in the callback application
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FIGURE 5
Bi-LSTM model architecture with two consecutive time frames.
programming interface (API) of the TensorFlow model to stop Fl— Score = 2TruePose (14)

overfitting the models. In this, the parameter ‘patience’ is set to 6, so
the training will terminate if the validation loss function does not
Another
ReduceLROnPlateau. The monitoring parameter of this function is set

decrease after six epochs. function used s
to validity loss, patience is 3, and the minimum learning rate is
1.0*10-6. It indicates that if the loss value does not change after two
epochs, the learning rate value decreases by 0.1. Thus, the new rate for
the next epoch will be 0.1 times the previous rate. The most accurate
model is chosen based on the accuracy of the validation set, and it is

then applied to the test set.

3.3 Evaluation metrics

Accuracy, precision, recall, and f1-score are the metrics used
to assess the classification model on the test data. For each
technique, the confusion matrix is also considered. Accuracy
might not be a complete metric for unbalanced data (Sturm,
2013). Therefore, precision, recall, and Fl-score are also used
(Grandini et al., 2020; Tharwat, 2020). The precision determines
how many predicted samples are relevant (Equation 12). Recall
computes how many relevant samples are predicted (Equation 13).
Calculating the harmonic mean of recall and precision yields an
Fl-score (Equation 14). Precision is also called a positive
predictive rate (PPR), and recall is known as sensitivity. Accuracy
is the total sample count that was successfully predicted
(Equation 15). Four performance measures are calculated using
the following formulas.

Precision = TruePose (12)
(T ruePose + F alsePose)
TrueP.
Recall = ruet ose (13)
(T ruePose + Fi alseNega)
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(2TruePase + FalsePose + F alseNega)

TruePose + TrueNega

Accuracy =

15)

TruePose + TrueNega + FalsePose + FalseNega (

where TruePose is a true positive, TrueNega is a true negative, FalsePose
is a false positive, and FalseNega is a false negative. When the model
correctly predicted the positive label, the result was considered
TruePose. Similarly, if the model predicts a negative label correctly, the
outcome is TrueNega. On the other hand, FalsePose is calculated based
on the incorrectly predicted positive label, and FalseNega is based on
the incorrectly predicted negative label.

4 Results

Neural networks formed the foundation of the classification
models of the study, with DL techniques preferred due to the substantial
volume of data involved. The experiments were conducted on a system
running 64-bit Windows 10, equipped with an Intel® Core™ i7-4770K
CPU at 3.50 GHz, 16 GB of RAM, and an NVIDIA GeForce GTX 1080
Ti GPU. The development environment utilized Python 3.9 and
incorporated libraries such as TensorFlow 2.7 for implementing the DL
models, Scikit-learn 1.0 for data preprocessing and evaluation, and
PyArabic 0.6.14 for handling Arabic text processing (Abadi et al.,
2016). This computational setup enabled efficient training and testing
of the models, contributing to the high accuracy achieved in classifying
the meters of classical Arabic poetry. The diacritics are not removed for
both the full-verse and half-verse data.

4.1 Training and testing using full-verse data

The full-verse data are split according to 70% for training, 15%
for validation, and 15% for testing. The validation accuracy
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according to the hidden layers is tabulated in Table 2 for the full-
verse data. In addition, the number of parameters the model uses for
training is specified (in millions). The trainable parameter also
increases; hence, the time taken to complete the execution also
increases. The training epochs are set to 60 for all the models.
Callback applications such as EarlyStopping and ReduceLROnPlateau
evaluate whether the model overfits. The validation loss is the
parameter to check in the ReduceLROnPlateau function. If the loss
value is found stable for three epochs, then the learning parameter
is increased. For the EarlyStopping function, the program stops
where it finds the loss value increases from the previous value or is
stable for approximately six epochs. The training epochs in Table 2
show the number of epochs each model took without overfitting the
data. The LSTM, GRU, and Bi-LSTM models perform better at three
layers. Moreover, compared to the three models, the Bi-LSTM shows
an accuracy of 97.53%.

The training and validation loss and accuracy of the Bi-LSTM
with three layers are depicted in Figure 6. The training loss indicates
how well a DL model fits the training set. Validation loss measures the
performance of the validation set. Accuracy increases as the loss
value decreases.

The confusion matrix of the Bi-LSTM three-layer model is shown
in Figure 7. The model was tested with the remaining 15% of unseen
data. All the labels show good model fitting, and there was no
overfitting or underfitting problem with the model performance.

The complete details of the model performance are shown in
Table 3. The precision, recall, accuracy, and f1-score of each meter or
label are evaluated. The basit and tawil meters show the highest
accuracy of 99%. The low performance is demonstrated by the hazaj
meter with 80% accuracy.

4.2 Training and testing using half-verse

The study also implemented the model based on the half-verse
data without removing diacritics. The half-verse data count is double
the number of full-verse data, and the data are split into 70% training,
15% validation, and 15% testing. The hidden layers are tuned from
one to three as shown in Table 4. Increasing the layers increases the
parameters to train the model. In addition, the time to complete the
training increases according to hidden layers. Even though the

10.3389/frai.2025.1523336

Bi-LSTM model exists in 31 epochs, it took approximately 11 h to
complete the execution.

The best model is Bi-LSTM, with 95.23% accuracy. The training
and validation accuracy and loss values are shown in Figure 8. Both
the loss and accuracy are inversely proportional to each other. The
model exits from the iteration if the loss value is stable for six epochs.

The confusion matrix and the complete details of the target meters
results are shown in Figure 9 and Table 5, respectively.

The model shows better performance as seen in Table 5. The
highest class accuracy is demonstrated by the basit and tawil meters
with 98% accuracy. The lowest performance is shown by the hazaj
meter, which has 74% accuracy.

5 Discussion

The Bi-LSTM model predicts the data better when compared
with LSTM and GRU. This model’s sequence learning is in both
directions, from left to right and right to left. GRU trains faster than
LSTM, with fewer training parameters than LSTM (Atassi and El
Azami, 2022). Few studies have been done on Arabic poetry,
including the diacritization of the text data. The study by Abandah
etal. (2022) showed a Bi-LSTM model with automatic diacritization.
The results show a 42% improvement in the error rate of diacritization.
The study by Alqasemi et al. (2021) was based on machine learning
algorithms and a diacritic text. An accuracy of 96.34% was achieved
using support vector machines (SVM). Another study by Al-shathry
et al. (2024) employed a balanced dataset by randomly choosing
1,000 poem verses for each meter. Their study achieved 98.6%
accuracy, but 90% precision, recall, and fl-score value with the
Bi-GRU model.

The proposed study can be compared with the studies by
Abandah et al. (2020) and Al-shaibani et al. (2020). With five hidden
layers, Al-shaibani et al. (2020) reached an accuracy of 94.32% with
the bi-directional GRU (Bi-GRU) model and 14 target meters. The
model also attains 88.8% accuracy for half-verse data. With four
hidden layers, the Bi-LSTM model by Abandah et al. (2020) achieved
an accuracy of 97% without removing diacritics and 97.27% with
removed diacritics. They use 16 meters as target classes. The study
carried out by Yousef et al. (2019) used seven hidden layers for the
Bi-LSTM model and achieved an accuracy of 96.38%. In the proposed

TABLE 2 The results of increasing the layers of each model on the test accuracy of full-verse data.

Hidden layers Parameters (in Accuracy Training Epochs  Training time (in

millions) hours)

LSTM 1 034 0.9720 28 89.95
2 0.86 0.9733 26 148.17

3 1.38 0.9737 35 286.15

GRU 1 0.26 0.9710 28 166.93
2 0.65 09723 37 212.63

3 1.05 0.9726 60 455.93

Bi-LSTM 1 0.67 0.9698 19 110.02
2 224 0.9744 26 249.97

3 3.82 0.9753 25 442,50
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Training and validation plot of Bi-LSTM with three layers. The left side shows the accuracy, and the right shows the loss values for each epoch.
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Confusion matrix of three hidden layers of the three-layer Bi-LSTM model.

research, the number of verses is much higher than in the study done
by Al-shaibani et al. (2020). In addition, the number of hidden layers
is less than in all three studies. The comparison of Arabic meter
studies is mentioned in Table 6.

Frontiers in Artificial Intelligence

The studies (Abandah et al., 2020; Yousef et al., 2019) employed
the identical dataset as the proposed study, although it documented
varying verse counts. This suggests that although the dataset is
uniform, discrepancies in verse counts may influence model efficacy.
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The models employed in the compared research, Bi-LSTM with four
and seven layers, attained competitive accuracy rates; nevertheless,
the proposed Bi-LSTM model with three layers surpassed them
across all criteria. The study by Al-shaibani et al. (2020) utilized a
distinct dataset; however, it similarly extracted poems from the
‘Aldiwan’ website. The Bi-GRU model employed in the mentioned
study (Al-shaibani et al., 2020) shows worse performance measures
relative to the proposed study findings. The variations in dataset
construction and model design certainly led to the noted
performance variances.

In the proposed study, the Bi-LSTM model with three hidden
layers performs better than one or two hidden layers without
removing diacritical text. In addition, it better predicts than the
LSTM and GRU models for both full-verse and half-verse data.
LSTM cannot use future tokens nor can local contextual information
be extracted. This problem can be resolved using Bi-LSTM, which
learns the sequence in forward and backward directions. GRUs are
faster to train than the LSTM model but lack the output gate. The
model achieved an accuracy of 97.53% for the full-verse data and
95.23% for the half-verse data.

TABLE 3 Performance measure of the Bi-LSTM model with test data.

Meter Precision Recall fl- Accuracy
score
Basit 0.98 0.99 0.99 0.99
Khafif 0.98 0.98 0.98 0.98
Rajaz 0.94 0.93 0.94 0.93
Ramal 0.96 0.96 0.96 0.96
Sari 0.95 0.95 0.95 0.95
Tawil 0.99 0.99 0.99 0.99
Kamil 0.97 0.98 0.98 0.98
Mutadarik 0.91 0.90 091 0.90
Mutaqarib 0.98 0.97 0.98 0.97
Mujtath 091 0.95 0.93 0.95
Madid 0.91 0.90 091 0.90
Munsarih 0.96 0.94 0.95 0.94
Hazaj 0.80 0.80 0.80 0.80
Wafir 0.98 0.98 0.98 0.98

10.3389/frai.2025.1523336

The results of the study suggest that the number of hidden layers
significantly impacts the performance of the Arabic meter
classification model using Bi-LSTM. The study achieved better
accuracy in Arabic meter classification using Bi-LSTM models with
three hidden layers than previous studies that used Bi-LSTM models
with four and seven hidden layers. It suggests that increasing the
number of hidden layers beyond a certain point may not always lead
to better performance and that optimizing the number of hidden
layers can be a crucial factor in achieving high accuracy.

A few baseline ML models were utilized in this study to evaluate
their performance in comparison with the DL architectures used for
the Arabic poetry meters’ classification. It includes a decision tree
(DT), random forest (RF), k-nearest neighbors (KNN), and extra tree
(ET) classifier. These classifiers serve as effective benchmarks for
evaluating the performance of more complex models. The DT model
yielded an accuracy of 46% with an Fl-score of 0.30, and KNN
achieved 30% with a 0.20 F1-score, while the ensemble models RF
and ET achieved 58 and 53% accuracy as well as 0.50 and
0.56 F1-score values, respectively.

The comparison with baseline models underscores the efficacy of
the DL methodologies utilized in the proposed study. Although baseline
models serve as a valuable foundation, advanced models (Bi-LSTM)
exhibit significant enhancements in accuracy and overall performance.
This highlights the need to employ DL methodologies for intricate tasks
such as Arabic poetry meter classification, where conventional models
might struggle to grasp the complex nature of the data.

5.1 Practical implications

The findings of the proposed study on the categorization of Arabic
poetry meter using DL models have substantial practical applications
in several fields. This research enhances NLP, text analytics, and
cultural heritage preservation by attaining high accuracy in the
classification of full and half verses of Arabic poetry.

o Accurate classification of Arabic poetry meters helps preserve
Arabic literary legacy. Automating the study of poetic structures
helps scholars and cultural organizations to better classify
historical data, therefore guaranteeing their availability for the
next generations.

o The proposed DL system may be included in learning

to and students in

environments support academics

TABLE 4 The results of increasing the layers of each model on the test accuracy of half-verse data.

Models Hidden layers = Parameters (in millions) Accuracy Training epochs = Training time (in hours)
LSTM 1 0.34 0.9465 34 153.23
2 0.86 0.9494 24 166.08
3 1.39 0.9509 28 283.33
GRU 1 0.26 0.9455 34 305.82
2 0.65 0.9470 34 238.78
3 1.05 0.9459 60 667.97
Bi-LSTM 1 0.67 0.9446 18 153.98
2 224 0.9496 33 510.00
3 3.82 0.9523 36 711.05

Frontiers in Artificial Intelligence

30

frontiersin.org


https://doi.org/10.3389/frai.2025.1523336
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Mutawa and Alrumaih

10.3389/frai.2025.1523336

Training and validation accuracy
0.96 -

0.90 -
- —— Training acc
’ —— Validation acc
0 5 10 15 20 25 30 35
Epochs
FIGURE 8

Training and validation plot of Bi-LSTM with three layers in half-verse. The left side shows the accuracy, and the right shows the loss values for each

epoch.
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comprehending Arabic poetry. By giving instantaneous feedback
and poetic work analysis, interactive technologies that use meter
classification can improve learning opportunities and help
increase the importance of Arabic literature.

o Other kinds of Arabic literature can be examined using the
approach developed in this study. Adapting the models to several
literary genres allows scholars to investigate structures and
patterns that define distinct kinds of Arabic literature, therefore
enhancing the knowledge of the literary scene of the language.

o Using the knowledge acquired from the proposed study, NLP
practitioners may increase the performance of the model in
processing the Arabic text, therefore enhancing its applicability in
fields
content development.

such as social media analysis and automatic

6 Conclusion

This study presents a significant advancement in the automatic
classification of classical Arabic poetry meters using deep learning
techniques. By utilizing a substantial dataset of 1,646,771 verses
without removing diacritics, the Bi-LSTM models with three hidden
layers were developed and evaluated. The Bi-LSTM model
outperformed traditional LSTM and GRU models, achieving an
accuracy of 97.53% on full-verse data and 95.23% on half-verse data.
These results surpass those of previous studies that employed models
with more hidden layers or smaller datasets.

The superior performance of the Bi-LSTM model underscores
its effectiveness in capturing the complex rhythmic and phonetic
patterns inherent in classical Arabic poetry. The ability of Bi-LSTM
to process sequences in both forward and backward directions
allows for a more comprehensive understanding of the linguistic
structures involved. Importantly, retaining diacritics in the text
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TABLE 5 Performance measure of the Bi-LSTM model with test data.

Meter Precision Recall fl_ Accuracy
score
Basit 0.98 0.98 0.98 0.98
Khafif 0.96 0.96 0.96 0.96
Rajaz 0.88 0.83 0.85 0.83
Ramal 0.92 0.93 0.92 0.93
Sari 091 0.90 0.90 0.90
Tawil 0.99 0.98 0.98 0.98
Kamil 0.94 0.96 0.95 0.96
Mutadarik 0.84 0.83 0.83 0.83
Mutagqarib 0.95 0.96 0.95 0.96
Mujtath 0.86 0.89 0.87 0.89
Madid 0.84 0.82 0.83 0.82
Munsarih 0.93 0.89 091 0.89
Hazaj 0.71 0.74 0.73 0.74
Wafir 0.97 0.96 0.97 0.96

preserved essential phonetic information, which proved crucial for
accurate meter classification.

The findings of the study make a substantial contribution to
computational linguistics and natural language processing,
particularly in the context of Arabic language studies. The high
accuracy achieved demonstrates the potential of the model for
practical applications, such as automated literary analysis and
educational tools that enhance the study and appreciation of
Arabic poetry. This study also aligns with the Sustainable
Development Goals by promoting quality education and fostering
innovation in language technology.
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FIGURE 9
Confusion matrix of half-verse Bi-LSTM model.
TABLE 6 Comparison between related studies in literature and the proposed study.
Reference Technique used— Dataset size  Accuracy Fl-score
number of hidden layers
Al-shaibani et al. (2020) Bi-GRU-5 55,400 verses 94.32% (full-verse), 88.80% (half-verse) -
Abandah et al. (2020) Bi-LSTM-4 1,657,003 verses 97.27% (full-verse) 0.97 (full-verse)
Yousef et al. (2019) Bi-LSTM-7 1,722,321 verses 96.38% (full-verse) -
The proposed work Bi-LSTM-3 1,646,771 verses 97.53% (full-verse), 95.23% (half-verse) 0.98 (full-verse), 0.95 (half-verse)

6.1 Limitations and future studies

The proposed study performs better with half-verse and full-
verse Arabic poems. It indicates that although the average accuracy
is elevated, some classes, especially those corresponding to meters
with fewer verses, demonstrate diminished precision and recall.
Future studies must concentrate on these underrepresented
categories to enhance their classification efficacy. This can
be accomplished using specific data augmentation procedures,
such as the generation of synthetic examples of certain meters or
the application of oversampling techniques to equilibrate
the dataset.

Although evaluated, their
hyperparameters, such as optimizers and the number of units in
layers, were not extensively tuned. Hyperparameter selection may
greatly affect the model’s performance. Future studies should
consider using methodical hyperparameter tuning strategies to

several DL models were
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improve model performance. Another scope of future studies is to
investigate the influence of other linguistic attributes on meter
classification. It includes semantic and syntactic structure analysis.
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Introduction: Post-editing plays a crucial role in enhancing the quality
of machine-generated translation (MGT) by correcting errors and ensuring
cohesion and coherence. With advancements in artificial intelligence, Large
Language Models (LLMs) like ChatGPT-40 offer promising capabilities for post-
editing tasks. This study investigates the effectiveness of ChatGPT-40 as a natural
language processing tool in post-editing Arabic translations across various
domains, aiming to evaluate its performance in improving productivity, accuracy,
consistency, and overall translation quality.

Methods: The study involved a comparative analysis of Arabic translations
generated by Google Translate. These texts, drawn from multiple domains,
were post-edited by two professional human translators and ChatGPT-4o0.
Subsequently, three additional professional human post-editors evaluated both
sets of post-edited outputs. To statistically assess the differences in quality
between humans and ChatGPT-40 post-edits, a paired t-test was employed,
focusing on metrics such as fluency, accuracy, coherence, and efficiency.

Results: The findings indicated that human post-editors outperformed
ChatGPT-40 in most quality metrics. However, ChatGPT-40 demonstrated
superior efficiency, yielding a positive t-statistic of 8.00 and a p-value of 0.015,
indicating a statistically significant difference. Regarding fluency, no significant
difference was observed between the two methods (t-statistic = —3.5, p-value
= 0.074), suggesting comparable performance in ensuring the natural flow of
text.

Discussion: ChatGPT-40 showed competitive performance in English-to-
Arabic post-editing, particularly in producing fluent, coherent, and stylistically
consistent text. Its conversational design enables efficient and consistent editing
across various domains. Nonetheless, the model faced challenges in handling
grammatical and syntactic nuances, domain-specific idioms, and complex
terminology, especially in medical and sports contexts. Overall, the study
highlights the potential of ChatGPT-40 as a supportive tool in translation post-
editing workflows, complementing human translators by enhancing productivity
and maintaining acceptable quality standards.

KEYWORDS

post-editing, machine translation, ChatGPT-40, natural language processing, artificial
intelligence, LLMS
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Introduction

Machine translation (MT) has a significant role in facilitating
communication and enhancing global interactions. This role has
gained more attention in various contexts, driven by remarkable
natural language processing technology advancements that enabled
more efficient translation (Raj et al., 2023). However, MT outputs
must be post-edited to ensure their desired quality and meet
productivity standards. Translation post-editing (TPE) is a critical
step in the translation process that involves reviewing and
refining machine-translated content. Post-editing is not a recent
trend, and it emerged in the earlier days of MT (Vieira, 2019).
Recently, post-editing MT gained considerable interest as a
service and research topic due to the advancements in translation
technology. Post-editing implies correcting grammatical errors in
vocabulary, improving sentence structure, adjusting tone and style,
ensuring cultural appropriateness, and refining the translation to
align with the intended purpose and audience (Daems et al,
2013; Vardaro et al, 2019). Moreover, it allows for a more
customized and tailored approach to translation, as post-editors
can adapt the output to meet specific clients. According to
Allen (2001), post-editing is correcting and refining the machine-
generated translation (MGT) after translation from a source to a
target language.

There are several types of post-editing, each catering to the
number of corrections, efforts, and objectives required to achieve
the desired translation. An early study on post-editing typology
by Laurian (1984) proposed two types of post-editing: rapid
post-editing and conventional post-editing. The former involves
correcting the translated texts without paying attention to the
translation style, while the latter implies deep correction to produce
a human-like translation.

Allen (2003) suggests two types of post-editing: minimal and
complete PEs. Minimal PE is for quick review, focusing mainly on
critical errors and ensuring essential language accuracy, controlled
by limited time and budget. However, complete PE aims to perform
deep corrections closely resembling human translation standards.

van Egdom and Pluymaekers (2019) and Vieira (2017)
established four “light,
“moderate,” and post-editing quality

levels “minimal,
“full,

guidelines, the Translation Automation User Society (TAUS,

of post-editing:
precisely. For

2010) differentiates between two standards of expected target-text
quality: “good enough” quality and quality “similar or equal to
human translation” Indeed, these criteria almost correspond to
“light” and “full” post-editing, respectively (Massardo et al., 2016).
The TAUS guidelines stress that the level of post-editing depends
on the deliberate purpose of the text and the quality of the raw MT
output, making the target quality a more consistent factor for post-
editing guidelines. Post-editors have no strict instructions about the
issues they need to focus on. These instructions differ depending on
whether they aim for “good enough” or “human translation quality””
When machine translation (MT) errors impact meaning, for “good
enough” quality, the focus is on semantics and comprehensibility,
with less consideration given to syntactic or grammar. Conversely,
post-editors should address style, syntax, grammar, and formatting
issues when focusing on human translation quality. Additionally,
they should handle terms that need to remain in the original
language but may have been translated by the MT system.
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In MT, post-editing has two paradigms, including static and
interactive. In the former, the machine generates translation in the
first step and then edits it in the second. The latter implies real-
time collaboration between translators and MT systems (Vieira,
2019). In terms of these two paradigms, there are different findings;
for example, Langlais and Lapalme (2002), in their TransType
tool evaluation, evoked that interactive post-editing could lead to
reduced productivity by up to 35% compared to static editing.
Koehn et al. (2015) stated that interactive models with online
learning seemed to require less technical effort, with post-editors
becoming faster over time. However, it has also been proven that
interactive post-editing may not notably affect target-text quality
and could even result in errors (Underwood et al.,, 2014). Compared
to static post-editing, interactive post-editing may take longer but
result in higher-quality products (Green et al., 2014).

With the advent of advanced Neural Network systems, the
generated translation becomes more accurate and naturally
sounding (Qin, 2022). However, these translations still have
inaccuracies, errors, and inappropriate phrasing. It is a vital step
that bridges the gap between automated generated translation
and human editors and linguistic expertise to enhance translation
fluency, coherence, and linguistic appropriateness.

The collaborative interaction between artificial intelligence and
human intervention offers a cost-effective and efficient approach
to high-quality translation services in various domains where
translation quality is critical, especially for legal, medical, and
technical content. With the proliferation of these technologies,
research on large language models (LLMs) and linguistic analysis,
particularly in fields such as second language acquisition (Albuhairy
and Algaraady, 2025), learner error analysis (Al-Garaady and
Mahyoob, 2023), natural language processing (Mahyoob and Al-
Garaady, 2018; Mahyoob, 2020), and academic writing development
(Mahyoob et al., 2023), has become increasingly critical.

Though human post-editors of MGTs show high-quality
products, their work is time-consuming, and they challenge
both balanced speed and quality. This research investigates how
ChatGPT-40, an advanced language generation model, can enhance
translation post-editing productivity, efficiency, and quality across
various domains and how human editors benefit from ChatGPT-40
in their TPE tasks.

Research question

This work attempts to answer the following research questions
as a starting point for exploring the role of ChatGPT-4o in various
aspects of post-editing machine-generated translations.

1. Can ChatGPT-40 integration maintain human translators’
productivity, consistency, and efficiency instead of a human
editor during post-editing?

2. To what extent can ChatGPT-40 improve the overall quality of
MGT through post-editing?

3. How does ChatGPT-40’s performance in post-editing compare to
traditional post-editing methods?

4. What challenges and limitations are encountered when using
ChatGPT-4o for post-editing in certain domains? Moreover, to
what extent can these challenges be alleviated?
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5. How much does using task-specific prompts improve ChatGPT-
4o performance in PE?

Literature review

MTPE is the process of reviewing and correcting errors in
machine-generated translations. This section provides an overview
of the literature on translation post-editing and integrating language
models like ChatGPT-40 in translation workflows. It discusses
the challenges faced in translation post-editing, advancements in
machine translation PE technologies, and the role of artificial
intelligence in improving translation PE quality.

(2019) with
translations created from scratch in the Welsh text. He said

Screen compared post-edited translations
post-translation editing was not found to improve. The two types
of products are mainly similar in terms of comprehension and
readability, which supports the use of MT in professional settings.

A study conducted with software instructions translated from
English to Brazilian Portuguese found that even minimal post-
editing significantly increased the usability of MT-based texts.
The improvements were measured using eye-tracking metrics and
self-reported satisfaction, highlighting the value of post-editing in
enhancing text comprehensibility and accuracy (Castilho et al,
2014).

Koneru et al. (2023) made an Initial adjustment for direct
translation. Therefore, researchers propose to use LLM as an
automatic post editor (APE) instead. With Low-Rank-Adapter
fine-tuning, they refined sentence- and document-level indicators.
The ContraPro test achieved an accuracy of 89% in Anglo-
German translations. In addition, including human corrections
in document-level translations reduced the need for corrections
in translation. Raunak et al. (2023) used GPT-4 for automatic
post-editing in language pairs. It was found that there was an
improvement in the accuracy and reliability of the WMT-22
English-Chinese, English-German, Chinese-English, and German-
English tasks. However, sometimes GPT-4 might cause incorrect
edits that demand caution in utilization. Chen et al. (2023)
recommend improving iterative translation using large-scale
language models for advanced translation and post-editing,
especially for complex structures. However, this method showed
limited scalability and computational challenges. Moreover, the
model relies heavily on pre-trained models.

IntelliCAT, introduced by (Lee et al., 2021), is an interactive
translation interface designed to improve post-machine translation
editing. It uses sentence-level and word-level quality estimation
(QE) to predict sentence quality and identify errors for
improvement. The translation recommendation model includes
word and phrase alternatives, while word alignments preserve
the original document format. Experiments show that these
features advance translation quality. User studies confirm that
post-editing is 52.9% faster than translation from scratch. Turchi
et al. (2017) explored machine translation (MT) improvements
using human post-editing within a Neural Machine Translation
(NMT) framework, highlighting the benefits of batch method
customization. Continuously, It enables real-time optimization of
new users and domains at low computational cost. Various online
learning strategies are tested to refine existing models based on
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input data and after modification. Evaluating two language pairs
showed a significant improvement over the static model.

Data collection and methodology

Data collection

To conduct our exploration, this research utilized translation
data comprising source texts (English) and their corresponding
Arabic MGTs produced by a neural network-based machine
translator (Google Translator). This dataset spans different
domains to simulate real-world translation scenarios, including
sports, medical, business, idioms, and literary texts, to ensure a
comprehensive assessment of ChatGPT-40’s potential across various
domains. As detailed in Table 1, the source texts were collected
from several online platforms such as UN news!, Newatlas?,
Saudigazette®, and American literature*, comprising 6,203 English
words (ws). Their Arabic translations produced by Google Translate
[GT (A)] amount to 5,582 ws, while the human post-editing version
[H-PE(A)] includes 5,393 ws, and the ChatGPT4o post-editing
version [C- PE(A)] contains 5,451 ws.

Experiment/method

In this experiment, first, the collected texts undergo initial
translation from English into Arabic using a neural network-
based machine translator (Google translator) to establish a baseline
for comparison. Second, the generated translations are post-
edited in two modes, first by two professional human translators
and then using ChatGPT-40 as a post-editing tool. ChatGPT-
40 is requested to improve and revise the MGT to explore
and assess the extent of ChatGPT-40’s capabilities in performing
or enhancing post-editing machine-translated content. The two
human translators were given different sets of data to post-edit to
boost the diversity of post-edited translations and interpretations
that reflect the Arabic richness and capture a broader range of
editorial perspectives.

Third, a panel of three human editors (HEs) manually validated
and evaluated the improvements and suggestions provided by
human translators and ChatGPT-4o. Fourth, we compare the quality
of the post-edited content by human translators and the quality
of the post-edited content by ChatGPT-40 based on a set of
evaluation metrics using T-test statistics. In addition, we compare
the performance of ChatGPT-4o across different domains to assess
its domain adaptation capabilities. Indeed, knowing ChatGPT-
40’s ability to provide post-editing for machine translation would
help make a clear decision to incorporate ChatGPT-40s post-
editing service for various stakeholders who benefit from post-
editing translation.

https://news.un.org
https://newatlas.com/robotics/robot-designed-to-perform-breast-examination

https://www.saudigazette.com.sa/article/609348

A W DN =

https://americanliterature.com/
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TABLE 1 Statistical description of the dataset.

10.3389/frai.2025.1526293

Texts Sports Business Medical Literary Total
Source (E) 1,580 ws 1,498 ws 1,539 ws 1,586 ws 6,203 ws
GT (A) 1,357 ws 1,283 ws 1,298 ws 1,564 ws 5,582 ws
H-PE (A) 1,332 ws 1,261 ws 1,258 ws 1,542 ws 5,393 ws
C- PE (A) 1,351 ws 1,268 ws 1,273 ws 1,559 ws 5,451 ws

TABLE 2 A sample of MGT, ChatGPT-40's post-editing of MGT, and human's post-editing of MGT for business text.

S The latest estimate is lower than the 3.1 percent GDP growth projected by the IMF in May
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TABLE 3 A sample of MGT, ChatGPT-40's post-editing of MGT, and human'’s post-editing of MGT for idioms.

The shared interests provide a strong foundation for friendship, as friends engage in meaningful

conversations and activities they enjoy, as said in “Birds Of A Feather Flock Together”
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Data analysis and evaluation

Evaluation measures for ChatGPT-40 and
human post-editing of MGT across multiple
domains

In this section, we analyze the impact of ChatGPT-40
on machine translation post-editing (MTPE). Based on this
analysis, we attempt to identify patterns, challenges, and areas
for improvement. We comprehensively compare the different
post-editing modes (professional translator’s post-editing and
ChatGPT-40 post-editing) in terms of several key evaluation
measures, including fluency, accuracy, efficiency, terminology,
consistency, coherence, grammar, culture, and appropriateness.
Generally, these criteria and standards are used to evaluate and
improve the quality of translation as a machine product. Our
analysis offers insights into ChatGPT-40’s ability to complement
human expertise in post-editing, highlighting its strengths
and limitations in enhancing the quality and efficiency of
translation workflows.

After it is edited from a machine translation (MT) output, a
text’s linguistic smoothness and naturalness improve. These metrics
focus on readability, grammar, syntax, and flow. As illustrated in
Table 2, in terms of fluency (concentrate on readability, grammar,
syntax, and flow), in the sentence extracted from a business
text, the MGT version (a Google translate’s generated translation)
looks straight up, simple, and lacks fluency but still work as
evaluated by HE. However, to some extent, when prompting
ChatGPT-40 to evaluate the machine-generated translation MGT
sentence structures for the source version (S), the ChatGPT-40E
version follows the natural flow of language compared to MGT,
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though it is not perfect like that in the HE version. ChatGPT-
40E provides a contextual version due to its conversational nature,
enhancing the performance of translation studies. For accuracy,
the ChatGPT-40 post-edited version shows proper punctuation
usage. There are no spelling errors or typos, but there are slight
errors in the translation grammar, including functional words usage
such as articles as in ChatGPT-40E phrase/“ sl il §gaiall?
“IMF”/, where it adds the article/“the;’J" /in the word “Gsiall”
inappropriately though it is correct in MGT version. However, the
post-edited version by humans looks more cohesive as it maintains
the coherence between sentences and paragraphs compared to the
original version translated by Google Translate and the post-edited
version by ChatGPT-4o.

Table 3 shows the output of the ChatGPT-40 post-editing of the
literary text containing an idiomatic expression. It provides effective
post-editing, showing substantial grammar, sentence structure,
and readability improvements. However, it failed to maintain the
idiomatic meaning for an Arabic audience. It provides accurate,
unique literary phrases specific to the Arabic language that often
carry cultural, historical, and contextual significance. As shown
in the example below, both MGT and ChatGPT-40E provide
Arabic literary translation Ge "gexi skl for the idiom “Birds
Of A Feather Flock Together” that is postedited by the human
translator as/“Birds Of A Feather Flock Together, “ e sl
&8 Wi/ and reflects a common challenge in Al's handling of
nuanced and culturally specific elements and the need for Al to
evolve beyond essential linguistic translations to encompass cultural
interpretations, demanding more sophisticated training datasets
and model enhancements.

As illustrated in Table 4, in the case of the medical terms,
ChatGPT-4o failed to post-edit and provide the accurate Arabic
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TABLE 4 A sample of medical MGT, ChatGPT-40's post-editing of MGT, and human'’s post-editing of MGT medical texts.

If a person with astig

matism experiences a healthcare error, it

ay affect their overall wellbeing

and exacerbate existing vision issues
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TABLE 5 A sample of MGT, ChatGPT-40's post-editing of MGT, and human's post-editing of MGT for a literary text.

I had an elderly neighbor whose conversations were mind-blowing. He told me one day when his

gathering was devoid of people, and no one was sitting with us: “Oh my son, a secret has been
stirring in my heart for forty years regarding what has been discussed during this lengthy period
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TABLE 6 Sample of MGT, ChatGPT-4o0 post-editing of MGT, and human post-editing of MGT for sports text.

Tsuyoshi Kitazawa, a former member of Japan'’s national football team, stressed the role of sport in

building bridges: “whatever you feel in the Games is made possible because the world is playing as

one team,” he said
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equivalents for some medical terms; for example, ChatGPT-40E
provided literary translation for the phrase “healthcare errors”
as “Guaaall de ) oUail” of which the correct Arabic equivalent
is “4ula ¢Ua” In some cases, ChatGPT-40E failed to provide
any translation for these terms, such as the word “astigmatism..
Instead, it gives transliteration for the term as “a ileaiu¥)” while
the correct Arabic translated term is “4,5Y) ” as edited by HE. In
addition, there is a linguistic agreement error as seen in the anaphor
(possessive pronoun “their”) in the phrase/“their health,” “a¢is/
which should be/“his health,” “4i~="/ since this phrase refers to
the singular antecedent/“a person,” “uasill”/. However, the anaphor
generated by MT agreed with its antecedent. Compared to human
editors, ChatGPT-4o failed to ensure and improve consistency in
terminology and medical terms throughout the text.

ChatGPT-40 struggles to produce an efficient translation in
the case of literary texts, as seen in Table 5 below. There is a
grammatical error where the singular noun “a secret” in the phrase
“a secret has been ...” is translated inappropriately to plural noun
[“secrets,” “,l_I”/which should be translated to the Arabic singular
noun “_” Also, the syntactic structures look inferior compared to
MGT and HE versions. ChatGPT-40E, in the case of literary texts,
shows significant issues in using correct and consistent terms and
looks poor in its language smoothness and naturalness, cohesion,
grammar, cultural aspects, and terminology handling.

Table 6 shows that ChatGPT-4o failed to appropriately edit the
phrase ( in building bridges, “_s«sll <l #”) and provide the same
MGT version (literal translation for this phrase). However, the HE
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» <«

version/“in building bridges,” “Jwal sl ) sus ¢l #”/demonstrates
a deeper and more accurate understanding and use of consistent
terms. All these emphasize using ChatGPT-40 with caution in the
translation industry because the HE edition emphasizes promoting
proper contact and understanding between people, which is often
implied when discussing “Building Bridges.” This version not only
maintains the source phrase’s true meaning but also enriches the
meaning by adding a more nuanced layer of meaning that is
more appropriate and resonant for the reader. In the case of the
phrase/“whatever you feel in the Games,” “Js> <ol Jsmy L S
Lual )l Cal¥P/, both MGT and ChatGPT-40 provide unnatural and
inconsistent translation version/clal¥) & 43 =i L < 4y i la S
1¥1/compared to that provided by HE version.

This demonstrates that ChatGPT-4o fails to communicate the
deeper intent to the audience effectively. ChatGPT-40 provides
accurate numbers, information, and proper names. However,
concerns include sentence structure using compound words,
function words, and word ordering, as seen in Table 6. All of this
highlights the careful use of ChatGPT-4o in the translation industry.

Prompt engineering for enhancing
ChatGPT-40 outcomes

Mostly, it is noticed that the performance of ChatGPT-4o0
becomes more meaningful and more profound when we specify
the needs and provide context, background, and a comprehensive
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TABLE 7 ChatGPT-40 post-editing with business texts after prompt engineering.

S The latest estimate is lower than the 3.1 percent GDP growth projected by the IMF in May
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TABLE 8 ChatGPT-40 outcomes in literary texts after prompt engineering.

I had an elderly neighbor whose conversations were mind-blowing. He told me one day when his

gathering was devoid of people, and no one was sitting with us: “Oh my son, a secret has been
stirring in my heart for forty years regarding what has been discussed during this lengthy period
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TABLE 9 ChatGPT-4o0 post-editing in medical after prompt engineering.

If a person with astigmatism experiences a healthcare error, it may affect their overall wellbeing

and exacerbate existing vision issues
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input “prompt” For example, giving these details, “post-edit the
Arabic generated translation below from the linguistic perspective,
take the role of a professional grammar corrector, identify business
terms, avoid changing meaning as much as possible” to the prompt
enhances the tool’s outputs. This can be seen in the improvements in
ChatGPT-40E 2 in Table 7, where the article “the, J” is appropriately
used compared to that in the ChatGPT-40E 1 in the phrase/J sxial
al < sl “IMPF”/.

When we give these details “post-edit the Arabic generated-
translation below from the linguistic perspective, take the role of a
professional grammar corrector, identify idiomatic phrases, avoid
changing meaning as much as possible” to the prompt of ChatGPT-
40 in the literary texts, ChatGPT4o corrects its translation and
post-editing. The yield results were more natural and accurate, as
seen in ChatGPT-40 E 2 in Table 8, which shows improvement
in the sentence flow compared to ChatGPT-40E 1 due to some
grammatical and stylistic adjustments. For example, the Arabic
equivalent of the word “elderly” looks more fluent in the ChatGPT-
40 E 2 version as “(~«” compared to that in the ChatGPT-40 E 1
“omdl B 27 Also, the grammatical mistake in the ChatGPT-40 E
1 version is spotted in the ChatGPT-40 E 2 version, as the word
“secret” is translated to a singular noun “_~” instead of plural noun
“ )7 like that in ChatGPT-40 E 1.

ChatGPT-40E 1, in Table 9, displays the result of ChatGPT-
40 outcomes when the prompt is “post-edit” At the same
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time, ChatGPT-40E 2 shows the ChatGPT-40 outcomes with a
comprehensive prompt, “post-edit the Arabic generated translation
below from the linguistic perspective, take the role of a professional
grammar corrector, identify medical terms, avoid changing
meaning as much as possible” As seen in ChatGPT-40E 2, the
tool still shows a deficiency in providing the correct Arabic
medical translated terms such as “4,5¥” and “wb Wi for
the English medical terms “astigmatism” and “healthcare,” even
though the tool is provided with a comprehensive prompt. The
output in ChatGPT-40E 2 looks identical to that provided without
prompt engineering except for the omission of the article “the,
J” in words “person, u=3&” and “affected, —bes” We notice
grammatical and stylistic improvements in the ChatGPT-40E 2
version compared to the ChatGPT-40E 1 version, for example, the
linguistic agreement error in the anaphora (possessive pronoun
their’) in the phrase/“their health,” “a¢i>~="/is correctly translated
to/“his health,” “4is.2”/,

In Table 10, the ChatGPT-40 E 2 version shows an enhanced,
fluent, and natural post-editing that highlights the role of prompt
engineering in raising the tool’s advanced linguistic capabilities.
This version shows an accurate idiomatic expression, particularly
after adding a perspective and a contextual background to our
prompt. Interestingly, ChatGPT-4o delivers a precise and culturally
appropriate Arabic translation, “adi WSl e skl for the English
idiom “Birds Of A Feather Flock Together”. However, the tool failed
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TABLE 10 ChatGPT-40 post-editing with idioms after prompt engineering.

The shared interests provide a strong foundation for friendship, as friends engage in meaningful

conversations and acti

ies they enjoy, as said in “Birds Of A Feather Flock Together”
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TABLE 11 ChatGPT-40 post-editing with idioms after prompt engineering.

Tsuyoshi Kitazawa, a former member of Japan'’s national football team, stressed the role of sport in

building bridges: “whatever you feel in the Games is made possible because the world is playing as
one team,” he said
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TABLE 12 Human evaluator’s scores for ChatGPT-40 and human post-editing performance across various.

EV1 ChatGPT-40 4 4 5 3 3 2 4 4 3
Human 5 5 2 5 4 5 5 5 5
EV2 ChatGPT-40 3 4 5 3 2 2 4 3 4
Huma 5 5 2 5 5 5 5 5 5
EV3 ChatGPT-40 4 3 5 3 3 3 4 3 3
Huma 5 5 3 5 5 5 5 5 5

earlier in providing the appropriate Arabic equivalent idiomatic
expression, as shown in ChatGPT-40 E 1.

In Table 11, the ChatGPT-40E 2 version resulted after providing
the tool this enhanced prompt, “post-edit the Arabic generated
translation below from the linguistic perspective, take the role
of a professional grammar corrector, identify sport terms, avoid
changing meaning as much as possible” However, the structure of
this version looks better; like ChatGPT-40E 1 version, it failed to
provide a suitable translation for the phrases, /“in building bridges,”
¢ dual gl s el (&7 and / “whatever you feel in the Games,”
Ll GV Jss @oklas Jssae W JS/ that highlights the limited
role of ChatGPT4o in providing satisfied translation in specific
sport-terms as some expressions require deep understanding.

It is worth mentioning that when the tool was asked to
spot mistakes and explain the corrections it made, it did not
identify all the errors from the first prompt and often lacked in-
depth explanations. Moreover, at times, it hallucinated, providing
incorrect or irrelevant details. Thus, when the tool is applied
to medical, legal, financial, or technical texts, this adequate
performance, even slight errors or ambiguity, would cause damage
consequences. Therefore, while the tool is valuable, it requires care
and validation in high-stakes contexts.
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Results and discussion

ChatGPT-40s  post-editing and human post-editing
performance were evaluated by three human evaluators (EV1,
EV2, EV3) across several linguistic aspects: Fluency, Accuracy,
Efficiency, Terminology, Consistency, Cohesion, Syntax, Grammar,
and Cultural for performing the quantitative and qualitative
analysis. The results are measured on a 5-point Likert scale where 1
= Poor, 2 = Fair, 3 = Good, 4 = Very Good, and 5 = Excellent. After
collecting the evaluators’ rating scores, we applied a paired t-test
for our statistical analysis because of its effectiveness in comparing
differences between ChatGPT-40 and human post-editing and
determining whether the observed differences were statistically
significant, providing a reliable and quantitative assessment of
the comparative performance, the average score for each aspect is
depicted in Table 12.

The box-and-whisker plot in Figure 1 shows the average ratings
for ChatGPT-40 and human post-editing across nine evaluation
metrics, showing that human post-editing consistently outperforms
ChatGPT-40 in terms of performance, with significantly higher
ratings in all categories except efficiency. This highlights the
superiority of human editors in maintaining quality, accuracy,
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FIGURE 1

ChatGPT-40 and human post-editing across nine metrics. Human post-editing outperforms in all categories except efficiency, with higher medians
and tighter interquartile ranges (IQRs) (orange boxes), indicating superior consistency in quality, accuracy, and fluency. ChatGPT-4o0 (blue boxes)
shows lower ratings and wider IQRs, reflecting variability in handling nuanced language, terminology, and grammar. While ChatGPT-40 maintains
fluency and coherence due to its conversational design, it struggles with technical terms and syntactic precision. Its strength lies in speed, making it
useful for time-sensitive tasks. However, human expertise remains essential for high-quality translations requiring cultural and linguistic nuance.

cultural appropriateness, and fluency in translations, as seen from
the higher median lines and smaller interquartile ranges (IQRs) in
the orange boxes for human post-editing. The IQR indicates low
variance and better overall performance. In contrast, ChatGPT-40
shows lower ratings across these aspects with larger IQRs in the blue
boxes, suggesting more variability and lower overall performance
than human performance. This reflects a common challenge in
ChatGPT-40's handling of nuanced and culturally specific elements
and their idiomatic meaning. It shows some deficiency in language
smoothness and syntax, such as agreement errors, word order,
and grammatical mistakes related to articles used, as seen in the
analysis section.

In addition, ChatGPT-40 shows significant issues in the use
of correct and consistent terminological and technical terms and
failed to effectively post-editing. It still appears fluent (Maintaining
logical flow and coherence between sentences and paragraphs),
precise, consistent in style and tone, and readable throughout
the content due to ChatGPT-40s conversational nature. Indeed,
ChatGPT-40 has the potential for rapid processing and editing,
making it a valuable tool for scenarios where speed is critical. While
ChatGPT-40 excels in speed and efficiency, human post-editing
remains crucial for achieving high-quality translations across these
critical aspects.

The heat map in Figure 2 interprets the ¢-statistic and p-value
values for each aspect when comparing ChatGPT-40 and human
post-editing. The p-value gradient in the heatmap (represented in
the bottom half of the heatmap) highlights statistical significance,
with green indicating significant differences (p < 0.05). Most
aspects are shaded green, confirming the reliability of the observed
differences, except for fluency, which is shaded yellow. The ¢-
statistic values are represented in the heatmap’s top half, showing
the direction and magnitude of differences in ratings. The ¢-statistics
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indicate that human post-editing generally outperforms ChatGPT-
40 in most aspects, such as accuracy, terminology, consistency,
cohesion, syntax, grammar, and cultural appropriateness, all
showing significant negative values (ranging from —3.46 to —8) and
corresponding p-values below 0.05, confirming that the differences
are not only substantial but also statistically significant. However,
regarding efficiency, ChatGPT-4o is rated significantly higher, with
a positive ¢-statistic of 8.00 and a p-value of 0.015, indicating that it
is more efficient than human post-editing. The only aspect where the
difference is not statistically significant is fluency, with a ¢-statistic of
—3.5 and a p-value of 0.074, suggesting that both methods perform
similarly. Overall, the heatmap underscores ChatGPT-40’ strength
in efficiency but highlights human post-editing’s superiority in
maintaining quality and accuracy across most aspects.

This study shows that, to some extent, ChatGPT-40 plays
an influential role in improving the post-editing of machine-
generated translations (MGT) in various domains attributed to
its potential to generate fluent and natural translation reflecting
relevant context and literature that is relatedly supporting the
findings of Jiao et al. (2023) and Hendy et al. (2023). According to
Peng et al. (2023), adapting ChatGPT-40 with optimized prompts
and context improves its performance and makes it more suitable
for specialized translation tasks. However, ChatGPT-40’s results
may be similar to Google Translate or inaccurate without such
optimization. Although ChatGPT-40 cannot provide completely
accurate translations without human intervention, such integration
would significantly reduce costs, time, and effort and provide
considerable improvements and suggestions. Our analysis found
that ChatGPT-4o can effectively contribute to post-edit generation
and help identify translated content that may require further
consideration or refinement. The results generated by ChatGPT-
40 eliminate the need for skilled linguists to manually review
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FIGURE 2

0.015

T-statistics and p-values comparing ChatGPT-40 and human post-editing. The p-value gradient (bottom half) shows statistical significance, with
green (p < 0.05) indicating meaningful differences. Most aspects are green, except fluency (yellow). The top half shows t-statistics, revealing that
human post-editing outperforms ChatGPT-40 in accuracy, terminology, consistency, cohesion, syntax, grammar, and cultural appropriateness (t =
—346 to —8, p < 0.05). However, ChatGPT-40 excels in efficiency (t = 8.00, p = 0.015). Fluency shows no significant difference (t = —3.5, p = 0.074).
The heatmap highlights ChatGPT-40's efficiency advantage but confirms most aspects of human post-editing’s superior quality.
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TABLE 13 Inter-annotator agreement (IAA) scores.

Human
post-edits

Metrics ChatGPT-40

post-edits

Average pairwise 0.85 0.99
Spearman’s rho

Fless Kappa 0.78 0.95
(quadratic weights)

the text, catch errors, give appropriate feedback, and ensure
cultural appropriateness (Khan, 2024; Yang et al., 2023). To assess
to which extent the three evaluators agree in their rating and
thus ensure their reliability, we calculated the Inter-Annotator
Agreement (IAA) using Spearman’s rank correlation coefficient for
pairwise comparisons and Fless’ Kappa with quadratic weighted
for overall agreement as illustrated in Table 13. The evaluators
exhibit a near-perfect agreement for human post-editing, with
pairwise Spearman’s rho value of 0.99 and Fless’Kappa value of 0.85.
For ChatGPT4o editing, the evaluators’ agreement with pairwise
Spearman’s rho value is 0.85, and the Fless’Kappa value is 0.78,
which means there is a substantial agreement among the three
human evaluators.
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The values of IAA indicate a high level of reliability across the
three evaluators (EV1, EV2, and EV3), stressing the robustness of
our evaluation process of both human editors and ChatGPT4o as
an editor.

Conclusion

This research provides valuable insights into ChatGPT-40s
potential to enhance the MGT post-editing service and its overall
role in assisting human translators with post-editing tasks in various
domains. This study evaluates the post-editing performance of
ChatGPT-40 compared to human editing based on an evaluation
by three human raters on multiple metrics. The results show
that although human post-editing outperforms ChatGPT-40 in
most evaluation metrics, the latter provides a fluent translation,
which promises to improve quality, work efficiency, and translation
workflows in various fields. Additionally, the study found that
ChatGPT-40’s detailed guidance includes clear task instructions,
contextual information, and a description of the desired results
that will help improve ChatGPT-40’s functionality. Future research
may explore ChatGPT versions’ use within professional translation
services, especially in enhancing post-editing workflows, addressing
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the practical challenges, and identifying strategies to overcome
these obstacles. Additionally, domain-specific fine-tuning of large-
scale language models (LLMs) using specialized translation datasets
needs exploration. Furthermore, creating and using diverse datasets
that reflect a broader spectrum of Arabic dialects and text
complexities to improve the generalizability and robustness of LLMs
in translation tasks.
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Arabic stance detection has attracted significant interest due to the growing
importance of social media in shaping public opinion. However, the lack
of comprehensive datasets has limited research progress in Arabic Natural
Language Processing (NLP). To address this, we introduce ArabicStanceX, a
novel and extensive Arabic stance detection dataset sourced from social media,
comprising 14,477 tweets across 17 diverse topics. Utilizing the transformer-
based MARBERTv2 model, we explore stance detection through Multi-Topic
Single Model (MTSM) strategies, achieving a promising F1 score of 0.74 for
detecting ‘favor and ‘against’ stances, and 0.67 overall. Our experiments highlight
the model's capabilities and challenges, particularly in accurately classifying
neutral stances and generalizing to unseen topics. Further investigations using
zero-shot and few-shot learning demonstrate the model's adaptability to
new contexts. This study significantly advances Arabic NLP, providing crucial
resources and insights into stance detection methodologies and future research
directions. The dataset is publicly available?.

KEYWORDS

stance detection, Arabic language, opinion mining, social media analysis, Arabic NLP

1 Introduction

The digital era, marked by rapid technological advancements, constantly redefines
our communication methods. New social media platforms emerge daily, promoting
widespread connection and opinion sharing. Currently, over 58% of the global population
uses social media, spending an average of 2-3 h online each day (Al Hendi, 2024).

A platform of significant interest to researchers is X.com (formerly Twitter), renowned
for its ability to facilitate opinion expression. The diverse information within tweets
provides valuable insights into public stance and behavior, fueling interest in “opinion
mining” across fields such as Natural Language Processing (NLP) and social computing.
The primary goal is to develop automated methods for measuring public opinion,
supplementing traditional surveys.

Stance detection, a notable subfield of opinion mining, focuses on identifying whether
an author’s viewpoint in the text is supportive, opposing, or neutral toward a specific
topic, such as an individual, legislation, or event. This task is crucial for applications like
social media monitoring, opinion mining, and political analysis. For example, the tweet
“Handguns should be banned in the US” illustrates a supportive stance on gun control.

1 https://github.com/AliAlkhathlan/ArabicStanceX and https://huggingface.co/datasets/Faris- ML/
ArabicStanceX.
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With the proliferation of online platforms for sharing opinions,
NLP research in stance detection has grown substantially. A
pivotal development was the release of a stance detection dataset
by Mohammad et al. (2016). Recent advancements in NLP and
deep learning, particularly the development of transformer-based
models like BERT (Bidirectional Encoder Representations from
Transformers) (Devlin et al., 2019), have significantly enhanced
stance detection capabilities. BERT’s bidirectional fine-tuning
approach allows it to understand the context of words within a
sentence, making it highly effective for a wide range of NLP tasks.

Despite BERT’s success in many languages, applying such
models to Arabic text presents unique challenges due to the
language’s complex morphology, dialectal variations, and rich
contextual semantics. Most stance detection research has focused
on English due to the abundance of available datasets. However,
other languages, like Arabic, have received less attention, with
Arabic stance detection datasets being limited in terms of topic
and diversity. This lack of comprehensive datasets represents a
significant gap in NLP research.

This research aims to advance Arabic stance detection by
introducing ArabicStanceX, a comprehensive and diverse dataset
that can serve as a benchmark for a wide range of language models.
To demonstrate its effectiveness, we evaluate it using MARBERTV2,
a strong Arabic-specific baseline. It addresses the gap in available
datasets by developing a comprehensive and diverse Arabic
stance detection dataset from X.com tweets, called ArabicStanceX,
focusing on Saudi Arabia due to its high X.com usage and active
social media discussions. The number of X.com users in Saudi
Arabia reached 5 million in 2012 and has since grown by 160%,
reached ~13 million users by 2020 (Simsim, 2011). Addaitionally,
recent legislation has sparked extensive discussions and debates
among Saudis on social networks. While X.com is also widely
used across other Arab countries, this study specifically focuses on
Saudi Arabia due to both the platform’s high penetration and the
sociopolitical context that has triggered extensive public discourse
in recent years. We acknowledge that this geographical focus may
limit the generalizability of findings to other regions. However,
the methodology and insights gained here lay the foundation for
broader extensions to other Arabic-speaking communities.

This study introduces ArabicStanceX, an extensive dataset for
Arabic stance detection comprising 14,477 instances across 17
topics, which will be publicly accessible to foster further research.
It focuses on developing adaptable models for unseen topics
using zero-shot and few-shot learning methodologies, evaluating
various fine-tuning strategies with the MARBERTvV2 model. The
research investigates Single Topic Single Model (STSM) and Multi
Topics Single Model (MTSM) approaches, enhancing MTSM with
additional contextual information. Using Fgyg and Fayg3 metrics,
it assesses precision and recall for “favor” and “against” stances.
Overall, the study makes significant contributions to Arabic NLP
by providing a valuable dataset, exploring model adaptability, and
evaluating effective fine-tuning and contextual strategies.

The rest of the paper is organized as follows: Section 2
reviews related work in stance detection, with a particular focus
on previous datasets and methodologies. Section 3 details the
methodology for developing the Arabic stance detection dataset,
including data collection and annotation processes. Section 4
describes the experimental setup, including the BERT model,
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its hyperparameter tuning, and performance metrics. Section 5
presents the experimental results and their analysis. Finally, Section
6 concludes the paper and outlines promising directions for
future research.

2 Related work and background

Stance detection research on social media platforms has gained
significant traction in recent years. This research can be categorized
into four main categories.

1. Target-specific: this category focuses on recognizing stances
toward specific, predefined targets. For example, it identifies
opinions related to particular issues like civil rights, where the
stance is evaluated directly against a clearly defined subject.

2. Multi-related targets: in this approach, a single model is used
to identify stances toward two or more interrelated subjects
within the same text. For instance, the model might analyze
the connection between civil rights and the death penalty,
recognizing how opinions on one issue might influence or
correlate with opinions on the other.

3. Cross-target: this category aims to develop classifiers that
can transfer knowledge between various targets using a
comprehensive dataset. The goal is to create models that are
versatile and can apply learned stances from one target to
different, previously unseen targets, thus enhancing the model’s
generalizability and adaptability.

4. Target-independent: this approach seeks to identify stances
in comments related to news articles, focusing on tasks like
confirming or denying the validity of the information or
predicting whether different arguments support the same stance.
This method does not rely on predefined targets but instead
evaluates stances based on the context of the discussion.

These classifications help structure stance detection research,
guiding the development of models and methods tailored to specific
needs and applications in analyzing and understanding public
opinions across various domains.

The field of stance detection received a significant boost with
the launch of a shared task and the subsequent release of a
publicly available dataset by Mohammad et al. (2016, 2017). This
dataset, sourced primarily from X.com and focusing on predefined
controversial topics like climate change and abortion, significantly
increased research output compared to previous years (AlDayel
and Magdy, 2021). Annotators on CrowdFlower categorized tweet-
topic pairs into three stances: favor, against, or neutral.

Since then, additional stance detection datasets have emerged,
catering to various domains. A substantial dataset of over 51,000
tweets focused on the financial domain was introduced in Conforti
et al. (2020). The TW-BREXIT dataset, presented in Lai et al.
(2020) contains 1,800 triplets of tweets related to the stance on
leaving, remaining, or having no opinion on Brexit. Similarly,
datasets addressing other controversial topics have been developed
(Hosseinia et al., 2020; Grimminger and Klinger, 2021; Li et al,,
2021; Gautam et al., 2020; Thakur and Kumar, 2021).

The investigation of stance detection has also expanded to
include target-independent approaches, garnering considerable
research interest. For instance, Gorrell et al. (2019) presented
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RumourEval, a claim-based dataset designed for stance
classification within the context of rumors. This dataset covers
a broad spectrum of events and categorizes tweets into four
distinct stances: support, deny, query, or comment. Similarly,
Hanselowski et al. (2018) proposed another dataset aimed at
assessing stances toward various news headlines. These efforts
are just a few examples, with additional datasets emerging in
this vein by Ferreira and Vlachos (2016); Bar-Haim et al. (2017).
Research has also explored cross-target stance detection (Allaway
and McKeown, 2020; Vamvas and Sennrich, 2020; Kaur et al.,
2016) and multi-target stance detection (Sobhani et al., 2017).
Furthermore, efforts have been made to extend stance detection
research to non-English languages, including Italian (Cignarella
etal., 2020) and Spanish/Catalan (Taulé et al., 2017).

While stance detection datasets abound for English, Arabic
resources remain scarce. A notable contribution is the fact-
checking corpus by Baly et al. (2018), which links 402 Arabic claims
to retrieved documents using a four-class stance scheme (agree,
disagree, discuss, unrelated), annotated via crowdsourcing. While
the dataset includes rationale spans for some labels, it is oriented
toward long-form claim-document verification rather than general-
purpose stance modeling. The Arabic News Stance corpus by
Khouja (2020) comprises 3,786 claims, annotated through a multi-
stage crowdsourcing process. It employs a three-class scheme
(agree, contradict, other), merging “discuss” and “unrelated” into
a single label to reduce ambiguity. While the dataset emphasizes
real news headlines and achieves high inter-annotator agreement,
it exhibits class imbalance and possible paraphrasing-induced
variability.

AraStance (Alhindi et al., 2021) offers 4,063 claim-article pairs
across multiple domains and Arab countries, labeled by graduate
annotators using a four-class scheme (agree, disagree, discuss,
unrelated). While its broad topical scope and refined annotation
process enhance reliability, the dataset remains rooted in formal
news sources and exhibits class imbalance. Expanding the options
for Arabic stance detection, Alturayeif et al. (2022) introduced
MAWAQIF, a multi-dimensional dataset containing 4,121 Arabic
tweets annotated for stance, sentiment, and sarcasm via Appen
crowdsourcing. The stance labels follow a target-specific three-class
scheme (favor, against, none), applied across three controversial
topics. Although MAWQIF supports multi-task learning and
includes dialectal variation, its coverage is limited to predefined
targets, and it exhibits class imbalance due to low representation
of neutral stances. Additionally, Jaziriyan et al. (2021) introduced
EXaASC, a target-based stance dataset containing 9,566 Arabic
tweet-reply pairs annotated by trained native speakers using
a three-class scheme. With over 180 unique targets, it offers
broad generalization potential, though its reply-based structure
introduces conversational bias and a high proportion of none
labels.

Table I summarizes these datasets, providing details on their
name, language, stance type, text source, and size.

Research in stance detection has advanced significantly, but
several notable gaps persist. Firstly, there is a scarcity of data in non-
English languages, with most research focusing on English datasets.
While efforts like AraStance and MAWGIF have contributed
to Arabic resources, they remain more minor and less diverse
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compared to their English counterparts. Secondly, existing models
often struggle with generalizability, especially when faced with
unseen topics or targets. Cross-target stance detection methods
aimed at enhancing adaptability to new targets with limited data are
still in development. Additionally, current models primarily focus
on explicit language, overlooking the role of context and implicit
cues in sentence analysis. Elements like sarcasm and humor can be
challenging for these models to interpret accurately.

To bridge these gaps, this study prioritizes creating more
prominent and varied datasets in Arabic and other languages.
Techniques like few-shot learning and domain adaptation have
the potential to enhance model generalizability. Furthermore,
incorporating contextual cues and sentence analysis can better
capture the subtleties of human language. Through these efforts,
stance detection can evolve into a more powerful tool for
deciphering public opinion across diverse linguistic and cultural
landscapes.

3 Methodology for ArabicStanceX
dataset development

In this section, we detail the methodologies utilized in
constructing the ArabicStanceX dataset. Our primary aim is to
create a comprehensive, multi-topic dataset in Arabic that sets itself
apart from previous datasets by offering extensive coverage and
suitability for addressing novel targets, thus expanding its potential
applications. Our research focused on data spanning from 2015 to
2021 in Saudi Arabia, a period marked by significant controversies.
The dataset was sourced from X.com, making it currently the
most exhaustive Arabic stance dataset available. The methodology
for developing the Arabic stance detection dataset is illustrated in
Figure 1 and described in the following subsections.

3.1 Data collection and filtering

Our initial step was to create a collection of pre-defined,
controversial topics that would elicit strong opinions. We achieved
this by first extracting all hashtags from X.com within Saudi
Arabia between 2015 and 2021. We then analyzed these hashtags
to identify potential topics. Specifically, we manually reviewed the
most frequently occurring hashtags and selected those that were
associated with real-world events, public policies, or debates that
sparked polarized public engagement. Hashtags were grouped into
candidate topics if they reflected a clearly defined issue with both
supportive and opposing discourse. Once a topic was identified, we
used its relevant keywords to find all related hashtags, ensuring a
broad spectrum of areas like sports, economy, education, health,
religion, and culture (details in Table 1).

To capture a diverse range of viewpoints, we collected hashtags
representing both supportive and opposing stances for each topic.
For instance, on the topic of women driving, we included hashtags
like “4WomenShouldDrive” and “#WomenShouldNotBeDriving.”
This approach ensured we captured a spectrum of opinions, from
agreement to disagreement.
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TABLE 1 Summary of stance detection datasets by name, language, source, and size.

Name Language Stance type Text source Size

SemEval2016-Task 6 (Mohammad et al., 2016, 2017) English Target specific X.com 4,163 tweets

WT-WT (Conforti et al., 2020) English Target specific X.com 51K

TW-BREXIT (Lai et al., 2020) English Target specific X.com 1,800 triplets of tweets

Procon20 (Hosseinia et al., 2020) English Target specific procon.org 6,094 of question and opinion

Hateful/offensive speech (Grimminger and Klinger, 2021) English Target specific X.com 3K tweets

P-stance (Allaway and McKeown, 2020) English Target specific X.com 21,574 tweets

MeTooMA (Gautam et al., 2020) English Target specific X.com 9,973 tweets

RumourEval (Gorrell et al., 2019) English Target independent | X.com and Reddit 8,574 posts

FNC-1 (Hanselowski et al., 2018) English Target independent News websites 75,385 instances and 2,587
news headlines

Emergent (Ferreira and Vlachos, 2016) English Target independent | Different websites 300 claims and 2,595 articles

IBM debater (Bar-Haim et al., 2017) English Target independent Wikipedia 2,394 claims

Vast (Allaway and McKeown, 2020) English Cross target News website 23,525 comments

X-stance (Vamvas and Sennrich, 2020) Italian German French | Cross target Smartvote.org 65K

Multi-target SD (Sobhani et al., 2017) English Multi target X.com 4,455 tweets

SardiStance (Cignarella et al., 2020) Ttalian Target Specific X.com 3,242 tweets

IberEval (Taulé et al., 2017) Spanish and Catalan Target specific X.com 11K

Arabic fact checking (Baly et al., 2018) Arabic Target independent | Verify and Reuters 402 claims and 3,042
documents

Arabic news stance (Khouja, 2020) Arabic Target independent News websites 3,786 pairs (claim, evidence)

AraStance (Alhindi et al., 2021) Arabic Target independent | Fact-checking websites | 4,063 pairs of claim and article

MAWGIF (Alturayeif et al., 2022) Arabic Target specific X.com 4,121 tweets

EXaASC (Jaziriyan et al., 2021) Arabic Cross-target X.com 9,566 samples, and 180 targets

After collecting the data, we organized it into distinct domains,
each containing specific topics with their associated hashtags and
tweets. We then performed several preprocessing steps:

1. Language filtering: we filtered out all non-Arabic tweets,
keeping only Arabic content.

2. Noise removal: we removed retweets, user mentions, URLs, and
duplicate tweets. To identify subtle duplicates, we employed
SentenceTransformer “paraphrase-xlm-r-multilingual-vl” by
Reimers and Gurevych (2019) to measure tweet similarity.
Tweets with a cosine similarity exceeding 0.95 were discarded.

3. Advertisement removal: analysis of a random sample of 1,000
tweets revealed that tweets with four or more hashtags were
predominantly advertisements. Consequently, we eliminated all
such tweets from the dataset.

Table 2 provides a list of the domains and their associated target
topics.

3.2 Data annotations
To ensure the accuracy of our stance labels, we partnered

with Wosom, a Saudi company staffed with native Arabic speakers
(Wosom, 2024). Wosom took on the responsibility of both
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conducting the annotations and upholding high-quality standards
throughout the process.

Before embarking on the main annotation task, we initiated a
pilot test using a smaller subset of the data. The purpose of this
pilot test was to confirm the clarity of our annotation guidelines and
validate the functionality of the annotation tools. We conducted the
pilot test through multiple iterations, reviewing a random sample
of 50 tweets from various topics after each iteration to identify and
address any potential issues.

Three native Saudi speakers were meticulously selected
based on their language proficiency, attention to detail, and
relevant domain expertise to annotate each tweet. Subsequently,
these annotators underwent rigorous training on the annotation
guidelines and the Wosom annotation platform. They were
provided with clear instructions and relevant examples to ensure
the accuracy of their annotations. Throughout the annotation
process, continuous feedback from reviewers and validators was
incorporated to maintain high-quality standards. Each of the
14,477 tweets was independently annotated by all three annotators
to ensure consistent labeling and enable majority agreement.

In instances of disagreement regarding the classification of a
tweet, an adjudication method was implemented. This involved
applying established criteria or engaging in group discussions
facilitated by a designated team member to reach a consensus.
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Data Collection

¢ Defines target domains

® Extracts Arabic hashtags from X.com

¢ |dentifies potential topics and related hashtags
SR @ Collects tweets associated with identified hashtags

Data
Annotation ®

» Defines stance labels ("favor", "against", "none"

¢ Trains annotators on guidelines and tools

¢ Annotators label tweet stances based on guidelines
Resolves disagreements between annotators

agreement)

Statistics distribution)

e Splits data into training and testing sets
¢ Calculates Fleiss Kappa score (inter-annotator

PEIEECERLIIES o Generates dataset statistics (number of topics, samples,

label)

Save Dataset

* Saves data in a suitable format (CSV, JSON)
¢ Includes relevant information (topic, tweet text, stance

FIGURE 1
Methodology—ArabicStanceX dataset creation.

The annotators categorized tweets related to each topic into
three distinct categories: “favor; “against or “none.” Tweets
expressing explicit or implicit support for the topic were labeled as
“favor;” while those opposing the topic in either direct or indirect
ways were labeled as “against.” Tweets that did not express a
stance or were unrelated to the topic, such as advertisements, were
categorized as “none.”

3.3 Dataset statistics

The ArabicStanceX dataset comprises 17 distinct topics with
a total of 14,477 samples. To gauge the agreement between
annotators, we computed an average Fleiss Kappa score of 0.54
across all topics. Subsequently, we partitioned the dataset into
training and testing sets, utilizing an 80:20 split for model
development and evaluation. Detailed statistics for individual
topics within both sets are presented in Table 3.

Figure 2 illustrates the distribution of topics within the dataset,
with a predominant focus on Religion/Culture (31.2%), followed by
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Education (19.1%), Economy (18.7%), Other (12.9%), and Health
(12.9%). Sports constitute the most minor portion at 5.04%.
Further granularity is provided in Figure 3, which delineates the
distribution of training and testing samples across these domains.
This meticulously organized structure underscores the datasets
diversity and its coverage of a wide array of topics. Such diversity
lays a robust groundwork for conducting thorough analyses and
developing resilient Arabic stance detection models. The structured
approach facilitates nuanced research and model training, thereby
contributing to advancements in Arabic computational linguistics.

4 Experimental setup

In evaluating the efficacy of the ArabicStanceX dataset,
we harnessed the power of the BERT (Bidirectional Encoder
Representations from Transformers) architecture across different
contexts. This section provides insights into BERT and the
particular models we utilized for assessment. Additionally,
we delve into the experimental configuration, encompassing
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TABLE 2 Details of the specific domains and their related topics.
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Domain Topic Topic description
Economy Aramco Share Selling Aramco made available a part of their total company shares, amounting to 1.5%, for
trading among the general public.
Al-Qiddiya Project Al-Qiddiya is a Saudi sport, cultural, and entertainment project which will be located in
the city of Al-Qiddiya, which serves as a high-quality entertainment and social destination.
Neom City The Kingdom of Saudi Arabia has planned to construct a novel urban district, Neom, in
the northwestern Tabuk Province.
Education Teaching Chinese Language at School The Saudi Ministry of Education has announced to include Chinese language in the
curriculum of Saudi public schools.
Improve School Curriculum The Saudi Ministry of Education unveiled a new educational system and curriculum that
comprises new subjects and a reduction in the number of classes for religious studies.
Online Learning Transitioning from conventional to online teaching during COVID-19
Health COVID-19 Vaccine The Saudi authorities are mandating that Saudi citizens receive the COVID-19 vaccine.
Vaccine Booster Dose The Saudi authorities are mandating that Saudi citizens receive the COVID-19 booster
dose.
Sports Prince Abdulaziz bin Turki Head of Sports Minister Appointing Prince Abdulaziz bin Turki as a minister of sports.
Prince Faisal bin Turki as Resignation from a Saudi club | Prince Faisal bin Turki as resignation from Al-nasser Saudi club.
Religion/ Cultural | Sex Education Implementing a sex education curriculum in Saudi public school.
Coexistence with Religions The peaceful coexistence and dialogue among religions.
Women driving Allowing women to drive in Saudi Arabia.
Mosques Speakers Limiting the utilization of mosque loudspeakers exclusively for the Adhan (the call to
prayer) while retaining their use within the mosque premises during prayer times.
Polygamous marriage Deciding whether to endorse the concept of simultaneous multiple spouses.
Other Domestic tourism Supporting domestic tourism in the Kingdom of Saudi Arabia
Military conscription The mandatory enlistment of Saudi citizens in the armed forces
hyperparameter adjustments, and elucidate the performance  detection, fine-tuning is essential. This process involves adjusting

metrics employed to measure the effectiveness of the models.

4.1 Model selection

This research leverages the power of Bidirectional Encoder
Representations from Transformers (BERT) as the cornerstone

BERT’s internal parameters specifically for this task. Essentially,
we train BERT to recognize the subtle ways in which stance is
expressed within Arabic text. Through fine-tuning, BERT becomes
adept at navigating the nuances of the Arabic language, offering
valuable insights into public opinion and sentence across diverse
topics and discussions.

We investigate different approaches for fine-tuning BERT
during this phase, as outlined below:

of the ArabicStanceX dataset model. Developed by Google Al,

BERT stands out for its exceptional ability to grasp the intricate
relationships between words within a sentence (Devlin et al., 2018).
Unlike traditional models that process text word by word, BERT
employs a bidirectional approach. It analyzes both the preceding
and following words, enabling it to capture the subtle nuances of
language with remarkable precision. This bidirectional processing
allows BERT to unlock the more profound meaning inherent in the
text. By pre-training on massive amounts of text data, BERT learns
to encode rich contextual information. This empowers it to excel
in various Natural Language Processing (NLP) tasks, including

sentiment analysis, text classification, and question answering.

In the realm of stance detection, where understanding an
author’s sentiment toward a topic is crucial, BERT’s bidirectional 2.
processing proves invaluable. It delves into the full context of
an Arabic sentence to discern whether the author’s stance is
supportive, opposing, or neutral regarding the embedded topic.
However, to harness BERT’s full potential for Arabic stance
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1. Single Topic Single Model (STSM): in the STSM strategy, we
employ a single input BERT structure. Initially, our focus was
on fine-tuning a dedicated BERT-based model for each specific
topic. This involved adjusting the weights of the pre-trained
model to understand better the overall context and unique
characteristics of each topic. The objective was to develop
specialized models tailored to individual subject areas. However,
we ultimately reconsidered this approach due to its consistent
failure to capture the “None” stance across various topics
effectively. This limitation revealed challenges in generalizing
the models and accurately representing less common classes
within single-topic analysis.

Multi Topics Single Model (MTSM): in the MTSM approach,
we simultaneously fine-tune a single BERT-based model across
all topics. This method allows the model to learn from a
diverse range of subject matters in a unified manner, potentially
improving its ability to discern commonalities and differences
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TABLE 3 Data statistics for each label across all topics, segmented into the training and testing sets.

Domain Topics # Training samples (80%) # Testing samples (20%) Total
samples
Favor Against None Total Favor Against None Total

Education Teaching Chinese language at 336 297 65 698 85 75 17 177 875
school
Improve School Curriculum 308 390 87 785 77 98 22 197 982
Online Learning 297 326 111 734 75 82 28 185 919

Health COVID-19 Vaccine 330 361 46 737 83 91 12 186 923
COVID-19 Vaccine Booster 280 372 105 757 70 93 27 190 947
Dose

Economy Aramco Share Selling 297 293 132 722 75 74 34 183 905
Al-Qiddiya Project 500 128 80 708 125 32 21 178 886
Neom City 406 193 133 732 102 49 34 185 917

Other Domestic Tourism 340 183 216 739 85 46 54 185 924
Military Conscription 328 324 106 758 82 81 27 190 948

Sport Prince Abdulaziz bin Turki 63 72 100 235 16 18 60 94 329
Head of Sports Minister
Prince Faisal bin Turki’s 100 61 123 284 70 16 31 117 401
Resignation from a Saudi club

Religion/ Women Driving 372 268 116 756 93 68 30 191 947

Culture
Mosques Speakers 140 428 106 674 35 107 27 169 843
Polygamous marriage 306 252 112 670 77 64 28 169 839
Sex education 324 336 113 773 81 84 29 194 967
Coexistence with religions 253 168 317 738 64 43 80 187 925
Total 4980 4452 2068 11500 1295 1121 561 2977 14477

among topics. By fine-tuning the model on a broader dataset, we
aim to enhance its generalization capabilities and its proficiency
in handling multiple topics within a single framework. MTSM
involves fine-tuning a combined dataset with variations in input
data structure:

e MTSM-None: this model utilizes a single input sequence
BERT architecture, fine-tuning the language model based
solely on the tweet content without additional contextual
information. The aim is to evaluate the model’s stance
inference capability from tweet text alone.

e MTSM-Keywords: employing a two-input-sequence
BERT architecture, this method incorporates topic-specific
keywords along with the tweets during fine-tuning.
Including keywords aims to enhance the model’s sensitivity
to topic-specific nuances.

e MTSM-Topic Description: to ensure the model adequately
captures topic-related nuances, we explore two strategies
for providing it with sufficient topic description. The
first strategy involves manually crafting a template-
based description for each topic, guiding the content of
the descriptions. The second strategy leverages GPT-4-
ChatGPT to automatically generate relevant descriptions
for each topic, potentially increasing scalability. An
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example of MTSM-Topic Description for teaching Chinese
language in Saudi schools is provided in Figure 4.

4.2 Experimental design

This section elucidates the specific variant of the BERT model
employed in our study, the process of hyperparameter tuning, and
the performance metrics utilized for evaluation.

4.2.1 BERT model used

In this study, we employed the MARBERIvV2 model,
renowned for its exceptional performance in handling various
Arabic dialectal tasks (Elmadany et al., 2022). The selection of
MARBERTvV2 was motivated by its state-of-the-art capabilities
in comprehending and processing the intricacies of Arabic
dialects, rendering it particularly well-suited for our stance
detection task across a wide array of topics sourced from social
media data. MARBERTvV2 was fine-tuned on our dataset, as
outlined in the Model section, utilizing the Multi Topics Single
Model (MTSM) approach simultaneously across all topics.
Additionally, we experimented with both single and two-input
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BERT architectures. In all our methodologies, we utilized the
BERT [CLS] token as the text representation embedding of the
input text.

4.2.2 Hyperparameters tuning

In optimizing the hyperparameters for the MARBERTv2 model,
our strategy aimed to fine-tune the settings to improve both
fine-tuning efficiency and model performance. We employed the
AdamW optimizer (Kingma and Ba, 2014), renowned for its
effectiveness in handling sparse gradients on noisy problems. Our
experiments utilized a constant learning rate of 2e-5, supplemented
by beta coefficients of 0.9 and 0.999, and an epsilon value of
le-8 to ensure robust convergence. To prevent overfitting, the
model underwent a weight decay of 0.001 and employed a dropout
rate of 0.1. The fine-tuning spanned 25 epochs with a batch size
of 32. Input sequences were restricted to 128 tokens for single
inputs and extended to 512 for composite inputs involving topics,
balancing computational resources with comprehensive contextual
understanding.

19.18%

M Education 31.23%
o Health

B Economy
Other 12.92%
 Sport

H Religion/Culture 5.04%

12.93% 18.71%

FIGURE 2
Distribution of samples across dataset domains.
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4.2.3 Evaluation metrics

Our evaluation of the baseline models centers on two
specialized metrics: Fay» and Fgyes scores. The Fayep score
represents a macro-average F1 score tailored for the “favor” and
“against” stance labels, deliberately excluding the “none” class due
to its minimal presence in our dataset. The Fayq» score is computed
using Equation 1.

F ‘favor +F against

5 1)

F avg2 =

Here, Fpzyor and Fagainst represent the F1 scores for the “favor”
and “against” classes, respectively. These scores are derived from
the precision and recall of each class as per Equations 2-3.

. TP
Precision = ——— (2)
TP + FP
TP
Recall = ——— (3)
TP + FN

We opted for the Fgygo metric to ensure alignment with other
stance detection studies that report their findings using the same
metric (Mohammad et al., 2016).

In addition to Fgyga, we present results using the Fgye3 metric,
which accounts for all stance labels, including “none”. The Fay3
score represents an average of the F1 scores for all three stances
and is calculated as per Equation 4.

Ffavor + Fugainst + Frone
3

F avg3 = 4)

By reporting both Fuy» and Fayes scores, our evaluation
provides a comprehensive reflection of the model’s performance in
stance detection, encompassing both specific and overall detection
capabilities.
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Distribution of class labels for training and testing sets across domains in the dataset.
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English Translation

Chinese language instruction in Saudi schools began in the second semester of the academic year 2020. This
decision follows an agreement between Saudi Arabia and China in February 2019 to develop a plan to incorporate
the Chinese language into all stages of public and university education in the Kingdom, a step that supports the two
countries' efforts to enhance their relations at all levels. Supporting this decision means agreeing with and endorsing
the teaching of the Chinese language in schools. However, opposing the decision means disagreeing with the
teaching of the Chinese language in schools.

(a)
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English Translation

Incorporating Chinese into Saudi schools is a strategic step that reflects the global trend towards strengthening
relations with China. In line with Saudi Vision 2030, this move aims to enrich the curriculum and open new horizons
for students in one of the world's largest economies. The process began in 2020 following an agreement between the
Kingdom and China to teach the language across various educational levels. This step contributes to strengthening
the cultural and economic ties between the two nations and empowers Saudi youth with diverse skills. Despite the
significant enthusiasm for this change, there are opposing views that point to challenges related to the complexity of

10.3389/frai.2025.1615800

the language and educational resources.

(b)

FIGURE 4

Example of manually crafted and ChatGPT generation of topic description for the topic of teaching Chinese language in Saudi schools. (a) Manually
crafted topic description. (b) opic description generation by ChatGPT-GPT4

5 Experiments and result analysis

We assessed the efficacy of the ArabicStanceX dataset,
MARBERTvV2, an Arabic Language Model, for stance detection
across a range of topics. Our evaluations encompassed various
fine-tuning approaches within the MTSM framework, including
scenarios involving few-shot learning. Performance of different
methods was gauged based on the ArabicStanceX dataset using
performance metrics outlined in Section 4.2.3.

5.1 Performance analysis of MTSM model

We performed a series of experiments using the MTSM model
with the ArabicStanceX dataset. The results are showcased in
Table 4 employing the MTSM-None approach. In this experimental
setup, the model fine-tunes a BERT-based language model solely
on tweets without supplementary context, leading to notable
performance variations across different topics. For example, the
model achieves high F1 scores for “favor” and “against” classes
in education-related topics like “Teaching Chinese Language at
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School.” However, scores are notably lower for topics involving
specific individuals, such as “Prince Abdulaziz bin Turki, Head of
Sports Minister;” suggesting challenges in stance detection when the
input lacks contextual cues. The average F1 scores indicate that
while the model performs adequately in some areas, it struggles
in contexts requiring a deeper understanding of sentence, as
evidenced by lower scores in complex social topics.

Table 4 shows the performance of the MTSM-None approach,
which uses BERT to classify stances based solely on the tweet
content for various topics in the dataset. The table includes

» o«

F1 scores for three categories: “favor,” “against} and “none.”
The F1 score is a metric that balances precision (accuracy of
identifications) and recall (completeness of identifying positive

cases). The obtained results are explained below.

1. Overall performance: the average F1 score across all topics
considering both “favor” and “against” stances (Fayg2) is 0.74,
with an average considering all three stances (Fayg3) being 0.66.
This indicates that the model performs moderately well in stance
detection using only tweet content.

2. Topic-wise performance: the performance varies depending on
the topic. Some topics like “Teaching Chinese Language at
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TABLE 4 F1 scores for “favor,” “against,” and “none” stances using
MTSM-None).

10.3389/frai.2025.1615800

TABLE 5 F1 scores for “favor,” “against,” and “none” stances using
MTSM-Keywords.

Topic Ffavor Fagainst Fnone Favgz Favg3 Topic keywords With topic keywords
Teaching Chinese Language at 0.90 0.91 0.46 0.90 0.75 Ffavor Fagainst Frnone Favgz Favg3
School

Teaching Chinese Language 0.9 0.91 0.62 0.9 0.81
Improve School Curriculum 0.91 0.887 0.40 0.89 0.73 at School
Online learning 0.88 0.88 0.67 0.88 0.81 Improve School Curriculum 0.79 0.83 0.43 0.81 0.68
COVID-19 Vaccine 0.80 0.80 0.31 0.80 0.64 Online Learning 0.92 0.91 0.73 0.91 0.85
COVID-19 Vaccine Booster 0.82 0.77 0.54 0.79 0.71 COVID-19 Vaccine 0.83 0.8 0.29 0.82 0.64
Dose

COVID-19 Vaccine Booster 0.82 0.84 0.59 0.83 0.75
Aramco Share Selling 0.84 0.89 0.66 0.87 0.80 Dose
Al-Qiddiya Project 0.89 0.63 0.41 0.76 0.64 Aramco Share Selling 0.81 0.88 0.64 0.85 0.78
Neom City 0.90 0.79 0.65 0.84 0.78 Al-Qiddiya Project 0.88 0.67 0.5 0.78 0.68
Domestic Tourism 0.74 0.67 0.52 0.70 0.64 Neom City 0.89 0.75 0.66 0.82 0.77
Sex Education 0.75 0.75 0.54 0.75 0.68 Domestic Tourism 0.64 0.57 0.49 0.61 0.57
Coexistence with Religions 0.60 0.51 0.66 0.56 0.59 Sex Education 0.72 0.8 0.56 0.76 0.69
Military Conscription 0.76 0.77 0.64 0.77 0.73 Coexistence with Religions 0.44 0.44 0.63 0.44 0.5
Prince Abdulaziz bin Turki 0.40 0.51 0.63 0.45 0.51 Military Conscription 0.72 0.7 0.56 0.71 0.66
Head of Sports Minister

Prince Abdulaziz bin Turki 0.27 0.43 0.68 0.35 0.46
Prince Faisal bin Turki as 0.48 0.36 0.45 0.42 0.43 Head of Sports Minister
Resignation from a Saudi club

Prince Faisal bin Turki as 0.43 0.44 0.44 0.44 0.44
Women_Driving 0.79 0.69 0.45 0.74 0.65 Resignation from a Saudi

club
Mosques Speakers 0.57 0.76 0.24 0.67 0.53

Women_Driving 0.77 0.68 0.55 0.72 0.67
Polygamous Marriage 0.83 0.83 0.49 0.83 0.71

Mosques Speakers 0.55 0.78 0.33 0.67 0.56
AVERAGE OVER Avg2 & Avg3 0.74 0.66

Polygamous Marriage 0.84 0.84 0.59 0.84 0.76

AVERAGE OVER Avg2 & 0.72 0.66

Avg3

School” and “Aramco Share Selling” achieved high F1 scores
for both “favor” and “against” stances (above 0.9 for Fgg).
This suggests the model can effectively classify tweets expressing
explicit opinions on these topics.

3. Neutral stance (“none") classification: the model struggles with
identifying neutral stances (“none") across most topics. This
is evident from the consistently lower F1 scores for “none”
compared to “favor” and “against.” Topics like “Coexistence
with Religions” and “Mosques Speakers” show particularly low
scores for “none;” indicating difficulty in distinguishing neutral
tweets from those expressing an opinion on these sensitive
subjects.

Overall, the results suggest that the MTSM-None approach
achieves reasonable performance in stance detection for some
topics with explicit opinions expressed in the tweets. However, the
model has limitations in identifying neutral stances, especially for
sensitive or complex topics. This highlights the potential need for
incorporating additional information beyond just tweet content,
such as topic descriptions or keywords, to improve the model’s
ability to handle diverse stances and topics.

Table 5 shows the performance of the MTSM-Keywords fine-
tuning approach for stance detection on various Arabic topics.
Each row represents a specific topic identified by its keywords.
The columns “Fpuyor,” “Fagainst; and “Frone” present the F1 scores,
a metric used to evaluate model performance, for tweets classified
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as “favor;” “against,” and “none” stances on that topic, respectively.
The “Fayg2” and “Fayg3” columns represent the average F1 scores
across two different evaluation methods (potentially macro and
micro averaging). Looking at the average scores at the bottom
of the table (AVERAGE OVER Avg2 & Avg3), we see that the
model performs moderately well overall, with an average F1 score
of 0.72 for identifying tweets expressing a stance (“favor” or
“against”) and 0.66 for classifying tweets with a neutral stance
(“none"). However, the performance varies across topics. Some
topics, like “Online Learning” and “Aramco Share Selling,” achieved
high F1 scores for all stances, indicating the model’s ability to
classify tweets related to these topics accurately. Conversely, topics
like “Coexistence with Religions” and “Prince Faisal bin Turki’s
Resignation” resulted in lower F1 scores, suggesting the model
struggled to distinguish stances on these subjects. It's important to
note that some topics might be inherently more challenging due
to the nature of the discussion. For instance, “Coexistence with
Religions” might involve a wider range of nuanced opinions that are
difficult to categorize definitively as “favor” or “against.” Overall,
the results suggest that the MTSM-Keywords approach offers a
promising foundation for stance detection in Arabic text. However,
further investigation might be needed to improve performance on
specific topics.
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TABLE 6 F1 scores for “favor,” “against,” and “none” stances using MTSM as topic description.

Manual topic description GPT4 topic description
F ‘favor F against Frone F avg2 F avg3 F ‘favor F against Frone Favgz Favg3

Teaching Chinese Language at School 0.90 0.91 0.47 0.91 0.76 0.88 0.91 0.53 0.90 0.77
Improve School Curriculum 0.88 0.90 0.48 0.89 0.75 0.85 0.87 0.44 0.86 0.72
Online Learning 091 0.88 0.71 0.89 0.83 0.84 0.83 0.62 0.84 0.76
COVID-19 Vaccine 0.81 0.81 0.23 0.81 0.62 0.81 0.77 0.28 0.79 0.62
COVID-19 Vaccine Booster Dose 0.84 0.82 0.61 0.83 0.76 0.77 0.78 0.52 0.77 0.69
Aramco Share Selling 0.84 0.88 0.61 0.86 0.78 0.85 0.88 0.59 0.87 0.78
Al-Qiddiya Project 0.90 0.68 0.47 0.79 0.68 0.88 0.65 0.40 0.76 0.64
Neom City 0.90 0.75 0.71 0.83 0.79 0.90 0.78 0.67 0.84 0.78
Domestic Tourism 0.71 0.62 0.54 0.66 0.62 0.72 0.67 0.54 0.70 0.64
Sex Education 0.76 0.73 0.52 0.75 0.67 0.70 0.67 0.55 0.68 0.64
Coexistence with Religions 0.61 0.39 0.66 0.50 0.55 0.60 0.41 0.65 0.51 0.56
Military Conscription 0.77 0.76 0.57 0.77 0.70 0.71 0.67 0.64 0.69 0.67
Prince Abdulaziz bin Turki Head of Sports 0.46 0.47 0.72 0.47 0.55 0.43 0.33 0.58 0.38 0.45
Minister

Prince Faisal bin Turki as Resignation from a 0.43 0.43 0.50 0.43 0.46 0.58 0.20 0.39 0.39 0.39
Saudi club

‘Women_Driving 0.78 0.62 0.51 0.70 0.64 0.78 0.67 0.56 0.72 0.67
Mosques Speakers 0.48 0.76 0.33 0.62 0.52 0.54 0.78 0.36 0.66 0.56
Polygamous Marriage 0.80 0.85 0.53 0.82 0.73 0.83 0.84 0.45 0.84 0.71
AVERAGE OVER Avg2 & Avg3 0.74 0.67 0.72 0.65

Table 6 shows the results (F1 scores) for the MTSM
(Multi-Topic, Single Model) approach with two different topic
descriptions: manually crafted and generated by GPT-4. F1 score
is a metric that balances precision and recall, providing an overall
measure of model performance. Looking across the table, we see
that both topic description methods achieved similar performance
on average. The average F1 score for both “favor” and “against”
stances is around 0.8 for both manual and GPT-4 descriptions,
indicating good model performance in identifying supportive and
opposing opinions. However, the results for the “none” stance,
which represents tweets that don’t express a clear opinion, are
lower. The average F1 score for “none” is around 0.5 for both
methods, suggesting more difficulty in accurately classifying neutral
tweets.

There are some interesting variations between topics. For
instance, both methods performed well on topics like “Teaching
Chinese Language at School” and “Aramco Share Selling
achieving high F1 scores across all stances. Conversely, topics like
“Coexistence with Religions” and “Mosques Speakers” proved more
challenging, with lower F1 scores especially for the “none” stance.
This suggests that these topics might be more nuanced or have
a higher prevalence of neutral language, making stance detection
more difficult. Overall, the results indicate that the MTSM approach
with either manually crafted or GPT-4 generated topic descriptions
can effectively identify supportive and opposing stances in Arabic
text for a variety of topics. However, there’s room for improvement
in accurately classifying neutral tweets, and some topics may

Frontiers in Artificial Intelligence

require further investigation or model improvements for better
performance.

5.2 Performance analysis of few-shot
learning model

This section explores the effectiveness of ArabicStanceX dataset
in real-world situations where it might encounter entirely new
topics, which were unseen during fine-tuning. This is particularly
relevant for stance detection as new topics frequently emerge and
quickly capture public attention. To address this challenge, we
employed few-shot learning, specifically a methodology called “K-
shot learning,” which involves fine-tuning the model using only K
examples per stance class (favorable, against, neutral) for a new
topic. This ensures balanced representation across different stances
even with limited data.

To evaluate our model’s adaptability, we fine-tuned it on a
comprehensive set of topics, excluding six specific ones reserved
for testing (detailed in Table 7 through Table 10). This approach
simulates a realistic scenario where new topics arise with scarce data
available.

Table 7 shows the results (F1 scores) for the zero-shot learning
scenario of the stance detection model using manually crafted topic
descriptions. In a zero-shot setting, where the model encounters
unseen topics, performance is understandably lower compared to
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TABLE 7 Results for Zero-shot learning.

Manual topic description
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TABLE 8 Results for 10-shot learning.

Manual topic description

F ‘favor F against Frone F avg2 F avg3 F ‘favor F against Frone Favgz Favg3
Online Learning 0.77 0.77 0.45 0.77 0.66 Online Learning 0.87 0.85 0.47 0.86 0.73
Neom City 0.82 0.57 0.41 0.69 0.60 Neom City 0.83 0.66 0.45 0.74 0.64
Domestic 0.53 0.31 0.39 0.42 0.41 Domestic 0.70 0.58 0.46 0.64 0.58
Tourism Tourism
Military 0.66 0.53 0.49 0.60 0.56 Military 0.69 0.71 0.42 0.70 0.61
Conscription Conscription
Mosques 0.45 0.47 0.34 0.46 0.42 Mosques 0.31 0.67 0.33 0.49 0.44
Speakers Speakers
Multi Marriage 0.59 0.61 0.30 0.60 0.50 Multi Marriage 0.68 0.75 0.36 0.71 0.60
AVERAGE 0.59 0.52 AVERAGE 0.69 0.60
OVER Avg2 & OVER Avg2 &
Avg3 Avg3

previously trained topics. The average F1 score for both “favor”
and “against” stances hovers around 0.6, indicating a basic ability to
identify sentence but with less accuracy. The results for the “none”
stance, representing neutral tweets, are even lower with an average
F1 score of 0.34. This underscores the significant challenge the
model faces in classifying neutral stances on completely new topics
without any specific data for fine-tuning.

Examining individual topics, the model shows varied
performance. It performed better on topics like “Online Learning”
(average F1 score of 0.71), where opinions are likely more
polarized. Conversely, topics such as “Domestic Tourism” and
“Mosques Speakers” resulted in lower scores (average F1 score
around 0.4), suggesting these topics might be more nuanced or
contain more neutral language, complicating stance detection
in a zero-shot scenario. Overall, the zero-shot learning results
highlight the model’s limitations when encountering entirely new
topics. While it can still make some basic sentence predictions, the
accuracy is significantly lower compared to trained topics. This
emphasizes the importance of having some topic-specific data for
improved performance in real-world applications.

We then employed incremental fine-tuning, progressively
adapting the model with increasing amounts of data (10, 20, and
40 examples per class) for the new topics (Tables 8-10). This step-
by-step approach allows us to observe the model’s ability to learn
from limited topic-specific data, which is crucial for real-world
deployments. The significant performance improvements at the
40-shot level, with an average Faygn score of 0.75, demonstrate that
even a small amount of data can substantially enhance the model’s
effectiveness on unseen topics.

Table 8 shows the results (F1 scores) for stance detection on
unseen topics using 10-shot learning with manually crafted topic
descriptions, where the F1 score balances precision and recall to
measure overall model performance. The average F1 score across

» «

all stances (“favor,” “against,” and “none”) is 0.69 for Fgygr and 0.60
for Fgyg3, indicating moderate performance on unseen topics even
with limited data. Performance varies across topics, with higher
scores for “Online Learning” and “Neom City” (around 0.7) and
lower scores for “Mosques Speakers” and “Military Conscription”
(around 0.5), highlighting challenges in these specific domains. The

model struggles more with identifying neutral stances, consistently
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showing lower F1 scores for “none” compared to “favor” and
“against.” Overall, the results suggest that while the model can
adapt to new topics with some success using 10-shot learning, there
is a need for improvement in handling neutral stances and certain
topic domains.

Table 9 presents the results (F1 scores) for stance detection on
unseen topics using 20-shot learning with manually crafted topic
descriptions, where the F1 score balances precision and recall for
an overall measure of performance. The model performed well
in identifying tweets expressing favorable (Ffy,,) and opposing
(Fagainst) stances for most topics, with average F1 scores around
0.74, indicating effective learning of basic stance with limited data
(20 examples per stance class). However, accurately classifying
neutral tweets (“None") proved more challenging, with an average
F1 score of around 0.46, highlighting difficulties in distinguishing
neutral language from weakly expressed opinions on unseen
topics. Performance varied across topics, with “Online Learning”
and “Military Conscription” showing good performance across
all stances. At the same time “Fix Domestic Tourism” and
“Mosques Speakers” resulted in lower scores, particularly for
the “None” stance, suggesting that topic complexity and the
prevalence of neutral language influence the model’s adaptability
with limited data. Overall, the results demonstrate the model’s
potential for handling unseen topics with 20-shot learning, though
improvement is needed in accurately classifying neutral stances and
specific topic domains.

Table 10 shows the F1 scores achieved by the model using 40-
shot learning with manually crafted topic descriptions. The F1
score, which balances precision and recall, provides an overall

» «

measure of model performance for each stance (“favor,” “against,”
“none”) on a specific topic. The average F1 scores (Fay and
Faygs) around 0.75 indicate that the model performs well on
average, effectively identifying supportive and opposing opinions
in Arabic text with just 40 examples per stance class for a new
topic. However, performance varies across topics. For example,
topics like “Online Learning” and “Military Conscription” achieved
good results across all stances, with average F1 scores above 0.7,
suggesting that the model can readily learn the stance patterns

associated with these topics even with limited data. Conversely,
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TABLE 9 Results for 20-shot learning.

Manual topic description ‘

Ffavor Fugainst Fnone Fm/gZ Fm/g3 ‘
Online Learning 0.89 0.89 0.67 0.89 0.81
Neom City 0.85 0.75 0.49 0.80 0.70
Domestic 0.69 0.65 0.49 0.67 0.61
Tourism
Military 0.73 0.73 0.55 0.73 0.67
Conscription
Mosques 0.46 0.60 0.36 0.53 0.47
Speakers
Multi Marriage 0.81 0.78 0.46 0.80 0.68
AVERAGE 0.74 0.66
OVER Avg2 &
Avg3

TABLE 10 Results for 40-shot learning.

Manual topic description

E ‘favor Fagainst ~ Fnone  Favg2
Online Learning 0.87 0.88 0.63 0.88 0.79
Neom City 0.87 0.74 0.61 0.80 0.74
Domestic 0.72 0.66 0.51 0.69 0.63
Tourism
Military 0.72 0.72 0.59 0.72 0.67
Conscription
Mosques 0.49 0.76 0.45 0.62 0.57
Speakers
Multi Marriage 0.81 0.79 0.49 0.80 0.70
AVERAGE 0.75 0.68
OVER Avg2 &
Avg3

topics like “Fix Domestic Tourism” and “Mosques Speakers”
proved more challenging, with lower average F1 scores, particularly
for the “none” stance, indicating inherent complexity or specific
challenges in identifying neutral stances in these contexts. Overall,
the results are encouraging, demonstrating that the model can
effectively adapt to new topics with 40 examples per stance,
achieving good overall performance in stance detection for Arabic
text while also highlighting the importance of considering topic-
specific characteristics in real-world deployments.

6 Conclusion and discussion

This research focused on developing and evaluating a robust
Arabic stance detection dataset, called ArabicStanceX, using a
dataset derived from social media data. It addresses the lack
of available Arabic stance detection datasets. Using the BERT
architecture, we fine-tuned it to identify sentences across various
topics in Arabic text.

Our exploration of different fine-tuning approaches revealed
limitations with single-topic models, particularly in capturing
the “none” stance and generalizing across diverse topics. In
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contrast, the MTSM approach showed promising results, especially
when combined with manually crafted or GPT-4 generated topic
descriptions.

Few-shot learning evaluations highlighted the model’s potential
for real-world applications, achieving good stance detection
performance even with limited data (40 examples per stance class)
for unseen topics. This adaptability is crucial for handling the
dynamic nature of online discourse, where new topics frequently
emerge.

Our findings emphasize the importance of considering topic-
specific characteristics when deploying the model. Specific topics
pose more significant challenges due to their complexity or the
prevalence of neutral language. Future research should explore
techniques to enhance performance on these nuanced topics and
incorporate additional information sources beyond textual data.
The results indicate that the MTSM approach, particularly with
topic descriptions, holds promise for Arabic stance detection. The
inclusion of topic keywords and descriptions provides the model
with the necessary context for more informed predictions. Notably,
manual topic descriptions were more effective than those generated
by GPT-4, highlighting the potential need for human intuition in
understanding nuanced topics.

However, the study has several limitations. The dataset
focuses exclusively on Saudi Arabia and is sourced solely from
X.com, which may restrict the generalizability of findings to
other Arabic-speaking regions or platforms. Another limitation
lies in class imbalance within specific topics, which may have
negatively impacted the model’s ability to detect minority stances.
Additionally, the model struggled to handle nuanced language
features such as sarcasm, implicit stances, and neutrality. Future
work could expand the dataset to include other Arab countries
and social media platforms, as well as explore alternative modeling
approaches to better capture subtle linguistic cues. Addressing class
imbalance could involve dataset resampling or data augmentation
techniques.

In general, this work advances Arabic NLP by providing
a foundation for effective stance detection in various topics of
Arabic text. The developed model offers valuable insights into
public stance and opinion dynamics within the Arabic-speaking
world, with potential applications in social media analysis, market
research, and other fields that rely on understanding audience
perspectives. Future work should aim to improve the model’s ability
to detect neutral stances and enhance performance on complex and
sensitive topics.
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Syntactic analysis stands at the heart of Natural Language Processing (NLP),
serving as the cornerstone upon which deeper linguistic understanding is
built—particularly for morphologically complex languages such as Arabic. This
paper delivers a comprehensive comparative study of contemporary syntactic
analyzers designed explicitly for Arabic, dissecting the strengths and limitations
of rule-based, statistical, machine learning, and hybrid methodologies, and
recent neural network and transformer-based models. Given Arabic's intricate
morphological structure and rich syntactic variation, accurately capturing
syntactic relationships poses a significant challenge. To address this complexity,
our study meticulously evaluates existing algorithms, highlighting advancements,
performance gaps, and practical trade-offs. In addition, recognizing that
robust syntactic parsing is anchored in high-quality annotated datasets, we
provide a thorough overview of available Arabic treebanks and annotated
corpora, emphasizing their critical role and contribution to syntactic parsing
advancements. By synthesizing current efforts in the domain, this comparative
analysis not only offers clarity on the state-of-the-art but also guides future
research directions. Ultimately, our work seeks to empower NLP practitioners
and researchers with nuanced insights, enabling more informed choices in
the development of powerful, accurate, and linguistically insightful Arabic
syntactic analyzers.

KEYWORDS

Arabic NLP, Arabic treebank, syntactic analysis, rule-based parsing, statistical parsing,
hybrid parsing, neural parsing, transformer models

1 Introduction

Arabic is a Semitic language characterized by complex morphology, rich inflectional
patterns, and flexible syntactic structures, posing significant challenges to natural language
processing (NLP). Syntactic analysis, commonly referred to as parsing, is a critical step
in NLP tasks such as machine translation, information retrieval, and sentiment analysis.
Parsing Arabic, however, is particularly challenging due to linguistic phenomena such
as diglossia, morphological ambiguity, and relatively free word order (Habash, 2010).
Numerous parsing approaches have been proposed for Arabic, ranging from traditional
rule-based systems to modern statistical and machine learning-based parsers. Early
rule-based systems, primarily grounded in classical Arabic grammar rules, provided
foundational insights but were limited by their scalability and adaptability (Othman
et al., 2003). The advent of annotated corpora such as the Penn Arabic Treebank (PATB)
facilitated data-driven methodologies, leading to significant advancements, including
probabilistic context-free grammars (PCFGs), support vector machines (SVMs), and more
recently, deep learning models utilizing contextualized word embeddings (Taji et al., 2017).
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This paper provides a comprehensive survey of state-of-
the-art Arabic syntactic analyzers developed in recent years.
It systematically discusses key syntactic parsing approaches,
exploring both rule-based and data-driven paradigms. Further,
the paper evaluates prominent Arabic syntax treebanks and
related resources that have enabled significant progress in parser
development. Subsequently, we compare the performance of
existing syntactic analyzers across various linguistic domains and
applications. Finally, the study addresses ongoing challenges and
limitations within the field, outlining avenues for future research.

2 Related work

Most existing review papers on Arabic syntactic parsing either
broadly cover general NLP tasks or have become outdated in
their specific analyses of syntactic parsing for Arabic. Dedicated
comparative studies with a strict syntactic orientation remain
scarce, and those available often overlook recent datasets or state-
of-the-art parsing techniques.

Zaki et al. (2016) conducted one of the earlier comprehensive
surveys focusing exclusively on Arabic syntactic parsers developed
up to 2016. They categorize the parsers based on methodological
approaches—rule-based, statistical, and hybrid—and clearly
outline their advantages and limitations. Despite the breadth of
this work, it now lacks coverage of subsequent developments
in annotated datasets and parsing methodologies introduced
post-2016. A more recent comparative study by Aqel et al. (2019)
addressed advancements in Arabic parsing systems, highlighting
their strengths and limitations, and providing suggestions to
mitigate common parsing challenges. Although informative and
relatively current, this work similarly falls short in referencing the
latest syntactic annotation schemes and updated parsing datasets
that have emerged after its publication.

Recent surveys addressing broader linguistic contexts have also
appeared, such as those by Hamed et al. (2025), examining code-
switched Arabic NLP, and Xu et al. (2025), exploring multilingual
large language models. While valuable, these studies primarily focus
on multilingual and cross-lingual scenarios and do not specifically
target syntactic parsing of Arabic, highlighting a clear gap in
the literature for a dedicated, syntax-focused comparative study
for Arabic.

In summary, the literature reflects a notable scarcity of recent
and specialized comparative studies that focus explicitly on Arabic
syntactic parsing. The present study addresses this gap by offering
a comprehensive and current analysis specifically targeted at
syntactic parsers for Arabic, incorporating insights from recent
developments and datasets.

To better contextualize the reviewed work, we briefly outline
the fundamental concepts and methodologies in syntactic analysis.
Syntactic analysis, or parsing, refers to the process of analyzing
sentences by identifying their syntactic structure according to a set
of grammatical rules. This task is fundamental in natural language
processing (NLP) and computational linguistics, as it helps in
understanding sentence structure and meaning. In the context
of Arabic, syntactic analysis can be approached in several ways,
each offering distinct advantages depending on the complexity and
formality of the grammar involved.
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2.1 Approaches to syntax analysis

Syntactic analysis can be approached using two primary
methods:

e Top-Down Parsing: This method starts with the entire
sentence and breaks it into smaller parts (constituents) using
grammar rules. These parts are further divided until you reach
individual words. This strategy works well with grammars that
focus on sentence structure (Aho et al., 2006).

e Bottom-Up Parsing: This method begins with the words in the
sentence, assigning each a grammatical label. These labels are
then combined to form higher-level structures (like phrases)
until the full sentence structure is built. This method works
with many types of grammar (Aho et al., 2006).

2.2 Available parsing algorithms

The selection of parsing algorithms is critical to the
efficiency and effectiveness of syntactic analysis. Two prominent
algorithms are:

table-based
especially
effective when the grammar is in Chomsky Normal Form
(Brandt and Walter, 2001).

e Earleys Algorithm: A flexible algorithm that works with
both normalized and non-normalized context-free grammars
(Tendeau, 1997).

e Cocke-Younger-Kasami Algorithm: A fast,
parsing method for context-free grammars,

2.3 Parsing techniques

Several approaches to syntactic analysis in Arabic focus on
different methods and techniques, including:

e Rule-based approach: which uses a well-defined formal
grammar based on the knowledge of linguists on the language
concerned;

e Statistical approaches: which uses machine learning
techniques to create grammar rules from a corpus annotated
(TreeBank), then analyzes the sentences using these rules;

e Hybrid approach: which uses both a predefined grammar and
a statistical module (for example a disambiguation module)

allowing to improve the results and to resolve the ambiguities.

2.4 Depth of parsing

In syntactic analysis, the term “depth of parsing” refers to the
extent and precision of syntactic information extracted from a
given sentence. This concept plays a critical role in shaping the goals
and applications of parsing systems, especially for morphologically
rich and structurally flexible languages such as Arabic. Generally,
parsing approaches fall into two broad categories based on depth:
deep parsing and shallow parsing.
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e Deep parsing: Deep parsing involves generating a full
syntactic structure for a sentence, capturing the complete
grammatical relationships among words and phrases.
This typically results in hierarchical representations like
constituency trees or dependency graphs, which identify
syntactic roles such as subjects, objects, and modifiers. For
Arabic, deep parsers often rely on resources like the Penn
Arabic Treebank and are capable of handling sophisticated
linguistic features, albeit with significant computational cost
(Habash, 2010; Taji et al., 2017). These parsers are valuable for
tasks requiring nuanced understanding of sentence structure,
such as machine translation and semantic analysis.

e Shallow parsing: Also known as chunking, shallow parsing
focuses on identifying the main syntactic units within a
sentence, such as noun phrases or verb groups, without
delving into their internal grammatical structure or

This

faster and more robust, particularly in noisy or resource-

hierarchical ~organization. approach is generally
scarce settings. In Arabic NLP, shallow parsing is often used
in applications like named entity recognition and basic
information extraction, where full parsing is unnecessary

(Shaalan and Khaled, 2010).

Each method presents advantages depending on the use
case. Deep parsing provides comprehensive syntactic insight but
demands more processing power and annotated data. Shallow
parsing offers efficiency and adaptability, especially for preliminary
or large-scale language tasks. In practice, hybrid models that
combine both levels of analysis are becoming increasingly common
in Arabic syntactic processing.

3 Arabic syntax treebanks and
resources

The development of Arabic syntactic parsers relies heavily on
annotated treebanks, which provide valuable resources for training
and evaluating parsers. Notable Arabic treebanks include:

Penn Arabic Treebank (PATB) employs a statistical approach
for annotating Modern Standard Arabic, focusing on structural
morphology and syntactic analysis. It includes comprehensive
annotations for parts of speech (POS), morphology, gloss, and
syntactic trees. The corpus consists of 599 articles from the
Lebanese newspaper An Nahar, totaling 402,291 word tokens. The
annotations, following the Penn Treebank guidelines, are used
for syntactic parsing and language modeling. Evaluation results
across multiple versions demonstrate high accuracy, with more
than 99% of tokens correctly tagged for POS and morphological
analysis, ensuring robust reliability for linguistic and computational
applications (Maamouri et al., 2004, 2005).

Prague Arabic Dependency Treebank (PADT) is grounded
in a theoretical approach inspired by the Functional Generative
Description framework and the Prague Dependency Treebank.
It includes over 113,500 tokens with detailed syntactic and
morphological annotations. This treebank is designed to aid
dependency parsing and has been utilized in the CoNLL
shared tasks, showcasing its utility in parsing experiments. The
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dataset covers 212,500 words, with a strong focus on syntactic
dependencies. Its evaluation results highlight the accuracy of
dependency relations, supporting the treebank’s role in both
theoretical and practical parsing tasks (Hajic¢ et al., 2004, 2006).

Columbia Arabic Treebank (CATiB) adopts a simplified
dependency-based approach that emphasizes annotation speed and
efficiency. It provides syntactic analyses, including over 1 million
tokens, with 841,000 words and 31,319 trees from newswire feeds
and other sources. CATiB uses a reduced set of syntactic labels
compared to PATB, prioritizing accessibility for annotators with
less linguistic expertise. The evaluation results indicate a balance
between simplicity and depth, offering a practical resource for
rapid syntactic analysis while maintaining high accuracy for basic
syntactic relations in Arabic (Habash and Roth, 2009).

CAMEL Treebank (CAMELTB) is a comprehensive
dependency treebank for both Modern Standard Arabic and
Classical Arabic, annotated using guidelines aligned with CATiB.
It includes approximately 188,000 words and 242,000 tokens from
a variety of genres, including poetry, religious texts, and modern
media. CAMELTB uses tools like CamelTools for tokenization
and POS tagging, and the MALT parser for syntactic parsing. Its
manual annotation process ensures high accuracy, with four native
Arabic speakers involved in annotating and editing dependency
relations. Evaluation results show the treebanks broad applicability
across different Arabic dialects and registers, making it a valuable
resource for linguistic research and NLP applications (Habash

etal., 2022).
Universal dependencies for Arabic project utilizes
dependency-based annotations from the Prague Arabic

Dependency Treebank (PADT) and the Penn Arabic Treebank
(NYUAD version) (Taji et al., 2017; Haji¢ et al., 2004). These
datasets provide a robust foundation for analyzing Arabic
syntax and morphology, addressing the challenges posed
by the language’s rich inflection and word formation. The
annotations cover several layers, including part-of-speech
tags, lemmas, morphological features, and syntactic relations.
The project adopts a consistent approach to tokenization
different  Arabic

dialects, ensuring broad linguistic coverage. Evaluation of these

and morphological representation across
treebanks emphasizes syntactic accuracy, with UD Arabic-PADT
featuring 7,664 sentences and 242,056 tokens, and UD Arabic-
NYUAD containing 19,738 sentences and 629,295 tokens. These
treebanks offer comprehensive linguistic resources, enabling
in-depth analysis of Arabic within the Universal Dependencies
framework.

AQMAR Arabic Wikipedia dependency tree corpus (Habash
et al,, 2009) is derived from Arabic Wikipedia articles, annotated
with part-of-speech (POS) tags and syntactic dependencies. This
corpus comprises 1,262 sentences and 36,202 tokens, created with
a semi-automated annotation process using the Brat annotation
tool. The initial POS tagging was performed using the MADA
system, followed by manual corrections. Dependency annotations
were applied according to the CATiB Arabic dependency
framework (Habash and Roth, 2009), ensuring high-quality
syntactic representations. The dataset includes diverse topics, such
as nuclear technology and football, providing valuable resources
for semantic and syntactic analysis in various domains. While the
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annotations also cover named entities and semantic supersenses,
the evaluation results primarily highlight improvements in
syntactic parsing and dependency structure accuracy.

ARL Arabic dependency Treebank, developed by the US Army
Research Laboratory (ARL) (Tratz, 2016), focuses on Arabic news
and broadcast sources. This treebank is a restructured version of
the Arabic Treebank (ATB) from the Linguistic Data Consortium,
and it adopts a dependency grammar approach. Each sentence is
analyzed based on a verb-centered structure, with other elements
linked to the verb through directed relationships. The annotations
include 11 columns, detailing the syntactic dependencies, POS
tags, and lemmata, with each word or affix uniquely identified.
Evaluation of the treebank involves measuring the quality of
dependency relations and syntactic parsing, making it a crucial
resource for Arabic language processing in military and defense
applications. The dataset is available for further use in research and
development of Arabic language technologies.

OntoNotes 5.0 (Weischedel et al., 2013) is a large annotated
corpus containing multiple linguistic layers, including syntactic,
semantic, and discourse-level annotations. The Arabic portion,
tagging,
and word sense

comprising 300K words, includes part-of-speech

coreference, named entity recognition,
disambiguation. The syntactic annotations use the Treebank
framework, while the semantic annotations link word senses to
an ontology. Evaluation results demonstrate high quality in both
syntactic and semantic annotations, with comprehensive coverage
of co-reference and named entities. The corpus provides a valuable
resource for training machine learning models and evaluating
Arabic language processing tasks. Available in both relational
database format and text files, OntoNotes supports a range of
research applications, including cross-linguistic studies and deep
semantic parsing.

I3rab Treebank (Halabi et al, 2020) is a new Arabic
dependency treebank that introduces innovative approaches to
tokenization and dependency representation, focusing on the
identification of primary words and the treatment of joined and
implicit pronouns. The corpus is compared against a subset
of the Prague Arabic Dependency Treebank (part-PADT), with
evaluation results showing significant improvements in parsing
performance. The I3rab dataset demonstrated a 7.5% increase in
Unlabeled Attachment Score (UAS) and an 18.8% improvement in
Labeled Attachment Score (LAS), highlighting the effectiveness of
its unique approach. This treebank is intended to advance Arabic
language processing by addressing gaps in previous dependency
frameworks and offering a more accurate representation of
syntactic relations in Arabic.

Arabic Poetry Dependency Treebank (ArPoT) (Al-
Ghamdi et al, 2021) introduced ArPoT, the first dependency
treebank specifically targeting classical Arabic poetry. The
corpus consists of 2,685 verses (35,460 tokens) from 34
poets, annotated using the CATiB scheme, which is rooted in
traditional Arabic grammar and supports future conversion to
Universal Dependencies. ArPoTs annotation pipeline involved
automatic parsing (using a tool trained on MSA) followed by
extensive manual correction, with explicit attention to poetic-
specific phenomena such as elision and cross-verse syntactic
relations. Unlike most previous Arabic treebanks (e.g., Penn
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Arabic Treebank, CATiB, PADT) which are constructed for
Modern Standard Arabic (MSA), ArPoT is dedicated to CA
and captures its unique syntactic characteristics, making it a
novel resource for the study of syntactic analysis in Arabic
poetry.

NArabizi Treebank (Riabi et al, 2023) is a syntactically
annotated corpus for North African Arabic (specifically Algerian
dialect) written in Latin script—commonly known as NArabizi.
The dataset consists of approximately 1,300 user-generated
sentences, primarily sourced from online forums and song
lyrics, with significant code-switching (36% French tokens).
The latest version introduces major improvements, including
standardized tokenization, corrections of morpho-syntactic and
syntactic annotations following Universal Dependencies (UD)
guidelines, and enhanced translation quality. Two new annotation
layers were added: named entity recognition and offensive language
detection, making the resource more versatile for downstream
tasks. The treebank focuses exclusively on dialectal Arabic and
does not include Modern Standard Arabic (MSA). However, its
syntactic annotation—covering POS tags, morphological features,
and dependency parses—serves as an essential benchmark for
NLP tasks on noisy, low-resource Arabic varieties written in
non-Arabic scripts. Experimental results showed that improving
syntactic annotation quality led to significant gains in downstream
dependency parsing and NER. The resource is freely available for
research purposes.

AraFast (Alrayzah et al,, 2024) is a large-scale, freely available
Modern Standard Arabic (MSA) corpus aimed at addressing the
shortage of comprehensive datasets for Arabic NLP research. The
authors developed a multi-stage pipeline, combining automated
and manual discovery of Arabic corpora from major repositories
(such as GitHub, Kaggle, and Huggingface), followed by strict
filtering for quality and genre, and extensive cleaning using
custom algorithms. This process included deduplication, removal
of noise, normalization, and segmentation with the WordPiece
tokenizer. The final AraFast corpus comprises 112 GB of high-
quality MSA and classical Arabic text from 48 different sources,
reduced from an initial 833 GB of raw data through rigorous
preprocessing. Importantly, it should be noted that AraFast is
not a syntactically annotated resource such as a treebank; it
does not include part-of-speech or syntactic structure annotations.
Instead, AraFast provides a high-quality, segmented text corpus
specifically designed for pretraining large transformer-based
language models, using dynamic span-masking objectives. Both
“base” (full corpus, 110M parameters) and “mini” (10GB) models
were trained and evaluated. The experimental results showed
that using segmented, clean data substantially improved model
learning and stability (evidenced by lower training loss), while
web-scraped noisy data led to training failures due to noise
and data artifacts. While AraFast itself does not provide direct
syntactic labels or parsing, its quality and scale make it a valuable
foundational dataset. It indirectly supports advances in Arabic
syntactic parsing by enabling the training of robust pre-trained
language models, which can later be fine-tuned or adapted for
downstream syntactic analysis tasks. Thus, AraFast serves as an
important resource for both general and syntactic NLP applications
in Arabic.
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4 Available syntactic analyzers

Over the years, a wide array of Arabic syntactic analyzers have
been developed, mirroring the progression of parsing techniques.
Early parsers predominantly relied on manually crafted grammar
rules and limited evaluation datasets, whereas subsequent systems
leveraged machine learning trained on treebanks. In recent years,
neural network and transformer-based parsers have achieved new
state-of-the-art results by incorporating contextualized language
models. The following subsections review representative Arabic
parsers across these different paradigms, highlighting their
approaches and reported performance.

4.1 Traditional syntactic analyzers for
arabic

Analyzer based on a recursive transition network is a
syntactic analyzer developed by Bataineh and Bataineh (2009)
uses a Top-Down parsing approach based on Recursive Transition
Networks (RTN), a concept derived from recursive transition
grammars. The grammar for this parser is context-free, tailored
to capture the most frequent sentence structures in Arabic. The
approach applies both pattern-based rules and context-free rules,
treating them as complementary. It was tested on 90 Arabic
sentences, achieving an accuracy rate of 85.6%. However, the parser
struggled with ungrammatical sentences and those outside the
grammar’s coverage, with 14.4% of sentences being unparseable.

Areb, developed by Al-Daoud and Basata (2009), is a
recursive, Top-Down parser designed to handle both lexical
and syntactic analysis for Arabic sentences, focusing on verbal
sentences. It utilizes recursive functions closely tied to production
rules, allowing the parser’s structure to reflect the grammar
it interprets. Despite its functionality, the authors noted that
further refinement is needed for complete effectiveness, with no
quantitative evaluation results provided.

Parse trees of Arabic sentences using NLTK (Shatnawi and
Belkhouche, 2012) is a rule-based approach utilizing Context-
Free Grammar (CFG). The parser applies the NLTK recursive-
descent algorithm to generate parsing trees for general and Quranic
Arabic. Although it supports several NLP tasks, the authors pointed
out that the model does not address more complex tasks like
parsing dependencies, and no quantitative performance metrics
were provided.

Chart parser for analyzing Arabic sentences (Al-Taani et al.,
2012) is a Top-Down chart parser based on Context-Free Grammar
(CFG) to analyze Arabic sentences. The parser’s accuracy was
evaluated on a small corpus of 70 sentences, with an average
sentence length of 3.98 words, achieving 94.3% accuracy. However,
the authors emphasized the need for further evaluation with a
broader corpus to test the parser’s reliability in diverse contexts.

Context-free Grammar analysis top-down technique (Al-
qrainy et al., 2012) developed an Arabic parser based on Context-
Free Grammar (CFG) and Top-Down recursive descent parsing
using NLTK. The parser was tested on 150 Arabic sentences,
achieving a high accuracy rate of 92% for verbal sentences and
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98% for nominal sentences. However, the test set was small, and
the types of sentences evaluated were unspecified, which limits the
reliability of the results.

ARSYPAR (Khoufi et al., 2013) introduced an Arabic parser
that uses supervised machine learning techniques, specifically
Support Vector Machines (SVM). The parser was trained using
features derived from the Arabic Treebank and focused on syntactic
word classes. It was evaluated on a portion of the Arabic Treebank,
achieving an F-score of 84.38%, demonstrating the efficacy of
statistical methods in syntactic analysis.

Industrial-strength parser (Redjaimia et al., 2014) developed
an advanced Arabic parser combining rule-based and statistical
approaches to provide robust dependency and hierarchical
constituent parsing. The parser underwent rigorous testing on
a corpus of 300 Arabic sentences, achieving an F-score of 82%.
This hybrid approach proved effective for applications like opinion
mining in Arabic social media content, although the specific
evaluation methodology was not detailed.

Robust
(Ouersighni, 2014) used a rule-based approach with Affix

large-scale parser using AGFL formalism
Grammars over Finite Lattice (AGFL) formalism for parsing
Arabic. The parser’s robust performance was tested on 200 Arabic
sentences, achieving a 95% success rate. However, it suffered
from high ambiguity, with an average of 23.12 possible analyses
per sentence, highlighting the trade-off between robustness and
precision in this approach.

Transducers parser (Hammouda and Haddar, 2018) employed
a transducers-based approach to parse Arabic nominal sentences.
The system, which includes segmentation, preprocessing, and
disambiguation phases, achieved a precision rate of 80% and a recall
rate of 90% when tested on a corpus of 200 Arabic sentences. This
method proved effective for nominal sentence parsing but may
require further refinement for broader sentence structures.

Inductive learning algorithm (ILA) (Abu-Soud et al., 2018)
developed an ILA to parse Arabic nominal and verbal sentences.
The ILA generates parsing rules from a training dataset and
achieved a 92.63% accuracy for previously unseen sentences.
However, it performed better on verbal sentences compared to
nominal ones, due to the structural complexity of the latter. The
method demonstrated its potential for Arabic Natural Language
Processing (ANLP) applications but highlighted the challenges of
segmenting and tagging sentences accurately.

Arabic parser based on CFG and classical grammar rules
(Ababou et al., 2017) proposed an Arabic parser using Context-
Free Grammar (CFG) integrated with classical grammar rules.
The system achieved 97% accuracy when tested on 200 nominal
sentences, effectively identifying dependency relations. However,
some verb tagging errors were noted, and the method’s simplicity
allows easy integration with other techniques, enhancing its
adaptability in parsing Arabic sentences.

Syntactic parsing using the NooJ linguistic platform is
syntactic analyzer employs a rule-based, linguistically driven
approach for Arabic syntactic parsing (Bourahma et al., 2018).
Focusing on enhancing lexicon classification, resolving ambiguities
from morphological analysis, and modeling grammar based on
nominal sentence structures. The evaluation of the system on 120
nominal sentences demonstrated a parsing accuracy of 95%, with
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disambiguation achieving an 86% accuracy. Despite the success,
ambiguities remain in complex sentence structures, highlighting
the challenge of fully capturing Arabics syntactic nuances. The
approach proves effective in handling agglutination and word
order variability.

Multitask easy-first dependency parsing uses a bottom-up
parsing strategy with a multitask learning approach (Kankanampati
et al,, 2020). It simultaneously learns from two Arabic dependency
treebanks (CATiB and UD) by parsing both syntactic and
semantic features. Their model jointly parses sentences into
both syntactic representations using shared and task-specific
components, allowing partial parse trees in one formalism to
inform decisions in the other. This approach is evaluated on
parallel CATiB and UD treebanks—both automatically converted
from parts 1-3 of the PATB—with standard train/dev/test splits.
While these converted treebanks are not originally designed for
dependency parsing, they are widely used as gold standards
for syntactic analysis in Arabic NLP research. The multitask
parser achieves substantial improvements over strong single-task
baselines, with labeled attachment scores (LAS) of 86.15 for CATiB
and 84.76 for UD, representing 9.9% and 6.1% error reductions
respectively. The study highlights that explicit sharing of partial
tree structures, rather than just neural parameter sharing, yields the
largest gains, especially in complex syntactic constructions such as
Idafa and modifiers.

An Arabic probabilistic parser based on a property grammar
is a parser that uses a hybrid approach combining statistical
modeling and rule-based parsing, based on a Property Grammar
(PG) formalism (Bensalem et al, 2023). The parser applies
a bottom-up parsing strategy using a Probabilistic Context-
Free Grammar (PCFG) combined with a probabilistic Property
Grammar (PPQG). It integrates syntactic constraints and utilizes the
CYK algorithm optimized with the Viterbi method. Evaluation on
a test set of 400 sentences from ATB highlights the parser’s ability
to parse complex Arabic constructs with high precision. Compared
to the Stanford parser (Dozat et al, 2017), it demonstrates
better precision for specific linguistic phenomena, such as verbal
sentences (88.3% vs. 81.9%) and nominal phrases (75.2% vs. 74.0%).
However, it faces challenges in recall, particularly in capturing all
relevant syntactic features.

Bel-Arabi combines both rule-based and learning-based
approaches for Arabic syntactic parsing (Ibrahim et al., 2016).
The system adopts a machine learning strategy for tasks like
POS tagging and chunking, employing Conditional Random
Fields (CRF) classifiers. The framework also integrates rule-based
modules for grammatical marking, ensuring accurate syntactic
analysis. With a high precision rate (90.44%) for analyzing 600
sentences, the system excels at identifying grammatical roles
and diacritical marks. However, its performance declines when
dealing with constructs like passive verbs, indicating areas for
improvement, particularly in semantic analysis.

Arabic parser using deep learning employs deep learning
techniques to tackle the complexities of Arabic syntax, utilizing
bidirectional LSTM (BILSTM) models (Maalej et al., 2021). The
system employs a statistical approach for syntactic parsing, utilizing
deep learning models such as LSTM, GRU, and BILSTM, which
are trained on word embeddings derived from the Penn Arabic
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Treebank (ATB). The BILSTM model demonstrated superior
accuracy, achieving over 99% accuracy across various syntactic
levels. The system effectively captures bidirectional contextual
dependencies, making it a promising approach for Arabic syntactic
parsing in NLP applications.

Stanford Arabic parser is a component of the Stanford
CoreNLP suite that provides syntactic analysis of Arabic sentences
using probabilistic context-free grammar (PCFG) models (Green
and Manning, 2010). It is trained on the Penn Arabic Treebank
(PATB) and operates in two main stages: first, it performs
tokenization and segmentation—often using the Stanford Arabic
Segmenter, and then applies syntactic parsing to produce
hierarchical phrase structure trees.

The parser generates both constituency trees and part-of-
speech (POS) tags, enabling deeper syntactic understanding
necessary for downstream tasks like information extraction,
question answering, and machine translation. It utilizes the CYK
(Cocke-Younger-Kasami) parsing algorithm and supports features
like n-best parses and probabilistic scoring, making it both
powerful and flexible for diverse NLP applications. Although the
parser itself doesn’t perform sentiment analysis, its output supports
sentiment models. Grammar-checking tools use the parser to
identify and correct errors, and NER systems benefit from its
contextual information. In educational settings, the parser teaches
syntax and sentence structure, while businesses use it for text
analytics, such as market research and customer feedback analysis.
The parser’s comprehensive applications demonstrate its versatility
in understanding and processing natural language text.

The parser’s performance on development test data for
sentences under 40 words shows a factored F1 score (factF1) of
77.44% and dependency accuracy (factDA) of 84.05%. For the
ATB part 3 Buckwalter grammar. These results highlight strong
dependency parsing performance and suggest that inconsistencies
in constituency annotations may account for the relatively lower
F1 scores.

Arabic tree adjoining grammar (ArabTAG V2.0) or
Arabic Tree Adjoining Grammar version 2.0, is an advanced
syntactic and semantic analysis framework specifically designed
for Modern Standard Arabic. Developed as part of a project led
by researchers like Ben Khelil et al. (2023) and her collaborators,
this grammar addresses the unique challenges posed by NLP,
including its flexible word order, rich morphology, and the
omission of diacritics in written texts. ArabTAG V2.0 builds
on a prior manually defined grammar, enhancing it with an
abstract representation called a meta-grammar. This abstraction
allows linguists to describe both the syntax and semantics
of Arabic more efficiently, facilitating the maintenance and
expansion of the grammar. The framework includes 1,074 non-
lexicalized syntactic rules and 27 semantic frames, focusing on
predicate-argument structures.

The grammar is semi-automatically generated and is designed
to cover a wide range of syntactical structures and linguistic
phenomena. Experimental evaluations have shown that ArabTAG
V2.0 can achieve a precision rate of 88.76% in syntactic analysis
and about 95.63% in semantic analysis. This high level of accuracy
demonstrates its capability to handle the complexity of Arabic
syntax and semantics effectively.
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MASAQ parser (Sawalha et al., 2025b) is a recent statistical
parser developed for Classical Arabic, based on the newly
released MASAQ dataset (Sawalha et al, 2025a). It applies
supervised machine learning (Random Forest, LinearSVC, Logistic
Regression) for fine-grained morphosyntactic analysis, focusing
on dependency parsing in accordance with traditional Arabic
irab. The MASAQ corpus includes 131,930 morphemes and
123,565 annotated syntactic functions over 77,408 Quranic words.
Evaluation experiments report a best accuracy of 99.0% for
syntactic role assignment using Random Forest, setting a new
benchmark for Arabic syntactic analysis.

4.2 Modern neural and transformer-based
approaches to arabic syntactic analysis

Camel parser, which includes versions 1.0 and 2.0 (Elshabrawy
et al., 2023), integrates machine learning, specifically leveraging
BERT-based embeddings for better contextual understanding, and
applies biaffine attention mechanisms for dependency parsing.
CamelParser 2.0 outperforms its predecessor by integrating
advanced neural models, yielding improved parsing performance
with a Labeled Attachment Score (LAS) of 91.3% and an Unlabeled
Attachment Score (UAS) of 92.4%. The use of BERT and biaffine
parsing results in a significant reduction in parsing errors, making
it a robust tool for Arabic dependency parsing.

Out-of-domain dependency parser (Mokh et al., 2024) address
the challenge of dependency parsing for Arabic dialects in an
out-of-domain setting, given the lack of syntactically annotated
dialectal corpora. Their approach uses a neural biaffine dependency
parser (Dozat and Manning, 2016), trained on the Columbia
Arabic Treebank (CATiB; Habash and Roth, 2009) and the Modern
Standard Arabic (MSA) portion of the MADAR parallel corpus
(Bouamor et al., 2018), and tested on a manually annotated set of
Gulf, Levantine, Egyptian, and Maghrebi dialect sentences. They
focus on the parsing of Idafa and coordination constructions,
which are particularly challenging and structurally variable across
dialects. The authors employ various domain adaptation strategies,
including filtering training data by sentence length, removing
sentential coordination, selecting structurally similar sentences
based on POS bigram perplexity, and experimenting with different
BERT-based embeddings. For in-domain evaluation, they used two
syntactically annotated MSA datasets: CATiB and the MSA portion
of the MADAR corpus, which consists of 2,000 sentences with
full dependency. When trained and evaluated on CATiB, their
parser achieved a Unlabeled Attachment Score (UAS) of 90.3%
and a Labeled Attachment Score (LAS) of 88.7%. On the MADAR
MSA dataset (2,000 annotated sentences), the parser reached a
UAS of 97.9% and a LAS of 84.9%. However, performance drops
significantly out-of-domain (e.g., UAS: 55.1-57.5%, LAS: 23.2—-
27.5% across dialects), but targeted adaptation techniques can raise
LAS by up to 24 points for specific constructions. These results
serve as an upper bound for parsing performance in MSA, given
matched domain and annotation style.

AraT5 (Nagoudi et al, 2022) is an Arabic text-to-text
Transformer model trained on large-scale MSA and dialectal
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corpora, including AraNews (Nagoudi et al., 2020), El-Khair (El-
Khair, 2016), and OSCAR (Sudrez et al., 2020). While AraT5 does
not function as an explicit syntactic analyzer, its sequence-to-
sequence architecture and pretraining enable it to learn syntactic
structures implicitly, as demonstrated by strong results on the
ARGEN benchmark across seven tasks. AraT5 outperformed
mT5 on 52 of 59 test splits, highlighting the effectiveness of
implicit syntax modeling for Arabic language generation and
understanding tasks.

AraBERT (Antoun etal., 2020) is a transformer-based language
model specifically pre-trained for Arabic. Built on the BERT-base
architecture (12 encoder layers, 768 hidden dimensions, 110M
parameters), AraBERT introduces an Arabic-specific preprocessing
pipeline by segmenting words into stems, prefixes, and suffixes
using Farasa (Abdelali et al., 2016), followed by sub-word
tokenization (SentencePiece, vocab size: 64K). The model is pre-
trained on a large, diverse corpus comprising 70 million sentences
(24GB) gathered from major Arabic news sources [notably the 1.5B
Arabic Corpus (El-Khair, 2016) and OSIAN (Zeroual et al., 2019)],
Modern Standard Arabic (MSA), and dialectal variants. Although
AraBERT is not an explicit syntactic parser, its deep contextualized
embeddings have shown strong performance on tasks highly
dependent on syntactic and morphological understanding, making
it widely adopted as a backbone for downstream syntactic analysis
tasks. In evaluations across sentiment analysis, named entity
recognition (NER), and question answering (QA), AraBERT
consistently outperformed multilingual BERT and previous state-
of-the-art models. The size and diversity of the training corpus and
the Arabic-specific tokenization are key contributors to its robust
syntactic modeling.

MARBERT (Abdul-Mageed et al., 2021) is a pre-trained deep
bidirectional Transformer model specifically designed to address
the diversity and informality of Arabic language varieties, especially
on social media. Built on the BERT-base architecture (12 layers,
768 hidden units, 163M parameters), MARBERT is trained from
scratch on a massive dataset of 1 billion Arabic tweets (128GB,
15.6B tokens), using a 100K WordPiece vocabulary. The pre-
processing is intentionally minimal—removing only diacritics and
normalizing URLs, usernames, and hashtags—to maximize the
model’s exposure to authentic, naturally occurring dialectal and
noisy text. Importantly, while MARBERT is not a syntactic parser
in the traditional sense, its deep contextualized representations
have shown substantial impact on downstream tasks that depend
on syntactic and morphosyntactic cues, such as named entity
recognition, dialect identification, and question answering. For
evaluation, MARBERT was assessed using the ARLUE benchmark
(Abdul-Mageed et al., 2021), which consists of 42 diverse datasets
across six task clusters (including tasks closely tied to syntactic
analysis). MARBERT achieves state-of-the-art results on 37 out of
48 classification tasks, with an overall ARLUE macro-average score
of 75.99, outperforming many larger multilingual models (such as
XLM-RLarge, which is more than three times larger in parameters).
Notably, MARBERT’s strength is most pronounced in dialect
identification and social meaning tasks—domains where syntactic
variation is high and previous MSA-focused models struggled. To
further address performance in tasks requiring longer context, the
authors introduce MARBERTV2, which is obtained by continued
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pre-training of MARBERT on the same MSA data as ARBERT and
the AraNews dataset, using a longer sequence length (512 tokens)
for 40 additional epochs, resulting in exposure to 29 billion tokens.

Dialect-specific pre-trained language models: In addition to
multidialect models like AraBERT and MARBERT, recent research
has introduced several dialect-specific pre-trained language
models, including CAMeLBERT (Inoue et al,, 2021), SaudiBERT
(Qarah, 2024b), and EgyBERT (Qarah, 2024a). CAMeLBERT
comprises a suite of BERT-based models, each trained on a specific
Arabic variant (Modern Standard Arabic, dialectal Arabic, or
Classical Arabic), with pre-training corpora ranging up to 167GB
and over 17 billion tokens. SaudiBERT is developed for the Saudi
dialect using a corpus of 141 million Saudi tweets and forum
data (totalling over 26GB), while EgyBERT targets the Egyptian
dialect with more than 10GB of Egyptian tweets and forum texts.
These models follow the BERT architecture and employ minimal
pre-processing to preserve dialectal characteristics. Though not
syntactic parsers, their contextualized representations significantly
improve the performance of downstream tasks that require
syntactic sensitivity.

Al-Ghamdi et al. (2023) proposed a novel approach for
Arabic dependency parsing by fine-tuning BERT-based pre-trained
language models, formulating the parsing task as a sequence
labeling problem. Each token is assigned a composite label
encoding both the head position and the dependency relation,
and three head-encoding strategies (naive positional, relative
positional, and relative POS-based) were systematically compared.
The authors evaluated nine Arabic BERT-based models—including
AraBERTv2, AraBERTv1, Camel-MSA, Camel-CA, ARBERT, and
GigaBERT—on three treebanks: the Prague Arabic Dependency
Treebank (PADT, Hajic et al., 2004), the Columbia Arabic Treebank
(CATiB, Habash and Roth, 2009), and the Classical Arabic
Poetry Dependency Treebank (ArPoT, Al-Ghamdi et al., 2021).
Experimental results demonstrate that AraBERTv2 achieved the
highest accuracy, reaching up to 84.03% UAS and 80.26% LAS on
PADT, 87.54% UAS and 86.41% LAS on CATiB, and 79.79% UAS
and 74.13% LAS on ArPoT. It should be noted that the work by Al-
Ghamdi et al. (2023) does not propose a novel parser architecture,
but rather adapts and thoroughly evaluates the sequence labeling
approach using existing BERT-based pre-trained models for Arabic
dependency parsing.

The provided Table I offers a comprehensive overview of
Arabic syntactic analyzers, grouped primarily by their underlying
methodologies: rule-based, hybrid, and neural approaches. Rule-
based parsers, such as Recursive Transition Network (RTN),
Chart Parser, AGFL Parser, and NooJ-based Analyzer, rely heavily
on manually crafted grammatical rules and lexicons. These
systems exhibit notable accuracy on controlled and limited
sentence sets (85.6%-95%), yet they tend to struggle with
linguistic coverage, robustness, and scalability to more complex
or diverse texts. Hybrid approaches, including ARSYPAR, the
Industrial-Strength Parser, Probabilistic Parser, and Bel-Arabi,
integrate statistical or machine learning methods with linguistic
rules. These parsers generally achieve intermediate levels of
accuracy (82%-90%) and show enhanced robustness and broader
linguistic coverage compared to purely rule-based methods.
However, their performance is contingent upon annotated corpora
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and careful feature engineering, thus posing challenges in
adaptability and maintenance. Neural network-based parsers,
such as Camel Parser, AraBERT variants, and Deep-Learning
Parsers utilizing transformer architectures, currently deliver state-
of-the-art results (LAS and UAS typically ranging from 80%
to over 90%). These models benefit significantly from extensive
annotated corpora (PADT, CATiB, ATB) and demonstrate superior
handling of Arabic morphology, syntactic ambiguity, and out-of-
vocabulary words. Nonetheless, neural models require substantial
computational resources and large annotated datasets, and they
may face performance issues when encountering domain shifts
or dialectal variations not represented in training data.Overall,
these comparisons indicate that while early parsers laid important
groundwork, the highest parsing accuracies for Arabic are
currently achieved by transformer-based models and other recent
neural approaches. While current parsers demonstrate substantial
progress, future research directions include addressing domain
and dialect adaptability, interpretability of neural models, and
overcoming resource limitations through semi-supervised learning
and multilingual transfer techniques. Such advancements will
further bridge existing gaps and improve parser applicability across
varied Arabic language scenarios.

5 Challenges in arabic syntactic
analysis

Many of the difficulties in Arabic syntactic analysis are
well-known, recent advances in machine learning, computational
linguistics, and deep learning bring forth a new set of advanced
challenges. These challenges not only stem from the traditional
complexities of the language but also from the need to create
sophisticated models capable of handling both contemporary and
evolving linguistic phenomena. Below are some of the challenges
that researchers are facing in Arabic syntactic analysis:

5.1 Unannotated domain-specific data and
formalization gaps

While resources like the Penn Arabic Treebank (PATB)
exist, they are heavily focused on formal texts and standard
written Arabic, such as news articles. As more Arabic data
comes from informal domains like social media, blogs, SMS, and
chat conversations, syntactic structures in these domains become
more difficult to annotate and generalize. These domains often
contain non-standard spelling, abbreviations, and internet slang,
and their syntax deviates from the rigid structures of MSA.
Furthermore, Arabic-language syntactic structures in domain-
specific applications (e.g., medical texts, legal documents, technical
manuals) often require specialized syntactic theories and rules
that current parsers are not equipped to handle. For example,
the grammatical norms in technical writing might differ from
colloquial speech, and handling these nuances requires more
sophisticated annotation schemes that current treebanks and
parsing models lack.
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TABLE 1 Comparative performance of Arabic syntactic analyzers.

‘ Analyzer

Recursive transition
network

Approach followed

Top-down RTN; context-free + pattern rules

Evaluation results

85.6 % accuracy

10.3389/frai.2025.1638743

Corpus size/name

90 Arabic sentences

Areb Recursive top-down parser; production rules - Not specified
NLTK parser Rule-based; CFG; recursive-descent - Not specified
Chart parser Top-down chart parser; CFG 94.3% accuracy 70 Arabic sentences

CFG top-down

Recursive-descent CFG

92% verbal, 98% nominal accuracy

150 Arabic sentences

ARSYPAR

Supervised ML (SVM)

F-score 84.38%

Arabic Treebank subset

Industrial-strength
parser

Hybrid (rule-based + statistical)

F-score 82%

300 Arabic sentences

AGFL parser

Rule-based; AGFL formalism

95% successful parses; high ambiguity

200 Arabic sentences

Transducers parser

Finite-state transducers; segmentation +
disambiguation

Precision 80%, Recall 90%

200 Arabic sentences

Inductive learning Rule induction from examples 92.63% accuracy Unspecified (unseen
algorithm sentences)

CFG + classical CFG plus traditional grammar rules 97% accuracy 200 nominal sentences
grammar

NooJ-based analyzer

Rule-based linguistic model

95% syntactic, 86% disambiguation accuracy

120 nominal sentences

Camel parser

BERT + biaffine dependency (ML)

UAS/LAS: 92.4/91.3

Not specified (likely ATB)

Multitask easy-first

Bottom-up, multitask learning

UAS/LAS: 88.08/86.15

CATiB Treebanks

Probabilistic parser

PCFG + property grammar, CYK

Precision 88.3% (verbal), 75.2% (nominal)

400 ATB sentences

Bel-Arabi Hybrid ML (CRF) + rules Precision 90.44% 600 sentences
Deep-learning parser BiLSTM/LSTM/GRU >99% accuracy Penn Arabic Treebank
Stanford Arabic parser PCFG + CYK FactF1 77.44%, FactDA 84.05% Penn Arabic Treebank
ArabTAG v2.0 Tree-adjoining grammar; meta-grammar Precision 88.76% (syntax), 95.63% (semantics) Not specified
MASAQ Statistical parser (Random Forest) Accuracy: 99.0% MASAQ dataset: 123,565
syntactic functions
Camel-MSA Fine-tuned BERT-based sequence labeling UAS/LAS: 83.10/79.17 PADT: 282,384
Camel-MSA Fine-tuned BERT-based sequence labeling UAS/LAS: 86.47/85.29 CATiB: 169,319
AraBERTv1 Fine-tuned BERT-based sequence labeling UAS/LAS: 82.76/78.82 PADT: 282,384
AraBERTv1 Fine-tuned BERT-based sequence labeling UAS/LAS: 86.76/85.57 CATiB: 169,319
AraBERTv2 Fine-tuned BERT-based sequence labeling UAS/LAS: 84.03/80.26 PADT: 282,384
AraBERTv2 Fine-tuned BERT-based sequence labeling UAS/LAS: 87.54/86.41 CATiB: 169,319
ARBERT Fine-tuned BERT-based sequence labeling UAS/LAS: 80.37/76.11 PADT: 282,384
ARBERT Fine-tuned BERT-based sequence labeling UAS/LAS: 78.31/75.95 CATiB: 169,319
Arabic BERT Fine-tuned BERT-based sequence labeling UAS/LAS: 80.02/76.52 PADT: 282,384
Arabic BERT Fine-tuned BERT-based sequence labeling UAS/LAS: 82.65/80.59 CATiB: 169,319

5.2 Ambiguities in syntactic structures due
to ellipsis and zero pronouns

Arabic syntax features phenomena like ellipsis and zero
pronouns that introduce ambiguity into sentence structure. These
phenomena are particularly common in conversational Arabic and
can result in incomplete syntactic structures that require contextual
information to resolve. For instance, a sentence like “He went
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to the market, and she [went] to the store” in English uses an
ellipsis, which may be straightforward to resolve in English, but
in Arabic, this can be more complex due to the omission of verb
phrases or pronouns without clear agreement. Zero pronouns,
where the subject or object is omitted from a sentence because
it can be inferred from context, add another layer of complexity.
Accurately resolving these ellipses and zero pronouns in both MSA
and dialectal varieties remains an unsolved challenge in syntactic
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parsing, particularly for systems that rely heavily on surface form
rather than deeper contextual understanding.

5.3 Model generalization and domain
adaptation

One of the most pressing challenges in Arabic syntactic
analysis is the generalization of models across domains. While
Arabic parsers have become quite effective for general text (e.g.,
news), they often fail when transferred to specific domains,
such as healthcare, finance, or legal documents. Domain-specific
vocabulary, sentence structures, and jargon can lead to significant
degradation in performance when the models are not adapted
properly. Traditional training methodologies that focus on general-
purpose data are less effective for domain-specific tasks, and fine-
tuning models for specialized domains remains an open area
of research.

6 Conclusion and future directions

Arabic syntactic analysis has made significant strides over
the past decade, transitioning from rule-based systems to more
sophisticated machine learning and neural network models.
Despite these advancements, several challenges remain, including
handling dialectal variation, resolving ambiguities due to the lack
of diacritics, and the need for larger, more diverse annotated
datasets. As new systems and approaches are developed, the
evaluation of Arabic syntactic analyzers will remain a critical
challenge. Establishing more diverse and standardized benchmarks
for evaluating Arabic parsers across dialects, genres, and domains
is essential for guiding future improvements.

This paper systematically surveys and compares state-
of-the-art Arabic syntactic parsing,
highlighting the strengths and limitations of existing rule-

methods for clearly
based, statistical, machine learning, and hybrid approaches. It has
also provided a comprehensive evaluation of essential resources,
including prominent Arabic syntax treebanks. The comparative
insights presented here serve as a foundational reference for
researchers seeking to address the inherent complexities of
Arabic NLP.

Future research should focus on leveraging advances in
transformer-based models, such as multilingual and domain-
adaptive language models, to enhance parser robustness across
dialects and diverse textual domains. Joint models capable
of simultaneously addressing morphological
POS tagging, and syntactic parsing should be developed
to mitigate cascading errors. Additionally, increased efforts

segmentation,

toward interpretability in neural systems and richer semantic
annotations in Arabic Treebanks will significantly improve
downstream NLP applications. Exploring cross-lingual transfer
learning and semi-supervised learning techniques will be vital
in overcoming current limitations related to the scarcity of
annotated data, particularly for dialectal and low-resource
Arabic varieties.
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In conclusion, while significant progress has been
made in Arabic syntactic analysis, ongoing challenges and
evolving linguistic phenomena offer ample opportunities for
further research. Advances in deep learning, multilingual
and  the of dialectal
are likely to drive the next wave of breakthroughs in

the field.
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Arabic speech recognition model
using Baidu's deep and cluster
learning

Fawaz S. Al-Anzi* and Bibin Shalini Sundaram Thankaleela

Department of Computer Engineering, College of Engineering and Petroleum, Kuwait University,
Kuwait

This study involves extracting the spectrum from the Arabic raw, unlabeled
audio signal and producing Mel-frequency cepstral coefficients (MFCCs). The
clustering algorithm groups the retrieved MFCCs with analogous features. The
K-means clustering technique played a crucial role in our research, enabling the
unsupervised categorization of unlabeled Arabic audio data. Employing K-means
on the extracted MFCC features allowed us to classify acoustically similar
segments into distinct groups without prior knowledge of their characteristics.
This initial phase was crucial for understanding the inherent diversity in our
diverse sampled dataset. Dynamic Time Warping (DTW) and Euclidean Distance
are utilized for illustration. Classification algorithms such as Decision Tree,
eXtreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Random
Forest are used to classify the various classes obtained based on clustering. This
study also demonstrates the efficacy of Mozilla's Deep Speech framework for
Arabic speech recognition. The core component of deep speech is its neural
network architecture, which consists of multiple layers of Recurrent Neural
Networks (RNNs). It strives to comprehend the intricate patterns and interactions
between spoken sounds and their corresponding textual representations. The
clustered labeled Arabic audio dataset, along with transcripts and Arabic
Alphabets, is used as input to Baidu’'s Deep Speech model for training and testing
purposes. PyCharm, in conjunction with Python 3.6, is used to build a Dockerfile.
Creating, editing, and managing Dockerfiles within PyCharm’s IDE is simplified by
its functionality and integrated environment. Deep speech provides an eminent
Arabic speech recognition quality with reduced loss, word error rate (WER),
and character error rate (CER). Baidu's Deep Speech intends to achieve high
performance in both end-to-end and isolated speech recognition with good
precision and a low word rate and character error rate in a reasonable amount of
time. The suggested strategy yielded a loss of 276.147, a word error rate of 0.3720,
and a character error rate of 0.0568. This technique increases the accuracy of
Arabic automatic speech recognition (ASR).

KEYWORDS

clustering, language model, acoustic model, Baidus deep speech, RNN, deep learning

1 Introduction

Speech acts as a gateway in communicating our ideas through different vocal sounds
and is a powerful tool that shapes our world. The study of speech signals and the techniques
used to process them is known as speech processing. Modern automatic speech recognition
(ASR) systems replace the conventional human-machine interface in various commercial
applications. Through the application of linguistics and computer science, ASR systems
can interpret spoken words and translate them into text. This enables voice-activated
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device interaction, message dictation, and generation of transcripts
from recordings. Recent developments in artificial intelligence
(AI), particularly natural language processing (NLP), have focused
on using Al applications for ASR. Researchers have investigated
morphological analysis, resource building, and machine translation
for the Arabic language. Speech and language disorders are a
side effect of many diseases, and devices like the Servox Digital
Electro-Larynx (EL) can generate quasi-clear voices for people
with disorders (Mohammed Ameen and Abdulrahman Kadhim,
2023). The respiratory, phonatory, and articulatory end organs
are all involved in the intricate neurological process of speech
(Musikic et al., 2025). Acoustic media and background noise can
disrupt and interfere with speech communication. Vocalization
system damage can affect the efficiency of voice recognition
and voice clarity (Liu et al, 2025). ASR is useful in many
domains, including the development of accessible applications to
transforming human-machine communication. Speech recognition
automatically identifies and translates a person’s spoken words based
on the data available in a speech waveform and its historical data
feed. The evolution of deep learning has changed the ASR landscape
in conjunction with Recurrent Neural Network (RNNs), deep neural
networks (DNNs), and convolutional neural networks (CNNs).
Deep neural networks are multilayered artificial intelligence that
learns from data. They are inspired by the structure of the human
brain, and these layers enable them to handle challenging issues.
Deep neural networks, which have been trained on enormous
datasets, modify their internal connections to identify patterns and
carry out tasks such as speech translation and image recognition.
The ability of CNNs to extract intricate patterns from audio
input has been inspiring. Baidu’s Deep Voice enhances voice
recognition precision in noisy situations, as well as in far-field and
reverberant conditions (Ahmed and Ghabayen, 2017; Masterson,
2015). MFCCs effectively decipher sound content in speech and
audio processing. The MEL scale considers how our ears interpret
pitch and frequencies with similar sounds. Applications such as
speech recognition systems can interpret speech data by evaluating
MECCs. A clustering algorithm is a specific set of instructions
that tells a computer how to automatically group data points into
clusters. The study addresses the issue of unlabeled Arabic audio
data by applying an unsupervised clustering algorithm to analyze
and structure the corpus, uncovering acoustic patterns, speaker
variabilities, and environmental conditions. These insights inform
effective data handling strategies and the training of Arabic Deep
Speech ASR models. These algorithms are used in unsupervised
learning, where the data does not have predefined labels. There are
many clustering algorithms, but one of the popular popular ones
is K-means. Algorithms such as Hierarchical clustering, Mean shift
clustering, Gaussian mixture model, Affinity propagation, and K-
means clustering are widely available to group different patterns of
MFCCs (Al-Anzi and Shalini, 2024).

The primary objective of this study is to develop an ASR
system that automatically transcribes spoken utterances into a
textual format. Our approach utilized a database consisting of
Arabic audio recordings, which encompassed news broadcasts,
public speeches, and various general recordings of individuals. The
primary objective of our study is to extract the Mel-frequency
coeflicients necessary for ASR from the unlabeled Arabic audio

Frontiersin Artificial Intelligence

10.3389/frai.2025.1639147

dataset. We employed a clustering approach, with the clusters
organized according to the KNN algorithm to label the collected
MFCCs. The retrieved MFCCs are categorized according to their
auditory characteristics. We have utilized Baidus Deep Speech
model to transcribe spoken language into text. The input given
to the model is our clustered Arabic audio dataset along with its
transcribe and alphabet. We also assessed the word error rate (WER)
and character error rate (CER) of the transcribed results from the
audio datasets. We have labeled the clustered dataset using a speech
recognition pretrained model from the klaam library, categorizing
it as Modern Standard Arabic (MSA), Egyptian Arabic (EGY),
and Gulf Arabic (GLF) based on dialects. We have trained the
model using different machine learning algorithms to categorize the
dialects and assess accuracy, loss, and evaluation metrics for the
clustered results.

The subsequent sections of the article are structured as
follows: A concise literature overview encompassing ASR, diverse
languages and accents in ASR, end-to-end speech processing, and
the deep learning architectures that facilitate speech recognition,
concluding with a clearly defined research gap, along with the
methodologies and materials. Includes fundamental architecture,
data collection, data analysis, MFCC analysis, clustering of MFCC
characteristics, classification, performance evaluation, findings,
debates, conclusion, and future scope.

2 Literature review

The study by Ahmed and Ghabayen (2017) proposes three
methods to improve Arabic automatic speech recognition. They are
listed in the following order: utilizing a Decision Tree to generate
alternative pronunciations, modifying a native acoustic model with
a different native model, and text processing to improve the language
model. By employing these methods, the word error rate was
reduced. The methodology of the paper showed how deep speech
recognition models can integrate over time with long, adjustable
windows (Ahmed and Ghabayen, 2017).

2.1 Automatic speech recognition

In the study by Keshishian et al. (2021), ASR aims to
enable computers to identify and interpret human speech as
accurately as possible. Many techniques can be used to implement
speech recognition models. The author utilized one of the newest
techniques for speech recognition, which employs neural networks
with deep learning. An overview of the research conducted on
Arabic voice recognition is given in the paper by Wligihab et al.
It also sheds some light on the facilities and toolkits available for
Arabic voice recognition system development (Algihab et al., 2019).
A vast array of products has been developed that efficiently leverage
ASR to enable communication between humans and machines by
Karpagavalli and Chandra et al. Speech recognition applications
exhibit reduced performance in the presence of reverberation or
minimal background noise (Karpagavalli and Chandra, 2016). Both
acoustic and text transcriptions are used during the entire training
process of ASR neural network systems.
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The study by Belinkov et al. compares phonemes and
graphemes along with different articulatory properties to evaluate
the representation quality across a range of classification tasks.
The study analyzes three datasets and two languages, Arabic and
English, and demonstrates how consistently different features are
represented across deep neural network covers (Belinkov et al,
2019). The purpose of the study by Abdul et al. is to discuss
the applications of the MFCC as well as certain problems with
its calculation and how they affect the models performance
(Abdul and Al-Talabani, 2022). An enhanced Mel-frequency
cepstral coefficients (MFCC) feature for unsupervised marine
target clustering is presented in the research. It exhibits a high
success rate for multitarget or depth-target clustering as well as
strong anti-interference capabilities (Yang and Zhou, 2018). The
Short-Time Fan-Chirp Transform (FChT), a novel technique
for time-frequency analysis of speech signals, is presented in
this study (Képesi and Weruaga, 2006). It enhances spectral and
time-frequency representation, making it appropriate for filtering
applications. Taking contextual considerations into account, this
method examines speech processing to quantify controllable
speech features across a variety of talker populations, noise levels,
competing speakers, and the channel through which it is conveyed
(Pitton et al., 1996).

The study by Abushariah et al. gave a framework for designing
a speaker-independent automatic Arabic speech recognition system
using a phonetically rich speech corpus. The system uses Carnegie
Mellon University’s Sphinx tools and Cambridge HTK tools and uses
three-emitting state Hidden Markov Models for tri-phone-based
acoustic models. The system achieved word recognition accuracy of
92.67 and 93.88% for similar speakers with different sentences, and
a Word Error Rate of 11.27 and 10.07% with and without diacritical
marks (Abushariah et al., 2012). A simple word decomposition
algorithm presented by Afify et al. requires a text corpus and affix
list, improving WER by 10% in Iraqi Arabic ASR. The algorithm
also reduces WER by 13% relative (Afify et al., 2006). The research
presented by Ali Ahamed et al. shows a novel methodology for
assessing ASR in languages lacking a standardized orthographic
system. The authors solicited five distinct users to transcribe speech
segments, subsequently integrating the alignments from numerous
references and presenting a revised WER. The findings indicated an
average WER of 71.4 and 80.1%, respectively.

2.2 Different languages, ascent speech
recognition

To build high-performing recognizers for two radically different
languages, such as Mandarin and English, the authors Amodei et al.
looked into a variety of network topologies and found a few helpful
techniques, such as look-ahead convolution for unidirectional
models, and enhanced numerical optimization using SortaGrad and
Batch Normalization (Amodei et al., 2016). In the study by Nahid
et al., they investigated the capacity of the DeepSpeech network to
recognize unique Bengali speech samples. Recurrent Long Short-
Term Memory (LSTM) layers form the foundation of this network,
which models internal phoneme representations. At the bottom,
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convolutional layers are added, which removes the requirement to
assume anything about internal phoneme alignment. The model
was trained using a connectionist temporal classification (CTC) loss
task, and the transcript was generated by casting a beam search
decoder. On the Bengali real number speech dataset, the developed
method produced a lower word error rate and a character error rate
(Nahid et al., 2019).

In the study by Priyank Dubey (2023), they discussed that the
transcription of spoken speech can be extracted from the waveform
using ASR. Mozilla Deep Speech is among the most recent,
according to Baidu’s Deep Speech research report. Through end-
to-end deep learning, the state-of-the-art deep voice recognition
system was developed. A properly optimized RNN is used with
several Graphical Processing Units (GPUs). Its generalizability to
other English accents is limited because American English accents
make up the majority of the datasets used in this training. In this
study, researchers used the most recent Deep Voice model, Deep
Speech-0.9.3, to create an Indian-English speech recognition system
from beginning to end for dialects. In the study by Xu et al. (2020),
the focus of the research was on a real-time German speech-to-
text system that was constructed using numerous German language
datasets. Researchers in this study optimized DeepSpeech for
teaching a current German speech-to-text prototype by combining
multiple German datasets. Moreover, they achieved strong WER
rates. The model discussed in the study by Ai-Zaro et al. produces
the WER/PER of 3.11 and 6.18% (Al-Zaro et al., 2025).

Literature (lakushkin et al, 2018) explains how a voice
recognition system for the Russian language is made using
DeepSpeech. The foundation was the Mozilla Corporation’s
DeepSpeech English implementation, which is available as
open-source software. The system was trained in a containerized
environment using Docker technology. A dataset of Russian literary
audio recordings made available on voxforge.com was used, and the
best WER was 18%. A study by Messaoudi et al. (2021) proposes an
end-to-end method for building Tunisian language communication
systems based on deep learning. The paired text-speech dataset in
the Tunisian dialect created for this proposal is called “TunSpeech.”
Furthermore, the current Modern Standard Arabic (MSA) speech
data were combined with dialectal Tunisian speech data to lower
the Out-of-Vocabulary rate.

2.3 End-to-end speech processing

Research (Kim et al,, 2017) offers a novel end-to-end speech
recognition method that leverages a hybrid CTC-attention model
within a multitask learning framework to boost resilience and
accelerate convergence, thereby reducing the alignment issue. An
experiment using the WSJ] and CHiME-4 tasks demonstrates its
superiority over the CTC and attention-based encoder-decoder
baselines, yielding 5.4-14.6% relative improvements in CER. The
study by Agarwal and Zesch (2020) utilizes a shared task on
SwissText/KONVENS for a speech-to-text system. A neural network
is trained end to end, using Mozilla DeepSpeech as its foundation.
Data augmentation, post-processing, and transfer learning from
standard English and German were utilized. The WER generated by
the system is 58.9%.
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2.4 Speech recognition using deep learning

In the study by Nedal Turab (2014), a neural network technique
was used to address phoneme recognition. Gaussian low-pass
filtering produced improved voice signal quality and reduced noise,
which was then used to train a neural network for system training.
Study (Alrumiah and Al-Shargabi, 2023) tackles the important task
of identifying classic Arabic speech for the 1.9 billion Muslims
who recite the Quran. It proposes a model based on Deep Neural
Networks (DNNs). With a 19.43% word error rate and a 3.51%
character error rate, RNN-CTC outperformed the other models
following its training on a 100-h dataset of Quran recordings. CNN
was used to further reduce the word error rate. Paper (Alsayadi
et al., 2021) presents Arabic diacritical mark-based ASR systems.
To create a trustworthy and accurate Arabic ASR, a study by
Alsayadi et al. looks at the application of cutting-edge end-to-
end deep learning techniques. The acoustic characteristics used in
these methods are the log Mel-Scale Filter Bank energies and the
Mel-frequency cepstral coefficients. Enhancing discretized Arabic
ASR is possible with CNN-LSTM and a new CTC-based ASR.
When it comes to Arabic voice recognition, CNN-LSTM with a
consideration basis outperforms both traditional ASR and the Joint
CTC-attention ASR context (Alsayadi et al., 2021). The research by
Ullah et al. utilized Arabic image datasets that have been gathered,
consisting of 2,000 Arabic digit records and 900 Arabic phrase
records from 24 native speakers. VGG-19 is a deep convolutional
neural network with 19 weight layers and is used in this study to
extract visual characteristics. Two different approaches, namely, the
batch-normalized VGG-19 base model and the standard VGG-19
base model, are presented in the study. The test dataset produces
the accuracy of 93% digit and phrase recognition, 97% phrase
recognition, and 94%-digit acknowledgment rates (Ullah et al,
2022).

Nagamine et al. analyze a sigmoid DNN trained for a phoneme
recognition task to characterize different aspects of the non-linear
changes that occur in hidden layers. The more separable phone
instances are handled by deeper layers of the network through a
non-linear feature space transformation. The study describes how a
deep neural network model learns by transforming the feature space
in a non-uniform way through repeated non-linear transformations
(Nagamine etal., 2016). In the study by Hori et al. (2018), researchers
investigate the impact of word-based RNN philological mockups
language models (RNN-LMs) on end-to-end ASR performance. It
includes a novel word-based RNN-LM which allows decoding with
only word-based. Low WER is achieved by the proposed model
for the WSJ Eval’92 test set. In the study by Dendani et al. (2020),
the representational characteristics of a DNN trained for phoneme
recognition were described. In the first hidden layer, node selectivity
to specific articulation styles and locations appeared, and in the
deeper layers, this selectivity became more pronounced. In the study
by Dendani et al. (2020), ASR is implemented using a Deep Auto
Encoder (DAE). The results showed that the enhanced speech’s
accuracy was about 3.17 times better than the accuracy estimated
before. Recent models and algorithms, such as Mozilla Deep Speech,
have been developed, but their generalizability is limited due to their
use of American-English accent datasets (Priyank Dubey, 2023).
The study by Srivathshan et al. proposes a hybrid Active Noise
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Cancellation (ANC) system that combines Secondary-Path Filtered
Active Noise Control (SF-ANC) and a Fuzzy Adaptive Neuro-
Fuzzy Inference System (FXANFIS) to improve noise reduction
performance (Srivathshan et al., 2025).

2.5 Research gap

We haven't found any specific results from my more targeted
searches for studies that directly combine Baidus Deep Speech
with cluster learning for Arabic speech recognition. Research on
combining Baidu’s Deep Speech and cluster learning for Arabic
speech recognition has not yielded specific results, suggesting a lack
of extensive exploration. However, studies using Deep Speech and
cluster learning techniques have revealed challenges like language
complexity and data limitations. This supports the hypothesis
that this specific combination may not yet have been thoroughly
investigated by researchers.

3 Methods and materials

The unlabeled Arabic audio dataset, along with the alphabet,
is applied in the proposed work. The auditory data are converted
and then hooked onto a sequence of probabilities spanning the
characters in the alphabet. Second, this sequence of possibilities
gives rise to a cast of characters. The first and second steps are
made possible by a Deep Neural Network and an n-gram language
model, respectively. The n-gram language model is trained on a
text corpus, and the neural network is trained on corresponding
text transcripts and audio files. To predict text from speech and
prior text, respectively, both the language model and the neural
model receive training. Generating (MFCC, Analog to Digital
Conversion, Framing, Windowing, Discrete Fourier Transform
conversion, Mel-Filter Banks Wrapping Frequency, Converting Mel
Filter Banks to Log, Executing Discrete Cosine Transform, the
Resultant MFCC Acoustic Model generation, Language Model
creation, and Decoding algorithm with deep speech are the
fundamental techniques employed in this system. They are all
converted to a WAV setup and given a monaural aural canal with
a sampling rate of 16,000 Hz and a depth of 16 bits for each value to
allow our deep speech pipeline to read all audio clips.

Our unlabeled Arabic audio dataset was subjected to a clustering
technique and was mainly used in the pre-processing and data
interpretation phases. Since our original dataset was completely
unlabeled, we used clustering to characterize acoustic diversity,
which involves identifying distinct acoustic groups. The results
obtained are manually tested against the transcribed text data.
The clustering algorithm enables us to find hidden structures
in the data by grouping the MFCC features. The MFCCs are
derived from the available Arabic Audio datasets, which are further
clustered based on their similar features using clustering algorithms.
Machine learning algorithms are further introduced to classify
the clusters. The combination of MFCC extraction, clustering,
and classification provides an effective framework for extracting
insightful information from Arabic speech data. Speech analysis
tasks are a good fit for MFCCs because they capture the aspects of
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FIGURE 1
Methodology diagram with clustering and Baidu's deep speech

speech that are perceptible to humans. ASR allows voice-activated
computer communication for individuals with physical disabilities.
Mozill?s Deep Speech is one of the well-known ASR systems
widely accepted and has shown remarkable progress in multiple
languages, including Arabic. Baidu’s Deep Speech framework is
an open-source ASR system that converts spoken words into
written language. This speech-to-text technology uses deep learning
algorithms to translate spoken language into written text. Acoustic
models, language, speech coherence, and performance evaluation
are a few components of speech recognition models.

3.1 Methodology

Figure 1 depicts a detailed pipeline for processing Arabic audio
data, incorporating both unsupervised and supervised machine
learning methods alongside a deep learning model for transcription.
The method commences with an Arabic Audio Corpus, which is
subsequently input into a dataset preparation phase. MFCCs are
recovered from this dataset, functioning as resilient acoustic
The
Clustering, wherein an unsupervised algorithm, presumably K-

characteristics. characteristics ~ subsequently undergo
means, categorizes the audio segments according to their acoustic
similarities. The speech recognition pretrained model by the klaam
library labeled the clustered output as MSA, EGY, and GLE The
efficacy of the classification models is evaluated by metrics such as
Precision, Recall, and F1-Score, with distinct results highlighting
an emphasis on dialectal performance. The result of this clustering
phase initiates a Training/Testing phase for traditional machine
learning models, such as Decision Trees, XGBoost, Random Forest,
and KNN, employed for a Classification task, presumably aimed
at categorizing audio segments based on insights derived from the
clustering. The classification outcomes, combined with the “Arabic
Alphabets” input, facilitate the generation of labeled data, which
is thereafter divided into 70% for training, 15% for testing, and
15% for validation. These annotated data are essential for training
Baidu’s DeepSpeech model, the fundamental element responsible
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for the Text Transcribe job, which converts Arabic audio into text.
This integrated architecture exemplifies a multifaceted strategy
for Arabic speech processing, amalgamating feature engineering,
unsupervised learning, conventional classification, and deep
learning to provide a holistic solution.

3.2 Architecture of the speech recognition
system

Figure 2 shows the architecture of the Speech Recognition
System. Deep neural networks are used in speech recognition to
translate spoken words into written text. To extract significant
acoustic properties, the spoken utterances are first preprocessed.
The following steps correspond to the preprocessing, feature
extraction phases, decoder, and model creation. The preprocessing
block performs various operations on the speech signal, such as
noise reduction and silence removal. After the noise reduction,
the background noise gets removed. There will not be any
background noise in the spoken signal after the preprocessing
phase. Scaling the voice signal to a standard magnitude is known
as normalization. The speech stream is divided into shorter
segments through framing, and these segments typically last
20-30 ms.

The process of extracting information from each voice signal
frame is known as feature extraction. The acoustic properties
of the voice signal are represented by these features. These
characteristics are then applied to a series of models: an audio
model forecasts the phoneme sequence, and a dialectal prototypical
model uses the analysis of the previous word to predict the
next. A decoder transforms the sequence into a string of words,
enabling accurate speech-to-text conversion. This process uses a
pronunciation dictionary to ensure accurate translation and proper
word pronunciation. The retrieved features in the acoustic model,
a statistical model, represent a set of phonemes. The language
model is a numerical model that forecasts the next verse in a
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FIGURE 2

Architecture of the speech recognition system.

series based on the verses that have already been spoken. The
decoder needs to convert the sequence of phonemes from the
acoustic model into a word order. The last block in the diagram
represents the word sequences that have been transcribed. A
string of words represents spoken speech. Because DNNs can
identify complex patterns in data, they are well-suited for voice
recognition tasks.

3.2.1 Probability theory for speech recognition

An ASR system’s main objective is to infer the acoustic
input O in Equationl, the most likely discrete symbol
sequence among all valid sequences in the language L
(Rabiner and Juang, 1993).

(1)

O =01,02,03....0¢

The symbol sequence to be recognized is N, given in Equation 2:

)

N =ny,ny,n3....n,

The fundamental ASR system goal and the probability are given
in Equations 3, 4.

W = argmaxP (W/O) (3)
_ P(O/W)
P(W/0) = “P0O) P(W) (4)
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3.3 Data collection

The Arabic audio dataset is our in-house dataset, which contains
4,071 audio samples from various fields, such as security and
justice, Economy, Education, Health, Technology, and Sports. Each
heading of data is subdivided into three levels of datasets, such
as first, second, and third sets. Deep speech requires mono-
channel audio files in WAV format with a sampling rate of 16 kHz
and an encoding of 2 bytes per sample for all WAV files, so
ensuring consistency in audio quality and format. This collection
is categorized by speech type, comprising 733 spontaneous voice
files and 588 read speech files, providing a varied representation
of natural and controlled verbal expressions. The text linked to
these audio recordings has an average length of 93.0 characters,
reflecting a moderate complexity and vocabulary range within the
collection. Ten to twenty-second passes are available between each
voice sample. The more closely we match this, the longer or shorter
the model will be. The alphabet.txt file contains a transcription
of every character from the given voice clip. From the audio
voice clip, all punctuation has been removed, including quotation
marks, dashes, and other marks. Three sets of data were separated:
test, validation, and training. Diacritical marks are used to show
proper pronunciation or to provide phonetic guidance because the
standard Arabic script does not provide enough information about
pronunciation. Since deep speech operates at the character level, the
inclusion of these representations influenced the generation of the
acoustic model. Prediction possibilities rise based on the number
of letters.
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3.4 Data analysis

We have used a sample rate of 1,600 Hz for each audio data. The
encoding of each wave file is 2 bytes per sample. Likely, spontaneous
speech is used for our analysis. The number of spontaneous speech
files is 733, and the number of speech files read is 588. The total
number of training files is 1,321. The average text length is 93.0.

3.4.1 Silence removal

Figure 3 shows the signal after noise removal analysis of an
Arabic signal. Arabic audio signals must be stripped of silent or low-
energy segments by identifying and removing them. The advantages
of silence removal include speech analysis for cleared content and
improved speech clarity.

3.4.2 Time and frequency analysis of speech

The basic frequency of the vocal cords, which determines
whether a voice is perceived as high or low, is referred to as
pitch. Rapid alterations in the speech signals linked to consonants
and other non-voiced sounds are known as transient features.
The time-frequency distribution of the signal is mentioned as the
frequency spectrum of the audio signal. The specific characteristics
of the spectrum will depend on the speaker’s voice, the content
of the speech, and the recording conditions. Analyzing spectra
gains valuable insights into the acoustic properties of speech signals
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and is helpful for speech recognition, speaker identification, and
language understanding.

3.5 Sampling

Digitalizing the continuous sound wave is necessary for audio
signal sampling. We have digitized the sound wave for Arabic audio.
To achieve this, the parameters of the sampling rate should be
established to determine the frequency of signal measurement. We
have used a sampling rate of 44.1kHz and a bit depth of 16 bits
for our Arabic speech for sampling one lengthy audio wave. The
overall sampling rate is 16 kHz. Figure 4 shows the sampling frame
of the audio signal. Spectra used horizontal and vertical axes to
visually represent the energy distribution across time and frequency,
respectively. The power of each combination is indicated by the
intensity of the color. Common observations include darker areas,
which are associated with high energy, and lighter areas, often linked
to unvoiced sounds.

3.5.1 Discrete Fourier Transform

The windowed speech signal is subjected to DFT, which yields
the signal’s phase and magnitude representation. The Fast Fourier
Transform (FFT) algorithm transforms time domain analysis to
frequency domain analysis Figure 5 shows the FFT spectrum of
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an audio signal and the distribution of the energy that occurs at
different frequencies for each segment. Dominant frequencies are
those that indicate prominent tones, such as formants and pitch. The
spectral content is used to reveal the presence of various frequency
components. The sampling frequency of 1,600 Hz provides basic
frequency analysis.

3.5.2 MFCC feature extractions

The process of extracting MFCC features is essential for
comprehending speech content, which involves triangular filters.
Standard FFTs linearly analyze frequencies of sound, but human
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hearing operates on a Mel scale. The output of the FFT is passed
through triangle-shaped filters. We can capture the portions of
the spectrum most pertinent to human hearing by adding the
contributions of each filter, each of which focuses on a particular
frequency range. The MFCC is the result of this Mel-focused
representation. Filters are arranged logarithmically, except above
1,000 Hz, and are equally distributed. The equation used to compute
Mel frequency is given in Equation 5 (Gupta et al., 2013).

Mel (f) = 1127In (1 + %) (5)
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The changes in the speech from frame to frame can be calculated
with the first and second MFCC coefficients. Figure 6 shows the
block diagram of MFCC feature Extraction.

The audio signal is divided into frames. Windowing and FFT
are applied to convert it to the frequency domain. Mel-scale
filtering is used in accordance with human auditory perception
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and logarithmic compression. The discrete Cosine Transform is
used to reduce dimensionality, and the resulting MFCCs can
provide speaker independence, robustness against noise, and can
be processed efficiently. They also capture the fundamental spectral
characteristics of speech. Figure 7 shows the Mel power spectrum of
the Arabic audio dataset.
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TABLE 1 MFCC statistics.

Mean Standard deviation Maximum  Minimum

—52.965 ‘ 8.573 ‘ —19.167 ‘ —88.341

3.5.3 MFCC statistics

The mean, standard deviation, maximum, and minimum values
are represented in Table 1. The mean reveals the average emphasis
on the frequency band within the speech. The speech data’s
standard deviation is a measure of its variability. The maximum
and minimum values help in locating anomalies or errors made
during the MFCC extraction process. A Discrete Cosine Transform
is applied to each MEL filter band to extract MFCCs from the
Mel spectrum.

Figure 8 shows the correlation heat map of the different
Mel frequency coefficients. The degree of similarity between
different MFCCs is shown by their correlation. The various
MFCC features are represented by the rows and columns in the
heatmap. The correlation between the features that correspond
to the row and column is represented by the color of each cell.
When two features have a positive correlation, that is, when
they tend to rise or fall together, they are colored red. When
two features are negatively correlated, one tends to increase
while the other decreases, as indicated by blue. When the
two features are uncorrelated, the color white is used. Every
value on the heatmaps diagonal is 1.0, indicating that every
feature has a perfect correlation with every other feature. Higher
values indicate stronger correlations. The values of the diagonal
range from —1.0 to 1.0. MFCC captures the spectral envelope
of audio signals based on the relative prominence of different
frequency bands.

4 Clustering and classification

MEFCC features are clustered together using a clustering
algorithm. As the labels are unknown to us, supervised learning is
not a solution to the problem. An unsupervised learning method
called K-means clustering will be used for grouping into clusters.
The clustering divides data points into a fixed number of groups
(K) based on their similarity. The first K data points are chosen at
random to serve as the initial cluster centers. The nearest center
is determined by averaging these assigned points. Repeating this
process until the centers stabilize produces groups in which the
data points are unique from those in other clusters and similar to
each other within each cluster. Clustering is done based on the
Euclidean distance in the MFCC feature space between data points.
Three clusters are applied to MFCC features. The clustered data
are scaled with a silhouette score. Figure 9 shows the three groups
of clusters formed from MFCC correlation features. A silhouette
score of 0.6918 was obtained in the clustering. The silhouette score
is the metric used to assess the quality of clustering algorithms.
It evaluates how well data points are assigned to their clusters.
Scores range from —1 to 1, with values closer to 1 indicating
improved clustering.
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4.1 Grid search

In machine learning, grid search is a technique used
to determine a model's optimal settings, also known as
hyperparameters. Each hyperparameter has a specific range,
and the model is trained using all possible combinations from the
different ranges. The performance of each combination is assessed,
and the best combination is selected as an ideal set. Grid search CV
finds the optimal solution based on the selected metric.

4.2 Classification

For multiclass classification tasks, the support vector machine
classifier is used. A hyperparameter tuning method called grid
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search is used to maximize the performance of the SVM model.
“Linear” and “rbf” for kernel and (Mohammed Ameen and
Abdulrahman Kadhim, 2023; Belinkov et al., 2019) for C are the
possible values that are explored for the two hyperparameters,
“kernel” and “C” The training data are fitted to the SVM model
that performs the best. Confusion matrix and classification report
metrics are used in performance evaluation.

5 Baidu's deep speech

The state-of-the-art speech recognition system known as Deep
Speech was developed using Baidu’s end-to-end ASR architecture.
A massive amount of speech data is trained using multiple GPUs
and an RNN. Baidu’s Deep Speech can learn directly from a
large set of data, so it does not require speech adaptation or
noise filtering. Deep RNN training will be based on supervised
learning. From voice samples, mel-frequency cepstral coefficients
are extracted, and transcription is output directly. A full voice
recognition system powered by deep learning and its structure.
The system generates a matrix of character probabilities, which
shows that it gives each character in the alphabet a chance at each
period step, indicating the likelihood that that particular character
will match the audio. Furthermore, the Connectionist Temporal
Classification (CTC) loss function increases the probability of
accurate transcription. TensorFlow uses Baidus Deep Speech
Architecture to implement Mozilla Deep Speech, enabling the
creation of prototypes for any dialect. It is simpler to operate
and performs better in noisy environments than other traditional
systems. This system’s main advantage is that it outperforms
traditional speech recognition systems, capable of handling speaker
oscillation, echo, and background noise. From audio files, a time
series spectrogram is produced, with each time slice representing
a vector of audio characteristics. Three of the five unseen layers
that comprise the RNN that powers the Deep Speech model are
non-recurrent. Figure 10 shows the architecture of Baidu’s Deep
Speech system.

5.1 Acoustic model and language model

The acoustic archetypal generates a likelihood distribution over
the characters of the alphabet in response to audio. The acoustic
model takes up the majority of the training time. Typically, three
steps are involved in the feature extraction process. The acoustic
front end, also known as speech analysis, is the initial phase. It
creates raw features by performing a type of temporal analysis of the
signal’s spectrum. The acoustic model’s task is to use the sequence-
to-sequence Deep Speech algorithm to identify which acoustic
signals correspond to which specific letters. The language model
helps translate these probabilities into comprehensible language
words, followed by extensive labeled voice training on a large volume
of data. The most important things to consider are the data that
are rarely or never present in our training sets. We combine our
system with one of these n-gram language models since they are
readily trained from large unlabeled text datasets. Language models
are typically trained by minimizing confusion on training data and
by observing word sequences in text corpora that contain millions
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of word tokens. A variety of toolkits, including SRILM, KENLM,
and open-game toolkits, are used to generate language models. It is
necessary to train the linguistic model and the audio model with the
same alphabet. alphabet.txt is the glue that holds the linguistic model
and the acoustic model together. The neural network utilized in the
acoustic model was trained on a corpus of voice and transcripts,
which was created with TensorFlow. An n-gram model trained with
KENLM is the morphological ideal, and the training data are a
corpus of text. As inputs are fed into the network for a reference
window of size k, the ith unit in a convolutional layer  at a timestamp
t delivers M(Li), as shown in Equation 6, which represents the
architecture of a deep RNN using Arabic data.

9 oo 0L

Here, M(0) denotes the input, and it contains 13 units. o (.) is the
activation function as in Equation 7, and the hidden fully connected
layers use a Rectified Linear Unit (ReLU) activation function. We
always constrain the output of a convolution unit to up to 5 (Wu
et al., 2024).

0 (x) = min (max (0, x) , 5) (7)
At any timestamp ¢, the units at layer 1 of the recurrent

bidirectional LSTM take updates from both past and future
timestamps, as shown in Equations 8, 9.

— — —

M = tanh <wl M4U-M_ + b’) (8)
<« <« <«

M = tanh (col M+ UM, + bl) 9)

where ' is the input hidden weight matrix and U’ is a recurrent
weight matrix. The sum of forward and backward directional
states yields an “informed state” (hl), which is shaped by the
prior transitional probabilities of the phonemes. The activation
function tanh(.) acts like a squashing function, as shown in
Equation 10 (Morais, 2025).

e —e

tan h (.x) = m

(10)

The processed cepstral coefficients flow through the recurrent

layers, and each upper layer receives this processed information

from its immediate lower layer, which is given in Equation 11.

Mﬁ:f(ml.Mi—l +b’) (11)

The output is a softmax layer that gives a probability distribution
over phonemes, shown in Equation 12.

L 3 L—1
ewk'ht

P(oic = k/x) = —F

- (12)
Ziewk'hi‘ 1

The value of the output unit at any timestamp ¢ will indicate
the probability of the corresponding phoneme n as predicted by
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the network. The network is then trained using the CTC loss
function, and the parameters of the network are updated using the
backpropagation through time (BPTT) algorithm. Then 32-bit beam
search decoder is used to construct the output from the phoneme
distribution. The Term Frequency Inverse Document Frequency
(TF-IDF) vectorizer is a useful tool for translating Arabic text data
into numerical vectors. When analyzing text at the character level,
it considers individual characters, pairs of characters, and triplets
of characters. This is an important step for the Arabic script. It
learns the vocabulary and term importance from the data and
then creates TF-IDF vectors for each document. Based on the
frequency of each term in the document and rarity across the
dataset, these vectors indicate the relative importance of each term.
Then, among other NLP tasks, these vectors can be used to train
machine learning models for document classification, hidden topic
identification, and document similarity comparison. The two main
tasks completed by the vectorizer are stemming/lemmatizing Arabic
text and normalizing it. The sample data are shown in Figure 11.
To calculate the probability of each sentence, the function counts
the number of sentences (n-grams) that have been viewed so far,
divides that count by the total number of sentences, and increases
the count for each sentence. This is a basic method to determine
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the word or words that will appear next in a given sequence and
to calculate the probability that a sentence will appear again based
on how frequently it appears in the dataset. It separates Arabic
text data into words, cleans it up, and calculates the probability
that different word combinations (n-grams) will occur together. A
sample prediction is shown in Figure 12.

5.2 Augmentation and hyperparameter
setup

5.2.1 Baidu's deep speech hyperparameters

The majority of the hyperparameters in the preconfiguration
for Mozilla Deep Speech remained unchanged. Nonetheless, the
batch size was slightly modified in consideration of the machine’s
capabilities and the amount of training data. Furthermore, Deep
Speech offers the ability to create checkpoints, allowing training to
be resumed in the event of an error using the checkpoints. Either
we create a checkpoint directory and store the training checkpoints
there, or we freight the Deep Speech frontier directory containing
the training checkpoints. Prediction accuracy is calculated using
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the loss. As the loss decreases, the difference between the neural
network’s predictions and the actual known values becomes smaller.
When there is no reduction in loss, the parameter indicates how
many training epochs should be considered as a plateau.

« Hyperparameter optimization: Optuna is a framework
utilized for hyperparameter optimization. It specifically
adjusts Im_alpha, which is a language model weight, and
Im_beta is a word insertion bonus. To reduce the WER
and CER on a designated test set, it systematically assesses
several combinations of these parameters, dynamically
reinitializing the TensorFlow graph for each iteration and
relaying intermediate performance metrics to Optuna,
which subsequently directs the search intelligently and
eliminates unpromising trials to enhance efficiency. The model
ascertains whether to optimize for WER or CER according
to the loaded scorer’s mode and offers a definitive entry
point for users to commence this essential post-training
optimization procedure, yielding the optimal parameters and
their associated performance.

 Reduce plateau: If training does not result in a decrease in loss
over time, it is said to have plateaued. It is possible to break
through the plateau and keep reducing losses by adjusting the
learning rate and other parameters.

« Early stopping: If training does not eventually reduce loss, an
early termination is an option.

o Dropout: When training produces a model with poor
generalization, it is referred to as overfitting and has an
impact on the model's generalizability. A method called
“dropout” enhances the generalizability of the model by
arbitrarily eliminating nodes from the neural network to
lessen overfitting.

« Steps and Epochs: A training set’s entire cycle is referred to as
an epoch. Batch size affects how much memory is required for
processing. Fifteen epochs and a batch size of four are employed
for this optimization.

o Train-test split: The training loop efficiently manages
data loading, preprocessing, and augmentation, while

enabling multi-GPU training by distributing computations

across “towers” to average gradients for faster updates. Key
components, including adaptive learning rate reduction during
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TABLE 2 Hyperparameters of grid search.

Scores Decision XGBoost KNN Random
tree forest

Mean fit time 0.0135 0.0317 0.0234 0.0293
Standard fit time 0.0007 0.0009 0.0020 0.0009
Mean score time 0.0037 0.0112 0.0030 0.0101
Standard score 1.2655 4.6037 7.41052 1.0215
time

Mean test score 0.9973 0.9886 0.9980 0.9900
Standard test 0.0020 0.0028 0.0019 0.0027
score

Rank test score 2.000 3.000 1.000 3.000

performance plateaus, early stopping to prevent overfitting,
and thorough checkpointing, which entails retaining the
best-performing model on a validation set, are integrated to
ensure rapid and effective model development. This provides
functionalities for autonomous evaluation of models on
test datasets and the creation of efficient inference graphs,
representing a complete solution for DeepSpeech model
training and deployment. We have utilized 70% of the audio
data for training 15% for testing, and 15% for validation.

5.2.2 Machine learning hyperparameters

Table 2 shows that the grid search method uses different values
of hyperparameters in each run. The first run uses the C values of
73,79, 50, and 52, while the second run uses the C values of 19, 81,
72, and 89. The fit and score time are mentioned in Table 2.

5.2.3 Computational environment

All experimental methods were performed on a MacBook Pro,
specifically configured with a 1.4 GHz Quad-Core Intel Core i5
processor. The system employed Intel Iris Plus Graphics 645 for
graphics processing, featuring 1,536 MB of memory. The device
was equipped with 8 GB of 2,133 MHz LPDDR3 RAM and ran
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macOS Sequoia version 15.5. The dataset and computational outputs
were stored on a 250.69 GB Macintosh HD, with 112.16 GB of
space available during the experimental phase. This configuration
facilitated the computational framework for all data processing,
model training, and evaluation activities conducted in this research.

6 Results and discussions

6.1 Confusion matrix

Confusion matrices are specially used to visualize a model’s
performance in classification problems. They display the frequency
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of errors, such as false positives and false negatives, as well as the
proportion of correctly classified data points, such as true positives
and true negatives. The model predicts 1,145 actual instances of class
1 correctly and 55 actual instances of class 2, and 86 out of 87 actual
instances of class 3. Figures 13, 14 show the confusion matrices.

6.2 Classification report

Both the confusion matrix and classification report indicate that
the model achieved excellent performance with perfect accuracy,
precision, recall, and Fl-score for each class. Table 3 shows the
classification report.
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TABLE 3 Classification report.

10.

3389/frai.2025.1639147

Classifiers Class Precision Recall Fl-score Support
Decision tree 0 1.00 0.99 0.99 99
1 1.00 1.00 1.00 1134
2 1.00 1.00 1.00 54
XGBoost 0 0.99 0.98 0.98 99
1 1.0 1.0 1.0 1126
2 1.00 0.98 0.99 62
KNN 0 0.95 0.87 0.91 95
1 0.98 1.00 0.99 1137
2 1.00 0.76 0.87 55
Random Forest 0 0.88 0.90 0.89 78
1 0.99 0.99 0.99 1153
2 0.98 0.95 0.96 56
Decision Tree XGBoost
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FIGURE 15
Learning curve for decision tree and XGBoost.
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Precision—recall curve for XGBoost.
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FIGURE 18

Test and validation loss vs. epochs and word and character error rate vs. epochs.

63 Learning curve TABLE 4 Model performance analysis.
. L Epoch Test Validation Word Character
The learning curve shows the x-axis with values between 500 loss loss error rate  error rate

and 2,500 labeled as training data size, shown in Figure 15. The
. , 3 1,017.0 1021.4 1.0000 0.59118

model accuracy y-axis has a range of 0.95 to 1.0. Two lines
are displayed, one green for validation accuracy and one blue 12 300.00 324.70 0.7815 0.1920
for training accuracy. As the size of the training data increases, 19 223.27 286.77 0.6982 0.1643

the validation accuracy also increases, indicating that data are
) i X i 2 160.01 266.72 0.6170 0.1437

being trained well and validated. The learning curves for the
decision tree, XGboost, KNN, and Random Forest are shown in 5 13286 259.57 06160 01432
Figures 15, 16. 31 128.33 257.66 0.6037 0.1387
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TABLE 5 Model performance analysis—best model.

Best
WER

Best
CER

Loss at best  Arabic text

WER/CER

Epoch

10.3389/frai.2025.1639147

English text

12 0.4687 0.1060 110.289 e fulag o153 Aela) Gc}ml\l\ (Al i) The Cabinet held its weekly meeting at Seif Palace
A0y 3l ) (el Gl ) sl a2l under the chairmanship of His Highness the Prime
Eua @ U315 215550 de shad (e il AAlgh Cak Minister Sheikh Nasser Al-Mohammed, where the
e 5 A3 ¢ g3 ulaa 6155301 (i) ministers deliberated a set of important files revealed
a3l by Minister of State for Cabinet Affairs Roudhan
Al-Roudhan
19 0.3720 0.0568 276.147 Hdad ﬁjﬁ?\ Q\ O oA A Sl ) kS )é-ﬂ a3 Yemen has been witnessing strikes for months after

6.4 Precision—recall curve

The graphical tool called a precision-recall curve (PRC) is
used to assess how well the classification model performs in
multiclass problems, as shown in Figure 17. PRCs offer insight
into the tradeoff between precision and recall in contrast with the
receiver operating characteristic area under the curve (ROC AUC),
which concentrates on binary classification. The ROC AUC score
is obtained as 0.99928. The WER is the percentage of words that
the system incorrectly recognizes, and the CER is the percentage of
characters that the system recognizes incorrectly. This shows that the
speaker’s ability to speak correctly has improved, as has the speech
recognition system’s ability to recognize their speech. The graph
also shows that the WER continuously outperforms the CER. This
is because the speech recognition system finds it easier to identify
individual characters.

Figure 18 shows the test and validation loss vs. various epochs
and the word and character error rate vs. epochs of the system’s
WER and CER plotted against time. The WER is the percentage
of words that the system incorrectly predicts, and the CER is
the percentage of characters that the system incorrectly predicts
(Baghdasaryan, 2022). The graph shows that both the WER and
CER show a decrease over time, suggesting that the system’s
speech recognition performance is improving. In contrast, the WER
constantly exceeds the CER. The reason for this is that individual
characters are recognized by the algorithm more readily than entire
words. The graph also shows how the WER and CER start to plateau
after a certain number of epochs. The graph shows that the voice
recognition system is training effectively. The system’s increasing
efficiency is demonstrated by the decrease in WER and CER over
time. The word error rate is the most popular metric for ASR.

Sw+ Dy + 1y
Ny,

WER = (13)

When a word in the reference sequence is transcribed as a
different word, it is called a substitute word (Sw). When a word is
completely absent from the automatic transcription, it is referred
to as a deleted word (Dw). The number of words inserted is Iw.
This means the words appearance in the transcription has no
correspondent in the reference word sequence. As it lacks the upper
bound, the word error rate only indicates whether one system

Frontiersin Artificial Intelligence
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demonstrations and marches in support of the ruling
regime and those opposing it, demanding its ouster,
while President Ali Abdullah Saleh is receiving
treatment in Saudi Arabia following an attack on the
presidential palace earlier this month.

is superior to another. For this reason, a character error rate
is used.

CER = SH4+i

(14)
Table 4 describes the entire model analysis. The size and
complexity of the exercise data, along with the system’s design,
will determine the ideal number of epochs for training a speech
recognition system.
Table 5 illustrates the best model analysis and the corresponding
transcribed Arabic text.

6.5 Discussion

Upon examining the performance of diverse ASR models,
some significant themes and insights arise concerning their efficacy
across various languages and architectural methodologies. The
data reveals a wide range of WERs, from an exceptional 0.720%
for the suggested Arabic DeepSpeech model to a maximum
of 58.87% for Kazakh utilizing Kaldi. Recent improvements in
deep learning models, especially Transformer-based architectures
such as XLSR-Wav2Vec 2.0 for Turkish, exhibit markedly lower
word error rates (0.23%) compared to previous or toolkit-
based methodologies. DeepSpeech is a widely utilized model for
several languages (Bengali, Russian, German, Tunisian, Arabic),
although its efficacy fluctuates, indicating a significant impact of
linguistic attributes and dataset quality. The incorporation of various
languages, including Arabic, Bengali, German, Hindi, Kazakh,
Russian, Tunisian, and Turkish, emphasizes the international
endeavor in ASR development while revealing persistent challenges
in attaining universal high performance, particularly for languages
characterized by intricate phonetics or scarce resources. The efficacy
of the built Baidu’s Deep Speech model was meticulously assessed
using an independent test dataset in our proposed work. This
dataset, completely omitted from the model’s training and validation
phases, functioned as a vital assessment of the model’s capacity
to generalize to novel, previously unencountered data. Our results
indicate that the model attained a WER of 0.3720 and a CER of
0.0568 during training and 0.19 WER and 0.02 CER during the
testing phase.
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TABLE 6 Comparison table with previous works.

10.3389/frai.2025.1639147

Reference Year Model Language WER
Kazakh speech and recognition methods (Karabaliyev and 2024 Kaldi Kazakh speech 56.87%
Kolesnikova, 2024) Mozilla DeepSpeech 55.36%
Google Speech-to-Text API 52.97%
End-to-end Bengali speech recognition (Nahid et al., 2019) 2019 Bidirectional LSTM Bengali speech 8.20%
Russian-language speech recognition (lakushkin et al., 2018) 2018 DeepSpeech Russian speech 18%
German speech recognition (Xu et al., 2020) 2020 DeepSpeech German speech 12.3%
German end-to-end speech recognition (Agarwal and Zesch, 2019) 2019 DeepSpeech German speech 15.1%
Tunisian dialectal end-to-end speech recognition (Messaoudi et al., 2021 DeepSpeech Tunisian speech 24.4%
2021)
Hindi speech recognition (Kumar et al., 2012) 2012 HTK Hindi speech 12.99%
Transformer-based Turkish automatic speech recognition (Tasar et al., 2024 XLSR-Wav2Vec 2.0 Turkish Speech 2.3%
2024)
Arabic phonic transcription (Elmahdy et al., 2011) 2011 ACA Arabic 19%
Arabic autoencoder speech recognition (Mohammed Ameen and 2023 Deep learning models Arabic 4%
Abdulrahman Kadhim, 2023)
Convolutional neural networks to facilitate the continuous recognition 2024 CNN-LSTM Arabic 3.63%
of Arabic speech (Sayed et al., 2024)
Arabic speaker-independent continuous automatic speech recognition 2012 Hidden Markov models Arabic 11.27%
(Abushariah et al., 2012)
Proposed study Baidu’s Deep Speech Arabic Speech 3.7%

The unsupervised clustering of MFCC features, together with
traditional machine learning classification, could be applied to
enhance speaker diarization, acoustic scene categorization, or,
importantly, Arabic dialect identification from various audio
sources. This feature is essential for augmenting customer service
analytics, expanding accessibility tools, facilitating more efficient
content filtering, and enriching language learning systems.
Furthermore, the frameworK’s proven effectiveness with unlabeled
data provides a means for creating ASR solutions for additional low-
resource languages or specialized fields that lack comprehensive
annotated corpora, thus expanding its influence within the
speech technology sector. Table 6 shows the comparison with
previous studies.

7 Conclusion

In this study, we examined the effectiveness of using clustering
and classification techniques in conjunction with MEL frequency
extraction for Arabic audio data processing. This study also
briefs on the effectiveness of Baidu’s Deep Speech in Automatic
speech recognition of the Arabic dataset. Our results demonstrate
that MFCCs efficiently capture important features, facilitating
the successful clustering of audio segments using K-means or
hierarchical clustering algorithms. Additionally, we obtained a low
loss of 128.33 for the training dataset and a validation loss of
257.66 by using Baidu’s Deep Speech. The WER for the reference
is 0.19, indicating that 19% of the words were misidentified. 2%
of the characters in the reference were misidentified, according
to the CER of 0.02 in the testing phase. The evaluation’s findings
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are encouraging. The model has a respectable level of accuracy
regarding Arabic speech recognition.

7.1 Future studies

Future studies might investigate applying the existing methods
to other widely used Arabic dialects. Potential applications such
as assistive technologies for the hearing-impaired, voice-enabled
services in Arabic-speaking regions, and integration with NLP
pipelines are possible. This would entail developing acoustic models
tailored to a particular dialect or investigating transfer learning
strategies to modify the current model to accommodate new
dialectal data. Also, predicting the next word and character from
Arabic text for audio-impaired individuals can be possible from the
transcribed data.
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Introduction:Arabic sentiment analysis presents unique challenges due to the
linguistic complexity of the language, including its wide range of dialects,
orthographic ambiguity, and limited language resources. Addressing these issues
is essential to develop robust sentiment classification systems.

Methods: This study investigates the application of ensemble machine
learning methods for Arabic sentiment analysis. Several homogeneous ensemble
techniques are implemented and evaluated on two datasets: the balanced
ArTwitter dataset and the highly imbalanced Syria_Tweets dataset. To mitigate
class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) is
employed. The models incorporate pre-trained word embeddings and unigram
features.

Results: Experimental results indicate that individual classifiers using pre-
trained embeddings achieve strong performance; however, ensemble models
consistently yield superior outcomes. On the ArTwitter dataset, the ensemble
of Naive Bayes, Support Vector Machine, and Decision Tree classifiers achieved
an accuracy of 90.22% and an Fl-score of 92.0%. On the Syria_Tweets dataset,
an ensemble combining Stochastic Gradient Descent, k-Nearest Neighbors, and
Random Forest attained 83.82% accuracy and an 83.86% F1-score.

Discussion: The findings highlight the effectiveness of ensemble learning
in enhancing the robustness and generalizability of Arabic sentiment
analysis systems. Incorporating pre-trained embeddings further strengthens
performance, demonstrating that ensemble-based approaches can overcome
challenges posed by linguistic complexity and dataset imbalance in Arabic
natural language processing tasks.

KEYWORDS

ensemble learning, sentiment analysis, machine learning, Arabic language, SMOTE

1 Introduction

With recent advancements in Natural Language Processing (NLP), several text
analysis tasks have been successfully automated, including disinformative tweets detection
(Jaber and Martinez, 2023), word sense disambiguation (Jaber and Martinez, 2022),
and propaganda detection (Duridi et al., 2025). Sentiment analysis, a subtask of text
classification, aims to classify a piece of text into binary classes (positive or negative) or
multi-class categories (positive, negative, neutral). It has found widespread application
across various domains, including politics (Grover et al., 2025), business (Tiwari and Arora,
2025), and social media (Alotaibi et al., 2025).

The performance of sentiment analysis systems largely depends on two core phases:
feature engineering and the choice of classification algorithms. Feature engineering refers
to transforming raw textual data into numerical representations that capture the semantic
and syntactic properties of the text. Traditional approaches such as Term Frequency-
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Inverse Document Frequency (TF-IDF) and n-gram models have
been effective in handling short texts (Nafis and Awang, 2021). More
recent approaches based on word embeddings, including Word2Vec
(Church, 2017), GloVe (Pennington et al., 2014), FastText (Joulin
et al., 2016), and Large Language modeling (Mansour et al., 2025)
provide rich semantic context and reduce the sparsity problem
inherent in high-dimensional representations.

Among the classification strategies, ensemble learning has
shown great promise in improving NLP task performance. The
key idea of ensemble methods is to combine the predictions of
multiple base classifiers to offset the weaknesses of individual
models while leveraging their strengths. Ensemble learning based
on machine learning algorithms has demonstrated its effectiveness
across various NLP applications (Rane et al., 2024).

Arabic is one of the six official languages of the United Nations
and is the native language of over 300 million people across 22
countries. However, Arabic sentiment analysis poses numerous
challenges due to the linguistic complexity of the language. These
challenges include morphological richness, the presence of multiple
dialects, and the frequent use of figurative language such as
ambiguity, sarcasm, and irony (Rahma et al., 2023), which makes
sentiment classification more difficult (Alwakid et al., 2017).

The contribution of this work is an model based on a majority
voting homogeneous ensemble machine learning approach.
Exploring different vector-based feature representations and
machine learning algorithms, including TF-IDF with ngrams
and pretrained word embeddings. To address the issue of class
imbalance during training, the Synthetic Minority Oversampling
Technique (SMOTE) is employed Syria_tweet dataset. Optimize
the hyperparameters of the proposed model to achieve the highest
possible classification performance. The results are compared with
the most relevant previous work, which demonstrates its superior
performance.

The remainder of this article is organized as follows: Section 2
reviews prior studies on dialectal Arabic sentiment classification.
Section 3 presents the proposed research methodology. Section 4
discusses the experimental results and evaluations. Finally, Section 5
concludes the study and outlines directions for future research.

2 Related work

Sentiment analysis has become quite popular in many languages,
including Arabic, since social media, product evaluations and
opinions, and user-generated content are becoming more and
more important. Several comprehensive surveys have traced the
evolution of Arabic sentiment analysis and mapped out the key
resources in the field. Ghallab et al. (2020) reviewed work published
between 2015 and 2019, grouping existing approaches into three
main categories: lexicon-based, machine learning-based, and hybrid
methods that combine the two. Their review also provided an
overview of more than twenty available datasets, ranging from
domain-specific corpora to large Twitter-based collections such as
ASTD and ArSenTD-Lev, which remain popular because of Twitter’s
rich mix of short, informal, and often dialectal content.

A more focused perspective was offered by Obiedat et al. (2021),
who surveyed research on **Arabic aspect-based sentiment analysis
(ABSA). Their study covered early rule-based and lexicon methods,
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as well as more recent deep learning architectures that integrate pre-
trained embeddings and attention mechanisms. They also listed key
ABSA resources, including the SemEval Arabic corpora and HARD,
and discussed persistent challenges such as handling the diversity
of Arabic dialects, the scarcity of large annotated datasets, and the
difficulty of building models that generalize well across domains.

Sentiment analysis approaches can be categorized into three
categories: lexicon-based approaches, machine learning approaches,
and hybrid approaches (Matrane et al., 2023).

In a lexicon-based technique, sentiment analysis operates
by giving a polarity score to each token in the text. The
ratings are then averaged, with positive, negative, and neutral
values tallied individually. The overall polarity of the text is
ascertained by identifying the greatest value among the various
scores. Elshakankery and Ahmed (2019) introduced HILATSA, a
hybrid incremental learning method that combines a lexicon-based
approach with machine learning. The system updates its sentiment
lexicon incrementally with newly labeled data. On the ArTwitter and
Syria_Tweets datasets, it achieved an accuracy of 85% (SVM) and
75.5% (RNN), respectively.

Abdulla et al. (2013) conducted an initial study on Arabic
sentiment analysis, comparing lexicon-based and corpus-based
methodologies. In the lexicon-based technique, an Arabic sentiment
lexicon was manually created by expanding a set of seed words
and assigning polarity ratings, thereafter categorizing text based on
the aggregate sentiment of its words. Their study used a manually
annotated dataset of 2,000 Arabic social media comments and
reviews, which underwent preprocessing using light stemming
approaches. The lexicon-based technique achieved an accuracy of
around 59%, demonstrating the feasibility of rule-based sentiment
classification in the absence of huge labeled datasets, while also
highlighting its dependence on the comprehensiveness and quality
of the lexicon.

Mataoui et al. (2016) focused on vernacular Algerian Arabic,
creating three dialect-specific sentiment lexicons and a manually
annotated dataset sourced from social media. Their lexicon-
based algorithm sorted texts by adding up the polarity of related
phrases, which was around 61% accuracy. This shows that rule-
driven methods may work well in very dialectal settings, but
they also depend on having a complete vocabulary. Assiri et al.
(2018) enhanced lexicon-based sentiment analysis for the Saudi
Arabic dialect by creating a comprehensive dialectal lexicon and
using weighted polarity scoring that accounts for negation and
supplication. Their method got around 68% of the answers right on
a Saudi social media dataset, which is better than standard lexical
baselines.

Machine learning approaches have also been applied to ASA.
This approach is based on an annotated corpus, which is fed into
ML algorithms in the training phase; then, after the model is trained,
unannotated sentences are fed to the model to predict their polarity.
Aladeemy et al. (2024) applied a range of traditional machine
learning algorithms—namely SVM, Random Forest, Decision
Tree, Logistic Regression, and XGBoost—using BoW and TF-IDF
representations with unigram and bigram features. The best result
was achieved by SVM, with an accuracy of 90.3% using unigram
features.

(2019)
Optimization Algorithm (IWO for feature selection in Arabic

Tubishat et al. proposed an Improved Whale
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sentiment analysis. Their method integrates Elite Opposition-Based
Learning to improve population diversity and Differential Evolution
operators to refine the optimization process. The proposed approach
was tested on four datasets and yielded a best average accuracy
of 89.68% on the ArTwitter dataset. However, the introduction of
pre-trained word embeddings brought a notable shift. For example,
Gamal et al. (2019) introduced a Twitter benchmark dataset for
ASA and showed that distributed word representations capture
semantic context far better than traditional bag-of-words features,
even for short and noisy tweets.

A more recent trend has been targeted sentiment analysis (TSA),
which focuses on detecting sentiment toward a specific entity within
a text. In this area, Sahmoud et al. (2022) released AT-ODTSA,
a large-scale dataset of Arabic tweets annotated for open-domain
TSA. This dataset spans multiple topics and sentiment targets,
making it a valuable resource for fine-grained sentiment studies.
However, our work differs in scope: we focus on overall tweet-
level sentiment classification, applying and evaluating models on
both a balanced dataset (ArTwitter) and a highly imbalanced one
(Syria_Tweets).

Lately, transformer-based models have also entered the scene.
For example, Alsalem and Abudalfa (2024) fine-tuned AraBERT for
Arabic sentiment tasks, achieving impressive results but requiring
significant computational resources. Likewise, a recent study
Alosaimi et al. (2024) explored hybrid pipelines that combine pre-
trained embeddings with traditional classifiers for low-resource
languages. While promising, these works did not deeply investigate
imbalanced Arabic datasets or compare classical ensemble methods
under such conditions.

In contrast, our study combines multiple pre-trained
embeddings with a homogeneous hard-voting ensemble of
classical classifiers, and evaluates performance on both balanced
and imbalanced datasets. We also address imbalance directly using
SMOTE and report results using both accuracy and Fl-score,
allowing for a fairer and more informative comparison with recent
state-of-the-art methods.

Ensemble Machine learning was applied by Saleh et al. (2022),
which developed a heterogeneous stacking ensemble model that
combines RNN, LSTM, and GRU as base learners with meta-
learners such as Logistic Regression, Random Forest, and SVM.
Using CBOW features, their model attained an accuracy of 83.12%
on the ArTwitter dataset. Al-Azani and El-Alfy (2017) employed
word2vec embeddings combined with single and ensemble machine
learning classifiers to handle highly imbalanced sentiment datasets.
They applied SMOTE for data balancing and reported their
best result—80% accuracy—using the KNN classifier on the
Syria_Tweets dataset.

While previous research has explored a range of lexicon-
based, machine learning, deep learning, and ensemble techniques
for Arabic sentiment analysis, most studies have either focused
on a single dataset, relied heavily on deep neural models with
high computational demands, or overlooked the performance
implications of dataset imbalance. Our work distinguishes itself
by systematically evaluating a homogeneous hard-voting ensemble
of classical classifiers in combination with multiple pre-trained
Arabic word embeddings. This design leverages the semantic
richness of modern embeddings while retaining the efficiency
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and interpretability of traditional algorithms. Furthermore, by
conducting experiments on both a balanced dataset (ArTwitter) and
a highly imbalanced dataset (Syria_Tweets), and applying SMOTE
to mitigate imbalance, we provide a more comprehensive assessment
of model robustness.

3 Materials and methods

An overview of the proposed Arabic Sentiment Analysis
Framework is illustrated in Figure 1. The process begins with
dataset preprocessing, which includes several text-cleaning steps.
The textual data is then transformed into numerical vectors using
two feature engineering techniques: the first involves TF-IDF with
n-gram representations, and the second leverages the averaged
vectors of pre-trained Word2Vec embeddings. A set of individual
machine learning classifiers is subsequently trained, with their
hyperparameters optimized using Bayesian optimization. Finally,
several hard voting ensemble models are constructed by combining
different classifiers to improve overall performance. The following
subsections provide a detailed explanation of each step in the
proposed pipeline.

3.1 Dataset

This study employed two sets of data. The ArTwitter dataset,
created by Abdulla et al. (2013), is a balanced corpus focusing on
Modern Standard Arabic (MSA). Two thousand tweets of various
topics, such as politics and arts, were gathered from Twitter and
completely labeled by specialists in the field as either positive or
negative. ArTwitter has been commonly used as a standard dataset in
Arabic sentiment analysis research since it is balanced and includes
high-quality annotations. The second data set is a highly unbalanced
data set, which the Twitter API acquired from Syrian tweets in May
2014. Syria_Tweets (Mohammad et al., 2016) composed from 1,798
tweets; 1,350 are annotated as negative tweets and 448 are annotated
as positive tweets. Table 1 illustrates the key characteristics of the
used data sets.

3.2 Data set preprocessing

An essential phase is the preprocessing of the dataset, which
guarantees that the data is clean, standardized, and fit for
sentiment analysis. Due to the complexities of the Arabic language,
this process employs various tailored methods to improve the
dataset’s quality and ensure that the text is well-prepared for
both machine learning and ensemble learning models. The
preprocessing pipeline initially involves the removal of NaN
values and duplicates to uphold data integrity. Following this, the
text undergoes systematic cleaning to tackle important linguistic
challenges such as punctuation and inconsistencies in spelling
and writing styles. Standardization techniques, such as removing
punctuation and normalizing text, aid in unifying the data,
thereby enhancing model accuracy. Further cleaning procedures are
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FIGURE 1
Architecture of the proposed arabic sentiment analysis framework.
TABLE 1 Key characteristics of the ArTwitter and Syria_Tweets sentiment . Stopword removal: removing common words like

analysis datasets.

Feature ArTwitter Syria_Tweets

Source Twitter Twitter

Language variety | Modern Standard Arabic Levantine dialectal Arabic
(MSA)

Annotation Manually annotated Manually annotated

Total tweets 1,951 1,798

Sentiment classes

Positive, negative

Positive, negative

Positive samples

993

1,350

Negative samples

958

448

implemented to remove noise and irrelevant elements, such as non-

Arabic characters, emojis, and English words or numbers. These

actions ensure that only pertinent information is retained, thus

optimizing the dataset for sentiment classification. The preliminary

data cleaning operations, which were performed by using the
NLTK library (Bird et al., 2009) and the ISRI Arabic stemmer
(Taghva et al., 2005), include:

Frontiersin Artificial Intelligence

conjunctions (e.g: &) and (e.g: ,& o= , V), which have
little semantic importance and do not meaningfully assist in
classification efforts.

 Punctuation removal: stripping punctuation from Arabic text
to reduce extraneous data and simplify further analysis (e.g:?,
L.

» Hashtag and mention removal: eliminating hashtags and user
tags (like @username, #hashtag) from the text.

« Emoji removal: extracting emoji characters using a regular
expression pattern to cleanse the dataset by matching and
eliminating emojis.

« English words and numbers removal: taking out English
terms and numerals from the Arabic script using regular
expressions to identify and discard typical alphanumeric
sequences.

o Character repetition handling: reducing sequences of
repeated characters to a single character (e.g: ,4e¢¢see¢® 4¢sell).

» Whitespace cleanup: compressing multiple spaces into a single
space for text uniformity.

o Tokenization: this step breaks down the polished text into
discrete tokens or units by employing separator characters such
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as spaces, commas, or tabs, facilitating separate analysis of each
word or element.

3.3 Data balancing technique

An imbalanced dataset is characterized by an unequal
distribution of class labels, where the majority class comprises a
large number of training samples, and the minority class contains
relatively few annotated instances. To address this issue, the
Synthetic Minority Oversampling Technique (SMOTE) (Chawla
etal., 2002) is one of the most widely adopted solutions.

SMOTE improves the representation of the minority class by
generating synthetic samples based on the feature space similarities
between existing instances. For each minority class instance x; €
Smin> SMOTE identifies its k-nearest neighbors (typically using
Euclidean distance), and constructs synthetic examples by linearly
interpolating between x; and one of its neighbors. Specifically, a new
sample is generated as:

Xnew = Xi + 8 - (Xun — Xi) (1)

where x,,,, is one of the k-nearest neighbors of x;, and § € [0, 1]
is a random number. This interpolation ensures that the synthetic
instances are consistent with the local topology of the minority
class (He and Garcia, 2009). The oversampling process continues
until the minority class is balanced or reaches a predefined target
size. In our study, we applied SMOTE with k = 5 nearest neighbors.
SMOTE technique was applied only to the training set, while the
testing sets remained unbalanced, to maintain the original class
distribution.

3.4 Feature representation methods

Transforming text into numerical values while representing the
semantic meaning of the text is the nex step after the cleaning
of the data. In this work, several forms of N-grams with TF-
IDF representations were implemented, in addition to pre-trained
word embedding with word2vec was leveraged to improve the
performance of the proposed models. In the following subsections
a brief descriptions for the data representation methods that were
used in the study.

3.4.1 TF-IDF with n-grams

Term Frequency-Inverse Document Frequency (TF-IDF) is a
common way to weight words and phrases in text classification. It
looks at how important a word or phrase is in a document compared
to a group of documents. It balances out two things: word Frequency
(TF), which counts how many times a word appears in a text, and
Inverse Document Frequency (IDF), which makes common words
less important and puts greater emphasis on unique phrases. The
TF-IDF score is calculated as:

TF-IDF(t,d) = TF(t,d) x log < (2)

N
DF(t))
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TABLE 2 N-gram generation examples for feature extraction.

N-gram Results

Original Arabic Sentence | [ e <) jras 2a &) ]

Unigram [os= [ I Sxes] [ =] S0
Bigram [ee il [ ] Saea,[ Jpes] [ 2] &
Trigram [oee i) paa] | 2] Sae 2], Spad] 22 &)

where t is the term, d is the document, N is the total number of
documents, and DF(¢) is the number of documents containing term
t. To capture local context and word co-occurrence patterns, we
applied TF-IDF weighting over n-gram features.

N-grams (Jurafsky and Martin, 2009) represent one of the
simplest and most widely used approaches to language modeling in
natural language processing. They are used to represent textual data
by capturing contiguous sequences of words. A single word forms
a unigram, a sequence of two consecutive words is referred to as
a bigram, and a sequence of three successive words is known as a
trigram. Despite their simplicity, n-gram models effectively capture
local context and are commonly used in various tasks such as text
classification, sentiment analysis, and machine translation. Table 2
shows an example of how the sentence is tokenized based on the
chosen type of n-grams.

In our study, we examined the effectiveness of three types of
n-gram features—unigram, bigram, and trigram—in combination
with machine learning and ensemble learning approaches.

3.4.2 Pre-trained word embeddings

ArWordVec (Fouad et al., 2020) is a huge set of pretrained
models that is built from 55 million tweets with different topics,
including social affairs, politics, and health care. The embeddings are
trained by word2vec and Glove methods with different approaches,
window size, and vector size.

In our experiments, we used the Word2Vec architecture with the
Skip-Gram (SG) approach, a window size of 3, and an embedding
dimension of 300. The Skip-Gram model was chosen because it
tends to perform better with infrequent words and is more effective
at capturing detailed semantic relationships than the Continuous
Bag-of-Words (CBOW) method (Mikolov et al., 2013a). A relatively
small window size of 3 was selected to emphasize local contextual
dependencies, which suits the characteristics of the used dataset,
while limiting the influence of less relevant, distant words. The
choice of a 300-dimensional vector is consistent with common
practice in earlier studies (Mikolov et al., 2013b; Pennington et al.,
2014), as it offers a practical balance between the ability to represent
nuanced meaning and the need to keep training time and memory
use manageable.

To leverage the strengths of the model, we compute the average
of the word embedding vectors across the entire sentence, as defined
in Equation 3.

1 n
AVG(E(S)) = - E Emb(S(7)) (3)
i=1
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Where AVG(E(S)) is the average embedding of the sentence S,
S(i) is the i-th word in the sentence, Emb(S(i)) is the embedding of
word i, and n is the total number of words in the sentence.

3.5 Individual machine learning models

Machine
implemented. A brief definition of the selected algorithms is

Several individual learning  classifiers were

provided below:

« Naive Bayes (NB) (Duda et al., 2001): is a probabilistic classifier
that uses Bayes’ theorem and assumes that features are very
independent of each other. Even though it’s simple, it does an
amazing job at classifying text because it’s fast and works well
with data that has a lot of dimensions.

« Support Vector Machine (SVM) (Cortes, 1995): builds the best
hyperplane to divide classes with the most space between them.
This makes it work well in spaces with a lot of dimensions. It is
considered powerful due to its kernel functions that work well
for non-linear decision boundaries.

o Stochastic Gradient Descent (SGD) (Bottou, 2010): it is a good
choice for sparse datasets, it updates its model parameters in an
iterative optimization process for linear classifiers.

 Logistic Regression (LR) (Cox, 1958): logistic functions are
used to model of the probability of binary results.

« Random Forest (RF) (Breiman, 2001): builds multiple decision
trees and combines their results to enhance generalization and
decrease overfitting.

3.6 Ensemble learning models

Ensemble learning aims to optimize the classification task by
fusing multiple base classifiers, which reduces the variance of the
predictions of the individual classifiers (Kumar et al., 2020). Thus,
several ensemble techniques are designed to achieve this goal, such
as bagging (Yang et al., 2020), boosting (Deng et al., 2023), and
voting (Onan et al., 2016).

The use of heterogeneous base classifiers is utilized in the Voting
technique for the production of concurrent ensemble networks.
Voting is categorized into two types: weighted averaging and
majority voting, which this study uses.

In majority voting, each model “votes” for a class label; the
most voted label is chosen for the final predictions. This happens by
combining several individual classifiers, which are known as base
learners, and the majority vote makes the final decision. In this
study, combinations of sets of individual machine learning classifiers
were tested, it is named v with numbers from 1 to 11.

3.7 Evaluation metrics
To measure the performance of the proposed approaches, two
datasets were used with different setups. We performed an 80/20

train-test split using stratified sampling, ensuring that both subsets
maintained the original class imbalance of approximately 75%
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negative and 25% positive tweets. SMOTE was applied only to
the training set, while the test set remained untouched to evaluate
model performance on real-world imbalanced data. The vectorized
training and test datasets were input into the Machine learning
classifiers in addition to ensemble learning.

The machine learning classifiers were trained to determine the
sentiment polarity of the reviews as either positive or negative. To
evaluate model performance, we used four standard classification
metrics: precision, recall, F-measure, and accuracy. These are
defined in Equations 4-7.

L TP
Precision = ——— (4)
TP + FP
TP
Recall = ———— (5)
TP+ FN
Precision x Recall
F-measure =2 X —————— (6)
Precision + Recall
TP+ TN
Accuracy = (7)

TP+ TN+ FP+ FN

where TP, TN, FP, and FN represent true positives, true negatives,
false positives, and false negatives, respectively.

4 Experiments results and discussion

4.1 Experiments setup

All experiments were performed on the Google Colab platform,
utilizing a Tesla T4 GPU for accelerated computation mainly for
faster processing of the embedding and hyperparameter tuning.
After data set preprocessing, the data was split into 80% training
and 20% testing data sets. Then, the SMOTE technique was applied
to the Syria_tweet dataset to solve the imbalanced dataset problem.
SMOTE techniques were applied to the training dataset to make sure
the learned model would be tested on real test data.

4.1.1 Hyperparameter optimization

For optimizing the performance of the proposed models,
Bayesian Hyperparameter optimization techniques (Snock et al.,
2012) were applied to both TF-IDF with n-grams and word
embeddings feature extractions.The optimization techniques were
applied via the Gaussian Process-based. This method models
the objective function using a Gaussian Process, which provides
uncertainty estimates that guide the search efficiently through the
hyperparameter space. We set the number of iterations to 32 and
employed three-fold cross-validation. As shown in Table 3, the
optimal hyperparameter values vary between the two datasets. For
example, the alpha parameter in Naive Bayes is smaller for the
Syria_Tweets dataset compared to ArTwitter. Additionally, the SVM
model uses a linear kernel for ArTwitter, while an RBF kernel is
preferred for Syria_Tweets.

Table 4 shows the optimal values of the hyperparameters for
different sets of machine learning algorithms after applying Bayesian
optimization.

Its important to note that the tuning parameters are
very different between the two datasets. For example, SGD
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TABLE 3 Best hyperparameters for ArTwitter and Syria_Tweets datasets across TF-IDF with N-gram models.

Classifier Hyperparameter Unigram Bigram Trigram
ArTwitter  Syria ArTwitter  Syria ArTwitter  Syria
Naive Bayes (NB) Alpha 0.0340 0.0010 0.0275 0.0010 0.1896 0.0010
SVM C 0.9635 3.6975 0.4667 105.7621 0.6839 105.7621
Gamma 0.0015 0.0271 0.0570 0.0447 0.1 0.0447
Kernel Linear Linear Linear Rbf Linear Rbf
KNN Metric Minkowski manhattan | Minkowski Manhattan | Euclidean Manbhattan
n_neighbors 12 2 14 2 4 2
Weights Uniform Uniform Uniform Uniform Uniform Uniform
Decision Tree (DT) MAX_depth 39 35 50 21 50 32
Min_samples_leaf 1 1 1 1 1 1
Min_samples_split 20 2 19 2 15 3

TABLE 4 Best hyperparameters using Word2Vec for ArTwitter and
Syria_Tweets datasets.

Classifier Hyper- ArTwitter Syria_Tweets
parameter value value
SGD Alpha le-06 0.000563
etal 1.0225 0.0174
Learning_rate Invscaling Adaptive
Loss Log_loss Log loss
Max_iter 3251 1000
Penalty Elasticnet 11
Tol 0.01 1.41e-05
Logistic C 0.5023 11185.625
regression
(LR) Penalty 12 12
Solver Liblinear Liblinear
Support C 25.8455 30.0
vector
machine
(SVM) Gamma 0.1877 0.15
Kernel rbf rbf
K-Nearest Metric Minkowski Manhattan
Neighbors
(KNN) n_neighbors 6 2
Weights Uniform Uniform
Random Bootstrap False False
Forest (RF)
Max_depth 50 45
Max_features Log2 Sqrt
Min_samples_leaf 1 1
Min_samples_split 2 2
n_estimators 500 500

hyperparameters optimized for ArTiwtter data set in a much smaller
learning rate initialization (eta®) and used a “invscaling” learning
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schedule with a elasticnet penalty. While Syria_Tweets
hyperparameters optimized to an “adaptive” schedule and an “11”
penalty,An adaptive learning rate helped keep the model’s training
on a stable and efficient path. At the same time, the L1 penalty
was great at promoting feature sparsity, which let the model focus
on the most important predictors and tune out the noise in the
data, preventing it from just memorizing the training examples. .
However, the SVM classifier shared the same RBF kernel across
both datasets. The KNN classifier revealed greater variation:
ArTwitter favored six neighbors and the Minkowski distance, while
Syria_Tweets performed best with just two neighbors and the
Manbhattan distance, indicating that Syria_Tweets required tighter
local decision boundaries.

4.2 Results

Table 5 presents the performance of both individual and
ensemble learning models using TF-IDF with unigram, bigram,
and trigram representations on the ArTwitter dataset. The results
demonstrate that unigram features consistently outperform
both bigram and trigram configurations. Among the individual
classifiers, Naive Bayes (NB) achieved the highest accuracy of 89.27
and 89.00% Fl-score with unigrams, followed closely by SVM
with 88.01% accuracy and 88.0% F1-score. Notably, all ensemble
models outperformed the individual classifiers across the different
n-gram representations. The V1 ensemble model (comprising NB,
SVM, and DT) achieved the highest accuracy of 90.22 and 90.00%
Fl-score with unigram features, highlighting the effectiveness of
combining diverse classifiers.

For the balanced Syria_Tweets dataset, Table 6 reveals more
consistent performance across all n-gram representations. Both NB
and SVM classifiers showed strong results, achieving 81.47 and
81.76% accuracy, respectively, using unigram features and 80.69%
and 81.25 F1-score. However, ensemble models again demonstrated
superior performance. In particular, the V4 ensemble (SVM, DT,
and KNN) achieved the highest accuracy of 83.82 and 83.33% F1-
score with bigram features, indicating that ensemble learning can
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TABLE 5 Performance across unigram, bigram, and trigram features on the ArTwitter dataset.

Classifier Unigram Trigram
Prec. Rec. F1 . . F1 Acc. Prec. Rec. F1

NB 89.27 89.00 89.00 | 89.00 | 87.70 88.00 88.00 | 88.00 & 86.75 87.00 87.00 | 87.00
SVM 88.01 88.00 88.00 | 88.00 | 8675 87.00 87.00 | 87.00 | 84.54 85.00 85.00 | 85.00
K-NN 83.91 84.00 84.00 | 84.00 | 8139 82.00 81.00 | 81.00 | 80.44 80.00 80.00 | 80.00
DT 79.18 80.00 79.00 | 79.00 | 8170 82.00 82.00 | 8200 | 8170 82.00 82.00 | 82.00
V1 (NB, SVM, DT) 90.22 90.00 90.00 | 90.00 | 89.27 89.00 89.00 | 89.00 | 88.96 89.00 89.00 | 89.00
V2 (NB, SVM, K-NN) 89.91 90.00 90.00 | 90.00 & 87.38 87.00 87.00 | 87.00 | 83.60 84.00 84.00 | 83.00
V3 (NB, DT, K-NN) 88.01 88.00 88.00 | 88.00 & 87.70 88.00 88.00 | 88.00 & 86.75 87.00 87.00 | 87.00
V4 (SVM, DT, K-NN) 88.01 88.00 88.00 | 88.00 | 87.38 88.00 87.00 | 87.00 | 8517 0.85 85.00 | 85.00

Bold values indicate the best performance of each model.

TABLE 6 Performance across unigram, bigram, and trigram features on the Syria_Tweets dataset.

Classifier Unigram Trigram
Acc. Prec. Rec. F1 : . . .  Prec. Rec.

NB 81.47 80.43 8147 | 80.69 | 8118 80.06 81.18 | 8033 | 8176 80.79 81.76 | 81.05
SVM 81.76 80.99 81.76 | 8125 | 80.88 79.88 80.88 | 80.19 | 8LI18 80.15 81.18 | 80.44
K-NN 80.29 79.36 80.29 | 79.69 | 79.71 79.00 7971 | 7929 | 78.82 80.18 7882 | 79.36
DT 79.41 77.99 7941 | 7837 | 7971 77.94 7971 | 7807 | 80.00 79.38 80.00 | 79.64
V1 (NB, SVM, DT) 83.53 82.64 83.53 | 8214 | 82.65 81.54 82.65 | 8124 | 83.24 82.26 83.24 | 8188
V2 (NB, SVM, K-NN) 82.65 81.66 8265 | 81.82 | 82.06 81.08 8206 | 8131 | 8118 80.15 8118 | 80.44
V3 (NB, DT, K-NN) 82.35 81.44 8235 | 81.66 | 82.94 82.44 8294 | 8263 | 80.88 81.13 80.88 | 81.00
V4 (SVM, DT, K-NN) 82.65 81.66 8265 | 81.82 | 83.82 83.14 83.82 | 8333 | 8235 82.21 8235 | 8228

Bold values indicate the best performance of each model.

TABLE 7 Individual classifiers and ensemble performance using word embeddings on ArTwitter and balanced Syria_Tweets datasets.

Classifier ArTwitter Syria_Tweets
Accuracy Precision Recall Fl-score Accuracy Precision Recall Fl-score
(%) ( ) (%)

SGD 89.27 89.00 89.00 89.00 79.12 81.69 79.12 79.97
LR 90.54 91.00 91.00 91.00 75.59 78.89 75.59 76.70
SVM 90.54 91.00 91.00 91.00 80.85 81.00 80.85 80.90
K-NN 84.20 86.00 83.00 84.50 76.18 81.33 76.18 77.57
RF 88.96 89.00 89.00 89.00 81.76 80.49 81.76 80.48
V1 (SGD, LR, SVM) 92.11 92.00 92.00 92.00 82.50 83.00 82.50 82.60
V2 (SGD, LR, K-NN) 91.10 91.80 91.10 91.30 79.41 81.85 79.41 80.22
V3 (SGD, LR, RF) 91.17 91.00 91.00 91.00 79.12 80.57 79.12 79.68
V4 (SGD, SVM, RF) 92.43 92.00 92.00 92.00 82.10 82.40 82.10 82.20
V5 (SGD, K-NN, RF) 91.85 91.70 91.60 91.65 83.82 83.89 83.82 83.86
V6 (LR, SVM, RF) 91.48 92.00 91.00 91.00 82.60 82.90 82.60 82.70
V7 (LR, K-NN, RF) 91.00 91.30 91.00 91.10 83.24 83.17 83.24 83.20

Bold values indicate the best performance of each model.
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TABLE 8 Comparison of accuracy between previous and our study on ArTwitter Dataset.

Reference Approach Accuracy F1 score
Al-Saqqa et al. (2018) Ensemble machine learning (voting of KNN, SVM, DT, NB) 84.4% (SVM individually) 84.0%
Saleh et al. (2022) Stacked deep learning (RNN, LSTM, GRU + SVM meta-learner) 83.12% 82.8%
Aladeemy et al. (2024) Machine learning (SVM with BoW Unigram) 90.3% 90.3%
Our approach Ensemble machine learning (voting of SGD, SVM, RF) 92.43% 92.0%

Bold values indicate the best performance of each model.

TABLE 9 Comparison of F1 score between previous and our study on
Syria_Tweets Dataset.

Reference Approach Fl-score

Al-Azani and El-Alfy (2017) Ensemble machine learning 63.95%
(stacking)

El-Alfy and Al-Azani (2020) | Machine learning (SGD 70.7%
classifier)

Our approach Ensemble machine learning 83.86%
(voting of SGD, K-NN, RF)

Bold values indicate the best performance of each model.

capture richer contextual information and provide more robust
classification in complex datasets.

Finally, Table 7 presents the results of individual and ensemble
models using word embeddings on both datasets. Across the
board, word embeddings improved the performance of all models
compared to the TF-IDF-based representations. Ensemble models
significantly outperformed individual classifiers in both datasets.
On the ArTwitter dataset, the V4 ensemble (SGD, SVM, RF)
achieved the highest accuracy of 92.43% 92.00% Fl-score. On
the Syria_Tweets dataset, the best performance was obtained
by the V5 ensemble (SGD, KNN, RF), which reached an
accuracy of 83.82% 83.86% F1-score. These findings confirm the
effectiveness of combining rich semantic features with ensemble
strategies to enhance classification accuracy in Arabic social
media text.

4.3 Error analysis

To gain a clearer picture of where our model falls short, we
looked closely at tweets it misclassified in both datasets. Three main
patterns stood out.

First, sarcasm and irony often tripped the model. Tweet 21l

“Polygamy is very beautiful, but it requires a lot of money.” used
positive wording to express criticism, usually labeled incorrectly
because the model lacked any mechanism to detect sarcasm. Second,
dialectal variation posed a challenge. Like tweet “ ¥ (weaii 3y
g sasas (Jaall) 0¥ 3l e Jew” which means in English “Don’t get
too excited about the topic of it'’s not easy” The tweet contained
regional expressions, particularly from Gulf “xl 5,c” that were not
well captured in the embeddings. Words that carried a negative tone
in one dialect could be interpreted as neutral in another, leading to
incorrect predictions.
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Finally, mixed sentiment such as U s Gsis 3lall Lala
oS Jisias J#l e ods Ases which means in English “T am
always for women’s rights, but it is impossible for me to call
myself a feminist” The tweet conveyed both positive and negative
feelings about different entities were often reduced to a single
overall sentiment, which meant losing important nuances. A more
fine-grained, aspect-based approach would likely handle such
cases better.

4.4 Comparison of the proposed model
with existing work

To compare the proposed approach with the most relevant
previous studies, Table 8 presents the results of selected works.
Al-Saqqa et al. (2018) applied ensemble learning using traditional
machine learning classifiers and achieved an accuracy of 84.4%.
Saleh et al. (2022) employed a stacking ensemble method
that integrated deep learning architectures such as RNN,
LSTM, and GRU, with an SVM meta-classifier, achieving
83.12% accuracy. The most recent work by Aladeemy et al.
(2024)
classifier with unigram features. In contrast, our proposed
approach—based on hard voting ensemble learning that
combines SGD, SVM, and Random Forest classifiers with
pre-trained word embeddings—achieved the highest accuracy
of 92.43%, demonstrating its superior performance in Arabic
sentiment classification.

However, related to the Syria_Tweet data set, the Fl-score
is used because the accuracy isn't available. Table 9 compares
our results with the most related previous work. As shown,
our approach with ensemble voting (SGD, K-NN, RF) improved
the performance of analyzing the sentiment of the dataset. The
ensemble stacking approach was applied on the same data set
by Al-Azani and EI-Alfy (2017), and the Fl-score achieved
is 63.95%. While a traditional ML algorithm, which is SGD,
was applied by El-Alfy and Al-Azani (2020) and achieved a
70.7% F1-score.

attained 90.3% accuracy using a standalone SVM

5 Conclusion and future direction

The objective of this study was to investigate multiple
methodologies for feature extraction specifically tailored for Arabic
sentiment analysis. Our focus was directed toward analyzing three
distinct types of n-gram features—namely, unigram, bigram, and
trigram—alongside leveraging a pre-trained Word2Vec word
embedding model. A diverse machine learning algorithms was

frontiersin.org


https://doi.org/10.3389/frai.2025.1653728
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Jaber et al.

employed in our analysis, including Support Vector Machines
(SVM), k-Nearest Neighbors (K-NN), Stochastic Gradient Descent
(SGD), Logistic Regression (LR), and Random Forest (RF).
Additionally, we implemented ensemble techniques based on
hard voting.

The experimental investigations were conducted utilizing
two distinct datasets: the balanced ArTwitter dataset and the
significantly imbalanced Syria_Tweets dataset. To address the issue
of class imbalance present in the Syria_Tweets dataset, the Synthetic
Minority Oversampling Technique (SMOTE) was applied during
the training phase.

Our results indicated that Naive Bayes (NB) achieved the
highest accuracy rate of 89.79 and 89% F1-score on the ArTwitter
dataset when unigram features were employed. Conversely, the
Support Vector Machine (SVM) achieved an accuracy rate of
81.76 and 81.25% F1-score on the Syria_Tweets dataset, with SVM
excelling with unigram features and NB performing optimally with
trigram features. Notably, the hard voting ensemble containing
Naive Bayes (NB), Support Vector Machine (SVM), and Decision
Tree (DT) utilizing unigram features outperformed others on
the ArTwitter dataset, achieving an accuracy of 90.22% and
90% F1-score. Meanwhile, the hard voting ensemble combining
SVM, DT, and K-Nearest Neighbors (K-NN) attained superior
results on the Syria_Tweets dataset with an accuracy of 83.82%
and 83.33% F1-score when employing bigram features. However,
average weighted pretrained word embedding achieved superior
results on both datasets with the ensemble approach; hard voting
(SGD, SVM, and RF) achieved 92.43% accuracy and 92% F1-
score on ArTwitter Dataset. While hard voting (SGD, KNN,
and RF) achieved 83.82% accuracy and 83.86% Fl-score on
Syris_tweet dataset.

The outcomes of this research suggest that leverage pretrained
word embedding in representing the data can significantly
enhance model performance and that ensemble approaches
contribute to a more robust overall system. Looking ahead,
there is potential for employing transformer-based models,
thereby
further optimizing performance. The exploration of novel

which provide deep contextualized embeddings,
data balancing methodologies could advance the efficacy of

model operation.
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on large language models
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Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait
City, Kuwait

Introduction: Exploring Arabic dialects in Natural Language Processing (NLP) is
essential to understand linguistic variation and meet regional communication
demands. Recent advances in Large Language Models (LLMs) have opened up
new vistas for multilingual communication and text generation.

Methods: This paper investigates the performance of GPT-3.5, GPT-4, and
Bard (Gemini) on the QADI and MADAR datasets, while GPT-5 was evaluated
exclusively on MADAR encompassing over 15 different countries. Several metrics
have been used in the evaluation, such as cosine similarity, universal similarity
encoder, sentence BERT, TER, ROUGE, and BLEU. In this study, different
prompting techniques were used: zero-shot and few-shot. Zero-shot was
employed for all dialects, and few-shot was employed only for the least
translation performance dialect, Tunisian.

Results: Analysis revealed that in the QADI dataset, GPT-4 significantly
outperformed others in translating MSA to DA, with ANOVA tests showing strong
significance (p < 0.05) in most metrics, except for BLEU and TER where it does
not show significance, indicating comparable translation performance among
models. Furthermore, GPT-4 was highest in semantic similarity compared to
GPT-3.5 and Bard (Gemini), 0.66, 0.61, and 0.63, respectively. GPT-4 was the
best in identifying overlapping sentences (i.e., those where the source and target
are identical) with a combined average of 0.41 in BLEU and ROUGE-L. All LLMs
scored TER values between 6% and 25%, indicating generally good translation
quality. However, GPT models, especially GPT-5, responded better to prompting
and translation to Levant countries compared to Bard (Gemini). For the MADAR
dataset, no significant translation differences were observed in sentence-BERT,
ROUGE-L, and TER, while differences are identified in cosine similarity, BLEU,
and universal similarity encoder metrics. Therefore, GPT-5 is the top performer
in identifying sentence overlaps measured by BLEU and ROUGE-L (combined
average 0.37).

Discussion: The few-shot approach did not show a significant improvement
in translation performance, especially for GPT-4 and Bard (Gemini), while GPT-
3.5 performed consistently. Zero-shot prompts were effective across dialects,
while few-shot prompting, applied to the weakest-performing dialect (Tunisian),
did not yield improvement. GPT-4 and Bard performed worse under this set-up,
while GPT-3.5 remained consistent.

KEYWORDS

language models, GPT 3.5, GPT 4, GPT 5, Bard (Gemini), Arabic language, dialects
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1 Introduction

In recent years, new horizons for multilingual communication,
translation tasks, and text generation have been widely witnessed
due to the advances made in large language models (LLMs) (Shaikh
et al, 2023). Models such as GPT, developed by OpenAl and
Google Bard (Gemini), have shown promising developments in
this field (Kasneci et al., 2023). Such models have demonstrated
outstanding skills in handling diverse languages and dialects
with the influential role of deep learning techniques and the
processing of massive volumes of textual data. According to
studies conducted in 2019 by Ethnologue (Eberhard et al,
2019), the total number of dialects spoken around the globe
is expected to be 7,111, where a majority of these dialects are
found on the Internet through platforms such as Facebook,
X, and blog posts through user interactions (Salloum and
Habash, 2012). Therefore, with the availability of systems that
deal with different languages and dialects, a major shift in
focus has been witnessed in literature to bring dialects together
by enhancing proper machine learning translation systems
(Sghaier and Zrigui, 2020).

Arabic is one of the languages known for its diversity in
linguistics, which includes various dialects from different countries
all over the Arab world. Notably, Dialectal Arabic (DA) consists
of different Arabic dialects. It is an informal language that is used
in daily life and social media platforms in contrast with Modern
Standard Arabic (MSA), also known as “Fushaa,” which is used in
formal communications (Harrat et al., 2019). Hence, making the
comprehension of different dialects presents a greater challenge
compared to MSA, due to its regional variability, especially in the
applications of cross-dialect communications, and in sectors such
as education and content localization (Sghaier and Zrigui, 2020).

Large language models (LLMs) are a vital approach to
understand and enhance the language intelligence of devices (Hadi
et al., 2023). LLMs can react to free-text queries without being
specifically trained in the activity at hand, which has sparked
both excitement and skepticism among researchers regarding their
application (Hadi et al., 2023). Models such as OpenAI GPT and
Google Bard (Gemini) are examples of LLMs, where they are
trained on enormous volumes of text data and can generate human-
like prose, answer questions, and perform other language-related
tasks with great accuracy (Kasneci et al.,, 2023). To begin with,
OpenAI GPT is a decoder-based, generative pre-trained LLM. It
employs an auto-regressive language model that allows sequential
text generation. Among many of the advantages present in GPT,
one main advantage is that it is a multilingual model, including
the Arabic language (Alyafeai et al., 2023). However, it is not an
open-access model and is not free of cost. Therefore, developers
and researchers have to pay a certain amount based on the number
of tokens used per request and the type of model to be used for
fine-tuning (Steele, 2023). As for Bard (Gemini), it is developed by
Google and is also multilingual; in total, it contains 41 languages
(Kadaoui et al., 2023). Similar to GPT, Bard (Gemini) has a certain
cost based on the number of tokens used per request and the type of
model to be used (Kadaoui et al., 2023). Hence, by analyzing their
differences and similarities, a comparison between both models is
performed to assist systems in easily translating dialects and achieve
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human-like reading and writing, building on the comprehensive
overview of LLM capabilities by Hadi et al. (2023).

Researchers have been using these models in analyzing various
NLP tasks, such as psychological studies of sentiments using
GPT (Kheiri and Karimi, 2023). In addition, comparisons with
other models such as Bidirectional Encoder Representations from
Transformers (BERT) (Zhang et al, 2020) and Bidirectional
Long-Form Overlap for Optimizing Multilingual and zero-shot
(BLOOMZ) (Yong et al., 2022) have been made in contexts such as
translation efficiencies using different languages (Bhat et al., 2023).
On the other hand, comparisons between GPT 3.5, GPT 4, and
Bard (Gemini) have been made regarding their machine translation
(MT) proficiency across 10 varieties of Arabic (Kadaoui et al., 2023).
Their analysis shows that LLMs may encounter challenges with
dialects for which minimal public datasets exist, but on average,
they are better translators of dialects than existing commercial
systems. In a similar vein, GPT 4 outperformed Bard (Gemini)
in dialect-based commercial systems and different supervised
baselines employing zero-shot prompts.

Originally, researchers main focus was to address the
translation of English to Arabic and vice versa (Khoshafah,
2023). However, more recently, researchers have been studying
the influence of MSA on the similarity between dialects spoken,
as was done by Abu-Haidar (2011) in Baghdad, and vice versa,
where researchers study the translation from DA to MSA. For
instance, Sghaier and Zrigui (2020) performed a similar study in
2020 where an MT system that translates Tunisian dialect text
to MSA using a rule-based approach showed promising results
for their proposed solution. Since OpenAI GPT released different
models with different versions, researchers have focused on having
a comparison between these different versions, where Alyafeai
et al. (2023) have compared some of these models, such as GPT
3.5 and GPT 4, on seven distinct Arabic NLP tasks and found
that GPT 4 outperforms GPT 3.5 on five NLP tasks. GPT 3.5
and GPT 4 performances were also studied using the Tunisian,
Jordanian, and English languages, and the study results highlight
a critical dialectical performance gap in GPT, underlining the
need to enhance linguistic and cultural diversity in AI models’
development, particularly for health-related content (Sallam and
Mousa, 2024).

The purpose of this study is to compare the performance of four
language models, GPT (versions 3.5, 4, and 5) and Bard (Gemini),
in translating a wide corpus of MSA to DA. This novel study
bridges a significant gap in understanding model performance
across diverse linguistic situations by including a wide corpus of
dialects, consisting of over 15 Arabic dialects, in the analysis while
evaluating several metrics. Furthermore, two different datasets will
be used to further strengthen the analysis using different prompting
techniques (zero-shot and few-shot). To explore whether these
techniques enhance the quality of dialect translation, zero-shot will
be applied to all countries, whereas few-shot will be applied to the
weakest country.

This study sheds light on the adaptability and efficiency
of these models through careful metric assessments, which
is critical for expanding NLP applications in various Arabic-
speaking regions. Two datasets are used in this study the
first is the Qatar Computing Research Institute (QCRI) Arabic
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Dialects Identification (QADI) dataset, which contains 18 different
countries with their own dialects. QADI contains over 500,000
tweets from social media platforms, spanning 18 different Arabic
dialects (Abdelali et al., 2020). Second, the Multi-Arabic Dialect
Applications and Resources (MADAR) corpus dataset is used,
which includes a large parallel corpus of 25 Arabic city dialects in
the travel domain. These are the most popular datasets adapted for
studies with Arabic dialects.

This research study aims to answer the following questions:

o How efficient are GPT 3.5, GPT 4, GPT 5, and Bard (Gemini)
in translating MSA to different DA in terms of different
performance metrics, such as cosine similarity, semantic

sentence BERT,

translation error rate (TER), recall-oriented understudy for

universal encoder, similarity ~encoder,
gisting evaluation (ROUGE), bilingual evaluation understudy
(BLEU), and analysis of variance (ANOVA)?

e How consistent is the LLM performance in the MSA
translation to different DAs? (e.g., Levantine vs. Gulf
vs. Maghrebi)

e How do prompting techniques (zero-shot vs. few-shot) and
external factors like sentence length impact the translation
accuracy of LLMs?

The main contribution of this study could be summarized
as follows:

e It sheds light on the strengths and drawbacks of the GPT
3.5, GPT 4, GPT 5, and Bard (Gemini) models in dealing
with DA differences by analyzing their translation quality and
accuracy (measured by metrics) and consistency/reliability,
across various dialects from MSA. Hence, exploring how
LLMs handle dialectal diversity in Arabic.

e It employs various prompt analysis techniques to evaluate the
performance of GPT 3.5, GPT 4, GPT 5, and Bard (Gemini),
aiming to understand the specific conditions under which each
model excels.

e The study’s findings fill in a significant gap in research on
MSA to dialect translation using LLMs by using a wide corpus
of Arabic dialect translations and analyzing GPT 3.5/4/5, and
Bard (Gemini) in translating various dialects using different
prompting techniques (zero-shot and few-shot).

Therefore, the study relies on it being the first to offer a
comprehensive evaluation of LLMs in translating MSA to a wide
range of dialects using QADI and MADAR datasets. Moreover,
the evaluation of GPT 3.5, GPT 4, GPT 5, and Bard (Gemini)
contributes to fine-tuning and developing inclusive NLP tools to
serve a larger Arabic-speaking population with diverse dialects.
It identifies the strengths and weaknesses of LLMs in different
DAs by translation from MSA. Such insights are essential for the
development of inclusive NLP tools that can effectively utilize MSA
and different DAs in spoken Arabic to enhance digital accessibility
and communication. To the best of our knowledge, we are the first
study comparing prominent LLMs specially GPT 5 on MT task
from MSA to DA over 15 countries.

The remainder of this study is organized as follows: The related
work is described in Section 2, and the proposed methodology
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is detailed in Section 3. Experimental results are reported and
analyzed in Section 4. Finally, the concluding remarks and future
research directions are described in Section 5.

2 Related work

This section highlights the challenges of processing the Arabic
language and its dialects in Section 2.1, followed by Section
2.2, which explains and explores different LLMs and Section 2.3
describes various MT approaches.

2.1 Challenges for processing Arabic and
its dialects

Contemporary Arabic consists of different varieties such as
MSA, the official language of the Arab world that is used in formal
settings, and dialects of different countries that are commonly used
in different informal contexts. In general, Arabic is a complex
language with a rich inflectional morphology expressed both
templatically and affixationally, as well as various attachable clitic
classes (Wright and Caspari, 2011). The dialects of different
countries differ from MSA in terms of phonology, morphology,
and, to some extent, syntactically, where the differences are based
on the presence of clitics and affixes, unlike MSA, are widely used
(Salloum and Habash, 2012). Dialects are considered to share all
of MSA’s problems when it comes to NLP (e.g., optional diacritics
and spelling inconsistencies). However, adding to these problems,
the absence of standard orthographies for the dialects and their
diverse variants, which in turn pose additional issues (Guellil et al.,
2021). In addition, there are very few Arabic dialects of English
corpora and even fewer dialects of MSA parallel corpora, which
makes the number of morphological analyses and tools for these
dialects constrained (Salloum and Habash, 2012).

These linguistic challenges pose different difficulties for LLMs
in MT. Unlike the English language, which dominates the
training of most LLMs, different Arabic dialects are widely
underrepresented (Alyafeai et al., 2023; Khondaker et al., 2023).
Research papers comparing LLM performance between different
languages such as English and Arabic address this gap and confirm
it by showing that LLMs achieve better scores in English translation
than in Arabic (Peng et al., 2023). Furthermore, within Arabic itself,
MSA is better handled in LLMs than in different dialects (Kadaoui
et al.,, 2023). These demonstrate that the wide variation of dialects
in the Arabic language and their complexities pose a challenge
in MT. Hence, understanding of LLMs ability to translate MSA
to different dialects along with the strengths and weaknesses of
LLMs in different DAs needs to be addressed as it is critical in the
development of NLP tools.

2.2 Large language models

LLMs have exhibited a remarkable transformation throughout
the years, where they have evolved from generating only natural
texts to understanding them through AI (Jiang et al., 2020). LLMs
are trained to predict the next token in a sequence based on the
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context, making the generated outputs coherent. They are able to
capture long-range dependencies and perform complex tasks such
as translation, summarization, and question answering. Moreover,
LLMs can generalize across different domains and diverse dialects
through prompting techniques (Alabdullah et al., 2025). Research
studies vary in terms of whether to include prompts in the
analysis or not. For example, Lilli (2023) has studied ChatGPT
4 using Italian dialects; however, the analysis was done using
zero-shot analysis only, and the results showed that the model
exhibits a significant gap in analytical skills and struggles with
text production and interactive tasks, suggesting superior passive
linguistic capabilities compared to active ones. Similarly, GPT 4,
GPT 3.5, and Bard (Gemini) were compared in terms of Inductive,
Mathematical, and Multi-hop Reasoning Tasks using zero-shot, and
GPT 4 was found to be better in all of them compared to GPT 3.5
and Bard (Gemini) (Lopez Espejel et al., 2023). Currently, LLMs are
widely used in evaluating the performance of NLP tasks in different
languages (Kadaoui et al., 2023). However, LLMs are known to have
some issues with rare or unseen words, the problem of overfitting,
and the difficulty in capturing complex linguistic phenomena.

Researchers have been evaluating different LLM techniques
to shed light on future research in the domain (Chang et al,
2023). Other multilingual models such as XGLM (De Varda
and Marelli, 2023) have also been studied and were shown to
improve significantly in terms of translation performance. It was
found that the model performs best if the answer is estimated
based on the probability of the first token in the generated
answer. However, these models are yet to be studied further
(Zhu et al,, 2023). Models such as BERT (Devlin et al., 2018)
have also been analyzed in terms of language analysis, such as
the Arabic language. However, due to its weakness in Arabic
dialects, researchers (Baert et al., 2020) created an enhanced
language model (BAERT) that showed better performance than
BERT in sentiment analysis. LLM research remains a prominent
topic across multiple disciplines, including the development and
customization of LLMs tailored to specific languages, dialects,
or tasks (Mashaabi et al., 2024). There are various LLMs
that support the Arabic language, with GPT being the most
prominent. Some researchers suggest that ArabianGPT, specifically
designed for Arabic, aligns better with Arabic language and
rules (Koubaa et al., 2024).

2.3 Machine translation approaches

Machine translation (MT) is an example of an NLP task
that addresses grammatical, semantic, and morphological elements
between the source and output languages. Importantly, it becomes
a challenging task when those elements are significantly different
(Joshi et al., 2024). The need for MT systems has been increasing
due to the large dialects available on the Internet and their usage
in various fields (Sghaier and Zrigui, 2020). Researchers have been
studying LLM MT capabilities around the world for different
languages. For instance, English to Japanese MT was tested on
mBART50, m2m100, Google Translation, Multilingual T5, GPT-
3, ChatGPT, and GPT 4 using BLEU, Character Error Rate (CER),
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WER, Metric for Evaluation of Translation with Explicit ORdering
(METEOR), and BERT score, as well as qualitative evaluations by
four experts. The analysis showed that GPT 4 outperformed all
other models in MT from English to Japanese (Chan and Tang,
2024). Due to their grammatical structure, DA forms a challenge
for MT systems (Baniata et al.,, 2022). MT is an example of an
NLP task that addresses grammatical, semantic, and morphological
elements between the source and output languages. Importantly, it
becomes a challenging task when those elements are significantly
different (Joshi et al., 2024). Several approaches and tools are
available to perform MT, such as rule-based approaches, hybrid
approaches, and sequence-to-sequence (seq2seq) models as well as
LLMs (Okpor, 2014). For instance, Salloum and Habash (2012)
created a rule-based approach system to translate DA to MSA,
which depends on a morphological analyzer, transfer rules, and
dictionaries to generate sentences and choose the best matches.

Several researchers have widely used the rule-based approach
to translate Arabic dialects to MSA (Al-Gaphari and Al-Yadoumi,
2010; Hamada and Marzouk, 2018; Bouamor et al., 2014). Another
study created a hybrid approach to translate the Egyptian dialect to
MSA and achieved 90% performance through tokenization (Bakr
etal.,, 2008). Beyond these, Hamed et al. (2025) developed Lahjawi,
a customized model specialized in cross-dialectal translation (DA
to MSA) that supports 15 dialects. Lahjawi was trained on 7 well-
known datasets, including MADAR and Parallel Arabic Dialectal
Corpus (PADIC), and fine-tuned above a small language model
- Kuwain 1.5B. The model achieved adequate BLEU scores and
an accuracy of 58% based on human evaluation. Moreover, Alimi
et al. (2024) developed MT model to translate DA to MSA. The
model was trained on MADAR and PADIC datasets and fine-tuning
transformers such as T5X and AraT5 and some existing tools. The
best translation results revealed were for Levantine and Maghrebi
region dialects. Some authors also adapted a hybrid approach
to translate the Moroccan dialect to MSA using processing
tools for MSA (Ridouane and Bouzoubaa, 2014; Hamada and
Marzouk, 2018), whereas other studies focused on Neural Machine
Translation (NMT) for Arabic dialects (Baniata et al., 2018;
Guellil et al., 2017). For example, Baniata et al. (2022) developed
an NMT model to translate DA to MSA through multi-head
attention with reverse positional encoding and sub-word units. The
model achieved high BLEU scores, proving their encoding method
across several datasets. In addition, other researchers expand the
Dial2MSA dataset through seq2seq datasets in different domains,
including social media covering different regions. Leaving a reliable
NMT training, the authors conducted a performance evaluation,
and it was found that AraT5 achieved the highest performance
(Khered et al., 2025). Moreover, researchers Alabdullah et al. (2025)
evaluated six LLMs on DA to MSA translation, including Levantine,
Egyptian, and Gulf Dialects using different prompting techniques.
They demonstrated that GPT 4o achieved the highest score in
translation performance, while a fine-tuned version of Gemma2-9B
achieved a higher CHrF++ score compared to GPT 4o in zero-show
prompting.

Furthermore, researchers utilized LLMs to perform MT
tasks. For instance, Zhu et al. (2023) evaluated the multilingual
translation of four LLMs, namely, GPT, XGLM, OPT, and
BLOOMZ. Interestingly, the researchers found that such models
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adapt new patterns to translate. GPT proved excellent capability
in MT and outperformed Google Translate according to Peng
et al. (2023). In addition, the AraFinNLP shared tasks highlight
critical challenges and discussions for cross-dialect translation
in preservation of intents using the known ArbBanking77
dataset. The findings highlight that accurate MSA to DA
(Moroccan, Tunisian, and Palestinian) translation is possible
yet challenging. They demonstrated that fine-tuned BERT
models and data augmentation achieve high performance in
handling Arabic dialects for financial applications (Malaysha
et al, 2024). Moreover, SHAMI-MT developed bidirectional
MT models built on the AraT5v2 model and fine-tuned on
the Nbra corpus. They evaluated the translation between
MSA and the Syrian dialect and used MADAR for benchmark
(Sibaee et al., 2025). Similarly, Mohamed et al. (2012) presented
a method to convert MSA to Egyptian dialect, applied on
part-of-speech  (POS). They showed that such MT task
improves tagging and is considered as valuable training data
for underrepresented dialects.

Prior research studies addressed the translation from MSA to
different dialects. A study conducted empirical analysis focusing on
Arabic-based LLMs to assess their ability to translate DA to MSA,
utilizing four datasets with English-based LLMs as a baseline (Jibrin
etal., 2025). They highlighted that AceGPT and Jais performed the
best BLEU scores across all data sets, establishing their reliability
in Arabic formality. In another study, GPT was evaluated on
various NLP tasks. It was revealed that GPT, in comparison with
BLOOMZ, struggles on some Arabic tasks yet comparable to
human judgment (Khondaker et al., 2023). Several studies explored
this field with more precision in relation to the Nuance Arabic
Dialect Identification (NADI) 2023 competition. Demidova et al.
(2024) performed sentence-based translation from DA to MSA
across four dialects through Jais, No Language Left Behind (NLLB),
GPT 3.5, and GPT 4 LLMs. They found that Jais outperforms the
other models consistently, achieving high BLEU scores whereas
NLLB was the least performer. Similarly, other researchers mainly
focused on fine-tuning LLama-3 with 8B parameters through
Parameter Efficient Fine-Tuning (PEFT) and Low Rank Adaptation
(LoRA) methods. The task was also DA-MSA translation across
four datasets. LLama fine-tuned model exhibits strong performance
related to BLEU metric. Moreover, the 6th Workshop on Open-
Source Arabic Corpora and Processing Tools (OSACT) showed
interesting findings through different studies specifically for Dialect
to MSA MT task including 5 dialects. Atwany et al. (2024) evaluated
AraT5, NLLB, and GPT 3.5. The results show that fine-tuning
Arat5 and NLLB on the MADAR dataset demonstrates low BLEU
scores, whereas prompting GPT 3.5 achieved high BLEU scores.
Moreover, other researchers used GPT 3.5 for dataset generation
(Abdelaziz et al., 2024). They used the Saudi Audio Dataset for
Arabic (SADA) to translate the audio dialects to MSA texts, leading
to notable performance in machine translation achieving high
BLEU scores between 25.5 and 31.5. Alahmari et al. (2024) fine-
tuned four versions of AraT5 model highlighting that AraT5v2-
base-1024 model achieved the highest BLEU score of 21.0. Various
researchers have utilized MT with a special focus on the context of
Arabic dialects. Table 1 summarizes the MT approaches proposed
by the researchers.
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3 Proposed methodology

This section discusses the chosen dataset in Section 3.1,
followed by Section 3.2, which describes the prompting techniques.
Model selection is mentioned in Section 3.3, and the chosen
performance metrics are detailed in Section 3.4.

3.1 Dataset

Translating Arabic dialects has been a wide area of research
(Harrat et al.,, 2019). In our research, we aim to use the QADI
dataset and the MADAR corpus dataset. QADI dataset is a pre-
processed dataset collected through X media platform, and it
includes 18 dialects from different Arab countries, the dataset is
already cleaned and has no hashtags, emojis, or such symbols which
might affect the translation quality (Abdelali et al., 2020). The
dataset has 540k training tweets and 3,303 test tweets in total. The
rationale for choosing the QADI dataset is the large number of
dialects it has which will help us address our research questions
and compare the performance evaluation of LLMs. However, in
the current study, 50K samples will be used from all countries for
the analysis due to computational resource restrictions. We applied
random sampling, the QADI dataset was balanced across dialects,
our random selection ensured that the selected 50K tweets have no
bias and ensure equal selection among the sentences. Table 2 shows
different country codes using ISO-3166-1 with corresponding users
and tweet count of QADI dataset.

Similarly, the MADAR corpus dataset (Bouamor et al., 2019)
contains 25 cities representing 15 countries, each with a unique
dialect where some countries feature multiple cities (e.g., Egypt has
Aswan, Cairo, and Alexandria) with 2K samples from each dialect.
The advantage of using the MADAR dataset is that it includes MSA
baseline translation for the sentences present inside the dialects
of each country. Hence, making the evaluation of GPT and Bard
(Gemini) stronger by comparing the results of these models with
the baseline given within the dataset. This study will analyze 15
countries from the MADAR dataset primarily focusing on the
capitals of countries that are also included in QADI. Table 3 shows
all the city dialects from the MADAR dataset, showing the different
cities with their dialects from various Arabic countries.

3.2 Prompting techniques

Prompting strategies have been developed to optimize LLMs’
performance and outcomes. The most frequent of these tactics are
zero-shot and few-shot. The zero-shot prompt plainly describes the
task and provides information without examples (Allingham et al.,
2023). Figures 1, 2 show an example of the prompts used to perform
the translation task. Unlike zero-shot prompts, few-shot prompts
include data examples and sample responses (Jiang et al., 2022).
On the other hand, a few-shot prompting technique is established
by providing an example within the prompt itself, where one-shot
includes a single example, two-shot includes 2 examples, etc. We
will include both zero-shot and few-shot prompts. As well as a few
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TABLE 1 Summary of machine translation (MT) approaches for Arabic dialects.

Research Dialect(s) Approach
Bakr et al., 2008 Egyptian — MSA Hybrid
Al-Gaphari and Al-Yadoumi, 2010 Sana’ani — MSA Rule-based
Salloum and Habash, 2012 Arabic Dialects — MSA Rule-based
Mohamed et al., 2012 MSA — Egyptian Rule-based

Bouamor et al., 2014 Mainly Egyptian Rule-based, Corpus of 2,000 sentences
Ridouane and Bouzoubaa, 2014 Moroccan — MSA Hybrid
Guellil et al., 2017 Algerian NMT

Hamada and Marzouk, 2018 Egyptian — MSA

Hybrid/Rule-based

Baniata et al., 2018 Arabic dialects — MSA

Neural MT (NMT)

Hamed et al., 2025 15 Dialects — MSA

Custom cross-dialectal model

Alimi et al., 2024 Levantine, Maghrebi — MSA

Transformer-based MT (AraT5, T5X)

Alabdullah et al., 2025

Levantine, Egyptian, Gulf — MSA

LLM-based MT (GPT 40, Gemma2-9B)

Zhu et al., 2023 Multilingual/Arabic

LLM-based MT (GPT, XGLM, OPT, BLOOMZ)

Malaysha et al., 2024

Moroccan, Tunisian, Palestinian — MSA

LLM + fine-tuned BERT

Sibaee et al., 2025 Syrian — MSA

AraT5v2-based bidirectional MT

Khered et al., 2025 Arabic Dialects — MSA

Seq2seq / Transformer (AraT5)

Jibrin et al., 2025 Arabic Dialects — MSA

LLM-based MT (AceGPT, Jais)

Khondaker et al., 2023 Arabic Dialects — MSA

LLM-based MT (GPT, BLOOMZ)

Demidova et al., 2024

Egyptian, Emirati, Jordanian, and Palestinian — MSA

LLM-based MT (Jais, NLLB, GPT 3.5, GPT 4)

Atwany et al., 2024

Gulf, Egyptian, Levantine, Iragi and Maghrebi — MSA

LLM-based MT (AraT5, NLLB, GPT 3.5)

Abdelaziz et al., 2024 Saudi Dialect — MSA

LLM-based MT (GPT 3.5)

Alahmari et al., 2024 Arabic dialects — MSA

Transformer MT (AraT5v2)

shot prompts (one-shot) for the country with the weakest dialect
translation given by the models to check whether including an
example within the prompt would enhance the overall accuracy of
the translation. An example of a prompt is shown in Figure 3 to test
whether the models would provide a better translation as compared
to zero-shot approaches.

3.3 Model selection

This research paper will be using OpenAl’s most recent
model GPT 5 along with GPT 3.5, GPT 4, and Google’s Bard
(Gemini) “text-bison” model due to their exceptional performance
in research (Zhu et al., 2023; Peng et al., 2023; Khondaker et al,,
2023; Kadaoui et al, 2023). LLMs are widely used to evaluate
the performance of Arabic NLP tasks such as GPT 3.5, GPT
4, Bard (Gemini), XGLM, and OPT (Zhu et al., 2023). To save
computational cost and time, GPT 5 will only be ran on MADAR
dataset, whereas QADI will include all remaining models. This
study’s selection criteria for the models aim to balance between
budget and computing resources. In addition, LLM languages that
do not include the Arabic language, such as Falcon-7b (Penedo
et al, 2023), were initially excluded from the search scope of
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suitable LLMs. A brief summarization of both models is shown in
Table 4.

Figure 4 shows the experiment pipeline implemented for GPT
and Bard (Gemini). The experiment starts using the data in the
dataset as a prompt for each LLM. Initially, all prompts will be
applied with zero-shot techniques, meaning that no example will
be included within the prompt. However, after performing the
analysis, the country with the least translation performance will be
analyzed again but with the few-shot prompting technique. In the
QADI dataset, to have a baseline to compare the LLM results with,
the back translation process is used (Behr, 2017), where dialects
are translated to MSA; then, the resulting MSA is translated back
to the corresponding dialect to compare the final resulting dialect
with the original dialect from the dataset. However, MADAR offers
a baseline for dialects and MSA; therefore, no back-translation will
be needed.

For LLM inference, we used the code provided on the
Application Programming Interface (API) websites with some
correction techniques; rerunning the prompt if the model returns
an error to ensure a correct response. After doing so, the error rate
in the resulting samples has dropped sufficiently. Cost optimization
technique has also been adapted by running 10 translations per API
request, which reduced the cost. A threshold of 10 requests was set
as the maximum accumulation; as the threshold increases, the error
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TABLE 2 QADI dataset: users and tweet counts by country using
1ISO-3166-1 codes.

Country Users Training Test
tweets (k) tweets
Iraq (IQ) 142 18.4 178
Bahrain (BH) 169 283 184
Kuwait (KW) 160 49.9 190
Saudi Arabia (SA) 149 354 199
United Arab Emirates (AE) 172 27.8 192
Oman (OM) 176 24.8 169
Qatar (QA) 139 36.7 198
Yemen (YE) 138 11.6 193
Syria (SY) 139 18.3 194
Jordan (JO) 146 34.1 180
Palestine (PL) 145 48.6 173
Lebanon (LB) 141 38.4 194
Egypt (EG) 150 67.8 200
Sudan (SD) 139 16.3 188
Libya (LY) 149 40.9 169
Tunisia (TN) 68 12.9 154
Algeria (DZ) 130 17.6 170
Morocco (MA) 73 12.8 178

TABLE 3 All the city dialects and regions that were included in the
building of the MADAR dataset.

Region Sub- Cities Codes
region
Maghreb Morocco Rabat, Fes RAB, FES
Algeria Algiers ALG
Tunisia Tunis, Sfax TUN, SFX
Libya Tripoli, Benghazi TRI, BEN
Nile Egypt Cairo, Alexandria, CAIL ALX, ASW
Basin Aswan
Sudan Khartoum KHA
Levant South Levant Jerusalem, Amman, JER, AMM, SAL
Salt
North Levant Beirut, Damascus, BEI, DAM, ALE
Aleppo
Gulf Iraq Mosul, Baghdad, Basra MOS, BAG, BAS
Gulf Doha, Muscat, Riyadh, DOH, MUS, RIY,
Jeddah JED
Yemen Yemen Sana’a SAN

rate also increases. Finally, the experiment results will be evaluated
by calculating the selected performance metrics described in the
upcoming section.
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The following array has multiple JSON objects, each object
has 3 keys, DS which is the Dialectal Arabic sentence,
MSA is the translation of DS to Modern Standard Arabic
and BT is the translation of MSA to Yemeni Arabic.
Complete Both MSA and BT in the array:
${JSON.stringify({ tmpArray })}

FIGURE 1
Zero-shot prompt - QADI.

The following array has multiple JSON objects, each
containing two keys: MSA, representing the Modern
Standard Arabic sentence, and MSAtoD, which is the
translation of MSA to Tunisian Arabic. Complete the
MSALtoD field in the array with the appropriate
translations. Here's the array:
${JSON.stringify({ tmpArray })}

FIGURE 2
Zero-shot prompt - MADAR.

3.4 Performance metrics

We aim to quantify the differences in performance between
GPT 3.5, GPT 4, GPT 5, and Bard (Gemini) and to determine how
these models can perform the translation task given the complexity
of the Arabic language. There are various common evaluation
metrics for comparison. The present study will use 7 evaluation
metrics (i.e., cosine similarity, sentence BERT, semantic universal
encoder, TER, BLEU, ROUGE, and ANOVA test). These metrics
were chosen based on their strengths and popularity in analyzing
Arabic sentences. To attest for normality, the Shapiro-Wilk test was
used for ANOVA (Alabdullah et al., 2025).

One of the common MT metrics is the universal similarity
encoder, which is a neural network architecture for learning
similarity-preserving  embeddings  that uses  pre-trained
embeddings (e.g., Word2Vec, GloVe, or BERT embeddings)
to compare two sentences, rather than having a specific calculation
formula. Its range varies from -1 to 1, where results closer to 1 are
indicative of high semantic similarity.

However, cosine similarity calculates the cosine of the angle
formed by two vectors that represent phrases in several dimensions
that represent a word or contextual information. Equation 1 below
shows the cosine similarity, where A and B are vectors.

A-B

Cosine similarity = TAT 1Bl

1)

High positive values in cosine similarity (close to 1) indicate
that there is great similarity between the two vectors.

Sentence BERT is a transformer that adapts cosine similarity by
using Tensorflow. The general process involves encoding sentences
into fixed-size vectors using pre-trained BERT embedding and then
calculating a similarity score between these vectors (Mrinalini et al.,
2022). Since sentence BERT adapts cosine similarity, it follows the
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1. MSA: "fellla (o (La "
MSAtoD: "felllal (La y"

2. MSA: "sc ¥ deld) S
MSAtoD: "$alaald Jai"

3. MSA: "eellint a0 oo e oliSas A"

MSALOD: "Suclluab (o 8 lai "

${JSON.stringify({ tmpArray })}

The following array has multiple JSON objects, each containing two keys: MSA, representing
the Modern Standard Arabic sentence, and MSAtoD, which is the translation of MSA to Tunisian
Arabic. Your task is to complete the MSAtoD field in the array with appropriate translations.
Below are examples of MSA sentences and their translations into Tunisian Arabic:

Complete the MSAtoD field in the array with the appropriate translations. Here's the array:

FIGURE 3
Few-shot prompt - MADAR.

Optimization:

1.Reduce Costs
2.Resend the prompts in
case the request failed

Back Translation
Algorithm:

1.Tr | Dialect to MSA
2.The result of 1 will be
translated back to

Prompt Generation

Datab.

Zero Shots for all
countries

(Arabic Dialects)

Dialect
QADI Dataset:
Back Ti lati
Algorithm ’ l
LLM Inference ; Eval
MADAR dataset:

MSA to Dialect

FIGURE 4
Experiment pipeline.

same metric measures of -1 to 1, where close values to -1 mean
that the two vectors are completely dissimilar, and values close to
1 mean that there is a high similarity between the vectors. The
universal sentence encoder finds the similarity between sentences
based on semantics, where it is used to convert phrases into dense
vector representations.

Finally, the TER metric is specifically used for MT tasks by
comparing the MT outputs against human-generated translation to

Frontiersin Artificial Intelligence

assess the quality of MT outputs, as shown in Equation 2.

Total edits
" Total words in reference translation

TER (2)

A lower TER score indicates a better translation quality as
it means that fewer edits are needed to align the machine-
generated translation.
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TABLE 4 Tabular comparison between GPT and Bard.

10.3389/frai.2025.1661789

Aspect GPT 3.5 GPT 4 GPT 5 Bard

Source OpenAl OpenAl OpenAl Google

Language model GPT 3.5-turbo-16k 'GPT 4-0125-preview’ "GPT 5’ ’text-bison’

Model architecture Transformer decoder based Transformer decoder based Transformer decoder based Transformer based
Availability Limited free access Paid Paid Limited free access
Languages Multilingual Multilingual Multilingual Multilingual
Parameter Size 175 Billion 1.76 Trillion Not Announced 137 Billion

Moreover, the BLEU metric is a widely popular metric
used in research (Sallam and Mousa, 2024) where individual
translated segments, usually sentences, are scored by comparing
them with a collection of high-quality reference translations.
These scores are then averaged throughout the entire corpus
to provide an approximation of the translation’s overall quality
(Papineni et al, 2002). It aims to find the similarity between
the translated text and the reference sentence by employing n-
grams; contiguous group of n-words that are similar. The metric
values range from 0 to 1, and typically a higher value means
that more words are overlapping between the machine-translated
sentence and the referenced sentence, as shown in Equation 3
(Papineni et al., 2002).

BLEUW(S; S): = BP(@; S) - exp (Z Wy logpn(g; S)) (3)

n=1

where BP is the brevity penalty, w is the weights for each n-gram,
and p is the precision of n-grams.

Furthermore, ROUGE is a collection of metrics and software
packages for assessing automatic summarization and MT
software in natural language processing. The metrics assess an
automatically generated summary or translation to a reference
or a collection of references (human-created summary or
translation). ROUGE measures range from 0 to 1, with
higher scores indicating a stronger resemblance between the
automatically generated summary and the reference (Lin and
Hovy, 2003).

ANOVA is a statistical approach for comparing the means
of three or more samples to determine whether one of them is
substantially different from the others (Keselman et al., 1998).
It accomplishes this by analyzing the variance in the data
and categorizing it as the variance between groups and the
variance within groups. The p-value is calculated using the
ANOVA test statistic, also known as the F-statistic, as shown
in Equation 4.

F-statistic (ANOVA Coefficient) = (4)
Mean Sum of Squares due to Treatment (MST)

Mean Sum of Squares due to Error (MSE)

The p-value indicates whether the differences in group
means are statistically significant (Keselman et al., 1998). In this
study, since we are performing various analyses and tests, it
became important to employ ANOVA to determine the statistical
significance of the results.
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4 Experimental results

This section discusses the model responsiveness in Section
4.1, followed by the metric performance and dialect variations in
Section 4.2. Finally, Section 4.3 discusses the impact of sentence
length on the model accuracy.

4.1 Model responsiveness

In general, in terms of responsiveness, the models were
responsive when given a prompt with input. However, there were
differences in the output details of both models. GPT gave a direct
response where Gemini explained each word in a row.

When running APIs, Bard (Gemini) has shown varying error
rates when translating ranging from 5% up to 71%. This error rate
was varying based on the load on the network at the execution
time and length of the dataset being analyzed. Hence, to reduce
the error rate, we ran Bard (Gemini) when the network was not
preoccupied with many other tasks and ran the dataset in smaller
batches to reduce the chances of error. There were several cases
where Bard (Gemini) has either returned the same input as output,
empty output, or a message that says that it is unable to handle a
given task.

The rate of failing to give an output is most noticeable when
performing the back translation from MSA to a certain dialect in
QADI dataset. For example, for the back translation for IQ dialect,
Bard (Gemini) failed to give an output with the rate of 37.5%,
whereas GPT 3.5 has only failed to do so with a 5.6% rate, and
GPT 4 had 0.2% error rate. Therefore, a correction technique was
added in the code, where the response was checked, if it included
an error, resend the same prompt. After doing so, the error rate in
the resulting samples has dropped considerably.

4.2 Performance metrics and dialect
variations

4.2.1 Similarity metrics

This section discusses the similarity metrics and the
performance of the LLMs on the MADAR and QADI datasets in
terms of universal similarity encoder, cosine similarity, sentence
BERT, BLEU, and ROUGE F1 scores. The metrics aimed to assess
the efficiency and accuracy of the translation process of different
dialects. The analysis explained below is further demonstrated in
Tables 5 — 11. To address the research questions, both GPT 3.5/4
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TABLE 5 Bard metric similarities mean among 18 dialects from QADI

10.3389/frai.2025.1661789

TABLE 7 GPT 3.5 metric similarities mean among 18 dialects from QADI

dataset. dataset.
Dialect Univ. Cosine Sent. BLEU ROUGE- Dialect Univ. Cosine Sent. BLEU ROUGE-
Sim. Sim. BERT Sim. Sim. BERT
Enc. Enc.
AE 0.65 0.38 0.92 0.35 0.38 AE 0.66 0.37 0.88 0.39 0.43
LB 0.67 0.40 0.87 0.38 0.40 LB 0.65 0.40 0.94 0.48 0.50
1Q 0.64 0.40 0.91 0.39 0.41 1Q 0.62 0.33 0.84 0.38 0.40
BH 0.67 0.46 0.88 0.07 0.46 BH 0.67 0.40 0.87 0.44 0.47
DZ 0.64 0.41 0.89 0.39 0.41 DZ 0.59 0.29 0.91 0.28 0.31
EG 0.72 0.47 0.89 0.45 0.47 EG 0.65 0.35 0.86 0.32 0.35
KW 0.67 0.46 0.94 0.43 0.45 KW 0.65 0.39 0.90 0.45 0.48
LY 0.70 0.48 0.90 0.45 0.47 LY 0.63 0.34 0.85 0.32 0.36
MA 0.63 0.38 0.94 0.04 0.38 MA 0.64 0.34 0.89 0.37 0.40
OM 0.64 0.45 0.94 0.43 0.45 OM 0.64 0.39 0.84 0.46 0.49
PL 0.64 0.42 0.94 0.40 0.42 PL 0.67 0.43 0.84 0.53 0.55
QA 0.67 0.42 0.94 0.05 0.42 QA 0.63 0.35 0.87 0.25 0.40
SA 0.65 0.39 0.93 0.37 0.39 SA 0.63 0.33 0.89 0.32 0.36
SD 0.68 0.44 0.90 0.06 0.43 SD 0.65 0.37 0.85 0.35 0.46
SY 0.66 0.46 0.90 0.43 0.45 SY 0.65 0.39 0.90 0.43 0.46
N 0.65 0.42 0.89 0.39 0.41 ™~ 0.66 0.41 0.83 0.46 0.49
YE 0.68 0.47 0.93 0.44 0.47 YE 0.63 0.39 0.85 0.43 0.45

TABLE 6 Bard metric similarities mean among 15 dialects from MADAR

TABLE 8 GPT 3.5 metric similarities mean among 15 dialects from MADAR

dataset. dataset.
Dialect Univ. Cosine Sent. BLEU ROUGE- Dialect Univ. Cosine Sent. BLEU ROUGE-
Sim. Sim. BERT Sim. Sim. BERT
Enc. Enc.
LB 0.53 0.35 0.93 0.34 0.28 LB 0.52 0.32 0.91 0.32 0.25
Q 0.50 033 0.93 0.32 0.26 Q 0.51 0.29 0.93 0.28 0.22
DZ 0.52 0.31 0.93 0.29 0.23 DZ 0.50 0.28 0.93 0.26 0.20
EG 0.57 0.38 0.93 0.37 0.32 EG 0.54 0.34 0.93 0.33 0.28
LY 0.53 0.32 0.93 0.31 0.25 LY 0.51 0.27 0.93 0.27 0.20
MA 0.50 0.31 0.93 0.29 0.23 MA 0.50 0.27 0.93 0.26 0.20
OM 0.58 0.40 0.93 0.38 0.33 oM 0.53 0.31 0.92 0.29 0.24
PL 0.56 0.39 0.92 0.37 0.32 PL 0.54 0.34 0.92 033 0.28
QA 0.53 0.36 0.93 0.34 0.28 QA 0.53 0.31 0.93 0.30 0.24
SA 0.53 0.35 0.93 0.33 0.27 SA 0.55 0.34 0.93 0.34 0.28
SD 0.56 0.38 0.94 0.37 0.32 SD 0.53 0.31 0.92 0.29 0.24
SY 0.55 0.39 0.93 0.37 0.32 SY 0.55 0.36 0.92 0.35 0.30
N 0.48 0.26 0.93 0.25 0.17 ™ 0.48 0.24 0.93 0.23 0.16
YE 0.50 0.28 0.93 0.27 0.20 YE 0.50 0.26 0.93 0.25 0.19
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TABLE 9 GPT 4 metric similarities mean among 18 dialects from QADI
dataset.

10.3389/frai.2025.1661789

TABLE 11 GPT 5 metric similarities mean among 15 dialects from MADAR
dataset.

Dialect Univ. Cosine Sent. BLEU ROUGE- Dialect Univ. Cosine Sent. BLEU ROUGE-
Sim. Sim. BERT L Sim. Sim. BERT
Enc. Enc.

JO 0.73 0.50 0.82 0.49 0.51 JO 0.62 0.46 0.93 0.47 0.43
AE 0.71 0.45 0.91 0.44 0.46 LB 0.58 0.39 0.92 0.39 0.34
LB 0.74 0.50 0.94 0.49 0.51 1Q 0.55 0.37 0.92 0.37 0.31
1Q 0.70 0.43 0.88 0.43 0.45 DZ 0.50 0.28 0.93 0.26 0.20
BH 0.72 0.48 0.91 0.48 0.49 EG 0.59 0.44 0.92 0.44 0.40
DZ 0.75 0.53 091 055 0.57 LY 0.54 0.37 0.92 0.36 0.30
EG 077 0.55 0.90 055 057 MA 0.56 0.40 0.92 0.39 034
KW 0.68 0.45 0.88 0.45 0.47 oM 0.52 034 0.93 037 0.28
o 0.70 043 0.87 0.42 044 PL 0.61 0.46 0.92 0.47 0.42
MA 0.70 0.41 0.89 0.40 0.41

QA 0.59 0.43 0.92 0.44 0.38
oM 0.65 0.39 0.77 0.38 0.39

SA 0.58 0.42 0.92 0.43 0.38
PL 0.71 0.49 0.88 0.48 0.50

SD 0.54 0.38 0.92 0.37 0.32
QA 0.66 0.37 0.87 0.36 0.37

SY 0.62 0.47 0.92 0.49 0.44
SA 0.69 0.38 0.89 0.36 0.38

N 0.53 0.34 0.92 0.33 0.27
SD 0.74 0.50 0.93 0.51 0.53

YE 0.55 0.35 0.93 0.34 0.28
SY 0.72 0.48 0.92 0.46 0.49
TN 0.71 0.44 0.88 0.44 0.45
YE 0.69 0.43 0.91 0.41 0.43 . . . .

outperformed its prior models in MADAR dataset. Figures 5, 6

TABLE 10 GPT 4 metric similarities mean among 15 dialects from MADAR
dataset.

Dialect Univ. Cosine Sent. BLEU ROUGE-
Sim. Sim. BERT L
Enc.
JO 0.60 0.42 0.93 0.41 0.37
LB 0.54 0.34 0.43 0.36 0.28
Q 0.54 0.34 0.93 0.33 0.27
DZ 0.51 0.30 0.93 0.29 0.23
EG 0.56 0.38 0.93 0.38 0.33
LY 0.52 0.31 0.93 0.30 0.24
MA 0.47 0.26 0.93 0.25 0.18
oM 0.53 0.33 0.93 0.32 0.26
PL 0.59 0.41 0.92 0.41 0.36
QA 0.57 0.39 0.93 0.38 0.33
SA 0.58 041 0.93 0.40 0.35
SD 0.54 033 0.93 0.32 0.26
SY 0.59 0.41 0.92 0.41 0.36
N 0.48 0.26 0.93 0.25 0.18
YE 0.52 0.30 0.92 0.29 0.22

and Bard (Gemini) exhibited similar performance levels across the
metrics among dialects in both datasets.

The BLEU score values for GPT 3.5/4 are similar among
the LLMs and countries for QADI, whereas GPT 5 slightly
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visualize the BLEU scores labeled by each country where the LLMs
showed consistent results in MADAR. Bard (Gemini) in the QADI
dataset achieved a low score for some countries. These numbers
explain that a few words were overlapping between the input and
the translated dialect.

Furthermore, when employing a universal similarity encoder
and cosine similarity in QADI as shown in Table 12, GPT 4
outperforms the models, which makes it the dominant, followed
by Bard (Gemini) and then GPT 3.5. The mean universal similarity
encoder score is 71% for GPT 4, 64% for GPT 3.5, and 66% for Bard
(Gemini) among all countries. For the MADAR dataset in Table 13,
GPT 5 outperforms all models by having a 57% average, whereas
GPT 4 has a mean of 54%, GPT 3.5 mean is 52%, whereas Bard
(Gemini) has a mean of 53%. This suggests that Bard (Gemini)
has shown comparable skill to older GPT models in understanding
and conveying the semantic connections among the translated
sentences in the MADAR dataset, whereas GPT 5 stands out
overall. Whereas for the QADI dataset, GPT 4 had a higher mean,
which indicates that it has the best skill in conveying the semantic
connections with the existence of the back translation algorithm.

In Table 12 for QAD], the cosine similarity showed a mean of
46% for GPT 4, 43% for Bard (Gemini), and 37% for GPT 3.5.
Table 13 exhibits a similar performance of 35% for GPT 4, 39%
for Bard (Gemini), and 31% for GPT 3.5 on MADAR. This shows
that GPT 4 is the best performer which aligns with the results of
Alyafeai et al. (2023) and Peng et al. (2023). GPT 5 outperforms
other models with a mean of 39% in MADAR. Noticeably, GPT
3.5 encountered the most struggles in translating to dialects from
MSA which exhibits to a similar behavior in the conclusion drawn
by Kadaoui et al. (2023).
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FIGURE 5
Average BLEU scores QADI.

On the other hand, sentence BERT shows the highest mean
among all metrics as it uses a transformer model which makes it
most accurate in finding similarities between the input dialect and
the back-translated dialect. In addition, it showed consistent results
for all LLMs across the two datasets. In Table 12 for QADI, Bard
(Gemini) shows an average efficiency of 91%, hence outperforming
GPT 4 and GPT 3.5 which shows an average efficiency of 89%
and 87% consecutively. Similarly for MADAR in Table 13, Bard
(Gemini) shows a total mean value of 93%, tying with GPT 3.5
whereas GPT 5 shows 92%, GPT 4 shows 90%. GPT 4 has witnessed
a drop in accuracy due to poorer performance in LB dialect because
of an outlier compared to other countries as its individual score
shows 43% score, whereas others scored approximately 93%. This
is due to an error occurred when running the data where sentences
were translated to English instead of Arabic which drops the
accuracy rate of the overall translation. Given that the error was
only observed in the Lebanese dialect, it could be attributed that
the model had unresolved difficulties in the background which was
also passed down to the updated GPT 5 model as well.

In QADI dataset in Table 12, GPT 3.5 and Bard (Gemini)
have an average score of 43% for ROUGE-L where GPT 4 scored
an average of 47%. The analysis note that at least one Maghrebi
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dialect was of the highest ROUGE-L values observed for all models.
However, GPT 3.5 achieved the top score for Palestine. This
indicates a greater number of sentences overlap. These results
indicate that GPT 4 was specifically well trained and consistent in
at least one Magherbi dialect (e.g., Moroccon, Algerian, or Tunisian
Arabic), whereas GPT 3.5 was a better fit in Palestinian dialect (i.e.,
Levantine Arabic).

In the same vein for the MADAR in Table 13, ROUGE-L
scores were similar showing an average of 27%, 24%, 28% for Bard
(Gemini), GPT 3.5/4, respectively, whereas GPT 5 outperforms
other models showing 34%. Figures 7, 8 show the averages for each
model to further illustrate the scores.

Overall, all datasets
demonstrated a decently high average score for ROUGE-1
and ROUGE-L but lower scores for ROUGE-2. These results
indicate that GPT 3.5, GPT 4, and Bard (Gemini) all had higher
overlap between single words and long sequences between the

three models among different

compared text with GPT 4 being the highest in Figure 7, whereas
GPT 5 clearly outperforms all other models in MADAR as
demonstrated in Figure 8.

Overall, the results show that GPT 5 followed by GPT 4, Bard
(Gemini), and GPT 3.5 are efficient in translating MSA to different
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TABLE 12 Average similarity metrics for QADI dataset. TABLE 13 Average similarity metrics for MADAR dataset.
Metric GPT 35 GPT4 Bard Metric GPT GPT4 GPT5 Bard
(Gemini) 35 (Gemini)
Universal similarity encoder 0.64 0.71 0.66 Universal similarity 0.52 0.54 0.57 0.53
encoder
Cosine similarity 0.37 0.46 0.43
Cosine similarity 0.31 0.35 0.39 0.34
Sentence BERT 0.87 0.89 0.91
Sentence BERT 0.93 0.90 0.92 0.93
BLEU 0.39 0.45 0.31
BLEU 0.30 0.34 0.39 0.33
ROUGE-L 0.43 0.47 0.43
ROUGE-L 0.24 0.28 0.34 0.27
TER 15.62% 15.75% 16.55%
TER 6.76% 6.74% 6.61% 6.90%
Lower error rates are denoted by green.

DA, with slight difference and weaknesses noted in some of the
dialects and models.

4.2.2 TER

Table 14 shows the TER for all the countries for QADI dataset
for GPT 3.5, GPT 4, and MADAR, whereas the Figures9, 10
visualize some dialects’ results from QADI representing the average
TER as a red line. The ranges of error demonstrated by TER range

Frontiers in Artificial Intelligence

Lower error rates are denoted by green.

from approximately 10% up to 25% for all LLMs. Furthermore, the
models have the lowest TER rate of approximately 11% for the OM
dialect, whereas Bard (Gemini) has the highest worst TER rate in
EG of 25.6%. Comparing the Gulf region countries (AE, BH, KW,
OM, QA, and SA) specifically on GPT 3.5, OM showed the lowest
TER of approximately 10%, whereas the other countries from the
region showed an average ranging from 14% to 18%.
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On the other hand, Table 15 and Figure 11 specifically showing
GPT 4 illustrate the TER values of each country employing
MADAR dataset as an example. In comparison with QADI dataset,
the TER rates are closer together and have an overall lower value
ranging from 6% to 7%, with JO being the highest and QA, SY, and
OM being the lowest in the MADAR and QADI datasets. This may
be explained by the fact that the MADAR dataset gathers sentences
from a single source as a CORPUS, unlike the QADI dataset, which
gathers sentences from X platform (Twitter) which is more prone
to errors due to difficulty in filtering the sentences as tweets.

Overall, in terms of efficiency and consistency combined,
all models show competitive results and proved capable of
translating multiple dialects regardless of the region as they all had
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approximately close values across the Middle East such as PL, LB,
SY, and JO, the Gulf region such as KW, AE, SA, BH, OM, and
QA, the Arab Maghreb region such as MA, LY, DZ, and TN and the
African and Asian countries such as EG, SD, YE, and IQ. In QADI,
GPT 4 outperforms the other LLMs in all similarity metrics and
TER, Bard (Gemini) comes in the second place and then GPT 3.5
as shown in Table 12 whereas GPT 5 outperforms GPT 4 and other
models in MADAR in Table 13 proving it being a more reliable
model in translating from MSA to DA. This is further demonstrated
in Figures 12, 13 which further demonstrate LLM performance
upon the metrics used in this study. Models exhibited consistent
scores among all metrics with GPT 5 being the highest and most
appropriate LLM to deal with Arabic dialects.
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TABLE 14 TER for comparison for Bard, GPT 3.5, and GPT 4 for each
dialect in the QADI dataset, where lower TER means higher performance.

Dialect Bard GPT 3.5 GPT 4
JO 18.08% 17.51% 18.02%
AE 17.02% 16.94% 17.75%
LB 18.16% 16.56% 17.34%
1Q 15.17% 15.06% 15.86%
BH 15.87% 14.97% 13.70%
DZ 16.64% 14.90% 13.37%
EG 25.60% 21.54% 22.91%
Kw 14.81% 13.52% 12.47%
LY 18.65% 17.53% 17.66%
MA 14.80% 15.14% 17.23%
oM 11.43% 11.02% 10.82%
PL 11.82% 11.62% 11.38%
QA 17.98% 16.14% 14.83%
SA 15.89% 15.93% 16.75%
SD 19.10% 17.85% 16.89%
SY 14.59% 14.38% 14.42%
™N 16.28% 15.62% 16.69%
YE 16.04% 14.92% 15.35%

High error rates are colored by red, lower rates are denoted by green.

4.2.3 ANOVA

ANOVA test is a common test used to check whether the data
and mean difference are significant based on different conditions
and factors. In previous sections, we found that the average
translation performance among similarity metrics and TER are
quite similar. To better understand the significance difference, one-
way ANOVA is applied to all countries and models with alpha 0.05
threshold. We have applied Shapiro-Wilk test diagnostic to verify
the residuals normality and applicable for ANOVA. This is a similar
approach adapted by Alabdullah et al. (2025). The ANOVA results
are shown in Table 16 for QADI and Table 17 for the MADAR
dataset. The models GPT and Gemini are the independent variables
and the performance metrics including similarity metrics, BLEU,
and ROUGE were considered dependent variables. In reference
to Table 16, ANOVA test is applied among all similarity metrics,
and there is a significant difference between the model translation
performance with a p-value close to 0 in universal similarity
encoder, cosine similarity, and sentence BERT, which indicates
that the probability of the average similarities are different is
approximately 99.96%. Metrics such as BLEU, ROUGE-L, and TER
show insignificant difference among the models meaning that all
models have similar scores/error rates in translation. Moreover, the
f-value <1 suggested that there is no variance across the means.

As for MADAR, Table 17 shows that there is no difference
between the means and all models exhibited similar translation
performance on sentence BERT, ROUGE-L, and TER. However,
the other metrics show significant differences between the
LLMS scores.
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Scatter plots showing the TER for QADI datasets on Bard for highest
and lowest countries. (A) Bard - EG Highest TER. (B) Bard - OM
Lowest TER.

4.2.4 Evaluation divergence (lexical vs. semantic
metrics)

Upon evaluating different models with different performance
metrics, some conflicts between the metrics were noted. To
strengthen our analysis, we have chosen different metrics, each
evaluating a certain category of the LLMs ability. BLEU and
ROUGE rely on lexical overlap with the reference translation (the
original dialect in our case) and count the n-gram overlap. On the
other hand, universal similarity encoder and sentence-BERT are
semantic measures that focus on meaning equivalence regardless
of literal word matching. TER is concerned with the number of
edits to match the generated dialect with the base dialect reference.
As we are evaluating the 15 dialects, this variation often involves
synonym choice, morphological difference, and substitutions. A
model can semantically translate to the correct dialect yet not the
exact word matching which leads to lower BLEU and ROUGE
scores. Conversely, high lexical overlap does not always guarantee
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TABLE 15 TER Comparison for Bard, GPT 3.5, GPT 4, and GPT 5 for each
dialect in the MADAR dataset, where lower TER means higher

A performance.
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Dialect Bard GPT 3.5 GPT 4 GPT5
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s s ¥ oA " z o 6.95% 6.93% 7
= > 4 ., S, . . D 7.14% 95% .93% 6.95%
40 o8 3 X 3 &
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% High error rates are colored by red, lower rates are denoted by green.
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e 30 quality of this dialect. In both datasets, the models showed the
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] - least translation performance for the Tunisian dialect, and this
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attributed to the fact that QADI gathers its sentences from X
o] * : platform, which means that although the sentences are gathered
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Sentence Index from the same geolocation, this does not mean that they all belong
to the same dialect.
FIGURE 10

Scatter plots showing the TER for QADI datasets on GPT 3.5 for
highest and lowest countries. (A) GPT 3.5 - EG Highest TER. (B) GPT
3.5 - OM Lowest TER.

semantic accuracy if the matched words are used in a different
sense. The is noted in Table 9, and some dialects such as DZ
and EG scored low BLEU/ROUGE scores while achieving high
values in the semantic evaluation perspective. These findings
support our approach and analysis, highlighting the need to adapt
different metric scores, as each captures different aspects of LLM
translation quality.

4.3 Effects of model accuracy

4.3.1 Few-shots analysis

In this section, we will explore the opportunity to check
whether increasing the prompt size from zero-shot to few-shot
would enhance the translation quality of each LLM. We used the
MADAR dataset as it has more consistency in results with TN
having the lowest similarity scores in Table 18 and a high TER rate
as shown in Table 19, indicating a need to enhance the translation
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Although adding a few-shot approach provides models with
additional examples and reference points, most models exhibited
a decline performance in compared to zero-shot. This is illustrated
in Tables 20, 21. In particular, GPT 3.5 showed consistency, with
no significant differences between the zero-shot and few-shot
approach. Suddenly, GPT 4 translated almost 35% of the input
sentences into English despite clear instructions. This might be
explained by the model’s biases or training to adapt English
translations in unclear contexts for the model. Given that the
few-shot prompt is considered as a long prompt and has several
examples and details, GPT 4 might find the prompt ambiguous and
refer to the default language setting, which is “English”.

4.3.2 Impact of sentence length on model
accuracy

This subsection analyzes the impact of sentence length on
translation accuracy, hence addressing the third research question.
Since the universal similarity encoder is used to compare two
sentences, it enabled us to explore the correlation.

For QADI dataset, the highest correlation was 0.42 in MA for
GPT 4. The highest correlation for Bard was 0.39 in QA. GPT
3.5 showed a low correlation between the sentence length and the
translation accuracy (i.e., similarity between input and output).
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FIGURE 11

Scatter plots showing the TER for MADAR dataset on GPT 4 for each
corresponding country. (A) GPT 4 - JO Highest TER. (B) GPT 4 - QA
Lowest TER.

Figure 14 visualizes the results where showing no strong correlation
between the sentence length and the universal similarity encoder.
Such low positive correlations indicate that there is no relation
between the sentence length and the accuracy of the translation.
For MADAR, GPT 3.5/4 show a weak correlation, yet the
highest compared to Bard with a value of 0.24 for some Maghreb
Countries (i.e., DZ, MA, and TN) where Bard show no significant
correlation. Figure 14 supports this finding as GPT 3.5/4 indicate a
broader range of similarity scores as sentence length varies.

5 Conclusion

5.1 Concluding remarks

The study utilizes the QADI and MADAR datasets to evaluate
the performance of GPT 3.5, GPT 4, and Bard (Gemini) in
translating MSA to Arabic dialects, with GPT 5 evaluated
exclusively on the MADAR dataset. Several performance metrics
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LLMs performance scores per metric - MADAR dataset.

such as cosine similarity, universal similarity encoder, sentence
BERT, BLEU, ROUGE, and TER were used to test the models’
efficiency and accuracy. The analysis revealed close translations
among LLMs in similarity and error rate. In QADI dataset, there
was a significant difference between the models where GPT 4 was
the best LLM in translating MSA to Arabic dialects showing a p-
value of 0.000006 through ANOVA test on cosine similarity metric.
It shows significant difference on all metrics except for BLEU and
TER. For the MADAR dataset, there were no significant differences
in translation performance measuring on sentence BERT, ROUGE-
L, and TER. However, the results show significant differences
through universal similarity encoder, cosine similarity, and BLEU,
with GPT 5 being the top performer. GPT 4 demonstrates the
best performance across both datasets (MADAR and QADI); it
consistently showed high translation quality with low error rates.
This proves the models sufficiency and the ability to be used in
several dialect contexts and applications. GPT-4 showed consistent
high translation scores for the majority of metrics, specifically on
Levantine and Egyptian dialects; however, it shows low results on
Maghrebi regions such as Tunisian dialect. Overall, GPT-4 provides
the most reliable performance while GPT 5 outperforms all models
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TABLE 16 ANOVA results for models per metric - QADI dataset.

10.3389/frai.2025.1661789

TABLE 21 Tunisia few-shot metric performance.

Metric p-value F-statistic ‘ Model USE Cosine S- BLEU Rouge-
Sim BERT
Universal similarity encoder 0.009111 7.65
Bard 0.47 0.23 0.93 0.21 0.15 6.77%
Cosine similarity 0.000006 28.85
GPT 3.5 0.48 0.24 0.92 0.24 0.16 6.53%
Sentence BERT 0.000068 20.57
GPT 4 0.32 0.20 0.93 0.20 0.12 6.64%
BLEU 0.058 3.85
ROUGE-L 0.00018 0.16
TER 0.56 0.59
A
GPT 3.5 (Sentence Length vs Universal Similarity Encoder)
TABLE 17 ANOVA results for models per metric - MADAR dataset.
Metric p-value F-statistic ‘ 5
o
Universal similarity encoder 0.005 4.64 §
w
Cosine similarity 0.00009 8.57 2
-
&
Sentence BERT 0.44 0.91 E
:
BLEU 0.000029 9.73 -ﬁ
[}
ROUGE-L 0.68 7.87 -
£0
>
TER 0.31 1.2

TABLE 18 Countries with lowest values in MADAR dataset similarity
metrics.

Cosine  Sent. BLEU ROUGE
Sim. BERT

Bard TN TN PL TN TN

GPT 3.5 TN TN LB TN TN

GPT 4 MA but TN TN-MA LB TN- N

similar score MA
GPT 5 DZ DZ Not DZ DZ
applicable

TABLE 19 Countries with highest TER values in MADAR dataset.

Model TER |
Bard JO but TN similar score
GPT 3.5 JO but TN similar score
GPT 4 JO but TN similar score
GPT 5 JO but DZ similar score

TABLE 20 Tunisia zero-shot metric performance.

Model USE Cosine S- BLEU Rouge-

Sim BERT
Bard 0.48 026 0.93 025 0.41 6.71%
GPT3.5 | 048 0.24 0.93 023 0.49 6.52%
GPT 4 0.48 0.26 0.93 025 0.45 6.53%

specifically on the MADAR dataset in finding sentences overlap
measured by BLEU and ROUGE-L.

However, its performance is not uniform across all dialects’
while it excels in dialects with larger training representation
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FIGURE 14
Correlation (sentence length vs universal similarity) for GPT 3.5. (A)
GPT 3.5 - QADI. (B) GPT 3.5 - MADAR.

(e.g., Egyptian and Levantine), the accuracy slightly decreases
in underrepresented dialects (e.g., Maghrebi). On the MADAR
dataset, GPT-5 shows particularly strong performance on overlap-
sensitive metrics such as BLEU and ROUGE-L, suggesting it
captures sentence-level correspondences more effectively. Taken
together, GPT-4 provides the most reliable overall performance
across both datasets, while GPT-5 demonstrates an emerging
advantage in fine-grained similarity for MADAR dialectal
translations.

Furthermore, models have shown TER rates ranging from 6%
up to 25%, indicating that despite slight errors, their translations
are generally considered to be of good quality. However, GPT
has shown better response to a given prompt in terms of output

frontiersin.org


https://doi.org/10.3389/frai.2025.1661789
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Beidas et al.

results compared to Bard (Gemini). GPT in all versions specifically
GPT 5 showed the best results for translation through the Levant
countries. Zero-shot prompts were adapted for all countries, while
few-shot for the country with the least translation performance,
Tunisia. Unexpectedly, the few-shot technique did not enhance the
performance of translation especially for Bard (Gemini) and GPT
4 as they performed worse while GPT 3.5 performed consistently
in both prompting techniques. Overall, all LLMs proved capable
and efficient in translating diverse Arabic dialects from over
15 countries to provide valuable insights for future applications
in NLP.

This research establishes a benchmark for Arabic dialect
translation and derives significant findings for advancing NLP
capabilities in Arabic, paving the way for more inclusive and
efficient models that address the linguistic diversity of the Arab
world. Other researchers in the field may rely on GPT 4 and GPT 5
over GPT 3.5 and adapt Bard (Gemini), considering them feasible
and effective LLMs for handling underrepresented languages,
particularly Arabic and its linguistic complexities. The study also
opens opportunities for future work, such as incorporating open
source models, improving data sets, and optimizing prompting
techniques. Moreover, we show the impact of few-shot prompting
and how its impact was not significant, which could be replaced by
other alternatives or prompt engineering techniques in future or
relevant works.

5.2 Future works

We are aiming to extend this research by incorporating
additional Arabic LLMs and other well-known applicable LLMs
to generalize our findings. In addition, more data samples and
datasets can be included to strengthen the analysis. Looking ahead,
enhancing prompt and prompting techniques to optimize the
translation process would add value to this research.

5.3 Limitations

This study faces several limitations that could influence the
study results. Despite their remarkable success in various NLP tasks
and the popularity of closed-source LLMs, models such as GPT
3.5, GPT 4, and GPT 5 have several limitations (Yu et al., 2023).
These models are accessed through APIs which eliminates the need
for computer infrastructure. Although cloud-based Al services are
easy to use, they lack control over processing or training data.
Furthermore, it is challenging to produce studies on closed-source
models due to the high expense of conducting experiments through
APIs. Another limitation is that the LLMs are closed models, as
the name suggests, closed LLMs lack transparency in their internal
architecture and training process, making it difficult for researchers
to fully understand the output generation. The limitations also
include cost constraints while running LLMs such as GPT 3.5/4
and Bard (Gemini) which results in running only 50K out of
500K samples in QADI dataset. Expanding the sample size in
future studies could improve the robustness and reliability of the
results. Moreover, both GPT and Bard (Gemini) had restrictions
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on the rate limit (i.e., the number of API requests). Thus, limiting
the running process of the data to a specific rate daily, this
consumed the time to complete the running. It is possible that
recently published versions have increased the rate limit, which
could be explored. In addition, there is lack in LLMs that can
deal with Arabic dialects; having more LLMs would definitely
strengthen the comparison. While this study adapted datasets
encompassing 15 to 18 dialects, it does not cover all 22 Arabic-
speaking countries, thus limiting the generalizability of the findings.
Furthermore, QADI dataset, which is collected from X, may require
cleaning to remove slang and informal expressions in social media,
which can improve the quality of translation outputs. In addition,
only one dataset (i.e., MADAR) had a MSA baseline, which was
substituted by a back-translation algorithm for the QADI dataset.
This approach may potentially limit the accuracy and effectiveness
of the translations derived from QADI dataset. Moreover, the
MADAR dataset exhibits a travel domain bias, which may affect
the findings and limit the model’s translation capability to other
domains. In some cases, the models were not able to translate the
dialect, resulting in an empty output, English translated sentence
instead of Arabic or incomplete response. Finally, since most of the
metrics are calculated as mean scores with only a single inferential
statistical test (ANOVA) applied, generalizing the results might
be tricky.
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This study presents a comprehensive review of current methodologies, trends, and
challenges in cyberbullying detection within Arabic-language contexts, with a focus
on the unique linguistic and cultural factors associated with Arabic. This study reviews
35 peer-reviewed articles about the identification of cyberbullying in Arabic text.
Reported accuracies across datasets and platforms range from approximately 73 to
96%, with precision frequently surpassing recall, suggesting that systems are more
adept at identifying blatant bullying than at encompassing all pertinent instances.
Methodologically, conventional machine learning utilizing Arabic-specific characteristics
remains effective on smaller datasets, however deep neural architectures—especially
CNN/BILSTM—and transformer models like AraBERT yield superior outcomes when
dialectal heterogeneity and orthographic noise are mitigated. Evaluation methodologies
differ; research using a neutral class frequently indicates exaggerated accuracy,
underscoring the necessity to emphasize macro-averaged F1 and per-class metrics.
The evidence underscores deficiencies in dialectal representativeness, the uniformity
of bullying notions compared to general abuse, and the transparency of annotation
processes. Ethical and deployment considerations—privacy preservation, dialectal bias,
and real-time robustness—are becoming increasingly significant. We integrate trends
(models and features), standards (labeling and metrics), and future work directions,
encompassing dialect-robust pretraining, cross-dataset evaluation, context-aware
modeling, and human-in-the-loop frameworks. The review offers a comprehensive
basis for researchers and practitioners pursuing culturally and linguistically tailored
approaches to Arabic cyberbullying detection.

KEYWORDS
cyberbullying detection, Arabic language, systematic literature review, machine

learning, deep learning, support vector machines, convolutional neural networks,
natural language processing

1 Introduction

The extensive utilization of digital communication channels has resulted in a concerning
rise in cyberbullying, a type of online harassment impacting persons of many age groups and
demographics. This study evaluated the relevant research published from 2014 to 2024, to
assess and contrast the efficacy of conventional machine learning methods, deep learning
frameworks, and sentiment-oriented strategies in the classification of cyberbullying,
highlighting the significance of linguistic and dialectal intricacies in detection precision.

IT communication platforms such as WhatsApp, Facebook Messenger, Viber, WeChat,
Line, Telegram, Imo, and Kakao Talk have increased in use throughout the last years, with
some having over 1.5 billion users (Urrutia Zubikarai, 2020). Several sources contended that
offensive content in social media and communication platforms has become extremely
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dangerous; for instance, issues relating to social media in public
institutions, particularly during the election period, are related to
offensive content and have become challenging for public institutions
in light of how information should be controlled (Grégoire et al.,
2015). Offensive content, generally in the form of foul language
spouting racial hate, personal attacks, and sexual harassment, is
prevalent. Hence, it is important to detect offensive use of language to
maintain a healthy discussion and enhance the security of users
through the suppression of such hateful acts and offences (Bertini
et al,, 2021; Niraula et al., 2021). Online content-generators have
increased, allowing more users to experience the freedom to express
themselves, covered with anonymity if they choose, which maximizes
the chance for platform misuse and leads to an environment that
promotes offensive language and even eventually violence (Sap et al.,
2019). Also, social networking platforms display several types of
offensive language like hate speech, aggressive content, cyberbullying,
and toxic statements (Mironczuk and Protasiewicz, 2018). A possible
way to curtail and control such a phenomenon is through the use of
NLP techniques like text classification for the automatic detection of
offensive language. More specifically, text classification is the process
of labelling new text with pre-defined labels (Mironczuk and
Protasiewicz, 2018).

2 Background of study
2.1 Cyberbullying

Cyberbullying has become a global concern with the rise of social
media and online platforms, and research efforts are increasingly
being devoted to detecting and mitigating it using Machine Learning
(ML), Deep Learning (DL), and Natural Language Processing (NLP)
approaches. While a significant amount of research has been
conducted in languages like English, studies targeting cyberbullying
in Arabic remain limited. This systematic literature review aims to
explore existing research on cyberbullying detection in the Arabic
language, with a focus on ML and DL techniques, and to identify
future research directions based on the analysis of the
reviewed studies.

2.2 Challenges in detecting in Arabic
language

Identifying cyberbullying in the Arabic language poses
difficulties, mostly due to the linguistic, cultural, and computational
intricacies involved in processing Arabic content. A principal
challenge is the significant range of Arabic dialects, which differ not
only by area but also by socio-economic and cultural factors.
Although Modern Standard Arabic (MSA) is extensively employed
in formal discourse, social media exchanges primarily transpire in
dialectal Arabic, which is characterized by the absence of
standardized spelling, syntax, and vocabulary (Mubarak and
Darwish, 2019; AbdelHamid et al., 2022). The lack of high-quality,
labeled datasets that consider these changes intensifies the issue,
resulting in diminished model performance in real-world Arabic
cyberbullying detection tasks (Bashir and Bouguessa, 2021; Khairy
etal, 2023). A fundamental problem is the morphological complexity
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and intricate syntax of Arabic, which markedly contrasts with Indo-
European languages like English. Arabic lexicon demonstrates
significant inflexion through affixation, root-based derivations, and
contextual variants, complicating tokenization, stemming, and
lemmatization (Alakrot et al., 2018; Haidar et al., 2019). The linguistic
features create difficulty in text classification, as identical words may
possess varying meanings based on diacritical marks, which are
frequently absent in informal online communication. The scarcity of
comprehensive pre-trained models tailored for Arabic dialects
constrains the capacity of NLP algorithms to effectively identify
harmful and abusive content (Alrashidi et al., 2023; Khezzar et al.,
2023). Research indicates that sentiment analysis and lexicon-based
methodologies can improve detection by identifying emotional
indicators; however, their efficacy is limited by the necessity for
manually curated lexicons specific to Arabic dialects (Farid and
El-Tazi, 2020). An application of NLP that extracts structured
information in the form of entities, entities’ relationship and
attributes describing them from unstructured documents in an
automatic method is Information Extraction (IE) (Cowie and
Lehnert, 1996). Besides, IE systems have been found effective in
handling information overload issues, enabling the discernment of
the most significant information portion from a huge portion of
information in a timely and easy manner. On the whole, detection of
offensive language online is possible through the development of a
model using ML, AL, DL and NLP methods. This paper investigates
the following research questions:

3 Research questions

Q1: What are the current trends in cyberbullying detection for the
Arabic language and which dialects do they cover?

Q2: How cyberbullying been detected in previous studies based
on standards that represent its definition and characteristics?

Q3: What directions for future research in cyberbullying detection

may be established based on the findings of this review?

4 Methodology

A systematic literature review was conducted to conduct a
comprehensive analysis by focusing on existing studies from 2014 to
2024, evaluating trends and advancements in cyberbullying detection
for Arabic texts. This methodology involves structured selection
criteria to ensure that only relevant and high-quality sources are
included. The Inclusion Criteria are as follows:

1. Studies published from 2014 to 2024
2. Articles in English
3. Research specific to Arabic text-based cyberbullying detection

The exclusion criteria were:

1. The
technological elements

research focused on social studies without

2. Studies in languages other than English and non-Arabic texts
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3. Non-text-based detection methods (e.g., voice, image, video)
4. Conference papers and review articles

SLR protocol was applied to the study, the final selected studies
were conducted, and theoretical and practical steps were taken while
conducting the SLR.

5 Data sources and keywords

In the first step, four major research databases, ScienceDirect,
Scopus, Web of Science, and Springer, were searched through
queries, and as many papers as possible were collected. The search
query is “detect” AND (“cyberbullying” OR “hate speech” OR
“harassment” OR “offensive”) AND (“machine learning” OR “natural
language processing” OR “deep learning”) AND “Arabic” Based on
initial exclusion criteria, papers were selected after carefully reading
the abstracts of the papers in the second step. A final list of papers
is prepared after reading the full articles and applying further
exclusion criteria (35 papers). Figure 1 depicts the literature
review process.

10.3389/frai.2025.1666349

6 Results

This review synthesizes findings from numerous studies on
cyberbullying detection within Arabic-language content, identifying
the main trends, challenges, and methodologies, including ML, DL,
and sentiment analysis. The majority of the studies concentrated on
cyberbullying detection, offensive language detection, and hate
speech identification. A significant portion of the research applied to
social media platforms like Twitter and YouTube. The focus was
largely on identifying cyberbullying in dialects such as Saudi Arabian
Arabic, Egyptian Arabic, and the Levantine dialects. The most
frequently used machine learning models included Naive Bayes (NB),
Support Vector Machine (SVM), and Random Forest (RF). For deep
learning models, LSTM, CNN, and GRU were prominent. Ensemble
techniques like stacking and boosting showed better performance
compared to individual ML models. The datasets used in the reviewed
studies varied widely in size, ranging from small manually annotated
datasets to large datasets collected from social media. Many studies
employed preprocessing techniques such as tokenization, stemming,
lemmatization, and removal of hyperlinks or non-Arabic characters
to clean the data before analysis. Preprocessing was critical in

[ Identification of studies via databases and registers ]
5 Records identified from™: ~ Records removed before screening:
= Databasias (ScienceDirect = 178 Duplicate records removed (n = 26 )
o Scopus = 174 _ Records marked as ineligible by
= Web of SE|ence =163 ’ automation tools (n =0 )
] Springer = 322) Records removed for other reasons
=2 (e.g., Multimodal without text
analysis , Inaccessible full text) (n =
— i 216 + 36 + 238)
) Records screened
n =837 —» | Records excluded:
( )
(n=516)
RepOl'tS SOUght for retrieval Reports not retrieved
g) (n = 321) —_—> (n = 0)
=
o
; }
o
(7}
Reports assessed for eligibility
(n=321) — | Reports excluded:
(54 Not English)
(132 = Not Arabic text-based)
—
( @ | Studies included in review
3 =35
B (n=35)
~—
FIGURE 1
Systematic literature review process
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TABLE 1 Types of offensive language used in Arabic studies on cyberbullying and offensive content.

Type of Offensive
Language

Hate Speech

Description

Language targeting specific groups based on religion, race, gender, or nationality. Includes:

10.3389/frai.2025.1666349

Sources

Castafo-Pulgarin et al. (2021), Alsafari et al.
(2020a, 2020b)

Insults and Personal Attacks

Abusive language aimed at degrading individuals, including name-calling, derogatory

remarks, and personal insults about appearance, intelligence, or social status.

Alshalabi et al. (2024),

Profanity and Vulgar
Language

Taboo words or phrases generally considered offensive, including swear words and

obscenities that are often censored on public platforms.

Rosenbaum (2019)

Sexual Harassment

Inappropriate comments or sexually explicit content targeting individuals, often related to

gender-based discrimination.

Abdelmonem (2015), Bouhlila (2019), Bertini
etal. (2021), Niraula et al. (2021)

Bullying and Harassment Repeated or persistent offensive behavior aimed at intimidating or humiliating someone, Kanan et al. (2020)

often through derogatory remarks about personal life or achievements.
Stereotyping and Generalizations that promote negative stereotypes about specific groups (e.g., based on Alsafari et al. (2020a, 2020b)
Discrimination age, nationality, profession). Includes implicit bias and discriminatory remarks.

Mockery and Sarcasm

Humorous or sarcastic language used to belittle or degrade individuals or groups, often

through irony or exaggeration, which can vary in offensiveness depending on context.

Abu Farha (2023).

ensuring the effectiveness of the ML and DL models. Across the
reviewed studies, model performance is generally strong, with
traditional machine learning and deep learning approaches
demonstrating reliable detection capabilities in Arabic cyberbullying
contexts. Reported results indicate that precision commonly exceeds
recall, suggesting that systems are better at correctly identifying
bullying instances than capturing all relevant cases. This pattern
appears in works employing classical classifiers as well as ensemble
strategies, with examples including Egyptian-dialect tweet
classification (Farid and El-Tazi, 2020), Naive Bayes-based detection
pipelines (Mouheb et al., 2019), offensive language identification in
user-generated video comments (Alakrot et al., 2018), and ensemble
machine learning frameworks that optimize the balance of precision
and recall (Haidar et al., 2019). In terms of offensive language and
cyberbullying detection, researchers identify various types of
offensive language, each reflecting specific social, cultural, and
regional sensitivities. Table 1 illustrates the types of offensive language
used in Arabic studies on cyberbullying and offensive content

6.1 Research question 1

The first research question was:

What are the current trends in cyberbullying detection for the
Arabic language, and how do these trends account for various dialects?

The following themes were developed to answer the first research
question 1:

6.1.1 Machine learning (ML) and deep learning
(DL) approaches

Several studies have utilized ML and DL algorithms to detect
cyberbullying, with Support Vector Machine (SVM) and Naive Bayes
(NB) being frequently applied (e.g., Haidar et al., 2017; Alakrot et al.,
2018). More recently, DL methods such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) have
demonstrated improved performance due to their ability to capture
context and semantic meanings in text (e.g., Haidar et al., 2018;
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Moubheb et al., 2019; Mohaouchane et al., 2019). Ensemble learning,
where multiple models are combined to improve prediction accuracy,
has shown promise in boosting performance. For instance, stacking,
boosting, and bagging techniques have demonstrated better
performance in detecting Arabic cyberbullying content (e.g., Haidar
etal,, 2018; Khairy et al., 2023; Table 2).

6.1.2 Sentiment analysis and lexicon-based
methods

Sentiment analysis, often coupled with lexicon-based approaches,
is commonly used to detect harmful content. AlHarbi et al. (2019) and
Farid and El-Tazi (2020) used sentiment-based lexicons for Arabic
texts, finding that pointwise mutual information (PMI) and lexicon
enhancement can improve detection accuracy. Sentiment-based
approaches are also utilized alongside NLP tools, such as tokenization
and stemming, for feature extraction, enhancing the ability to detect
cyberbullying based on emotional cues.

6.1.3 Handling Arabic dialects and linguistic
complexity

Dialectal Arabic presents a significant challenge, as standard ML
models may not perform well on diverse dialects. Studies such as
Alsubait and Alfageh (2021) and Al-Hassan and Al-Dossari (2022)
indicate that datasets tailored to specific dialects (e.g., Egyptian,
Levantine) enhance detection efficacy. Additionally, transformer-
based models like AraBERT and multilingual BERT have emerged as
effective tools for dealing with dialectal variations, as they can better
capture semantic nuances across dialects (e.g., Khezzar et al., 2023;
Alrashidi et al., 2023).

6.2 Research question 2

How has cyberbullying been detected in previous studies based
on standards that represent its definition and characteristics?

The following themes were developed to answer the second
research question.
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TABLE 2 Summary of reviewed studies on Arabic hate/offensive/cyberbullying detection.

Model(s)

Dataset and
Platform

Dialect/
Domain

Performance
Metrics

10.3389/frai.2025.1666349

Limitations

1 Haidar etal. (2017) | Naive Bayes, SVM Posts (Twitter, Saudi Arabic NB: Precision 90.85%; Imbalanced dataset; few
Facebook, SVM: Precision 0.815 (yes | bullying instances; precision
Formspring) class) misleading
2 Haidar et al. (2018) Feed-forward Neural Twitter dataset General Arabic Validation accuracy Limited to binary labels;
Network (DL) (binary labels) 91.17% (7 hidden layers) dataset size not large
3 Alakrot et al. (2018) | SVM YouTube comments General Arabic Precision 90.05% Small dataset; not specific to
cyberbullying
4 AlHarbi et al. Lexicon + Sentiment Tweets Twitter (Saudi PMI accuracy 81% vs. Lexicon-based; potential bias;
(2019) Analysis (PMI, Chi-square, Arabic) Chi-square 62.11% dataset context-limited
Entropy)
5 Mubarak and ML classifiers Arabic tweets General Arabic High classification Focused only on offensive,
Darwish (2019) accuracy not cyberbullying
6 Farid and El-Tazi Lexicon-based Sentiment Tweets in Modern Egyptian Arabic Accuracy >73% for Lexicon limited; reliance on
(2020) Analysis + Emojis Standard + Egyptian bullying hashtags emojis and history
Dialect
7 Alsafari et al. LR, LSTM, Sluice, BERT, Labeled tweets Mixed Arabic SVM + ngrams: Acc. Limited samples per class;
(2020b) ELMo, SVM (Twitter) dialects 85.16%; CNN + mBERT subjectivity in annotation
F1-macro 66.86%
8 Bashir and LSTM, SVM, Naive Bayes Twitter dataset General Arabic LSTM accuracy 72% Keyword-based data
Bouguessa (2021) (cyberbullying collection; lower accuracy
keywords)
9 Fati (2022) Sentiment Analysis Twitter General Arabic Accuracy 81% (10-fold Limited validation; binary
Framework CV) annotation
10 Al-Hassan and LSTM, CNN + LSTM, Labeled tweets General Arabic CNN + LSTM: Precision Moderate dataset size; limited
Al-Dossari (2022) GRU, CNN + GRU 72%, Recall 75%, F1 73% categories
11 Alsubait and Multinomial NB, YouTube comments General Arabic Avg. F1: TF-IDF 77.9% vs. Dataset modest; no deep
Alfageh (2021) Complement NB, Logistic CountVec 77.5% learning comparison
Regression
12 Alhashmi and RFE, NB, SVM, XGB, ANN, (Twitter, WhatsApp, Mixed Arabic + Consensus ensemble Dataset partly translated;
Darem (2022) Stacked DL; Consensus- Vine, Instagram, translated improved accuracy by mixed domains; modest gain
Based Ensemble Packet; incl. 1.3% over best classifier; over baselines
Translated data) RF strongest
13 Bouliche and Dynamic Graph Neural Arabic comments General Arabic Accuracy 74% Model performance modest;
Rezoug (2022) Network (DGNN) (tweets) needs refinement; small
dataset
14 El-Alami et al. BERT (multilingual, Bilingual dataset General Arabic + High accuracy and F1; Ambiguous language still
(2022) transfer learning) (English + Arabic English BERT outperformed other | difficult; early-stage
tweets) models
15 AbdelHamid et al. AraBERT, ArabicBERT, Syrian/Levantine Levantine dialect GigaBERT: AUC 94.6%, Focused on Levantine; dataset
(2022) GigaBERT vs. RF, SVM tweets Macro F1 0.81 scope limited
16 AlFarah et al. SVM, RE NB, LR, KNN Twitter + YouTube, General Arabic NB highest AUC 89%; Class imbalance; dataset
(2022) oversampled SVM and LR also strong moderate in size
17 Anezi (2022) Deep Recurrent Neural Custom Arabic General Arabic Binary Acc 99.73%; 3-class | Dataset unique but limited
Network (DRNN) comments dataset Acc 95.38%; 7-class Acc disclosure; overfitting risk
84.14%
18 Althobaiti (2022) BERT + Sentiment + Emoji | Arabic tweets General Arabic BERT model highest F1 Single dataset; limited
features vs. SVM, LR across all tasks external validation
19 Ali and Kurdy SVM, SGD, KNN, LR, Syrian Facebook Syrian slang SVM and SGD accuracy Imbalanced recall (47%);
(2022) AdaBoost, Bagging comments + 77%; AdaBoost precision small dataset
questionnaire 94%
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TABLE 2 (Continued)

Model(s)

Dataset and
Platform

Dialect/
Domain

Performance
Metrics

10.3389/frai.2025.1666349

Limitations

20 Alduailaj and SVM + FarasaNLTK vs. Twitter + YouTube General Arabic SVM best accuracy Keyword-based collection;
Belghith (2023) NB comments 95.74% (TF-IDF n-gram) possible bias
21 Khairy etal. (2023) | Ensemble (Voting) vs. LR, New balanced dataset | General Arabic Voting model highest Acc, | Small dataset; limited to ML
SVC, KNN F1, Recall, Precision; LR
best single Acc 65.1%
22 Rachidi et al. ML (SVM, NB, RE LR) Instagram Moroccan Moroccan Arabic LSTM Acc 83.64%; SVM Scarcity of tools/datasets for
(2023) and DL (LSTM) dialect Acc 75.04% dialect; modest results
23 Alrashidi et al. Fine-tuned Arabic BERT, Multi-aspect abusive | General Arabic MTL + BERT > DL Imbalanced datasets; Arabic
(2023) Multi-task Learning tweets dataset baselines; GitHub data only
shared
24 Elzayady et al. CNN-LSTM, CNN- Twitter hate speech General Arabic AraBERT + personality Personality inference adds
(2023) BiLSTM, CNN-GRU, dataset features Acc 82.3%; CNN- | complexity; dataset size
AraBERT +Personality LSTM 77% moderate
Features
25 Khezzar et al. LR, SVC, DT, CNN, arHateDataset Standard + dialectal AraBERT accuracy 93%; Aggregated datasets may
(2023) AraBERT; web app (merged public sets), | Arabic precision/recall/F1 introduce label/definition
(arHateDetector) Twitter reported drift; external validation not
detailed

26 Alsafari et al. Single and ensemble CNN/ | Twitter; fine-grained = Mixed Arabic Ensemble F1: 91% Class granularity increases

(2020a) BiLSTM; AraBERT vs. two/three/six-class dialects (2-class), 84% (3-class), difficulty; error analysis
non-contextual corpora 80% (6-class); AraBERT > shows issues with implicit/
embeddings non-contextual; defensive language

CNN > BiLSTM

27 Aljuhani et al. BiLSTM with domain- Tweets (seeded crawl, | General Arabic LR on char n-grams P/R/ Seed-term collection bias;

(2022) specific embeddings; LR, cleaned, labeled) (Twitter) F1 =92%; SVM =~ 90%; translation/generalization
SVM baselines BiLSTM competitive with | across topics not assessed

domain embeddings

28 Amer Hamzah and | BiLSTM + Temporal CASH: tweets on Sexual-harassment Accuracy 96.65%; Task/domain specific;

Dhannoon (2023) Convolutional Network sexual harassment domain F0.5 = 0.969; > XGBoost dialectal robustness not
(TCN) baseline analyzed

29 Boulouard et al. BERT EN, AraBERT, YouTube comments Mixed Arabic BERT EN Acc 98%; Translation pipeline may

(2022) mBERT (AR/EN), (Gulf, Egyptian, dialects; EN AraBERT Acc 96%; inflate EN results; sarcasm
LinearSVC, LSTM Iraqi); Tweets translations mBERT-AR Acc 83%; remains challenging

LSTM Acc 82%

30 Aljarah etal. (2021) | SVM, NB, DT, RF; feature Twitter General Arabic RF best: Acc/G-mean Small corpus after filtering;
sets (TF-IDE, profile, (varied topics) 0.910; Recall 0.923; two-annotator protocol;
emotion) Precision 0.902 with all neutrals excluded from

features training

31 Mouheb et al. Naive Bayes Twitter + YouTube General Arabic Accuracy 0.959 Small dataset; limited feature

(2019) diversity

32 Alakrot et al. (2021) | LR, SVM/LinearSVC, NB, YouTube comments Mixed dialects LinearSVC highest Focus on offensive, not CB;
DT, RF; POS + n-grams; (YouTube) accuracy (reasonable dependence on preprocessing
feature selection overall); gains from choices

feature selection

33 Omar et al. (2021) LinearSVC, NB variants, OSN posts across 11 General Arabic With Chi-square FS: Acc High feature counts; results
SVM, LR, DT, SGD, RF; classes; vulgar-speech | (Facebook/Twitter) 97.92%; F1 97.92%; sensitive to FS;
multilabel pipeline set Precision 97.92%; Recall generalizability outside OSN

97.93%; multilabel mix not shown
LinearSVC + TF-IDF Acc
82.29%, F1 92.48%
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TABLE 2 (Continued)

Dataset and
Platform

Model(s)

10.3389/frai.2025.1666349

Performance Limitations

Metrics

Dialect/
Domain

EM (clustering)

34 Shannag et al. Word-embedding fine- ArCybC (CB/Non- Twitter; SVM Acc 86.5% — 87.5%; | Incremental gains; relies on a
(2022) tuning + GA-optimized CB/Off/Non-Off) cyberbullying + XGB Acc 84.9% — 85.2% single public corpus
SVM/XGBoost offensive after optimization
35 Kanan et al. (2021) | Unsupervised K-Means vs. | (Facebook/Twitter) General Arabic Evaluated via training No precision/recall/F1;

time, SSE (e.g., 7,796.363), | clustering quality hard to
and log-likelihood (e.g.,

3,606.4669)

align with downstream

moderation needs

TABLE 3 Examples of the datasets addressing cyberbullying in Arabic.

Dataset (year) Platform Labels Study

Instagram-Based Benchmark Dataset for Instagram Comments collected; multi-class sub-categories for bullying with Albayari and Abdallah (2022)
Cyberbullying in Arabic (2022) sentiment variants used in evaluation (incl. Positive/negative/neutral)

ArCybC / ArCyC—Arabic Cyberbullying | Twitter (X) Tweets; dual annotation tasks: CB vs. non-CB and Offensive vs. non- Shannag et al. (2022)

Corpus (2022 article; 2023 data release) Offensive; 5 annotators

ArbCyD—Arabic Post Dataset for Twitter (X) Posts: bullying vs. non-bullying binary labels Aljalaoud et al. (2025)
Cyberbullying Detection (2024)

6.2.1 Development and use of cyberbullying
datasets

Arabic cyberbullying detection relies heavily on curated datasets.
Studies often use platform-specific datasets from Twitter, YouTube,
and Facebook, with datasets labeled for harmful or offensive language
(e.g., Bashir and Bouguessa, 2021; Khairy et al., 2023). These datasets
include common cyberbullying characteristics like threats, insults, and
hate speech. However, the issue of dataset imbalance (more
non-cyberbullying content than cyberbullying) persists, affecting
model performance. Techniques like oversampling and downsampling
have been employed to address this imbalance, as seen in AlFarah
et al. (2022). Table 3. Shows some examples of the existing datasets
addressing cyberbullying in Arabic.

The ArCybC/ArCyC corpus represents one of the few openly
accessible multi-dialect Twitter datasets that makes a clear distinction
between cyberbullying and general offensive content. Its development
is supported by detailed documentation of the annotation pipeline
and guidelines, ensuring methodological transparency (Shannag et al.,
2022). The ArbCyD dataset significantly expands the available volume
by including annotated Twitter posts (Aljalaoud et al., 2025).

6.2.2 Standards and evaluation metrics

Standards such as precision, recall, F1-score, and accuracy are
commonly used to evaluate detection methods (e.g., Haidar et al., 2017;
Alakrot et al., 2018). Although precision and recall are essential for
accurate detection, the unique characteristics of the Arabic language
and cyberbullying-specific terms often require additional metrics and
customized standards. Studies such as El-Alami et al. (2022) and Amer
Hamzah and Dhannoon (2023) advocate for using contextual features
like sentiment polarity, emojis, and user history in cyberbullying
detection. These standards help capture the nuanced characteristics of
online abuse, especially within specific platforms or dialects.

Some evaluations adopt three-way labeling schemes that
distinguish bullying/abusive content, non-bullying content, and
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neutral content. When overall accuracy is computed across all classes,
the typically high prevalence of neutral instances can inflate the
metric and obscure a system’s effectiveness on the bullying class,
which is the primary target in safety-critical applications. For
example, the Instagram-based Arabic cyberbullying benchmark
provides a multi-class design with positive (bullying), negative
(non-bullying), and neutral categories, together with inter-annotator
agreement reporting and baseline models (Albayari and Abdallah,
2022). In such settings, macro-F1 and per-class F1 are preferable for
comparing systems intended to detect bullying, whereas accuracy
across all three classes can be misleading when neutral content
dominates the distribution.

6.2.3 Application of linguistic and psychological
standards

Recent research has incorporated psychological theories to
enhance cyberbullying detection by analyzing underlying
personality traits in text (e.g., Elzayady et al, 2023). Such
frameworks align detection methods with broader behavioral
standards, moving toward a more human-centered approach in
identifying abusive content. Other studies, such as Boulouard et al.
(2022), address multilingual standards by analyzing Arabic text in
translation and leveraging cross-linguistic BERT models, thus
ensuring consistency in detecting cyberbullying characteristics
across languages.

6.3 Research question 3

The third RQ was:

What future research directions in cyberbullying detection may
be established based on the findings of the provided systematic review?

The following themes were developed to answer the third
research question.
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6.3.1 Expansion of dialect-specific datasets and
multilingual analysis

Future research could focus on developing larger, dialect-specific
datasets to address the significant linguistic diversity in Arabic.
Datasets for Moroccan, Syrian, and Gulf dialects remain limited and
would improve detection accuracy for specific regions (e.g., Rachidi
et al,, 2023; Ali and Kurdy, 2022). Studies also suggest expanding
multilingual capabilities to improve cross-linguistic performance, with
transformer models like BERT and mBERT showing potential for
multilingual hate speech analysis (e.g., Alrashidi et al., 2023; Shannaq
etal., 2022).

For limited-resource settings, few strategies with large language
models can be grounded in complementary lines of evidence. First,
in-context learning has been shown to deliver strong few-shot
performance without gradient updates; GPT-3’s original study
established that scaling enables task-agnostic adaptation via a handful
of exemplars embedded in the prompt, a result that has shaped
subsequent methodology for low-data regimes (Brown et al., 2020).
Second, prompt-based and prompt-free fine-tuning methods
consistently improve over naive fine-tuning when labeled data are
scarce. Pattern-Exploiting Training and its generative extension
reframe supervision as cloze-style patterns to amplify supervision
from very small datasets, while LM-BFF automates prompt
construction and demonstration selection to yield large gains across
classification and regression tasks (Schick and Schiitze, 2020).
Complementing these, SetFit avoids handcrafted prompts altogether
by contrastively fine-tuning sentence-transformer encoders on a
handful of pairs and then training a lightweight classifier on the
induced embeddings, matching or surpassing larger fully fine-tuned
models under strict few-shot budgets (Tunstall et al., 2022). Moreover,
parameter-efficient adaptation techniques such as LoRA reduce
trainable parameters by orders of magnitude while preserving or
improving downstream quality, which is particularly attractive when
domain transfer must be achieved under tight compute and annotation
constraints (Hu et al., 2022). To mitigate the scarcity of human-written
instructions, Self-Instruct bootstraps synthetic instruction-input-
output triplets from the model itself and shows substantial gains over
the base model, offering a practical path when labeled data are limited
(Wang et al., 2022). Evidence from multilingual and domain-specific
studies indicates that these approaches translate beyond English
benchmarks. Cross-lingual in-context learning studies report
consistent benefits for genuinely low-resource languages and highlight
alignment techniques that stabilize label semantics across languages,
while evaluations in biomedical and clinical NLP show that
instruction-tuned LLMs can perform competitively on few-shot entity
recognition, QA, and relation extraction when carefully prompted
(Cahyawijaya et al., 2024).

6.3.2 Enhanced deep learning models and feature
engineering

Future research could involve advancing feature engineering,
particularly through contextual embeddings, attention mechanisms,
and personality inference models. These methods could enhance the
interpretability of cyberbullying detection systems and better capture
contextual aspects of offensive language (e.g., Mohaouchane et al.,
2019; Elzayady et al., 2023). Additionally, hybrid models combining
CNN, RNN, and BERT-based architectures have shown promise for
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handling complex language features, and future studies could explore
further model fusion or ensemble methods for improved accuracy
(e.g.» Mohaouchane et al., 2019; Althobaiti, 2022).

6.3.3 Ethical considerations and real-time
detection systems

Ethical standards and privacy concerns will play a growing role in
future cyberbullying detection research. Privacy-preserving
algorithms, especially those that anonymize or filter sensitive
information, can support ethical Al use on social media platforms
(e.g., Omar et al,, 2021). Another area for future exploration is real-
time cyberbullying detection systems that respond dynamically to
harmful content as it is posted. While challenging, real-time models
could be feasible with lightweight DL architectures tailored for social
media monitoring (e.g., Amer Hamzah and Dhannoon, 2023; Kanan
etal., 2021).

Ethical risks arise at each stage of dataset development and
deployment for Arabic cyberbullying detection, beginning with data
collection. The Instagram-based benchmark demonstrates the value
of reporting annotation protocols and inter-annotator agreement
alongside careful corpus descriptions; however, as with Twitter- and
YouTube-based datasets, the presence of user mentions and cross-
post threads can inadvertently expose targets and perpetrators if not
aggressively sanitized (Albayari and Abdallah, 2022; Haidar et al.,
2019; Alakrot et al., 2018; Alduailaj et al., 2023; Al-Ajlan and Ykhlef,
2018; Alrougi et al., 2024). Representativeness is a second, persistent
ethical and scientific concern. Arabic social media is heterogeneous
across dialects, platforms, and communities; yet several widely used
datasets skew toward particular dialect clusters or platform norms,
such as Egyptian or Gulf Twitter, pan-Arab YouTube comments, or
Instagram captions from specific demographic groups (Haidar et al.,
2019). Studies that publish clear guidelines, show label distributions,
and report inter-annotator agreement support more accountable
modeling than those that provide only aggregate scores (Albayari
and Abdallah, 2022). Curators should also protect annotator
wellbeing through workload limits, content warnings, and access to
support, and they should state these safeguards in their
documentation. The evaluation protocol has ethical implications
because metric choice shapes decision thresholds used in practice.
Practical architectures therefore favor lightweight normalizers and
dialect-aware tokenization before model inference, with privacy-
preserving logging that stores only hashed text fingerprints or short-
lived embeddings for auditing (Alakrot et al.,, 2018). The more
explicit dataset papers are about these elements, the less likely it is
that downstream models will inadvertently encode representational
harms or privacy leakage.

6.3.4 Integration of psychological and social
dimensions

Integrating psychological and social analysis within detection
algorithms is emerging as an essential direction. Personality-based
approaches could be particularly useful, helping identify users more
likely to engage in or be affected by cyberbullying (e.g., Elzayady
etal., 2023).

Additionally, cross-disciplinary research involving psychology,
sociology, and computational linguistics could establish standards for
understanding the social dynamics underlying cyberbullying, offering
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insights beyond linguistic patterns (e.g., Omar et al., 2021). Table 4
shows the summary of the themes related to each research question.

The results of the research emphasize the necessity of culturally
sensitive detection models, sophisticated methodologies, and tailored
approaches to effectively capture the distinctive characteristics of the
Arabic offensive language. Arabic is an extremely diverse language,
with significant variations in dialects across regions (e.g., Egyptian,
Gulf, Levantine), each with its own vocabulary, syntax, and
expressions. The detection of objectionable language is further
complicated by this diversity, as models that have been trained in
Modern Standard Arabic frequently encounter difficulties with
dialectal content. These results suggest that the models ability to
identify nuanced or implicit forms of offensive language, such as
sarcasm or mockery, is improved by the inclusion of sentiment and
lexicon-based features that are specifically designed for Arabic dialects
and slang. Many categories of offensive language, including religious
hate speech, ethnic hate, and political offence, have been classified by
researchers. These types of language are particularly sensitive in
Arabic-speaking societies. These categories are indicative of regional
and cultural priorities, emphasizing the social and religious values that
influence online discourse in Arabic contexts. The importance of
accounting for these categories is underscored by research, as they
pertain to highly sensitive subjects that may vary in severity and
context in comparison to other languages. The results indicate that
culturally aware models that identify these particular forms of
objectionable language can improve the accuracy and relevance of
the models.

Although numerous studies have examined cyberbullying
detection methods broadly or across various languages, there is a
paucity of focused analyses on Arabic-language detection, given the
unique challenges presented by Arabic’s morphological intricacies
and dialectal diversity (Mubarak and Darwish, 2019; AbdelHamid
etal, 2022). The majority of the earlier studies predominantly analyze
general patterns in cyberbullying detection, concentrating on
English-language research (Alakrot et al., 2018; Bashir and
Bouguessa, 2021). Although current studies recognize dataset
imbalances and biases in social media-derived training data, they
frequently neglect to consider privacy concerns and the ethical
ramifications of automated cyberbullying detection among Arabic-
speaking groups (Omar et al., 2021; Amer Hamzah and Dhannoon,
2023). This study addresses real-time detection concerns, the balance
between moderation and free speech, and the necessity for privacy-
preserving machine learning algorithms in social media monitoring
(Kanan et al., 2021). This paper distinctly focuses on the thorough
assessment of ML and DL models in detecting cyberbullying in
Arabic. The prior systematic literature review by Castafio-Pulgarin
et al. (2021), addressed cyberbullying detection on studies that
provided exploratory data about the Internet and social media as a
space for online hate speech, types of cyberhate, terrorism as an
online hate trigger, online hate expressions and the most common
methods to assess online hate speech. Balakrisnan and Kaity (2023)
also did an SLR focusing on three main areas regarding cyberbullying
detection through machine learning: the algorithms employed, the
features used for detection, and the performance measures of these
methods. The prior studies and reviews neglect Arabic-specific issues
such as root-based word creation, tokenization complexities, and
script intricacies.
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The results of this study underscore the necessity of creating
extensive, dialect-specific datasets and enhancing NLP models to
address syntactic and lexical discrepancies among Arabic dialects.
Deep learning architectures such as CNNs and BiLSTMs generally
surpass classical baselines once training sets exceed the
low-thousands and when preprocessed to handle orthographic
variation, elongation, and code-mixing. Transformer models fine-
tuned on Arabic corpora—especially variants trained with
substantial dialectal coverage—consistently lead when the label
definitions align with the pretraining distribution and when
macro-averaged F1 rather than accuracy guides optimization. A
recurring empirical pattern is precision outpacing recall, reflecting
systems that confidently flag explicit bullying but struggle with
implicit attacks, sarcasm, and context-dependent harassment.
Performance differences are driven first by data composition.
Dialectal diversity, platform genre, and class design are the most
decisive factors. Models trained on tweets in Egyptian or Gulf
dialects tend to degrade on Levantine, Maghrebi, or code-mixed
content because lexical cues and morphological patterns shift, and
subword tokenizers learned on Modern Standard Arabic under-
segment dialectal forms. Domain shift between platforms—short,
slang-heavy tweets versus longer Instagram captions or YouTube
comments—likewise reduces transfer, as does the prevalence of
emojis, creative spellings, and Arabizi. Class definitions also vary:
some corpora equate cyberbullying with general abuse or toxicity,
whereas others require intent, repetition, or power imbalance. The
broader the “bullying” label, the higher the apparent scores, but
the weaker the comparability across studies. Evaluation choices
amplify these effects. Where annotation guidelines were explicit
and inter-annotator agreement documented, models learned more
stable decision boundaries; where guidelines were minimal or
borrowed from sentiment analysis, models overfit to superficial
polarity and miss community-specific bullying norms. Pretraining
and representation learning explain the remaining variance. Yet,
when fine-tuning data are severely imbalanced, even strong
encoders prioritize surface toxicity over nuanced bullying
constructs. In contrast, classical models augmented with curated
lexicons and character-level features sometimes outperform deep
baselines on noisy, low-resource dialects because they are less
sensitive to tokenization errors and require fewer examples
to generalize.

The most promising methodological direction is dialect- and
domain-robust modeling anchored in standardized evaluation.
Progress depends on a benchmark suite that harmonizes label
schemas for cyberbullying versus general abuse, publishes class
priors, and mandates macro-F1 and per-class F1 with clear treatment
of the neutral class. Cross-dataset testing should be routine, with
models trained on one corpus evaluated zero-shot on another to
measure real-world robustness. Data and supervision strategies also
offer leverage. Active learning and disagreement-focused annotation
can densify minority bullying phenomena such as threats, doxxing,
or body-shaming. Weak supervision that combines lexicon rules,
community guidelines, and pattern matchers can cheaply label large
pools for pretraining, followed by human verification on hard
examples. Span-level rationales and multi-label tags for bullying types
improve transparency and enable error analysis beyond single-label
outcomes, while adversarial training with paraphrases and sarcasm
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TABLE 4 Summary of the themes related to each research question.

Research Question Theme

RQI: Current trends in ML and DL Approaches
cyberbullying detection for

Arabic language and dialects

Description

ML models (e.g., SVM, Naive Bayes) and DL models (e.g.,
CNN, BERT) are common for cyberbullying detection,

with ensemble methods improving accuracy.

10.3389/frai.2025.1666349

Sources

Haidar et al. (2017); Alakrot et al. (2018);
Alrashidi et al. (2023)

Sentiment Analysis and

Lexicon-Based Methods

Sentiment analysis and lexicon-based approaches capture
emotional tones and harmful language, essential for

handling Arabic’s diverse dialects.

AlHarbi et al. (2019); Farid and El-Tazi (2020)

Handling Arabic
Dialects and Complexity

Specialized datasets and models (e.g., AraBERT,
multilingual BERT) address dialectal variability,

enhancing model accuracy for Arabic.

Mubarak and Darwish (2019); AbdelHamid et al.
(2022); Khezzar et al. (2023)

RQ2: Standards used for
detecting cyberbullying

Development of
Cyberbullying Datasets

based on its characteristics

Creation of Arabic-specific datasets that include dialectical
variations and cyberbullying characteristics, though issues
like imbalanced datasets (few cyberbullying instances)

impact model performance.

Bashir and Bouguessa (2021); Khairy et al. (2023);
AbdelHamid et al. (2022)

Evaluation Standards

and Metrics

Precision, recall, F1-score, and accuracy are commonly
used metrics, supplemented by specialized metrics tailored
to Arabic-language characteristics to ensure reliable

detection performance.

Haidar et al. (2017); Alakrot et al. (2021);
Boulouard et al. (2022)

Linguistic and

Psychological Standards

Integration of linguistic and psychological insights, such
as personality inference, allows a deeper understanding of
user behavior, helping to identify cyberbullying based on

more human-centered behavioral traits.

Elzayady et al. (2023); Omar et al. (2021);
Shannagq et al. (2022)

Contextual and Cultural

Considerations

Incorporation of cultural sensitivity, including the use of
dialect-specific language features, emojis, and contextual
sentiment, provides a more nuanced and culturally

accurate detection of offensive language.

AlHarbi et al. (2019); Farid and El-Tazi (2020);
Khezzar et al. (2023)

RQ3: Future research Dialect-Specific Datasets

directions for Arabic and Multilingual Models

cyberbullying detection

Expansion of dialect-specific datasets and multilingual
models to enhance detection across Arabic dialects and

improve cross-linguistic applicability.

Ali and Kurdy (2022); Rachidi et al. (2023);
Shannagq et al. (2022)

Advanced Feature
Engineering and Hybrid
Models

Development of hybrid models (e.g., CNN-LSTM-BERT)
and advanced feature engineering, such as attention
mechanisms and personality-based features, for richer

context and improved detection accuracy.

Moubheb et al. (2019); Elzayady et al. (2023);
Boulouard et al. (2022)

Real-Time Detection
and Privacy

Considerations

Focus on real-time cyberbullying detection models for
immediate response, with privacy-preserving techniques

to ensure user data protection and ethical AI application.

Amer Hamzah and Dhannoon (2023); Omar et al.
(2021); Kanan et al. (2021)

Cross-Disciplinary

Research

Integration of psychological, sociological, and linguistic
insights for a more comprehensive understanding of the
social and behavioral dynamics underlying Arabic

cyberbullying.

Farid and El-Tazi (2020); Omar et al. (2021);
Elzayady et al. (2023)

transformations hardens models against implicit aggression. Context
modeling is a further frontier. Many failures stem from sentence-level
isolation. Incorporating conversation threads, author-target history,
and lightweight social signals can disambiguate teasing from
harassment and detect repetition, a hallmark of bullying. Graph-
based representations of interactions, when coupled with privacy-
preserving design and strict ethical safeguards, can capture power
asymmetries and coordinated attacks without storing sensitive
personal attributes.

Frontiers in Artificial Intelligence

Finally, instruction-tuned large language models adapted to Arabic
show potential as few-shot labelers, error analyzers, and data generators,
but their deployment must be paired with rigorous calibration, bias
auditing across dialects and demographics, and conservative
thresholding in safety-critical pipelines. Taken together, the evidence
suggests that the field is moving from accuracy on single, homogeneous
datasets toward robust, dialect-inclusive systems evaluated under
standardized, recall-sensitive protocols, with the integration of context
and improved supervision likely to yield the next substantive gains.
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/ Limitations and suggestions for
future studies

A key limitation of this review is the absence of a formal
quality appraisal or risk-of-bias assessment of the included
studies. Established tools such as AMSTAR, AMSTAR-2, or
ROBIS are often used in systematic reviews to evaluate the
methodological rigor of primary studies and to distinguish
between stronger and weaker evidence. The present review
treats all included studies as methodologically equivalent,
regardless of variations in their design, sampling strategies, or
analytical robustness.

The majority of the studies reviewed are based on restricted
or specific datasets, which may not adequately represent the
complete range of Arabic dialectal diversity or the diverse forms
of cyberbullying that are present on different platforms. However,
the absence of standardized datasets for the detection of Arabic
cyberbullying also presents obstacles to the attainment of
generalizable results. Despite the potential of dialect-specific
models, the complexity and extensive variations among Arabic
dialects pose a significant obstacle. The results may not
be broadly applicable because current models may not perform
consistently across all dialects. The detection of real-time
cyberbullying is still in its infancy, particularly in the context of
Arabic texts. Although some studies incorporate psychological
insights, there is a void in the comprehensive integration of
insights from sociology, linguistics, and psychology to develop a
holistic understanding of cyberbullying behaviors specific to
Arabic-speaking regions. Another limitation of this review is the
exclusion of conference proceedings, despite their prominence as
venues for innovation in natural language processing.
Nonetheless, this exclusion may have led to the omission of some
cutting-edge contributions. Future reviews should consider
incorporating both journal articles and high-quality conference
proceedings to present a more comprehensive view of the
research landscape.

Future research may investigate sophisticated deep learning
architectures and hybrid models that amalgamate various
methodologies to enhance detection, to improve contextual
comprehension and classification precision. Another vital avenue for
future study is the enhancement of sentiment-based and context-
aware models for detecting cyberbullying. The problem of dataset
imbalance persists, as cases of cyberbullying are markedly
underrepresented relative to non-offensive content.

8 Conclusion

This study offers a thorough examination of the most recent
academic research, methodologies, and challenges in the detection
of cyberbullying in Arabic texts. This review emphasizes the
substantial advancements that have been achieved in this field by
evaluating the efficacy of ML and DL models, sentiment analysis,
The
significance of specialized datasets for Arabic dialects, the efficacy

lexicon-based methods, and dialectal considerations.

of composite models and ensemble learning, and the value of
sentiment-based and contextual analysis are underscored by the
key findings.
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