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Editorial on the Research Topic

Emerging techniques in Arabic natural language processing

Introduction

Arabic Natural Language Processing (NLP) is a rapidly growing field focusing on the

unique computational and linguistic challenges of the Arabic language. Recent progress has

been driven by deep learning approaches and the increasing use of large language models

(LLMs), which have improved applications such as sentiment analysis, text processing,

speech recognition, and machine translation (Haboussi et al., 2025; Abdu et al., 2025).

Despite these advances, the field still faces critical obstacles, including a shortage of

annotated datasets, insufficient tools for dialect handling, and the limited availability of

Arabic-oriented LLMs (Mashaabi et al., 2024; Dahou et al., 2025; Abudalfa et al., 2024). This

Research Topic presents studies covering various aspects of Arabic NLP, such as syntactic

analysis, dialect identification, stance classification, and other tasks that contribute to

practical real-world solutions.

Key contributions

The studies featured in this Research Topic highlight advancements in Arabic NLP

and introduce innovative approaches within this field. The following subsections provide

a concise overview of each paper included.

Syntactic analyzers

Syntactic analysis is a core task in NLP, particularly vital for morphologically rich

languages like Arabic. Saadiyeh et al. compared a range of Arabic syntactic analyzers,

from rule-based, statistical, and machine learning approaches to hybrid, neural, and

transformer-based models, examining their strengths, weaknesses, and trade-offs. The

complexity of Arabic morphology and syntax makes accurate parsing challenging, which

they address through a detailed evaluation of algorithms and their reliance on high-quality

annotated resources.
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Machine translation

Algaraady and Mahyoob conducted a study comparing

Arabic translations of Google Translate after post-editing by

two professional translators and ChatGPT-4o, with three experts

evaluating the final output. Quality was assessed through fluency,

accuracy, coherence and efficiency, and a paired t-test analyzed the

differences. Human post-editing generally yielded superior quality,

while ChatGPT-4o stood out for speed and produced fluently

flowing coherent translations.

In a related line of research, Beidas et al. examine the

performance of GPT-3.5, GPT-4, and Bard (Gemini) on the

QADI and MADAR datasets, whereas GPT-5 was tested solely on

MADAR, which covers data from more than 15 countries. The

evaluation relied on several metrics, including cosine similarity,

the universal similarity encoder, sentence-BERT, TER, ROUGE,

and BLEU. Two prompting strategies were applied: zero-shot and

few-shot.

Opinion mining

Alkhathlan et al. presented ArabicStanceX, a large dataset for

stance detection with 14,477 tweets covering 17 topics. Using the

transformer-based MARBERTv2 model and a Multi-Topic Single

Model approach, they achieved an F1 score of 0.74 for “favor” and

“against” categories and 0.67 overall. Their results reveal strengths

in stance classification but also difficulties with neutral labels and

unseen topics. Additional zero-shot and few-shot learning tests

show the model’s flexibility in adapting to new subjects.

Jaber et al. explored the use of ensemble-based machine

learning approaches for Arabic sentiment classification. A range

of homogeneous ensemble models is developed and tested on two

corpora: the balanced ArTwitter dataset and the highly skewed

Syria_Tweets dataset. To address the imbalance problem, the

Synthetic Minority Over-sampling Technique (SMOTE) is applied.

The experiments combine unigram features with pre-trained word

embedding representations.

Arabic poetry

Mutawa and Alrumaih presented a deep learning technique

for identifying the meter of Arabic poetry using a large annotated

dataset. Text was encoded at the character level to classify

full and half verses without removing diacritics, ensuring that

essential linguistic features were preserved. Various neural network

architectures, including LSTM, GRU, and Bi-LSTM, were explored.

This framework demonstrates a robust approach to Arabic meter

recognition and highlights the potential of AI in NLP.

Dialect detection

Saleh et al. presented a stacking-based technique to improve

dialectal Arabic classification by combining two transformer

models, Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-

Base. The technique involves two layers: the first generates

class probabilities from the transformers, which are then

used by a meta-learner in the second layer. This technique

was benchmarked against individual models such as LSTM,

GRU, CNN, and single transformers with various embeddings.

Experimental results demonstrated that the combined model

outperforms single-model methods by capturing a wider

range of linguistic features, improving generalization across

Arabic varieties.

Speech recognition

Al-Anzi and Thankaleela presented an Arabic speech

recognition framework that begins by extracting Mel-frequency

cepstral coefficients (MFCCs) from audio signals. These features

are then grouped through K-means clustering, and the resulting

clusters are classified using methods such as Decision Trees,

Random Forests, K-Nearest Neighbors, and XGBoost. For

demonstration purposes, both Euclidean Distance and Dynamic

Time Warping (DTW) are employed. Additionally, the research

highlights the effectiveness of Mozilla’s DeepSpeech framework in

handling Arabic speech recognition.

Cyberbullying detection

Allwaibed et al. reviewed 35 scholarly articles addressing

the detection of cyberbullying in Arabic-language texts. From

a methodological standpoint, traditional machine learning

approaches that leverage Arabic-specific linguistic features

continue to perform well on smaller datasets. However, more

advanced deep learningmodels and transformer-based frameworks

such as AraBERT achieve stronger results, especially when

challenges like dialectal variation and orthographic inconsistencies

are reduced.

Conclusion

The studies gathered in this Research Topic illustrate the

diversity and dynamism of ongoing efforts in Arabic NLP.

Collectively, these contributions showcase how deep learning

and LLMs are driving progress in Arabic NLP, while also

pointing to persistent obstacles such as dialectal differences,

scarcity of annotated data, and specialized domain challenges. By

introducing innovative approaches, releasing new datasets, and

offering comparative assessments, the featured works not only

push the field forward but also stress the importance of sustained

collaboration, resource creation, and tool development to enhance

Arabic NLP and extend its practical impact.
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The rapid expansion of dialectally unique Arabic material on social media and

the internet highlights how important it is to categorize dialects accurately

to maximize a variety of Natural Language Processing (NLP) applications.

The improvement in classification performance highlights the wider variety of

linguistic variables that the model can capture, providing a reliable solution

for precise Arabic dialect recognition and improving the e�cacy of NLP

applications. Recent advances in deep learning (DL) models have shown

promise in overcoming potential challenges in identifying Arabic dialects. In this

paper, we propose a novel stacking model based on two transformer models,

i.e., Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base, to enhance the

classification of dialectal Arabic. The proposed model consists of two levels,

including base models and meta-learners. In the proposed model, Level 1

generates class probabilities from two transformer models for training and

testing sets, which are then used in Level 2 to train and evaluate a meta-learner.

The stacking model compares various models, including long-short-term

memory (LSTM), gated recurrent units (GRU), convolutional neural network

(CNN), and two transformer models using di�erent word embedding. The

results show that the stacking model combination of two models archives

outperformance over single-model approaches due to capturing a broader

range of linguistic features, which leads to better generalization across di�erent

forms of Arabic. The proposed model is evaluated based on the performance

of IADD and Shami. For Shami, the Stacking-Transformer achieves the highest

performance in all rates compared to other models with 89.73 accuracy, 89.596

precision, 89.73 recall, and 89.574 F1-score. For IADD, the Stacking-Transformer

achieves the highest performance in all rates compared to other models

with 93.062 accuracy, 93.368 precision, 93.062 recall, and 93.184 F1 score.

The improvement in classification performance highlights the wider variety of

linguistic variables that the model can capture, providing a reliable solution for

precise Arabic dialect recognition and improving the e�cacy of NLP applications.

KEYWORDS

Arabic dialects, Bert-Base-Arabertv02, Dialectal-Arabic-XLM-R-Base, transformer,

Knowledge representation, NLP, deep learning, stacking model
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1 Introduction

Dialects within a language are crucial as they represent the

various cultural and regional variances within that language

(Gregory and Carroll, 2018). As languages change and spread

over different geographic areas, dialects naturally arise. Dialects

may have their idiomatic phrases, distinct vocabulary, syntax,

and pronunciation. Learning dialects has multiple benefits,

including better communication, a greater understanding of

culture, potential for employment, and increased interaction with

media and literature (Zhang and Hansen, 2018). It makes it more

straightforward to comprehend the variety within a language and

makes it easier to build genuine connections with individuals from

various geographical areas (Samih, 2017).

Given the large geographic area in which Arabic is spoken,

dialects are essential for the Arabic language. Arabic dialects

vary considerably from Modern Standard Arabic (MSA), the

standard form for the language (Zaidan and Callison-Burch, 2014).

Understanding the regional slang, customs, and traditions specific

to each Arabic dialect is possible through understanding dialects.

This improves comprehension of culture andmakes handling social

situations easier. Being fluent in a particular dialect pertinent to

your line of work can help you get better employment and more

significant support to Arabic-speaking communities (Alosaimi

et al., 2024).

Gather a wide range of Arabic language samples across several

dialects. The relevant dialect information needs to be labeled on

the dataset. The data should be preprocessed by dividing it into

training, validation, and test sets, tokenizing the text, and turning

it into numerical representations (Haque et al., 2018). Learn a

transformer model to identify dialects in Arabic. After the input

text has been tokenized, the model should be able to predict the

dialect label. Dialect identification requires contextual information

captured by the transformer’s self-attention mechanism (Lin et al.,

2020). The labeled dataset is used to train the model employing

optimization techniques (Chapelle et al., 2008).

Deep Learning (DL) and Machine Learning models (ML) have

demonstrated promise in processing complicated linguistic data

and dialects of Arabic. For example, Elaraby and Abdul-Mageed

(2018) applied different ML models: SVM, RF, NB, and LR. Alzu’bi

and Duwairi (2021) applied Recurrent Neural Networks (RNN)

to support multiple classes of dialects. Alansari (2023) analyzed

characteristics of dialects using CNN and RNN. Other authors

proposed a hybrid model such as CNN-RNN (Abdelazim et al.,

2022). These studies used classical DL models, which cannot

capture the long-term dependencies over long sequences.

Therefore, the transformer model has attention features that

allow the model to focus on the most relevant parts of the

input sequence, capturing long-range dependencies and complex

relationships between words (Zhang et al., 2019; Hafiz et al., 2021).

For example, Alghamdi et al. (2022) applied two transformer

models, MARBERT and ARBERT, using two publicly available

Arabic Online Commentary (ADC) (Elaraby and Abdul-Mageed,

2018). In our work, we use recent IADD datasets that were

combined from datasets such as (ADC), Dialectal ARabic Tweets

dataset (DART) (Alsarsour et al., 2018), the authors in Alghamdi

et al. (2022) and Elaraby and Abdul-Mageed (2018) used AOC

dataset is published at 2018, and is a subset of IADD, and do not

apply stacking model. As a result, the novelty of this paper lies in

the combination of transformer models and a meta-learner in a

stacking framework designed for Arabic dialect classification. The

proposed hybridmodel greatly improves the state-of-the-art Arabic

dialect detection, outperforms conventional methods, and captures

a greater range of linguistic features.

1.1 Motivations and contributions

The motivation behind the paper is the increasing amount of

dialectal Arabic information produced by social networks and the

need to improve Natural language processing (NLP) functions such

as knowledge representation and machine translation. NLP faces

challenges due to the fast expansion of dialectal Arabic material

on social networks. Substantial language disparities between Arabic

dialects and Modern Standard Arabic (MSA) present serious

challenges for current NLP models, while this rise provides

a wealth of resources for linguistic and computational study.

Critical NLP applications like knowledge representation, sentiment

analysis, and machine translation are hampered by the models’

frequent difficulties with accurate classification and generalization

across languages. Classical DL models: CNN, GRU, and LSTM

have demonstrated promise in processing complicated linguistic

data. Still, these techniques cannot adequately capture the subtle

and nuanced differences across Arabic dialects. Furthermore, a

significant research vacuum restricts NLP models’ wider usability

and resilience in Arabic contexts due to the absence of customized

solutions to handle these dialectal variances.

To address this gap, we propose a novel stacking model that

combines a meta-learner with two transformer architectures: Bert-

Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base. By collecting

a wider variety of linguistic variables, the proposed models

improve dialect categorization, performance, and generalization

across different Arabic dialects. Improved classification accuracy,

useful applications in machine translation, sentiment analysis,

conversational AI, and a strong framework that can be modified to

operate with additional low-resource or linguistically challenging

languages are some of the added values. The contributions

improve the usability and effectiveness of NLP systems for Arabic-

speaking regions. The proposed model delivers better performance

across different Arabic dialects, increased generalization, and

superior dialect classification by integrating various linguistic

characteristics. The main contributions of this paper are

summarized as follows:

• We introduce a novel stacking model that incorporates

two transformer architectures, Bert-Base-Arabertv02 and

Arabic-XLM-R-Base, as base models with combined Random

Forest (RF) as a meta-learner to enhance classification. The

proposed model performs more efficiently than the state-

of-the-art models, including LSTM, GRU, CNN, and two

transformer models.

• We evaluate the proposed model performance across two

datasets to demonstrate the performance in classifying four
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and five Arabic dialects. Stacking-Transformer has the highest

performance in all rates compared to other models.

• The combination of Transformer in stack modeling with

a meta-learner helps to capture more linguistic features,

enhance generalization, and accurate dialect detection

of Arabic.

1.2 Paper structure

The remainder of the paper is organized into sections. Section

2 presents related works on Arabic dialects. Section 3 outlines the

primary steps for classifying Arabic dialects and introduces the

proposed model. Section 4 presents the results and discussion,

followed by the conclusion in Section 5.

2 Related work

This section presents different researcher have been applied DL,

ML, and transformer models to classify Arabic dialects.

Lulu and Elnagar (2018) recognized dialects in Arabic

using Four DL models CNN, LSTM, Bidirectional LSTM (Bi-

LSTM), and Convolutional LSTM (CLSTM). The authors made

use of the Arabic Online Commentary (AOC) dataset, which

classifies Arabic into three main dialects: Gulf (including Iraqi),

Levantine (LEV), and Egyptian (EGP). LSTM produced the

most accurate results. Alsaleh and Larabi-Marie-Sainte (2021)

utilized Genetic Algorithms (GA) to optimize the parameters

of CNN for Arabic Text Classification. GA was employed to

tackle the challenge of randomly initialized weights in CNN.

The study utilized two extensive datasets that support text

classification. Various pre-processing steps were applied: cleaning,

normalization, tokenization, and stemming. The results were

improved by 4% using GA with CNN. Alzu’bi and Duwairi

(2021) applied RNN to support multiple classes of classification

models for dialects. They utilized 110000 sentences from the

MADAR corpus, including Maghreb, Levantine, Gulf, and Iraqi

dialects. Cotterell and Callison-Burch (2014) proposed Arabic

dialects dataset collected from newspaper websites and Twitter,

including five Arabic dialects: Levantine, Gulf, Egyptian, Iraqi, and

Maghrebi. They utilized unigram, bigram, and trigram models

and SVM and NB algorithms. NB with trigram achieved the best

accuracy. In addition, Kwaik et al. (2018) proposed the Shami

corpus for four Arabic dialects in Palestine, Jordan, Lebanon,

and Syria. They explored the effects of pre-processing dialectal

Arabic using n-gram and NB models. Various pre-processing

steps were applied: cleaning, normalization, tokenization, and

stemming. The results showed that NB recorded the highest

accuracy. Alansari (2023) captured the semantic and phonological

characteristics of dialects using CNN, and RNN. The proposed

model comprises six stages: preprocessing, feature engineering,

neural networks, optimization techniques, and evaluationmethods.

Shatnawi et al. (2023) applied different DL models: CNN-

BiLSTM, Pooling-BiGRU, and AraBERT with different pre-

trained word embedding FastText, AraVec, and AraBERT using

a mix of a Katherine dataset that covers the dialects of

eight nations and a NADI dataset acquired via Twitter that

includes the dialects of twenty-one countries. In addition, they

applied various data augmentation to handle unbalanced data.

The results showed that models with AraBERT achieved the

height performance.

Other researchers have suggested hybrid models, and attention

mechanisms and transformer models to classify Arabic dialects.

For example, Abdelazim et al. (2022) proposed a hybrid

model (CNN-RNN) to classify three dialects: Gulf, Egypt, and

Levantine. CNN-RNN, compared with NB, SVM, and CNN,

recorded the best accuracy. Alsuwaylimi (2024) proposed two

hybrid models that combined BiLSTM with CAMeLBERT and

the second model that combined the BiLSTM model with

AlBERT. In addition, the conducted dataset includes 121289

collected from comments from various social media platforms

and classified into four Arabic dialects (Egyptian, Jordanian,

Gulf, and Yemeni). Two models compared with different ML

and DL models. Experiment results showed that two hybrid

models recorded the best performance. Elaraby and Abdul-

Mageed (2018) applied various ML models: SVM, RF, NB,

LR, and different DL models: LSTM, GRU, Bi-LSTM, Bi-GRU,

and Attention-BiLSTM using various word embedding. Results

showed that attention-based BiLSTM work well compared to

other models. Alghamdi et al. (2022) applied two transformer

models, MARBERT and ARBERT, using two publicly available

Arabic-dialect classification datasets such as AOC. They explored

results for binary, three, and multi-class dialect classification.

The results showed that MARBERT achieved higher performance

than ARBERT.

Table 1 compares different models used in research. It outlines

the methods, advantages, limitations, and datasets referenced in

the studies.

3 Methodology

Figure 1 shows the main steps of classifying Arabic dialects:

Data collection, Data pre-processing, Classification models,

feature representation methods, classification models, and

evaluation models.

3.1 Datasets

Two benchmark Arabic dialect datasets are used for

the experiment.

• Shami is a corpus of Levantine Arabic dialects (Kwaik

et al., 2018) includes 66,245 rows with four dialect

classes: Jordinian, Lebanees, Palestinian, and Syrian.

The unbalanced dataset includes 37,758, 10,828, 10,642,

and 7,017 rows for Syrian, Lebanese, Palestinian, and

Jordanian, respectively.

• IADD is Arabic dialect identification (Zahir, 2022) is used

and includes five dialects: Maghrebi (MGH), Levantine (LEV),

Egypt (EGY), Iraq (IRQ), Gulf (GLF), and general. It was

collected from tweets and Facebook.
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TABLE 1 Comparison of existing work.

References Method Advantages Limitations Dataset

Lulu and Elnagar, 2018 LSTM Proposing benchmark dataset Applying the classical DL models

Accuracy was lowest

AOC

Alsaleh and

Larabi-Marie-Sainte,

2021

GA with CNN Applying GA to optimize parameters of CNN Applying the classical DL models

Supporting text classification

Text classification

Alzu’bi and Duwairi,

2021

RNN — Applying single DL

Using one dataset

Obtaining the lowest accuracy

MADAR corpus

Cotterell and

Callison-Burch, 2014

NB with Bi-gram Proposing benchmark dataset Applying ML models

Using one dataset

Obtaining the lowest accuracy

IADD

Kwaik et al., 2018 NB Proposing benchmark dataset Applying single model is NB

Obtaining the lowest accuracy

Shami

Alansari, 2023 CNN and RNN – The results of the models have not been

registered.

Applying classical DL models

–

Shatnawi et al., 2023 AraBERT Applying different wor-embedding

Applying AraBERT Model

Obtaining the lowest accuracy NADI

Abdelazim et al., 2022 RF Proposing hybrid model Applying classical DL models Own

Elaraby and

Abdul-Mageed, 2018

Attention BiLSTM Proposing model based attention Applying classical ML models.

Using one dataset.

ADO

Alsuwaylimi, 2024 CAMeLBERT with

BiLSTM

Proposing benchmark dataset

Applying transformer models

No applying stacking models ADO

Alghamdi et al., 2022 MARBERT Applying transformer models No applying stacking models Own

Our work Stacking-Transformer Applying transformer to learn complex

patterns in datasets.

– IADD

Stacking-Transformer Applying generalization using stacking

model based on two transformer models

– Shami

3.2 Data pre-processing

Pre-processing the input data before starting to implement

any model that processes text data is vital due to the various

problems inherent, particularly in text data (Chai, 2023). Therefore,

it is necessary to effectively rely on pre-processing the input text

data to achieve a clear and accurate exploration of Arabic dialects

based on stacked transformers. Data processing of the data aims to

prepare and improve the quality of the input data to enhance the

performance of the model. The four pillars of the pre-processing

steps include Tokenization, data cleaning, stop word removal,

and stemming (Kathuria et al., 2021). Carrying out these steps

carefully will ultimately ensure that we obtain input data useful

for accurately detecting the distinction between different Arabic

dialects and obtaining a successful model in natural language

processing tasks.

• Tokenization represents the first step in preparing

textual data specifically, where the text is divided into

smaller parts based on language-specific characteristics

such as grammar and morphology (Khallaf, 2023).

Tokenization comprises two types: word and sub-word

Tokenization. In word tokenization, the result of this

step is a set of separate words in addition to diacritics

and linking marks. While Sub-word Tokenization is

employed to handle out-of-vocabulary words and improve

model robustness.

• Data Cleaning: The importance of this step lies in obtaining

accurate data after removing irrelevant or confusing data that

may hinder the performance of themodel used. To accomplish

this step, a normalization process must first be performed

to convert different forms of the same word to its standard

form, then deal with punctuation marks and special characters

by removing or unifying them, especially those that do not

affect themeaning (Berrimi, 2024). Also, deal with incorrect or

incomplete data by neutralizing or removing them. After this

step, we will ensure obtaining data of acceptable quality and

consistency in its context, contributing to the model’s success.

• Removing Stop Words enables the model to focus more on

the main distinguishing features of dialects in the text. It

thus improves the accuracy of the model in identifying and

distinguishing them. Stop words represent a group of words

that do not carry a critical or influential meaning in the

context, and excluding them will positively reduce dimensions

such as prepositions and articles (Khurana et al., 2023). These

words are collected in a list to be excluded from the input

data list.

• Stemming is a vital necessary process that reduces the expected

complexity in the input data by converting words to their

root form, which will allow better generalization when using
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FIGURE 1

Arabic dialects classification framework.

the model to explore dialects (Farghaly and Shaalan, 2009).

Many algorithms can be used during this step, some of which

are designed specifically for the Arabic language due to its

richness in morphology, which helps in grouping different

morphological variants of a word. in this paper, stemming

applies using Arabic-specific stemming algorithms to handle

the morphological richness of Arabic. The algorithms are

chosen carefully to prevent mistakes like confusing words with

the same root but distinct meanings. In the context of Arabic

dialects, this guarantees the results’ validity and correctness.

3.3 Dataset splitting

Each dataset is split into a 75% training set and a 25% testing

set. The split preserves enough data for objective assessment

while guaranteeing reliable model training. Methods for feature

representation are customized for the datasets.

3.4 Feature representation methods

While conventional DL models employed CBOW for word

embeddings, transformer-based models like Bert-Base-Arabertv02

and Dialectal-Arabic-XLM-R-Base are utilized to generate high-

quality contextual embeddings.

• Word2Vec is a widely used technique for learning word

embeddings from large volumes of textual data (Karani, 2018).

This approach generates embeddings by considering the

context in which words appear, enabling the representation

of words in a continuous vector space that captures semantic
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relationships (Karani, 2018).Word2Vec effectively reduces the

dimensionality of the word space while preserving meaningful

relationships between words, offering a computationally

efficient solution for processing language data (Dwivedi

and Shrivastava, 2017). One variant of Word2Vec is the

Continuous Bag-of-Words (CBOW) model (Sivakumar et al.,

2020). CBOW predicts a target word based on its surrounding

context words within a fixed-size window. The model is

designed to maximize the probability of correctly predicting

the target word, leveraging contextual information to enhance

its learning capability (Melamud et al., 2016).

• Bidirectional Encoder Representations from Transformers

(BERT) is the open-source transformer-based model that is

renowned for its ability to model contextual relationships

among words within a sentence through self-attention

mechanisms (Vig, 2019). Thanks to this architecture,

BERT excels at capturing contextual information and long-

range dependencies (Wu et al., 2021). BERT profoundly

comprehends linguistic subtleties by being pre-trained on vast

volumes of unlabeled text data utilizing two unsupervised

tasks. Namely, masked language modeling (MLM) and next

sentence prediction (NSP) (Kryeziu and Shehu, 2022). In

MLM, words from the input text are randomly masked. BERT

is subsequently taught to predict these masked words through

analysis of the surrounding context (Devlin et al., 2018).

BERT can improve its skills on particular tasks by employing

relatively more minor labeled datasets, even when pre-trained

on massive quantities of data (Devlin et al., 2018). Bert-base-

Arabic refers to the BERT model specially trained on the

Arabic language, offering pre-trained representations that

encapsulate both syntactic and semantic nuances of Arabic

words (Chouikhi et al., 2021). This model accepts Arabic text

as input and outputs contextualized word representations,

which can be further refined using task-specific training data

or directly utilized in downstream NLP tasks (Peters et al.,

2019).

• Dialectal Arabic XLM-R Base represents a multilingual

transformer model customized to comprehend and interpret

several Arabic dialects (Khalifa et al., 2021). An expansion

of the BERT architecture called the Cross-lingual Language

Model (XLM-R) is intended to function with various

languages, including dialects and languages with limited

resources (Boudad et al., 2023). This transformer can cope

withmultiple Arabic dialects alongside other languages since it

has been taught on many datasets. Conversational agents can

be upgraded to more effectively comprehend and respond to

dialectal Arabic more Base using the dialectal Arabic XLM-R

Base (Joshi et al., 2024).

By refining the translations between dialects and standard

Arabic, it will be feasible to assess the thoughts and feelings

expressed across dialects on social media or in reviews. Built

on top of the XLM-R architecture, the Dialectal Arabic XLM-

R Base architecture preserves the transformer architecture’s

scalability and efficacy while being tailored for the complex

structure of dialectal Arabic. The model can figure out

the word order in a sentence by mapping input tokens

to dense vectors and then adding positional information

to token embeddings (Qwaider and Abu Kwaik, 2022).

Multi-head Self-Attention has been included to allow the

model to concentrate on various segments of the input

stream concurrently, thereby capturing contextual linkages. A

feedforward network processes each attention output before

applying it separately to each point. Improves training stability

and convergence via normalizing the inputs to each layer

(Berrimi, 2024).

3.5 Deep learning models

GRU, LSTM, and CNN are used for DL models.

• GRU is a recurrent architecture with update and reset gates

intended to handle sequential data. The update gate controls

how much past knowledge remains intact, whereas the Reset

gate governs whether earlier data is forgotten (Dey and

Salem, 2017). GRU has a hidden state that blends the current

input and the prior hidden state, permitting information

to flow through time. GRU is appropriate for tasks that

need time series data and sequential information, such as

language modeling and machine translation (Zargar, 2021). It

is beneficial for determining context in textual data.

• LSTM is a more complicated recurrent architecture having

forgotten, input, and output gates suitable for learning long-

term dependencies (Okut, 2021). The forget gate regulates

what information to exclude from the cell state, whereas

the input gate determines what latest data to store in the

cell state. The output gate determines which information

to output based on the cell state (Okut, 2021). The cell

state sustains long-term dependencies, allowing gradients to

propagate throughout multiple time steps. LSTM can be

utilized for text synthesis, machine translation, and speech

recognition (Van Houdt et al., 2020). Also, it is competent

at predicting potential outcomes using historical and time

series data.

• CNN is a type of neural network that comprises convolutional

and pooling layers, which help generate features from spatial

data. CNN leverages convolution processes to extract features

from input data, often images or sequences (Pinaya et al.,

2020). It mitigates the spatial dimensions via down-sampling

while maintaining the most significant features and then

connects the pooled information to the output layer for

classification or regression. CNN is frequently implemented

for object detection and image segmentation. It also works for

sentiment analysis and spam identification since it treats text

data as a series (Bhuvaneshwari et al., 2021).

3.6 Proposed model

By integrating the strengths of various models, the stacking

approach reflects a wide range of linguistic features, resulting

in improved dialect detection. Figure 2 shows the central

architecture’s two levels. Level 1 provides the base models with

Frontiers in Human Neuroscience 06 frontiersin.org12

https://doi.org/10.3389/fnhum.2025.1498297
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Saleh et al. 10.3389/fnhum.2025.1498297

FIGURE 2

Proposed model.

TABLE 2 The number of rows in each dataset.

Datasets Labels Training set Testing set Total

Shami Syrian 28,318 9,440 37,758

Lebanees 8,121 2,707 10,828

Palestinian 7,981 2,661 10,642

Jordinian 5,263 1,754 7,017

Total 49,683 16,562 66,245

IADD LEV 65,605 21,864 87,469

MGH 21,037 7,076 28,113

GLF 5,011 1,671 6,682

EGY 3,626 1,209 4,835

general 1,873 625 2,498

Total 97,152 32,445 129,597

the two transformers that produce class probabilities for training

and testing datasets. The second level serves as a meta-learner,

which is trained using Level 1’s outputs, resulting in enhanced

classification performance.

In Level 1, class probabilities are generated by the two

transformer models for the training and testing sets and are stored

in the stacking training and stacking testing datasets, respectively.

In level 2, RF as a meta-learner is trained by stacking training and

evaluated by stacking testing to get the final classification decision.

RF is an ensemble technique that uses several decision trees during

training and combines their outputs for more accurate and stable

predictions (Feng et al., 2015).

TABLE 3 Setting of parameters.

Models Parameters Specifications

LSTM Number of nodes 200

Dropout 0.2

Activation function Relu

Optimizer Adam

Loss function CrossEntropyLoss

GRU Number of nodes 200

Dropout 0.2

Activation function Relu

Optimizer Adam

Loss function CrossEntropyLoss

CNN Filter size 3x3

Kernel size 4

Dropout 0.2

Optimizer Adam

Loss function CrossEntropyLoss

Bert-Base-

Arabertv02

Number of transformer layers 12

Hidden Size 768 dimensions

Attention Heads 12 per layer

Optimizer Adam

Loss function CrossEntropyLoss

Dropout rate 0.1

Dialectal-Arabic-

XLM-R-Base

Number of transformer layers 12

Hidden Size 768 dimensions

Attention Heads 12

Optimizer Adam

Loss function CrossEntropyLoss

3.7 Models evaluation

The F1-score, Accuracy, Precision, and Recall metrics are used

to assess the models. Where TN indicates the aggregate amount

of accurate negative predictions, FP is the total number of false

positive estimations, while FN stands for the overall number of false

negative predictions.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1− score = 2 ·
precision · recall

precision+ recall
(4)
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TABLE 4 Proposed model performance in Shami dataset.

Approaches Models Classes Precision Recall F1-score

DL models GRU Jordinian 60.84 55.53 58.06

Lebanees 77.05 77.39 77.22

Palestinian 69.22 73.28 71.19

Syrian 91.28 91.13 91.21

LSTM Jordinian 62.25 50.40 55.70

Lebanees 73.45 75.03 74.23

Palestinian 72.37 65.54 68.78

Syrian 87.59 92.48 89.97

CNN Jordinian 62.25 50.40 55.70

Lebanees 73.45 75.03 74.23

Palestinian 72.37 65.54 68.78

Syrian 87.59 92.48 89.97

The transformer model Base-Arabert Jordinian 80.16 61.52 69.61

Lebanees 84.64 79.61 82.05

Palestinian 77.64 82.60 80.04

Syrian 92.07 95.96 93.98

Arabic-XLM-R-Base Jordinian 79.77 60.03 68.51

Lebanees 84.49 79.09 81.70

Palestinian 77.34 82.60 79.88

Syrian 91.82 95.96 93.85

The proposed model Stacking-Transformer Jordinian 80.16 61.52 69.61

Lebanees 84.64 79.61 82.05

Palestinian 77.64 82.60 80.04

Syrian 92.07 95.96 93.98

4 Results and discussion

We applied different experiments using variousmodels and two

datasets to prove that the Stacking-Transformermodel achieved the

best performance compared to other models.

4.1 Experimental setup

The experiment was conducted on a laptop with an Intel Core

i7 10750H and 16GB memory. The execution environment for

the training and validation of the networks was set to a single

GPU: Nvidia GeForce GTX 1650 with 4GB VRAM. The models

were evaluated by two datasets: Shami with four classes (Jordinian,

Lebanees, Palestinian, and Syrian) and IADDwith five classes (EGY,

GLF, LEV, MGH, and general). Base-Arabert and Dialectal-Arabic-

XLM-R-Base are used as feature representations for transformer

models, and CBOW is used for DL models. The datasets are split

into 75% training set and 25% testing set and the number of rows

in each dataset is shown in Table 2. The setting of parameters of

models are presented in Table 3.

4.2 Results

Two subsections present the results of Shami and IADD based

on precision, recall, F1-score in each class, and confusion matrices.

Furthermore, the average accuracy, precision, recall, and F1-score

of each dataset is presented.

4.2.1 Proposed model performance in Shami
dataset

The results of models based on precision, recall, and F1-

score for different classes: Jordinian, Lebanees, Palestinian, and

Syrian as shown in Table 4. We can see that GRU, LSTM, and

CNN score the lowest in performance compared to transformer

models because CNN models focus on local feature extraction but

fail to capture complex, long-term relationships. GRU and LSTM

handle sequential data, and they have limits to capturing long-

term dependencies, especially with large datasets. Transformer-

based models leverage self-attention mechanisms to learn both

local and global patterns in parallel dynamically, and capture

long-term dependencies.
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FIGURE 3

Confusion matrices of models for Shami.

The following summarizes the results models with Jordinian

record the lowest rates compared to other classes. Models with

Syrian class record the highest rate. GRU with Syrian has

the highest precision, recall, and F1-score at 91.28, 91.13, and

91.21, respectively. LSTM with Syrian records 91.13 recall higher

than GRU. GRU with Lebanees class has the second-highest

performance compared to CNN and LSTM with 77.05 precision

and 77.22 with F1-score. CNN and LSTM with Lebanees and

Palestinian have the same approximate results. Base-Arabert and

Arabic-XLM-R-Base with Syrian class record the same recall at

95.96. Both record the same precision, recall, and F1-score at

84.49, 79.09, and 81.70, respectively with Lebanees class. Stacking-

Transformer records the highest performance in all classes

compared to other models. The best precision, recall, and F1-score

are achieved by Stacking-Transformer with Syrian, at 92.07, 95.96,

and 93.98, respectively.

Figure 3 comprises six confusion matrices, each of which shows

how various models performed in a classification exercise aimed

at classifying data into one of four groups: Syrian, Palestinian,

Lebanese, or Jordanian. Four groups are created from the models:

Syrian, Palestinian, Lebanese, and Jordanian. Darker colors indicate

higher counts. The color intensity in each confusion matrix reflects

the number of samples sorted into each class. Classifying the Syrian

category appears to be generally easier across all models, but the

Palestinian and Jordanian categories are more difficult.

4.2.2 Proposed model performance in IADD
dataset

Table 5 presents the precision, recall, and F1-score for different

classes: EGY, GLF, LEV, MGH, and general for each model. The

best precision, recall, and F1-score are achieved by GRU and LSTM

with LEV, at 93.19, 93.01, and 93.10, respectively. GRU and LSTM

general EGY record the same approximate results. In comparison

to CNN and LSTM, GRU with MGH class has the second-highest

precision (90.67) and F1-score (89.51). Of all the models based

on each class, CNN yields the lowest results. Base-Arabert with

GLF records precision, recall, and F1-score at 73.43, 62.18, and

67.34, respectively, compared to DL models. Arabic-XLM-R-Base

with LEV and MGH classes records the same precision at 94.

The stacking Transformer records the highest performance in all

classes compared to other models. The best precision, recall, and

F1-score are achieved by Stacking-Transformer with LEV, at 95.90,

95.6, and 95.76, respectively. Also, it has significant performance

in the general class compared to other models. Figure 4 comprises

six confusion matrices, each of which shows how various models

performed in a classification exercise aimed at classifying data into

one of five groups: EGY, GLF, LEV, MGH, and general. Darker

colors indicate higher counts. The color intensity in each confusion

matrix reflects the number of samples sorted into each class.

4.2.3 Discussion
Transformer models have achieved state-of-the-art

performance across various tasks compared to traditional DL

models for several key reasons the self-attention mechanism

in transformers allows them to consider all parts of the input

sequence simultaneously. This enables the model to capture

long-range dependencies more effectively than traditional

recurrent, which are typically limited by sequential processing or

fixed-size filters. Figure 5 shows the average accuracy, precision,

recall, and F1-score of DL models, transformer models, and the

proposed model (Stacking-Transformer) for classifying Syrian,

Lebanees, Palestinian, Jordinian. From the table, transformer
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TABLE 5 Performance of proposed model in Shami dataset.

Approches Models Precision Recall F1-score

DL models GRU EGY 67.16 56.82 61.56

GLF 63.49 59.01 61.17

LEV 93.19 93.01 93.10

MGH 88.37 90.67 89.51

general 17.89 22.56 19.96

LSTM EGY 66.60 55.42 60.50

GLF 60.16 58.29 59.21

LEV 93.16 93.01 93.08

MGH 87.93 89.36 88.64

general 17.25 22.08 19.37

CNN EGY 66.30 54.51 59.83

GLF 59.32 58.29 58.80

LEV 93.11 92.67 92.89

MGH 87.50 89.36 88.42

general 16.20 21.28 18.40

The transformer model Base-Arabert EGY 71.24 68.24 69.71

GLF 73.43 62.18 67.34

LEV 94.07 95.56 94.81

MGH 94.17 91.72 92.93

general 23.61 29.12 26.07

Arabic-XLM-R-Base EGY 74.71 78.91 76.75

GLF 75.80 66.37 70.77

LEV 94.64 95.62 95.13

MGH 94.44 91.72 93.06

general 27.59 32.80 29.97

The proposed model Stacking-Transformer EGY 80.41 91.65 85.66

GLF 81.75 80.67 81.20

LEV 95.90 95.62 95.76

MGH 94.87 91.72 93.27

general 43.94 54.56 48.68

models record the best performance compared to deep learning

models and improve results by improving results above 5%.

The transformer models have the attention that can capture

long-range dependencies more effectively than DL models.

Arabic-XLM-R-Base has the highest performance compared to

Base-Arabert, LSTM, GRU, and CNN with accuracy = 87.495,

precision = 87.278, recall = 87.495, and F1-score = 87.209.

CNN has the worst all measures with 80.842 of accuracy and

80.363 of F1-score. Stacking-Transformer has the highest

performance in all rates with 89.73 of accuracy and 89.574

of f1-score.

Figure 6 shows the average accuracy, precision, recall, and F1-

score of DL models, transformer models, and the proposed model

(Stacking-Transformer) for classifying EGY, GLF, LEV, MGH,

and general. From the table, transformer models record the best

performance compared to DL models and improve results by

improving results above 2%. Arabic-XLM-R-Base has the highest

performance compared to Base-Arabert, LSTM, GRU, and CNN

with accuracy = 91.432, precision = 91.595, recall = 91.432, and

f1-score = 91.485. CNN has the worst of all measures with 87.382

of accuracy and 87.492 of F1-score. Stacking-Transformer has

the highest performance in all rates with 93.062 of accuracy and

93.184 of f1-score, and improve performance by 2 compared to

Arabic-XLM-R-Base.

4.3 Comparison of the proposed model
with existing work

Table 6 compares our work with the state-of-the-art based on

dataset and results. The proposed model, Stacking-Transformer,
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FIGURE 4

Confusion matrices of models for IADD.

FIGURE 5

Average accuracy, precision, recall, and F1-score of models for Shami.

is based on two transformer models as the baseline and

an RF as the meta-learner. It achieves the highest accuracy

due to the advantages of the attention mechanism in the

transformer, which extracts long dependencies between text, and

the generalization capability of stacking models. For IADD,

Stacking-Transformer recorded the highest accuracy at 93.062

compared to NB with Bi-gram, which was recorded at 70 in

Cotterell and Callison-Burch (2014). For Shami, the Stacking-

Transformer recorded the highest accuracy at 89.73 compared

to NB in Kwaik et al. (2018). For ADO as a subset of Shami,

LSTM was used in Lulu and Elnagar (2018) and recorded 71.4

accuracy. In Elaraby and Abdul-Mageed (2018), Attention BiLSTM

recorded 87.81 of accuracy. CAMeLBERT with BiLSTM was

recorded at 87.
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FIGURE 6

Average accuracy, precision, recall, and F1-score of models for IADD.

TABLE 6 Comparison with existing work and the proposed models based

on models and performance.

References Methods Results Datasets

Lulu and Elnagar,

2018

LSTM 71.4 AOC

Cotterell and

Callison-Burch, 2014

NB with Bi-gram 87.00 IADD

Kwaik et al., 2018 NB 70 Shami

Elaraby and

Abdul-Mageed, 2018

Attention BiLSTM 87.81 ADO

Alsuwaylimi, 2024 CAMeLBERT with

BiLSTM

87 ADO

Our work Stacking-Transformer 93.062 IADD

Stacking-Transformer 89.73 Shami

4.4 Implication and challenges

The proposed investigation has important ramifications for

expanding NLP applications and improving Arabic dialect

identification. The paper shows improved accuracy, precision,

and recall in dialect classification via a hybrid stacking model

that incorporates the advantages of transformer designs such as

Dialectal-Arabic-XLM-R-Base and Bert-Base-Arabertv02. Given

the increasing amount of dialectal material on social media and

other platforms, the development fills a significant gap in NLP

for managing the linguistic variety of Arabic. The model’s cross-

dialect generalization establishes a new standard for datasets like

Shami and IADD, providing a solid basis for further study and

advancement. Additionally, the study has practical applications,

such as enhancing conversational AI, sentiment analysis, and

machine translation systems to better interpret a variety of complex

language inputs.

The paper points out several challenges, including substantial

differences in syntax, vocabulary, and semantics between regional

dialects and Modern Standard Arabic (MSA) pose a difficult

obstacle for models to overcome, especially when generalizing

across underrepresented dialects; data imbalance, as seen in

the Shami dataset, makes this problem worse and restricts

the performance of models on less represented classes, like

Jordanian dialects; and the computational demands of training

and fine-tuning stacked transformer models demand a significant

amount of resources, which may limit accessibility for researchers

with limited financial resources. Challenges with scalability

and practical implementation also exist, especially for real-

time applications that may encounter resource constraints and

latency, such as chatbots and virtual assistants. Tokenization,

stemming, and stop-word deletion are examples of preprocessing

processes that increase complexity since they might not

adequately capture the subtle differences present in dialectal

Arabic. Even if the model produces state-of-the-art results

on certain datasets, there is still a need for more research in

generalizing Arabic dialects or languages with equally complex

linguistic patterns.

5 Conclusion

In this paper, we introduced a unique stacking model that

combines two potent transformer models, Bert-Base-Arabertv02

and Dialectal-Arabic-XLM-R-Base, with a meta-learner to improve

the categorization of Arabic dialects. The model formed involved
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two levels: base models and meta-learners. Within level one, the

two transformer models yield class probabilities for the training

and testing sets, which are retained in stacking training and

stacking testing, respectively. Level 2 meta-learners with machine

learning models are trained and tested using stacking. The stacking

model has been contrasted against multiple models, including

LSTM, GRU, CNN, and two transfer models with distinct word

embedding. Models were assessed on two benchmark datasets

to classify four and five dialects of Arabic, featuring various

evaluation matrices, including accuracy, precision, recall, F1-score,

and confusion matrix. The results proved that the stacking model

outperformed single-model techniques. The proposed model

addressed a wider spectrum of linguistic traits, allowing for more

accurate generalization across different varieties of Arabic. Shami

dataset testing reveals that the Stacking-Transformer outperforms

all other models in accuracy, precision, recall, and f1-score,

with 89.73, 89.596, and 89.574, respectively. For IADD, Stacking-

Transformer outperforms other models in all rates, with 93.062

accuracy, 93.368 precision, 93.062 recall, and 93.184 F1-score. In

the future, we will concentrate on developing this method to handle

other dialects and investigating whether it can be used in other

low-resource languages with comparable linguistic complexity.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving

human data in accordance with the local legislation and

institutional requirements. Written informed consent was

not required, for either participation in the study or for the

publication of potentially/indirectly identifying information,

in accordance with the local legislation and institutional

requirements. The social media data was accessed and analyzed

in accordance with the platform’s terms of use and all relevant

institutional/national regulations.

Author contributions

HS: Data curation, Methodology, Writing – original draft,

Writing – review & editing. AA: Data curation, Investigation,

Writing – original draft, Writing – review & editing. RH:

Methodology, Visualization, Writing – original draft, Writing –

review & editing. MI: Methodology, Validation, Writing – original

draft, Writing – review & editing. SA: Methodology, Writing –

original draft, Writing – review & editing. MH: Methodology,

Supervision, Writing – original draft, Writing – review & editing.

SM: Investigation, Software, Validation, Visualization, Writing –

original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abdelazim, M., Hussein, W., and Badr, N. (2022). Automatic dialect identification
of spoken Arabic speech using deep neural networks. Int. J. Intell. Comput. Inf. Sci. 22,
25–34. doi: 10.21608/ijicis.2022.152368.1207

Alansari, I. S. (2023). Artificial intelligence model to detect and classify Arabic
dialects. J. Softw. Eng. Applic. 16, 287–300. doi: 10.4236/jsea.2023.167015

Alghamdi, A., Alshutayri, A., and Alharbi, B. (2022). “Deep bidirectional
transformers for Arabic dialect identification,” in Proceedings of the 6th
International Conference on Future Networks Distributed Systems, 265–272.
doi: 10.1145/3584202.3584243

Alosaimi, W., Saleh, H., Hamzah, A. A., El-Rashidy, N., Alharb, A., Elaraby,
A., et al. (2024). Arabbert-LSTM: improving Arabic sentiment analysis based
on transformer model and long short-term memory. Front. Artif. Intell. 7.
doi: 10.3389/frai.2024.1408845

Alsaleh, D., and Larabi-Marie-Sainte, S. (2021). Arabic text classification using
convolutional neural network and genetic algorithms. IEEE Access 9, 91670–91685.
doi: 10.1109/ACCESS.2021.3091376

Alsarsour, I., Mohamed, E., Suwaileh, R., and Elsayed, T. (2018). “Dart: a large
dataset of dialectal Arabic tweets,” in Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018).

Alsuwaylimi, A. A. (2024). Arabic dialect identification in social media:
a hybrid model with transformer models and BILSTM. Heliyon 10:e36280.
doi: 10.1016/j.heliyon.2024.e36280

Alzu’bi, D., and Duwairi, R. (2021). Detecting regional Arabic dialect
based on recurrent neural network,” in 2021 12th International Conference
on Information and Communication Systems (ICICS) (IEEE), 90–93.
doi: 10.1109/ICICS52457.2021.9464605

Berrimi, M. (2024). Deep models for understanding and generating textual Arabic
data. PhD thesis.

Bhuvaneshwari, P., Rao, A. N., and Robinson, Y. H. (2021). Spam
review detection using self attention based CNN and Bi-directional
LSTM. Multimed. Tools Appl. 80, 18107–18124. doi: 10.1007/s11042-021-10
602-y

Frontiers in Human Neuroscience 13 frontiersin.org19

https://doi.org/10.3389/fnhum.2025.1498297
https://doi.org/10.21608/ijicis.2022.152368.1207
https://doi.org/10.4236/jsea.2023.167015
https://doi.org/10.1145/3584202.3584243
https://doi.org/10.3389/frai.2024.1408845
https://doi.org/10.1109/ACCESS.2021.3091376
https://doi.org/10.1016/j.heliyon.2024.e36280
https://doi.org/10.1109/ICICS52457.2021.9464605
https://doi.org/10.1007/s11042-021-10602-y
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Saleh et al. 10.3389/fnhum.2025.1498297

Boudad, N., Faizi, R., and Oulad Haj Thami, R. (2023). Multilingual, monolingual
andmono-dialectal transfer learning forMoroccanArabic sentiment classification. Soc.
Netw. Anal. Mining 14:3. doi: 10.1007/s13278-023-01159-9

Chai, C. P. (2023). Comparison of text preprocessing methods. Nat. Lang. Eng. 29,
509–553. doi: 10.1017/S1351324922000213

Chapelle, O., Sindhwani, V., and Keerthi, S. S. (2008). Optimization techniques
for semi-supervised support vector machines. J. Mach. Learn. Res. 9, 203–233.
doi: 10.1145/1390681.1390688

Chouikhi, H., Chniter, H., and Jarray, F. (2021). “Arabic sentiment analysis using
Bert model,” in Advances in Computational Collective Intelligence: 13th International
Conference, ICCCI 2021, Kallithea, Rhodes, Greece, September 29-October 1, 2021,
Proceedings 13 (Springer), 621–632. doi: 10.1007/978-3-030-88113-9_50

Cotterell, R., and Callison-Burch, C. (2014). “A multi-dialect, multi-genre corpus of
informal written Arabic,” in LREC, 241–245.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Dey, R., and Salem, F. M. (2017). “Gate-variants of gated recurrent unit (GRU)
neural networks,” in 2017 IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS) (IEEE), 1597–1600. doi: 10.1109/MWSCAS.2017.8053243

Dwivedi, V. P., and Shrivastava, M. (2017). “Beyond word2vec: embedding words
and phrases in same vector space,” in Proceedings of the 14th International Conference
on Natural Language Processing (ICON-2017), 205–211.

Elaraby, M., and Abdul-Mageed, M. (2018). “Deep models for Arabic dialect
identification on benchmarked data,” in Proceedings of the Fifth Workshop on NLP for
Similar Languages, Varieties and Dialects (VarDial 2018), 263–274.

Farghaly, A., and Shaalan, K. (2009). Arabic natural language processing:
challenges and solutions. ACM Trans. Asian Lang. Inf. Proc. 8, 1–22.
doi: 10.1145/1644879.1644881

Feng, Z., Mo, L., and Li, M. (2015). “A random forest-based ensemble method
for activity recognition,” in 2015 37th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE), 5074–5077.
doi: 10.1109/EMBC.2015.7319532

Gregory, M., and Carroll, S. (2018). Language and Situation: Language Varieties and
Their Social Contexts. London: Routledge. doi: 10.4324/9780429436185

Hafiz, A. M., Parah, S. A., and Bhat, R. U. A. (2021). Attention mechanisms and
deep learning for machine vision: a survey of the state of the art. arXiv preprint
arXiv:2106.07550. doi: 10.21203/rs.3.rs-510910/v1

Haque, T. U., Saber, N. N., and Shah, F. M. (2018). “Sentiment analysis on large
scale amazon product reviews,” in 2018 IEEE International Conference on Innovative
Research and Development (ICIRD) (IEEE), 1–6. doi: 10.1109/ICIRD.2018.8376299

Joshi, A., Dabre, R., Kanojia, D., Li, Z., Zhan, H., Haffari, G., et al. (2024).
Natural language processing for dialects of a language: a survey. arXiv preprint
arXiv:2401.05632.

Karani, D. (2018). “Introduction to word embedding and word2vec,” in Towards
Data Science, 1.

Kathuria, A., Gupta, A., and Singla, R. (2021). “A review of tools and techniques
for preprocessing of textual data,” in Computational Methods and Data Engineering:
Proceedings of ICMDE 2020, 407–422. doi: 10.1007/978-981-15-6876-3_31

Khalifa, M., Abdul-Mageed, M., and Shaalan, K. (2021). Self-training pre-trained
language models for zero-and few-shot multi-dialectal Arabic sequence labeling. arXiv
preprint arXiv:2101.04758.

Khallaf, N. A. A. (2023). An automatic Modern Standard Arabic text simplification
system: a corpus-based approach. PhD thesis, University of Leeds.

Khurana, D., Koli, A., Khatter, K., and Singh, S. (2023). Natural language processing:
state of the art, current trends and challenges. Multimed. Tools Appl. 82, 3713–3744.
doi: 10.1007/s11042-022-13428-4

Kryeziu, L., and Shehu, V. (2022). “A survey of using unsupervised learning
techniques in building masked language models for low resource languages,” in
2022 11th Mediterranean Conference on Embedded Computing (MECO) (IEEE), 1–6.
doi: 10.1109/MECO55406.2022.9797081

Kwaik, K. A., Saad, M., Chatzikyriakidis, S., and Dobnik, S. (2018). “Shami: a corpus
of levantine Arabic dialects,” in Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018).

Lin, W., Madhavi, M., Das, R. K., and Li, H. (2020). “Transformer-based Arabic
dialect identification,” in 2020 International Conference on Asian Language Processing
(IALP) (IEEE), 192–196. doi: 10.1109/IALP51396.2020.9310504

Lulu, L., and Elnagar, A. (2018). Automatic Arabic dialect classification using deep
learning models. Procedia Comput. Sci. 142, 262–269. doi: 10.1016/j.procs.2018.10.489

Melamud, O., Goldberger, J., and Dagan, I. (2016). “context2vec: learning
generic context embedding with bidirectional LSTM,” in Proceedings of the
20th SIGNLL Conference on Computational Natural Language Learning, 51–61.
doi: 10.18653/v1/K16-1006

Okut, H. (2021). “Deep learning for subtyping and prediction of diseases:
long-short term memory,” in Deep Learning Applications. doi: 10.5772/intechopen.
96180

Peters, M. E., Ruder, S., and Smith, N. A. (2019). To tune or not to tune? Adapting
pretrained representations to diverse tasks. arXiv preprint arXiv:1903.05987.

Pinaya, W. H. L., Vieira, S., Garcia-Dias, R., and Mechelli, A. (2020).
“Convolutional neural networks,” in Machine Learning (Elsevier), 173–191.
doi: 10.1016/B978-0-12-815739-8.00010-9

Qwaider, C., and Abu Kwaik, K. (2022). Resources and applications for dialectal
Arabic: the case of Levantine. Doctoral thesis.

Samih, Y. (2017). Dialectal Arabic processing Using Deep Learning. PhD thesis,
Dissertation, Düsseldorf, Heinrich-Heine-Universität 2017.

Shatnawi, M. Q., Yasin, M. B., and Huq, A. A. (2023). “Building a framework
for identifying Arabic dialects using deep learning techniques,” in ACM Transactions
on Asian and Low-Resource Language Information Processing. doi: 10.1145/36
30632

Sivakumar, S., Videla, L. S., Kumar, T. R., Nagaraj, J., Itnal, S., and Haritha, D.
(2020). “Review on word2vec word embedding neural net,” in 2020 International
Conference on Smart Electronics and Communication (ICOSEC) (IEEE), 282–290.
doi: 10.1109/ICOSEC49089.2020.9215319

Van Houdt, G., Mosquera, C., and Nápoles, G. (2020). A review on
the long short-term memory model. Artif. Intell. Rev. 53, 5929–5955.
doi: 10.1007/s10462-020-09838-1

Vig, J. (2019). Visualizing attention in transformer-based language representation
models. arXiv preprint arXiv:1904.02679.

Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez, J. E., and Stoica, I. (2021).
“Representing long-range context for graph neural networks with global attention,” in
Advances in Neural Information Processing Systems, 13266–13279.

Zahir, J. (2022). Iadd: an integrated Arabic dialect identification dataset. Data Brief
40:107777. doi: 10.1016/j.dib.2021.107777

Zaidan, O. F., and Callison-Burch, C. (2014). Arabic dialect identification. Comput.
Ling. 40, 171–202. doi: 10.1162/COLI_a_00169

Zargar, S. (2021). Introduction to Sequence Learning Models: RNN, LSTM,
GRU. Department of Mechanical and Aerospace Engineering, North Carolina State
University.

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. (2019). “Self-attention
generative adversarial networks,” in International Conference on Machine Learning
(PMLR), 7354–7363.

Zhang, Q., and Hansen, J. H. (2018). Language/dialect recognition based on
unsupervised deep learning. IEEE/ACM Trans. Audio, Speech Lang. Proc. 26, 873–882.
doi: 10.1109/TASLP.2018.2797420

Frontiers in Human Neuroscience 14 frontiersin.org20

https://doi.org/10.3389/fnhum.2025.1498297
https://doi.org/10.1007/s13278-023-01159-9
https://doi.org/10.1017/S1351324922000213
https://doi.org/10.1145/1390681.1390688
https://doi.org/10.1007/978-3-030-88113-9_50
https://doi.org/10.1109/MWSCAS.2017.8053243
https://doi.org/10.1145/1644879.1644881
https://doi.org/10.1109/EMBC.2015.7319532
https://doi.org/10.4324/9780429436185
https://doi.org/10.21203/rs.3.rs-510910/v1
https://doi.org/10.1109/ICIRD.2018.8376299
https://doi.org/10.1007/978-981-15-6876-3_31
https://doi.org/10.1007/s11042-022-13428-4
https://doi.org/10.1109/MECO55406.2022.9797081
https://doi.org/10.1109/IALP51396.2020.9310504
https://doi.org/10.1016/j.procs.2018.10.489
https://doi.org/10.18653/v1/K16-1006
https://doi.org/10.5772/intechopen.96180
https://doi.org/10.1016/B978-0-12-815739-8.00010-9
https://doi.org/10.1145/3630632
https://doi.org/10.1109/ICOSEC49089.2020.9215319
https://doi.org/10.1007/s10462-020-09838-1
https://doi.org/10.1016/j.dib.2021.107777
https://doi.org/10.1162/COLI_a_00169
https://doi.org/10.1109/TASLP.2018.2797420
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Frontiers in Artificial Intelligence 01 frontiersin.org

Determining the meter of 
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The metrical structure of classical Arabic poetry, deeply rooted in its rich literary 
heritage, is governed by 16 distinct meters, making its analysis both a linguistic 
and computational challenge. In this study, a deep learning-based approach was 
developed to accurately determine the meter of Arabic poetry using TensorFlow 
and a large dataset. Character-level encoding was employed to convert text into 
integers, enabling the classification of both full-verse and half-verse data. In 
particular, the data were evaluated without removing diacritics, preserving critical 
linguistic features. A train–test–split method with a 70–15–15 division was utilized, 
with 15% of the total dataset reserved as unseen test data for evaluation across all 
models. Multiple deep learning architectures, including long short-term memory 
(LSTM), gated recurrent units (GRU), and bidirectional long short-term memory 
(Bi-LSTM), were tested. Among these, the bidirectional long short-term memory 
model achieved the highest accuracy, with 97.53% for full-verse and 95.23% for 
half-verse data. This study introduces an effective framework for Arabic meter 
classification, contributing significantly to the application of artificial intelligence 
in natural language processing and text analytics.

KEYWORDS

Arabic poetry, Arabic meters, Bi-LSTM, deep learning, machine learning, natural 
language processing

1 Introduction

Arabic prosody (Arud) has been studied for many years in morphology and phonetics. 
The study of meters in poetry enables us to determine whether the poetry is sound or broken 
(Jones, 2011). Some of the terminology used most frequently in Arabic prosody are as follows: 
a single line of the poetry comprises two verses, each half-verse called a “bayt.” The first verse 
is “sadder,” and the second is “ajuz.” Classical Arabic poetry, defined by units called meters, 
was analyzed by the famous lexicographer and grammarian Al-Khalil ibn Ahmad al-Farahidi 
in the eighth century (Alnagdawi et al., 2013). The meter is based on the syllables in a word 
and consists of two parts: short and long syllables. The 16 meters are Tawil, Basiit, Madid, 
Wafir, Kamil, Hazaj, Rajaz, Ramal, Munsarih, Khafif, Muqtadab, Mujtath, Mudari’, Sarii’, 
Mutaqarib, and Mutadarik. The ode may consist of 120 lines, split into two half-lines 
characterized by their meters, repeated for the whole verse. Al-Farahidi represented some feet 
provided in a rhythmic to make it easy to remember the meter (fa’uulun, mafaa’iilun).

Poetry is a way of communication and interaction and an essential aspect of any language 
and literature. Communities, nations, and societies have expressed themselves through poetry 
for ages (Lavzheh, 2009). Poetry is hard to understand as it has a specific pattern and 
underlying meanings in its words and phrases, making it different from prose. It is necessary 
to understand the structure to understand the poetry completely. Bahar is the meters in Arud 
science. Arud science helps divide Arabic poems into 16 meters, making them easy to 
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understand without referring to the context (Alnagdawi et al., 2013). 
Classical Arabic poetry can be  recognized and understood using 
various methods and tools. Arud is the rule and regulations of poems 
used in many languages (Abuata and Al-Omari, 2018). Poetry is 
different from prose, mainly because of its form and structure. Poetry 
consists of tone, metrical forms, rhythm, imagery, and symbolism. In 
Arabic poetry, each line ends with a specific tone. The field that studies 
rhyme and rhythm is called prosody and is complex due to many 
overlapping rules (Khalaf et al., 2009).

There are two vowels in modern and classical Arabic: long and 
short. The long vowels are explicitly written, and short vowels are also 
called diacritic. Various attempts have been carried out to implement 
Arabic text. A proposal was made to use Arabic diacritics or ‘harakat’ 
for text hiding for security purposes (Ahmadoh and Gutub, 2015). The 
diacritics in Arabic are split into three parts as shown in Table 1. The 
majorty of studies in this field use a deep learning method to diacritize 
the Arabic text before loading it into the model (Abandah et al., 2022; 
Abandah et al., 2020; Kharsa et al., 2024).

Artificial intelligence (AI) has become exponentially more 
practical and significant over the last few years. The AI-enabled state-
of-the-art technologies have expanded substantially and shown 
effective results in almost every industry, such as security (Wu et al., 
2020), surveillance, health (Davenport and Kalakota, 2019), 
automobiles (Manoharan, 2019), fitness tracking (Fietkiewicz and 
Ilhan, 2020), and smart homes (Gochoo et al., 2021). In general, AI 
and machine learning (ML) are correlated. They are primarily used to 
develop intelligent systems (Das et al., 2015). Deep learning (DL) is a 
type of ML that allows computers to learn from data representation 
with more neural levels. Convolutional neural networks (CNN) have 
revolutionized image, video, and audio processing, and recurrent 
neural networks (RNN) have gained insight into text and speech 
sequential data (LeCun et al., 2015). The design of any deep learning 
model must consider the choice of algorithm. Most sequential 
applications follow the RNN model (Iqbal and Qureshi, 2022), and it 
has the context of previous input but not the future context of the 
speech or text data. Bidirectional recurrent neural networks (Bi-RNN) 
extract the context of data in both forward and backward directions 
(Schuster and Paliwal, 1997).

The proposed research offers substantial contributions to text 
analytics and natural language processing (NLP), particularly focusing 
on the complex issue of classifying Arabic poetry meters. This study 
employed Arabic text without removing diacritics from the poetry 
dataset. The 14 meters of the Arabic poem were considered. Two 
meters were removed because of very little data compared to other 
meters. The RNN models such as long short-term memory (LSTM), 
gated recurrent units (GRU), and Bi-RNN models, such as 
bidirectional LSTM (Bi-LSTM), are used to implement the proposed 
study. Despite the long history of Arabic poetry, automated techniques 

for meter classification have not received much attention. The 
proposed study utilized a large dataset and advanced neural network 
models. The main contribution of the study is defined as follows:

	•	 Development of a DL framework utilizing TensorFlow for the 
categorization of Arabic poetry meter. The framework is 
specifically designed to categorize Arabic poetry meters, a field 
that presents linguistic and structural difficulties because of the 
complexity and variety of the Arabic language.

	•	 Employing character-level encoding to transform text into 
integers for efficient categorization. This encoding enables the 
model to discern complex language patterns and nuanced 
differences at the character level, facilitating more 
efficient classification.

	•	 To strengthen the robustness and usefulness of the classification 
methodology, the study employed both full-verse and half-verse 
types of Arabic poetry. This analysis allows the model to 
accurately identify poetry of diverse lengths and structural 
complexities, offering a thorough comprehension of Arabic 
poetic traditions.

	•	 The research conducts an extensive assessment of several DL 
architectures, including LSTM, GRU, and Bi-LSTM, to determine 
the most efficient model for Arabic meter categorization. The 
Bi-LSTM model exhibited exceptional performance, attaining the 
greatest classification accuracy and highlighting its proficiency in 
managing the sequential and contextual intricacies of 
Arabic poetry.

	•	 The findings of the study highlight the efficacy of DL techniques 
in tackling the complex nature of Arabic poetry meter 
classification. The research utilizes neural architectures and 
encoding methodologies to provide useful insights into the 
adaptation of existing NLP methods for the linguistically rich and 
morphologically complicated Arabic language.

The remaining section of this paper is organized into five sections. 
Section 2 explains the literature review, including Arabic meter and 
DL models. Section 3 describes the methodology used and the model 
algorithm. Section 4 presents the results in detail, with a discussion in 
section 5. Section 6 describes the conclusion with future study.

2 Literature review

Alnagdawi et al. (2013) used another tool for language recognition 
to find the meter of Arabic poems. This tool works in three steps: first, 
it converts poetry into Arud form. The second step is the segmentation 
of the Arud form. In this phase, the Arud state is divided into sounds, 
such as short sounds, vowel or long sounds, and consonants. The 
sound string was sent to the final stage at the end of the second step, 
and the poetry meter was detected. It is compared with grammar to 
check its validity. If the grammar is valid, the verse belongs to 16 
meters. The meter patterns match the poem’s words, identifying the 
meter’s name.

A considerable body of literature is on recognizing Arabic poetry 
using deep learning algorithms. Baïna and Moutassaref (2020) 
developed an algorithm that accurately identifies the meter of the 
poem and outputs the ‘Arud’ writing in addition to the meter. The 
algorithm follows five phases. First, it adds diacritics to the verse. This 

TABLE 1  Arabic diacritic types.

Diacritic Types Example

Harakat “fatha” “dahmmah” “kasrah” 

“sukon”

شَرِب الطفْلُ الحليبَ

Tanween Tanween fateh, tanween dham and 

tanween kasr

بارداً, باردٌ, باردٍ

Dhawabet Shad, mad الشَّمس, آية
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step is significant as it might impede moving to the next step. Second, 
it transforms the diacritics into ‘Arud’ writing. Third, it utilizes binary 
representation to convert the ‘Arud’ writing, where 1 represents a 
‘haraka’ and 0 illustrates a ‘sukon.’ Fourth, the algorithm identifies the 
meter based on the binary representation. The fifth and final step 
includes detecting the errors and ensuring the meter matches 
the poem.

Furthermore, Albaddawi and Abandah (2021) proposed a narrow, 
deep neural network with significantly high accuracy. The proposed 
network consists of an embedding layer at its input, five Bi-LSTM 
layers, a concentration layer, and an output layer with softmax 
activation. Similarly, Abandah et al. (2020) suggested improving the 
recognition of diacritics via a specific neural network. This strategy 
tries to enhance readability and recognition accuracy. Moreover, 
identifying the meter of an Arabic poem may be  a long and 
complicated process that involves a few steps (Al-shaibani et al., 2020). 
A study by Ahmed et al. (2019) utilized ML algorithms to identify and 
classify Arabic texts. The study supports linear vector classification 
and naïve Bayes classification, which showed the highest precision. 
Many studies have been conducted on analyzing Arabic poetry. 
Formulating one system or technique to identify meters in Arabic 
poetry is challenging. A study on identifying Arabic poetic meter 
(Saleh and Elshafei, 2012) suggested a method that produces coded 
Al-Khalili transcriptions of Arabic.

Abuata and Al-Omari (2018) electronically analyzed the Arud 
meter of Arabic poetry. They introduced an algorithm to determine 
the meter of Arud for any Arabic poetry. The algorithm works on 
well-defined rules applied only to the first part of the poem verse. 
Moreover, some of the most outstanding works in Arabic poetry are 
the computerization of Arabic poetry meters (Khalaf et al., 2009). It 
focuses on computerizing El-Katib’s method for analyzing Arabic 
poetry. The linguist El-Katib proposed a study in which poetry is 
converted into binary bits and given decimal codes. This system was 
helpful for educational purposes. Many students and teachers use it to 
understand prosody. The computerized and systematic analysis of 
prosody also minimizes the chance of error.

Attempts have been made to develop algorithms that recognize 
modern Arabic poetry meters (Abandah et al., 2022; Abandah et al., 
2020; Al-shaibani et al., 2020). For instance, an algorithm has been 
introduced to identify standard features of classical Arabic poems 
(Zeyada et  al., 2020). These features include rhyme, rhythm, 
punctuation, and text alignment. This algorithm can only recognize 
whether the Arabic piece is poetic or non-poetic but cannot 
acknowledge its meter. Furthermore, an algorithm has been developed 
to detect the Arabic meter of certain poetry and convert the verse into 
‘Arud’ writing (Al-Talabani, 2020). It classifies Arabic poetry using 
meters or ‘Bahr’ and investigates methods of detecting Arabic poems 
in rhythm, rhyme, and meter. It utilizes time and non-time series 
representation of the Mel-frequency cepstral coefficients (MFCC) and 
linear predictive cepstral coefficients (LPCC) features to recognize 
automated ‘Arud’ meters. Arabic ‘Arud’ meters seem to possess a time-
series nature; however, the non-time series representation 
performs better.

Another detection method includes a comparison that has been 
conducted between modern and classical Arabic poetry (Almuhareb 
et al., 2015). The results reveal that contemporary Arabic poetry lacks 
more distinctive features than classical poetry. For instance, modern 
Arabic poetry is characterized by partial meter, the uneven lining of 

verses, word repetition, usage of punctuation, and irregular rhyming. 
At the same time, classical Arabic poetry is characterized by a regular 
rhyme, a single meter, even lining of verses, and self-contained lines. 
Similarly, Berkani et al. (2020) notes that extracting the meter of the 
poem using automatic meter detection methods requires challenging 
data collection and processing efforts. Syllable segmentation and 
similarity checks are performed. This method has further proven the 
high accuracy of meter detection. Finally, creating detecting 
algorithms may considerably improve the efficiency and accuracy of 
Arabic poetry identification methods.

The LSTM model is one of the most widely used RNN systems for 
vanishing gradients (Hochreiter and Schmidhuber, 1997). In addition, 
these networks have several advantages compared to conventional 
RNN systems, including the ability to sustain prolonged 
interrelationships and exhibit a stochastic nature when dealing with 
time-series input data. With RNN or LSTM, the uniform weight is 
retained across all layers, limiting the number of parameters the 
network must learn. The LSTM model had more parameters, which 
made it slower.

Later, GRUs were proposed as a better alternative to LSTMs and 
have gained significant recognition (Cho et al., 2014). In addition, 
GRUs have been recognized to be effective in numerous applications 
using sequential or time-series input (Dey and Salem, 2017). For 
instance, they have been incorporated in diverse areas such as speech 
synthesis, NLP, and signal processing. Furthermore, LSTM, RNNs, 
and GRUs have been exhibited to operate better in long-sequence 
applications. In GRUs, gating network signaling plays a significant role 
as it controls how inputs and memory are used to update current 
activations. Each gate has weights that are adapted and modified in the 
learning phase. However, these systems enable effective learning in 
RNNs, increasing parameterization. It leads to a simpler RNN model 
with a higher computational cost. The LSTM and GRU differ because 
the former utilizes three novel gate networks, whereas the latter 
uses only 2.

The Bi-LSTM neural network comprises LSTM units that operate 
in both directions to exploit contextual information from the past and 
future (Liang and Zhang, 2016). In addition, with Bi-LSTM, long-term 
dependencies can be  learned without maintaining redundant 
background information. Thus, it has projected significant 
performance for sequential modeling issues and is generally used for 
text classification (Huang et  al., 2015; Al-Smadi, 2024). Bi-LSTM 
networks transmit forward and reverse phases in both directions, 
unlike LSTM networks, which communicate only in one direction.

Many NLP sequences-to-sequence methods use LSTM, GRU, 
Bi-LSTM, and Bi-GRU deep learning models (Liang and Zhang, 2016; 
Wazery et al., 2022; Yin et al., 2017; Huang et al., 2015). In recent 
years, ML has become a formidable method for text analysis, 
exhibiting adaptability across several applications. Diverse ML 
methodologies have been effectively utilized in tasks such as dialect 
detection, spam detection, poetry classification, text classification, and 
sentiment analysis (Ahmed et al., 2019; El Rifai et al., 2022; Chen et al., 
2022; Abdulghani and Abdullah, 2022; Alqasemi et al., 2021; Zivkovic 
et al., 2021), demonstrating their proficiency in managing intricate 
textual data.

An important use of ML is sentiment categorization, employed for 
the identification of insider threats. Recent studies by Mladenovic 
et al. (2024) have illustrated that sentiment analysis can be augmented 
through optimized classifiers, thereby enhancing the precision of 
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threat detection in organizational contexts. In spam email screening, 
NLP combined with ML has shown success (Bacanin et al., 2022). It 
explains how swarm intelligence can maximize conventional ML 
techniques, thereby improving user experience and spam detection 
accuracy. Another study by Kozakijevic et al. (2024) examined the 
incorporation of sentiment analysis in e-commerce, highlighting its 
significance in assessing seller reputation and influencing consumer 
choices. They attained a maximum accuracy of 88% by integrating 
transformer embeddings with an efficient extreme gradient boost 
model, refined via a modified firefly approach.

3 Materials and methods

The methodology of the study is shown in Figure  1. The key 
phases of the study include fetching the dataset, preprocessing and 
splitting the data, and developing and applying the DL models. The 
results were evaluated using a combination of accuracy, precision, 
recall, and the F1 score.

3.1 Dataset and preprocessing

The dataset contains 1,862,046 verses with 22 meters (Yousef 
et al., 2019). The data are in a well-structured format. The central 
16 meters consist of a data size of 1,647,854. Two meters with 
fewer verses are avoided when classifying the meters. After 
eliminating the empty cells, the total number of verses in the 14 
meters of data, which include both right and left verses, is 
1,646,771. The count of each meter label with a full-verse is 
depicted in Figure 2. The minimum count is for the Mutadarik 
meter, 4,507 verses, and the maximum is for the Tawil meter, 
398,239 verses. To address data scarcity for certain meters and 
improve the robustness of the models, half-verse data were 
doubled during training by treating the left and right verses of each 
meter as independent samples.

The dataset underwent a thorough cleaning process to enhance its 
quality and suitability for deep learning. Non-Arabic characters, 
symbols, and other irrelevant text artifacts were systematically 
removed. This step ensured that only meaningful linguistic content 

remained, aligning the dataset with the methodological requirements. 
The preprocessing methodology closely follows the approach 
described in Al-shaibani et al. (2020) including the construction of a 
character-level vocabulary. The character-level encoding uses the 
index value for each cleaned text and implements DL models. 
Parameter tuning was conducted for each deep learning model to 
optimize performance, with attention to hyperparameters such as 
learning rate, batch size, and sequence length. The data are split into 
70% training and 15% validation; the remaining 15% are set as unseen 
data for testing.

3.2 Deep learning models

This study uses the deep neural network (DNN) architecture. The 
two main architectures of DNN are RNN and CNN (Yin et al., 2017). 
LSTM, GRU, and Bi-LSTM are models under RNN (Sherstinsky, 
2020). The base model for LSTM consists of four layers. The first 
layer of the sequential model is the input layer with the size of the 
padded sequence, which is then given to the embedding layer with 
the output dimension kept as 64. The embedding layer will learn how 
to map the characters to vectors. The output from the embedding 
layer is fed into the LSTM layer with units 256, recurrent, and the 
activation function is set as the default. The LSTM layer is added 
accordingly to increase the hidden layers. At this moment, the return 
sequence parameter should be set as ‘True.’ The GRU model is like 
the LSTM model. In both models, sentence processing is only in 
one direction.

The LSTM layer is depicted in Figure 3. It allows the model to 
store the information for future access and has a hidden state: short-
term memory. There are three gates for LSTM such as input (it), 
output (Ot), and forget gate (ft). A time step is indicated by the 
subscript ‘t.’ The LSTM has three inputs: an input vector at the current 
time stamp (Xt), a cell or memory state vector (Ct-1), and a hidden 
state vector at the previous time stamp (ht-1). The symbol ‘×’ denotes 
the element-wise product or the Hadamard product. tC is the cell 
state activation vector or the candidate memory vector (Harrou 
et al., 2021).

As a first step, what information the cell state should discard 
should be determined. It is accomplished by the sigmoid activation 

FIGURE 1

Overview of the research methodology.
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function (σ) in the forget gate and applies the sigmoid function to the 
current input vector Xt and the past hidden state vector ht-1 as shown 
in Equation 1. Input activations activate memory cells through 
input gates.

	 ( )1t f t f t ff w X u h bσ −= + + 	 (1)

where ft = forget gate, wf and uf are the weight matrices of the forget 
gate, Xt is the actual input, bf is the bias vector, ht-1 is the hidden state 
output from the previous time stamp, and σ is the sigmoid activation 
function. The result from Equation 1 is in the range of 0 and 1. The 
element-wise product of Ct-1 and ft decides what information to retain 
and forget.

The second step is to update the memory cell with an input gate 
as shown in Equation 2. The sigmoid function indicates two values: if 
it is 1, the actual data are unchanged, and if it is 0, it will be dropped. 
A tanh function is applied to the selected input values, which indicates 

a range from −1 to +1. It creates a new vector of values, a candidate 
memory cell (Equation 3).

	 ( )1t i t i t ii w X u h bσ −= + + 	 (2)

where it = input gate, wi and ui are the weight matrices of the input 
gate, bi is the bias vector, Xt is the actual input, ht-1 is the hidden state 
output from the previous time stamp, and σ is the activation function.

	
 ( )1t c t c t cC w X u h bσ −= + + 	 (3)

where tC = candidate memory cell, wc and uc are the weight matrices, 
bc is the bias vector, Xt is the actual input, ht-1 is the hidden state output 
from the previous time stamp, and σ is the activation function.

The following step involves updating and converting the previous 
cell state Ct-1 to the new Ct. Equation 4 is defined as:

	
1t t t t tC f C i C−= ⋅ + ⋅ 	 (4)

where ft = forget gate calculated from Equation 1, Ct-1 is the 
memory state vector of the previous time stamp, it = input gate 
calculated from Equation 2, and tC is the candidate memory cell 
from Equation 3.

The final stage is to decide what portion of the output will 
be  selected. It is done in two steps. First, the sigmoid function is 
performed with the input to determine the quantity of cell state to 
transmit as the output (Equation 5). The tanh operation is then 
applied to the new cell state Ct, and the sigmoid result is multiplied by 
the result (Equation 6). Thus, the outcome is based only on the 
selected portions.

	 ( )1t o t o t oO w X u h bσ −= + + 	 (5)

FIGURE 2

Full-verse count of the 14 meters in the dataset.

FIGURE 3

Internal architecture of the LSTM layer.
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where Ot = output gate, wo and uo are the weight matrices of the output 
gate, bo is the bias vector, Xt is the actual input, ht-1 is the hidden state 
output from the previous time stamp, and σ is the activation function.

	 ( )tanht t th C O= ⋅
	 (6)

where Ot = output gate calculated from Equation 5, and new cell state 
Ct calculated from Equation 4.

The GRU layer is illustrated in Figure 4. A reset gate and an update 
gate are two gates. However, the GRU requires fewer parameters to 
train than the LSTM model, which runs faster. The reset gate (Rt) 
regulates the amount of the initial state that needs to be remembered. 
Similarly, an update gate (Zt) enables us to assess how much the new 
form replicates the previous one. As each hidden unit reads/generates 
a sequence, these two gates control how much of it is remembered or 
forgotten (Harrou et al., 2021).

The reset gate performs similar functions to the forgotten gate of 
LSTM (Equation 7). It manages the short-term memory of the network. 
A decision is made regarding what information should be forgotten.

	 ( )1t r t r t rR w X u h bσ −= + + 	 (7)

where Rt = reset gate, wr and ur are the weight matrices of the reset 
gate, br is the bias vector, Xt is the actual input, and ht-1 is the hidden 
state output from the previous time stamp.

The update gate manages the long-term memory of the network. 
It accomplishes a similar task as the forget and input gates of an 
LSTM. It determines what data should be removed and what new data 
should be added (Equation 8).

	 ( )1t z t z t zZ w X u h bσ −= + + 	 (8)

where Zt = update gate, wz and uz are the weight matrices of the update 
gate, bz is the bias vector, Xt is the actual input, and ht-1 is the hidden 
state output from the previous time stamp.

The hidden state (th ) of the candidate is also called an intermediate 
memory unit, which combines the previously hidden state vector in 
the reset gate with the input vector (Equation 9).

	
 ( )( )1tanht h t h t t hh w X u R h b−= + ⋅ +

	 (9)

where th  = candidate hidden state vector, wh and uh are the weight 
matrices, bh is the bias vector, Rt = reset gate calculated from 
Equation 7, Xt is the actual input, and ht-1 is the hidden state output 
from the previous time stamp.

The final hidden state is determined based on the update gate and 
candidate hidden state. The update gate is multiplied elementwise and 
summed with the candidate vector (Equation 10).

	 ( ) 11t t t t th Z h h Z−= − ⋅ + ⋅
	 (10)

where ht is the hidden state output, Zt = update gate calculated from 
Equation 8, ht-1 is the hidden state output from the previous time 
stamp, and th  = candidate hidden state vector calculated from 
Equation 9.

The Bi-LSTM model processes the sequence in both directions 
of a text. One hidden layer is in the forward movement, and the 
other is backward. These LSTM layers are concatenated for the final 
output of the Bi-LSTM layer. Hence, unit 256 is doubled in this 
model. The return sequence parameter of LSTM is set to ‘True’ if 
two or more layers need to be added. The dropout parameter in the 
Bi-LSTM layer is set to 0.2, which helps prevent the training model 
from overfitting. The hidden layers are tuned from 1 to 3 in all three 
models. A better iteration of LSTM is the Bi-LSTM layer, which 
processes the sequence in forwarding and backward directions, as 
shown in Figure 5. The Bi-LSTM can understand the context better 
than the LSTM and GRU models (Li et al., 2020), as it processes 
input sequences in both forward and backward directions. This 
architecture builds upon the traditional LSTM model, enhancing 
its ability to capture dependencies in sequential data. In the 
Bi-LSTM framework, Xt and Xt + 1 are the input vectors at time 
frame t.

While calculating the forward output sequence ( th


), the positive 
sequence is used, and when calculating the backward output 
sequence, ( th



), the reverse inputs are used. The output vector, yt, is 
obtained by combining the forward and backward output sequences 
(Equation 11).

	 ( ),t t ty h h= ∫
 

	 (11)

where th


 is the forward output sequence and th


 is the backward output 
sequence. The symbol ‘ʃ’ can have different operations, such as 
summation, multiplication, concatenation, and average function. The 
default function in TensorFlow is concatenation.

The optimizer used for the compilation is adaptive moment 
estimation (Adam). This memory-light optimization algorithm works 
well with large datasets (Kingma and Jimmy, 2014). As the method 
label-encoder provides a sparse array of targets, the loss function uses 
a sparse-categorical cross-entropy.

3.2.1 Hyperparameter tuning
The tuned parameters are the hidden layer and learning rate for 

the above models. The hidden layers are tuned from 1 to 3 in all three 
DL models. EarlyStopping is used in the callback application 

FIGURE 4

Internal structure of GRU layer.
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programming interface (API) of the TensorFlow model to stop 
overfitting the models. In this, the parameter ‘patience’ is set to 6, so 
the training will terminate if the validation loss function does not 
decrease after six epochs. Another function used is 
ReduceLROnPlateau. The monitoring parameter of this function is set 
to validity loss, patience is 3, and the minimum learning rate is 
1.0*10–6. It indicates that if the loss value does not change after two 
epochs, the learning rate value decreases by 0.1. Thus, the new rate for 
the next epoch will be 0.1 times the previous rate. The most accurate 
model is chosen based on the accuracy of the validation set, and it is 
then applied to the test set.

3.3 Evaluation metrics

Accuracy, precision, recall, and f1-score are the metrics used 
to assess the classification model on the test data. For each 
technique, the confusion matrix is also considered. Accuracy 
might not be  a complete metric for unbalanced data (Sturm, 
2013). Therefore, precision, recall, and F1-score are also used 
(Grandini et al., 2020; Tharwat, 2020). The precision determines 
how many predicted samples are relevant (Equation 12). Recall 
computes how many relevant samples are predicted (Equation 13). 
Calculating the harmonic mean of recall and precision yields an 
F1-score (Equation 14). Precision is also called a positive 
predictive rate (PPR), and recall is known as sensitivity. Accuracy 
is the total sample count that was successfully predicted 
(Equation 15). Four performance measures are calculated using 
the following formulas.

	 ( )
TruePosePrecision

TruePose FalsePose
=

+ 	
(12)

	 ( )
TruePoseRecall

TruePose FalseNega
=

+ 	
(13)

	 ( )
21

2
TruePoseF Score

TruePose FalsePose FalseNega
− =

+ + 	
(14)

	

TruePose TrueNegaAccuracy
TruePose TrueNega FalsePose FalseNega

+
=

+ + + 	
(15)

where TruePose is a true positive, TrueNega is a true negative, FalsePose 
is a false positive, and FalseNega is a false negative. When the model 
correctly predicted the positive label, the result was considered 
TruePose. Similarly, if the model predicts a negative label correctly, the 
outcome is TrueNega. On the other hand, FalsePose is calculated based 
on the incorrectly predicted positive label, and FalseNega is based on 
the incorrectly predicted negative label.

4 Results

Neural networks formed the foundation of the classification 
models of the study, with DL techniques preferred due to the substantial 
volume of data involved. The experiments were conducted on a system 
running 64-bit Windows 10, equipped with an Intel® Core™ i7-4770K 
CPU at 3.50 GHz, 16 GB of RAM, and an NVIDIA GeForce GTX 1080 
Ti GPU. The development environment utilized Python 3.9 and 
incorporated libraries such as TensorFlow 2.7 for implementing the DL 
models, Scikit-learn 1.0 for data preprocessing and evaluation, and 
PyArabic 0.6.14 for handling Arabic text processing (Abadi et  al., 
2016). This computational setup enabled efficient training and testing 
of the models, contributing to the high accuracy achieved in classifying 
the meters of classical Arabic poetry. The diacritics are not removed for 
both the full-verse and half-verse data.

4.1 Training and testing using full-verse data

The full-verse data are split according to 70% for training, 15% 
for validation, and 15% for testing. The validation accuracy 

FIGURE 5

Bi-LSTM model architecture with two consecutive time frames.
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according to the hidden layers is tabulated in Table 2 for the full-
verse data. In addition, the number of parameters the model uses for 
training is specified (in millions). The trainable parameter also 
increases; hence, the time taken to complete the execution also 
increases. The training epochs are set to 60 for all the models. 
Callback applications such as EarlyStopping and ReduceLROnPlateau 
evaluate whether the model overfits. The validation loss is the 
parameter to check in the ReduceLROnPlateau function. If the loss 
value is found stable for three epochs, then the learning parameter 
is increased. For the EarlyStopping function, the program stops 
where it finds the loss value increases from the previous value or is 
stable for approximately six epochs. The training epochs in Table 2 
show the number of epochs each model took without overfitting the 
data. The LSTM, GRU, and Bi-LSTM models perform better at three 
layers. Moreover, compared to the three models, the Bi-LSTM shows 
an accuracy of 97.53%.

The training and validation loss and accuracy of the Bi-LSTM 
with three layers are depicted in Figure 6. The training loss indicates 
how well a DL model fits the training set. Validation loss measures the 
performance of the validation set. Accuracy increases as the loss 
value decreases.

The confusion matrix of the Bi-LSTM three-layer model is shown 
in Figure 7. The model was tested with the remaining 15% of unseen 
data. All the labels show good model fitting, and there was no 
overfitting or underfitting problem with the model performance.

The complete details of the model performance are shown in 
Table 3. The precision, recall, accuracy, and f1-score of each meter or 
label are evaluated. The basit and tawil meters show the highest 
accuracy of 99%. The low performance is demonstrated by the hazaj 
meter with 80% accuracy.

4.2 Training and testing using half-verse

The study also implemented the model based on the half-verse 
data without removing diacritics. The half-verse data count is double 
the number of full-verse data, and the data are split into 70% training, 
15% validation, and 15% testing. The hidden layers are tuned from 
one to three as shown in Table 4. Increasing the layers increases the 
parameters to train the model. In addition, the time to complete the 
training increases according to hidden layers. Even though the 

Bi-LSTM model exists in 31 epochs, it took approximately 11 h to 
complete the execution.

The best model is Bi-LSTM, with 95.23% accuracy. The training 
and validation accuracy and loss values are shown in Figure 8. Both 
the loss and accuracy are inversely proportional to each other. The 
model exits from the iteration if the loss value is stable for six epochs.

The confusion matrix and the complete details of the target meters 
results are shown in Figure 9 and Table 5, respectively.

The model shows better performance as seen in Table  5. The 
highest class accuracy is demonstrated by the basit and tawil meters 
with 98% accuracy. The lowest performance is shown by the hazaj 
meter, which has 74% accuracy.

5 Discussion

The Bi-LSTM model predicts the data better when compared 
with LSTM and GRU. This model’s sequence learning is in both 
directions, from left to right and right to left. GRU trains faster than 
LSTM, with fewer training parameters than LSTM (Atassi and El 
Azami, 2022). Few studies have been done on Arabic poetry, 
including the diacritization of the text data. The study by Abandah 
et al. (2022) showed a Bi-LSTM model with automatic diacritization. 
The results show a 42% improvement in the error rate of diacritization. 
The study by Alqasemi et al. (2021) was based on machine learning 
algorithms and a diacritic text. An accuracy of 96.34% was achieved 
using support vector machines (SVM). Another study by Al-shathry 
et  al. (2024) employed a balanced dataset by randomly choosing 
1,000 poem verses for each meter. Their study achieved 98.6% 
accuracy, but 90% precision, recall, and f1-score value with the 
Bi-GRU model.

The proposed study can be  compared with the studies by 
Abandah et al. (2020) and Al-shaibani et al. (2020). With five hidden 
layers, Al-shaibani et al. (2020) reached an accuracy of 94.32% with 
the bi-directional GRU (Bi-GRU) model and 14 target meters. The 
model also attains 88.8% accuracy for half-verse data. With four 
hidden layers, the Bi-LSTM model by Abandah et al. (2020) achieved 
an accuracy of 97% without removing diacritics and 97.27% with 
removed diacritics. They use 16 meters as target classes. The study 
carried out by Yousef et al. (2019) used seven hidden layers for the 
Bi-LSTM model and achieved an accuracy of 96.38%. In the proposed 

TABLE 2  The results of increasing the layers of each model on the test accuracy of full-verse data.

Models Hidden layers Parameters (in 
millions)

Accuracy Training Epochs Training time (in 
hours)

LSTM 1 0.34 0.9720 28 89.95

2 0.86 0.9733 26 148.17

3 1.38 0.9737 35 286.15

GRU 1 0.26 0.9710 28 166.93

2 0.65 0.9723 37 212.63

3 1.05 0.9726 60 455.93

Bi-LSTM 1 0.67 0.9698 19 110.02

2 2.24 0.9744 26 249.97

3 3.82 0.9753 25 442.50
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research, the number of verses is much higher than in the study done 
by Al-shaibani et al. (2020). In addition, the number of hidden layers 
is less than in all three studies. The comparison of Arabic meter 
studies is mentioned in Table 6.

The studies (Abandah et al., 2020; Yousef et al., 2019) employed 
the identical dataset as the proposed study, although it documented 
varying verse counts. This suggests that although the dataset is 
uniform, discrepancies in verse counts may influence model efficacy. 

FIGURE 6

Training and validation plot of Bi-LSTM with three layers. The left side shows the accuracy, and the right shows the loss values for each epoch.

FIGURE 7

Confusion matrix of three hidden layers of the three-layer Bi-LSTM model.

29

https://doi.org/10.3389/frai.2025.1523336
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Mutawa and Alrumaih� 10.3389/frai.2025.1523336

Frontiers in Artificial Intelligence 10 frontiersin.org

TABLE 4  The results of increasing the layers of each model on the test accuracy of half-verse data.

Models Hidden layers Parameters (in millions) Accuracy Training epochs Training time (in hours)

LSTM 1 0.34 0.9465 34 153.23

2 0.86 0.9494 24 166.08

3 1.39 0.9509 28 283.33

GRU 1 0.26 0.9455 34 305.82

2 0.65 0.9470 34 238.78

3 1.05 0.9459 60 667.97

Bi-LSTM 1 0.67 0.9446 18 153.98

2 2.24 0.9496 33 510.00

3 3.82 0.9523 36 711.05

The models employed in the compared research, Bi-LSTM with four 
and seven layers, attained competitive accuracy rates; nevertheless, 
the proposed Bi-LSTM model with three layers surpassed them 
across all criteria. The study by Al-shaibani et al. (2020) utilized a 
distinct dataset; however, it similarly extracted poems from the 
‘Aldiwan’ website. The Bi-GRU model employed in the mentioned 
study (Al-shaibani et al., 2020) shows worse performance measures 
relative to the proposed study findings. The variations in dataset 
construction and model design certainly led to the noted 
performance variances.

In the proposed study, the Bi-LSTM model with three hidden 
layers performs better than one or two hidden layers without 
removing diacritical text. In addition, it better predicts than the 
LSTM and GRU models for both full-verse and half-verse data. 
LSTM cannot use future tokens nor can local contextual information 
be extracted. This problem can be resolved using Bi-LSTM, which 
learns the sequence in forward and backward directions. GRUs are 
faster to train than the LSTM model but lack the output gate. The 
model achieved an accuracy of 97.53% for the full-verse data and 
95.23% for the half-verse data.

The results of the study suggest that the number of hidden layers 
significantly impacts the performance of the Arabic meter 
classification model using Bi-LSTM. The study achieved better 
accuracy in Arabic meter classification using Bi-LSTM models with 
three hidden layers than previous studies that used Bi-LSTM models 
with four and seven hidden layers. It suggests that increasing the 
number of hidden layers beyond a certain point may not always lead 
to better performance and that optimizing the number of hidden 
layers can be a crucial factor in achieving high accuracy.

A few baseline ML models were utilized in this study to evaluate 
their performance in comparison with the DL architectures used for 
the Arabic poetry meters’ classification. It includes a decision tree 
(DT), random forest (RF), k-nearest neighbors (KNN), and extra tree 
(ET) classifier. These classifiers serve as effective benchmarks for 
evaluating the performance of more complex models. The DT model 
yielded an accuracy of 46% with an F1-score of 0.30, and KNN 
achieved 30% with a 0.20 F1-score, while the ensemble models RF 
and ET achieved 58 and 53% accuracy as well as 0.50 and 
0.56 F1-score values, respectively.

The comparison with baseline models underscores the efficacy of 
the DL methodologies utilized in the proposed study. Although baseline 
models serve as a valuable foundation, advanced models (Bi-LSTM) 
exhibit significant enhancements in accuracy and overall performance. 
This highlights the need to employ DL methodologies for intricate tasks 
such as Arabic poetry meter classification, where conventional models 
might struggle to grasp the complex nature of the data.

5.1 Practical implications

The findings of the proposed study on the categorization of Arabic 
poetry meter using DL models have substantial practical applications 
in several fields. This research enhances NLP, text analytics, and 
cultural heritage preservation by attaining high accuracy in the 
classification of full and half verses of Arabic poetry.

	•	 Accurate classification of Arabic poetry meters helps preserve 
Arabic literary legacy. Automating the study of poetic structures 
helps scholars and cultural organizations to better classify 
historical data, therefore guaranteeing their availability for the 
next generations.

	•	 The proposed DL system may be  included in learning 
environments to support academics and students in 

TABLE 3  Performance measure of the Bi-LSTM model with test data.

Meter Precision Recall f1-
score

Accuracy

Basit 0.98 0.99 0.99 0.99

Khafif 0.98 0.98 0.98 0.98

Rajaz 0.94 0.93 0.94 0.93

Ramal 0.96 0.96 0.96 0.96

Sari 0.95 0.95 0.95 0.95

Tawil 0.99 0.99 0.99 0.99

Kamil 0.97 0.98 0.98 0.98

Mutadarik 0.91 0.90 0.91 0.90

Mutaqarib 0.98 0.97 0.98 0.97

Mujtath 0.91 0.95 0.93 0.95

Madid 0.91 0.90 0.91 0.90

Munsarih 0.96 0.94 0.95 0.94

Hazaj 0.80 0.80 0.80 0.80

Wafir 0.98 0.98 0.98 0.98
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comprehending Arabic poetry. By giving instantaneous feedback 
and poetic work analysis, interactive technologies that use meter 
classification can improve learning opportunities and help 
increase the importance of Arabic literature.

	•	 Other kinds of Arabic literature can be  examined using the 
approach developed in this study. Adapting the models to several 
literary genres allows scholars to investigate structures and 
patterns that define distinct kinds of Arabic literature, therefore 
enhancing the knowledge of the literary scene of the language.

	•	 Using the knowledge acquired from the proposed study, NLP 
practitioners may increase the performance of the model in 
processing the Arabic text, therefore enhancing its applicability in 
fields such as social media analysis and automatic 
content development.

6 Conclusion

This study presents a significant advancement in the automatic 
classification of classical Arabic poetry meters using deep learning 
techniques. By utilizing a substantial dataset of 1,646,771 verses 
without removing diacritics, the Bi-LSTM models with three hidden 
layers were developed and evaluated. The Bi-LSTM model 
outperformed traditional LSTM and GRU models, achieving an 
accuracy of 97.53% on full-verse data and 95.23% on half-verse data. 
These results surpass those of previous studies that employed models 
with more hidden layers or smaller datasets.

The superior performance of the Bi-LSTM model underscores 
its effectiveness in capturing the complex rhythmic and phonetic 
patterns inherent in classical Arabic poetry. The ability of Bi-LSTM 
to process sequences in both forward and backward directions 
allows for a more comprehensive understanding of the linguistic 
structures involved. Importantly, retaining diacritics in the text 

preserved essential phonetic information, which proved crucial for 
accurate meter classification.

The findings of the study make a substantial contribution to 
computational linguistics and natural language processing, 
particularly in the context of Arabic language studies. The high 
accuracy achieved demonstrates the potential of the model for 
practical applications, such as automated literary analysis and 
educational tools that enhance the study and appreciation of 
Arabic poetry. This study also aligns with the Sustainable 
Development Goals by promoting quality education and fostering 
innovation in language technology.

FIGURE 8

Training and validation plot of Bi-LSTM with three layers in half-verse. The left side shows the accuracy, and the right shows the loss values for each 
epoch.

TABLE 5  Performance measure of the Bi-LSTM model with test data.

Meter Precision Recall f1_
score

Accuracy

Basit 0.98 0.98 0.98 0.98

Khafif 0.96 0.96 0.96 0.96

Rajaz 0.88 0.83 0.85 0.83

Ramal 0.92 0.93 0.92 0.93

Sari 0.91 0.90 0.90 0.90

Tawil 0.99 0.98 0.98 0.98

Kamil 0.94 0.96 0.95 0.96

Mutadarik 0.84 0.83 0.83 0.83

Mutaqarib 0.95 0.96 0.95 0.96

Mujtath 0.86 0.89 0.87 0.89

Madid 0.84 0.82 0.83 0.82

Munsarih 0.93 0.89 0.91 0.89

Hazaj 0.71 0.74 0.73 0.74

Wafir 0.97 0.96 0.97 0.96
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6.1 Limitations and future studies

The proposed study performs better with half-verse and full-
verse Arabic poems. It indicates that although the average accuracy 
is elevated, some classes, especially those corresponding to meters 
with fewer verses, demonstrate diminished precision and recall. 
Future studies must concentrate on these underrepresented 
categories to enhance their classification efficacy. This can 
be  accomplished using specific data augmentation procedures, 
such as the generation of synthetic examples of certain meters or 
the application of oversampling techniques to equilibrate 
the dataset.

Although several DL models were evaluated, their 
hyperparameters, such as optimizers and the number of units in 
layers, were not extensively tuned. Hyperparameter selection may 
greatly affect the model’s performance. Future studies should 
consider using methodical hyperparameter tuning strategies to 

improve model performance. Another scope of future studies is to 
investigate the influence of other linguistic attributes on meter 
classification. It includes semantic and syntactic structure analysis.
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TABLE 6  Comparison between related studies in literature and the proposed study.

Reference Technique used—
number of hidden layers

Dataset size Accuracy F1-score

Al-shaibani et al. (2020) Bi-GRU-5 55,400 verses 94.32% (full-verse), 88.80% (half-verse) -

Abandah et al. (2020) Bi-LSTM-4 1,657,003 verses 97.27% (full-verse) 0.97 (full-verse)

Yousef et al. (2019) Bi-LSTM-7 1,722,321 verses 96.38% (full-verse) -

The proposed work Bi-LSTM-3 1,646,771 verses 97.53% (full-verse), 95.23% (half-verse) 0.98 (full-verse), 0.95 (half-verse)

FIGURE 9

Confusion matrix of half-verse Bi-LSTM model.
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Introduction: Post-editing plays a crucial role in enhancing the quality
of machine-generated translation (MGT) by correcting errors and ensuring
cohesion and coherence. With advancements in artificial intelligence, Large
Language Models (LLMs) like ChatGPT-4o offer promising capabilities for post-
editing tasks. This study investigates the effectiveness of ChatGPT-4o as a natural
language processing tool in post-editing Arabic translations across various
domains, aiming to evaluate its performance in improving productivity, accuracy,
consistency, and overall translation quality.

Methods: The study involved a comparative analysis of Arabic translations
generated by Google Translate. These texts, drawn from multiple domains,
were post-edited by two professional human translators and ChatGPT-4o.
Subsequently, three additional professional human post-editors evaluated both
sets of post-edited outputs. To statistically assess the differences in quality
between humans and ChatGPT-4o post-edits, a paired t-test was employed,
focusing on metrics such as fluency, accuracy, coherence, and efficiency.

Results: The findings indicated that human post-editors outperformed
ChatGPT-4o in most quality metrics. However, ChatGPT-4o demonstrated
superior efficiency, yielding a positive t-statistic of 8.00 and a p-value of 0.015,
indicating a statistically significant difference. Regarding fluency, no significant
difference was observed between the two methods (t-statistic = −3.5, p-value
= 0.074), suggesting comparable performance in ensuring the natural flow of
text.

Discussion: ChatGPT-4o showed competitive performance in English-to-
Arabic post-editing, particularly in producing fluent, coherent, and stylistically
consistent text. Its conversational design enables efficient and consistent editing
across various domains. Nonetheless, the model faced challenges in handling
grammatical and syntactic nuances, domain-specific idioms, and complex
terminology, especially in medical and sports contexts. Overall, the study
highlights the potential of ChatGPT-4o as a supportive tool in translation post-
editing workflows, complementing human translators by enhancing productivity
and maintaining acceptable quality standards.

KEYWORDS

post-editing, machine translation, ChatGPT-4o, natural language processing, artificial
intelligence, LLMS
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Introduction

Machine translation (MT) has a signiĕcant role in facilitating
communication and enhancing global interactions. is role has
gained more attention in various contexts, driven by remarkable
natural language processing technology advancements that enabled
more efficient translation (Raj et al., 2023). However, MT outputs
must be post-edited to ensure their desired quality and meet
productivity standards. Translation post-editing (TPE) is a critical
step in the translation process that involves reviewing and
reĕning machine-translated content. Post-editing is not a recent
trend, and it emerged in the earlier days of MT (Vieira, 2019).
Recently, post-editing MT gained considerable interest as a
service and research topic due to the advancements in translation
technology. Post-editing implies correcting grammatical errors in
vocabulary, improving sentence structure, adjusting tone and style,
ensuring cultural appropriateness, and reĕning the translation to
align with the intended purpose and audience (Daems et al.,
2013; Vardaro et al., 2019). Moreover, it allows for a more
customized and tailored approach to translation, as post-editors
can adapt the output to meet speciĕc clients. According to
Allen (2001), post-editing is correcting and reĕning the machine-
generated translation (MGT) aer translation from a source to a
target language.

ere are several types of post-editing, each catering to the
number of corrections, efforts, and objectives required to achieve
the desired translation. An early study on post-editing typology
by Laurian (1984) proposed two types of post-editing: rapid
post-editing and conventional post-editing. e former involves
correcting the translated texts without paying attention to the
translation style, while the latter implies deep correction to produce
a human-like translation.

Allen (2003) suggests two types of post-editing: minimal and
complete PEs. Minimal PE is for quick review, focusing mainly on
critical errors and ensuring essential language accuracy, controlled
by limited time and budget. However, complete PE aims to perform
deep corrections closely resembling human translation standards.

van Egdom and Pluymaekers (2019) and Vieira (2017)
established four levels of post-editing: “minimal,” “light,”
“moderate,” and “full,” precisely. For post-editing quality
guidelines, the Translation Automation User Society (TAUS,
2010) differentiates between two standards of expected target-text
quality: “good enough” quality and quality “similar or equal to
human translation.” Indeed, these criteria almost correspond to
“light” and “full” post-editing, respectively (Massardo et al., 2016).
e TAUS guidelines stress that the level of post-editing depends
on the deliberate purpose of the text and the quality of the raw MT
output, making the target quality a more consistent factor for post-
editing guidelines. Post-editors have no strict instructions about the
issues they need to focus on. ese instructions differ depending on
whether they aim for “good enough” or “human translation quality.”
When machine translation (MT) errors impact meaning, for “good
enough” quality, the focus is on semantics and comprehensibility,
with less consideration given to syntactic or grammar. Conversely,
post-editors should address style, syntax, grammar, and formatting
issues when focusing on human translation quality. Additionally,
they should handle terms that need to remain in the original
language but may have been translated by the MT system.

In MT, post-editing has two paradigms, including static and
interactive. In the former, the machine generates translation in the
ĕrst step and then edits it in the second. e latter implies real-
time collaboration between translators and MT systems (Vieira,
2019). In terms of these two paradigms, there are different ĕndings;
for example, Langlais and Lapalme (2002), in their TransType
tool evaluation, evoked that interactive post-editing could lead to
reduced productivity by up to 35% compared to static editing.
Koehn et al. (2015) stated that interactive models with online
learning seemed to require less technical effort, with post-editors
becoming faster over time. However, it has also been proven that
interactive post-editing may not notably affect target-text quality
and could even result in errors (Underwood et al., 2014). Compared
to static post-editing, interactive post-editing may take longer but
result in higher-quality products (Green et al., 2014).

With the advent of advanced Neural Network systems, the
generated translation becomes more accurate and naturally
sounding (Qin, 2022). However, these translations still have
inaccuracies, errors, and inappropriate phrasing. It is a vital step
that bridges the gap between automated generated translation
and human editors and linguistic expertise to enhance translation
Ęuency, coherence, and linguistic appropriateness.

e collaborative interaction between artiĕcial intelligence and
human intervention offers a cost-effective and efficient approach
to high-quality translation services in various domains where
translation quality is critical, especially for legal, medical, and
technical content. With the proliferation of these technologies,
research on large language models (LLMs) and linguistic analysis,
particularly in ĕelds such as second language acquisition (Albuhairy
and Algaraady, 2025), learner error analysis (Al-Garaady and
Mahyoob, 2023), natural language processing (Mahyoob and Al-
Garaady, 2018;Mahyoob, 2020), and academicwriting development
(Mahyoob et al., 2023), has become increasingly critical.

ough human post-editors of MGTs show high-quality
products, their work is time-consuming, and they challenge
both balanced speed and quality. is research investigates how
ChatGPT-4o, an advanced language generation model, can enhance
translation post-editing productivity, efficiency, and quality across
various domains and how human editors beneĕt from ChatGPT-4o
in their TPE tasks.

Research question

is work attempts to answer the following research questions
as a starting point for exploring the role of ChatGPT-4o in various
aspects of post-editing machine-generated translations.

1. Can ChatGPT-4o integration maintain human translators’
productivity, consistency, and efficiency instead of a human
editor during post-editing?

2. To what extent can ChatGPT-4o improve the overall quality of
MGT through post-editing?

3. Howdoes ChatGPT-4o’s performance in post-editing compare to
traditional post-editing methods?

4. What challenges and limitations are encountered when using
ChatGPT-4o for post-editing in certain domains? Moreover, to
what extent can these challenges be alleviated?

Frontiers in Artificial Intelligence 02 frontiersin.org36

https://doi.org/10.3389/frai.2025.1526293
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Algaraady and Mahyoob 10.3389/frai.2025.1526293

5. How much does using task-speciĕc prompts improve ChatGPT-
4o performance in PE?

Literature review

MTPE is the process of reviewing and correcting errors in
machine-generated translations. is section provides an overview
of the literature on translation post-editing and integrating language
models like ChatGPT-4o in translation workĘows. It discusses
the challenges faced in translation post-editing, advancements in
machine translation PE technologies, and the role of artiĕcial
intelligence in improving translation PE quality.

Screen (2019) compared post-edited translations with
translations created from scratch in the Welsh text. He said
post-translation editing was not found to improve. e two types
of products are mainly similar in terms of comprehension and
readability, which supports the use of MT in professional settings.

A study conducted with soware instructions translated from
English to Brazilian Portuguese found that even minimal post-
editing signiĕcantly increased the usability of MT-based texts.
e improvements were measured using eye-tracking metrics and
self-reported satisfaction, highlighting the value of post-editing in
enhancing text comprehensibility and accuracy (Castilho et al.,
2014).

Koneru et al. (2023) made an Initial adjustment for direct
translation. erefore, researchers propose to use LLM as an
automatic post editor (APE) instead. With Low-Rank-Adapter
ĕne-tuning, they reĕned sentence- and document-level indicators.
e ContraPro test achieved an accuracy of 89% in Anglo-
German translations. In addition, including human corrections
in document-level translations reduced the need for corrections
in translation. Raunak et al. (2023) used GPT-4 for automatic
post-editing in language pairs. It was found that there was an
improvement in the accuracy and reliability of the WMT-22
English-Chinese, English-German, Chinese-English, and German-
English tasks. However, sometimes GPT-4 might cause incorrect
edits that demand caution in utilization. Chen et al. (2023)
recommend improving iterative translation using large-scale
language models for advanced translation and post-editing,
especially for complex structures. However, this method showed
limited scalability and computational challenges. Moreover, the
model relies heavily on pre-trained models.

IntelliCAT, introduced by (Lee et al., 2021), is an interactive
translation interface designed to improve post-machine translation
editing. It uses sentence-level and word-level quality estimation
(QE) to predict sentence quality and identify errors for
improvement. e translation recommendation model includes
word and phrase alternatives, while word alignments preserve
the original document format. Experiments show that these
features advance translation quality. User studies conĕrm that
post-editing is 52.9% faster than translation from scratch. Turchi
et al. (2017) explored machine translation (MT) improvements
using human post-editing within a Neural Machine Translation
(NMT) framework, highlighting the beneĕts of batch method
customization. Continuously, It enables real-time optimization of
new users and domains at low computational cost. Various online
learning strategies are tested to reĕne existing models based on

input data and aer modiĕcation. Evaluating two language pairs
showed a signiĕcant improvement over the static model.

Data collection and methodology

Data collection

To conduct our exploration, this research utilized translation
data comprising source texts (English) and their corresponding
Arabic MGTs produced by a neural network-based machine
translator (Google Translator). is dataset spans different
domains to simulate real-world translation scenarios, including
sports, medical, business, idioms, and literary texts, to ensure a
comprehensive assessment of ChatGPT-4o’s potential across various
domains. As detailed in Table 1, the source texts were collected
from several online platforms such as UN news1, Newatlas2,
Saudigazette3, and American literature4, comprising 6,203 English
words (ws). eir Arabic translations produced by Google Translate
[GT (A)] amount to 5,582 ws, while the human post-editing version
[H-PE(A)] includes 5,393 ws, and the ChatGPT4o post-editing
version [C- PE(A)] contains 5,451 ws.

Experiment/method

In this experiment, ĕrst, the collected texts undergo initial
translation from English into Arabic using a neural network-
based machine translator (Google translator) to establish a baseline
for comparison. Second, the generated translations are post-
edited in two modes, ĕrst by two professional human translators
and then using ChatGPT-4o as a post-editing tool. ChatGPT-
4o is requested to improve and revise the MGT to explore
and assess the extent of ChatGPT-4o’s capabilities in performing
or enhancing post-editing machine-translated content. e two
human translators were given different sets of data to post-edit to
boost the diversity of post-edited translations and interpretations
that reĘect the Arabic richness and capture a broader range of
editorial perspectives.

ird, a panel of three human editors (HEs) manually validated
and evaluated the improvements and suggestions provided by
human translators andChatGPT-4o. Fourth, we compare the quality
of the post-edited content by human translators and the quality
of the post-edited content by ChatGPT-4o based on a set of
evaluation metrics using T-test statistics. In addition, we compare
the performance of ChatGPT-4o across different domains to assess
its domain adaptation capabilities. Indeed, knowing ChatGPT-
4o’s ability to provide post-editing for machine translation would
help make a clear decision to incorporate ChatGPT-4o’s post-
editing service for various stakeholders who beneĕt from post-
editing translation.

1 https://news.un.org

2 https://newatlas.com/robotics/robot-designed-to-perform-breast-examination

3 https://www.saudigazette.com.sa/article/609348

4 https://americanliterature.com/

Frontiers in Artificial Intelligence 03 frontiersin.org37

https://doi.org/10.3389/frai.2025.1526293
https://news.un.org
https://newatlas.com/robotics/robot-designed-to-perform-breast-examination
https://www.saudigazette.com.sa/article/609348
https://americanliterature.com/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Algaraady and Mahyoob 10.3389/frai.2025.1526293

TABLE 1 Statistical description of the dataset.

Texts Sports Business Medical Literary Total

Source (E) 1,580 ws 1,498 ws 1,539 ws 1,586 ws 6,203 ws

GT (A) 1,357 ws 1,283 ws 1,298 ws 1,564 ws 5,582 ws

H-PE (A) 1,332 ws 1,261 ws 1,258 ws 1,542 ws 5,393 ws

C- PE (A) 1,351 ws 1,268 ws 1,273 ws 1,559 ws 5,451 ws

TABLE 2 A sample of MGT, ChatGPT-4o’s post-editing of MGT, and human’s post-editing of MGT for business text.

S The latest estimate is lower than the 3.1 percent GDP growth projected by the IMF in May

MGT بنسبة الإجمالي المحلي الناتج نمو من أقل الأخیر التقدیر 3.1 مایو. في الدولي النقد صندوق توقعھ الذي المائة في

ChatGPT-4oE مایو. شھر في الدولي النقد الصندوق أعلنھا التي الإجمالي المحلي الناتج لنمو ٪٣. بنسبة السابقة التوقعات من أقل الأخیر التقدیر ھذا ویعتبر

HE .٪٣ بنسبة مایو في سابقا الدولي النقد صندوق توقعھ مما اقل الإجمالي المحلي الناتج لنمو الأخیر التقدیر ھذا .ویعتبر

TABLE 3 A sample of MGT, ChatGPT-4o’s post-editing of MGT, and human’s post-editing of MGT for idioms.

S The shared interests provide a strong foundation for friendship, as friends engage in meaningful
conversations and activities they enjoy, as said in “Birds Of A Feather Flock Together”

MGT معاً تتجمع "الطیور یقولون: وكما بھا. یستمتعون ھادفة وأنشطة محادثات في البعض بعضھم مع ینسجمون الذین الأصدقاء یشارك حیث للصداقة، قویاً أساسًا المشتركة الاھتمامات تشكل

ChatGPT-4o E معاً“ تتجمع 'الطیور یقال: كما معاً، بھا یستمتعون ھادفة وأنشطة مغزى ذات محادثات في الأصدقاء یشارك حیث للصداقة، ً قویا ً أساسا تشكل المشتركة .الاھتمامات

HE ھادفة. وأنشطة محادثات في بالمشاركة بعضھم مع المنسجمون الأصدقاء یستمتع حیث للصداقة، قویاً أساسًا المشتركة الاھتمامات تشكل تقع, اشكالھا الطیورعلى القائل: المثل منطلق ”.’من

Data analysis and evaluation

Evaluation measures for ChatGPT-4o and
human post-editing of MGT across multiple
domains

In this section, we analyze the impact of ChatGPT-4o
on machine translation post-editing (MTPE). Based on this
analysis, we attempt to identify patterns, challenges, and areas
for improvement. We comprehensively compare the different
post-editing modes (professional translator’s post-editing and
ChatGPT-4o post-editing) in terms of several key evaluation
measures, including Ęuency, accuracy, efficiency, terminology,
consistency, coherence, grammar, culture, and appropriateness.
Generally, these criteria and standards are used to evaluate and
improve the quality of translation as a machine product. Our
analysis offers insights into ChatGPT-4o’s ability to complement
human expertise in post-editing, highlighting its strengths
and limitations in enhancing the quality and efficiency of
translation workĘows.

Aer it is edited from a machine translation (MT) output, a
text’s linguistic smoothness and naturalness improve. ese metrics
focus on readability, grammar, syntax, and Ęow. As illustrated in
Table 2, in terms of Ęuency (concentrate on readability, grammar,
syntax, and Ęow), in the sentence extracted from a business
text, the MGT version (a Google translate’s generated translation)
looks straight up, simple, and lacks Ęuency but still work as
evaluated by HE. However, to some extent, when prompting
ChatGPT-4o to evaluate the machine-generated translation MGT
sentence structures for the source version (S), the ChatGPT-4oE
version follows the natural Ęow of language compared to MGT,

though it is not perfect like that in the HE version. ChatGPT-
4oE provides a contextual version due to its conversational nature,
enhancing the performance of translation studies. For accuracy,
the ChatGPT-4o post-edited version shows proper punctuation
usage. ere are no spelling errors or typos, but there are slight
errors in the translation grammar, including functional words usage
such as articles as in ChatGPT-4oE phrase/“الدولي النقد ”,الصندوق
“IMF”/, where it adds the article/“the,”ال“ /in the word ”الصندوق“
inappropriately though it is correct in MGT version. However, the
post-edited version by humans looks more cohesive as it maintains
the coherence between sentences and paragraphs compared to the
original version translated by Google Translate and the post-edited
version by ChatGPT-4o.

Table 3 shows the output of the ChatGPT-4o post-editing of the
literary text containing an idiomatic expression. It provides effective
post-editing, showing substantial grammar, sentence structure,
and readability improvements. However, it failed to maintain the
idiomatic meaning for an Arabic audience. It provides accurate,
unique literary phrases speciĕc to the Arabic language that oen
carry cultural, historical, and contextual signiĕcance. As shown
in the example below, both MGT and ChatGPT-4oE provide
Arabic literary translation معاً تتجمع" الطیور for the idiom “Birds
Of A Feather Flock Together.” that is postedited by the human
translator as/“Birds Of A Feather Flock Together, على“ الطیور
تقع /”اشكالھا and reĘects a common challenge in AI’s handling of
nuanced and culturally speciĕc elements and the need for AI to
evolve beyond essential linguistic translations to encompass cultural
interpretations, demanding more sophisticated training datasets
and model enhancements.

As illustrated in Table 4, in the case of the medical terms,
ChatGPT-4o failed to post-edit and provide the accurate Arabic
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TABLE 4 A sample of medical MGT, ChatGPT-4o’s post-editing of MGT, and human’s post-editing of MGT medical texts.

S If a person with astigmatism experiences a healthcare error, it may affect their overall wellbeing
and exacerbate existing vision issues

MGT الحالیة الرؤیة مشكلات تفاقم إلى ویؤدي العامة صحتھ على ذلك یؤثر فقد الصحیة، الرعایة في لخطأ بالاستجماتیزم المصاب الشخص تعرض .إذا

ChatGPT-4oE الحالیة الرؤیة مشكلات تفاقم من یزید وقد العامة صحتھم على ذلك یؤثر فقد الصحیة، الرعایة في لخطأ بالاستجماتیزم المصاب الشخص تعرض .إذا

HE الحالیة الرؤیة مشكلات یفاقم و العامة صحتھ على ذلك یؤثر فقد طبي، لخطأ بالابؤریة المصاب الشخص تعرض .إذا

TABLE 5 A sample of MGT, ChatGPT-4o’s post-editing of MGT, and human’s post-editing of MGT for a literary text.

S I had an elderly neighbor whose conversations were mind-blowing. He told me one day when his
gathering was devoid of people, and no one was sitting with us: “Oh my son, a secret has been
stirring in my heart for forty years regarding what has been discussed during this lengthy period

MGT أربعین منذ قلبي في یتحرك زال ما الطویلة المدة ھذه في ذكر ما سر إن بني یا یجلس: من بیننا یكن ولم الناس من نادیھ خلا وقد یوم ذات لي قال مذھلة. محادثاتھ كانت مسن جار لدي كان
.سنة

ChatGPT-4oE 1. تحرك الطویلة الفترة ھذه خلال ذكره تم ما أسرار كانت إبني، یا بیننا: یجلس أحد ھناك یكن ولم الناس من ً خالیا نادیھ وكان ً یوما لي قال مذھلة. محادثاتھ كانت السن في كبیر جار لدي كان
عامًا أربعین لمدة قلبي .في

HE سنة أربعین منذ صدري في یختلج إنھ ، بنُيَّ یا س: الجلاَّ من أحد فیھ معنا یكن ولم الحضور، من نادیھ خلا وقد — یوم ذات لي فقال العقول، أحادیثھ بسماع یخلب الكھول، من جار لي كان
الألسنة على الطویلة المُدَّة ھذه في ذكره جرى ما .سرٌّ

TABLE 6 Sample of MGT, ChatGPT-4o post-editing of MGT, and human post-editing of MGT for sports text.

S Tsuyoshi Kitazawa, a former member of Japan’s national football team, stressed the role of sport in
building bridges: “whatever you feel in the Games is made possible because the world is playing as
one team,” he said

MGT واحد'' كفریق یلعب العالم لأن ممكنا أصبح الألعاب في بھ تشعر ما "كل الجسور: بناء في الریاضة دور على القدم، لكرة الیاباني الوطني المنتخب في السابق العضو كیتازاوا، تسویوشي .وشدد

ChatGPT-4oE واحد"، كفریق یلعب العالم لأن ممكناً یصبح الألعاب في بھ تشعر "ما الجسور: بناء في الریاضة دور أكد القدم، لكرة الوطني الیابان منتخب في سابق عضو كیتازاوا، .تسویوشي

HE أصبح الریاضیة الألعاب حول بخاطرك یجول ما كل " قائلا: التواصل جسور بناء في الریاضة دور على كیتازاوا، تسویوشي القدم، لكرة الیاباني الوطني المنتخب في السابق العضو واكد
واحد" كفریق یلعب أصبح العالم لأن .ممكنا

equivalents for some medical terms; for example, ChatGPT-4oE
provided literary translation for the phrase “healthcare errors”
as الصحیة“ الرعایة ”أخطاء of which the correct Arabic equivalent
is طبیة“ ”.خطاء In some cases, ChatGPT-4oE failed to provide
any translation for these terms, such as the word “astigmatism.”.
Instead, it gives transliteration for the term as ”.الاستجماتیزم“ while
the correct Arabic translated term is الابؤریة“ ” as edited by HE. In
addition, there is a linguistic agreement error as seen in the anaphor
(possessive pronoun “their”) in the phrase/“their health,” /”صحتھم“
which should be/“his health,” /”صحتھ“ since this phrase refers to
the singular antecedent/“a person,” ./”الشخص“ However, the anaphor
generated by MT agreed with its antecedent. Compared to human
editors, ChatGPT-4o failed to ensure and improve consistency in
terminology and medical terms throughout the text.

ChatGPT-4o struggles to produce an efficient translation in
the case of literary texts, as seen in Table 5 below. ere is a
grammatical error where the singular noun “a secret” in the phrase
“a secret has been …” is translated inappropriately to plural noun
/“secrets,” which/”اسرار“ should be translated to the Arabic singular
noun ”.سر“ Also, the syntactic structures look inferior compared to
MGT and HE versions. ChatGPT-4oE, in the case of literary texts,
shows signiĕcant issues in using correct and consistent terms and
looks poor in its language smoothness and naturalness, cohesion,
grammar, cultural aspects, and terminology handling.

Table 6 shows that ChatGPT-4o failed to appropriately edit the
phrase (’ in building bridges, الجسور“ بناء (”في and provide the same
MGT version (literal translation for this phrase). However, the HE

version/“in building bridges,” جسورالتواصل“ بناء demonstrates/”في
a deeper and more accurate understanding and use of consistent
terms. All these emphasize using ChatGPT-4o with caution in the
translation industry because the HE edition emphasizes promoting
proper contact and understanding between people, which is oen
implied when discussing “Building Bridges.” is version not only
maintains the source phrase’s true meaning but also enriches the
meaning by adding a more nuanced layer of meaning that is
more appropriate and resonant for the reader. In the case of the
phrase/“whatever you feel in the Games,” حول“ بخاطرك یجول ما كل
الریاضیة ,/”الألعاب bothMGT and ChatGPT-4o provide unnatural and
inconsistent translation version/الألعاب في بھ تشعر ”ما في“ بھ تشعر ما كل
compared/”,الألعاب to that provided by HE version.

is demonstrates that ChatGPT-4o fails to communicate the
deeper intent to the audience effectively. ChatGPT-4o provides
accurate numbers, information, and proper names. However,
concerns include sentence structure using compound words,
function words, and word ordering, as seen in Table 6. All of this
highlights the careful use of ChatGPT-4o in the translation industry.

Prompt engineering for enhancing
ChatGPT-4o outcomes

Mostly, it is noticed that the performance of ChatGPT-4o
becomes more meaningful and more profound when we specify
the needs and provide context, background, and a comprehensive
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TABLE 7 ChatGPT-4o post-editing with business texts after prompt engineering.

S The latest estimate is lower than the 3.1 percent GDP growth projected by the IMF in May

MGT مایو في الدولي النقد صندوق توقعھ الذي المائة في 3.1 بنسبة الإجمالي المحلي الناتج نمو من أقل الأخیر .التقدیر

ChatGPT-4oE 1. مایو. شھر في الدولي النقد الصندوق أعلنھا التي الإجمالي المحلي الناتج لنمو ٪٣. بنسبة السابقة التوقعات من أقل الأخیر التقدیر ھذا ویعتبر
2. عند المتوقع الإجمالي المحلي الناتج نمو معدل من أقل الأخیر یعتبرالتقدیر و 3.1% مایو شھر في الدولي النقد صندوق قبل .من

HE ٪٣. بنسبة مایو في سابقا الدولي النقد صندوق توقعھ مما اقل الإجمالي المحلي الناتج لنمو الأخیر التقدیر ھذا .ویعتبر

TABLE 8 ChatGPT-4o outcomes in literary texts after prompt engineering.

S I had an elderly neighbor whose conversations were mind-blowing. He told me one day when his
gathering was devoid of people, and no one was sitting with us: “Oh my son, a secret has been
stirring in my heart for forty years regarding what has been discussed during this lengthy period

MGT أربعین منذ قلبي في یتحرك زال ما الطویلة المدة ھذه في ذكر ما سر إن بني یا یجلس: من بیننا یكن ولم الناس من نادیھ خلا وقد یوم ذات لي قال مذھلة. محادثاتھ كانت مسن جار لدي كان
.سنة

ChatGPT-4oE 1. تحرك الطویلة الفترة ھذه خلال ذكره تم ما أسرار كانت إبني، یا بیننا: یجلس أحد ھناك یكن ولم الناس من ً خالیا نادیھ وكان ً یوما لي قال مذھلة. محادثاتھ كانت السن في كبیر جار لدي كان
عامًا أربعین لمدة قلبي .في
2. عامًا أربعین منذ قلبي في یدور سر ھناك بني، 'یا لي: قال تجمعنا، خلال آخرمعنا أحد ھناك یكن لم و الناس من ً خالیا نادیھ كان ما یوم في استثنائیة. كانت محادثاتھ مسن، جار لدي كان
الطویلة الفترة ھذه خلال جرت التي المناقشات .بشأن

HE ما سرٌّ سنة أربعین منذ صدري في یختلج إنھ ، بنُيَّ یا س: الجلاَّ من أحد فیھ معنا یكن ولم الناس، من نادیھ خلا وقد — یوم ذات لي فقال العقول، أحادیثھ بسماع یخلب الكھول، من جار لي كان
الألسنة على الطویلة المُدَّة ھذه في ذكره جرى

TABLE 9 ChatGPT-4o post-editing in medical after prompt engineering.

S If a person with astigmatism experiences a healthcare error, it may affect their overall wellbeing
and exacerbate existing vision issues

MGT الحالیة الرؤیة مشكلات تفاقم إلى ویؤدي العامة صحتھ على ذلك یؤثر فقد الصحیة، الرعایة في لخطأ بالاستجماتیزم المصاب الشخص تعرض .إذا

ChatGPT-4oE 1. الحالیة الرؤیة مشكلات تفاقم من یزید وقد العامة صحتھم على ذلك یؤثر فقد الصحیة، الرعایة في لخطأ بالاستجماتیزم المصاب الشخص تعرض .إذا
2. الحالیة الرؤیة مشكلات تفاقم الى یؤدي وقد العامة صحتھ على ذلك یؤثر فقد الصحیة, الرعایة في لخطأ بالاستجماتیزم مصاب شخص تعرض .اذا

HE الحالیة الرؤیة مشكلات یفاقم و العامة صحتھ على ذلك یؤثر فقد طبي، لخطأ بالابؤریة المصاب الشخص تعرض .إذا

input “prompt.” For example, giving these details, “post-edit the
Arabic generated translation below from the linguistic perspective,
take the role of a professional grammar corrector, identify business
terms, avoid changing meaning as much as possible” to the prompt
enhances the tool’s outputs.is can be seen in the improvements in
ChatGPT-4oE 2 in Table 7, where the article “the, ”ال is appropriately
used compared to that in the ChatGPT-4oE 1 in the phrase/اصندوق
النقد ”,الدولي“ “IMF”/.

When we give these details “post-edit the Arabic generated-
translation below from the linguistic perspective, take the role of a
professional grammar corrector, identify idiomatic phrases, avoid
changing meaning as much as possible” to the prompt of ChatGPT-
4o in the literary texts, ChatGPT4o corrects its translation and
post-editing. e yield results were more natural and accurate, as
seen in ChatGPT-4o E 2 in Table 8, which shows improvement
in the sentence Ęow compared to ChatGPT-4oE 1 due to some
grammatical and stylistic adjustments. For example, the Arabic
equivalent of the word “elderly” looks more Ęuent in the ChatGPT-
4o E 2 version as ”مسن“ compared to that in the ChatGPT-4o E 1
السن“ في .”كبیر Also, the grammatical mistake in the ChatGPT-4o E
1 version is spotted in the ChatGPT-4o E 2 version, as the word
“secret” is translated to a singular noun ”سر“ instead of plural noun
”اسرار“ like that in ChatGPT-4o E 1.

ChatGPT-4oE 1, in Table 9, displays the result of ChatGPT-
4o outcomes when the prompt is “post-edit.” At the same

time, ChatGPT-4oE 2 shows the ChatGPT-4o outcomes with a
comprehensive prompt, “post-edit the Arabic generated translation
below from the linguistic perspective, take the role of a professional
grammar corrector, identify medical terms, avoid changing
meaning as much as possible.” As seen in ChatGPT-4oE 2, the
tool still shows a deĕciency in providing the correct Arabic
medical translated terms such as ”الابؤریة“ and طبي“ ”خطأ for
the English medical terms “astigmatism” and “healthcare,” even
though the tool is provided with a comprehensive prompt. e
output in ChatGPT-4oE 2 looks identical to that provided without
prompt engineering except for the omission of the article “the,
”ال in words “person, ”شخص and “affected, .”مصاب We notice
grammatical and stylistic improvements in the ChatGPT-4oE 2
version compared to the ChatGPT-4oE 1 version, for example, the
linguistic agreement error in the anaphora (possessive pronoun
’their’) in the phrase/“their health,” is/”صحتھم“ correctly translated
to/“his health,” ./”صحتھ“

In Table 10, the ChatGPT-4o E 2 version shows an enhanced,
Ęuent, and natural post-editing that highlights the role of prompt
engineering in raising the tool’s advanced linguistic capabilities.
is version shows an accurate idiomatic expression, particularly
aer adding a perspective and a contextual background to our
prompt. Interestingly, ChatGPT-4o delivers a precise and culturally
appropriate Arabic translation, تقع“ أشكالھا على ”الطیور for the English
idiom “Birds Of A Feather Flock Together”. However, the tool failed
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TABLE 10 ChatGPT-4o post-editing with idioms after prompt engineering.

S The shared interests provide a strong foundation for friendship, as friends engage in meaningful
conversations and activities they enjoy, as said in “Birds Of A Feather Flock Together”

MGT معاً. تتجمع "الطیور یقولون: وكما بھا. یستمتعون ھادفة وأنشطة محادثات في البعض بعضھم مع ینسجمون الذین الأصدقاء یشارك حیث للصداقة، قویاً أساسًا المشتركة الاھتمامات ”تشكل

ChatGPT-4o E 1. معاً.“ تتجمع 'الطیور یقال: كما معاً، بھا یستمتعون ھادفة وأنشطة مغزى ذات محادثات في الأصدقاء یشارك حیث للصداقة، ً قویا ً أساسا تشكل المشتركة .الاھتمامات
2. تقع أشكالھا على "الطیور المثل: یقول وكما بھا. یستمتعون ھادفة وأنشطة محادثات في یتألفون الذین الأصدقاء یشارك حیث للصداقة، قویاً أساسًا المشتركة الاھتمامات ”.تشكل

HE ھادفة وأنشطة محادثات في بالمشاركة بعضھم مع المنسجمون الأصدقاء یستمتع حیث للصداقة، قویاً أساسًا المشتركة الاھتمامات تشكل تقع, اشكالھا الطیورعلى القائل: المثل منطلق ”.’.من

TABLE 11 ChatGPT-4o post-editing with idioms after prompt engineering.

S Tsuyoshi Kitazawa, a former member of Japan’s national football team, stressed the role of sport in
building bridges: “whatever you feel in the Games is made possible because the world is playing as
one team,” he said

MGT واحد كفریق یلعب العالم لأن ممكنا أصبح الألعاب في بھ تشعر ما "كل الجسور: بناء في الریاضة دور على القدم، لكرة الیاباني الوطني المنتخب في السابق العضو كیتازاوا، تسویوشي .”وشدد

ChatGPT-4oE 1. واحد"، كفریق یلعب العالم لأن ممكناً یصبح الألعاب في بھ تشعر "ما الجسور: بناء في الریاضة دور أكد القدم، لكرة الوطني الیابان منتخب في سابق عضو كیتازاوا، ”تسویوشي
2. العالم لأن ممكناً أصبح الألعاب خلال بھ تشعر ما "كل قائلاً: الجسور بناء في الریاضة دور أھمیة على القدم، لكرة الیاباني الوطني المنتخب في السابق اللاعب كیتازاوا، تسویوشي وشدد
واحد كفریق .”یلعب

HE أصبح الریاضیة الألعاب حول بخاطرك یجول ما كل " قائلا: التواصل جسور بناء في الریاضة دور على كیتازاوا، تسویوشي القدم، لكرة الیاباني الوطني المنتخب في السابق العضو واكد
واحد كفریق یلعب أصبح العالم لأن .”ممكنا

TABLE 12 Human evaluator’s scores for ChatGPT-4o and human post-editing performance across various.

Evaluators Post-
editors

Fluency Accuracy Efficiency Terminology Consistency Cohesion Syntax Grammar Cultural
appropriateness

EV1 ChatGPT-4o 4 4 5 3 3 2 4 4 3

Human 5 5 2 5 4 5 5 5 5

EV2 ChatGPT-4o 3 4 5 3 2 2 4 3 4

Huma 5 5 2 5 5 5 5 5 5

EV3 ChatGPT-4o 4 3 5 3 3 3 4 3 3

Huma 5 5 3 5 5 5 5 5 5

earlier in providing the appropriate Arabic equivalent idiomatic
expression, as shown in ChatGPT-4o E 1.

In Table 11, the ChatGPT-4oE 2 version resulted aer providing
the tool this enhanced prompt, “post-edit the Arabic generated
translation below from the linguistic perspective, take the role
of a professional grammar corrector, identify sport terms, avoid
changing meaning as much as possible”. However, the structure of
this version looks better; like ChatGPT-4oE 1 version, it failed to
provide a suitable translation for the phrases, /“in building bridges,”
“ جسورالتواصل بناء /”في and / “whatever you feel in the Games,”
الریاضیة الألعاب حول بخاطرك یجول ما /كل that highlights the limited
role of ChatGPT4o in providing satisĕed translation in speciĕc
sport-terms as some expressions require deep understanding.

It is worth mentioning that when the tool was asked to
spot mistakes and explain the corrections it made, it did not
identify all the errors from the ĕrst prompt and oen lacked in-
depth explanations. Moreover, at times, it hallucinated, providing
incorrect or irrelevant details. us, when the tool is applied
to medical, legal, ĕnancial, or technical texts, this adequate
performance, even slight errors or ambiguity, would cause damage
consequences. erefore, while the tool is valuable, it requires care
and validation in high-stakes contexts.

Results and discussion

ChatGPT-4o’s post-editing and human post-editing
performance were evaluated by three human evaluators (EV1,
EV2, EV3) across several linguistic aspects: Fluency, Accuracy,
Efficiency, Terminology, Consistency, Cohesion, Syntax, Grammar,
and Cultural for performing the quantitative and qualitative
analysis. e results are measured on a 5-point Likert scale where 1
= Poor, 2= Fair, 3=Good, 4=VeryGood, and 5= Excellent. Aer
collecting the evaluators’ rating scores, we applied a paired t-test
for our statistical analysis because of its effectiveness in comparing
differences between ChatGPT-4o and human post-editing and
determining whether the observed differences were statistically
signiĕcant, providing a reliable and quantitative assessment of
the comparative performance, the average score for each aspect is
depicted in Table 12.

e box-and-whisker plot in Figure 1 shows the average ratings
for ChatGPT-4o and human post-editing across nine evaluation
metrics, showing that human post-editing consistently outperforms
ChatGPT-4o in terms of performance, with signiĕcantly higher
ratings in all categories except efficiency. is highlights the
superiority of human editors in maintaining quality, accuracy,
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FIGURE 1

ChatGPT-4o and human post-editing across nine metrics. Human post-editing outperforms in all categories except efficiency, with higher medians
and tighter interquartile ranges (IQRs) (orange boxes), indicating superior consistency in quality, accuracy, and fluency. ChatGPT-4o (blue boxes)
shows lower ratings and wider IQRs, reflecting variability in handling nuanced language, terminology, and grammar. While ChatGPT-4o maintains
fluency and coherence due to its conversational design, it struggles with technical terms and syntactic precision. Its strength lies in speed, making it
useful for time-sensitive tasks. However, human expertise remains essential for high-quality translations requiring cultural and linguistic nuance.

cultural appropriateness, and Ęuency in translations, as seen from
the higher median lines and smaller interquartile ranges (IQRs) in
the orange boxes for human post-editing. e IQR indicates low
variance and better overall performance. In contrast, ChatGPT-4o
shows lower ratings across these aspects with larger IQRs in the blue
boxes, suggesting more variability and lower overall performance
than human performance. is reĘects a common challenge in
ChatGPT-4o’s handling of nuanced and culturally speciĕc elements
and their idiomatic meaning. It shows some deĕciency in language
smoothness and syntax, such as agreement errors, word order,
and grammatical mistakes related to articles used, as seen in the
analysis section.

In addition, ChatGPT-4o shows signiĕcant issues in the use
of correct and consistent terminological and technical terms and
failed to effectively post-editing. It still appears Ęuent (Maintaining
logical Ęow and coherence between sentences and paragraphs),
precise, consistent in style and tone, and readable throughout
the content due to ChatGPT-4o’s conversational nature. Indeed,
ChatGPT-4o has the potential for rapid processing and editing,
making it a valuable tool for scenarios where speed is critical. While
ChatGPT-4o excels in speed and efficiency, human post-editing
remains crucial for achieving high-quality translations across these
critical aspects.

e heat map in Figure 2 interprets the t-statistic and p-value
values for each aspect when comparing ChatGPT-4o and human
post-editing. e p-value gradient in the heatmap (represented in
the bottom half of the heatmap) highlights statistical signiĕcance,
with green indicating signiĕcant differences (p < 0.05). Most
aspects are shaded green, conĕrming the reliability of the observed
differences, except for Ęuency, which is shaded yellow. e t-
statistic values are represented in the heatmap’s top half, showing
the direction andmagnitude of differences in ratings.e t-statistics

indicate that human post-editing generally outperforms ChatGPT-
4o in most aspects, such as accuracy, terminology, consistency,
cohesion, syntax, grammar, and cultural appropriateness, all
showing signiĕcant negative values (ranging from−3.46 to−8) and
corresponding p-values below 0.05, conĕrming that the differences
are not only substantial but also statistically signiĕcant. However,
regarding efficiency, ChatGPT-4o is rated signiĕcantly higher, with
a positive t-statistic of 8.00 and a p-value of 0.015, indicating that it
ismore efficient than human post-editing.e only aspect where the
difference is not statistically signiĕcant is Ęuency, with a t-statistic of
−3.5 and a p-value of 0.074, suggesting that both methods perform
similarly. Overall, the heatmap underscores ChatGPT-4o’s strength
in efficiency but highlights human post-editing’s superiority in
maintaining quality and accuracy across most aspects.

is study shows that, to some extent, ChatGPT-4o plays
an inĘuential role in improving the post-editing of machine-
generated translations (MGT) in various domains attributed to
its potential to generate Ęuent and natural translation reĘecting
relevant context and literature that is relatedly supporting the
ĕndings of Jiao et al. (2023) and Hendy et al. (2023). According to
Peng et al. (2023), adapting ChatGPT-4o with optimized prompts
and context improves its performance and makes it more suitable
for specialized translation tasks. However, ChatGPT-4o’s results
may be similar to Google Translate or inaccurate without such
optimization. Although ChatGPT-4o cannot provide completely
accurate translations without human intervention, such integration
would signiĕcantly reduce costs, time, and effort and provide
considerable improvements and suggestions. Our analysis found
that ChatGPT-4o can effectively contribute to post-edit generation
and help identify translated content that may require further
consideration or reĕnement. e results generated by ChatGPT-
4o eliminate the need for skilled linguists to manually review

Frontiers in Artificial Intelligence 08 frontiersin.org42

https://doi.org/10.3389/frai.2025.1526293
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Algaraady and Mahyoob 10.3389/frai.2025.1526293

FIGURE 2

T-statistics and p-values comparing ChatGPT-4o and human post-editing. The p-value gradient (bottom half) shows statistical significance, with
green (p < 0.05) indicating meaningful differences. Most aspects are green, except fluency (yellow). The top half shows t-statistics, revealing that
human post-editing outperforms ChatGPT-4o in accuracy, terminology, consistency, cohesion, syntax, grammar, and cultural appropriateness (t =
−3.46 to −8, p < 0.05). However, ChatGPT-4o excels in efficiency (t = 8.00, p = 0.015). Fluency shows no significant difference (t = −3.5, p = 0.074).
The heatmap highlights ChatGPT-4o’s efficiency advantage but confirms most aspects of human post-editing’s superior quality.

TABLE 13 Inter-annotator agreement (IAA) scores.

Metrics ChatGPT-4o
post-edits

Human
post-edits

Average pairwise
Spearman’s rho

0.85 0.99

Fless’Kappa
(quadratic weights)

0.78 0.95

the text, catch errors, give appropriate feedback, and ensure
cultural appropriateness (Khan, 2024; Yang et al., 2023). To assess
to which extent the three evaluators agree in their rating and
thus ensure their reliability, we calculated the Inter-Annotator
Agreement (IAA) using Spearman’s rank correlation coefficient for
pairwise comparisons and Fless’ Kappa with quadratic weighted
for overall agreement as illustrated in Table 13. e evaluators
exhibit a near-perfect agreement for human post-editing, with
pairwise Spearman’s rho value of 0.99 and Fless’Kappa value of 0.85.
For ChatGPT4o editing, the evaluators’ agreement with pairwise
Spearman’s rho value is 0.85, and the Fless’Kappa value is 0.78,
which means there is a substantial agreement among the three
human evaluators.

e values of IAA indicate a high level of reliability across the
three evaluators (EV1, EV2, and EV3), stressing the robustness of
our evaluation process of both human editors and ChatGPT4o as
an editor.

Conclusion

is research provides valuable insights into ChatGPT-4o’s
potential to enhance the MGT post-editing service and its overall
role in assisting human translators with post-editing tasks in various
domains. is study evaluates the post-editing performance of
ChatGPT-4o compared to human editing based on an evaluation
by three human raters on multiple metrics. e results show
that although human post-editing outperforms ChatGPT-4o in
most evaluation metrics, the latter provides a Ęuent translation,
which promises to improve quality, work efficiency, and translation
workĘows in various ĕelds. Additionally, the study found that
ChatGPT-4o’s detailed guidance includes clear task instructions,
contextual information, and a description of the desired results
that will help improve ChatGPT-4o’s functionality. Future research
may explore ChatGPT versions’ use within professional translation
services, especially in enhancing post-editing workĘows, addressing
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the practical challenges, and identifying strategies to overcome
these obstacles. Additionally, domain-speciĕc ĕne-tuning of large-
scale language models (LLMs) using specialized translation datasets
needs exploration. Furthermore, creating and using diverse datasets
that reĘect a broader spectrum of Arabic dialects and text
complexities to improve the generalizability and robustness of LLMs
in translation tasks.
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Arabic stance detection has attracted significant interest due to the growing

importance of social media in shaping public opinion. However, the lack

of comprehensive datasets has limited research progress in Arabic Natural

Language Processing (NLP). To address this, we introduce ArabicStanceX, a

novel and extensive Arabic stance detection dataset sourced from social media,

comprising 14,477 tweets across 17 diverse topics. Utilizing the transformer-

based MARBERTv2 model, we explore stance detection through Multi-Topic

Single Model (MTSM) strategies, achieving a promising F1 score of 0.74 for

detecting ‘favor’ and ‘against’ stances, and 0.67 overall. Our experiments highlight

the model’s capabilities and challenges, particularly in accurately classifying

neutral stances and generalizing to unseen topics. Further investigations using

zero-shot and few-shot learning demonstrate the model’s adaptability to

new contexts. This study significantly advances Arabic NLP, providing crucial

resources and insights into stance detection methodologies and future research

directions. The dataset is publicly available1.

KEYWORDS

stance detection, Arabic language, opinion mining, social media analysis, Arabic NLP

1 Introduction

The digital era, marked by rapid technological advancements, constantly redefines

our communication methods. New social media platforms emerge daily, promoting

widespread connection and opinion sharing. Currently, over 58% of the global population

uses social media, spending an average of 2–3 h online each day (Al Hendi, 2024).

A platform of significant interest to researchers is X.com (formerly Twitter), renowned

for its ability to facilitate opinion expression. The diverse information within tweets

provides valuable insights into public stance and behavior, fueling interest in “opinion

mining” across fields such as Natural Language Processing (NLP) and social computing.

The primary goal is to develop automated methods for measuring public opinion,

supplementing traditional surveys.

Stance detection, a notable subfield of opinion mining, focuses on identifying whether

an author’s viewpoint in the text is supportive, opposing, or neutral toward a specific

topic, such as an individual, legislation, or event. This task is crucial for applications like

social media monitoring, opinion mining, and political analysis. For example, the tweet

“Handguns should be banned in the US” illustrates a supportive stance on gun control.

1 https://github.com/AliAlkhathlan/ArabicStanceX and https://huggingface.co/datasets/Faris-ML/

ArabicStanceX.
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With the proliferation of online platforms for sharing opinions,

NLP research in stance detection has grown substantially. A

pivotal development was the release of a stance detection dataset

by Mohammad et al. (2016). Recent advancements in NLP and

deep learning, particularly the development of transformer-based

models like BERT (Bidirectional Encoder Representations from

Transformers) (Devlin et al., 2019), have significantly enhanced

stance detection capabilities. BERT’s bidirectional fine-tuning

approach allows it to understand the context of words within a

sentence, making it highly effective for a wide range of NLP tasks.

Despite BERT’s success in many languages, applying such

models to Arabic text presents unique challenges due to the

language’s complex morphology, dialectal variations, and rich

contextual semantics. Most stance detection research has focused

on English due to the abundance of available datasets. However,

other languages, like Arabic, have received less attention, with

Arabic stance detection datasets being limited in terms of topic

and diversity. This lack of comprehensive datasets represents a

significant gap in NLP research.

This research aims to advance Arabic stance detection by

introducing ArabicStanceX, a comprehensive and diverse dataset

that can serve as a benchmark for a wide range of language models.

To demonstrate its effectiveness, we evaluate it using MARBERTv2,

a strong Arabic-specific baseline. It addresses the gap in available

datasets by developing a comprehensive and diverse Arabic

stance detection dataset from X.com tweets, called ArabicStanceX,

focusing on Saudi Arabia due to its high X.com usage and active

social media discussions. The number of X.com users in Saudi

Arabia reached 5 million in 2012 and has since grown by 160%,

reached ∼13 million users by 2020 (Simsim, 2011). Addaitionally,

recent legislation has sparked extensive discussions and debates

among Saudis on social networks. While X.com is also widely

used across other Arab countries, this study specifically focuses on

Saudi Arabia due to both the platform’s high penetration and the

sociopolitical context that has triggered extensive public discourse

in recent years. We acknowledge that this geographical focus may

limit the generalizability of findings to other regions. However,

the methodology and insights gained here lay the foundation for

broader extensions to other Arabic-speaking communities.

This study introduces ArabicStanceX, an extensive dataset for

Arabic stance detection comprising 14,477 instances across 17

topics, which will be publicly accessible to foster further research.

It focuses on developing adaptable models for unseen topics

using zero-shot and few-shot learning methodologies, evaluating

various fine-tuning strategies with the MARBERTv2 model. The

research investigates Single Topic Single Model (STSM) and Multi

Topics Single Model (MTSM) approaches, enhancing MTSM with

additional contextual information. Using Favg2 and Favg3 metrics,

it assesses precision and recall for “favor” and “against” stances.

Overall, the study makes significant contributions to Arabic NLP

by providing a valuable dataset, exploring model adaptability, and

evaluating effective fine-tuning and contextual strategies.

The rest of the paper is organized as follows: Section 2

reviews related work in stance detection, with a particular focus

on previous datasets and methodologies. Section 3 details the

methodology for developing the Arabic stance detection dataset,

including data collection and annotation processes. Section 4

describes the experimental setup, including the BERT model,

its hyperparameter tuning, and performance metrics. Section 5

presents the experimental results and their analysis. Finally, Section

6 concludes the paper and outlines promising directions for

future research.

2 Related work and background

Stance detection research on social media platforms has gained

significant traction in recent years. This research can be categorized

into four main categories.

1. Target-specific: this category focuses on recognizing stances

toward specific, predefined targets. For example, it identifies

opinions related to particular issues like civil rights, where the

stance is evaluated directly against a clearly defined subject.

2. Multi-related targets: in this approach, a single model is used

to identify stances toward two or more interrelated subjects

within the same text. For instance, the model might analyze

the connection between civil rights and the death penalty,

recognizing how opinions on one issue might influence or

correlate with opinions on the other.

3. Cross-target: this category aims to develop classifiers that

can transfer knowledge between various targets using a

comprehensive dataset. The goal is to create models that are

versatile and can apply learned stances from one target to

different, previously unseen targets, thus enhancing the model’s

generalizability and adaptability.

4. Target-independent: this approach seeks to identify stances

in comments related to news articles, focusing on tasks like

confirming or denying the validity of the information or

predicting whether different arguments support the same stance.

This method does not rely on predefined targets but instead

evaluates stances based on the context of the discussion.

These classifications help structure stance detection research,

guiding the development ofmodels andmethods tailored to specific

needs and applications in analyzing and understanding public

opinions across various domains.

The field of stance detection received a significant boost with

the launch of a shared task and the subsequent release of a

publicly available dataset by Mohammad et al. (2016, 2017). This

dataset, sourced primarily from X.com and focusing on predefined

controversial topics like climate change and abortion, significantly

increased research output compared to previous years (AlDayel

and Magdy, 2021). Annotators on CrowdFlower categorized tweet-

topic pairs into three stances: favor, against, or neutral.

Since then, additional stance detection datasets have emerged,

catering to various domains. A substantial dataset of over 51,000

tweets focused on the financial domain was introduced in Conforti

et al. (2020). The TW-BREXIT dataset, presented in Lai et al.

(2020) contains 1,800 triplets of tweets related to the stance on

leaving, remaining, or having no opinion on Brexit. Similarly,

datasets addressing other controversial topics have been developed

(Hosseinia et al., 2020; Grimminger and Klinger, 2021; Li et al.,

2021; Gautam et al., 2020; Thakur and Kumar, 2021).

The investigation of stance detection has also expanded to

include target-independent approaches, garnering considerable

research interest. For instance, Gorrell et al. (2019) presented
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RumourEval, a claim-based dataset designed for stance

classification within the context of rumors. This dataset covers

a broad spectrum of events and categorizes tweets into four

distinct stances: support, deny, query, or comment. Similarly,

Hanselowski et al. (2018) proposed another dataset aimed at

assessing stances toward various news headlines. These efforts

are just a few examples, with additional datasets emerging in

this vein by Ferreira and Vlachos (2016); Bar-Haim et al. (2017).

Research has also explored cross-target stance detection (Allaway

and McKeown, 2020; Vamvas and Sennrich, 2020; Kaur et al.,

2016) and multi-target stance detection (Sobhani et al., 2017).

Furthermore, efforts have been made to extend stance detection

research to non-English languages, including Italian (Cignarella

et al., 2020) and Spanish/Catalan (Taulé et al., 2017).

While stance detection datasets abound for English, Arabic

resources remain scarce. A notable contribution is the fact-

checking corpus by Baly et al. (2018), which links 402 Arabic claims

to retrieved documents using a four-class stance scheme (agree,

disagree, discuss, unrelated), annotated via crowdsourcing. While

the dataset includes rationale spans for some labels, it is oriented

toward long-form claim-document verification rather than general-

purpose stance modeling. The Arabic News Stance corpus by

Khouja (2020) comprises 3,786 claims, annotated through a multi-

stage crowdsourcing process. It employs a three-class scheme

(agree, contradict, other), merging “discuss” and “unrelated” into

a single label to reduce ambiguity. While the dataset emphasizes

real news headlines and achieves high inter-annotator agreement,

it exhibits class imbalance and possible paraphrasing-induced

variability.

AraStance (Alhindi et al., 2021) offers 4,063 claim–article pairs

across multiple domains and Arab countries, labeled by graduate

annotators using a four-class scheme (agree, disagree, discuss,

unrelated). While its broad topical scope and refined annotation

process enhance reliability, the dataset remains rooted in formal

news sources and exhibits class imbalance. Expanding the options

for Arabic stance detection, Alturayeif et al. (2022) introduced

MAWQIF, a multi-dimensional dataset containing 4,121 Arabic

tweets annotated for stance, sentiment, and sarcasm via Appen

crowdsourcing. The stance labels follow a target-specific three-class

scheme (favor, against, none), applied across three controversial

topics. Although MAWQIF supports multi-task learning and

includes dialectal variation, its coverage is limited to predefined

targets, and it exhibits class imbalance due to low representation

of neutral stances. Additionally, Jaziriyan et al. (2021) introduced

EXaASC, a target-based stance dataset containing 9,566 Arabic

tweet–reply pairs annotated by trained native speakers using

a three-class scheme. With over 180 unique targets, it offers

broad generalization potential, though its reply-based structure

introduces conversational bias and a high proportion of none

labels.

Table 1 summarizes these datasets, providing details on their

name, language, stance type, text source, and size.

Research in stance detection has advanced significantly, but

several notable gaps persist. Firstly, there is a scarcity of data in non-

English languages, with most research focusing on English datasets.

While efforts like AraStance and MAWGIF have contributed

to Arabic resources, they remain more minor and less diverse

compared to their English counterparts. Secondly, existing models

often struggle with generalizability, especially when faced with

unseen topics or targets. Cross-target stance detection methods

aimed at enhancing adaptability to new targets with limited data are

still in development. Additionally, current models primarily focus

on explicit language, overlooking the role of context and implicit

cues in sentence analysis. Elements like sarcasm and humor can be

challenging for these models to interpret accurately.

To bridge these gaps, this study prioritizes creating more

prominent and varied datasets in Arabic and other languages.

Techniques like few-shot learning and domain adaptation have

the potential to enhance model generalizability. Furthermore,

incorporating contextual cues and sentence analysis can better

capture the subtleties of human language. Through these efforts,

stance detection can evolve into a more powerful tool for

deciphering public opinion across diverse linguistic and cultural

landscapes.

3 Methodology for ArabicStanceX
dataset development

In this section, we detail the methodologies utilized in

constructing the ArabicStanceX dataset. Our primary aim is to

create a comprehensive, multi-topic dataset in Arabic that sets itself

apart from previous datasets by offering extensive coverage and

suitability for addressing novel targets, thus expanding its potential

applications. Our research focused on data spanning from 2015 to

2021 in Saudi Arabia, a period marked by significant controversies.

The dataset was sourced from X.com, making it currently the

most exhaustive Arabic stance dataset available. The methodology

for developing the Arabic stance detection dataset is illustrated in

Figure 1 and described in the following subsections.

3.1 Data collection and filtering

Our initial step was to create a collection of pre-defined,

controversial topics that would elicit strong opinions. We achieved

this by first extracting all hashtags from X.com within Saudi

Arabia between 2015 and 2021. We then analyzed these hashtags

to identify potential topics. Specifically, we manually reviewed the

most frequently occurring hashtags and selected those that were

associated with real-world events, public policies, or debates that

sparked polarized public engagement. Hashtags were grouped into

candidate topics if they reflected a clearly defined issue with both

supportive and opposing discourse. Once a topic was identified, we

used its relevant keywords to find all related hashtags, ensuring a

broad spectrum of areas like sports, economy, education, health,

religion, and culture (details in Table 1).

To capture a diverse range of viewpoints, we collected hashtags

representing both supportive and opposing stances for each topic.

For instance, on the topic of women driving, we included hashtags

like “#WomenShouldDrive” and “#WomenShouldNotBeDriving.”

This approach ensured we captured a spectrum of opinions, from

agreement to disagreement.
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TABLE 1 Summary of stance detection datasets by name, language, source, and size.

Name Language Stance type Text source Size

SemEval2016-Task 6 (Mohammad et al., 2016, 2017) English Target specific X.com 4,163 tweets

WT-WT (Conforti et al., 2020) English Target specific X.com 51K

TW-BREXIT (Lai et al., 2020) English Target specific X.com 1,800 triplets of tweets

Procon20 (Hosseinia et al., 2020) English Target specific procon.org 6,094 of question and opinion

Hateful/offensive speech (Grimminger and Klinger, 2021) English Target specific X.com 3K tweets

P-stance (Allaway and McKeown, 2020) English Target specific X.com 21,574 tweets

MeTooMA (Gautam et al., 2020) English Target specific X.com 9,973 tweets

RumourEval (Gorrell et al., 2019) English Target independent X.com and Reddit 8,574 posts

FNC-1 (Hanselowski et al., 2018) English Target independent News websites 75,385 instances and 2,587

news headlines

Emergent (Ferreira and Vlachos, 2016) English Target independent Different websites 300 claims and 2,595 articles

IBM debater (Bar-Haim et al., 2017) English Target independent Wikipedia 2,394 claims

Vast (Allaway and McKeown, 2020) English Cross target News website 23,525 comments

X-stance (Vamvas and Sennrich, 2020) Italian German French Cross target Smartvote.org 65 K

Multi-target SD (Sobhani et al., 2017) English Multi target X.com 4,455 tweets

SardiStance (Cignarella et al., 2020) Italian Target Specific X.com 3,242 tweets

IberEval (Taulé et al., 2017) Spanish and Catalan Target specific X.com 11 K

Arabic fact checking (Baly et al., 2018) Arabic Target independent Verify and Reuters 402 claims and 3,042

documents

Arabic news stance (Khouja, 2020) Arabic Target independent News websites 3,786 pairs (claim, evidence)

AraStance (Alhindi et al., 2021) Arabic Target independent Fact-checking websites 4,063 pairs of claim and article

MAWGIF (Alturayeif et al., 2022) Arabic Target specific X.com 4,121 tweets

EXaASC (Jaziriyan et al., 2021) Arabic Cross-target X.com 9,566 samples, and 180 targets

After collecting the data, we organized it into distinct domains,

each containing specific topics with their associated hashtags and

tweets. We then performed several preprocessing steps:

1. Language filtering: we filtered out all non-Arabic tweets,

keeping only Arabic content.

2. Noise removal:we removed retweets, user mentions, URLs, and

duplicate tweets. To identify subtle duplicates, we employed

SentenceTransformer “paraphrase-xlm-r-multilingual-v1” by

Reimers and Gurevych (2019) to measure tweet similarity.

Tweets with a cosine similarity exceeding 0.95 were discarded.

3. Advertisement removal: analysis of a random sample of 1,000

tweets revealed that tweets with four or more hashtags were

predominantly advertisements. Consequently, we eliminated all

such tweets from the dataset.

Table 2 provides a list of the domains and their associated target

topics.

3.2 Data annotations

To ensure the accuracy of our stance labels, we partnered

with Wosom, a Saudi company staffed with native Arabic speakers

(Wosom, 2024). Wosom took on the responsibility of both

conducting the annotations and upholding high-quality standards

throughout the process.

Before embarking on the main annotation task, we initiated a

pilot test using a smaller subset of the data. The purpose of this

pilot test was to confirm the clarity of our annotation guidelines and

validate the functionality of the annotation tools.We conducted the

pilot test through multiple iterations, reviewing a random sample

of 50 tweets from various topics after each iteration to identify and

address any potential issues.

Three native Saudi speakers were meticulously selected

based on their language proficiency, attention to detail, and

relevant domain expertise to annotate each tweet. Subsequently,

these annotators underwent rigorous training on the annotation

guidelines and the Wosom annotation platform. They were

provided with clear instructions and relevant examples to ensure

the accuracy of their annotations. Throughout the annotation

process, continuous feedback from reviewers and validators was

incorporated to maintain high-quality standards. Each of the

14,477 tweets was independently annotated by all three annotators

to ensure consistent labeling and enable majority agreement.

In instances of disagreement regarding the classification of a

tweet, an adjudication method was implemented. This involved

applying established criteria or engaging in group discussions

facilitated by a designated team member to reach a consensus.
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FIGURE 1

Methodology—ArabicStanceX dataset creation.

The annotators categorized tweets related to each topic into

three distinct categories: “favor,” “against,” or “none.” Tweets

expressing explicit or implicit support for the topic were labeled as

“favor,” while those opposing the topic in either direct or indirect

ways were labeled as “against.” Tweets that did not express a

stance or were unrelated to the topic, such as advertisements, were

categorized as “none.”

3.3 Dataset statistics

The ArabicStanceX dataset comprises 17 distinct topics with

a total of 14,477 samples. To gauge the agreement between

annotators, we computed an average Fleiss Kappa score of 0.54

across all topics. Subsequently, we partitioned the dataset into

training and testing sets, utilizing an 80:20 split for model

development and evaluation. Detailed statistics for individual

topics within both sets are presented in Table 3.

Figure 2 illustrates the distribution of topics within the dataset,

with a predominant focus on Religion/Culture (31.2%), followed by

Education (19.1%), Economy (18.7%), Other (12.9%), and Health

(12.9%). Sports constitute the most minor portion at 5.04%.

Further granularity is provided in Figure 3, which delineates the

distribution of training and testing samples across these domains.

This meticulously organized structure underscores the dataset’s

diversity and its coverage of a wide array of topics. Such diversity

lays a robust groundwork for conducting thorough analyses and

developing resilient Arabic stance detectionmodels. The structured

approach facilitates nuanced research and model training, thereby

contributing to advancements in Arabic computational linguistics.

4 Experimental setup

In evaluating the efficacy of the ArabicStanceX dataset,

we harnessed the power of the BERT (Bidirectional Encoder

Representations from Transformers) architecture across different

contexts. This section provides insights into BERT and the

particular models we utilized for assessment. Additionally,

we delve into the experimental configuration, encompassing

Frontiers in Artificial Intelligence 05 frontiersin.org50

https://doi.org/10.3389/frai.2025.1615800
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Alkhathlan et al. 10.3389/frai.2025.1615800

TABLE 2 Details of the specific domains and their related topics.

Domain Topic Topic description

Economy Aramco Share Selling Aramco made available a part of their total company shares, amounting to 1.5%, for

trading among the general public.

Al-Qiddiya Project Al-Qiddiya is a Saudi sport, cultural, and entertainment project which will be located in

the city of Al-Qiddiya, which serves as a high-quality entertainment and social destination.

Neom City The Kingdom of Saudi Arabia has planned to construct a novel urban district, Neom, in

the northwestern Tabuk Province.

Education Teaching Chinese Language at School The Saudi Ministry of Education has announced to include Chinese language in the

curriculum of Saudi public schools.

Improve School Curriculum The Saudi Ministry of Education unveiled a new educational system and curriculum that

comprises new subjects and a reduction in the number of classes for religious studies.

Online Learning Transitioning from conventional to online teaching during COVID-19

Health COVID-19 Vaccine The Saudi authorities are mandating that Saudi citizens receive the COVID-19 vaccine.

Vaccine Booster Dose The Saudi authorities are mandating that Saudi citizens receive the COVID-19 booster

dose.

Sports Prince Abdulaziz bin Turki Head of Sports Minister Appointing Prince Abdulaziz bin Turki as a minister of sports.

Prince Faisal bin Turki as Resignation from a Saudi club Prince Faisal bin Turki as resignation from Al-nasser Saudi club.

Religion/ Cultural Sex Education Implementing a sex education curriculum in Saudi public school.

Coexistence with Religions The peaceful coexistence and dialogue among religions.

Women driving Allowing women to drive in Saudi Arabia.

Mosques Speakers Limiting the utilization of mosque loudspeakers exclusively for the Adhan (the call to

prayer) while retaining their use within the mosque premises during prayer times.

Polygamous marriage Deciding whether to endorse the concept of simultaneous multiple spouses.

Other Domestic tourism Supporting domestic tourism in the Kingdom of Saudi Arabia

Military conscription The mandatory enlistment of Saudi citizens in the armed forces

hyperparameter adjustments, and elucidate the performance

metrics employed to measure the effectiveness of the models.

4.1 Model selection

This research leverages the power of Bidirectional Encoder

Representations from Transformers (BERT) as the cornerstone

of the ArabicStanceX dataset model. Developed by Google AI,

BERT stands out for its exceptional ability to grasp the intricate

relationships between words within a sentence (Devlin et al., 2018).

Unlike traditional models that process text word by word, BERT

employs a bidirectional approach. It analyzes both the preceding

and following words, enabling it to capture the subtle nuances of

language with remarkable precision. This bidirectional processing

allows BERT to unlock the more profound meaning inherent in the

text. By pre-training on massive amounts of text data, BERT learns

to encode rich contextual information. This empowers it to excel

in various Natural Language Processing (NLP) tasks, including

sentiment analysis, text classification, and question answering.

In the realm of stance detection, where understanding an

author’s sentiment toward a topic is crucial, BERT’s bidirectional

processing proves invaluable. It delves into the full context of

an Arabic sentence to discern whether the author’s stance is

supportive, opposing, or neutral regarding the embedded topic.

However, to harness BERT’s full potential for Arabic stance

detection, fine-tuning is essential. This process involves adjusting

BERT’s internal parameters specifically for this task. Essentially,

we train BERT to recognize the subtle ways in which stance is

expressed within Arabic text. Through fine-tuning, BERT becomes

adept at navigating the nuances of the Arabic language, offering

valuable insights into public opinion and sentence across diverse

topics and discussions.

We investigate different approaches for fine-tuning BERT

during this phase, as outlined below:

1. Single Topic Single Model (STSM): in the STSM strategy, we

employ a single input BERT structure. Initially, our focus was

on fine-tuning a dedicated BERT-based model for each specific

topic. This involved adjusting the weights of the pre-trained

model to understand better the overall context and unique

characteristics of each topic. The objective was to develop

specialized models tailored to individual subject areas. However,

we ultimately reconsidered this approach due to its consistent

failure to capture the “None” stance across various topics

effectively. This limitation revealed challenges in generalizing

the models and accurately representing less common classes

within single-topic analysis.

2. Multi Topics Single Model (MTSM): in the MTSM approach,

we simultaneously fine-tune a single BERT-based model across

all topics. This method allows the model to learn from a

diverse range of subject matters in a unified manner, potentially

improving its ability to discern commonalities and differences
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TABLE 3 Data statistics for each label across all topics, segmented into the training and testing sets.

Domain Topics # Training samples (80%) # Testing samples (20%) Total
samples

Favor Against None Total Favor Against None Total

Education Teaching Chinese language at

school

336 297 65 698 85 75 17 177 875

Improve School Curriculum 308 390 87 785 77 98 22 197 982

Online Learning 297 326 111 734 75 82 28 185 919

Health COVID-19 Vaccine 330 361 46 737 83 91 12 186 923

COVID-19 Vaccine Booster

Dose

280 372 105 757 70 93 27 190 947

Economy Aramco Share Selling 297 293 132 722 75 74 34 183 905

Al-Qiddiya Project 500 128 80 708 125 32 21 178 886

Neom City 406 193 133 732 102 49 34 185 917

Other Domestic Tourism 340 183 216 739 85 46 54 185 924

Military Conscription 328 324 106 758 82 81 27 190 948

Sport Prince Abdulaziz bin Turki

Head of Sports Minister

63 72 100 235 16 18 60 94 329

Prince Faisal bin Turki’s

Resignation from a Saudi club

100 61 123 284 70 16 31 117 401

Religion/

Culture

Women Driving 372 268 116 756 93 68 30 191 947

Mosques Speakers 140 428 106 674 35 107 27 169 843

Polygamous marriage 306 252 112 670 77 64 28 169 839

Sex education 324 336 113 773 81 84 29 194 967

Coexistence with religions 253 168 317 738 64 43 80 187 925

Total 4980 4452 2068 11500 1295 1121 561 2977 14477

among topics. By fine-tuning the model on a broader dataset, we

aim to enhance its generalization capabilities and its proficiency

in handling multiple topics within a single framework. MTSM

involves fine-tuning a combined dataset with variations in input

data structure:

• MTSM-None: this model utilizes a single input sequence

BERT architecture, fine-tuning the language model based

solely on the tweet content without additional contextual

information. The aim is to evaluate the model’s stance

inference capability from tweet text alone.

• MTSM-Keywords: employing a two-input-sequence

BERT architecture, this method incorporates topic-specific

keywords along with the tweets during fine-tuning.

Including keywords aims to enhance the model’s sensitivity

to topic-specific nuances.

• MTSM-TopicDescription: to ensure themodel adequately

captures topic-related nuances, we explore two strategies

for providing it with sufficient topic description. The

first strategy involves manually crafting a template-

based description for each topic, guiding the content of

the descriptions. The second strategy leverages GPT-4-

ChatGPT to automatically generate relevant descriptions

for each topic, potentially increasing scalability. An

example of MTSM-Topic Description for teaching Chinese

language in Saudi schools is provided in Figure 4.

4.2 Experimental design

This section elucidates the specific variant of the BERT model

employed in our study, the process of hyperparameter tuning, and

the performance metrics utilized for evaluation.

4.2.1 BERT model used
In this study, we employed the MARBERTv2 model,

renowned for its exceptional performance in handling various

Arabic dialectal tasks (Elmadany et al., 2022). The selection of

MARBERTv2 was motivated by its state-of-the-art capabilities

in comprehending and processing the intricacies of Arabic

dialects, rendering it particularly well-suited for our stance

detection task across a wide array of topics sourced from social

media data. MARBERTv2 was fine-tuned on our dataset, as

outlined in the Model section, utilizing the Multi Topics Single

Model (MTSM) approach simultaneously across all topics.

Additionally, we experimented with both single and two-input
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BERT architectures. In all our methodologies, we utilized the

BERT [CLS] token as the text representation embedding of the

input text.

4.2.2 Hyperparameters tuning
In optimizing the hyperparameters for theMARBERTv2model,

our strategy aimed to fine-tune the settings to improve both

fine-tuning efficiency and model performance. We employed the

AdamW optimizer (Kingma and Ba, 2014), renowned for its

effectiveness in handling sparse gradients on noisy problems. Our

experiments utilized a constant learning rate of 2e-5, supplemented

by beta coefficients of 0.9 and 0.999, and an epsilon value of

1e-8 to ensure robust convergence. To prevent overfitting, the

model underwent a weight decay of 0.001 and employed a dropout

rate of 0.1. The fine-tuning spanned 25 epochs with a batch size

of 32. Input sequences were restricted to 128 tokens for single

inputs and extended to 512 for composite inputs involving topics,

balancing computational resources with comprehensive contextual

understanding.

FIGURE 2

Distribution of samples across dataset domains.

4.2.3 Evaluation metrics
Our evaluation of the baseline models centers on two

specialized metrics: Favg2 and Favg3 scores. The Favg2 score

represents a macro-average F1 score tailored for the “favor” and

“against” stance labels, deliberately excluding the “none” class due

to its minimal presence in our dataset. The Favg2 score is computed

using Equation 1.

Favg2 =
Ffavor + Fagainst

2
(1)

Here, Ffavor and Fagainst represent the F1 scores for the “favor”

and “against” classes, respectively. These scores are derived from

the precision and recall of each class as per Equations 2–3.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

We opted for the Favg2 metric to ensure alignment with other

stance detection studies that report their findings using the same

metric (Mohammad et al., 2016).

In addition to Favg2, we present results using the Favg3 metric,

which accounts for all stance labels, including “none". The Favg3
score represents an average of the F1 scores for all three stances

and is calculated as per Equation 4.

Favg3 =
Ffavor + Fagainst + Fnone

3
(4)

By reporting both Favg2 and Favg3 scores, our evaluation

provides a comprehensive reflection of the model’s performance in

stance detection, encompassing both specific and overall detection

capabilities.

FIGURE 3

Distribution of class labels for training and testing sets across domains in the dataset.
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FIGURE 4

Example of manually crafted and ChatGPT generation of topic description for the topic of teaching Chinese language in Saudi schools. (a) Manually

crafted topic description. (b) opic description generation by ChatGPT-GPT4.

5 Experiments and result analysis

We assessed the efficacy of the ArabicStanceX dataset,

MARBERTv2, an Arabic Language Model, for stance detection

across a range of topics. Our evaluations encompassed various

fine-tuning approaches within the MTSM framework, including

scenarios involving few-shot learning. Performance of different

methods was gauged based on the ArabicStanceX dataset using

performance metrics outlined in Section 4.2.3.

5.1 Performance analysis of MTSM model

We performed a series of experiments using the MTSM model

with the ArabicStanceX dataset. The results are showcased in

Table 4 employing theMTSM-None approach. In this experimental

setup, the model fine-tunes a BERT-based language model solely

on tweets without supplementary context, leading to notable

performance variations across different topics. For example, the

model achieves high F1 scores for “favor” and “against” classes

in education-related topics like “Teaching Chinese Language at

School.” However, scores are notably lower for topics involving

specific individuals, such as “Prince Abdulaziz bin Turki, Head of

SportsMinister,” suggesting challenges in stance detection when the

input lacks contextual cues. The average F1 scores indicate that

while the model performs adequately in some areas, it struggles

in contexts requiring a deeper understanding of sentence, as

evidenced by lower scores in complex social topics.

Table 4 shows the performance of the MTSM-None approach,

which uses BERT to classify stances based solely on the tweet

content for various topics in the dataset. The table includes

F1 scores for three categories: “favor,” “against,” and “none.”

The F1 score is a metric that balances precision (accuracy of

identifications) and recall (completeness of identifying positive

cases). The obtained results are explained below.

1. Overall performance: the average F1 score across all topics

considering both “favor” and “against” stances (Favg2) is 0.74,

with an average considering all three stances (Favg3) being 0.66.

This indicates that themodel performsmoderately well in stance

detection using only tweet content.

2. Topic-wise performance: the performance varies depending on

the topic. Some topics like “Teaching Chinese Language at
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TABLE 4 F1 scores for “favor,” “against,” and “none” stances using

MTSM-None).

Topic Ffavor Fagainst Fnone Favg2 Favg3

Teaching Chinese Language at

School

0.90 0.91 0.46 0.90 0.75

Improve School Curriculum 0.91 0.887 0.40 0.89 0.73

Online learning 0.88 0.88 0.67 0.88 0.81

COVID-19 Vaccine 0.80 0.80 0.31 0.80 0.64

COVID-19 Vaccine Booster

Dose

0.82 0.77 0.54 0.79 0.71

Aramco Share Selling 0.84 0.89 0.66 0.87 0.80

Al-Qiddiya Project 0.89 0.63 0.41 0.76 0.64

Neom City 0.90 0.79 0.65 0.84 0.78

Domestic Tourism 0.74 0.67 0.52 0.70 0.64

Sex Education 0.75 0.75 0.54 0.75 0.68

Coexistence with Religions 0.60 0.51 0.66 0.56 0.59

Military Conscription 0.76 0.77 0.64 0.77 0.73

Prince Abdulaziz bin Turki

Head of Sports Minister

0.40 0.51 0.63 0.45 0.51

Prince Faisal bin Turki as

Resignation from a Saudi club

0.48 0.36 0.45 0.42 0.43

Women_Driving 0.79 0.69 0.45 0.74 0.65

Mosques Speakers 0.57 0.76 0.24 0.67 0.53

Polygamous Marriage 0.83 0.83 0.49 0.83 0.71

AVERAGE OVER Avg2 & Avg3 0.74 0.66

School” and “Aramco Share Selling” achieved high F1 scores

for both “favor” and “against” stances (above 0.9 for Favg2).

This suggests the model can effectively classify tweets expressing

explicit opinions on these topics.

3. Neutral stance (“none") classification: the model struggles with

identifying neutral stances (“none") across most topics. This

is evident from the consistently lower F1 scores for “none”

compared to “favor” and “against.” Topics like “Coexistence

with Religions” and “Mosques Speakers” show particularly low

scores for “none,” indicating difficulty in distinguishing neutral

tweets from those expressing an opinion on these sensitive

subjects.

Overall, the results suggest that the MTSM-None approach

achieves reasonable performance in stance detection for some

topics with explicit opinions expressed in the tweets. However, the

model has limitations in identifying neutral stances, especially for

sensitive or complex topics. This highlights the potential need for

incorporating additional information beyond just tweet content,

such as topic descriptions or keywords, to improve the model’s

ability to handle diverse stances and topics.

Table 5 shows the performance of the MTSM-Keywords fine-

tuning approach for stance detection on various Arabic topics.

Each row represents a specific topic identified by its keywords.

The columns “Ffavor ,” “Fagainst ,” and “Fnone” present the F1 scores,

a metric used to evaluate model performance, for tweets classified

TABLE 5 F1 scores for “favor,” “against,” and “none” stances using

MTSM-Keywords.

Topic keywords With topic keywords

Ffavor Fagainst Fnone Favg2 Favg3

Teaching Chinese Language

at School

0.9 0.91 0.62 0.9 0.81

Improve School Curriculum 0.79 0.83 0.43 0.81 0.68

Online Learning 0.92 0.91 0.73 0.91 0.85

COVID-19 Vaccine 0.83 0.8 0.29 0.82 0.64

COVID-19 Vaccine Booster

Dose

0.82 0.84 0.59 0.83 0.75

Aramco Share Selling 0.81 0.88 0.64 0.85 0.78

Al-Qiddiya Project 0.88 0.67 0.5 0.78 0.68

Neom City 0.89 0.75 0.66 0.82 0.77

Domestic Tourism 0.64 0.57 0.49 0.61 0.57

Sex Education 0.72 0.8 0.56 0.76 0.69

Coexistence with Religions 0.44 0.44 0.63 0.44 0.5

Military Conscription 0.72 0.7 0.56 0.71 0.66

Prince Abdulaziz bin Turki

Head of Sports Minister

0.27 0.43 0.68 0.35 0.46

Prince Faisal bin Turki as

Resignation from a Saudi

club

0.43 0.44 0.44 0.44 0.44

Women_Driving 0.77 0.68 0.55 0.72 0.67

Mosques Speakers 0.55 0.78 0.33 0.67 0.56

Polygamous Marriage 0.84 0.84 0.59 0.84 0.76

AVERAGE OVER Avg2 &

Avg3

0.72 0.66

as “favor,” “against,” and “none” stances on that topic, respectively.

The “Favg2” and “Favg3” columns represent the average F1 scores

across two different evaluation methods (potentially macro and

micro averaging). Looking at the average scores at the bottom

of the table (AVERAGE OVER Avg2 & Avg3), we see that the

model performs moderately well overall, with an average F1 score

of 0.72 for identifying tweets expressing a stance (“favor” or

“against") and 0.66 for classifying tweets with a neutral stance

(“none"). However, the performance varies across topics. Some

topics, like “Online Learning” and “Aramco Share Selling,” achieved

high F1 scores for all stances, indicating the model’s ability to

classify tweets related to these topics accurately. Conversely, topics

like “Coexistence with Religions” and “Prince Faisal bin Turki’s

Resignation” resulted in lower F1 scores, suggesting the model

struggled to distinguish stances on these subjects. It’s important to

note that some topics might be inherently more challenging due

to the nature of the discussion. For instance, “Coexistence with

Religions”might involve a wider range of nuanced opinions that are

difficult to categorize definitively as “favor” or “against.” Overall,

the results suggest that the MTSM-Keywords approach offers a

promising foundation for stance detection in Arabic text. However,

further investigation might be needed to improve performance on

specific topics.
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TABLE 6 F1 scores for “favor,” “against,” and “none” stances using MTSM as topic description.

Topic Manual topic description GPT4 topic description

Ffavor Fagainst Fnone Favg2 Favg3 Ffavor Fagainst Fnone Favg2 Favg3

Teaching Chinese Language at School 0.90 0.91 0.47 0.91 0.76 0.88 0.91 0.53 0.90 0.77

Improve School Curriculum 0.88 0.90 0.48 0.89 0.75 0.85 0.87 0.44 0.86 0.72

Online Learning 0.91 0.88 0.71 0.89 0.83 0.84 0.83 0.62 0.84 0.76

COVID-19 Vaccine 0.81 0.81 0.23 0.81 0.62 0.81 0.77 0.28 0.79 0.62

COVID-19 Vaccine Booster Dose 0.84 0.82 0.61 0.83 0.76 0.77 0.78 0.52 0.77 0.69

Aramco Share Selling 0.84 0.88 0.61 0.86 0.78 0.85 0.88 0.59 0.87 0.78

Al-Qiddiya Project 0.90 0.68 0.47 0.79 0.68 0.88 0.65 0.40 0.76 0.64

Neom City 0.90 0.75 0.71 0.83 0.79 0.90 0.78 0.67 0.84 0.78

Domestic Tourism 0.71 0.62 0.54 0.66 0.62 0.72 0.67 0.54 0.70 0.64

Sex Education 0.76 0.73 0.52 0.75 0.67 0.70 0.67 0.55 0.68 0.64

Coexistence with Religions 0.61 0.39 0.66 0.50 0.55 0.60 0.41 0.65 0.51 0.56

Military Conscription 0.77 0.76 0.57 0.77 0.70 0.71 0.67 0.64 0.69 0.67

Prince Abdulaziz bin Turki Head of Sports

Minister

0.46 0.47 0.72 0.47 0.55 0.43 0.33 0.58 0.38 0.45

Prince Faisal bin Turki as Resignation from a

Saudi club

0.43 0.43 0.50 0.43 0.46 0.58 0.20 0.39 0.39 0.39

Women_Driving 0.78 0.62 0.51 0.70 0.64 0.78 0.67 0.56 0.72 0.67

Mosques Speakers 0.48 0.76 0.33 0.62 0.52 0.54 0.78 0.36 0.66 0.56

Polygamous Marriage 0.80 0.85 0.53 0.82 0.73 0.83 0.84 0.45 0.84 0.71

AVERAGE OVER Avg2 & Avg3 0.74 0.67 0.72 0.65

Table 6 shows the results (F1 scores) for the MTSM

(Multi-Topic, Single Model) approach with two different topic

descriptions: manually crafted and generated by GPT-4. F1 score

is a metric that balances precision and recall, providing an overall

measure of model performance. Looking across the table, we see

that both topic description methods achieved similar performance

on average. The average F1 score for both “favor” and “against”

stances is around 0.8 for both manual and GPT-4 descriptions,

indicating good model performance in identifying supportive and

opposing opinions. However, the results for the “none” stance,

which represents tweets that don’t express a clear opinion, are

lower. The average F1 score for “none” is around 0.5 for both

methods, suggestingmore difficulty in accurately classifying neutral

tweets.

There are some interesting variations between topics. For

instance, both methods performed well on topics like “Teaching

Chinese Language at School” and “Aramco Share Selling,”

achieving high F1 scores across all stances. Conversely, topics like

“Coexistence with Religions” and “Mosques Speakers” provedmore

challenging, with lower F1 scores especially for the “none” stance.

This suggests that these topics might be more nuanced or have

a higher prevalence of neutral language, making stance detection

more difficult. Overall, the results indicate that theMTSMapproach

with either manually crafted or GPT-4 generated topic descriptions

can effectively identify supportive and opposing stances in Arabic

text for a variety of topics. However, there’s room for improvement

in accurately classifying neutral tweets, and some topics may

require further investigation or model improvements for better

performance.

5.2 Performance analysis of few-shot
learning model

This section explores the effectiveness of ArabicStanceX dataset

in real-world situations where it might encounter entirely new

topics, which were unseen during fine-tuning. This is particularly

relevant for stance detection as new topics frequently emerge and

quickly capture public attention. To address this challenge, we

employed few-shot learning, specifically a methodology called “K-

shot learning,” which involves fine-tuning the model using only K

examples per stance class (favorable, against, neutral) for a new

topic. This ensures balanced representation across different stances

even with limited data.

To evaluate our model’s adaptability, we fine-tuned it on a

comprehensive set of topics, excluding six specific ones reserved

for testing (detailed in Table 7 through Table 10). This approach

simulates a realistic scenario where new topics arise with scarce data

available.

Table 7 shows the results (F1 scores) for the zero-shot learning

scenario of the stance detection model using manually crafted topic

descriptions. In a zero-shot setting, where the model encounters

unseen topics, performance is understandably lower compared to
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TABLE 7 Results for Zero-shot learning.

Topic Manual topic description

Ffavor Fagainst Fnone Favg2 Favg3

Online Learning 0.77 0.77 0.45 0.77 0.66

Neom City 0.82 0.57 0.41 0.69 0.60

Domestic

Tourism

0.53 0.31 0.39 0.42 0.41

Military

Conscription

0.66 0.53 0.49 0.60 0.56

Mosques

Speakers

0.45 0.47 0.34 0.46 0.42

Multi Marriage 0.59 0.61 0.30 0.60 0.50

AVERAGE

OVER Avg2 &

Avg3

0.59 0.52

previously trained topics. The average F1 score for both “favor”

and “against” stances hovers around 0.6, indicating a basic ability to

identify sentence but with less accuracy. The results for the “none”

stance, representing neutral tweets, are even lower with an average

F1 score of 0.34. This underscores the significant challenge the

model faces in classifying neutral stances on completely new topics

without any specific data for fine-tuning.

Examining individual topics, the model shows varied

performance. It performed better on topics like “Online Learning”

(average F1 score of 0.71), where opinions are likely more

polarized. Conversely, topics such as “Domestic Tourism” and

“Mosques Speakers” resulted in lower scores (average F1 score

around 0.4), suggesting these topics might be more nuanced or

contain more neutral language, complicating stance detection

in a zero-shot scenario. Overall, the zero-shot learning results

highlight the model’s limitations when encountering entirely new

topics. While it can still make some basic sentence predictions, the

accuracy is significantly lower compared to trained topics. This

emphasizes the importance of having some topic-specific data for

improved performance in real-world applications.

We then employed incremental fine-tuning, progressively

adapting the model with increasing amounts of data (10, 20, and

40 examples per class) for the new topics (Tables 8–10). This step-

by-step approach allows us to observe the model’s ability to learn

from limited topic-specific data, which is crucial for real-world

deployments. The significant performance improvements at the

40-shot level, with an average Favg2 score of 0.75, demonstrate that

even a small amount of data can substantially enhance the model’s

effectiveness on unseen topics.

Table 8 shows the results (F1 scores) for stance detection on

unseen topics using 10-shot learning with manually crafted topic

descriptions, where the F1 score balances precision and recall to

measure overall model performance. The average F1 score across

all stances (“favor,” “against,” and “none") is 0.69 for Favg2 and 0.60

for Favg3, indicating moderate performance on unseen topics even

with limited data. Performance varies across topics, with higher

scores for “Online Learning” and “Neom City” (around 0.7) and

lower scores for “Mosques Speakers” and “Military Conscription”

(around 0.5), highlighting challenges in these specific domains. The

model struggles more with identifying neutral stances, consistently

TABLE 8 Results for 10-shot learning.

Topic Manual topic description

Ffavor Fagainst Fnone Favg2 Favg3

Online Learning 0.87 0.85 0.47 0.86 0.73

Neom City 0.83 0.66 0.45 0.74 0.64

Domestic

Tourism

0.70 0.58 0.46 0.64 0.58

Military

Conscription

0.69 0.71 0.42 0.70 0.61

Mosques

Speakers

0.31 0.67 0.33 0.49 0.44

Multi Marriage 0.68 0.75 0.36 0.71 0.60

AVERAGE

OVER Avg2 &

Avg3

0.69 0.60

showing lower F1 scores for “none” compared to “favor” and

“against.” Overall, the results suggest that while the model can

adapt to new topics with some success using 10-shot learning, there

is a need for improvement in handling neutral stances and certain

topic domains.

Table 9 presents the results (F1 scores) for stance detection on

unseen topics using 20-shot learning with manually crafted topic

descriptions, where the F1 score balances precision and recall for

an overall measure of performance. The model performed well

in identifying tweets expressing favorable (Ffavor) and opposing

(Fagainst) stances for most topics, with average F1 scores around

0.74, indicating effective learning of basic stance with limited data

(20 examples per stance class). However, accurately classifying

neutral tweets (“None") proved more challenging, with an average

F1 score of around 0.46, highlighting difficulties in distinguishing

neutral language from weakly expressed opinions on unseen

topics. Performance varied across topics, with “Online Learning”

and “Military Conscription” showing good performance across

all stances. At the same time “Fix Domestic Tourism” and

“Mosques Speakers” resulted in lower scores, particularly for

the “None” stance, suggesting that topic complexity and the

prevalence of neutral language influence the model’s adaptability

with limited data. Overall, the results demonstrate the model’s

potential for handling unseen topics with 20-shot learning, though

improvement is needed in accurately classifying neutral stances and

specific topic domains.

Table 10 shows the F1 scores achieved by the model using 40-

shot learning with manually crafted topic descriptions. The F1

score, which balances precision and recall, provides an overall

measure of model performance for each stance (“favor,” “against,”

“none") on a specific topic. The average F1 scores (Favg2 and

Favg3) around 0.75 indicate that the model performs well on

average, effectively identifying supportive and opposing opinions

in Arabic text with just 40 examples per stance class for a new

topic. However, performance varies across topics. For example,

topics like “Online Learning” and “Military Conscription” achieved

good results across all stances, with average F1 scores above 0.7,

suggesting that the model can readily learn the stance patterns

associated with these topics even with limited data. Conversely,
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TABLE 9 Results for 20-shot learning.

Topic Manual topic description

Ffavor Fagainst Fnone Favg2 Favg3

Online Learning 0.89 0.89 0.67 0.89 0.81

Neom City 0.85 0.75 0.49 0.80 0.70

Domestic

Tourism

0.69 0.65 0.49 0.67 0.61

Military

Conscription

0.73 0.73 0.55 0.73 0.67

Mosques

Speakers

0.46 0.60 0.36 0.53 0.47

Multi Marriage 0.81 0.78 0.46 0.80 0.68

AVERAGE

OVER Avg2 &

Avg3

0.74 0.66

TABLE 10 Results for 40-shot learning.

Topic Manual topic description

Ffavor Fagainst Fnone Favg2 Favg3

Online Learning 0.87 0.88 0.63 0.88 0.79

Neom City 0.87 0.74 0.61 0.80 0.74

Domestic

Tourism

0.72 0.66 0.51 0.69 0.63

Military

Conscription

0.72 0.72 0.59 0.72 0.67

Mosques

Speakers

0.49 0.76 0.45 0.62 0.57

Multi Marriage 0.81 0.79 0.49 0.80 0.70

AVERAGE

OVER Avg2 &

Avg3

0.75 0.68

topics like “Fix Domestic Tourism” and “Mosques Speakers”

proved more challenging, with lower average F1 scores, particularly

for the “none” stance, indicating inherent complexity or specific

challenges in identifying neutral stances in these contexts. Overall,

the results are encouraging, demonstrating that the model can

effectively adapt to new topics with 40 examples per stance,

achieving good overall performance in stance detection for Arabic

text while also highlighting the importance of considering topic-

specific characteristics in real-world deployments.

6 Conclusion and discussion

This research focused on developing and evaluating a robust

Arabic stance detection dataset, called ArabicStanceX, using a

dataset derived from social media data. It addresses the lack

of available Arabic stance detection datasets. Using the BERT

architecture, we fine-tuned it to identify sentences across various

topics in Arabic text.

Our exploration of different fine-tuning approaches revealed

limitations with single-topic models, particularly in capturing

the “none” stance and generalizing across diverse topics. In

contrast, the MTSM approach showed promising results, especially

when combined with manually crafted or GPT-4 generated topic

descriptions.

Few-shot learning evaluations highlighted the model’s potential

for real-world applications, achieving good stance detection

performance even with limited data (40 examples per stance class)

for unseen topics. This adaptability is crucial for handling the

dynamic nature of online discourse, where new topics frequently

emerge.

Our findings emphasize the importance of considering topic-

specific characteristics when deploying the model. Specific topics

pose more significant challenges due to their complexity or the

prevalence of neutral language. Future research should explore

techniques to enhance performance on these nuanced topics and

incorporate additional information sources beyond textual data.

The results indicate that the MTSM approach, particularly with

topic descriptions, holds promise for Arabic stance detection. The

inclusion of topic keywords and descriptions provides the model

with the necessary context for more informed predictions. Notably,

manual topic descriptions were more effective than those generated

by GPT-4, highlighting the potential need for human intuition in

understanding nuanced topics.

However, the study has several limitations. The dataset

focuses exclusively on Saudi Arabia and is sourced solely from

X.com, which may restrict the generalizability of findings to

other Arabic-speaking regions or platforms. Another limitation

lies in class imbalance within specific topics, which may have

negatively impacted the model’s ability to detect minority stances.

Additionally, the model struggled to handle nuanced language

features such as sarcasm, implicit stances, and neutrality. Future

work could expand the dataset to include other Arab countries

and social media platforms, as well as explore alternative modeling

approaches to better capture subtle linguistic cues. Addressing class

imbalance could involve dataset resampling or data augmentation

techniques.

In general, this work advances Arabic NLP by providing

a foundation for effective stance detection in various topics of

Arabic text. The developed model offers valuable insights into

public stance and opinion dynamics within the Arabic-speaking

world, with potential applications in social media analysis, market

research, and other fields that rely on understanding audience

perspectives. Future work should aim to improve themodel’s ability

to detect neutral stances and enhance performance on complex and

sensitive topics.
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Syntactic analysis stands at the heart of Natural Language Processing (NLP),

serving as the cornerstone upon which deeper linguistic understanding is

built—particularly for morphologically complex languages such as Arabic. This

paper delivers a comprehensive comparative study of contemporary syntactic

analyzers designed explicitly for Arabic, dissecting the strengths and limitations

of rule-based, statistical, machine learning, and hybrid methodologies, and

recent neural network and transformer-based models. Given Arabic’s intricate

morphological structure and rich syntactic variation, accurately capturing

syntactic relationships poses a significant challenge. To address this complexity,

our study meticulously evaluates existing algorithms, highlighting advancements,

performance gaps, and practical trade-offs. In addition, recognizing that

robust syntactic parsing is anchored in high-quality annotated datasets, we

provide a thorough overview of available Arabic treebanks and annotated

corpora, emphasizing their critical role and contribution to syntactic parsing

advancements. By synthesizing current efforts in the domain, this comparative

analysis not only offers clarity on the state-of-the-art but also guides future

research directions. Ultimately, our work seeks to empower NLP practitioners

and researchers with nuanced insights, enabling more informed choices in

the development of powerful, accurate, and linguistically insightful Arabic

syntactic analyzers.

KEYWORDS

Arabic NLP, Arabic treebank, syntactic analysis, rule-based parsing, statistical parsing,
hybrid parsing, neural parsing, transformer models

1 Introduction

Arabic is a Semitic language characterized by complex morphology, rich inflectional
patterns, and flexible syntactic structures, posing significant challenges to natural language
processing (NLP). Syntactic analysis, commonly referred to as parsing, is a critical step
in NLP tasks such as machine translation, information retrieval, and sentiment analysis.
Parsing Arabic, however, is particularly challenging due to linguistic phenomena such
as diglossia, morphological ambiguity, and relatively free word order (Habash, 2010).
Numerous parsing approaches have been proposed for Arabic, ranging from traditional
rule-based systems to modern statistical and machine learning-based parsers. Early
rule-based systems, primarily grounded in classical Arabic grammar rules, provided
foundational insights but were limited by their scalability and adaptability (Othman
et al., 2003). The advent of annotated corpora such as the Penn Arabic Treebank (PATB)
facilitated data-driven methodologies, leading to significant advancements, including
probabilistic context-free grammars (PCFGs), support vector machines (SVMs), and more
recently, deep learning models utilizing contextualized word embeddings (Taji et al., 2017).
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This paper provides a comprehensive survey of state-of-
the-art Arabic syntactic analyzers developed in recent years.
It systematically discusses key syntactic parsing approaches,
exploring both rule-based and data-driven paradigms. Further,
the paper evaluates prominent Arabic syntax treebanks and
related resources that have enabled significant progress in parser
development. Subsequently, we compare the performance of
existing syntactic analyzers across various linguistic domains and
applications. Finally, the study addresses ongoing challenges and
limitations within the field, outlining avenues for future research.

2 Related work

Most existing review papers on Arabic syntactic parsing either
broadly cover general NLP tasks or have become outdated in
their specific analyses of syntactic parsing for Arabic. Dedicated
comparative studies with a strict syntactic orientation remain
scarce, and those available often overlook recent datasets or state-
of-the-art parsing techniques.

Zaki et al. (2016) conducted one of the earlier comprehensive
surveys focusing exclusively on Arabic syntactic parsers developed
up to 2016. They categorize the parsers based on methodological
approaches—rule-based, statistical, and hybrid—and clearly
outline their advantages and limitations. Despite the breadth of
this work, it now lacks coverage of subsequent developments
in annotated datasets and parsing methodologies introduced
post-2016. A more recent comparative study by Aqel et al. (2019)
addressed advancements in Arabic parsing systems, highlighting
their strengths and limitations, and providing suggestions to
mitigate common parsing challenges. Although informative and
relatively current, this work similarly falls short in referencing the
latest syntactic annotation schemes and updated parsing datasets
that have emerged after its publication.

Recent surveys addressing broader linguistic contexts have also
appeared, such as those by Hamed et al. (2025), examining code-
switched Arabic NLP, and Xu et al. (2025), exploring multilingual
large language models. While valuable, these studies primarily focus
on multilingual and cross-lingual scenarios and do not specifically
target syntactic parsing of Arabic, highlighting a clear gap in
the literature for a dedicated, syntax-focused comparative study
for Arabic.

In summary, the literature reflects a notable scarcity of recent
and specialized comparative studies that focus explicitly on Arabic
syntactic parsing. The present study addresses this gap by offering
a comprehensive and current analysis specifically targeted at
syntactic parsers for Arabic, incorporating insights from recent
developments and datasets.

To better contextualize the reviewed work, we briefly outline
the fundamental concepts and methodologies in syntactic analysis.
Syntactic analysis, or parsing, refers to the process of analyzing
sentences by identifying their syntactic structure according to a set
of grammatical rules. This task is fundamental in natural language
processing (NLP) and computational linguistics, as it helps in
understanding sentence structure and meaning. In the context
of Arabic, syntactic analysis can be approached in several ways,
each offering distinct advantages depending on the complexity and
formality of the grammar involved.

2.1 Approaches to syntax analysis

Syntactic analysis can be approached using two primary
methods:

• Top-Down Parsing: This method starts with the entire
sentence and breaks it into smaller parts (constituents) using
grammar rules. These parts are further divided until you reach
individual words. This strategy works well with grammars that
focus on sentence structure (Aho et al., 2006).

• Bottom-Up Parsing: This method begins with the words in the
sentence, assigning each a grammatical label. These labels are
then combined to form higher-level structures (like phrases)
until the full sentence structure is built. This method works
with many types of grammar (Aho et al., 2006).

2.2 Available parsing algorithms

The selection of parsing algorithms is critical to the
efficiency and effectiveness of syntactic analysis. Two prominent
algorithms are:

• Cocke-Younger-Kasami Algorithm: A fast, table-based
parsing method for context-free grammars, especially
effective when the grammar is in Chomsky Normal Form
(Brandt and Walter, 2001).

• Earleys Algorithm: A flexible algorithm that works with
both normalized and non-normalized context-free grammars
(Tendeau, 1997).

2.3 Parsing techniques

Several approaches to syntactic analysis in Arabic focus on
different methods and techniques, including:

• Rule-based approach: which uses a well-defined formal
grammar based on the knowledge of linguists on the language
concerned;

• Statistical approaches: which uses machine learning
techniques to create grammar rules from a corpus annotated
(TreeBank), then analyzes the sentences using these rules;

• Hybrid approach: which uses both a predefined grammar and
a statistical module (for example a disambiguation module)
allowing to improve the results and to resolve the ambiguities.

2.4 Depth of parsing

In syntactic analysis, the term “depth of parsing” refers to the
extent and precision of syntactic information extracted from a
given sentence. This concept plays a critical role in shaping the goals
and applications of parsing systems, especially for morphologically
rich and structurally flexible languages such as Arabic. Generally,
parsing approaches fall into two broad categories based on depth:
deep parsing and shallow parsing.
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• Deep parsing: Deep parsing involves generating a full
syntactic structure for a sentence, capturing the complete
grammatical relationships among words and phrases.
This typically results in hierarchical representations like
constituency trees or dependency graphs, which identify
syntactic roles such as subjects, objects, and modifiers. For
Arabic, deep parsers often rely on resources like the Penn
Arabic Treebank and are capable of handling sophisticated
linguistic features, albeit with significant computational cost
(Habash, 2010; Taji et al., 2017). These parsers are valuable for
tasks requiring nuanced understanding of sentence structure,
such as machine translation and semantic analysis.

• Shallow parsing: Also known as chunking, shallow parsing
focuses on identifying the main syntactic units within a
sentence, such as noun phrases or verb groups, without
delving into their internal grammatical structure or
hierarchical organization. This approach is generally
faster and more robust, particularly in noisy or resource-
scarce settings. In Arabic NLP, shallow parsing is often used
in applications like named entity recognition and basic
information extraction, where full parsing is unnecessary
(Shaalan and Khaled, 2010).

Each method presents advantages depending on the use
case. Deep parsing provides comprehensive syntactic insight but
demands more processing power and annotated data. Shallow
parsing offers efficiency and adaptability, especially for preliminary
or large-scale language tasks. In practice, hybrid models that
combine both levels of analysis are becoming increasingly common
in Arabic syntactic processing.

3 Arabic syntax treebanks and
resources

The development of Arabic syntactic parsers relies heavily on
annotated treebanks, which provide valuable resources for training
and evaluating parsers. Notable Arabic treebanks include:

Penn Arabic Treebank (PATB) employs a statistical approach
for annotating Modern Standard Arabic, focusing on structural
morphology and syntactic analysis. It includes comprehensive
annotations for parts of speech (POS), morphology, gloss, and
syntactic trees. The corpus consists of 599 articles from the
Lebanese newspaper An Nahar, totaling 402,291 word tokens. The
annotations, following the Penn Treebank guidelines, are used
for syntactic parsing and language modeling. Evaluation results
across multiple versions demonstrate high accuracy, with more
than 99% of tokens correctly tagged for POS and morphological
analysis, ensuring robust reliability for linguistic and computational
applications (Maamouri et al., 2004, 2005).

Prague Arabic Dependency Treebank (PADT) is grounded
in a theoretical approach inspired by the Functional Generative
Description framework and the Prague Dependency Treebank.
It includes over 113,500 tokens with detailed syntactic and
morphological annotations. This treebank is designed to aid
dependency parsing and has been utilized in the CoNLL
shared tasks, showcasing its utility in parsing experiments. The

dataset covers 212,500 words, with a strong focus on syntactic
dependencies. Its evaluation results highlight the accuracy of
dependency relations, supporting the treebank’s role in both
theoretical and practical parsing tasks (Hajič et al., 2004, 2006).

Columbia Arabic Treebank (CATiB) adopts a simplified
dependency-based approach that emphasizes annotation speed and
efficiency. It provides syntactic analyses, including over 1 million
tokens, with 841,000 words and 31,319 trees from newswire feeds
and other sources. CATiB uses a reduced set of syntactic labels
compared to PATB, prioritizing accessibility for annotators with
less linguistic expertise. The evaluation results indicate a balance
between simplicity and depth, offering a practical resource for
rapid syntactic analysis while maintaining high accuracy for basic
syntactic relations in Arabic (Habash and Roth, 2009).

CAMEL Treebank (CAMELTB) is a comprehensive
dependency treebank for both Modern Standard Arabic and
Classical Arabic, annotated using guidelines aligned with CATiB.
It includes approximately 188,000 words and 242,000 tokens from
a variety of genres, including poetry, religious texts, and modern
media. CAMELTB uses tools like CamelTools for tokenization
and POS tagging, and the MALT parser for syntactic parsing. Its
manual annotation process ensures high accuracy, with four native
Arabic speakers involved in annotating and editing dependency
relations. Evaluation results show the treebanks broad applicability
across different Arabic dialects and registers, making it a valuable
resource for linguistic research and NLP applications (Habash
et al., 2022).

Universal dependencies for Arabic project utilizes
dependency-based annotations from the Prague Arabic
Dependency Treebank (PADT) and the Penn Arabic Treebank
(NYUAD version) (Taji et al., 2017; Hajič et al., 2004). These
datasets provide a robust foundation for analyzing Arabic
syntax and morphology, addressing the challenges posed
by the language’s rich inflection and word formation. The
annotations cover several layers, including part-of-speech
tags, lemmas, morphological features, and syntactic relations.
The project adopts a consistent approach to tokenization
and morphological representation across different Arabic
dialects, ensuring broad linguistic coverage. Evaluation of these
treebanks emphasizes syntactic accuracy, with UD Arabic-PADT
featuring 7,664 sentences and 242,056 tokens, and UD Arabic-
NYUAD containing 19,738 sentences and 629,295 tokens. These
treebanks offer comprehensive linguistic resources, enabling
in-depth analysis of Arabic within the Universal Dependencies
framework.

AQMAR Arabic Wikipedia dependency tree corpus (Habash
et al., 2009) is derived from Arabic Wikipedia articles, annotated
with part-of-speech (POS) tags and syntactic dependencies. This
corpus comprises 1,262 sentences and 36,202 tokens, created with
a semi-automated annotation process using the Brat annotation
tool. The initial POS tagging was performed using the MADA
system, followed by manual corrections. Dependency annotations
were applied according to the CATiB Arabic dependency
framework (Habash and Roth, 2009), ensuring high-quality
syntactic representations. The dataset includes diverse topics, such
as nuclear technology and football, providing valuable resources
for semantic and syntactic analysis in various domains. While the
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annotations also cover named entities and semantic supersenses,
the evaluation results primarily highlight improvements in
syntactic parsing and dependency structure accuracy.

ARL Arabic dependency Treebank, developed by the US Army
Research Laboratory (ARL) (Tratz, 2016), focuses on Arabic news
and broadcast sources. This treebank is a restructured version of
the Arabic Treebank (ATB) from the Linguistic Data Consortium,
and it adopts a dependency grammar approach. Each sentence is
analyzed based on a verb-centered structure, with other elements
linked to the verb through directed relationships. The annotations
include 11 columns, detailing the syntactic dependencies, POS
tags, and lemmata, with each word or affix uniquely identified.
Evaluation of the treebank involves measuring the quality of
dependency relations and syntactic parsing, making it a crucial
resource for Arabic language processing in military and defense
applications. The dataset is available for further use in research and
development of Arabic language technologies.

OntoNotes 5.0 (Weischedel et al., 2013) is a large annotated
corpus containing multiple linguistic layers, including syntactic,
semantic, and discourse-level annotations. The Arabic portion,
comprising 300K words, includes part-of-speech tagging,
coreference, named entity recognition, and word sense
disambiguation. The syntactic annotations use the Treebank
framework, while the semantic annotations link word senses to
an ontology. Evaluation results demonstrate high quality in both
syntactic and semantic annotations, with comprehensive coverage
of co-reference and named entities. The corpus provides a valuable
resource for training machine learning models and evaluating
Arabic language processing tasks. Available in both relational
database format and text files, OntoNotes supports a range of
research applications, including cross-linguistic studies and deep
semantic parsing.

I3rab Treebank (Halabi et al., 2020) is a new Arabic
dependency treebank that introduces innovative approaches to
tokenization and dependency representation, focusing on the
identification of primary words and the treatment of joined and
implicit pronouns. The corpus is compared against a subset
of the Prague Arabic Dependency Treebank (part-PADT), with
evaluation results showing significant improvements in parsing
performance. The I3rab dataset demonstrated a 7.5% increase in
Unlabeled Attachment Score (UAS) and an 18.8% improvement in
Labeled Attachment Score (LAS), highlighting the effectiveness of
its unique approach. This treebank is intended to advance Arabic
language processing by addressing gaps in previous dependency
frameworks and offering a more accurate representation of
syntactic relations in Arabic.

Arabic Poetry Dependency Treebank (ArPoT) (Al-
Ghamdi et al., 2021) introduced ArPoT, the first dependency
treebank specifically targeting classical Arabic poetry. The
corpus consists of 2,685 verses (35,460 tokens) from 34
poets, annotated using the CATiB scheme, which is rooted in
traditional Arabic grammar and supports future conversion to
Universal Dependencies. ArPoTs annotation pipeline involved
automatic parsing (using a tool trained on MSA) followed by
extensive manual correction, with explicit attention to poetic-
specific phenomena such as elision and cross-verse syntactic
relations. Unlike most previous Arabic treebanks (e.g., Penn

Arabic Treebank, CATiB, PADT) which are constructed for
Modern Standard Arabic (MSA), ArPoT is dedicated to CA
and captures its unique syntactic characteristics, making it a
novel resource for the study of syntactic analysis in Arabic
poetry.

NArabizi Treebank (Riabi et al., 2023) is a syntactically
annotated corpus for North African Arabic (specifically Algerian
dialect) written in Latin script—commonly known as NArabizi.
The dataset consists of approximately 1,300 user-generated
sentences, primarily sourced from online forums and song
lyrics, with significant code-switching (36% French tokens).
The latest version introduces major improvements, including
standardized tokenization, corrections of morpho-syntactic and
syntactic annotations following Universal Dependencies (UD)
guidelines, and enhanced translation quality. Two new annotation
layers were added: named entity recognition and offensive language
detection, making the resource more versatile for downstream
tasks. The treebank focuses exclusively on dialectal Arabic and
does not include Modern Standard Arabic (MSA). However, its
syntactic annotation—covering POS tags, morphological features,
and dependency parses—serves as an essential benchmark for
NLP tasks on noisy, low-resource Arabic varieties written in
non-Arabic scripts. Experimental results showed that improving
syntactic annotation quality led to significant gains in downstream
dependency parsing and NER. The resource is freely available for
research purposes.

AraFast (Alrayzah et al., 2024) is a large-scale, freely available
Modern Standard Arabic (MSA) corpus aimed at addressing the
shortage of comprehensive datasets for Arabic NLP research. The
authors developed a multi-stage pipeline, combining automated
and manual discovery of Arabic corpora from major repositories
(such as GitHub, Kaggle, and Huggingface), followed by strict
filtering for quality and genre, and extensive cleaning using
custom algorithms. This process included deduplication, removal
of noise, normalization, and segmentation with the WordPiece
tokenizer. The final AraFast corpus comprises 112 GB of high-
quality MSA and classical Arabic text from 48 different sources,
reduced from an initial 833 GB of raw data through rigorous
preprocessing. Importantly, it should be noted that AraFast is
not a syntactically annotated resource such as a treebank; it
does not include part-of-speech or syntactic structure annotations.
Instead, AraFast provides a high-quality, segmented text corpus
specifically designed for pretraining large transformer-based
language models, using dynamic span-masking objectives. Both
“base” (full corpus, 110M parameters) and “mini” (10GB) models
were trained and evaluated. The experimental results showed
that using segmented, clean data substantially improved model
learning and stability (evidenced by lower training loss), while
web-scraped noisy data led to training failures due to noise
and data artifacts. While AraFast itself does not provide direct
syntactic labels or parsing, its quality and scale make it a valuable
foundational dataset. It indirectly supports advances in Arabic
syntactic parsing by enabling the training of robust pre-trained
language models, which can later be fine-tuned or adapted for
downstream syntactic analysis tasks. Thus, AraFast serves as an
important resource for both general and syntactic NLP applications
in Arabic.
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4 Available syntactic analyzers

Over the years, a wide array of Arabic syntactic analyzers have
been developed, mirroring the progression of parsing techniques.
Early parsers predominantly relied on manually crafted grammar
rules and limited evaluation datasets, whereas subsequent systems
leveraged machine learning trained on treebanks. In recent years,
neural network and transformer-based parsers have achieved new
state-of-the-art results by incorporating contextualized language
models. The following subsections review representative Arabic
parsers across these different paradigms, highlighting their
approaches and reported performance.

4.1 Traditional syntactic analyzers for
arabic

Analyzer based on a recursive transition network is a
syntactic analyzer developed by Bataineh and Bataineh (2009)
uses a Top-Down parsing approach based on Recursive Transition
Networks (RTN), a concept derived from recursive transition
grammars. The grammar for this parser is context-free, tailored
to capture the most frequent sentence structures in Arabic. The
approach applies both pattern-based rules and context-free rules,
treating them as complementary. It was tested on 90 Arabic
sentences, achieving an accuracy rate of 85.6%. However, the parser
struggled with ungrammatical sentences and those outside the
grammar’s coverage, with 14.4% of sentences being unparseable.

A’reb, developed by Al-Daoud and Basata (2009), is a
recursive, Top-Down parser designed to handle both lexical
and syntactic analysis for Arabic sentences, focusing on verbal
sentences. It utilizes recursive functions closely tied to production
rules, allowing the parser’s structure to reflect the grammar
it interprets. Despite its functionality, the authors noted that
further refinement is needed for complete effectiveness, with no
quantitative evaluation results provided.

Parse trees of Arabic sentences using NLTK (Shatnawi and
Belkhouche, 2012) is a rule-based approach utilizing Context-
Free Grammar (CFG). The parser applies the NLTK recursive-
descent algorithm to generate parsing trees for general and Quranic
Arabic. Although it supports several NLP tasks, the authors pointed
out that the model does not address more complex tasks like
parsing dependencies, and no quantitative performance metrics
were provided.

Chart parser for analyzing Arabic sentences (Al-Taani et al.,
2012) is a Top-Down chart parser based on Context-Free Grammar
(CFG) to analyze Arabic sentences. The parser’s accuracy was
evaluated on a small corpus of 70 sentences, with an average
sentence length of 3.98 words, achieving 94.3% accuracy. However,
the authors emphasized the need for further evaluation with a
broader corpus to test the parser’s reliability in diverse contexts.

Context-free Grammar analysis top-down technique (Al-
qrainy et al., 2012) developed an Arabic parser based on Context-
Free Grammar (CFG) and Top-Down recursive descent parsing
using NLTK. The parser was tested on 150 Arabic sentences,
achieving a high accuracy rate of 92% for verbal sentences and

98% for nominal sentences. However, the test set was small, and
the types of sentences evaluated were unspecified, which limits the
reliability of the results.

ARSYPAR (Khoufi et al., 2013) introduced an Arabic parser
that uses supervised machine learning techniques, specifically
Support Vector Machines (SVM). The parser was trained using
features derived from the Arabic Treebank and focused on syntactic
word classes. It was evaluated on a portion of the Arabic Treebank,
achieving an F-score of 84.38%, demonstrating the efficacy of
statistical methods in syntactic analysis.

Industrial-strength parser (Redjaimia et al., 2014) developed
an advanced Arabic parser combining rule-based and statistical
approaches to provide robust dependency and hierarchical
constituent parsing. The parser underwent rigorous testing on
a corpus of 300 Arabic sentences, achieving an F-score of 82%.
This hybrid approach proved effective for applications like opinion
mining in Arabic social media content, although the specific
evaluation methodology was not detailed.

Robust large-scale parser using AGFL formalism
(Ouersighni, 2014) used a rule-based approach with Affix
Grammars over Finite Lattice (AGFL) formalism for parsing
Arabic. The parser’s robust performance was tested on 200 Arabic
sentences, achieving a 95% success rate. However, it suffered
from high ambiguity, with an average of 23.12 possible analyses
per sentence, highlighting the trade-off between robustness and
precision in this approach.

Transducers parser (Hammouda and Haddar, 2018) employed
a transducers-based approach to parse Arabic nominal sentences.
The system, which includes segmentation, preprocessing, and
disambiguation phases, achieved a precision rate of 80% and a recall
rate of 90% when tested on a corpus of 200 Arabic sentences. This
method proved effective for nominal sentence parsing but may
require further refinement for broader sentence structures.

Inductive learning algorithm (ILA) (Abu-Soud et al., 2018)
developed an ILA to parse Arabic nominal and verbal sentences.
The ILA generates parsing rules from a training dataset and
achieved a 92.63% accuracy for previously unseen sentences.
However, it performed better on verbal sentences compared to
nominal ones, due to the structural complexity of the latter. The
method demonstrated its potential for Arabic Natural Language
Processing (ANLP) applications but highlighted the challenges of
segmenting and tagging sentences accurately.

Arabic parser based on CFG and classical grammar rules
(Ababou et al., 2017) proposed an Arabic parser using Context-
Free Grammar (CFG) integrated with classical grammar rules.
The system achieved 97% accuracy when tested on 200 nominal
sentences, effectively identifying dependency relations. However,
some verb tagging errors were noted, and the method’s simplicity
allows easy integration with other techniques, enhancing its
adaptability in parsing Arabic sentences.

Syntactic parsing using the NooJ linguistic platform is
syntactic analyzer employs a rule-based, linguistically driven
approach for Arabic syntactic parsing (Bourahma et al., 2018).
Focusing on enhancing lexicon classification, resolving ambiguities
from morphological analysis, and modeling grammar based on
nominal sentence structures. The evaluation of the system on 120
nominal sentences demonstrated a parsing accuracy of 95%, with
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disambiguation achieving an 86% accuracy. Despite the success,
ambiguities remain in complex sentence structures, highlighting
the challenge of fully capturing Arabics syntactic nuances. The
approach proves effective in handling agglutination and word
order variability.

Multitask easy-first dependency parsing uses a bottom-up
parsing strategy with a multitask learning approach (Kankanampati
et al., 2020). It simultaneously learns from two Arabic dependency
treebanks (CATiB and UD) by parsing both syntactic and
semantic features. Their model jointly parses sentences into
both syntactic representations using shared and task-specific
components, allowing partial parse trees in one formalism to
inform decisions in the other. This approach is evaluated on
parallel CATiB and UD treebanks—both automatically converted
from parts 1–3 of the PATB—with standard train/dev/test splits.
While these converted treebanks are not originally designed for
dependency parsing, they are widely used as gold standards
for syntactic analysis in Arabic NLP research. The multitask
parser achieves substantial improvements over strong single-task
baselines, with labeled attachment scores (LAS) of 86.15 for CATiB
and 84.76 for UD, representing 9.9% and 6.1% error reductions
respectively. The study highlights that explicit sharing of partial
tree structures, rather than just neural parameter sharing, yields the
largest gains, especially in complex syntactic constructions such as
Idafa and modifiers.

An Arabic probabilistic parser based on a property grammar
is a parser that uses a hybrid approach combining statistical
modeling and rule-based parsing, based on a Property Grammar
(PG) formalism (Bensalem et al., 2023). The parser applies
a bottom-up parsing strategy using a Probabilistic Context-
Free Grammar (PCFG) combined with a probabilistic Property
Grammar (PPG). It integrates syntactic constraints and utilizes the
CYK algorithm optimized with the Viterbi method. Evaluation on
a test set of 400 sentences from ATB highlights the parser’s ability
to parse complex Arabic constructs with high precision. Compared
to the Stanford parser (Dozat et al., 2017), it demonstrates
better precision for specific linguistic phenomena, such as verbal
sentences (88.3% vs. 81.9%) and nominal phrases (75.2% vs. 74.0%).
However, it faces challenges in recall, particularly in capturing all
relevant syntactic features.

Bel-Arabi combines both rule-based and learning-based
approaches for Arabic syntactic parsing (Ibrahim et al., 2016).
The system adopts a machine learning strategy for tasks like
POS tagging and chunking, employing Conditional Random
Fields (CRF) classifiers. The framework also integrates rule-based
modules for grammatical marking, ensuring accurate syntactic
analysis. With a high precision rate (90.44%) for analyzing 600
sentences, the system excels at identifying grammatical roles
and diacritical marks. However, its performance declines when
dealing with constructs like passive verbs, indicating areas for
improvement, particularly in semantic analysis.

Arabic parser using deep learning employs deep learning
techniques to tackle the complexities of Arabic syntax, utilizing
bidirectional LSTM (BILSTM) models (Maalej et al., 2021). The
system employs a statistical approach for syntactic parsing, utilizing
deep learning models such as LSTM, GRU, and BILSTM, which
are trained on word embeddings derived from the Penn Arabic

Treebank (ATB). The BILSTM model demonstrated superior
accuracy, achieving over 99% accuracy across various syntactic
levels. The system effectively captures bidirectional contextual
dependencies, making it a promising approach for Arabic syntactic
parsing in NLP applications.

Stanford Arabic parser is a component of the Stanford
CoreNLP suite that provides syntactic analysis of Arabic sentences
using probabilistic context-free grammar (PCFG) models (Green
and Manning, 2010). It is trained on the Penn Arabic Treebank
(PATB) and operates in two main stages: first, it performs
tokenization and segmentation—often using the Stanford Arabic
Segmenter, and then applies syntactic parsing to produce
hierarchical phrase structure trees.

The parser generates both constituency trees and part-of-
speech (POS) tags, enabling deeper syntactic understanding
necessary for downstream tasks like information extraction,
question answering, and machine translation. It utilizes the CYK
(Cocke–Younger–Kasami) parsing algorithm and supports features
like n-best parses and probabilistic scoring, making it both
powerful and flexible for diverse NLP applications. Although the
parser itself doesn’t perform sentiment analysis, its output supports
sentiment models. Grammar-checking tools use the parser to
identify and correct errors, and NER systems benefit from its
contextual information. In educational settings, the parser teaches
syntax and sentence structure, while businesses use it for text
analytics, such as market research and customer feedback analysis.
The parser’s comprehensive applications demonstrate its versatility
in understanding and processing natural language text.

The parser’s performance on development test data for
sentences under 40 words shows a factored F1 score (factF1) of
77.44% and dependency accuracy (factDA) of 84.05%. For the
ATB part 3 Buckwalter grammar. These results highlight strong
dependency parsing performance and suggest that inconsistencies
in constituency annotations may account for the relatively lower
F1 scores.

Arabic tree adjoining grammar (ArabTAG V2.0) or
Arabic Tree Adjoining Grammar version 2.0, is an advanced
syntactic and semantic analysis framework specifically designed
for Modern Standard Arabic. Developed as part of a project led
by researchers like Ben Khelil et al. (2023) and her collaborators,
this grammar addresses the unique challenges posed by NLP,
including its flexible word order, rich morphology, and the
omission of diacritics in written texts. ArabTAG V2.0 builds
on a prior manually defined grammar, enhancing it with an
abstract representation called a meta-grammar. This abstraction
allows linguists to describe both the syntax and semantics
of Arabic more efficiently, facilitating the maintenance and
expansion of the grammar. The framework includes 1,074 non-
lexicalized syntactic rules and 27 semantic frames, focusing on
predicate-argument structures.

The grammar is semi-automatically generated and is designed
to cover a wide range of syntactical structures and linguistic
phenomena. Experimental evaluations have shown that ArabTAG
V2.0 can achieve a precision rate of 88.76% in syntactic analysis
and about 95.63% in semantic analysis. This high level of accuracy
demonstrates its capability to handle the complexity of Arabic
syntax and semantics effectively.
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MASAQ parser (Sawalha et al., 2025b) is a recent statistical
parser developed for Classical Arabic, based on the newly
released MASAQ dataset (Sawalha et al., 2025a). It applies
supervised machine learning (Random Forest, LinearSVC, Logistic
Regression) for fine-grained morphosyntactic analysis, focusing
on dependency parsing in accordance with traditional Arabic
irab. The MASAQ corpus includes 131,930 morphemes and
123,565 annotated syntactic functions over 77,408 Quranic words.
Evaluation experiments report a best accuracy of 99.0% for
syntactic role assignment using Random Forest, setting a new
benchmark for Arabic syntactic analysis.

4.2 Modern neural and transformer-based
approaches to arabic syntactic analysis

Camel parser, which includes versions 1.0 and 2.0 (Elshabrawy
et al., 2023), integrates machine learning, specifically leveraging
BERT-based embeddings for better contextual understanding, and
applies biaffine attention mechanisms for dependency parsing.
CamelParser 2.0 outperforms its predecessor by integrating
advanced neural models, yielding improved parsing performance
with a Labeled Attachment Score (LAS) of 91.3% and an Unlabeled
Attachment Score (UAS) of 92.4%. The use of BERT and biaffine
parsing results in a significant reduction in parsing errors, making
it a robust tool for Arabic dependency parsing.

Out-of-domain dependency parser (Mokh et al., 2024) address
the challenge of dependency parsing for Arabic dialects in an
out-of-domain setting, given the lack of syntactically annotated
dialectal corpora. Their approach uses a neural biaffine dependency
parser (Dozat and Manning, 2016), trained on the Columbia
Arabic Treebank (CATiB; Habash and Roth, 2009) and the Modern
Standard Arabic (MSA) portion of the MADAR parallel corpus
(Bouamor et al., 2018), and tested on a manually annotated set of
Gulf, Levantine, Egyptian, and Maghrebi dialect sentences. They
focus on the parsing of Idafa and coordination constructions,
which are particularly challenging and structurally variable across
dialects. The authors employ various domain adaptation strategies,
including filtering training data by sentence length, removing
sentential coordination, selecting structurally similar sentences
based on POS bigram perplexity, and experimenting with different
BERT-based embeddings. For in-domain evaluation, they used two
syntactically annotated MSA datasets: CATiB and the MSA portion
of the MADAR corpus, which consists of 2,000 sentences with
full dependency. When trained and evaluated on CATiB, their
parser achieved a Unlabeled Attachment Score (UAS) of 90.3%
and a Labeled Attachment Score (LAS) of 88.7%. On the MADAR
MSA dataset (2,000 annotated sentences), the parser reached a
UAS of 97.9% and a LAS of 84.9%. However, performance drops
significantly out-of-domain (e.g., UAS: 55.1–57.5%, LAS: 23.2–
27.5% across dialects), but targeted adaptation techniques can raise
LAS by up to 24 points for specific constructions. These results
serve as an upper bound for parsing performance in MSA, given
matched domain and annotation style.

AraT5 (Nagoudi et al., 2022) is an Arabic text-to-text
Transformer model trained on large-scale MSA and dialectal

corpora, including AraNews (Nagoudi et al., 2020), El-Khair (El-
Khair, 2016), and OSCAR (Suárez et al., 2020). While AraT5 does
not function as an explicit syntactic analyzer, its sequence-to-
sequence architecture and pretraining enable it to learn syntactic
structures implicitly, as demonstrated by strong results on the
ARGEN benchmark across seven tasks. AraT5 outperformed
mT5 on 52 of 59 test splits, highlighting the effectiveness of
implicit syntax modeling for Arabic language generation and
understanding tasks.

AraBERT (Antoun et al., 2020) is a transformer-based language
model specifically pre-trained for Arabic. Built on the BERT-base
architecture (12 encoder layers, 768 hidden dimensions, 110M
parameters), AraBERT introduces an Arabic-specific preprocessing
pipeline by segmenting words into stems, prefixes, and suffixes
using Farasa (Abdelali et al., 2016), followed by sub-word
tokenization (SentencePiece, vocab size: 64K). The model is pre-
trained on a large, diverse corpus comprising 70 million sentences
(24GB) gathered from major Arabic news sources [notably the 1.5B
Arabic Corpus (El-Khair, 2016) and OSIAN (Zeroual et al., 2019)],
Modern Standard Arabic (MSA), and dialectal variants. Although
AraBERT is not an explicit syntactic parser, its deep contextualized
embeddings have shown strong performance on tasks highly
dependent on syntactic and morphological understanding, making
it widely adopted as a backbone for downstream syntactic analysis
tasks. In evaluations across sentiment analysis, named entity
recognition (NER), and question answering (QA), AraBERT
consistently outperformed multilingual BERT and previous state-
of-the-art models. The size and diversity of the training corpus and
the Arabic-specific tokenization are key contributors to its robust
syntactic modeling.

MARBERT (Abdul-Mageed et al., 2021) is a pre-trained deep
bidirectional Transformer model specifically designed to address
the diversity and informality of Arabic language varieties, especially
on social media. Built on the BERT-base architecture (12 layers,
768 hidden units, 163M parameters), MARBERT is trained from
scratch on a massive dataset of 1 billion Arabic tweets (128GB,
15.6B tokens), using a 100K WordPiece vocabulary. The pre-
processing is intentionally minimal—removing only diacritics and
normalizing URLs, usernames, and hashtags—to maximize the
model’s exposure to authentic, naturally occurring dialectal and
noisy text. Importantly, while MARBERT is not a syntactic parser
in the traditional sense, its deep contextualized representations
have shown substantial impact on downstream tasks that depend
on syntactic and morphosyntactic cues, such as named entity
recognition, dialect identification, and question answering. For
evaluation, MARBERT was assessed using the ARLUE benchmark
(Abdul-Mageed et al., 2021), which consists of 42 diverse datasets
across six task clusters (including tasks closely tied to syntactic
analysis). MARBERT achieves state-of-the-art results on 37 out of
48 classification tasks, with an overall ARLUE macro-average score
of 75.99, outperforming many larger multilingual models (such as
XLM-RLarge, which is more than three times larger in parameters).
Notably, MARBERT’s strength is most pronounced in dialect
identification and social meaning tasks—domains where syntactic
variation is high and previous MSA-focused models struggled. To
further address performance in tasks requiring longer context, the
authors introduce MARBERTv2, which is obtained by continued

Frontiers in Artificial Intelligence 07 frontiersin.org66

https://doi.org/10.3389/frai.2025.1638743
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Saadiyeh et al. 10.3389/frai.2025.1638743

pre-training of MARBERT on the same MSA data as ARBERT and
the AraNews dataset, using a longer sequence length (512 tokens)
for 40 additional epochs, resulting in exposure to 29 billion tokens.

Dialect-specific pre-trained language models: In addition to
multidialect models like AraBERT and MARBERT, recent research
has introduced several dialect-specific pre-trained language
models, including CAMeLBERT (Inoue et al., 2021), SaudiBERT
(Qarah, 2024b), and EgyBERT (Qarah, 2024a). CAMeLBERT
comprises a suite of BERT-based models, each trained on a specific
Arabic variant (Modern Standard Arabic, dialectal Arabic, or
Classical Arabic), with pre-training corpora ranging up to 167GB
and over 17 billion tokens. SaudiBERT is developed for the Saudi
dialect using a corpus of 141 million Saudi tweets and forum
data (totalling over 26GB), while EgyBERT targets the Egyptian
dialect with more than 10GB of Egyptian tweets and forum texts.
These models follow the BERT architecture and employ minimal
pre-processing to preserve dialectal characteristics. Though not
syntactic parsers, their contextualized representations significantly
improve the performance of downstream tasks that require
syntactic sensitivity.

Al-Ghamdi et al. (2023) proposed a novel approach for
Arabic dependency parsing by fine-tuning BERT-based pre-trained
language models, formulating the parsing task as a sequence
labeling problem. Each token is assigned a composite label
encoding both the head position and the dependency relation,
and three head-encoding strategies (naive positional, relative
positional, and relative POS-based) were systematically compared.
The authors evaluated nine Arabic BERT-based models—including
AraBERTv2, AraBERTv1, Camel-MSA, Camel-CA, ARBERT, and
GigaBERT—on three treebanks: the Prague Arabic Dependency
Treebank (PADT, Hajič et al., 2004), the Columbia Arabic Treebank
(CATiB, Habash and Roth, 2009), and the Classical Arabic
Poetry Dependency Treebank (ArPoT, Al-Ghamdi et al., 2021).
Experimental results demonstrate that AraBERTv2 achieved the
highest accuracy, reaching up to 84.03% UAS and 80.26% LAS on
PADT, 87.54% UAS and 86.41% LAS on CATiB, and 79.79% UAS
and 74.13% LAS on ArPoT. It should be noted that the work by Al-
Ghamdi et al. (2023) does not propose a novel parser architecture,
but rather adapts and thoroughly evaluates the sequence labeling
approach using existing BERT-based pre-trained models for Arabic
dependency parsing.

The provided Table 1 offers a comprehensive overview of
Arabic syntactic analyzers, grouped primarily by their underlying
methodologies: rule-based, hybrid, and neural approaches. Rule-
based parsers, such as Recursive Transition Network (RTN),
Chart Parser, AGFL Parser, and NooJ-based Analyzer, rely heavily
on manually crafted grammatical rules and lexicons. These
systems exhibit notable accuracy on controlled and limited
sentence sets (85.6%–95%), yet they tend to struggle with
linguistic coverage, robustness, and scalability to more complex
or diverse texts. Hybrid approaches, including ARSYPAR, the
Industrial-Strength Parser, Probabilistic Parser, and Bel-Arabi,
integrate statistical or machine learning methods with linguistic
rules. These parsers generally achieve intermediate levels of
accuracy (82%–90%) and show enhanced robustness and broader
linguistic coverage compared to purely rule-based methods.
However, their performance is contingent upon annotated corpora

and careful feature engineering, thus posing challenges in
adaptability and maintenance. Neural network-based parsers,
such as Camel Parser, AraBERT variants, and Deep-Learning
Parsers utilizing transformer architectures, currently deliver state-
of-the-art results (LAS and UAS typically ranging from 80%
to over 90%). These models benefit significantly from extensive
annotated corpora (PADT, CATiB, ATB) and demonstrate superior
handling of Arabic morphology, syntactic ambiguity, and out-of-
vocabulary words. Nonetheless, neural models require substantial
computational resources and large annotated datasets, and they
may face performance issues when encountering domain shifts
or dialectal variations not represented in training data.Overall,
these comparisons indicate that while early parsers laid important
groundwork, the highest parsing accuracies for Arabic are
currently achieved by transformer-based models and other recent
neural approaches. While current parsers demonstrate substantial
progress, future research directions include addressing domain
and dialect adaptability, interpretability of neural models, and
overcoming resource limitations through semi-supervised learning
and multilingual transfer techniques. Such advancements will
further bridge existing gaps and improve parser applicability across
varied Arabic language scenarios.

5 Challenges in arabic syntactic
analysis

Many of the difficulties in Arabic syntactic analysis are
well-known, recent advances in machine learning, computational
linguistics, and deep learning bring forth a new set of advanced
challenges. These challenges not only stem from the traditional
complexities of the language but also from the need to create
sophisticated models capable of handling both contemporary and
evolving linguistic phenomena. Below are some of the challenges
that researchers are facing in Arabic syntactic analysis:

5.1 Unannotated domain-specific data and
formalization gaps

While resources like the Penn Arabic Treebank (PATB)
exist, they are heavily focused on formal texts and standard
written Arabic, such as news articles. As more Arabic data
comes from informal domains like social media, blogs, SMS, and
chat conversations, syntactic structures in these domains become
more difficult to annotate and generalize. These domains often
contain non-standard spelling, abbreviations, and internet slang,
and their syntax deviates from the rigid structures of MSA.
Furthermore, Arabic-language syntactic structures in domain-
specific applications (e.g., medical texts, legal documents, technical
manuals) often require specialized syntactic theories and rules
that current parsers are not equipped to handle. For example,
the grammatical norms in technical writing might differ from
colloquial speech, and handling these nuances requires more
sophisticated annotation schemes that current treebanks and
parsing models lack.
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TABLE 1 Comparative performance of Arabic syntactic analyzers.

Analyzer Approach followed Evaluation results Corpus size/name

Recursive transition
network

Top-down RTN; context-free + pattern rules 85.6 % accuracy 90 Arabic sentences

A’reb Recursive top-down parser; production rules – Not specified

NLTK parser Rule-based; CFG; recursive-descent – Not specified

Chart parser Top-down chart parser; CFG 94.3% accuracy 70 Arabic sentences

CFG top-down Recursive-descent CFG 92% verbal, 98% nominal accuracy 150 Arabic sentences

ARSYPAR Supervised ML (SVM) F-score 84.38% Arabic Treebank subset

Industrial-strength
parser

Hybrid (rule-based + statistical) F-score 82% 300 Arabic sentences

AGFL parser Rule-based; AGFL formalism 95% successful parses; high ambiguity 200 Arabic sentences

Transducers parser Finite-state transducers; segmentation +
disambiguation

Precision 80%, Recall 90% 200 Arabic sentences

Inductive learning
algorithm

Rule induction from examples 92.63% accuracy Unspecified (unseen
sentences)

CFG + classical
grammar

CFG plus traditional grammar rules 97% accuracy 200 nominal sentences

NooJ-based analyzer Rule-based linguistic model 95% syntactic, 86% disambiguation accuracy 120 nominal sentences

Camel parser BERT + biaffine dependency (ML) UAS/LAS: 92.4/91.3 Not specified (likely ATB)

Multitask easy-first Bottom-up, multitask learning UAS/LAS: 88.08/86.15 CATiB Treebanks

Probabilistic parser PCFG + property grammar, CYK Precision 88.3% (verbal), 75.2% (nominal) 400 ATB sentences

Bel-Arabi Hybrid ML (CRF) + rules Precision 90.44% 600 sentences

Deep-learning parser BiLSTM/LSTM/GRU >99% accuracy Penn Arabic Treebank

Stanford Arabic parser PCFG + CYK FactF1 77.44%, FactDA 84.05% Penn Arabic Treebank

ArabTAG v2.0 Tree-adjoining grammar; meta-grammar Precision 88.76% (syntax), 95.63% (semantics) Not specified

MASAQ Statistical parser (Random Forest) Accuracy: 99.0% MASAQ dataset: 123,565
syntactic functions

Camel-MSA Fine-tuned BERT-based sequence labeling UAS/LAS: 83.10/79.17 PADT: 282,384

Camel-MSA Fine-tuned BERT-based sequence labeling UAS/LAS: 86.47/85.29 CATiB: 169,319

AraBERTv1 Fine-tuned BERT-based sequence labeling UAS/LAS: 82.76/78.82 PADT: 282,384

AraBERTv1 Fine-tuned BERT-based sequence labeling UAS/LAS: 86.76/85.57 CATiB: 169,319

AraBERTv2 Fine-tuned BERT-based sequence labeling UAS/LAS: 84.03/80.26 PADT: 282,384

AraBERTv2 Fine-tuned BERT-based sequence labeling UAS/LAS: 87.54/86.41 CATiB: 169,319

ARBERT Fine-tuned BERT-based sequence labeling UAS/LAS: 80.37/76.11 PADT: 282,384

ARBERT Fine-tuned BERT-based sequence labeling UAS/LAS: 78.31/75.95 CATiB: 169,319

Arabic BERT Fine-tuned BERT-based sequence labeling UAS/LAS: 80.02/76.52 PADT: 282,384

Arabic BERT Fine-tuned BERT-based sequence labeling UAS/LAS: 82.65/80.59 CATiB: 169,319

5.2 Ambiguities in syntactic structures due
to ellipsis and zero pronouns

Arabic syntax features phenomena like ellipsis and zero
pronouns that introduce ambiguity into sentence structure. These
phenomena are particularly common in conversational Arabic and
can result in incomplete syntactic structures that require contextual
information to resolve. For instance, a sentence like “He went

to the market, and she [went] to the store” in English uses an
ellipsis, which may be straightforward to resolve in English, but
in Arabic, this can be more complex due to the omission of verb
phrases or pronouns without clear agreement. Zero pronouns,
where the subject or object is omitted from a sentence because
it can be inferred from context, add another layer of complexity.
Accurately resolving these ellipses and zero pronouns in both MSA
and dialectal varieties remains an unsolved challenge in syntactic
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parsing, particularly for systems that rely heavily on surface form
rather than deeper contextual understanding.

5.3 Model generalization and domain
adaptation

One of the most pressing challenges in Arabic syntactic
analysis is the generalization of models across domains. While
Arabic parsers have become quite effective for general text (e.g.,
news), they often fail when transferred to specific domains,
such as healthcare, finance, or legal documents. Domain-specific
vocabulary, sentence structures, and jargon can lead to significant
degradation in performance when the models are not adapted
properly. Traditional training methodologies that focus on general-
purpose data are less effective for domain-specific tasks, and fine-
tuning models for specialized domains remains an open area
of research.

6 Conclusion and future directions

Arabic syntactic analysis has made significant strides over
the past decade, transitioning from rule-based systems to more
sophisticated machine learning and neural network models.
Despite these advancements, several challenges remain, including
handling dialectal variation, resolving ambiguities due to the lack
of diacritics, and the need for larger, more diverse annotated
datasets. As new systems and approaches are developed, the
evaluation of Arabic syntactic analyzers will remain a critical
challenge. Establishing more diverse and standardized benchmarks
for evaluating Arabic parsers across dialects, genres, and domains
is essential for guiding future improvements.

This paper systematically surveys and compares state-
of-the-art methods for Arabic syntactic parsing, clearly
highlighting the strengths and limitations of existing rule-
based, statistical, machine learning, and hybrid approaches. It has
also provided a comprehensive evaluation of essential resources,
including prominent Arabic syntax treebanks. The comparative
insights presented here serve as a foundational reference for
researchers seeking to address the inherent complexities of
Arabic NLP.

Future research should focus on leveraging advances in
transformer-based models, such as multilingual and domain-
adaptive language models, to enhance parser robustness across
dialects and diverse textual domains. Joint models capable
of simultaneously addressing morphological segmentation,
POS tagging, and syntactic parsing should be developed
to mitigate cascading errors. Additionally, increased efforts
toward interpretability in neural systems and richer semantic
annotations in Arabic Treebanks will significantly improve
downstream NLP applications. Exploring cross-lingual transfer
learning and semi-supervised learning techniques will be vital
in overcoming current limitations related to the scarcity of
annotated data, particularly for dialectal and low-resource
Arabic varieties.

In conclusion, while significant progress has been
made in Arabic syntactic analysis, ongoing challenges and
evolving linguistic phenomena offer ample opportunities for
further research. Advances in deep learning, multilingual
modeling, and the expansion of dialectal resources
are likely to drive the next wave of breakthroughs in
the field.
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Arabic speech recognition model 
using Baidu’s deep and cluster 
learning 

Fawaz S. Al-Anzi* and Bibin Shalini Sundaram Thankaleela 
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Kuwait 

This study involves extracting the spectrum from the Arabic raw, unlabeled 
audio signal and producing Mel-frequency cepstral coefficients (MFCCs). The 
clustering algorithm groups the retrieved MFCCs with analogous features. The 
K-means clustering technique played a crucial role in our research, enabling the 
unsupervised categorization of unlabeled Arabic audio data. Employing K-means 
on the extracted MFCC features allowed us to classify acoustically similar 
segments into distinct groups without prior knowledge of their characteristics. 
This initial phase was crucial for understanding the inherent diversity in our 
diverse sampled dataset. Dynamic Time Warping (DTW) and Euclidean Distance 
are utilized for illustration. Classification algorithms such as Decision Tree, 
eXtreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Random 
Forest are used to classify the various classes obtained based on clustering. This 
study also demonstrates the efficacy of Mozilla’s Deep Speech framework for 
Arabic speech recognition. The core component of deep speech is its neural 
network architecture, which consists of multiple layers of Recurrent Neural 
Networks (RNNs). It strives to comprehend the intricate patterns and interactions 
between spoken sounds and their corresponding textual representations. The 
clustered labeled Arabic audio dataset, along with transcripts and Arabic 
Alphabets, is used as input to Baidu’s Deep Speech model for training and testing 
purposes. PyCharm, in conjunction with Python 3.6, is used to build a Dockerfile. 
Creating, editing, and managing Dockerfiles within PyCharm’s IDE is simplified by 
its functionality and integrated environment. Deep speech provides an eminent 
Arabic speech recognition quality with reduced loss, word error rate (WER), 
and character error rate (CER). Baidu’s Deep Speech intends to achieve high 
performance in both end-to-end and isolated speech recognition with good 
precision and a low word rate and character error rate in a reasonable amount of 
time. The suggested strategy yielded a loss of 276.147, a word error rate of 0.3720, 
and a character error rate of 0.0568. This technique increases the accuracy of 
Arabic automatic speech recognition (ASR). 

KEYWORDS 

clustering, language model, acoustic model, Baidus deep speech, RNN, deep learning 

1 Introduction 

Speech acts as a gateway in communicating our ideas through different vocal sounds 
and is a powerful tool that shapes our world. e study of speech signals and the techniques 
used to process them is known as speech processing. Modern automatic speech recognition 
(ASR) systems replace the conventional human–machine interface in various commercial 
applications. rough the application of linguistics and computer science, ASR systems 
can interpret spoken words and translate them into text. is enables voice-activated 
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device interaction, message dictation, and generation of transcripts 
from recordings. Recent developments in articial intelligence 
(AI), particularly natural language processing (NLP), have focused 
on using AI applications for ASR. Researchers have investigated 
morphological analysis, resource building, and machine translation 
for the Arabic language. Speech and language disorders are a 
side effect of many diseases, and devices like the Servox Digital 
Electro-Larynx (EL) can generate quasi-clear voices for people 
with disorders (Mohammed Ameen and Abdulrahman Kadhim, 
2023). e respiratory, phonatory, and articulatory end organs 
are all involved in the intricate neurological process of speech 
(Musikic et al., 2025). Acoustic media and background noise can 
disrupt and interfere with speech communication. Vocalization 
system damage can affect the efficiency of voice recognition 
and voice clarity (Liu et al., 2025). ASR is useful in many 
domains, including the development of accessible applications to 
transforming human–machine communication. Speech recognition 
automatically identies and translates a person’s spoken words based 
on the data available in a speech waveform and its historical data 
feed. e evolution of deep learning has changed the ASR landscape 
in conjunction with Recurrent Neural Network (RNNs), deep neural 
networks (DNNs), and convolutional neural networks (CNNs). 
Deep neural networks are multilayered articial intelligence that 
learns from data. ey are inspired by the structure of the human 
brain, and these layers enable them to handle challenging issues. 
Deep neural networks, which have been trained on enormous 
datasets, modify their internal connections to identify patterns and 
carry out tasks such as speech translation and image recognition. 
e ability of CNNs to extract intricate patterns from audio 
input has been inspiring. Baidu’s Deep Voice enhances voice 
recognition precision in noisy situations, as well as in far-eld and 
reverberant conditions (Ahmed and Ghabayen, 2017; Masterson, 
2015). MFCCs effectively decipher sound content in speech and 
audio processing. e MEL scale considers how our ears interpret 
pitch and frequencies with similar sounds. Applications such as 
speech recognition systems can interpret speech data by evaluating 
MFCCs. A clustering algorithm is a specic set of instructions 
that tells a computer how to automatically group data points into 
clusters. e study addresses the issue of unlabeled Arabic audio 
data by applying an unsupervised clustering algorithm to analyze 
and structure the corpus, uncovering acoustic patterns, speaker 
variabilities, and environmental conditions. ese insights inform 
effective data handling strategies and the training of Arabic Deep 
Speech ASR models. ese algorithms are used in unsupervised 
learning, where the data does not have predened labels. ere are 
many clustering algorithms, but one of the popular popular ones 
is K-means. Algorithms such as Hierarchical clustering, Mean shi 
clustering, Gaussian mixture model, Affinity propagation, and K-
means clustering are widely available to group different patterns of 
MFCCs (Al-Anzi and Shalini, 2024). 

e primary objective of this study is to develop an ASR 
system that automatically transcribes spoken utterances into a 
textual format. Our approach utilized a database consisting of 
Arabic audio recordings, which encompassed news broadcasts, 
public speeches, and various general recordings of individuals. e 
primary objective of our study is to extract the Mel-frequency 
coefficients necessary for ASR from the unlabeled Arabic audio 

dataset. We employed a clustering approach, with the clusters 
organized according to the KNN algorithm to label the collected 
MFCCs. e retrieved MFCCs are categorized according to their 
auditory characteristics. We have utilized Baidu’s Deep Speech 
model to transcribe spoken language into text. e input given 
to the model is our clustered Arabic audio dataset along with its 
transcribe and alphabet. We also assessed the word error rate (WER) 
and character error rate (CER) of the transcribed results from the 
audio datasets. We have labeled the clustered dataset using a speech 
recognition pretrained model from the klaam library, categorizing 
it as Modern Standard Arabic (MSA), Egyptian Arabic (EGY), 
and Gulf Arabic (GLF) based on dialects. We have trained the 
model using different machine learning algorithms to categorize the 
dialects and assess accuracy, loss, and evaluation metrics for the 
clustered results. 

e subsequent sections of the article are structured as 
follows: A concise literature overview encompassing ASR, diverse 
languages and accents in ASR, end-to-end speech processing, and 
the deep learning architectures that facilitate speech recognition, 
concluding with a clearly dened research gap, along with the 
methodologies and materials. Includes fundamental architecture, 
data collection, data analysis, MFCC analysis, clustering of MFCC 
characteristics, classication, performance evaluation, ndings, 
debates, conclusion, and future scope. 

2 Literature review 

e study by Ahmed and Ghabayen (2017) proposes three 
methods to improve Arabic automatic speech recognition. ey are 
listed in the following order: utilizing a Decision Tree to generate 
alternative pronunciations, modifying a native acoustic model with 
a different native model, and text processing to improve the language 
model. By employing these methods, the word error rate was 
reduced. e methodology of the paper showed how deep speech 
recognition models can integrate over time with long, adjustable 
windows (Ahmed and Ghabayen, 2017). 

2.1 Automatic speech recognition 

In the study by Keshishian et al. (2021), ASR aims to 
enable computers to identify and interpret human speech as 
accurately as possible. Many techniques can be used to implement 
speech recognition models. e author utilized one of the newest 
techniques for speech recognition, which employs neural networks 
with deep learning. An overview of the research conducted on 
Arabic voice recognition is given in the paper by Wlgihab et al. 
It also sheds some light on the facilities and toolkits available for 
Arabic voice recognition system development (Algihab et al., 2019). 
A vast array of products has been developed that efficiently leverage 
ASR to enable communication between humans and machines by 
Karpagavalli and Chandra et al. Speech recognition applications 
exhibit reduced performance in the presence of reverberation or 
minimal background noise (Karpagavalli and Chandra, 2016). Both 
acoustic and text transcriptions are used during the entire training 
process of ASR neural network systems. 
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e study by Belinkov et al. compares phonemes and 
graphemes along with different articulatory properties to evaluate 
the representation quality across a range of classication tasks. 
e study analyzes three datasets and two languages, Arabic and 
English, and demonstrates how consistently different features are 
represented across deep neural network covers (Belinkov et al., 
2019). e purpose of the study by Abdul et al. is to discuss 
the applications of the MFCC as well as certain problems with 
its calculation and how they affect the model’s performance 
(Abdul and Al-Talabani, 2022). An enhanced Mel-frequency 
cepstral coefficients (MFCC) feature for unsupervised marine 
target clustering is presented in the research. It exhibits a high 
success rate for multitarget or depth-target clustering as well as 
strong anti-interference capabilities (Yang and Zhou, 2018). e 
Short-Time Fan-Chirp Transform (FChT), a novel technique 
for time-frequency analysis of speech signals, is presented in 
this study (Képesi and Weruaga, 2006). It enhances spectral and 
time-frequency representation, making it appropriate for ltering 
applications. Taking contextual considerations into account, this 
method examines speech processing to quantify controllable 
speech features across a variety of talker populations, noise levels, 
competing speakers, and the channel through which it is conveyed 
(Pitton et al., 1996). 

e study by Abushariah et al. gave a framework for designing 
a speaker-independent automatic Arabic speech recognition system 
using a phonetically rich speech corpus. e system uses Carnegie 
Mellon University’s Sphinx tools and Cambridge HTK tools and uses 
three-emitting state Hidden Markov Models for tri-phone-based 
acoustic models. e system achieved word recognition accuracy of 
92.67 and 93.88% for similar speakers with different sentences, and 
a Word Error Rate of 11.27 and 10.07% with and without diacritical 
marks (Abushariah et al., 2012). A simple word decomposition 
algorithm presented by Afy et al. requires a text corpus and affix 
list, improving WER by 10% in Iraqi Arabic ASR. e algorithm 
also reduces WER by 13% relative (Afy et al., 2006). e research 
presented by Ali Ahamed et al. shows a novel methodology for 
assessing ASR in languages lacking a standardized orthographic 
system. e authors solicited ve distinct users to transcribe speech 
segments, subsequently integrating the alignments from numerous 
references and presenting a revised WER. e ndings indicated an 
average WER of 71.4 and 80.1%, respectively. 

2.2 Different languages, ascent speech 
recognition 

To build high-performing recognizers for two radically different 
languages, such as Mandarin and English, the authors Amodei et al. 
looked into a variety of network topologies and found a few helpful 
techniques, such as look-ahead convolution for unidirectional 
models, and enhanced numerical optimization using SortaGrad and 
Batch Normalization (Amodei et al., 2016). In the study by Nahid 
et al., they investigated the capacity of the DeepSpeech network to 
recognize unique Bengali speech samples. Recurrent Long Short-
Term Memory (LSTM) layers form the foundation of this network, 
which models internal phoneme representations. At the bottom, 

convolutional layers are added, which removes the requirement to 
assume anything about internal phoneme alignment. e model 
was trained using a connectionist temporal classication (CTC) loss 
task, and the transcript was generated by casting a beam search 
decoder. On the Bengali real number speech dataset, the developed 
method produced a lower word error rate and a character error rate 
(Nahid et al., 2019). 

In the study by Priyank Dubey (2023), they discussed that the 
transcription of spoken speech can be extracted from the waveform 
using ASR. Mozilla Deep Speech is among the most recent, 
according to Baidu’s Deep Speech research report. rough end-
to-end deep learning, the state-of-the-art deep voice recognition 
system was developed. A properly optimized RNN is used with 
several Graphical Processing Units (GPUs). Its generalizability to 
other English accents is limited because American English accents 
make up the majority of the datasets used in this training. In this 
study, researchers used the most recent Deep Voice model, Deep 
Speech-0.9.3, to create an Indian-English speech recognition system 
from beginning to end for dialects. In the study by Xu et al. (2020), 
the focus of the research was on a real-time German speech-to-
text system that was constructed using numerous German language 
datasets. Researchers in this study optimized DeepSpeech for 
teaching a current German speech-to-text prototype by combining 
multiple German datasets. Moreover, they achieved strong WER 
rates. e model discussed in the study by Ai-Zaro et al. produces 
the WER/PER of 3.11 and 6.18% (Al-Zaro et al., 2025). 

Literature (Iakushkin et al., 2018) explains how a voice 
recognition system for the Russian language is made using 
DeepSpeech. e foundation was the Mozilla Corporation’s 
DeepSpeech English implementation, which is available as 
open-source soware. e system was trained in a containerized 
environment using Docker technology. A dataset of Russian literary 
audio recordings made available on voxforge.com was used, and the 
best WER was 18%. A study by Messaoudi et al. (2021) proposes an 
end-to-end method for building Tunisian language communication 
systems based on deep learning. e paired text-speech dataset in 
the Tunisian dialect created for this proposal is called “TunSpeech.” 
Furthermore, the current Modern Standard Arabic (MSA) speech 
data were combined with dialectal Tunisian speech data to lower 
the Out-of-Vocabulary rate. 

2.3 End-to-end speech processing 

Research (Kim et al., 2017) offers a novel end-to-end speech 
recognition method that leverages a hybrid CTC-attention model 
within a multitask learning framework to boost resilience and 
accelerate convergence, thereby reducing the alignment issue. An 
experiment using the WSJ and CHiME-4 tasks demonstrates its 
superiority over the CTC and attention-based encoder-decoder 
baselines, yielding 5.4–14.6% relative improvements in CER. e 
study by Agarwal and Zesch (2020) utilizes a shared task on 
SwissText/KONVENS for a speech-to-text system. A neural network 
is trained end to end, using Mozilla DeepSpeech as its foundation. 
Data augmentation, post-processing, and transfer learning from 
standard English and German were utilized. e WER generated by 
the system is 58.9%. 
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2.4 Speech recognition using deep learning 

In the study by Nedal Turab (2014), a neural network technique 
was used to address phoneme recognition. Gaussian low-pass 
ltering produced improved voice signal quality and reduced noise, 
which was then used to train a neural network for system training. 
Study (Alrumiah and Al-Shargabi, 2023) tackles the important task 
of identifying classic Arabic speech for the 1.9 billion Muslims 
who recite the Quran. It proposes a model based on Deep Neural 
Networks (DNNs). With a 19.43% word error rate and a 3.51% 
character error rate, RNN-CTC outperformed the other models 
following its training on a 100-h dataset of Quran recordings. CNN 
was used to further reduce the word error rate. Paper (Alsayadi 
et al., 2021) presents Arabic diacritical mark-based ASR systems. 
To create a trustworthy and accurate Arabic ASR, a study by 
Alsayadi et al. looks at the application of cutting-edge end-to-
end deep learning techniques. e acoustic characteristics used in 
these methods are the log Mel-Scale Filter Bank energies and the 
Mel-frequency cepstral coefficients. Enhancing discretized Arabic 
ASR is possible with CNN-LSTM and a new CTC-based ASR. 
When it comes to Arabic voice recognition, CNN-LSTM with a 
consideration basis outperforms both traditional ASR and the Joint 
CTC-attention ASR context (Alsayadi et al., 2021). e research by 
Ullah et al. utilized Arabic image datasets that have been gathered, 
consisting of 2,000 Arabic digit records and 900 Arabic phrase 
records from 24 native speakers. VGG-19 is a deep convolutional 
neural network with 19 weight layers and is used in this study to 
extract visual characteristics. Two different approaches, namely, the 
batch-normalized VGG-19 base model and the standard VGG-19 
base model, are presented in the study. e test dataset produces 
the accuracy of 93% digit and phrase recognition, 97% phrase 
recognition, and 94%-digit acknowledgment rates (Ullah et al., 
2022). 

Nagamine et al. analyze a sigmoid DNN trained for a phoneme 
recognition task to characterize different aspects of the non-linear 
changes that occur in hidden layers. e more separable phone 
instances are handled by deeper layers of the network through a 
non-linear feature space transformation. e study describes how a 
deep neural network model learns by transforming the feature space 
in a non-uniform way through repeated non-linear transformations 
(Nagamine et al., 2016). In the study by Hori et al. (2018), researchers 
investigate the impact of word-based RNN philological mockups 
language models (RNN-LMs) on end-to-end ASR performance. It 
includes a novel word-based RNN-LM which allows decoding with 
only word-based. Low WER is achieved by the proposed model 
for the WSJ Eval’92 test set. In the study by Dendani et al. (2020), 
the representational characteristics of a DNN trained for phoneme 
recognition were described. In the rst hidden layer, node selectivity 
to specic articulation styles and locations appeared, and in the 
deeper layers, this selectivity became more pronounced. In the study 
by Dendani et al. (2020), ASR is implemented using a Deep Auto 
Encoder (DAE). e results showed that the enhanced speech’s 
accuracy was about 3.17 times better than the accuracy estimated 
before. Recent models and algorithms, such as Mozilla Deep Speech, 
have been developed, but their generalizability is limited due to their 
use of American–English accent datasets (Priyank Dubey, 2023). 
e study by Srivathshan et al. proposes a hybrid Active Noise 

Cancellation (ANC) system that combines Secondary-Path Filtered 
Active Noise Control (SF-ANC) and a Fuzzy Adaptive Neuro-
Fuzzy Inference System (FxANFIS) to improve noise reduction 
performance (Srivathshan et al., 2025). 

2.5 Research gap 

We haven’t found any specic results from my more targeted 
searches for studies that directly combine Baidu’s Deep Speech 
with cluster learning for Arabic speech recognition. Research on 
combining Baidu’s Deep Speech and cluster learning for Arabic 
speech recognition has not yielded specic results, suggesting a lack 
of extensive exploration. However, studies using Deep Speech and 
cluster learning techniques have revealed challenges like language 
complexity and data limitations. is supports the hypothesis 
that this specic combination may not yet have been thoroughly 
investigated by researchers. 

3 Methods and materials 

e unlabeled Arabic audio dataset, along with the alphabet, 
is applied in the proposed work. e auditory data are converted 
and then hooked onto a sequence of probabilities spanning the 
characters in the alphabet. Second, this sequence of possibilities 
gives rise to a cast of characters. e rst and second steps are 
made possible by a Deep Neural Network and an n-gram language 
model, respectively. e n-gram language model is trained on a 
text corpus, and the neural network is trained on corresponding 
text transcripts and audio les. To predict text from speech and 
prior text, respectively, both the language model and the neural 
model receive training. Generating (MFCC, Analog to Digital 
Conversion, Framing, Windowing, Discrete Fourier Transform 
conversion, Mel-Filter Banks Wrapping Frequency, Converting Mel 
Filter Banks to Log, Executing Discrete Cosine Transform, the 
Resultant MFCC Acoustic Model generation, Language Model 
creation, and Decoding algorithm with deep speech are the 
fundamental techniques employed in this system. ey are all 
converted to a WAV setup and given a monaural aural canal with 
a sampling rate of 16,000 Hz and a depth of 16 bits for each value to 
allow our deep speech pipeline to read all audio clips. 

Our unlabeled Arabic audio dataset was subjected to a clustering 
technique and was mainly used in the pre-processing and data 
interpretation phases. Since our original dataset was completely 
unlabeled, we used clustering to characterize acoustic diversity, 
which involves identifying distinct acoustic groups. e results 
obtained are manually tested against the transcribed text data. 
e clustering algorithm enables us to nd hidden structures 
in the data by grouping the MFCC features. e MFCCs are 
derived from the available Arabic Audio datasets, which are further 
clustered based on their similar features using clustering algorithms. 
Machine learning algorithms are further introduced to classify 
the clusters. e combination of MFCC extraction, clustering, 
and classication provides an effective framework for extracting 
insightful information from Arabic speech data. Speech analysis 
tasks are a good t for MFCCs because they capture the aspects of 
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FIGURE 1 

Methodology diagram with clustering and Baidu’s deep speech. 

speech that are perceptible to humans. ASR allows voice-activated 
computer communication for individuals with physical disabilities. 
Mozilla’s Deep Speech is one of the well-known ASR systems 
widely accepted and has shown remarkable progress in multiple 
languages, including Arabic. Baidu’s Deep Speech framework is 
an open-source ASR system that converts spoken words into 
written language. is speech-to-text technology uses deep learning 
algorithms to translate spoken language into written text. Acoustic 
models, language, speech coherence, and performance evaluation 
are a few components of speech recognition models. 

3.1 Methodology 

Figure 1 depicts a detailed pipeline for processing Arabic audio 
data, incorporating both unsupervised and supervised machine 
learning methods alongside a deep learning model for transcription. 
e method commences with an Arabic Audio Corpus, which is 
subsequently input into a dataset preparation phase. MFCCs are 
recovered from this dataset, functioning as resilient acoustic 
characteristics. e characteristics subsequently undergo 
Clustering, wherein an unsupervised algorithm, presumably K-
means, categorizes the audio segments according to their acoustic 
similarities. e speech recognition pretrained model by the klaam 
library labeled the clustered output as MSA, EGY, and GLF. e 
efficacy of the classication models is evaluated by metrics such as 
Precision, Recall, and F1-Score, with distinct results highlighting 
an emphasis on dialectal performance. e result of this clustering 
phase initiates a Training/Testing phase for traditional machine 
learning models, such as Decision Trees, XGBoost, Random Forest, 
and KNN, employed for a Classication task, presumably aimed 
at categorizing audio segments based on insights derived from the 
clustering. e classication outcomes, combined with the “Arabic 
Alphabets” input, facilitate the generation of labeled data, which 
is thereaer divided into 70% for training, 15% for testing, and 
15% for validation. ese annotated data are essential for training 
Baidu’s DeepSpeech model, the fundamental element responsible 

for the Text Transcribe job, which converts Arabic audio into text. 
is integrated architecture exemplies a multifaceted strategy 
for Arabic speech processing, amalgamating feature engineering, 
unsupervised learning, conventional classication, and deep 
learning to provide a holistic solution. 

3.2 Architecture of the speech recognition 
system 

Figure 2 shows the architecture of the Speech Recognition 
System. Deep neural networks are used in speech recognition to 
translate spoken words into written text. To extract signicant 
acoustic properties, the spoken utterances are rst preprocessed. 
e following steps correspond to the preprocessing, feature 
extraction phases, decoder, and model creation. e preprocessing 
block performs various operations on the speech signal, such as 
noise reduction and silence removal. Aer the noise reduction, 
the background noise gets removed. ere will not be any 
background noise in the spoken signal aer the preprocessing 
phase. Scaling the voice signal to a standard magnitude is known 
as normalization. e speech stream is divided into shorter 
segments through framing, and these segments typically last 
20–30 ms. 

e process of extracting information from each voice signal 
frame is known as feature extraction. e acoustic properties 
of the voice signal are represented by these features. ese 
characteristics are then applied to a series of models: an audio 
model forecasts the phoneme sequence, and a dialectal prototypical 
model uses the analysis of the previous word to predict the 
next. A decoder transforms the sequence into a string of words, 
enabling accurate speech-to-text conversion. is process uses a 
pronunciation dictionary to ensure accurate translation and proper 
word pronunciation. e retrieved features in the acoustic model, 
a statistical model, represent a set of phonemes. e language 
model is a numerical model that forecasts the next verse in a 

Frontiers in Artificial Intelligence 05 frontiersin.org 76

https://doi.org/10.3389/frai.2025.1639147
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Al-Anzi and Sundaram Thankaleela 10.3389/frai.2025.1639147 

FIGURE 2 

Architecture of the speech recognition system. 

series based on the verses that have already been spoken. e 
decoder needs to convert the sequence of phonemes from the 
acoustic model into a word order. e last block in the diagram 
represents the word sequences that have been transcribed. A 
string of words represents spoken speech. Because DNNs can 
identify complex patterns in data, they are well-suited for voice 
recognition tasks. 

3.2.1 Probability theory for speech recognition 
An ASR system’s main objective is to infer the acoustic 

input O in Equation 1, the most likely discrete symbol 
sequence among all valid sequences in the language L 
(Rabiner and Juang, 1993). 

O = o1, o2, o3 . . . .ot (1) 

e symbol sequence to be recognized is N, given in Equation 2: 

N = n1, n2, n3 . . . .nn (2) 

e fundamental ASR system goal and the probability are given 
in Equations 3, 4. 

W = argmaxP (W/O) (3) 

P(W/O) = 
P (O/W) 

P (O) 
P(W) (4) 

3.3 Data collection 

e Arabic audio dataset is our in-house dataset, which contains 
4,071 audio samples from various elds, such as security and 
justice, Economy, Education, Health, Technology, and Sports. Each 
heading of data is subdivided into three levels of datasets, such 
as rst, second, and third sets. Deep speech requires mono-
channel audio les in WAV format with a sampling rate of 16 kHz 
and an encoding of 2 bytes per sample for all WAV les, so 
ensuring consistency in audio quality and format. is collection 
is categorized by speech type, comprising 733 spontaneous voice 
les and 588 read speech les, providing a varied representation 
of natural and controlled verbal expressions. e text linked to 
these audio recordings has an average length of 93.0 characters, 
reecting a moderate complexity and vocabulary range within the 
collection. Ten to twenty-second passes are available between each 
voice sample. e more closely we match this, the longer or shorter 
the model will be. e alphabet.txt le contains a transcription 
of every character from the given voice clip. From the audio 
voice clip, all punctuation has been removed, including quotation 
marks, dashes, and other marks. ree sets of data were separated: 
test, validation, and training. Diacritical marks are used to show 
proper pronunciation or to provide phonetic guidance because the 
standard Arabic script does not provide enough information about 
pronunciation. Since deep speech operates at the character level, the 
inclusion of these representations inuenced the generation of the 
acoustic model. Prediction possibilities rise based on the number 
of letters. 
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FIGURE 3 

Raw and spectrogram of wave signals. 

3.4 Data analysis 

We have used a sample rate of 1,600 Hz for each audio data. e 
encoding of each wave le is 2 bytes per sample. Likely, spontaneous 
speech is used for our analysis. e number of spontaneous speech 
les is 733, and the number of speech les read is 588. e total 
number of training les is 1,321. e average text length is 93.0. 

3.4.1 Silence removal 
Figure 3 shows the signal aer noise removal analysis of an 

Arabic signal. Arabic audio signals must be stripped of silent or low-
energy segments by identifying and removing them. e advantages 
of silence removal include speech analysis for cleared content and 
improved speech clarity. 

3.4.2 Time and frequency analysis of speech 
e basic frequency of the vocal cords, which determines 

whether a voice is perceived as high or low, is referred to as 
pitch. Rapid alterations in the speech signals linked to consonants 
and other non-voiced sounds are known as transient features. 
e time-frequency distribution of the signal is mentioned as the 
frequency spectrum of the audio signal. e specic characteristics 
of the spectrum will depend on the speaker’s voice, the content 
of the speech, and the recording conditions. Analyzing spectra 
gains valuable insights into the acoustic properties of speech signals 

and is helpful for speech recognition, speaker identication, and 
language understanding. 

3.5 Sampling 

Digitalizing the continuous sound wave is necessary for audio 
signal sampling. We have digitized the sound wave for Arabic audio. 
To achieve this, the parameters of the sampling rate should be 
established to determine the frequency of signal measurement. We 
have used a sampling rate of 44.1 kHz and a bit depth of 16 bits 
for our Arabic speech for sampling one lengthy audio wave. e 
overall sampling rate is 16 kHz. Figure 4 shows the sampling frame 
of the audio signal. Spectra used horizontal and vertical axes to 
visually represent the energy distribution across time and frequency, 
respectively. e power of each combination is indicated by the 
intensity of the color. Common observations include darker areas, 
which are associated with high energy, and lighter areas, oen linked 
to unvoiced sounds. 

3.5.1 Discrete Fourier Transform 
e windowed speech signal is subjected to DFT, which yields 

the signal’s phase and magnitude representation. e Fast Fourier 
Transform (FFT) algorithm transforms time domain analysis to 
frequency domain analysis Figure 5 shows the FFT spectrum of 
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FIGURE 4 

Sampling frame of an audio signal. 

FIGURE 5 

FFT recordings of wave. 

an audio signal and the distribution of the energy that occurs at 
different frequencies for each segment. Dominant frequencies are 
those that indicate prominent tones, such as formants and pitch. e 
spectral content is used to reveal the presence of various frequency 
components. e sampling frequency of 1,600 Hz provides basic 
frequency analysis. 

3.5.2 MFCC feature extractions 
e process of extracting MFCC features is essential for 

comprehending speech content, which involves triangular lters. 
Standard FFTs linearly analyze frequencies of sound, but human 

hearing operates on a Mel scale. e output of the FFT is passed 
through triangle-shaped lters. We can capture the portions of 
the spectrum most pertinent to human hearing by adding the 
contributions of each lter, each of which focuses on a particular 
frequency range. e MFCC is the result of this Mel-focused 
representation. Filters are arranged logarithmically, except above 
1,000 Hz, and are equally distributed. e equation used to compute 
Mel frequency is given in Equation 5 (Gupta et al., 2013). 

Mel 
(
f
) = 1127In 

( 

1+ 
f 

700 

) 

(5) 
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FIGURE 6 

MFCC feature extraction. 

FIGURE 7 

Mel spectrogram. 

e changes in the speech from frame to frame can be calculated 
with the rst and second MFCC coefficients. Figure 6 shows the 
block diagram of MFCC feature Extraction. 

e audio signal is divided into frames. Windowing and FFT 
are applied to convert it to the frequency domain. Mel-scale 
ltering is used in accordance with human auditory perception 

and logarithmic compression. e discrete Cosine Transform is 
used to reduce dimensionality, and the resulting MFCCs can 
provide speaker independence, robustness against noise, and can 
be processed efficiently. ey also capture the fundamental spectral 
characteristics of speech. Figure 7 shows the Mel power spectrum of 
the Arabic audio dataset. 
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TABLE 1 MFCC statistics. 

Mean Standard deviation Maximum Minimum 

−52.965 8.573 −19.167 −88.341 

3.5.3 MFCC statistics 
e mean, standard deviation, maximum, and minimum values 

are represented in Table 1. e mean reveals the average emphasis 
on the frequency band within the speech. e speech data’s 
standard deviation is a measure of its variability. e maximum 
and minimum values help in locating anomalies or errors made 
during the MFCC extraction process. A Discrete Cosine Transform 
is applied to each MEL lter band to extract MFCCs from the 
Mel spectrum. 

Figure 8 shows the correlation heat map of the different 
Mel frequency coefficients. e degree of similarity between 
different MFCCs is shown by their correlation. e various 
MFCC features are represented by the rows and columns in the 
heatmap. e correlation between the features that correspond 
to the row and column is represented by the color of each cell. 
When two features have a positive correlation, that is, when 
they tend to rise or fall together, they are colored red. When 
two features are negatively correlated, one tends to increase 
while the other decreases, as indicated by blue. When the 
two features are uncorrelated, the color white is used. Every 
value on the heatmap’s diagonal is 1.0, indicating that every 
feature has a perfect correlation with every other feature. Higher 
values indicate stronger correlations. e values of the diagonal 
range from −1.0 to 1.0. MFCC captures the spectral envelope 
of audio signals based on the relative prominence of different 
frequency bands. 

4 Clustering and classification 

MFCC features are clustered together using a clustering 
algorithm. As the labels are unknown to us, supervised learning is 
not a solution to the problem. An unsupervised learning method 
called K-means clustering will be used for grouping into clusters. 
e clustering divides data points into a xed number of groups 
(K) based on their similarity. e rst K data points are chosen at 
random to serve as the initial cluster centers. e nearest center 
is determined by averaging these assigned points. Repeating this 
process until the centers stabilize produces groups in which the 
data points are unique from those in other clusters and similar to 
each other within each cluster. Clustering is done based on the 
Euclidean distance in the MFCC feature space between data points. 
ree clusters are applied to MFCC features. e clustered data 
are scaled with a silhouette score. Figure 9 shows the three groups 
of clusters formed from MFCC correlation features. A silhouette 
score of 0.6918 was obtained in the clustering. e silhouette score 
is the metric used to assess the quality of clustering algorithms. 
It evaluates how well data points are assigned to their clusters. 
Scores range from −1 to 1, with values closer to 1 indicating 
improved clustering. 

FIGURE 8 

Correlation heat map. 

FIGURE 9 

Clustering of MFCC features. 

4.1 Grid search 

In machine learning, grid search is a technique used 
to determine a model’s optimal settings, also known as 
hyperparameters. Each hyperparameter has a specic range, 
and the model is trained using all possible combinations from the 
different ranges. e performance of each combination is assessed, 
and the best combination is selected as an ideal set. Grid search CV 
nds the optimal solution based on the selected metric. 

4.2 Classification 

For multiclass classication tasks, the support vector machine 
classier is used. A hyperparameter tuning method called grid 
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search is used to maximize the performance of the SVM model. 
“Linear” and “rbf ” for kernel and (Mohammed Ameen and 
Abdulrahman Kadhim, 2023; Belinkov et al., 2019) for C are the 
possible values that are explored for the two hyperparameters, 
“kernel” and “C.” e training data are tted to the SVM model 
that performs the best. Confusion matrix and classication report 
metrics are used in performance evaluation. 

5 Baidu’s deep speech 

e state-of-the-art speech recognition system known as Deep 
Speech was developed using Baidu’s end-to-end ASR architecture. 
A massive amount of speech data is trained using multiple GPUs 
and an RNN. Baidu’s Deep Speech can learn directly from a 
large set of data, so it does not require speech adaptation or 
noise ltering. Deep RNN training will be based on supervised 
learning. From voice samples, mel-frequency cepstral coefficients 
are extracted, and transcription is output directly. A full voice 
recognition system powered by deep learning and its structure. 
e system generates a matrix of character probabilities, which 
shows that it gives each character in the alphabet a chance at each 
period step, indicating the likelihood that that particular character 
will match the audio. Furthermore, the Connectionist Temporal 
Classication (CTC) loss function increases the probability of 
accurate transcription. TensorFlow uses Baidu’s Deep Speech 
Architecture to implement Mozilla Deep Speech, enabling the 
creation of prototypes for any dialect. It is simpler to operate 
and performs better in noisy environments than other traditional 
systems. is system’s main advantage is that it outperforms 
traditional speech recognition systems, capable of handling speaker 
oscillation, echo, and background noise. From audio les, a time 
series spectrogram is produced, with each time slice representing 
a vector of audio characteristics. ree of the ve unseen layers 
that comprise the RNN that powers the Deep Speech model are 
non-recurrent. Figure 10 shows the architecture of Baidu’s Deep 
Speech system. 

5.1 Acoustic model and language model 

e acoustic archetypal generates a likelihood distribution over 
the characters of the alphabet in response to audio. e acoustic 
model takes up the majority of the training time. Typically, three 
steps are involved in the feature extraction process. e acoustic 
front end, also known as speech analysis, is the initial phase. It 
creates raw features by performing a type of temporal analysis of the 
signal’s spectrum. e acoustic model’s task is to use the sequence-
to-sequence Deep Speech algorithm to identify which acoustic 
signals correspond to which specic letters. e language model 
helps translate these probabilities into comprehensible language 
words, followed by extensive labeled voice training on a large volume 
of data. e most important things to consider are the data that 
are rarely or never present in our training sets. We combine our 
system with one of these n-gram language models since they are 
readily trained from large unlabeled text datasets. Language models 
are typically trained by minimizing confusion on training data and 
by observing word sequences in text corpora that contain millions 

of word tokens. A variety of toolkits, including SRILM, KENLM, 
and open-game toolkits, are used to generate language models. It is 
necessary to train the linguistic model and the audio model with the 
same alphabet. alphabet.txt is the glue that holds the linguistic model 
and the acoustic model together. e neural network utilized in the 
acoustic model was trained on a corpus of voice and transcripts, 
which was created with TensorFlow. An n-gram model trained with 
KENLM is the morphological ideal, and the training data are a 
corpus of text. As inputs are fed into the network for a reference 
window of size k, the ith unit in a convolutional layer l at a timestamp 
t delivers M(l,i), as shown in Equation 6, which represents the 
architecture of a deep RNN using Arabic data. 

M(l,i) = σ 
( 
ω(l,i) · Ml−1 

t−k : t+k 

) 
(6) 

Here, M(0) denotes the input, and it contains 13 units. σ (.) is the 
activation function as in Equation 7, and the hidden fully connected 
layers use a Rectied Linear Unit (ReLU) activation function. We 
always constrain the output of a convolution unit to up to 5 (Wu 
et al., 2024). 

σ (x) = min (max (0, x) , 5) (7) 

At any timestamp t, the units at layer l of the recurrent 
bidirectional LSTM take updates from both past and future 
timestamps, as shown in Equations 8, 9. 

→ 

Ml 
t = tanh 

( 

ω l · M + 
→ 

Ul · 
→ 

Ml 
t−1 + bl 

) 

(8) 

← 

Ml 
t = tanh 

( 

ω l · M + 
← 

Ul · 
← 

Ml 
t+1 + bl 

) 

(9) 

where ωl is the input hidden weight matrix and Ul is a recurrent 
weight matrix. e sum of forward and backward directional 
states yields an “informed state” (hl), which is shaped by the 
prior transitional probabilities of the phonemes. e activation 
function tanh(.) acts like a squashing function, as shown in 
Equation 10 (Morais, 2025). 

tan h (x) = 
ex − ex 

ex + ex (10) 

e processed cepstral coefficients ow through the recurrent 
layers, and each upper layer receives this processed information 
from its immediate lower layer, which is given in Equation 11. 

Ml 
t = f 

( 
ω l · Ml−1 

t + bl
) 

(11) 

e output is a somax layer that gives a probability distribution 
over phonemes, shown in Equation 12. 

P 
( 
ok 
t = k/x 

) 
= 

eω L 
k ·hL−1 

t 

ieω L 
k ·hL−1 

t 
(12) 

e value of the output unit at any timestamp t will indicate 
the probability of the corresponding phoneme n as predicted by 
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FIGURE 10 

Baidu’s Deep speech structure. 

FIGURE 11 

Sample TF-IDF vectorizer data. 

the network. e network is then trained using the CTC loss 
function, and the parameters of the network are updated using the 
backpropagation through time (BPTT) algorithm. en 32-bit beam 
search decoder is used to construct the output from the phoneme 
distribution. e Term Frequency Inverse Document Frequency 
(TF-IDF) vectorizer is a useful tool for translating Arabic text data 
into numerical vectors. When analyzing text at the character level, 
it considers individual characters, pairs of characters, and triplets 
of characters. is is an important step for the Arabic script. It 
learns the vocabulary and term importance from the data and 
then creates TF-IDF vectors for each document. Based on the 
frequency of each term in the document and rarity across the 
dataset, these vectors indicate the relative importance of each term. 
en, among other NLP tasks, these vectors can be used to train 
machine learning models for document classication, hidden topic 
identication, and document similarity comparison. e two main 
tasks completed by the vectorizer are stemming/lemmatizing Arabic 
text and normalizing it. e sample data are shown in Figure 11. 

To calculate the probability of each sentence, the function counts 
the number of sentences (n-grams) that have been viewed so far, 
divides that count by the total number of sentences, and increases 
the count for each sentence. is is a basic method to determine 

the word or words that will appear next in a given sequence and 
to calculate the probability that a sentence will appear again based 
on how frequently it appears in the dataset. It separates Arabic 
text data into words, cleans it up, and calculates the probability 
that different word combinations (n-grams) will occur together. A 
sample prediction is shown in Figure 12. 

5.2 Augmentation and hyperparameter 
setup 

5.2.1 Baidu’s deep speech hyperparameters 
e majority of the hyperparameters in the preconguration 

for Mozilla Deep Speech remained unchanged. Nonetheless, the 
batch size was slightly modied in consideration of the machine’s 
capabilities and the amount of training data. Furthermore, Deep 
Speech offers the ability to create checkpoints, allowing training to 
be resumed in the event of an error using the checkpoints. Either 
we create a checkpoint directory and store the training checkpoints 
there, or we freight the Deep Speech frontier directory containing 
the training checkpoints. Prediction accuracy is calculated using 
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FIGURE 12 

Sample n-gram prediction. 

the loss. As the loss decreases, the difference between the neural 
network’s predictions and the actual known values becomes smaller. 
When there is no reduction in loss, the parameter indicates how 
many training epochs should be considered as a plateau. 

• Hyperparameter optimization: Optuna is a framework 
utilized for hyperparameter optimization. It specically 
adjusts lm_alpha, which is a language model weight, and 
lm_beta is a word insertion bonus. To reduce the WER 
and CER on a designated test set, it systematically assesses 
several combinations of these parameters, dynamically 
reinitializing the TensorFlow graph for each iteration and 
relaying intermediate performance metrics to Optuna, 
which subsequently directs the search intelligently and 
eliminates unpromising trials to enhance efficiency. e model 
ascertains whether to optimize for WER or CER according 
to the loaded scorer’s mode and offers a denitive entry 
point for users to commence this essential post-training 
optimization procedure, yielding the optimal parameters and 
their associated performance. 

• Reduce plateau: If training does not result in a decrease in loss 
over time, it is said to have plateaued. It is possible to break 
through the plateau and keep reducing losses by adjusting the 
learning rate and other parameters. 

• Early stopping: If training does not eventually reduce loss, an 
early termination is an option. 

• Dropout: When training produces a model with poor 
generalization, it is referred to as overtting and has an 
impact on the model’s generalizability. A method called 
“dropout” enhances the generalizability of the model by 
arbitrarily eliminating nodes from the neural network to 
lessen overtting. 

• Steps and Epochs: A training set’s entire cycle is referred to as 
an epoch. Batch size affects how much memory is required for 
processing. Fieen epochs and a batch size of four are employed 
for this optimization. 

• Train–test split: e training loop efficiently manages 
data loading, preprocessing, and augmentation, while 
enabling multi-GPU training by distributing computations 
across “towers” to average gradients for faster updates. Key 
components, including adaptive learning rate reduction during 

TABLE 2 Hyperparameters of grid search. 

Scores Decision 
tree 

XGBoost KNN Random 
forest 

Mean t time 0.0135 0.0317 0.0234 0.0293 

Standard t time 0.0007 0.0009 0.0020 0.0009 

Mean score time 0.0037 0.0112 0.0030 0.0101 

Standard score 
time 

1.2655 4.6037 7.41052 1.0215 

Mean test score 0.9973 0.9886 0.9980 0.9900 

Standard test 
score 

0.0020 0.0028 0.0019 0.0027 

Rank test score 2.000 3.000 1.000 3.000 

performance plateaus, early stopping to prevent overtting, 
and thorough checkpointing, which entails retaining the 
best-performing model on a validation set, are integrated to 
ensure rapid and effective model development. is provides 
functionalities for autonomous evaluation of models on 
test datasets and the creation of efficient inference graphs, 
representing a complete solution for DeepSpeech model 
training and deployment. We have utilized 70% of the audio 
data for training 15% for testing, and 15% for validation. 

5.2.2 Machine learning hyperparameters 
Table 2 shows that the grid search method uses different values 

of hyperparameters in each run. e rst run uses the C values of 
73, 79, 50, and 52, while the second run uses the C values of 19, 81, 
72, and 89. e t and score time are mentioned in Table 2. 

5.2.3 Computational environment 
All experimental methods were performed on a MacBook Pro, 

specically congured with a 1.4 GHz Quad-Core Intel Core i5 
processor. e system employed Intel Iris Plus Graphics 645 for 
graphics processing, featuring 1,536 MB of memory. e device 
was equipped with 8 GB of 2,133 MHz LPDDR3 RAM and ran 
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FIGURE 13 

Confusion matrix, decision tree, and XGBoost. 

FIGURE 14 

Confusion matrix KNN and Random Forest. 

macOS Sequoia version 15.5. e dataset and computational outputs 
were stored on a 250.69 GB Macintosh HD, with 112.16 GB of 
space available during the experimental phase. is conguration 
facilitated the computational framework for all data processing, 
model training, and evaluation activities conducted in this research. 

6 Results and discussions 

6.1 Confusion matrix 

Confusion matrices are specially used to visualize a model’s 
performance in classication problems. ey display the frequency 

of errors, such as false positives and false negatives, as well as the 
proportion of correctly classied data points, such as true positives 
and true negatives. e model predicts 1,145 actual instances of class 
1 correctly and 55 actual instances of class 2, and 86 out of 87 actual 
instances of class 3. Figures 13, 14 show the confusion matrices. 

6.2 Classification report 

Both the confusion matrix and classication report indicate that 
the model achieved excellent performance with perfect accuracy, 
precision, recall, and F1-score for each class. Table 3 shows the 
classication report. 
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TABLE 3 Classification report. 

Classifiers Class Precision Recall F1-score Support 

Decision tree 0 1.00 0.99 0.99 99 

1 1.00 1.00 1.00 1134 

2 1.00 1.00 1.00 54 

XGBoost 0 0.99 0.98 0.98 99 

1 1.0 1.0 1.0 1126 

2 1.00 0.98 0.99 62 

KNN 0 0.95 0.87 0.91 95 

1 0.98 1.00 0.99 1137 

2 1.00 0.76 0.87 55 

Random Forest 0 0.88 0.90 0.89 78 

1 0.99 0.99 0.99 1153 

2 0.98 0.95 0.96 56 

FIGURE 15 

Learning curve for decision tree and XGBoost. 

FIGURE 16 

Learning curves for KNN and random forest. 
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FIGURE 17 

Precision–recall curve for XGBoost. 

FIGURE 18 

Test and validation loss vs. epochs and word and character error rate vs. epochs. 

6.3 Learning curve 

e learning curve shows the x-axis with values between 500 
and 2,500 labeled as training data size, shown in Figure 15. e 
model accuracy y-axis has a range of 0.95 to 1.0. Two lines 
are displayed, one green for validation accuracy and one blue 
for training accuracy. As the size of the training data increases, 
the validation accuracy also increases, indicating that data are 
being trained well and validated. e learning curves for the 
decision tree, XGboost, KNN, and Random Forest are shown in 
Figures 15, 16. 

TABLE 4 Model performance analysis. 

Epoch Test 
loss 

Validation 
loss 

Word 
error rate 

Character 
error rate 

3 1,017.0 1021.4 1.0000 0.59118 

12 300.00 324.70 0.7815 0.1920 

19 223.27 286.77 0.6982 0.1643 

22 160.01 266.72 0.6170 0.1437 

25 132.86 259.57 0.6160 0.1432 

31 128.33 257.66 0.6037 0.1387 
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TABLE 5 Model performance analysis—best model. 

Epoch Best 
WER 

Best 
CER 

Loss at best 
WER/CER 

Arabic text English text 

12 0.4687 0.1060 110.289 عَقدََ مَجلِسُ الوُزَرَاءِ اجِتِمَاعُھُ الأ سُب وُعِيّ فِي قِصَرِ یف  السّ ِ
بِرِئ اَسَةِ سُمُوِّ رَئِیس ِ مَجلِس ِ یخ الشّ ِ یخ الشّ ِ ناَصِر د  المحَمَّ
حَیثُ ت تدََاوَلَ الوُزَرَاءُ مَجمُوعَةٍ مِن المِلفَ َّاتِ ة الھَامَّ  كَشَفَ
عَنھَا وَزِیرِ الدَّولةَ لِشُؤُونِ مَجلِس ِ الالوُزَرَاء  رَوضَانِ
وض َ ان الر َّ

e Cabinet held its weekly meeting at Seif Palace 
under the chairmanship of His Highness the Prime 
Minister Sheikh Nasser Al-Mohammed, where the 
ministers deliberated a set of important les revealed 
by Minister of State for Cabinet Affairs Roudhan 
Al-Roudhan 

19 0.3720 0.0568 276.147 ت جَدُرُ الإِشَارَةُ إلِىَ أنََّ الیمََن ی شَھَدُ إِضرَاب اَتٍ مُنذُ أ شَھُر  بعَدَ
المُظَاھَرَاتِ وَالمَسِیرَاتِ المُؤَیِّدَةِ لِلنِّظَامِ الحَاكِم  عَلِيّوَِتِلكَ
المُعاَرَضَةِ ل ھَ وَالَّتِي تطَُالِبُ بِإ سِقاَطِھ فِیمَا یتَلَقَ َّى ئِیس  الرَّ
عَبدالله صَالِح العِلاَجَ فِي المَملكََةِ السَّع وُدِیَّة السَّع وُدِیَّة  عَقِبَ
ھُجُومٍ عَلىَ الق صَرِ ئ اَسِيّ الرّ ِ فِي وَقتٍ سَابِقٍ مِن ھَذَا  الشَّھر

Yemen has been witnessing strikes for months aer 
demonstrations and marches in support of the ruling 
regime and those opposing it, demanding its ouster, 
while President Ali Abdullah Saleh is receiving 
treatment in Saudi Arabia following an attack on the 
presidential palace earlier this month. 

6.4 Precision–recall curve 

e graphical tool called a precision–recall curve (PRC) is 
used to assess how well the classication model performs in 
multiclass problems, as shown in Figure 17. PRCs offer insight 
into the tradeoff between precision and recall in contrast with the 
receiver operating characteristic area under the curve (ROC AUC), 
which concentrates on binary classication. e ROC AUC score 
is obtained as 0.99928. e WER is the percentage of words that 
the system incorrectly recognizes, and the CER is the percentage of 
characters that the system recognizes incorrectly. is shows that the 
speaker’s ability to speak correctly has improved, as has the speech 
recognition system’s ability to recognize their speech. e graph 
also shows that the WER continuously outperforms the CER. is 
is because the speech recognition system nds it easier to identify 
individual characters. 

Figure 18 shows the test and validation loss vs. various epochs 
and the word and character error rate vs. epochs of the system’s 
WER and CER plotted against time. e WER is the percentage 
of words that the system incorrectly predicts, and the CER is 
the percentage of characters that the system incorrectly predicts 
(Baghdasaryan, 2022). e graph shows that both the WER and 
CER show a decrease over time, suggesting that the system’s 
speech recognition performance is improving. In contrast, the WER 
constantly exceeds the CER. e reason for this is that individual 
characters are recognized by the algorithm more readily than entire 
words. e graph also shows how the WER and CER start to plateau 
aer a certain number of epochs. e graph shows that the voice 
recognition system is training effectively. e system’s increasing 
efficiency is demonstrated by the decrease in WER and CER over 
time. e word error rate is the most popular metric for ASR. 

WER = 
Sw + Dw + Iw 

Nw 
(13) 

When a word in the reference sequence is transcribed as a 
different word, it is called a substitute word (Sw). When a word is 
completely absent from the automatic transcription, it is referred 
to as a deleted word (Dw). e number of words inserted is Iw. 
is means the word’s appearance in the transcription has no 
correspondent in the reference word sequence. As it lacks the upper 
bound, the word error rate only indicates whether one system 

is superior to another. For this reason, a character error rate 
is used. 

CER = 
s+ d+ i 

N 
(14) 

Table 4 describes the entire model analysis. e size and 
complexity of the exercise data, along with the system’s design, 
will determine the ideal number of epochs for training a speech 
recognition system. 

Table 5 illustrates the best model analysis and the corresponding 
transcribed Arabic text. 

6.5 Discussion 

Upon examining the performance of diverse ASR models, 
some signicant themes and insights arise concerning their efficacy 
across various languages and architectural methodologies. e 
data reveals a wide range of WERs, from an exceptional 0.720% 
for the suggested Arabic DeepSpeech model to a maximum 
of 58.87% for Kazakh utilizing Kaldi. Recent improvements in 
deep learning models, especially Transformer-based architectures 
such as XLSR-Wav2Vec 2.0 for Turkish, exhibit markedly lower 
word error rates (0.23%) compared to previous or toolkit-
based methodologies. DeepSpeech is a widely utilized model for 
several languages (Bengali, Russian, German, Tunisian, Arabic), 
although its efficacy uctuates, indicating a signicant impact of 
linguistic attributes and dataset quality. e incorporation of various 
languages, including Arabic, Bengali, German, Hindi, Kazakh, 
Russian, Tunisian, and Turkish, emphasizes the international 
endeavor in ASR development while revealing persistent challenges 
in attaining universal high performance, particularly for languages 
characterized by intricate phonetics or scarce resources. e efficacy 
of the built Baidu’s Deep Speech model was meticulously assessed 
using an independent test dataset in our proposed work. is 
dataset, completely omitted from the model’s training and validation 
phases, functioned as a vital assessment of the model’s capacity 
to generalize to novel, previously unencountered data. Our results 
indicate that the model attained a WER of 0.3720 and a CER of 
0.0568 during training and 0.19 WER and 0.02 CER during the 
testing phase. 
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TABLE 6 Comparison table with previous works. 

Reference Year Model Language WER 

Kazakh speech and recognition methods (Karabaliyev and 
Kolesnikova, 2024) 

2024 Kaldi 
Mozilla DeepSpeech 
Google Speech-to-Text API 

Kazakh speech 56.87% 
55.36% 
52.97% 

End-to-end Bengali speech recognition (Nahid et al., 2019) 2019 Bidirectional LSTM Bengali speech 8.20% 

Russian-language speech recognition (Iakushkin et al., 2018) 2018 DeepSpeech Russian speech 18% 

German speech recognition (Xu et al., 2020) 2020 DeepSpeech German speech 12.3% 

German end-to-end speech recognition (Agarwal and Zesch, 2019) 2019 DeepSpeech German speech 15.1% 

Tunisian dialectal end-to-end speech recognition (Messaoudi et al., 
2021) 

2021 DeepSpeech Tunisian speech 24.4% 

Hindi speech recognition (Kumar et al., 2012) 2012 HTK Hindi speech 12.99% 

Transformer-based Turkish automatic speech recognition (Tasar et al., 
2024) 

2024 XLSR-Wav2Vec 2.0 Turkish Speech 2.3% 

Arabic phonic transcription (Elmahdy et al., 2011) 2011 ACA Arabic 19% 

Arabic autoencoder speech recognition (Mohammed Ameen and 
Abdulrahman Kadhim, 2023) 

2023 Deep learning models Arabic 4% 

Convolutional neural networks to facilitate the continuous recognition 
of Arabic speech (Sayed et al., 2024) 

2024 CNN-LSTM Arabic 3.63% 

Arabic speaker-independent continuous automatic speech recognition 
(Abushariah et al., 2012) 

2012 Hidden Markov models Arabic 11.27% 

Proposed study Baidu’s Deep Speech Arabic Speech 3.7% 

e unsupervised clustering of MFCC features, together with 
traditional machine learning classication, could be applied to 
enhance speaker diarization, acoustic scene categorization, or, 
importantly, Arabic dialect identication from various audio 
sources. is feature is essential for augmenting customer service 
analytics, expanding accessibility tools, facilitating more efficient 
content ltering, and enriching language learning systems. 
Furthermore, the framework’s proven effectiveness with unlabeled 
data provides a means for creating ASR solutions for additional low-
resource languages or specialized elds that lack comprehensive 
annotated corpora, thus expanding its inuence within the 
speech technology sector. Table 6 shows the comparison with 
previous studies. 

7 Conclusion 

In this study, we examined the effectiveness of using clustering 
and classication techniques in conjunction with MEL frequency 
extraction for Arabic audio data processing. is study also 
briefs on the effectiveness of Baidu’s Deep Speech in Automatic 
speech recognition of the Arabic dataset. Our results demonstrate 
that MFCCs efficiently capture important features, facilitating 
the successful clustering of audio segments using K-means or 
hierarchical clustering algorithms. Additionally, we obtained a low 
loss of 128.33 for the training dataset and a validation loss of 
257.66 by using Baidu’s Deep Speech. e WER for the reference 
is 0.19, indicating that 19% of the words were misidentied. 2% 
of the characters in the reference were misidentied, according 
to the CER of 0.02 in the testing phase. e evaluation’s ndings 

are encouraging. e model has a respectable level of accuracy 
regarding Arabic speech recognition. 

7.1 Future studies 

Future studies might investigate applying the existing methods 
to other widely used Arabic dialects. Potential applications such 
as assistive technologies for the hearing-impaired, voice-enabled 
services in Arabic-speaking regions, and integration with NLP 
pipelines are possible. is would entail developing acoustic models 
tailored to a particular dialect or investigating transfer learning 
strategies to modify the current model to accommodate new 
dialectal data. Also, predicting the next word and character from 
Arabic text for audio-impaired individuals can be possible from the 
transcribed data. 
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Introduction:Arabic sentiment analysis presents unique challenges due to the 
linguistic complexity of the language, including its wide range of dialects, 
orthographic ambiguity, and limited language resources. Addressing these issues 
is essential to develop robust sentiment classification systems. 
Methods: This study investigates the application of ensemble machine 
learning methods for Arabic sentiment analysis. Several homogeneous ensemble 
techniques are implemented and evaluated on two datasets: the balanced 
ArTwitter dataset and the highly imbalanced Syria_Tweets dataset. To mitigate 
class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) is 
employed. The models incorporate pre-trained word embeddings and unigram 
features. 
Results: Experimental results indicate that individual classifiers using pre-
trained embeddings achieve strong performance; however, ensemble models 
consistently yield superior outcomes. On the ArTwitter dataset, the ensemble 
of Naive Bayes, Support Vector Machine, and Decision Tree classifiers achieved 
an accuracy of 90.22% and an F1-score of 92.0%. On the Syria_Tweets dataset, 
an ensemble combining Stochastic Gradient Descent, k-Nearest Neighbors, and 
Random Forest attained 83.82% accuracy and an 83.86% F1-score. 
Discussion: The findings highlight the effectiveness of ensemble learning 
in enhancing the robustness and generalizability of Arabic sentiment 
analysis systems. Incorporating pre-trained embeddings further strengthens 
performance, demonstrating that ensemble-based approaches can overcome 
challenges posed by linguistic complexity and dataset imbalance in Arabic 
natural language processing tasks. 

KEYWORDS 

ensemble learning, sentiment analysis, machine learning, Arabic language, SMOTE 

1 Introduction 

With recent advancements in Natural Language Processing (NLP), several text 
analysis tasks have been successfully automated, including disinformative tweets detection 
(Jaber and Martínez, 2023), word sense disambiguation (Jaber and Martínez, 2022), 
and propaganda detection (Duridi et al., 2025). Sentiment analysis, a subtask of text 
classication, aims to classify a piece of text into binary classes (positive or negative) or 
multi-class categories (positive, negative, neutral). It has found widespread application 
across various domains, including politics (Grover et al., 2025), business (Tiwari and Arora, 
2025), and social media (Alotaibi et al., 2025). 

e performance of sentiment analysis systems largely depends on two core phases: 
feature engineering and the choice of classication algorithms. Feature engineering refers 
to transforming raw textual data into numerical representations that capture the semantic 
and syntactic properties of the text. Traditional approaches such as Term Frequency-
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Inverse Document Frequency (TF-IDF) and n-gram models have 
been effective in handling short texts (Nas and Awang, 2021). More 
recent approaches based on word embeddings, including Word2Vec 
(Church, 2017), GloVe (Pennington et al., 2014), FastText (Joulin 
et al., 2016), and Large Language modeling (Mansour et al., 2025) 
provide rich semantic context and reduce the sparsity problem 
inherent in high-dimensional representations. 

Among the classication strategies, ensemble learning has 
shown great promise in improving NLP task performance. e 
key idea of ensemble methods is to combine the predictions of 
multiple base classiers to offset the weaknesses of individual 
models while leveraging their strengths. Ensemble learning based 
on machine learning algorithms has demonstrated its effectiveness 
across various NLP applications (Rane et al., 2024). 

Arabic is one of the six official languages of the United Nations 
and is the native language of over 300 million people across 22 
countries. However, Arabic sentiment analysis poses numerous 
challenges due to the linguistic complexity of the language. ese 
challenges include morphological richness, the presence of multiple 
dialects, and the frequent use of gurative language such as 
ambiguity, sarcasm, and irony (Rahma et al., 2023), which makes 
sentiment classication more difficult (Alwakid et al., 2017). 

e contribution of this work is an model based on a majority 
voting homogeneous ensemble machine learning approach. 
Exploring different vector-based feature representations and 
machine learning algorithms, including TF-IDF with ngrams 
and pretrained word embeddings. To address the issue of class 
imbalance during training, the Synthetic Minority Oversampling 
Technique (SMOTE) is employed Syria_tweet dataset. Optimize 
the hyperparameters of the proposed model to achieve the highest 
possible classication performance. e results are compared with 
the most relevant previous work, which demonstrates its superior 
performance. 

e remainder of this article is organized as follows: Section 2 
reviews prior studies on dialectal Arabic sentiment classication. 
Section 3 presents the proposed research methodology. Section 4 
discusses the experimental results and evaluations. Finally, Section 5 
concludes the study and outlines directions for future research. 

2 Related work 

Sentiment analysis has become quite popular in many languages, 
including Arabic, since social media, product evaluations and 
opinions, and user-generated content are becoming more and 
more important. Several comprehensive surveys have traced the 
evolution of Arabic sentiment analysis and mapped out the key 
resources in the eld. Ghallab et al. (2020) reviewed work published 
between 2015 and 2019, grouping existing approaches into three 
main categories: lexicon-based, machine learning-based, and hybrid 
methods that combine the two. eir review also provided an 
overview of more than twenty available datasets, ranging from 
domain-specic corpora to large Twitter-based collections such as 
ASTD and ArSenTD-Lev, which remain popular because of Twitter’s 
rich mix of short, informal, and oen dialectal content. 

A more focused perspective was offered by Obiedat et al. (2021), 
who surveyed research on **Arabic aspect-based sentiment analysis 
(ABSA). eir study covered early rule-based and lexicon methods, 

as well as more recent deep learning architectures that integrate pre-
trained embeddings and attention mechanisms. ey also listed key 
ABSA resources, including the SemEval Arabic corpora and HARD, 
and discussed persistent challenges such as handling the diversity 
of Arabic dialects, the scarcity of large annotated datasets, and the 
difficulty of building models that generalize well across domains. 

Sentiment analysis approaches can be categorized into three 
categories: lexicon-based approaches, machine learning approaches, 
and hybrid approaches (Matrane et al., 2023). 

In a lexicon-based technique, sentiment analysis operates 
by giving a polarity score to each token in the text. e 
ratings are then averaged, with positive, negative, and neutral 
values tallied individually. e overall polarity of the text is 
ascertained by identifying the greatest value among the various 
scores. Elshakankery and Ahmed (2019) introduced HILATSA, a 
hybrid incremental learning method that combines a lexicon-based 
approach with machine learning. e system updates its sentiment 
lexicon incrementally with newly labeled data. On the ArTwitter and 
Syria_Tweets datasets, it achieved an accuracy of 85% (SVM) and 
75.5% (RNN), respectively. 

Abdulla et al. (2013) conducted an initial study on Arabic 
sentiment analysis, comparing lexicon-based and corpus-based 
methodologies. In the lexicon-based technique, an Arabic sentiment 
lexicon was manually created by expanding a set of seed words 
and assigning polarity ratings, thereaer categorizing text based on 
the aggregate sentiment of its words. eir study used a manually 
annotated dataset of 2,000 Arabic social media comments and 
reviews, which underwent preprocessing using light stemming 
approaches. e lexicon-based technique achieved an accuracy of 
around 59%, demonstrating the feasibility of rule-based sentiment 
classication in the absence of huge labeled datasets, while also 
highlighting its dependence on the comprehensiveness and quality 
of the lexicon. 

Mataoui et al. (2016) focused on vernacular Algerian Arabic, 
creating three dialect-specic sentiment lexicons and a manually 
annotated dataset sourced from social media. eir lexicon-
based algorithm sorted texts by adding up the polarity of related 
phrases, which was around 61% accuracy. is shows that rule-
driven methods may work well in very dialectal settings, but 
they also depend on having a complete vocabulary. Assiri et al. 
(2018) enhanced lexicon-based sentiment analysis for the Saudi 
Arabic dialect by creating a comprehensive dialectal lexicon and 
using weighted polarity scoring that accounts for negation and 
supplication. eir method got around 68% of the answers right on 
a Saudi social media dataset, which is better than standard lexical 
baselines. 

Machine learning approaches have also been applied to ASA. 
is approach is based on an annotated corpus, which is fed into 
ML algorithms in the training phase; then, aer the model is trained, 
unannotated sentences are fed to the model to predict their polarity. 
Aladeemy et al. (2024) applied a range of traditional machine 
learning algorithms—namely SVM, Random Forest, Decision 
Tree, Logistic Regression, and XGBoost—using BoW and TF-IDF 
representations with unigram and bigram features. e best result 
was achieved by SVM, with an accuracy of 90.3% using unigram 
features. 

Tubishat et al. (2019) proposed an Improved Whale 
Optimization Algorithm (IWO for feature selection in Arabic 
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sentiment analysis. eir method integrates Elite Opposition-Based 
Learning to improve population diversity and Differential Evolution 
operators to rene the optimization process. e proposed approach 
was tested on four datasets and yielded a best average accuracy 
of 89.68% on the ArTwitter dataset. However, the introduction of 
pre-trained word embeddings brought a notable shi. For example, 
Gamal et al. (2019) introduced a Twitter benchmark dataset for 
ASA and showed that distributed word representations capture 
semantic context far better than traditional bag-of-words features, 
even for short and noisy tweets. 

A more recent trend has been targeted sentiment analysis (TSA), 
which focuses on detecting sentiment toward a specic entity within 
a text. In this area, Sahmoud et al. (2022) released AT-ODTSA, 
a large-scale dataset of Arabic tweets annotated for open-domain 
TSA. is dataset spans multiple topics and sentiment targets, 
making it a valuable resource for ne-grained sentiment studies. 
However, our work differs in scope: we focus on overall tweet-
level sentiment classication, applying and evaluating models on 
both a balanced dataset (ArTwitter) and a highly imbalanced one 
(Syria_Tweets). 

Lately, transformer-based models have also entered the scene. 
For example, Alsalem and Abudalfa (2024) ne-tuned AraBERT for 
Arabic sentiment tasks, achieving impressive results but requiring 
signicant computational resources. Likewise, a recent study 
Alosaimi et al. (2024) explored hybrid pipelines that combine pre-
trained embeddings with traditional classiers for low-resource 
languages. While promising, these works did not deeply investigate 
imbalanced Arabic datasets or compare classical ensemble methods 
under such conditions. 

In contrast, our study combines multiple pre-trained 
embeddings with a homogeneous hard-voting ensemble of 
classical classiers, and evaluates performance on both balanced 
and imbalanced datasets. We also address imbalance directly using 
SMOTE and report results using both accuracy and F1-score, 
allowing for a fairer and more informative comparison with recent 
state-of-the-art methods. 

Ensemble Machine learning was applied by Saleh et al. (2022), 
which developed a heterogeneous stacking ensemble model that 
combines RNN, LSTM, and GRU as base learners with meta-
learners such as Logistic Regression, Random Forest, and SVM. 
Using CBOW features, their model attained an accuracy of 83.12% 
on the ArTwitter dataset. Al-Azani and El-Alfy (2017) employed 
word2vec embeddings combined with single and ensemble machine 
learning classiers to handle highly imbalanced sentiment datasets. 
ey applied SMOTE for data balancing and reported their 
best result—80% accuracy—using the KNN classier on the 
Syria_Tweets dataset. 

While previous research has explored a range of lexicon-
based, machine learning, deep learning, and ensemble techniques 
for Arabic sentiment analysis, most studies have either focused 
on a single dataset, relied heavily on deep neural models with 
high computational demands, or overlooked the performance 
implications of dataset imbalance. Our work distinguishes itself 
by systematically evaluating a homogeneous hard-voting ensemble 
of classical classiers in combination with multiple pre-trained 
Arabic word embeddings. is design leverages the semantic 
richness of modern embeddings while retaining the efficiency 

and interpretability of traditional algorithms. Furthermore, by 
conducting experiments on both a balanced dataset (ArTwitter) and 
a highly imbalanced dataset (Syria_Tweets), and applying SMOTE 
to mitigate imbalance, we provide a more comprehensive assessment 
of model robustness. 

3 Materials and methods 

An overview of the proposed Arabic Sentiment Analysis 
Framework is illustrated in Figure 1. e process begins with 
dataset preprocessing, which includes several text-cleaning steps. 
e textual data is then transformed into numerical vectors using 
two feature engineering techniques: the rst involves TF-IDF with 
n-gram representations, and the second leverages the averaged 
vectors of pre-trained Word2Vec embeddings. A set of individual 
machine learning classiers is subsequently trained, with their 
hyperparameters optimized using Bayesian optimization. Finally, 
several hard voting ensemble models are constructed by combining 
different classiers to improve overall performance. e following 
subsections provide a detailed explanation of each step in the 
proposed pipeline. 

3.1 Dataset 

is study employed two sets of data. e ArTwitter dataset, 
created by Abdulla et al. (2013), is a balanced corpus focusing on 
Modern Standard Arabic (MSA). Two thousand tweets of various 
topics, such as politics and arts, were gathered from Twitter and 
completely labeled by specialists in the eld as either positive or 
negative. ArTwitter has been commonly used as a standard dataset in 
Arabic sentiment analysis research since it is balanced and includes 
high-quality annotations. e second data set is a highly unbalanced 
data set, which the Twitter API acquired from Syrian tweets in May 
2014. Syria_Tweets (Mohammad et al., 2016) composed from 1,798 
tweets; 1,350 are annotated as negative tweets and 448 are annotated 
as positive tweets. Table 1 illustrates the key characteristics of the 
used data sets. 

3.2 Data set preprocessing 

An essential phase is the preprocessing of the dataset, which 
guarantees that the data is clean, standardized, and t for 
sentiment analysis. Due to the complexities of the Arabic language, 
this process employs various tailored methods to improve the 
dataset’s quality and ensure that the text is well-prepared for 
both machine learning and ensemble learning models. e 
preprocessing pipeline initially involves the removal of NaN 
values and duplicates to uphold data integrity. Following this, the 
text undergoes systematic cleaning to tackle important linguistic 
challenges such as punctuation and inconsistencies in spelling 
and writing styles. Standardization techniques, such as removing 
punctuation and normalizing text, aid in unifying the data, 
thereby enhancing model accuracy. Further cleaning procedures are 
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FIGURE 1 

Architecture of the proposed arabic sentiment analysis framework. 

TABLE 1 Key characteristics of the ArTwitter and Syria_Tweets sentiment 
analysis datasets. 

Feature ArTwitter Syria_Tweets 

Source Twitter Twitter 

Language variety Modern Standard Arabic 
(MSA) 

Levantine dialectal Arabic 

Annotation Manually annotated Manually annotated 

Total tweets 1,951 1,798 

Sentiment classes Positive, negative Positive, negative 

Positive samples 993 1,350 

Negative samples 958 448 

implemented to remove noise and irrelevant elements, such as non-
Arabic characters, emojis, and English words or numbers. ese 
actions ensure that only pertinent information is retained, thus 
optimizing the dataset for sentiment classication. e preliminary 
data cleaning operations, which were performed by using the 
NLTK library (Bird et al., 2009) and the ISRI Arabic stemmer 
(Taghva et al., 2005), include: 

• Stopword removal: removing common words like 
conjunctions (e.g: ( ثم and (e.g: ,( الى , من في, which have
little semantic importance and do not meaningfully assist in 
classication efforts. 

• Punctuation removal: stripping punctuation from Arabic text 
to reduce extraneous data and simplify further analysis (e.g:?, 
!, ...). 

• Hashtag and mention removal: eliminating hashtags and user 
tags (like @username, #hashtag) from the text. 

• Emoji removal: extracting emoji characters using a regular 
expression pattern to cleanse the dataset by matching and 
eliminating emojis. 

• English words and numbers removal: taking out English 
terms and numerals from the Arabic script using regular 
expressions to identify and discard typical alphanumeric 
sequences. 

• Character repetition handling: reducing sequences of 
repeated characters to a single character (e.g: .( اللھھھھ ھھھھھھھھھ,

• Whitespace cleanup: compressing multiple spaces into a single 
space for text uniformity. 

• Tokenization: this step breaks down the polished text into 
discrete tokens or units by employing separator characters such 
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as spaces, commas, or tabs, facilitating separate analysis of each 
word or element. 

3.3 Data balancing technique 

An imbalanced dataset is characterized by an unequal 
distribution of class labels, where the majority class comprises a 
large number of training samples, and the minority class contains 
relatively few annotated instances. To address this issue, the 
Synthetic Minority Oversampling Technique (SMOTE) (Chawla 
et al., 2002) is one of the most widely adopted solutions. 

SMOTE improves the representation of the minority class by 
generating synthetic samples based on the feature space similarities 
between existing instances. For each minority class instance xi ∈ 
Smin, SMOTE identies its k-nearest neighbors (typically using 
Euclidean distance), and constructs synthetic examples by linearly 
interpolating between xi and one of its neighbors. Specically, a new 
sample is generated as: 

xnew = xi + δ · (xnn − xi) (1) 

where xnn is one of the k-nearest neighbors of xi, and δ ∈ [0, 1] 
is a random number. is interpolation ensures that the synthetic 
instances are consistent with the local topology of the minority 
class (He and Garcia, 2009). e oversampling process continues 
until the minority class is balanced or reaches a predened target 
size. In our study, we applied SMOTE with k = 5 nearest neighbors. 
SMOTE technique was applied only to the training set, while the 
testing sets remained unbalanced, to maintain the original class 
distribution. 

3.4 Feature representation methods 

Transforming text into numerical values while representing the 
semantic meaning of the text is the nex step aer the cleaning 
of the data. In this work, several forms of N-grams with TF-
IDF representations were implemented, in addition to pre-trained 
word embedding with word2vec was leveraged to improve the 
performance of the proposed models. In the following subsections 
a brief descriptions for the data representation methods that were 
used in the study. 

3.4.1 TF-IDF with n-grams 
Term Frequency-Inverse Document Frequency (TF-IDF) is a 

common way to weight words and phrases in text classication. It 
looks at how important a word or phrase is in a document compared 
to a group of documents. It balances out two things: word Frequency 
(TF), which counts how many times a word appears in a text, and 
Inverse Document Frequency (IDF), which makes common words 
less important and puts greater emphasis on unique phrases. e 
TF-IDF score is calculated as: 

TF-IDF(t, d) = TF(t, d) × log 

( 
N 

DF(t) 

) 

(2) 

TABLE 2 N-gram generation examples for feature extraction. 

N-gram Results 

Original Arabic Sentence  ]رائع جد ممیز انت عمر ]

Unigram  ][رائع ,][جد ],[ممیز ],[انت ],عمر ]

Bigram  ]رائع [جد ],جد [ممیز ],ممیز [انت ],انت عمر ]

Trigram  ]رائع جد [ممیز , ]جد ممیز [انت , ]ممیز انت عمر ]

where t is the term, d is the document, N is the total number of 
documents, and DF(t) is the number of documents containing term 
t. To capture local context and word co-occurrence patterns, we 
applied TF-IDF weighting over n-gram features. 

N-grams (Jurafsky and Martin, 2009) represent one of the 
simplest and most widely used approaches to language modeling in 
natural language processing. ey are used to represent textual data 
by capturing contiguous sequences of words. A single word forms 
a unigram, a sequence of two consecutive words is referred to as 
a bigram, and a sequence of three successive words is known as a 
trigram. Despite their simplicity, n-gram models effectively capture 
local context and are commonly used in various tasks such as text 
classication, sentiment analysis, and machine translation. Table 2 
shows an example of how the sentence is tokenized based on the 
chosen type of n-grams. 

In our study, we examined the effectiveness of three types of 
n-gram features—unigram, bigram, and trigram—in combination 
with machine learning and ensemble learning approaches. 

3.4.2 Pre-trained word embeddings 
ArWordVec (Fouad et al., 2020) is a huge set of pretrained 

models that is built from 55 million tweets with different topics, 
including social affairs, politics, and health care. e embeddings are 
trained by word2vec and Glove methods with different approaches, 
window size, and vector size. 

In our experiments, we used the Word2Vec architecture with the 
Skip-Gram (SG) approach, a window size of 3, and an embedding 
dimension of 300. e Skip-Gram model was chosen because it 
tends to perform better with infrequent words and is more effective 
at capturing detailed semantic relationships than the Continuous 
Bag-of-Words (CBOW) method (Mikolov et al., 2013a). A relatively 
small window size of 3 was selected to emphasize local contextual 
dependencies, which suits the characteristics of the used dataset, 
while limiting the inuence of less relevant, distant words. e 
choice of a 300-dimensional vector is consistent with common 
practice in earlier studies (Mikolov et al., 2013b; Pennington et al., 
2014), as it offers a practical balance between the ability to represent 
nuanced meaning and the need to keep training time and memory 
use manageable. 

To leverage the strengths of the model, we compute the average 
of the word embedding vectors across the entire sentence, as dened 
in Equation 3. 

AVG(E(S)) = 
1
n 

n∑ 

i=1 

Emb(S(i)) (3) 
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Where AVG(E(S)) is the average embedding of the sentence S, 
S(i) is the i-th word in the sentence, Emb(S(i)) is the embedding of 
word i, and n is the total number of words in the sentence. 

3.5 Individual machine learning models 

Several individual Machine learning classiers were 
implemented. A brief denition of the selected algorithms is 
provided below: 

• Naïve Bayes (NB) (Duda et al., 2001): is a probabilistic classier 
that uses Bayes’ theorem and assumes that features are very 
independent of each other. Even though it’s simple, it does an 
amazing job at classifying text because it’s fast and works well 
with data that has a lot of dimensions. 

• Support Vector Machine (SVM) (Cortes, 1995): builds the best 
hyperplane to divide classes with the most space between them. 
is makes it work well in spaces with a lot of dimensions. It is 
considered powerful due to its kernel functions that work well 
for non-linear decision boundaries. 

• Stochastic Gradient Descent (SGD) (Bottou, 2010): it is a good 
choice for sparse datasets, it updates its model parameters in an 
iterative optimization process for linear classiers. 

• Logistic Regression (LR) (Cox, 1958): logistic functions are 
used to model of the probability of binary results. 

• Random Forest (RF) (Breiman, 2001): builds multiple decision 
trees and combines their results to enhance generalization and 
decrease overtting. 

3.6 Ensemble learning models 

Ensemble learning aims to optimize the classication task by 
fusing multiple base classiers, which reduces the variance of the 
predictions of the individual classiers (Kumar et al., 2020). us, 
several ensemble techniques are designed to achieve this goal, such 
as bagging (Yang et al., 2020), boosting (Deng et al., 2023), and 
voting (Onan et al., 2016). 

e use of heterogeneous base classiers is utilized in the Voting 
technique for the production of concurrent ensemble networks. 
Voting is categorized into two types: weighted averaging and 
majority voting, which this study uses. 

In majority voting, each model “votes” for a class label; the 
most voted label is chosen for the nal predictions. is happens by 
combining several individual classiers, which are known as base 
learners, and the majority vote makes the nal decision. In this 
study, combinations of sets of individual machine learning classiers 
were tested, it is named v with numbers from 1 to 11. 

3.7 Evaluation metrics 

To measure the performance of the proposed approaches, two 
datasets were used with different setups. We performed an 80/20 
train-test split using stratied sampling, ensuring that both subsets 
maintained the original class imbalance of approximately 75% 

negative and 25% positive tweets. SMOTE was applied only to 
the training set, while the test set remained untouched to evaluate 
model performance on real-world imbalanced data. e vectorized 
training and test datasets were input into the Machine learning 
classiers in addition to ensemble learning. 

e machine learning classiers were trained to determine the 
sentiment polarity of the reviews as either positive or negative. To 
evaluate model performance, we used four standard classication 
metrics: precision, recall, F-measure, and accuracy. ese are 
dened in Equations 4–7. 

Precision = 
TP 

TP + FP 
(4) 

Recall = 
TP 

TP + FN 
(5) 

F-measure = 2 × 
Precision × Recall 
Precision + Recall 

(6) 

Accuracy = 
TP + TN 

TP + TN + FP + FN 
(7) 

where TP, TN, FP, and FN represent true positives, true negatives, 
false positives, and false negatives, respectively. 

4 Experiments results and discussion 

4.1 Experiments setup 

All experiments were performed on the Google Colab platform, 
utilizing a Tesla T4 GPU for accelerated computation mainly for 
faster processing of the embedding and hyperparameter tuning. 
Aer data set preprocessing, the data was split into 80% training 
and 20% testing data sets. en, the SMOTE technique was applied 
to the Syria_tweet dataset to solve the imbalanced dataset problem. 
SMOTE techniques were applied to the training dataset to make sure 
the learned model would be tested on real test data. 

4.1.1 Hyperparameter optimization 
For optimizing the performance of the proposed models, 

Bayesian Hyperparameter optimization techniques (Snoek et al., 
2012) were applied to both TF-IDF with n-grams and word 
embeddings feature extractions.e optimization techniques were 
applied via the Gaussian Process-based. is method models 
the objective function using a Gaussian Process, which provides 
uncertainty estimates that guide the search efficiently through the 
hyperparameter space. We set the number of iterations to 32 and 
employed three-fold cross-validation. As shown in Table 3, the 
optimal hyperparameter values vary between the two datasets. For 
example, the alpha parameter in Naive Bayes is smaller for the 
Syria_Tweets dataset compared to ArTwitter. Additionally, the SVM 
model uses a linear kernel for ArTwitter, while an RBF kernel is 
preferred for Syria_Tweets. 

Table 4 shows the optimal values of the hyperparameters for 
different sets of machine learning algorithms aer applying Bayesian 
optimization. 

It’s important to note that the tuning parameters are 
very different between the two datasets. For example, SGD 
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TABLE 3 Best hyperparameters for ArTwitter and Syria_Tweets datasets across TF-IDF with N-gram models. 

Classifier Hyperparameter Unigram Bigram Trigram 

ArTwitter Syria ArTwitter Syria ArTwitter Syria 

Naive Bayes (NB) Alpha 0.0340 0.0010 0.0275 0.0010 0.1896 0.0010 

SVM C 0.9635 3.6975 0.4667 105.7621 0.6839 105.7621 

Gamma 0.0015 0.0271 0.0570 0.0447 0.1 0.0447 

Kernel Linear Linear Linear Rbf Linear Rbf 

KNN Metric Minkowski manhattan Minkowski Manhattan Euclidean Manhattan 

n_neighbors 12 2 14 2 4 2 

Weights Uniform Uniform Uniform Uniform Uniform Uniform 

Decision Tree (DT) MAX_depth 39 35 50 21 50 32 

Min_samples_leaf 1 1 1 1 1 1 

Min_samples_split 20 2 19 2 15 3 

TABLE 4 Best hyperparameters using Word2Vec for ArTwitter and 
Syria_Tweets datasets. 

Classifier Hyper-
parameter 

ArTwitter 
value 

Syria_Tweets 
value 

SGD Alpha 1e-06 0.000563 

eta0 1.0225 0.0174 

Learning_rate Invscaling Adaptive 

Loss Log_loss Log_loss 

Max_iter 3251 1000 

Penalty Elasticnet l1 

Tol 0.01 1.41e-05 

Logistic 
regression 
(LR) 

C 0.5023 11185.625 

Penalty l2 l2 

Solver Liblinear Liblinear 

Support 
vector 
machine 
(SVM) 

C 25.8455 30.0 

Gamma 0.1877 0.15 

Kernel rbf rbf 

K-Nearest 
Neighbors 
(KNN) 

Metric Minkowski Manhattan 

n_neighbors 6 2 

Weights Uniform Uniform 

Random 
Forest (RF) 

Bootstrap False False 

Max_depth 50 45 

Max_features Log2 Sqrt 

Min_samples_leaf 1 1 

Min_samples_split 2 2 

n_estimators 500 500 

hyperparameters optimized for ArTiwtter data set in a much smaller 
learning rate initialization (eta0) and used a “invscaling” learning 

schedule with a elasticnet penalty. While Syria_Tweets 
hyperparameters optimized to an “adaptive” schedule and an “l1” 
penalty,An adaptive learning rate helped keep the model’s training 
on a stable and efficient path. At the same time, the L1 penalty 
was great at promoting feature sparsity, which let the model focus 
on the most important predictors and tune out the noise in the 
data, preventing it from just memorizing the training examples. . 
However, the SVM classier shared the same RBF kernel across 
both datasets. e KNN classier revealed greater variation: 
ArTwitter favored six neighbors and the Minkowski distance, while 
Syria_Tweets performed best with just two neighbors and the 
Manhattan distance, indicating that Syria_Tweets required tighter 
local decision boundaries. 

4.2 Results 

Table 5 presents the performance of both individual and 
ensemble learning models using TF-IDF with unigram, bigram, 
and trigram representations on the ArTwitter dataset. e results 
demonstrate that unigram features consistently outperform 
both bigram and trigram congurations. Among the individual 
classiers, Naive Bayes (NB) achieved the highest accuracy of 89.27 
and 89.00% F1-score with unigrams, followed closely by SVM 
with 88.01% accuracy and 88.0% F1-score. Notably, all ensemble 
models outperformed the individual classiers across the different 
n-gram representations. e V1 ensemble model (comprising NB, 
SVM, and DT) achieved the highest accuracy of 90.22 and 90.00% 
F1-score with unigram features, highlighting the effectiveness of 
combining diverse classiers. 

For the balanced Syria_Tweets dataset, Table 6 reveals more 
consistent performance across all n-gram representations. Both NB 
and SVM classiers showed strong results, achieving 81.47 and 
81.76% accuracy, respectively, using unigram features and 80.69% 
and 81.25 F1-score. However, ensemble models again demonstrated 
superior performance. In particular, the V4 ensemble (SVM, DT, 
and KNN) achieved the highest accuracy of 83.82 and 83.33% F1-
score with bigram features, indicating that ensemble learning can 
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TABLE 5 Performance across unigram, bigram, and trigram features on the ArTwitter dataset. 

Classifier Unigram Bigram Trigram 

Acc() Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 

NB 89.27 89.00 89.00 89.00 87.70 88.00 88.00 88.00 86.75 87.00 87.00 87.00 

SVM 88.01 88.00 88.00 88.00 86.75 87.00 87.00 87.00 84.54 85.00 85.00 85.00 

K-NN 83.91 84.00 84.00 84.00 81.39 82.00 81.00 81.00 80.44 80.00 80.00 80.00 

DT 79.18 80.00 79.00 79.00 81.70 82.00 82.00 82.00 81.70 82.00 82.00 82.00 

V1 (NB, SVM, DT) 90.22 90.00 90.00 90.00 89.27 89.00 89.00 89.00 88.96 89.00 89.00 89.00 

V2 (NB, SVM, K-NN) 89.91 90.00 90.00 90.00 87.38 87.00 87.00 87.00 83.60 84.00 84.00 83.00 

V3 (NB, DT, K-NN) 88.01 88.00 88.00 88.00 87.70 88.00 88.00 88.00 86.75 87.00 87.00 87.00 

V4 (SVM, DT, K-NN) 88.01 88.00 88.00 88.00 87.38 88.00 87.00 87.00 85.17 0.85 85.00 85.00 

Bold values indicate the best performance of each model. 

TABLE 6 Performance across unigram, bigram, and trigram features on the Syria_Tweets dataset. 

Classifier Unigram Bigram Trigram 

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 

NB 81.47 80.43 81.47 80.69 81.18 80.06 81.18 80.33 81.76 80.79 81.76 81.05 

SVM 81.76 80.99 81.76 81.25 80.88 79.88 80.88 80.19 81.18 80.15 81.18 80.44 

K-NN 80.29 79.36 80.29 79.69 79.71 79.00 79.71 79.29 78.82 80.18 78.82 79.36 

DT 79.41 77.99 79.41 78.37 79.71 77.94 79.71 78.07 80.00 79.38 80.00 79.64 

V1 (NB, SVM, DT) 83.53 82.64 83.53 82.14 82.65 81.54 82.65 81.24 83.24 82.26 83.24 81.88 

V2 (NB, SVM, K-NN) 82.65 81.66 82.65 81.82 82.06 81.08 82.06 81.31 81.18 80.15 81.18 80.44 

V3 (NB, DT, K-NN) 82.35 81.44 82.35 81.66 82.94 82.44 82.94 82.63 80.88 81.13 80.88 81.00 

V4 (SVM, DT, K-NN) 82.65 81.66 82.65 81.82 83.82 83.14 83.82 83.33 82.35 82.21 82.35 82.28 

Bold values indicate the best performance of each model. 

TABLE 7 Individual classifiers and ensemble performance using word embeddings on ArTwitter and balanced Syria_Tweets datasets. 

Classifier ArTwitter Syria_Tweets 

Accuracy 
(%) 

Precision Recall F1-score Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

SGD 89.27 89.00 89.00 89.00 79.12 81.69 79.12 79.97 

LR 90.54 91.00 91.00 91.00 75.59 78.89 75.59 76.70 

SVM 90.54 91.00 91.00 91.00 80.85 81.00 80.85 80.90 

K-NN 84.20 86.00 83.00 84.50 76.18 81.33 76.18 77.57 

RF 88.96 89.00 89.00 89.00 81.76 80.49 81.76 80.48 

V1 (SGD, LR, SVM) 92.11 92.00 92.00 92.00 82.50 83.00 82.50 82.60 

V2 (SGD, LR, K-NN) 91.10 91.80 91.10 91.30 79.41 81.85 79.41 80.22 

V3 (SGD, LR, RF) 91.17 91.00 91.00 91.00 79.12 80.57 79.12 79.68 

V4 (SGD, SVM, RF) 92.43 92.00 92.00 92.00 82.10 82.40 82.10 82.20 

V5 (SGD, K-NN, RF) 91.85 91.70 91.60 91.65 83.82 83.89 83.82 83.86 

V6 (LR, SVM, RF) 91.48 92.00 91.00 91.00 82.60 82.90 82.60 82.70 

V7 (LR, K-NN, RF) 91.00 91.30 91.00 91.10 83.24 83.17 83.24 83.20 

Bold values indicate the best performance of each model. 

Frontiers in Artificial Intelligence 08 frontiersin.org 99

https://doi.org/10.3389/frai.2025.1653728
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jaber et al. 10.3389/frai.2025.1653728 

TABLE 8 Comparison of accuracy between previous and our study on ArTwitter Dataset. 

Reference Approach Accuracy F1 score 

Al-Saqqa et al. (2018) Ensemble machine learning (voting of KNN, SVM, DT, NB) 84.4% (SVM individually) 84.0% 

Saleh et al. (2022) Stacked deep learning (RNN, LSTM, GRU + SVM meta-learner) 83.12% 82.8% 

Aladeemy et al. (2024) Machine learning (SVM with BoW Unigram) 90.3% 90.3% 

Our approach Ensemble machine learning (voting of SGD, SVM, RF) 92.43% 92.0% 

Bold values indicate the best performance of each model. 

TABLE 9 Comparison of F1 score between previous and our study on 
Syria_Tweets Dataset. 

Reference Approach F1-score 

Al-Azani and El-Alfy (2017) Ensemble machine learning 
(stacking) 

63.95% 

El-Alfy and Al-Azani (2020) Machine learning (SGD 
classier) 

70.7% 

Our approach Ensemble machine learning 
(voting of SGD, K-NN, RF) 

83.86% 

Bold values indicate the best performance of each model. 

capture richer contextual information and provide more robust 
classication in complex datasets. 

Finally, Table 7 presents the results of individual and ensemble 
models using word embeddings on both datasets. Across the 
board, word embeddings improved the performance of all models 
compared to the TF-IDF-based representations. Ensemble models 
signicantly outperformed individual classiers in both datasets. 
On the ArTwitter dataset, the V4 ensemble (SGD, SVM, RF) 
achieved the highest accuracy of 92.43% 92.00% F1-score. On 
the Syria_Tweets dataset, the best performance was obtained 
by the V5 ensemble (SGD, KNN, RF), which reached an 
accuracy of 83.82% 83.86% F1-score. ese ndings conrm the 
effectiveness of combining rich semantic features with ensemble 
strategies to enhance classication accuracy in Arabic social 
media text. 

4.3 Error analysis 

To gain a clearer picture of where our model falls short, we 
looked closely at tweets it misclassied in both datasets. ree main 
patterns stood out. 

First, sarcasm and irony oen tripped the model. Tweet  التعدد
جدا ً جمیل which means المال من كثیییییییییییر إلى یحتاج ولكن in English
“Polygamy is very beautiful, but it requires a lot of money.” used 
positive wording to express criticism, usually labeled incorrectly 
because the model lacked any mechanism to detect sarcasm. Second, 
dialectal variation posed a challenge. Like tweet “  واید تتحمس لا
which ” سھل مب الشي لأن (العدل) بموضوع means in English “Don’t get
too excited about the topic of it’s not easy.” e tweet contained 
regional expressions, particularly from Gulf “مب,واید, ” that were not
well captured in the embeddings. Words that carried a negative tone 
in one dialect could be interpreted as neutral in another, leading to 
incorrect predictions. 

Finally, mixed sentiment such as  دایما المرأة حقوق مع انا
which means نسویة نفسي عن أقول مستحیل لكن in English “I am
always for women’s rights, but it is impossible for me to call 
myself a feminist.” e tweet conveyed both positive and negative 
feelings about different entities were oen reduced to a single 
overall sentiment, which meant losing important nuances. A more 
ne-grained, aspect-based approach would likely handle such 
cases better. 

4.4 Comparison of the proposed model 
with existing work 

To compare the proposed approach with the most relevant 
previous studies, Table 8 presents the results of selected works. 
Al-Saqqa et al. (2018) applied ensemble learning using traditional 
machine learning classiers and achieved an accuracy of 84.4%. 
Saleh et al. (2022) employed a stacking ensemble method 
that integrated deep learning architectures such as RNN, 
LSTM, and GRU, with an SVM meta-classier, achieving 
83.12% accuracy. e most recent work by Aladeemy et al. 
(2024) attained 90.3% accuracy using a standalone SVM 
classier with unigram features. In contrast, our proposed 
approach—based on hard voting ensemble learning that 
combines SGD, SVM, and Random Forest classiers with 
pre-trained word embeddings—achieved the highest accuracy 
of 92.43%, demonstrating its superior performance in Arabic 
sentiment classication. 

However, related to the Syria_Tweet data set, the F1-score 
is used because the accuracy isn’t available. Table 9 compares 
our results with the most related previous work. As shown, 
our approach with ensemble voting (SGD, K-NN, RF) improved 
the performance of analyzing the sentiment of the dataset. e 
ensemble stacking approach was applied on the same data set 
by Al-Azani and El-Alfy (2017), and the F1-score achieved 
is 63.95%. While a traditional ML algorithm, which is SGD, 
was applied by El-Alfy and Al-Azani (2020) and achieved a 
70.7% F1-score. 

5 Conclusion and future direction 

e objective of this study was to investigate multiple 
methodologies for feature extraction specically tailored for Arabic 
sentiment analysis. Our focus was directed toward analyzing three 
distinct types of n-gram features—namely, unigram, bigram, and 
trigram—alongside leveraging a pre-trained Word2Vec word 
embedding model. A diverse machine learning algorithms was 
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employed in our analysis, including Support Vector Machines 
(SVM), k-Nearest Neighbors (K-NN), Stochastic Gradient Descent 
(SGD), Logistic Regression (LR), and Random Forest (RF). 
Additionally, we implemented ensemble techniques based on 
hard voting. 

e experimental investigations were conducted utilizing 
two distinct datasets: the balanced ArTwitter dataset and the 
signicantly imbalanced Syria_Tweets dataset. To address the issue 
of class imbalance present in the Syria_Tweets dataset, the Synthetic 
Minority Oversampling Technique (SMOTE) was applied during 
the training phase. 

Our results indicated that Naïve Bayes (NB) achieved the 
highest accuracy rate of 89.79 and 89% F1-score on the ArTwitter 
dataset when unigram features were employed. Conversely, the 
Support Vector Machine (SVM) achieved an accuracy rate of 
81.76 and 81.25% F1-score on the Syria_Tweets dataset, with SVM 
excelling with unigram features and NB performing optimally with 
trigram features. Notably, the hard voting ensemble containing 
Naïve Bayes (NB), Support Vector Machine (SVM), and Decision 
Tree (DT) utilizing unigram features outperformed others on 
the ArTwitter dataset, achieving an accuracy of 90.22% and 
90% F1-score. Meanwhile, the hard voting ensemble combining 
SVM, DT, and K-Nearest Neighbors (K-NN) attained superior 
results on the Syria_Tweets dataset with an accuracy of 83.82% 
and 83.33% F1-score when employing bigram features. However, 
average weighted pretrained word embedding achieved superior 
results on both datasets with the ensemble approach; hard voting 
(SGD, SVM, and RF) achieved 92.43% accuracy and 92% F1-
score on ArTwitter Dataset. While hard voting (SGD, KNN, 
and RF) achieved 83.82% accuracy and 83.86% F1-score on 
Syris_tweet dataset. 

e outcomes of this research suggest that leverage pretrained 
word embedding in representing the data can signicantly 
enhance model performance and that ensemble approaches 
contribute to a more robust overall system. Looking ahead, 
there is potential for employing transformer-based models, 
which provide deep contextualized embeddings, thereby 
further optimizing performance. e exploration of novel 
data balancing methodologies could advance the efficacy of 
model operation. 
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Cross-dialectal Arabic
translation: comparative analysis
on large language models
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Sa’Ed Abed*

Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait

City, Kuwait

Introduction: Exploring Arabic dialects in Natural Language Processing (NLP) is

essential to understand linguistic variation and meet regional communication

demands. Recent advances in Large Language Models (LLMs) have opened up

new vistas for multilingual communication and text generation.

Methods: This paper investigates the performance of GPT-3.5, GPT-4, and

Bard (Gemini) on the QADI and MADAR datasets, while GPT-5 was evaluated

exclusively on MADAR encompassing over 15 di�erent countries. Several metrics

have been used in the evaluation, such as cosine similarity, universal similarity

encoder, sentence BERT, TER, ROUGE, and BLEU. In this study, di�erent

prompting techniques were used: zero-shot and few-shot. Zero-shot was

employed for all dialects, and few-shot was employed only for the least

translation performance dialect, Tunisian.

Results: Analysis revealed that in the QADI dataset, GPT-4 significantly

outperformed others in translating MSA to DA, with ANOVA tests showing strong

significance (p < 0.05) in most metrics, except for BLEU and TER where it does

not show significance, indicating comparable translation performance among

models. Furthermore, GPT-4 was highest in semantic similarity compared to

GPT-3.5 and Bard (Gemini), 0.66, 0.61, and 0.63, respectively. GPT-4 was the

best in identifying overlapping sentences (i.e., those where the source and target

are identical) with a combined average of 0.41 in BLEU and ROUGE-L. All LLMs

scored TER values between 6% and 25%, indicating generally good translation

quality. However, GPT models, especially GPT-5, responded better to prompting

and translation to Levant countries compared to Bard (Gemini). For the MADAR

dataset, no significant translation di�erences were observed in sentence-BERT,

ROUGE-L, and TER, while di�erences are identified in cosine similarity, BLEU,

and universal similarity encoder metrics. Therefore, GPT-5 is the top performer

in identifying sentence overlaps measured by BLEU and ROUGE-L (combined

average 0.37).

Discussion: The few-shot approach did not show a significant improvement

in translation performance, especially for GPT-4 and Bard (Gemini), while GPT-

3.5 performed consistently. Zero-shot prompts were e�ective across dialects,

while few-shot prompting, applied to the weakest-performing dialect (Tunisian),

did not yield improvement. GPT-4 and Bard performed worse under this set-up,

while GPT-3.5 remained consistent.
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1 Introduction

In recent years, new horizons for multilingual communication,

translation tasks, and text generation have been widely witnessed

due to the advances made in large language models (LLMs) (Shaikh

et al., 2023). Models such as GPT, developed by OpenAI and

Google Bard (Gemini), have shown promising developments in

this field (Kasneci et al., 2023). Such models have demonstrated

outstanding skills in handling diverse languages and dialects

with the influential role of deep learning techniques and the

processing of massive volumes of textual data. According to

studies conducted in 2019 by Ethnologue (Eberhard et al.,

2019), the total number of dialects spoken around the globe

is expected to be 7,111, where a majority of these dialects are

found on the Internet through platforms such as Facebook,

X, and blog posts through user interactions (Salloum and

Habash, 2012). Therefore, with the availability of systems that

deal with different languages and dialects, a major shift in

focus has been witnessed in literature to bring dialects together

by enhancing proper machine learning translation systems

(Sghaier and Zrigui, 2020).

Arabic is one of the languages known for its diversity in

linguistics, which includes various dialects from different countries

all over the Arab world. Notably, Dialectal Arabic (DA) consists

of different Arabic dialects. It is an informal language that is used

in daily life and social media platforms in contrast with Modern

Standard Arabic (MSA), also known as “Fushaa,” which is used in

formal communications (Harrat et al., 2019). Hence, making the

comprehension of different dialects presents a greater challenge

compared to MSA, due to its regional variability, especially in the

applications of cross-dialect communications, and in sectors such

as education and content localization (Sghaier and Zrigui, 2020).

Large language models (LLMs) are a vital approach to

understand and enhance the language intelligence of devices (Hadi

et al., 2023). LLMs can react to free-text queries without being

specifically trained in the activity at hand, which has sparked

both excitement and skepticism among researchers regarding their

application (Hadi et al., 2023). Models such as OpenAI GPT and

Google Bard (Gemini) are examples of LLMs, where they are

trained on enormous volumes of text data and can generate human-

like prose, answer questions, and perform other language-related

tasks with great accuracy (Kasneci et al., 2023). To begin with,

OpenAI GPT is a decoder-based, generative pre-trained LLM. It

employs an auto-regressive language model that allows sequential

text generation. Among many of the advantages present in GPT,

one main advantage is that it is a multilingual model, including

the Arabic language (Alyafeai et al., 2023). However, it is not an

open-access model and is not free of cost. Therefore, developers

and researchers have to pay a certain amount based on the number

of tokens used per request and the type of model to be used for

fine-tuning (Steele, 2023). As for Bard (Gemini), it is developed by

Google and is also multilingual; in total, it contains 41 languages

(Kadaoui et al., 2023). Similar to GPT, Bard (Gemini) has a certain

cost based on the number of tokens used per request and the type of

model to be used (Kadaoui et al., 2023). Hence, by analyzing their

differences and similarities, a comparison between both models is

performed to assist systems in easily translating dialects and achieve

human-like reading and writing, building on the comprehensive

overview of LLM capabilities by Hadi et al. (2023).

Researchers have been using these models in analyzing various

NLP tasks, such as psychological studies of sentiments using

GPT (Kheiri and Karimi, 2023). In addition, comparisons with

other models such as Bidirectional Encoder Representations from

Transformers (BERT) (Zhang et al., 2020) and Bidirectional

Long-Form Overlap for Optimizing Multilingual and zero-shot

(BLOOMZ) (Yong et al., 2022) have been made in contexts such as

translation efficiencies using different languages (Bhat et al., 2023).

On the other hand, comparisons between GPT 3.5, GPT 4, and

Bard (Gemini) have beenmade regarding their machine translation

(MT) proficiency across 10 varieties of Arabic (Kadaoui et al., 2023).

Their analysis shows that LLMs may encounter challenges with

dialects for which minimal public datasets exist, but on average,

they are better translators of dialects than existing commercial

systems. In a similar vein, GPT 4 outperformed Bard (Gemini)

in dialect-based commercial systems and different supervised

baselines employing zero-shot prompts.

Originally, researchers’ main focus was to address the

translation of English to Arabic and vice versa (Khoshafah,

2023). However, more recently, researchers have been studying

the influence of MSA on the similarity between dialects spoken,

as was done by Abu-Haidar (2011) in Baghdad, and vice versa,

where researchers study the translation from DA to MSA. For

instance, Sghaier and Zrigui (2020) performed a similar study in

2020 where an MT system that translates Tunisian dialect text

to MSA using a rule-based approach showed promising results

for their proposed solution. Since OpenAI GPT released different

models with different versions, researchers have focused on having

a comparison between these different versions, where Alyafeai

et al. (2023) have compared some of these models, such as GPT

3.5 and GPT 4, on seven distinct Arabic NLP tasks and found

that GPT 4 outperforms GPT 3.5 on five NLP tasks. GPT 3.5

and GPT 4 performances were also studied using the Tunisian,

Jordanian, and English languages, and the study results highlight

a critical dialectical performance gap in GPT, underlining the

need to enhance linguistic and cultural diversity in AI models’

development, particularly for health-related content (Sallam and

Mousa, 2024).

The purpose of this study is to compare the performance of four

language models, GPT (versions 3.5, 4, and 5) and Bard (Gemini),

in translating a wide corpus of MSA to DA. This novel study

bridges a significant gap in understanding model performance

across diverse linguistic situations by including a wide corpus of

dialects, consisting of over 15 Arabic dialects, in the analysis while

evaluating several metrics. Furthermore, two different datasets will

be used to further strengthen the analysis using different prompting

techniques (zero-shot and few-shot). To explore whether these

techniques enhance the quality of dialect translation, zero-shot will

be applied to all countries, whereas few-shot will be applied to the

weakest country.

This study sheds light on the adaptability and efficiency

of these models through careful metric assessments, which

is critical for expanding NLP applications in various Arabic-

speaking regions. Two datasets are used in this study the

first is the Qatar Computing Research Institute (QCRI) Arabic
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Dialects Identification (QADI) dataset, which contains 18 different

countries with their own dialects. QADI contains over 500,000

tweets from social media platforms, spanning 18 different Arabic

dialects (Abdelali et al., 2020). Second, the Multi-Arabic Dialect

Applications and Resources (MADAR) corpus dataset is used,

which includes a large parallel corpus of 25 Arabic city dialects in

the travel domain. These are the most popular datasets adapted for

studies with Arabic dialects.

This research study aims to answer the following questions:

• How efficient are GPT 3.5, GPT 4, GPT 5, and Bard (Gemini)

in translating MSA to different DA in terms of different

performance metrics, such as cosine similarity, semantic

universal encoder, sentence BERT, similarity encoder,

translation error rate (TER), recall-oriented understudy for

gisting evaluation (ROUGE), bilingual evaluation understudy

(BLEU), and analysis of variance (ANOVA)?

• How consistent is the LLM performance in the MSA

translation to different DAs? (e.g., Levantine vs. Gulf

vs. Maghrebi)

• How do prompting techniques (zero-shot vs. few-shot) and

external factors like sentence length impact the translation

accuracy of LLMs?

The main contribution of this study could be summarized

as follows:

• It sheds light on the strengths and drawbacks of the GPT

3.5, GPT 4, GPT 5, and Bard (Gemini) models in dealing

with DA differences by analyzing their translation quality and

accuracy (measured by metrics) and consistency/reliability,

across various dialects from MSA. Hence, exploring how

LLMs handle dialectal diversity in Arabic.

• It employs various prompt analysis techniques to evaluate the

performance of GPT 3.5, GPT 4, GPT 5, and Bard (Gemini),

aiming to understand the specific conditions under which each

model excels.

• The study’s findings fill in a significant gap in research on

MSA to dialect translation using LLMs by using a wide corpus

of Arabic dialect translations and analyzing GPT 3.5/4/5, and

Bard (Gemini) in translating various dialects using different

prompting techniques (zero-shot and few-shot).

Therefore, the study relies on it being the first to offer a

comprehensive evaluation of LLMs in translating MSA to a wide

range of dialects using QADI and MADAR datasets. Moreover,

the evaluation of GPT 3.5, GPT 4, GPT 5, and Bard (Gemini)

contributes to fine-tuning and developing inclusive NLP tools to

serve a larger Arabic-speaking population with diverse dialects.

It identifies the strengths and weaknesses of LLMs in different

DAs by translation from MSA. Such insights are essential for the

development of inclusive NLP tools that can effectively utilize MSA

and different DAs in spoken Arabic to enhance digital accessibility

and communication. To the best of our knowledge, we are the first

study comparing prominent LLMs specially GPT 5 on MT task

fromMSA to DA over 15 countries.

The remainder of this study is organized as follows: The related

work is described in Section 2, and the proposed methodology

is detailed in Section 3. Experimental results are reported and

analyzed in Section 4. Finally, the concluding remarks and future

research directions are described in Section 5.

2 Related work

This section highlights the challenges of processing the Arabic

language and its dialects in Section 2.1, followed by Section

2.2, which explains and explores different LLMs and Section 2.3

describes various MT approaches.

2.1 Challenges for processing Arabic and
its dialects

Contemporary Arabic consists of different varieties such as

MSA, the official language of the Arab world that is used in formal

settings, and dialects of different countries that are commonly used

in different informal contexts. In general, Arabic is a complex

language with a rich inflectional morphology expressed both

templatically and affixationally, as well as various attachable clitic

classes (Wright and Caspari, 2011). The dialects of different

countries differ from MSA in terms of phonology, morphology,

and, to some extent, syntactically, where the differences are based

on the presence of clitics and affixes, unlike MSA, are widely used

(Salloum and Habash, 2012). Dialects are considered to share all

of MSA’s problems when it comes to NLP (e.g., optional diacritics

and spelling inconsistencies). However, adding to these problems,

the absence of standard orthographies for the dialects and their

diverse variants, which in turn pose additional issues (Guellil et al.,

2021). In addition, there are very few Arabic dialects of English

corpora and even fewer dialects of MSA parallel corpora, which

makes the number of morphological analyses and tools for these

dialects constrained (Salloum and Habash, 2012).

These linguistic challenges pose different difficulties for LLMs

in MT. Unlike the English language, which dominates the

training of most LLMs, different Arabic dialects are widely

underrepresented (Alyafeai et al., 2023; Khondaker et al., 2023).

Research papers comparing LLM performance between different

languages such as English and Arabic address this gap and confirm

it by showing that LLMs achieve better scores in English translation

than in Arabic (Peng et al., 2023). Furthermore, within Arabic itself,

MSA is better handled in LLMs than in different dialects (Kadaoui

et al., 2023). These demonstrate that the wide variation of dialects

in the Arabic language and their complexities pose a challenge

in MT. Hence, understanding of LLMs ability to translate MSA

to different dialects along with the strengths and weaknesses of

LLMs in different DAs needs to be addressed as it is critical in the

development of NLP tools.

2.2 Large language models

LLMs have exhibited a remarkable transformation throughout

the years, where they have evolved from generating only natural

texts to understanding them through AI (Jiang et al., 2020). LLMs

are trained to predict the next token in a sequence based on the
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context, making the generated outputs coherent. They are able to

capture long-range dependencies and perform complex tasks such

as translation, summarization, and question answering. Moreover,

LLMs can generalize across different domains and diverse dialects

through prompting techniques (Alabdullah et al., 2025). Research

studies vary in terms of whether to include prompts in the

analysis or not. For example, Lilli (2023) has studied ChatGPT

4 using Italian dialects; however, the analysis was done using

zero-shot analysis only, and the results showed that the model

exhibits a significant gap in analytical skills and struggles with

text production and interactive tasks, suggesting superior passive

linguistic capabilities compared to active ones. Similarly, GPT 4,

GPT 3.5, and Bard (Gemini) were compared in terms of Inductive,

Mathematical, andMulti-hop Reasoning Tasks using zero-shot, and

GPT 4 was found to be better in all of them compared to GPT 3.5

and Bard (Gemini) (López Espejel et al., 2023). Currently, LLMs are

widely used in evaluating the performance of NLP tasks in different

languages (Kadaoui et al., 2023). However, LLMs are known to have

some issues with rare or unseen words, the problem of overfitting,

and the difficulty in capturing complex linguistic phenomena.

Researchers have been evaluating different LLM techniques

to shed light on future research in the domain (Chang et al.,

2023). Other multilingual models such as XGLM (De Varda

and Marelli, 2023) have also been studied and were shown to

improve significantly in terms of translation performance. It was

found that the model performs best if the answer is estimated

based on the probability of the first token in the generated

answer. However, these models are yet to be studied further

(Zhu et al., 2023). Models such as BERT (Devlin et al., 2018)

have also been analyzed in terms of language analysis, such as

the Arabic language. However, due to its weakness in Arabic

dialects, researchers (Baert et al., 2020) created an enhanced

language model (BAERT) that showed better performance than

BERT in sentiment analysis. LLM research remains a prominent

topic across multiple disciplines, including the development and

customization of LLMs tailored to specific languages, dialects,

or tasks (Mashaabi et al., 2024). There are various LLMs

that support the Arabic language, with GPT being the most

prominent. Some researchers suggest that ArabianGPT, specifically

designed for Arabic, aligns better with Arabic language and

rules (Koubaa et al., 2024).

2.3 Machine translation approaches

Machine translation (MT) is an example of an NLP task

that addresses grammatical, semantic, and morphological elements

between the source and output languages. Importantly, it becomes

a challenging task when those elements are significantly different

(Joshi et al., 2024). The need for MT systems has been increasing

due to the large dialects available on the Internet and their usage

in various fields (Sghaier and Zrigui, 2020). Researchers have been

studying LLM MT capabilities around the world for different

languages. For instance, English to Japanese MT was tested on

mBART50, m2m100, Google Translation, Multilingual T5, GPT-

3, ChatGPT, and GPT 4 using BLEU, Character Error Rate (CER),

WER, Metric for Evaluation of Translation with Explicit ORdering

(METEOR), and BERT score, as well as qualitative evaluations by

four experts. The analysis showed that GPT 4 outperformed all

other models in MT from English to Japanese (Chan and Tang,

2024). Due to their grammatical structure, DA forms a challenge

for MT systems (Baniata et al., 2022). MT is an example of an

NLP task that addresses grammatical, semantic, and morphological

elements between the source and output languages. Importantly, it

becomes a challenging task when those elements are significantly

different (Joshi et al., 2024). Several approaches and tools are

available to perform MT, such as rule-based approaches, hybrid

approaches, and sequence-to-sequence (seq2seq) models as well as

LLMs (Okpor, 2014). For instance, Salloum and Habash (2012)

created a rule-based approach system to translate DA to MSA,

which depends on a morphological analyzer, transfer rules, and

dictionaries to generate sentences and choose the best matches.

Several researchers have widely used the rule-based approach

to translate Arabic dialects to MSA (Al-Gaphari and Al-Yadoumi,

2010; Hamada and Marzouk, 2018; Bouamor et al., 2014). Another

study created a hybrid approach to translate the Egyptian dialect to

MSA and achieved 90% performance through tokenization (Bakr

et al., 2008). Beyond these, Hamed et al. (2025) developed Lahjawi,

a customized model specialized in cross-dialectal translation (DA

to MSA) that supports 15 dialects. Lahjawi was trained on 7 well-

known datasets, including MADAR and Parallel Arabic Dialectal

Corpus (PADIC), and fine-tuned above a small language model

- Kuwain 1.5B. The model achieved adequate BLEU scores and

an accuracy of 58% based on human evaluation. Moreover, Alimi

et al. (2024) developed MT model to translate DA to MSA. The

model was trained onMADAR and PADIC datasets and fine-tuning

transformers such as T5X and AraT5 and some existing tools. The

best translation results revealed were for Levantine and Maghrebi

region dialects. Some authors also adapted a hybrid approach

to translate the Moroccan dialect to MSA using processing

tools for MSA (Ridouane and Bouzoubaa, 2014; Hamada and

Marzouk, 2018), whereas other studies focused on Neural Machine

Translation (NMT) for Arabic dialects (Baniata et al., 2018;

Guellil et al., 2017). For example, Baniata et al. (2022) developed

an NMT model to translate DA to MSA through multi-head

attention with reverse positional encoding and sub-word units. The

model achieved high BLEU scores, proving their encoding method

across several datasets. In addition, other researchers expand the

Dial2MSA dataset through seq2seq datasets in different domains,

including social media covering different regions. Leaving a reliable

NMT training, the authors conducted a performance evaluation,

and it was found that AraT5 achieved the highest performance

(Khered et al., 2025). Moreover, researchers Alabdullah et al. (2025)

evaluated six LLMs onDA toMSA translation, including Levantine,

Egyptian, and Gulf Dialects using different prompting techniques.

They demonstrated that GPT 4o achieved the highest score in

translation performance, while a fine-tuned version of Gemma2-9B

achieved a higher CHrF++ score compared to GPT 4o in zero-show

prompting.

Furthermore, researchers utilized LLMs to perform MT

tasks. For instance, Zhu et al. (2023) evaluated the multilingual

translation of four LLMs, namely, GPT, XGLM, OPT, and

BLOOMZ. Interestingly, the researchers found that such models
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adapt new patterns to translate. GPT proved excellent capability

in MT and outperformed Google Translate according to Peng

et al. (2023). In addition, the AraFinNLP shared tasks highlight

critical challenges and discussions for cross-dialect translation

in preservation of intents using the known ArbBanking77

dataset. The findings highlight that accurate MSA to DA

(Moroccan, Tunisian, and Palestinian) translation is possible

yet challenging. They demonstrated that fine-tuned BERT

models and data augmentation achieve high performance in

handling Arabic dialects for financial applications (Malaysha

et al., 2024). Moreover, SHAMI-MT developed bidirectional

MT models built on the AraT5v2 model and fine-tuned on

the Nbra corpus. They evaluated the translation between

MSA and the Syrian dialect and used MADAR for benchmark

(Sibaee et al., 2025). Similarly, Mohamed et al. (2012) presented

a method to convert MSA to Egyptian dialect, applied on

part-of-speech (POS). They showed that such MT task

improves tagging and is considered as valuable training data

for underrepresented dialects.

Prior research studies addressed the translation from MSA to

different dialects. A study conducted empirical analysis focusing on

Arabic-based LLMs to assess their ability to translate DA to MSA,

utilizing four datasets with English-based LLMs as a baseline (Jibrin

et al., 2025). They highlighted that AceGPT and Jais performed the

best BLEU scores across all data sets, establishing their reliability

in Arabic formality. In another study, GPT was evaluated on

various NLP tasks. It was revealed that GPT, in comparison with

BLOOMZ, struggles on some Arabic tasks yet comparable to

human judgment (Khondaker et al., 2023). Several studies explored

this field with more precision in relation to the Nuance Arabic

Dialect Identification (NADI) 2023 competition. Demidova et al.

(2024) performed sentence-based translation from DA to MSA

across four dialects through Jais, No Language Left Behind (NLLB),

GPT 3.5, and GPT 4 LLMs. They found that Jais outperforms the

other models consistently, achieving high BLEU scores whereas

NLLB was the least performer. Similarly, other researchers mainly

focused on fine-tuning LLama-3 with 8B parameters through

Parameter Efficient Fine-Tuning (PEFT) and Low Rank Adaptation

(LoRA) methods. The task was also DA-MSA translation across

four datasets. LLama fine-tunedmodel exhibits strong performance

related to BLEU metric. Moreover, the 6th Workshop on Open-

Source Arabic Corpora and Processing Tools (OSACT) showed

interesting findings through different studies specifically for Dialect

toMSAMT task including 5 dialects. Atwany et al. (2024) evaluated

AraT5, NLLB, and GPT 3.5. The results show that fine-tuning

Arat5 and NLLB on the MADAR dataset demonstrates low BLEU

scores, whereas prompting GPT 3.5 achieved high BLEU scores.

Moreover, other researchers used GPT 3.5 for dataset generation

(Abdelaziz et al., 2024). They used the Saudi Audio Dataset for

Arabic (SADA) to translate the audio dialects to MSA texts, leading

to notable performance in machine translation achieving high

BLEU scores between 25.5 and 31.5. Alahmari et al. (2024) fine-

tuned four versions of AraT5 model highlighting that AraT5v2-

base-1024 model achieved the highest BLEU score of 21.0. Various

researchers have utilized MT with a special focus on the context of

Arabic dialects. Table 1 summarizes the MT approaches proposed

by the researchers.

3 Proposed methodology

This section discusses the chosen dataset in Section 3.1,

followed by Section 3.2, which describes the prompting techniques.

Model selection is mentioned in Section 3.3, and the chosen

performance metrics are detailed in Section 3.4.

3.1 Dataset

Translating Arabic dialects has been a wide area of research

(Harrat et al., 2019). In our research, we aim to use the QADI

dataset and the MADAR corpus dataset. QADI dataset is a pre-

processed dataset collected through X media platform, and it

includes 18 dialects from different Arab countries, the dataset is

already cleaned and has no hashtags, emojis, or such symbols which

might affect the translation quality (Abdelali et al., 2020). The

dataset has 540k training tweets and 3,303 test tweets in total. The

rationale for choosing the QADI dataset is the large number of

dialects it has which will help us address our research questions

and compare the performance evaluation of LLMs. However, in

the current study, 50K samples will be used from all countries for

the analysis due to computational resource restrictions. We applied

random sampling, the QADI dataset was balanced across dialects,

our random selection ensured that the selected 50K tweets have no

bias and ensure equal selection among the sentences. Table 2 shows

different country codes using ISO-3166-1 with corresponding users

and tweet count of QADI dataset.

Similarly, the MADAR corpus dataset (Bouamor et al., 2019)

contains 25 cities representing 15 countries, each with a unique

dialect where some countries feature multiple cities (e.g., Egypt has

Aswan, Cairo, and Alexandria) with 2K samples from each dialect.

The advantage of using the MADAR dataset is that it includes MSA

baseline translation for the sentences present inside the dialects

of each country. Hence, making the evaluation of GPT and Bard

(Gemini) stronger by comparing the results of these models with

the baseline given within the dataset. This study will analyze 15

countries from the MADAR dataset primarily focusing on the

capitals of countries that are also included in QADI. Table 3 shows

all the city dialects from the MADAR dataset, showing the different

cities with their dialects from various Arabic countries.

3.2 Prompting techniques

Prompting strategies have been developed to optimize LLMs’

performance and outcomes. The most frequent of these tactics are

zero-shot and few-shot. The zero-shot prompt plainly describes the

task and provides information without examples (Allingham et al.,

2023). Figures 1, 2 show an example of the prompts used to perform

the translation task. Unlike zero-shot prompts, few-shot prompts

include data examples and sample responses (Jiang et al., 2022).

On the other hand, a few-shot prompting technique is established

by providing an example within the prompt itself, where one-shot

includes a single example, two-shot includes 2 examples, etc. We

will include both zero-shot and few-shot prompts. As well as a few
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TABLE 1 Summary of machine translation (MT) approaches for Arabic dialects.

Research Dialect(s) Approach

Bakr et al., 2008 Egyptian→MSA Hybrid

Al-Gaphari and Al-Yadoumi, 2010 Sana’ani→MSA Rule-based

Salloum and Habash, 2012 Arabic Dialects→MSA Rule-based

Mohamed et al., 2012 MSA→ Egyptian Rule-based

Bouamor et al., 2014 Mainly Egyptian Rule-based, Corpus of 2,000 sentences

Ridouane and Bouzoubaa, 2014 Moroccan→MSA Hybrid

Guellil et al., 2017 Algerian NMT

Hamada and Marzouk, 2018 Egyptian→MSA Hybrid/Rule-based

Baniata et al., 2018 Arabic dialects→MSA Neural MT (NMT)

Hamed et al., 2025 15 Dialects→MSA Custom cross-dialectal model

Alimi et al., 2024 Levantine, Maghrebi→MSA Transformer-based MT (AraT5, T5X)

Alabdullah et al., 2025 Levantine, Egyptian, Gulf→MSA LLM-based MT (GPT 4o, Gemma2-9B)

Zhu et al., 2023 Multilingual/Arabic LLM-based MT (GPT, XGLM, OPT, BLOOMZ)

Malaysha et al., 2024 Moroccan, Tunisian, Palestinian→MSA LLM + fine-tuned BERT

Sibaee et al., 2025 Syrian→MSA AraT5v2-based bidirectional MT

Khered et al., 2025 Arabic Dialects→MSA Seq2seq / Transformer (AraT5)

Jibrin et al., 2025 Arabic Dialects→MSA LLM-based MT (AceGPT, Jais)

Khondaker et al., 2023 Arabic Dialects→MSA LLM-based MT (GPT, BLOOMZ)

Demidova et al., 2024 Egyptian, Emirati, Jordanian, and Palestinian→MSA LLM-based MT (Jais, NLLB, GPT 3.5, GPT 4)

Atwany et al., 2024 Gulf, Egyptian, Levantine, Iraqi and Maghrebi→MSA LLM-based MT (AraT5, NLLB, GPT 3.5)

Abdelaziz et al., 2024 Saudi Dialect→MSA LLM-based MT (GPT 3.5)

Alahmari et al., 2024 Arabic dialects→MSA Transformer MT (AraT5v2)

shot prompts (one-shot) for the country with the weakest dialect

translation given by the models to check whether including an

example within the prompt would enhance the overall accuracy of

the translation. An example of a prompt is shown in Figure 3 to test

whether the models would provide a better translation as compared

to zero-shot approaches.

3.3 Model selection

This research paper will be using OpenAI’s most recent

model GPT 5 along with GPT 3.5, GPT 4, and Google’s Bard

(Gemini) “text-bison” model due to their exceptional performance

in research (Zhu et al., 2023; Peng et al., 2023; Khondaker et al.,

2023; Kadaoui et al., 2023). LLMs are widely used to evaluate

the performance of Arabic NLP tasks such as GPT 3.5, GPT

4, Bard (Gemini), XGLM, and OPT (Zhu et al., 2023). To save

computational cost and time, GPT 5 will only be ran on MADAR

dataset, whereas QADI will include all remaining models. This

study’s selection criteria for the models aim to balance between

budget and computing resources. In addition, LLM languages that

do not include the Arabic language, such as Falcon-7b (Penedo

et al., 2023), were initially excluded from the search scope of

suitable LLMs. A brief summarization of both models is shown in

Table 4.

Figure 4 shows the experiment pipeline implemented for GPT

and Bard (Gemini). The experiment starts using the data in the

dataset as a prompt for each LLM. Initially, all prompts will be

applied with zero-shot techniques, meaning that no example will

be included within the prompt. However, after performing the

analysis, the country with the least translation performance will be

analyzed again but with the few-shot prompting technique. In the

QADI dataset, to have a baseline to compare the LLM results with,

the back translation process is used (Behr, 2017), where dialects

are translated to MSA; then, the resulting MSA is translated back

to the corresponding dialect to compare the final resulting dialect

with the original dialect from the dataset. However, MADAR offers

a baseline for dialects and MSA; therefore, no back-translation will

be needed.

For LLM inference, we used the code provided on the

Application Programming Interface (API) websites with some

correction techniques; rerunning the prompt if the model returns

an error to ensure a correct response. After doing so, the error rate

in the resulting samples has dropped sufficiently. Cost optimization

technique has also been adapted by running 10 translations per API

request, which reduced the cost. A threshold of 10 requests was set

as the maximum accumulation; as the threshold increases, the error
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TABLE 2 QADI dataset: users and tweet counts by country using

ISO-3166-1 codes.

Country Users Training
tweets (k)

Test
tweets

Iraq (IQ) 142 18.4 178

Bahrain (BH) 169 28.3 184

Kuwait (KW) 160 49.9 190

Saudi Arabia (SA) 149 35.4 199

United Arab Emirates (AE) 172 27.8 192

Oman (OM) 176 24.8 169

Qatar (QA) 139 36.7 198

Yemen (YE) 138 11.6 193

Syria (SY) 139 18.3 194

Jordan (JO) 146 34.1 180

Palestine (PL) 145 48.6 173

Lebanon (LB) 141 38.4 194

Egypt (EG) 150 67.8 200

Sudan (SD) 139 16.3 188

Libya (LY) 149 40.9 169

Tunisia (TN) 68 12.9 154

Algeria (DZ) 130 17.6 170

Morocco (MA) 73 12.8 178

TABLE 3 All the city dialects and regions that were included in the

building of the MADAR dataset.

Region Sub-
region

Cities Codes

Maghreb Morocco Rabat, Fes RAB, FES

Algeria Algiers ALG

Tunisia Tunis, Sfax TUN, SFX

Libya Tripoli, Benghazi TRI, BEN

Nile

Basin

Egypt Cairo, Alexandria,

Aswan

CAI, ALX, ASW

Sudan Khartoum KHA

Levant South Levant Jerusalem, Amman,

Salt

JER, AMM, SAL

North Levant Beirut, Damascus,

Aleppo

BEI, DAM, ALE

Gulf Iraq Mosul, Baghdad, Basra MOS, BAG, BAS

Gulf Doha, Muscat, Riyadh,

Jeddah

DOH, MUS, RIY,

JED

Yemen Yemen Sana’a SAN

rate also increases. Finally, the experiment results will be evaluated

by calculating the selected performance metrics described in the

upcoming section.

FIGURE 1

Zero-shot prompt - QADI.

FIGURE 2

Zero-shot prompt - MADAR.

3.4 Performance metrics

We aim to quantify the differences in performance between

GPT 3.5, GPT 4, GPT 5, and Bard (Gemini) and to determine how

these models can perform the translation task given the complexity

of the Arabic language. There are various common evaluation

metrics for comparison. The present study will use 7 evaluation

metrics (i.e., cosine similarity, sentence BERT, semantic universal

encoder, TER, BLEU, ROUGE, and ANOVA test). These metrics

were chosen based on their strengths and popularity in analyzing

Arabic sentences. To attest for normality, the Shapiro–Wilk test was

used for ANOVA (Alabdullah et al., 2025).

One of the common MT metrics is the universal similarity

encoder, which is a neural network architecture for learning

similarity-preserving embeddings that uses pre-trained

embeddings (e.g., Word2Vec, GloVe, or BERT embeddings)

to compare two sentences, rather than having a specific calculation

formula. Its range varies from –1 to 1, where results closer to 1 are

indicative of high semantic similarity.

However, cosine similarity calculates the cosine of the angle

formed by two vectors that represent phrases in several dimensions

that represent a word or contextual information. Equation 1 below

shows the cosine similarity, where A and B are vectors.

Cosine similarity =
A · B

‖A‖ · ‖B‖
(1)

High positive values in cosine similarity (close to 1) indicate

that there is great similarity between the two vectors.

Sentence BERT is a transformer that adapts cosine similarity by

using Tensorflow. The general process involves encoding sentences

into fixed-size vectors using pre-trained BERT embedding and then

calculating a similarity score between these vectors (Mrinalini et al.,

2022). Since sentence BERT adapts cosine similarity, it follows the
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FIGURE 3

Few-shot prompt - MADAR.

FIGURE 4

Experiment pipeline.

same metric measures of –1 to 1, where close values to –1 mean

that the two vectors are completely dissimilar, and values close to

1 mean that there is a high similarity between the vectors. The

universal sentence encoder finds the similarity between sentences

based on semantics, where it is used to convert phrases into dense

vector representations.

Finally, the TER metric is specifically used for MT tasks by

comparing the MT outputs against human-generated translation to

assess the quality of MT outputs, as shown in Equation 2.

TER =
Total edits

Total words in reference translation
(2)

A lower TER score indicates a better translation quality as

it means that fewer edits are needed to align the machine-

generated translation.
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TABLE 4 Tabular comparison between GPT and Bard.

Aspect GPT 3.5 GPT 4 GPT 5 Bard

Source OpenAI OpenAI OpenAI Google

Language model GPT 3.5-turbo-16k ’GPT 4-0125-preview’ ’GPT 5’ ’text-bison’

Model architecture Transformer decoder based Transformer decoder based Transformer decoder based Transformer based

Availability Limited free access Paid Paid Limited free access

Languages Multilingual Multilingual Multilingual Multilingual

Parameter Size 175 Billion 1.76 Trillion Not Announced 137 Billion

Moreover, the BLEU metric is a widely popular metric

used in research (Sallam and Mousa, 2024) where individual

translated segments, usually sentences, are scored by comparing

them with a collection of high-quality reference translations.

These scores are then averaged throughout the entire corpus

to provide an approximation of the translation’s overall quality

(Papineni et al., 2002). It aims to find the similarity between

the translated text and the reference sentence by employing n-

grams; contiguous group of n-words that are similar. The metric

values range from 0 to 1, and typically a higher value means

that more words are overlapping between the machine-translated

sentence and the referenced sentence, as shown in Equation 3

(Papineni et al., 2002).

BLEUw(Ŝ; S) : = BP(Ŝ; S) · exp

(

∞
∑

n=1

wn log pn(Ŝ; S)

)

(3)

where BP is the brevity penalty, w is the weights for each n-gram,

and p is the precision of n-grams.

Furthermore, ROUGE is a collection of metrics and software

packages for assessing automatic summarization and MT

software in natural language processing. The metrics assess an

automatically generated summary or translation to a reference

or a collection of references (human-created summary or

translation). ROUGE measures range from 0 to 1, with

higher scores indicating a stronger resemblance between the

automatically generated summary and the reference (Lin and

Hovy, 2003).

ANOVA is a statistical approach for comparing the means

of three or more samples to determine whether one of them is

substantially different from the others (Keselman et al., 1998).

It accomplishes this by analyzing the variance in the data

and categorizing it as the variance between groups and the

variance within groups. The p-value is calculated using the

ANOVA test statistic, also known as the F-statistic, as shown

in Equation 4.

F-statistic (ANOVA Coefficient) = (4)

Mean Sum of Squares due to Treatment (MST)

Mean Sum of Squares due to Error (MSE)

The p-value indicates whether the differences in group

means are statistically significant (Keselman et al., 1998). In this

study, since we are performing various analyses and tests, it

became important to employ ANOVA to determine the statistical

significance of the results.

4 Experimental results

This section discusses the model responsiveness in Section

4.1, followed by the metric performance and dialect variations in

Section 4.2. Finally, Section 4.3 discusses the impact of sentence

length on the model accuracy.

4.1 Model responsiveness

In general, in terms of responsiveness, the models were

responsive when given a prompt with input. However, there were

differences in the output details of both models. GPT gave a direct

response where Gemini explained each word in a row.

When running APIs, Bard (Gemini) has shown varying error

rates when translating ranging from 5% up to 71%. This error rate

was varying based on the load on the network at the execution

time and length of the dataset being analyzed. Hence, to reduce

the error rate, we ran Bard (Gemini) when the network was not

preoccupied with many other tasks and ran the dataset in smaller

batches to reduce the chances of error. There were several cases

where Bard (Gemini) has either returned the same input as output,

empty output, or a message that says that it is unable to handle a

given task.

The rate of failing to give an output is most noticeable when

performing the back translation from MSA to a certain dialect in

QADI dataset. For example, for the back translation for IQ dialect,

Bard (Gemini) failed to give an output with the rate of 37.5%,

whereas GPT 3.5 has only failed to do so with a 5.6% rate, and

GPT 4 had 0.2% error rate. Therefore, a correction technique was

added in the code, where the response was checked, if it included

an error, resend the same prompt. After doing so, the error rate in

the resulting samples has dropped considerably.

4.2 Performance metrics and dialect
variations

4.2.1 Similarity metrics
This section discusses the similarity metrics and the

performance of the LLMs on the MADAR and QADI datasets in

terms of universal similarity encoder, cosine similarity, sentence

BERT, BLEU, and ROUGE F1 scores. The metrics aimed to assess

the efficiency and accuracy of the translation process of different

dialects. The analysis explained below is further demonstrated in

Tables 5 – 11. To address the research questions, both GPT 3.5/4
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TABLE 5 Bard metric similarities mean among 18 dialects from QADI

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.68 0.43 0.92 0.07 0.43

AE 0.65 0.38 0.92 0.35 0.38

LB 0.67 0.40 0.87 0.38 0.40

IQ 0.64 0.40 0.91 0.39 0.41

BH 0.67 0.46 0.88 0.07 0.46

DZ 0.64 0.41 0.89 0.39 0.41

EG 0.72 0.47 0.89 0.45 0.47

KW 0.67 0.46 0.94 0.43 0.45

LY 0.70 0.48 0.90 0.45 0.47

MA 0.63 0.38 0.94 0.04 0.38

OM 0.64 0.45 0.94 0.43 0.45

PL 0.64 0.42 0.94 0.40 0.42

QA 0.67 0.42 0.94 0.05 0.42

SA 0.65 0.39 0.93 0.37 0.39

SD 0.68 0.44 0.90 0.06 0.43

SY 0.66 0.46 0.90 0.43 0.45

TN 0.65 0.42 0.89 0.39 0.41

YE 0.68 0.47 0.93 0.44 0.47

TABLE 6 Bard metric similarities mean among 15 dialects from MADAR

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.56 0.34 0.93 0.37 0.32

LB 0.53 0.35 0.93 0.34 0.28

IQ 0.50 0.33 0.93 0.32 0.26

DZ 0.52 0.31 0.93 0.29 0.23

EG 0.57 0.38 0.93 0.37 0.32

LY 0.53 0.32 0.93 0.31 0.25

MA 0.50 0.31 0.93 0.29 0.23

OM 0.58 0.40 0.93 0.38 0.33

PL 0.56 0.39 0.92 0.37 0.32

QA 0.53 0.36 0.93 0.34 0.28

SA 0.53 0.35 0.93 0.33 0.27

SD 0.56 0.38 0.94 0.37 0.32

SY 0.55 0.39 0.93 0.37 0.32

TN 0.48 0.26 0.93 0.25 0.17

YE 0.50 0.28 0.93 0.27 0.20

TABLE 7 GPT 3.5 metric similarities mean among 18 dialects from QADI

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.66 0.38 0.89 0.43 0.46

AE 0.66 0.37 0.88 0.39 0.43

LB 0.65 0.40 0.94 0.48 0.50

IQ 0.62 0.33 0.84 0.38 0.40

BH 0.67 0.40 0.87 0.44 0.47

DZ 0.59 0.29 0.91 0.28 0.31

EG 0.65 0.35 0.86 0.32 0.35

KW 0.65 0.39 0.90 0.45 0.48

LY 0.63 0.34 0.85 0.32 0.36

MA 0.64 0.34 0.89 0.37 0.40

OM 0.64 0.39 0.84 0.46 0.49

PL 0.67 0.43 0.84 0.53 0.55

QA 0.63 0.35 0.87 0.25 0.40

SA 0.63 0.33 0.89 0.32 0.36

SD 0.65 0.37 0.85 0.35 0.46

SY 0.65 0.39 0.90 0.43 0.46

TN 0.66 0.41 0.83 0.46 0.49

YE 0.63 0.39 0.85 0.43 0.45

TABLE 8 GPT 3.5 metric similarities mean among 15 dialects fromMADAR

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.55 0.35 0.92 0.34 0.30

LB 0.52 0.32 0.91 0.32 0.25

IQ 0.51 0.29 0.93 0.28 0.22

DZ 0.50 0.28 0.93 0.26 0.20

EG 0.54 0.34 0.93 0.33 0.28

LY 0.51 0.27 0.93 0.27 0.20

MA 0.50 0.27 0.93 0.26 0.20

OM 0.53 0.31 0.92 0.29 0.24

PL 0.54 0.34 0.92 0.33 0.28

QA 0.53 0.31 0.93 0.30 0.24

SA 0.55 0.34 0.93 0.34 0.28

SD 0.53 0.31 0.92 0.29 0.24

SY 0.55 0.36 0.92 0.35 0.30

TN 0.48 0.24 0.93 0.23 0.16

YE 0.50 0.26 0.93 0.25 0.19
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TABLE 9 GPT 4 metric similarities mean among 18 dialects from QADI

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.73 0.50 0.82 0.49 0.51

AE 0.71 0.45 0.91 0.44 0.46

LB 0.74 0.50 0.94 0.49 0.51

IQ 0.70 0.43 0.88 0.43 0.45

BH 0.72 0.48 0.91 0.48 0.49

DZ 0.75 0.53 0.91 0.55 0.57

EG 0.77 0.55 0.90 0.55 0.57

KW 0.68 0.45 0.88 0.45 0.47

LY 0.70 0.43 0.87 0.42 0.44

MA 0.70 0.41 0.89 0.40 0.41

OM 0.65 0.39 0.77 0.38 0.39

PL 0.71 0.49 0.88 0.48 0.50

QA 0.66 0.37 0.87 0.36 0.37

SA 0.69 0.38 0.89 0.36 0.38

SD 0.74 0.50 0.93 0.51 0.53

SY 0.72 0.48 0.92 0.46 0.49

TN 0.71 0.44 0.88 0.44 0.45

YE 0.69 0.43 0.91 0.41 0.43

TABLE 10 GPT 4 metric similarities mean among 15 dialects from MADAR

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.60 0.42 0.93 0.41 0.37

LB 0.54 0.34 0.43 0.36 0.28

IQ 0.54 0.34 0.93 0.33 0.27

DZ 0.51 0.30 0.93 0.29 0.23

EG 0.56 0.38 0.93 0.38 0.33

LY 0.52 0.31 0.93 0.30 0.24

MA 0.47 0.26 0.93 0.25 0.18

OM 0.53 0.33 0.93 0.32 0.26

PL 0.59 0.41 0.92 0.41 0.36

QA 0.57 0.39 0.93 0.38 0.33

SA 0.58 0.41 0.93 0.40 0.35

SD 0.54 0.33 0.93 0.32 0.26

SY 0.59 0.41 0.92 0.41 0.36

TN 0.48 0.26 0.93 0.25 0.18

YE 0.52 0.30 0.92 0.29 0.22

and Bard (Gemini) exhibited similar performance levels across the

metrics among dialects in both datasets.

The BLEU score values for GPT 3.5/4 are similar among

the LLMs and countries for QADI, whereas GPT 5 slightly

TABLE 11 GPT 5 metric similarities mean among 15 dialects from MADAR

dataset.

Dialect Univ.
Sim.
Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE-
L

JO 0.62 0.46 0.93 0.47 0.43

LB 0.58 0.39 0.92 0.39 0.34

IQ 0.55 0.37 0.92 0.37 0.31

DZ 0.50 0.28 0.93 0.26 0.20

EG 0.59 0.44 0.92 0.44 0.40

LY 0.54 0.37 0.92 0.36 0.30

MA 0.56 0.40 0.92 0.39 0.34

OM 0.52 0.34 0.93 0.37 0.28

PL 0.61 0.46 0.92 0.47 0.42

QA 0.59 0.43 0.92 0.44 0.38

SA 0.58 0.42 0.92 0.43 0.38

SD 0.54 0.38 0.92 0.37 0.32

SY 0.62 0.47 0.92 0.49 0.44

TN 0.53 0.34 0.92 0.33 0.27

YE 0.55 0.35 0.93 0.34 0.28

outperformed its prior models in MADAR dataset. Figures 5, 6

visualize the BLEU scores labeled by each country where the LLMs

showed consistent results in MADAR. Bard (Gemini) in the QADI

dataset achieved a low score for some countries. These numbers

explain that a few words were overlapping between the input and

the translated dialect.

Furthermore, when employing a universal similarity encoder

and cosine similarity in QADI as shown in Table 12, GPT 4

outperforms the models, which makes it the dominant, followed

by Bard (Gemini) and then GPT 3.5. The mean universal similarity

encoder score is 71% for GPT 4, 64% for GPT 3.5, and 66% for Bard

(Gemini) among all countries. For the MADAR dataset in Table 13,

GPT 5 outperforms all models by having a 57% average, whereas

GPT 4 has a mean of 54%, GPT 3.5 mean is 52%, whereas Bard

(Gemini) has a mean of 53%. This suggests that Bard (Gemini)

has shown comparable skill to older GPT models in understanding

and conveying the semantic connections among the translated

sentences in the MADAR dataset, whereas GPT 5 stands out

overall. Whereas for the QADI dataset, GPT 4 had a higher mean,

which indicates that it has the best skill in conveying the semantic

connections with the existence of the back translation algorithm.

In Table 12 for QADI, the cosine similarity showed a mean of

46% for GPT 4, 43% for Bard (Gemini), and 37% for GPT 3.5.

Table 13 exhibits a similar performance of 35% for GPT 4, 39%

for Bard (Gemini), and 31% for GPT 3.5 on MADAR. This shows

that GPT 4 is the best performer which aligns with the results of

Alyafeai et al. (2023) and Peng et al. (2023). GPT 5 outperforms

other models with a mean of 39% in MADAR. Noticeably, GPT

3.5 encountered the most struggles in translating to dialects from

MSA which exhibits to a similar behavior in the conclusion drawn

by Kadaoui et al. (2023).
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FIGURE 5

Average BLEU scores QADI.

On the other hand, sentence BERT shows the highest mean

among all metrics as it uses a transformer model which makes it

most accurate in finding similarities between the input dialect and

the back-translated dialect. In addition, it showed consistent results

for all LLMs across the two datasets. In Table 12 for QADI, Bard

(Gemini) shows an average efficiency of 91%, hence outperforming

GPT 4 and GPT 3.5 which shows an average efficiency of 89%

and 87% consecutively. Similarly for MADAR in Table 13, Bard

(Gemini) shows a total mean value of 93%, tying with GPT 3.5

whereas GPT 5 shows 92%, GPT 4 shows 90%. GPT 4 has witnessed

a drop in accuracy due to poorer performance in LB dialect because

of an outlier compared to other countries as its individual score

shows 43% score, whereas others scored approximately 93%. This

is due to an error occurred when running the data where sentences

were translated to English instead of Arabic which drops the

accuracy rate of the overall translation. Given that the error was

only observed in the Lebanese dialect, it could be attributed that

the model had unresolved difficulties in the background which was

also passed down to the updated GPT 5 model as well.

In QADI dataset in Table 12, GPT 3.5 and Bard (Gemini)

have an average score of 43% for ROUGE-L where GPT 4 scored

an average of 47%. The analysis note that at least one Maghrebi

dialect was of the highest ROUGE-L values observed for all models.

However, GPT 3.5 achieved the top score for Palestine. This

indicates a greater number of sentences overlap. These results

indicate that GPT 4 was specifically well trained and consistent in

at least oneMagherbi dialect (e.g., Moroccon, Algerian, or Tunisian

Arabic), whereas GPT 3.5 was a better fit in Palestinian dialect (i.e.,

Levantine Arabic).

In the same vein for the MADAR in Table 13, ROUGE-L

scores were similar showing an average of 27%, 24%, 28% for Bard

(Gemini), GPT 3.5/4, respectively, whereas GPT 5 outperforms

other models showing 34%. Figures 7, 8 show the averages for each

model to further illustrate the scores.

Overall, all three models among different datasets

demonstrated a decently high average score for ROUGE-1

and ROUGE-L but lower scores for ROUGE-2. These results

indicate that GPT 3.5, GPT 4, and Bard (Gemini) all had higher

overlap between single words and long sequences between the

compared text with GPT 4 being the highest in Figure 7, whereas

GPT 5 clearly outperforms all other models in MADAR as

demonstrated in Figure 8.

Overall, the results show that GPT 5 followed by GPT 4, Bard

(Gemini), and GPT 3.5 are efficient in translating MSA to different
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FIGURE 6

Average BLEU scores MADAR.

TABLE 12 Average similarity metrics for QADI dataset.

Metric GPT 3.5 GPT 4 Bard
(Gemini)

Universal similarity encoder 0.64 0.71 0.66

Cosine similarity 0.37 0.46 0.43

Sentence BERT 0.87 0.89 0.91

BLEU 0.39 0.45 0.31

ROUGE-L 0.43 0.47 0.43

TER 15.62% 15.75% 16.55%

Lower error rates are denoted by green.

DA, with slight difference and weaknesses noted in some of the

dialects and models.

4.2.2 TER
Table 14 shows the TER for all the countries for QADI dataset

for GPT 3.5, GPT 4, and MADAR, whereas the Figures 9, 10

visualize some dialects’ results fromQADI representing the average

TER as a red line. The ranges of error demonstrated by TER range

TABLE 13 Average similarity metrics for MADAR dataset.

Metric GPT
3.5

GPT 4 GPT 5 Bard
(Gemini)

Universal similarity

encoder

0.52 0.54 0.57 0.53

Cosine similarity 0.31 0.35 0.39 0.34

Sentence BERT 0.93 0.90 0.92 0.93

BLEU 0.30 0.34 0.39 0.33

ROUGE-L 0.24 0.28 0.34 0.27

TER 6.76% 6.74% 6.61% 6.90%

Lower error rates are denoted by green.

from approximately 10% up to 25% for all LLMs. Furthermore, the

models have the lowest TER rate of approximately 11% for the OM

dialect, whereas Bard (Gemini) has the highest worst TER rate in

EG of 25.6%. Comparing the Gulf region countries (AE, BH, KW,

OM, QA, and SA) specifically on GPT 3.5, OM showed the lowest

TER of approximately 10%, whereas the other countries from the

region showed an average ranging from 14% to 18%.
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FIGURE 7

Average ROUGE scores for QADI dataset.

FIGURE 8

Average ROUGE scores for MADAR dataset.

On the other hand, Table 15 and Figure 11 specifically showing

GPT 4 illustrate the TER values of each country employing

MADAR dataset as an example. In comparison with QADI dataset,

the TER rates are closer together and have an overall lower value

ranging from 6% to 7%, with JO being the highest and QA, SY, and

OM being the lowest in the MADAR and QADI datasets. This may

be explained by the fact that the MADAR dataset gathers sentences

from a single source as a CORPUS, unlike the QADI dataset, which

gathers sentences from X platform (Twitter) which is more prone

to errors due to difficulty in filtering the sentences as tweets.

Overall, in terms of efficiency and consistency combined,

all models show competitive results and proved capable of

translating multiple dialects regardless of the region as they all had

approximately close values across the Middle East such as PL, LB,

SY, and JO, the Gulf region such as KW, AE, SA, BH, OM, and

QA, the Arab Maghreb region such as MA, LY, DZ, and TN and the

African and Asian countries such as EG, SD, YE, and IQ. In QADI,

GPT 4 outperforms the other LLMs in all similarity metrics and

TER, Bard (Gemini) comes in the second place and then GPT 3.5

as shown in Table 12 whereas GPT 5 outperforms GPT 4 and other

models in MADAR in Table 13 proving it being a more reliable

model in translating fromMSA toDA. This is further demonstrated

in Figures 12, 13 which further demonstrate LLM performance

upon the metrics used in this study. Models exhibited consistent

scores among all metrics with GPT 5 being the highest and most

appropriate LLM to deal with Arabic dialects.
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TABLE 14 TER for comparison for Bard, GPT 3.5, and GPT 4 for each

dialect in the QADI dataset, where lower TER means higher performance.

Dialect Bard GPT 3.5 GPT 4

JO 18.08% 17.51% 18.02%

AE 17.02% 16.94% 17.75%

LB 18.16% 16.56% 17.34%

IQ 15.17% 15.06% 15.86%

BH 15.87% 14.97% 13.70%

DZ 16.64% 14.90% 13.37%

EG 25.60% 21.54% 22.91%

KW 14.81% 13.52% 12.47%

LY 18.65% 17.53% 17.66%

MA 14.80% 15.14% 17.23%

OM 11.43% 11.02% 10.82%

PL 11.82% 11.62% 11.38%

QA 17.98% 16.14% 14.83%

SA 15.89% 15.93% 16.75%

SD 19.10% 17.85% 16.89%

SY 14.59% 14.38% 14.42%

TN 16.28% 15.62% 16.69%

YE 16.04% 14.92% 15.35%

High error rates are colored by red, lower rates are denoted by green.

4.2.3 ANOVA
ANOVA test is a common test used to check whether the data

and mean difference are significant based on different conditions

and factors. In previous sections, we found that the average

translation performance among similarity metrics and TER are

quite similar. To better understand the significance difference, one-

way ANOVA is applied to all countries and models with alpha 0.05

threshold. We have applied Shapiro–Wilk test diagnostic to verify

the residuals normality and applicable for ANOVA. This is a similar

approach adapted by Alabdullah et al. (2025). The ANOVA results

are shown in Table 16 for QADI and Table 17 for the MADAR

dataset. Themodels GPT and Gemini are the independent variables

and the performance metrics including similarity metrics, BLEU,

and ROUGE were considered dependent variables. In reference

to Table 16, ANOVA test is applied among all similarity metrics,

and there is a significant difference between the model translation

performance with a p-value close to 0 in universal similarity

encoder, cosine similarity, and sentence BERT, which indicates

that the probability of the average similarities are different is

approximately 99.96%. Metrics such as BLEU, ROUGE-L, and TER

show insignificant difference among the models meaning that all

models have similar scores/error rates in translation. Moreover, the

f-value <1 suggested that there is no variance across the means.

As for MADAR, Table 17 shows that there is no difference

between the means and all models exhibited similar translation

performance on sentence BERT, ROUGE-L, and TER. However,

the other metrics show significant differences between the

LLMs’ scores.

FIGURE 9

Scatter plots showing the TER for QADI datasets on Bard for highest

and lowest countries. (A) Bard - EG Highest TER. (B) Bard - OM

Lowest TER.

4.2.4 Evaluation divergence (lexical vs. semantic
metrics)

Upon evaluating different models with different performance

metrics, some conflicts between the metrics were noted. To

strengthen our analysis, we have chosen different metrics, each

evaluating a certain category of the LLMs ability. BLEU and

ROUGE rely on lexical overlap with the reference translation (the

original dialect in our case) and count the n-gram overlap. On the

other hand, universal similarity encoder and sentence-BERT are

semantic measures that focus on meaning equivalence regardless

of literal word matching. TER is concerned with the number of

edits to match the generated dialect with the base dialect reference.

As we are evaluating the 15 dialects, this variation often involves

synonym choice, morphological difference, and substitutions. A

model can semantically translate to the correct dialect yet not the

exact word matching which leads to lower BLEU and ROUGE

scores. Conversely, high lexical overlap does not always guarantee
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FIGURE 10

Scatter plots showing the TER for QADI datasets on GPT 3.5 for

highest and lowest countries. (A) GPT 3.5 - EG Highest TER. (B) GPT

3.5 - OM Lowest TER.

semantic accuracy if the matched words are used in a different

sense. The is noted in Table 9, and some dialects such as DZ

and EG scored low BLEU/ROUGE scores while achieving high

values in the semantic evaluation perspective. These findings

support our approach and analysis, highlighting the need to adapt

different metric scores, as each captures different aspects of LLM

translation quality.

4.3 E�ects of model accuracy

4.3.1 Few-shots analysis
In this section, we will explore the opportunity to check

whether increasing the prompt size from zero-shot to few-shot

would enhance the translation quality of each LLM. We used the

MADAR dataset as it has more consistency in results with TN

having the lowest similarity scores in Table 18 and a high TER rate

as shown in Table 19, indicating a need to enhance the translation

TABLE 15 TER Comparison for Bard, GPT 3.5, GPT 4, and GPT 5 for each

dialect in the MADAR dataset, where lower TER means higher

performance.

Dialect Bard GPT 3.5 GPT 4 GPT 5

JO 7.32% 7.11% 7.10% 6.95%

LB 6.54% 6.37% 6.36% 6.27%

IQ 6.66% 6.53% 6.49% 6.35%

DZ 7.14% 6.95% 6.93% 6.95%

EG 7.16% 7.02% 7.00% 6.88%

LY 7.06% 6.90% 6.89% 6.71%

MA 7.17% 7.10% 7.02% 6.88%

OM 7.20% 7.10% 7.04% 6.88%

PL 6.73% 6.57% 6.57% 6.41%

QA 6.49% 6.40% 6.35% 6.23%

SA 6.75% 6.61% 6.60% 6.50%

SD 7.14% 7.02% 7.03% 6.83%

SY 6.56% 6.38% 6.42% 6.30%

TN 6.71% 6.52% 6.53% 6.37%

YE 6.93% 6.75% 6.78% 6.61%

High error rates are colored by red, lower rates are denoted by green.

quality of this dialect. In both datasets, the models showed the

least translation performance for the Tunisian dialect, and this

is correspondence to Sallam and Mousa (2024) research as well.

QADI showed inconsistency in similarity scores. Which could be

attributed to the fact that QADI gathers its sentences from X

platform, which means that although the sentences are gathered

from the same geolocation, this does not mean that they all belong

to the same dialect.

Although adding a few-shot approach provides models with

additional examples and reference points, most models exhibited

a decline performance in compared to zero-shot. This is illustrated

in Tables 20, 21. In particular, GPT 3.5 showed consistency, with

no significant differences between the zero-shot and few-shot

approach. Suddenly, GPT 4 translated almost 35% of the input

sentences into English despite clear instructions. This might be

explained by the model’s biases or training to adapt English

translations in unclear contexts for the model. Given that the

few-shot prompt is considered as a long prompt and has several

examples and details, GPT 4 might find the prompt ambiguous and

refer to the default language setting, which is “English”.

4.3.2 Impact of sentence length on model
accuracy

This subsection analyzes the impact of sentence length on

translation accuracy, hence addressing the third research question.

Since the universal similarity encoder is used to compare two

sentences, it enabled us to explore the correlation.

For QADI dataset, the highest correlation was 0.42 in MA for

GPT 4. The highest correlation for Bard was 0.39 in QA. GPT

3.5 showed a low correlation between the sentence length and the

translation accuracy (i.e., similarity between input and output).

Frontiers in Artificial Intelligence 16 frontiersin.org119

https://doi.org/10.3389/frai.2025.1661789
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Beidas et al. 10.3389/frai.2025.1661789

FIGURE 11

Scatter plots showing the TER for MADAR dataset on GPT 4 for each

corresponding country. (A) GPT 4 - JO Highest TER. (B) GPT 4 - QA

Lowest TER.

Figure 14 visualizes the results where showing no strong correlation

between the sentence length and the universal similarity encoder.

Such low positive correlations indicate that there is no relation

between the sentence length and the accuracy of the translation.

For MADAR, GPT 3.5/4 show a weak correlation, yet the

highest compared to Bard with a value of 0.24 for some Maghreb

Countries (i.e., DZ, MA, and TN) where Bard show no significant

correlation. Figure 14 supports this finding as GPT 3.5/4 indicate a

broader range of similarity scores as sentence length varies.

5 Conclusion

5.1 Concluding remarks

The study utilizes the QADI and MADAR datasets to evaluate

the performance of GPT 3.5, GPT 4, and Bard (Gemini) in

translating MSA to Arabic dialects, with GPT 5 evaluated

exclusively on the MADAR dataset. Several performance metrics

FIGURE 12

LLMs performance scores per metric - QADI dataset.

FIGURE 13

LLMs performance scores per metric - MADAR dataset.

such as cosine similarity, universal similarity encoder, sentence

BERT, BLEU, ROUGE, and TER were used to test the models’

efficiency and accuracy. The analysis revealed close translations

among LLMs in similarity and error rate. In QADI dataset, there

was a significant difference between the models where GPT 4 was

the best LLM in translating MSA to Arabic dialects showing a p-

value of 0.000006 through ANOVA test on cosine similarity metric.

It shows significant difference on all metrics except for BLEU and

TER. For the MADAR dataset, there were no significant differences

in translation performance measuring on sentence BERT, ROUGE-

L, and TER. However, the results show significant differences

through universal similarity encoder, cosine similarity, and BLEU,

with GPT 5 being the top performer. GPT 4 demonstrates the

best performance across both datasets (MADAR and QADI); it

consistently showed high translation quality with low error rates.

This proves the models sufficiency and the ability to be used in

several dialect contexts and applications. GPT-4 showed consistent

high translation scores for the majority of metrics, specifically on

Levantine and Egyptian dialects; however, it shows low results on

Maghrebi regions such as Tunisian dialect. Overall, GPT-4 provides

the most reliable performance while GPT 5 outperforms all models
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TABLE 16 ANOVA results for models per metric - QADI dataset.

Metric p-value F-statistic

Universal similarity encoder 0.009111 7.65

Cosine similarity 0.000006 28.85

Sentence BERT 0.000068 20.57

BLEU 0.058 3.85

ROUGE-L 0.00018 0.16

TER 0.56 0.59

TABLE 17 ANOVA results for models per metric - MADAR dataset.

Metric p-value F-statistic

Universal similarity encoder 0.005 4.64

Cosine similarity 0.00009 8.57

Sentence BERT 0.44 0.91

BLEU 0.000029 9.73

ROUGE-L 0.68 7.87

TER 0.31 1.2

TABLE 18 Countries with lowest values in MADAR dataset similarity

metrics.

Model Univ.
Sim. Enc.

Cosine
Sim.

Sent.
BERT

BLEU ROUGE

Bard TN TN PL TN TN

GPT 3.5 TN TN LB TN TN

GPT 4 MA but TN

similar score

TN–MA LB TN–

MA

TN

GPT 5 DZ DZ Not

applicable

DZ DZ

TABLE 19 Countries with highest TER values in MADAR dataset.

Model TER

Bard JO but TN similar score

GPT 3.5 JO but TN similar score

GPT 4 JO but TN similar score

GPT 5 JO but DZ similar score

TABLE 20 Tunisia zero-shot metric performance.

Model USE Cosine
Sim

S-
BERT

BLEU Rouge-
L

TER

Bard 0.48 0.26 0.93 0.25 0.41 6.71%

GPT 3.5 0.48 0.24 0.93 0.23 0.49 6.52%

GPT 4 0.48 0.26 0.93 0.25 0.45 6.53%

specifically on the MADAR dataset in finding sentences overlap

measured by BLEU and ROUGE-L.

However, its performance is not uniform across all dialects’

while it excels in dialects with larger training representation

TABLE 21 Tunisia few-shot metric performance.

Model USE Cosine
Sim

S-
BERT

BLEU Rouge-
L

TER

Bard 0.47 0.23 0.93 0.21 0.15 6.77%

GPT 3.5 0.48 0.24 0.92 0.24 0.16 6.53%

GPT 4 0.32 0.20 0.93 0.20 0.12 6.64%

FIGURE 14

Correlation (sentence length vs universal similarity) for GPT 3.5. (A)

GPT 3.5 - QADI. (B) GPT 3.5 - MADAR.

(e.g., Egyptian and Levantine), the accuracy slightly decreases

in underrepresented dialects (e.g., Maghrebi). On the MADAR

dataset, GPT-5 shows particularly strong performance on overlap-

sensitive metrics such as BLEU and ROUGE-L, suggesting it

captures sentence-level correspondences more effectively. Taken

together, GPT-4 provides the most reliable overall performance

across both datasets, while GPT-5 demonstrates an emerging

advantage in fine-grained similarity for MADAR dialectal

translations.

Furthermore, models have shown TER rates ranging from 6%

up to 25%, indicating that despite slight errors, their translations

are generally considered to be of good quality. However, GPT

has shown better response to a given prompt in terms of output
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results compared to Bard (Gemini). GPT in all versions specifically

GPT 5 showed the best results for translation through the Levant

countries. Zero-shot prompts were adapted for all countries, while

few-shot for the country with the least translation performance,

Tunisia. Unexpectedly, the few-shot technique did not enhance the

performance of translation especially for Bard (Gemini) and GPT

4 as they performed worse while GPT 3.5 performed consistently

in both prompting techniques. Overall, all LLMs proved capable

and efficient in translating diverse Arabic dialects from over

15 countries to provide valuable insights for future applications

in NLP.

This research establishes a benchmark for Arabic dialect

translation and derives significant findings for advancing NLP

capabilities in Arabic, paving the way for more inclusive and

efficient models that address the linguistic diversity of the Arab

world. Other researchers in the field may rely on GPT 4 and GPT 5

over GPT 3.5 and adapt Bard (Gemini), considering them feasible

and effective LLMs for handling underrepresented languages,

particularly Arabic and its linguistic complexities. The study also

opens opportunities for future work, such as incorporating open

source models, improving data sets, and optimizing prompting

techniques. Moreover, we show the impact of few-shot prompting

and how its impact was not significant, which could be replaced by

other alternatives or prompt engineering techniques in future or

relevant works.

5.2 Future works

We are aiming to extend this research by incorporating

additional Arabic LLMs and other well-known applicable LLMs

to generalize our findings. In addition, more data samples and

datasets can be included to strengthen the analysis. Looking ahead,

enhancing prompt and prompting techniques to optimize the

translation process would add value to this research.

5.3 Limitations

This study faces several limitations that could influence the

study results. Despite their remarkable success in various NLP tasks

and the popularity of closed-source LLMs, models such as GPT

3.5, GPT 4, and GPT 5 have several limitations (Yu et al., 2023).

These models are accessed through APIs which eliminates the need

for computer infrastructure. Although cloud-based AI services are

easy to use, they lack control over processing or training data.

Furthermore, it is challenging to produce studies on closed-source

models due to the high expense of conducting experiments through

APIs. Another limitation is that the LLMs are closed models, as

the name suggests, closed LLMs lack transparency in their internal

architecture and training process, making it difficult for researchers

to fully understand the output generation. The limitations also

include cost constraints while running LLMs such as GPT 3.5/4

and Bard (Gemini) which results in running only 50K out of

500K samples in QADI dataset. Expanding the sample size in

future studies could improve the robustness and reliability of the

results. Moreover, both GPT and Bard (Gemini) had restrictions

on the rate limit (i.e., the number of API requests). Thus, limiting

the running process of the data to a specific rate daily, this

consumed the time to complete the running. It is possible that

recently published versions have increased the rate limit, which

could be explored. In addition, there is lack in LLMs that can

deal with Arabic dialects; having more LLMs would definitely

strengthen the comparison. While this study adapted datasets

encompassing 15 to 18 dialects, it does not cover all 22 Arabic-

speaking countries, thus limiting the generalizability of the findings.

Furthermore, QADI dataset, which is collected fromX,may require

cleaning to remove slang and informal expressions in social media,

which can improve the quality of translation outputs. In addition,

only one dataset (i.e., MADAR) had a MSA baseline, which was

substituted by a back-translation algorithm for the QADI dataset.

This approach may potentially limit the accuracy and effectiveness

of the translations derived from QADI dataset. Moreover, the

MADAR dataset exhibits a travel domain bias, which may affect

the findings and limit the model’s translation capability to other

domains. In some cases, the models were not able to translate the

dialect, resulting in an empty output, English translated sentence

instead of Arabic or incomplete response. Finally, since most of the

metrics are calculated as mean scores with only a single inferential

statistical test (ANOVA) applied, generalizing the results might

be tricky.
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This study presents a comprehensive review of current methodologies, trends, and 
challenges in cyberbullying detection within Arabic-language contexts, with a focus 
on the unique linguistic and cultural factors associated with Arabic. This study reviews 
35 peer-reviewed articles about the identification of cyberbullying in Arabic text. 
Reported accuracies across datasets and platforms range from approximately 73 to 
96%, with precision frequently surpassing recall, suggesting that systems are more 
adept at identifying blatant bullying than at encompassing all pertinent instances. 
Methodologically, conventional machine learning utilizing Arabic-specific characteristics 
remains effective on smaller datasets, however deep neural architectures—especially 
CNN/BiLSTM—and transformer models like AraBERT yield superior outcomes when 
dialectal heterogeneity and orthographic noise are mitigated. Evaluation methodologies 
differ; research using a neutral class frequently indicates exaggerated accuracy, 
underscoring the necessity to emphasize macro-averaged F1 and per-class metrics. 
The evidence underscores deficiencies in dialectal representativeness, the uniformity 
of bullying notions compared to general abuse, and the transparency of annotation 
processes. Ethical and deployment considerations—privacy preservation, dialectal bias, 
and real-time robustness—are becoming increasingly significant. We integrate trends 
(models and features), standards (labeling and metrics), and future work directions, 
encompassing dialect-robust pretraining, cross-dataset evaluation, context-aware 
modeling, and human-in-the-loop frameworks. The review offers a comprehensive 
basis for researchers and practitioners pursuing culturally and linguistically tailored 
approaches to Arabic cyberbullying detection.
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1 Introduction

The extensive utilization of digital communication channels has resulted in a concerning 
rise in cyberbullying, a type of online harassment impacting persons of many age groups and 
demographics. This study evaluated the relevant research published from 2014 to 2024, to 
assess and contrast the efficacy of conventional machine learning methods, deep learning 
frameworks, and sentiment-oriented strategies in the classification of cyberbullying, 
highlighting the significance of linguistic and dialectal intricacies in detection precision.

IT communication platforms such as WhatsApp, Facebook Messenger, Viber, WeChat, 
Line, Telegram, Imo, and Kakao Talk have increased in use throughout the last years, with 
some having over 1.5 billion users (Urrutia Zubikarai, 2020). Several sources contended that 
offensive content in social media and communication platforms has become extremely 
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dangerous; for instance, issues relating to social media in public 
institutions, particularly during the election period, are related to 
offensive content and have become challenging for public institutions 
in light of how information should be controlled (Grégoire et  al., 
2015). Offensive content, generally in the form of foul language 
spouting racial hate, personal attacks, and sexual harassment, is 
prevalent. Hence, it is important to detect offensive use of language to 
maintain a healthy discussion and enhance the security of users 
through the suppression of such hateful acts and offences (Bertini 
et  al., 2021; Niraula et  al., 2021). Online content-generators have 
increased, allowing more users to experience the freedom to express 
themselves, covered with anonymity if they choose, which maximizes 
the chance for platform misuse and leads to an environment that 
promotes offensive language and even eventually violence (Sap et al., 
2019). Also, social networking platforms display several types of 
offensive language like hate speech, aggressive content, cyberbullying, 
and toxic statements (Mirończuk and Protasiewicz, 2018). A possible 
way to curtail and control such a phenomenon is through the use of 
NLP techniques like text classification for the automatic detection of 
offensive language. More specifically, text classification is the process 
of labelling new text with pre-defined labels (Mirończuk and 
Protasiewicz, 2018).

2 Background of study

2.1 Cyberbullying

Cyberbullying has become a global concern with the rise of social 
media and online platforms, and research efforts are increasingly 
being devoted to detecting and mitigating it using Machine Learning 
(ML), Deep Learning (DL), and Natural Language Processing (NLP) 
approaches. While a significant amount of research has been 
conducted in languages like English, studies targeting cyberbullying 
in Arabic remain limited. This systematic literature review aims to 
explore existing research on cyberbullying detection in the Arabic 
language, with a focus on ML and DL techniques, and to identify 
future research directions based on the analysis of the 
reviewed studies.

2.2 Challenges in detecting in Arabic 
language

Identifying cyberbullying in the Arabic language poses 
difficulties, mostly due to the linguistic, cultural, and computational 
intricacies involved in processing Arabic content. A principal 
challenge is the significant range of Arabic dialects, which differ not 
only by area but also by socio-economic and cultural factors. 
Although Modern Standard Arabic (MSA) is extensively employed 
in formal discourse, social media exchanges primarily transpire in 
dialectal Arabic, which is characterized by the absence of 
standardized spelling, syntax, and vocabulary (Mubarak and 
Darwish, 2019; AbdelHamid et al., 2022). The lack of high-quality, 
labeled datasets that consider these changes intensifies the issue, 
resulting in diminished model performance in real-world Arabic 
cyberbullying detection tasks (Bashir and Bouguessa, 2021; Khairy 
et al., 2023). A fundamental problem is the morphological complexity 

and intricate syntax of Arabic, which markedly contrasts with Indo-
European languages like English. Arabic lexicon demonstrates 
significant inflexion through affixation, root-based derivations, and 
contextual variants, complicating tokenization, stemming, and 
lemmatization (Alakrot et al., 2018; Haidar et al., 2019). The linguistic 
features create difficulty in text classification, as identical words may 
possess varying meanings based on diacritical marks, which are 
frequently absent in informal online communication. The scarcity of 
comprehensive pre-trained models tailored for Arabic dialects 
constrains the capacity of NLP algorithms to effectively identify 
harmful and abusive content (Alrashidi et al., 2023; Khezzar et al., 
2023). Research indicates that sentiment analysis and lexicon-based 
methodologies can improve detection by identifying emotional 
indicators; however, their efficacy is limited by the necessity for 
manually curated lexicons specific to Arabic dialects (Farid and 
El-Tazi, 2020). An application of NLP that extracts structured 
information in the form of entities, entities’ relationship and 
attributes describing them from unstructured documents in an 
automatic method is Information Extraction (IE) (Cowie and 
Lehnert, 1996). Besides, IE systems have been found effective in 
handling information overload issues, enabling the discernment of 
the most significant information portion from a huge portion of 
information in a timely and easy manner. On the whole, detection of 
offensive language online is possible through the development of a 
model using ML, AI, DL and NLP methods. This paper investigates 
the following research questions:

3 Research questions

Q1: What are the current trends in cyberbullying detection for the 
Arabic language and which dialects do they cover?

Q2: How cyberbullying been detected in previous studies based 
on standards that represent its definition and characteristics?

Q3: What directions for future research in cyberbullying detection 
may be established based on the findings of this review?

4 Methodology

A systematic literature review was conducted to conduct a 
comprehensive analysis by focusing on existing studies from 2014 to 
2024, evaluating trends and advancements in cyberbullying detection 
for Arabic texts. This methodology involves structured selection 
criteria to ensure that only relevant and high-quality sources are 
included. The Inclusion Criteria are as follows:

	 1.	 Studies published from 2014 to 2024
	 2.	 Articles in English
	 3.	 Research specific to Arabic text-based cyberbullying detection

The exclusion criteria were:

	 1.	 The research focused on social studies without 
technological elements

	 2.	 Studies in languages other than English and non-Arabic texts
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	 3.	 Non-text-based detection methods (e.g., voice, image, video)
	 4.	 Conference papers and review articles

SLR protocol was applied to the study, the final selected studies 
were conducted, and theoretical and practical steps were taken while 
conducting the SLR.

5 Data sources and keywords

In the first step, four major research databases, ScienceDirect, 
Scopus, Web of Science, and Springer, were searched through 
queries, and as many papers as possible were collected. The search 
query is “detect” AND (“cyberbullying” OR “hate speech” OR 
“harassment” OR “offensive”) AND (“machine learning” OR “natural 
language processing” OR “deep learning”) AND “Arabic.” Based on 
initial exclusion criteria, papers were selected after carefully reading 
the abstracts of the papers in the second step. A final list of papers 
is prepared after reading the full articles and applying further 
exclusion criteria (35 papers). Figure  1 depicts the literature 
review process.

6 Results

This review synthesizes findings from numerous studies on 
cyberbullying detection within Arabic-language content, identifying 
the main trends, challenges, and methodologies, including ML, DL, 
and sentiment analysis. The majority of the studies concentrated on 
cyberbullying detection, offensive language detection, and hate 
speech identification. A significant portion of the research applied to 
social media platforms like Twitter and YouTube. The focus was 
largely on identifying cyberbullying in dialects such as Saudi Arabian 
Arabic, Egyptian Arabic, and the Levantine dialects. The most 
frequently used machine learning models included Naïve Bayes (NB), 
Support Vector Machine (SVM), and Random Forest (RF). For deep 
learning models, LSTM, CNN, and GRU were prominent. Ensemble 
techniques like stacking and boosting showed better performance 
compared to individual ML models. The datasets used in the reviewed 
studies varied widely in size, ranging from small manually annotated 
datasets to large datasets collected from social media. Many studies 
employed preprocessing techniques such as tokenization, stemming, 
lemmatization, and removal of hyperlinks or non-Arabic characters 
to clean the data before analysis. Preprocessing was critical in 

Records identified from*: 
Databases (ScienceDirect = 178
Scopus = 174 
Web of Science = 163 
Springer = 322) 

Records removed before screening:
Duplicate records removed (n = 26 )
Records marked as ineligible by 
automation tools (n = 0 ) 
Records removed for other reasons 
(e.g., Multimodal without text 
analysis , Inaccessible full text) (n = 
216 + 36 + 238) 

Records screened
(n =837 ) Records excluded: 

(n =516 ) 

Reports sought for retrieval
(n = 321) 

Reports not retrieved
(n = 0) 

Reports assessed for eligibility
(n =321 ) Reports excluded: 

(54 Not English) 
(132 = Not Arabic text-based) 

Studies included in review

(n = 35) 

Identification of studies via databases and registers
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FIGURE 1

Systematic literature review process.
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ensuring the effectiveness of the ML and DL models. Across the 
reviewed studies, model performance is generally strong, with 
traditional machine learning and deep learning approaches 
demonstrating reliable detection capabilities in Arabic cyberbullying 
contexts. Reported results indicate that precision commonly exceeds 
recall, suggesting that systems are better at correctly identifying 
bullying instances than capturing all relevant cases. This pattern 
appears in works employing classical classifiers as well as ensemble 
strategies, with examples including Egyptian-dialect tweet 
classification (Farid and El-Tazi, 2020), Naïve Bayes–based detection 
pipelines (Mouheb et al., 2019), offensive language identification in 
user-generated video comments (Alakrot et al., 2018), and ensemble 
machine learning frameworks that optimize the balance of precision 
and recall (Haidar et al., 2019). In terms of offensive language and 
cyberbullying detection, researchers identify various types of 
offensive language, each reflecting specific social, cultural, and 
regional sensitivities. Table 1 illustrates the types of offensive language 
used in Arabic studies on cyberbullying and offensive content

6.1 Research question 1

The first research question was:
What are the current trends in cyberbullying detection for the 

Arabic language, and how do these trends account for various dialects?
The following themes were developed to answer the first research 

question 1:

6.1.1 Machine learning (ML) and deep learning 
(DL) approaches

Several studies have utilized ML and DL algorithms to detect 
cyberbullying, with Support Vector Machine (SVM) and Naïve Bayes 
(NB) being frequently applied (e.g., Haidar et al., 2017; Alakrot et al., 
2018). More recently, DL methods such as Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs) have 
demonstrated improved performance due to their ability to capture 
context and semantic meanings in text (e.g., Haidar et  al., 2018; 

Mouheb et al., 2019; Mohaouchane et al., 2019). Ensemble learning, 
where multiple models are combined to improve prediction accuracy, 
has shown promise in boosting performance. For instance, stacking, 
boosting, and bagging techniques have demonstrated better 
performance in detecting Arabic cyberbullying content (e.g., Haidar 
et al., 2018; Khairy et al., 2023; Table 2).

6.1.2 Sentiment analysis and lexicon-based 
methods

Sentiment analysis, often coupled with lexicon-based approaches, 
is commonly used to detect harmful content. AlHarbi et al. (2019) and 
Farid and El-Tazi (2020) used sentiment-based lexicons for Arabic 
texts, finding that pointwise mutual information (PMI) and lexicon 
enhancement can improve detection accuracy. Sentiment-based 
approaches are also utilized alongside NLP tools, such as tokenization 
and stemming, for feature extraction, enhancing the ability to detect 
cyberbullying based on emotional cues.

6.1.3 Handling Arabic dialects and linguistic 
complexity

Dialectal Arabic presents a significant challenge, as standard ML 
models may not perform well on diverse dialects. Studies such as 
Alsubait and Alfageh (2021) and Al-Hassan and Al-Dossari (2022) 
indicate that datasets tailored to specific dialects (e.g., Egyptian, 
Levantine) enhance detection efficacy. Additionally, transformer-
based models like AraBERT and multilingual BERT have emerged as 
effective tools for dealing with dialectal variations, as they can better 
capture semantic nuances across dialects (e.g., Khezzar et al., 2023; 
Alrashidi et al., 2023).

6.2 Research question 2

How has cyberbullying been detected in previous studies based 
on standards that represent its definition and characteristics?

The following themes were developed to answer the second 
research question.

TABLE 1  Types of offensive language used in Arabic studies on cyberbullying and offensive content.

Type of Offensive 
Language

Description Sources

Hate Speech Language targeting specific groups based on religion, race, gender, or nationality. Includes: Castaño-Pulgarín et al. (2021), Alsafari et al. 

(2020a, 2020b)

Insults and Personal Attacks Abusive language aimed at degrading individuals, including name-calling, derogatory 

remarks, and personal insults about appearance, intelligence, or social status.

Alshalabi et al. (2024),

Profanity and Vulgar 

Language

Taboo words or phrases generally considered offensive, including swear words and 

obscenities that are often censored on public platforms.

Rosenbaum (2019)

Sexual Harassment Inappropriate comments or sexually explicit content targeting individuals, often related to 

gender-based discrimination.

Abdelmonem (2015), Bouhlila (2019), Bertini 

et al. (2021), Niraula et al. (2021)

Bullying and Harassment Repeated or persistent offensive behavior aimed at intimidating or humiliating someone, 

often through derogatory remarks about personal life or achievements.

Kanan et al. (2020)

Stereotyping and 

Discrimination

Generalizations that promote negative stereotypes about specific groups (e.g., based on 

age, nationality, profession). Includes implicit bias and discriminatory remarks.

Alsafari et al. (2020a, 2020b)

Mockery and Sarcasm Humorous or sarcastic language used to belittle or degrade individuals or groups, often 

through irony or exaggeration, which can vary in offensiveness depending on context.

Abu Farha (2023).
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TABLE 2  Summary of reviewed studies on Arabic hate/offensive/cyberbullying detection.

No Study Model(s) Dataset and 
Platform

Dialect/
Domain

Performance 
Metrics

Limitations

1 Haidar et al. (2017) Naïve Bayes, SVM Posts (Twitter, 

Facebook, 

Formspring)

Saudi Arabic NB: Precision 90.85%; 

SVM: Precision 0.815 (yes 

class)

Imbalanced dataset; few 

bullying instances; precision 

misleading

2 Haidar et al. (2018) Feed-forward Neural 

Network (DL)

Twitter dataset 

(binary labels)

General Arabic Validation accuracy 

91.17% (7 hidden layers)

Limited to binary labels; 

dataset size not large

3 Alakrot et al. (2018) SVM YouTube comments General Arabic Precision 90.05% Small dataset; not specific to 

cyberbullying

4 AlHarbi et al. 

(2019)

Lexicon + Sentiment 

Analysis (PMI, Chi-square, 

Entropy)

Tweets Twitter (Saudi 

Arabic)

PMI accuracy 81% vs. 

Chi-square 62.11%

Lexicon-based; potential bias; 

dataset context-limited

5 Mubarak and 

Darwish (2019)

ML classifiers Arabic tweets General Arabic High classification 

accuracy

Focused only on offensive, 

not cyberbullying

6 Farid and El-Tazi 

(2020)

Lexicon-based Sentiment 

Analysis + Emojis

Tweets in Modern 

Standard + Egyptian 

Dialect

Egyptian Arabic Accuracy >73% for 

bullying hashtags

Lexicon limited; reliance on 

emojis and history

7 Alsafari et al. 

(2020b)

LR, LSTM, Sluice, BERT, 

ELMo, SVM

Labeled tweets 

(Twitter)

Mixed Arabic 

dialects

SVM + ngrams: Acc. 

85.16%; CNN + mBERT 

F1-macro 66.86%

Limited samples per class; 

subjectivity in annotation

8 Bashir and 

Bouguessa (2021)

LSTM, SVM, Naïve Bayes Twitter dataset 

(cyberbullying 

keywords)

General Arabic LSTM accuracy 72% Keyword-based data 

collection; lower accuracy

9 Fati (2022) Sentiment Analysis 

Framework

Twitter General Arabic Accuracy 81% (10-fold 

CV)

Limited validation; binary 

annotation

10 Al-Hassan and 

Al-Dossari (2022)

LSTM, CNN + LSTM, 

GRU, CNN + GRU

Labeled tweets General Arabic CNN + LSTM: Precision 

72%, Recall 75%, F1 73%

Moderate dataset size; limited 

categories

11 Alsubait and 

Alfageh (2021)

Multinomial NB, 

Complement NB, Logistic 

Regression

YouTube comments General Arabic Avg. F1: TF-IDF 77.9% vs. 

CountVec 77.5%

Dataset modest; no deep 

learning comparison

12 Alhashmi and 

Darem (2022)

RF, NB, SVM, XGB, ANN, 

Stacked DL; Consensus-

Based Ensemble

(Twitter, WhatsApp, 

Vine, Instagram, 

Packet; incl. 

Translated data)

Mixed Arabic + 

translated

Consensus ensemble 

improved accuracy by 

1.3% over best classifier; 

RF strongest

Dataset partly translated; 

mixed domains; modest gain 

over baselines

13 Bouliche and 

Rezoug (2022)

Dynamic Graph Neural 

Network (DGNN)

Arabic comments 

(tweets)

General Arabic Accuracy 74% Model performance modest; 

needs refinement; small 

dataset

14 El-Alami et al. 

(2022)

BERT (multilingual, 

transfer learning)

Bilingual dataset 

(English + Arabic 

tweets)

General Arabic + 

English

High accuracy and F1; 

BERT outperformed other 

models

Ambiguous language still 

difficult; early-stage

15 AbdelHamid et al. 

(2022)

AraBERT, ArabicBERT, 

GigaBERT vs. RF, SVM

Syrian/Levantine 

tweets

Levantine dialect GigaBERT: AUC 94.6%, 

Macro F1 0.81

Focused on Levantine; dataset 

scope limited

16 AlFarah et al. 

(2022)

SVM, RF, NB, LR, KNN Twitter + YouTube, 

oversampled

General Arabic NB highest AUC 89%; 

SVM and LR also strong

Class imbalance; dataset 

moderate in size

17 Anezi (2022) Deep Recurrent Neural 

Network (DRNN)

Custom Arabic 

comments dataset

General Arabic Binary Acc 99.73%; 3-class 

Acc 95.38%; 7-class Acc 

84.14%

Dataset unique but limited 

disclosure; overfitting risk

18 Althobaiti (2022) BERT + Sentiment + Emoji 

features vs. SVM, LR

Arabic tweets General Arabic BERT model highest F1 

across all tasks

Single dataset; limited 

external validation

19 Ali and Kurdy 

(2022)

SVM, SGD, KNN, LR, 

AdaBoost, Bagging

Syrian Facebook 

comments + 

questionnaire

Syrian slang SVM and SGD accuracy 

77%; AdaBoost precision 

94%

Imbalanced recall (47%); 

small dataset

(Continued)

129

https://doi.org/10.3389/frai.2025.1666349
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Allwaibed et al.� 10.3389/frai.2025.1666349

Frontiers in Artificial Intelligence 06 frontiersin.org

TABLE 2  (Continued)

No Study Model(s) Dataset and 
Platform

Dialect/
Domain

Performance 
Metrics

Limitations

20 Alduailaj and 

Belghith (2023)

SVM + FarasaNLTK vs. 

NB

Twitter + YouTube 

comments

General Arabic SVM best accuracy 

95.74% (TF-IDF n-gram)

Keyword-based collection; 

possible bias

21 Khairy et al. (2023) Ensemble (Voting) vs. LR, 

SVC, KNN

New balanced dataset General Arabic Voting model highest Acc, 

F1, Recall, Precision; LR 

best single Acc 65.1%

Small dataset; limited to ML

22 Rachidi et al. 

(2023)

ML (SVM, NB, RF, LR) 

and DL (LSTM)

Instagram Moroccan 

dialect

Moroccan Arabic LSTM Acc 83.64%; SVM 

Acc 75.04%

Scarcity of tools/datasets for 

dialect; modest results

23 Alrashidi et al. 

(2023)

Fine-tuned Arabic BERT, 

Multi-task Learning

Multi-aspect abusive 

tweets dataset

General Arabic MTL + BERT > DL 

baselines; GitHub data 

shared

Imbalanced datasets; Arabic 

only

24 Elzayady et al. 

(2023)

CNN-LSTM, CNN-

BiLSTM, CNN-GRU, 

AraBERT +Personality 

Features

Twitter hate speech 

dataset

General Arabic AraBERT + personality 

features Acc 82.3%; CNN-

LSTM 77%

Personality inference adds 

complexity; dataset size 

moderate

25 Khezzar et al. 

(2023)

LR, SVC, DT, CNN, 

AraBERT; web app 

(arHateDetector)

arHateDataset 

(merged public sets), 

Twitter

Standard + dialectal 

Arabic

AraBERT accuracy 93%; 

precision/recall/F1 

reported

Aggregated datasets may 

introduce label/definition 

drift; external validation not 

detailed

26 Alsafari et al. 

(2020a)

Single and ensemble CNN/

BiLSTM; AraBERT vs. 

non-contextual 

embeddings

Twitter; fine-grained 

two/three/six-class 

corpora

Mixed Arabic 

dialects

Ensemble F1: 91% 

(2-class), 84% (3-class), 

80% (6-class); AraBERT > 

non-contextual; 

CNN > BiLSTM

Class granularity increases 

difficulty; error analysis 

shows issues with implicit/

defensive language

27 Aljuhani et al. 

(2022)

BiLSTM with domain-

specific embeddings; LR, 

SVM baselines

Tweets (seeded crawl, 

cleaned, labeled)

General Arabic 

(Twitter)

LR on char n-grams P/R/

F1 = 92%; SVM ≈ 90%; 

BiLSTM competitive with 

domain embeddings

Seed-term collection bias; 

translation/generalization 

across topics not assessed

28 Amer Hamzah and 

Dhannoon (2023)

BiLSTM + Temporal 

Convolutional Network 

(TCN)

CASH: tweets on 

sexual harassment

Sexual-harassment 

domain

Accuracy 96.65%; 

F0.5 = 0.969; > XGBoost 

baseline

Task/domain specific; 

dialectal robustness not 

analyzed

29 Boulouard et al. 

(2022)

BERT EN, AraBERT, 

mBERT (AR/EN), 

LinearSVC, LSTM

YouTube comments 

(Gulf, Egyptian, 

Iraqi); Tweets

Mixed Arabic 

dialects; EN 

translations

BERT EN Acc 98%; 

AraBERT Acc 96%; 

mBERT-AR Acc 83%; 

LSTM Acc 82%

Translation pipeline may 

inflate EN results; sarcasm 

remains challenging

30 Aljarah et al. (2021) SVM, NB, DT, RF; feature 

sets (TF-IDF, profile, 

emotion)

Twitter General Arabic 

(varied topics)

RF best: Acc/G-mean 

0.910; Recall 0.923; 

Precision 0.902 with all 

features

Small corpus after filtering; 

two-annotator protocol; 

neutrals excluded from 

training

31 Mouheb et al. 

(2019)

Naïve Bayes Twitter + YouTube General Arabic Accuracy 0.959 Small dataset; limited feature 

diversity

32 Alakrot et al. (2021) LR, SVM/LinearSVC, NB, 

DT, RF; POS + n-grams; 

feature selection

YouTube comments Mixed dialects 

(YouTube)

LinearSVC highest 

accuracy (reasonable 

overall); gains from 

feature selection

Focus on offensive, not CB; 

dependence on preprocessing 

choices

33 Omar et al. (2021) LinearSVC, NB variants, 

SVM, LR, DT, SGD, RF; 

multilabel pipeline

OSN posts across 11 

classes; vulgar-speech 

set

General Arabic 

(Facebook/Twitter)

With Chi-square FS: Acc 

97.92%; F1 97.92%; 

Precision 97.92%; Recall 

97.93%; multilabel 

LinearSVC + TF-IDF Acc 

82.29%, F1 92.48%

High feature counts; results 

sensitive to FS; 

generalizability outside OSN 

mix not shown

(Continued)
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6.2.1 Development and use of cyberbullying 
datasets

Arabic cyberbullying detection relies heavily on curated datasets. 
Studies often use platform-specific datasets from Twitter, YouTube, 
and Facebook, with datasets labeled for harmful or offensive language 
(e.g., Bashir and Bouguessa, 2021; Khairy et al., 2023). These datasets 
include common cyberbullying characteristics like threats, insults, and 
hate speech. However, the issue of dataset imbalance (more 
non-cyberbullying content than cyberbullying) persists, affecting 
model performance. Techniques like oversampling and downsampling 
have been employed to address this imbalance, as seen in AlFarah 
et al. (2022). Table 3. Shows some examples of the existing datasets 
addressing cyberbullying in Arabic.

The ArCybC/ArCyC corpus represents one of the few openly 
accessible multi-dialect Twitter datasets that makes a clear distinction 
between cyberbullying and general offensive content. Its development 
is supported by detailed documentation of the annotation pipeline 
and guidelines, ensuring methodological transparency (Shannag et al., 
2022). The ArbCyD dataset significantly expands the available volume 
by including annotated Twitter posts (Aljalaoud et al., 2025).

6.2.2 Standards and evaluation metrics
Standards such as precision, recall, F1-score, and accuracy are 

commonly used to evaluate detection methods (e.g., Haidar et al., 2017; 
Alakrot et al., 2018). Although precision and recall are essential for 
accurate detection, the unique characteristics of the Arabic language 
and cyberbullying-specific terms often require additional metrics and 
customized standards. Studies such as El-Alami et al. (2022) and Amer 
Hamzah and Dhannoon (2023) advocate for using contextual features 
like sentiment polarity, emojis, and user history in cyberbullying 
detection. These standards help capture the nuanced characteristics of 
online abuse, especially within specific platforms or dialects.

Some evaluations adopt three-way labeling schemes that 
distinguish bullying/abusive content, non-bullying content, and 

neutral content. When overall accuracy is computed across all classes, 
the typically high prevalence of neutral instances can inflate the 
metric and obscure a system’s effectiveness on the bullying class, 
which is the primary target in safety-critical applications. For 
example, the Instagram-based Arabic cyberbullying benchmark 
provides a multi-class design with positive (bullying), negative 
(non-bullying), and neutral categories, together with inter-annotator 
agreement reporting and baseline models (Albayari and Abdallah, 
2022). In such settings, macro-F1 and per-class F1 are preferable for 
comparing systems intended to detect bullying, whereas accuracy 
across all three classes can be  misleading when neutral content 
dominates the distribution.

6.2.3 Application of linguistic and psychological 
standards

Recent research has incorporated psychological theories to 
enhance cyberbullying detection by analyzing underlying 
personality traits in text (e.g., Elzayady et  al., 2023). Such 
frameworks align detection methods with broader behavioral 
standards, moving toward a more human-centered approach in 
identifying abusive content. Other studies, such as Boulouard et al. 
(2022), address multilingual standards by analyzing Arabic text in 
translation and leveraging cross-linguistic BERT models, thus 
ensuring consistency in detecting cyberbullying characteristics 
across languages.

6.3 Research question 3

The third RQ was:
What future research directions in cyberbullying detection may 

be established based on the findings of the provided systematic review?
The following themes were developed to answer the third 

research question.

TABLE 2  (Continued)

No Study Model(s) Dataset and 
Platform

Dialect/
Domain

Performance 
Metrics

Limitations

34 Shannaq et al. 

(2022)

Word-embedding fine-

tuning + GA-optimized 

SVM/XGBoost

ArCybC (CB/Non-

CB/Off/Non-Off)

Twitter; 

cyberbullying + 

offensive

SVM Acc 86.5% → 87.5%; 

XGB Acc 84.9% → 85.2% 

after optimization

Incremental gains; relies on a 

single public corpus

35 Kanan et al. (2021) Unsupervised K-Means vs. 

EM (clustering)

(Facebook/Twitter) General Arabic Evaluated via training 

time, SSE (e.g., 7,796.363), 

and log-likelihood (e.g., 

3,606.4669)

No precision/recall/F1; 

clustering quality hard to 

align with downstream 

moderation needs

TABLE 3  Examples of the datasets addressing cyberbullying in Arabic.

Dataset (year) Platform Labels Study

Instagram-Based Benchmark Dataset for 

Cyberbullying in Arabic (2022)

Instagram Comments collected; multi-class sub-categories for bullying with 

sentiment variants used in evaluation (incl. Positive/negative/neutral)

Albayari and Abdallah (2022)

ArCybC / ArCyC—Arabic Cyberbullying 

Corpus (2022 article; 2023 data release)

Twitter (X) Tweets; dual annotation tasks: CB vs. non-CB and Offensive vs. non-

Offensive; 5 annotators

Shannag et al. (2022)

ArbCyD—Arabic Post Dataset for 

Cyberbullying Detection (2024)

Twitter (X) Posts: bullying vs. non-bullying binary labels Aljalaoud et al. (2025)
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6.3.1 Expansion of dialect-specific datasets and 
multilingual analysis

Future research could focus on developing larger, dialect-specific 
datasets to address the significant linguistic diversity in Arabic. 
Datasets for Moroccan, Syrian, and Gulf dialects remain limited and 
would improve detection accuracy for specific regions (e.g., Rachidi 
et al., 2023; Ali and Kurdy, 2022). Studies also suggest expanding 
multilingual capabilities to improve cross-linguistic performance, with 
transformer models like BERT and mBERT showing potential for 
multilingual hate speech analysis (e.g., Alrashidi et al., 2023; Shannaq 
et al., 2022).

For limited-resource settings, few strategies with large language 
models can be grounded in complementary lines of evidence. First, 
in-context learning has been shown to deliver strong few-shot 
performance without gradient updates; GPT-3’s original study 
established that scaling enables task-agnostic adaptation via a handful 
of exemplars embedded in the prompt, a result that has shaped 
subsequent methodology for low-data regimes (Brown et al., 2020). 
Second, prompt-based and prompt-free fine-tuning methods 
consistently improve over naïve fine-tuning when labeled data are 
scarce. Pattern-Exploiting Training and its generative extension 
reframe supervision as cloze-style patterns to amplify supervision 
from very small datasets, while LM-BFF automates prompt 
construction and demonstration selection to yield large gains across 
classification and regression tasks (Schick and Schütze, 2020). 
Complementing these, SetFit avoids handcrafted prompts altogether 
by contrastively fine-tuning sentence-transformer encoders on a 
handful of pairs and then training a lightweight classifier on the 
induced embeddings, matching or surpassing larger fully fine-tuned 
models under strict few-shot budgets (Tunstall et al., 2022). Moreover, 
parameter-efficient adaptation techniques such as LoRA reduce 
trainable parameters by orders of magnitude while preserving or 
improving downstream quality, which is particularly attractive when 
domain transfer must be achieved under tight compute and annotation 
constraints (Hu et al., 2022). To mitigate the scarcity of human-written 
instructions, Self-Instruct bootstraps synthetic instruction–input–
output triplets from the model itself and shows substantial gains over 
the base model, offering a practical path when labeled data are limited 
(Wang et al., 2022). Evidence from multilingual and domain-specific 
studies indicates that these approaches translate beyond English 
benchmarks. Cross-lingual in-context learning studies report 
consistent benefits for genuinely low-resource languages and highlight 
alignment techniques that stabilize label semantics across languages, 
while evaluations in biomedical and clinical NLP show that 
instruction-tuned LLMs can perform competitively on few-shot entity 
recognition, QA, and relation extraction when carefully prompted 
(Cahyawijaya et al., 2024).

6.3.2 Enhanced deep learning models and feature 
engineering

Future research could involve advancing feature engineering, 
particularly through contextual embeddings, attention mechanisms, 
and personality inference models. These methods could enhance the 
interpretability of cyberbullying detection systems and better capture 
contextual aspects of offensive language (e.g., Mohaouchane et al., 
2019; Elzayady et al., 2023). Additionally, hybrid models combining 
CNN, RNN, and BERT-based architectures have shown promise for 

handling complex language features, and future studies could explore 
further model fusion or ensemble methods for improved accuracy 
(e.g., Mohaouchane et al., 2019; Althobaiti, 2022).

6.3.3 Ethical considerations and real-time 
detection systems

Ethical standards and privacy concerns will play a growing role in 
future cyberbullying detection research. Privacy-preserving 
algorithms, especially those that anonymize or filter sensitive 
information, can support ethical AI use on social media platforms 
(e.g., Omar et al., 2021). Another area for future exploration is real-
time cyberbullying detection systems that respond dynamically to 
harmful content as it is posted. While challenging, real-time models 
could be feasible with lightweight DL architectures tailored for social 
media monitoring (e.g., Amer Hamzah and Dhannoon, 2023; Kanan 
et al., 2021).

Ethical risks arise at each stage of dataset development and 
deployment for Arabic cyberbullying detection, beginning with data 
collection. The Instagram-based benchmark demonstrates the value 
of reporting annotation protocols and inter-annotator agreement 
alongside careful corpus descriptions; however, as with Twitter- and 
YouTube-based datasets, the presence of user mentions and cross-
post threads can inadvertently expose targets and perpetrators if not 
aggressively sanitized (Albayari and Abdallah, 2022; Haidar et al., 
2019; Alakrot et al., 2018; Alduailaj et al., 2023; Al-Ajlan and Ykhlef, 
2018; Alrougi et al., 2024). Representativeness is a second, persistent 
ethical and scientific concern. Arabic social media is heterogeneous 
across dialects, platforms, and communities; yet several widely used 
datasets skew toward particular dialect clusters or platform norms, 
such as Egyptian or Gulf Twitter, pan-Arab YouTube comments, or 
Instagram captions from specific demographic groups (Haidar et al., 
2019). Studies that publish clear guidelines, show label distributions, 
and report inter-annotator agreement support more accountable 
modeling than those that provide only aggregate scores (Albayari 
and Abdallah, 2022). Curators should also protect annotator 
wellbeing through workload limits, content warnings, and access to 
support, and they should state these safeguards in their 
documentation. The evaluation protocol has ethical implications 
because metric choice shapes decision thresholds used in practice. 
Practical architectures therefore favor lightweight normalizers and 
dialect-aware tokenization before model inference, with privacy-
preserving logging that stores only hashed text fingerprints or short-
lived embeddings for auditing (Alakrot et  al., 2018). The more 
explicit dataset papers are about these elements, the less likely it is 
that downstream models will inadvertently encode representational 
harms or privacy leakage.

6.3.4 Integration of psychological and social 
dimensions

Integrating psychological and social analysis within detection 
algorithms is emerging as an essential direction. Personality-based 
approaches could be particularly useful, helping identify users more 
likely to engage in or be  affected by cyberbullying (e.g., Elzayady 
et al., 2023).

Additionally, cross-disciplinary research involving psychology, 
sociology, and computational linguistics could establish standards for 
understanding the social dynamics underlying cyberbullying, offering 

132

https://doi.org/10.3389/frai.2025.1666349
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Allwaibed et al.� 10.3389/frai.2025.1666349

Frontiers in Artificial Intelligence 09 frontiersin.org

insights beyond linguistic patterns (e.g., Omar et al., 2021). Table 4 
shows the summary of the themes related to each research question.

The results of the research emphasize the necessity of culturally 
sensitive detection models, sophisticated methodologies, and tailored 
approaches to effectively capture the distinctive characteristics of the 
Arabic offensive language. Arabic is an extremely diverse language, 
with significant variations in dialects across regions (e.g., Egyptian, 
Gulf, Levantine), each with its own vocabulary, syntax, and 
expressions. The detection of objectionable language is further 
complicated by this diversity, as models that have been trained in 
Modern Standard Arabic frequently encounter difficulties with 
dialectal content. These results suggest that the model’s ability to 
identify nuanced or implicit forms of offensive language, such as 
sarcasm or mockery, is improved by the inclusion of sentiment and 
lexicon-based features that are specifically designed for Arabic dialects 
and slang. Many categories of offensive language, including religious 
hate speech, ethnic hate, and political offence, have been classified by 
researchers. These types of language are particularly sensitive in 
Arabic-speaking societies. These categories are indicative of regional 
and cultural priorities, emphasizing the social and religious values that 
influence online discourse in Arabic contexts. The importance of 
accounting for these categories is underscored by research, as they 
pertain to highly sensitive subjects that may vary in severity and 
context in comparison to other languages. The results indicate that 
culturally aware models that identify these particular forms of 
objectionable language can improve the accuracy and relevance of 
the models.

Although numerous studies have examined cyberbullying 
detection methods broadly or across various languages, there is a 
paucity of focused analyses on Arabic-language detection, given the 
unique challenges presented by Arabic’s morphological intricacies 
and dialectal diversity (Mubarak and Darwish, 2019; AbdelHamid 
et al., 2022). The majority of the earlier studies predominantly analyze 
general patterns in cyberbullying detection, concentrating on 
English-language research (Alakrot et  al., 2018; Bashir and 
Bouguessa, 2021). Although current studies recognize dataset 
imbalances and biases in social media-derived training data, they 
frequently neglect to consider privacy concerns and the ethical 
ramifications of automated cyberbullying detection among Arabic-
speaking groups (Omar et al., 2021; Amer Hamzah and Dhannoon, 
2023). This study addresses real-time detection concerns, the balance 
between moderation and free speech, and the necessity for privacy-
preserving machine learning algorithms in social media monitoring 
(Kanan et al., 2021). This paper distinctly focuses on the thorough 
assessment of ML and DL models in detecting cyberbullying in 
Arabic. The prior systematic literature review by Castaño-Pulgarín 
et  al. (2021), addressed cyberbullying detection on studies that 
provided exploratory data about the Internet and social media as a 
space for online hate speech, types of cyberhate, terrorism as an 
online hate trigger, online hate expressions and the most common 
methods to assess online hate speech. Balakrisnan and Kaity (2023) 
also did an SLR focusing on three main areas regarding cyberbullying 
detection through machine learning: the algorithms employed, the 
features used for detection, and the performance measures of these 
methods. The prior studies and reviews neglect Arabic-specific issues 
such as root-based word creation, tokenization complexities, and 
script intricacies.

The results of this study underscore the necessity of creating 
extensive, dialect-specific datasets and enhancing NLP models to 
address syntactic and lexical discrepancies among Arabic dialects. 
Deep learning architectures such as CNNs and BiLSTMs generally 
surpass classical baselines once training sets exceed the 
low-thousands and when preprocessed to handle orthographic 
variation, elongation, and code-mixing. Transformer models fine-
tuned on Arabic corpora—especially variants trained with 
substantial dialectal coverage—consistently lead when the label 
definitions align with the pretraining distribution and when 
macro-averaged F1 rather than accuracy guides optimization. A 
recurring empirical pattern is precision outpacing recall, reflecting 
systems that confidently flag explicit bullying but struggle with 
implicit attacks, sarcasm, and context-dependent harassment. 
Performance differences are driven first by data composition. 
Dialectal diversity, platform genre, and class design are the most 
decisive factors. Models trained on tweets in Egyptian or Gulf 
dialects tend to degrade on Levantine, Maghrebi, or code-mixed 
content because lexical cues and morphological patterns shift, and 
subword tokenizers learned on Modern Standard Arabic under-
segment dialectal forms. Domain shift between platforms—short, 
slang-heavy tweets versus longer Instagram captions or YouTube 
comments—likewise reduces transfer, as does the prevalence of 
emojis, creative spellings, and Arabizi. Class definitions also vary: 
some corpora equate cyberbullying with general abuse or toxicity, 
whereas others require intent, repetition, or power imbalance. The 
broader the “bullying” label, the higher the apparent scores, but 
the weaker the comparability across studies. Evaluation choices 
amplify these effects. Where annotation guidelines were explicit 
and inter-annotator agreement documented, models learned more 
stable decision boundaries; where guidelines were minimal or 
borrowed from sentiment analysis, models overfit to superficial 
polarity and miss community-specific bullying norms. Pretraining 
and representation learning explain the remaining variance. Yet, 
when fine-tuning data are severely imbalanced, even strong 
encoders prioritize surface toxicity over nuanced bullying 
constructs. In contrast, classical models augmented with curated 
lexicons and character-level features sometimes outperform deep 
baselines on noisy, low-resource dialects because they are less 
sensitive to tokenization errors and require fewer examples 
to generalize.

The most promising methodological direction is dialect- and 
domain-robust modeling anchored in standardized evaluation. 
Progress depends on a benchmark suite that harmonizes label 
schemas for cyberbullying versus general abuse, publishes class 
priors, and mandates macro-F1 and per-class F1 with clear treatment 
of the neutral class. Cross-dataset testing should be routine, with 
models trained on one corpus evaluated zero-shot on another to 
measure real-world robustness. Data and supervision strategies also 
offer leverage. Active learning and disagreement-focused annotation 
can densify minority bullying phenomena such as threats, doxxing, 
or body-shaming. Weak supervision that combines lexicon rules, 
community guidelines, and pattern matchers can cheaply label large 
pools for pretraining, followed by human verification on hard 
examples. Span-level rationales and multi-label tags for bullying types 
improve transparency and enable error analysis beyond single-label 
outcomes, while adversarial training with paraphrases and sarcasm 
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transformations hardens models against implicit aggression. Context 
modeling is a further frontier. Many failures stem from sentence-level 
isolation. Incorporating conversation threads, author–target history, 
and lightweight social signals can disambiguate teasing from 
harassment and detect repetition, a hallmark of bullying. Graph-
based representations of interactions, when coupled with privacy-
preserving design and strict ethical safeguards, can capture power 
asymmetries and coordinated attacks without storing sensitive 
personal attributes.

Finally, instruction-tuned large language models adapted to Arabic 
show potential as few-shot labelers, error analyzers, and data generators, 
but their deployment must be paired with rigorous calibration, bias 
auditing across dialects and demographics, and conservative 
thresholding in safety-critical pipelines. Taken together, the evidence 
suggests that the field is moving from accuracy on single, homogeneous 
datasets toward robust, dialect-inclusive systems evaluated under 
standardized, recall-sensitive protocols, with the integration of context 
and improved supervision likely to yield the next substantive gains.

TABLE 4  Summary of the themes related to each research question.

Research Question Theme Description Sources

RQ1: Current trends in 

cyberbullying detection for 

Arabic language and dialects

ML and DL Approaches ML models (e.g., SVM, Naïve Bayes) and DL models (e.g., 

CNN, BERT) are common for cyberbullying detection, 

with ensemble methods improving accuracy.

Haidar et al. (2017); Alakrot et al. (2018); 

Alrashidi et al. (2023)

Sentiment Analysis and 

Lexicon-Based Methods

Sentiment analysis and lexicon-based approaches capture 

emotional tones and harmful language, essential for 

handling Arabic’s diverse dialects.

AlHarbi et al. (2019); Farid and El-Tazi (2020)

Handling Arabic 

Dialects and Complexity

Specialized datasets and models (e.g., AraBERT, 

multilingual BERT) address dialectal variability, 

enhancing model accuracy for Arabic.

Mubarak and Darwish (2019); AbdelHamid et al. 

(2022); Khezzar et al. (2023)

RQ2: Standards used for 

detecting cyberbullying 

based on its characteristics

Development of 

Cyberbullying Datasets

Creation of Arabic-specific datasets that include dialectical 

variations and cyberbullying characteristics, though issues 

like imbalanced datasets (few cyberbullying instances) 

impact model performance.

Bashir and Bouguessa (2021); Khairy et al. (2023); 

AbdelHamid et al. (2022)

Evaluation Standards 

and Metrics

Precision, recall, F1-score, and accuracy are commonly 

used metrics, supplemented by specialized metrics tailored 

to Arabic-language characteristics to ensure reliable 

detection performance.

Haidar et al. (2017); Alakrot et al. (2021); 

Boulouard et al. (2022)

Linguistic and 

Psychological Standards

Integration of linguistic and psychological insights, such 

as personality inference, allows a deeper understanding of 

user behavior, helping to identify cyberbullying based on 

more human-centered behavioral traits.

Elzayady et al. (2023); Omar et al. (2021); 

Shannaq et al. (2022)

Contextual and Cultural 

Considerations

Incorporation of cultural sensitivity, including the use of 

dialect-specific language features, emojis, and contextual 

sentiment, provides a more nuanced and culturally 

accurate detection of offensive language.

AlHarbi et al. (2019); Farid and El-Tazi (2020); 

Khezzar et al. (2023)

RQ3: Future research 

directions for Arabic 

cyberbullying detection

Dialect-Specific Datasets 

and Multilingual Models

Expansion of dialect-specific datasets and multilingual 

models to enhance detection across Arabic dialects and 

improve cross-linguistic applicability.

Ali and Kurdy (2022); Rachidi et al. (2023); 

Shannaq et al. (2022)

Advanced Feature 

Engineering and Hybrid 

Models

Development of hybrid models (e.g., CNN-LSTM-BERT) 

and advanced feature engineering, such as attention 

mechanisms and personality-based features, for richer 

context and improved detection accuracy.

Mouheb et al. (2019); Elzayady et al. (2023); 

Boulouard et al. (2022)

Real-Time Detection 

and Privacy 

Considerations

Focus on real-time cyberbullying detection models for 

immediate response, with privacy-preserving techniques 

to ensure user data protection and ethical AI application.

Amer Hamzah and Dhannoon (2023); Omar et al. 

(2021); Kanan et al. (2021)

Cross-Disciplinary 

Research

Integration of psychological, sociological, and linguistic 

insights for a more comprehensive understanding of the 

social and behavioral dynamics underlying Arabic 

cyberbullying.

Farid and El-Tazi (2020); Omar et al. (2021); 

Elzayady et al. (2023)
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7 Limitations and suggestions for 
future studies

A key limitation of this review is the absence of a formal 
quality appraisal or risk-of-bias assessment of the included 
studies. Established tools such as AMSTAR, AMSTAR-2, or 
ROBIS are often used in systematic reviews to evaluate the 
methodological rigor of primary studies and to distinguish 
between stronger and weaker evidence. The present review 
treats  all included studies as methodologically equivalent, 
regardless of variations in their design, sampling strategies, or 
analytical robustness.

The majority of the studies reviewed are based on restricted 
or specific datasets, which may not adequately represent the 
complete range of Arabic dialectal diversity or the diverse forms 
of cyberbullying that are present on different platforms. However, 
the absence of standardized datasets for the detection of Arabic 
cyberbullying also presents obstacles to the attainment of 
generalizable results. Despite the potential of dialect-specific 
models, the complexity and extensive variations among Arabic 
dialects pose a significant obstacle. The results may not 
be broadly applicable because current models may not perform 
consistently across all dialects. The detection of real-time 
cyberbullying is still in its infancy, particularly in the context of 
Arabic texts. Although some studies incorporate psychological 
insights, there is a void in the comprehensive integration of 
insights from sociology, linguistics, and psychology to develop a 
holistic understanding of cyberbullying behaviors specific to 
Arabic-speaking regions. Another limitation of this review is the 
exclusion of conference proceedings, despite their prominence as 
venues for innovation in natural language processing. 
Nonetheless, this exclusion may have led to the omission of some 
cutting-edge contributions. Future reviews should consider 
incorporating both journal articles and high-quality conference 
proceedings to present a more comprehensive view of the 
research landscape.

Future research may investigate sophisticated deep learning 
architectures and hybrid models that amalgamate various 
methodologies to enhance detection, to improve contextual 
comprehension and classification precision. Another vital avenue for 
future study is the enhancement of sentiment-based and context-
aware models for detecting cyberbullying. The problem of dataset 
imbalance persists, as cases of cyberbullying are markedly 
underrepresented relative to non-offensive content.

8 Conclusion

This study offers a thorough examination of the most recent 
academic research, methodologies, and challenges in the detection 
of cyberbullying in Arabic texts. This review emphasizes the 
substantial advancements that have been achieved in this field by 
evaluating the efficacy of ML and DL models, sentiment analysis, 
lexicon-based methods, and dialectal considerations. The 
significance of specialized datasets for Arabic dialects, the efficacy 
of composite models and ensemble learning, and the value of 
sentiment-based and contextual analysis are underscored by the 
key findings.
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