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Editorial on the Research Topic
 Emerging techniques in Arabic natural language processing





Introduction

Arabic Natural Language Processing (NLP) is a rapidly growing field focusing on the unique computational and linguistic challenges of the Arabic language. Recent progress has been driven by deep learning approaches and the increasing use of large language models (LLMs), which have improved applications such as sentiment analysis, text processing, speech recognition, and machine translation (Haboussi et al., 2025; Abdu et al., 2025). Despite these advances, the field still faces critical obstacles, including a shortage of annotated datasets, insufficient tools for dialect handling, and the limited availability of Arabic-oriented LLMs (Mashaabi et al., 2024; Dahou et al., 2025; Abudalfa et al., 2024). This Research Topic presents studies covering various aspects of Arabic NLP, such as syntactic analysis, dialect identification, stance classification, and other tasks that contribute to practical real-world solutions.



Key contributions

The studies featured in this Research Topic highlight advancements in Arabic NLP and introduce innovative approaches within this field. The following subsections provide a concise overview of each paper included.


Syntactic analyzers

Syntactic analysis is a core task in NLP, particularly vital for morphologically rich languages like Arabic. Saadiyeh et al. compared a range of Arabic syntactic analyzers, from rule-based, statistical, and machine learning approaches to hybrid, neural, and transformer-based models, examining their strengths, weaknesses, and trade-offs. The complexity of Arabic morphology and syntax makes accurate parsing challenging, which they address through a detailed evaluation of algorithms and their reliance on high-quality annotated resources.



Machine translation

Algaraady and Mahyoob conducted a study comparing Arabic translations of Google Translate after post-editing by two professional translators and ChatGPT-4o, with three experts evaluating the final output. Quality was assessed through fluency, accuracy, coherence and efficiency, and a paired t-test analyzed the differences. Human post-editing generally yielded superior quality, while ChatGPT-4o stood out for speed and produced fluently flowing coherent translations.

In a related line of research, Beidas et al. examine the performance of GPT-3.5, GPT-4, and Bard (Gemini) on the QADI and MADAR datasets, whereas GPT-5 was tested solely on MADAR, which covers data from more than 15 countries. The evaluation relied on several metrics, including cosine similarity, the universal similarity encoder, sentence-BERT, TER, ROUGE, and BLEU. Two prompting strategies were applied: zero-shot and few-shot.



Opinion mining

Alkhathlan et al. presented ArabicStanceX, a large dataset for stance detection with 14,477 tweets covering 17 topics. Using the transformer-based MARBERTv2 model and a Multi-Topic Single Model approach, they achieved an F1 score of 0.74 for “favor” and “against” categories and 0.67 overall. Their results reveal strengths in stance classification but also difficulties with neutral labels and unseen topics. Additional zero-shot and few-shot learning tests show the model's flexibility in adapting to new subjects.

Jaber et al. explored the use of ensemble-based machine learning approaches for Arabic sentiment classification. A range of homogeneous ensemble models is developed and tested on two corpora: the balanced ArTwitter dataset and the highly skewed Syria_Tweets dataset. To address the imbalance problem, the Synthetic Minority Over-sampling Technique (SMOTE) is applied. The experiments combine unigram features with pre-trained word embedding representations.



Arabic poetry

Mutawa and Alrumaih presented a deep learning technique for identifying the meter of Arabic poetry using a large annotated dataset. Text was encoded at the character level to classify full and half verses without removing diacritics, ensuring that essential linguistic features were preserved. Various neural network architectures, including LSTM, GRU, and Bi-LSTM, were explored. This framework demonstrates a robust approach to Arabic meter recognition and highlights the potential of AI in NLP.



Dialect detection

Saleh et al. presented a stacking-based technique to improve dialectal Arabic classification by combining two transformer models, Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base. The technique involves two layers: the first generates class probabilities from the transformers, which are then used by a meta-learner in the second layer. This technique was benchmarked against individual models such as LSTM, GRU, CNN, and single transformers with various embeddings. Experimental results demonstrated that the combined model outperforms single-model methods by capturing a wider range of linguistic features, improving generalization across Arabic varieties.



Speech recognition

Al-Anzi and Thankaleela presented an Arabic speech recognition framework that begins by extracting Mel-frequency cepstral coefficients (MFCCs) from audio signals. These features are then grouped through K-means clustering, and the resulting clusters are classified using methods such as Decision Trees, Random Forests, K-Nearest Neighbors, and XGBoost. For demonstration purposes, both Euclidean Distance and Dynamic Time Warping (DTW) are employed. Additionally, the research highlights the effectiveness of Mozilla's DeepSpeech framework in handling Arabic speech recognition.



Cyberbullying detection

Allwaibed et al. reviewed 35 scholarly articles addressing the detection of cyberbullying in Arabic-language texts. From a methodological standpoint, traditional machine learning approaches that leverage Arabic-specific linguistic features continue to perform well on smaller datasets. However, more advanced deep learning models and transformer-based frameworks such as AraBERT achieve stronger results, especially when challenges like dialectal variation and orthographic inconsistencies are reduced.




Conclusion

The studies gathered in this Research Topic illustrate the diversity and dynamism of ongoing efforts in Arabic NLP. Collectively, these contributions showcase how deep learning and LLMs are driving progress in Arabic NLP, while also pointing to persistent obstacles such as dialectal differences, scarcity of annotated data, and specialized domain challenges. By introducing innovative approaches, releasing new datasets, and offering comparative assessments, the featured works not only push the field forward but also stress the importance of sustained collaboration, resource creation, and tool development to enhance Arabic NLP and extend its practical impact.
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The rapid expansion of dialectally unique Arabic material on social media and the internet highlights how important it is to categorize dialects accurately to maximize a variety of Natural Language Processing (NLP) applications. The improvement in classification performance highlights the wider variety of linguistic variables that the model can capture, providing a reliable solution for precise Arabic dialect recognition and improving the efficacy of NLP applications. Recent advances in deep learning (DL) models have shown promise in overcoming potential challenges in identifying Arabic dialects. In this paper, we propose a novel stacking model based on two transformer models, i.e., Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base, to enhance the classification of dialectal Arabic. The proposed model consists of two levels, including base models and meta-learners. In the proposed model, Level 1 generates class probabilities from two transformer models for training and testing sets, which are then used in Level 2 to train and evaluate a meta-learner. The stacking model compares various models, including long-short-term memory (LSTM), gated recurrent units (GRU), convolutional neural network (CNN), and two transformer models using different word embedding. The results show that the stacking model combination of two models archives outperformance over single-model approaches due to capturing a broader range of linguistic features, which leads to better generalization across different forms of Arabic. The proposed model is evaluated based on the performance of IADD and Shami. For Shami, the Stacking-Transformer achieves the highest performance in all rates compared to other models with 89.73 accuracy, 89.596 precision, 89.73 recall, and 89.574 F1-score. For IADD, the Stacking-Transformer achieves the highest performance in all rates compared to other models with 93.062 accuracy, 93.368 precision, 93.062 recall, and 93.184 F1 score. The improvement in classification performance highlights the wider variety of linguistic variables that the model can capture, providing a reliable solution for precise Arabic dialect recognition and improving the efficacy of NLP applications.
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1 Introduction

Dialects within a language are crucial as they represent the various cultural and regional variances within that language (Gregory and Carroll, 2018). As languages change and spread over different geographic areas, dialects naturally arise. Dialects may have their idiomatic phrases, distinct vocabulary, syntax, and pronunciation. Learning dialects has multiple benefits, including better communication, a greater understanding of culture, potential for employment, and increased interaction with media and literature (Zhang and Hansen, 2018). It makes it more straightforward to comprehend the variety within a language and makes it easier to build genuine connections with individuals from various geographical areas (Samih, 2017).

Given the large geographic area in which Arabic is spoken, dialects are essential for the Arabic language. Arabic dialects vary considerably from Modern Standard Arabic (MSA), the standard form for the language (Zaidan and Callison-Burch, 2014). Understanding the regional slang, customs, and traditions specific to each Arabic dialect is possible through understanding dialects. This improves comprehension of culture and makes handling social situations easier. Being fluent in a particular dialect pertinent to your line of work can help you get better employment and more significant support to Arabic-speaking communities (Alosaimi et al., 2024).

Gather a wide range of Arabic language samples across several dialects. The relevant dialect information needs to be labeled on the dataset. The data should be preprocessed by dividing it into training, validation, and test sets, tokenizing the text, and turning it into numerical representations (Haque et al., 2018). Learn a transformer model to identify dialects in Arabic. After the input text has been tokenized, the model should be able to predict the dialect label. Dialect identification requires contextual information captured by the transformer's self-attention mechanism (Lin et al., 2020). The labeled dataset is used to train the model employing optimization techniques (Chapelle et al., 2008).

Deep Learning (DL) and Machine Learning models (ML) have demonstrated promise in processing complicated linguistic data and dialects of Arabic. For example, Elaraby and Abdul-Mageed (2018) applied different ML models: SVM, RF, NB, and LR. Alzu'bi and Duwairi (2021) applied Recurrent Neural Networks (RNN) to support multiple classes of dialects. Alansari (2023) analyzed characteristics of dialects using CNN and RNN. Other authors proposed a hybrid model such as CNN-RNN (Abdelazim et al., 2022). These studies used classical DL models, which cannot capture the long-term dependencies over long sequences.

Therefore, the transformer model has attention features that allow the model to focus on the most relevant parts of the input sequence, capturing long-range dependencies and complex relationships between words (Zhang et al., 2019; Hafiz et al., 2021). For example, Alghamdi et al. (2022) applied two transformer models, MARBERT and ARBERT, using two publicly available Arabic Online Commentary (ADC) (Elaraby and Abdul-Mageed, 2018). In our work, we use recent IADD datasets that were combined from datasets such as (ADC), Dialectal ARabic Tweets dataset (DART) (Alsarsour et al., 2018), the authors in Alghamdi et al. (2022) and Elaraby and Abdul-Mageed (2018) used AOC dataset is published at 2018, and is a subset of IADD, and do not apply stacking model. As a result, the novelty of this paper lies in the combination of transformer models and a meta-learner in a stacking framework designed for Arabic dialect classification. The proposed hybrid model greatly improves the state-of-the-art Arabic dialect detection, outperforms conventional methods, and captures a greater range of linguistic features.


1.1 Motivations and contributions

The motivation behind the paper is the increasing amount of dialectal Arabic information produced by social networks and the need to improve Natural language processing (NLP) functions such as knowledge representation and machine translation. NLP faces challenges due to the fast expansion of dialectal Arabic material on social networks. Substantial language disparities between Arabic dialects and Modern Standard Arabic (MSA) present serious challenges for current NLP models, while this rise provides a wealth of resources for linguistic and computational study. Critical NLP applications like knowledge representation, sentiment analysis, and machine translation are hampered by the models' frequent difficulties with accurate classification and generalization across languages. Classical DL models: CNN, GRU, and LSTM have demonstrated promise in processing complicated linguistic data. Still, these techniques cannot adequately capture the subtle and nuanced differences across Arabic dialects. Furthermore, a significant research vacuum restricts NLP models' wider usability and resilience in Arabic contexts due to the absence of customized solutions to handle these dialectal variances.

To address this gap, we propose a novel stacking model that combines a meta-learner with two transformer architectures: Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base. By collecting a wider variety of linguistic variables, the proposed models improve dialect categorization, performance, and generalization across different Arabic dialects. Improved classification accuracy, useful applications in machine translation, sentiment analysis, conversational AI, and a strong framework that can be modified to operate with additional low-resource or linguistically challenging languages are some of the added values. The contributions improve the usability and effectiveness of NLP systems for Arabic-speaking regions. The proposed model delivers better performance across different Arabic dialects, increased generalization, and superior dialect classification by integrating various linguistic characteristics. The main contributions of this paper are summarized as follows:

	• We introduce a novel stacking model that incorporates two transformer architectures, Bert-Base-Arabertv02 and Arabic-XLM-R-Base, as base models with combined Random Forest (RF) as a meta-learner to enhance classification. The proposed model performs more efficiently than the state-of-the-art models, including LSTM, GRU, CNN, and two transformer models.
	• We evaluate the proposed model performance across two datasets to demonstrate the performance in classifying four and five Arabic dialects. Stacking-Transformer has the highest performance in all rates compared to other models.
	• The combination of Transformer in stack modeling with a meta-learner helps to capture more linguistic features, enhance generalization, and accurate dialect detection of Arabic.



1.2 Paper structure

The remainder of the paper is organized into sections. Section 2 presents related works on Arabic dialects. Section 3 outlines the primary steps for classifying Arabic dialects and introduces the proposed model. Section 4 presents the results and discussion, followed by the conclusion in Section 5.




2 Related work

This section presents different researcher have been applied DL, ML, and transformer models to classify Arabic dialects.

Lulu and Elnagar (2018) recognized dialects in Arabic using Four DL models CNN, LSTM, Bidirectional LSTM (Bi-LSTM), and Convolutional LSTM (CLSTM). The authors made use of the Arabic Online Commentary (AOC) dataset, which classifies Arabic into three main dialects: Gulf (including Iraqi), Levantine (LEV), and Egyptian (EGP). LSTM produced the most accurate results. Alsaleh and Larabi-Marie-Sainte (2021) utilized Genetic Algorithms (GA) to optimize the parameters of CNN for Arabic Text Classification. GA was employed to tackle the challenge of randomly initialized weights in CNN. The study utilized two extensive datasets that support text classification. Various pre-processing steps were applied: cleaning, normalization, tokenization, and stemming. The results were improved by 4% using GA with CNN. Alzu'bi and Duwairi (2021) applied RNN to support multiple classes of classification models for dialects. They utilized 110000 sentences from the MADAR corpus, including Maghreb, Levantine, Gulf, and Iraqi dialects. Cotterell and Callison-Burch (2014) proposed Arabic dialects dataset collected from newspaper websites and Twitter, including five Arabic dialects: Levantine, Gulf, Egyptian, Iraqi, and Maghrebi. They utilized unigram, bigram, and trigram models and SVM and NB algorithms. NB with trigram achieved the best accuracy. In addition, Kwaik et al. (2018) proposed the Shami corpus for four Arabic dialects in Palestine, Jordan, Lebanon, and Syria. They explored the effects of pre-processing dialectal Arabic using n-gram and NB models. Various pre-processing steps were applied: cleaning, normalization, tokenization, and stemming. The results showed that NB recorded the highest accuracy. Alansari (2023) captured the semantic and phonological characteristics of dialects using CNN, and RNN. The proposed model comprises six stages: preprocessing, feature engineering, neural networks, optimization techniques, and evaluation methods. Shatnawi et al. (2023) applied different DL models: CNN-BiLSTM, Pooling-BiGRU, and AraBERT with different pre-trained word embedding FastText, AraVec, and AraBERT using a mix of a Katherine dataset that covers the dialects of eight nations and a NADI dataset acquired via Twitter that includes the dialects of twenty-one countries. In addition, they applied various data augmentation to handle unbalanced data. The results showed that models with AraBERT achieved the height performance.

Other researchers have suggested hybrid models, and attention mechanisms and transformer models to classify Arabic dialects. For example, Abdelazim et al. (2022) proposed a hybrid model (CNN-RNN) to classify three dialects: Gulf, Egypt, and Levantine. CNN-RNN, compared with NB, SVM, and CNN, recorded the best accuracy. Alsuwaylimi (2024) proposed two hybrid models that combined BiLSTM with CAMeLBERT and the second model that combined the BiLSTM model with AlBERT. In addition, the conducted dataset includes 121289 collected from comments from various social media platforms and classified into four Arabic dialects (Egyptian, Jordanian, Gulf, and Yemeni). Two models compared with different ML and DL models. Experiment results showed that two hybrid models recorded the best performance. Elaraby and Abdul-Mageed (2018) applied various ML models: SVM, RF, NB, LR, and different DL models: LSTM, GRU, Bi-LSTM, Bi-GRU, and Attention-BiLSTM using various word embedding. Results showed that attention-based BiLSTM work well compared to other models. Alghamdi et al. (2022) applied two transformer models, MARBERT and ARBERT, using two publicly available Arabic-dialect classification datasets such as AOC. They explored results for binary, three, and multi-class dialect classification. The results showed that MARBERT achieved higher performance than ARBERT.

Table 1 compares different models used in research. It outlines the methods, advantages, limitations, and datasets referenced in the studies.


TABLE 1 Comparison of existing work.

[image: A table compares various studies on methods for text classification, listing references, methods used, advantages, limitations, and datasets. Methods include LSTM, GA with CNN, RNN, NB with Bi-gram, CNN and RNN, AraBERT, RF, Attention BiLSTM, CAmeLBERT with BiLSTM, MARBERT, and Stacking-Transformer. Advantages mention proposing benchmark datasets and applying transformer models. Limitations often note low accuracy and reliance on classical models. Datasets include AOC, MADAR corpus, IADD, Shami, NADI, and ADO.]



3 Methodology

Figure 1 shows the main steps of classifying Arabic dialects: Data collection, Data pre-processing, Classification models, feature representation methods, classification models, and evaluation models.


[image: Flowchart depicting the process of Arabic dialect identification across four steps. Step 1: Data Collection includes "Shami: A corpus of Levantine Arabic dialects" and "IADD: Arabic dialect identification." Step 2: Data pre-processing involves tokenization, data cleaning, removing stop words, and stemming. Step 3: Feature representation uses Base-Arabert, Arabic-XLM-R-Base, and CBOW. Step 4: Classification Models include Base-Arabert, Arabic-XLM-R-Base, and deep learning methods like LSTM, GRU, and CNN. Step 4: Evaluation Models focus on accuracy, precision, recall, F1-score, and confusion matrix.]
FIGURE 1
 Arabic dialects classification framework.



3.1 Datasets

Two benchmark Arabic dialect datasets are used for the experiment.

	• Shami is a corpus of Levantine Arabic dialects (Kwaik et al., 2018) includes 66,245 rows with four dialect classes: Jordinian, Lebanees, Palestinian, and Syrian. The unbalanced dataset includes 37,758, 10,828, 10,642, and 7,017 rows for Syrian, Lebanese, Palestinian, and Jordanian, respectively.
	• IADD is Arabic dialect identification (Zahir, 2022) is used and includes five dialects: Maghrebi (MGH), Levantine (LEV), Egypt (EGY), Iraq (IRQ), Gulf (GLF), and general. It was collected from tweets and Facebook.



3.2 Data pre-processing

Pre-processing the input data before starting to implement any model that processes text data is vital due to the various problems inherent, particularly in text data (Chai, 2023). Therefore, it is necessary to effectively rely on pre-processing the input text data to achieve a clear and accurate exploration of Arabic dialects based on stacked transformers. Data processing of the data aims to prepare and improve the quality of the input data to enhance the performance of the model. The four pillars of the pre-processing steps include Tokenization, data cleaning, stop word removal, and stemming (Kathuria et al., 2021). Carrying out these steps carefully will ultimately ensure that we obtain input data useful for accurately detecting the distinction between different Arabic dialects and obtaining a successful model in natural language processing tasks.

• Tokenization represents the first step in preparing textual data specifically, where the text is divided into smaller parts based on language-specific characteristics such as grammar and morphology (Khallaf, 2023). Tokenization comprises two types: word and sub-word Tokenization. In word tokenization, the result of this step is a set of separate words in addition to diacritics and linking marks. While Sub-word Tokenization is employed to handle out-of-vocabulary words and improve model robustness.

	• Data Cleaning: The importance of this step lies in obtaining accurate data after removing irrelevant or confusing data that may hinder the performance of the model used. To accomplish this step, a normalization process must first be performed to convert different forms of the same word to its standard form, then deal with punctuation marks and special characters by removing or unifying them, especially those that do not affect the meaning (Berrimi, 2024). Also, deal with incorrect or incomplete data by neutralizing or removing them. After this step, we will ensure obtaining data of acceptable quality and consistency in its context, contributing to the model's success.
	• Removing Stop Words enables the model to focus more on the main distinguishing features of dialects in the text. It thus improves the accuracy of the model in identifying and distinguishing them. Stop words represent a group of words that do not carry a critical or influential meaning in the context, and excluding them will positively reduce dimensions such as prepositions and articles (Khurana et al., 2023). These words are collected in a list to be excluded from the input data list.
	• Stemming is a vital necessary process that reduces the expected complexity in the input data by converting words to their root form, which will allow better generalization when using the model to explore dialects (Farghaly and Shaalan, 2009). Many algorithms can be used during this step, some of which are designed specifically for the Arabic language due to its richness in morphology, which helps in grouping different morphological variants of a word. in this paper, stemming applies using Arabic-specific stemming algorithms to handle the morphological richness of Arabic. The algorithms are chosen carefully to prevent mistakes like confusing words with the same root but distinct meanings. In the context of Arabic dialects, this guarantees the results' validity and correctness.



3.3 Dataset splitting

Each dataset is split into a 75% training set and a 25% testing set. The split preserves enough data for objective assessment while guaranteeing reliable model training. Methods for feature representation are customized for the datasets.



3.4 Feature representation methods

While conventional DL models employed CBOW for word embeddings, transformer-based models like Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base are utilized to generate high-quality contextual embeddings.

• Word2Vec is a widely used technique for learning word embeddings from large volumes of textual data (Karani, 2018). This approach generates embeddings by considering the context in which words appear, enabling the representation of words in a continuous vector space that captures semantic relationships (Karani, 2018). Word2Vec effectively reduces the dimensionality of the word space while preserving meaningful relationships between words, offering a computationally efficient solution for processing language data (Dwivedi and Shrivastava, 2017). One variant of Word2Vec is the Continuous Bag-of-Words (CBOW) model (Sivakumar et al., 2020). CBOW predicts a target word based on its surrounding context words within a fixed-size window. The model is designed to maximize the probability of correctly predicting the target word, leveraging contextual information to enhance its learning capability (Melamud et al., 2016).

	• Bidirectional Encoder Representations from Transformers (BERT) is the open-source transformer-based model that is renowned for its ability to model contextual relationships among words within a sentence through self-attention mechanisms (Vig, 2019). Thanks to this architecture, BERT excels at capturing contextual information and long-range dependencies (Wu et al., 2021). BERT profoundly comprehends linguistic subtleties by being pre-trained on vast volumes of unlabeled text data utilizing two unsupervised tasks. Namely, masked language modeling (MLM) and next sentence prediction (NSP) (Kryeziu and Shehu, 2022). In MLM, words from the input text are randomly masked. BERT is subsequently taught to predict these masked words through analysis of the surrounding context (Devlin et al., 2018). BERT can improve its skills on particular tasks by employing relatively more minor labeled datasets, even when pre-trained on massive quantities of data (Devlin et al., 2018). Bert-base-Arabic refers to the BERT model specially trained on the Arabic language, offering pre-trained representations that encapsulate both syntactic and semantic nuances of Arabic words (Chouikhi et al., 2021). This model accepts Arabic text as input and outputs contextualized word representations, which can be further refined using task-specific training data or directly utilized in downstream NLP tasks (Peters et al., 2019).
	• Dialectal Arabic XLM-R Base represents a multilingual transformer model customized to comprehend and interpret several Arabic dialects (Khalifa et al., 2021). An expansion of the BERT architecture called the Cross-lingual Language Model (XLM-R) is intended to function with various languages, including dialects and languages with limited resources (Boudad et al., 2023). This transformer can cope with multiple Arabic dialects alongside other languages since it has been taught on many datasets. Conversational agents can be upgraded to more effectively comprehend and respond to dialectal Arabic more Base using the dialectal Arabic XLM-R Base (Joshi et al., 2024).

	By refining the translations between dialects and standard Arabic, it will be feasible to assess the thoughts and feelings expressed across dialects on social media or in reviews. Built on top of the XLM-R architecture, the Dialectal Arabic XLM-R Base architecture preserves the transformer architecture's scalability and efficacy while being tailored for the complex structure of dialectal Arabic. The model can figure out the word order in a sentence by mapping input tokens to dense vectors and then adding positional information to token embeddings (Qwaider and Abu Kwaik, 2022). Multi-head Self-Attention has been included to allow the model to concentrate on various segments of the input stream concurrently, thereby capturing contextual linkages. A feedforward network processes each attention output before applying it separately to each point. Improves training stability and convergence via normalizing the inputs to each layer (Berrimi, 2024).



3.5 Deep learning models

GRU, LSTM, and CNN are used for DL models.

	• GRU is a recurrent architecture with update and reset gates intended to handle sequential data. The update gate controls how much past knowledge remains intact, whereas the Reset gate governs whether earlier data is forgotten (Dey and Salem, 2017). GRU has a hidden state that blends the current input and the prior hidden state, permitting information to flow through time. GRU is appropriate for tasks that need time series data and sequential information, such as language modeling and machine translation (Zargar, 2021). It is beneficial for determining context in textual data.
	• LSTM is a more complicated recurrent architecture having forgotten, input, and output gates suitable for learning long-term dependencies (Okut, 2021). The forget gate regulates what information to exclude from the cell state, whereas the input gate determines what latest data to store in the cell state. The output gate determines which information to output based on the cell state (Okut, 2021). The cell state sustains long-term dependencies, allowing gradients to propagate throughout multiple time steps. LSTM can be utilized for text synthesis, machine translation, and speech recognition (Van Houdt et al., 2020). Also, it is competent at predicting potential outcomes using historical and time series data.
	• CNN is a type of neural network that comprises convolutional and pooling layers, which help generate features from spatial data. CNN leverages convolution processes to extract features from input data, often images or sequences (Pinaya et al., 2020). It mitigates the spatial dimensions via down-sampling while maintaining the most significant features and then connects the pooled information to the output layer for classification or regression. CNN is frequently implemented for object detection and image segmentation. It also works for sentiment analysis and spam identification since it treats text data as a series (Bhuvaneshwari et al., 2021).



3.6 Proposed model

By integrating the strengths of various models, the stacking approach reflects a wide range of linguistic features, resulting in improved dialect detection. Figure 2 shows the central architecture's two levels. Level 1 provides the base models with the two transformers that produce class probabilities for training and testing datasets. The second level serves as a meta-learner, which is trained using Level 1's outputs, resulting in enhanced classification performance.


[image: Flowchart depicting a two-level model architecture for classifying Arabic dialects. Level 1 consists of two pipelines: Base-AraBERT and Arabic-XLM-R-Base, both processing an Arabic Dialects Dataset through an Embedding Layer. Level 2 combines outputs P1 and P2 into a Meta-learner (RF) to classify Arabic Dialect Classes.]
FIGURE 2
 Proposed model.


In Level 1, class probabilities are generated by the two transformer models for the training and testing sets and are stored in the stacking training and stacking testing datasets, respectively. In level 2, RF as a meta-learner is trained by stacking training and evaluated by stacking testing to get the final classification decision. RF is an ensemble technique that uses several decision trees during training and combines their outputs for more accurate and stable predictions (Feng et al., 2015).



3.7 Models evaluation

The F1-score, Accuracy, Precision, and Recall metrics are used to assess the models. Where TN indicates the aggregate amount of accurate negative predictions, FP is the total number of false positive estimations, while FN stands for the overall number of false negative predictions.

[image: Accuracy formula shown as a fraction: the sum of true positives (TP) and true negatives (TN) over the total sum of true positives, false positives (FP), true negatives, and false negatives (FN).]

[image: Recall is defined as the ratio of true positives (TP) to the sum of true positives and false negatives (TP + FN), represented by the formula: Recall equals TP divided by TP plus FN.]

[image: Mathematical formula for precision is shown as the ratio of true positives (TP) to the sum of true positives (TP) and false positives (FP), with the equation numbered as three.]

[image: Formula for F1-score: F1-score equals two times the product of precision and recall, divided by the sum of precision and recall.]




4 Results and discussion

We applied different experiments using various models and two datasets to prove that the Stacking-Transformer model achieved the best performance compared to other models.


4.1 Experimental setup

The experiment was conducted on a laptop with an Intel Core i7 10750H and 16GB memory. The execution environment for the training and validation of the networks was set to a single GPU: Nvidia GeForce GTX 1650 with 4GB VRAM. The models were evaluated by two datasets: Shami with four classes (Jordinian, Lebanees, Palestinian, and Syrian) and IADD with five classes (EGY, GLF, LEV, MGH, and general). Base-Arabert and Dialectal-Arabic-XLM-R-Base are used as feature representations for transformer models, and CBOW is used for DL models. The datasets are split into 75% training set and 25% testing set and the number of rows in each dataset is shown in Table 2. The setting of parameters of models are presented in Table 3.


TABLE 2 The number of rows in each dataset.

[image: Table comparing datasets Shami and IADD. Shami includes Syrian, Lebanese, Palestinian, and Jordanian labels with totals: training set 49,683, testing set 16,562, and overall 66,245. IADD labels are LEV, MGH, GLF, EGY, and general, with totals: training set 97,152, testing set 32,445, and overall 129,597.]


TABLE 3 Setting of parameters.

[image: Table listing model parameters and specifications for LSTM, GRU, CNN, Bert-Base-Arabertv02, and Dialectal-Arabic-XLM-R-Base. LSTM and GRU have 200 nodes, dropout of 0.2, ReLU activation, Adam optimizer, and CrossEntropyLoss. CNN features a 3x3 filter, kernel size of 4, dropout of 0.2, Adam optimizer, and CrossEntropyLoss. Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base include 12 transformer layers, 768 dimensions hidden size, 12 attention heads, Adam optimizer, and CrossEntropyLoss. Bert has a dropout rate of 0.1.]



4.2 Results

Two subsections present the results of Shami and IADD based on precision, recall, F1-score in each class, and confusion matrices. Furthermore, the average accuracy, precision, recall, and F1-score of each dataset is presented.


4.2.1 Proposed model performance in Shami dataset

The results of models based on precision, recall, and F1-score for different classes: Jordinian, Lebanees, Palestinian, and Syrian as shown in Table 4. We can see that GRU, LSTM, and CNN score the lowest in performance compared to transformer models because CNN models focus on local feature extraction but fail to capture complex, long-term relationships. GRU and LSTM handle sequential data, and they have limits to capturing long-term dependencies, especially with large datasets. Transformer-based models leverage self-attention mechanisms to learn both local and global patterns in parallel dynamically, and capture long-term dependencies.


TABLE 4 Proposed model performance in Shami dataset.

[image: A table comparing various models and approaches for classifying different classes. It includes precision, recall, and F1-score metrics for DL models (GRU, LSTM, CNN), the transformer model (Base-Arabert, Arabic-XLM-R-Base), and the proposed stacking-transformer model. Performance metrics are provided for classes: Jordanian, Lebanese, Palestinian, and Syrian. The proposed model shows high scores in all metrics, with standout performance in the Syrian class, achieving a precision of 92.07, recall of 95.96, and F1-score of 93.98.]

The following summarizes the results models with Jordinian record the lowest rates compared to other classes. Models with Syrian class record the highest rate. GRU with Syrian has the highest precision, recall, and F1-score at 91.28, 91.13, and 91.21, respectively. LSTM with Syrian records 91.13 recall higher than GRU. GRU with Lebanees class has the second-highest performance compared to CNN and LSTM with 77.05 precision and 77.22 with F1-score. CNN and LSTM with Lebanees and Palestinian have the same approximate results. Base-Arabert and Arabic-XLM-R-Base with Syrian class record the same recall at 95.96. Both record the same precision, recall, and F1-score at 84.49, 79.09, and 81.70, respectively with Lebanees class. Stacking-Transformer records the highest performance in all classes compared to other models. The best precision, recall, and F1-score are achieved by Stacking-Transformer with Syrian, at 92.07, 95.96, and 93.98, respectively.

Figure 3 comprises six confusion matrices, each of which shows how various models performed in a classification exercise aimed at classifying data into one of four groups: Syrian, Palestinian, Lebanese, or Jordanian. Four groups are created from the models: Syrian, Palestinian, Lebanese, and Jordanian. Darker colors indicate higher counts. The color intensity in each confusion matrix reflects the number of samples sorted into each class. Classifying the Syrian category appears to be generally easier across all models, but the Palestinian and Jordanian categories are more difficult.


[image: Six confusion matrix charts compare prediction performance across different models: Stacking Transformer, Arabic BERT, BiLSTM, GRU, LSTM, and CNN. Each matrix shows actual vs. predicted labels for categories like Jordanian, Lebanese, Palestinian, Syrian, and Tunisian, with varying shades representing accuracy.]
FIGURE 3
 Confusion matrices of models for Shami.




4.2.2 Proposed model performance in IADD dataset

Table 5 presents the precision, recall, and F1-score for different classes: EGY, GLF, LEV, MGH, and general for each model. The best precision, recall, and F1-score are achieved by GRU and LSTM with LEV, at 93.19, 93.01, and 93.10, respectively. GRU and LSTM general EGY record the same approximate results. In comparison to CNN and LSTM, GRU with MGH class has the second-highest precision (90.67) and F1-score (89.51). Of all the models based on each class, CNN yields the lowest results. Base-Arabert with GLF records precision, recall, and F1-score at 73.43, 62.18, and 67.34, respectively, compared to DL models. Arabic-XLM-R-Base with LEV and MGH classes records the same precision at 94. The stacking Transformer records the highest performance in all classes compared to other models. The best precision, recall, and F1-score are achieved by Stacking-Transformer with LEV, at 95.90, 95.6, and 95.76, respectively. Also, it has significant performance in the general class compared to other models. Figure 4 comprises six confusion matrices, each of which shows how various models performed in a classification exercise aimed at classifying data into one of five groups: EGY, GLF, LEV, MGH, and general. Darker colors indicate higher counts. The color intensity in each confusion matrix reflects the number of samples sorted into each class.


TABLE 5 Performance of proposed model in Shami dataset.

[image: A table comparing performance metrics of various models across dialects. It includes three main categories: DL models (GRU, LSTM, CNN), the transformer model (Base-Arabert, Arabic-XLM-R-Base), and the proposed Stacking-Transformer model. Metrics include precision, recall, and F1-score for dialects EGY, GLF, LEV, MGH, and general. Stacking-Transformer shows the highest performance generally, with the highest scores across almost all dialects and metrics compared to the other models.]


[image: Six confusion matrices comparing model performance: Stacking-Transformer, Arabic-ALJ-M-BBase, Basic-Arbert, GRU, LSTM, and CNN. Each matrix displays true versus predicted labels in categories: GLF, ILV, MAGH, MSA, general. Darker shades indicate higher counts, highlighting model accuracy.]
FIGURE 4
 Confusion matrices of models for IADD.




4.2.3 Discussion

Transformer models have achieved state-of-the-art performance across various tasks compared to traditional DL models for several key reasons the self-attention mechanism in transformers allows them to consider all parts of the input sequence simultaneously. This enables the model to capture long-range dependencies more effectively than traditional recurrent, which are typically limited by sequential processing or fixed-size filters. Figure 5 shows the average accuracy, precision, recall, and F1-score of DL models, transformer models, and the proposed model (Stacking-Transformer) for classifying Syrian, Lebanees, Palestinian, Jordinian. From the table, transformer models record the best performance compared to deep learning models and improve results by improving results above 5%. The transformer models have the attention that can capture long-range dependencies more effectively than DL models. Arabic-XLM-R-Base has the highest performance compared to Base-Arabert, LSTM, GRU, and CNN with accuracy = 87.495, precision = 87.278, recall = 87.495, and F1-score = 87.209. CNN has the worst all measures with 80.842 of accuracy and 80.363 of F1-score. Stacking-Transformer has the highest performance in all rates with 89.73 of accuracy and 89.574 of f1-score.


[image: Bar chart comparing performance metrics of six models: GRU, LSTM, CNN, Base-Arabert, Arabic-XLM-R-Base, and Stacking-Transformer. Metrics include Accuracy, Precision, Recall, and F1-score. Stacking-Transformer scores highest across all metrics.]
FIGURE 5
 Average accuracy, precision, recall, and F1-score of models for Shami.


Figure 6 shows the average accuracy, precision, recall, and F1-score of DL models, transformer models, and the proposed model (Stacking-Transformer) for classifying EGY, GLF, LEV, MGH, and general. From the table, transformer models record the best performance compared to DL models and improve results by improving results above 2%. Arabic-XLM-R-Base has the highest performance compared to Base-Arabert, LSTM, GRU, and CNN with accuracy = 91.432, precision = 91.595, recall = 91.432, and f1-score = 91.485. CNN has the worst of all measures with 87.382 of accuracy and 87.492 of F1-score. Stacking-Transformer has the highest performance in all rates with 93.062 of accuracy and 93.184 of f1-score, and improve performance by 2 compared to Arabic-XLM-R-Base.


[image: Bar chart comparing performance metrics: accuracy, precision, recall, and F1-score across six models: GRU, LSTM, CNN, Base-Arabert, Arabic-XLM-R-Base, and Stacking-Transformer. Stacking-Transformer shows the highest performance in all categories.]
FIGURE 6
 Average accuracy, precision, recall, and F1-score of models for IADD.





4.3 Comparison of the proposed model with existing work

Table 6 compares our work with the state-of-the-art based on dataset and results. The proposed model, Stacking-Transformer, is based on two transformer models as the baseline and an RF as the meta-learner. It achieves the highest accuracy due to the advantages of the attention mechanism in the transformer, which extracts long dependencies between text, and the generalization capability of stacking models. For IADD, Stacking-Transformer recorded the highest accuracy at 93.062 compared to NB with Bi-gram, which was recorded at 70 in Cotterell and Callison-Burch (2014). For Shami, the Stacking-Transformer recorded the highest accuracy at 89.73 compared to NB in Kwaik et al. (2018). For ADO as a subset of Shami, LSTM was used in Lulu and Elnagar (2018) and recorded 71.4 accuracy. In Elaraby and Abdul-Mageed (2018), Attention BiLSTM recorded 87.81 of accuracy. CAMeLBERT with BiLSTM was recorded at 87.


TABLE 6 Comparison with existing work and the proposed models based on models and performance.

[image: Table comparing various research methods. Lulu and Elnagar (2018) used LSTM scoring 71.4 on AOC dataset. Cotterell and Callison-Burch (2014) used NB with Bi-gram scoring 87.00 on IADD. Kwaik et al. (2018) used NB scoring 70 on Shami. Elaraby and Abdul-Mageed (2018) used Attention BiLSTM scoring 87.81 on ADO. Alsuwylim (2024) used CAMeLBERT with BiLSTM scoring 87 on ADO. Current work uses Stacking-Transformer scoring 93.062 on IADD and 89.73 on Shami.]



4.4 Implication and challenges

The proposed investigation has important ramifications for expanding NLP applications and improving Arabic dialect identification. The paper shows improved accuracy, precision, and recall in dialect classification via a hybrid stacking model that incorporates the advantages of transformer designs such as Dialectal-Arabic-XLM-R-Base and Bert-Base-Arabertv02. Given the increasing amount of dialectal material on social media and other platforms, the development fills a significant gap in NLP for managing the linguistic variety of Arabic. The model's cross-dialect generalization establishes a new standard for datasets like Shami and IADD, providing a solid basis for further study and advancement. Additionally, the study has practical applications, such as enhancing conversational AI, sentiment analysis, and machine translation systems to better interpret a variety of complex language inputs.

The paper points out several challenges, including substantial differences in syntax, vocabulary, and semantics between regional dialects and Modern Standard Arabic (MSA) pose a difficult obstacle for models to overcome, especially when generalizing across underrepresented dialects; data imbalance, as seen in the Shami dataset, makes this problem worse and restricts the performance of models on less represented classes, like Jordanian dialects; and the computational demands of training and fine-tuning stacked transformer models demand a significant amount of resources, which may limit accessibility for researchers with limited financial resources. Challenges with scalability and practical implementation also exist, especially for real-time applications that may encounter resource constraints and latency, such as chatbots and virtual assistants. Tokenization, stemming, and stop-word deletion are examples of preprocessing processes that increase complexity since they might not adequately capture the subtle differences present in dialectal Arabic. Even if the model produces state-of-the-art results on certain datasets, there is still a need for more research in generalizing Arabic dialects or languages with equally complex linguistic patterns.




5 Conclusion

In this paper, we introduced a unique stacking model that combines two potent transformer models, Bert-Base-Arabertv02 and Dialectal-Arabic-XLM-R-Base, with a meta-learner to improve the categorization of Arabic dialects. The model formed involved two levels: base models and meta-learners. Within level one, the two transformer models yield class probabilities for the training and testing sets, which are retained in stacking training and stacking testing, respectively. Level 2 meta-learners with machine learning models are trained and tested using stacking. The stacking model has been contrasted against multiple models, including LSTM, GRU, CNN, and two transfer models with distinct word embedding. Models were assessed on two benchmark datasets to classify four and five dialects of Arabic, featuring various evaluation matrices, including accuracy, precision, recall, F1-score, and confusion matrix. The results proved that the stacking model outperformed single-model techniques. The proposed model addressed a wider spectrum of linguistic traits, allowing for more accurate generalization across different varieties of Arabic. Shami dataset testing reveals that the Stacking-Transformer outperforms all other models in accuracy, precision, recall, and f1-score, with 89.73, 89.596, and 89.574, respectively. For IADD, Stacking-Transformer outperforms other models in all rates, with 93.062 accuracy, 93.368 precision, 93.062 recall, and 93.184 F1-score. In the future, we will concentrate on developing this method to handle other dialects and investigating whether it can be used in other low-resource languages with comparable linguistic complexity.
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The metrical structure of classical Arabic poetry, deeply rooted in its rich literary heritage, is governed by 16 distinct meters, making its analysis both a linguistic and computational challenge. In this study, a deep learning-based approach was developed to accurately determine the meter of Arabic poetry using TensorFlow and a large dataset. Character-level encoding was employed to convert text into integers, enabling the classification of both full-verse and half-verse data. In particular, the data were evaluated without removing diacritics, preserving critical linguistic features. A train–test–split method with a 70–15–15 division was utilized, with 15% of the total dataset reserved as unseen test data for evaluation across all models. Multiple deep learning architectures, including long short-term memory (LSTM), gated recurrent units (GRU), and bidirectional long short-term memory (Bi-LSTM), were tested. Among these, the bidirectional long short-term memory model achieved the highest accuracy, with 97.53% for full-verse and 95.23% for half-verse data. This study introduces an effective framework for Arabic meter classification, contributing significantly to the application of artificial intelligence in natural language processing and text analytics.
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1 Introduction

Arabic prosody (Arud) has been studied for many years in morphology and phonetics. The study of meters in poetry enables us to determine whether the poetry is sound or broken (Jones, 2011). Some of the terminology used most frequently in Arabic prosody are as follows: a single line of the poetry comprises two verses, each half-verse called a “bayt.” The first verse is “sadder,” and the second is “ajuz.” Classical Arabic poetry, defined by units called meters, was analyzed by the famous lexicographer and grammarian Al-Khalil ibn Ahmad al-Farahidi in the eighth century (Alnagdawi et al., 2013). The meter is based on the syllables in a word and consists of two parts: short and long syllables. The 16 meters are Tawil, Basiit, Madid, Wafir, Kamil, Hazaj, Rajaz, Ramal, Munsarih, Khafif, Muqtadab, Mujtath, Mudari’, Sarii’, Mutaqarib, and Mutadarik. The ode may consist of 120 lines, split into two half-lines characterized by their meters, repeated for the whole verse. Al-Farahidi represented some feet provided in a rhythmic to make it easy to remember the meter (fa’uulun, mafaa’iilun).

Poetry is a way of communication and interaction and an essential aspect of any language and literature. Communities, nations, and societies have expressed themselves through poetry for ages (Lavzheh, 2009). Poetry is hard to understand as it has a specific pattern and underlying meanings in its words and phrases, making it different from prose. It is necessary to understand the structure to understand the poetry completely. Bahar is the meters in Arud science. Arud science helps divide Arabic poems into 16 meters, making them easy to understand without referring to the context (Alnagdawi et al., 2013). Classical Arabic poetry can be recognized and understood using various methods and tools. Arud is the rule and regulations of poems used in many languages (Abuata and Al-Omari, 2018). Poetry is different from prose, mainly because of its form and structure. Poetry consists of tone, metrical forms, rhythm, imagery, and symbolism. In Arabic poetry, each line ends with a specific tone. The field that studies rhyme and rhythm is called prosody and is complex due to many overlapping rules (Khalaf et al., 2009).

There are two vowels in modern and classical Arabic: long and short. The long vowels are explicitly written, and short vowels are also called diacritic. Various attempts have been carried out to implement Arabic text. A proposal was made to use Arabic diacritics or ‘harakat’ for text hiding for security purposes (Ahmadoh and Gutub, 2015). The diacritics in Arabic are split into three parts as shown in Table 1. The majorty of studies in this field use a deep learning method to diacritize the Arabic text before loading it into the model (Abandah et al., 2022; Abandah et al., 2020; Kharsa et al., 2024).



TABLE 1 Arabic diacritic types.
[image: A table with three columns: Diacritic, Types, and Example. The Diacritic column lists Harakat, Tanween, and Dhawabet. Types include "fatha," "dahmma," "kasrah," "sukon" for Harakat; Tanween fateh, dham, kasr for Tanween; Shad, mad for Dhawabet. Examples in Arabic script are provided for each type.]

Artificial intelligence (AI) has become exponentially more practical and significant over the last few years. The AI-enabled state-of-the-art technologies have expanded substantially and shown effective results in almost every industry, such as security (Wu et al., 2020), surveillance, health (Davenport and Kalakota, 2019), automobiles (Manoharan, 2019), fitness tracking (Fietkiewicz and Ilhan, 2020), and smart homes (Gochoo et al., 2021). In general, AI and machine learning (ML) are correlated. They are primarily used to develop intelligent systems (Das et al., 2015). Deep learning (DL) is a type of ML that allows computers to learn from data representation with more neural levels. Convolutional neural networks (CNN) have revolutionized image, video, and audio processing, and recurrent neural networks (RNN) have gained insight into text and speech sequential data (LeCun et al., 2015). The design of any deep learning model must consider the choice of algorithm. Most sequential applications follow the RNN model (Iqbal and Qureshi, 2022), and it has the context of previous input but not the future context of the speech or text data. Bidirectional recurrent neural networks (Bi-RNN) extract the context of data in both forward and backward directions (Schuster and Paliwal, 1997).

The proposed research offers substantial contributions to text analytics and natural language processing (NLP), particularly focusing on the complex issue of classifying Arabic poetry meters. This study employed Arabic text without removing diacritics from the poetry dataset. The 14 meters of the Arabic poem were considered. Two meters were removed because of very little data compared to other meters. The RNN models such as long short-term memory (LSTM), gated recurrent units (GRU), and Bi-RNN models, such as bidirectional LSTM (Bi-LSTM), are used to implement the proposed study. Despite the long history of Arabic poetry, automated techniques for meter classification have not received much attention. The proposed study utilized a large dataset and advanced neural network models. The main contribution of the study is defined as follows:

	• Development of a DL framework utilizing TensorFlow for the categorization of Arabic poetry meter. The framework is specifically designed to categorize Arabic poetry meters, a field that presents linguistic and structural difficulties because of the complexity and variety of the Arabic language.
	• Employing character-level encoding to transform text into integers for efficient categorization. This encoding enables the model to discern complex language patterns and nuanced differences at the character level, facilitating more efficient classification.
	• To strengthen the robustness and usefulness of the classification methodology, the study employed both full-verse and half-verse types of Arabic poetry. This analysis allows the model to accurately identify poetry of diverse lengths and structural complexities, offering a thorough comprehension of Arabic poetic traditions.
	• The research conducts an extensive assessment of several DL architectures, including LSTM, GRU, and Bi-LSTM, to determine the most efficient model for Arabic meter categorization. The Bi-LSTM model exhibited exceptional performance, attaining the greatest classification accuracy and highlighting its proficiency in managing the sequential and contextual intricacies of Arabic poetry.
	• The findings of the study highlight the efficacy of DL techniques in tackling the complex nature of Arabic poetry meter classification. The research utilizes neural architectures and encoding methodologies to provide useful insights into the adaptation of existing NLP methods for the linguistically rich and morphologically complicated Arabic language.

The remaining section of this paper is organized into five sections. Section 2 explains the literature review, including Arabic meter and DL models. Section 3 describes the methodology used and the model algorithm. Section 4 presents the results in detail, with a discussion in section 5. Section 6 describes the conclusion with future study.



2 Literature review

Alnagdawi et al. (2013) used another tool for language recognition to find the meter of Arabic poems. This tool works in three steps: first, it converts poetry into Arud form. The second step is the segmentation of the Arud form. In this phase, the Arud state is divided into sounds, such as short sounds, vowel or long sounds, and consonants. The sound string was sent to the final stage at the end of the second step, and the poetry meter was detected. It is compared with grammar to check its validity. If the grammar is valid, the verse belongs to 16 meters. The meter patterns match the poem’s words, identifying the meter’s name.

A considerable body of literature is on recognizing Arabic poetry using deep learning algorithms. Baïna and Moutassaref (2020) developed an algorithm that accurately identifies the meter of the poem and outputs the ‘Arud’ writing in addition to the meter. The algorithm follows five phases. First, it adds diacritics to the verse. This step is significant as it might impede moving to the next step. Second, it transforms the diacritics into ‘Arud’ writing. Third, it utilizes binary representation to convert the ‘Arud’ writing, where 1 represents a ‘haraka’ and 0 illustrates a ‘sukon.’ Fourth, the algorithm identifies the meter based on the binary representation. The fifth and final step includes detecting the errors and ensuring the meter matches the poem.

Furthermore, Albaddawi and Abandah (2021) proposed a narrow, deep neural network with significantly high accuracy. The proposed network consists of an embedding layer at its input, five Bi-LSTM layers, a concentration layer, and an output layer with softmax activation. Similarly, Abandah et al. (2020) suggested improving the recognition of diacritics via a specific neural network. This strategy tries to enhance readability and recognition accuracy. Moreover, identifying the meter of an Arabic poem may be a long and complicated process that involves a few steps (Al-shaibani et al., 2020). A study by Ahmed et al. (2019) utilized ML algorithms to identify and classify Arabic texts. The study supports linear vector classification and naïve Bayes classification, which showed the highest precision. Many studies have been conducted on analyzing Arabic poetry. Formulating one system or technique to identify meters in Arabic poetry is challenging. A study on identifying Arabic poetic meter (Saleh and Elshafei, 2012) suggested a method that produces coded Al-Khalili transcriptions of Arabic.

Abuata and Al-Omari (2018) electronically analyzed the Arud meter of Arabic poetry. They introduced an algorithm to determine the meter of Arud for any Arabic poetry. The algorithm works on well-defined rules applied only to the first part of the poem verse. Moreover, some of the most outstanding works in Arabic poetry are the computerization of Arabic poetry meters (Khalaf et al., 2009). It focuses on computerizing El-Katib’s method for analyzing Arabic poetry. The linguist El-Katib proposed a study in which poetry is converted into binary bits and given decimal codes. This system was helpful for educational purposes. Many students and teachers use it to understand prosody. The computerized and systematic analysis of prosody also minimizes the chance of error.

Attempts have been made to develop algorithms that recognize modern Arabic poetry meters (Abandah et al., 2022; Abandah et al., 2020; Al-shaibani et al., 2020). For instance, an algorithm has been introduced to identify standard features of classical Arabic poems (Zeyada et al., 2020). These features include rhyme, rhythm, punctuation, and text alignment. This algorithm can only recognize whether the Arabic piece is poetic or non-poetic but cannot acknowledge its meter. Furthermore, an algorithm has been developed to detect the Arabic meter of certain poetry and convert the verse into ‘Arud’ writing (Al-Talabani, 2020). It classifies Arabic poetry using meters or ‘Bahr’ and investigates methods of detecting Arabic poems in rhythm, rhyme, and meter. It utilizes time and non-time series representation of the Mel-frequency cepstral coefficients (MFCC) and linear predictive cepstral coefficients (LPCC) features to recognize automated ‘Arud’ meters. Arabic ‘Arud’ meters seem to possess a time-series nature; however, the non-time series representation performs better.

Another detection method includes a comparison that has been conducted between modern and classical Arabic poetry (Almuhareb et al., 2015). The results reveal that contemporary Arabic poetry lacks more distinctive features than classical poetry. For instance, modern Arabic poetry is characterized by partial meter, the uneven lining of verses, word repetition, usage of punctuation, and irregular rhyming. At the same time, classical Arabic poetry is characterized by a regular rhyme, a single meter, even lining of verses, and self-contained lines. Similarly, Berkani et al. (2020) notes that extracting the meter of the poem using automatic meter detection methods requires challenging data collection and processing efforts. Syllable segmentation and similarity checks are performed. This method has further proven the high accuracy of meter detection. Finally, creating detecting algorithms may considerably improve the efficiency and accuracy of Arabic poetry identification methods.

The LSTM model is one of the most widely used RNN systems for vanishing gradients (Hochreiter and Schmidhuber, 1997). In addition, these networks have several advantages compared to conventional RNN systems, including the ability to sustain prolonged interrelationships and exhibit a stochastic nature when dealing with time-series input data. With RNN or LSTM, the uniform weight is retained across all layers, limiting the number of parameters the network must learn. The LSTM model had more parameters, which made it slower.

Later, GRUs were proposed as a better alternative to LSTMs and have gained significant recognition (Cho et al., 2014). In addition, GRUs have been recognized to be effective in numerous applications using sequential or time-series input (Dey and Salem, 2017). For instance, they have been incorporated in diverse areas such as speech synthesis, NLP, and signal processing. Furthermore, LSTM, RNNs, and GRUs have been exhibited to operate better in long-sequence applications. In GRUs, gating network signaling plays a significant role as it controls how inputs and memory are used to update current activations. Each gate has weights that are adapted and modified in the learning phase. However, these systems enable effective learning in RNNs, increasing parameterization. It leads to a simpler RNN model with a higher computational cost. The LSTM and GRU differ because the former utilizes three novel gate networks, whereas the latter uses only 2.

The Bi-LSTM neural network comprises LSTM units that operate in both directions to exploit contextual information from the past and future (Liang and Zhang, 2016). In addition, with Bi-LSTM, long-term dependencies can be learned without maintaining redundant background information. Thus, it has projected significant performance for sequential modeling issues and is generally used for text classification (Huang et al., 2015; Al-Smadi, 2024). Bi-LSTM networks transmit forward and reverse phases in both directions, unlike LSTM networks, which communicate only in one direction.

Many NLP sequences-to-sequence methods use LSTM, GRU, Bi-LSTM, and Bi-GRU deep learning models (Liang and Zhang, 2016; Wazery et al., 2022; Yin et al., 2017; Huang et al., 2015). In recent years, ML has become a formidable method for text analysis, exhibiting adaptability across several applications. Diverse ML methodologies have been effectively utilized in tasks such as dialect detection, spam detection, poetry classification, text classification, and sentiment analysis (Ahmed et al., 2019; El Rifai et al., 2022; Chen et al., 2022; Abdulghani and Abdullah, 2022; Alqasemi et al., 2021; Zivkovic et al., 2021), demonstrating their proficiency in managing intricate textual data.

An important use of ML is sentiment categorization, employed for the identification of insider threats. Recent studies by Mladenovic et al. (2024) have illustrated that sentiment analysis can be augmented through optimized classifiers, thereby enhancing the precision of threat detection in organizational contexts. In spam email screening, NLP combined with ML has shown success (Bacanin et al., 2022). It explains how swarm intelligence can maximize conventional ML techniques, thereby improving user experience and spam detection accuracy. Another study by Kozakijevic et al. (2024) examined the incorporation of sentiment analysis in e-commerce, highlighting its significance in assessing seller reputation and influencing consumer choices. They attained a maximum accuracy of 88% by integrating transformer embeddings with an efficient extreme gradient boost model, refined via a modified firefly approach.



3 Materials and methods

The methodology of the study is shown in Figure 1. The key phases of the study include fetching the dataset, preprocessing and splitting the data, and developing and applying the DL models. The results were evaluated using a combination of accuracy, precision, recall, and the F1 score.

[image: Flowchart illustrating an Arabic poem classification process. It starts with an Arabic poem dataset, proceeds to data preprocessing involving cleaning, vocabulary building, and character encoding. The data is divided using a Train-Validate-Test split of seventy-fifteen-fifteen, followed by the development of classification models with parameter tuning. The model is then deployed, with performance evaluation measuring accuracy, precision, recall, and F1-score.]

FIGURE 1
 Overview of the research methodology.



3.1 Dataset and preprocessing

The dataset contains 1,862,046 verses with 22 meters (Yousef et al., 2019). The data are in a well-structured format. The central 16 meters consist of a data size of 1,647,854. Two meters with fewer verses are avoided when classifying the meters. After eliminating the empty cells, the total number of verses in the 14 meters of data, which include both right and left verses, is 1,646,771. The count of each meter label with a full-verse is depicted in Figure 2. The minimum count is for the Mutadarik meter, 4,507 verses, and the maximum is for the Tawil meter, 398,239 verses. To address data scarcity for certain meters and improve the robustness of the models, half-verse data were doubled during training by treating the left and right verses of each meter as independent samples.

[image: Bar chart titled "Frequency Histogram of Target Labels" showing counts of various labels. "Tawil" and "Kamil" have the highest counts around 400,000 and 350,000 respectively. Other labels like "Basit" and "Wafir" have lower counts, with "Mutadarik" and "Mutaqarib" being the least frequent.]

FIGURE 2
 Full-verse count of the 14 meters in the dataset.


The dataset underwent a thorough cleaning process to enhance its quality and suitability for deep learning. Non-Arabic characters, symbols, and other irrelevant text artifacts were systematically removed. This step ensured that only meaningful linguistic content remained, aligning the dataset with the methodological requirements. The preprocessing methodology closely follows the approach described in Al-shaibani et al. (2020) including the construction of a character-level vocabulary. The character-level encoding uses the index value for each cleaned text and implements DL models. Parameter tuning was conducted for each deep learning model to optimize performance, with attention to hyperparameters such as learning rate, batch size, and sequence length. The data are split into 70% training and 15% validation; the remaining 15% are set as unseen data for testing.



3.2 Deep learning models

This study uses the deep neural network (DNN) architecture. The two main architectures of DNN are RNN and CNN (Yin et al., 2017). LSTM, GRU, and Bi-LSTM are models under RNN (Sherstinsky, 2020). The base model for LSTM consists of four layers. The first layer of the sequential model is the input layer with the size of the padded sequence, which is then given to the embedding layer with the output dimension kept as 64. The embedding layer will learn how to map the characters to vectors. The output from the embedding layer is fed into the LSTM layer with units 256, recurrent, and the activation function is set as the default. The LSTM layer is added accordingly to increase the hidden layers. At this moment, the return sequence parameter should be set as ‘True.’ The GRU model is like the LSTM model. In both models, sentence processing is only in one direction.

The LSTM layer is depicted in Figure 3. It allows the model to store the information for future access and has a hidden state: short-term memory. There are three gates for LSTM such as input (it), output (Ot), and forget gate (ft). A time step is indicated by the subscript ‘t.’ The LSTM has three inputs: an input vector at the current time stamp (Xt), a cell or memory state vector (Ct-1), and a hidden state vector at the previous time stamp (ht-1). The symbol ‘×’ denotes the element-wise product or the Hadamard product. [image: Mathematical expression with a tilde over an uppercase "C" followed by a subscript "t", indicating a modified or transformed variable in a time-dependent context.]is the cell state activation vector or the candidate memory vector (Harrou et al., 2021).

[image: Diagram of a Long Short-Term Memory (LSTM) cell showing data flow and operations. Includes components like input \( x_t \), hidden states \( h_{t-1} \), \( h_t \), and cell states \( c_{t-1} \), \( c_t \). Displays operations such as sigmoid and tanh functions, with multiplication and addition nodes for gates: forget \( f_t \), input \( i_t \), and output \( o_t \). Arrows indicate the direction of data processing, highlighting the computation process within the LSTM cell.]

FIGURE 3
 Internal architecture of the LSTM layer.


As a first step, what information the cell state should discard should be determined. It is accomplished by the sigmoid activation function (σ) in the forget gate and applies the sigmoid function to the current input vector Xt and the past hidden state vector ht-1 as shown in Equation 1. Input activations activate memory cells through input gates.

[image: Equation showing the forget gate activation in an LSTM cell: \( f_t = \sigma(w_f X_t + u_f h_{t-1} + b_f) \).]

where ft = forget gate, wf and uf are the weight matrices of the forget gate, Xt is the actual input, bf is the bias vector, ht-1 is the hidden state output from the previous time stamp, and σ is the sigmoid activation function. The result from Equation 1 is in the range of 0 and 1. The element-wise product of Ct-1 and ft decides what information to retain and forget.

The second step is to update the memory cell with an input gate as shown in Equation 2. The sigmoid function indicates two values: if it is 1, the actual data are unchanged, and if it is 0, it will be dropped. A tanh function is applied to the selected input values, which indicates a range from −1 to +1. It creates a new vector of values, a candidate memory cell (Equation 3).

[image: Equation represents a computation in a neural network: \( i_t = \sigma(w_i X_t + u_i h_{t-1} + b_i) \) with sigma applying activation to weighted inputs and bias.]

where it = input gate, wi and ui are the weight matrices of the input gate, bi is the bias vector, Xt is the actual input, ht-1 is the hidden state output from the previous time stamp, and σ is the activation function.

[image: Equation showing \(\tilde{C}_t = \sigma(w_cX_t + u_ch_{t-1} + b_c)\), labeled as equation three.]

where [image: Mathematical notation showing a capital C with a tilde over it, followed by a subscript t.]= candidate memory cell, wc and uc are the weight matrices, bc is the bias vector, Xt is the actual input, ht-1 is the hidden state output from the previous time stamp, and σ is the activation function.

The following step involves updating and converting the previous cell state Ct-1 to the new Ct. Equation 4 is defined as:

[image: Equation showing C subscript t equals f subscript t times C subscript t minus 1 plus i subscript t times C tilde subscript t, noted as equation 4.]

where ft = forget gate calculated from Equation 1, Ct-1 is the memory state vector of the previous time stamp, it = input gate calculated from Equation 2, and [image: Mathematical notation showing the letter "C" with a tilde over it and a subscript "t".]is the candidate memory cell from Equation 3.

The final stage is to decide what portion of the output will be selected. It is done in two steps. First, the sigmoid function is performed with the input to determine the quantity of cell state to transmit as the output (Equation 5). The tanh operation is then applied to the new cell state Ct, and the sigmoid result is multiplied by the result (Equation 6). Thus, the outcome is based only on the selected portions.

[image: The equation shown is \( O_t = \sigma(w_o X_t + u_o h_{t-1} + b_o) \), with the number 5 in parentheses, representing a mathematical expression involving variables \( O_t \), \( X_t \), \( h_{t-1} \), weights \( w_o \) and \( u_o \), bias \( b_o \), and the sigmoid function \(\sigma\).]

where Ot = output gate, wo and uo are the weight matrices of the output gate, bo is the bias vector, Xt is the actual input, ht-1 is the hidden state output from the previous time stamp, and σ is the activation function.

[image: Equation for \( h_t \) as the hyperbolic tangent of \( C_t \), multiplied by \( O_t \), labeled as equation six.]

where Ot = output gate calculated from Equation 5, and new cell state Ct calculated from Equation 4.

The GRU layer is illustrated in Figure 4. A reset gate and an update gate are two gates. However, the GRU requires fewer parameters to train than the LSTM model, which runs faster. The reset gate (Rt) regulates the amount of the initial state that needs to be remembered. Similarly, an update gate (Zt) enables us to assess how much the new form replicates the previous one. As each hidden unit reads/generates a sequence, these two gates control how much of it is remembered or forgotten (Harrou et al., 2021).

[image: Diagram of a Gated Recurrent Unit (GRU) cell showing input \( X_t \), previous hidden state \( h_{t-1} \), and output \( h_t \). It includes update gate \( Z_t \), reset gate \( R_t \), sigmoid \( \sigma \), and hyperbolic tangent \( \tanh \) functions, with operations such as multiplication and addition indicated.]

FIGURE 4
 Internal structure of GRU layer.


The reset gate performs similar functions to the forgotten gate of LSTM (Equation 7). It manages the short-term memory of the network. A decision is made regarding what information should be forgotten.

[image: Equation showing recurrent neural network computation: \( R_t = \sigma(w_r X_t + u_r h_{t-1} + b_r) \), labelled as equation (7).]

where Rt = reset gate, wr and ur are the weight matrices of the reset gate, br is the bias vector, Xt is the actual input, and ht-1 is the hidden state output from the previous time stamp.

The update gate manages the long-term memory of the network. It accomplishes a similar task as the forget and input gates of an LSTM. It determines what data should be removed and what new data should be added (Equation 8).

[image: Equation showing Z sub t equals sigma of the sum of w sub z times X sub t, plus u sub z times h sub t minus one, plus b sub z, enclosed in parentheses, labeled as equation 8.]

where Zt = update gate, wz and uz are the weight matrices of the update gate, bz is the bias vector, Xt is the actual input, and ht-1 is the hidden state output from the previous time stamp.

The hidden state ([image: Mathematical expression showing a lowercase "h" with a tilde symbol above it and a subscript "t".]) of the candidate is also called an intermediate memory unit, which combines the previously hidden state vector in the reset gate with the input vector (Equation 9).

[image: Equation showing the mathematical expression for \(\tilde{h}_t\). It states: \(\tilde{h}_t = \tanh(w_hX_t + u_h(R_t \cdot h_{t-1}) + b_h)\). It is labeled as equation (9).]

where [image: Mathematical symbol for \( \tilde{h}_t \), where \( h \) is a letter and the tilde and subscript \( t \) indicate a modified or transformed form of the variable.] = candidate hidden state vector, wh and uh are the weight matrices, bh is the bias vector, Rt = reset gate calculated from Equation 7, Xt is the actual input, and ht-1 is the hidden state output from the previous time stamp.

The final hidden state is determined based on the update gate and candidate hidden state. The update gate is multiplied elementwise and summed with the candidate vector (Equation 10).

[image: Equation showing: \( h_t = (1 - Z_t) \cdot h_{t-1} + \tilde{h}_t \cdot Z_t \) with equation number 10.]

where ht is the hidden state output, Zt = update gate calculated from Equation 8, ht-1 is the hidden state output from the previous time stamp, and [image: Mathematical notation showing the letter "h" with a tilde above it, followed by a subscript "t".] = candidate hidden state vector calculated from Equation 9.

The Bi-LSTM model processes the sequence in both directions of a text. One hidden layer is in the forward movement, and the other is backward. These LSTM layers are concatenated for the final output of the Bi-LSTM layer. Hence, unit 256 is doubled in this model. The return sequence parameter of LSTM is set to ‘True’ if two or more layers need to be added. The dropout parameter in the Bi-LSTM layer is set to 0.2, which helps prevent the training model from overfitting. The hidden layers are tuned from 1 to 3 in all three models. A better iteration of LSTM is the Bi-LSTM layer, which processes the sequence in forwarding and backward directions, as shown in Figure 5. The Bi-LSTM can understand the context better than the LSTM and GRU models (Li et al., 2020), as it processes input sequences in both forward and backward directions. This architecture builds upon the traditional LSTM model, enhancing its ability to capture dependencies in sequential data. In the Bi-LSTM framework, Xt and Xt + 1 are the input vectors at time frame t.

[image: Diagram illustrating a bidirectional LSTM neural network with two layers. The network processes input data \(X_t\) and \(X_{t+1}\) through forward and backward LSTM layers, combining outputs \(h_t\) and \(h_{t+1}\) to produce outputs \(y_t\) and \(y_{t+1}\). Arrows indicate data flow between components.]

FIGURE 5
 Bi-LSTM model architecture with two consecutive time frames.


While calculating the forward output sequence ([image: Mathematical notation showing \( \overrightarrow{h_t} \), representing a vector or directional quantity denoted by \( h_t \) with an arrow above.]), the positive sequence is used, and when calculating the backward output sequence, ([image: Mathematical expression showing the letter "h" with a subscript "t" and a vector notation indicated by an arrow above.]), the reverse inputs are used. The output vector, yt, is obtained by combining the forward and backward output sequences (Equation 11).

[image: Equation showing \( y_t = f(\overline{h}_t, \underline{h}_t) \) with reference number (11).]

where [image: A lowercase "h" with a subscript "t" is shown with an arrow pointing over the top, indicating it is a vector or sequence indexed by time "t".] is the forward output sequence and [image: Mathematical symbol depicting lowercase h with a bar overhead and subscript t.] is the backward output sequence. The symbol ‘ʃ’ can have different operations, such as summation, multiplication, concatenation, and average function. The default function in TensorFlow is concatenation.

The optimizer used for the compilation is adaptive moment estimation (Adam). This memory-light optimization algorithm works well with large datasets (Kingma and Jimmy, 2014). As the method label-encoder provides a sparse array of targets, the loss function uses a sparse-categorical cross-entropy.


3.2.1 Hyperparameter tuning

The tuned parameters are the hidden layer and learning rate for the above models. The hidden layers are tuned from 1 to 3 in all three DL models. EarlyStopping is used in the callback application programming interface (API) of the TensorFlow model to stop overfitting the models. In this, the parameter ‘patience’ is set to 6, so the training will terminate if the validation loss function does not decrease after six epochs. Another function used is ReduceLROnPlateau. The monitoring parameter of this function is set to validity loss, patience is 3, and the minimum learning rate is 1.0*10–6. It indicates that if the loss value does not change after two epochs, the learning rate value decreases by 0.1. Thus, the new rate for the next epoch will be 0.1 times the previous rate. The most accurate model is chosen based on the accuracy of the validation set, and it is then applied to the test set.




3.3 Evaluation metrics

Accuracy, precision, recall, and f1-score are the metrics used to assess the classification model on the test data. For each technique, the confusion matrix is also considered. Accuracy might not be a complete metric for unbalanced data (Sturm, 2013). Therefore, precision, recall, and F1-score are also used (Grandini et al., 2020; Tharwat, 2020). The precision determines how many predicted samples are relevant (Equation 12). Recall computes how many relevant samples are predicted (Equation 13). Calculating the harmonic mean of recall and precision yields an F1-score (Equation 14). Precision is also called a positive predictive rate (PPR), and recall is known as sensitivity. Accuracy is the total sample count that was successfully predicted (Equation 15). Four performance measures are calculated using the following formulas.

[image: The formula for precision is shown as TruePose divided by the sum of TruePose and FalsePose. It is labeled as equation twelve.]

[image: Recall formula is displayed as: Recall equals True Positives divided by the sum of True Positives and False Negatives. This is equation number thirteen.]

[image: F1-Score is calculated as the fraction with numerator two times True Positive and denominator as the sum of two times True Positive, False Positive, and False Negative.]

[image: Accuracy is calculated by the formula: (TruePositives + TrueNegatives) divided by (TruePositives + TrueNegatives + FalsePositives + FalseNegatives), labeled as equation fifteen.]

where TruePose is a true positive, TrueNega is a true negative, FalsePose is a false positive, and FalseNega is a false negative. When the model correctly predicted the positive label, the result was considered TruePose. Similarly, if the model predicts a negative label correctly, the outcome is TrueNega. On the other hand, FalsePose is calculated based on the incorrectly predicted positive label, and FalseNega is based on the incorrectly predicted negative label.




4 Results

Neural networks formed the foundation of the classification models of the study, with DL techniques preferred due to the substantial volume of data involved. The experiments were conducted on a system running 64-bit Windows 10, equipped with an Intel® Core™ i7-4770K CPU at 3.50 GHz, 16 GB of RAM, and an NVIDIA GeForce GTX 1080 Ti GPU. The development environment utilized Python 3.9 and incorporated libraries such as TensorFlow 2.7 for implementing the DL models, Scikit-learn 1.0 for data preprocessing and evaluation, and PyArabic 0.6.14 for handling Arabic text processing (Abadi et al., 2016). This computational setup enabled efficient training and testing of the models, contributing to the high accuracy achieved in classifying the meters of classical Arabic poetry. The diacritics are not removed for both the full-verse and half-verse data.


4.1 Training and testing using full-verse data

The full-verse data are split according to 70% for training, 15% for validation, and 15% for testing. The validation accuracy according to the hidden layers is tabulated in Table 2 for the full-verse data. In addition, the number of parameters the model uses for training is specified (in millions). The trainable parameter also increases; hence, the time taken to complete the execution also increases. The training epochs are set to 60 for all the models. Callback applications such as EarlyStopping and ReduceLROnPlateau evaluate whether the model overfits. The validation loss is the parameter to check in the ReduceLROnPlateau function. If the loss value is found stable for three epochs, then the learning parameter is increased. For the EarlyStopping function, the program stops where it finds the loss value increases from the previous value or is stable for approximately six epochs. The training epochs in Table 2 show the number of epochs each model took without overfitting the data. The LSTM, GRU, and Bi-LSTM models perform better at three layers. Moreover, compared to the three models, the Bi-LSTM shows an accuracy of 97.53%.



TABLE 2 The results of increasing the layers of each model on the test accuracy of full-verse data.
[image: Comparison table of three neural network models: LSTM, GRU, and Bi-LSTM. Each model is evaluated with one to three hidden layers. Metrics include parameters in millions, accuracy, training epochs, and training time in hours. LSTM achieves the highest accuracy of 0.9737 with three hidden layers. GRU shows a maximum accuracy of 0.9726 with three layers and the longest training time is 455.93 hours. Bi-LSTM reaches a peak accuracy of 0.9753 with three layers, requiring 25 epochs over 442.50 hours.]

The training and validation loss and accuracy of the Bi-LSTM with three layers are depicted in Figure 6. The training loss indicates how well a DL model fits the training set. Validation loss measures the performance of the validation set. Accuracy increases as the loss value decreases.

[image: Left chart shows training and validation accuracy over 25 epochs, both reaching above 0.98. Right chart shows training and validation loss, both decreasing and stabilizing around 0.1.]

FIGURE 6
 Training and validation plot of Bi-LSTM with three layers. The left side shows the accuracy, and the right shows the loss values for each epoch.


The confusion matrix of the Bi-LSTM three-layer model is shown in Figure 7. The model was tested with the remaining 15% of unseen data. All the labels show good model fitting, and there was no overfitting or underfitting problem with the model performance.

[image: Confusion matrix displaying predicted versus true labels for multiple categories, with a diagonal pattern of darker blue squares indicating accurate predictions. Labels on the axes include Basīṭ, Khafīf, Rajaz, Ramal, and others. A color scale from light to dark blue represents values from zero to 0.8.]

FIGURE 7
 Confusion matrix of three hidden layers of the three-layer Bi-LSTM model.


The complete details of the model performance are shown in Table 3. The precision, recall, accuracy, and f1-score of each meter or label are evaluated. The basit and tawil meters show the highest accuracy of 99%. The low performance is demonstrated by the hazaj meter with 80% accuracy.



TABLE 3 Performance measure of the Bi-LSTM model with test data.
[image: A table showing performance metrics for different meters, including Basit, Khafif, Rajaz, Ramal, Sari, Tawil, Kamil, Mutadarik, Mutaqarib, Mujtath, Madid, Munsarih, Hazaj, and Wafir. Metrics include Precision, Recall, F1-score, and Accuracy, with values ranging from 0.80 to 0.99.]



4.2 Training and testing using half-verse

The study also implemented the model based on the half-verse data without removing diacritics. The half-verse data count is double the number of full-verse data, and the data are split into 70% training, 15% validation, and 15% testing. The hidden layers are tuned from one to three as shown in Table 4. Increasing the layers increases the parameters to train the model. In addition, the time to complete the training increases according to hidden layers. Even though the Bi-LSTM model exists in 31 epochs, it took approximately 11 h to complete the execution.



TABLE 4 The results of increasing the layers of each model on the test accuracy of half-verse data.
[image: Comparison table of LSTM, GRU, and Bi-LSTM models based on hidden layers, parameters in millions, accuracy, training epochs, and training time in hours. LSTM has one to three hidden layers with accuracy ranging from 0.9465 to 0.9509. GRU features similar hidden layers with accuracy from 0.9455 to 0.9470. Bi-LSTM shows highest accuracy at 0.9523 with three hidden layers. Training times increase with more layers across all models.]

The best model is Bi-LSTM, with 95.23% accuracy. The training and validation accuracy and loss values are shown in Figure 8. Both the loss and accuracy are inversely proportional to each other. The model exits from the iteration if the loss value is stable for six epochs.

[image: Two line graphs depict training and validation metrics over 35 epochs. The left graph shows accuracy, where both training (blue) and validation (red) accuracies increase, peaking near 0.96. The right graph shows loss, with training (blue) and validation (red) losses decreasing, stabilizing below 0.20.]

FIGURE 8
 Training and validation plot of Bi-LSTM with three layers in half-verse. The left side shows the accuracy, and the right shows the loss values for each epoch.


The confusion matrix and the complete details of the target meters results are shown in Figure 9 and Table 5, respectively.

[image: Confusion matrix showing true versus predicted labels for various categories, with a color gradient indicating accuracy levels. Darker blue signifies higher accuracy. Labels include Basīṭ, K͟h̲afīf, Rajaz, and others along both axes, with a prominent diagonal pattern indicating accurate predictions.]

FIGURE 9
 Confusion matrix of half-verse Bi-LSTM model.




TABLE 5 Performance measure of the Bi-LSTM model with test data.
[image: A table lists performance metrics for various meters, detailing precision, recall, F1 score, and accuracy. For instance, 'Basit' scores 0.98 for all metrics, while 'Hazaj' shows lower precision at 0.71 and F1 score at 0.74, but has a recall of 0.77. The table compares thirteen different meters.]

The model shows better performance as seen in Table 5. The highest class accuracy is demonstrated by the basit and tawil meters with 98% accuracy. The lowest performance is shown by the hazaj meter, which has 74% accuracy.




5 Discussion

The Bi-LSTM model predicts the data better when compared with LSTM and GRU. This model’s sequence learning is in both directions, from left to right and right to left. GRU trains faster than LSTM, with fewer training parameters than LSTM (Atassi and El Azami, 2022). Few studies have been done on Arabic poetry, including the diacritization of the text data. The study by Abandah et al. (2022) showed a Bi-LSTM model with automatic diacritization. The results show a 42% improvement in the error rate of diacritization. The study by Alqasemi et al. (2021) was based on machine learning algorithms and a diacritic text. An accuracy of 96.34% was achieved using support vector machines (SVM). Another study by Al-shathry et al. (2024) employed a balanced dataset by randomly choosing 1,000 poem verses for each meter. Their study achieved 98.6% accuracy, but 90% precision, recall, and f1-score value with the Bi-GRU model.

The proposed study can be compared with the studies by Abandah et al. (2020) and Al-shaibani et al. (2020). With five hidden layers, Al-shaibani et al. (2020) reached an accuracy of 94.32% with the bi-directional GRU (Bi-GRU) model and 14 target meters. The model also attains 88.8% accuracy for half-verse data. With four hidden layers, the Bi-LSTM model by Abandah et al. (2020) achieved an accuracy of 97% without removing diacritics and 97.27% with removed diacritics. They use 16 meters as target classes. The study carried out by Yousef et al. (2019) used seven hidden layers for the Bi-LSTM model and achieved an accuracy of 96.38%. In the proposed research, the number of verses is much higher than in the study done by Al-shaibani et al. (2020). In addition, the number of hidden layers is less than in all three studies. The comparison of Arabic meter studies is mentioned in Table 6.



TABLE 6 Comparison between related studies in literature and the proposed study.
[image: Table comparing different studies and their techniques, dataset sizes, accuracy, and F1-score. Techniques include Bi-GRU-5, Bi-LSTM-4, Bi-LSTM-7, and Bi-LSTM-3. The proposed work uses Bi-LSTM-3 with a dataset of 1,646,771 verses, achieving 97.53% full-verse accuracy and 95.23% half-verse accuracy, with F1-scores of 0.98 and 0.95, respectively. Other studies show varying results.]

The studies (Abandah et al., 2020; Yousef et al., 2019) employed the identical dataset as the proposed study, although it documented varying verse counts. This suggests that although the dataset is uniform, discrepancies in verse counts may influence model efficacy. The models employed in the compared research, Bi-LSTM with four and seven layers, attained competitive accuracy rates; nevertheless, the proposed Bi-LSTM model with three layers surpassed them across all criteria. The study by Al-shaibani et al. (2020) utilized a distinct dataset; however, it similarly extracted poems from the ‘Aldiwan’ website. The Bi-GRU model employed in the mentioned study (Al-shaibani et al., 2020) shows worse performance measures relative to the proposed study findings. The variations in dataset construction and model design certainly led to the noted performance variances.

In the proposed study, the Bi-LSTM model with three hidden layers performs better than one or two hidden layers without removing diacritical text. In addition, it better predicts than the LSTM and GRU models for both full-verse and half-verse data. LSTM cannot use future tokens nor can local contextual information be extracted. This problem can be resolved using Bi-LSTM, which learns the sequence in forward and backward directions. GRUs are faster to train than the LSTM model but lack the output gate. The model achieved an accuracy of 97.53% for the full-verse data and 95.23% for the half-verse data.

The results of the study suggest that the number of hidden layers significantly impacts the performance of the Arabic meter classification model using Bi-LSTM. The study achieved better accuracy in Arabic meter classification using Bi-LSTM models with three hidden layers than previous studies that used Bi-LSTM models with four and seven hidden layers. It suggests that increasing the number of hidden layers beyond a certain point may not always lead to better performance and that optimizing the number of hidden layers can be a crucial factor in achieving high accuracy.

A few baseline ML models were utilized in this study to evaluate their performance in comparison with the DL architectures used for the Arabic poetry meters’ classification. It includes a decision tree (DT), random forest (RF), k-nearest neighbors (KNN), and extra tree (ET) classifier. These classifiers serve as effective benchmarks for evaluating the performance of more complex models. The DT model yielded an accuracy of 46% with an F1-score of 0.30, and KNN achieved 30% with a 0.20 F1-score, while the ensemble models RF and ET achieved 58 and 53% accuracy as well as 0.50 and 0.56 F1-score values, respectively.

The comparison with baseline models underscores the efficacy of the DL methodologies utilized in the proposed study. Although baseline models serve as a valuable foundation, advanced models (Bi-LSTM) exhibit significant enhancements in accuracy and overall performance. This highlights the need to employ DL methodologies for intricate tasks such as Arabic poetry meter classification, where conventional models might struggle to grasp the complex nature of the data.


5.1 Practical implications

The findings of the proposed study on the categorization of Arabic poetry meter using DL models have substantial practical applications in several fields. This research enhances NLP, text analytics, and cultural heritage preservation by attaining high accuracy in the classification of full and half verses of Arabic poetry.

	• Accurate classification of Arabic poetry meters helps preserve Arabic literary legacy. Automating the study of poetic structures helps scholars and cultural organizations to better classify historical data, therefore guaranteeing their availability for the next generations.
	• The proposed DL system may be included in learning environments to support academics and students in comprehending Arabic poetry. By giving instantaneous feedback and poetic work analysis, interactive technologies that use meter classification can improve learning opportunities and help increase the importance of Arabic literature.
	• Other kinds of Arabic literature can be examined using the approach developed in this study. Adapting the models to several literary genres allows scholars to investigate structures and patterns that define distinct kinds of Arabic literature, therefore enhancing the knowledge of the literary scene of the language.
	• Using the knowledge acquired from the proposed study, NLP practitioners may increase the performance of the model in processing the Arabic text, therefore enhancing its applicability in fields such as social media analysis and automatic content development.




6 Conclusion

This study presents a significant advancement in the automatic classification of classical Arabic poetry meters using deep learning techniques. By utilizing a substantial dataset of 1,646,771 verses without removing diacritics, the Bi-LSTM models with three hidden layers were developed and evaluated. The Bi-LSTM model outperformed traditional LSTM and GRU models, achieving an accuracy of 97.53% on full-verse data and 95.23% on half-verse data. These results surpass those of previous studies that employed models with more hidden layers or smaller datasets.

The superior performance of the Bi-LSTM model underscores its effectiveness in capturing the complex rhythmic and phonetic patterns inherent in classical Arabic poetry. The ability of Bi-LSTM to process sequences in both forward and backward directions allows for a more comprehensive understanding of the linguistic structures involved. Importantly, retaining diacritics in the text preserved essential phonetic information, which proved crucial for accurate meter classification.

The findings of the study make a substantial contribution to computational linguistics and natural language processing, particularly in the context of Arabic language studies. The high accuracy achieved demonstrates the potential of the model for practical applications, such as automated literary analysis and educational tools that enhance the study and appreciation of Arabic poetry. This study also aligns with the Sustainable Development Goals by promoting quality education and fostering innovation in language technology.


6.1 Limitations and future studies

The proposed study performs better with half-verse and full-verse Arabic poems. It indicates that although the average accuracy is elevated, some classes, especially those corresponding to meters with fewer verses, demonstrate diminished precision and recall. Future studies must concentrate on these underrepresented categories to enhance their classification efficacy. This can be accomplished using specific data augmentation procedures, such as the generation of synthetic examples of certain meters or the application of oversampling techniques to equilibrate the dataset.

Although several DL models were evaluated, their hyperparameters, such as optimizers and the number of units in layers, were not extensively tuned. Hyperparameter selection may greatly affect the model’s performance. Future studies should consider using methodical hyperparameter tuning strategies to improve model performance. Another scope of future studies is to investigate the influence of other linguistic attributes on meter classification. It includes semantic and syntactic structure analysis.
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Introduction: Post-editing plays a crucial role in enhancing the quality of machine-generated translation (MGT) by correcting errors and ensuring cohesion and coherence. With advancements in artificial intelligence, Large Language Models (LLMs) like ChatGPT-4o offer promising capabilities for post-editing tasks. This study investigates the effectiveness of ChatGPT-4o as a natural language processing tool in post-editing Arabic translations across various domains, aiming to evaluate its performance in improving productivity, accuracy, consistency, and overall translation quality.
Methods: The study involved a comparative analysis of Arabic translations generated by Google Translate. These texts, drawn from multiple domains, were post-edited by two professional human translators and ChatGPT-4o. Subsequently, three additional professional human post-editors evaluated both sets of post-edited outputs. To statistically assess the differences in quality between humans and ChatGPT-4o post-edits, a paired t-test was employed, focusing on metrics such as fluency, accuracy, coherence, and efficiency.
Results: The findings indicated that human post-editors outperformed ChatGPT-4o in most quality metrics. However, ChatGPT-4o demonstrated superior efficiency, yielding a positive t-statistic of 8.00 and a p-value of 0.015, indicating a statistically significant difference. Regarding fluency, no significant difference was observed between the two methods (t-statistic = −3.5, p-value = 0.074), suggesting comparable performance in ensuring the natural flow of text.
Discussion: ChatGPT-4o showed competitive performance in English-to-Arabic post-editing, particularly in producing fluent, coherent, and stylistically consistent text. Its conversational design enables efficient and consistent editing across various domains. Nonetheless, the model faced challenges in handling grammatical and syntactic nuances, domain-specific idioms, and complex terminology, especially in medical and sports contexts. Overall, the study highlights the potential of ChatGPT-4o as a supportive tool in translation post-editing workflows, complementing human translators by enhancing productivity and maintaining acceptable quality standards.
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Introduction

Machine translation (MT) has a significant role in facilitating communication and enhancing global interactions. This role has gained more attention in various contexts, driven by remarkable natural language processing technology advancements that enabled more efficient translation (Raj et al., 2023). However, MT outputs must be post-edited to ensure their desired quality and meet productivity standards. Translation post-editing (TPE) is a critical step in the translation process that involves reviewing and refining machine-translated content. Post-editing is not a recent trend, and it emerged in the earlier days of MT (Vieira, 2019). Recently, post-editing MT gained considerable interest as a service and research topic due to the advancements in translation technology. Post-editing implies correcting grammatical errors in vocabulary, improving sentence structure, adjusting tone and style, ensuring cultural appropriateness, and refining the translation to align with the intended purpose and audience (Daems et al., 2013; Vardaro et al., 2019). Moreover, it allows for a more customized and tailored approach to translation, as post-editors can adapt the output to meet specific clients. According to Allen (2001), post-editing is correcting and refining the machine-generated translation (MGT) after translation from a source to a target language.

There are several types of post-editing, each catering to the number of corrections, efforts, and objectives required to achieve the desired translation. An early study on post-editing typology by Laurian (1984) proposed two types of post-editing: rapid post-editing and conventional post-editing. The former involves correcting the translated texts without paying attention to the translation style, while the latter implies deep correction to produce a human-like translation.

Allen (2003) suggests two types of post-editing: minimal and complete PEs. Minimal PE is for quick review, focusing mainly on critical errors and ensuring essential language accuracy, controlled by limited time and budget. However, complete PE aims to perform deep corrections closely resembling human translation standards.

van Egdom and Pluymaekers (2019) and Vieira (2017) established four levels of post-editing: “minimal,” “light,” “moderate,” and “full,” precisely. For post-editing quality guidelines, the Translation Automation User Society (TAUS, 2010) differentiates between two standards of expected target-text quality: “good enough” quality and quality “similar or equal to human translation.” Indeed, these criteria almost correspond to “light” and “full” post-editing, respectively (Massardo et al., 2016). The TAUS guidelines stress that the level of post-editing depends on the deliberate purpose of the text and the quality of the raw MT output, making the target quality a more consistent factor for post-editing guidelines. Post-editors have no strict instructions about the issues they need to focus on. These instructions differ depending on whether they aim for “good enough” or “human translation quality.” When machine translation (MT) errors impact meaning, for “good enough” quality, the focus is on semantics and comprehensibility, with less consideration given to syntactic or grammar. Conversely, post-editors should address style, syntax, grammar, and formatting issues when focusing on human translation quality. Additionally, they should handle terms that need to remain in the original language but may have been translated by the MT system.

In MT, post-editing has two paradigms, including static and interactive. In the former, the machine generates translation in the first step and then edits it in the second. The latter implies real-time collaboration between translators and MT systems (Vieira, 2019). In terms of these two paradigms, there are different findings; for example, Langlais and Lapalme (2002), in their TransType tool evaluation, evoked that interactive post-editing could lead to reduced productivity by up to 35% compared to static editing. Koehn et al. (2015) stated that interactive models with online learning seemed to require less technical effort, with post-editors becoming faster over time. However, it has also been proven that interactive post-editing may not notably affect target-text quality and could even result in errors (Underwood et al., 2014). Compared to static post-editing, interactive post-editing may take longer but result in higher-quality products (Green et al., 2014).

With the advent of advanced Neural Network systems, the generated translation becomes more accurate and naturally sounding (Qin, 2022). However, these translations still have inaccuracies, errors, and inappropriate phrasing. It is a vital step that bridges the gap between automated generated translation and human editors and linguistic expertise to enhance translation fluency, coherence, and linguistic appropriateness.

The collaborative interaction between artificial intelligence and human intervention offers a cost-effective and efficient approach to high-quality translation services in various domains where translation quality is critical, especially for legal, medical, and technical content. With the proliferation of these technologies, research on large language models (LLMs) and linguistic analysis, particularly in fields such as second language acquisition (Albuhairy and Algaraady, 2025), learner error analysis (Al-Garaady and Mahyoob, 2023), natural language processing (Mahyoob and Al-Garaady, 2018; Mahyoob, 2020), and academic writing development (Mahyoob et al., 2023), has become increasingly critical.

Though human post-editors of MGTs show high-quality products, their work is time-consuming, and they challenge both balanced speed and quality. This research investigates how ChatGPT-4o, an advanced language generation model, can enhance translation post-editing productivity, efficiency, and quality across various domains and how human editors benefit from ChatGPT-4o in their TPE tasks.


Research question

This work attempts to answer the following research questions as a starting point for exploring the role of ChatGPT-4o in various aspects of post-editing machine-generated translations.

	1. Can ChatGPT-4o integration maintain human translators' productivity, consistency, and efficiency instead of a human editor during post-editing?
	2. To what extent can ChatGPT-4o improve the overall quality of MGT through post-editing?
	3. How does ChatGPT-4o's performance in post-editing compare to traditional post-editing methods?
	4. What challenges and limitations are encountered when using ChatGPT-4o for post-editing in certain domains? Moreover, to what extent can these challenges be alleviated?
	5. How much does using task-specific prompts improve ChatGPT-4o performance in PE?




Literature review

MTPE is the process of reviewing and correcting errors in machine-generated translations. This section provides an overview of the literature on translation post-editing and integrating language models like ChatGPT-4o in translation workflows. It discusses the challenges faced in translation post-editing, advancements in machine translation PE technologies, and the role of artificial intelligence in improving translation PE quality.

Screen (2019) compared post-edited translations with translations created from scratch in the Welsh text. He said post-translation editing was not found to improve. The two types of products are mainly similar in terms of comprehension and readability, which supports the use of MT in professional settings.

A study conducted with software instructions translated from English to Brazilian Portuguese found that even minimal post-editing significantly increased the usability of MT-based texts. The improvements were measured using eye-tracking metrics and self-reported satisfaction, highlighting the value of post-editing in enhancing text comprehensibility and accuracy (Castilho et al., 2014).

Koneru et al. (2023) made an Initial adjustment for direct translation. Therefore, researchers propose to use LLM as an automatic post editor (APE) instead. With Low-Rank-Adapter fine-tuning, they refined sentence- and document-level indicators. The ContraPro test achieved an accuracy of 89% in Anglo-German translations. In addition, including human corrections in document-level translations reduced the need for corrections in translation. Raunak et al. (2023) used GPT-4 for automatic post-editing in language pairs. It was found that there was an improvement in the accuracy and reliability of the WMT-22 English-Chinese, English-German, Chinese-English, and German-English tasks. However, sometimes GPT-4 might cause incorrect edits that demand caution in utilization. Chen et al. (2023) recommend improving iterative translation using large-scale language models for advanced translation and post-editing, especially for complex structures. However, this method showed limited scalability and computational challenges. Moreover, the model relies heavily on pre-trained models.

IntelliCAT, introduced by (Lee et al., 2021), is an interactive translation interface designed to improve post-machine translation editing. It uses sentence-level and word-level quality estimation (QE) to predict sentence quality and identify errors for improvement. The translation recommendation model includes word and phrase alternatives, while word alignments preserve the original document format. Experiments show that these features advance translation quality. User studies confirm that post-editing is 52.9% faster than translation from scratch. Turchi et al. (2017) explored machine translation (MT) improvements using human post-editing within a Neural Machine Translation (NMT) framework, highlighting the benefits of batch method customization. Continuously, It enables real-time optimization of new users and domains at low computational cost. Various online learning strategies are tested to refine existing models based on input data and after modification. Evaluating two language pairs showed a significant improvement over the static model.



Data collection and methodology


Data collection

To conduct our exploration, this research utilized translation data comprising source texts (English) and their corresponding Arabic MGTs produced by a neural network-based machine translator (Google Translator). This dataset spans different domains to simulate real-world translation scenarios, including sports, medical, business, idioms, and literary texts, to ensure a comprehensive assessment of ChatGPT-4o's potential across various domains. As detailed in Table 1, the source texts were collected from several online platforms such as UN news1, Newatlas2, Saudigazette3, and American literature4, comprising 6,203 English words (ws). Their Arabic translations produced by Google Translate [GT (A)] amount to 5,582 ws, while the human post-editing version [H-PE(A)] includes 5,393 ws, and the ChatGPT4o post-editing version [C- PE(A)] contains 5,451 ws.


TABLE 1 Statistical description of the dataset.

[image: Table showing word counts (ws) across four text categories: Sports, Business, Medical, and Literary, along with totals. Rows categorize texts as Source (E), GT (A), H-PE (A), and C-PE (A). Source has the highest overall count of 6,203 ws, while C-PE has the lowest at 5,451 ws.]



Experiment/method

In this experiment, first, the collected texts undergo initial translation from English into Arabic using a neural network-based machine translator (Google translator) to establish a baseline for comparison. Second, the generated translations are post-edited in two modes, first by two professional human translators and then using ChatGPT-4o as a post-editing tool. ChatGPT-4o is requested to improve and revise the MGT to explore and assess the extent of ChatGPT-4o's capabilities in performing or enhancing post-editing machine-translated content. The two human translators were given different sets of data to post-edit to boost the diversity of post-edited translations and interpretations that reflect the Arabic richness and capture a broader range of editorial perspectives.

Third, a panel of three human editors (HEs) manually validated and evaluated the improvements and suggestions provided by human translators and ChatGPT-4o. Fourth, we compare the quality of the post-edited content by human translators and the quality of the post-edited content by ChatGPT-4o based on a set of evaluation metrics using T-test statistics. In addition, we compare the performance of ChatGPT-4o across different domains to assess its domain adaptation capabilities. Indeed, knowing ChatGPT-4o's ability to provide post-editing for machine translation would help make a clear decision to incorporate ChatGPT-4o's post-editing service for various stakeholders who benefit from post-editing translation.




Data analysis and evaluation


Evaluation measures for ChatGPT-4o and human post-editing of MGT across multiple domains

In this section, we analyze the impact of ChatGPT-4o on machine translation post-editing (MTPE). Based on this analysis, we attempt to identify patterns, challenges, and areas for improvement. We comprehensively compare the different post-editing modes (professional translator's post-editing and ChatGPT-4o post-editing) in terms of several key evaluation measures, including fluency, accuracy, efficiency, terminology, consistency, coherence, grammar, culture, and appropriateness. Generally, these criteria and standards are used to evaluate and improve the quality of translation as a machine product. Our analysis offers insights into ChatGPT-4o's ability to complement human expertise in post-editing, highlighting its strengths and limitations in enhancing the quality and efficiency of translation workflows.

After it is edited from a machine translation (MT) output, a text's linguistic smoothness and naturalness improve. These metrics focus on readability, grammar, syntax, and flow. As illustrated in Table 2, in terms of fluency (concentrate on readability, grammar, syntax, and flow), in the sentence extracted from a business text, the MGT version (a Google translate's generated translation) looks straight up, simple, and lacks fluency but still work as evaluated by HE. However, to some extent, when prompting ChatGPT-4o to evaluate the machine-generated translation MGT sentence structures for the source version (S), the ChatGPT-4oE version follows the natural flow of language compared to MGT, though it is not perfect like that in the HE version. ChatGPT-4oE provides a contextual version due to its conversational nature, enhancing the performance of translation studies. For accuracy, the ChatGPT-4o post-edited version shows proper punctuation usage. There are no spelling errors or typos, but there are slight errors in the translation grammar, including functional words usage such as articles as in ChatGPT-4oE phrase/“الصندوق النقد الدولي,” “IMF”/, where it adds the article/“the,”ال“ /in the word “الصندوق” inappropriately though it is correct in MGT version. However, the post-edited version by humans looks more cohesive as it maintains the coherence between sentences and paragraphs compared to the original version translated by Google Translate and the post-edited version by ChatGPT-4o.


TABLE 2 A sample of MGT, ChatGPT-4o's post-editing of MGT, and human's post-editing of MGT for business text.

[image: A table comparing three Arabic translations of the statement "The latest estimate is lower than the 3.1 percent GDP growth projected by the IMF in May." The translations are labeled MGT, ChatGPT-4oE, and HE, with slight variations in wording.]

Table 3 shows the output of the ChatGPT-4o post-editing of the literary text containing an idiomatic expression. It provides effective post-editing, showing substantial grammar, sentence structure, and readability improvements. However, it failed to maintain the idiomatic meaning for an Arabic audience. It provides accurate, unique literary phrases specific to the Arabic language that often carry cultural, historical, and contextual significance. As shown in the example below, both MGT and ChatGPT-4oE provide Arabic literary translation الطيور تتجمع" معًا for the idiom “Birds Of A Feather Flock Together.” that is postedited by the human translator as/“Birds Of A Feather Flock Together, “الطيور على اشكالها تقع”/ and reflects a common challenge in AI's handling of nuanced and culturally specific elements and the need for AI to evolve beyond essential linguistic translations to encompass cultural interpretations, demanding more sophisticated training datasets and model enhancements.


TABLE 3 A sample of MGT, ChatGPT-4o's post-editing of MGT, and human's post-editing of MGT for idioms.

[image: A table with a title in gray at the top, reading "The shared interests provide a strong foundation for friendship, as friends engage in meaningful conversations and activities they enjoy, as said in 'Birds Of A Feather Flock Together'.” The table has four columns labeled "S," "MGT," "ChatGPT-4o E," and "HE." Each row contains text in Arabic, discussing shared interests and friendship.]

As illustrated in Table 4, in the case of the medical terms, ChatGPT-4o failed to post-edit and provide the accurate Arabic equivalents for some medical terms; for example, ChatGPT-4oE provided literary translation for the phrase “healthcare errors” as “أخطاء الرعاية الصحية” of which the correct Arabic equivalent is “خطاء طبية.” In some cases, ChatGPT-4oE failed to provide any translation for these terms, such as the word “astigmatism.”. Instead, it gives transliteration for the term as “الاستجماتيزم.” while the correct Arabic translated term is “ الابؤرية” as edited by HE. In addition, there is a linguistic agreement error as seen in the anaphor (possessive pronoun “their”) in the phrase/“their health,” “صحتهم”/ which should be/“his health,” “صحته”/ since this phrase refers to the singular antecedent/“a person,” “الشخص”/. However, the anaphor generated by MT agreed with its antecedent. Compared to human editors, ChatGPT-4o failed to ensure and improve consistency in terminology and medical terms throughout the text.


TABLE 4 A sample of medical MGT, ChatGPT-4o's post-editing of MGT, and human's post-editing of MGT medical texts.

[image: Table comparing translations of the sentence "If a person with astigmatism experiences a healthcare error, it may affect their overall wellbeing and exacerbate existing vision issues" in Arabic. Rows are labeled MGT, ChatGPT-4oE, and HE, each containing a similar sentence in Arabic.]

ChatGPT-4o struggles to produce an efficient translation in the case of literary texts, as seen in Table 5 below. There is a grammatical error where the singular noun “a secret” in the phrase “a secret has been …” is translated inappropriately to plural noun /“secrets,” “اسرار”/which should be translated to the Arabic singular noun “سر.” Also, the syntactic structures look inferior compared to MGT and HE versions. ChatGPT-4oE, in the case of literary texts, shows significant issues in using correct and consistent terms and looks poor in its language smoothness and naturalness, cohesion, grammar, cultural aspects, and terminology handling.


TABLE 5 A sample of MGT, ChatGPT-4o's post-editing of MGT, and human's post-editing of MGT for a literary text.

[image: Table comparing translations of a statement from English to Arabic. The English text describes an elderly neighbor revealing a forty-year secret. Three Arabic translations are provided from MGT, ChatGPT-4oE, and HE, each differing slightly in wording and structure.]

Table 6 shows that ChatGPT-4o failed to appropriately edit the phrase (' in building bridges, “في بناء الجسور”) and provide the same MGT version (literal translation for this phrase). However, the HE version/“in building bridges,” “في بناء جسورالتواصل”/demonstrates a deeper and more accurate understanding and use of consistent terms. All these emphasize using ChatGPT-4o with caution in the translation industry because the HE edition emphasizes promoting proper contact and understanding between people, which is often implied when discussing “Building Bridges.” This version not only maintains the source phrase's true meaning but also enriches the meaning by adding a more nuanced layer of meaning that is more appropriate and resonant for the reader. In the case of the phrase/“whatever you feel in the Games,” “كل ما يجول بخاطرك حول الألعاب الرياضية”/, both MGT and ChatGPT-4o provide unnatural and inconsistent translation version/ما تشعر به في الألعاب” “كل ما تشعر به في الألعاب,”/compared to that provided by HE version.


TABLE 6 Sample of MGT, ChatGPT-4o post-editing of MGT, and human post-editing of MGT for sports text.

[image: A table with three sections displaying translated statements. The first section shows Tsuyoshi Kitazawa’s quote in English emphasizing sports as a unifying force. The second section, labeled "MGT," presents an Arabic translation. The third section, "ChatGPT-4oE," offers another Arabic translation. The final section, "HE," provides a similar Arabic translation.]

This demonstrates that ChatGPT-4o fails to communicate the deeper intent to the audience effectively. ChatGPT-4o provides accurate numbers, information, and proper names. However, concerns include sentence structure using compound words, function words, and word ordering, as seen in Table 6. All of this highlights the careful use of ChatGPT-4o in the translation industry.



Prompt engineering for enhancing ChatGPT-4o outcomes

Mostly, it is noticed that the performance of ChatGPT-4o becomes more meaningful and more profound when we specify the needs and provide context, background, and a comprehensive input “prompt.” For example, giving these details, “post-edit the Arabic generated translation below from the linguistic perspective, take the role of a professional grammar corrector, identify business terms, avoid changing meaning as much as possible” to the prompt enhances the tool's outputs. This can be seen in the improvements in ChatGPT-4oE 2 in Table 7, where the article “the, ال” is appropriately used compared to that in the ChatGPT-4oE 1 in the phrase/اصندوق النقد “الدولي,” “IMF”/.


TABLE 7 ChatGPT-4o post-editing with business texts after prompt engineering.

[image: Table comparing different summaries in English and Arabic, indicating that the latest GDP estimate is lower than the 3.1 percent growth projected by the IMF in May. Rows labeled MGT, ChatGPT-4oE, and HE provide variations of the summary in both languages.]

When we give these details “post-edit the Arabic generated-translation below from the linguistic perspective, take the role of a professional grammar corrector, identify idiomatic phrases, avoid changing meaning as much as possible” to the prompt of ChatGPT-4o in the literary texts, ChatGPT4o corrects its translation and post-editing. The yield results were more natural and accurate, as seen in ChatGPT-4o E 2 in Table 8, which shows improvement in the sentence flow compared to ChatGPT-4oE 1 due to some grammatical and stylistic adjustments. For example, the Arabic equivalent of the word “elderly” looks more fluent in the ChatGPT-4o E 2 version as “مسن” compared to that in the ChatGPT-4o E 1 “كبير في السن”. Also, the grammatical mistake in the ChatGPT-4o E 1 version is spotted in the ChatGPT-4o E 2 version, as the word “secret” is translated to a singular noun “سر” instead of plural noun “اسرار” like that in ChatGPT-4o E 1.


TABLE 8 ChatGPT-4o outcomes in literary texts after prompt engineering.

[image: A table comparing translations of a passage. The top row contains the passage in English: "I had an elderly neighbor whose conversations were mind-blowing. He told me one day when his gathering was devoid of people, and no one was sitting with us: 'Oh my son, a secret has been stirring in my heart for forty years regarding what has been discussed during this lengthy period.'" Below, three translations in Arabic are provided by MGT, ChatGPT-4oE, and HE, each occupying its own row, reflecting variations in phrasing.]

ChatGPT-4oE 1, in Table 9, displays the result of ChatGPT-4o outcomes when the prompt is “post-edit.” At the same time, ChatGPT-4oE 2 shows the ChatGPT-4o outcomes with a comprehensive prompt, “post-edit the Arabic generated translation below from the linguistic perspective, take the role of a professional grammar corrector, identify medical terms, avoid changing meaning as much as possible.” As seen in ChatGPT-4oE 2, the tool still shows a deficiency in providing the correct Arabic medical translated terms such as “الابؤرية” and “خطأ طبي” for the English medical terms “astigmatism” and “healthcare,” even though the tool is provided with a comprehensive prompt. The output in ChatGPT-4oE 2 looks identical to that provided without prompt engineering except for the omission of the article “the, ال” in words “person, شخص” and “affected, مصاب”. We notice grammatical and stylistic improvements in the ChatGPT-4oE 2 version compared to the ChatGPT-4oE 1 version, for example, the linguistic agreement error in the anaphora (possessive pronoun 'their') in the phrase/“their health,” “صحتهم”/is correctly translated to/“his health,” “صحته”/.


TABLE 9 ChatGPT-4o post-editing in medical after prompt engineering.

[image: Table comparing three different text versions in English and Arabic under the statement, "If a person with astigmatism experiences a healthcare error, it may affect their overall well-being and exacerbate existing vision issues." The texts are labeled as MGT, ChatGPT-4oE, and HE, each providing slightly varied Arabic translations.]

In Table 10, the ChatGPT-4o E 2 version shows an enhanced, fluent, and natural post-editing that highlights the role of prompt engineering in raising the tool's advanced linguistic capabilities. This version shows an accurate idiomatic expression, particularly after adding a perspective and a contextual background to our prompt. Interestingly, ChatGPT-4o delivers a precise and culturally appropriate Arabic translation, “الطيور على أشكالها تقع” for the English idiom “Birds Of A Feather Flock Together”. However, the tool failed earlier in providing the appropriate Arabic equivalent idiomatic expression, as shown in ChatGPT-4o E 1.


TABLE 10 ChatGPT-4o post-editing with idioms after prompt engineering.

[image: A table comparing the rendering of a sentence in three different systems. The English sentence at the top reads, "The shared interests provide a strong foundation for friendship, as friends engage in meaningful conversations and activities they enjoy, as said in 'Birds Of A Feather Flock Together'." Below, the sentence is rendered in Arabic by three systems: MGT, ChatGPT-4o E, and HE. Each row provides a slightly different Arabic translation, illustrating variations in translation by each system.]

In Table 11, the ChatGPT-4oE 2 version resulted after providing the tool this enhanced prompt, “post-edit the Arabic generated translation below from the linguistic perspective, take the role of a professional grammar corrector, identify sport terms, avoid changing meaning as much as possible”. However, the structure of this version looks better; like ChatGPT-4oE 1 version, it failed to provide a suitable translation for the phrases, /“in building bridges,” “في بناء جسورالتواصل ”/ and / “whatever you feel in the Games,” كل ما يجول بخاطرك حول الألعاب الرياضية/ that highlights the limited role of ChatGPT4o in providing satisfied translation in specific sport-terms as some expressions require deep understanding.


TABLE 11 ChatGPT-4o post-editing with idioms after prompt engineering.

[image: A table features a quote from Tsuyoshi Kitazawa, a former Japanese national football team member, emphasizing sports' role in bridge-building. The quote, "whatever you feel in the Games is made possible because the world is playing as one team," is translated into Arabic. The table is divided into sections labeled S, MGT, ChatGPT-4oE, and HE, illustrating different translations and interpretations of the original quote.]

It is worth mentioning that when the tool was asked to spot mistakes and explain the corrections it made, it did not identify all the errors from the first prompt and often lacked in-depth explanations. Moreover, at times, it hallucinated, providing incorrect or irrelevant details. Thus, when the tool is applied to medical, legal, financial, or technical texts, this adequate performance, even slight errors or ambiguity, would cause damage consequences. Therefore, while the tool is valuable, it requires care and validation in high-stakes contexts.




Results and discussion

ChatGPT-4o's post-editing and human post-editing performance were evaluated by three human evaluators (EV1, EV2, EV3) across several linguistic aspects: Fluency, Accuracy, Efficiency, Terminology, Consistency, Cohesion, Syntax, Grammar, and Cultural for performing the quantitative and qualitative analysis. The results are measured on a 5-point Likert scale where 1 = Poor, 2 = Fair, 3 = Good, 4 = Very Good, and 5 = Excellent. After collecting the evaluators' rating scores, we applied a paired t-test for our statistical analysis because of its effectiveness in comparing differences between ChatGPT-4o and human post-editing and determining whether the observed differences were statistically significant, providing a reliable and quantitative assessment of the comparative performance, the average score for each aspect is depicted in Table 12.


TABLE 12 Human evaluator's scores for ChatGPT-4o and human post-editing performance across various.

[image: A table comparing evaluation scores for ChatGPT-4o and human post-editors by three evaluators (EV1, EV2, EV3) across various criteria: fluency, accuracy, efficiency, terminology, consistency, cohesion, syntax, grammar, and cultural appropriateness. Humans consistently receive higher scores across most criteria.]

The box-and-whisker plot in Figure 1 shows the average ratings for ChatGPT-4o and human post-editing across nine evaluation metrics, showing that human post-editing consistently outperforms ChatGPT-4o in terms of performance, with significantly higher ratings in all categories except efficiency. This highlights the superiority of human editors in maintaining quality, accuracy, cultural appropriateness, and fluency in translations, as seen from the higher median lines and smaller interquartile ranges (IQRs) in the orange boxes for human post-editing. The IQR indicates low variance and better overall performance. In contrast, ChatGPT-4o shows lower ratings across these aspects with larger IQRs in the blue boxes, suggesting more variability and lower overall performance than human performance. This reflects a common challenge in ChatGPT-4o's handling of nuanced and culturally specific elements and their idiomatic meaning. It shows some deficiency in language smoothness and syntax, such as agreement errors, word order, and grammatical mistakes related to articles used, as seen in the analysis section.


[image: Box plot comparing scores across eight criteria: Fluency, Accuracy, Efficiency, Terminology, Consistency, Cohesion, Syntax, and Grammar. Orange boxes represent Human; blue boxes for Post-editors or ChatGPT. Scores typically range around 3 to 5. Fluency, Consistency, and Syntax show higher Human scores, while Terminology scores lower.]
FIGURE 1
 ChatGPT-4o and human post-editing across nine metrics. Human post-editing outperforms in all categories except efficiency, with higher medians and tighter interquartile ranges (IQRs) (orange boxes), indicating superior consistency in quality, accuracy, and fluency. ChatGPT-4o (blue boxes) shows lower ratings and wider IQRs, reflecting variability in handling nuanced language, terminology, and grammar. While ChatGPT-4o maintains fluency and coherence due to its conversational design, it struggles with technical terms and syntactic precision. Its strength lies in speed, making it useful for time-sensitive tasks. However, human expertise remains essential for high-quality translations requiring cultural and linguistic nuance.


In addition, ChatGPT-4o shows significant issues in the use of correct and consistent terminological and technical terms and failed to effectively post-editing. It still appears fluent (Maintaining logical flow and coherence between sentences and paragraphs), precise, consistent in style and tone, and readable throughout the content due to ChatGPT-4o's conversational nature. Indeed, ChatGPT-4o has the potential for rapid processing and editing, making it a valuable tool for scenarios where speed is critical. While ChatGPT-4o excels in speed and efficiency, human post-editing remains crucial for achieving high-quality translations across these critical aspects.

The heat map in Figure 2 interprets the t-statistic and p-value values for each aspect when comparing ChatGPT-4o and human post-editing. The p-value gradient in the heatmap (represented in the bottom half of the heatmap) highlights statistical significance, with green indicating significant differences (p < 0.05). Most aspects are shaded green, confirming the reliability of the observed differences, except for fluency, which is shaded yellow. The t-statistic values are represented in the heatmap's top half, showing the direction and magnitude of differences in ratings. The t-statistics indicate that human post-editing generally outperforms ChatGPT-4o in most aspects, such as accuracy, terminology, consistency, cohesion, syntax, grammar, and cultural appropriateness, all showing significant negative values (ranging from −3.46 to −8) and corresponding p-values below 0.05, confirming that the differences are not only substantial but also statistically significant. However, regarding efficiency, ChatGPT-4o is rated significantly higher, with a positive t-statistic of 8.00 and a p-value of 0.015, indicating that it is more efficient than human post-editing. The only aspect where the difference is not statistically significant is fluency, with a t-statistic of −3.5 and a p-value of 0.074, suggesting that both methods perform similarly. Overall, the heatmap underscores ChatGPT-4o's strength in efficiency but highlights human post-editing's superiority in maintaining quality and accuracy across most aspects.


[image: Matrix image showing two variables: p-Value and t-Statistic, across different language-related criteria, including Fluency, Accuracy, Efficiency, Terminology, Consistency, Cohesion, Syntax, Grammar, and Cultural Appropriateness. Color gradient ranges from dark blue to light cream indicating values from negative to positive.]
FIGURE 2
 T-statistics and p-values comparing ChatGPT-4o and human post-editing. The p-value gradient (bottom half) shows statistical significance, with green (p < 0.05) indicating meaningful differences. Most aspects are green, except fluency (yellow). The top half shows t-statistics, revealing that human post-editing outperforms ChatGPT-4o in accuracy, terminology, consistency, cohesion, syntax, grammar, and cultural appropriateness (t = −3.46 to −8, p < 0.05). However, ChatGPT-4o excels in efficiency (t = 8.00, p = 0.015). Fluency shows no significant difference (t = −3.5, p = 0.074). The heatmap highlights ChatGPT-4o's efficiency advantage but confirms most aspects of human post-editing's superior quality.


This study shows that, to some extent, ChatGPT-4o plays an influential role in improving the post-editing of machine-generated translations (MGT) in various domains attributed to its potential to generate fluent and natural translation reflecting relevant context and literature that is relatedly supporting the findings of Jiao et al. (2023) and Hendy et al. (2023). According to Peng et al. (2023), adapting ChatGPT-4o with optimized prompts and context improves its performance and makes it more suitable for specialized translation tasks. However, ChatGPT-4o's results may be similar to Google Translate or inaccurate without such optimization. Although ChatGPT-4o cannot provide completely accurate translations without human intervention, such integration would significantly reduce costs, time, and effort and provide considerable improvements and suggestions. Our analysis found that ChatGPT-4o can effectively contribute to post-edit generation and help identify translated content that may require further consideration or refinement. The results generated by ChatGPT-4o eliminate the need for skilled linguists to manually review the text, catch errors, give appropriate feedback, and ensure cultural appropriateness (Khan, 2024; Yang et al., 2023). To assess to which extent the three evaluators agree in their rating and thus ensure their reliability, we calculated the Inter-Annotator Agreement (IAA) using Spearman's rank correlation coefficient for pairwise comparisons and Fless' Kappa with quadratic weighted for overall agreement as illustrated in Table 13. The evaluators exhibit a near-perfect agreement for human post-editing, with pairwise Spearman's rho value of 0.99 and Fless'Kappa value of 0.85. For ChatGPT4o editing, the evaluators' agreement with pairwise Spearman's rho value is 0.85, and the Fless'Kappa value is 0.78, which means there is a substantial agreement among the three human evaluators.


TABLE 13 Inter-annotator agreement (IAA) scores.

[image: Table comparing ChatGPT-4o and human post-edits using two metrics. Average pairwise Spearman’s rho scores: ChatGPT-4o at 0.85 and Human at 0.99. Fleiss’ Kappa (quadratic weights) scores: ChatGPT-4o at 0.78 and Human at 0.95.]

The values of IAA indicate a high level of reliability across the three evaluators (EV1, EV2, and EV3), stressing the robustness of our evaluation process of both human editors and ChatGPT4o as an editor.



Conclusion

This research provides valuable insights into ChatGPT-4o's potential to enhance the MGT post-editing service and its overall role in assisting human translators with post-editing tasks in various domains. This study evaluates the post-editing performance of ChatGPT-4o compared to human editing based on an evaluation by three human raters on multiple metrics. The results show that although human post-editing outperforms ChatGPT-4o in most evaluation metrics, the latter provides a fluent translation, which promises to improve quality, work efficiency, and translation workflows in various fields. Additionally, the study found that ChatGPT-4o's detailed guidance includes clear task instructions, contextual information, and a description of the desired results that will help improve ChatGPT-4o's functionality. Future research may explore ChatGPT versions' use within professional translation services, especially in enhancing post-editing workflows, addressing the practical challenges, and identifying strategies to overcome these obstacles. Additionally, domain-specific fine-tuning of large-scale language models (LLMs) using specialized translation datasets needs exploration. Furthermore, creating and using diverse datasets that reflect a broader spectrum of Arabic dialects and text complexities to improve the generalizability and robustness of LLMs in translation tasks.
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Arabic stance detection has attracted significant interest due to the growing importance of social media in shaping public opinion. However, the lack of comprehensive datasets has limited research progress in Arabic Natural Language Processing (NLP). To address this, we introduce ArabicStanceX, a novel and extensive Arabic stance detection dataset sourced from social media, comprising 14,477 tweets across 17 diverse topics. Utilizing the transformer-based MARBERTv2 model, we explore stance detection through Multi-Topic Single Model (MTSM) strategies, achieving a promising F1 score of 0.74 for detecting ‘favor' and ‘against' stances, and 0.67 overall. Our experiments highlight the model's capabilities and challenges, particularly in accurately classifying neutral stances and generalizing to unseen topics. Further investigations using zero-shot and few-shot learning demonstrate the model's adaptability to new contexts. This study significantly advances Arabic NLP, providing crucial resources and insights into stance detection methodologies and future research directions. The dataset is publicly available1.
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1 Introduction

The digital era, marked by rapid technological advancements, constantly redefines our communication methods. New social media platforms emerge daily, promoting widespread connection and opinion sharing. Currently, over 58% of the global population uses social media, spending an average of 2–3 h online each day (Al Hendi, 2024).

A platform of significant interest to researchers is X.com (formerly Twitter), renowned for its ability to facilitate opinion expression. The diverse information within tweets provides valuable insights into public stance and behavior, fueling interest in “opinion mining” across fields such as Natural Language Processing (NLP) and social computing. The primary goal is to develop automated methods for measuring public opinion, supplementing traditional surveys.

Stance detection, a notable subfield of opinion mining, focuses on identifying whether an author's viewpoint in the text is supportive, opposing, or neutral toward a specific topic, such as an individual, legislation, or event. This task is crucial for applications like social media monitoring, opinion mining, and political analysis. For example, the tweet “Handguns should be banned in the US” illustrates a supportive stance on gun control.

With the proliferation of online platforms for sharing opinions, NLP research in stance detection has grown substantially. A pivotal development was the release of a stance detection dataset by Mohammad et al. (2016). Recent advancements in NLP and deep learning, particularly the development of transformer-based models like BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019), have significantly enhanced stance detection capabilities. BERT's bidirectional fine-tuning approach allows it to understand the context of words within a sentence, making it highly effective for a wide range of NLP tasks.

Despite BERT's success in many languages, applying such models to Arabic text presents unique challenges due to the language's complex morphology, dialectal variations, and rich contextual semantics. Most stance detection research has focused on English due to the abundance of available datasets. However, other languages, like Arabic, have received less attention, with Arabic stance detection datasets being limited in terms of topic and diversity. This lack of comprehensive datasets represents a significant gap in NLP research.

This research aims to advance Arabic stance detection by introducing ArabicStanceX, a comprehensive and diverse dataset that can serve as a benchmark for a wide range of language models. To demonstrate its effectiveness, we evaluate it using MARBERTv2, a strong Arabic-specific baseline. It addresses the gap in available datasets by developing a comprehensive and diverse Arabic stance detection dataset from X.com tweets, called ArabicStanceX, focusing on Saudi Arabia due to its high X.com usage and active social media discussions. The number of X.com users in Saudi Arabia reached 5 million in 2012 and has since grown by 160%, reached ~13 million users by 2020 (Simsim, 2011). Addaitionally, recent legislation has sparked extensive discussions and debates among Saudis on social networks. While X.com is also widely used across other Arab countries, this study specifically focuses on Saudi Arabia due to both the platform's high penetration and the sociopolitical context that has triggered extensive public discourse in recent years. We acknowledge that this geographical focus may limit the generalizability of findings to other regions. However, the methodology and insights gained here lay the foundation for broader extensions to other Arabic-speaking communities.

This study introduces ArabicStanceX, an extensive dataset for Arabic stance detection comprising 14,477 instances across 17 topics, which will be publicly accessible to foster further research. It focuses on developing adaptable models for unseen topics using zero-shot and few-shot learning methodologies, evaluating various fine-tuning strategies with the MARBERTv2 model. The research investigates Single Topic Single Model (STSM) and Multi Topics Single Model (MTSM) approaches, enhancing MTSM with additional contextual information. Using Favg2 and Favg3 metrics, it assesses precision and recall for “favor” and “against” stances. Overall, the study makes significant contributions to Arabic NLP by providing a valuable dataset, exploring model adaptability, and evaluating effective fine-tuning and contextual strategies.

The rest of the paper is organized as follows: Section 2 reviews related work in stance detection, with a particular focus on previous datasets and methodologies. Section 3 details the methodology for developing the Arabic stance detection dataset, including data collection and annotation processes. Section 4 describes the experimental setup, including the BERT model, its hyperparameter tuning, and performance metrics. Section 5 presents the experimental results and their analysis. Finally, Section 6 concludes the paper and outlines promising directions for future research.



2 Related work and background

Stance detection research on social media platforms has gained significant traction in recent years. This research can be categorized into four main categories.

	1. Target-specific: this category focuses on recognizing stances toward specific, predefined targets. For example, it identifies opinions related to particular issues like civil rights, where the stance is evaluated directly against a clearly defined subject.
	2. Multi-related targets: in this approach, a single model is used to identify stances toward two or more interrelated subjects within the same text. For instance, the model might analyze the connection between civil rights and the death penalty, recognizing how opinions on one issue might influence or correlate with opinions on the other.
	3. Cross-target: this category aims to develop classifiers that can transfer knowledge between various targets using a comprehensive dataset. The goal is to create models that are versatile and can apply learned stances from one target to different, previously unseen targets, thus enhancing the model's generalizability and adaptability.
	4. Target-independent: this approach seeks to identify stances in comments related to news articles, focusing on tasks like confirming or denying the validity of the information or predicting whether different arguments support the same stance. This method does not rely on predefined targets but instead evaluates stances based on the context of the discussion.

These classifications help structure stance detection research, guiding the development of models and methods tailored to specific needs and applications in analyzing and understanding public opinions across various domains.

The field of stance detection received a significant boost with the launch of a shared task and the subsequent release of a publicly available dataset by Mohammad et al. (2016, 2017). This dataset, sourced primarily from X.com and focusing on predefined controversial topics like climate change and abortion, significantly increased research output compared to previous years (AlDayel and Magdy, 2021). Annotators on CrowdFlower categorized tweet-topic pairs into three stances: favor, against, or neutral.

Since then, additional stance detection datasets have emerged, catering to various domains. A substantial dataset of over 51,000 tweets focused on the financial domain was introduced in Conforti et al. (2020). The TW-BREXIT dataset, presented in Lai et al. (2020) contains 1,800 triplets of tweets related to the stance on leaving, remaining, or having no opinion on Brexit. Similarly, datasets addressing other controversial topics have been developed (Hosseinia et al., 2020; Grimminger and Klinger, 2021; Li et al., 2021; Gautam et al., 2020; Thakur and Kumar, 2021).

The investigation of stance detection has also expanded to include target-independent approaches, garnering considerable research interest. For instance, Gorrell et al. (2019) presented RumourEval, a claim-based dataset designed for stance classification within the context of rumors. This dataset covers a broad spectrum of events and categorizes tweets into four distinct stances: support, deny, query, or comment. Similarly, Hanselowski et al. (2018) proposed another dataset aimed at assessing stances toward various news headlines. These efforts are just a few examples, with additional datasets emerging in this vein by Ferreira and Vlachos (2016); Bar-Haim et al. (2017). Research has also explored cross-target stance detection (Allaway and McKeown, 2020; Vamvas and Sennrich, 2020; Kaur et al., 2016) and multi-target stance detection (Sobhani et al., 2017). Furthermore, efforts have been made to extend stance detection research to non-English languages, including Italian (Cignarella et al., 2020) and Spanish/Catalan (Taulé et al., 2017).

While stance detection datasets abound for English, Arabic resources remain scarce. A notable contribution is the fact-checking corpus by Baly et al. (2018), which links 402 Arabic claims to retrieved documents using a four-class stance scheme (agree, disagree, discuss, unrelated), annotated via crowdsourcing. While the dataset includes rationale spans for some labels, it is oriented toward long-form claim-document verification rather than general-purpose stance modeling. The Arabic News Stance corpus by Khouja (2020) comprises 3,786 claims, annotated through a multi-stage crowdsourcing process. It employs a three-class scheme (agree, contradict, other), merging “discuss” and “unrelated” into a single label to reduce ambiguity. While the dataset emphasizes real news headlines and achieves high inter-annotator agreement, it exhibits class imbalance and possible paraphrasing-induced variability.

AraStance (Alhindi et al., 2021) offers 4,063 claim–article pairs across multiple domains and Arab countries, labeled by graduate annotators using a four-class scheme (agree, disagree, discuss, unrelated). While its broad topical scope and refined annotation process enhance reliability, the dataset remains rooted in formal news sources and exhibits class imbalance. Expanding the options for Arabic stance detection, Alturayeif et al. (2022) introduced MAWQIF, a multi-dimensional dataset containing 4,121 Arabic tweets annotated for stance, sentiment, and sarcasm via Appen crowdsourcing. The stance labels follow a target-specific three-class scheme (favor, against, none), applied across three controversial topics. Although MAWQIF supports multi-task learning and includes dialectal variation, its coverage is limited to predefined targets, and it exhibits class imbalance due to low representation of neutral stances. Additionally, Jaziriyan et al. (2021) introduced EXaASC, a target-based stance dataset containing 9,566 Arabic tweet–reply pairs annotated by trained native speakers using a three-class scheme. With over 180 unique targets, it offers broad generalization potential, though its reply-based structure introduces conversational bias and a high proportion of none labels.

Table 1 summarizes these datasets, providing details on their name, language, stance type, text source, and size.


TABLE 1 Summary of stance detection datasets by name, language, source, and size.

[image: A table listing datasets with columns for name, language, stance type, text source, and size. It includes various datasets such as SemEval2016-Task 6, Procon20, RumourEval, FNC-1, and more. Languages include English, Italian, Arabic, among others, and sources vary from websites to social media. Sizes are given in terms of numbers of tweets, comments, claims, and articles. Each dataset references authors and publication years.]

Research in stance detection has advanced significantly, but several notable gaps persist. Firstly, there is a scarcity of data in non-English languages, with most research focusing on English datasets. While efforts like AraStance and MAWGIF have contributed to Arabic resources, they remain more minor and less diverse compared to their English counterparts. Secondly, existing models often struggle with generalizability, especially when faced with unseen topics or targets. Cross-target stance detection methods aimed at enhancing adaptability to new targets with limited data are still in development. Additionally, current models primarily focus on explicit language, overlooking the role of context and implicit cues in sentence analysis. Elements like sarcasm and humor can be challenging for these models to interpret accurately.

To bridge these gaps, this study prioritizes creating more prominent and varied datasets in Arabic and other languages. Techniques like few-shot learning and domain adaptation have the potential to enhance model generalizability. Furthermore, incorporating contextual cues and sentence analysis can better capture the subtleties of human language. Through these efforts, stance detection can evolve into a more powerful tool for deciphering public opinion across diverse linguistic and cultural landscapes.



3 Methodology for ArabicStanceX dataset development

In this section, we detail the methodologies utilized in constructing the ArabicStanceX dataset. Our primary aim is to create a comprehensive, multi-topic dataset in Arabic that sets itself apart from previous datasets by offering extensive coverage and suitability for addressing novel targets, thus expanding its potential applications. Our research focused on data spanning from 2015 to 2021 in Saudi Arabia, a period marked by significant controversies. The dataset was sourced from X.com, making it currently the most exhaustive Arabic stance dataset available. The methodology for developing the Arabic stance detection dataset is illustrated in Figure 1 and described in the following subsections.


[image: Flowchart illustrating data processing steps for a dataset on Arabic hashtags. Includes four stages: Data Collection and Filtering, defining domains and collecting tweets; Data Annotation, training annotators and resolving disagreements; Dataset Split and Statistics, splitting data and calculating inter-annotator agreement; Save Dataset, saving data in CSV or JSON format with relevant information.]
FIGURE 1
 Methodology—ArabicStanceX dataset creation.



3.1 Data collection and filtering

Our initial step was to create a collection of pre-defined, controversial topics that would elicit strong opinions. We achieved this by first extracting all hashtags from X.com within Saudi Arabia between 2015 and 2021. We then analyzed these hashtags to identify potential topics. Specifically, we manually reviewed the most frequently occurring hashtags and selected those that were associated with real-world events, public policies, or debates that sparked polarized public engagement. Hashtags were grouped into candidate topics if they reflected a clearly defined issue with both supportive and opposing discourse. Once a topic was identified, we used its relevant keywords to find all related hashtags, ensuring a broad spectrum of areas like sports, economy, education, health, religion, and culture (details in Table 1).

To capture a diverse range of viewpoints, we collected hashtags representing both supportive and opposing stances for each topic. For instance, on the topic of women driving, we included hashtags like “#WomenShouldDrive” and “#WomenShouldNotBeDriving.” This approach ensured we captured a spectrum of opinions, from agreement to disagreement.

After collecting the data, we organized it into distinct domains, each containing specific topics with their associated hashtags and tweets. We then performed several preprocessing steps:

	1. Language filtering: we filtered out all non-Arabic tweets, keeping only Arabic content.
	2. Noise removal: we removed retweets, user mentions, URLs, and duplicate tweets. To identify subtle duplicates, we employed SentenceTransformer “paraphrase-xlm-r-multilingual-v1” by Reimers and Gurevych (2019) to measure tweet similarity. Tweets with a cosine similarity exceeding 0.95 were discarded.
	3. Advertisement removal: analysis of a random sample of 1,000 tweets revealed that tweets with four or more hashtags were predominantly advertisements. Consequently, we eliminated all such tweets from the dataset.

Table 2 provides a list of the domains and their associated target topics.


TABLE 2 Details of the specific domains and their related topics.

[image: A table categorizing various topics in Saudi Arabia by domain. Under "Economy": Aramco share selling, Al-Qiddiya project, Neom city. "Education": Teaching Chinese, improve school curriculum, online learning. "Health": COVID-19 vaccine, booster dose. "Sports": Prince Abdulaziz bin Turki as sports minister, Prince Faisal bin Turki's resignation. "Religion/Cultural": Sex education, coexistence with religions, women driving, mosque speakers, polygamous marriage. "Other": Domestic tourism, military conscription. Each topic includes a brief description about the associated initiative or policy.]



3.2 Data annotations

To ensure the accuracy of our stance labels, we partnered with Wosom, a Saudi company staffed with native Arabic speakers (Wosom, 2024). Wosom took on the responsibility of both conducting the annotations and upholding high-quality standards throughout the process.

Before embarking on the main annotation task, we initiated a pilot test using a smaller subset of the data. The purpose of this pilot test was to confirm the clarity of our annotation guidelines and validate the functionality of the annotation tools. We conducted the pilot test through multiple iterations, reviewing a random sample of 50 tweets from various topics after each iteration to identify and address any potential issues.

Three native Saudi speakers were meticulously selected based on their language proficiency, attention to detail, and relevant domain expertise to annotate each tweet. Subsequently, these annotators underwent rigorous training on the annotation guidelines and the Wosom annotation platform. They were provided with clear instructions and relevant examples to ensure the accuracy of their annotations. Throughout the annotation process, continuous feedback from reviewers and validators was incorporated to maintain high-quality standards. Each of the 14,477 tweets was independently annotated by all three annotators to ensure consistent labeling and enable majority agreement.

In instances of disagreement regarding the classification of a tweet, an adjudication method was implemented. This involved applying established criteria or engaging in group discussions facilitated by a designated team member to reach a consensus.

The annotators categorized tweets related to each topic into three distinct categories: “favor,” “against,” or “none.” Tweets expressing explicit or implicit support for the topic were labeled as “favor,” while those opposing the topic in either direct or indirect ways were labeled as “against.” Tweets that did not express a stance or were unrelated to the topic, such as advertisements, were categorized as “none.”



3.3 Dataset statistics

The ArabicStanceX dataset comprises 17 distinct topics with a total of 14,477 samples. To gauge the agreement between annotators, we computed an average Fleiss Kappa score of 0.54 across all topics. Subsequently, we partitioned the dataset into training and testing sets, utilizing an 80:20 split for model development and evaluation. Detailed statistics for individual topics within both sets are presented in Table 3.


TABLE 3 Data statistics for each label across all topics, segmented into the training and testing sets.

[image: Table showing topics across domains with training and testing sample counts. Domains include Education, Health, Economy, Other, Sport, and Religion/Culture. Each topic lists favor, against, none, and total samples for both training (80%) and testing (20%) phases, along with overall totals. The table provides specific sample numbers for detailed analysis.]

Figure 2 illustrates the distribution of topics within the dataset, with a predominant focus on Religion/Culture (31.2%), followed by Education (19.1%), Economy (18.7%), Other (12.9%), and Health (12.9%). Sports constitute the most minor portion at 5.04%.


[image: Pie chart displaying six categories: Education (31.23%), Health (19.18%), Economy (12.92%), Other (12.87%), Sport (12.93%), and Religion/Culture (5.06%). Each segment is color-coded.]
FIGURE 2
 Distribution of samples across dataset domains.


Further granularity is provided in Figure 3, which delineates the distribution of training and testing samples across these domains. This meticulously organized structure underscores the dataset's diversity and its coverage of a wide array of topics. Such diversity lays a robust groundwork for conducting thorough analyses and developing resilient Arabic stance detection models. The structured approach facilitates nuanced research and model training, thereby contributing to advancements in Arabic computational linguistics.


[image: Bar chart displaying the number of samples in various categories. Categories include Education, Health, Economy, Other, Sport, and Religion/Culture. Each category has three bars representing Favor, Against, and None. Favor has the highest in Economy and Religion/Culture, Against peaks in Religion/Culture, and None is consistently the lowest across all categories.]
FIGURE 3
 Distribution of class labels for training and testing sets across domains in the dataset.





4 Experimental setup

In evaluating the efficacy of the ArabicStanceX dataset, we harnessed the power of the BERT (Bidirectional Encoder Representations from Transformers) architecture across different contexts. This section provides insights into BERT and the particular models we utilized for assessment. Additionally, we delve into the experimental configuration, encompassing hyperparameter adjustments, and elucidate the performance metrics employed to measure the effectiveness of the models.


4.1 Model selection

This research leverages the power of Bidirectional Encoder Representations from Transformers (BERT) as the cornerstone of the ArabicStanceX dataset model. Developed by Google AI, BERT stands out for its exceptional ability to grasp the intricate relationships between words within a sentence (Devlin et al., 2018). Unlike traditional models that process text word by word, BERT employs a bidirectional approach. It analyzes both the preceding and following words, enabling it to capture the subtle nuances of language with remarkable precision. This bidirectional processing allows BERT to unlock the more profound meaning inherent in the text. By pre-training on massive amounts of text data, BERT learns to encode rich contextual information. This empowers it to excel in various Natural Language Processing (NLP) tasks, including sentiment analysis, text classification, and question answering.

In the realm of stance detection, where understanding an author's sentiment toward a topic is crucial, BERT's bidirectional processing proves invaluable. It delves into the full context of an Arabic sentence to discern whether the author's stance is supportive, opposing, or neutral regarding the embedded topic. However, to harness BERT's full potential for Arabic stance detection, fine-tuning is essential. This process involves adjusting BERT's internal parameters specifically for this task. Essentially, we train BERT to recognize the subtle ways in which stance is expressed within Arabic text. Through fine-tuning, BERT becomes adept at navigating the nuances of the Arabic language, offering valuable insights into public opinion and sentence across diverse topics and discussions.

We investigate different approaches for fine-tuning BERT during this phase, as outlined below:

	1. Single Topic Single Model (STSM): in the STSM strategy, we employ a single input BERT structure. Initially, our focus was on fine-tuning a dedicated BERT-based model for each specific topic. This involved adjusting the weights of the pre-trained model to understand better the overall context and unique characteristics of each topic. The objective was to develop specialized models tailored to individual subject areas. However, we ultimately reconsidered this approach due to its consistent failure to capture the “None” stance across various topics effectively. This limitation revealed challenges in generalizing the models and accurately representing less common classes within single-topic analysis.
	2. Multi Topics Single Model (MTSM): in the MTSM approach, we simultaneously fine-tune a single BERT-based model across all topics. This method allows the model to learn from a diverse range of subject matters in a unified manner, potentially improving its ability to discern commonalities and differences among topics. By fine-tuning the model on a broader dataset, we aim to enhance its generalization capabilities and its proficiency in handling multiple topics within a single framework. MTSM involves fine-tuning a combined dataset with variations in input data structure:

	• MTSM-None: this model utilizes a single input sequence BERT architecture, fine-tuning the language model based solely on the tweet content without additional contextual information. The aim is to evaluate the model's stance inference capability from tweet text alone.
	• MTSM-Keywords: employing a two-input-sequence BERT architecture, this method incorporates topic-specific keywords along with the tweets during fine-tuning. Including keywords aims to enhance the model's sensitivity to topic-specific nuances.
	• MTSM-Topic Description: to ensure the model adequately captures topic-related nuances, we explore two strategies for providing it with sufficient topic description. The first strategy involves manually crafting a template-based description for each topic, guiding the content of the descriptions. The second strategy leverages GPT-4-ChatGPT to automatically generate relevant descriptions for each topic, potentially increasing scalability. An example of MTSM-Topic Description for teaching Chinese language in Saudi schools is provided in Figure 4.


[image: Text in Arabic is presented in two paragraphs. The first paragraph discusses introducing Chinese language instruction in Saudi schools starting in the second semester of 2020, supporting improved relations with China. The second paragraph emphasizes incorporating Chinese into Saudi schools aligns with strengthening ties under Saudi Vision 2030, enriching curricula and broadening students' horizons. Two English translations are provided below the Arabic text for each respective paragraph. Each section discusses the benefits and challenges associated with teaching Chinese in Saudi educational institutions.]
FIGURE 4
 Example of manually crafted and ChatGPT generation of topic description for the topic of teaching Chinese language in Saudi schools. (a) Manually crafted topic description. (b) opic description generation by ChatGPT-GPT4.




4.2 Experimental design

This section elucidates the specific variant of the BERT model employed in our study, the process of hyperparameter tuning, and the performance metrics utilized for evaluation.


4.2.1 BERT model used

In this study, we employed the MARBERTv2 model, renowned for its exceptional performance in handling various Arabic dialectal tasks (Elmadany et al., 2022). The selection of MARBERTv2 was motivated by its state-of-the-art capabilities in comprehending and processing the intricacies of Arabic dialects, rendering it particularly well-suited for our stance detection task across a wide array of topics sourced from social media data. MARBERTv2 was fine-tuned on our dataset, as outlined in the Model section, utilizing the Multi Topics Single Model (MTSM) approach simultaneously across all topics. Additionally, we experimented with both single and two-input BERT architectures. In all our methodologies, we utilized the BERT [CLS] token as the text representation embedding of the input text.



4.2.2 Hyperparameters tuning

In optimizing the hyperparameters for the MARBERTv2 model, our strategy aimed to fine-tune the settings to improve both fine-tuning efficiency and model performance. We employed the AdamW optimizer (Kingma and Ba, 2014), renowned for its effectiveness in handling sparse gradients on noisy problems. Our experiments utilized a constant learning rate of 2e-5, supplemented by beta coefficients of 0.9 and 0.999, and an epsilon value of 1e-8 to ensure robust convergence. To prevent overfitting, the model underwent a weight decay of 0.001 and employed a dropout rate of 0.1. The fine-tuning spanned 25 epochs with a batch size of 32. Input sequences were restricted to 128 tokens for single inputs and extended to 512 for composite inputs involving topics, balancing computational resources with comprehensive contextual understanding.



4.2.3 Evaluation metrics

Our evaluation of the baseline models centers on two specialized metrics: Favg2 and Favg3 scores. The Favg2 score represents a macro-average F1 score tailored for the “favor” and “against” stance labels, deliberately excluding the “none” class due to its minimal presence in our dataset. The Favg2 score is computed using Equation 1.

[image: The equation F sub avg2 equals the fraction with F sub favor plus F sub against in the numerator and 2 in the denominator, followed by equation number 1 in parentheses.]

Here, Ffavor and Fagainst represent the F1 scores for the “favor” and “against” classes, respectively. These scores are derived from the precision and recall of each class as per Equations 2–3.

[image: Precision equals TP divided by the sum of TP and FP, labeled as equation two.]

[image: Recall formula shown as: recall equals TP divided by TP plus FN, referenced as equation three.]

We opted for the Favg2 metric to ensure alignment with other stance detection studies that report their findings using the same metric (Mohammad et al., 2016).

In addition to Favg2, we present results using the Favg3 metric, which accounts for all stance labels, including “none". The Favg3 score represents an average of the F1 scores for all three stances and is calculated as per Equation 4.

[image: Formula for average force: \( F_{\text{avg3}} = \frac{F_{\text{pro}} + F_{\text{against}} + F_{\text{none}}}{3} \). Indexed as equation four.]

By reporting both Favg2 and Favg3 scores, our evaluation provides a comprehensive reflection of the model's performance in stance detection, encompassing both specific and overall detection capabilities.





5 Experiments and result analysis

We assessed the efficacy of the ArabicStanceX dataset, MARBERTv2, an Arabic Language Model, for stance detection across a range of topics. Our evaluations encompassed various fine-tuning approaches within the MTSM framework, including scenarios involving few-shot learning. Performance of different methods was gauged based on the ArabicStanceX dataset using performance metrics outlined in Section 4.2.3.


5.1 Performance analysis of MTSM model

We performed a series of experiments using the MTSM model with the ArabicStanceX dataset. The results are showcased in Table 4 employing the MTSM-None approach. In this experimental setup, the model fine-tunes a BERT-based language model solely on tweets without supplementary context, leading to notable performance variations across different topics. For example, the model achieves high F1 scores for “favor” and “against” classes in education-related topics like “Teaching Chinese Language at School.” However, scores are notably lower for topics involving specific individuals, such as “Prince Abdulaziz bin Turki, Head of Sports Minister,” suggesting challenges in stance detection when the input lacks contextual cues. The average F1 scores indicate that while the model performs adequately in some areas, it struggles in contexts requiring a deeper understanding of sentence, as evidenced by lower scores in complex social topics.


TABLE 4 F1 scores for “favor,” “against,” and “none” stances using MTSM-None).

[image: Table displaying various topics with associated sentiment scores: favor, against, none, average over two factors, and average over three factors. Notable topics include "Teaching Chinese Language at School," "COVID-19 Vaccine," "Military Conscription," and "Polygamous Marriage." The average scores over the last two columns are 0.74 and 0.66, respectively.]

Table 4 shows the performance of the MTSM-None approach, which uses BERT to classify stances based solely on the tweet content for various topics in the dataset. The table includes F1 scores for three categories: “favor,” “against,” and “none.” The F1 score is a metric that balances precision (accuracy of identifications) and recall (completeness of identifying positive cases). The obtained results are explained below.

	1. Overall performance: the average F1 score across all topics considering both “favor” and “against” stances (Favg2) is 0.74, with an average considering all three stances (Favg3) being 0.66. This indicates that the model performs moderately well in stance detection using only tweet content.
	2. Topic-wise performance: the performance varies depending on the topic. Some topics like “Teaching Chinese Language at School” and “Aramco Share Selling” achieved high F1 scores for both “favor” and “against” stances (above 0.9 for Favg2). This suggests the model can effectively classify tweets expressing explicit opinions on these topics.
	3. Neutral stance (“none") classification: the model struggles with identifying neutral stances (“none") across most topics. This is evident from the consistently lower F1 scores for “none” compared to “favor” and “against.” Topics like “Coexistence with Religions” and “Mosques Speakers” show particularly low scores for “none,” indicating difficulty in distinguishing neutral tweets from those expressing an opinion on these sensitive subjects.

Overall, the results suggest that the MTSM-None approach achieves reasonable performance in stance detection for some topics with explicit opinions expressed in the tweets. However, the model has limitations in identifying neutral stances, especially for sensitive or complex topics. This highlights the potential need for incorporating additional information beyond just tweet content, such as topic descriptions or keywords, to improve the model's ability to handle diverse stances and topics.

Table 5 shows the performance of the MTSM-Keywords fine-tuning approach for stance detection on various Arabic topics. Each row represents a specific topic identified by its keywords. The columns “Ffavor,” “Fagainst,” and “Fnone” present the F1 scores, a metric used to evaluate model performance, for tweets classified as “favor,” “against,” and “none” stances on that topic, respectively. The “Favg2” and “Favg3” columns represent the average F1 scores across two different evaluation methods (potentially macro and micro averaging). Looking at the average scores at the bottom of the table (AVERAGE OVER Avg2 & Avg3), we see that the model performs moderately well overall, with an average F1 score of 0.72 for identifying tweets expressing a stance (“favor” or “against") and 0.66 for classifying tweets with a neutral stance (“none"). However, the performance varies across topics. Some topics, like “Online Learning” and “Aramco Share Selling,” achieved high F1 scores for all stances, indicating the model's ability to classify tweets related to these topics accurately. Conversely, topics like “Coexistence with Religions” and “Prince Faisal bin Turki's Resignation” resulted in lower F1 scores, suggesting the model struggled to distinguish stances on these subjects. It's important to note that some topics might be inherently more challenging due to the nature of the discussion. For instance, “Coexistence with Religions” might involve a wider range of nuanced opinions that are difficult to categorize definitively as “favor” or “against.” Overall, the results suggest that the MTSM-Keywords approach offers a promising foundation for stance detection in Arabic text. However, further investigation might be needed to improve performance on specific topics.


TABLE 5 F1 scores for “favor,” “against,” and “none” stances using MTSM-Keywords.

[image: A table displaying topic keywords with corresponding values in columns labeled Ffavor, Fagainst, Fnone, Favg2, and Favg3. Topics include Teaching Chinese Language at School, Improve School Curriculum, and others. Values range from 0.27 to 0.92, with average scores over Favg2 and Favg3 listed at the bottom as 0.72 and 0.66, respectively.]

Table 6 shows the results (F1 scores) for the MTSM (Multi-Topic, Single Model) approach with two different topic descriptions: manually crafted and generated by GPT-4. F1 score is a metric that balances precision and recall, providing an overall measure of model performance. Looking across the table, we see that both topic description methods achieved similar performance on average. The average F1 score for both “favor” and “against” stances is around 0.8 for both manual and GPT-4 descriptions, indicating good model performance in identifying supportive and opposing opinions. However, the results for the “none” stance, which represents tweets that don't express a clear opinion, are lower. The average F1 score for “none” is around 0.5 for both methods, suggesting more difficulty in accurately classifying neutral tweets.


TABLE 6 F1 scores for “favor,” “against,” and “none” stances using MTSM as topic description.

[image: A table comparing manual and GPT-4 topic descriptions across multiple topics such as education, tourism, and social issues. Columns include favorability scores \(F_{\text{favor}}\), \(F_{\text{against}}\), \(F_{\text{none}}\), and average scores \(F_{\text{avg2}}\) and \(F_{\text{avg3}}\). Topics like "Teaching Chinese Language at School" and "COVID-19 Vaccine" are evaluated. Data indicates variations in favorability scores between manual and GPT-4 descriptions, with average scores summarized at the bottom.]

There are some interesting variations between topics. For instance, both methods performed well on topics like “Teaching Chinese Language at School” and “Aramco Share Selling,” achieving high F1 scores across all stances. Conversely, topics like “Coexistence with Religions” and “Mosques Speakers” proved more challenging, with lower F1 scores especially for the “none” stance. This suggests that these topics might be more nuanced or have a higher prevalence of neutral language, making stance detection more difficult. Overall, the results indicate that the MTSM approach with either manually crafted or GPT-4 generated topic descriptions can effectively identify supportive and opposing stances in Arabic text for a variety of topics. However, there's room for improvement in accurately classifying neutral tweets, and some topics may require further investigation or model improvements for better performance.



5.2 Performance analysis of few-shot learning model

This section explores the effectiveness of ArabicStanceX dataset in real-world situations where it might encounter entirely new topics, which were unseen during fine-tuning. This is particularly relevant for stance detection as new topics frequently emerge and quickly capture public attention. To address this challenge, we employed few-shot learning, specifically a methodology called “K-shot learning,” which involves fine-tuning the model using only K examples per stance class (favorable, against, neutral) for a new topic. This ensures balanced representation across different stances even with limited data.

To evaluate our model's adaptability, we fine-tuned it on a comprehensive set of topics, excluding six specific ones reserved for testing (detailed in Table 7 through Table 10). This approach simulates a realistic scenario where new topics arise with scarce data available.


TABLE 7 Results for Zero-shot learning.

[image: A table listing six topics with associated numerical values under different descriptions: F_favor, F_against, F_none, F_avg2, and F_avg3. Topics include Online Learning, Neom City, Domestic Tourism, Military Conscription, Mosques Speakers, and Multi Marriage. Average values for F_avg2 and F_avg3 are provided at the bottom: 0.59 and 0.52, respectively.]

Table 7 shows the results (F1 scores) for the zero-shot learning scenario of the stance detection model using manually crafted topic descriptions. In a zero-shot setting, where the model encounters unseen topics, performance is understandably lower compared to previously trained topics. The average F1 score for both “favor” and “against” stances hovers around 0.6, indicating a basic ability to identify sentence but with less accuracy. The results for the “none” stance, representing neutral tweets, are even lower with an average F1 score of 0.34. This underscores the significant challenge the model faces in classifying neutral stances on completely new topics without any specific data for fine-tuning.

Examining individual topics, the model shows varied performance. It performed better on topics like “Online Learning” (average F1 score of 0.71), where opinions are likely more polarized. Conversely, topics such as “Domestic Tourism” and “Mosques Speakers” resulted in lower scores (average F1 score around 0.4), suggesting these topics might be more nuanced or contain more neutral language, complicating stance detection in a zero-shot scenario. Overall, the zero-shot learning results highlight the model's limitations when encountering entirely new topics. While it can still make some basic sentence predictions, the accuracy is significantly lower compared to trained topics. This emphasizes the importance of having some topic-specific data for improved performance in real-world applications.

We then employed incremental fine-tuning, progressively adapting the model with increasing amounts of data (10, 20, and 40 examples per class) for the new topics (Tables 8–10). This step-by-step approach allows us to observe the model's ability to learn from limited topic-specific data, which is crucial for real-world deployments. The significant performance improvements at the 40-shot level, with an average Favg2 score of 0.75, demonstrate that even a small amount of data can substantially enhance the model's effectiveness on unseen topics.


TABLE 8 Results for 10-shot learning.

[image: A table titled "Manual topic description" with columns: \(F_{\text{favor}}\), \(F_{\text{against}}\), \(F_{\text{none}}\), \(F_{\text{avg2}}\), \(F_{\text{avg3}}\). Topics: Online Learning, Neom City, Domestic Tourism, Military Conscription, Mosques Speakers, Multi Marriage. Values range from 0.31 to 0.87. Average values are 0.69 for \(F_{\text{avg2}}\) and 0.60 for \(F_{\text{avg3}}\).]

Table 8 shows the results (F1 scores) for stance detection on unseen topics using 10-shot learning with manually crafted topic descriptions, where the F1 score balances precision and recall to measure overall model performance. The average F1 score across all stances (“favor,” “against,” and “none") is 0.69 for Favg2 and 0.60 for Favg3, indicating moderate performance on unseen topics even with limited data. Performance varies across topics, with higher scores for “Online Learning” and “Neom City” (around 0.7) and lower scores for “Mosques Speakers” and “Military Conscription” (around 0.5), highlighting challenges in these specific domains. The model struggles more with identifying neutral stances, consistently showing lower F1 scores for “none” compared to “favor” and “against.” Overall, the results suggest that while the model can adapt to new topics with some success using 10-shot learning, there is a need for improvement in handling neutral stances and certain topic domains.

Table 9 presents the results (F1 scores) for stance detection on unseen topics using 20-shot learning with manually crafted topic descriptions, where the F1 score balances precision and recall for an overall measure of performance. The model performed well in identifying tweets expressing favorable (Ffavor) and opposing (Fagainst) stances for most topics, with average F1 scores around 0.74, indicating effective learning of basic stance with limited data (20 examples per stance class). However, accurately classifying neutral tweets (“None") proved more challenging, with an average F1 score of around 0.46, highlighting difficulties in distinguishing neutral language from weakly expressed opinions on unseen topics. Performance varied across topics, with “Online Learning” and “Military Conscription” showing good performance across all stances. At the same time “Fix Domestic Tourism” and “Mosques Speakers” resulted in lower scores, particularly for the “None” stance, suggesting that topic complexity and the prevalence of neutral language influence the model's adaptability with limited data. Overall, the results demonstrate the model's potential for handling unseen topics with 20-shot learning, though improvement is needed in accurately classifying neutral stances and specific topic domains.


TABLE 9 Results for 20-shot learning.
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Table 10 shows the F1 scores achieved by the model using 40-shot learning with manually crafted topic descriptions. The F1 score, which balances precision and recall, provides an overall measure of model performance for each stance (“favor,” “against,” “none") on a specific topic. The average F1 scores (Favg2 and Favg3) around 0.75 indicate that the model performs well on average, effectively identifying supportive and opposing opinions in Arabic text with just 40 examples per stance class for a new topic. However, performance varies across topics. For example, topics like “Online Learning” and “Military Conscription” achieved good results across all stances, with average F1 scores above 0.7, suggesting that the model can readily learn the stance patterns associated with these topics even with limited data. Conversely, topics like “Fix Domestic Tourism” and “Mosques Speakers” proved more challenging, with lower average F1 scores, particularly for the “none” stance, indicating inherent complexity or specific challenges in identifying neutral stances in these contexts. Overall, the results are encouraging, demonstrating that the model can effectively adapt to new topics with 40 examples per stance, achieving good overall performance in stance detection for Arabic text while also highlighting the importance of considering topic-specific characteristics in real-world deployments.


TABLE 10 Results for 40-shot learning.

[image: A table comparing six topics: Online Learning, Neom City, Domestic Tourism, Military Conscription, Mosques Speakers, and Multi Marriage, with columns for Ffavor, Fagainst, Fnone, Favg2, and Favg3. Values range from 0.45 to 0.88. The average over Favg2 and Favg3 is 0.75 and 0.68, respectively.]




6 Conclusion and discussion

This research focused on developing and evaluating a robust Arabic stance detection dataset, called ArabicStanceX, using a dataset derived from social media data. It addresses the lack of available Arabic stance detection datasets. Using the BERT architecture, we fine-tuned it to identify sentences across various topics in Arabic text.

Our exploration of different fine-tuning approaches revealed limitations with single-topic models, particularly in capturing the “none” stance and generalizing across diverse topics. In contrast, the MTSM approach showed promising results, especially when combined with manually crafted or GPT-4 generated topic descriptions.

Few-shot learning evaluations highlighted the model's potential for real-world applications, achieving good stance detection performance even with limited data (40 examples per stance class) for unseen topics. This adaptability is crucial for handling the dynamic nature of online discourse, where new topics frequently emerge.

Our findings emphasize the importance of considering topic-specific characteristics when deploying the model. Specific topics pose more significant challenges due to their complexity or the prevalence of neutral language. Future research should explore techniques to enhance performance on these nuanced topics and incorporate additional information sources beyond textual data. The results indicate that the MTSM approach, particularly with topic descriptions, holds promise for Arabic stance detection. The inclusion of topic keywords and descriptions provides the model with the necessary context for more informed predictions. Notably, manual topic descriptions were more effective than those generated by GPT-4, highlighting the potential need for human intuition in understanding nuanced topics.

However, the study has several limitations. The dataset focuses exclusively on Saudi Arabia and is sourced solely from X.com, which may restrict the generalizability of findings to other Arabic-speaking regions or platforms. Another limitation lies in class imbalance within specific topics, which may have negatively impacted the model's ability to detect minority stances. Additionally, the model struggled to handle nuanced language features such as sarcasm, implicit stances, and neutrality. Future work could expand the dataset to include other Arab countries and social media platforms, as well as explore alternative modeling approaches to better capture subtle linguistic cues. Addressing class imbalance could involve dataset resampling or data augmentation techniques.

In general, this work advances Arabic NLP by providing a foundation for effective stance detection in various topics of Arabic text. The developed model offers valuable insights into public stance and opinion dynamics within the Arabic-speaking world, with potential applications in social media analysis, market research, and other fields that rely on understanding audience perspectives. Future work should aim to improve the model's ability to detect neutral stances and enhance performance on complex and sensitive topics.
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Syntactic analysis stands at the heart of Natural Language Processing (NLP), serving as the cornerstone upon which deeper linguistic understanding is built—particularly for morphologically complex languages such as Arabic. This paper delivers a comprehensive comparative study of contemporary syntactic analyzers designed explicitly for Arabic, dissecting the strengths and limitations of rule-based, statistical, machine learning, and hybrid methodologies, and recent neural network and transformer-based models. Given Arabic's intricate morphological structure and rich syntactic variation, accurately capturing syntactic relationships poses a significant challenge. To address this complexity, our study meticulously evaluates existing algorithms, highlighting advancements, performance gaps, and practical trade-offs. In addition, recognizing that robust syntactic parsing is anchored in high-quality annotated datasets, we provide a thorough overview of available Arabic treebanks and annotated corpora, emphasizing their critical role and contribution to syntactic parsing advancements. By synthesizing current efforts in the domain, this comparative analysis not only offers clarity on the state-of-the-art but also guides future research directions. Ultimately, our work seeks to empower NLP practitioners and researchers with nuanced insights, enabling more informed choices in the development of powerful, accurate, and linguistically insightful Arabic syntactic analyzers.
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1 Introduction

Arabic is a Semitic language characterized by complex morphology, rich inflectional patterns, and flexible syntactic structures, posing significant challenges to natural language processing (NLP). Syntactic analysis, commonly referred to as parsing, is a critical step in NLP tasks such as machine translation, information retrieval, and sentiment analysis. Parsing Arabic, however, is particularly challenging due to linguistic phenomena such as diglossia, morphological ambiguity, and relatively free word order (Habash, 2010). Numerous parsing approaches have been proposed for Arabic, ranging from traditional rule-based systems to modern statistical and machine learning-based parsers. Early rule-based systems, primarily grounded in classical Arabic grammar rules, provided foundational insights but were limited by their scalability and adaptability (Othman et al., 2003). The advent of annotated corpora such as the Penn Arabic Treebank (PATB) facilitated data-driven methodologies, leading to significant advancements, including probabilistic context-free grammars (PCFGs), support vector machines (SVMs), and more recently, deep learning models utilizing contextualized word embeddings (Taji et al., 2017).

This paper provides a comprehensive survey of state-of-the-art Arabic syntactic analyzers developed in recent years. It systematically discusses key syntactic parsing approaches, exploring both rule-based and data-driven paradigms. Further, the paper evaluates prominent Arabic syntax treebanks and related resources that have enabled significant progress in parser development. Subsequently, we compare the performance of existing syntactic analyzers across various linguistic domains and applications. Finally, the study addresses ongoing challenges and limitations within the field, outlining avenues for future research.



2 Related work

Most existing review papers on Arabic syntactic parsing either broadly cover general NLP tasks or have become outdated in their specific analyses of syntactic parsing for Arabic. Dedicated comparative studies with a strict syntactic orientation remain scarce, and those available often overlook recent datasets or state-of-the-art parsing techniques.

Zaki et al. (2016) conducted one of the earlier comprehensive surveys focusing exclusively on Arabic syntactic parsers developed up to 2016. They categorize the parsers based on methodological approaches—rule-based, statistical, and hybrid—and clearly outline their advantages and limitations. Despite the breadth of this work, it now lacks coverage of subsequent developments in annotated datasets and parsing methodologies introduced post-2016. A more recent comparative study by Aqel et al. (2019) addressed advancements in Arabic parsing systems, highlighting their strengths and limitations, and providing suggestions to mitigate common parsing challenges. Although informative and relatively current, this work similarly falls short in referencing the latest syntactic annotation schemes and updated parsing datasets that have emerged after its publication.

Recent surveys addressing broader linguistic contexts have also appeared, such as those by Hamed et al. (2025), examining code-switched Arabic NLP, and Xu et al. (2025), exploring multilingual large language models. While valuable, these studies primarily focus on multilingual and cross-lingual scenarios and do not specifically target syntactic parsing of Arabic, highlighting a clear gap in the literature for a dedicated, syntax-focused comparative study for Arabic.

In summary, the literature reflects a notable scarcity of recent and specialized comparative studies that focus explicitly on Arabic syntactic parsing. The present study addresses this gap by offering a comprehensive and current analysis specifically targeted at syntactic parsers for Arabic, incorporating insights from recent developments and datasets.

To better contextualize the reviewed work, we briefly outline the fundamental concepts and methodologies in syntactic analysis. Syntactic analysis, or parsing, refers to the process of analyzing sentences by identifying their syntactic structure according to a set of grammatical rules. This task is fundamental in natural language processing (NLP) and computational linguistics, as it helps in understanding sentence structure and meaning. In the context of Arabic, syntactic analysis can be approached in several ways, each offering distinct advantages depending on the complexity and formality of the grammar involved.


2.1 Approaches to syntax analysis

Syntactic analysis can be approached using two primary methods:

	• Top-Down Parsing: This method starts with the entire sentence and breaks it into smaller parts (constituents) using grammar rules. These parts are further divided until you reach individual words. This strategy works well with grammars that focus on sentence structure (Aho et al., 2006).
	• Bottom-Up Parsing: This method begins with the words in the sentence, assigning each a grammatical label. These labels are then combined to form higher-level structures (like phrases) until the full sentence structure is built. This method works with many types of grammar (Aho et al., 2006).



2.2 Available parsing algorithms

The selection of parsing algorithms is critical to the efficiency and effectiveness of syntactic analysis. Two prominent algorithms are:

• Cocke-Younger-Kasami Algorithm: A fast, table-based parsing method for context-free grammars, especially effective when the grammar is in Chomsky Normal Form (Brandt and Walter, 2001).

	• Earleys Algorithm: A flexible algorithm that works with both normalized and non-normalized context-free grammars (Tendeau, 1997).



2.3 Parsing techniques

Several approaches to syntactic analysis in Arabic focus on different methods and techniques, including:

	• Rule-based approach: which uses a well-defined formal grammar based on the knowledge of linguists on the language concerned;
	• Statistical approaches: which uses machine learning techniques to create grammar rules from a corpus annotated (TreeBank), then analyzes the sentences using these rules;
	• Hybrid approach: which uses both a predefined grammar and a statistical module (for example a disambiguation module) allowing to improve the results and to resolve the ambiguities.



2.4 Depth of parsing

In syntactic analysis, the term “depth of parsing” refers to the extent and precision of syntactic information extracted from a given sentence. This concept plays a critical role in shaping the goals and applications of parsing systems, especially for morphologically rich and structurally flexible languages such as Arabic. Generally, parsing approaches fall into two broad categories based on depth: deep parsing and shallow parsing.

• Deep parsing: Deep parsing involves generating a full syntactic structure for a sentence, capturing the complete grammatical relationships among words and phrases. This typically results in hierarchical representations like constituency trees or dependency graphs, which identify syntactic roles such as subjects, objects, and modifiers. For Arabic, deep parsers often rely on resources like the Penn Arabic Treebank and are capable of handling sophisticated linguistic features, albeit with significant computational cost (Habash, 2010; Taji et al., 2017). These parsers are valuable for tasks requiring nuanced understanding of sentence structure, such as machine translation and semantic analysis.

• Shallow parsing: Also known as chunking, shallow parsing focuses on identifying the main syntactic units within a sentence, such as noun phrases or verb groups, without delving into their internal grammatical structure or hierarchical organization. This approach is generally faster and more robust, particularly in noisy or resource-scarce settings. In Arabic NLP, shallow parsing is often used in applications like named entity recognition and basic information extraction, where full parsing is unnecessary (Shaalan and Khaled, 2010).

Each method presents advantages depending on the use case. Deep parsing provides comprehensive syntactic insight but demands more processing power and annotated data. Shallow parsing offers efficiency and adaptability, especially for preliminary or large-scale language tasks. In practice, hybrid models that combine both levels of analysis are becoming increasingly common in Arabic syntactic processing.




3 Arabic syntax treebanks and resources

The development of Arabic syntactic parsers relies heavily on annotated treebanks, which provide valuable resources for training and evaluating parsers. Notable Arabic treebanks include:

Penn Arabic Treebank (PATB) employs a statistical approach for annotating Modern Standard Arabic, focusing on structural morphology and syntactic analysis. It includes comprehensive annotations for parts of speech (POS), morphology, gloss, and syntactic trees. The corpus consists of 599 articles from the Lebanese newspaper An Nahar, totaling 402,291 word tokens. The annotations, following the Penn Treebank guidelines, are used for syntactic parsing and language modeling. Evaluation results across multiple versions demonstrate high accuracy, with more than 99% of tokens correctly tagged for POS and morphological analysis, ensuring robust reliability for linguistic and computational applications (Maamouri et al., 2004, 2005).

Prague Arabic Dependency Treebank (PADT) is grounded in a theoretical approach inspired by the Functional Generative Description framework and the Prague Dependency Treebank. It includes over 113,500 tokens with detailed syntactic and morphological annotations. This treebank is designed to aid dependency parsing and has been utilized in the CoNLL shared tasks, showcasing its utility in parsing experiments. The dataset covers 212,500 words, with a strong focus on syntactic dependencies. Its evaluation results highlight the accuracy of dependency relations, supporting the treebank's role in both theoretical and practical parsing tasks (Hajič et al., 2004, 2006).

Columbia Arabic Treebank (CATiB) adopts a simplified dependency-based approach that emphasizes annotation speed and efficiency. It provides syntactic analyses, including over 1 million tokens, with 841,000 words and 31,319 trees from newswire feeds and other sources. CATiB uses a reduced set of syntactic labels compared to PATB, prioritizing accessibility for annotators with less linguistic expertise. The evaluation results indicate a balance between simplicity and depth, offering a practical resource for rapid syntactic analysis while maintaining high accuracy for basic syntactic relations in Arabic (Habash and Roth, 2009).

CAMEL Treebank (CAMELTB) is a comprehensive dependency treebank for both Modern Standard Arabic and Classical Arabic, annotated using guidelines aligned with CATiB. It includes approximately 188,000 words and 242,000 tokens from a variety of genres, including poetry, religious texts, and modern media. CAMELTB uses tools like CamelTools for tokenization and POS tagging, and the MALT parser for syntactic parsing. Its manual annotation process ensures high accuracy, with four native Arabic speakers involved in annotating and editing dependency relations. Evaluation results show the treebanks broad applicability across different Arabic dialects and registers, making it a valuable resource for linguistic research and NLP applications (Habash et al., 2022).

Universal dependencies for Arabic project utilizes dependency-based annotations from the Prague Arabic Dependency Treebank (PADT) and the Penn Arabic Treebank (NYUAD version) (Taji et al., 2017; Hajič et al., 2004). These datasets provide a robust foundation for analyzing Arabic syntax and morphology, addressing the challenges posed by the language's rich inflection and word formation. The annotations cover several layers, including part-of-speech tags, lemmas, morphological features, and syntactic relations. The project adopts a consistent approach to tokenization and morphological representation across different Arabic dialects, ensuring broad linguistic coverage. Evaluation of these treebanks emphasizes syntactic accuracy, with UD Arabic-PADT featuring 7,664 sentences and 242,056 tokens, and UD Arabic-NYUAD containing 19,738 sentences and 629,295 tokens. These treebanks offer comprehensive linguistic resources, enabling in-depth analysis of Arabic within the Universal Dependencies framework.

AQMAR Arabic Wikipedia dependency tree corpus (Habash et al., 2009) is derived from Arabic Wikipedia articles, annotated with part-of-speech (POS) tags and syntactic dependencies. This corpus comprises 1,262 sentences and 36,202 tokens, created with a semi-automated annotation process using the Brat annotation tool. The initial POS tagging was performed using the MADA system, followed by manual corrections. Dependency annotations were applied according to the CATiB Arabic dependency framework (Habash and Roth, 2009), ensuring high-quality syntactic representations. The dataset includes diverse topics, such as nuclear technology and football, providing valuable resources for semantic and syntactic analysis in various domains. While the annotations also cover named entities and semantic supersenses, the evaluation results primarily highlight improvements in syntactic parsing and dependency structure accuracy.

ARL Arabic dependency Treebank, developed by the US Army Research Laboratory (ARL) (Tratz, 2016), focuses on Arabic news and broadcast sources. This treebank is a restructured version of the Arabic Treebank (ATB) from the Linguistic Data Consortium, and it adopts a dependency grammar approach. Each sentence is analyzed based on a verb-centered structure, with other elements linked to the verb through directed relationships. The annotations include 11 columns, detailing the syntactic dependencies, POS tags, and lemmata, with each word or affix uniquely identified. Evaluation of the treebank involves measuring the quality of dependency relations and syntactic parsing, making it a crucial resource for Arabic language processing in military and defense applications. The dataset is available for further use in research and development of Arabic language technologies.

OntoNotes 5.0 (Weischedel et al., 2013) is a large annotated corpus containing multiple linguistic layers, including syntactic, semantic, and discourse-level annotations. The Arabic portion, comprising 300K words, includes part-of-speech tagging, coreference, named entity recognition, and word sense disambiguation. The syntactic annotations use the Treebank framework, while the semantic annotations link word senses to an ontology. Evaluation results demonstrate high quality in both syntactic and semantic annotations, with comprehensive coverage of co-reference and named entities. The corpus provides a valuable resource for training machine learning models and evaluating Arabic language processing tasks. Available in both relational database format and text files, OntoNotes supports a range of research applications, including cross-linguistic studies and deep semantic parsing.

I3rab Treebank (Halabi et al., 2020) is a new Arabic dependency treebank that introduces innovative approaches to tokenization and dependency representation, focusing on the identification of primary words and the treatment of joined and implicit pronouns. The corpus is compared against a subset of the Prague Arabic Dependency Treebank (part-PADT), with evaluation results showing significant improvements in parsing performance. The I3rab dataset demonstrated a 7.5% increase in Unlabeled Attachment Score (UAS) and an 18.8% improvement in Labeled Attachment Score (LAS), highlighting the effectiveness of its unique approach. This treebank is intended to advance Arabic language processing by addressing gaps in previous dependency frameworks and offering a more accurate representation of syntactic relations in Arabic.

Arabic Poetry Dependency Treebank (ArPoT) (Al-Ghamdi et al., 2021) introduced ArPoT, the first dependency treebank specifically targeting classical Arabic poetry. The corpus consists of 2,685 verses (35,460 tokens) from 34 poets, annotated using the CATiB scheme, which is rooted in traditional Arabic grammar and supports future conversion to Universal Dependencies. ArPoTs annotation pipeline involved automatic parsing (using a tool trained on MSA) followed by extensive manual correction, with explicit attention to poetic-specific phenomena such as elision and cross-verse syntactic relations. Unlike most previous Arabic treebanks (e.g., Penn Arabic Treebank, CATiB, PADT) which are constructed for Modern Standard Arabic (MSA), ArPoT is dedicated to CA and captures its unique syntactic characteristics, making it a novel resource for the study of syntactic analysis in Arabic poetry.

NArabizi Treebank (Riabi et al., 2023) is a syntactically annotated corpus for North African Arabic (specifically Algerian dialect) written in Latin script—commonly known as NArabizi. The dataset consists of approximately 1,300 user-generated sentences, primarily sourced from online forums and song lyrics, with significant code-switching (36% French tokens). The latest version introduces major improvements, including standardized tokenization, corrections of morpho-syntactic and syntactic annotations following Universal Dependencies (UD) guidelines, and enhanced translation quality. Two new annotation layers were added: named entity recognition and offensive language detection, making the resource more versatile for downstream tasks. The treebank focuses exclusively on dialectal Arabic and does not include Modern Standard Arabic (MSA). However, its syntactic annotation—covering POS tags, morphological features, and dependency parses—serves as an essential benchmark for NLP tasks on noisy, low-resource Arabic varieties written in non-Arabic scripts. Experimental results showed that improving syntactic annotation quality led to significant gains in downstream dependency parsing and NER. The resource is freely available for research purposes.

AraFast (Alrayzah et al., 2024) is a large-scale, freely available Modern Standard Arabic (MSA) corpus aimed at addressing the shortage of comprehensive datasets for Arabic NLP research. The authors developed a multi-stage pipeline, combining automated and manual discovery of Arabic corpora from major repositories (such as GitHub, Kaggle, and Huggingface), followed by strict filtering for quality and genre, and extensive cleaning using custom algorithms. This process included deduplication, removal of noise, normalization, and segmentation with the WordPiece tokenizer. The final AraFast corpus comprises 112 GB of high-quality MSA and classical Arabic text from 48 different sources, reduced from an initial 833 GB of raw data through rigorous preprocessing. Importantly, it should be noted that AraFast is not a syntactically annotated resource such as a treebank; it does not include part-of-speech or syntactic structure annotations. Instead, AraFast provides a high-quality, segmented text corpus specifically designed for pretraining large transformer-based language models, using dynamic span-masking objectives. Both “base” (full corpus, 110M parameters) and “mini” (10GB) models were trained and evaluated. The experimental results showed that using segmented, clean data substantially improved model learning and stability (evidenced by lower training loss), while web-scraped noisy data led to training failures due to noise and data artifacts. While AraFast itself does not provide direct syntactic labels or parsing, its quality and scale make it a valuable foundational dataset. It indirectly supports advances in Arabic syntactic parsing by enabling the training of robust pre-trained language models, which can later be fine-tuned or adapted for downstream syntactic analysis tasks. Thus, AraFast serves as an important resource for both general and syntactic NLP applications in Arabic.



4 Available syntactic analyzers

Over the years, a wide array of Arabic syntactic analyzers have been developed, mirroring the progression of parsing techniques. Early parsers predominantly relied on manually crafted grammar rules and limited evaluation datasets, whereas subsequent systems leveraged machine learning trained on treebanks. In recent years, neural network and transformer-based parsers have achieved new state-of-the-art results by incorporating contextualized language models. The following subsections review representative Arabic parsers across these different paradigms, highlighting their approaches and reported performance.


4.1 Traditional syntactic analyzers for arabic

Analyzer based on a recursive transition network is a syntactic analyzer developed by Bataineh and Bataineh (2009) uses a Top-Down parsing approach based on Recursive Transition Networks (RTN), a concept derived from recursive transition grammars. The grammar for this parser is context-free, tailored to capture the most frequent sentence structures in Arabic. The approach applies both pattern-based rules and context-free rules, treating them as complementary. It was tested on 90 Arabic sentences, achieving an accuracy rate of 85.6%. However, the parser struggled with ungrammatical sentences and those outside the grammar's coverage, with 14.4% of sentences being unparseable.

A'reb, developed by Al-Daoud and Basata (2009), is a recursive, Top-Down parser designed to handle both lexical and syntactic analysis for Arabic sentences, focusing on verbal sentences. It utilizes recursive functions closely tied to production rules, allowing the parser's structure to reflect the grammar it interprets. Despite its functionality, the authors noted that further refinement is needed for complete effectiveness, with no quantitative evaluation results provided.

Parse trees of Arabic sentences using NLTK (Shatnawi and Belkhouche, 2012) is a rule-based approach utilizing Context-Free Grammar (CFG). The parser applies the NLTK recursive-descent algorithm to generate parsing trees for general and Quranic Arabic. Although it supports several NLP tasks, the authors pointed out that the model does not address more complex tasks like parsing dependencies, and no quantitative performance metrics were provided.

Chart parser for analyzing Arabic sentences (Al-Taani et al., 2012) is a Top-Down chart parser based on Context-Free Grammar (CFG) to analyze Arabic sentences. The parser's accuracy was evaluated on a small corpus of 70 sentences, with an average sentence length of 3.98 words, achieving 94.3% accuracy. However, the authors emphasized the need for further evaluation with a broader corpus to test the parser's reliability in diverse contexts.

Context-free Grammar analysis top-down technique (Al-qrainy et al., 2012) developed an Arabic parser based on Context-Free Grammar (CFG) and Top-Down recursive descent parsing using NLTK. The parser was tested on 150 Arabic sentences, achieving a high accuracy rate of 92% for verbal sentences and 98% for nominal sentences. However, the test set was small, and the types of sentences evaluated were unspecified, which limits the reliability of the results.

ARSYPAR (Khoufi et al., 2013) introduced an Arabic parser that uses supervised machine learning techniques, specifically Support Vector Machines (SVM). The parser was trained using features derived from the Arabic Treebank and focused on syntactic word classes. It was evaluated on a portion of the Arabic Treebank, achieving an F-score of 84.38%, demonstrating the efficacy of statistical methods in syntactic analysis.

Industrial-strength parser (Redjaimia et al., 2014) developed an advanced Arabic parser combining rule-based and statistical approaches to provide robust dependency and hierarchical constituent parsing. The parser underwent rigorous testing on a corpus of 300 Arabic sentences, achieving an F-score of 82%. This hybrid approach proved effective for applications like opinion mining in Arabic social media content, although the specific evaluation methodology was not detailed.

Robust large-scale parser using AGFL formalism (Ouersighni, 2014) used a rule-based approach with Affix Grammars over Finite Lattice (AGFL) formalism for parsing Arabic. The parser's robust performance was tested on 200 Arabic sentences, achieving a 95% success rate. However, it suffered from high ambiguity, with an average of 23.12 possible analyses per sentence, highlighting the trade-off between robustness and precision in this approach.

Transducers parser (Hammouda and Haddar, 2018) employed a transducers-based approach to parse Arabic nominal sentences. The system, which includes segmentation, preprocessing, and disambiguation phases, achieved a precision rate of 80% and a recall rate of 90% when tested on a corpus of 200 Arabic sentences. This method proved effective for nominal sentence parsing but may require further refinement for broader sentence structures.

Inductive learning algorithm (ILA) (Abu-Soud et al., 2018) developed an ILA to parse Arabic nominal and verbal sentences. The ILA generates parsing rules from a training dataset and achieved a 92.63% accuracy for previously unseen sentences. However, it performed better on verbal sentences compared to nominal ones, due to the structural complexity of the latter. The method demonstrated its potential for Arabic Natural Language Processing (ANLP) applications but highlighted the challenges of segmenting and tagging sentences accurately.

Arabic parser based on CFG and classical grammar rules (Ababou et al., 2017) proposed an Arabic parser using Context-Free Grammar (CFG) integrated with classical grammar rules. The system achieved 97% accuracy when tested on 200 nominal sentences, effectively identifying dependency relations. However, some verb tagging errors were noted, and the method's simplicity allows easy integration with other techniques, enhancing its adaptability in parsing Arabic sentences.

Syntactic parsing using the NooJ linguistic platform is syntactic analyzer employs a rule-based, linguistically driven approach for Arabic syntactic parsing (Bourahma et al., 2018). Focusing on enhancing lexicon classification, resolving ambiguities from morphological analysis, and modeling grammar based on nominal sentence structures. The evaluation of the system on 120 nominal sentences demonstrated a parsing accuracy of 95%, with disambiguation achieving an 86% accuracy. Despite the success, ambiguities remain in complex sentence structures, highlighting the challenge of fully capturing Arabics syntactic nuances. The approach proves effective in handling agglutination and word order variability.

Multitask easy-first dependency parsing uses a bottom-up parsing strategy with a multitask learning approach (Kankanampati et al., 2020). It simultaneously learns from two Arabic dependency treebanks (CATiB and UD) by parsing both syntactic and semantic features. Their model jointly parses sentences into both syntactic representations using shared and task-specific components, allowing partial parse trees in one formalism to inform decisions in the other. This approach is evaluated on parallel CATiB and UD treebanks—both automatically converted from parts 1–3 of the PATB—with standard train/dev/test splits. While these converted treebanks are not originally designed for dependency parsing, they are widely used as gold standards for syntactic analysis in Arabic NLP research. The multitask parser achieves substantial improvements over strong single-task baselines, with labeled attachment scores (LAS) of 86.15 for CATiB and 84.76 for UD, representing 9.9% and 6.1% error reductions respectively. The study highlights that explicit sharing of partial tree structures, rather than just neural parameter sharing, yields the largest gains, especially in complex syntactic constructions such as Idafa and modifiers.

An Arabic probabilistic parser based on a property grammar is a parser that uses a hybrid approach combining statistical modeling and rule-based parsing, based on a Property Grammar (PG) formalism (Bensalem et al., 2023). The parser applies a bottom-up parsing strategy using a Probabilistic Context-Free Grammar (PCFG) combined with a probabilistic Property Grammar (PPG). It integrates syntactic constraints and utilizes the CYK algorithm optimized with the Viterbi method. Evaluation on a test set of 400 sentences from ATB highlights the parser's ability to parse complex Arabic constructs with high precision. Compared to the Stanford parser (Dozat et al., 2017), it demonstrates better precision for specific linguistic phenomena, such as verbal sentences (88.3% vs. 81.9%) and nominal phrases (75.2% vs. 74.0%). However, it faces challenges in recall, particularly in capturing all relevant syntactic features.

Bel-Arabi combines both rule-based and learning-based approaches for Arabic syntactic parsing (Ibrahim et al., 2016). The system adopts a machine learning strategy for tasks like POS tagging and chunking, employing Conditional Random Fields (CRF) classifiers. The framework also integrates rule-based modules for grammatical marking, ensuring accurate syntactic analysis. With a high precision rate (90.44%) for analyzing 600 sentences, the system excels at identifying grammatical roles and diacritical marks. However, its performance declines when dealing with constructs like passive verbs, indicating areas for improvement, particularly in semantic analysis.

Arabic parser using deep learning employs deep learning techniques to tackle the complexities of Arabic syntax, utilizing bidirectional LSTM (BILSTM) models (Maalej et al., 2021). The system employs a statistical approach for syntactic parsing, utilizing deep learning models such as LSTM, GRU, and BILSTM, which are trained on word embeddings derived from the Penn Arabic Treebank (ATB). The BILSTM model demonstrated superior accuracy, achieving over 99% accuracy across various syntactic levels. The system effectively captures bidirectional contextual dependencies, making it a promising approach for Arabic syntactic parsing in NLP applications.

Stanford Arabic parser is a component of the Stanford CoreNLP suite that provides syntactic analysis of Arabic sentences using probabilistic context-free grammar (PCFG) models (Green and Manning, 2010). It is trained on the Penn Arabic Treebank (PATB) and operates in two main stages: first, it performs tokenization and segmentation—often using the Stanford Arabic Segmenter, and then applies syntactic parsing to produce hierarchical phrase structure trees.

The parser generates both constituency trees and part-of-speech (POS) tags, enabling deeper syntactic understanding necessary for downstream tasks like information extraction, question answering, and machine translation. It utilizes the CYK (Cocke–Younger–Kasami) parsing algorithm and supports features like n-best parses and probabilistic scoring, making it both powerful and flexible for diverse NLP applications. Although the parser itself doesn't perform sentiment analysis, its output supports sentiment models. Grammar-checking tools use the parser to identify and correct errors, and NER systems benefit from its contextual information. In educational settings, the parser teaches syntax and sentence structure, while businesses use it for text analytics, such as market research and customer feedback analysis. The parser's comprehensive applications demonstrate its versatility in understanding and processing natural language text.

The parser's performance on development test data for sentences under 40 words shows a factored F1 score (factF1) of 77.44% and dependency accuracy (factDA) of 84.05%. For the ATB part 3 Buckwalter grammar. These results highlight strong dependency parsing performance and suggest that inconsistencies in constituency annotations may account for the relatively lower F1 scores.

Arabic tree adjoining grammar (ArabTAG V2.0) or Arabic Tree Adjoining Grammar version 2.0, is an advanced syntactic and semantic analysis framework specifically designed for Modern Standard Arabic. Developed as part of a project led by researchers like Ben Khelil et al. (2023) and her collaborators, this grammar addresses the unique challenges posed by NLP, including its flexible word order, rich morphology, and the omission of diacritics in written texts. ArabTAG V2.0 builds on a prior manually defined grammar, enhancing it with an abstract representation called a meta-grammar. This abstraction allows linguists to describe both the syntax and semantics of Arabic more efficiently, facilitating the maintenance and expansion of the grammar. The framework includes 1,074 non-lexicalized syntactic rules and 27 semantic frames, focusing on predicate-argument structures.

The grammar is semi-automatically generated and is designed to cover a wide range of syntactical structures and linguistic phenomena. Experimental evaluations have shown that ArabTAG V2.0 can achieve a precision rate of 88.76% in syntactic analysis and about 95.63% in semantic analysis. This high level of accuracy demonstrates its capability to handle the complexity of Arabic syntax and semantics effectively.

MASAQ parser (Sawalha et al., 2025b) is a recent statistical parser developed for Classical Arabic, based on the newly released MASAQ dataset (Sawalha et al., 2025a). It applies supervised machine learning (Random Forest, LinearSVC, Logistic Regression) for fine-grained morphosyntactic analysis, focusing on dependency parsing in accordance with traditional Arabic irab. The MASAQ corpus includes 131,930 morphemes and 123,565 annotated syntactic functions over 77,408 Quranic words. Evaluation experiments report a best accuracy of 99.0% for syntactic role assignment using Random Forest, setting a new benchmark for Arabic syntactic analysis.



4.2 Modern neural and transformer-based approaches to arabic syntactic analysis

Camel parser, which includes versions 1.0 and 2.0 (Elshabrawy et al., 2023), integrates machine learning, specifically leveraging BERT-based embeddings for better contextual understanding, and applies biaffine attention mechanisms for dependency parsing. CamelParser 2.0 outperforms its predecessor by integrating advanced neural models, yielding improved parsing performance with a Labeled Attachment Score (LAS) of 91.3% and an Unlabeled Attachment Score (UAS) of 92.4%. The use of BERT and biaffine parsing results in a significant reduction in parsing errors, making it a robust tool for Arabic dependency parsing.

Out-of-domain dependency parser (Mokh et al., 2024) address the challenge of dependency parsing for Arabic dialects in an out-of-domain setting, given the lack of syntactically annotated dialectal corpora. Their approach uses a neural biaffine dependency parser (Dozat and Manning, 2016), trained on the Columbia Arabic Treebank (CATiB; Habash and Roth, 2009) and the Modern Standard Arabic (MSA) portion of the MADAR parallel corpus (Bouamor et al., 2018), and tested on a manually annotated set of Gulf, Levantine, Egyptian, and Maghrebi dialect sentences. They focus on the parsing of Idafa and coordination constructions, which are particularly challenging and structurally variable across dialects. The authors employ various domain adaptation strategies, including filtering training data by sentence length, removing sentential coordination, selecting structurally similar sentences based on POS bigram perplexity, and experimenting with different BERT-based embeddings. For in-domain evaluation, they used two syntactically annotated MSA datasets: CATiB and the MSA portion of the MADAR corpus, which consists of 2,000 sentences with full dependency. When trained and evaluated on CATiB, their parser achieved a Unlabeled Attachment Score (UAS) of 90.3% and a Labeled Attachment Score (LAS) of 88.7%. On the MADAR MSA dataset (2,000 annotated sentences), the parser reached a UAS of 97.9% and a LAS of 84.9%. However, performance drops significantly out-of-domain (e.g., UAS: 55.1–57.5%, LAS: 23.2–27.5% across dialects), but targeted adaptation techniques can raise LAS by up to 24 points for specific constructions. These results serve as an upper bound for parsing performance in MSA, given matched domain and annotation style.

AraT5 (Nagoudi et al., 2022) is an Arabic text-to-text Transformer model trained on large-scale MSA and dialectal corpora, including AraNews (Nagoudi et al., 2020), El-Khair (El-Khair, 2016), and OSCAR (Suárez et al., 2020). While AraT5 does not function as an explicit syntactic analyzer, its sequence-to-sequence architecture and pretraining enable it to learn syntactic structures implicitly, as demonstrated by strong results on the ARGEN benchmark across seven tasks. AraT5 outperformed mT5 on 52 of 59 test splits, highlighting the effectiveness of implicit syntax modeling for Arabic language generation and understanding tasks.

AraBERT (Antoun et al., 2020) is a transformer-based language model specifically pre-trained for Arabic. Built on the BERT-base architecture (12 encoder layers, 768 hidden dimensions, 110M parameters), AraBERT introduces an Arabic-specific preprocessing pipeline by segmenting words into stems, prefixes, and suffixes using Farasa (Abdelali et al., 2016), followed by sub-word tokenization (SentencePiece, vocab size: 64K). The model is pre-trained on a large, diverse corpus comprising 70 million sentences (24GB) gathered from major Arabic news sources [notably the 1.5B Arabic Corpus (El-Khair, 2016) and OSIAN (Zeroual et al., 2019)], Modern Standard Arabic (MSA), and dialectal variants. Although AraBERT is not an explicit syntactic parser, its deep contextualized embeddings have shown strong performance on tasks highly dependent on syntactic and morphological understanding, making it widely adopted as a backbone for downstream syntactic analysis tasks. In evaluations across sentiment analysis, named entity recognition (NER), and question answering (QA), AraBERT consistently outperformed multilingual BERT and previous state-of-the-art models. The size and diversity of the training corpus and the Arabic-specific tokenization are key contributors to its robust syntactic modeling.

MARBERT (Abdul-Mageed et al., 2021) is a pre-trained deep bidirectional Transformer model specifically designed to address the diversity and informality of Arabic language varieties, especially on social media. Built on the BERT-base architecture (12 layers, 768 hidden units, 163M parameters), MARBERT is trained from scratch on a massive dataset of 1 billion Arabic tweets (128GB, 15.6B tokens), using a 100K WordPiece vocabulary. The pre-processing is intentionally minimal—removing only diacritics and normalizing URLs, usernames, and hashtags—to maximize the model's exposure to authentic, naturally occurring dialectal and noisy text. Importantly, while MARBERT is not a syntactic parser in the traditional sense, its deep contextualized representations have shown substantial impact on downstream tasks that depend on syntactic and morphosyntactic cues, such as named entity recognition, dialect identification, and question answering. For evaluation, MARBERT was assessed using the ARLUE benchmark (Abdul-Mageed et al., 2021), which consists of 42 diverse datasets across six task clusters (including tasks closely tied to syntactic analysis). MARBERT achieves state-of-the-art results on 37 out of 48 classification tasks, with an overall ARLUE macro-average score of 75.99, outperforming many larger multilingual models (such as XLM-RLarge, which is more than three times larger in parameters). Notably, MARBERT's strength is most pronounced in dialect identification and social meaning tasks—domains where syntactic variation is high and previous MSA-focused models struggled. To further address performance in tasks requiring longer context, the authors introduce MARBERTv2, which is obtained by continued pre-training of MARBERT on the same MSA data as ARBERT and the AraNews dataset, using a longer sequence length (512 tokens) for 40 additional epochs, resulting in exposure to 29 billion tokens.

Dialect-specific pre-trained language models: In addition to multidialect models like AraBERT and MARBERT, recent research has introduced several dialect-specific pre-trained language models, including CAMeLBERT (Inoue et al., 2021), SaudiBERT (Qarah, 2024b), and EgyBERT (Qarah, 2024a). CAMeLBERT comprises a suite of BERT-based models, each trained on a specific Arabic variant (Modern Standard Arabic, dialectal Arabic, or Classical Arabic), with pre-training corpora ranging up to 167GB and over 17 billion tokens. SaudiBERT is developed for the Saudi dialect using a corpus of 141 million Saudi tweets and forum data (totalling over 26GB), while EgyBERT targets the Egyptian dialect with more than 10GB of Egyptian tweets and forum texts. These models follow the BERT architecture and employ minimal pre-processing to preserve dialectal characteristics. Though not syntactic parsers, their contextualized representations significantly improve the performance of downstream tasks that require syntactic sensitivity.

Al-Ghamdi et al. (2023) proposed a novel approach for Arabic dependency parsing by fine-tuning BERT-based pre-trained language models, formulating the parsing task as a sequence labeling problem. Each token is assigned a composite label encoding both the head position and the dependency relation, and three head-encoding strategies (naive positional, relative positional, and relative POS-based) were systematically compared. The authors evaluated nine Arabic BERT-based models-including AraBERTv2, AraBERTv1, Camel-MSA, Camel-CA, ARBERT, and GigaBERT-on three treebanks: the Prague Arabic Dependency Treebank (PADT, Hajič et al., 2004), the Columbia Arabic Treebank (CATiB, Habash and Roth, 2009), and the Classical Arabic Poetry Dependency Treebank (ArPoT, Al-Ghamdi et al., 2021). Experimental results demonstrate that AraBERTv2 achieved the highest accuracy, reaching up to 84.03% UAS and 80.26% LAS on PADT, 87.54% UAS and 86.41% LAS on CATiB, and 79.79% UAS and 74.13% LAS on ArPoT. It should be noted that the work by Al-Ghamdi et al. (2023) does not propose a novel parser architecture, but rather adapts and thoroughly evaluates the sequence labelling approach using existing BERT-based pre-trained models for Arabic dependency parsing.

The provided Table 1 offers a comprehensive overview of Arabic syntactic analyzers, grouped primarily by their underlying methodologies: rule-based, hybrid, and neural approaches. Rule-based parsers, such as Recursive Transition Network (RTN), Chart Parser, AGFL Parser, and NooJ-based Analyzer, rely heavily on manually crafted grammatical rules and lexicons. These systems exhibit notable accuracy on controlled and limited sentence sets (85.6%–95%), yet they tend to struggle with linguistic coverage, robustness, and scalability to more complex or diverse texts. Hybrid approaches, including ARSYPAR, the Industrial-Strength Parser, Probabilistic Parser, and Bel-Arabi, integrate statistical or machine learning methods with linguistic rules. These parsers generally achieve intermediate levels of accuracy (82%–90%) and show enhanced robustness and broader linguistic coverage compared to purely rule-based methods. However, their performance is contingent upon annotated corpora and careful feature engineering, thus posing challenges in adaptability and maintenance. Neural network-based parsers, such as Camel Parser, AraBERT variants, and Deep-Learning Parsers utilizing transformer architectures, currently deliver state-of-the-art results (LAS and UAS typically ranging from 80% to over 90%). These models benefit significantly from extensive annotated corpora (PADT, CATiB, ATB) and demonstrate superior handling of Arabic morphology, syntactic ambiguity, and out-of-vocabulary words. Nonetheless, neural models require substantial computational resources and large annotated datasets, and they may face performance issues when encountering domain shifts or dialectal variations not represented in training data. Overall, these comparisons indicate that while early parsers laid important groundwork, the highest parsing accuracies for Arabic are currently achieved by transformer-based models and other recent neural approaches. While current parsers demonstrate substantial progress, future research directions include addressing domain and dialect adaptability, interpretability of neural models, and overcoming resource limitations through semi-supervised learning and multilingual transfer techniques. Such advancements will further bridge existing gaps and improve parser applicability across varied Arabic language scenarios.

TABLE 1  Comparative performance of Arabic syntactic analyzers.


	Analyzer
	Approach followed
	Evaluation results
	Corpus size/name





	Recursive transition network
	Top-down RTN; context-free + pattern rules
	85.6 % accuracy
	90 Arabic sentences



	A'reb
	Recursive top-down parser; production rules
	–
	Not specified



	NLTK parser
	Rule-based; CFG; recursive-descent
	–
	Not specified



	Chart parser
	Top-down chart parser; CFG
	94.3% accuracy
	70 Arabic sentences



	CFG top-down
	Recursive-descent CFG
	92% verbal, 98% nominal accuracy
	150 Arabic sentences



	ARSYPAR
	Supervised ML (SVM)
	F-score 84.38%
	Arabic Treebank subset



	Industrial-strength parser
	Hybrid (rule-based + statistical)
	F-score 82%
	300 Arabic sentences



	AGFL parser
	Rule-based; AGFL formalism
	95% successful parses; high ambiguity
	200 Arabic sentences



	Transducers parser
	Finite-state transducers; segmentation + disambiguation
	Precision 80%, Recall 90%
	200 Arabic sentences



	Inductive learning algorithm
	Rule induction from examples
	92.63% accuracy
	Unspecified (unseen sentences)



	CFG + classical grammar
	CFG plus traditional grammar rules
	97% accuracy
	200 nominal sentences



	NooJ-based analyzer
	Rule-based linguistic model
	95% syntactic, 86% disambiguation accuracy
	120 nominal sentences



	Camel parser
	BERT + biaffine dependency (ML)
	UAS/LAS: 92.4/91.3
	Not specified (likely ATB)



	Multitask easy-first
	Bottom-up, multitask learning
	UAS/LAS: 88.08/86.15
	CATiB Treebanks



	Probabilistic parser
	PCFG + property grammar, CYK
	Precision 88.3% (verbal), 75.2% (nominal)
	400 ATB sentences



	Bel-Arabi
	Hybrid ML (CRF) + rules
	Precision 90.44%
	600 sentences



	Deep-learning parser
	BiLSTM/LSTM/GRU
	>99% accuracy
	Penn Arabic Treebank



	Stanford Arabic parser
	PCFG + CYK
	FactF1 77.44%, FactDA 84.05%
	Penn Arabic Treebank



	ArabTAG v2.0
	Tree-adjoining grammar; meta-grammar
	Precision 88.76% (syntax), 95.63% (semantics)
	Not specified



	MASAQ
	Statistical parser (Random Forest)
	Accuracy: 99.0%
	MASAQ dataset: 123,565 syntactic functions



	Camel-MSA
	Fine-tuned BERT-based sequence labeling
	UAS/LAS: 83.10/79.17
	PADT: 282,384



	Camel-MSA
	Fine-tuned BERT-based sequence labeling
	UAS/LAS: 86.47/85.29
	CATiB: 169,319



	AraBERTv1
	Fine-tuned BERT-based sequence labeling
	UAS/LAS: 82.76/78.82
	PADT: 282,384



	AraBERTv1
	Fine-tuned BERT-based sequence labeling
	UAS/LAS: 86.76/85.57
	CATiB: 169,319



	AraBERTv2
	Fine-tuned BERT-based sequence labeling
	UAS/LAS: 84.03/80.26
	PADT: 282,384



	AraBERTv2
	Fine-tuned BERT-based sequence labeling
	UAS/LAS: 87.54/86.41
	CATiB: 169,319



	ARBERT
	Fine-tuned BERT-based sequence labeling
	UAS/LAS: 80.37/76.11
	PADT: 282,384



	ARBERT
	Fine-tuned BERT-based sequence labeling
	UAS/LAS: 78.31/75.95
	CATiB: 169,319



	Arabic BERT
	Fine-tuned BERT-based sequence labeling
	UAS/LAS: 80.02/76.52
	PADT: 282,384



	Arabic BERT
	Fine-tuned BERT-based sequence labeling
	UAS/LAS: 82.65/80.59
	CATiB: 169,319









5 Challenges in arabic syntactic analysis

Many of the difficulties in Arabic syntactic analysis are well-known, recent advances in machine learning, computational linguistics, and deep learning bring forth a new set of advanced challenges. These challenges not only stem from the traditional complexities of the language but also from the need to create sophisticated models capable of handling both contemporary and evolving linguistic phenomena. Below are some of the challenges that researchers are facing in Arabic syntactic analysis:


5.1 Unannotated domain-specific data and formalization gaps

While resources like the Penn Arabic Treebank (PATB) exist, they are heavily focused on formal texts and standard written Arabic, such as news articles. As more Arabic data comes from informal domains like social media, blogs, SMS, and chat conversations, syntactic structures in these domains become more difficult to annotate and generalize. These domains often contain non-standard spelling, abbreviations, and internet slang, and their syntax deviates from the rigid structures of MSA. Furthermore, Arabic-language syntactic structures in domain-specific applications (e.g., medical texts, legal documents, technical manuals) often require specialized syntactic theories and rules that current parsers are not equipped to handle. For example, the grammatical norms in technical writing might differ from colloquial speech, and handling these nuances requires more sophisticated annotation schemes that current treebanks and parsing models lack.



5.2 Ambiguities in syntactic structures due to ellipsis and zero pronouns

Arabic syntax features phenomena like ellipsis and zero pronouns that introduce ambiguity into sentence structure. These phenomena are particularly common in conversational Arabic and can result in incomplete syntactic structures that require contextual information to resolve. For instance, a sentence like “He went to the market, and she [went] to the store” in English uses an ellipsis, which may be straightforward to resolve in English, but in Arabic, this can be more complex due to the omission of verb phrases or pronouns without clear agreement. Zero pronouns, where the subject or object is omitted from a sentence because it can be inferred from context, add another layer of complexity. Accurately resolving these ellipses and zero pronouns in both MSA and dialectal varieties remains an unsolved challenge in syntactic parsing, particularly for systems that rely heavily on surface form rather than deeper contextual understanding.



5.3 Model generalization and domain adaptation

One of the most pressing challenges in Arabic syntactic analysis is the generalization of models across domains. While Arabic parsers have become quite effective for general text (e.g., news), they often fail when transferred to specific domains, such as healthcare, finance, or legal documents. Domain-specific vocabulary, sentence structures, and jargon can lead to significant degradation in performance when the models are not adapted properly. Traditional training methodologies that focus on general-purpose data are less effective for domain-specific tasks, and fine-tuning models for specialized domains remains an open area of research.




6 Conclusion and future directions

Arabic syntactic analysis has made significant strides over the past decade, transitioning from rule-based systems to more sophisticated machine learning and neural network models. Despite these advancements, several challenges remain, including handling dialectal variation, resolving ambiguities due to the lack of diacritics, and the need for larger, more diverse annotated datasets. As new systems and approaches are developed, the evaluation of Arabic syntactic analyzers will remain a critical challenge. Establishing more diverse and standardized benchmarks for evaluating Arabic parsers across dialects, genres, and domains is essential for guiding future improvements.

This paper systematically surveys and compares state-of-the-art methods for Arabic syntactic parsing, clearly highlighting the strengths and limitations of existing rule-based, statistical, machine learning, and hybrid approaches. It has also provided a comprehensive evaluation of essential resources, including prominent Arabic syntax treebanks. The comparative insights presented here serve as a foundational reference for researchers seeking to address the inherent complexities of Arabic NLP.

Future research should focus on leveraging advances in transformer-based models, such as multilingual and domain-adaptive language models, to enhance parser robustness across dialects and diverse textual domains. Joint models capable of simultaneously addressing morphological segmentation, POS tagging, and syntactic parsing should be developed to mitigate cascading errors. Additionally, increased efforts toward interpretability in neural systems and richer semantic annotations in Arabic Treebanks will significantly improve downstream NLP applications. Exploring cross-lingual transfer learning and semi-supervised learning techniques will be vital in overcoming current limitations related to the scarcity of annotated data, particularly for dialectal and low-resource Arabic varieties.

In conclusion, while significant progress has been made in Arabic syntactic analysis, ongoing challenges and evolving linguistic phenomena offer ample opportunities for further research. Advances in deep learning, multilingual modeling, and the expansion of dialectal resources are likely to drive the next wave of breakthroughs in the field.
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This study involves extracting the spectrum from the Arabic raw, unlabeled audio signal and producing Mel-frequency cepstral coefficients (MFCCs). The clustering algorithm groups the retrieved MFCCs with analogous features. The K-means clustering technique played a crucial role in our research, enabling the unsupervised categorization of unlabeled Arabic audio data. Employing K-means on the extracted MFCC features allowed us to classify acoustically similar segments into distinct groups without prior knowledge of their characteristics. This initial phase was crucial for understanding the inherent diversity in our diverse sampled dataset. Dynamic Time Warping (DTW) and Euclidean Distance are utilized for illustration. Classification algorithms such as Decision Tree, eXtreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Random Forest are used to classify the various classes obtained based on clustering. This study also demonstrates the efficacy of Mozilla's Deep Speech framework for Arabic speech recognition. The core component of deep speech is its neural network architecture, which consists of multiple layers of Recurrent Neural Networks (RNNs). It strives to comprehend the intricate patterns and interactions between spoken sounds and their corresponding textual representations. The clustered labeled Arabic audio dataset, along with transcripts and Arabic Alphabets, is used as input to Baidu's Deep Speech model for training and testing purposes. PyCharm, in conjunction with Python 3.6, is used to build a Dockerfile. Creating, editing, and managing Dockerfiles within PyCharm's IDE is simplified by its functionality and integrated environment. Deep speech provides an eminent Arabic speech recognition quality with reduced loss, word error rate (WER), and character error rate (CER). Baidu's Deep Speech intends to achieve high performance in both end-to-end and isolated speech recognition with good precision and a low word rate and character error rate in a reasonable amount of time. The suggested strategy yielded a loss of 276.147, a word error rate of 0.3720, and a character error rate of 0.0568. This technique increases the accuracy of Arabic automatic speech recognition (ASR).
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1 Introduction

Speech acts as a gateway in communicating our ideas through different vocal sounds and is a powerful tool that shapes our world. The study of speech signals and the techniques used to process them is known as speech processing. Modern automatic speech recognition (ASR) systems replace the conventional human–machine interface in various commercial applications. Through the application of linguistics and computer science, ASR systems can interpret spoken words and translate them into text. This enables voice-activated device interaction, message dictation, and generation of transcripts from recordings. Recent developments in artificial intelligence (AI), particularly natural language processing (NLP), have focused on using AI applications for ASR. Researchers have investigated morphological analysis, resource building, and machine translation for the Arabic language. Speech and language disorders are a side effect of many diseases, and devices like the Servox Digital Electro-Larynx (EL) can generate quasi-clear voices for people with disorders (Mohammed Ameen and Abdulrahman Kadhim, 2023). The respiratory, phonatory, and articulatory end organs are all involved in the intricate neurological process of speech (Musikic et al., 2025). Acoustic media and background noise can disrupt and interfere with speech communication. Vocalization system damage can affect the efficiency of voice recognition and voice clarity (Liu et al., 2025). ASR is useful in many domains, including the development of accessible applications to transforming human–machine communication. Speech recognition automatically identifies and translates a person's spoken words based on the data available in a speech waveform and its historical data feed. The evolution of deep learning has changed the ASR landscape in conjunction with Recurrent Neural Network (RNNs), deep neural networks (DNNs), and convolutional neural networks (CNNs). Deep neural networks are multilayered artificial intelligence that learns from data. They are inspired by the structure of the human brain, and these layers enable them to handle challenging issues. Deep neural networks, which have been trained on enormous datasets, modify their internal connections to identify patterns and carry out tasks such as speech translation and image recognition. The ability of CNNs to extract intricate patterns from audio input has been inspiring. Baidu's Deep Voice enhances voice recognition precision in noisy situations, as well as in far-field and reverberant conditions (Ahmed and Ghabayen, 2017; Masterson, 2015). MFCCs effectively decipher sound content in speech and audio processing. The MEL scale considers how our ears interpret pitch and frequencies with similar sounds. Applications such as speech recognition systems can interpret speech data by evaluating MFCCs. A clustering algorithm is a specific set of instructions that tells a computer how to automatically group data points into clusters. The study addresses the issue of unlabeled Arabic audio data by applying an unsupervised clustering algorithm to analyze and structure the corpus, uncovering acoustic patterns, speaker variabilities, and environmental conditions. These insights inform effective data handling strategies and the training of Arabic Deep Speech ASR models. These algorithms are used in unsupervised learning, where the data does not have predefined labels. There are many clustering algorithms, but one of the popular popular ones is K-means. Algorithms such as Hierarchical clustering, Mean shift clustering, Gaussian mixture model, Affinity propagation, and K-means clustering are widely available to group different patterns of MFCCs (Al-Anzi and Shalini, 2024).

The primary objective of this study is to develop an ASR system that automatically transcribes spoken utterances into a textual format. Our approach utilized a database consisting of Arabic audio recordings, which encompassed news broadcasts, public speeches, and various general recordings of individuals. The primary objective of our study is to extract the Mel-frequency coefficients necessary for ASR from the unlabeled Arabic audio dataset. We employed a clustering approach, with the clusters organized according to the KNN algorithm to label the collected MFCCs. The retrieved MFCCs are categorized according to their auditory characteristics. We have utilized Baidu's Deep Speech model to transcribe spoken language into text. The input given to the model is our clustered Arabic audio dataset along with its transcribe and alphabet. We also assessed the word error rate (WER) and character error rate (CER) of the transcribed results from the audio datasets. We have labeled the clustered dataset using a speech recognition pretrained model from the klaam library, categorizing it as Modern Standard Arabic (MSA), Egyptian Arabic (EGY), and Gulf Arabic (GLF) based on dialects. We have trained the model using different machine learning algorithms to categorize the dialects and assess accuracy, loss, and evaluation metrics for the clustered results.

The subsequent sections of the article are structured as follows: A concise literature overview encompassing ASR, diverse languages and accents in ASR, end-to-end speech processing, and the deep learning architectures that facilitate speech recognition, concluding with a clearly defined research gap, along with the methodologies and materials. Includes fundamental architecture, data collection, data analysis, MFCC analysis, clustering of MFCC characteristics, classification, performance evaluation, findings, debates, conclusion, and future scope.



2 Literature review

The study by Ahmed and Ghabayen (2017) proposes three methods to improve Arabic automatic speech recognition. They are listed in the following order: utilizing a Decision Tree to generate alternative pronunciations, modifying a native acoustic model with a different native model, and text processing to improve the language model. By employing these methods, the word error rate was reduced. The methodology of the paper showed how deep speech recognition models can integrate over time with long, adjustable windows (Ahmed and Ghabayen, 2017).


2.1 Automatic speech recognition

In the study by Keshishian et al. (2021), ASR aims to enable computers to identify and interpret human speech as accurately as possible. Many techniques can be used to implement speech recognition models. The author utilized one of the newest techniques for speech recognition, which employs neural networks with deep learning. An overview of the research conducted on Arabic voice recognition is given in the paper by Wlgihab et al. It also sheds some light on the facilities and toolkits available for Arabic voice recognition system development (Algihab et al., 2019). A vast array of products has been developed that efficiently leverage ASR to enable communication between humans and machines by Karpagavalli and Chandra et al. Speech recognition applications exhibit reduced performance in the presence of reverberation or minimal background noise (Karpagavalli and Chandra, 2016). Both acoustic and text transcriptions are used during the entire training process of ASR neural network systems.

The study by Belinkov et al. compares phonemes and graphemes along with different articulatory properties to evaluate the representation quality across a range of classification tasks. The study analyzes three datasets and two languages, Arabic and English, and demonstrates how consistently different features are represented across deep neural network covers (Belinkov et al., 2019). The purpose of the study by Abdul et al. is to discuss the applications of the MFCC as well as certain problems with its calculation and how they affect the model's performance (Abdul and Al-Talabani, 2022). An enhanced Mel-frequency cepstral coefficients (MFCC) feature for unsupervised marine target clustering is presented in the research. It exhibits a high success rate for multitarget or depth-target clustering as well as strong anti-interference capabilities (Yang and Zhou, 2018). The Short-Time Fan-Chirp Transform (FChT), a novel technique for time-frequency analysis of speech signals, is presented in this study (Képesi and Weruaga, 2006). It enhances spectral and time-frequency representation, making it appropriate for filtering applications. Taking contextual considerations into account, this method examines speech processing to quantify controllable speech features across a variety of talker populations, noise levels, competing speakers, and the channel through which it is conveyed (Pitton et al., 1996).

The study by Abushariah et al. gave a framework for designing a speaker-independent automatic Arabic speech recognition system using a phonetically rich speech corpus. The system uses Carnegie Mellon University's Sphinx tools and Cambridge HTK tools and uses three-emitting state Hidden Markov Models for tri-phone-based acoustic models. The system achieved word recognition accuracy of 92.67 and 93.88% for similar speakers with different sentences, and a Word Error Rate of 11.27 and 10.07% with and without diacritical marks (Abushariah et al., 2012). A simple word decomposition algorithm presented by Afify et al. requires a text corpus and affix list, improving WER by 10% in Iraqi Arabic ASR. The algorithm also reduces WER by 13% relative (Afify et al., 2006). The research presented by Ali Ahamed et al. shows a novel methodology for assessing ASR in languages lacking a standardized orthographic system. The authors solicited five distinct users to transcribe speech segments, subsequently integrating the alignments from numerous references and presenting a revised WER. The findings indicated an average WER of 71.4 and 80.1%, respectively.



2.2 Different languages, ascent speech recognition

To build high-performing recognizers for two radically different languages, such as Mandarin and English, the authors Amodei et al. looked into a variety of network topologies and found a few helpful techniques, such as look-ahead convolution for unidirectional models, and enhanced numerical optimization using SortaGrad and Batch Normalization (Amodei et al., 2016). In the study by Nahid et al., they investigated the capacity of the DeepSpeech network to recognize unique Bengali speech samples. Recurrent Long Short-Term Memory (LSTM) layers form the foundation of this network, which models internal phoneme representations. At the bottom, convolutional layers are added, which removes the requirement to assume anything about internal phoneme alignment. The model was trained using a connectionist temporal classification (CTC) loss task, and the transcript was generated by casting a beam search decoder. On the Bengali real number speech dataset, the developed method produced a lower word error rate and a character error rate (Nahid et al., 2019).

In the study by Priyank Dubey (2023), they discussed that the transcription of spoken speech can be extracted from the waveform using ASR. Mozilla Deep Speech is among the most recent, according to Baidu's Deep Speech research report. Through end-to-end deep learning, the state-of-the-art deep voice recognition system was developed. A properly optimized RNN is used with several Graphical Processing Units (GPUs). Its generalizability to other English accents is limited because American English accents make up the majority of the datasets used in this training. In this study, researchers used the most recent Deep Voice model, Deep Speech-0.9.3, to create an Indian-English speech recognition system from beginning to end for dialects. In the study by Xu et al. (2020), the focus of the research was on a real-time German speech-to-text system that was constructed using numerous German language datasets. Researchers in this study optimized DeepSpeech for teaching a current German speech-to-text prototype by combining multiple German datasets. Moreover, they achieved strong WER rates. The model discussed in the study by Ai-Zaro et al. produces the WER/PER of 3.11 and 6.18% (Al-Zaro et al., 2025).

Literature (Iakushkin et al., 2018) explains how a voice recognition system for the Russian language is made using DeepSpeech. The foundation was the Mozilla Corporation's DeepSpeech English implementation, which is available as open-source software. The system was trained in a containerized environment using Docker technology. A dataset of Russian literary audio recordings made available on voxforge.com was used, and the best WER was 18%. A study by Messaoudi et al. (2021) proposes an end-to-end method for building Tunisian language communication systems based on deep learning. The paired text-speech dataset in the Tunisian dialect created for this proposal is called “TunSpeech.” Furthermore, the current Modern Standard Arabic (MSA) speech data were combined with dialectal Tunisian speech data to lower the Out-of-Vocabulary rate.



2.3 End-to-end speech processing

Research (Kim et al., 2017) offers a novel end-to-end speech recognition method that leverages a hybrid CTC-attention model within a multitask learning framework to boost resilience and accelerate convergence, thereby reducing the alignment issue. An experiment using the WSJ and CHiME-4 tasks demonstrates its superiority over the CTC and attention-based encoder-decoder baselines, yielding 5.4–14.6% relative improvements in CER. The study by Agarwal and Zesch (2020) utilizes a shared task on SwissText/KONVENS for a speech-to-text system. A neural network is trained end to end, using Mozilla DeepSpeech as its foundation. Data augmentation, post-processing, and transfer learning from standard English and German were utilized. The WER generated by the system is 58.9%.



2.4 Speech recognition using deep learning

In the study by Nedal Turab (2014)), a neural network technique was used to address phoneme recognition. Gaussian low-pass filtering produced improved voice signal quality and reduced noise, which was then used to train a neural network for system training. Study (Alrumiah and Al-Shargabi, 2023) tackles the important task of identifying classic Arabic speech for the 1.9 billion Muslims who recite the Quran. It proposes a model based on Deep Neural Networks (DNNs). With a 19.43% word error rate and a 3.51% character error rate, RNN-CTC outperformed the other models following its training on a 100-h dataset of Quran recordings. CNN was used to further reduce the word error rate. Paper (Alsayadi et al., 2021) presents Arabic diacritical mark-based ASR systems. To create a trustworthy and accurate Arabic ASR, a study by Alsayadi et al. looks at the application of cutting-edge end-to-end deep learning techniques. The acoustic characteristics used in these methods are the log Mel-Scale Filter Bank energies and the Mel-frequency cepstral coefficients. Enhancing discretized Arabic ASR is possible with CNN-LSTM and a new CTC-based ASR. When it comes to Arabic voice recognition, CNN-LSTM with a consideration basis outperforms both traditional ASR and the Joint CTC-attention ASR context (Alsayadi et al., 2021). The research by Ullah et al. utilized Arabic image datasets that have been gathered, consisting of 2,000 Arabic digit records and 900 Arabic phrase records from 24 native speakers. VGG-19 is a deep convolutional neural network with 19 weight layers and is used in this study to extract visual characteristics. Two different approaches, namely, the batch-normalized VGG-19 base model and the standard VGG-19 base model, are presented in the study. The test dataset produces the accuracy of 93% digit and phrase recognition, 97% phrase recognition, and 94%-digit acknowledgment rates (Ullah et al., 2022).

Nagamine et al. analyze a sigmoid DNN trained for a phoneme recognition task to characterize different aspects of the non-linear changes that occur in hidden layers. The more separable phone instances are handled by deeper layers of the network through a non-linear feature space transformation. The study describes how a deep neural network model learns by transforming the feature space in a non-uniform way through repeated non-linear transformations (Nagamine et al., 2016). In the study by Hori et al. (2018), researchers investigate the impact of word-based RNN philological mockups language models (RNN-LMs) on end-to-end ASR performance. It includes a novel word-based RNN-LM which allows decoding with only word-based. Low WER is achieved by the proposed model for the WSJ Eval'92 test set. In the study by Dendani et al. (2020), the representational characteristics of a DNN trained for phoneme recognition were described. In the first hidden layer, node selectivity to specific articulation styles and locations appeared, and in the deeper layers, this selectivity became more pronounced. In the study by Dendani et al. (2020), ASR is implemented using a Deep Auto Encoder (DAE). The results showed that the enhanced speech's accuracy was about 3.17 times better than the accuracy estimated before. Recent models and algorithms, such as Mozilla Deep Speech, have been developed, but their generalizability is limited due to their use of American–English accent datasets (Priyank Dubey, 2023). The study by Srivathshan et al. proposes a hybrid Active Noise Cancellation (ANC) system that combines Secondary-Path Filtered Active Noise Control (SF-ANC) and a Fuzzy Adaptive Neuro-Fuzzy Inference System (FxANFIS) to improve noise reduction performance (Srivathshan et al., 2025).



2.5 Research gap

We haven't found any specific results from my more targeted searches for studies that directly combine Baidu's Deep Speech with cluster learning for Arabic speech recognition. Research on combining Baidu's Deep Speech and cluster learning for Arabic speech recognition has not yielded specific results, suggesting a lack of extensive exploration. However, studies using Deep Speech and cluster learning techniques have revealed challenges like language complexity and data limitations. This supports the hypothesis that this specific combination may not yet have been thoroughly investigated by researchers.




3 Methods and materials

The unlabeled Arabic audio dataset, along with the alphabet, is applied in the proposed work. The auditory data are converted and then hooked onto a sequence of probabilities spanning the characters in the alphabet. Second, this sequence of possibilities gives rise to a cast of characters. The first and second steps are made possible by a Deep Neural Network and an n-gram language model, respectively. The n-gram language model is trained on a text corpus, and the neural network is trained on corresponding text transcripts and audio files. To predict text from speech and prior text, respectively, both the language model and the neural model receive training. Generating (MFCC, Analog to Digital Conversion, Framing, Windowing, Discrete Fourier Transform conversion, Mel-Filter Banks Wrapping Frequency, Converting Mel Filter Banks to Log, Executing Discrete Cosine Transform, the Resultant MFCC Acoustic Model generation, Language Model creation, and Decoding algorithm with deep speech are the fundamental techniques employed in this system. They are all converted to a WAV setup and given a monaural aural canal with a sampling rate of 16,000 Hz and a depth of 16 bits for each value to allow our deep speech pipeline to read all audio clips.

Our unlabeled Arabic audio dataset was subjected to a clustering technique and was mainly used in the pre-processing and data interpretation phases. Since our original dataset was completely unlabeled, we used clustering to characterize acoustic diversity, which involves identifying distinct acoustic groups. The results obtained are manually tested against the transcribed text data. The clustering algorithm enables us to find hidden structures in the data by grouping the MFCC features. The MFCCs are derived from the available Arabic Audio datasets, which are further clustered based on their similar features using clustering algorithms. Machine learning algorithms are further introduced to classify the clusters. The combination of MFCC extraction, clustering, and classification provides an effective framework for extracting insightful information from Arabic speech data. Speech analysis tasks are a good fit for MFCCs because they capture the aspects of speech that are perceptible to humans. ASR allows voice-activated computer communication for individuals with physical disabilities. Mozilla's Deep Speech is one of the well-known ASR systems widely accepted and has shown remarkable progress in multiple languages, including Arabic. Baidu's Deep Speech framework is an open-source ASR system that converts spoken words into written language. This speech-to-text technology uses deep learning algorithms to translate spoken language into written text. Acoustic models, language, speech coherence, and performance evaluation are a few components of speech recognition models.


3.1 Methodology

Figure 1 depicts a detailed pipeline for processing Arabic audio data, incorporating both unsupervised and supervised machine learning methods alongside a deep learning model for transcription. The method commences with an Arabic Audio Corpus, which is subsequently input into a dataset preparation phase. MFCCs are recovered from this dataset, functioning as resilient acoustic characteristics. The characteristics subsequently undergo Clustering, wherein an unsupervised algorithm, presumably K-means, categorizes the audio segments according to their acoustic similarities. The speech recognition pretrained model by the klaam library labeled the clustered output as MSA, EGY, and GLF. The efficacy of the classification models is evaluated by metrics such as Precision, Recall, and F1-Score, with distinct results highlighting an emphasis on dialectal performance. The result of this clustering phase initiates a Training/Testing phase for traditional machine learning models, such as Decision Trees, XGBoost, Random Forest, and KNN, employed for a Classification task, presumably aimed at categorizing audio segments based on insights derived from the clustering. The classification outcomes, combined with the “Arabic Alphabets” input, facilitate the generation of labeled data, which is thereafter divided into 70% for training, 15% for testing, and 15% for validation. These annotated data are essential for training Baidu's DeepSpeech model, the fundamental element responsible for the Text Transcribe job, which converts Arabic audio into text. This integrated architecture exemplifies a multifaceted strategy for Arabic speech processing, amalgamating feature engineering, unsupervised learning, conventional classification, and deep learning to provide a holistic solution.


[image: Flowchart illustrating an Arabic audio processing system. It starts with an audio corpus, followed by four main steps: MFCC extraction, clustering, classification, and evaluation. Steps in classification include training/testing using methods like Decision Tree, XGBoost, Random Forest, and KNN, leading to labeled data. Evaluation involves precision, recall, and F1 score. The system then trains with a 70:15:15 split, using Baidu’s Deep Speech, and transcribes text into MSA, EGY, and GLF dialects.]
FIGURE 1
 Methodology diagram with clustering and Baidu's deep speech.




3.2 Architecture of the speech recognition system

Figure 2 shows the architecture of the Speech Recognition System. Deep neural networks are used in speech recognition to translate spoken words into written text. To extract significant acoustic properties, the spoken utterances are first preprocessed. The following steps correspond to the preprocessing, feature extraction phases, decoder, and model creation. The preprocessing block performs various operations on the speech signal, such as noise reduction and silence removal. After the noise reduction, the background noise gets removed. There will not be any background noise in the spoken signal after the preprocessing phase. Scaling the voice signal to a standard magnitude is known as normalization. The speech stream is divided into shorter segments through framing, and these segments typically last 20–30 ms.


[image: Flowchart of a speech recognition process. It starts with a spoken utterance, proceeds to the acoustic front-end, then feature extraction. These features go through a search algorithm (decoder) and a deep neural network (DNN), incorporating a language model, acoustic model, and pronunciation. The result is a hypothesized word or phoneme.]
FIGURE 2
 Architecture of the speech recognition system.


The process of extracting information from each voice signal frame is known as feature extraction. The acoustic properties of the voice signal are represented by these features. These characteristics are then applied to a series of models: an audio model forecasts the phoneme sequence, and a dialectal prototypical model uses the analysis of the previous word to predict the next. A decoder transforms the sequence into a string of words, enabling accurate speech-to-text conversion. This process uses a pronunciation dictionary to ensure accurate translation and proper word pronunciation. The retrieved features in the acoustic model, a statistical model, represent a set of phonemes. The language model is a numerical model that forecasts the next verse in a series based on the verses that have already been spoken. The decoder needs to convert the sequence of phonemes from the acoustic model into a word order. The last block in the diagram represents the word sequences that have been transcribed. A string of words represents spoken speech. Because DNNs can identify complex patterns in data, they are well-suited for voice recognition tasks.


3.2.1 Probability theory for speech recognition

An ASR system's main objective is to infer the acoustic input O in Equation 1, the most likely discrete symbol sequence among all valid sequences in the language L (Rabiner and Juang, 1993).

O=o1,o2,o3….ot      (1)

The symbol sequence to be recognized is N, given in Equation 2:

N=n1,n2,n3….nn      (2)

The fundamental ASR system goal and the probability are given in Equations 3, 4.

W=argmaxP(W/O)      (3)

P(W/O)=P(O/W)P(O) P(W)      (4)
 


3.3 Data collection

The Arabic audio dataset is our in-house dataset, which contains 4,071 audio samples from various fields, such as security and justice, Economy, Education, Health, Technology, and Sports. Each heading of data is subdivided into three levels of datasets, such as first, second, and third sets. Deep speech requires mono-channel audio files in WAV format with a sampling rate of 16 kHz and an encoding of 2 bytes per sample for all WAV files, so ensuring consistency in audio quality and format. This collection is categorized by speech type, comprising 733 spontaneous voice files and 588 read speech files, providing a varied representation of natural and controlled verbal expressions. The text linked to these audio recordings has an average length of 93.0 characters, reflecting a moderate complexity and vocabulary range within the collection. Ten to twenty-second passes are available between each voice sample. The more closely we match this, the longer or shorter the model will be. The alphabet.txt file contains a transcription of every character from the given voice clip. From the audio voice clip, all punctuation has been removed, including quotation marks, dashes, and other marks. Three sets of data were separated: test, validation, and training. Diacritical marks are used to show proper pronunciation or to provide phonetic guidance because the standard Arabic script does not provide enough information about pronunciation. Since deep speech operates at the character level, the inclusion of these representations influenced the generation of the acoustic model. Prediction possibilities rise based on the number of letters.



3.4 Data analysis

We have used a sample rate of 1,600 Hz for each audio data. The encoding of each wave file is 2 bytes per sample. Likely, spontaneous speech is used for our analysis. The number of spontaneous speech files is 733, and the number of speech files read is 588. The total number of training files is 1,321. The average text length is 93.0.


3.4.1 Silence removal

Figure 3 shows the signal after noise removal analysis of an Arabic signal. Arabic audio signals must be stripped of silent or low-energy segments by identifying and removing them. The advantages of silence removal include speech analysis for cleared content and improved speech clarity.


[image: Waveform and spectrogram of an audio file labeled "audio/train/2752.wav." The waveform shows amplitude variations, marked by red vertical lines. The spectrogram displays frequency intensity over time, with letters "Y," "E," and "S" at specific intervals, indicating phonetic segments.]
FIGURE 3
 Raw and spectrogram of wave signals.




3.4.2 Time and frequency analysis of speech

The basic frequency of the vocal cords, which determines whether a voice is perceived as high or low, is referred to as pitch. Rapid alterations in the speech signals linked to consonants and other non-voiced sounds are known as transient features. The time-frequency distribution of the signal is mentioned as the frequency spectrum of the audio signal. The specific characteristics of the spectrum will depend on the speaker's voice, the content of the speech, and the recording conditions. Analyzing spectra gains valuable insights into the acoustic properties of speech signals and is helpful for speech recognition, speaker identification, and language understanding.




3.5 Sampling

Digitalizing the continuous sound wave is necessary for audio signal sampling. We have digitized the sound wave for Arabic audio. To achieve this, the parameters of the sampling rate should be established to determine the frequency of signal measurement. We have used a sampling rate of 44.1 kHz and a bit depth of 16 bits for our Arabic speech for sampling one lengthy audio wave. The overall sampling rate is 16 kHz. Figure 4 shows the sampling frame of the audio signal. Spectra used horizontal and vertical axes to visually represent the energy distribution across time and frequency, respectively. The power of each combination is indicated by the intensity of the color. Common observations include darker areas, which are associated with high energy, and lighter areas, often linked to unvoiced sounds.


[image: Red waveform graph displaying fluctuating vertical peaks and troughs over a horizontal axis ranging from zero to four hundred fifty thousand, with values spanning from negative six thousand to four thousand.]
FIGURE 4
 Sampling frame of an audio signal.



3.5.1 Discrete Fourier Transform

The windowed speech signal is subjected to DFT, which yields the signal's phase and magnitude representation. The Fast Fourier Transform (FFT) algorithm transforms time domain analysis to frequency domain analysis Figure 5 shows the FFT spectrum of an audio signal and the distribution of the energy that occurs at different frequencies for each segment. Dominant frequencies are those that indicate prominent tones, such as formants and pitch. The spectral content is used to reveal the presence of various frequency components. The sampling frequency of 1,600 Hz provides basic frequency analysis.


[image: Frequency spectrum graph showing the Fast Fourier Transform (FFT) of a recording sampled at sixteen thousand Hertz. Peaks occur between zero and two thousand Hertz, with amplitudes reaching around twenty-five.]
FIGURE 5
 FFT recordings of wave.




3.5.2 MFCC feature extractions

The process of extracting MFCC features is essential for comprehending speech content, which involves triangular filters. Standard FFTs linearly analyze frequencies of sound, but human hearing operates on a Mel scale. The output of the FFT is passed through triangle-shaped filters. We can capture the portions of the spectrum most pertinent to human hearing by adding the contributions of each filter, each of which focuses on a particular frequency range. The MFCC is the result of this Mel-focused representation. Filters are arranged logarithmically, except above 1,000 Hz, and are equally distributed. The equation used to compute Mel frequency is given in Equation 5 (Gupta et al., 2013).

Mel(f)=1127In(1+f700)      (5)

The changes in the speech from frame to frame can be calculated with the first and second MFCC coefficients. Figure 6 shows the block diagram of MFCC feature Extraction.


[image: Diagram illustrating the process of generating Mel Frequency Cepstral Coefficients (MFCC) from a speech signal. The steps include Pre-emphasis, Frame Blocking, Windowing, Mel Filter Bank, and Discrete Cosine Transform (DCT), leading to MFCC. Each step is represented with images depicting the audio transformation.]
FIGURE 6
 MFCC feature extraction.


The audio signal is divided into frames. Windowing and FFT are applied to convert it to the frequency domain. Mel-scale filtering is used in accordance with human auditory perception and logarithmic compression. The discrete Cosine Transform is used to reduce dimensionality, and the resulting MFCCs can provide speaker independence, robustness against noise, and can be processed efficiently. They also capture the fundamental spectral characteristics of speech. Figure 7 shows the Mel power spectrum of the Arabic audio dataset.


[image: Mel power spectrogram displaying frequency on the vertical axis from 512 Hz to 4096 Hz and time on the horizontal axis from 0 to 35 seconds. Intensity is shown through color variations from purple to yellow, indicating amplitude from -80 dB to +0 dB.]
FIGURE 7
 Mel spectrogram.




3.5.3 MFCC statistics

The mean, standard deviation, maximum, and minimum values are represented in Table 1. The mean reveals the average emphasis on the frequency band within the speech. The speech data's standard deviation is a measure of its variability. The maximum and minimum values help in locating anomalies or errors made during the MFCC extraction process. A Discrete Cosine Transform is applied to each MEL filter band to extract MFCCs from the Mel spectrum.

TABLE 1  MFCC statistics.


	Mean
	Standard deviation
	Maximum
	Minimum





	−52.965
	8.573
	−19.167
	−88.341






Figure 8 shows the correlation heat map of the different Mel frequency coefficients. The degree of similarity between different MFCCs is shown by their correlation. The various MFCC features are represented by the rows and columns in the heatmap. The correlation between the features that correspond to the row and column is represented by the color of each cell. When two features have a positive correlation, that is, when they tend to rise or fall together, they are colored red. When two features are negatively correlated, one tends to increase while the other decreases, as indicated by blue. When the two features are uncorrelated, the color white is used. Every value on the heatmap's diagonal is 1.0, indicating that every feature has a perfect correlation with every other feature. Higher values indicate stronger correlations. The values of the diagonal range from −1.0 to 1.0. MFCC captures the spectral envelope of audio signals based on the relative prominence of different frequency bands.


[image: Correlation heatmap of MFCC features with a color scale from blue to red, indicating low to high correlation values. Features labeled col1 to col5 on both axes show varying correlation intensities.]
FIGURE 8
 Correlation heat map.






4 Clustering and classification

MFCC features are clustered together using a clustering algorithm. As the labels are unknown to us, supervised learning is not a solution to the problem. An unsupervised learning method called K-means clustering will be used for grouping into clusters. The clustering divides data points into a fixed number of groups (K) based on their similarity. The first K data points are chosen at random to serve as the initial cluster centers. The nearest center is determined by averaging these assigned points. Repeating this process until the centers stabilize produces groups in which the data points are unique from those in other clusters and similar to each other within each cluster. Clustering is done based on the Euclidean distance in the MFCC feature space between data points. Three clusters are applied to MFCC features. The clustered data are scaled with a silhouette score. Figure 9 shows the three groups of clusters formed from MFCC correlation features. A silhouette score of 0.6918 was obtained in the clustering. The silhouette score is the metric used to assess the quality of clustering algorithms. It evaluates how well data points are assigned to their clusters. Scores range from −1 to 1, with values closer to 1 indicating improved clustering.


[image: Scatter plot showing clustered data points in three distinct colors: yellow, teal, and purple. The clusters form a diagonal pattern from the bottom left to the top right, suggesting a positive correlation. Axes are labeled with numerical values from negative four to positive four.]
FIGURE 9
 Clustering of MFCC features.



4.1 Grid search

In machine learning, grid search is a technique used to determine a model's optimal settings, also known as hyperparameters. Each hyperparameter has a specific range, and the model is trained using all possible combinations from the different ranges. The performance of each combination is assessed, and the best combination is selected as an ideal set. Grid search CV finds the optimal solution based on the selected metric.



4.2 Classification

For multiclass classification tasks, the support vector machine classifier is used. A hyperparameter tuning method called grid search is used to maximize the performance of the SVM model. “Linear” and “rbf” for kernel and (Mohammed Ameen and Abdulrahman Kadhim, 2023; Belinkov et al., 2019) for C are the possible values that are explored for the two hyperparameters, “kernel” and “C.” The training data are fitted to the SVM model that performs the best. Confusion matrix and classification report metrics are used in performance evaluation.




5 Baidu's deep speech

The state-of-the-art speech recognition system known as Deep Speech was developed using Baidu's end-to-end ASR architecture. A massive amount of speech data is trained using multiple GPUs and an RNN. Baidu's Deep Speech can learn directly from a large set of data, so it does not require speech adaptation or noise filtering. Deep RNN training will be based on supervised learning. From voice samples, mel-frequency cepstral coefficients are extracted, and transcription is output directly. A full voice recognition system powered by deep learning and its structure. The system generates a matrix of character probabilities, which shows that it gives each character in the alphabet a chance at each period step, indicating the likelihood that that particular character will match the audio. Furthermore, the Connectionist Temporal Classification (CTC) loss function increases the probability of accurate transcription. TensorFlow uses Baidu's Deep Speech Architecture to implement Mozilla Deep Speech, enabling the creation of prototypes for any dialect. It is simpler to operate and performs better in noisy environments than other traditional systems. This system's main advantage is that it outperforms traditional speech recognition systems, capable of handling speaker oscillation, echo, and background noise. From audio files, a time series spectrogram is produced, with each time slice representing a vector of audio characteristics. Three of the five unseen layers that comprise the RNN that powers the Deep Speech model are non-recurrent. Figure 10 shows the architecture of Baidu's Deep Speech system.


[image: Flowchart illustrating a speech recognition process. It starts with "Spoken Utterances," followed by "Preprocessing & Feature Extraction," leading to "Extracted Features." These are input to a "Decoder" and a "DNN based Unified Model." The model links to a "Conventional Speech Recognition System" comprising an "Acoustic Model," "Pronunciation Dictionary," and "Language Model," converting features to sentences.]
FIGURE 10
 Baidu's Deep speech structure.



5.1 Acoustic model and language model

The acoustic archetypal generates a likelihood distribution over the characters of the alphabet in response to audio. The acoustic model takes up the majority of the training time. Typically, three steps are involved in the feature extraction process. The acoustic front end, also known as speech analysis, is the initial phase. It creates raw features by performing a type of temporal analysis of the signal's spectrum. The acoustic model's task is to use the sequence-to-sequence Deep Speech algorithm to identify which acoustic signals correspond to which specific letters. The language model helps translate these probabilities into comprehensible language words, followed by extensive labeled voice training on a large volume of data. The most important things to consider are the data that are rarely or never present in our training sets. We combine our system with one of these n-gram language models since they are readily trained from large unlabeled text datasets. Language models are typically trained by minimizing confusion on training data and by observing word sequences in text corpora that contain millions of word tokens. A variety of toolkits, including SRILM, KENLM, and open-game toolkits, are used to generate language models. It is necessary to train the linguistic model and the audio model with the same alphabet. alphabet.txt is the glue that holds the linguistic model and the acoustic model together. The neural network utilized in the acoustic model was trained on a corpus of voice and transcripts, which was created with TensorFlow. An n-gram model trained with KENLM is the morphological ideal, and the training data are a corpus of text. As inputs are fed into the network for a reference window of size k, the ith unit in a convolutional layer l at a timestamp t delivers M(l,i), as shown in Equation 6, which represents the architecture of a deep RNN using Arabic data.

M(l,i)=σ(ω(l,i)·Mt-k:t+kl-1)      (6)

Here, M(0) denotes the input, and it contains 13 units. σ(.) is the activation function as in Equation 7, and the hidden fully connected layers use a Rectified Linear Unit (ReLU) activation function. We always constrain the output of a convolution unit to up to 5 (Wu et al., 2024).

σ(x)=min(max(0,x),5)      (7)

At any timestamp t, the units at layer l of the recurrent bidirectional LSTM take updates from both past and future timestamps, as shown in Equations 8, 9.

Mtl→=tanh(ωl·M+Ul→·Mt-1l→+bl)      (8)

Mtl←=tanh(ωl·M+Ul←·Mt+1l←+bl)      (9)

where ωl is the input hidden weight matrix and Ul is a recurrent weight matrix. The sum of forward and backward directional states yields an “informed state” (hl), which is shaped by the prior transitional probabilities of the phonemes. The activation function tanh(.) acts like a squashing function, as shown in Equation 10 (Morais, 2025).

tanh(x)=ex-ex ex+ex      (10)

The processed cepstral coefficients flow through the recurrent layers, and each upper layer receives this processed information from its immediate lower layer, which is given in Equation 11.

Mtl=f(ωl·Mtl-1+bl)      (11)

The output is a softmax layer that gives a probability distribution over phonemes, shown in Equation 12.

P(otk=k/x)=eωkL·htL-1ΣieωkL·htL-1      (12)

The value of the output unit at any timestamp t will indicate the probability of the corresponding phoneme n as predicted by the network. The network is then trained using the CTC loss function, and the parameters of the network are updated using the backpropagation through time (BPTT) algorithm. Then 32-bit beam search decoder is used to construct the output from the phoneme distribution. The Term Frequency Inverse Document Frequency (TF-IDF) vectorizer is a useful tool for translating Arabic text data into numerical vectors. When analyzing text at the character level, it considers individual characters, pairs of characters, and triplets of characters. This is an important step for the Arabic script. It learns the vocabulary and term importance from the data and then creates TF-IDF vectors for each document. Based on the frequency of each term in the document and rarity across the dataset, these vectors indicate the relative importance of each term. Then, among other NLP tasks, these vectors can be used to train machine learning models for document classification, hidden topic identification, and document similarity comparison. The two main tasks completed by the vectorizer are stemming/lemmatizing Arabic text and normalizing it. The sample data are shown in Figure 11.


[image: Text pattern featuring numerical data in sequence with Arabic text interspersed. Numerical data includes sequences from 100 to 1008 with corresponding values ranging from 0.00005 to 0.040961. Arabic text appears at intervals among the numbers.]
FIGURE 11
 Sample TF-IDF vectorizer data.


To calculate the probability of each sentence, the function counts the number of sentences (n-grams) that have been viewed so far, divides that count by the total number of sentences, and increases the count for each sentence. This is a basic method to determine the word or words that will appear next in a given sequence and to calculate the probability that a sentence will appear again based on how frequently it appears in the dataset. It separates Arabic text data into words, cleans it up, and calculates the probability that different word combinations (n-grams) will occur together. A sample prediction is shown in Figure 12.


[image: Text showing a search input process in Arabic. Keywords include "البرازيلي كاكا" and others like "نيمار" and "رونالدينيو". The output appears as a list with a Boolean value, "False", and the number 5.]
FIGURE 12
 Sample n-gram prediction.




5.2 Augmentation and hyperparameter setup
 
5.2.1 Baidu's deep speech hyperparameters

The majority of the hyperparameters in the preconfiguration for Mozilla Deep Speech remained unchanged. Nonetheless, the batch size was slightly modified in consideration of the machine's capabilities and the amount of training data. Furthermore, Deep Speech offers the ability to create checkpoints, allowing training to be resumed in the event of an error using the checkpoints. Either we create a checkpoint directory and store the training checkpoints there, or we freight the Deep Speech frontier directory containing the training checkpoints. Prediction accuracy is calculated using the loss. As the loss decreases, the difference between the neural network's predictions and the actual known values becomes smaller. When there is no reduction in loss, the parameter indicates how many training epochs should be considered as a plateau.

	• Hyperparameter optimization: Optuna is a framework utilized for hyperparameter optimization. It specifically adjusts lm_alpha, which is a language model weight, and lm_beta is a word insertion bonus. To reduce the WER and CER on a designated test set, it systematically assesses several combinations of these parameters, dynamically reinitializing the TensorFlow graph for each iteration and relaying intermediate performance metrics to Optuna, which subsequently directs the search intelligently and eliminates unpromising trials to enhance efficiency. The model ascertains whether to optimize for WER or CER according to the loaded scorer's mode and offers a definitive entry point for users to commence this essential post-training optimization procedure, yielding the optimal parameters and their associated performance.
	• Reduce plateau: If training does not result in a decrease in loss over time, it is said to have plateaued. It is possible to break through the plateau and keep reducing losses by adjusting the learning rate and other parameters.
	• Early stopping: If training does not eventually reduce loss, an early termination is an option.
	• Dropout: When training produces a model with poor generalization, it is referred to as overfitting and has an impact on the model's generalizability. A method called “dropout” enhances the generalizability of the model by arbitrarily eliminating nodes from the neural network to lessen overfitting.
	• Steps and Epochs: A training set's entire cycle is referred to as an epoch. Batch size affects how much memory is required for processing. Fifteen epochs and a batch size of four are employed for this optimization.
	• Train–test split: The training loop efficiently manages data loading, preprocessing, and augmentation, while enabling multi-GPU training by distributing computations across “towers” to average gradients for faster updates. Key components, including adaptive learning rate reduction during performance plateaus, early stopping to prevent overfitting, and thorough checkpointing, which entails retaining the best-performing model on a validation set, are integrated to ensure rapid and effective model development. This provides functionalities for autonomous evaluation of models on test datasets and the creation of efficient inference graphs, representing a complete solution for DeepSpeech model training and deployment. We have utilized 70% of the audio data for training 15% for testing, and 15% for validation.



5.2.2 Machine learning hyperparameters

Table 2 shows that the grid search method uses different values of hyperparameters in each run. The first run uses the C values of 73, 79, 50, and 52, while the second run uses the C values of 19, 81, 72, and 89. The fit and score time are mentioned in Table 2.

TABLE 2  Hyperparameters of grid search.


	Scores
	Decision tree
	XGBoost
	KNN
	Random forest





	Mean fit time
	0.0135
	0.0317
	0.0234
	0.0293



	Standard fit time
	0.0007
	0.0009
	0.0020
	0.0009



	Mean score time
	0.0037
	0.0112
	0.0030
	0.0101



	Standard score time
	1.2655
	4.6037
	7.41052
	1.0215



	Mean test score
	0.9973
	0.9886
	0.9980
	0.9900



	Standard test score
	0.0020
	0.0028
	0.0019
	0.0027



	Rank test score
	2.000
	3.000
	1.000
	3.000








5.2.3 Computational environment

All experimental methods were performed on a MacBook Pro, specifically configured with a 1.4 GHz Quad-Core Intel Core i5 processor. The system employed Intel Iris Plus Graphics 645 for graphics processing, featuring 1,536 MB of memory. The device was equipped with 8 GB of 2,133 MHz LPDDR3 RAM and ran macOS Sequoia version 15.5. The dataset and computational outputs were stored on a 250.69 GB Macintosh HD, with 112.16 GB of space available during the experimental phase. This configuration facilitated the computational framework for all data processing, model training, and evaluation activities conducted in this research.





6 Results and discussions


6.1 Confusion matrix

Confusion matrices are specially used to visualize a model's performance in classification problems. They display the frequency of errors, such as false positives and false negatives, as well as the proportion of correctly classified data points, such as true positives and true negatives. The model predicts 1,145 actual instances of class 1 correctly and 55 actual instances of class 2, and 86 out of 87 actual instances of class 3. Figures 13, 14 show the confusion matrices.


[image: Two heatmaps compare normalized confusion matrices. The left matrix represents a Decision Tree with strong diagonal values indicating high accuracy, while the right matrix shows XGBoost with similar high accuracy. Both matrices display predicted versus true labels, with color intensity representing classification precision.]
FIGURE 13
 Confusion matrix, decision tree, and XGBoost.



[image: Two side-by-side heatmaps show normalized confusion matrices. The left is for K-Nearest Neighbors (KNN) with high true positive rates along the diagonal. The right is for Random Forest with slightly lower true positive rates. Both display predicted versus true labels with a color scale indicating accuracy.]
FIGURE 14
 Confusion matrix KNN and Random Forest.




6.2 Classification report

Both the confusion matrix and classification report indicate that the model achieved excellent performance with perfect accuracy, precision, recall, and F1-score for each class. Table 3 shows the classification report.

TABLE 3  Classification report.


	Classifiers
	Class
	Precision
	Recall
	F1-score
	Support





	Decision tree
	0
	1.00
	0.99
	0.99
	99



	1
	1.00
	1.00
	1.00
	1134



	2
	1.00
	1.00
	1.00
	54



	XGBoost
	0
	0.99
	0.98
	0.98
	99



	1
	1.0
	1.0
	1.0
	1126



	2
	1.00
	0.98
	0.99
	62



	KNN
	0
	0.95
	0.87
	0.91
	95



	1
	0.98
	1.00
	0.99
	1137



	2
	1.00
	0.76
	0.87
	55



	Random Forest
	0
	0.88
	0.90
	0.89
	78



	1
	0.99
	0.99
	0.99
	1153



	2
	0.98
	0.95
	0.96
	56








6.3 Learning curve

The learning curve shows the x-axis with values between 500 and 2,500 labeled as training data size, shown in Figure 15. The model accuracy y-axis has a range of 0.95 to 1.0. Two lines are displayed, one green for validation accuracy and one blue for training accuracy. As the size of the training data increases, the validation accuracy also increases, indicating that data are being trained well and validated. The learning curves for the decision tree, XGboost, KNN, and Random Forest are shown in Figures 15, 16.


[image: Two graphs compare the accuracy of Decision Tree and XGBoost models. The Decision Tree graph shows stable training accuracy and fluctuating validation accuracy. The XGBoost graph indicates higher training and validation accuracy with some fluctuations. Both use shaded areas to represent variability.]
FIGURE 15
 Learning curve for decision tree and XGBoost.



[image: Two line graphs compare KNN and Random Forest model accuracies against training data size. The KNN graph shows a slight increase in both training and validation accuracy with more data. The Random Forest graph shows a more pronounced accuracy improvement, with training accuracy above validation accuracy. Shaded areas indicate variability.]
FIGURE 16
 Learning curves for KNN and random forest.




6.4 Precision–recall curve

The graphical tool called a precision–recall curve (PRC) is used to assess how well the classification model performs in multiclass problems, as shown in Figure 17. PRCs offer insight into the tradeoff between precision and recall in contrast with the receiver operating characteristic area under the curve (ROC AUC), which concentrates on binary classification. The ROC AUC score is obtained as 0.99928. The WER is the percentage of words that the system incorrectly recognizes, and the CER is the percentage of characters that the system recognizes incorrectly. This shows that the speaker's ability to speak correctly has improved, as has the speech recognition system's ability to recognize their speech. The graph also shows that the WER continuously outperforms the CER. This is because the speech recognition system finds it easier to identify individual characters.


[image: Precision-recall curve for XGBoost model displaying three classes. Class 0 has an average precision of 1.00, Class 1 is 0.99, and Class 2 is 0.97. The graph shows precision on the y-axis and recall on the x-axis, with curves for each class.]
FIGURE 17
 Precision–recall curve for XGBoost.


Figure 18 shows the test and validation loss vs. various epochs and the word and character error rate vs. epochs of the system's WER and CER plotted against time. The WER is the percentage of words that the system incorrectly predicts, and the CER is the percentage of characters that the system incorrectly predicts (Baghdasaryan, 2022). The graph shows that both the WER and CER show a decrease over time, suggesting that the system's speech recognition performance is improving. In contrast, the WER constantly exceeds the CER. The reason for this is that individual characters are recognized by the algorithm more readily than entire words. The graph also shows how the WER and CER start to plateau after a certain number of epochs. The graph shows that the voice recognition system is training effectively. The system's increasing efficiency is demonstrated by the decrease in WER and CER over time. The word error rate is the most popular metric for ASR.

WER=Sw+Dw+IwNw      (13)

When a word in the reference sequence is transcribed as a different word, it is called a substitute word (Sw). When a word is completely absent from the automatic transcription, it is referred to as a deleted word (Dw). The number of words inserted is Iw. This means the word's appearance in the transcription has no correspondent in the reference word sequence. As it lacks the upper bound, the word error rate only indicates whether one system is superior to another. For this reason, a character error rate is used.

CER=s+d+iN      (14)


[image: Two line graphs are presented. The first graph shows test and validation loss over 30 epochs, with both decreasing, orange for validation loss and blue for test loss. The second graph illustrates word and character error rates over 30 epochs, both declining, blue for word error rate and orange for character error rate.]
FIGURE 18
 Test and validation loss vs. epochs and word and character error rate vs. epochs.


Table 4 describes the entire model analysis. The size and complexity of the exercise data, along with the system's design, will determine the ideal number of epochs for training a speech recognition system.

TABLE 4  Model performance analysis.


	Epoch
	Test loss
	Validation loss
	Word error rate
	Character error rate





	3
	1,017.0
	1021.4
	1.0000
	0.59118



	12
	300.00
	324.70
	0.7815
	0.1920



	19
	223.27
	286.77
	0.6982
	0.1643



	22
	160.01
	266.72
	0.6170
	0.1437



	25
	132.86
	259.57
	0.6160
	0.1432



	31
	128.33
	257.66
	0.6037
	0.1387






Table 5 illustrates the best model analysis and the corresponding transcribed Arabic text.

TABLE 5  Model performance analysis—best model.


	Epoch
	Best WER
	Best CER
	Loss at best WER/CER
	Arabic text
	English text





	12
	0.4687
	0.1060
	110.289
	السِّيفقِصَرِفِيالأُسبُوعِيّاِجتِمَاعُهُالوُزَرَاءِمَجلِسُعَقَدَ المحَمَّدنَاصِرالشِّيخالشِّيخمَجلِسِرَئِيسِسُمُوِّبِرِئَاسَةِ كَشَفَالهَامَّةالمِلَفَّاتِمِنمَجمُوعَةٍالوُزَرَاءُتَدَاوَلَتحَيثُ رَوضَانِالالوُزَرَاءمَجلِسِلِشُؤُونِالدَّولَةوَزِيرِعَنهَا الرَّوضَان
	The Cabinet held its weekly meeting at Seif Palace under the chairmanship of His Highness the Prime Minister Sheikh Nasser Al-Mohammed, where the ministers deliberated a set of important files revealed by Minister of State for Cabinet Affairs Roudhan Al-Roudhan



	19
	0.3720
	0.0568
	276.147
	بَعدَأَشهُرمُنذُإِضرَابَاتٍيَشهَدُاليَمَنأَنَّإِلَىالإِشَارَةُتَجدُرُ وَتِلكَالحَاكِملِلنِّظَامِالمُؤَيِّدَةِوَالمَسِيرَاتِالمُظَاهَرَاتِ عَلِيِّالرَّئِيسيَتَلَقَّىفِيمَابِإِسقَاطِهتُطَالِبُوَالَّتِيلَهالمُعَارَضَةِ عَقِبَالسَّعُودِيَّةالسَّعُودِيَّةالمَملَكَةِفِيالعِلَاجَصَالِحعَبدالله الشَّهرهَذَامِنسَابِقٍوَقتٍفِيالرِّئَاسِيّالقَصرِعَلَىهُجُومٍ
	Yemen has been witnessing strikes for months after demonstrations and marches in support of the ruling regime and those opposing it, demanding its ouster, while President Ali Abdullah Saleh is receiving treatment in Saudi Arabia following an attack on the presidential palace earlier this month.








6.5 Discussion

Upon examining the performance of diverse ASR models, some significant themes and insights arise concerning their efficacy across various languages and architectural methodologies. The data reveals a wide range of WERs, from an exceptional 0.720% for the suggested Arabic DeepSpeech model to a maximum of 58.87% for Kazakh utilizing Kaldi. Recent improvements in deep learning models, especially Transformer-based architectures such as XLSR-Wav2Vec 2.0 for Turkish, exhibit markedly lower word error rates (0.23%) compared to previous or toolkit-based methodologies. DeepSpeech is a widely utilized model for several languages (Bengali, Russian, German, Tunisian, Arabic), although its efficacy fluctuates, indicating a significant impact of linguistic attributes and dataset quality. The incorporation of various languages, including Arabic, Bengali, German, Hindi, Kazakh, Russian, Tunisian, and Turkish, emphasizes the international endeavor in ASR development while revealing persistent challenges in attaining universal high performance, particularly for languages characterized by intricate phonetics or scarce resources. The efficacy of the built Baidu's Deep Speech model was meticulously assessed using an independent test dataset in our proposed work. This dataset, completely omitted from the model's training and validation phases, functioned as a vital assessment of the model's capacity to generalize to novel, previously unencountered data. Our results indicate that the model attained a WER of 0.3720 and a CER of 0.0568 during training and 0.19 WER and 0.02 CER during the testing phase.

The unsupervised clustering of MFCC features, together with traditional machine learning classification, could be applied to enhance speaker diarization, acoustic scene categorization, or, importantly, Arabic dialect identification from various audio sources. This feature is essential for augmenting customer service analytics, expanding accessibility tools, facilitating more efficient content filtering, and enriching language learning systems. Furthermore, the framework's proven effectiveness with unlabeled data provides a means for creating ASR solutions for additional low-resource languages or specialized fields that lack comprehensive annotated corpora, thus expanding its influence within the speech technology sector. Table 6 shows the comparison with previous studies.

TABLE 6  Comparison table with previous works.


	Reference
	Year
	Model
	Language
	WER





	Kazakh speech and recognition methods (Karabaliyev and Kolesnikova, 2024)
	2024
	Kaldi 
Mozilla DeepSpeech 
Google Speech-to-Text API
	Kazakh speech
	56.87% 
55.36% 
52.97%



	End-to-end Bengali speech recognition (Nahid et al., 2019)
	2019
	Bidirectional LSTM
	Bengali speech
	8.20%



	Russian-language speech recognition (Iakushkin et al., 2018)
	2018
	DeepSpeech
	Russian speech
	18%



	German speech recognition (Xu et al., 2020)
	2020
	DeepSpeech
	German speech
	12.3%



	German end-to-end speech recognition (Agarwal and Zesch, 2019)
	2019
	DeepSpeech
	German speech
	15.1%



	Tunisian dialectal end-to-end speech recognition (Messaoudi et al., 2021)
	2021
	DeepSpeech
	Tunisian speech
	24.4%



	Hindi speech recognition (Kumar et al., 2012)
	2012
	HTK
	Hindi speech
	12.99%



	Transformer-based Turkish automatic speech recognition (Tasar et al., 2024)
	2024
	XLSR-Wav2Vec 2.0
	Turkish Speech
	2.3%



	Arabic phonic transcription (Elmahdy et al., 2011)
	2011
	ACA
	Arabic
	19%



	Arabic autoencoder speech recognition (Mohammed Ameen and Abdulrahman Kadhim, 2023)
	2023
	Deep learning models
	Arabic
	4%



	Convolutional neural networks to facilitate the continuous recognition of Arabic speech (Sayed et al., 2024)
	2024
	CNN-LSTM
	Arabic
	3.63%



	Arabic speaker-independent continuous automatic speech recognition (Abushariah et al., 2012)
	2012
	Hidden Markov models
	Arabic
	11.27%



	Proposed study
	
	Baidu's Deep Speech
	Arabic Speech
	3.7%









7 Conclusion

In this study, we examined the effectiveness of using clustering and classification techniques in conjunction with MEL frequency extraction for Arabic audio data processing. This study also briefs on the effectiveness of Baidu's Deep Speech in Automatic speech recognition of the Arabic dataset. Our results demonstrate that MFCCs efficiently capture important features, facilitating the successful clustering of audio segments using K-means or hierarchical clustering algorithms. Additionally, we obtained a low loss of 128.33 for the training dataset and a validation loss of 257.66 by using Baidu's Deep Speech. The WER for the reference is 0.19, indicating that 19% of the words were misidentified. 2% of the characters in the reference were misidentified, according to the CER of 0.02 in the testing phase. The evaluation's findings are encouraging. The model has a respectable level of accuracy regarding Arabic speech recognition.


7.1 Future studies

Future studies might investigate applying the existing methods to other widely used Arabic dialects. Potential applications such as assistive technologies for the hearing-impaired, voice-enabled services in Arabic-speaking regions, and integration with NLP pipelines are possible. This would entail developing acoustic models tailored to a particular dialect or investigating transfer learning strategies to modify the current model to accommodate new dialectal data. Also, predicting the next word and character from Arabic text for audio-impaired individuals can be possible from the transcribed data.
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Introduction: Arabic sentiment analysis presents unique challenges due to the linguistic complexity of the language, including its wide range of dialects, orthographic ambiguity, and limited language resources. Addressing these issues is essential to develop robust sentiment classification systems.
Methods: This study investigates the application of ensemble machine learning methods for Arabic sentiment analysis. Several homogeneous ensemble techniques are implemented and evaluated on two datasets: the balanced ArTwitter dataset and the highly imbalanced Syria_Tweets dataset. To mitigate class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) is employed. The models incorporate pre-trained word embeddings and unigram features.
Results: Experimental results indicate that individual classifiers using pre-trained embeddings achieve strong performance; however, ensemble models consistently yield superior outcomes. On the ArTwitter dataset, the ensemble of Naive Bayes, Support Vector Machine, and Decision Tree classifiers achieved an accuracy of 90.22% and an F1-score of 92.0%. On the Syria_Tweets dataset, an ensemble combining Stochastic Gradient Descent, k-Nearest Neighbors, and Random Forest attained 83.82% accuracy and an 83.86% F1-score.
Discussion: The findings highlight the effectiveness of ensemble learning in enhancing the robustness and generalizability of Arabic sentiment analysis systems. Incorporating pre-trained embeddings further strengthens performance, demonstrating that ensemble-based approaches can overcome challenges posed by linguistic complexity and dataset imbalance in Arabic natural language processing tasks.
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1 Introduction

With recent advancements in Natural Language Processing (NLP), several text analysis tasks have been successfully automated, including disinformative tweets detection (Jaber and Mart́ınez, 2023), word sense disambiguation (Jaber and Mart́ınez, 2022), and propaganda detection (Duridi et al., 2025). Sentiment analysis, a subtask of text classification, aims to classify a piece of text into binary classes (positive or negative) or multi-class categories (positive, negative, neutral). It has found widespread application across various domains, including politics (Grover et al., 2025), business (Tiwari and Arora, 2025), and social media (Alotaibi et al., 2025).

The performance of sentiment analysis systems largely depends on two core phases: feature engineering and the choice of classification algorithms. Feature engineering refers to transforming raw textual data into numerical representations that capture the semantic and syntactic properties of the text. Traditional approaches such as Term Frequency- Inverse Document Frequency (TF-IDF) and n-gram models have been effective in handling short texts (Nafis and Awang, 2021). More recent approaches based on word embeddings, including Word2Vec (Church, 2017), GloVe (Pennington et al., 2014), FastText (Joulin et al., 2016), and Large Language modeling (Mansour et al., 2025) provide rich semantic context and reduce the sparsity problem inherent in high-dimensional representations.

Among the classification strategies, ensemble learning has shown great promise in improving NLP task performance. The key idea of ensemble methods is to combine the predictions of multiple base classifiers to offset the weaknesses of individual models while leveraging their strengths. Ensemble learning based on machine learning algorithms has demonstrated its effectiveness across various NLP applications (Rane et al., 2024).

Arabic is one of the six official languages of the United Nations and is the native language of over 300 million people across 22 countries. However, Arabic sentiment analysis poses numerous challenges due to the linguistic complexity of the language. These challenges include morphological richness, the presence of multiple dialects, and the frequent use of figurative language such as ambiguity, sarcasm, and irony (Rahma et al., 2023), which makes sentiment classification more difficult (Alwakid et al., 2017).

The contribution of this work is an model based on a majority voting homogeneous ensemble machine learning approach. Exploring different vector-based feature representations and machine learning algorithms, including TF-IDF with ngrams and pretrained word embeddings. To address the issue of class imbalance during training, the Synthetic Minority Oversampling Technique (SMOTE) is employed Syria_tweet dataset. Optimize the hyperparameters of the proposed model to achieve the highest possible classification performance. The results are compared with the most relevant previous work, which demonstrates its superior performance.

The remainder of this article is organized as follows: Section 2 reviews prior studies on dialectal Arabic sentiment classification. Section 3 presents the proposed research methodology. Section 4 discusses the experimental results and evaluations. Finally, Section 5 concludes the study and outlines directions for future research.



2 Related work

Sentiment analysis has become quite popular in many languages, including Arabic, since social media, product evaluations and opinions, and user-generated content are becoming more and more important. Several comprehensive surveys have traced the evolution of Arabic sentiment analysis and mapped out the key resources in the field. (Ghallab et al. 2020) reviewed work published between 2015 and 2019, grouping existing approaches into three main categories: lexicon-based, machine learning-based, and hybrid methods that combine the two. Their review also provided an overview of more than twenty available datasets, ranging from domain-specific corpora to large Twitter-based collections such as ASTD and ArSenTD-Lev, which remain popular because of Twitter's rich mix of short, informal, and often dialectal content.

A more focused perspective was offered by (Obiedat et al. 2021), who surveyed research on **Arabic aspect-based sentiment analysis (ABSA). Their study covered early rule-based and lexicon methods, as well as more recent deep learning architectures that integrate pre-trained embeddings and attention mechanisms. They also listed key ABSA resources, including the SemEval Arabic corpora and HARD, and discussed persistent challenges such as handling the diversity of Arabic dialects, the scarcity of large annotated datasets, and the difficulty of building models that generalize well across domains.

Sentiment analysis approaches can be categorized into three categories: lexicon-based approaches, machine learning approaches, and hybrid approaches (Matrane et al., 2023).

In a lexicon-based technique, sentiment analysis operates by giving a polarity score to each token in the text. The ratings are then averaged, with positive, negative, and neutral values tallied individually. The overall polarity of the text is ascertained by identifying the greatest value among the various scores. (Elshakankery and Ahmed 2019) introduced HILATSA, a hybrid incremental learning method that combines a lexicon-based approach with machine learning. The system updates its sentiment lexicon incrementally with newly labeled data. On the ArTwitter and Syria_Tweets datasets, it achieved an accuracy of 85% (SVM) and 75.5% (RNN), respectively.

Abdulla et al. (2013) conducted an initial study on Arabic sentiment analysis, comparing lexicon-based and corpus-based methodologies. In the lexicon-based technique, an Arabic sentiment lexicon was manually created by expanding a set of seed words and assigning polarity ratings, thereafter categorizing text based on the aggregate sentiment of its words. Their study used a manually annotated dataset of 2,000 Arabic social media comments and reviews, which underwent preprocessing using light stemming approaches. The lexicon-based technique achieved an accuracy of around 59%, demonstrating the feasibility of rule-based sentiment classification in the absence of huge labeled datasets, while also highlighting its dependence on the comprehensiveness and quality of the lexicon.

Mataoui et al. (2016) focused on vernacular Algerian Arabic, creating three dialect-specific sentiment lexicons and a manually annotated dataset sourced from social media. Their lexicon-based algorithm sorted texts by adding up the polarity of related phrases, which was around 61% accuracy. This shows that rule-driven methods may work well in very dialectal settings, but they also depend on having a complete vocabulary. (Assiri et al. 2018) enhanced lexicon-based sentiment analysis for the Saudi Arabic dialect by creating a comprehensive dialectal lexicon and using weighted polarity scoring that accounts for negation and supplication. Their method got around 68% of the answers right on a Saudi social media dataset, which is better than standard lexical baselines.

Machine learning approaches have also been applied to ASA. This approach is based on an annotated corpus, which is fed into ML algorithms in the training phase; then, after the model is trained, unannotated sentences are fed to the model to predict their polarity. (Aladeemy et al. 2024) applied a range of traditional machine learning algorithms—namely SVM, Random Forest, Decision Tree, Logistic Regression, and XGBoost—using BoW and TF-IDF representations with unigram and bigram features. The best result was achieved by SVM, with an accuracy of 90.3% using unigram features.

Tubishat et al. (2019) proposed an Improved Whale Optimization Algorithm (IWO for feature selection in Arabic sentiment analysis. Their method integrates Elite Opposition-Based Learning to improve population diversity and Differential Evolution operators to refine the optimization process. The proposed approach was tested on four datasets and yielded a best average accuracy of 89.68% on the ArTwitter dataset. However, the introduction of pre-trained word embeddings brought a notable shift. For example, (Gamal et al. 2019) introduced a Twitter benchmark dataset for ASA and showed that distributed word representations capture semantic context far better than traditional bag-of-words features, even for short and noisy tweets.

A more recent trend has been targeted sentiment analysis (TSA), which focuses on detecting sentiment toward a specific entity within a text. In this area, (Sahmoud et al. 2022) released AT-ODTSA, a large-scale dataset of Arabic tweets annotated for open-domain TSA. This dataset spans multiple topics and sentiment targets, making it a valuable resource for fine-grained sentiment studies. However, our work differs in scope: we focus on overall tweet-level sentiment classification, applying and evaluating models on both a balanced dataset (ArTwitter) and a highly imbalanced one (Syria_Tweets).

Lately, transformer-based models have also entered the scene. For example, (Alsalem and Abudalfa 2024) fine-tuned AraBERT for Arabic sentiment tasks, achieving impressive results but requiring significant computational resources. Likewise, a recent study (Alosaimi et al. 2024) explored hybrid pipelines that combine pre-trained embeddings with traditional classifiers for low-resource languages. While promising, these works did not deeply investigate imbalanced Arabic datasets or compare classical ensemble methods under such conditions.

In contrast, our study combines multiple pre-trained embeddings with a homogeneous hard-voting ensemble of classical classifiers, and evaluates performance on both balanced and imbalanced datasets. We also address imbalance directly using SMOTE and report results using both accuracy and F1-score, allowing for a fairer and more informative comparison with recent state-of-the-art methods.

Ensemble Machine learning was applied by (Saleh et al. 2022), which developed a heterogeneous stacking ensemble model that combines RNN, LSTM, and GRU as base learners with meta-learners such as Logistic Regression, Random Forest, and SVM. Using CBOW features, their model attained an accuracy of 83.12% on the ArTwitter dataset. (Al-Azani and El-Alfy 2017) employed word2vec embeddings combined with single and ensemble machine learning classifiers to handle highly imbalanced sentiment datasets. They applied SMOTE for data balancing and reported their best result—80% accuracy—using the KNN classifier on the Syria_Tweets dataset.

While previous research has explored a range of lexicon-based, machine learning, deep learning, and ensemble techniques for Arabic sentiment analysis, most studies have either focused on a single dataset, relied heavily on deep neural models with high computational demands, or overlooked the performance implications of dataset imbalance. Our work distinguishes itself by systematically evaluating a homogeneous hard-voting ensemble of classical classifiers in combination with multiple pre-trained Arabic word embeddings. This design leverages the semantic richness of modern embeddings while retaining the efficiency and interpretability of traditional algorithms. Furthermore, by conducting experiments on both a balanced dataset (ArTwitter) and a highly imbalanced dataset (Syria_Tweets), and applying SMOTE to mitigate imbalance, we provide a more comprehensive assessment of model robustness.



3 Materials and methods

An overview of the proposed Arabic Sentiment Analysis Framework is illustrated in Figure 1. The process begins with dataset preprocessing, which includes several text-cleaning steps. The textual data is then transformed into numerical vectors using two feature engineering techniques: the first involves TF-IDF with n-gram representations, and the second leverages the averaged vectors of pre-trained Word2Vec embeddings. A set of individual machine learning classifiers is subsequently trained, with their hyperparameters optimized using Bayesian optimization. Finally, several hard voting ensemble models are constructed by combining different classifiers to improve overall performance. The following subsections provide a detailed explanation of each step in the proposed pipeline.


[image: Flowchart illustrating a machine learning pipeline for text data. It begins with data collection from ArTwitter and Syria_Tweet, followed by pre-processing steps: tokenization, noise removal, and stop word removal. Next is Bayesian optimization. The processed data are used in two branches: TF-IDF with N-grams for machine learning models (KNN, LR, NB, DT, SVM, RF) and word embeddings for proposed ensemble learning models (model1, model2, model3) using hard voting.]
FIGURE 1
 Architecture of the proposed arabic sentiment analysis framework.



3.1 Dataset

This study employed two sets of data. The ArTwitter dataset, created by (Abdulla et al. 2013), is a balanced corpus focusing on Modern Standard Arabic (MSA). Two thousand tweets of various topics, such as politics and arts, were gathered from Twitter and completely labeled by specialists in the field as either positive or negative. ArTwitter has been commonly used as a standard dataset in Arabic sentiment analysis research since it is balanced and includes high-quality annotations. The second data set is a highly unbalanced data set, which the Twitter API acquired from Syrian tweets in May 2014. Syria_Tweets (Mohammad et al., 2016) composed from 1,798 tweets; 1,350 are annotated as negative tweets and 448 are annotated as positive tweets. Table 1 illustrates the key characteristics of the used data sets.

TABLE 1  Key characteristics of the ArTwitter and Syria_Tweets sentiment analysis datasets.


	Feature
	ArTwitter
	Syria_Tweets





	Source
	Twitter
	Twitter

 
	Language variety
	Modern Standard Arabic (MSA)
	Levantine dialectal Arabic

 
	Annotation
	Manually annotated
	Manually annotated

 
	Total tweets
	1,951
	1,798

 
	Sentiment classes
	Positive, negative
	Positive, negative

 
	Positive samples
	993
	1,350

 
	Negative samples
	958
	448








3.2 Data set preprocessing

An essential phase is the preprocessing of the dataset, which guarantees that the data is clean, standardized, and fit for sentiment analysis. Due to the complexities of the Arabic language, this process employs various tailored methods to improve the dataset's quality and ensure that the text is well-prepared for both machine learning and ensemble learning models. The preprocessing pipeline initially involves the removal of NaN values and duplicates to uphold data integrity. Following this, the text undergoes systematic cleaning to tackle important linguistic challenges such as punctuation and inconsistencies in spelling and writing styles. Standardization techniques, such as removing punctuation and normalizing text, aid in unifying the data, thereby enhancing model accuracy. Further cleaning procedures are implemented to remove noise and irrelevant elements, such as non-Arabic characters, emojis, and English words or numbers. These actions ensure that only pertinent information is retained, thus optimizing the dataset for sentiment classification. The preliminary data cleaning operations, which were performed by using the NLTK library (Bird et al., 2009) and the ISRI Arabic stemmer (Taghva et al., 2005), include:

	• Stopword removal: removing common words like conjunctions (e.g: ثم) and (e.g: في, من, الى), which have little semantic importance and do not meaningfully assist in classification efforts.
	• Punctuation removal: stripping punctuation from Arabic text to reduce extraneous data and simplify further analysis (e.g:?, !, ...).
	• Hashtag and mention removal: eliminating hashtags and user tags (like @username, #hashtag) from the text.
	• Emoji removal: extracting emoji characters using a regular expression pattern to cleanse the dataset by matching and eliminating emojis.
	• English words and numbers removal: taking out English terms and numerals from the Arabic script using regular expressions to identify and discard typical alphanumeric sequences.
	• Character repetition handling: reducing sequences of repeated characters to a single character (e.g: ههههههههه, اللهههه).
	• Whitespace cleanup: compressing multiple spaces into a single space for text uniformity.
	• Tokenization: this step breaks down the polished text into discrete tokens or units by employing separator characters such as spaces, commas, or tabs, facilitating separate analysis of each word or element.



3.3 Data balancing technique

An imbalanced dataset is characterized by an unequal distribution of class labels, where the majority class comprises a large number of training samples, and the minority class contains relatively few annotated instances. To address this issue, the Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002) is one of the most widely adopted solutions.

SMOTE improves the representation of the minority class by generating synthetic samples based on the feature space similarities between existing instances. For each minority class instance xi ∈ Smin, SMOTE identifies its k-nearest neighbors (typically using Euclidean distance), and constructs synthetic examples by linearly interpolating between xi and one of its neighbors. Specifically, a new sample is generated as:

xnew=xi+δ·(xnn-xi)      (1)

where xnn is one of the k-nearest neighbors of xi, and δ ∈ [0, 1] is a random number. This interpolation ensures that the synthetic instances are consistent with the local topology of the minority class (He and Garcia, 2009). The oversampling process continues until the minority class is balanced or reaches a predefined target size. In our study, we applied SMOTE with k = 5 nearest neighbors. SMOTE technique was applied only to the training set, while the testing sets remained unbalanced, to maintain the original class distribution.



3.4 Feature representation methods

Transforming text into numerical values while representing the semantic meaning of the text is the nex step after the cleaning of the data. In this work, several forms of N-grams with TF-IDF representations were implemented, in addition to pre-trained word embedding with word2vec was leveraged to improve the performance of the proposed models. In the following subsections a brief descriptions for the data representation methods that were used in the study.


3.4.1 TF-IDF with n-grams

Term Frequency-Inverse Document Frequency (TF-IDF) is a common way to weight words and phrases in text classification. It looks at how important a word or phrase is in a document compared to a group of documents. It balances out two things: word Frequency (TF), which counts how many times a word appears in a text, and Inverse Document Frequency (IDF), which makes common words less important and puts greater emphasis on unique phrases. The TF-IDF score is calculated as:

TF-IDF(t,d)=TF(t,d)×log(NDF(t))      (2)

where t is the term, d is the document, N is the total number of documents, and DF(t) is the number of documents containing term t. To capture local context and word co-occurrence patterns, we applied TF-IDF weighting over n-gram features.

N-grams (Jurafsky and Martin, 2009) represent one of the simplest and most widely used approaches to language modeling in natural language processing. They are used to represent textual data by capturing contiguous sequences of words. A single word forms a unigram, a sequence of two consecutive words is referred to as a bigram, and a sequence of three successive words is known as a trigram. Despite their simplicity, n-gram models effectively capture local context and are commonly used in various tasks such as text classification, sentiment analysis, and machine translation. Table 2 shows an example of how the sentence is tokenized based on the chosen type of n-grams.

TABLE 2  N-gram generation examples for feature extraction.


	N-gram
	Results





	Original Arabic Sentence
	[عمر انت مميز جد رائع]

 
	Unigram
	[عمر], [انت], [مميز], [جد], [رائع]

 
	Bigram
	[عمر انت], [انت مميز], [مميز جد], [جد رائع]

 
	Trigram
	[عمر انت مميز] , [انت مميز جد] , [مميز جد رائع]






In our study, we examined the effectiveness of three types of n-gram features—unigram, bigram, and trigram—in combination with machine learning and ensemble learning approaches.



3.4.2 Pre-trained word embeddings

ArWordVec (Fouad et al., 2020) is a huge set of pretrained models that is built from 55 million tweets with different topics, including social affairs, politics, and health care. The embeddings are trained by word2vec and Glove methods with different approaches, window size, and vector size.

In our experiments, we used the Word2Vec architecture with the Skip-Gram (SG) approach, a window size of 3, and an embedding dimension of 300. The Skip-Gram model was chosen because it tends to perform better with infrequent words and is more effective at capturing detailed semantic relationships than the Continuous Bag-of-Words (CBOW) method (Mikolov et al., 2013a). A relatively small window size of 3 was selected to emphasize local contextual dependencies, which suits the characteristics of the used dataset, while limiting the influence of less relevant, distant words. The choice of a 300-dimensional vector is consistent with common practice in earlier studies (Mikolov et al., 2013b; Pennington et al., 2014), as it offers a practical balance between the ability to represent nuanced meaning and the need to keep training time and memory use manageable.

To leverage the strengths of the model, we compute the average of the word embedding vectors across the entire sentence, as defined in Equation 3.

AVG(E(S))=1n∑i=1nEmb(S(i))      (3)

Where AVG(E(S)) is the average embedding of the sentence S, S(i) is the i-th word in the sentence, Emb(S(i)) is the embedding of word i, and n is the total number of words in the sentence.




3.5 Individual machine learning models

Several individual Machine learning classifiers were implemented. A brief definition of the selected algorithms is provided below:

	• Naïve Bayes (NB) (Duda et al., 2001): is a probabilistic classifier that uses Bayes' theorem and assumes that features are very independent of each other. Even though it's simple, it does an amazing job at classifying text because it's fast and works well with data that has a lot of dimensions.
	• Support Vector Machine (SVM) (Cortes, 1995): builds the best hyperplane to divide classes with the most space between them. This makes it work well in spaces with a lot of dimensions. It is considered powerful due to its kernel functions that work well for non-linear decision boundaries.
	• Stochastic Gradient Descent (SGD) (Bottou, 2010): it is a good choice for sparse datasets, it updates its model parameters in an iterative optimization process for linear classifiers.
	• Logistic Regression (LR) (Cox, 1958): logistic functions are used to model of the probability of binary results.
	• Random Forest (RF) (Breiman, 2001): builds multiple decision trees and combines their results to enhance generalization and decrease overfitting.



3.6 Ensemble learning models

Ensemble learning aims to optimize the classification task by fusing multiple base classifiers, which reduces the variance of the predictions of the individual classifiers (Kumar et al., 2020). Thus, several ensemble techniques are designed to achieve this goal, such as bagging (Yang et al., 2020), boosting (Deng et al., 2023), and voting (Onan et al., 2016).

The use of heterogeneous base classifiers is utilized in the Voting technique for the production of concurrent ensemble networks. Voting is categorized into two types: weighted averaging and majority voting, which this study uses.

In majority voting, each model “votes” for a class label; the most voted label is chosen for the final predictions. This happens by combining several individual classifiers, which are known as base learners, and the majority vote makes the final decision. In this study, combinations of sets of individual machine learning classifiers were tested, it is named v with numbers from 1 to 11.



3.7 Evaluation metrics

To measure the performance of the proposed approaches, two datasets were used with different setups. We performed an 80/20 train-test split using stratified sampling, ensuring that both subsets maintained the original class imbalance of approximately 75% negative and 25% positive tweets. SMOTE was applied only to the training set, while the test set remained untouched to evaluate model performance on real-world imbalanced data. The vectorized training and test datasets were input into the Machine learning classifiers in addition to ensemble learning.

The machine learning classifiers were trained to determine the sentiment polarity of the reviews as either positive or negative. To evaluate model performance, we used four standard classification metrics: precision, recall, F-measure, and accuracy. These are defined in Equations 4–7.

Precision=TPTP+FP      (4)

Recall=TPTP+FN      (5)

F-measure=2×Precision×RecallPrecision+Recall      (6)

Accuracy=TP+TNTP+TN+FP+FN      (7)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives, respectively.




4 Experiments results and discussion


4.1 Experiments setup

All experiments were performed on the Google Colab platform, utilizing a Tesla T4 GPU for accelerated computation mainly for faster processing of the embedding and hyperparameter tuning. After data set preprocessing, the data was split into 80% training and 20% testing data sets. Then, the SMOTE technique was applied to the Syria_tweet dataset to solve the imbalanced dataset problem. SMOTE techniques were applied to the training dataset to make sure the learned model would be tested on real test data.


4.1.1 Hyperparameter optimization

For optimizing the performance of the proposed models, Bayesian Hyperparameter optimization techniques (Snoek et al., 2012) were applied to both TF-IDF with n-grams and word embeddings feature extractions.The optimization techniques were applied via the Gaussian Process-based. This method models the objective function using a Gaussian Process, which provides uncertainty estimates that guide the search efficiently through the hyperparameter space. We set the number of iterations to 32 and employed three-fold cross-validation. As shown in Table 3, the optimal hyperparameter values vary between the two datasets. For example, the alpha parameter in Naive Bayes is smaller for the Syria_Tweets dataset compared to ArTwitter. Additionally, the SVM model uses a linear kernel for ArTwitter, while an RBF kernel is preferred for Syria_Tweets.

TABLE 3  Best hyperparameters for ArTwitter and Syria_Tweets datasets across TF-IDF with N-gram models.


	Classifier
	Hyperparameter
	Unigram
	Bigram
	Trigram





	
	
	ArTwitter
	Syria
	ArTwitter
	Syria
	ArTwitter
	Syria

 
	Naive Bayes (NB)
	Alpha
	0.0340
	0.0010
	0.0275
	0.0010
	0.1896
	0.0010

 
	SVM
	C
	0.9635
	3.6975
	0.4667
	105.7621
	0.6839
	105.7621



	
	Gamma
	0.0015
	0.0271
	0.0570
	0.0447
	0.1
	0.0447



	
	Kernel
	Linear
	Linear
	Linear
	Rbf
	Linear
	Rbf

 
	KNN
	Metric
	Minkowski
	manhattan
	Minkowski
	Manhattan
	Euclidean
	Manhattan



	
	n_neighbors
	12
	2
	14
	2
	4
	2



	
	Weights
	Uniform
	Uniform
	Uniform
	Uniform
	Uniform
	Uniform

 
	Decision Tree (DT)
	MAX_depth
	39
	35
	50
	21
	50
	32



	
	Min_samples_leaf
	1
	1
	1
	1
	1
	1



	
	Min_samples_split
	20
	2
	19
	2
	15
	3






Table 4 shows the optimal values of the hyperparameters for different sets of machine learning algorithms after applying Bayesian optimization.

TABLE 4  Best hyperparameters using Word2Vec for ArTwitter and Syria_Tweets datasets.


	Classifier
	Hyper- parameter
	ArTwitter value
	Syria_Tweets value





	SGD
	Alpha
	1e-06
	0.000563



	
	eta0
	1.0225
	0.0174



	
	Learning_rate
	Invscaling
	Adaptive



	
	Loss
	Log_loss
	Log_loss



	
	Max_iter
	3251
	1000



	
	Penalty
	Elasticnet
	l1



	
	Tol
	0.01
	1.41e-05

 
	Logistic regression (LR)
	C
	0.5023
	11185.625



	
	Penalty
	l2
	l2



	
	Solver
	Liblinear
	Liblinear

 
	Support vector machine (SVM)
	C
	25.8455
	30.0



	
	Gamma
	0.1877
	0.15



	
	Kernel
	rbf
	rbf

 
	K-Nearest Neighbors (KNN)
	Metric
	Minkowski
	Manhattan



	
	n_neighbors
	6
	2



	
	Weights
	Uniform
	Uniform

 
	Random Forest (RF)
	Bootstrap
	False
	False



	
	Max_depth
	50
	45



	
	Max_features
	Log2
	Sqrt



	
	Min_samples_leaf
	1
	1



	
	Min_samples_split
	2
	2



	
	n_estimators
	500
	500






It's important to note that the tuning parameters are very different between the two datasets. For example, SGD hyperparameters optimized for ArTiwtter data set in a much smaller learning rate initialization (eta0) and used a “invscaling” learning schedule with a elasticnet penalty. While Syria_Tweets hyperparameters optimized to an “adaptive” schedule and an “l1” penalty,An adaptive learning rate helped keep the model's training on a stable and efficient path. At the same time, the L1 penalty was great at promoting feature sparsity, which let the model focus on the most important predictors and tune out the noise in the data, preventing it from just memorizing the training examples. . However, the SVM classifier shared the same RBF kernel across both datasets. The KNN classifier revealed greater variation: ArTwitter favored six neighbors and the Minkowski distance, while Syria_Tweets performed best with just two neighbors and the Manhattan distance, indicating that Syria_Tweets required tighter local decision boundaries.




4.2 Results

Table 5 presents the performance of both individual and ensemble learning models using TF-IDF with unigram, bigram, and trigram representations on the ArTwitter dataset. The results demonstrate that unigram features consistently outperform both bigram and trigram configurations. Among the individual classifiers, Naive Bayes (NB) achieved the highest accuracy of 89.27 and 89.00% F1-score with unigrams, followed closely by SVM with 88.01% accuracy and 88.0% F1-score. Notably, all ensemble models outperformed the individual classifiers across the different n-gram representations. The V1 ensemble model (comprising NB, SVM, and DT) achieved the highest accuracy of 90.22 and 90.00% F1-score with unigram features, highlighting the effectiveness of combining diverse classifiers.

TABLE 5  Performance across unigram, bigram, and trigram features on the ArTwitter dataset.


	Classifier
	Unigram
	Bigram
	Trigram





	
	Acc()
	Prec.
	Rec.
	F1
	Acc.
	Prec.
	Rec.
	F1
	Acc.
	Prec.
	Rec.
	F1

 
	NB
	89.27
	89.00
	89.00
	89.00
	87.70
	88.00
	88.00
	88.00
	86.75
	87.00
	87.00
	87.00

 
	SVM
	88.01
	88.00
	88.00
	88.00
	86.75
	87.00
	87.00
	87.00
	84.54
	85.00
	85.00
	85.00

 
	K-NN
	83.91
	84.00
	84.00
	84.00
	81.39
	82.00
	81.00
	81.00
	80.44
	80.00
	80.00
	80.00

 
	DT
	79.18
	80.00
	79.00
	79.00
	81.70
	82.00
	82.00
	82.00
	81.70
	82.00
	82.00
	82.00

 
	V1 (NB, SVM, DT)
	90.22
	90.00
	90.00
	90.00
	89.27
	89.00
	89.00
	89.00
	88.96
	89.00
	89.00
	89.00

 
	V2 (NB, SVM, K-NN)
	89.91
	90.00
	90.00
	90.00
	87.38
	87.00
	87.00
	87.00
	83.60
	84.00
	84.00
	83.00

 
	V3 (NB, DT, K-NN)
	88.01
	88.00
	88.00
	88.00
	87.70
	88.00
	88.00
	88.00
	86.75
	87.00
	87.00
	87.00

 
	V4 (SVM, DT, K-NN)
	88.01
	88.00
	88.00
	88.00
	87.38
	88.00
	87.00
	87.00
	85.17
	0.85
	85.00
	85.00





Bold values indicate the best performance of each model.




For the balanced Syria_Tweets dataset, Table 6 reveals more consistent performance across all n-gram representations. Both NB and SVM classifiers showed strong results, achieving 81.47 and 81.76% accuracy, respectively, using unigram features and 80.69% and 81.25 F1-score. However, ensemble models again demonstrated superior performance. In particular, the V4 ensemble (SVM, DT, and KNN) achieved the highest accuracy of 83.82 and 83.33% F1-score with bigram features, indicating that ensemble learning can capture richer contextual information and provide more robust classification in complex datasets.

TABLE 6  Performance across unigram, bigram, and trigram features on the Syria_Tweets dataset.


	Classifier
	Unigram
	Bigram
	Trigram





	
	Acc.
	Prec.
	Rec.
	F1
	Acc.
	Prec.
	Rec.
	F1
	Acc.
	Prec.
	Rec.
	F1

 
	NB
	81.47
	80.43
	81.47
	80.69
	81.18
	80.06
	81.18
	80.33
	81.76
	80.79
	81.76
	81.05

 
	SVM
	81.76
	80.99
	81.76
	81.25
	80.88
	79.88
	80.88
	80.19
	81.18
	80.15
	81.18
	80.44

 
	K-NN
	80.29
	79.36
	80.29
	79.69
	79.71
	79.00
	79.71
	79.29
	78.82
	80.18
	78.82
	79.36

 
	DT
	79.41
	77.99
	79.41
	78.37
	79.71
	77.94
	79.71
	78.07
	80.00
	79.38
	80.00
	79.64

 
	V1 (NB, SVM, DT)
	83.53
	82.64
	83.53
	82.14
	82.65
	81.54
	82.65
	81.24
	83.24
	82.26
	83.24
	81.88

 
	V2 (NB, SVM, K-NN)
	82.65
	81.66
	82.65
	81.82
	82.06
	81.08
	82.06
	81.31
	81.18
	80.15
	81.18
	80.44

 
	V3 (NB, DT, K-NN)
	82.35
	81.44
	82.35
	81.66
	82.94
	82.44
	82.94
	82.63
	80.88
	81.13
	80.88
	81.00

 
	V4 (SVM, DT, K-NN)
	82.65
	81.66
	82.65
	81.82
	83.82
	83.14
	83.82
	83.33
	82.35
	82.21
	82.35
	82.28





Bold values indicate the best performance of each model.




Finally, Table 7 presents the results of individual and ensemble models using word embeddings on both datasets. Across the board, word embeddings improved the performance of all models compared to the TF-IDF-based representations. Ensemble models significantly outperformed individual classifiers in both datasets. On the ArTwitter dataset, the V4 ensemble (SGD, SVM, RF) achieved the highest accuracy of 92.43% 92.00% F1-score. On the Syria_Tweets dataset, the best performance was obtained by the V5 ensemble (SGD, KNN, RF), which reached an accuracy of 83.82% 83.86% F1-score. These findings confirm the effectiveness of combining rich semantic features with ensemble strategies to enhance classification accuracy in Arabic social media text.

TABLE 7  Individual classifiers and ensemble performance using word embeddings on ArTwitter and balanced Syria_Tweets datasets.


	Classifier
	ArTwitter
	Syria_Tweets





	
	Accuracy (%)
	Precision
	Recall
	F1-score
	Accuracy (%)
	Precision (%)
	Recall (%)
	F1-score (%)

 
	SGD
	89.27
	89.00
	89.00
	89.00
	79.12
	81.69
	79.12
	79.97

 
	LR
	90.54
	91.00
	91.00
	91.00
	75.59
	78.89
	75.59
	76.70

 
	SVM
	90.54
	91.00
	91.00
	91.00
	80.85
	81.00
	80.85
	80.90

 
	K-NN
	84.20
	86.00
	83.00
	84.50
	76.18
	81.33
	76.18
	77.57

 
	RF
	88.96
	89.00
	89.00
	89.00
	81.76
	80.49
	81.76
	80.48

 
	V1 (SGD, LR, SVM)
	92.11
	92.00
	92.00
	92.00
	82.50
	83.00
	82.50
	82.60

 
	V2 (SGD, LR, K-NN)
	91.10
	91.80
	91.10
	91.30
	79.41
	81.85
	79.41
	80.22

 
	V3 (SGD, LR, RF)
	91.17
	91.00
	91.00
	91.00
	79.12
	80.57
	79.12
	79.68

 
	V4 (SGD, SVM, RF)
	92.43
	92.00
	92.00
	92.00
	82.10
	82.40
	82.10
	82.20

 
	V5 (SGD, K-NN, RF)
	91.85
	91.70
	91.60
	91.65
	83.82
	83.89
	83.82
	83.86

 
	V6 (LR, SVM, RF)
	91.48
	92.00
	91.00
	91.00
	82.60
	82.90
	82.60
	82.70

 
	V7 (LR, K-NN, RF)
	91.00
	91.30
	91.00
	91.10
	83.24
	83.17
	83.24
	83.20





Bold values indicate the best performance of each model.






4.3 Error analysis

To gain a clearer picture of where our model falls short, we looked closely at tweets it misclassified in both datasets. Three main patterns stood out.

First, sarcasm and irony often tripped the model. Tweet التعدد جميل جداً ولكن يحتاج إلى كثييييييييييير من المال which means in English “Polygamy is very beautiful, but it requires a lot of money.” used positive wording to express criticism, usually labeled incorrectly because the model lacked any mechanism to detect sarcasm. Second, dialectal variation posed a challenge. Like tweet “ لا تتحمس وايد بموضوع (العدل) لأن الشي مب سهل” which means in English “Don't get too excited about the topic of it's not easy.” The tweet contained regional expressions, particularly from Gulf “مب,وايد,” that were not well captured in the embeddings. Words that carried a negative tone in one dialect could be interpreted as neutral in another, leading to incorrect predictions.

Finally, mixed sentiment such as انا مع حقوق المرأة دايما لكن مستحيل أقول عن نفسي نسوية which means in English “I am always for women's rights, but it is impossible for me to call myself a feminist.” The tweet conveyed both positive and negative feelings about different entities were often reduced to a single overall sentiment, which meant losing important nuances. A more fine-grained, aspect-based approach would likely handle such cases better.



4.4 Comparison of the proposed model with existing work

To compare the proposed approach with the most relevant previous studies, Table 8 presents the results of selected works. (Al-Saqqa et al. 2018) applied ensemble learning using traditional machine learning classifiers and achieved an accuracy of 84.4%. (Saleh et al. 2022) employed a stacking ensemble method that integrated deep learning architectures such as RNN, LSTM, and GRU, with an SVM meta-classifier, achieving 83.12% accuracy. The most recent work by (Aladeemy et al. 2024) attained 90.3% accuracy using a standalone SVM classifier with unigram features. In contrast, our proposed approach—based on hard voting ensemble learning that combines SGD, SVM, and Random Forest classifiers with pre-trained word embeddings—achieved the highest accuracy of 92.43%, demonstrating its superior performance in Arabic sentiment classification.

TABLE 8  Comparison of accuracy between previous and our study on ArTwitter Dataset.


	Reference
	Approach
	Accuracy
	F1 score





	(Al-Saqqa et al. 2018)
	Ensemble machine learning (voting of KNN, SVM, DT, NB)
	84.4% (SVM individually)
	84.0%

 
	(Saleh et al. 2022)
	Stacked deep learning (RNN, LSTM, GRU + SVM meta-learner)
	83.12%
	82.8%

 
	(Aladeemy et al. 2024)
	Machine learning (SVM with BoW Unigram)
	90.3%
	90.3%

 
	Our approach
	Ensemble machine learning (voting of SGD, SVM, RF)
	92.43%
	92.0%





Bold values indicate the best performance of each model.




However, related to the Syria_Tweet data set, the F1-score is used because the accuracy isn't available. Table 9 compares our results with the most related previous work. As shown, our approach with ensemble voting (SGD, K-NN, RF) improved the performance of analyzing the sentiment of the dataset. The ensemble stacking approach was applied on the same data set by (Al-Azani and El-Alfy 2017), and the F1-score achieved is 63.95%. While a traditional ML algorithm, which is SGD, was applied by (El-Alfy and Al-Azani 2020) and achieved a 70.7% F1-score.

TABLE 9  Comparison of F1 score between previous and our study on Syria_Tweets Dataset.


	Reference
	Approach
	F1-score





	(Al-Azani and El-Alfy 2017)
	Ensemble machine learning (stacking)
	63.95%

 
	(El-Alfy and Al-Azani 2020)
	Machine learning (SGD classifier)
	70.7%

 
	Our approach
	Ensemble machine learning (voting of SGD, K-NN, RF)
	83.86%





Bold values indicate the best performance of each model.







5 Conclusion and future direction

The objective of this study was to investigate multiple methodologies for feature extraction specifically tailored for Arabic sentiment analysis. Our focus was directed toward analyzing three distinct types of n-gram features—namely, unigram, bigram, and trigram—alongside leveraging a pre-trained Word2Vec word embedding model. A diverse machine learning algorithms was employed in our analysis, including Support Vector Machines (SVM), k-Nearest Neighbors (K-NN), Stochastic Gradient Descent (SGD), Logistic Regression (LR), and Random Forest (RF). Additionally, we implemented ensemble techniques based on hard voting.

The experimental investigations were conducted utilizing two distinct datasets: the balanced ArTwitter dataset and the significantly imbalanced Syria_Tweets dataset. To address the issue of class imbalance present in the Syria_Tweets dataset, the Synthetic Minority Oversampling Technique (SMOTE) was applied during the training phase.

Our results indicated that Naïve Bayes (NB) achieved the highest accuracy rate of 89.79 and 89% F1-score on the ArTwitter dataset when unigram features were employed. Conversely, the Support Vector Machine (SVM) achieved an accuracy rate of 81.76 and 81.25% F1-score on the Syria_Tweets dataset, with SVM excelling with unigram features and NB performing optimally with trigram features. Notably, the hard voting ensemble containing Naïve Bayes (NB), Support Vector Machine (SVM), and Decision Tree (DT) utilizing unigram features outperformed others on the ArTwitter dataset, achieving an accuracy of 90.22% and 90% F1-score. Meanwhile, the hard voting ensemble combining SVM, DT, and K-Nearest Neighbors (K-NN) attained superior results on the Syria_Tweets dataset with an accuracy of 83.82% and 83.33% F1-score when employing bigram features. However, average weighted pretrained word embedding achieved superior results on both datasets with the ensemble approach; hard voting (SGD, SVM, and RF) achieved 92.43% accuracy and 92% F1-score on ArTwitter Dataset. While hard voting (SGD, KNN, and RF) achieved 83.82% accuracy and 83.86% F1-score on Syris_tweet dataset.

The outcomes of this research suggest that leverage pretrained word embedding in representing the data can significantly enhance model performance and that ensemble approaches contribute to a more robust overall system. Looking ahead, there is potential for employing transformer-based models, which provide deep contextualized embeddings, thereby further optimizing performance. The exploration of novel data balancing methodologies could advance the efficacy of model operation.
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Introduction: Exploring Arabic dialects in Natural Language Processing (NLP) is essential to understand linguistic variation and meet regional communication demands. Recent advances in Large Language Models (LLMs) have opened up new vistas for multilingual communication and text generation.
Methods: This paper investigates the performance of GPT-3.5, GPT-4, and Bard (Gemini) on the QADI and MADAR datasets, while GPT-5 was evaluated exclusively on MADAR encompassing over 15 different countries. Several metrics have been used in the evaluation, such as cosine similarity, universal similarity encoder, sentence BERT, TER, ROUGE, and BLEU. In this study, different prompting techniques were used: zero-shot and few-shot. Zero-shot was employed for all dialects, and few-shot was employed only for the least translation performance dialect, Tunisian.
Results: Analysis revealed that in the QADI dataset, GPT-4 significantly outperformed others in translating MSA to DA, with ANOVA tests showing strong significance (p < 0.05) in most metrics, except for BLEU and TER where it does not show significance, indicating comparable translation performance among models. Furthermore, GPT-4 was highest in semantic similarity compared to GPT-3.5 and Bard (Gemini), 0.66, 0.61, and 0.63, respectively. GPT-4 was the best in identifying overlapping sentences (i.e., those where the source and target are identical) with a combined average of 0.41 in BLEU and ROUGE-L. All LLMs scored TER values between 6% and 25%, indicating generally good translation quality. However, GPT models, especially GPT-5, responded better to prompting and translation to Levant countries compared to Bard (Gemini). For the MADAR dataset, no significant translation differences were observed in sentence-BERT, ROUGE-L, and TER, while differences are identified in cosine similarity, BLEU, and universal similarity encoder metrics. Therefore, GPT-5 is the top performer in identifying sentence overlaps measured by BLEU and ROUGE-L (combined average 0.37).
Discussion: The few-shot approach did not show a significant improvement in translation performance, especially for GPT-4 and Bard (Gemini), while GPT-3.5 performed consistently. Zero-shot prompts were effective across dialects, while few-shot prompting, applied to the weakest-performing dialect (Tunisian), did not yield improvement. GPT-4 and Bard performed worse under this set-up, while GPT-3.5 remained consistent.
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1 Introduction

In recent years, new horizons for multilingual communication, translation tasks, and text generation have been widely witnessed due to the advances made in large language models (LLMs) (Shaikh et al., 2023). Models such as GPT, developed by OpenAI and Google Bard (Gemini), have shown promising developments in this field (Kasneci et al., 2023). Such models have demonstrated outstanding skills in handling diverse languages and dialects with the influential role of deep learning techniques and the processing of massive volumes of textual data. According to studies conducted in 2019 by Ethnologue (Eberhard et al., 2019), the total number of dialects spoken around the globe is expected to be 7,111, where a majority of these dialects are found on the Internet through platforms such as Facebook, X, and blog posts through user interactions (Salloum and Habash, 2012). Therefore, with the availability of systems that deal with different languages and dialects, a major shift in focus has been witnessed in literature to bring dialects together by enhancing proper machine learning translation systems (Sghaier and Zrigui, 2020).

Arabic is one of the languages known for its diversity in linguistics, which includes various dialects from different countries all over the Arab world. Notably, Dialectal Arabic (DA) consists of different Arabic dialects. It is an informal language that is used in daily life and social media platforms in contrast with Modern Standard Arabic (MSA), also known as “Fushaa,” which is used in formal communications (Harrat et al., 2019). Hence, making the comprehension of different dialects presents a greater challenge compared to MSA, due to its regional variability, especially in the applications of cross-dialect communications, and in sectors such as education and content localization (Sghaier and Zrigui, 2020).

Large language models (LLMs) are a vital approach to understand and enhance the language intelligence of devices (Hadi et al., 2023). LLMs can react to free-text queries without being specifically trained in the activity at hand, which has sparked both excitement and skepticism among researchers regarding their application (Hadi et al., 2023). Models such as OpenAI GPT and Google Bard (Gemini) are examples of LLMs, where they are trained on enormous volumes of text data and can generate human-like prose, answer questions, and perform other language-related tasks with great accuracy (Kasneci et al., 2023). To begin with, OpenAI GPT is a decoder-based, generative pre-trained LLM. It employs an auto-regressive language model that allows sequential text generation. Among many of the advantages present in GPT, one main advantage is that it is a multilingual model, including the Arabic language (Alyafeai et al., 2023). However, it is not an open-access model and is not free of cost. Therefore, developers and researchers have to pay a certain amount based on the number of tokens used per request and the type of model to be used for fine-tuning (Steele, 2023). As for Bard (Gemini), it is developed by Google and is also multilingual; in total, it contains 41 languages (Kadaoui et al., 2023). Similar to GPT, Bard (Gemini) has a certain cost based on the number of tokens used per request and the type of model to be used (Kadaoui et al., 2023). Hence, by analyzing their differences and similarities, a comparison between both models is performed to assist systems in easily translating dialects and achieve human-like reading and writing, building on the comprehensive overview of LLM capabilities by Hadi et al. (2023).

Researchers have been using these models in analyzing various NLP tasks, such as psychological studies of sentiments using GPT (Kheiri and Karimi, 2023). In addition, comparisons with other models such as Bidirectional Encoder Representations from Transformers (BERT) (Zhang et al., 2020) and Bidirectional Long-Form Overlap for Optimizing Multilingual and zero-shot (BLOOMZ) (Yong et al., 2022) have been made in contexts such as translation efficiencies using different languages (Bhat et al., 2023). On the other hand, comparisons between GPT 3.5, GPT 4, and Bard (Gemini) have been made regarding their machine translation (MT) proficiency across 10 varieties of Arabic (Kadaoui et al., 2023). Their analysis shows that LLMs may encounter challenges with dialects for which minimal public datasets exist, but on average, they are better translators of dialects than existing commercial systems. In a similar vein, GPT 4 outperformed Bard (Gemini) in dialect-based commercial systems and different supervised baselines employing zero-shot prompts.

Originally, researchers' main focus was to address the translation of English to Arabic and vice versa (Khoshafah, 2023). However, more recently, researchers have been studying the influence of MSA on the similarity between dialects spoken, as was done by Abu-Haidar (2011) in Baghdad, and vice versa, where researchers study the translation from DA to MSA. For instance, Sghaier and Zrigui (2020) performed a similar study in 2020 where an MT system that translates Tunisian dialect text to MSA using a rule-based approach showed promising results for their proposed solution. Since OpenAI GPT released different models with different versions, researchers have focused on having a comparison between these different versions, where Alyafeai et al. (2023) have compared some of these models, such as GPT 3.5 and GPT 4, on seven distinct Arabic NLP tasks and found that GPT 4 outperforms GPT 3.5 on five NLP tasks. GPT 3.5 and GPT 4 performances were also studied using the Tunisian, Jordanian, and English languages, and the study results highlight a critical dialectical performance gap in GPT, underlining the need to enhance linguistic and cultural diversity in AI models' development, particularly for health-related content (Sallam and Mousa, 2024).

The purpose of this study is to compare the performance of four language models, GPT (versions 3.5, 4, and 5) and Bard (Gemini), in translating a wide corpus of MSA to DA. This novel study bridges a significant gap in understanding model performance across diverse linguistic situations by including a wide corpus of dialects, consisting of over 15 Arabic dialects, in the analysis while evaluating several metrics. Furthermore, two different datasets will be used to further strengthen the analysis using different prompting techniques (zero-shot and few-shot). To explore whether these techniques enhance the quality of dialect translation, zero-shot will be applied to all countries, whereas few-shot will be applied to the weakest country.

This study sheds light on the adaptability and efficiency of these models through careful metric assessments, which is critical for expanding NLP applications in various Arabic-speaking regions. Two datasets are used in this study the first is the Qatar Computing Research Institute (QCRI) Arabic Dialects Identification (QADI) dataset, which contains 18 different countries with their own dialects. QADI contains over 500,000 tweets from social media platforms, spanning 18 different Arabic dialects (Abdelali et al., 2020). Second, the Multi-Arabic Dialect Applications and Resources (MADAR) corpus dataset is used, which includes a large parallel corpus of 25 Arabic city dialects in the travel domain. These are the most popular datasets adapted for studies with Arabic dialects.

This research study aims to answer the following questions:

	• How efficient are GPT 3.5, GPT 4, GPT 5, and Bard (Gemini) in translating MSA to different DA in terms of different performance metrics, such as cosine similarity, semantic universal encoder, sentence BERT, similarity encoder, translation error rate (TER), recall-oriented understudy for gisting evaluation (ROUGE), bilingual evaluation understudy (BLEU), and analysis of variance (ANOVA)?
	• How consistent is the LLM performance in the MSA translation to different DAs? (e.g., Levantine vs. Gulf vs. Maghrebi)
	• How do prompting techniques (zero-shot vs. few-shot) and external factors like sentence length impact the translation accuracy of LLMs?

The main contribution of this study could be summarized as follows:

• It sheds light on the strengths and drawbacks of the GPT 3.5, GPT 4, GPT 5, and Bard (Gemini) models in dealing with DA differences by analyzing their translation quality and accuracy (measured by metrics) and consistency/reliability, across various dialects from MSA. Hence, exploring how LLMs handle dialectal diversity in Arabic.

• It employs various prompt analysis techniques to evaluate the performance of GPT 3.5, GPT 4, GPT 5, and Bard (Gemini), aiming to understand the specific conditions under which each model excels.

	• The study's findings fill in a significant gap in research on MSA to dialect translation using LLMs by using a wide corpus of Arabic dialect translations and analyzing GPT 3.5/4/5, and Bard (Gemini) in translating various dialects using different prompting techniques (zero-shot and few-shot).

Therefore, the study relies on it being the first to offer a comprehensive evaluation of LLMs in translating MSA to a wide range of dialects using QADI and MADAR datasets. Moreover, the evaluation of GPT 3.5, GPT 4, GPT 5, and Bard (Gemini) contributes to fine-tuning and developing inclusive NLP tools to serve a larger Arabic-speaking population with diverse dialects. It identifies the strengths and weaknesses of LLMs in different DAs by translation from MSA. Such insights are essential for the development of inclusive NLP tools that can effectively utilize MSA and different DAs in spoken Arabic to enhance digital accessibility and communication. To the best of our knowledge, we are the first study comparing prominent LLMs specially GPT 5 on MT task from MSA to DA over 15 countries.

The remainder of this study is organized as follows: The related work is described in Section 2, and the proposed methodology is detailed in Section 3. Experimental results are reported and analyzed in Section 4. Finally, the concluding remarks and future research directions are described in Section 5.



2 Related work

This section highlights the challenges of processing the Arabic language and its dialects in Section 2.1, followed by Section 2.2, which explains and explores different LLMs and Section 2.3 describes various MT approaches.


2.1 Challenges for processing Arabic and its dialects

Contemporary Arabic consists of different varieties such as MSA, the official language of the Arab world that is used in formal settings, and dialects of different countries that are commonly used in different informal contexts. In general, Arabic is a complex language with a rich inflectional morphology expressed both templatically and affixationally, as well as various attachable clitic classes (Wright and Caspari, 2011). The dialects of different countries differ from MSA in terms of phonology, morphology, and, to some extent, syntactically, where the differences are based on the presence of clitics and affixes, unlike MSA, are widely used (Salloum and Habash, 2012). Dialects are considered to share all of MSA's problems when it comes to NLP (e.g., optional diacritics and spelling inconsistencies). However, adding to these problems, the absence of standard orthographies for the dialects and their diverse variants, which in turn pose additional issues (Guellil et al., 2021). In addition, there are very few Arabic dialects of English corpora and even fewer dialects of MSA parallel corpora, which makes the number of morphological analyses and tools for these dialects constrained (Salloum and Habash, 2012).

These linguistic challenges pose different difficulties for LLMs in MT. Unlike the English language, which dominates the training of most LLMs, different Arabic dialects are widely underrepresented (Alyafeai et al., 2023; Khondaker et al., 2023). Research papers comparing LLM performance between different languages such as English and Arabic address this gap and confirm it by showing that LLMs achieve better scores in English translation than in Arabic (Peng et al., 2023). Furthermore, within Arabic itself, MSA is better handled in LLMs than in different dialects (Kadaoui et al., 2023). These demonstrate that the wide variation of dialects in the Arabic language and their complexities pose a challenge in MT. Hence, understanding of LLMs ability to translate MSA to different dialects along with the strengths and weaknesses of LLMs in different DAs needs to be addressed as it is critical in the development of NLP tools.



2.2 Large language models

LLMs have exhibited a remarkable transformation throughout the years, where they have evolved from generating only natural texts to understanding them through AI (Jiang et al., 2020). LLMs are trained to predict the next token in a sequence based on the context, making the generated outputs coherent. They are able to capture long-range dependencies and perform complex tasks such as translation, summarization, and question answering. Moreover, LLMs can generalize across different domains and diverse dialects through prompting techniques (Alabdullah et al., 2025). Research studies vary in terms of whether to include prompts in the analysis or not. For example, Lilli (2023) has studied ChatGPT 4 using Italian dialects; however, the analysis was done using zero-shot analysis only, and the results showed that the model exhibits a significant gap in analytical skills and struggles with text production and interactive tasks, suggesting superior passive linguistic capabilities compared to active ones. Similarly, GPT 4, GPT 3.5, and Bard (Gemini) were compared in terms of Inductive, Mathematical, and Multi-hop Reasoning Tasks using zero-shot, and GPT 4 was found to be better in all of them compared to GPT 3.5 and Bard (Gemini) (López Espejel et al., 2023). Currently, LLMs are widely used in evaluating the performance of NLP tasks in different languages (Kadaoui et al., 2023). However, LLMs are known to have some issues with rare or unseen words, the problem of overfitting, and the difficulty in capturing complex linguistic phenomena.

Researchers have been evaluating different LLM techniques to shed light on future research in the domain (Chang et al., 2023). Other multilingual models such as XGLM (De Varda and Marelli, 2023) have also been studied and were shown to improve significantly in terms of translation performance. It was found that the model performs best if the answer is estimated based on the probability of the first token in the generated answer. However, these models are yet to be studied further (Zhu et al., 2023). Models such as BERT (Devlin et al., 2018) have also been analyzed in terms of language analysis, such as the Arabic language. However, due to its weakness in Arabic dialects, researchers (Baert et al., 2020) created an enhanced language model (BAERT) that showed better performance than BERT in sentiment analysis. LLM research remains a prominent topic across multiple disciplines, including the development and customization of LLMs tailored to specific languages, dialects, or tasks (Mashaabi et al., 2024). There are various LLMs that support the Arabic language, with GPT being the most prominent. Some researchers suggest that ArabianGPT, specifically designed for Arabic, aligns better with Arabic language and rules (Koubaa et al., 2024).



2.3 Machine translation approaches

Machine translation (MT) is an example of an NLP task that addresses grammatical, semantic, and morphological elements between the source and output languages. Importantly, it becomes a challenging task when those elements are significantly different (Joshi et al., 2024). The need for MT systems has been increasing due to the large dialects available on the Internet and their usage in various fields (Sghaier and Zrigui, 2020). Researchers have been studying LLM MT capabilities around the world for different languages. For instance, English to Japanese MT was tested on mBART50, m2m100, Google Translation, Multilingual T5, GPT-3, ChatGPT, and GPT 4 using BLEU, Character Error Rate (CER), WER, Metric for Evaluation of Translation with Explicit ORdering (METEOR), and BERT score, as well as qualitative evaluations by four experts. The analysis showed that GPT 4 outperformed all other models in MT from English to Japanese (Chan and Tang, 2024). Due to their grammatical structure, DA forms a challenge for MT systems (Baniata et al., 2022). MT is an example of an NLP task that addresses grammatical, semantic, and morphological elements between the source and output languages. Importantly, it becomes a challenging task when those elements are significantly different (Joshi et al., 2024). Several approaches and tools are available to perform MT, such as rule-based approaches, hybrid approaches, and sequence-to-sequence (seq2seq) models as well as LLMs (Okpor, 2014). For instance, Salloum and Habash (2012) created a rule-based approach system to translate DA to MSA, which depends on a morphological analyzer, transfer rules, and dictionaries to generate sentences and choose the best matches.

Several researchers have widely used the rule-based approach to translate Arabic dialects to MSA (Al-Gaphari and Al-Yadoumi, 2010; Hamada and Marzouk, 2018; Bouamor et al., 2014). Another study created a hybrid approach to translate the Egyptian dialect to MSA and achieved 90% performance through tokenization (Bakr et al., 2008). Beyond these, Hamed et al. (2025) developed Lahjawi, a customized model specialized in cross-dialectal translation (DA to MSA) that supports 15 dialects. Lahjawi was trained on 7 well-known datasets, including MADAR and Parallel Arabic Dialectal Corpus (PADIC), and fine-tuned above a small language model - Kuwain 1.5B. The model achieved adequate BLEU scores and an accuracy of 58% based on human evaluation. Moreover, Alimi et al. (2024) developed MT model to translate DA to MSA. The model was trained on MADAR and PADIC datasets and fine-tuning transformers such as T5X and AraT5 and some existing tools. The best translation results revealed were for Levantine and Maghrebi region dialects. Some authors also adapted a hybrid approach to translate the Moroccan dialect to MSA using processing tools for MSA (Ridouane and Bouzoubaa, 2014; Hamada and Marzouk, 2018), whereas other studies focused on Neural Machine Translation (NMT) for Arabic dialects (Baniata et al., 2018; Guellil et al., 2017). For example, Baniata et al. (2022) developed an NMT model to translate DA to MSA through multi-head attention with reverse positional encoding and sub-word units. The model achieved high BLEU scores, proving their encoding method across several datasets. In addition, other researchers expand the Dial2MSA dataset through seq2seq datasets in different domains, including social media covering different regions. Leaving a reliable NMT training, the authors conducted a performance evaluation, and it was found that AraT5 achieved the highest performance (Khered et al., 2025). Moreover, researchers Alabdullah et al. (2025) evaluated six LLMs on DA to MSA translation, including Levantine, Egyptian, and Gulf Dialects using different prompting techniques. They demonstrated that GPT 4o achieved the highest score in translation performance, while a fine-tuned version of Gemma2-9B achieved a higher CHrF++ score compared to GPT 4o in zero-show prompting.

Furthermore, researchers utilized LLMs to perform MT tasks. For instance, Zhu et al. (2023) evaluated the multilingual translation of four LLMs, namely, GPT, XGLM, OPT, and BLOOMZ. Interestingly, the researchers found that such models adapt new patterns to translate. GPT proved excellent capability in MT and outperformed Google Translate according to Peng et al. (2023). In addition, the AraFinNLP shared tasks highlight critical challenges and discussions for cross-dialect translation in preservation of intents using the known ArbBanking77 dataset. The findings highlight that accurate MSA to DA (Moroccan, Tunisian, and Palestinian) translation is possible yet challenging. They demonstrated that fine-tuned BERT models and data augmentation achieve high performance in handling Arabic dialects for financial applications (Malaysha et al., 2024). Moreover, SHAMI-MT developed bidirectional MT models built on the AraT5v2 model and fine-tuned on the Nbra corpus. They evaluated the translation between MSA and the Syrian dialect and used MADAR for benchmark (Sibaee et al., 2025). Similarly, Mohamed et al. (2012) presented a method to convert MSA to Egyptian dialect, applied on part-of-speech (POS). They showed that such MT task improves tagging and is considered as valuable training data for underrepresented dialects.

Prior research studies addressed the translation from MSA to different dialects. A study conducted empirical analysis focusing on Arabic-based LLMs to assess their ability to translate DA to MSA, utilizing four datasets with English-based LLMs as a baseline (Jibrin et al., 2025). They highlighted that AceGPT and Jais performed the best BLEU scores across all data sets, establishing their reliability in Arabic formality. In another study, GPT was evaluated on various NLP tasks. It was revealed that GPT, in comparison with BLOOMZ, struggles on some Arabic tasks yet comparable to human judgment (Khondaker et al., 2023). Several studies explored this field with more precision in relation to the Nuance Arabic Dialect Identification (NADI) 2023 competition. Demidova et al. (2024) performed sentence-based translation from DA to MSA across four dialects through Jais, No Language Left Behind (NLLB), GPT 3.5, and GPT 4 LLMs. They found that Jais outperforms the other models consistently, achieving high BLEU scores whereas NLLB was the least performer. Similarly, other researchers mainly focused on fine-tuning LLama-3 with 8B parameters through Parameter Efficient Fine-Tuning (PEFT) and Low Rank Adaptation (LoRA) methods. The task was also DA-MSA translation across four datasets. LLama fine-tuned model exhibits strong performance related to BLEU metric. Moreover, the 6th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT) showed interesting findings through different studies specifically for Dialect to MSA MT task including 5 dialects. (Atwany et al. 2024) evaluated AraT5, NLLB, and GPT 3.5. The results show that fine-tuning Arat5 and NLLB on the MADAR dataset demonstrates low BLEU scores, whereas prompting GPT 3.5 achieved high BLEU scores. Moreover, other researchers used GPT 3.5 for dataset generation (Abdelaziz et al., 2024). They used the Saudi Audio Dataset for Arabic (SADA) to translate the audio dialects to MSA texts, leading to notable performance in machine translation achieving high BLEU scores between 25.5 and 31.5. Alahmari et al. (2024) fine-tuned four versions of AraT5 model highlighting that AraT5v2-base-1024 model achieved the highest BLEU score of 21.0. Various researchers have utilized MT with a special focus on the context of Arabic dialects. Table 1 summarizes the MT approaches proposed by the researchers.

TABLE 1  Summary of machine translation (MT) approaches for Arabic dialects.


	Research
	Dialect(s)
	Approach





	Bakr et al., 2008
	Egyptian → MSA
	Hybrid

 
	Al-Gaphari and Al-Yadoumi, 2010
	Sana'ani → MSA
	Rule-based

 
	Salloum and Habash, 2012
	Arabic Dialects → MSA
	Rule-based

 
	Mohamed et al., 2012
	MSA → Egyptian
	Rule-based

 
	Bouamor et al., 2014
	Mainly Egyptian
	Rule-based, Corpus of 2,000 sentences

 
	Ridouane and Bouzoubaa, 2014
	Moroccan → MSA
	Hybrid

 
	Guellil et al., 2017
	Algerian
	NMT

 
	Hamada and Marzouk, 2018
	Egyptian → MSA
	Hybrid/Rule-based

 
	Baniata et al., 2018
	Arabic dialects → MSA
	Neural MT (NMT)

 
	Hamed et al., 2025
	15 Dialects → MSA
	Custom cross-dialectal model

 
	Alimi et al., 2024
	Levantine, Maghrebi → MSA
	Transformer-based MT (AraT5, T5X)

 
	Alabdullah et al., 2025
	Levantine, Egyptian, Gulf → MSA
	LLM-based MT (GPT 4o, Gemma2-9B)

 
	Zhu et al., 2023
	Multilingual/Arabic
	LLM-based MT (GPT, XGLM, OPT, BLOOMZ)

 
	Malaysha et al., 2024
	Moroccan, Tunisian, Palestinian → MSA
	LLM + fine-tuned BERT

 
	Sibaee et al., 2025
	Syrian → MSA
	AraT5v2-based bidirectional MT

 
	Khered et al., 2025
	Arabic Dialects → MSA
	Seq2seq / Transformer (AraT5)

 
	Jibrin et al., 2025
	Arabic Dialects → MSA
	LLM-based MT (AceGPT, Jais)

 
	Khondaker et al., 2023
	Arabic Dialects → MSA
	LLM-based MT (GPT, BLOOMZ)

 
	Demidova et al., 2024
	Egyptian, Emirati, Jordanian, and Palestinian → MSA
	LLM-based MT (Jais, NLLB, GPT 3.5, GPT 4)

 
	Atwany et al., 2024
	Gulf, Egyptian, Levantine, Iraqi and Maghrebi → MSA
	LLM-based MT (AraT5, NLLB, GPT 3.5)

 
	Abdelaziz et al., 2024
	Saudi Dialect → MSA
	LLM-based MT (GPT 3.5)

 
	Alahmari et al., 2024
	Arabic dialects → MSA
	Transformer MT (AraT5v2)









3 Proposed methodology

This section discusses the chosen dataset in Section 3.1, followed by Section 3.2, which describes the prompting techniques. Model selection is mentioned in Section 3.3, and the chosen performance metrics are detailed in Section 3.4.


3.1 Dataset

Translating Arabic dialects has been a wide area of research (Harrat et al., 2019). In our research, we aim to use the QADI dataset and the MADAR corpus dataset. QADI dataset is a pre-processed dataset collected through X media platform, and it includes 18 dialects from different Arab countries, the dataset is already cleaned and has no hashtags, emojis, or such symbols which might affect the translation quality (Abdelali et al., 2020). The dataset has 540k training tweets and 3,303 test tweets in total. The rationale for choosing the QADI dataset is the large number of dialects it has which will help us address our research questions and compare the performance evaluation of LLMs. However, in the current study, 50K samples will be used from all countries for the analysis due to computational resource restrictions. We applied random sampling, the QADI dataset was balanced across dialects, our random selection ensured that the selected 50K tweets have no bias and ensure equal selection among the sentences. Table 2 shows different country codes using ISO-3166-1 with corresponding users and tweet count of QADI dataset.

TABLE 2  QADI dataset: users and tweet counts by country using ISO-3166-1 codes.


	Country
	Users
	Training tweets (k)
	Test tweets





	Iraq (IQ)
	142
	18.4
	178

 
	Bahrain (BH)
	169
	28.3
	184

 
	Kuwait (KW)
	160
	49.9
	190

 
	Saudi Arabia (SA)
	149
	35.4
	199

 
	United Arab Emirates (AE)
	172
	27.8
	192

 
	Oman (OM)
	176
	24.8
	169

 
	Qatar (QA)
	139
	36.7
	198

 
	Yemen (YE)
	138
	11.6
	193

 
	Syria (SY)
	139
	18.3
	194

 
	Jordan (JO)
	146
	34.1
	180

 
	Palestine (PL)
	145
	48.6
	173

 
	Lebanon (LB)
	141
	38.4
	194

 
	Egypt (EG)
	150
	67.8
	200

 
	Sudan (SD)
	139
	16.3
	188

 
	Libya (LY)
	149
	40.9
	169

 
	Tunisia (TN)
	68
	12.9
	154

 
	Algeria (DZ)
	130
	17.6
	170

 
	Morocco (MA)
	73
	12.8
	178






Similarly, the MADAR corpus dataset (Bouamor et al., 2019) contains 25 cities representing 15 countries, each with a unique dialect where some countries feature multiple cities (e.g., Egypt has Aswan, Cairo, and Alexandria) with 2K samples from each dialect. The advantage of using the MADAR dataset is that it includes MSA baseline translation for the sentences present inside the dialects of each country. Hence, making the evaluation of GPT and Bard (Gemini) stronger by comparing the results of these models with the baseline given within the dataset. This study will analyze 15 countries from the MADAR dataset primarily focusing on the capitals of countries that are also included in QADI. Table 3 shows all the city dialects from the MADAR dataset, showing the different cities with their dialects from various Arabic countries.

TABLE 3  All the city dialects and regions that were included in the building of the MADAR dataset.


	Region
	Sub-region
	Cities
	Codes





	Maghreb
	Morocco
	Rabat, Fes
	RAB, FES



	
	Algeria
	Algiers
	ALG



	
	Tunisia
	Tunis, Sfax
	TUN, SFX



	
	Libya
	Tripoli, Benghazi
	TRI, BEN

 
	Nile Basin
	Egypt
	Cairo, Alexandria, Aswan
	CAI, ALX, ASW



	
	Sudan
	Khartoum
	KHA

 
	Levant
	South Levant
	Jerusalem, Amman, Salt
	JER, AMM, SAL



	
	North Levant
	Beirut, Damascus, Aleppo
	BEI, DAM, ALE

 
	Gulf
	Iraq
	Mosul, Baghdad, Basra
	MOS, BAG, BAS



	
	Gulf
	Doha, Muscat, Riyadh, Jeddah
	DOH, MUS, RIY, JED

 
	Yemen
	Yemen
	Sana'a
	SAN








3.2 Prompting techniques

Prompting strategies have been developed to optimize LLMs' performance and outcomes. The most frequent of these tactics are zero-shot and few-shot. The zero-shot prompt plainly describes the task and provides information without examples (Allingham et al., 2023). Figures 1, 2 show an example of the prompts used to perform the translation task. Unlike zero-shot prompts, few-shot prompts include data examples and sample responses (Jiang et al., 2022). On the other hand, a few-shot prompting technique is established by providing an example within the prompt itself, where one-shot includes a single example, two-shot includes 2 examples, etc. We will include both zero-shot and few-shot prompts. As well as a few shot prompts (one-shot) for the country with the weakest dialect translation given by the models to check whether including an example within the prompt would enhance the overall accuracy of the translation. An example of a prompt is shown in Figure 3 to test whether the models would provide a better translation as compared to zero-shot approaches.


[image: The image contains text explaining an array with multiple JSON objects. Each object has three keys: DS for Dialectal Arabic sentences, MSA for the translation to Modern Standard Arabic, and BT for the translation from MSA to Yemeni Arabic. Users are prompted to complete MSA and BT in the array using `JSON.stringify(tmpArray)`.]
FIGURE 1
 Zero-shot prompt - QADI.



[image: Text describing a code snippet instructing to complete an array of JSON objects with translations. Each object has keys: MSA for Modern Standard Arabic sentences and MSAtoD for translations to Tunisian Arabic. The example shows JSON.stringify(tmpArray) to output the array.]
FIGURE 2
 Zero-shot prompt - MADAR.



[image: Text inside a rounded rectangle describing a task with JSON objects. Each object has two keys: MSA for Modern Standard Arabic sentences and MSAtOD for their translations to Tunisian Arabic. Examples are given, and the task involves completing the MSAtOD field with appropriate translations. The array is displayed after the examples.]
FIGURE 3
 Few-shot prompt - MADAR.




3.3 Model selection

This research paper will be using OpenAI's most recent model GPT 5 along with GPT 3.5, GPT 4, and Google's Bard (Gemini) “text-bison” model due to their exceptional performance in research (Zhu et al., 2023; Peng et al., 2023; Khondaker et al., 2023; Kadaoui et al., 2023). LLMs are widely used to evaluate the performance of Arabic NLP tasks such as GPT 3.5, GPT 4, Bard (Gemini), XGLM, and OPT (Zhu et al., 2023). To save computational cost and time, GPT 5 will only be ran on MADAR dataset, whereas QADI will include all remaining models. This study's selection criteria for the models aim to balance between budget and computing resources. In addition, LLM languages that do not include the Arabic language, such as Falcon-7b (Penedo et al., 2023), were initially excluded from the search scope of suitable LLMs. A brief summarization of both models is shown in Table 4.

TABLE 4  Tabular comparison between GPT and Bard.


	Aspect
	GPT 3.5
	GPT 4
	GPT 5
	Bard





	Source
	OpenAI
	OpenAI
	OpenAI
	Google

 
	Language model
	GPT 3.5- turbo- 16k 
	'GPT 4-0125-preview' 
	'GPT 5' 
	'text-bison'

 
	Model architecture
	Transformer decoder based
	Transformer decoder based
	Transformer decoder based
	Transformer based

 
	Availability
	Limited free access
	Paid
	Paid
	Limited free access

 
	Languages
	Multilingual
	Multilingual
	Multilingual
	Multilingual

 
	Parameter Size
	175 Billion
	1.76 Trillion
	Not Announced
	137 Billion






Figure 4 shows the experiment pipeline implemented for GPT and Bard (Gemini). The experiment starts using the data in the dataset as a prompt for each LLM. Initially, all prompts will be applied with zero-shot techniques, meaning that no example will be included within the prompt. However, after performing the analysis, the country with the least translation performance will be analyzed again but with the few-shot prompting technique. In the QADI dataset, to have a baseline to compare the LLM results with, the back translation process is used (Behr, 2017), where dialects are translated to MSA; then, the resulting MSA is translated back to the corresponding dialect to compare the final resulting dialect with the original dialect from the dataset. However, MADAR offers a baseline for dialects and MSA; therefore, no back-translation will be needed.


[image: Flowchart illustrating a process for handling Arabic dialects. It begins with a database of dialects, leading to prompt generation. The flow splits into two datasets: QADI for back translation and MADAR for MSA to dialect translation. Both connect to LLM inference, which informs evaluation. Optimization focuses on reducing costs and resending failed prompts. Back translation converts dialect to MSA and back.]
FIGURE 4
 Experiment pipeline.


For LLM inference, we used the code provided on the Application Programming Interface (API) websites with some correction techniques; rerunning the prompt if the model returns an error to ensure a correct response. After doing so, the error rate in the resulting samples has dropped sufficiently. Cost optimization technique has also been adapted by running 10 translations per API request, which reduced the cost. A threshold of 10 requests was set as the maximum accumulation; as the threshold increases, the error rate also increases. Finally, the experiment results will be evaluated by calculating the selected performance metrics described in the upcoming section.



3.4 Performance metrics

We aim to quantify the differences in performance between GPT 3.5, GPT 4, GPT 5, and Bard (Gemini) and to determine how these models can perform the translation task given the complexity of the Arabic language. There are various common evaluation metrics for comparison. The present study will use 7 evaluation metrics (i.e., cosine similarity, sentence BERT, semantic universal encoder, TER, BLEU, ROUGE, and ANOVA test). These metrics were chosen based on their strengths and popularity in analyzing Arabic sentences. To attest for normality, the Shapiro–Wilk test was used for ANOVA (Alabdullah et al., 2025).

One of the common MT metrics is the universal similarity encoder, which is a neural network architecture for learning similarity-preserving embeddings that uses pre-trained embeddings (e.g., Word2Vec, GloVe, or BERT embeddings) to compare two sentences, rather than having a specific calculation formula. Its range varies from –1 to 1, where results closer to 1 are indicative of high semantic similarity.

However, cosine similarity calculates the cosine of the angle formed by two vectors that represent phrases in several dimensions that represent a word or contextual information. Equation 1 below shows the cosine similarity, where A and B are vectors.

Cosine similarity=A·B||A||·||B||      (1)

High positive values in cosine similarity (close to 1) indicate that there is great similarity between the two vectors.

Sentence BERT is a transformer that adapts cosine similarity by using Tensorflow. The general process involves encoding sentences into fixed-size vectors using pre-trained BERT embedding and then calculating a similarity score between these vectors (Mrinalini et al., 2022). Since sentence BERT adapts cosine similarity, it follows the same metric measures of –1 to 1, where close values to –1 mean that the two vectors are completely dissimilar, and values close to 1 mean that there is a high similarity between the vectors. The universal sentence encoder finds the similarity between sentences based on semantics, where it is used to convert phrases into dense vector representations.

Finally, the TER metric is specifically used for MT tasks by comparing the MT outputs against human-generated translation to assess the quality of MT outputs, as shown in Equation 2.

TER=Total editsTotal words in reference translation      (2)

A lower TER score indicates a better translation quality as it means that fewer edits are needed to align the machine-generated translation.

Moreover, the BLEU metric is a widely popular metric used in research (Sallam and Mousa, 2024) where individual translated segments, usually sentences, are scored by comparing them with a collection of high-quality reference translations. These scores are then averaged throughout the entire corpus to provide an approximation of the translation's overall quality (Papineni et al., 2002). It aims to find the similarity between the translated text and the reference sentence by employing n-grams; contiguous group of n-words that are similar. The metric values range from 0 to 1, and typically a higher value means that more words are overlapping between the machine-translated sentence and the referenced sentence, as shown in Equation 3 (Papineni et al., 2002).

BLEUw(Ŝ;S):=BP(Ŝ;S)·exp(∑n=1∞wnlogpn(Ŝ;S))      (3)

where BP is the brevity penalty, w is the weights for each n-gram, and p is the precision of n-grams.

Furthermore, ROUGE is a collection of metrics and software packages for assessing automatic summarization and MT software in natural language processing. The metrics assess an automatically generated summary or translation to a reference or a collection of references (human-created summary or translation). ROUGE measures range from 0 to 1, with higher scores indicating a stronger resemblance between the automatically generated summary and the reference (Lin and Hovy, 2003).

ANOVA is a statistical approach for comparing the means of three or more samples to determine whether one of them is substantially different from the others (Keselman et al., 1998). It accomplishes this by analyzing the variance in the data and categorizing it as the variance between groups and the variance within groups. The p-value is calculated using the ANOVA test statistic, also known as the F-statistic, as shown in Equation 4.

F-statistic (ANOVA Coefficient)=      (4)

Mean Sum of Squares due to Treatment (MST)Mean Sum of Squares due to Error (MSE)

The p-value indicates whether the differences in group means are statistically significant (Keselman et al., 1998). In this study, since we are performing various analyses and tests, it became important to employ ANOVA to determine the statistical significance of the results.




4 Experimental results

This section discusses the model responsiveness in Section 4.1, followed by the metric performance and dialect variations in Section 4.2. Finally, Section 4.3 discusses the impact of sentence length on the model accuracy.


4.1 Model responsiveness

In general, in terms of responsiveness, the models were responsive when given a prompt with input. However, there were differences in the output details of both models. GPT gave a direct response where Gemini explained each word in a row.

When running APIs, Bard (Gemini) has shown varying error rates when translating ranging from 5% up to 71%. This error rate was varying based on the load on the network at the execution time and length of the dataset being analyzed. Hence, to reduce the error rate, we ran Bard (Gemini) when the network was not preoccupied with many other tasks and ran the dataset in smaller batches to reduce the chances of error. There were several cases where Bard (Gemini) has either returned the same input as output, empty output, or a message that says that it is unable to handle a given task.

The rate of failing to give an output is most noticeable when performing the back translation from MSA to a certain dialect in QADI dataset. For example, for the back translation for IQ dialect, Bard (Gemini) failed to give an output with the rate of 37.5%, whereas GPT 3.5 has only failed to do so with a 5.6% rate, and GPT 4 had 0.2% error rate. Therefore, a correction technique was added in the code, where the response was checked, if it included an error, resend the same prompt. After doing so, the error rate in the resulting samples has dropped considerably.



4.2 Performance metrics and dialect variations
 
4.2.1 Similarity metrics

This section discusses the similarity metrics and the performance of the LLMs on the MADAR and QADI datasets in terms of universal similarity encoder, cosine similarity, sentence BERT, BLEU, and ROUGE F1 scores. The metrics aimed to assess the efficiency and accuracy of the translation process of different dialects. The analysis explained below is further demonstrated in Tables 5 – 11. To address the research questions, both GPT 3.5/4 and Bard (Gemini) exhibited similar performance levels across the metrics among dialects in both datasets.

TABLE 5  Bard metric similarities mean among 18 dialects from QADI dataset.


	Dialect
	Univ. Sim. Enc.
	Cosine Sim.
	Sent. BERT
	BLEU
	ROUGE-L





	JO
	0.68
	0.43
	0.92
	0.07
	0.43

 
	AE
	0.65
	0.38
	0.92
	0.35
	0.38

 
	LB
	0.67
	0.40
	0.87
	0.38
	0.40

 
	IQ
	0.64
	0.40
	0.91
	0.39
	0.41

 
	BH
	0.67
	0.46
	0.88
	0.07
	0.46

 
	DZ
	0.64
	0.41
	0.89
	0.39
	0.41

 
	EG
	0.72
	0.47
	0.89
	0.45
	0.47

 
	KW
	0.67
	0.46
	0.94
	0.43
	0.45

 
	LY
	0.70
	0.48
	0.90
	0.45
	0.47

 
	MA
	0.63
	0.38
	0.94
	0.04
	0.38

 
	OM
	0.64
	0.45
	0.94
	0.43
	0.45

 
	PL
	0.64
	0.42
	0.94
	0.40
	0.42

 
	QA
	0.67
	0.42
	0.94
	0.05
	0.42

 
	SA
	0.65
	0.39
	0.93
	0.37
	0.39

 
	SD
	0.68
	0.44
	0.90
	0.06
	0.43

 
	SY
	0.66
	0.46
	0.90
	0.43
	0.45

 
	TN
	0.65
	0.42
	0.89
	0.39
	0.41

 
	YE
	0.68
	0.47
	0.93
	0.44
	0.47






TABLE 6  Bard metric similarities mean among 15 dialects from MADAR dataset.


	Dialect
	Univ. Sim. Enc.
	Cosine Sim.
	Sent. BERT
	BLEU
	ROUGE-L





	JO
	0.56
	0.34
	0.93
	0.37
	0.32

 
	LB
	0.53
	0.35
	0.93
	0.34
	0.28

 
	IQ
	0.50
	0.33
	0.93
	0.32
	0.26

 
	DZ
	0.52
	0.31
	0.93
	0.29
	0.23

 
	EG
	0.57
	0.38
	0.93
	0.37
	0.32

 
	LY
	0.53
	0.32
	0.93
	0.31
	0.25

 
	MA
	0.50
	0.31
	0.93
	0.29
	0.23

 
	OM
	0.58
	0.40
	0.93
	0.38
	0.33

 
	PL
	0.56
	0.39
	0.92
	0.37
	0.32

 
	QA
	0.53
	0.36
	0.93
	0.34
	0.28

 
	SA
	0.53
	0.35
	0.93
	0.33
	0.27

 
	SD
	0.56
	0.38
	0.94
	0.37
	0.32

 
	SY
	0.55
	0.39
	0.93
	0.37
	0.32

 
	TN
	0.48
	0.26
	0.93
	0.25
	0.17

 
	YE
	0.50
	0.28
	0.93
	0.27
	0.20






TABLE 7  GPT 3.5 metric similarities mean among 18 dialects from QADI dataset.


	Dialect
	Univ. Sim. Enc.
	Cosine Sim.
	Sent. BERT
	BLEU
	ROUGE-L





	JO
	0.66
	0.38
	0.89
	0.43
	0.46

 
	AE
	0.66
	0.37
	0.88
	0.39
	0.43

 
	LB
	0.65
	0.40
	0.94
	0.48
	0.50

 
	IQ
	0.62
	0.33
	0.84
	0.38
	0.40

 
	BH
	0.67
	0.40
	0.87
	0.44
	0.47

 
	DZ
	0.59
	0.29
	0.91
	0.28
	0.31

 
	EG
	0.65
	0.35
	0.86
	0.32
	0.35

 
	KW
	0.65
	0.39
	0.90
	0.45
	0.48

 
	LY
	0.63
	0.34
	0.85
	0.32
	0.36

 
	MA
	0.64
	0.34
	0.89
	0.37
	0.40

 
	OM
	0.64
	0.39
	0.84
	0.46
	0.49

 
	PL
	0.67
	0.43
	0.84
	0.53
	0.55

 
	QA
	0.63
	0.35
	0.87
	0.25
	0.40

 
	SA
	0.63
	0.33
	0.89
	0.32
	0.36

 
	SD
	0.65
	0.37
	0.85
	0.35
	0.46

 
	SY
	0.65
	0.39
	0.90
	0.43
	0.46

 
	TN
	0.66
	0.41
	0.83
	0.46
	0.49

 
	YE
	0.63
	0.39
	0.85
	0.43
	0.45






TABLE 8  GPT 3.5 metric similarities mean among 15 dialects from MADAR dataset.


	Dialect
	Univ. Sim. Enc.
	Cosine Sim.
	Sent. BERT
	BLEU
	ROUGE-L





	JO
	0.55
	0.35
	0.92
	0.34
	0.30

 
	LB
	0.52
	0.32
	0.91
	0.32
	0.25

 
	IQ
	0.51
	0.29
	0.93
	0.28
	0.22

 
	DZ
	0.50
	0.28
	0.93
	0.26
	0.20

 
	EG
	0.54
	0.34
	0.93
	0.33
	0.28

 
	LY
	0.51
	0.27
	0.93
	0.27
	0.20

 
	MA
	0.50
	0.27
	0.93
	0.26
	0.20

 
	OM
	0.53
	0.31
	0.92
	0.29
	0.24

 
	PL
	0.54
	0.34
	0.92
	0.33
	0.28

 
	QA
	0.53
	0.31
	0.93
	0.30
	0.24

 
	SA
	0.55
	0.34
	0.93
	0.34
	0.28

 
	SD
	0.53
	0.31
	0.92
	0.29
	0.24

 
	SY
	0.55
	0.36
	0.92
	0.35
	0.30

 
	TN
	0.48
	0.24
	0.93
	0.23
	0.16

 
	YE
	0.50
	0.26
	0.93
	0.25
	0.19






TABLE 9  GPT 4 metric similarities mean among 18 dialects from QADI dataset.


	Dialect
	Univ. Sim. Enc.
	Cosine Sim.
	Sent. BERT
	BLEU
	ROUGE-L





	JO
	0.73
	0.50
	0.82
	0.49
	0.51

 
	AE
	0.71
	0.45
	0.91
	0.44
	0.46

 
	LB
	0.74
	0.50
	0.94
	0.49
	0.51

 
	IQ
	0.70
	0.43
	0.88
	0.43
	0.45

 
	BH
	0.72
	0.48
	0.91
	0.48
	0.49

 
	DZ
	0.75
	0.53
	0.91
	0.55
	0.57

 
	EG
	0.77
	0.55
	0.90
	0.55
	0.57

 
	KW
	0.68
	0.45
	0.88
	0.45
	0.47

 
	LY
	0.70
	0.43
	0.87
	0.42
	0.44

 
	MA
	0.70
	0.41
	0.89
	0.40
	0.41

 
	OM
	0.65
	0.39
	0.77
	0.38
	0.39

 
	PL
	0.71
	0.49
	0.88
	0.48
	0.50

 
	QA
	0.66
	0.37
	0.87
	0.36
	0.37

 
	SA
	0.69
	0.38
	0.89
	0.36
	0.38

 
	SD
	0.74
	0.50
	0.93
	0.51
	0.53

 
	SY
	0.72
	0.48
	0.92
	0.46
	0.49

 
	TN
	0.71
	0.44
	0.88
	0.44
	0.45

 
	YE
	0.69
	0.43
	0.91
	0.41
	0.43






TABLE 10  GPT 4 metric similarities mean among 15 dialects from MADAR dataset.


	Dialect
	Univ. Sim. Enc.
	Cosine Sim.
	Sent. BERT
	BLEU
	ROUGE-L





	JO
	0.60
	0.42
	0.93
	0.41
	0.37

 
	LB
	0.54
	0.34
	0.43
	0.36
	0.28

 
	IQ
	0.54
	0.34
	0.93
	0.33
	0.27

 
	DZ
	0.51
	0.30
	0.93
	0.29
	0.23

 
	EG
	0.56
	0.38
	0.93
	0.38
	0.33

 
	LY
	0.52
	0.31
	0.93
	0.30
	0.24

 
	MA
	0.47
	0.26
	0.93
	0.25
	0.18

 
	OM
	0.53
	0.33
	0.93
	0.32
	0.26

 
	PL
	0.59
	0.41
	0.92
	0.41
	0.36

 
	QA
	0.57
	0.39
	0.93
	0.38
	0.33

 
	SA
	0.58
	0.41
	0.93
	0.40
	0.35

 
	SD
	0.54
	0.33
	0.93
	0.32
	0.26

 
	SY
	0.59
	0.41
	0.92
	0.41
	0.36

 
	TN
	0.48
	0.26
	0.93
	0.25
	0.18

 
	YE
	0.52
	0.30
	0.92
	0.29
	0.22






TABLE 11  GPT 5 metric similarities mean among 15 dialects from MADAR dataset.


	Dialect
	Univ. Sim. Enc.
	Cosine Sim.
	Sent. BERT
	BLEU
	ROUGE-L





	JO
	0.62
	0.46
	0.93
	0.47
	0.43

 
	LB
	0.58
	0.39
	0.92
	0.39
	0.34

 
	IQ
	0.55
	0.37
	0.92
	0.37
	0.31

 
	DZ
	0.50
	0.28
	0.93
	0.26
	0.20

 
	EG
	0.59
	0.44
	0.92
	0.44
	0.40

 
	LY
	0.54
	0.37
	0.92
	0.36
	0.30

 
	MA
	0.56
	0.40
	0.92
	0.39
	0.34

 
	OM
	0.52
	0.34
	0.93
	0.37
	0.28

 
	PL
	0.61
	0.46
	0.92
	0.47
	0.42

 
	QA
	0.59
	0.43
	0.92
	0.44
	0.38

 
	SA
	0.58
	0.42
	0.92
	0.43
	0.38

 
	SD
	0.54
	0.38
	0.92
	0.37
	0.32

 
	SY
	0.62
	0.47
	0.92
	0.49
	0.44

 
	TN
	0.53
	0.34
	0.92
	0.33
	0.27

 
	YE
	0.55
	0.35
	0.93
	0.34
	0.28






The BLEU score values for GPT 3.5/4 are similar among the LLMs and countries for QADI, whereas GPT 5 slightly outperformed its prior models in MADAR dataset. Figures 5, 6 visualize the BLEU scores labeled by each country where the LLMs showed consistent results in MADAR. Bard (Gemini) in the QADI dataset achieved a low score for some countries. These numbers explain that a few words were overlapping between the input and the translated dialect.


[image: Bar chart showing average BLEU scores for the QADI dataset across various dialects. Three models are compared: Bard, GPT 3.5, and GPT 4. Scores vary across dialects, with AE and SC achieving higher scores. Bard generally has the lowest scores, while GPT 4 often performs the best.]
FIGURE 5
 Average BLEU scores QADI.



[image: Bar chart titled "Average BLEU Scores for MADAR Dataset" comparing the performance of Bard and GPT versions 3.5, 4, and 5 across various dialects. The vertical axis represents the average BLEU score, and the horizontal axis lists dialects including JO, LB, IQ, DZ, EG, LY, MA, QA, PL, SA, SD, SY, TN, and YE. Each dialect has four stacked bars, with Bard, GPT 3.5, GPT 4, and GPT 5 differentiated by color. Scores vary, highlighting the comparative performance of each model across the different dialects.]
FIGURE 6
 Average BLEU scores MADAR.


Furthermore, when employing a universal similarity encoder and cosine similarity in QADI as shown in Table 12, GPT 4 outperforms the models, which makes it the dominant, followed by Bard (Gemini) and then GPT 3.5. The mean universal similarity encoder score is 71% for GPT 4, 64% for GPT 3.5, and 66% for Bard (Gemini) among all countries. For the MADAR dataset in Table 13, GPT 5 outperforms all models by having a 57% average, whereas GPT 4 has a mean of 54%, GPT 3.5 mean is 52%, whereas Bard (Gemini) has a mean of 53%. This suggests that Bard (Gemini) has shown comparable skill to older GPT models in understanding and conveying the semantic connections among the translated sentences in the MADAR dataset, whereas GPT 5 stands out overall. Whereas for the QADI dataset, GPT 4 had a higher mean, which indicates that it has the best skill in conveying the semantic connections with the existence of the back translation algorithm.

TABLE 12  Average similarity metrics for QADI dataset.


	Metric
	GPT 3.5
	GPT 4
	Bard (Gemini)





	Universal similarity encoder
	0.64
	0.71
	0.66

 
	Cosine similarity
	0.37
	0.46
	0.43

 
	Sentence BERT
	0.87
	0.89
	0.91

 
	BLEU
	0.39
	0.45
	0.31

 
	ROUGE-L
	0.43
	0.47
	0.43

 
	TER
	15.62%
	15.75%
	16.55%







Lower error rates are denoted by green.



TABLE 13  Average similarity metrics for MADAR dataset.


	Metric
	GPT 3.5
	GPT 4
	GPT 5
	Bard (Gemini)





	Universal similarity encoder
	0.52
	0.54
	0.57
	0.53

 
	Cosine similarity
	0.31
	0.35
	0.39
	0.34

 
	Sentence BERT
	0.93
	0.90
	0.92
	0.93

 
	BLEU
	0.30
	0.34
	0.39
	0.33

 
	ROUGE-L
	0.24
	0.28
	0.34
	0.27

 
	TER
	6.76%
	6.74%
	6.61%
	6.90%







Lower error rates are denoted by green.



In Table 12 for QADI, the cosine similarity showed a mean of 46% for GPT 4, 43% for Bard (Gemini), and 37% for GPT 3.5. Table 13 exhibits a similar performance of 35% for GPT 4, 39% for Bard (Gemini), and 31% for GPT 3.5 on MADAR. This shows that GPT 4 is the best performer which aligns with the results of Alyafeai et al. (2023) and Peng et al. (2023). GPT 5 outperforms other models with a mean of 39% in MADAR. Noticeably, GPT 3.5 encountered the most struggles in translating to dialects from MSA which exhibits to a similar behavior in the conclusion drawn by Kadaoui et al. (2023).

On the other hand, sentence BERT shows the highest mean among all metrics as it uses a transformer model which makes it most accurate in finding similarities between the input dialect and the back-translated dialect. In addition, it showed consistent results for all LLMs across the two datasets. In Table 12 for QADI, Bard (Gemini) shows an average efficiency of 91%, hence outperforming GPT 4 and GPT 3.5 which shows an average efficiency of 89% and 87% consecutively. Similarly for MADAR in Table 13, Bard (Gemini) shows a total mean value of 93%, tying with GPT 3.5 whereas GPT 5 shows 92%, GPT 4 shows 90%. GPT 4 has witnessed a drop in accuracy due to poorer performance in LB dialect because of an outlier compared to other countries as its individual score shows 43% score, whereas others scored approximately 93%. This is due to an error occurred when running the data where sentences were translated to English instead of Arabic which drops the accuracy rate of the overall translation. Given that the error was only observed in the Lebanese dialect, it could be attributed that the model had unresolved difficulties in the background which was also passed down to the updated GPT 5 model as well.

In QADI dataset in Table 12, GPT 3.5 and Bard (Gemini) have an average score of 43% for ROUGE-L where GPT 4 scored an average of 47%. The analysis note that at least one Maghrebi dialect was of the highest ROUGE-L values observed for all models. However, GPT 3.5 achieved the top score for Palestine. This indicates a greater number of sentences overlap. These results indicate that GPT 4 was specifically well trained and consistent in at least one Magherbi dialect (e.g., Moroccon, Algerian, or Tunisian Arabic), whereas GPT 3.5 was a better fit in Palestinian dialect (i.e., Levantine Arabic).

In the same vein for the MADAR in Table 13, ROUGE-L scores were similar showing an average of 27%, 24%, 28% for Bard (Gemini), GPT 3.5/4, respectively, whereas GPT 5 outperforms other models showing 34%. Figures 7, 8 show the averages for each model to further illustrate the scores.


[image: Average ROUGE scores for QADI across different large language models (LLMs) are shown in a horizontal bar chart. Models include GPT-4, GPT-3.5, and Bard. Each model's score is divided into ROUGE-1, ROUGE-2, and ROUGE-L, represented by blue, purple, and orange bars, respectively. GPT-4 has the highest scores across all metrics, followed by GPT-3.5, and Bard.]
FIGURE 7
 Average ROUGE scores for QADI dataset.



[image: Bar chart comparing average ROUGE scores for MADAR across different LLMs: GPT 5, GPT 4, GPT 3.5, and Bard. Bars represent ROUGE-1, ROUGE-2, and ROUGE-L scores, indicating varied performance levels among the models.]
FIGURE 8
 Average ROUGE scores for MADAR dataset.


Overall, all three models among different datasets demonstrated a decently high average score for ROUGE-1 and ROUGE-L but lower scores for ROUGE-2. These results indicate that GPT 3.5, GPT 4, and Bard (Gemini) all had higher overlap between single words and long sequences between the compared text with GPT 4 being the highest in Figure 7, whereas GPT 5 clearly outperforms all other models in MADAR as demonstrated in Figure 8.

Overall, the results show that GPT 5 followed by GPT 4, Bard (Gemini), and GPT 3.5 are efficient in translating MSA to different DA, with slight difference and weaknesses noted in some of the dialects and models.



4.2.2 TER

Table 14 shows the TER for all the countries for QADI dataset for GPT 3.5, GPT 4, and MADAR, whereas the Figures 9, 10 visualize some dialects' results from QADI representing the average TER as a red line. The ranges of error demonstrated by TER range from approximately 10% up to 25% for all LLMs. Furthermore, the models have the lowest TER rate of approximately 11% for the OM dialect, whereas Bard (Gemini) has the highest worst TER rate in EG of 25.6%. Comparing the Gulf region countries (AE, BH, KW, OM, QA, and SA) specifically on GPT 3.5, OM showed the lowest TER of approximately 10%, whereas the other countries from the region showed an average ranging from 14% to 18%.

TABLE 14  TER for comparison for Bard, GPT 3.5, and GPT 4 for each dialect in the QADI dataset, where lower TER means higher performance.


	Dialect
	Bard
	GPT 3.5
	GPT 4





	JO
	18.08%
	17.51%
	18.02%

 
	AE
	17.02%
	16.94%
	17.75%

 
	LB
	18.16%
	16.56%
	17.34%

 
	IQ
	15.17%
	15.06%
	15.86%

 
	BH
	15.87%
	14.97%
	13.70%

 
	DZ
	16.64%
	14.90%
	13.37%

 
	EG
	25.60%
	21.54%
	22.91%

 
	KW
	14.81%
	13.52%
	12.47%

 
	LY
	18.65%
	17.53%
	17.66%

 
	MA
	14.80%
	15.14%
	17.23%

 
	OM
	11.43%
	11.02%
	10.82%

 
	PL
	11.82%
	11.62%
	11.38%

 
	QA
	17.98%
	16.14%
	14.83%

 
	SA
	15.89%
	15.93%
	16.75%

 
	SD
	19.10%
	17.85%
	16.89%

 
	SY
	14.59%
	14.38%
	14.42%

 
	TN
	16.28%
	15.62%
	16.69%

 
	YE
	16.04%
	14.92%
	15.35%







High error rates are colored by red, lower rates are denoted by green.




[image: Scatter plots labeled A and B show Bard Translation Error Rates for EG-QADI and OM-QADI respectively. Plot A has a higher density of data points around a translation error rate of 200, while plot B shows a denser clustering near the bottom. Panels illustrate error rates across sentence indices.]
FIGURE 9
 Scatter plots showing the TER for QADI datasets on Bard for highest and lowest countries. (A) Bard - EG Highest TER. (B) Bard - OM Lowest TER.



[image: Scatter plots show GPT 3.5 translation error rates. Graph A is labeled "EG - QADI" and Graph B "OM - QADI". Both display translation error rate on the y-axis and sentence index on the x-axis, with scattered blue dots indicating individual error rates. A red line represents a benchmark across both graphs.]
FIGURE 10
 Scatter plots showing the TER for QADI datasets on GPT 3.5 for highest and lowest countries. (A) GPT 3.5 - EG Highest TER. (B) GPT 3.5 - OM Lowest TER.


On the other hand, Table 15 and Figure 11 specifically showing GPT 4 illustrate the TER values of each country employing MADAR dataset as an example. In comparison with QADI dataset, the TER rates are closer together and have an overall lower value ranging from 6% to 7%, with JO being the highest and QA, SY, and OM being the lowest in the MADAR and QADI datasets. This may be explained by the fact that the MADAR dataset gathers sentences from a single source as a CORPUS, unlike the QADI dataset, which gathers sentences from X platform (Twitter) which is more prone to errors due to difficulty in filtering the sentences as tweets.

TABLE 15  TER Comparison for Bard, GPT 3.5, GPT 4, and GPT 5 for each dialect in the MADAR dataset, where lower TER means higher performance.


	Dialect
	Bard
	GPT 3.5
	GPT 4
	GPT 5





	JO
	7.32%
	7.11%
	7.10%
	6.95%

 
	LB
	6.54%
	6.37%
	6.36%
	6.27%

 
	IQ
	6.66%
	6.53%
	6.49%
	6.35%

 
	DZ
	7.14%
	6.95%
	6.93%
	6.95%

 
	EG
	7.16%
	7.02%
	7.00%
	6.88%

 
	LY
	7.06%
	6.90%
	6.89%
	6.71%

 
	MA
	7.17%
	7.10%
	7.02%
	6.88%

 
	OM
	7.20%
	7.10%
	7.04%
	6.88%

 
	PL
	6.73%
	6.57%
	6.57%
	6.41%

 
	QA
	6.49%
	6.40%
	6.35%
	6.23%

 
	SA
	6.75%
	6.61%
	6.60%
	6.50%

 
	SD
	7.14%
	7.02%
	7.03%
	6.83%

 
	SY
	6.56%
	6.38%
	6.42%
	6.30%

 
	TN
	6.71%
	6.52%
	6.53%
	6.37%

 
	YE
	6.93%
	6.75%
	6.78%
	6.61%







High error rates are colored by red, lower rates are denoted by green.




[image: Two scatter plots show translation error rates (TER) using GPt 4 for sentences in the MADAR dataset. Plot A represents JO with errors scattered mostly under TER 10. Plot B shows QA, also with errors mainly under TER 10. A red line indicates the average error rate in each plot.]
FIGURE 11
 Scatter plots showing the TER for MADAR dataset on GPT 4 for each corresponding country. (A) GPT 4 - JO Highest TER. (B) GPT 4 - QA Lowest TER.


Overall, in terms of efficiency and consistency combined, all models show competitive results and proved capable of translating multiple dialects regardless of the region as they all had approximately close values across the Middle East such as PL, LB, SY, and JO, the Gulf region such as KW, AE, SA, BH, OM, and QA, the Arab Maghreb region such as MA, LY, DZ, and TN and the African and Asian countries such as EG, SD, YE, and IQ. In QADI, GPT 4 outperforms the other LLMs in all similarity metrics and TER, Bard (Gemini) comes in the second place and then GPT 3.5 as shown in Table 12 whereas GPT 5 outperforms GPT 4 and other models in MADAR in Table 13 proving it being a more reliable model in translating from MSA to DA. This is further demonstrated in Figures 12, 13 which further demonstrate LLM performance upon the metrics used in this study. Models exhibited consistent scores among all metrics with GPT 5 being the highest and most appropriate LLM to deal with Arabic dialects.


[image: Radar chart titled "LLMs Performance Scores per Metric" comparing performance across various models: GPT 4 (instruct), GPT 3.5, and GPT 3. Metrics include Sentence BERT, Cosine Similarity, Universal Similarity Encoder, TER, and ROUGE-L. Each model is represented with distinct colored lines (green, purple, orange) showing different scores in each metric quadrant.]
FIGURE 12
 LLMs performance scores per metric - QADI dataset.



[image: A radar chart titled "LLMs Performance Scores per Metric" shows performance scores for different language models: GPT-3, GPT-3.5, GPT-4, and Bard. Metrics include Sentence BERT, Cosine Similarity, Universal Similarity Encoder, TER, ROUGE-L, and BLEU. Each model's performance is plotted with a distinct color line. GPT-4 generally scores higher across most metrics compared to others.]
FIGURE 13
 LLMs performance scores per metric - MADAR dataset.




4.2.3 ANOVA

ANOVA test is a common test used to check whether the data and mean difference are significant based on different conditions and factors. In previous sections, we found that the average translation performance among similarity metrics and TER are quite similar. To better understand the significance difference, one-way ANOVA is applied to all countries and models with alpha 0.05 threshold. We have applied Shapiro–Wilk test diagnostic to verify the residuals normality and applicable for ANOVA. This is a similar approach adapted by Alabdullah et al. (2025). The ANOVA results are shown in Table 16 for QADI and Table 17 for the MADAR dataset. The models GPT and Gemini are the independent variables and the performance metrics including similarity metrics, BLEU, and ROUGE were considered dependent variables. In reference to Table 16, ANOVA test is applied among all similarity metrics, and there is a significant difference between the model translation performance with a p-value close to 0 in universal similarity encoder, cosine similarity, and sentence BERT, which indicates that the probability of the average similarities are different is approximately 99.96%. Metrics such as BLEU, ROUGE-L, and TER show insignificant difference among the models meaning that all models have similar scores/error rates in translation. Moreover, the f-value < 1 suggested that there is no variance across the means.

TABLE 16  ANOVA results for models per metric - QADI dataset.


	Metric
	p-value
	F-statistic





	Universal similarity encoder
	0.009111
	7.65

 
	Cosine similarity
	0.000006
	28.85

 
	Sentence BERT
	0.000068
	20.57

 
	BLEU
	0.058
	3.85

 
	ROUGE-L
	0.00018
	0.16

 
	TER
	0.56
	0.59






TABLE 17  ANOVA results for models per metric - MADAR dataset.


	Metric
	p-value
	F-statistic





	Universal similarity encoder
	0.005
	4.64

 
	Cosine similarity
	0.00009
	8.57

 
	Sentence BERT
	0.44
	0.91

 
	BLEU
	0.000029
	9.73

 
	ROUGE-L
	0.68
	7.87

 
	TER
	0.31
	1.2






As for MADAR, Table 17 shows that there is no difference between the means and all models exhibited similar translation performance on sentence BERT, ROUGE-L, and TER. However, the other metrics show significant differences between the LLMs' scores.



4.2.4 Evaluation divergence (lexical vs. semantic metrics)

Upon evaluating different models with different performance metrics, some conflicts between the metrics were noted. To strengthen our analysis, we have chosen different metrics, each evaluating a certain category of the LLMs ability. BLEU and ROUGE rely on lexical overlap with the reference translation (the original dialect in our case) and count the n-gram overlap. On the other hand, universal similarity encoder and sentence-BERT are semantic measures that focus on meaning equivalence regardless of literal word matching. TER is concerned with the number of edits to match the generated dialect with the base dialect reference. As we are evaluating the 15 dialects, this variation often involves synonym choice, morphological difference, and substitutions. A model can semantically translate to the correct dialect yet not the exact word matching which leads to lower BLEU and ROUGE scores. Conversely, high lexical overlap does not always guarantee semantic accuracy if the matched words are used in a different sense. The is noted in Table 9, and some dialects such as DZ and EG scored low BLEU/ROUGE scores while achieving high values in the semantic evaluation perspective. These findings support our approach and analysis, highlighting the need to adapt different metric scores, as each captures different aspects of LLM translation quality.




4.3 Effects of model accuracy
 
4.3.1 Few-shots analysis

In this section, we will explore the opportunity to check whether increasing the prompt size from zero-shot to few-shot would enhance the translation quality of each LLM. We used the MADAR dataset as it has more consistency in results with TN having the lowest similarity scores in Table 18 and a high TER rate as shown in Table 19, indicating a need to enhance the translation quality of this dialect. In both datasets, the models showed the least translation performance for the Tunisian dialect, and this is correspondence to Sallam and Mousa (2024) research as well. QADI showed inconsistency in similarity scores. Which could be attributed to the fact that QADI gathers its sentences from X platform, which means that although the sentences are gathered from the same geolocation, this does not mean that they all belong to the same dialect.

TABLE 18  Countries with lowest values in MADAR dataset similarity metrics.


	Model
	Univ. Sim. Enc.
	Cosine Sim.
	Sent. BERT
	BLEU
	ROUGE





	Bard
	TN
	TN
	PL
	TN
	TN

 
	GPT 3.5
	TN
	TN
	LB
	TN
	TN

 
	GPT 4
	MA but TN similar score
	TN–MA
	LB
	TN–MA
	TN

 
	GPT 5
	DZ
	DZ
	Not applicable
	DZ
	DZ






TABLE 19  Countries with highest TER values in MADAR dataset.


	Model
	TER





	Bard
	JO but TN similar score

 
	GPT 3.5
	JO but TN similar score

 
	GPT 4
	JO but TN similar score

 
	GPT 5
	JO but DZ similar score






Although adding a few-shot approach provides models with additional examples and reference points, most models exhibited a decline performance in compared to zero-shot. This is illustrated in Tables 20, 21. In particular, GPT 3.5 showed consistency, with no significant differences between the zero-shot and few-shot approach. Suddenly, GPT 4 translated almost 35% of the input sentences into English despite clear instructions. This might be explained by the model's biases or training to adapt English translations in unclear contexts for the model. Given that the few-shot prompt is considered as a long prompt and has several examples and details, GPT 4 might find the prompt ambiguous and refer to the default language setting, which is “English”.

TABLE 20  Tunisia zero-shot metric performance.


	Model
	USE
	Cosine Sim
	S-BERT
	BLEU
	Rouge-L
	TER





	Bard
	0.48
	0.26
	0.93
	0.25
	0.41
	6.71%

 
	GPT 3.5
	0.48
	0.24
	0.93
	0.23
	0.49
	6.52%

 
	GPT 4
	0.48
	0.26
	0.93
	0.25
	0.45
	6.53%






TABLE 21  Tunisia few-shot metric performance.


	Model
	USE
	Cosine Sim
	S-BERT
	BLEU
	Rouge-L
	TER





	Bard
	0.47
	0.23
	0.93
	0.21
	0.15
	6.77%

 
	GPT 3.5
	0.48
	0.24
	0.92
	0.24
	0.16
	6.53%

 
	GPT 4
	0.32
	0.20
	0.93
	0.20
	0.12
	6.64%








4.3.2 Impact of sentence length on model accuracy

This subsection analyzes the impact of sentence length on translation accuracy, hence addressing the third research question. Since the universal similarity encoder is used to compare two sentences, it enabled us to explore the correlation.

For QADI dataset, the highest correlation was 0.42 in MA for GPT 4. The highest correlation for Bard was 0.39 in QA. GPT 3.5 showed a low correlation between the sentence length and the translation accuracy (i.e., similarity between input and output). Figure 14 visualizes the results where showing no strong correlation between the sentence length and the universal similarity encoder. Such low positive correlations indicate that there is no relation between the sentence length and the accuracy of the translation.


[image: Two scatter plots labeled A and B compare sentence length to universal similarity encoder values using GPT 3.5. Plot A shows a vertical concentration of data points with increasing sentence length along the x-axis. Plot B shows a spread of data points indicating a wider distribution as sentence length increases.]
FIGURE 14
 Correlation (sentence length vs universal similarity) for GPT 3.5. (A) GPT 3.5 - QADI. (B) GPT 3.5 - MADAR.


For MADAR, GPT 3.5/4 show a weak correlation, yet the highest compared to Bard with a value of 0.24 for some Maghreb Countries (i.e., DZ, MA, and TN) where Bard show no significant correlation. Figure 14 supports this finding as GPT 3.5/4 indicate a broader range of similarity scores as sentence length varies.





5 Conclusion


5.1 Concluding remarks

The study utilizes the QADI and MADAR datasets to evaluate the performance of GPT 3.5, GPT 4, and Bard (Gemini) in translating MSA to Arabic dialects, with GPT 5 evaluated exclusively on the MADAR dataset. Several performance metrics such as cosine similarity, universal similarity encoder, sentence BERT, BLEU, ROUGE, and TER were used to test the models' efficiency and accuracy. The analysis revealed close translations among LLMs in similarity and error rate. In QADI dataset, there was a significant difference between the models where GPT 4 was the best LLM in translating MSA to Arabic dialects showing a p-value of 0.000006 through ANOVA test on cosine similarity metric. It shows significant difference on all metrics except for BLEU and TER. For the MADAR dataset, there were no significant differences in translation performance measuring on sentence BERT, ROUGE-L, and TER. However, the results show significant differences through universal similarity encoder, cosine similarity, and BLEU, with GPT 5 being the top performer. GPT 4 demonstrates the best performance across both datasets (MADAR and QADI); it consistently showed high translation quality with low error rates. This proves the models sufficiency and the ability to be used in several dialect contexts and applications. GPT-4 showed consistent high translation scores for the majority of metrics, specifically on Levantine and Egyptian dialects; however, it shows low results on Maghrebi regions such as Tunisian dialect. Overall, GPT-4 provides the most reliable performance while GPT 5 outperforms all models specifically on the MADAR dataset in finding sentences overlap measured by BLEU and ROUGE-L.

However, its performance is not uniform across all dialects' while it excels in dialects with larger training representation (e.g., Egyptian and Levantine), the accuracy slightly decreases in underrepresented dialects (e.g., Maghrebi). On the MADAR dataset, GPT-5 shows particularly strong performance on overlap-sensitive metrics such as BLEU and ROUGE-L, suggesting it captures sentence-level correspondences more effectively. Taken together, GPT-4 provides the most reliable overall performance across both datasets, while GPT-5 demonstrates an emerging advantage in fine-grained similarity for MADAR dialectal translations.

Furthermore, models have shown TER rates ranging from 6% up to 25%, indicating that despite slight errors, their translations are generally considered to be of good quality. However, GPT has shown better response to a given prompt in terms of output results compared to Bard (Gemini). GPT in all versions specifically GPT 5 showed the best results for translation through the Levant countries. Zero-shot prompts were adapted for all countries, while few-shot for the country with the least translation performance, Tunisia. Unexpectedly, the few-shot technique did not enhance the performance of translation especially for Bard (Gemini) and GPT 4 as they performed worse while GPT 3.5 performed consistently in both prompting techniques. Overall, all LLMs proved capable and efficient in translating diverse Arabic dialects from over 15 countries to provide valuable insights for future applications in NLP.

This research establishes a benchmark for Arabic dialect translation and derives significant findings for advancing NLP capabilities in Arabic, paving the way for more inclusive and efficient models that address the linguistic diversity of the Arab world. Other researchers in the field may rely on GPT 4 and GPT 5 over GPT 3.5 and adapt Bard (Gemini), considering them feasible and effective LLMs for handling underrepresented languages, particularly Arabic and its linguistic complexities. The study also opens opportunities for future work, such as incorporating open source models, improving data sets, and optimizing prompting techniques. Moreover, we show the impact of few-shot prompting and how its impact was not significant, which could be replaced by other alternatives or prompt engineering techniques in future or relevant works.



5.2 Future works

We are aiming to extend this research by incorporating additional Arabic LLMs and other well-known applicable LLMs to generalize our findings. In addition, more data samples and datasets can be included to strengthen the analysis. Looking ahead, enhancing prompt and prompting techniques to optimize the translation process would add value to this research.



5.3 Limitations

This study faces several limitations that could influence the study results. Despite their remarkable success in various NLP tasks and the popularity of closed-source LLMs, models such as GPT 3.5, GPT 4, and GPT 5 have several limitations (Yu et al., 2023). These models are accessed through APIs which eliminates the need for computer infrastructure. Although cloud-based AI services are easy to use, they lack control over processing or training data. Furthermore, it is challenging to produce studies on closed-source models due to the high expense of conducting experiments through APIs. Another limitation is that the LLMs are closed models, as the name suggests, closed LLMs lack transparency in their internal architecture and training process, making it difficult for researchers to fully understand the output generation. The limitations also include cost constraints while running LLMs such as GPT 3.5/4 and Bard (Gemini) which results in running only 50K out of 500K samples in QADI dataset. Expanding the sample size in future studies could improve the robustness and reliability of the results. Moreover, both GPT and Bard (Gemini) had restrictions on the rate limit (i.e., the number of API requests). Thus, limiting the running process of the data to a specific rate daily, this consumed the time to complete the running. It is possible that recently published versions have increased the rate limit, which could be explored. In addition, there is lack in LLMs that can deal with Arabic dialects; having more LLMs would definitely strengthen the comparison. While this study adapted datasets encompassing 15 to 18 dialects, it does not cover all 22 Arabic-speaking countries, thus limiting the generalizability of the findings. Furthermore, QADI dataset, which is collected from X, may require cleaning to remove slang and informal expressions in social media, which can improve the quality of translation outputs. In addition, only one dataset (i.e., MADAR) had a MSA baseline, which was substituted by a back-translation algorithm for the QADI dataset. This approach may potentially limit the accuracy and effectiveness of the translations derived from QADI dataset. Moreover, the MADAR dataset exhibits a travel domain bias, which may affect the findings and limit the model's translation capability to other domains. In some cases, the models were not able to translate the dialect, resulting in an empty output, English translated sentence instead of Arabic or incomplete response. Finally, since most of the metrics are calculated as mean scores with only a single inferential statistical test (ANOVA) applied, generalizing the results might be tricky.
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This study presents a comprehensive review of current methodologies, trends, and challenges in cyberbullying detection within Arabic-language contexts, with a focus on the unique linguistic and cultural factors associated with Arabic. This study reviews 35 peer-reviewed articles about the identification of cyberbullying in Arabic text. Reported accuracies across datasets and platforms range from approximately 73 to 96%, with precision frequently surpassing recall, suggesting that systems are more adept at identifying blatant bullying than at encompassing all pertinent instances. Methodologically, conventional machine learning utilizing Arabic-specific characteristics remains effective on smaller datasets, however deep neural architectures—especially CNN/BiLSTM—and transformer models like AraBERT yield superior outcomes when dialectal heterogeneity and orthographic noise are mitigated. Evaluation methodologies differ; research using a neutral class frequently indicates exaggerated accuracy, underscoring the necessity to emphasize macro-averaged F1 and per-class metrics. The evidence underscores deficiencies in dialectal representativeness, the uniformity of bullying notions compared to general abuse, and the transparency of annotation processes. Ethical and deployment considerations—privacy preservation, dialectal bias, and real-time robustness—are becoming increasingly significant. We integrate trends (models and features), standards (labeling and metrics), and future work directions, encompassing dialect-robust pretraining, cross-dataset evaluation, context-aware modeling, and human-in-the-loop frameworks. The review offers a comprehensive basis for researchers and practitioners pursuing culturally and linguistically tailored approaches to Arabic cyberbullying detection.
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1 Introduction

The extensive utilization of digital communication channels has resulted in a concerning rise in cyberbullying, a type of online harassment impacting persons of many age groups and demographics. This study evaluated the relevant research published from 2014 to 2024, to assess and contrast the efficacy of conventional machine learning methods, deep learning frameworks, and sentiment-oriented strategies in the classification of cyberbullying, highlighting the significance of linguistic and dialectal intricacies in detection precision.

IT communication platforms such as WhatsApp, Facebook Messenger, Viber, WeChat, Line, Telegram, Imo, and Kakao Talk have increased in use throughout the last years, with some having over 1.5 billion users (Urrutia Zubikarai, 2020). Several sources contended that offensive content in social media and communication platforms has become extremely dangerous; for instance, issues relating to social media in public institutions, particularly during the election period, are related to offensive content and have become challenging for public institutions in light of how information should be controlled (Grégoire et al., 2015). Offensive content, generally in the form of foul language spouting racial hate, personal attacks, and sexual harassment, is prevalent. Hence, it is important to detect offensive use of language to maintain a healthy discussion and enhance the security of users through the suppression of such hateful acts and offences (Bertini et al., 2021; Niraula et al., 2021). Online content-generators have increased, allowing more users to experience the freedom to express themselves, covered with anonymity if they choose, which maximizes the chance for platform misuse and leads to an environment that promotes offensive language and even eventually violence (Sap et al., 2019). Also, social networking platforms display several types of offensive language like hate speech, aggressive content, cyberbullying, and toxic statements (Mirończuk and Protasiewicz, 2018). A possible way to curtail and control such a phenomenon is through the use of NLP techniques like text classification for the automatic detection of offensive language. More specifically, text classification is the process of labelling new text with pre-defined labels (Mirończuk and Protasiewicz, 2018).



2 Background of study


2.1 Cyberbullying

Cyberbullying has become a global concern with the rise of social media and online platforms, and research efforts are increasingly being devoted to detecting and mitigating it using Machine Learning (ML), Deep Learning (DL), and Natural Language Processing (NLP) approaches. While a significant amount of research has been conducted in languages like English, studies targeting cyberbullying in Arabic remain limited. This systematic literature review aims to explore existing research on cyberbullying detection in the Arabic language, with a focus on ML and DL techniques, and to identify future research directions based on the analysis of the reviewed studies.



2.2 Challenges in detecting in Arabic language

Identifying cyberbullying in the Arabic language poses difficulties, mostly due to the linguistic, cultural, and computational intricacies involved in processing Arabic content. A principal challenge is the significant range of Arabic dialects, which differ not only by area but also by socio-economic and cultural factors. Although Modern Standard Arabic (MSA) is extensively employed in formal discourse, social media exchanges primarily transpire in dialectal Arabic, which is characterized by the absence of standardized spelling, syntax, and vocabulary (Mubarak and Darwish, 2019; AbdelHamid et al., 2022). The lack of high-quality, labeled datasets that consider these changes intensifies the issue, resulting in diminished model performance in real-world Arabic cyberbullying detection tasks (Bashir and Bouguessa, 2021; Khairy et al., 2023). A fundamental problem is the morphological complexity and intricate syntax of Arabic, which markedly contrasts with Indo-European languages like English. Arabic lexicon demonstrates significant inflexion through affixation, root-based derivations, and contextual variants, complicating tokenization, stemming, and lemmatization (Alakrot et al., 2018; Haidar et al., 2019). The linguistic features create difficulty in text classification, as identical words may possess varying meanings based on diacritical marks, which are frequently absent in informal online communication. The scarcity of comprehensive pre-trained models tailored for Arabic dialects constrains the capacity of NLP algorithms to effectively identify harmful and abusive content (Alrashidi et al., 2023; Khezzar et al., 2023). Research indicates that sentiment analysis and lexicon-based methodologies can improve detection by identifying emotional indicators; however, their efficacy is limited by the necessity for manually curated lexicons specific to Arabic dialects (Farid and El-Tazi, 2020). An application of NLP that extracts structured information in the form of entities, entities’ relationship and attributes describing them from unstructured documents in an automatic method is Information Extraction (IE) (Cowie and Lehnert, 1996). Besides, IE systems have been found effective in handling information overload issues, enabling the discernment of the most significant information portion from a huge portion of information in a timely and easy manner. On the whole, detection of offensive language online is possible through the development of a model using ML, AI, DL and NLP methods. This paper investigates the following research questions:




3 Research questions


Q1: What are the current trends in cyberbullying detection for the Arabic language and which dialects do they cover?
Q2: How cyberbullying been detected in previous studies based on standards that represent its definition and characteristics?
Q3: What directions for future research in cyberbullying detection may be established based on the findings of this review?




4 Methodology

A systematic literature review was conducted to conduct a comprehensive analysis by focusing on existing studies from 2014 to 2024, evaluating trends and advancements in cyberbullying detection for Arabic texts. This methodology involves structured selection criteria to ensure that only relevant and high-quality sources are included. The Inclusion Criteria are as follows:


	1. Studies published from 2014 to 2024

	2. Articles in English

	3. Research specific to Arabic text-based cyberbullying detection



The exclusion criteria were:


	1. The research focused on social studies without technological elements

	2. Studies in languages other than English and non-Arabic texts

	3. Non-text-based detection methods (e.g., voice, image, video)

	4. Conference papers and review articles



SLR protocol was applied to the study, the final selected studies were conducted, and theoretical and practical steps were taken while conducting the SLR.



5 Data sources and keywords

In the first step, four major research databases, ScienceDirect, Scopus, Web of Science, and Springer, were searched through queries, and as many papers as possible were collected. The search query is “detect” AND (“cyberbullying” OR “hate speech” OR “harassment” OR “offensive”) AND (“machine learning” OR “natural language processing” OR “deep learning”) AND “Arabic.” Based on initial exclusion criteria, papers were selected after carefully reading the abstracts of the papers in the second step. A final list of papers is prepared after reading the full articles and applying further exclusion criteria (35 papers). Figure 1 depicts the literature review process.

[image: Flowchart depicting the identification and selection process of studies from databases and registers. Initially, 837 records were identified. After exclusion of duplicates and other ineligible records, 321 reports were screened for eligibility. Ultimately, 35 studies were included in the review, with exclusions based on language requirements and text format.]

FIGURE 1
 Systematic literature review process.




6 Results

This review synthesizes findings from numerous studies on cyberbullying detection within Arabic-language content, identifying the main trends, challenges, and methodologies, including ML, DL, and sentiment analysis. The majority of the studies concentrated on cyberbullying detection, offensive language detection, and hate speech identification. A significant portion of the research applied to social media platforms like Twitter and YouTube. The focus was largely on identifying cyberbullying in dialects such as Saudi Arabian Arabic, Egyptian Arabic, and the Levantine dialects. The most frequently used machine learning models included Naïve Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF). For deep learning models, LSTM, CNN, and GRU were prominent. Ensemble techniques like stacking and boosting showed better performance compared to individual ML models. The datasets used in the reviewed studies varied widely in size, ranging from small manually annotated datasets to large datasets collected from social media. Many studies employed preprocessing techniques such as tokenization, stemming, lemmatization, and removal of hyperlinks or non-Arabic characters to clean the data before analysis. Preprocessing was critical in ensuring the effectiveness of the ML and DL models. Across the reviewed studies, model performance is generally strong, with traditional machine learning and deep learning approaches demonstrating reliable detection capabilities in Arabic cyberbullying contexts. Reported results indicate that precision commonly exceeds recall, suggesting that systems are better at correctly identifying bullying instances than capturing all relevant cases. This pattern appears in works employing classical classifiers as well as ensemble strategies, with examples including Egyptian-dialect tweet classification (Farid and El-Tazi, 2020), Naïve Bayes–based detection pipelines (Mouheb et al., 2019), offensive language identification in user-generated video comments (Alakrot et al., 2018), and ensemble machine learning frameworks that optimize the balance of precision and recall (Haidar et al., 2019). In terms of offensive language and cyberbullying detection, researchers identify various types of offensive language, each reflecting specific social, cultural, and regional sensitivities. Table 1 illustrates the types of offensive language used in Arabic studies on cyberbullying and offensive content


TABLE 1 Types of offensive language used in Arabic studies on cyberbullying and offensive content.


	Type of Offensive Language
	Description
	Sources

 

 	Hate Speech 	Language targeting specific groups based on religion, race, gender, or nationality. Includes: 	Castaño-Pulgarín et al. (2021), Alsafari et al. (2020a, 2020b)


 	Insults and Personal Attacks 	Abusive language aimed at degrading individuals, including name-calling, derogatory remarks, and personal insults about appearance, intelligence, or social status. 	Alshalabi et al. (2024),


 	Profanity and Vulgar Language 	Taboo words or phrases generally considered offensive, including swear words and obscenities that are often censored on public platforms. 	
Rosenbaum (2019)



 	Sexual Harassment 	Inappropriate comments or sexually explicit content targeting individuals, often related to gender-based discrimination. 	Abdelmonem (2015), Bouhlila (2019), Bertini et al. (2021), Niraula et al. (2021)


 	Bullying and Harassment 	Repeated or persistent offensive behavior aimed at intimidating or humiliating someone, often through derogatory remarks about personal life or achievements. 	
Kanan et al. (2020)



 	Stereotyping and Discrimination 	Generalizations that promote negative stereotypes about specific groups (e.g., based on age, nationality, profession). Includes implicit bias and discriminatory remarks. 	Alsafari et al. (2020a, 2020b)


 	Mockery and Sarcasm 	Humorous or sarcastic language used to belittle or degrade individuals or groups, often through irony or exaggeration, which can vary in offensiveness depending on context. 	Abu Farha (2023).




 


6.1 Research question 1

The first research question was:

What are the current trends in cyberbullying detection for the Arabic language, and how do these trends account for various dialects?

The following themes were developed to answer the first research question 1:


6.1.1 Machine learning (ML) and deep learning (DL) approaches

Several studies have utilized ML and DL algorithms to detect cyberbullying, with Support Vector Machine (SVM) and Naïve Bayes (NB) being frequently applied (e.g., Haidar et al., 2017; Alakrot et al., 2018). More recently, DL methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have demonstrated improved performance due to their ability to capture context and semantic meanings in text (e.g., Haidar et al., 2018; Mouheb et al., 2019; Mohaouchane et al., 2019). Ensemble learning, where multiple models are combined to improve prediction accuracy, has shown promise in boosting performance. For instance, stacking, boosting, and bagging techniques have demonstrated better performance in detecting Arabic cyberbullying content (e.g., Haidar et al., 2018; Khairy et al., 2023; Table 2).


TABLE 2 Summary of reviewed studies on Arabic hate/offensive/cyberbullying detection.


	No
	Study
	Model(s)
	Dataset and Platform
	Dialect/Domain
	Performance Metrics
	Limitations

 

 	1 	
Haidar et al. (2017)
 	Naïve Bayes, SVM 	Posts (Twitter, Facebook, Formspring) 	Saudi Arabic 	NB: Precision 90.85%; SVM: Precision 0.815 (yes class) 	Imbalanced dataset; few bullying instances; precision misleading


 	2 	
Haidar et al. (2018)
 	Feed-forward Neural Network (DL) 	Twitter dataset (binary labels) 	General Arabic 	Validation accuracy 91.17% (7 hidden layers) 	Limited to binary labels; dataset size not large


 	3 	
Alakrot et al. (2018)
 	SVM 	YouTube comments 	General Arabic 	Precision 90.05% 	Small dataset; not specific to cyberbullying


 	4 	
AlHarbi et al. (2019)
 	Lexicon + Sentiment Analysis (PMI, Chi-square, Entropy) 	Tweets 	Twitter (Saudi Arabic) 	PMI accuracy 81% vs. Chi-square 62.11% 	Lexicon-based; potential bias; dataset context-limited


 	5 	
Mubarak and Darwish (2019)
 	ML classifiers 	Arabic tweets 	General Arabic 	High classification accuracy 	Focused only on offensive, not cyberbullying


 	6 	
Farid and El-Tazi (2020)
 	Lexicon-based Sentiment Analysis + Emojis 	Tweets in Modern Standard + Egyptian Dialect 	Egyptian Arabic 	Accuracy >73% for bullying hashtags 	Lexicon limited; reliance on emojis and history


 	7 	
Alsafari et al. (2020b)
 	LR, LSTM, Sluice, BERT, ELMo, SVM 	Labeled tweets (Twitter) 	Mixed Arabic dialects 	SVM + ngrams: Acc. 85.16%; CNN + mBERT F1-macro 66.86% 	Limited samples per class; subjectivity in annotation


 	8 	
Bashir and Bouguessa (2021)
 	LSTM, SVM, Naïve Bayes 	Twitter dataset (cyberbullying keywords) 	General Arabic 	LSTM accuracy 72% 	Keyword-based data collection; lower accuracy


 	9 	
Fati (2022)
 	Sentiment Analysis Framework 	Twitter 	General Arabic 	Accuracy 81% (10-fold CV) 	Limited validation; binary annotation


 	10 	
Al-Hassan and Al-Dossari (2022)
 	LSTM, CNN + LSTM, GRU, CNN + GRU 	Labeled tweets 	General Arabic 	CNN + LSTM: Precision 72%, Recall 75%, F1 73% 	Moderate dataset size; limited categories


 	11 	
Alsubait and Alfageh (2021)
 	Multinomial NB, Complement NB, Logistic Regression 	YouTube comments 	General Arabic 	Avg. F1: TF-IDF 77.9% vs. CountVec 77.5% 	Dataset modest; no deep learning comparison


 	12 	
Alhashmi and Darem (2022)
 	RF, NB, SVM, XGB, ANN, Stacked DL; Consensus-Based Ensemble 	(Twitter, WhatsApp, Vine, Instagram, Packet; incl. Translated data) 	Mixed Arabic + translated 	Consensus ensemble improved accuracy by 1.3% over best classifier; RF strongest 	Dataset partly translated; mixed domains; modest gain over baselines


 	13 	
Bouliche and Rezoug (2022)
 	Dynamic Graph Neural Network (DGNN) 	Arabic comments (tweets) 	General Arabic 	Accuracy 74% 	Model performance modest; needs refinement; small dataset


 	14 	
El-Alami et al. (2022)
 	BERT (multilingual, transfer learning) 	Bilingual dataset (English + Arabic tweets) 	General Arabic + English 	High accuracy and F1; BERT outperformed other models 	Ambiguous language still difficult; early-stage


 	15 	
AbdelHamid et al. (2022)
 	AraBERT, ArabicBERT, GigaBERT vs. RF, SVM 	Syrian/Levantine tweets 	Levantine dialect 	GigaBERT: AUC 94.6%, Macro F1 0.81 	Focused on Levantine; dataset scope limited


 	16 	
AlFarah et al. (2022)
 	SVM, RF, NB, LR, KNN 	Twitter + YouTube, oversampled 	General Arabic 	NB highest AUC 89%; SVM and LR also strong 	Class imbalance; dataset moderate in size


 	17 	
Anezi (2022)
 	Deep Recurrent Neural Network (DRNN) 	Custom Arabic comments dataset 	General Arabic 	Binary Acc 99.73%; 3-class Acc 95.38%; 7-class Acc 84.14% 	Dataset unique but limited disclosure; overfitting risk


 	18 	
Althobaiti (2022)
 	BERT + Sentiment + Emoji features vs. SVM, LR 	Arabic tweets 	General Arabic 	BERT model highest F1 across all tasks 	Single dataset; limited external validation


 	19 	
Ali and Kurdy (2022)
 	SVM, SGD, KNN, LR, AdaBoost, Bagging 	Syrian Facebook comments + questionnaire 	Syrian slang 	SVM and SGD accuracy 77%; AdaBoost precision 94% 	Imbalanced recall (47%); small dataset


 	20 	
Alduailaj and Belghith (2023)
 	SVM + FarasaNLTK vs. NB 	Twitter + YouTube comments 	General Arabic 	SVM best accuracy 95.74% (TF-IDF n-gram) 	Keyword-based collection; possible bias


 	21 	
Khairy et al. (2023)
 	Ensemble (Voting) vs. LR, SVC, KNN 	New balanced dataset 	General Arabic 	Voting model highest Acc, F1, Recall, Precision; LR best single Acc 65.1% 	Small dataset; limited to ML


 	22 	
Rachidi et al. (2023)
 	ML (SVM, NB, RF, LR) and DL (LSTM) 	Instagram Moroccan dialect 	Moroccan Arabic 	LSTM Acc 83.64%; SVM Acc 75.04% 	Scarcity of tools/datasets for dialect; modest results


 	23 	
Alrashidi et al. (2023)
 	Fine-tuned Arabic BERT, Multi-task Learning 	Multi-aspect abusive tweets dataset 	General Arabic 	MTL + BERT > DL baselines; GitHub data shared 	Imbalanced datasets; Arabic only


 	24 	
Elzayady et al. (2023)
 	CNN-LSTM, CNN-BiLSTM, CNN-GRU, AraBERT +Personality Features 	Twitter hate speech dataset 	General Arabic 	AraBERT + personality features Acc 82.3%; CNN-LSTM 77% 	Personality inference adds complexity; dataset size moderate


 	25 	
Khezzar et al. (2023)
 	LR, SVC, DT, CNN, AraBERT; web app (arHateDetector) 	arHateDataset (merged public sets), Twitter 	Standard + dialectal Arabic 	AraBERT accuracy 93%; precision/recall/F1 reported 	Aggregated datasets may introduce label/definition drift; external validation not detailed


 	26 	
Alsafari et al. (2020a)
 	Single and ensemble CNN/BiLSTM; AraBERT vs. non-contextual embeddings 	Twitter; fine-grained two/three/six-class corpora 	Mixed Arabic dialects 	Ensemble F1: 91% (2-class), 84% (3-class), 80% (6-class); AraBERT > non-contextual; CNN > BiLSTM 	Class granularity increases difficulty; error analysis shows issues with implicit/defensive language


 	27 	
Aljuhani et al. (2022)
 	BiLSTM with domain-specific embeddings; LR, SVM baselines 	Tweets (seeded crawl, cleaned, labeled) 	General Arabic (Twitter) 	LR on char n-grams P/R/F1 = 92%; SVM ≈ 90%; BiLSTM competitive with domain embeddings 	Seed-term collection bias; translation/generalization across topics not assessed


 	28 	
Amer Hamzah and Dhannoon (2023)
 	BiLSTM + Temporal Convolutional Network (TCN) 	CASH: tweets on sexual harassment 	Sexual-harassment domain 	Accuracy 96.65%; F0.5 = 0.969; > XGBoost baseline 	Task/domain specific; dialectal robustness not analyzed


 	29 	
Boulouard et al. (2022)
 	BERT EN, AraBERT, mBERT (AR/EN), LinearSVC, LSTM 	YouTube comments (Gulf, Egyptian, Iraqi); Tweets 	Mixed Arabic dialects; EN translations 	BERT EN Acc 98%; AraBERT Acc 96%; mBERT-AR Acc 83%; LSTM Acc 82% 	Translation pipeline may inflate EN results; sarcasm remains challenging


 	30 	
Aljarah et al. (2021)
 	SVM, NB, DT, RF; feature sets (TF-IDF, profile, emotion) 	Twitter 	General Arabic (varied topics) 	RF best: Acc/G-mean 0.910; Recall 0.923; Precision 0.902 with all features 	Small corpus after filtering; two-annotator protocol; neutrals excluded from training


 	31 	
Mouheb et al. (2019)
 	Naïve Bayes 	Twitter + YouTube 	General Arabic 	Accuracy 0.959 	Small dataset; limited feature diversity


 	32 	
Alakrot et al. (2021)
 	LR, SVM/LinearSVC, NB, DT, RF; POS + n-grams; feature selection 	YouTube comments 	Mixed dialects (YouTube) 	LinearSVC highest accuracy (reasonable overall); gains from feature selection 	Focus on offensive, not CB; dependence on preprocessing choices


 	33 	
Omar et al. (2021)
 	LinearSVC, NB variants, SVM, LR, DT, SGD, RF; multilabel pipeline 	OSN posts across 11 classes; vulgar-speech set 	General Arabic (Facebook/Twitter) 	With Chi-square FS: Acc 97.92%; F1 97.92%; Precision 97.92%; Recall 97.93%; multilabel LinearSVC + TF-IDF Acc 82.29%, F1 92.48% 	High feature counts; results sensitive to FS; generalizability outside OSN mix not shown


 	34 	
Shannaq et al. (2022)
 	Word-embedding fine-tuning + GA-optimized SVM/XGBoost 	ArCybC (CB/Non-CB/Off/Non-Off) 	Twitter; cyberbullying + offensive 	SVM Acc 86.5% → 87.5%; XGB Acc 84.9% → 85.2% after optimization 	Incremental gains; relies on a single public corpus


 	35 	
Kanan et al. (2021)
 	Unsupervised K-Means vs. EM (clustering) 	(Facebook/Twitter) 	General Arabic 	Evaluated via training time, SSE (e.g., 7,796.363), and log-likelihood (e.g., 3,606.4669) 	No precision/recall/F1; clustering quality hard to align with downstream moderation needs




 



6.1.2 Sentiment analysis and lexicon-based methods

Sentiment analysis, often coupled with lexicon-based approaches, is commonly used to detect harmful content. AlHarbi et al. (2019) and Farid and El-Tazi (2020) used sentiment-based lexicons for Arabic texts, finding that pointwise mutual information (PMI) and lexicon enhancement can improve detection accuracy. Sentiment-based approaches are also utilized alongside NLP tools, such as tokenization and stemming, for feature extraction, enhancing the ability to detect cyberbullying based on emotional cues.



6.1.3 Handling Arabic dialects and linguistic complexity

Dialectal Arabic presents a significant challenge, as standard ML models may not perform well on diverse dialects. Studies such as Alsubait and Alfageh (2021) and Al-Hassan and Al-Dossari (2022) indicate that datasets tailored to specific dialects (e.g., Egyptian, Levantine) enhance detection efficacy. Additionally, transformer-based models like AraBERT and multilingual BERT have emerged as effective tools for dealing with dialectal variations, as they can better capture semantic nuances across dialects (e.g., Khezzar et al., 2023; Alrashidi et al., 2023).




6.2 Research question 2

How has cyberbullying been detected in previous studies based on standards that represent its definition and characteristics?

The following themes were developed to answer the second research question.


6.2.1 Development and use of cyberbullying datasets

Arabic cyberbullying detection relies heavily on curated datasets. Studies often use platform-specific datasets from Twitter, YouTube, and Facebook, with datasets labeled for harmful or offensive language (e.g., Bashir and Bouguessa, 2021; Khairy et al., 2023). These datasets include common cyberbullying characteristics like threats, insults, and hate speech. However, the issue of dataset imbalance (more non-cyberbullying content than cyberbullying) persists, affecting model performance. Techniques like oversampling and downsampling have been employed to address this imbalance, as seen in AlFarah et al. (2022). Table 3. Shows some examples of the existing datasets addressing cyberbullying in Arabic.


TABLE 3 Examples of the datasets addressing cyberbullying in Arabic.


	Dataset (year)
	Platform
	Labels
	Study

 

 	Instagram-Based Benchmark Dataset for Cyberbullying in Arabic (2022) 	Instagram 	Comments collected; multi-class sub-categories for bullying with sentiment variants used in evaluation (incl. Positive/negative/neutral) 	
Albayari and Abdallah (2022)



 	ArCybC / ArCyC—Arabic Cyberbullying Corpus (2022 article; 2023 data release) 	Twitter (X) 	Tweets; dual annotation tasks: CB vs. non-CB and Offensive vs. non-Offensive; 5 annotators 	
Shannag et al. (2022)



 	ArbCyD—Arabic Post Dataset for Cyberbullying Detection (2024) 	Twitter (X) 	Posts: bullying vs. non-bullying binary labels 	
Aljalaoud et al. (2025)





 

The ArCybC/ArCyC corpus represents one of the few openly accessible multi-dialect Twitter datasets that makes a clear distinction between cyberbullying and general offensive content. Its development is supported by detailed documentation of the annotation pipeline and guidelines, ensuring methodological transparency (Shannag et al., 2022). The ArbCyD dataset significantly expands the available volume by including annotated Twitter posts (Aljalaoud et al., 2025).



6.2.2 Standards and evaluation metrics

Standards such as precision, recall, F1-score, and accuracy are commonly used to evaluate detection methods (e.g., Haidar et al., 2017; Alakrot et al., 2018). Although precision and recall are essential for accurate detection, the unique characteristics of the Arabic language and cyberbullying-specific terms often require additional metrics and customized standards. Studies such as El-Alami et al. (2022) and Amer Hamzah and Dhannoon (2023) advocate for using contextual features like sentiment polarity, emojis, and user history in cyberbullying detection. These standards help capture the nuanced characteristics of online abuse, especially within specific platforms or dialects.

Some evaluations adopt three-way labeling schemes that distinguish bullying/abusive content, non-bullying content, and neutral content. When overall accuracy is computed across all classes, the typically high prevalence of neutral instances can inflate the metric and obscure a system’s effectiveness on the bullying class, which is the primary target in safety-critical applications. For example, the Instagram-based Arabic cyberbullying benchmark provides a multi-class design with positive (bullying), negative (non-bullying), and neutral categories, together with inter-annotator agreement reporting and baseline models (Albayari and Abdallah, 2022). In such settings, macro-F1 and per-class F1 are preferable for comparing systems intended to detect bullying, whereas accuracy across all three classes can be misleading when neutral content dominates the distribution.



6.2.3 Application of linguistic and psychological standards

Recent research has incorporated psychological theories to enhance cyberbullying detection by analyzing underlying personality traits in text (e.g., Elzayady et al., 2023). Such frameworks align detection methods with broader behavioral standards, moving toward a more human-centered approach in identifying abusive content. Other studies, such as Boulouard et al. (2022), address multilingual standards by analyzing Arabic text in translation and leveraging cross-linguistic BERT models, thus ensuring consistency in detecting cyberbullying characteristics across languages.




6.3 Research question 3

The third RQ was:

What future research directions in cyberbullying detection may be established based on the findings of the provided systematic review?

The following themes were developed to answer the third research question.


6.3.1 Expansion of dialect-specific datasets and multilingual analysis

Future research could focus on developing larger, dialect-specific datasets to address the significant linguistic diversity in Arabic. Datasets for Moroccan, Syrian, and Gulf dialects remain limited and would improve detection accuracy for specific regions (e.g., Rachidi et al., 2023; Ali and Kurdy, 2022). Studies also suggest expanding multilingual capabilities to improve cross-linguistic performance, with transformer models like BERT and mBERT showing potential for multilingual hate speech analysis (e.g., Alrashidi et al., 2023; Shannaq et al., 2022).

For limited-resource settings, few strategies with large language models can be grounded in complementary lines of evidence. First, in-context learning has been shown to deliver strong few-shot performance without gradient updates; GPT-3’s original study established that scaling enables task-agnostic adaptation via a handful of exemplars embedded in the prompt, a result that has shaped subsequent methodology for low-data regimes (Brown et al., 2020). Second, prompt-based and prompt-free fine-tuning methods consistently improve over naïve fine-tuning when labeled data are scarce. Pattern-Exploiting Training and its generative extension reframe supervision as cloze-style patterns to amplify supervision from very small datasets, while LM-BFF automates prompt construction and demonstration selection to yield large gains across classification and regression tasks (Schick and Schütze, 2020). Complementing these, SetFit avoids handcrafted prompts altogether by contrastively fine-tuning sentence-transformer encoders on a handful of pairs and then training a lightweight classifier on the induced embeddings, matching or surpassing larger fully fine-tuned models under strict few-shot budgets (Tunstall et al., 2022). Moreover, parameter-efficient adaptation techniques such as LoRA reduce trainable parameters by orders of magnitude while preserving or improving downstream quality, which is particularly attractive when domain transfer must be achieved under tight compute and annotation constraints (Hu et al., 2022). To mitigate the scarcity of human-written instructions, Self-Instruct bootstraps synthetic instruction–input–output triplets from the model itself and shows substantial gains over the base model, offering a practical path when labeled data are limited (Wang et al., 2022). Evidence from multilingual and domain-specific studies indicates that these approaches translate beyond English benchmarks. Cross-lingual in-context learning studies report consistent benefits for genuinely low-resource languages and highlight alignment techniques that stabilize label semantics across languages, while evaluations in biomedical and clinical NLP show that instruction-tuned LLMs can perform competitively on few-shot entity recognition, QA, and relation extraction when carefully prompted (Cahyawijaya et al., 2024).



6.3.2 Enhanced deep learning models and feature engineering

Future research could involve advancing feature engineering, particularly through contextual embeddings, attention mechanisms, and personality inference models. These methods could enhance the interpretability of cyberbullying detection systems and better capture contextual aspects of offensive language (e.g., Mohaouchane et al., 2019; Elzayady et al., 2023). Additionally, hybrid models combining CNN, RNN, and BERT-based architectures have shown promise for handling complex language features, and future studies could explore further model fusion or ensemble methods for improved accuracy (e.g., Mohaouchane et al., 2019; Althobaiti, 2022).



6.3.3 Ethical considerations and real-time detection systems

Ethical standards and privacy concerns will play a growing role in future cyberbullying detection research. Privacy-preserving algorithms, especially those that anonymize or filter sensitive information, can support ethical AI use on social media platforms (e.g., Omar et al., 2021). Another area for future exploration is real-time cyberbullying detection systems that respond dynamically to harmful content as it is posted. While challenging, real-time models could be feasible with lightweight DL architectures tailored for social media monitoring (e.g., Amer Hamzah and Dhannoon, 2023; Kanan et al., 2021).

Ethical risks arise at each stage of dataset development and deployment for Arabic cyberbullying detection, beginning with data collection. The Instagram-based benchmark demonstrates the value of reporting annotation protocols and inter-annotator agreement alongside careful corpus descriptions; however, as with Twitter- and YouTube-based datasets, the presence of user mentions and cross-post threads can inadvertently expose targets and perpetrators if not aggressively sanitized (Albayari and Abdallah, 2022; Haidar et al., 2019; Alakrot et al., 2018; Alduailaj et al., 2023; Al-Ajlan and Ykhlef, 2018; Alrougi et al., 2024). Representativeness is a second, persistent ethical and scientific concern. Arabic social media is heterogeneous across dialects, platforms, and communities; yet several widely used datasets skew toward particular dialect clusters or platform norms, such as Egyptian or Gulf Twitter, pan-Arab YouTube comments, or Instagram captions from specific demographic groups (Haidar et al., 2019). Studies that publish clear guidelines, show label distributions, and report inter-annotator agreement support more accountable modeling than those that provide only aggregate scores (Albayari and Abdallah, 2022). Curators should also protect annotator wellbeing through workload limits, content warnings, and access to support, and they should state these safeguards in their documentation. The evaluation protocol has ethical implications because metric choice shapes decision thresholds used in practice. Practical architectures therefore favor lightweight normalizers and dialect-aware tokenization before model inference, with privacy-preserving logging that stores only hashed text fingerprints or short-lived embeddings for auditing (Alakrot et al., 2018). The more explicit dataset papers are about these elements, the less likely it is that downstream models will inadvertently encode representational harms or privacy leakage.



6.3.4 Integration of psychological and social dimensions

Integrating psychological and social analysis within detection algorithms is emerging as an essential direction. Personality-based approaches could be particularly useful, helping identify users more likely to engage in or be affected by cyberbullying (e.g., Elzayady et al., 2023).

Additionally, cross-disciplinary research involving psychology, sociology, and computational linguistics could establish standards for understanding the social dynamics underlying cyberbullying, offering insights beyond linguistic patterns (e.g., Omar et al., 2021). Table 4 shows the summary of the themes related to each research question.


TABLE 4 Summary of the themes related to each research question.


	Research Question
	Theme
	Description
	Sources

 

 	RQ1: Current trends in cyberbullying detection for Arabic language and dialects 	ML and DL Approaches 	ML models (e.g., SVM, Naïve Bayes) and DL models (e.g., CNN, BERT) are common for cyberbullying detection, with ensemble methods improving accuracy. 	Haidar et al. (2017); Alakrot et al. (2018); Alrashidi et al. (2023)


 	Sentiment Analysis and Lexicon-Based Methods 	Sentiment analysis and lexicon-based approaches capture emotional tones and harmful language, essential for handling Arabic’s diverse dialects. 	AlHarbi et al. (2019); Farid and El-Tazi (2020)


 	Handling Arabic Dialects and Complexity 	Specialized datasets and models (e.g., AraBERT, multilingual BERT) address dialectal variability, enhancing model accuracy for Arabic. 	Mubarak and Darwish (2019); AbdelHamid et al. (2022); Khezzar et al. (2023)


 	RQ2: Standards used for detecting cyberbullying based on its characteristics 	Development of Cyberbullying Datasets 	Creation of Arabic-specific datasets that include dialectical variations and cyberbullying characteristics, though issues like imbalanced datasets (few cyberbullying instances) impact model performance. 	Bashir and Bouguessa (2021); Khairy et al. (2023); AbdelHamid et al. (2022)


 	Evaluation Standards and Metrics 	Precision, recall, F1-score, and accuracy are commonly used metrics, supplemented by specialized metrics tailored to Arabic-language characteristics to ensure reliable detection performance. 	Haidar et al. (2017); Alakrot et al. (2021); Boulouard et al. (2022)


 	Linguistic and Psychological Standards 	Integration of linguistic and psychological insights, such as personality inference, allows a deeper understanding of user behavior, helping to identify cyberbullying based on more human-centered behavioral traits. 	Elzayady et al. (2023); Omar et al. (2021); Shannaq et al. (2022)


 	Contextual and Cultural Considerations 	Incorporation of cultural sensitivity, including the use of dialect-specific language features, emojis, and contextual sentiment, provides a more nuanced and culturally accurate detection of offensive language. 	AlHarbi et al. (2019); Farid and El-Tazi (2020); Khezzar et al. (2023)


 	RQ3: Future research directions for Arabic cyberbullying detection 	Dialect-Specific Datasets and Multilingual Models 	Expansion of dialect-specific datasets and multilingual models to enhance detection across Arabic dialects and improve cross-linguistic applicability. 	Ali and Kurdy (2022); Rachidi et al. (2023); Shannaq et al. (2022)


 	Advanced Feature Engineering and Hybrid Models 	Development of hybrid models (e.g., CNN-LSTM-BERT) and advanced feature engineering, such as attention mechanisms and personality-based features, for richer context and improved detection accuracy. 	Mouheb et al. (2019); Elzayady et al. (2023); Boulouard et al. (2022)


 	Real-Time Detection and Privacy Considerations 	Focus on real-time cyberbullying detection models for immediate response, with privacy-preserving techniques to ensure user data protection and ethical AI application. 	Amer Hamzah and Dhannoon (2023); Omar et al. (2021); Kanan et al. (2021)


 	Cross-Disciplinary Research 	Integration of psychological, sociological, and linguistic insights for a more comprehensive understanding of the social and behavioral dynamics underlying Arabic cyberbullying. 	Farid and El-Tazi (2020); Omar et al. (2021); Elzayady et al. (2023)




 

The results of the research emphasize the necessity of culturally sensitive detection models, sophisticated methodologies, and tailored approaches to effectively capture the distinctive characteristics of the Arabic offensive language. Arabic is an extremely diverse language, with significant variations in dialects across regions (e.g., Egyptian, Gulf, Levantine), each with its own vocabulary, syntax, and expressions. The detection of objectionable language is further complicated by this diversity, as models that have been trained in Modern Standard Arabic frequently encounter difficulties with dialectal content. These results suggest that the model’s ability to identify nuanced or implicit forms of offensive language, such as sarcasm or mockery, is improved by the inclusion of sentiment and lexicon-based features that are specifically designed for Arabic dialects and slang. Many categories of offensive language, including religious hate speech, ethnic hate, and political offence, have been classified by researchers. These types of language are particularly sensitive in Arabic-speaking societies. These categories are indicative of regional and cultural priorities, emphasizing the social and religious values that influence online discourse in Arabic contexts. The importance of accounting for these categories is underscored by research, as they pertain to highly sensitive subjects that may vary in severity and context in comparison to other languages. The results indicate that culturally aware models that identify these particular forms of objectionable language can improve the accuracy and relevance of the models.

Although numerous studies have examined cyberbullying detection methods broadly or across various languages, there is a paucity of focused analyses on Arabic-language detection, given the unique challenges presented by Arabic’s morphological intricacies and dialectal diversity (Mubarak and Darwish, 2019; AbdelHamid et al., 2022). The majority of the earlier studies predominantly analyze general patterns in cyberbullying detection, concentrating on English-language research (Alakrot et al., 2018; Bashir and Bouguessa, 2021). Although current studies recognize dataset imbalances and biases in social media-derived training data, they frequently neglect to consider privacy concerns and the ethical ramifications of automated cyberbullying detection among Arabic-speaking groups (Omar et al., 2021; Amer Hamzah and Dhannoon, 2023). This study addresses real-time detection concerns, the balance between moderation and free speech, and the necessity for privacy-preserving machine learning algorithms in social media monitoring (Kanan et al., 2021). This paper distinctly focuses on the thorough assessment of ML and DL models in detecting cyberbullying in Arabic. The prior systematic literature review by Castaño-Pulgarín et al. (2021), addressed cyberbullying detection on studies that provided exploratory data about the Internet and social media as a space for online hate speech, types of cyberhate, terrorism as an online hate trigger, online hate expressions and the most common methods to assess online hate speech. Balakrisnan and Kaity (2023) also did an SLR focusing on three main areas regarding cyberbullying detection through machine learning: the algorithms employed, the features used for detection, and the performance measures of these methods. The prior studies and reviews neglect Arabic-specific issues such as root-based word creation, tokenization complexities, and script intricacies.

The results of this study underscore the necessity of creating extensive, dialect-specific datasets and enhancing NLP models to address syntactic and lexical discrepancies among Arabic dialects. Deep learning architectures such as CNNs and BiLSTMs generally surpass classical baselines once training sets exceed the low-thousands and when preprocessed to handle orthographic variation, elongation, and code-mixing. Transformer models fine-tuned on Arabic corpora—especially variants trained with substantial dialectal coverage—consistently lead when the label definitions align with the pretraining distribution and when macro-averaged F1 rather than accuracy guides optimization. A recurring empirical pattern is precision outpacing recall, reflecting systems that confidently flag explicit bullying but struggle with implicit attacks, sarcasm, and context-dependent harassment. Performance differences are driven first by data composition. Dialectal diversity, platform genre, and class design are the most decisive factors. Models trained on tweets in Egyptian or Gulf dialects tend to degrade on Levantine, Maghrebi, or code-mixed content because lexical cues and morphological patterns shift, and subword tokenizers learned on Modern Standard Arabic under-segment dialectal forms. Domain shift between platforms—short, slang-heavy tweets versus longer Instagram captions or YouTube comments—likewise reduces transfer, as does the prevalence of emojis, creative spellings, and Arabizi. Class definitions also vary: some corpora equate cyberbullying with general abuse or toxicity, whereas others require intent, repetition, or power imbalance. The broader the “bullying” label, the higher the apparent scores, but the weaker the comparability across studies. Evaluation choices amplify these effects. Where annotation guidelines were explicit and inter-annotator agreement documented, models learned more stable decision boundaries; where guidelines were minimal or borrowed from sentiment analysis, models overfit to superficial polarity and miss community-specific bullying norms. Pretraining and representation learning explain the remaining variance. Yet, when fine-tuning data are severely imbalanced, even strong encoders prioritize surface toxicity over nuanced bullying constructs. In contrast, classical models augmented with curated lexicons and character-level features sometimes outperform deep baselines on noisy, low-resource dialects because they are less sensitive to tokenization errors and require fewer examples to generalize.

The most promising methodological direction is dialect- and domain-robust modeling anchored in standardized evaluation. Progress depends on a benchmark suite that harmonizes label schemas for cyberbullying versus general abuse, publishes class priors, and mandates macro-F1 and per-class F1 with clear treatment of the neutral class. Cross-dataset testing should be routine, with models trained on one corpus evaluated zero-shot on another to measure real-world robustness. Data and supervision strategies also offer leverage. Active learning and disagreement-focused annotation can densify minority bullying phenomena such as threats, doxxing, or body-shaming. Weak supervision that combines lexicon rules, community guidelines, and pattern matchers can cheaply label large pools for pretraining, followed by human verification on hard examples. Span-level rationales and multi-label tags for bullying types improve transparency and enable error analysis beyond single-label outcomes, while adversarial training with paraphrases and sarcasm transformations hardens models against implicit aggression. Context modeling is a further frontier. Many failures stem from sentence-level isolation. Incorporating conversation threads, author–target history, and lightweight social signals can disambiguate teasing from harassment and detect repetition, a hallmark of bullying. Graph-based representations of interactions, when coupled with privacy-preserving design and strict ethical safeguards, can capture power asymmetries and coordinated attacks without storing sensitive personal attributes.

Finally, instruction-tuned large language models adapted to Arabic show potential as few-shot labelers, error analyzers, and data generators, but their deployment must be paired with rigorous calibration, bias auditing across dialects and demographics, and conservative thresholding in safety-critical pipelines. Taken together, the evidence suggests that the field is moving from accuracy on single, homogeneous datasets toward robust, dialect-inclusive systems evaluated under standardized, recall-sensitive protocols, with the integration of context and improved supervision likely to yield the next substantive gains.





7 Limitations and suggestions for future studies

A key limitation of this review is the absence of a formal quality appraisal or risk-of-bias assessment of the included studies. Established tools such as AMSTAR, AMSTAR-2, or ROBIS are often used in systematic reviews to evaluate the methodological rigor of primary studies and to distinguish between stronger and weaker evidence. The present review treats all included studies as methodologically equivalent, regardless of variations in their design, sampling strategies, or analytical robustness.

The majority of the studies reviewed are based on restricted or specific datasets, which may not adequately represent the complete range of Arabic dialectal diversity or the diverse forms of cyberbullying that are present on different platforms. However, the absence of standardized datasets for the detection of Arabic cyberbullying also presents obstacles to the attainment of generalizable results. Despite the potential of dialect-specific models, the complexity and extensive variations among Arabic dialects pose a significant obstacle. The results may not be broadly applicable because current models may not perform consistently across all dialects. The detection of real-time cyberbullying is still in its infancy, particularly in the context of Arabic texts. Although some studies incorporate psychological insights, there is a void in the comprehensive integration of insights from sociology, linguistics, and psychology to develop a holistic understanding of cyberbullying behaviors specific to Arabic-speaking regions. Another limitation of this review is the exclusion of conference proceedings, despite their prominence as venues for innovation in natural language processing. Nonetheless, this exclusion may have led to the omission of some cutting-edge contributions. Future reviews should consider incorporating both journal articles and high-quality conference proceedings to present a more comprehensive view of the research landscape.

Future research may investigate sophisticated deep learning architectures and hybrid models that amalgamate various methodologies to enhance detection, to improve contextual comprehension and classification precision. Another vital avenue for future study is the enhancement of sentiment-based and context-aware models for detecting cyberbullying. The problem of dataset imbalance persists, as cases of cyberbullying are markedly underrepresented relative to non-offensive content.



8 Conclusion

This study offers a thorough examination of the most recent academic research, methodologies, and challenges in the detection of cyberbullying in Arabic texts. This review emphasizes the substantial advancements that have been achieved in this field by evaluating the efficacy of ML and DL models, sentiment analysis, lexicon-based methods, and dialectal considerations. The significance of specialized datasets for Arabic dialects, the efficacy of composite models and ensemble learning, and the value of sentiment-based and contextual analysis are underscored by the key findings.
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Manual topic description GPT4 topic description

Ffavor  Fagainst  Fnone  Favga  Favg3  Ffayor  Fagainst  Fnone  Favgd

Teaching Chinese Language at School 0.90 0.91 0.47 091 0.76 0.88 0.91 0.53 0.90 0.77
Improve School Curriculum 0.88 0.90 0.48 0.89 0.75 0.85 0.87 0.44 0.86 072
Online Learning 091 0.88 071 0.89 0.83 0.84 0.83 0.62 0.84 0.76
COVID-19 Vaccine 0.81 0.81 023 0.81 0.62 0.81 077 028 0.79 0.62
COVID-19 Vaccine Booster Dose 0.84 0.82 0.61 0.83 0.76 0.77 078 0.52 0.77 0.69
Aramco Share Selling 0.84 0.88 0.61 0.86 0.78 0.85 0.88 0.59 0.87 0.78
Al-Qiddiya Project 0.90 0.68 0.47 0.79 0.68 0.88 0.65 0.40 0.76 0.64
Neom City 0.90 0.75 071 0.83 0.79 0.90 0.78 0.67 0.84 078
Domestic Tourism 0.71 0.62 0.54 0.66 0.62 072 0.67 0.54 0.70 0.64
Sex Education 0.76 073 0.52 075 0.67 0.70 0.67 0.55 0.68 0.64
Coexistence with Religions 0.61 0.39 0.66 0.50 0.55 0.60 0.41 0.65 0.51 0.56
Military Conscription 0.77 0.76 0.57 0.77 0.70 0.71 0.67 0.64 0.69 0.67
Prince Abdulaziz bin Turki Head of Sports 0.46 0.47 072 0.47 0.55 043 0.33 0.58 0.38 0.45
Minister

Prince Faisal bin Turki as Resignation from a 043 043 0.50 043 0.46 0.58 0.20 0.39 0.39 0.39
Saudi club

Women_Driving 0.78 0.62 0.51 0.70 0.64 0.78 0.67 0.56 0.72 0.67
Mosques Speakers 0.48 0.76 0.33 0.62 0.52 0.54 0.78 0.36 0.66 0.56
Polygamous Marriage 0.80 0.85 0.53 0.82 0.73 0.83 0.84 0.45 0.84 071
AVERAGE OVER Avg2 & Avg3 0.74 0.67 0.72 0.65
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Manual topic description

Fpavor  Fagainst  Fnone  Favgd  Faygs

Online Learning 0.77 0.77 045 0.77 0.66
Neom City 0.82 0.57 0.41 0.69 0.60
Domestic 0.53 031 0.39 042 0.41
Tourism

Military 0.66 0.53 0.49 0.60 0.56
Conscription

Mosques 045 047 0.34 0.46 0.42
Speakers

Multi Marriage 0.59 0.61 0.30 0.60 0.50
AVERAGE 0.59 0.52
OVER Avg2 &

Avgd
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Manual topic description

Favor  Fagainst  Fnone  Faygy  Faygs

Online Learning 0.87 0.85 0.47 0.86 0.73
Neom City 0.83 0.66 045 0.74 0.64
Domestic 0.70 0.58 0.46 0.64 0.58
Tourism

Military 0.69 071 042 0.70 0.61
Conscription

Mosques 0.31 0.67 033 049 044
Speakers

Multi Marriage 0.68 0.75 0.36 0.71 0.60
AVERAGE 0.69 0.60
OVER Avg2 &

Avgd
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Manual topic description

ija\'or Fagainst Fnone Fayga Faygs

Online Learning 0.89 0.89 0.67 0.89 0.81
Neom City 0.85 0.75 0.49 0.80 0.70
Domestic 0.69 0.65 0.49 0.67 0.61
Tourism

Military 0.73 0.73 0.55 0.73 0.67
Conscription

Mosques 0.46 0.60 0.36 0.53 0.47
Speakers

Multi Marriage 0.81 0.78 0.46 0.80 0.68
AVERAGE 0.74 0.66
OVER Avg2 &

Avg3
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m

Economy Aramco Share Selling Aramco made available a part of their total company shares, amounting to 1.5%, for
trading among the general public.
Al-Qiddiya Project Al-Qiddiya is a Saudi sport, cultural, and entertainment project which will be located in
the city of Al-Qiddiya, which serves as a high-quality entertainment and social destination.
Neom City The Kingdom of Saudi Arabia has planned to construct a novel urban district, Neom, in
the northwestern Tabuk Province.
Education Teaching Chinese Language at School The Saudi Ministry of Education has announced to include Chinese language in the
curriculum of Saudi public schools.
Improve School Curriculum The Saudi Ministry of Education unveiled a new educational system and curriculum that
comprises new subjects and a reduction in the number of classes for religious studies.
Online Learning Transitioning from conventional to online teaching during COVID-19
Health COVID-19 Vaccine The Saudi authorities are mandating that Saudi citizens receive the COVID-19 vaccine.
Vaccine Booster Dose The Saudi authorities are mandating that Saudi citizens receive the COVID-19 booster
dose.
Sports Prince Abdulaziz bin Turki Head of Sports Minister Appointing Prince Abdulaziz bin Turki as a minister of sports.
Prince Faisal bin Turki as Resignation from a Saudi club | Prince Faisal bin Turki as resignation from Al-nasser Saudi club.
Religion/ Cultural | Sex Education Implementing a sex education curriculum in Saudi public school.
Coexistence with Religions The peaceful coexistence and dialogue among religions.
Women driving Allowing women to drive in Saudi Arabia.
Mosques Speakers Limiting the utilization of mosque loudspeakers exclusively for the Adhan (the call to
prayer) while retaining their use within the mosque premises during prayer times.
Polygamous marriage Deciding whether to endorse the concept of simultaneous multiple spouses.
Other Domestic tourism Supporting domestic tourism in the Kingdom of Saudi Arabia

Military conscription

The mandatory enlistment of Saudi citizens in the armed forces
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Topics # Training samples (80%) # Testing samples (20%) Total
samples
Favor Against None Total Favor Against None Total
Education | Teaching Chinese language at 336 297 65 698 85 75 17 177 875
school
Improve School Curriculum 308 390 87 785 77 98 22 197 982
Online Learning 297 326 111 734 75 82 28 185 919
Health COVID-19 Vaccine 330 361 46 737 83 91 12 186 923
COVID-19 Vaccine Booster 280 372 105 757 70 93 27 190 947
Dose
Economy Aramco Share Selling 297 293 132 722 75 74 34 183 905
Al-Qiddiya Project 500 128 80 708 125 32 21 178 886
Neom City 406 193 133 732 102 49 34 185 917
Other Domestic Tourism 340 183 216 739 85 46 54 185 924
Military Conscription 328 324 106 758 82 81 27 190 948
Sport Prince Abdulaziz bin Turki 63 72 100 235 16 18 60 94 329
Head of Sports Minister
Prince Faisal bin Turki’s 100 61 123 284 70 16 31 17 401
Resignation from a Saudi club
Religion/ ‘Women Driving 372 268 116 756 93 68 30 191 947
Culture
Mosques Speakers 140 428 106 674 35 107 27 169 843
Polygamous marriage 306 252 112 670 77 64 28 169 839
Sex education 324 336 113 773 81 84 29 194 967
Coexistence with religions 253 168 317 738 64 43 80 187 925
Total 4980 4452 2068 11500 1295 1121 561 2977 14477
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Topic Enone| Eavgz | Eavgs
Teaching Chinese Language at 046 0.90 075
School

Improve School Curriculum 091 0.887 040 0.89 073
Online learning 0.88 0.88 0.67 0.88 0.81
COVID-19 Vaccine 0.80 0.80 031 0.80 0.64
COVID-19 Vaccine Booster 0.82 0.77 0.54 0.79 0.71
Dose

Aramco Share Selling 0.84 0.89 0.66 0.87 0.80
Al-Qiddiya Project 0.89 0.63 0.41 0.76 0.64
Neom City 0.90 0.79 0.65 0.84 0.78
Domestic Tourism 0.74 0.67 0.52 0.70 0.64
Sex Education 075 0.75 0.54 0.75 0.68
Coexistence with Religions 0.60 0.51 0.66 0.56 0.59
Military Conscription 0.76 0.77 0.64 0.77 0.73
Prince Abdulaziz bin Turki 0.40 0.51 0.63 0.45 0.51
Head of Sports Minister

Prince Faisal bin Turki as 0.48 0.36 045 | 042 | 043
Resignation from a Saudi club

Women_Driving 0.79 0.69 045 0.74 0.65
Mosques Speakers 0.57 0.76 0.24 0.67 0.53
Polygamous Marriage 083 083 049 | 083 | 071
AVERAGE OVER Avg2 & Avg3 ‘ 074 | 066
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Topic keywords With topic keywords

Ffavor  Fagainst  Fnone Favga  Faygs

Teaching Chinese Language | 0.9 091 062 | 09 | 081
at School

Improve School Curriculum 0.79 0.83 0.43 0.81 0.68
Online Learning 0.92 0.91 0.73 0.91 0.85
COVID-19 Vaccine 0.83 0.8 0.29 0.82 0.64
COVID-19 Vaccine Booster 0.82 0.84 0.59 0.83 0.75
Dose

Aramco Share Selling 0.81 0.88 0.64 0.85 0.78
Al-Qiddiya Project 088 0.67 05 078 | 068
Neom City 0.89 0.75 0.66 0.82 0.77
Domestic Tourism 0.64 0.57 0.49 0.61 0.57
Sex Education 0.72 0.8 0.56 0.76 0.69
Coexistence with Religions 0.44 0.44 0.63 0.44 0.5
Military Conscription 072 0.7 0.56 0.71 0.66
Prince Abdulaziz bin Turki 0.27 0.43 0.68 0.35 0.46
Head of Sports Minister

Prince Faisal bin Turki as 043 0.44 0.44 0.44 0.44
Resignation from a Saudi

club

Women_Driving 0.77 0.68 0.55 0.72 0.67
Mosques Speakers 0.55 0.78 0.33 0.67 0.56
Polygamous Marriage 0.84 0.84 0.59 0.84 0.76
AVERAGE OVER Avg2 & 0.72 0.66
Avgd
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SemEval2016-Task 6 (Mohammad et al., 2016, 2017) English Target specific X.com 4,163 tweets

WT-WT (Conforti et al., 2020) English Target specific X.com 51K

TW-BREXIT (Lai et al., 2020) English Target specific X.com 1,800 triplets of tweets

Procon20 (Hosseinia et al., 2020) English Target specific procon.org 6,094 of question and opinion

Hateful/offensive speech (Grimminger and Klinger, 2021) English Target specific X.com 3K tweets

P-stance (Allaway and McKeown, 2020) English Target specific X.com 21,574 tweets

MeTooMA (Gautam et al., 2020) English Target specific X.com 9,973 tweets

RumourEval (Gorrell et al., 2019) English Target independent X.com and Reddit 8,574 posts

ENC-1 (Hanselowski et al.,, 2018) English Target independent News websites 75,385 instances and 2,587
news headlines

Emergent (Ferreira and Vlachos, 2016) English Target independent | Different websites 300 claims and 2,595 articles

IBM debater (Bar-Haim et al,, 2017) English Target independent | Wikipedia 2,394 claims

Vast (Allaway and McKeown, 2020) English Cross target News website 23,525 comments

X-stance (Vamvas and Sennrich, 2020) Italian German French | Cross target Smartvote.org 65K

Multi-target SD (Sobhani et al,, 2017) English Multi target X.com 4,455 tweets

SardiStance (Cignarella et al., 2020) Italian Target Specific X.com 3,242 tweets

IberEval (Taulé et al,, 2017) Spanish and Catalan Target specific X.com 11K

Arabic fact checking (Baly etal.,, 2018) Arabic Target independent | Verify and Reuters 402 claims and 3,042
documents

Arabic news stance (Khouja, 2020) Arabic Target independent | News websites 3,786 pairs (claim, evidence)

AraStance (Alhindi et al,, 2021) Arabic Target independent | Fact-checking websites | 4,063 pairs of claim and article

MAWGIF (Alturayeif et al., 2022) Arabic Target specific X.com 4,121 tweets

EXaASC (Jaziriyan etal., 2021) Arabic Cross-target X.com 9,566 samples, and 180 targets
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Approches Models Precisiol Recall F1-score
DL models GRU EGY 67.16 56.82 61.56
GLF 63.49 59.01 61.17
LEV 93.19 93.01 93.10
MGH 88.37 90.67 89.51
general 17.89 22.56 19.96
LSTM EGY 66.60 5542 60.50
GLE 60.16 58.29 59.21
LEV 93.16 93.01 93.08
MGH 87.93 89.36 88.64
general 17.25 22.08 19.37
CNN EGY 66.30 5451 59.83
GLE 59.32 58.29 58.80
LEV 93.11 92.67 92.89
MGH 87.50 89.36 88.42
general 1620 21.28 18.40
The transformer model Base-Arabert EGY 7124 68.24 69.71
GLF 7343 62.18 67.34
LEV 94.07 95.56 94.81
MGH 94.17 91.72 92.93
general 2361 29.12 26.07
Arabic-XLM-R-Base EGY 74.71 7891 76.75
GLF 75.80 66.37 70.77
LEV 94.64 95.62 95.13
MGH 94.44 91.72 93.06
general 27.59 32.80 29.97
The proposed model Stacking-Transformer EGY 80.41 91.65 85.66
GLE 81.75 80.67 81.20
LEV 95.90 95.62 95.76
MGH 94.87 91.72 93.27
general 4394 54.56 48.68
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References Methods Results ~ Datasets

Lulu and Elnagar, LST™M 714 AOC

2018

Cotterell and NB with Bi-gram 87.00 IADD

Callison-Burch, 2014

Kwaik et al,, 2018 NB 70 Shami

Elaraby and Attention BiLSTM 87.81 ADO

Abdul-Mageed, 2018

Alsuwaylimi, 2024 CAMeLBERT with 87 ADO
BiLSTM

Our work Stacking-Transformer 93.062 IADD
Stacking-Transformer 89.73 Shami
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Datasets abels  Trainingset Testingset Total
Shami Syrian 28,318 9,440 37,758
Lebanees 8,121 2,707 10,828
Palestinian 7,981 2,661 10,642
Jordinian 5,263 1,754 7,017
Total 49,683 16,562 66,245
IADD LEV 65,605 21,864 87,469
MGH 21,037 7,076 28,113
GLE 5011 1,671 6,682
EGY 3,626 1,209 43835
general 1,873 625 2,498
Total 97,152 32,445 129,597
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Models Parameter: Specification
LST™M Number of nodes 200

Dropout 02

Activation function Relu

Optimizer Adam

Loss function CrossEntropyLoss
GRU Number of nodes 200

Dropout 02

Activation function Relu

Optimizer Adam

Loss function CrossEntropyLoss
CNN Filter size 3x3

Kernel size 4

Dropout 02

Optimizer Adam

Loss function CrossEntropyLoss
Bert-Base- Number of transformer layers | 12
Arabertv02

Hidden Size 768 dimensions

Attention Heads 12 per layer

Optimizer Adam

Loss function CrossEntropyLoss

Dropout rate 0.1
Dialectal-Arabic- Number of transformer layers | 12

XLM-R-Base

Hidden Size 768 dimensions
Attention Heads 12
Optimizer Adam

Loss function

CrossEntropyLoss
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Approaches Models Classes Precisiol Recall F1-score
DL models GRU Jordinian 60.84 55.53 58.06
Lebanees 77.05 77.39 77.22
Palestinian 69.22 7328 7119
Syrian 91.28 9113 91.21
LSTM Jordinian 6225 50.40 55.70
Lebanees 7345 75.03 74.23
Palestinian 7237 65.54 68.78
Syrian 87.59 92.48 89.97
CNN Jordinian 6225 50.40 55.70
Lebanees 7345 75.03 74.23
Palestinian 72.37 65.54 68.78
Syrian 87.59 92.48 89.97
The transformer model Base-Arabert Jordinian 80.16 61.52 69.61
Lebanees 84.64 79.61 82.05
Palestinian 77.64 82.60 80.04
Syrian 92,07 95.96 93.98
Arabic-XLM-R-Base Jordinian 79.77 60.03 68.51
Lebanees 84.49 79.09 81.70
Palestinian 77.34 82.60 79.88
Syrian 91.82 95.96 93.85
The proposed model Stacking-Transformer Jordinian 80.16 61.52 69.61
Lebanees 84.64 79.61 82.05
Palestinian 77.64 82.60 80.04
Syrian 92,07 95.96 93.98
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Online Learning 0.87 0.88 0.63 0.88 0.79
Neom City 0.87 0.74 0.61 0.80 0.74
Domestic 0.72 0.66 0.51 0.69 0.63
Tourism

Military 0.72 0.72 0.59 0.72 0.67
Conscription

Mosques 0.49 0.76 0.45 0.62 0.57
Speakers

Multi Marriage 0.81 0.79 0.49 0.80 0.70
AVERAGE 0.75 0.68
OVER Avg2 &

Avgs






OPS/images/frai-08-1615800/math_1.gif





OPS/images/frai-08-1615800/math_2.gif
TP
TP+ FP

Precision =

@





OPS/xhtml/Nav.xhtml


Contents



		Cover


		Emerging techniques in Arabic natural language processing

		Editorial: Emerging techniques in Arabic natural language processing

		Introduction


		Key contributions

		Syntactic analyzers


		Machine translation


		Opinion mining


		Arabic poetry


		Dialect detection


		Speech recognition


		Cyberbullying detection







		Conclusion


		Author contributions


		Conflict of interest


		Generative AI statement


		Publisher's note


		References







		Advancing arabic dialect detection with hybrid stacked transformer models

		1 Introduction

		1.1 Motivations and contributions


		1.2 Paper structure







		2 Related work


		3 Methodology

		3.1 Datasets


		3.2 Data pre-processing


		3.3 Dataset splitting


		3.4 Feature representation methods


		3.5 Deep learning models


		3.6 Proposed model


		3.7 Models evaluation







		4 Results and discussion

		4.1 Experimental setup


		4.2 Results

		4.2.1 Proposed model performance in Shami dataset


		4.2.2 Proposed model performance in IADD dataset


		4.2.3 Discussion







		4.3 Comparison of the proposed model with existing work


		4.4 Implication and challenges







		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Conflict of interest


		Publisher's note


		References







		Determining the meter of classical Arabic poetry using deep learning: a performance analysis

		1 Introduction


		2 Literature review


		3 Materials and methods

		3.1 Dataset and preprocessing


		3.2 Deep learning models

		3.2.1 Hyperparameter tuning







		3.3 Evaluation metrics







		4 Results

		4.1 Training and testing using full-verse data


		4.2 Training and testing using half-verse







		5 Discussion

		5.1 Practical implications







		6 Conclusion

		6.1 Limitations and future studies







		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		Publisher’s note


		References







		Exploring ChatGPT's potential for augmenting post-editing in machine translation across multiple domains: challenges and opportunities

		Introduction

		Research question







		Literature review


		Data collection and methodology

		Data collection


		Experiment/method







		Data analysis and evaluation

		Evaluation measures for ChatGPT-4o and human post-editing of MGT across multiple domains


		Prompt engineering for enhancing ChatGPT-4o outcomes







		Results and discussion


		Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		Publisher's note


		Footnotes


		References







		Constructing and evaluating ArabicStanceX: a social media dataset for Arabic stance detection

		1 Introduction


		2 Related work and background


		3 Methodology for ArabicStanceX dataset development

		3.1 Data collection and filtering


		3.2 Data annotations


		3.3 Dataset statistics







		4 Experimental setup

		4.1 Model selection


		4.2 Experimental design

		4.2.1 BERT model used


		4.2.2 Hyperparameters tuning


		4.2.3 Evaluation metrics












		5 Experiments and result analysis

		5.1 Performance analysis of MTSM model


		5.2 Performance analysis of few-shot learning model







		6 Conclusion and discussion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		Publisher's note


		Footnotes


		References







		A comparative study of Arabic syntactic analyzers

		1 Introduction


		2 Related work

		2.1 Approaches to syntax analysis


		2.2 Available parsing algorithms


		2.3 Parsing techniques


		2.4 Depth of parsing







		3 Arabic syntax treebanks and resources


		4 Available syntactic analyzers

		4.1 Traditional syntactic analyzers for arabic


		4.2 Modern neural and transformer-based approaches to arabic syntactic analysis







		5 Challenges in arabic syntactic analysis

		5.1 Unannotated domain-specific data and formalization gaps


		5.2 Ambiguities in syntactic structures due to ellipsis and zero pronouns


		5.3 Model generalization and domain adaptation







		6 Conclusion and future directions


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		Publisher's note


		References







		Arabic speech recognition model using Baidu's deep and cluster learning

		1 Introduction


		2 Literature review

		2.1 Automatic speech recognition


		2.2 Different languages, ascent speech recognition


		2.3 End-to-end speech processing


		2.4 Speech recognition using deep learning


		2.5 Research gap







		3 Methods and materials

		3.1 Methodology


		3.2 Architecture of the speech recognition system

		3.2.1 Probability theory for speech recognition







		3.3 Data collection


		3.4 Data analysis

		3.4.1 Silence removal


		3.4.2 Time and frequency analysis of speech







		3.5 Sampling

		3.5.1 Discrete Fourier Transform


		3.5.2 MFCC feature extractions


		3.5.3 MFCC statistics












		4 Clustering and classification

		4.1 Grid search


		4.2 Classification







		5 Baidu's deep speech

		5.1 Acoustic model and language model


		5.2 Augmentation and hyperparameter setup

		5.2.1 Baidu's deep speech hyperparameters


		5.2.2 Machine learning hyperparameters


		5.2.3 Computational environment












		6 Results and discussions

		6.1 Confusion matrix


		6.2 Classification report


		6.3 Learning curve


		6.4 Precision–recall curve


		6.5 Discussion







		7 Conclusion

		7.1 Future studies







		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Generative AI statement


		Publisher's note


		References







		Leveraging pre-trained embeddings in an ensemble machine learning approach for Arabic sentiment analysis

		1 Introduction


		2 Related work


		3 Materials and methods

		3.1 Dataset


		3.2 Data set preprocessing


		3.3 Data balancing technique


		3.4 Feature representation methods

		3.4.1 TF-IDF with n-grams


		3.4.2 Pre-trained word embeddings







		3.5 Individual machine learning models


		3.6 Ensemble learning models


		3.7 Evaluation metrics







		4 Experiments results and discussion

		4.1 Experiments setup

		4.1.1 Hyperparameter optimization







		4.2 Results


		4.3 Error analysis


		4.4 Comparison of the proposed model with existing work







		5 Conclusion and future direction


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Generative AI statement


		Publisher's note


		References







		Cross-dialectal Arabic translation: comparative analysis on large language models

		1 Introduction


		2 Related work

		2.1 Challenges for processing Arabic and its dialects


		2.2 Large language models


		2.3 Machine translation approaches







		3 Proposed methodology

		3.1 Dataset


		3.2 Prompting techniques


		3.3 Model selection


		3.4 Performance metrics







		4 Experimental results

		4.1 Model responsiveness


		4.2 Performance metrics and dialect variations

		4.2.1 Similarity metrics


		4.2.2 TER


		4.2.3 ANOVA


		4.2.4 Evaluation divergence (lexical vs. semantic metrics)







		4.3 Effects of model accuracy

		4.3.1 Few-shots analysis


		4.3.2 Impact of sentence length on model accuracy












		5 Conclusion

		5.1 Concluding remarks


		5.2 Future works


		5.3 Limitations







		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		Publisher's note


		References







		Cyberbullying detection approaches for Arabic texts: a systematic literature review

		1 Introduction


		2 Background of study

		2.1 Cyberbullying


		2.2 Challenges in detecting in Arabic language







		3 Research questions


		4 Methodology


		5 Data sources and keywords


		6 Results

		6.1 Research question 1

		6.1.1 Machine learning (ML) and deep learning (DL) approaches


		6.1.2 Sentiment analysis and lexicon-based methods


		6.1.3 Handling Arabic dialects and linguistic complexity







		6.2 Research question 2

		6.2.1 Development and use of cyberbullying datasets


		6.2.2 Standards and evaluation metrics


		6.2.3 Application of linguistic and psychological standards







		6.3 Research question 3

		6.3.1 Expansion of dialect-specific datasets and multilingual analysis


		6.3.2 Enhanced deep learning models and feature engineering


		6.3.3 Ethical considerations and real-time detection systems


		6.3.4 Integration of psychological and social dimensions












		7 Limitations and suggestions for future studies


		8 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Generative AI statement


		Publisher’s note


		References


















OPS/images/fnhum-19-1498297/fnhum-19-1498297-g002.gif





OPS/images/frai-08-1526293/frai-08-1526293-t006.jpg
Tsuyoshi Kitazawa, a former member of Japan’s national football team, stressed the role of sport in

building bridges: “whatever you feel in the Games is made possible because the world is playing as
one team,” he said

MGT "l oIS ol Y U granal Sl (3 4 5n5 Lo S gusnl el (3 Ruml il 593 e paill 3580 (UL (il asiall (3 Bl gl S (o 30505 20,
ChatGPT-40E anl s GBS ol Alall Y U amy a1 (8 g 5 L 2 puanll oy 3 Rml gl g0 ST a5 80 ik ) UL (i (3 Bl e o518 8,
HE ol By I A g by s Lo S 135 el 1 s el (B Aumly M 53 (e 1S (o 08 el 5580 S il il (3 i) pumal) 1

a3 s ol el Y U,






OPS/images/fnhum-19-1498297/fnhum-19-1498297-g003.gif





OPS/images/frai-08-1526293/frai-08-1526293-t007.jpg
The latest estimate is lower than the 3.1 percent GDP growth projected by the IMF in May

MGT ko b Lol ) (5 pnm and 5 (R AL (33,1 Aty e ) 5l i e B uaW il

ChatGPT-40E Lot e b (ol sl 3 gl Liled A a1 ) )y 7Y, dansiy Zald) el 0 (o 31 a8 ol 138 i
2. 30 g8l JMlea¥l laal) 0 pai Jone o B SR YY il iy 53.1% sile s (B Lol S 3 p2iem U5 e,

HE TV Ay o 8 s 5l 01 5 p0hm 85 Lo 1 Man¥) (loall i) il 91 il 38 s,






OPS/images/fnhum-19-1498297/crossmark.jpg
©

|





OPS/images/fnhum-19-1498297/fnhum-19-1498297-g001.gif
‘Step 1: Data Collection

Shami:Acorpus of 1ADD: Arabi diatsct
Lovontino araic distocts igenitication

‘Step 2: Data pre-processing

Tokenization! Removing stopwords.

Data Cleaning. Stemming.

Step 3: Feature representation

Baso-Arabort

=0 -
] |

Step 4: Classification Models

ArabicXLM-A- Doep Loaming
ELEE Base LSTM, GRU, CNN

Stop 4: Evaluation Models.






OPS/images/fnhum-19-1498297/fnhum-19-1498297-g006.gif
Perdormance.

R EEER

S WIEEN OB Eiaseinbit WARSS T o D





OPS/images/frai-08-1526293/frai-08-1526293-t002.jpg
S The latest estimate is lower than the 3.1 percent GDP growth projected by the IMF in May

MGT EENETRUR DOV RO = i UL UMY < JEVEQ R % e DR g PRV <1 PRV g [E CON

ChatGPT-40E Lo el b sl s 5 gl Ll (A a1 ) gl 7Y, dansty 2Ll il gl e B ) il 138 sty
HE

Y Ay e 3 Viilas Jal) S50 3 5 4nd 5 Lo 51 a1 ol )yl Y1 el s ins,






OPS/images/fnhum-19-1498297/fnhum-19-1498297-t001.jpg
References

Advantages

L

ations

Dataset

Lulu and Elnagar, 2018 | LSTM Proposing benchmark dataset Applying the classical DL models AOC
Accuracy was lowest
Alsaleh and GA with CNN Applying GA to optimize parameters of CNN | Applying the classical DL models Text classification
Larabi-Marie-Sainte, Supporting text classification
2021
Alzw’bi and Duwairi, RNN - Applying single DL MADAR corpus
2021 Using one dataset
Obtaining the lowest accuracy
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Kwaik et al., 2018 NB Proposing benchmark dataset Applying single model is NB Shami
Obtaining the lowest accuracy
Alansari, 2023 CNN and RNN - The results of the models have not been -
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EV3 ChatGPT-40 4 3 5 3 3 3 4 3 3

Huma 5 5 3 5 5 5 5 5 5
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Meter Precision  Recall fiil, Accuracy

score
Basit 098 0.98 098 098
Khafif 0.96 0.96 096 0.96
Rajaz 0.88 0.83 085 0.83
Ramal 092 093 092 093
Sari 091 0.90 0.90 0.90
Tawil 0.99 0.98 098 0.98
Kamil 094 0.96 095 0.96
Mutadarik 0.84 0.83 083 0.83
Mutagarib 095 0.96 095 0.96
Muijtath 0.86 0.89 087 0.89
Madid 0.84 0.82 083 0.82
Munsarih 093 0.89 091 0.89
Hazaj 071 074 073 074

Wafir 097 0.96 097 0.96
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number of hidden layers

Dataset size Accuracy B

Al-shaibani et al. (2020 Bi-GRU-5 55,400 verses 94.32% (full-verse), 88.80% (half-verse) -
Abandah et al. (2020 Bi-LSTM-4 1,657,003 verses | 97.27% (full-verse) 0.97 (full-verse)
Yousef etal. (2019 Bi-LSTM-7 1,722,321 verses | 96.38% (full-verse) =

‘The proposed work Bi-LSTM-3 1,646,771 verses | 97.53% (full-verse), 95.23% (half-verse)  0.98 (full-verse), 0.95 (half-verse)
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Models Hidden layers Parameters (in Accuracy Training Epochs  Training time (in

millions) hours)
LST™ 1 034 09720 2 89.95
2 086 0.9733 2 148.17
3 138 09737 35 286.15
GRU 1 026 09710 2 16693
2 065 09723 37 212.63
3 105 09726 60 455.93
Bi-LSTM 1 067 0.9698 19 11002
2 224 09744 2 249.97

3 382 09753 2 442.50
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