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Editorial on the Research Topic 


Multi-omics and computational biology in horticultural plants: from genotype to phenotype, volume III





Introduction

Horticultural plants underpin human nutrition, health, and well-being by providing essential vitamins, minerals, bioactive metabolites, and aesthetic values across fruits, vegetables, ornamentals, spices, and medicinal species (Lutaladio et al., 2010). Over the past decade, rapid advances in sequencing, phenotyping, and computational methods have transformed our capacity to interrogate the genetic and molecular bases of horticultural traits and to translate discoveries into breeding practice (Mansoor et al., 2025). Building on the momentum of our previous Research Topics—Volumes I and II—which together highlighted genome resources, integrative multi-omics, and emerging computational tools across a wide diversity of species (Mondal et al., 2022; Cao et al., 2024b)—this third volume continues the central mission: to bridge genotype and phenotype in horticultural plants through the integration of multi-omics with computational biology. Our goal with Volume III is twofold. First, to bring into focus integrative, cross-layered analyses that move beyond association toward mechanism and, ultimately, translatable targets. Second, to showcase methodological and infrastructural advances—ranging from single-cell and spatial omics to high-throughput phenotyping and interpretable machine learning—that strengthen the evidentiary chain linking genetic variation to complex traits under realistic environments (Großkinsky et al., 2015; Ferrão et al., 2023; Yan and Wang, 2023).

This Research Topic comprises two reviews and 14 research papers. The research papers include four on multi-omics (including transcriptomics, proteomics, and metabolomics) in horticultural crops, six on fruit crops, two on vegetables, one on spices, and one on model crop species.





Advancing multi-omics integration in horticultural plants

Multi-omics integration combines genomic, epigenomic, transcriptomic, proteomic, and metabolomic data to provide a comprehensive view of biological systems. These contributions showcase how comprehensive molecular profiling, when combined with sophisticated analytical frameworks, enables unprecedented insights into complex trait formation in horticultural species. In this Research Topic, several studies demonstrate how combining multiple omics layers reveals regulatory networks and metabolic pathways that would remain hidden when analyzing single data types in isolation. For instance, Zhu et al. identified the molecular basis for color variations in Cistanche deserticola, showing that the purple hue of ‘oil cistanche’ stems from increased flavonoids and terpenoids, while its darker dried color is linked to higher levels of iridoids and polysaccharides. According to Tong et al., flavonoid biosynthesis in developing tobacco leaves shifts from synthesizing core structures in early growth, via upstream genes like CHS and CHI, to accumulating anthocyanins in later stages, driven by downstream genes like DFR and ANS. Lee et al. analyzed the responses of three hydroponic leafy vegetables to 24 stress conditions, creating the public database StressCoNekT to support breeding resistant crops and developing smart agriculture. Using multi-omics approaches, Wang et al. found that exogenous melatonin enhances salt tolerance in eggplant primarily by activating the α-linolenic acid metabolism pathway, while Gu et al. elucidated how melatonin priming modulates the waterlogging response in peach. Xuan et al. found that triploid hybrid jujube progeny exhibit significant horticultural advantages over their diploid counterparts, possessing typical polyploid characteristics such as wider leaves, larger stomata, longer thorns, and a significantly lower stomatal density. Chen et al. analyzed the chloroplast genomes of 35 Rutaceae species, providing a molecular framework for the family’s taxonomy and evolutionary history. These multi-dimensional analyses are particularly powerful for dissecting quantitative traits controlled by multiple genes and influenced by environmental factors.





Multi-omics in horticultural plant breeding

In horticultural plants, such as tomato, strawberry, grape, apple, and peach, integrated datasets elucidate regulatory networks of ripening, color, flavor, texture, and nutrition; map stress−response pathways for heat, cold, drought, and salinity; and reveal disease−resistance mechanisms against major pathogens, while ionomics clarifies nutrient homeostasis and disorders such as calcium−related defects. Pangenomes and structural−variant catalogs expose presence–absence genes underlying quality and resilience traits, and haplotype−aware genomic prediction improves selection in perennials despite heterozygosity, clonality, and long juvenility. In grafted systems, multi−omics resolves rootstock–scion signaling that modulates vigor, nutrient uptake, stress tolerance, and fruit quality, and postharvest metabolomic and proteomic biomarkers guide shelf−life and cold−chain optimization. Single-cell and spatial transcriptomics have pinpointed key tissue-specific functions, such as sugar metabolism and flavonoid biosynthesis in the pericarp, embryo development and dormancy pathways in seeds, and cell division and differentiation programs in meristems, while rhizosphere and phyllosphere profiling has provided a basis for developing microbiome-informed strategies for biocontrol and nutrition (Deng et al.). Interoperable, FAIR databases (e.g., Sol Genomics Network, Genome Database for Rosaceae, Pear genomics database) harmonize data and ontologies to power germplasm discovery, marker−assisted and genomic selection, genome editing, and speed breeding—capabilities that are increasingly vital for sustaining quality, yield, and resilience under climate and resource constraints (Jung et al., 2007; Fernandez-Pozo et al., 2015; Chen et al., 2023).





From discovery to application in horticultural plants

While maintaining strong foundations in basic research, Volume III emphasizes the translational aspects of multi-omics discoveries. Multiple studies demonstrate clear pathways from molecular insights to practical applications in crop improvement. For example, the identification of key genes controlling stress tolerance, nutritional quality, and yield components provides immediate targets for marker-assisted selection and genome editing approaches. In this Research Topic, studies on fruit and flower development revealed the regulatory role of the SlBEL11 factor in tomato ripening (Dong et al.) and identified the CsAP2_51 gene as a direct regulator of gynostemium development in Chinese orchid (Wei et al.). Furthering work on developmental timing, Yu et al. conducted the first genome-wide analysis of the FRI gene family in soybean, where representative genes such as GmFRI1 and GmFRI2 are considered key regulators of flowering time through the modulation of FLOWERING LOCUS C (FLC)-like gene expression, consequently affecting crop adaptability to diverse environments. Other studies have likewise identified functionally important gene families. For instance, the COMTfamily in pear includes genes such as PpCOMT1, which plays a crucial role in the methylation of lignin biosynthesis intermediates, thereby influencing lignin content and fruit texture (Feng et al.). The AHP family, with representative genes like MdAHP1 and MdAHP3 in apple, acts as central positive regulators in the cytokinin signaling pathway, directly impacting cytokinin-mediated processes such as root and shoot development; MdAHP3 has specifically been shown to negatively regulate adventitious root formation under cytokinin treatment (Li et al.). In addition, several analyses highlighted the roles of stress-responsive gene families. The CDPK gene family in jujube comprises members such as ZjCDPK4 and ZjCDPK11, which are differentially expressed during fruit development, pathogen infection, and under abiotic stress conditions (Li et al.), indicating involvement in both developmental regulation and stress adaptation. The SUS gene family in blueberry features genes such as VdSUS4, which is upregulated under salt stress and has been demonstrated to improve salt tolerance in transgenic plants by facilitating sucrose metabolism, thus supporting energy supply and stress response (Wang et al.). Broadening this theme, Zhang et al. explored the molecular mechanisms by which WRKY transcription factors enhance plant stress resistance through their participation in sugar metabolism. These articles promote the broader use of multi-omics approaches in horticultural research and breeding.





Emerging technologies and future directions in horticultural plants

Single-cell and spatial omics technologies are beginning to reveal cell-type-specific gene expression patterns and metabolic heterogeneity within plant tissues, providing unprecedented resolution for understanding developmental processes and stress responses. In this Research Topic, Deng et al. highlight that spatiotemporal transcriptomics enables precise mapping of gene expression dynamics across plant tissues, illuminating development, stress responses, and cell–cell communication in situ. Pan-genome analyses are uncovering structural variations and presence-absence polymorphisms that contribute to trait diversity but are missed by single reference genome approaches. Jiang et al. and Cao et al. conducted a comparative genomics study that identified novel lineage-specific new genes (including de novo gene and fusion gene), proposing them as a key mechanism for regulating plant growth and driving phenotypic evolution within the Rosaceae family (Cao et al., 2024a; Jiang et al., 2025). Ding et al. conducted a pear pangenome analysis and identified a SNP mutation and a promoter insertion in PsbMGH3.1 that likely enhance sepal abscission in the ‘Xuehuali’ cultivar, a trait critical for fruit quality (Ding et al., 2024). Utilizing two newly assembled high-quality pear genomes for a genome-wide association study, Cao et al. identified and functionally validated the novel CCCH-type zinc finger gene PbdsZF as a key transcriptional regulator of lignin biosynthesis and stone cell formation, a critical determinant of fruit texture (Cao et al., 2025). In addition, the combination of biological big data with artificial intelligence is facilitating the transition from reactive to predictive and ultimately prescriptive approaches in crop management and improvement.





Conclusion

Volume III of “Multi-omics and computational biology in horticultural plants: From genotype to phenotype” demonstrates the continued evolution and maturation of this interdisciplinary field. The 16 articles presented here showcase how integrative approaches combining multiple omics technologies are accelerating our understanding of complex traits in horticultural crops. Despite this remarkable progress, several challenges remain in fully realizing the potential of multi-omics approaches for horticultural crop improvement. Data integration across different omics layers and experimental conditions remains technically challenging, requiring sophisticated normalization and harmonization methods. Furthermore, the heterozygous and often polyploid nature of many horticultural crops presents unique challenges for genomic analyses and the functional validation of candidate genes. Developing robust analytical frameworks that account for this genetic complexity while maintaining computational efficiency remains an active area of research. Additionally, the translation of omics discoveries into field-relevant traits requires careful consideration of environmental variability and agricultural management practices. As we face mounting global challenges in food security, nutrition, and environmental sustainability, the approaches and discoveries presented in this Research Topic provide essential tools and knowledge for developing the next generation of improved horticultural varieties. The success of this Research Topic series reflects the growing recognition that bridging the genotype-phenotype gap requires not just more data, but smarter integration of diverse data types to address these very challenges. Looking forward, we anticipate that continued technological innovations, particularly in single-cell omics, spatial biology, and artificial intelligence, will be pivotal in overcoming these obstacles and will further enhance our ability to decode and manipulate the molecular basis of horticultural traits.
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Introduction

Melatonin significantly enhances the tolerance of plants to biotic and abiotic stress, and plays an important role in plant resistance to salt stress. However, its role and molecular mechanisms in eggplant salt stress resistance have been rarely reported. In previous studies, we experimentally demonstrated that melatonin can enhance the salt stress resistance of eggplants.





Methods

In this study, we treated salt-stressed eggplant plants with melatonin and a control treatment with water, then conducted physiological and biochemical tests, transcriptomic and metabolomic sequencing, and RT-qPCR validation at different stages after treatment.





Results

The results showed that exogenous melatonin can alleviate the adverse effects of salt stress on plants by increasing the activity of antioxidant enzymes, reducing the content of reactive oxygen species in plants, and increasing the content of organic osmoprotectants. Transcriptomic and metabolomic data, as well as combined analysis, indicate that melatonin can activate the metabolic pathways of plant resistance to adverse stress. Compared to the control treatment with water, melatonin can activate the genes of the α-linolenic acid metabolism pathway and promote the accumulation of metabolites in this pathway, with significant effects observed 48 hours after treatment, and significantly activates the expression of genes such as SmePLA2, SmeLOXs and SmeOPR et al. and the accumulation of metabolites such as α-Linolenic acid, (9R,13R)-12-oxophytodienoic acid, 9(S)-HpOTrE and (+)-7-iso-Jasmonic acid. RT-qPCR validated the activating effect of melatonin on the candidate genes of the a-linolenic acid metabolism pathway.





Discussion

This study analyzed the molecular mechanism of melatonin in alleviating eggplant salt stress, providing a theoretical foundation for the application of melatonin in enhancing eggplant salt stress resistance in production.





Keywords: melatonin, salt stress, eggplant, transcriptomic, metabolomic, α-linolenic acid





Introduction

Eggplant (Solanum melongena L) is an important economic crop in the Solanaceae family, cherished by consumers for its unique flavor and rich nutritional value. It is widely cultivated around the world (Obel et al., 2024; Jiang et al., 2023). As the world’s leading producer of eggplant, China primarily grows this crop in both open fields and greenhouses. However, in recent years, climate change and improper farming practices have led to severe soil salinization in these facilities (Cai et al., 2022; Shen et al., 2022). Once soil salinization occurs, it hinders the crop roots’ ability to absorb water and nutrients from the soil, disrupts the mechanisms related to photosynthesis and respiration, slows the growth rate of the crops, and obstructs their normal growth and development (Peng et al., 2023; Cai et al., 2022; Feng et al., 2023). As an important component of vegetable cultivation in China’s greenhouse systems, eggplant growth is significantly affected by salinization throughout all stages, from seedling to maturity. Soil salinization can cause symptoms such as leaf chlorosis, yellowing, and necrosis in eggplants, severely inhibiting the normal process of photosynthesis (Hannachi et al., 2022).

After salinity stress occurs, the imbalance of ions and water deficiency in plant cells lead to two types of stress: ionic toxicity and osmotic stress (Ortega-Albero et al., 2023). To mitigate the damage caused by salinity stress, plants activate self-defense mechanisms, including the SOS regulatory pathway to maintain ion balance, increase the levels of osmotic regulators and antioxidants, enhance the activity of antioxidant enzymes, and trigger endogenous hormone responses to stress (Bekkering et al., 2024; Jameel et al., 2024). However, the intrinsic defense capacity of plants is ultimately limited, necessitating alternative approaches to enhance salt tolerance. Currently, methods such as breeding salt-tolerant varieties (Zhang et al., 2024), grafting (Mozafarian et al., 2023; Yan et al., 2023), utilizing root microbiota (Mokabel et al., 2022), and improving cultivation practices (Hannachi et al., 2023) are employed to alleviate the damage caused by salt stress. Nonetheless, these strategies often face challenges in terms of being effective, low-cost, and simple for short-term enhancement of crop salt tolerance. In contrast, the application of plant growth regulators can effectively address this issue, yielding immediate results.

Melatonin (N-acetyl-5-methoxytryptamine, MT) was first discovered in 1958 in pineal extracts from cattle. Its structure and function are similar to those of indole-3-acetic acid (IAA), making it an important indole compound (Mannino et al., 2024). As a vital hormone within plants, melatonin participates in numerous growth and developmental processes, including the regulation of root growth, seed germination, flower organ development, leaf senescence, and fruit ripening (Muhammad et al., 2024; Khan et al., 2024a; Qari et al., 2022). Additionally, melatonin serves as an efficient antioxidant in plants, with its precursors and metabolites alleviating various abiotic stresses such as high temperatures (Mumithrakamatchi et al., 2024), low temperatures (Zhao et al., 2017), drought (Maleki et al., 2024), salinity (Khan et al., 2024b), flooding (Liu et al., 2024c), and heavy metals (Yang et al., 2023b). It achieves this through both direct mechanisms (such as scavenging reactive oxygen species and chelating heavy metals) and indirect mechanisms (including the activation of antioxidant systems, increasing the levels of osmotic regulators and antioxidants, alleviating photosynthesis inhibition, and modulating hormonal pathways) (Ahmad et al., 2023; Colombage et al., 2023). Moreover, melatonin also helps mitigate damages caused by biotic stresses such as pathogens (Hernández-Ruiz et al., 2023).

The synthesis of α-linolenic acid in plants begins with phosphatidylcholine as the initial substrate (Liu et al., 2021). This process involves the action of phospholipase A2 (PLA) and fatty acid desaturase (FAD), ultimately leading to the formation of α-linolenic acid. Subsequently, under the influence of lipoxygenase (LOX) genes, α-linolenic acid is converted into 13-hydroperoxy-9,11,15-octadecatrienoic acid (13-HPOT), the product of which is then converted to 12,13(S)-epoxy-octadecatrienoic acid (12,13-EOT) by the enzyme allene oxide synthase (AOS). 12,13-EOT is then processed to 12-oxo-phytodienoic acid (OPDA) by the action of allene oxide cyclase (AOC) (Wang et al., 2021; Du et al., 2023). OPDA exists as four distinctisomers, namely cis-(+), cis-(–), trans(+), and trans(–); of these, cis-(+)-OPDA is predominant in most plants (Zhao et al., 2014). OPR enzymes are present in two forms, OPRI and OPRII (Jang et al., 2009; Mou et al., 2019). OPRII reduces cis-(+)-OPDA to form 3-oxo-2-(29-[Z]-pentenyl) cyclopentane-1-octanoic acid (OPC 8:0), which is finally oxidized to produce JA (Wasternack and Song, 2016).

The metabolism pathway of α-linolenic acid has been confirmed to be involved in various stress responses in plants. In wheat (Triticum aestivum), researchers identified two key genes, TaAOC1 and TaOPR1, from the α-linolenic acid metabolism pathway. It was found that these genes enhance salt tolerance by regulating the critical stress-responsive transcription factor MYC2 through the jasmonic acid and abscisic acid signaling pathways (Dong et al., 2013; Zhao et al., 2014). Study shows that α-linolenic acid helps maintain membrane integrity under low-temperature stress and activates JA-induced cold defense gene expression (Hu et al., 2013; Song et al., 2019; Liu and Park, 2021). In maize (Zea mays L.), a combined analysis of transcriptomics and metabolomics has revealed that α-linolenic acid mediates different drought stress responses during the seedling and flowering stages (Zi et al., 2022). In plants, monogalactosyl-diacylglycerol (MGDG) is a major component of thylakoid membrane structures, accounting for approximately 50% of the glycerolipids in chloroplasts. The acyl chains of MGDG are primarily composed of two unsaturated fatty acids: α-linolenate (18:3) and hexadecatrienoate (16:3). Heat stress has been shown to reduce the levels of both α-linolenate (18:3) and hexadecatrienoate (16:3) in chloroplasts (He et al., 2020).

In this study, we initially treated eggplant plants under salt stress with melatonin and found that melatonin could alleviate the salt stress conditions in eggplants. Subsequently, we conducted transcriptomic and metabolomic sequencing and joint analysis on the eggplant plants subjected to salt stress, as well as those treated with melatonin and a control group sprayed with water. Our aim is to identify the molecular mechanisms by which melatonin alleviates salt stress in eggplant plants. This research provides a theoretical basis for the application of melatonin in mitigating salt stress in vegetables and for breeding eggplant varieties resistant to salt stress from a molecular breeding perspective.





Materials and methods




Plant samples

The experiment was conducted in May 2024 at the Vegetable Research Institute of the Anhui Academy of Agricultural Sciences. The eggplant variety used in this study was “Wanjia No. 8,” a main cultivated variety in Anhui Province and surrounding areas, which was independently bred by the institute. Melatonin (C12H16N2O2; CAS:73-31-4) (Yuanye, Shanghai, China), with a molecular weight of 232.28 and a purity of >98%, was used in the experiments. The seeds of “Wanjia No. 8” were disinfected and soaked to promote germination before being sown in 50-cell trays. The trays were placed in a controlled greenhouse with a temperature of 25°C and relative humidity of 70% for conventional management. Once the seedlings developed three true leaves, uniform and robust eggplant seedlings were transplanted into 10×12 cm plastic nutrient pots, which were then placed in a climate-controlled chamber for further management. When the seedlings reached four true leaves, root irrigation treatment was conducted using a saline solution with a concentration of 150 mmol·L-1, applied every two days with 60 ml of the solution per seedling. After one week salt treatment, the plants were subjected to two treatments: one with exogenous melatonin at a concentration of 200 μmol·L-1 and a control group with distilled water (the experiment followed a completely randomized block design, with the salt stress + distilled water group as the control (CK) and the salt stress + exogenous melatonin group as the treatment). Each treatment was sprayed twice daily for three consecutive days, applying 250 ml per treatment across nine seedlings, with three replicates for each treatment. Samples and related indicators were collected at 24 and 48 hours during treatment and 72 hours post-treatment (samples were taken from the fourth leaf of each plant, which were then placed in 50 ml centrifuge tubes and temporarily stored in liquid nitrogen, followed by storage in a -80°C freezer for future analysis).





Measurement of physiological indicators

The measurement of soluble proteins in eggplant plants was conducted using the BCA protein content assay kit (Solarbio, Beijing, China), following the protocol provided by the kit. For the determination of the activities of Peroxidase (POD), Superoxide dismutase (SOD), and Catalase (CAT), as well as the measurement of Malondialdehyde (MDA), the samples were homogenized in an ice bath at a ratio of tissue weight (g) to extraction volume (mL) of 1:5. The homogenate was centrifuged at 8000g for 10 minutes at 4°C, and the supernatant was collected and kept on ice until further analysis. The activities of POD, SOD, CAT and MDA were measured using the respective assay kits (Solarbio, Beijing, China) according to the provided instructions (Wang et al., 2019).

For the measurement of proline (Pro) content, tissues were first homogenized in an ice bath at the same 1:5 ratio. The homogenate was then subjected to a water bath at 95°C with shaking for 10 minutes, followed by centrifugation at 10000g for 10 minutes at 25°C. The supernatant was collected, cooled, and prepared for analysis using the proline content assay kit (Solarbio, Beijing, China), following the instructions provided. To determine soluble sugars, a sample weighing 0.1 to 0.2 grams was ground with 1 mL of distilled water to create a homogenate, which was transferred to a capped centrifuge tube and incubated in a 95°C water bath for 10 minutes (ensuring the lid was tight to prevent moisture loss). After cooling, the mixture was centrifuged at 8000g for 10 minutes at 25°C, and the supernatant was transferred to a 10 mL test tube, then diluted to 10 mL with distilled water and mixed thoroughly. The soluble sugar content was subsequently measured using the plant soluble sugar content assay kit (Solarbio, Beijing, China), following the indicated protocol (Chen et al., 2019). All samples from different stages were tested in triplicate to minimize errors.

For the measurement of electrolyte leakage, the leaves of the eggplant samples were cut into small sections (about 5 mm in length) and placed in test tubes containing 10 mL of deionized water, and the tubes were placed in a shaking incubator at 30°C for 4 h. The initial conductivity EC1 was then measured. Thereafter, all the tubes were treated in an autoclave at 121°C for 20 min, and the EC2 was measured after cooling them to room temperature. Electrolyte leakage=EC1/EC2×100%.





Transcriptomic sequencing and analysis

The samples were selected as shown below: eggplant leaves after one week of salt stress (T0); water treated of salt-stressed plants for 24h (T1_1); water treated of salt-stressed plants for 48h (T1_2); 72 hours post-water treatment (T1_3); melatonin treated of salt-stressed plants for 24h (T2_1); melatonin treated of salt-stressed plants for 48h (T2_2); 72 hours post-melatonin treatment (T2_3), three replications were set up for each sample RNA extraction, reverse transcription and cDNA library construction of samples were performed by sequencing companies (Metware, Wuhan, China). Different libraries were pooled according to the target downstream data volume and sequenced using the Illumina platform. After raw data filtering, sequencing error rate checking, and GC content distribution checking, we obtain clean reads for subsequent analysis. We used FPKM (Fragments Per Kilobase of transcript per Million fragments mapped) as a measure of transcript or gene expression level (Liao et al., 2014; Cao et al., 2024). The raw data has been uploaded to the SRA database of NCBI (PRJNA1182404).

The GO (http://www.geneontology.org/) functional database and KEGG (https://www.genome.jp/kegg/) pathway database were used to perform enrichment analysis on the differential gene set (Jiang et al., 2024). The GO and KEGG enrichment bar charts pick the 50 pathway entries with the most significant enrichment, or all of them are shown if there are less than 50 enriched pathway entries.





Metabolomic sequencing and analysis

Extraction of biological samples from eggplant leaf samples and sequencing of non-targeted metabolomics by sequencing companies (Metware, Wuhan, China), six replicates were set up for each sample. Biological samples were placed in a lyophilizer (Scientz-100F) and freeze-dried under vacuum for 63 h. The samples were ground (30 Hz, 1.5 min) to powder form using a grinder (MM 400, Retsch); Using an electronic balance (MS105Dμ), 50 mg of sample powder was weighed, and 1200 μL of -20°C pre-cooled 70% methanol water internal standard extract was added (less than 50 mg was added at the ratio of 1200 μL of extractant per 50 mg of sample).The internal standard extract was prepared by dissolving 1 mg of standard in 1 mL of 70% methanol water to prepare 1000 μg/mL master standard solution, and 1000 μg/mL master standard solution was further diluted with 70% methanol to prepare 250 μg/mL internal standard solution; The sample was vortexed once every 30 min for 30 s for a total of 6 times; after centrifugation (12000 rpm, 3 min), the supernatant was aspirated, and the sample was filtered through a microporous filter membrane (0.22 μm pore size) and stored in the injection bottle for UPLC-MS/MS analysis (Wang et al., 2024b).

The mass spectrometry downcomer raw data were converted to mzXML format by ProteoWizard, and the XCMS program was used for peak extraction, alignment, and retention time correction. Peaks with >50% missing in each group of samples were filtered and blanks were KNN-filled, and peak areas were corrected using the SVR method. The corrected and filtered peaks were used for metabolite identification by searching the laboratory’s own database, integrating public libraries, prediction libraries, and the metDNA method. Finally, substances with identification composite score of 0.5 or more and CV value of QC samples less than 0.5 were extracted, and then positive and negative patterns were merged (retaining those with the highest qualitative grade and the smallest CV value) to obtain the all_sample_data.xlsx file.





RT–qPCR analysis

RNA from all treatments and stage samples in this experiment was used for reverse transcription to cDNA. The RNA from eggplant leaves at different growth stages is derived from the RNA returned from transcriptomic sequencing samples, Reverse transcription was performed using an HiScript III 1st Strand cDNA Synthesis Kit (+gDNA wiper) (Vazyme Biotech, Najing, China). All RT–qPCR primers were designed using Beacon Designer 7 software (Supplementary Table S1). RT-qPCR was performed with a CFX96 TouchTM Real-Time PCR Detection System (BIO-RAD, USA), with three biological replicates for each sample. SemActin (Genebank: JX524155) were used as reference genes for eggplant (Gantasala et al., 2013). The relative gene expression levels were calculated using the 2−∆∆CCT method (Livak and Schmittgen, 2001).





Data collection and statistical analysis

Data presented are means ± SE of at least three independent experiments. The experimental data were analyzed by one-way ANOVA (P<0.05). Statistical analyses were performed using GraphPad Prism 8.0 software.






Results




Physiological indicators analysis of eggplant plant leaves with different treatments and stages

Through the observation of eggplant leaves subjected to different treatments at various stages, it was found that the leaves treated with exogenous melatonin and those treated with water control gradually showed alleviation and repair of damage over time. Compared to the control group treated with water, the leaves treated with melatonin exhibited significantly better recovery from damage (Figure 1A). This indicated that exogenous melatonin can effectively reduce the harm caused by salt stress in plants, facilitating their recovery to normal growth. Physiological indicators revealed that the enzyme activities of SOD, POD, and CAT in the leaves of eggplant seedlings under the exogenous melatonin treatment were higher than those in the water control treatment at the same time point, particularly at 72 hours post-treatment, where the differences reached significant levels (Figure 1B). Additionally, exogenous melatonin increased the contents of soluble sugars, soluble proteins, and proline in the leaves of eggplant seedlings, while decreasing the MDA content and electrolyte leakage under salt stress. These results suggested that exogenous melatonin may mitigate the adverse effects of salt stress on plants by enhancing antioxidant enzyme activity, reducing peroxide levels within the plant, and increasing the concentration of organic osmotic regulators (Figure 1B).
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Figure 1 | Phenotypic observations and physiological and biochemical assays of eggplant leaves. (A) Phenotypic observations of eggplant leaves after one week of salt stress (T0); water treated of salt-stressed plants for 24h (T1_1); water treated of salt-stressed plants for 48h (T1_2); 72 hours post-water treatment (T1_3); melatonin treated of salt-stressed plants for 24h (T2_1); melatonin treated of salt-stressed plants for 48h (T2_2); 72 hours post-melatonin treatment (T2_3). (B) Physiological and biochemical assay of eggplant leaves after one week of salt stress (T0); water treated of salt-stressed plants for 24h (T1_1); water treated of salt-stressed plants for 48h (T1_2); 72 hours post-water treatment (T1_3); melatonin treated of salt-stressed plants for 24h (T2_1); melatonin treated of salt-stressed plants for 48h (T2_2); 72 hours post-melatonin treatment (T2_3).





Metabolomic analysis of eggplant leaves with different treatments and stages

Firstly, we conducted a PCA analysis on the metabolomic data and observed that the PCA results for eggplant leaves under different treatments and stages exhibited clear separation. This found indicated that the metabolites of eggplant leaves undergo significant changes based on treatment conditions and growth stages. Furthermore, samples collected during the same treatment and stage clustered together in the PCA, suggesting that the metabolomic sequencing data for different samples under the same treatment and stage point exhibit strong reproducible (Figure 2A). The proportion analysis of different substances detected in the metabolomic sequencing revealed that amino acids and derivatives comprised the largest share, accounting for 20.57%. This was followed closely by benzene and substituted derivatives at 12.56% and organic acids at 12.26%. Additionally, glycerophospholipids (6.46%), alkaloids (5.5%), and alcohols and amines (5.5%) also represented significant portions of the overall composition (Figure 2B). The Venn diagram indicates that there were 818, 691, and 684 differential accurate metabolites in the comparisons of T1_1 vs T2_1, T1_2 vs T2_2, and T1_3 vs T2_3, respectively. Furthermore, a total of 292 differential accurate metabolites ware commonly shared among the three comparisons (Figure 2C). KEGG pathway analysis of T1_1 vs T2_1, T1_2 vs T2_2, and T1_3 vs T2_3 DAMs revealed significant enrichment in metabolic pathways related to α-linolenic acid metabolism, linoleic acid metabolism, and carotenoid biosynthesis (Figures 2D–F). In the classification of DAMs among T1_1 vs T2_1, T1_2 vs T2_2, and T1_3 vs T2_3, these DAMs mainly focus on amino acids and derivatives, benzene and substituted derivatives, alkaloids, glycerophospholipids (GP), and flavonoids. The analysis results indicated a strong correlation among these DAMs, with a significant proportion exhibiting positive correlations, while negative correlations ware relatively few (Figures 2G–I). This suggested that there may be a synergistic effect during the variation of these metabolites, highlighting their importance in biological functions or metabolic pathways.
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Figure 2 | Metabolomic analysis of eggplant leaves with different treatments and stages. (A) principal component analysis (PCA) analysis of eggplant leaves with different treatments and stages (B) The proportion analysis of different substances detected in the eggplant leaves. (C) The Venn diagram analysis of DAMs. (D-F) The KEGG analysis of DAMs (G-I) The classification analysis of DAMs.





Transcriptomic analysis of eggplant leaves with different treatments and stages

Similarly, our PCA analysis of the transcriptomic data revealed a clear separation among the samples from different treatments and stages. This indicated that the transcriptomic profiles of eggplant leaves exhibit significant alterations depending on the treatment and developmental stage. Furthermore, samples within the same treatment and stage clustered closely together in the PCA, suggested that the transcriptomic sequencing data for different samples at the same treatment and stage show good reproducible (Figure 3A). In the comparison of T1_1 vs T2_1, T1_2 vs T2_2, and T1_3 vs T2_3, a statistical analysis of all differential expressed genes (DEGs) revealed that T1_1 vs T2_1 had the fewest DEGs, totaling 242, of which 66 were up-regulated and 176 ware down-regulated. In contrast, the number of DEGs in T1_2 vs T2_2 significantly increased, totaling 1,412 differential genes, with 1,146 up-regulated and 266 down-regulated. In comparison to T1_2 vs T2_2, T1_3 vs T2_3 showed a significant decrease, with a total of 529 differential genes. Among these, 245 genes ware up-regulated and 284 ware down-regulated (Figure 3B). The Venn diagram indicated that there are a total of 13 common DEGs among the comparisons of T1_1 vs T2_1, T1_2 vs T2_2, and T1_3 vs T2_3 (Figure 3C). GO enrichment analysis of these DEGs revealed that they are primarily enriched in biological process and molecular function categories. Furthermore, the GO functional analysis suggested that most of these differential expressed genes are associated with responses to biotic and abiotic stresses stress (Figures 3D–F). The KEGG enrichment analysis of the DEGs from the comparisons of T1_1 vs T2_1, T1_2 vs T2_2, and T1_3 vs T2_3 showed that the DEGs are predominantly concentrated in pathways related to biosynthesis of secondary metabolites, plant-pathogen interaction, MAPK signaling pathway and plant hormone signal transduction. However, what piques our interest was another metabolic pathway, namely α-linolenic acid metabolism, which also showed significant enrichment among the differential accurate metabolites. In the comparison between T1_1 and T2_1, the number of differential expressed genes enriched in the α-linolenic acid metabolism pathway was relatively low, with only one gene identified. In contrast, in the T1_2 vs T2_2 comparison, the number of differential expressed genes associated with α-linolenic acid metabolism increases to 15. For the T1_3 vs T2_3 comparison, however, the number of differential expressed genes enriched in this metabolic pathway significantly decreased to just three (Figures 3G–I).
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Figure 3 | Transcriptomic analysis of eggplant leaves with different treatments and stages. (A) principal component analysis (PCA) analysis of eggplant leaves with different treatments and stages. (B) The up and downregulated analysis of eggplant leaves with different treatments and stages. (C) The Venn diagram analysis of DEGs. (D-F) The GO analysis of DEGs (G-I) The KEGG analysis of DEGs.





Joint metabolomic and transcriptomic analysis of eggplant leaves with different treatments and stages

The differences in fold changes between the corresponding genes and metabolites ware illustrated using a nine-quadrant diagram. Black dashed lines segment the diagram into nine quadrants, arranged sequentially from left to right and top to bottom. In this diagram, quadrants 2, 4, 6, and 8 indicated that the expression of metabolites remains unchanged, while genes ware either up-regulated or down-regulated, or gene expression remained stable. Quadrant 5 represents cases where neither genes nor metabolites showed differential expression. Quadrants 1 and 9 indicate opposite differential expression patterns between genes and metabolites, while quadrants 3 and 7 demonstrate consistent differential expression patterns for both. This indicated that within 3 and 7 quadrants, there was a positive correlation between gene expression levels and the accumulation of metabolites, which may reflect the interactions between gene regulation and metabolic pathways. In the comparison of T1_1 vs T2_1, there were fewer genes and metabolites in quadrants 3 and 7. In contrast, the comparison of T1_2 vs T2_2 showed a significant increase in the number of genes and metabolites in these quadrants compared to T1_1 vs T2_1. Additionally, T1_3 vs T2_3 exhibited a noticeable decrease in genes and metabolites in quadrants 3 and 7 when compared to T1_2 vs T2_2 (Figures 4A–C). We subsequently analyzed the KEGG enrichment of DEGs and DAMs in our combined analysis. The results indicated that the transcriptomic and metabolomic analyses in the comparisons of T1_1 vs T2_1, T1_2 vs T2_2, and T1_3 vs T2_3 all showed significant enrichment in the α-linolenic acid metabolism pathway. Notably, during the T1_2 vs T2_2 comparison, the number of differential expressed genes and metabolites enriched in the α-linolenic acid metabolism pathway was the highest (Figures 4D–F). Therefore, our subsequent research will focus on the α-linolenic acid metabolism pathway.
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Figure 4 | Joint metabolomic and transcriptomic analysis of eggplant leaves with different treatments and stages. (A-C) The differences in fold changes between the corresponding genes and metabolites. (D-F) The KEGG analysis of DEGs and DAMs.





Analysis of gene expression and metabolite content of α-linolenic acid metabolism pathway genes

We first created a metabolic pathway diagram for α-linolenic acid, α-linolenic acid metabolism begins with phosphatidylcholine as the substrate, which was catalyzed by phospholipase A2 (PLA) and fatty acid desaturase (FAD) to form α-linolenic acid. This pathway ultimately led to the synthesis of jasmonic acid precursor. Through a comprehensive analysis of the whole-genome blast and transcriptome expression data of eggplant, we identified a total of 11 candidate genes. Transcriptomic expression analysis indicated that the expression levels of these eggplant α-Linolenic acid metabolism genes ware low at T0. Some genes ware activated in terms of expression at T1_1 and T2_1 stages, such as SmeFAD, SmeLOX2, and SmeOPR, etc. The majority of genes ware significantly activated at T1_2 and T2_2, and then the expression levels started to decline at T1_3 and T2_3, except that the expression level of SmeFAD2 began to reach its peak at T1_3 and T2_3. Our studies indicated that, compared to plants sprayed with plain water, those treated with melatonin showed smaller changes in the expression of T1_1 and T2_1 (after 24 hours of treatment). However, after 48 hours of melatonin treatment, a significant increase in the expression of T2_2 was observed in comparison to T2_1 (Figure 5A; Supplementary Table S2). This found suggested that melatonin treatment can markedly enhance the expression of genes involved in α-linolenic acid metabolism, with the activation effect being significantly greater after 48 hours than after 24 hours of treatment. To validate this viewpoint, we analyzed several metabolites involved in the metabolism of α-linolenic acid. The results indicated that the metabolomic data largely support our hypothesis (Figure 5B); specifically, most substances in the α-linolenic acid metabolism pathway, such as α-linolenic acid, (9R,13R)-12-oxophytodienoic acid (OPDA), and 9(s)-HpOTrE, began to accumulate significantly during the T1_2 and T2_2 periods, followed by a decrease. Notably, the accumulation of these metabolites during the T2_2 period was significantly higher than that in the T1_2 period. Additionally, (+)-7-iso-Jasmonic acid started to accumulate during the T1_1 and T2_1 stages, reaching a peak in T1_2 and T2_2 before beginning to decline, with the accumulation of (+)-7-iso-Jasmonic acid in T2_2 being significantly higher than that in T1_2. However, the accumulation of 13(S)-Hydroperoxylinolenic acid (13(S)-HPOT) exhibited no discernible pattern (Figure 5B; Supplementary Table S3).
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Figure 5 | Analysis of candidate gene expression and metabolite accumulation in the α-linolenic acid metabolism pathway. (A) The candidate gene expression in the α-linolenic acid metabolism pathway. (B) The metabolite accumulation in the α-linolenic acid metabolism pathway.





RT-qPCR analysis of candidate genes of α-Linolenic acid metabolism pathway

Based on the previous transcriptomic data, we verified the general patterns of gene expression changes in the α-linolenic acid metabolism pathway under melatonin and water control treatments following salt stress. To confirm these results, we conducted RT-qPCR analysis. The results indicated that the trends in relative expression levels of the candidate genes from the RT-qPCR were generally consistent with the transcriptomic data (Figure 6). With the exception of a small number of genes that did not show consistent expression patterns at T0, T1_1, and T1_2, most of the other genes exhibited an increase in expression levels after 24 hours of treatment with melatonin and water control, reaching peaks at T1_2 or T2_2 before beginning to decline. Furthermore, nearly all candidate genes in the pathway showed a significant activation trend in expression levels compared to the water control group after 48 hours of melatonin treatment, except for SmeFAD2, which reached its peak expression at T1_3 and T2_3.
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Figure 6 | RT-qPCR validation of candidate genes for the α-linolenic acid metabolic pathway.






Discussion

Salt stress induces secondary stresses in plants, including osmotic stress, ionic imbalance, and oxidative damage, by affecting water absorption, stomatal opening, and ion equilibrium (Zhou et al., 2024). Oxidative damage is caused by the excessive accumulation of reactive oxygen species (ROS) induced by salt stress, which disrupts the stable levels of ROS within cells. This results in or exacerbates lipid peroxidation of cell membranes, generating by-products such as malondialdehyde (MDA) and similar compounds, leading to severe damage to the integrity of plant cell membranes and significantly increasing electrolyte permeability. This has a profound impact on plant growth and development. Within plants, the clearance of ROS primarily relies on enzymatic and non-enzymatic antioxidants. To mitigate oxidative damage, plants can restore the levels of endogenous antioxidants or directly detoxify excess ROS to counteract oxidative stress. Osmotic stress and ion imbalance occur when high salinity conditions make it difficult for plant roots to absorb water, hindering the uptake of available moisture and nutrients. This leads to cellular dehydration and a reduction in turgor pressure. Simultaneously, excessive accumulation of sodium ions within the plant can cause ionic toxicity, disrupting normal physiological and metabolic processes, which severely impedes plant growth and development. To alleviate osmotic stress, plants primarily enhance the accumulation of osmotic regulatory substances, such as soluble proteins, soluble sugars, and proline, to mitigate the damage caused by salt stress (Liu et al., 2023; Aizaz et al., 2024; Chen et al., 2024; Liu et al., 2024b). Exogenous melatonin, recognized as an effective antioxidant, plays a significant role in alleviating salt stress in plants (Ahmad et al., 2023). Research has shown that exogenous melatonin can enhance photosynthetic efficiency and antioxidant enzyme activity, increase the content of osmotic regulatory substances, and reduce peroxide levels within the plant, thereby mitigating the damage caused by salt stress in crops such as cotton (Gossypium hirsutum) (Duan et al., 2022), clover (Trifolium pretense) (Liu et al., 2024a), potato (Solanum tuberosum) (Efimova et al., 2023), maize (Zea mays) (Wang et al., 2024a), rice (Oryza sativa) (Ubaidillah et al., 2024), and honeysuckle (Lonicera japonica) (Song et al., 2024). This intervention promotes the restoration of normal growth in plants. The results of this study are consistent with previous research. It was found that the application of exogenous melatonin effectively promoted the recovery of normal growth in eggplant seedlings under salt stress. This treatment significantly enhanced the activity of antioxidant enzymes in the leaves and increased the content of osmoregulatory substances. As a result, the antioxidant capacity of the eggplant seedlings was effectively improved, lipid peroxidation levels were reduced, membrane integrity was maintained, and the tolerance of eggplant seedlings to salt stress was enhanced.

Numerous previous studies have indicated that the α-linolenic acid metabolism pathway is involved in various biological and abiotic stress responses (Dar et al., 2017). In rice, osa-miR162a is induced in response to brown planthopper (BPH) attack during the seedling stage. Gas chromatography/liquid chromatography-mass spectrometry analysis suggests that osa-miR162a regulates rice resistance to BPH through the α-linolenic acid metabolism pathway (Chen et al., 2023). Researchers employed physiological methods to analyze the morphological and physiological characteristics of 14 pumpkin (Cucurbita moschata) varieties under low-temperature stress at different stages. The findings, obtained through transcriptomic analysis, DCMU (Diuron) assays, chlorophyll fluorescence detection, as well as the analysis of unsaturated fatty acid composition in leaves and relative mRNA abundance determined by qRT-PCR, confirmed that the biosynthesis of α-linolenic acid is associated with the cold tolerance of pumpkins (Liu et al., 2021). In the Maize leaves, under seedling drought and flowering drought conditions, there are 61 and 54 enriched pathways, respectively. Among these, 13 and 11 are identified as significant key pathways, primarily associated with the biosynthesis of flavonoids and phenylpropanoids, glutathione metabolism, and purine metabolism. Further research has revealed a notable difference in the α-linolenic acid metabolic pathway between the two treatments, where 10 differential expressed genes and 5 differential accurate metabolites have been identified in this pathway (Zi et al., 2022). In this study, similar conclusions were drawn from transcriptomic and metabolomic analyses of eggplant leaves subjected to salt stress, with melatonin application compared to a water control. The DEGs between melatonin-treated and water-treated eggplant leaves were mainly concentrated in pathways such as biosynthesis of secondary metabolites, plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Furthermore, we observed significant differences in the α-linolenic acid metabolic pathway between the two treatments, where a total of 15 DEGs and 5 DAMs enriched were identified between T1_2 and T2_2 in this pathway.

Genes involved in the metabolism of α-linolenic acid have been extensively reported to be associated with stress resistance in plants. Notably, omega-2 fatty acid desaturase (FAD2) plays a critical role in various stress responses, including cold and salt stress (Falcone et al., 2004; Tang et al., 2005; Rodríguez-Vargas et al., 2007). Phospholipase A2 (PLA2) has been shown to respond to both biotic and abiotic stresses in plants. Additionally, research indicates that PLA2 plays a crucial role in pollen development and germination in Arabidopsis (Kim et al., 2011). In previous studies, researchers identified the cold- and pathogen-responsive AOC2 gene from Medicago sativa subsp. falcata (MfAOC2) and its homolog, MtAOC2, from Medicago truncatula. The heterologous expression of MfAOC2 enhanced the cold tolerance of M. truncatula and its resistance to the fungal pathogen Solanrhizoctonia. Compared to wild-type plants, those expressing MfAOC2 accumulated higher levels of jasmonic acid (JA) and exhibited increased transcription levels of JA-responsive downstream genes. In contrast, mutations in MtAOC2 resulted in reduced cold tolerance and disease resistance in the plants. The aoc2 mutants showed lower JA accumulation and diminished transcription levels of JA-responsive downstream genes compared to the wild-type plants (Yang et al., 2023a). Previous studies have identified a drought and salt stress resistant gene GhACX3 in cotton, under drought and salt stress conditions, the seed germination rate of Arabidopsis overexpressing GhACX3 was faster than that of the control, and the survival rate of the plants was also higher than that of the control plants. In contrast, silencing the GhACX3 gene in cotton plants led to symptoms of oxidative stress and reduced root length (Shiraku et al., 2021). In sugarcane (Saccharum spp.).Transient overexpression of the ShAOS1 gene in Nicotiana benthamiana could promote hydrogen peroxide accumulation and induce immune-related genes expression. Stable overexpression of the ShAOS1 gene enhanced the resistance of transgenic N. benthamiana plants to Fusarium solani var. coeruleum through the modulation of lots of transcription factors and protein kinases, a series of stimulus response processes and signaling pathways (Sun et al., 2023).

In tomatoes, it has been confirmed that the expression of the SlMFP gene can be regulated by treatments such as ABA, MeJA, darkness, NaCl, PEG, UV, cold, heat, and H2O2. This demonstrates that the SlMFP gene is involved in the development of flower organs and the response to abiotic stresses in tomatoes (Li et al., 2024). In Arabidopsis, LOX6 is involved in the basal production of 12-OPDA in both leaves and roots. Mutants lacking this function are sensitive to drought. The expression of LOX3 is strongly induced by salt treatment, and mutants lacking the LOX3 gene exhibit sensitivity to salt stress at various stages of germination and growth. However, the application of MeJA can rescue this sensitivity, suggesting that JA might mediate the response to salt stress (Grebner et al., 2013). ScOPR2, a tissue-specific OPR cloned from sugarcane, is located in the cytoplasm and cell membrane. It responds positively to stressors such as salicylic acid (SA), methyl jasmonate, and the pathogen Sporisorium scitamineum. Furthermore, both its transient and stable overexpression enhance the resistance of transgenic plants to pathogen infections (Sun et al., 2024). In this study, we identified a total of 11 genes that may confer salt stress resistance in eggplant through blast analysis of the eggplant genome and expression level analysis of transcriptome data, combined with RT-qPCR. These genes share a common characteristic: their expression levels are significantly activated after 48 hours of melatonin treatment. Therefore, we conclude that melatonin may be a key hormone in activating the α-linolenic acid metabolism and can enhance salt stress resistance in eggplant through this metabolic pathway.

In conclusion, this study investigated the alleviating effects of melatonin on eggplant plants subjected to salt stress by spraying melatonin on the plants after salt treatment. The combined transcriptomic and metabolomic analysis revealed that melatonin activates the anti-stress metabolic pathways as well as the α-linolenic acid pathway in eggplant plants, thereby enhancing their ability to resist salt stress. This research provides a theoretical foundation for the application of melatonin in the daily production of eggplants, especially in environments characterized by stress resistance.
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Adventitious root (AR) formation is a bottleneck for vegetative proliferation. In this study, 13 AHP genes (MdAHPs) were identified in the apple genome. Phylogenetic analysis grouped them into 3 clusters (I, II, III), with 4, 4, and 5 genes respectively. The 13 MdAHPs family members were named MdAHP1 to MdAHP13 by chromosome positions. The physicochemical properties, phylogenetic relationship, motifs, and elements of their proteins were also analyzed. The amino acid quantity varied from 60~189 aa, isoelectric point lay between 4.10 and 8.93, and there were 3~7 protein-conserving motifs. Excluding MdAHP6, other members’ promoter sequences behaved 2-4 CTK response elements. Additionally, the expression characteristics of MdAHPs family members at key stages of AR formation and in different tissues were also examined with exogenous 6-BA and Lov treatments. The results showed that MdAHP3 might be a key member in AR formation. GUS staining indicated that the activity of the MdAHP3 promoter was also significantly enhanced by CTK treatment. The protein interactions of MdAHP3/MdAHP1 and MdAHP3/MdAHP6 were verified. Compared with WT, 35S::MdAHP3 transgenic poplars inhibited AR formation. The above experimental results suggested that MdAHP3, as a key family member, interacts with MdAHP1 and MdAHP6 proteins to jointly mediate AR formation in apple rootstocks.
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Introduction

Apple (Malus domestica Borkh.) is one of the most commercially significant fruits worldwide. Currently, dwarfing apple rootstocks are extensively utilized, which is beneficial for fruit tree growth, such as enhancing tree resistance. Dwarfing dense planting is also an essential indicator of the development of the modern apple industry globally. Nevertheless, apple rootstock breeding programs have not been well established in China (Li et al., 2021). In production, apple dwarf rootstock breeding mainly employs grafting, cuttings, and tissue culture, the induction of ARs is the key to rootstock breeding (Shi et al., 2021). AR formation is an essential aspect of apple breeding. The emergence of ARs expands the root system of plants and enables plant and cell regeneration. They are widely used in plant cuttings and tissue culture. Therefore, biological research on AR formation in apple rootstocks is an important field of developmental biology. The molecular regulation mechanism of AR formation and the identification of key members of relevant candidate functional genes are of great theoretical significance for guiding the genetic improvement of AR formation and developing asexual rootstock breeding technology.

The plant’s root system comprises primary roots, lateral roots, and ARs. Primary roots are generated during embryogenesis. Lateral roots and ARs are initiated and developed by differentiated cells after the embryo stage. Lateral roots develop from existing roots, while ARs arise from tissues such as the stem or leaves of a plant (Li et al., 2019). AR formation can occur during normal plant development and can reproduce naturally through nutritional structures. The occurrence of ARs can also be the plant’s response to environmental and physiological stimuli, such as darkness, floods, and other mechanical injuries (Geiss et al., 2009; Bellini et al., 2014). There are two ways to generate ARs: one is the direct organogenesis of self-cells (such as the formation layer, cortex, pericycle or vascular bundle), which involves cell redifferentiation; the other is formed indirectly from the callus and requires external mechanical injury stimulation (Hartmann and Kester, 1990). In general, direct pathways mostly occur in species that are easy to root, while indirect pathways mostly occur in species that are difficult to root. AR formation is generally divided into three developmental stages: induction, germination, and elongation (Li et al., 2009). In Arabidopsis thaliana, ARs can occur from pericycle cells in the xylem of intact hypocotyls (Gutierrez et al., 2012; Sukumar et al., 2013). Explants of tobacco leaves produce roots in parenchyma cells near the vascular bundle (Harbinder and Dhaliwal, 2003). AR formation depends on numerous factors, such as genetic background, developmental stage, hormones, and other internal as well as external factors (Geiss et al., 2009; Costa et al., 2013). It is mainly determined by genotype and regulated by various endogenous hormones and environmental factors. Among them, cytokinin (CTK) and auxin (IAA) interact at the metabolic signaling and transport levels to regulate AR formation, and their effects are antagonistic (Aloni et al., 2006; Zhang et al., 2022; Chandler and Werr, 2015). Additionally, the ability of AR formation differed significantly among different apple rootstocks, and CTK significantly inhibited AR formation in apple rootstocks under histoponic conditions (Mao et al., 2019), suggesting that CTK plays a crucial role in AR formation in apple rootstocks.

Cytokinin (CTK) is achieved through a two-component signaling pathway that interacts synergistically with other hormones in regulating plant growth and development as well as plant responses to various stresses (Li et al., 2022). Cytokinins are also significant hormones that regulate the architecture of the root system. Exogenous cytokinin induces the elongation of root hairs, whereas lines overexpressing cytokinin oxidase display a short-hair phenotype (Monden et al., 2022). As one of the key phytohormones synthesized in the root, cytokinin (CTK) regulates many significant plant processes by controlling cell division and tissue differentiation (Riefler et al., 2006; Yan et al., 2008).

In the multistep two-component system, a histidine-containing phosphotransmitter (HPt) mediates the phosphotransfer from an activated membrane histidine kinase receptor to a response regulator in the nucleus. In Arabidopsis thaliana, 8 sensor histidine kinases (AHKs), 5 HPt proteins (AHPs), and 22 response regulators (ARRs) have been identified. A number of independent lines of evidence indicate that the phosphorelay from AHK through AHP to ARR is involved in plant signaling networks (Hutchison and Kieber, 2002; Hwang and Sheen, 2001). Among them, the AHP family plays an important role in the entire cytokine signaling process, which is now also reported in the model plants. The AHPs are a family of six related proteins, including five (AHP1-AHP5) that contain the conserved amino acids required for functioning as a histidine phosphotransfer protein (HPt), and one (APHP1/AHP6) that is considered a pseudo-AHP, as it lacks the conserved His residue that is the target of phosphorylation (Suzuki et al., 2000; Mahonen et al., 2006). In addition, AHP1, AHP2, and AHP4 accumulate in the nucleus in response to cytokinin treatment (Hwang and Sheen, 2001; Yamada et al., 2014), indicating that the AHPs respond to cytokinin in plant cells. CTK signaling transduction, AHP2, AHP3, AHP5 of AHP in Arabidopsis were partially redundant positive regulators of CTK signal by reduced growth of the hypocotyl and root (Zhao et al., 2021). Additionally, recent studies have unveiled the crucial role of AHP3 in governing root development in Arabidopsis thaliana (Hutchison et al., 2006; Wang et al., 2018). Hence, it is hypothesized that MdAHP3 in apples might act as a key element in ARs formation. Nevertheless, additional exploration regarding the impact of AHP3 on the root system in apples is requisite.

To date, the most direct evidence that HPts mediate cytokinin signaling in plants has come from experiments using cultured periwinkle cells. In these experiments, the cytokinin inducibility of a response regulator was reduced when a His phosphotransfer protein was silenced using RNA interference (Papon et al., 2004). Further evidence for the role of the AHPs has come from the observation that overexpression of AHP2 results in a slight increase in sensitivity to cytokinin in root elongation assays (Suzuki et al., 2000). By contrast, recent genetic analysis indicates that APHP1/AHP6, a predicted pseudo-AHP, acts as a negative regulator of the cytokinin response pathway, most likely through a dominant negative mechanism. In general, a large number of studies have shown that AHPs play an important role in regulating plant growth and development. However, current work on the analysis and identification of the AHP family has mainly focused on model plant species such as Arabidopsis and tomato (Mahonen, 2006). The molecular mechanism of AHP family members in apples related to plant development is unclear, especially as the study of MdAHPs regulating AR formation in apple rootstocks has not been reported.

The molecular mechanism of AHP family members in apple involved in plant development is unclear, especially regarding the regulation of AR formation by MdAHPs in apple rootstocks. Currently, the mechanism of CTKs in AR formation is undefined, and the cellular mechanisms for root regeneration regulation are lacking. In this study, we systematically identified apple AHP family members, analyzed their evolutionary relationships, gene structure, properties, protein network prediction, and tissue expression. The expression patterns of MdAHPs in different tissues (root, xylem, stem, and leaf) and at critical AR formation stages in ‘M9-T337’ seedlings under exogenous treatment were verified. Additionally, a key member, MdAHP3, was selected and its function characterized. The results provide a theoretical basis for clarifying the MdAHPs family’s structure and functions, and for subsequent studies on AR formation and regulatory networks in apple rootstocks.





Materials and method




Identification and phylogenetic analysis of MdAHPs in apple (Malus Domestica Borkh.)

The amino acid sequences of AHPs in Arabidopsis were download from the information resource website (TAIR, https://www.arabidopsis.org/), and used as a query to search against the Genome Database for Rosaceae [apple genome (GDDH13 V1.1; https://www.rosaceae.org/] to predict candidate MdAHPs family members. Proteins with a non-significant E-value and those with incomplete or lacking domains were removed. The 13 MdAHP genes obtained were designated MdAHP1 to MdAHP13 based on their chromosomal locations, as in previous study (Xu et al., 2015; Cao et al., 2024; Jiang et al., 2024).

The protein sequences of Arabidopsis and apple AHPs were aligned by the ClustalW program with default parameters. The phylogenetic tree among the apple and Arabidopsis AHP proteins was constructed with the neighbor-joining method using the MEGA 6.0 program, with the parameter settings of ‘P-distance’, ‘Complete Deletion’, and 1000 bootstrap replicates. The physicochemical characteristics of proteins, such as isoelectric point, molecular weight, instability index, major amino acids, and aliphatic index, were predicted with the ExPASy program (http://web.expasy.org/protparam/) (Cao et al., 2024; Jiang et al., 2024).





Gene structure, conserved motif, and promoter sequence analysis

Login to the online MEMES database (http://meme-suit.org/tools/meme), and download the conserved motifs of AHP proteins from this database. Set the number of motifs parameter to 10, and keep the rest of the parameters as default. Obtain the 1,500-bp genomic DNA sequence upstream of the start codon (ATG) of each MdAHPs gene from the apple genome sequence. Identify the cis-elements in the promoters using the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).





Genes expression characterization analysis in different genotypes of apple and protein function linkage network prediction

The gene expression of different tissues (flowers, fruits, seedlings, seeds, leaves, roots, and stems) of 10 different genotypes (M14, M20, M49, M67, M74, GD, X4102, X8877, X442×X2596, and X3069×X922) was downloaded from GEO data (http://www.ncbi.nlm.nih.gov/geo/; login number: GSE42873), and the expression heat map was plotted using HEML1.0 software. The interaction networks of 13 MdAHP proteins were analyzed using protein patterns with high specificity from the String Protein Interaction Database (http://string-db.org/), and the species parameters were selected for A. thaliana.





Plant materials and treatments

Samples were collected from ‘M9-T337′ apple rootstock plantlets grown in tissue culture at the Hebei University of Engineering, Handan, China. The morphologically uniform cuttings were maintained under 16 h of light at 25 ± 1°C, followed by 8 h of dark at 15 ± 1°C. The stem cuttings were divided into three groups. The first group of morphologically uniform micro-cuttings were treated with indole-3-butyric acid (IBA), which is widely used to promote AR formation. The rooting medium was composed of 1/2 MS, 1 mg.L− 1 IBA, 25 g.L−1 sugar, 7.5 g.L−1 agar, and pH 5.8; it was named control. The second group of morphologically uniform micro-cuttings were treated with IBA and 6-BA, the medium was composed of 1/2 MS, 1 mg.L−1 IBA, 0.5 mg.L−1 6-BA, 25 g.L−1 sugar, 7.5 g.L−1 agar, and pH 5.8; it was named IBA+ 6-BA treatment. The third group of morphologically uniform micro-cuttings were treated with IBA and Lovastatin (CTK synthetic inhibitor); the medium was composed of 1/2 MS, 1 mg.L−1 IBA, 0.5 mg.L−1 lovastatin, 25 g.L−1 sugar, 7.5 g.L−1 agar, and pH 5.8; it was named IBA+Lov treatment.

In the current study, the sampling time points of the samples were set as follows: 1, 3, 7, 11, and 16 d. Sixty randomly selected plants at each time point were similar in growth. The stem cuttings were sampled, and three biological replicates were set at each sampling time point. The sampling site was 0.3 - 0.5 cm at the base of the stem. Additionally, different tissue parts (side roots, stems, leaves, flowers, fruits, flower buds, and axillary buds) of ‘M9-T337’ apple rootstock were also collected in the germplasm resource garden of the ‘Yangling Branch of the National Apple Improvement Center’ for subsequent tissue-specific expression analysis. After being quickly frozen in liquid nitrogen, all the above samples were stored at − 80°C until use.





Extraction of plant DNA and RNA, cDNA synthesis, and quantitative real-time PCR

RNA was extracted using the CTAB method (Li et al., 2021; Yan et al., 2022). DNA was extracted using ‘M9-T337’ apple rootstock tissue culture seedling leaves. 1.2% agarose gel electrophoresis (200 V, 400 mA, 80 W, 15 min) and a micro-UV spectrophotometer (Thermo Nano Drop 2000, USA) were used to detect the quality of the extracted RNA and DNA. One microgram of total RNA was used as the template for first-strand cDNA synthesis, using the PrimeScript RT Reagent kit (Takara, Shiga, Japan) following the manufacturer’s instructions.

The expression patterns of MdAHP1 to MdAHP13 were examined by RT-qPCR. Primer pairs for quantitative real-time PCR (RT-qPCR) were designed using Primer Premier 6.0 (Premier Biosoft, Palo Alto, CA, USA) (Supplementary Table 1). RT-qPCR was conducted as described in previous research (Jia et al., 2020; Xing et al., 2015). An apple ACTIN gene was used for normalization. Each samples consisted of three biological and technical replicates. The 2− ΔΔCt method was used to calculate the relative expression levels (Livak and Schmittgen, 2001).





Plasmid reconstruction and genetic transformation

The full-length cDNA of MdAHP3 was cloned into the ‘M9-T337’ and pCAMBIA2300 vectors to construct overexpression vectors, which were then driven under the CaMV 35S promoter. Additionally, a 1.5-kb promoter fragment of the ProMdAHP3::GUS vector was amplified and inserted into the pCAMBIA1381 vector containing the GUS reporter gene.

To obtain transgenic poplars, the 35S::MdAHP3-GFP construct vectors were transformed into the GV3101 strain and subsequently introduced into poplar (Populus tomentosa Carrière) using the A. tumefaciens-mediated leaf disk method (Shikakura et al., 2022). Transgenic lines were screened with 100 mg.L−1 kanamycin. The pBI121–35S::GUS and ProMdAHP3::GUS fusion constructs were instantaneously transformed into apple leaves that had grown for 5 weeks and were cultivated in the shade for 48 h. Different combinations of apple leaves were treated with water (as the control) and 6-BA (100 μmol.L−1). 5-Bromo-4-chloro-3-indolyl-β-glu-curonide (X-Gluc) was employed as a substrate for the GUS staining observation test (Shikakura et al., 2022).





Yeast two-hybrid screening and confirmation

Y2H studies were carried out in accordance with the Yeast maker Yeast Transformation System 2 protocol (Clontech, Palo Alto, CA, USA). The pGAD424-MdAHP1 and pGBT9-MdAHP3 plasmids were co-transformed into Y2H Gold (Clontech, Palo Alto, CA, USA), and were then grown on the selection medium supplemented with SD base/-L/-T (SD base/-Leu/-Trp), followed by the medium supplemented with SD base/-L/-T/-H/-A (SD base/-Leu/-Trp/-His/-Ade), with or without 5-bromo-4-chloro-3-indolyl-α-d-galactopyranoside (X-α-Gal) to determine any interactions between MdAHP1 and MdAHP3. The primers utilized for vector construction are listed in Supplementary Table 1.





Bimolecular fuorescence complementation assay

The full-length coding sequences of MdAHP1 and MdAHP3 were respectively inserted into the 35S::pSPYNE-nYFP and 35S::pSPYCE-cYFP vectors. Subsequently, the resultant constructs were transformed into the Agrobacterium strain GV3101. Thereafter, different combinations were mixed and transformed into Nicotiana benthamiana leaves and cultured at 23°C for 48 h. YFP fluorescence was detected by a confocal laser-scanning microscope with excitation at 488 nm (Zeiss LSM 510 Meta, Jena, Germany). The primers utilized for BiFC are listed in Supplementary Table 1.





Statistical analysis

Data were subjected to analysis of variance, and the means were compared using Student’s t-test at the 5% significance level. The SPSS 11.5 software (SPSS, Chicago, IL, USA) was employed for data processing. Figures were generated using SigmaPlot 10.0 (Systat Software, Inc.).






Results




Genome-wide identification of arabidopsis and apple MdAHP genes

Eight AHP genes were previously identified and reported in the Arabidopsis thaliana (A. thaliana) genome, namely AHP1, AHP2/AHP2-1, AHP3, AHP4, AHP5, AHP6, and DAHP2. In this study, to elucidate the AHP genes in apple, we took the protein sequences of the eight AtAHP members in A. thaliana as a query basis to search for apple genome family members via BLASTP. After manual inspection and screening for confirmation with the NCBI conserved domain database, 13 candidate MdAHP genes were obtained (Table 1). The 13 MdAHP genes were situated on 12 chromosomes in the apple genome. Among them, chromosome 15 encompassed two genes, while chromosomes 2, 3, 4, 8, 9, 11, 12, 13, 14, 16, and 17 each harbored a single gene (Table 1). Additionally, multiple sequence alignment indicated that the majority of the MdAHP proteins shared the common four conserved domains (Figure 1). Among them, the MdAHP4 protein sequence was the longest, containing 189 amino acids; the MdAHP1 protein sequence was the shortest, consisting of 60 amino acids; the protein sequences of other MdAHPs family members were of lengths ranging between those of MdAHP1 and MdAHP4 (Figure 1).

Table 1 | Characteristics of the AHPs gene families in Arabidopsis thaliana and Apple. Chr, Chromosome; CDS, Coding Sequence.


[image: Table showing gene information. Columns include Name, Gene ID, Location, CDS (bp), and Peptide (aa). Rows list values for genes like AHP1 to MdAHP13, covering chromosomes, coding sequences, and peptide lengths.]
[image: Phylogenetic tree and sequence alignment of MdAHP proteins, categorized into three classes. The tree displays evolutionary relationships, with branches labeled by Class I (red), Class II (green), and Class III (blue). The sequence alignment highlights conserved regions using different colors, showing similarities and variations among the sequences.]
Figure 1 | Multiple sequence alignment of MdAHPs proteins.





The MdAHP family genes characterization analysis

The protein characteristics of MdAHPs were analyzed by ExPASy portal, encompassing molecular weight, isoelectric point, grand average of hydropathicity, instability index, major amino acid content, and aliphatic index (Table 2). The molecular weights of the analyzed MdAHP proteins ranged from 7,024.79 Da (MdAHP1) to 18,339.70 Da (MdAHP3). The molecular weights of the MdAHP proteins were less than 13,000 Da, indicating that MdAHP constitutes a group of micro-molecule proteins (Table 2). The isoelectric points (pI) of the MdAHP proteins ranged from 4.10 (MdAHP1) to 8.93 (MdAHP5), with MdAHP5 and MdAHP13 proteins being basic and the remainder being acidic (Table 2). The instability index values of the MdAHP proteins ranged from 28.96 (MdAHP8) to 61.14 (MdAHP10). Among them, MdAHP1, MdAHP4, MdAHP5, MdAHP9, MdAHP10, MdAHP11, and MdAHP13 exceeded 40, and all the aforesaid proteins were regarded as unstable (Table 2). The aliphatic index (AI) of the MdAHP proteins ranged from 59.27 (MdAHP5) to 96.76 (MdAHP9). Additionally, the hydrophilic index (GRA) of the MdAHP proteins ranged from 0.096 (MdAHP9) to 0.946 (MdAHP5), with the MdAHP9 protein being the least hydrophilic and the MdAHP5 protein being the most hydrophilic (Table 2).

Table 2 | Amino acid compositions as well as physical and chemical characteristics of MdAHP proteins.


[image: Table listing properties of 13 MdAHP genes. Columns include Name, Gene Locus, GRAVY, CDS in base pairs, e in amino acids, Molecular Weight, pI, Instability Index, and Aliphatic Index. Specific values are provided for each gene.]




Phylogenetic relationships and structure analysis among MdAHP genes

To elucidate the evolutionary relationships among MdAHP proteins, a phylogenetic tree was constructed using 13 MdAHP proteins identified from apple and 8 AtAHP protein sequences from Arabidopsis (Figure 2). Based on the phylogenetic tree, the protein sequences were categorized into three groups: class I, class II, and class III. Class I comprised 5 proteins, class II contained 8 proteins, and class III incorporated 8 proteins (Figure 2). Among them, MdAHP3, MdAHP7, MdAHP8 and MdAHP12 presented higher similarity to AHP1 in Arabidopsis; MdAHP2 and MdAHP6 in apple exhibited higher similarity with AHP2, AHP3, AHP5 in Arabidopsis; MdAHP9 and MdAHP13 in apple displayed higher similarity to AHP6 in Arabidopsis; MdAHP1, MdAHP4, MdAHP5, MdAHP10 and MdAHP11 manifested higher similarity with AHP4 in Arabidopsis (Figure 2). The higher similarity among these genes implies that they might have similar functions.

[image: Phylogenetic tree illustrating gene classification into three classes: Class II (green), Class I (red), and Class III (blue). Each node is labeled with gene identifiers and symbols: red circles and blue triangles. Bootstrap values are placed at branching points.]
Figure 2 | Phylogenetic analysis of the proteins in apple and Arabidopsis AHPs. Triangles and circles respectively indicate the proteins of apple and Arabidopsis.

The Gene Structure Display Server was employed to exhibit the exon–intron structure based on the annotated apple genome. All the members of the MdAHP family contained 2 to 5 introns. The number and distribution of introns for the MdAHP genes were rather conserved within each class (Figure 3A). For instance, Class I, which included MdAHP3, MdAHP7, MdAHP8, and MdAHP12, was highly conserved and consisted of five introns and six exons (Figure 3A). Nevertheless, despite the genes MdAHP1 and MdAHP11 demonstrating high similarity in protein sequences, the distribution and location of exons were distinct (Figure 3A). These disparities suggested that the two genes may had functionally diverged during evolution. However, differences in gene structure, apart from protein sequences, may not simply be equivalent to functional divergence, still need further study.

[image: Evolutionary phylogenetic trees labeled A and B. Diagram A shows a tree with MdAHP gene classifications, featuring classes I, II, and III, and a gene structure diagram with color-coded CDS, UTR, and introns. Diagram B presents a similar phylogenetic tree overlaid with motifs labeled Motif 1 to Motif 10 in different colors, with a corresponding legend listing motif sequences.]
Figure 3 | Analysis of the MdAHP gene structure. (A) An unrooted neighbor-joining tree was constructed based on the sequences of MdAHP proteins and the analysis of exon–intron composition. (B) the presented results are those of the protein motif analysis of MdAHP family members.

Conserved motif analysis disclosed that the quantity of conserved motifs of the 13 MdAHP genes in apple varied from 3 to 7. There were only 3 conserved motifs for MdAHP1. MdAHP3 and MdAHP7 possessed 7 conserved motifs, whereas the rest of the MdAHP members had between 4 and 6 conserved motifs. (Figure 3B).





Analysis of the expression pattern of MdAHPs in different of tissue and genotypes apple

To initially validate the prediction results and explore the expression of the MdAHPs gene family in different organs, the gene expression patterns of different tissues (flowers, fruits, seedlings, seeds, leaves, roots and stems) from ten different hybrids (M14, M20, M49, M67, M74, GD, X8877, X4102, X4442×X2596 and X3069×X922) are downloaded from the GEO database. The expression of the MdAHP family genes in different tissues is shown in Figure 4, and 13 MdAHP genes are found to be differentially expressed in different tissues. It can be found from the results that all 13 MdAHP family genes show relatively low expression in GD seedlings, X4102 seedlings, GD and X8877 roots, X4442X2596 seeds, and X3069X922 seeds, while they show relatively high expression in M49 leaves, M74 flowers, M20 fruits and M74 harvest fruits (Figure 4). In addition, their expression is between the former two groups in M67 flowers, M14 leaves, M74 fruits, M20 harvest fruits, X8877 stems and GD stems (Figure 4). Based on the above results, it is known that MdAHP3, MdAHP7 and MdAHP13 show the most significant differences in expression in different varieties and tissues (Figure 4). This also indicates that these genes may have potential functions in regulating the development of different organs. These results also provide a basis for further studies on the functional analysis of MdAHP genes.

[image: Heat map of gene expression data for various plant tissues. Rows represent different genes labeled MdAHP1 to MdAHP13, and columns represent tissues like Leaf-M49 and Flower-M74. Red indicates high expression, green indicates low. A blue dendrogram displays hierarchical clustering of the samples.]
Figure 4 | The expression pattern of the MdAHP gene in different organs of apple varieties. The different organs encompass leaf, flower, fruit, stem, seedling, root, and seed; the apple varieties comprise M49, M74, M20, M67, M14, X8877, GD, X4102, X8877, X4442×X2596, and X3069×X922.





Effect of phytohormone treatments on MdAHP expression during AR formation

To assess the potential effects of cytokinins on MdAHP expression during AR formation in apple, the expression patterns of each gene were measured at the stages of 1 d, 3 d, 7 d, 11 d, and 19 d in “M9-T337” apple rootstock seedlings through IBA, IBA + 6-BA, and IBA + Lov treatments respectively. The sole IBA treatment promoted ARs formation, while the treatment of IBA and 6-BA inhibited ARs formation. In addition, Lovastatin (Lov) as a cytokinin synthesis inhibitor, when combined with IBA, could further promote the ARs formation. Through transcriptome data analysis, MdAHPs family members were screened, and their expression patterns were analyzed by heatmap clustering (Supplementary Figure 1). Furthermore, the expression characteristics of MdAHPs family gene members were analyzed by RT-qPCR (Figure 5). In terms of the general expression trends, they can be classified into five categories. Category 1: Under all three treatments, the expression of MdAHP1 peaked at 3 d. Additionally, compared with IBA and IBA + 6-BA treatments, it was significantly down-regulated at 1 d and 3 d by IBA + 6-BA treatment (Figure 5). Category 2: under the three treatments, the expression levels of MdAHP2, MdAHP5, MdAHP8, and MdAHP10 were low at stages of 1 d, 3 d, 7 d and 11 d; while the expression levels of MdAHP2 and MdAHP8 under IBA+6-BA treatment was significantly higher than that of IBA and IBA+Lov treatments at 19 d; the expression levels of MdAHP5 and MdAHP10 under IBA+6-BA treatment were significantly lower than that of IBA+Lov treatment at 19 d (Figure 5). Category 3: Compared with IBA and IBA + Lov treatments, the expression levels of MdAHP3 and MdAHP4 were significantly up-regulated at 7 d by IBA + 6-BA treatment (Figure 5). Category 4: Under IBA + 6-BA treatment, MdAHP6, MdAHP7, and MdAH12 exhibited the highest expression levels at 19 d during AR formation (Figure 5). Category 5: Under IBA + 6-BA treatment, the relative expression level of MdAHP11 was higher than that of IBA and IBA + Lov treatments at 3 d, 7 d, 11 d, and 19 d. However, no significant difference was observed at 1 d among IBA, IBA + 6-BA, and IBA + Lov treatments (Figure 5). Although the exact fold change of the DEGs varied between RNA-Seq and RT-qPCR, the expression trends of DEGs detected by RNA-sequencing and RT-qPCR were largely consistent (Figure 5; Supplementary Figure 1).

[image: Grouped bar charts display the relative expression levels of MdAHP genes (MdAHP1 to MdAHP13) over various days (1, 3, 7, 11, and 19) under different treatments. Each chart compares expression under three conditions: HBA, HBA plus 6-BA, and HBA plus 6-BA plus Lov. Bars are differentiated by color, representing different treatments. Statistical significance is indicated by letter annotations above the bars.]
Figure 5 | MdAHP gene expression profiles during the key stages of AR formation. The expression profiles of the MdAHP family genes as determined by RT-qPCR. Samples were collected at 1, 3, 7, 11, and 19 days during AR formation. Each value represents the mean ± standard error of three replicates. Letters a–c denote a significant difference at the 0.05 level.





MdAHP expression patterns of different tissues in ‘M9-T337’ apple rootstock

The expression patterns of MdAHP1 to MdAHP13 in fruits, flowers, leaves, stems, flower buds, axillary buds, lateral roots, and fibrous roots were determined in “M9-T337” apple rootstocks and can be broadly classified into eight categories. Category 1: The relative expression level of MdAHP1 was higher in flowers than in other tissues, and it was scarcely expressed in lateral roots, stems, and fibrous roots (Figure 6). Category 2: The relative expression level of MdAHP3 was highest in fruits and lowest in leaves and flowers (Figure 6). Category 3: MdAHP4 was expressed at the highest level in leaves, followed by fibrous roots, and not in fruits (Figure 6). Category 4: MdAHP8 and MdAHP12 were highly expressed in stems, followed by lateral and fibrous roots, and had relatively low expression in other tissues (Figure 6). Category 5: The relative expression levels of MdAHP6 and MdAHP7 in flower buds and axillary buds were significantly higher than in other tissue sites (Figure 6). Category 6: MdAHP5 was expressed at the highest level in lateral roots, followed by fibrous roots, and not in fruits and flower buds (Figure 6). Category 7: The relative expression levels of MdAHP10 and MdAHP11 in fibrous roots were significantly higher than in other tissue sites (Figure 6). Category 8: MdAHP2 was highly expressed in stems, lateral roots, and fibrous roots, and was lowly expressed in fruits, flower buds, and axillary buds (Figure 6).

[image: Bar graphs showing the relative expression levels of thirteen MdAHP genes across different apple plant tissues. Each graph represents a different gene, labeled from MdAHP1 to MdAHP13. The tissues include flower, fruit, leaf, stem, periderm, annual root, lateral root, and fibrous root. Expression levels vary significantly between tissues, indicated by different letters denoting statistical significance.]
Figure 6 | The expression patterns of the MdAHP family genes in various tissues (flower, fruit, leaf, stem, flower bud, axillary bud, lateral bud, fibrous bud) of the ‘M9-T337’ apple rootstocks. Each value represents the mean ± standard error of three replicates. Letters a–c indicate a significant difference at the 0.05 level.





Analysis of promoter elements of MdAHP gene family members

To further investigate the regulatory mechanisms and potential functions of MdAHP genes, cis-element motifs associated with responses to environmental factors and phytohormones were detected in the 1.5-kb promoter region upstream of the start codon (ATG) (Table 3). Light signaling and stress response elements were identified. Additionally, hormones-related cis-acting elements, including those related to auxin, zeatin, gibberellin, ethylene, methyl jasmonate, salicylic acid, and abscisic acid, were also identified in Table 3. The number of cis-acting elements among the 10 identified in the MdAHP family genes ranged from 11 (MdAHP10) to 27 (MdAHP6 and MdAHP11). Since this study is based on the cytokines signaling pathway, we focused on the number of zeatin metabolism-elements on the promoter sequences of AHP family genes. From the results, we can indicate that MdAHP3 and MdAHP5 contain 4 zeatin metabolism-elements each (Table 3). However, no zeatin metabolism-element in MdAHP6 promoter sequence was observed (Table 3). The other MdAHP family members have zeatin metabolism-elements ranging from 0 to 4 (Table 3). The presence of regulatory elements in the MdAHP genes indicates that its family members are affected not only by the external environment (e.g. light, cold, drought, etc.) but also by various hormones (cytokines, jasmonic acid, auxin, gibberellin, ethylene, etc.). Thus, we presume that the MdAHP family genes can be involved in regulating the development of apple by responding to these signaling factors.

Table 3 | Predicted cis-elements in the MdAHPs promoters.


[image: Table showing gene expression data for various signaling pathways in MdAHP genes. Columns include MeJA, Stress, Gibberellin, Salicylic acid, Auxin, Abscisic acid, Meristem, Ethylene, Circadian, Zeatin metabolism, with total scores. Genes analyzed using the PlantCARE database.]




Cytokines can enhance the expression activity of MdAHP3 promoter

To further determine the response of the MdAHP family members to CTK signaling, the key member MdAHP3 was selected for GUS staining activity analysis. The recombinant plasmid pro-MdAHP3-GUS was transformed into agrobacterium GV3101 and instantly transformed into apple leaves when the leaves had grown for 4 weeks. The results revealed that the pro-MdAHP3-GUS staining of apple leaves under 6-BA treatment conditions was significantly higher than that of the control (Figure 7A). The GUS activity assay also indicated that 35Spro-GUS activity was the strongest, while pro-MdAHP3-GUS activity under 6-BA treatment was significantly higher than that of the control (Figure 7B). The above series of findings suggested that MdAHP3 could significantly enhance its promoter activity in response to 6-BA signal treatment.

[image: (A) Diagrams of gene constructs 35S_pro-GUS and Pro-MdAHP3-GUS, showing organization of LB, CAMV35pro, MdAHP3, and GUS elements. (B) Images of leaves with different treatments: Empty, 35S-GUS, Control, and Pro-MdAHP3-GUS, showing varying GUS expression. (C) Bar graph of relative expression levels for Empty, 35S_pro-GUS, Control, and 6-BA, with 35S_pro-GUS showing the highest expression.]
Figure 7 | GUS activity of the MdAHP3 promoter in response to exogenous 6-BA treatment in apple leaves. (A) Schematic diagram of the MdAHP3-GUS expression vectors. (B) 35Spro-GUS: Empty pBI121 vector (positive control); Empty: No infiltration leaf (blank control). GUS staining images of the MdAHP3 promoters in response to exogenous 6-BA treatment. Control: Sterile water treatment; 6-BA: Exogenous 100 μmol. L−1 IBA treatment. (C) Relative expression level of GUS in response to different exogenous hormones. Different letters a–d above the bars indicate significant differences (P < 0.05) among different treatments. Three independent experiments were conducted.





MdAHP3 interacts with MdAHP1 and MdAHP6 synergistic regulation of AR rormation

The String protein interaction database was employed to predict the interaction proteins of MdAHP3, and the results are presented in Figure 8. These results suggest that MdAHP3 might interact with these transcription factors to carry out regulatory functions. From this, the MdAHP family members MdAHP1 and MdAHP6, which interact with MdAHP3 in mediating AR formation, were selected. Additionally, the interactions between MdAHP1 and MdAHP6 of the MdAHP family and the MdAHP3 protein were demonstrated by yeast two-hybrid and bimolecular fluorescence complementation assays (Figure 9).

[image: Network diagram depicting interactions between proteins, represented as colored nodes labeled with names like ARR3, HK3, and AHP5. Colored lines connect nodes, indicating relationships.]
Figure 8 | The network of functional connections for MdAHP proteins.

[image: (A) Two panels showing yeast two-hybrid assays. The left panel displays growth on -T/-L medium, while the right shows growth on -T/-L/-H/-A medium. Combinations include MdAHP1 or MdAHP6 with MdAHP3. (B) Microscopic images depicting protein interactions. Each row corresponds to a different interaction, showing merge, GFP, CHI, and bright-field views. Samples include combinations of NE-MdAHP1 or NE-MdAHP6 with CE-MdAHP3 or CE-EMPTY.]
Figure 9 | MdAHP3 interacted with MdAHP1 and MdAHP6 in vitro and in vivo, espectively. (A) The empty pGADT7 vector was employed as a control. Transformed yeast cells were cultivated on SD/-Trp/-Leu (T/L) medium or SD/-Trp/-Leu/-His/-Ade (T/L/H/A) medium. (B) BiFC analyses were conducted to test the interactions in tobacco leaf epidermal cells. The empty pSPYCE vector served as the negative control. Merge represents the merged images of fluorescence (YFP), chlorophyll autofluorescence, and brightfield images. Bars = 50 μm.





Ectopic over-expressions of MdAHP3 in poplar inhibit AR formation

To further illustrate the involvement of MdAHP family genes in the regulation of AR formation, MdAHP3 was ultimately selected as a key member based on the above analysis. We constructed a transgenic plant heterologously over-expressing 35S::MdAHP3 to enhance the expression activity of MdAHP3 in poplar. Three transgenic lines (#2, #4, and #5) were obtained. The phenotypes of 35S::MdAHP3 transgenic plants were identified under rooting treatment conditions (IBA treatment), and the AR phenotypes were analyzed at 16 and 30 days after treatment, with wild-type plants as controls (Figures 10A, B). The expression of MdAHP3 was detected in WT and 35S::MdAHP3 transgenic poplars. The results indicated that the expression level of MdAHP3 in transgenic poplars was significantly higher than that in WT (Figure 10C). Additionally, the number of ARs was counted (Figures 10D, E). From the results, it can be seen that 35S::MdAHP3 transgenic poplars inhibited AR formation compared with WT, and showed a significantly reduced number of ARs at 16 and 30 d, respectively (Figure 10).

[image: Images show comparisons of plant growth and root development between wild type (WT) and 35S::MdAHP6 transgenic lines at 16 and 30 days old. Charts present data on relative expression levels and adventitious root (AR) numbers at these stages, with significant differences marked by asterisks.]
Figure 10 | The phenotypes of AR formation in heterologous overexpression MdAHP3 poplar transgenic plants. (A) The AR phenotype of WT and 35S::MdAHP3 transgenic poplars under rooting treatment. Seedlings are grown in one-half strength MS medium with 0.5 mg. L−1 IBA treatment under long daylight conditions for approximately 16 days. (B) The AR phenotype of WT and 35S::MdAHP3 transgenic poplars under rooting treatment. Seedlings are grown in one-half strength MS medium with 0.5 mg. L−1 IBA treatment under long daylight conditions for approximately 30 days. (C) The relative expression level of WT and 35S::MdAHP3 transgenic poplars. (D) The number of AR in WT and 35S::MdAHP3 transgenic poplars under control and IBA treatments at 16 days. (E) The number of AR in WT and 35S::MdAHP3 transgenic poplars under control and IBA treatments at 30 days. Each experiment was completed with three replicates. Asterisks indicate a significant difference (p < 0.05).






Discussion




Identification of Apple AHP genes

Apple fruit trees are widely cultivated worldwide. AR formation is an essential step for the mass propagation of apple rootstocks. The formation of ARs is a complex process, affected by various external and internal factors. CTK inhibits plant AR or lateral root production at multiple levels of metabolism, signal transduction, and translocation (Marhavy et al., 2014). We identified 13 MdAHP genes in the apple genome, a number significantly greater than that of AHP genes in Arabidopsis. This might reflect that the apple genome, approximately 881 Mb, is much larger than that of Arabidopsis, about 12 Mb. The identified MdAHP genes were unevenly distributed on apple chromosomes 2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, and 17 (Table 1). Multiple sequence alignment revealed that the majority of MdAHP proteins contained a series of conserved domains (Figure 1). Promoter fusions of AHP genes showed that AHP1, AHP2, AHP3, and AHP5 were prominently expressed in embryo sacs, especially in the central cell. Additionally, analyses of ahp knockout mutants suggested their redundant function in CTK signalling and plant development (Liu et al., 2017; Keiichi et al., 2010). The results indicated that MdAHP family members have a high degree of homology among them and possible functional redundancy, but the specific functions still need further characterization.





Phylogenesis, evolution, expansion of MdAHP genes

An unrooted neighbor-joining tree was constructed based on the multiple alignment of the AHP protein sequences from apple and Arabidopsis to explore evolutionary relationships. The analysis divided the AHP proteins into three groups: MdAHP3, MdAHP7, MdAHP8, and MdAHP12 were clustered and belonged to the Class I group; MdAHP2, MdAHP6, MdAHP13, and MdAHP9 were clustered and belonged to the Class II group; MdAHP4, MdAHP10, MdAHP5, MdAHP1, and MdAHP11 were clustered and belonged to the Class III group (Figure 3). Additionally, MdAHP1, MdAHP6, and MdAHP3 from the three subfamilies have protein interactions (Figures 8, 9), and this result suggests that key members of this gene family are involved in regulating plant development through interactions.

Previous research has shown that gene duplications are important in the evolution of species. Genome-wide duplication events occurred in apple about 60 million years ago, resulting in expansion from nine to 17 chromosomes and diversification of some gene families (Velasco et al., 2010). A number of apple gene duplications have been reported, such as the FKBPs (Dong et al., 2018), CIPK (Hai et al., 2018) and HSP families (Yao et al., 2020). In the present study, 11 genes were identified (Figure 2). Gene duplications and expansion resulted in MdAHP gene clusters and increased the diversification of MdAHP genes structures and functions.

Genomic comparisons with orthologous genes from well-studied plant species may provide a valuable reference for newly identified genes (Wang et al., 2018, Koonin, 2005). Thus, the functions of MdAHPs were inferred through comparative genomic analyses with the AHP genes from Arabidopsis. Three family groups between Arabidopsis and apple were identified (Figure 2B), which suggested that the genes in question may share a common ancestor and their functions have been conserved during evolution. Although many genetic prediction resources are available, additional research is needed to determine the specific function of each gene.





MdAHP3 interacted with MdAHP1 and MdAHP6 mediating CTK signal transaction

Given the functional diversity of the AHP gene family, all members of the MdAHP gene family need to be further investigated in terms of functionality. Analyzing the tissue expression patterns of MdAHP genes can provide a preliminary understanding of their potential functions. Analyses of expression patterns in different species and tissues revealed that most members of the MdAHP family were highly expressed in leaves, flowers, and fruits, while they were less expressed in roots (Figure 4), and the results are consistent with the previous results of AHP inhibiting root development in Arabidopsis (Hradilová and Brzobohaty, 2007). Additionally, we used ‘M9-T337’ as the material to determine the MdAHP family members in its flowers, fruits, leaves, stems, flower buds, axillary buds, lateral roots, and fibrous roots (Figure 6). It is notable that the expression of MdAHP1 in roots is exceptionally low (Figure 6). This might be attributed to the inhibitory effect of this gene in regulating root system development. In the subsequent research, we will also lay emphasis on conducting an in-depth investigation into the expression characteristics and functions of MdAHP1 in regulating AR formation. In conclusion, the expression of MdAHP family members between tissues suggests that the family members may also have different functions in regulating organ development; however, its specific gene functions still need to be verified in further experiments. On the other hand, according to a more accurate MdAHP3 promoter-driven GUS staining pattern (Figure 7), the class I of AHP genes, AHP3, was expressed at a low level in flower, leaf, and stem tissues and at a high level in fruit, and moderately in flower buds, axillary buds, lateral roots, and fibrous roots; moreover, cytokines have a significant effect on the expression profile of AHP3 (Hai et al., 2005; Zhao et al., 2021). Therefore, we inferred that the developmental stage, sampling method, and species specificity may affect the experimental results. Previous research indicated that auxin-cytokines homeostasis in the AR formation of rose cuttings is affected by their nodal position in the stock plant (Otiende et al., 2021).The balance between CTK and auxin is also a major determinant of the cell fate reorganization mechanism in plant tissues (Rasmussen et al., 2017). CTK signaling and perception are necessary for plant root development (Mahonen et al., 2006). while auxin is also involved in regulating AR induction mechanisms (Sukumar, 2010).

From the above background and the results of the present study, it is hypothesized that MdAHP3, as a representative member of the MdAHP family, may mediate CTK signaling to regulate AR formation; however, the specific function still needs further validation. In the current study, in combination with exogenous 6-BA and the CTK inhibitor Lov treatment, their expression characteristics were determined during the critical stage of AR development. MdAHP3 was significantly up-regulated by 6-BA treatment during the induction and initiation stages (3 and 7 d) of AR formation, which also suggested that MdAHP3, as a key member, might regulate AR formation (Figure 5, Supplementary Figure 1). The results were consistent with the report that AHP3 in Arabidopsis is involved in the regulation of root development by cytokinin signaling (Suzuki et al., 2000; Yadav et al., 2022; Wang et al., 2018). Additionally, the promoter activity of MdAHP3 was significantly enhanced by 6-BA induction (Figure 7). From the above background and the results of the present study, it is hypothesized that MdAHP3, as a representative member of the MdAHP family, may mediate CTK signaling to regulate AR formation; however, the specific function still needs further validation.





MdAHP3, as a key number of the MdAHPs family, functions as a suppressor to regulate AR formation

From the foregoing results, we have identified MdAHP3 as a key member of the MdAHP family in apple, which might exert its functions in regulating AR formation (Figures 4–7). Functional redundancy exists among different gene families, where no single member acts alone (Wightman, 2003; Pérez-Pérez et al., 2013). the same is presumed for the MdAHP family. Therefore, with the identified MdAHP3 as the core, the interaction proteins (MdAHP1 and MdAHP6) were predicted and validated through a combination of yeast two-hybrid and bi-molecular fluorescence complementation assays (Figure 9). The findings in apple were in line with previous research that the sensitivity to exogenous cytokinin was not obviously influenced for each ahp single mutant, but was significantly reduced in the ahp1, 2, 3 triple mutant. Specifically, ahp1, ahp2, ahp3, ahp4, and ahp5 did not respond to cytokinin and were accompanied by severe developmental defects, indicating that AHPs act redundantly as positive regulators in the two-component signaling pathway (Schaller et al., 2008; Deng et al., 2010; Hutchison et al., 2006). AHPs have been demonstrated to serve as bridges for multi-step phosphorelays between AHKs and ARRs, consistent with their function as mediators of the CTK pathway (Mira-Rodado et al., 2012). Additionally, to further verify that MdAHP family members mediate CTK signaling to regulate AR formation in apple rootstock, it was found that heterologous overexpression of MdAHP3 in poplar inhibits AR formation through phenotype identification (Figure 10). Previous studies suggested that the ahp6 mutant could partially restrain wol phenotypes, and the activity of AHP6 is repressed by cytokinin (Mahonen et al., 2006; Sofia et al., 2013), indicating its role as a negative regulator of cytokinin response. Furthermore, a low level of CTK is necessary for root primordium formation, while a high level of CTK strongly suppresses root formation (Hou and Wang, 2010). Integrating previous reports and the results of the present study, we hypothesize that MdAHP3 interacts with proteins (MdAHP1 and MdAHP6) to mediate CTK signaling, which in turn governs AR formation. Overall, the current study systematically identified the physiological and biochemical characteristics of the MdAHP family members in apples and screened the key members that might be implicated in AR formation. It has laid the foundation for the subsequent research on the molecular mechanism of AR formation in apple rootstocks; nevertheless, the specific regulatory mechanism still requires further investigation.






Conclusion

AR formation constitutes a bottleneck for mass propagation in apple rootstocks. Cytokinin, as a major plant hormone, mediates root development, and AHP is a key member in CTK signal transduction. In this research, a total of 13 AHP genes were identified in apple and phylogenetically categorized into three clusters. Additionally, the expression pattern of MdAHPs during the critical stages of AR formation was analyzed in ‘M9-T337’ stem cuttings. When combined with exogenous 6-BA and cytokinin inhibitor (Lov) treatments, the results demonstrated that the expression pattern was significantly modified by exogenous CTK signaling at the stages of AR formation. There were also notable differences in the expression of MdAHP family members among different tissues. Furthermore, the existence of protein interactions of MdAHP3 with MdAHP1 and MdAHP6 was verified in vitro and in vivo (Figures 9, 11). Integrated with family identification and gene expression analysis, the preliminary screening suggested that MdAHP3 could act as a key member in mediating CTK signaling. The promoter activity was significantly enhanced by 6-BA induction, and heterologous overexpression of 35S::MdAHP3 in transgenic poplar inhibited AR formation (Figure 11). To our knowledge, this study represents the first systematic and in-depth analysis of apple AHP genes. The data offer valuable information for the future functional characterization and regulation mechanism of MdAHPs in apple.

[image: Diagram illustrating the role of CTK and MdAHP3 in rooting. CTK inhibits rooting with high expression of MdAHP3, leading to hard-to-root plants. Low expression of MdAHP3 promotes rooting, resulting in easy-to-root plants.]
Figure 11 | The working model of MdAHP3, as a key family member of MdAHP family gene, interacting with MdAHP1/MdAHP6 to mediate CTK signal regulation of AR formation in apple. Note: In difficult-to-root apple rootstocks, MdAHP3 is induced by high-concentration CTK signals and its expression is up-regulated, thereby inhibiting the occurrence of AR primordia at the stem base of seedlings. In easy-to-root apple rootstocks, low-concentration CTK signals inhibit the high expression of MdAHP3, thereby blocking the inhibitory effect of CTK signals on AR formation and promoting the occurrence of AR primordia at the stem base of seedlings.
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Introduction

Cistanche deserticola is an important traditional Chinese herbal medicine. The fresh cistanche squamous stem is typically yellow-white and brown after drying. Oil cistanche is a cistanche variant with a purple squamous stem that turns black after drying. The color difference between oil cistanche and cistanche is obvious, and the former has a higher market price. However, the mechanism underlying the color difference of oil cistanche and cistanche remains unclear.





Methods

This study evaluated the total flavone contents in oil cistanche and cistanche and compared the differential metabolites and differentially expressed genes (DEGs) and the contents of iridoid of dried oil cistanche and cistanche samples were determined by high-performance liquid chromatography, and finally the polysaccharides contents of them were determined to comprehensively analyze the formation mechanism of color difference between oil cistanche and cistanche.





Results

The results showed that the total flavonoid content in oil cistanche was significantly higher than that in cistanche. Metabolomic analysis identified 50 differentially accumulated metabolites (DAMs) (34 up-regulated and 16 down-regulated), including carbohydrates, terpenoids, and flavonoids. Moreover, 3,376 DEGs were selected, among which significant up-regulated of IGS1 and CYP84A1 and down-regulated of 4CLL1, F6H2-2-1 and 5MAT1 genes jointly regulated flavonoid biosynthesis and affected the accumulation of differentially accumulated metabolites. Significant up-regulated of the CCD7 gene affected carotenoid component production, and significant up-regulated of the UGT85A24 gene promoted the accumulation of geniposidic acid. In addition, the contents of iridoid and polysaccharide in oil cistanche were significantly higher than those in cistanche.





Discussion

The differential expression of flavonoids and terpenoid differential metabolites and CYP84A1, 5MAT1, FLS, UGT85A24 and CCD7 mainly caused the purple color of fresh oil cistanche. Dried samples of oil cistanche were darker in color than those of cistanche, due to the higher content of iridoids and polysaccharides in the former. This study preliminarily revealed the causes of the color differences between oil cistanche and cistanche, and provided references for the systematic study of cistanche and its germplasm resources, as well as for the breeding of C. deserticola.
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1 Introduction

Cistanche deserticola (C. deserticola) is a fleshy stem with squamous originating from the plants Cistanche deserticola YC Ma or Cistanche tubulosa (Schenk) Wight (CPC, 2020). C. deserticola is a traditional and valuable Chinese herbal medicine, which has the effects of tonifying kidney Yang, nourishing essence and blood, and moistening bowel. Modern research shows that the main chemical components of C. deserticola are phenylethanoid glycosides, iridoids and their glycosides, lignans and their glycosides, polysaccharides, monoterpenes, organic acids, etc., which have a variety of biological activities such as anti-inflammatory, antioxidant, anti-tumor, memory improvement, bowel-loosening and intestines-moistening, and reproductive function improvement (Xue et al., 2024; Fu et al., 2018; Gai et al., 2015). In addition, C. deserticola, as a medicinal and edible plant, has high potential economic value. The squamous stem of fresh C. deserticola are usually yellow, but a type of intraspecific variation named “oil cistanche” has been discovered in the genuine producing areas of C. deserticola. Its squamous stem are dark purple, and after drying, its color is darker than that of C. deserticola (Zhang et al., 2023; Chen et al., 2008; Ma et al., 2006; Zhou et al., 2022). This variation type is evenly distributed in Inner Mongolia, Gansu, Xinjiang, and other places in China. According to market surveys, oil cistanche is more expensive than cistanche and is more favored by consumers. Current research on the medicinal material of oil Cistanche is limited to the quantification of certain active components. The color difference between the squamate stems of oil cistanche and cistanche, as well as the underlying mechanisms, remains unexplored. Understanding the causes of color variation between fresh samples and dried medicinal materials of oil cistanche and cistanche is of great significance for the study of oil cistanche.

There are many metabolites related to plant color, including polyphenols (anthocyanins, flavonols-quercetin, and curcumin), isoprenoids (iridoids, carotenoids, and quinones), alkaloids, and other compounds, which can form colors such as red, blue, and purple under specific conditions (Sigurdson et al., 2017; Brudzyńska et al., 2021). For example, purple notoginseng roots have higher flavonoid and anthocyanin contents, purple taro tubers have higher anthocyanin content than white taro tubers, the red-skinned roots of Salvia miltiorrhiza contain higher levels of tanshinones, the yellower the surface color of Anemarrhena asphodeloides, the higher the content of mangiferin and neomangiferin, and the brighter yellow color of Cortex Phellodendri Chinensis is associated with higher levels of berberine and phellodendrine compared to other colors (He et al., 2023; Wei et al., 2015; Jiang et al., 2020; Su et al., 2019). Geniposidic acid, a component of iridoids, is a natural blue pigment, reacts with amino acids such as glutamate and arginine under the action of citric acid to form purple-red polymers (Li et al., 2020). When genipin and geniposide glycosides mix with methylamine, they produce blue-black and purplish-red pigments (Su et al., 2013). The conjugated double bonds and various functional groups contained in carotenoid molecules contribute to the color range of many fruits and vegetables, spanning from yellow, red to orange (Bartley and Scolnik, 1995; Hornero-Méndez and Mínguez-Mosquera, 2000). β-Carotene has been found to combine with chlorophyll or lutein, forming chlorophyll-carotenoid complexes that absorb light in the orange or red spectrum and produce greens, purples, or blues (Wieruszewski, 2002).

Previous studies have clearly elucidated the metabolic pathways of flavonoids and terpenoids. The synthesis of flavonoids begins with the conversion of phenylalanine into 4-coumaroyl-CoA through the phenylpropanoid pathway. This is followed by the sequential action of chalcone synthase (CHS), chalcone isomerase (CHI), and either flavone synthase I or flavone synthase II to synthesize flavones. Under the influence of flavonoid 3’-hydroxylase, dihydroflavonols are formed. Dihydroflavonols are then converted into anthocyanins through the actions of dihydroflavonol 4-reductase (DFR), aureusidin synthase (ANS), glycosyltransferase (GT), and other enzymes (Tohge et al., 2017). Terpenoids include natural pigments such as carotenoids and plant colorants like iridoids. Both are synthesized from geranyl diphosphate (GPP), which is produced through the mevalonate pathway and the methylerythritol phosphate pathway. GPP can be converted into geraniol, the starting substance for the secoiridoid pathway, under the catalysis of geraniol synthase (GES). Through the catalysis of enzymes such as geraniol 10-hydroxylase, 8-hydroxygeraniol oxidoreductase, and iridoid synthase, iridoid compounds are formed (Dai et al., 2023). Carotenoids are formed from GGPP through a series of enzymatic catalysis, including phytoene synthase and phytoene desaturase, ultimately resulting in lycopene. Lycopene is then catalyzed by lycopene cyclase, lycopene β-cyclase, and lycopene ϵ-cyclase to produce β-carotene and α-carotene, respectively (Wu et al., 2024). The formation of the purple color in the scaly stems of Cistanche deserticola may be related to flavonoids, anthocyanins, and terpenoids. Furthermore, anthocyanins, as a subclass of flavonoids, confer color to plants by modifying them with sugars and acyl acids. The production of anthocyanins is stimulated by sucrose-specific signaling pathways (Tohge et al., 2017). Therefore, evaluating and analyzing the mechanism of color difference formation between oil cistanche and cistanche using terpenoid, phenylpropanoid, and polysaccharide-related synthetic pathways is of great significance for the study of cistanche.

The color of fresh Cistanche deserticola tends to darken after drying, which may be related to the decomposition of iridoids, as well as the content of polysaccharides, 5-hydroxymethylfurfural (5-HMF), and alkaloids (Liu et al., 2020). Studies have shown that the darkening of processed traditional Chinese medicinal materials such as Scrophularia ningpoensis, Rehmannia glutinosa, and ovate catalpa fruit is caused by the decomposition of iridoid components (Duan et al., 2013). As the color of Rehmannia glutinosa gradually intensifies, the content of iridoid glycosides gradually decreases, while the content of polysaccharides gradually increases (Xue et al., 2023). The darker the color of traditional Chinese medicinal materials, the higher the polysaccharide content (Xue et al., 2017).

To elucidate the reasons for the purple and yellow hues in the fresh scaly stems of oil cistanche and cistanche, respectively, as well as the darker color of dried oil cistanche compared to dried cistanche, this study employed spectrophotometry to determine the total flavonoid content in fresh samples of both species. Transcriptome and metabolome analyses were conducted on fresh samples to investigate differential metabolites and genes. Additionally, the main active components, iridoids and polysaccharides, were measured in dried medicinal materials to further explore the causes of color differences between oil cistanche and cistanche. This research aims to lay a foundation for enriching the germplasm resources of C. deserticola.




2 Materials and methods



2.1 Plant material

In this study, the upper stem of oil cistanche and Cistanche squamata were selected as the test material (Figure 1). All plants were collected from a bionic wild cultivated site (elevation 1171.5 m; 39°34′53′′N,104°48′3′′E) in Alxa East County, Inner Mongolia. During the growth stage, the plants were maintained in the environment and collected during the medicinal stage (October to November 2023). To ensure consistency between samples, the oil cistanche and cistanche samples were collected from three individuals of the same species, representing three biological replicates. Fresh squamate stems from the upper part were collected, cleaned thoroughly, stored in liquid nitrogen, and transported to the laboratory where they were preserved in a -80°C ultra-low temperature freezer. These samples were used for total flavonoid content determination and metabolomics and transcriptomics analysis. After drying, the samples were used for the determination of cyclic enol ether iridoids and polysaccharides.

[image: Fresh samples labeled 'Y' and 'R' are shown in stages of processing: fresh, sliced, dried, dried slices, and then crushed into powder. Each step is labeled, illustrating the transformation from fresh samples to final powdered form.]
Figure 1 | Appearance characteristics of oil cistanche (Y) and cistanche (R).




2.2 Determination of chemical composition content



2.2.1 Determination of total flavonoid contents

Fresh samples (0.5 g) were placed in ethanol (5 mL, 60% v/v) and ground. Following 60°C shock for 2 h, the homogenate was centrifuged at 120,00 r/min for 10 min at 4°C. The supernatant was removed and the total flavonoids were extracted. The total flavonoid content was measured using a NaNO2–AlCl3–NaOH method. Briefly, extracts (5 mL) were added in NaNO2 (5% w/v, 0.3 mL). After the mixture was agitated for 6 min, AlCl3 (10% w/v, 0.3 mL) was added and reacted for 6 min. NaOH (10% w/v, 4 mL) solution and 60% ethanol were then added to 10 mL of the mixture and shaken well for 10 min. Absorbance readings were taken at 510 nm using a spectrometer. Total flavonoid content was calculated based on a standard curve and expressed as mg of rutin (Zhu et al., 2022).




2.2.2 Determination of iridoid terpenoids

Adjusted according to the method of Tian et al. (2018). A dry sample (0.1 g) passed through screen No. 4 was mixed in methanol (50 mL, 50% v/v), left for 30 min, and subjected to ultrasonic treatment (300 W, 40 kHz) for 30 min. The overall quality remained unchanged. After supernatant filtration, the sample was filtered by a 0.22 μm microporous filter membrane and used as the test solution. A total of 0.024, 0.0615, and 0.019 mg/ml mixed reference solutions of geniposidic acid, 8-epiloganic acid, and loganic acid, respectively, were prepared and filtered by a 0.22 μm filter membrane for reserve use. The standard curve was plotted to calculate the regression equation, with the concentration as the horizontal coordinate (X) and the peak area as the vertical coordinate (Y). The chromatographic conditions were as follows: column C18 (4.6 mm × 150 mm, 5 μm); mobile phase, acetonitrile (B) and 0.1% formic acid aqueous solution (A); gradient elution procedure (0–15 min, 5–9%B; 15–20 min, 9–19%B; 20–25 min, 19–22%B; 25–30 min, 22–25%B; 30–35 min, 25–30%B; 35–40 min, 30–5%B; 40–45 min, 5%B); volume flow rate, 0.8 mL/min; column temperature, 30°C; injection volume, 10 μL; and detection wavelength, 237 nm.




2.2.3 Determination of polysaccharide

A dry sample (0.05 g) passed through screen No. 4 was homogenized in water (1 mL). The supernatant was extracted in a water bath at 100°C for 2 h, cooled and centrifuged at 10000 g for 10 min. Following this, 0.8 mL anhydrous ethanol was slowly added to 0.2 mL supernatant, mixed well, left to stand overnight at 4°C, and centrifuged at 10,000 g for 10 min. The supernatant was discarded, and 1 mL water was added to the precipitation to dissolve and precipitate. Phenol (5%w/v, 100 μL) and concentrated sulfuric acid (500 μL) were added into the 200 μL sample solution, heated in a water bath for 20 min, and then cooled under water. The absorbance was determined at 490 nm. The polysaccharide content was calculated according to the standard curve, and anhydrous glucose was used as the control substance (Ma et al., 2012).





2.3 Metabolomic analysis

In order to investigate the difference of metabolites between fresh oil cistanche and cistanche, the metabolic analysis of oil cistanche and cistanche squamata samples was performed. Sample Metabolite Extraction and Preparation: Tissues (100 mg) were individually grounded with liquid nitrogen and the homogenate was re- suspended with pre chilled 80% methanol and 0.1% formic acid by well vortex. The samples were incubated on ice for 5 min and then were centrifuged at 15,000 g, 4°C for 20 min. Some of supernatant was diluted to final concentration containing 53% methanol by LC-MS grade water. The samples were subsequently transferred to a fresh Eppendorf tube and then were centrifuged at Sample Metabolite Extraction and Preparation.

LC-MS/MS analyses were performed using an ExionLC™ AD system (SCIEX) coupled with aQTRAP® 6500+ mass spectrometer (SCIEX) in Genedenovo (Guangzhou, China). Samples were injected onto a Xselect HSST3 (2.1×150 mm, 2.5 μm) using a 20-min linear gradient at a flow rate of 0.4 mL/min for the positive/negative polarity mode. The eluents were eluent A (0.1% Formic acid-water) andeluent B (0.1% Formic acid-acetonitrile). The solvent gradient was set as follows: 2% B, 2 min; 2–100% B, 15.0 min; 100% B, 17.0 min;100–2% B, 17.1 min;2% B, 20min. QTRAP® 6500+ mass spectrometer was operated in positive polarity mode with Curtain Gas of 35 psi, Collision Gas of Medium, IonSpray Voltage of 5500V, Temperature of 550°C, Ion Source Gas of 1 :60, Ion Source Gas of 2 :60. QTRAP® 6500+ mass spectrometer was operated in negative polarity mode with Curtain Gas of 35 psi, Collision Gas of Medium, Ion Spray Voltage of -4500V, Temperature of 550°C, Ion Source Gas of 1 :60, Ion Source Gas of 2 :60 (Want et al., 2012; Luo et al., 2015).

The detection of the experimental samples using MRM (Multiple Reaction Monitoring) were based on house database. The Q3 were used to the metabolite quantification. The Q1, Q3, RT (retention time), DP (declustering potential) and CE (collision energy) were used to the metabolite identification. The data files generated by HPLC-MS/MS were processed using the SCIEX OS Version 1.4 to integrate and correct the peak. The main parameters were set as follows: minimum peak height, 500; signal/noise ratio, 5; gaussian smooth width, 1. The area of each peak represents the relative content of the corresponding substance.

Finally, imultivariate statistical Analysis was adopted to conduct Principal Components Analysis on metabolite data of two samples. PCA), Partial Least Squares Discriminant Analysis (PLS-DA) and Orthoonal Partial Least Squares Discriminant analysis (OPLS-DA). Variable importance in the projection (VIP), Fold change value and P-value of OPLS-DA model were used to screen out the differential metabolites of Cistanche and Cistanche deserticola. The KEGG pathway of differential metabolites was analyzed. In this study, VIP≥1 and T-test P<0.05 in the OPLS-DA model were used as screening criteria for differential metabolites.




2.4 Transcriptomic analysis

Total RNA was extracted from 100 mg of fresh samples was extracted using the Trizol reagent kit (Invitrogen, Carlsbad, CA, USA). The RNA quality was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and confirmed by agarose gel electrophoresis in the absence of RNase. After extraction, eukaryotic mRNA was enriched using Oligo(dT) beads, while prokaryotic mRNA was treated with the Ribo-ZeroTM Magnetic Kit (Epicentre, Madison, WI, USA) to remove rRNA. The enriched mRNA was then fragmented into short segments using fragmentation buffer and reverse-transcribed into cDNA with random primers. Second-strand cDNA was synthesized using DNA polymerase I, RNase H, dNTPs, and buffers. The cDNA fragments were then purified using a QiaQuick PCR Extraction Kit (Qiagen, Venlo, The Netherlands), followed by end repair, the addition of a single base, and ligation to Illumina sequencing adapters. The ligation products were then subjected to agarose gel electrophoresis, PCR amplification, and sequencing (Grabherr et al., 2011).

RNA differential expression analysis between the two groups was performed using DESeq2 (Wang et al., 2010). We employed |log2(fold-change)| > 1.5 and P < 0.05 as the criteria to identify differentially expressed genes between oil cistanche and Cistanche based on the differential expression level of each transcript. According to the significantly differentially expressed genes in each comparison group, these genes were compared to the GO (https://www.geneontology.org/) and KEGG (https://www.genome.jp/kegg/) databases to further determine DEG types. After removing unidentified and redundant DEGs by comparisons with the Swissport database (http://www.expasy.ch/sprot), the Uniprot database (https://www.uniprot.org/) was used to retrieve and categorize the biological and molecular functions of the identified and non-redundant DGEs.




2.5 Combined transcriptome and metabolome analysis

Based on the metabolite contents and gene expression values of oil cistanche and cistanche, we analyzed the DEGs and DAMs related to terpene synthesis pathways, phenylpropanoid glycosides, and carbohydrate-related pathways. In addition, to gain a deeper understanding of the interaction between the transcriptome and metabolome, the DEGs and DAMs were mapped to the KEGG pathway database to collect information on their shared pathways.




2.6 qRT-PCR Validation of DEGs

To validate the reliability of the transcriptome data, the relevant genes were selected for quantitative real-time-polymerase chain reaction (qRT-PCR) verification to determine their expression levels. GAPDH was used as the internal reference gene and primers were designed using the NCBI Primer-BLAST website (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Li et al., 2021). The primer synthesis was performed by Shengon Biotech Co., Ltd (Shanghai, China). Fresh samples were grinded into powder in liquid nitrogen, and total RNA was extracted from 100 mg of this fresh powdered sample using the Plant RNA Kit R6827 produced by Omega. Reverse transcription to cDNA was performed using the FastKing RT Kit (KR116) from Tiangen Biotech (Beijing) Co., Ltd. qRT-PCR quantification was conducted using the SuperReal PreMix Plus (SYBR Green) (FP205) kit, also from Tiangen Biotech (Beijing) Co., Ltd. The qRT-PCR quantification was performed using an FTC-3000P Real-Time PCR System with the following reaction program: denaturation at 95°C for 10 min; 40 cycles of 95°C for 15 s, 55°C for 20 s, and 72°C for 30 s. Each sample was repeated three times, and the relative gene expression levels were calculated using the 2-ΔΔCt method (Livak and Schmittgen, 2001).




2.7 Statistical analysis

The mean and standard deviation represent the average of three measurements. A significant difference is considered at P < 0.05. Statistical analysis was performed using SPSS 22.0, while basic data processing was done using Excel software. GraphPad Prism software was utilized for creating bar charts.





3 Results



3.1 The determination of total flavonoid content in oil cistanche and cistanche

The content of total flavonoids of fresh oil cistanche and cistanche samples was determined, and the content of total flavonoids in oil cistanche was 2.13 times higher than that in cistanche (Figure 2).

[image: Bar graph showing flavonoids content in milligrams per gram. Two bars are labeled Y and R. Bar Y is red and shows about 0.07 mg/g; bar R is blue and shows about 0.04 mg/g. Bars are marked with 'a' and 'b'.]
Figure 2 | Contents of flavonoids in oil cistanche (Y) and Cistanche (R)(mean ± SD, n = 3). the “a, b” is considered significant at p < 0.05 between Y and R.




3.2 Metabolomic analysis

In order to elucidate the specific metabolic mechanisms behind the color differences between fresh oil cistanche and cistanche, this study conducted an extensive targeted metabolic analysis on the squamate stem samples of both species. A total of 959 metabolites were found in 20 classes, including 186 amino acids and their derivatives, 72 nucleotides and their derivatives, 110 sugars and their derivatives, 8 alcohols and polyols, 91 organic acids and their derivatives, 20 vitamins, 112 and lipids. Secondary metabolites include 38 terpenoids, 33 alkaloids and their derivatives, 29 phenylpropanoid and polyketide compounds, 6 benzenes and their substituted derivatives, 32 phenols and their derivatives, 34 phenolic acids, 68 flavonoids, and 15 phytohormones. Based on the PCA and OPLS-DA results, PC1 and PC2 were determined to contribute 30.2% and 22.1%, respectively, and the two samples were well distinguished.

The data processing and mapping of differential metabolites showed that there were a total of 50 DAMs, of which 34 were UR and 16 were DR (Table 1). It included 4 flavonoids, 11 carbohydrates and its derivatives, 5 terpenoids, 7 amino acid and its derivatives, 3 nucleotide and its derivates, 6 organic acid and its derivatives, 7 organoheterocyclic compounds, 3 phytohormones, 2 alcohols and polyols, and 1 phenols and its derivatives, alkaloids and derivatives, and lipids. Among them, the top 15 metabolites with the highest VIP values are shown in Figure 3A. KEGG enrichment of differential metabolites showed that the first 20 pathways mainly included “Ubiquinone and other terpenoid-quinone biosynthesis”, “monoterpenoid biosynthesis” and “Biosynthesis of terpenoids and steroids” (Figure 3B).

Table 1 | Classification of DAMs and their differential accumulation levels in R vs. Y (mean ± SD, n=3).


[image: A table listing 50 chemical compounds categorized by class, name, formula, and log2FC value. Classes include Flavonoids, Carbohydrates, Terpenoids, and more. Each row contains the compound's name, chemical formula, and log2FC value, which varies for each compound.]
[image: Panel A displays a variable importance in projection (VIP) chart ranking metabolites, with Inositol at the top. Color-coded squares indicate levels, with red for high and green for low. Panel B shows a bar chart of the top 20 KEGG enrichments based on gene percentage, highlighting pathways like ubiquinone biosynthesis and zeatin biosynthesis. Bars are color-coded by q-value, ranging from 0.55 to 0.74.]
Figure 3 | Metabolite profiles between Y and R. (A) Variable Importance in Projection chart of DAMs; (B) KEGG enrichment of DAMs.




3.3 Transcriptomic analysis



3.3.1 Sample quality control analysis

In order to investigate the transcriptome differences between oil cistanche and cistanche, second-generation transcriptome sequencing was performed on fresh oil cistanche and cistanche squamous stem samples. In order to ensure data quality, we filter the original data before information analysis to reduce the interference of invalid data. After filtering the low-quality data from the original data, the base composition and mass distribution were more balanced, indicating that the filtered transcripts were of higher quality and could ensure the accuracy of subsequent analysis. Two standardized cDNA libraries were constructed from the RNA of Y and R. After filtering and the identification of the cDNA library, 41.25 and 37.65 million high-quality reads were collected. the Q20 reads of the Y and R were 98.70% and 98.69%, respectively (0.3% error probability). The GC content of the reads was approximately 44.97% and 44.91%, respectively, and the measured gene expression levels were reliable.




3.3.2 Differentially expressed genes analysis

A total of 105,720 sequences of transcripts were compared and functionally annotated in the four major databases NR, KEGG, KOG, and SwissProt, and 39,859 transcripts were annotated. Among them, 39,115 full-length NR transcripts were annotated in the protein database, 38,151 in KEGG, 20,583 in KOG, and 20,757 in SwissProt. By comparing the transcription between oil cistanche and cistanche, we obtained 3,376 DGEs from 39,859 unigenes, including 1,524 UR and 1,852 DR genes (Figure 4A). Based on further classification of DEGs, 2,606 genes from 3,376 DEGs were not identified in the SwissProt database. We removed 114 duplicate genes and 42 of the 657 identified DEGs without biological characteristics. The remaining 616 have known functions and can be classified into 11 categories: 54 Photosynthesis and respiration genes, 88 Primary metabolism genes, 41 Secondary metabolism genes, 8 Hormone biosynthesis genes, 45 Cell morphogenesis genes, 28 Bio-signaling genes, 37 Polynucleotide biosynthesis genes, 52 Transcription factors genes, 87 Translation genes, 79 Transport genes, 97 Stress response genes (Figure 4B).

[image: Panel A shows a volcano plot with log2FoldChange on the x-axis and negative log10 P-value on the y-axis, displaying upregulated genes in red and downregulated in blue, with gray for no difference. Panel B consists of pie charts showing categorized differentially expressed genes (DEGs). The first chart has 3376 DEGs with 77% identified and 23% unidentified. The second chart has 771 DEGs with 84% identified and 16% repetition. The third chart has 646 DEGs with 95% characterized and 5% uncharacterized, detailed by categories such as stress response, metabolism, and biosynthesis.]
Figure 4 | DEGs analysis between oil cistanche and cistanche. (A) volcano plot comparing oil cistanche and cistanche; (B) gene classification statistical chart.




3.3.3 Functional annotation and enrichment of DEGs

The function of the 3376 DEGs was annotated against the Gene Ontology (GO) and KEGG databases. For the GO database, 53 terms were classified into biological process, cellular component, and molecular function (Figure 5A). The top 20 KEGG pathways were analyzed, and the top 10 pathways including: oxidative phosphorylation; Oxidative phosphorylation; Protein processing in endoplasmic reticulumPentose and glucuronate interconversions; Anthocyanin biosynthesis; Arginine and proline metabolism; Carotenoid biosynthesis; Ether lipid metabolism; Photosynthesis; Carbon fixation in photosynthetic organisms; Phenylalanine metabolism (Figure 5B).

[image: Panel A shows a bar chart comparing the Level 2 GO terms of R versus Y across Biological Process, Cellular Component, and Molecular Function. Red bars indicate upregulated genes, and green bars indicate downregulated genes. Panel B features a bar chart with the top 20 KEGG Enrichment pathways, highlighting Oxidative Phosphorylation and Metabolic Pathways. Bars are colored according to q-value significance, with darker blue indicating higher significance.]
Figure 5 | DEGs analysis between oil cistanche and cistanche. (A) gene ontology (GO) enrichment of DEGs; (B) KEGG enrichment of DEGs.





3.4 Combined analysis of DEGs and DAMs

A precursor of terpenoid compounds, IPP, is synthesized from the mevalonate and methylerythritol phosphate pathways. IPP and diallyl pyrophosphate are condensed under the catalysis of geranyl diphosphate (GPP) by geranyl diphosphate synthase (Singh et al., 2021; Miettinen et al., 2014; Rodríguez-López et al., 2022; Palmer et al., 2022). GPP is the dividing point for terpenes to form different compounds such as monoterpenes, diterpenes, triterpenes and alkaloids (Zhang et al., 2022; Yoshidome et al., 2023; Burse et al., 2007). In this study, seven DEGs (SPS1, UGT85A24, UGT87A2, UGT9, GEAS, SS10, CCD4,and CCD7) and five DAMs (loganic acid, 8-epigylanic acid, geniposidic acid, ajugol, and diosgenin) were selected to participate in the terpenoid synthesis pathway. SPS1 catalyzes the conversion of dimethylallyl diphosphate (DMAPP) to GPP. SS10 is a key gene in the synthesis of squalene, which controls the formation of triterpenoids and can be used to synthesize diosgenin under subsequent catalysis. GEAS mediates the conversion of (2E,6E) -farnesyl diphosphate (FPP) to germacrene A and beta-elemene to synthesize sesquiterpene compounds. CCD4 is involved in the cleavage of carotenoids, and CCD7 breaks down β-carotene to produce β-ionone. In this pathway, 7-deoxyadenosine is converted into 7-deoxyloganin by the action of UGT85A24. 7-deoxyloganin is further transformed into loganic acid, 8-epiloganic acid and ajugol by 7-deoxyloganic acid hydroxylase (DL7H). UGT85A24 acts on genipin and 7-deoxyloganetin, and participates in geniposide biosynthesis (Figure 6).

[image: Diagram illustrating the biosynthetic pathways of different compounds from acetyl-CoA through the MEP and MVA pathways. It includes chemical structures like geraniol, squalene, and beta-carotene. Enzymes like GES, SS10, and UGT85A24 are labeled. The pathway involves transformations leading to compounds like diosgenin, loganic acid, and geniposidic acid. A heatmap displaying enzyme expression levels accompanies the pathways.]
Figure 6 | Terpenoids synthetic pathway diagram.

We screened out seven DEGs (4CLL1, F6H2-2-1, FLS, CYP84A1, IGS1, SNL6, and 5MAT1) involved in the phenylpropanoid biosynthesis pathway. Phenylalanine is catalyzed by PAL and 4CLL1 to form p-coumaryl CoA, the upstream metabolite of phenylpropyl synthesis. CYP84A1 is a member of the CYP84 (also known as ferulate acid 5-hydroxylase (F5H)) subfamily of cytochrome P450-dependent monooxygenase and is an indispensable enzyme in anthocyanin biosynthesis and accumulation-related gene expression (Tetreault et al., 2020; Nair et al., 2000; Anderson et al., 2015; Maruta et al., 2014). 5MAT1 participates in the anthocyanin biosynthesis pathway, catalyzing the conversion of shisonin to malonylshisonin. FLS catalyzes the formation of flavonols from dihydroflavonols. Chalcones produce naringin, apigenin is produced under the catalysis of FSI, apigenin derivatives are produced, and then chrysoserin is synthesized. Apigenin and lysionotin produce heptamethoxyflavone under the action of F6H, CrOMT1 and other genes (Peng et al., 2024). IGS1 can catalyze the formation of naringetol from coniferyl alcohol (Figure 7).

[image: Diagram of a biochemical pathway for shikimic acid derivatives. It shows transformations including shikimic acid converting to phenylalanine, then to cis-4-hydroxycinnamic acid, trans-4-coumaroyl-CoA, and other compounds. Enzymes like EMB3004, PAL, and 4CLL1 are indicated. A heatmap displays expression levels for genes like IGS1 and CYP84A1 across samples. Structures like ferulic acid, naringenin, dihydroquercetin, and heptamethoxyflavone are included. Arrows depict reaction directions, with compounds' names and select enzymes highlighted in red.]
Figure 7 | Phenylpropanoid biosynthesis pathway diagram.

Polysaccharides are composed of various monosaccharides, including glucose, mannose, galactose, galacturonic acid, arabinose, and rhamnose. Sucrose is catalyzed by sucrose synthase to produce UDP-glucose, while UDP-galactose is generated through the galactose metabolic pathway. Both UDP-glucose and UDP-galactose are components of polysaccharides (Xiao and Su, 2023). Our results indicate significant differences between oil cistanche and cistanche in the expression of genes related to galactose metabolic pathways and starch and sucrose metabolic pathways. Among these, TPPJ, AGPS1, SS3, and 6-FEH are UR, while RSS3, AMY3, and GOLS2 are DR. RSS3, a sucrose-splitting enzyme, provides UDP-glucose and fructose for various metabolic pathways (Lee et al., 2007). AGPS1 catalyzes the synthesis of ADP-glucose, which is converted into starch sugars and subsequently participates in the synthesis of starch under the promotion of SS3 (Piro et al., 2023). AMY3 participates in starch catabolic metabolism. TPPJ catalyzes the production of trehalose. GIP catalyzes the synthesis of UDP-galactose. GOLS2 participates in the synthesis of raffinose, a member of the raffinose family of oligosaccharides (RFO) (Sprenger and Keller, 2000). GOLS2 converts UDP-galactose into galactinol, which is then converted into raffinose by RFS. 6-FEH generates melibiose and mannotriose, promoting the production of D-galactose. In addition, the 6-FEH gene can hydrolyze fructan-type β-(2->6)-linked fructans into fructose (Van den Ende et al., 2003). These genes play a key role in the galactose metabolism and starch and sucrose metabolism pathways, and influence polysaccharide formation under the action of subsequent glycosyltransferases (Figure 8).

[image: Chemical pathways diagram showing the conversion of α-D-Galactose-1P to various carbohydrates through several reactions. Enzymes like GIP, AGPS1, and others facilitate transformations into compounds such as ADP-Glucose, Starch, Maltose, Galactinol, Sucrose, and Trehalose. A heatmap in the top right indicates expression levels of specific enzymes in different conditions.]
Figure 8 | Galactose metabolism and starch and sucrose metabolism pathway diagram.




3.5 Validation by qRT–PCR

The key genes for the terpenoids synthetic pathway, phenylpropanoid biosynthesis pathway, starch and sucrose metabolism pathway, and galactose metabolism pathway (UGT85A24, UGT9, 4CLL1, F6H2-2-1, CYP84A1, SNL6, FLS, AGPS1, 6-FEH, AMY3, GOLS2, CCD4 and CCD7) were selected for qRT–PCR validation (n = 3). The results show that the changes of 13 key genes in oil cistanche and cistanche are generally consistent with the gene expression trends obtained from the transcriptome sequencing, indicating a high reliability of the sequencing data in this study. Among them, genes UGT85A24, UGT9 and CCD7, which are involved in the synthesis of terpenoid components, were upregulated by 1.15-, 218.98-, and 9.56-fold, respectively. involved in the phenylpropanoid biosynthesis, was upregulated by 1.53-fold, and 4CLL1, F6H2-2-1, SNL6, and FLS were downregulated by 0.02-, 0.10-, 0.27-, and 0.48-fold, respectively. Genes AGPS1 and 6-FEH, which are involved in the starch and sucrose metabolism pathway and galactose metabolism pathway, exhibited a 1.33 and 6.59-fold upregulation, respectively, while the genes AMY3 and GOLS2 exhibited a 0.48 and 0.36-fold down-regulation, respectively (Figure 9).

[image: Bar chart depicting relative expression levels of various genes, with UGT85A24 and CCD7 showing the highest expression. Each bar has a standard error marker, and the y-axis is labeled from zero to two hundred eighty. Gene names are labeled on the x-axis.]
Figure 9 | The Relative Expression of genes involved in Terpenoids synthetic pathway, phenylpropanoid biosynthesis pathway, starch and sucrose metabolism pathway, and Galactose metabolism pathway in oil cistanche and cistanche, as determined by qRT-PCR (mean ± SD, n=3).




3.6 Determination of main active components of dried oil cistanche and cistanche

Based on the results of transcriptome and metabolome analysis, we found that the synthesis pathways of terpenoids and polysaccharides in oil cistanche were significantly different from those in cistanche. Therefore, high-performance liquid chromatography was used for the determination of iridoid compounds in dried oil cistanche and cistanche samples and for the determination of polysaccharide content in both.The results showed that the contents of 8-epiloganic acid and geniposidic acid in oil cistanche were significantly higher than those in cistanche, being 4.70 and 12.01 times higher, respectively. The polysaccharides content of oil cistanche was also significantly higher than that of cistanche, being 1.64 times higher (Figure 10).

[image: Bar graph comparing the content in milligrams per gram of four substances: geniposidic acid, 8-epi-loganic acid, loganic acid, and polysaccharide. 8-epi-loganic acid has the highest content, with significant differences indicated by letters "a" and "b" above each bar showing statistical significance.]
Figure 10 | The content of major constituents (iridoids, and polysaccharides). The different lowercase letters (a, b and c) represent samples from three biological replicates.





4 Discussion

The differences in apparent color among plants are manifestations of their physiological and biochemical variations (Piatkowski et al., 2020; Li et al., 2024). Typically, the variation in plant color is associated with flavonoid components, which are one of the most significant pigments in plants. In this study, the flavonoid content in fresh oil cistanche and cistanche was measured. The results revealed that the flavonoid content in purple oil cistanche was significantly higher than that in yellow cistanche. The flavonoid content positively contributes to pigmentation (Zhuang et al., 2019). This phenomenon is also observed in many similar plants, such as Clematis tangutica (Guo et al., 2023), Camellia sinensis (Liu et al., 2023), Purple Chinese Cabbage (Park et al., 2021), and Salvia miltiorrhiza (Yang et al., 2022). Additionally, flavonoid compounds play a crucial role in plant resistance to abiotic stress. An increase in flavonoid content enhances antioxidant properties, thereby significantly strengthening the plant’s resistance to salt, drought, and cold stress (Liu et al., 2022; Isshiki et al., 2014; Nakabayashi et al., 2014). We speculate that oil cistanche is more adapted to the arid and saline-alkali soils of northwest China.

In addition to flavonoids, plant color is also related to changes in the content of isoprenoid compounds, including iridoids, carotenoids, and quinones. Anthocyanins, belonging to the flavonoid class of compounds, are the primary pigments responsible for the red, purple, and blue hues in plants (Muñoz-Gómez et al., 2021; Alappat and Alappat, 2020). In this study, we employed metabolomics to analyze the metabolites contributing to the color differences between fresh samples of oil cistanche and cistanche. There are four flavonoid differential metabolites in oil cistanche and cistanche, namely, heptamethoxyflavone, apigenin 5-O-glucoside, chrysoeriol 7-O-hexoside, and di-C,C-hexosyl-methylluteolin. Among them, apigenin 5-O-glucoside has a higher content in blue-purple plant species (Mizuno et al., 2024, Mizuno et al., 2021). Moreover, di-C,C-hexosyl-methylluteolin belong to the C-glycosyl-anthocyanins, which are much more stable than C-O-linked anthocyanins and are widely used in coloring. Flavone O-glucoside, apiin, and some flavanone O-glycosides and reducing substances produce red to purple pigments (Bjorøy et al., 2009). This suggests that the accumulation of heptamethoxyflavone, apigenin 5-O-glucoside, chrysoeriol 7-O-hexoside, and di-C,C-hexosyl-methylluteolin are the primary metabolic reasons for the purple color of the squamate stems in oil cistanche. Terpenoids, including carotenoids and iridoids. Among them, geniposidic acid, an iridoid component, is a natural blue pigment. Geniposidic acid can react to form purple-red polymers and, when reacted with methylamine, produces blue-black and purple-red pigments. Carotenoids, also natural pigments, can supplement flavonoid/anthocyanin levels when they decline (Zhou et al., 2022). Differential metabolites, including loganic acid, 8-epiloganic acid, and geniposidic acid, are present at higher levels in oil cistanche compared to cistanche, which is also one of the reasons affecting the purple coloration of oil cistanche. The regulation of pigment biosynthesis is complex and influenced by species, environmental conditions, and their interactions. It is therefore speculated that the purple color of oil cistanche is conferred by the combined interaction of terpenoids and anthocyanins, which aligns with the findings by Zhou et al (2022).

In plants, the biosynthesis of anthocyanins is located downstream of the phenylpropanoid synthesis pathway. In this study, genes related to the phenylpropanoid synthesis pathway were identified. Among them, 4CLL1 is a key rate-limiting enzyme in the plant phenylpropanoid synthesis pathway, catalyzing the formation of 4-coumaroyl-CoA. Three genes are involved in the biosynthesis of anthocyanins, among which the upregulated gene CYP84A1 participates in the biosynthesis and accumulation of anthocyanins (Maruta et al., 2014). The downregulated gene 5MAT1 catalyzes the conversion of cyanidin to malonyl-cyanidin, and FLS can catalyze the formation of flavonoids from dihydroflavonol. In addition, research in Arabidopsis thaliana has shown that anthocyanin production is stimulated by a specific sucrose signaling pathway (Wang et al., 2019) This study found that oil cistanche and cistanche have more differential genes in the sucrose and starch metabolic pathways, which may affect the anthocyanin production in oil cistanche. The UGT85A24, which is involved in the biosynthetic pathway of terpenoids, can promote the synthesis and accumulation of geniposidic acid (Adamenko et al., 2018; Nagatoshi et al., 2011). In this study, UGT85A24 was upregulated in oil cistanche, acting on 7-deoxyadenosine to form 7-deoxyloganin, which then undergoes catalysis by DL7H to produce loganic acid, 8-epiloganic acid, and geniposidic acid. Consequently, the accumulation of the differential metabolites loganic acid, 8-epiloganic acid, and geniposidic acid was relatively high, which is correlated with the upregulation of UGT85A24. In the carotenoid synthesis pathway, the differential expression of CCD4 and CCD7 generates beta-carotene, which is an important metabolite for plants to produce the color purple (Rubio et al., 2008). Therefore, the fresh oil cistanche has a deep purple color, which is related to the content of flavonoids and terpenoid differential metabolites, as well as the differential expression of UGT85A24, CCD4, CCD7, CYP84A1, 5MAT1 and FLS.

Fresh oil cistanche and cistanche showed a great difference in color, and this difference still existed in the dried samples, with the dried oil cistanche being darker in color compared to cistanche, and more popular in the market. On this basis, we also analysed the causes of the color difference between the dried oil cistanche and cistanche samples. Iridoids are reported to be active and prone to oxidation, hydrolysis, and transformation, and iridoid decomposition can lead to the deepening and blackening of medicinal materials. The HPLC results showed that the content of loganic acid in dried oil cistanche samples decreased, which is different from the high expression of the metabolic group. This may be caused by the transformation and decomposition of loganic acid in the oil cistanche samples during drying, which may also explain the relative blackness of oil cistanche after drying. The content of iridoids is significantly correlated with plant color, namely, the higher the content of iridoids, the darker the plant color (Li et al., 2018). Early studies suggest that the polysaccharide content can affect the color of traditional herbs (Li and Xu, 1990; Lai et al., 2019; Zhao et al., 2017), with polysaccharides identified as the material basis for the black appearance of cistanche deserticola, The contents of iridoids and polysaccharides in the dried oil cistanche were significantly higher than those in cistanche. The blacker color of oil cistanche may be attributed to the difference in iridoid and polysaccharide contents (Figure 11).

[image: Diagram showing the interaction between metabolites, ingredients, and genes in Cistanche processing. Metabolites like flavonoids regulate genes such as 4CLL1 and CYP84A1. Drying affects ingredient composition, such as loganic acid. Color differences highlight changes in Cistanche samples pre- and post-processing.]
Figure 11 | Schematic diagram of the formation mechanism of color difference between Y and R.

The change of cistanche from fresh to dry is a dynamic process. Early studies have shown that the dark appearance of cistanche squamata stems after processing is mainly related to the Maillard reaction, and the further deepening of the color of steamed cistanche after drying is caused by the decrease of pigment concentration. During the whole process of drying, the cell structure, composition, color, metabolic process and gene regulation of cistanche are all changing (Ai et al., 2022, Ai et al., 2021). In the future, We will study the drying kinetics characteristics of cistanche herb, establish an appropriate drying kinetics model, further evaluate different drying methods and the dynamic changes of effective components and colors during drying, and increase the research on cell structure, material metabolism and gene regulation of oil cistanche in the whole process from fresh to drying, so as to explain the changes of oil cistanche in the drying process.

At present, the few studies on oil cistanche are limited to determining the content of active ingredients after drying, while other important aspects are unexplored. We suggest that future research on oil cistanche should focus on using bionic technology to objectively compare the differences in appearance and traits between oil cistanche and cistanche. In particular, the application of widely targeted metabolomics can facilitate the analysis of metabolites in oil cistanche after drying, establishing animal experimental models for drug administration and index observations. Furthermore, scholars should explore the clinical efficacy of oil cistanche and conduct research on the growth, development, and stress resistance of oil cistanche plants, allowing for a comprehensive evaluation of oil cistanche.




5 Conclusion

In summary, the dark and purple color of fresh oil cistanche is related to the high content of total flavonoids, which is the result of the interaction between the differences in iridoid and flavonoid metabolites and differential expression of related synthesis regulatory genes. Dried samples of oil cistanche were darker in color than those of cistanche, due to the higher content of iridoids and polysaccharides in the former.
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Waterlogging substantially hampers the growth and development of plants. The escalating trajectory of global climate change is heightening both the frequency and intensity of waterlogging events. Peach trees are particularly vulnerable to waterlogging, with the resultant hypoxia in the rhizosphere profoundly influencing their growth and productivity. This study explored the responses of peach seedlings to waterlogging and the regulatory effects of melatonin priming. After a 24-h waterlogging treatment, a significant increase in relative electrical conductivity and an accumulation of reactive oxygen species were observed, ion permeability was markedly alleviated by melatonin priming. Transcriptomic and proteomic analyses were conducted on peach root samples to elucidate the molecular mechanisms involved in the response to waterlogging and melatonin priming. Transcriptome analysis implicated genes related to ‘DNA-binding transcription factor activity’, such as AP2/ERF, HSF and WRKY transcription factors, in response to waterlogging. The glycolysis/gluconeogenesis pathway was also significantly enriched, indicating its critical role in the metabolic response to waterlogging. A correlation analysis between differentially expressed genes and proteins highlighted the regulation of numerous genes at both the transcriptional and translational levels. Furthermore, core DEGs/DEPs, including heat shock proteins and stress-related proteins, were identified. Notably, ERF VII member ERF071 (Prupe.8G264900), ADH (Prupe.8G018100), and PCO (Prupe.7G011000) emerged as potential targets for genetic manipulation to enhance waterlogging tolerance in peach. This research provides targets for breeding waterlogging-tolerant varieties and strategies to mitigate waterlogging stress in peach.
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1 Introduction

Waterlogging constitutes a significant abiotic stress that profoundly impacts plant growth, development, and agricultural productivity. This stress typically results from excessive rainfall, flooding, or inadequate soil drainage, leading to oxygen deficiency in the soil and rhizosphere (Kreuzwieser and Rennenberg, 2014). Amidst global climate change, the frequency and severity of extreme weather events, such as powerful typhoons and torrential rains, are on the rise, leading to more frequent and severe waterlogging episodes (Zhou W. et al., 2020). This has emerged as a serious threat to various plant species. The influence of global climate change on waterlogging is considerable. Rising temperatures can modify precipitation patterns, resulting in more frequent and intense rainfall in some regions, while others may endure prolonged droughts followed by heavy rainfall (Tabari, 2020). These fluctuations, in conjunction with changes in soil moisture and temperature, can exacerbate waterlogging conditions. For instance, in agricultural regions prone to rhizosphere hypoxia, the risk of soil waterlogging is anticipated to rise due to these climatic alterations (Tian et al., 2021). Waterlogging can elicit a spectrum of deleterious effects on plants, including reduced photosynthesis, decreased stomatal conductance, lower leaf chlorophyll content, hormonal imbalances, and compromised water and mineral uptake (Loreti et al., 2016). These impacts highlight theocratical need for strategies to mitigate the effects of waterlogging on plant health and agricultural systems. Fruit trees, such as apple, peach, and citrus, are particularly vulnerable to waterlogging. The tolerance of fruit trees to hypoxic conditions varies by species and cultivar. It is also influenced by factors such as plant age, developmental stage, soil type, and season (Habibi et al., 2023). Waterlogging has become one of the primary abiotic stresses limiting fruit productivity globally.

Phytohormones play a critical role in the plant response to rhizosphere hypoxia and serve as key regulators to overcoming stress conditions. Melatonin, a naturally occurring compound, has attracted attention as a potential modulator of plant stress responses, including those to waterlogging (Jahan et al., 2021). This molecule is implicated in numerous physiological processes in plants, such as scavenging reactive oxygen species (ROS), augmenting antioxidant enzyme activity, and stimulating photosynthesis (Sati et al., 2023; Wang X. et al., 2024). Recent studies suggested that the application of exogenous melatonin can enhance plant tolerance to waterlogging by regulating their antioxidant metabolism, nitrogen uptake, and the composition of the rhizosphere microbial community. For instance, in apples, melatonin facilitates post-waterlogging recovery by modulating the structure and function of the rhizosphere microbiome, bolstering antioxidant capacity, and optimizing nitrogen absorption and utilization (Cao et al., 2024a; Cao et al., 2024b). The mitigating effects of melatonin pretreatment on the adverse impacts of waterlogging stress have also been observed in other species, such as wheat (Ma et al., 2022) and peach (Gu et al., 2021).

Transcriptome and proteome analyses have yielded invaluable insights into the molecular mechanisms by which plants respond to waterlogging stress. These investigations have identified a multitude of differentially expressed genes (DEGs) and associated pathways that are integral to key processes such as respiration, carbohydrate metabolism, photosynthesis, phytohormone metabolism, ROS metabolism, mineral uptake, and protein and amino acid metabolism under hypoxic conditions (Lin Y. et al., 2019; Zeng et al., 2019; Li et al., 2022). A thorough comprehension of the physiological, biochemical, and molecular responses of plants to waterlogging is essential for formulating strategies to enhance their tolerance to this abiotic stress. By delineating these responses and identifying potential targets for genetic improvement, significant advancements can be made in the development of more resilient plant varieties and sustainable agricultural practices. This is particularly pertinent in light of rising frequency of waterlogging events associated with climate change, underscoring the imperative for innovative strategies to safeguard agricultural sustainability and food security.

Peach trees are highly susceptible to waterlogging, a condition that leads to rhizosphere hypoxia and substantially impairs their growth and development. The response of peach to rhizosphere hypoxia is an intricate process regulated by the interplay of multiple genes. In our previous research, we investigated the optimal concentration of melatonin for peach seedlings subjected to waterlogging, revealing that a 200 μM treatment was most effective in enhancing survival for over 10 days under such stress conditions (Gu et al., 2021). The present study utilized transcriptomic and proteomic approaches to pinpoint key DEGs and metabolic pathways that are vital for the response to waterlogging, as well as the regulatory effects of melatonin priming. The capacity of melatonin to mitigate waterlogging stress and the underlying mechanisms warrant further investigation. The results of this study establish a fundamental framework and constitute a valuable genetic resource for subsequent inquiries into the regulatory mechanisms at play. This research furthers our understanding of the multifaceted role of phytomelatonin in the plant response to waterlogging, thereby facilitating the development of strategies to enhance the resilience of peach and other crops to this abiotic stress.




2 Materials and methods



2.1 Plant materials and treatment

Peach (P. persica L. Batsch) Maotao seedlings sourced from the Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China (120°11′55.21″E, 30°18′28.35″N), were cultivated in plastic pots filled with autoclaved substratum consisting of peat, vermiculite, and perlite at a ratio of 9:3:1 (v:v:v). The plants were grown in a phytotron under controlled conditions: a temperature of 25°C during the day and 20°C at night, with a 16-hour light/8-hour dark cycle. The plants were watered every three days with half-strength Hoagland’s nutrient mixture. Once the plants had developed approximately ten leaves, eighty uniformly sized plants were selected and divided into two groups. One group was treated with 0 μM melatonin (no priming), while the other was treated with 200 μM melatonin (melatonin priming) on the foliage and rhizosphere until the solution drained from the pots. Melatonin was administered once daily for five consecutive days. Following the priming treatment, both the no-priming and melatonin-priming groups were further divided into two subgroups: one for normal conditions (CK and MT) and the other for waterlogging treatment (WL and MT_WL). The waterlogging treatment involved maintaining a water level 2 cm above the soil surface for 24 hours. After treatment, the root samples were carefully collected, washed with distilled water, and used to determine related indices. An additional portion of each root sample was frozen in liquid nitrogen and stored at -80°C for subsequent transcriptome and proteome sequencing. Each treatment included three biological replicates.




2.2 Determination of root dry weight and membrane permeability

To determine the mass of the roots under waterlogging conditions, entire root of five seedlings were first dried at 105°C for 30 min and then at 80°C until a constant weight was achieved for dry weight measurement. Membrane permeability was assessed by measuring the relative electrolyte conductivity. Root samples (0.5 g) were rinsed with distilled water and immersed in a test tube with 10 mL of distilled water. The tubes were soaked for 12 h and then tested for conductivity (EC1) via a conductivity meter (Model DDSJ-308A). The tubes were placed in boiling water for 20 min, cooled to room temperature, and tested again for conductivity (EC2). The experiment was repeated three times. The relative electrolyte conductivity was calculated as EC1/EC2 × 100%.




2.3 Determination of leaf ROS levels

For the hydrogen peroxide (H2O2) content assay, 0.1 g fresh root samples were homogenized in 1 mL cold acetone. The H2O2 content was determined according to the manufacturer’s instructions for the H2O2 assay kit (Solarbio, Beijing, China), and its absorbance was measured at 415 nm. The data are presented as the amount of H2O2 per gram of fresh root (μmol/g FW). The O2- production rate was measured via an O2- assay kit (Solarbio, Beijing, China). Three independent extractions were subjected for each treatment.




2.4 Transcriptome analysis

Total RNA was extracted from peach roots via the ethanol precipitation method with the CTAB-PBIOZOL reagent. The quality and concentration of total RNA were evaluated via a NanoDrop system and an Agilent 2100 bioanalyzer (Thermo Fisher Scientific, Massachusetts, USA). mRNA was further purified via magnetic beads with dT, and a cDNA library was synthesized via reverse transcription. After the library was constructed, the BGIseq500 platform (BGI, Shenzhen, China) was used to sequence 100 bp paired-end reads. The raw data were filtered to remove sequence adapters and low-quality reads. The cleaned data were stored in FASTQ format for subsequent bioinformatics analysis.

HISAT2 (v2.0.4) was used to align the cleaned reads to the Prunus persica genome v2.1 (https://phytozome-next.jgi.doe.gov/info/Ppersica_v2_1). These cleaned reads were subsequently aligned to the database containing known and newly discovered coding transcripts constructed by BGI via Bowtie2 (v2.2.5), and then RSEM (v1.1.12) was used to calculate the gene expression level. Gene expression was analysed via fragments per kilobase of exon per million mapped reads (FPKM) values. The criteria for screening DEGs were a P value ≤ 0.05, a false discovery rate (FDR) < 0.001, and a fold change ≥ 2 or ≤ 0.5. DESeq2 (v1.4.5) software was used to conduct differential expression analysis, and the Q value was set to ≤ 0.05. In addition, to better understand the phenotypic changes, GO and KEGG (Kanehisa and Goto, 2000) enrichment analyses were performed on the annotated DEGs, and strict correction (Q value ≤ 0.05) was implemented for the terms and pathways with high significance.




2.5 Proteome analysis

For data-independent acquisition (DIA) analysis, total proteins were extracted from peach roots via the phenol extraction method. Bradford quantification and SDS−PAGE were used to check the quality of protein extraction. Enzymatic hydrolysis was carried out using trypsin at a specific ratio and for a certain period of time. High-pH RP separation technology is used to mix and inject samples for chromatographic analysis. Nano-LC−MS/MS is used for DDA and DIA, and well-defined parameters such as the ion source voltage, scanning range and resolution are adopted. MaxQuant and Spectronaut™ are used for bioinformatics analysis to handle tasks such as data identification, spectral library construction, deconvolution and quality control. The significance of differentially expressed proteins (DEPs) was evaluated according to the predefined comparison groups and the linear mixed effect model. Two filtering criteria (fold change ≥ 2 or ≤ 0.5 and P value < 0.05) were used to screen out DEPs. In addition, various types of functional annotation analyses, such as GO and KEGG pathway functional annotation analysis and time series analysis, were also conducted. On the basis of the quantification results, DEPs between the comparison groups were identified, and functional enrichment analysis, protein−protein interaction analysis and subcellular localization analysis of the DEPs were subsequently performed.




2.6 In silico analysis of cis-acting elements

The upstream regulatory regions of the DEGs were retrieved from the peach genome database (Prunus persica v2.1, https://phytozome-next.jgi.doe.gov/info/Ppersica_v2_1). The cis-acting elements in the promoter region (2 kb upstream of the translation initiation site) of the DEGs were identified via PlantCARE.




2.7 qRT−PCR analysis

The total RNA used was the same as that used for the transcriptome analysis. cDNA was synthesized via a FastKing One Step RT−qPCR Kit (Probe) (TIANGEN, Beijing, China) with 1 μg of RNA in each reaction. The gene sequences were collected from the Prunus persica genome in the JGI Phytozome database. Beacon designer 7.0 was used to find the qRT−PCR primers (Supplementary Table S1). qRT−PCR was performed according to previously described methods (Gu et al., 2021). Three technical replicates were performed for each gene. The 2−ΔΔCT method was used to calculate the relative expression level of genes compared with that of PpACTIN.




2.8 Statistical analysis

The experimental data were analysed via SPSS software (version 17.0) and Excel 2016. The results are expressed as the means ± SDs. Means were compared between four groups via one-way ANOVA and Tukey’s test. Different letters on the histograms between different treatments indicate a significant difference at a P value < 0.05.





3 Results



3.1 Plant growth and development of peach under waterlogging and melatonin priming

After a 24-h treatment duration, all the plantlets across the four treatment groups were meticulously rinsed and dried using clean tissue (Figure 1A). To evaluate the impact of waterlogging and melatonin priming on peach seedlings, various physiological parameters of the root system were examined after 24 h treatment, including root dry weight, electrical conductivity, H2O2 content and O2·- production rate. The data indicated that dry root biomass was comparable across all four groups, with no statistically significant differences noted (Figure 1B). Nevertheless, the waterlogging treatment resulted in a substantial elevation in relative electrical conductivity, which was significantly mitigated by melatonin priming. This finding implies that melatonin exerts a protective effect on the cell membrane, diminishing the severity of damage (Figure 1C). Regarding ROS accumulation, the WL and MT_WL groups exhibited notably higher H2O2 contents and O2·- production rates compared to the CK and MT groups. These results suggest that waterlogging triggers an increase in ROS levels, thereby intensify damage to the cell membranes of peach seedlings (Figures 1D, E).

[image: Panel A shows four plants labeled CK, MT, WL, and MT_WL, each displaying varying root structures. Panels B through E present bar graphs comparing these groups. Graph B shows root dry weight, with all groups having similar values around 1.6 grams. Graph C illustrates electrolyte leakage rates, higher in WL and MT_WL. Graph D displays H₂O₂ content, highest in WL and MT_WL. Graph E depicts O₂⁻ production rates, also elevated in WL and MT_WL compared to CK and MT.]
Figure 1 | Effect of waterlogging and melatonin on morphological characteristics and physiological indexes of peach roots. (A) Morphological characteristics of entire plant. The scale bar was 1 cm. (B) Root dry weight. (C) Electrolyte leakage rate. (D) H2O2 accumulation. (E) O2·- production rate. CK, control condition; MT, melatonin pretreated followed with control condition; WL, waterlogging treatment; MT_WL, melatonin pretreated followed with waterlogging treatment. The data are means ± SD of triplicate experiments. Different lowercase letters indicate that means are significantly different among the samples (P value < 0.05).




3.2 Transcriptome sequencing and DEGs in response to waterlogging

To investigate the mechanism of waterlogging response and melatonin priming protection on peach plants under rhizosphere flooding, we performed transcriptome sequencing analysis. RNA-seq (BioProject: PRJNA782223) was performed out on root samples from four treatment groups (CK, WL, MT, and MT_WL). We obtained more than 6.21 Gb of clean reads (Q20>96%; Q30>87%) from each sample, and subsequent to the refinement of low-quality reads and adapters, we achieved a mapping rate of over 87% to the Prunus persica reference genome. The preprocessing results, indicating the quality of the sequencing data, are presented in Supplementary Table S2. The results indicated that the RNA-seq data satisfied the quality criteria necessary for subsequent analysis. A total of 13819 DEGs with fold changes of ≥ 2 or ≤ 0.5 based on FDR < 0.05, were identified across all samples. In comparison to CK, 588 DEGs were detected in MT, with 495 genes upregulated and 93 genes downregulated. Relative to CK, 7374 DEGs were identified in WL, of which 3428 were upregulated and 3946 were downregulated. Compared with CK, 5857 DEGs were identified in MT_WL, including 2759 upregulated and 3098 downregulated genes (Figure 2A; Supplementary Table S2).
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Figure 2 | Analysis of DEGs. (A) The statistic of DEG number. The bar diagram reflected the number of up and down regulated DEGs in each comparison groups. (B) The Venn diagram of DEGs identified in the three comparison groups. (C) GO categories enrichment analysis of the chosen DEGs induced by both melatonin and waterlogging. The dot size indicates the number of DEGs, and different colors show different level. CK, control condition; MT, melatonin pretreated followed with control condition; WL, waterlogging treatment; MT_WL, melatonin pretreated followed with waterlogging treatment.




3.3 Analyses and expression verification of differentially expressed transcription factors

In Figure 2B, 183 DEGs were identified in peach roots under separate or combined treatments of melatonin and waterlogging. Additionally, 4894 DEGs were common to the WL vs CK and MT_WL vs CK comparisons. That is to say, a cumulative total of 5077 DEGs were induced by waterlogging, with or without the priming effect of melatonin. The top 20 most significantly enriched GO terms within the biological process category are depicted in Figure 2C. The genes were found to be significantly enriched for ‘DNA-binding transcription factor activity’ (129), ‘biosynthetic process’ (84), and ‘glucosyltransferase activity’ (37).

Within the ‘DNA-binding transcription factor activity’ category, 92 annotated transcription factors were found using a nonredundant database, encompassing 43 AP2/ERF, 17 WRKY, 10 HSF, 9 bZIP, 4 HD-ZIP, 3 GATA, and 2 MADS genes. The majority of these transcription factors are known to respond to abiotic stress. In both the WL and MT_WL groups, 67 genes were upregulated, while 25 were downregulated. Notably, a greater number of AP2/ERFs (30 upregulated, 13 downregulated) exhibited differential expression following waterlogging irrespective of melatonin pretreatment. The expression of the ethylene-responsive transcription factor Prupe.8G264900, was significantly elevated, reaching 7.1- and 6.5-fold increase relative to the control group, respectively, after waterlogging and melatonin pretreatment followed by waterlogging (Figure 3A). Among the downregulated genes, the homeobox-leucine zipper protein ATHB-6 was repressed in both the WL and MT_WL groups.
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Figure 3 | The expression levels of DEGs related to DNA-binding transcription factor activity. (A) Cluster heatmap of DEGs from RNA-seq. The color scale on the right represents the value of log2(Fold change). Red indicates upregulated and blue indicates down regulated. (B) Verification of DEGs related to DNA-binding transcription factor activity via qRT-PCR.

To assess the reliability of the RNA-seq data, a validation process was performed via qRT−PCR for 12 DEGs (Figure 3B). The FPKM values represent the relative transcript abundance of genes identified by RNA-seq. The FPKM values for the 12 DEGs suggest that these genes exhibit a high level of inducible expression in response to waterlogging. A comparison of the qRT−PCR and the FPKM data indicated that a significant number of DEGs displayed consistent expression profiles. The concordance between the qRT-PCR and RNA-seq reinforces the credibility of the RNA-seq data and its applicability for elucidating the genetic responses of peach seedlings to waterlogging.




3.4 DEGs involved in glycolysis/gluconeogenesis

To gain insights into the metabolic pathways implicated in the response of peach to waterlogging, particularly with melatonin pretreatment, 5077 co-expressed DEGs were subjected to KEGG enrichment analysis. The top 20 enriched pathways, as listed, encompassed ‘Glycolysis/Gluconeogenesis’, ‘Amino sugar and nucleotide sugar metabolism’, ‘Fructose and mannose metabolism’, ‘Alanine, aspartate and glutamate metabolism’, and ‘Plant hormone signal transduction’ (Figure 4A; Supplementary Figure S1). Furthermore, the glycolysis/gluconeogenesis (KEGG entry: map00010) was the most significantly enriched and comprised 64 DEGs, indicating its pivotal role in the metabolic response to waterlogging. As depicted in Figure 4B, the relative transcript levels of the differentially expressed enzymes within the glycolysis/gluconeogenesis pathway were normalized to Log2(FPKM+1). The 64 DEGs exhibited basal expression levels, and enzymes involved in downstream functions, including pyruvate kinase (EC 2.7.1.40, PK), pyruvate decarboxylase (EC 4.1.1.1, PDC), and alcohol dehydrogenase (EC 1.1.1.1, ADH), showed elevated expression levels. The metabolic processes catalyzed by ADH and PDC can produce energy, thereby providing essential support for survival under waterlogging.

[image: Diagram showing KEGG pathway analysis with three panels: A) Scatter plot for pathway enrichment, displaying various metabolic processes with gene number and rich ratio. Larger dots indicate more genes; color shows p-value. B) Pathways for glycolysis/gluconeogenesis and pyruvate metabolism in Prunus persica, with enzymes and metabolites annotated. C) Heat map of gene expression for Prunus persica, indicating gene activity level from -12 to +12.]
Figure 4 | The key pathway induced by both melatonin and waterlogging. (A) KEGG pathway enrichment analysis of the chosen DEGs. The dot size indicates the number of DEGs, and different colors show different level. (B) The relative changes of key genes in Glycolysis/Gluconeogenesis pathway. The color scale represents the value of log2(FPKM+1) in four groups. (C) Cluster heatmap of DEGs from Glycolysis/Gluconeogenesis pathway. The color scale on the right represents the value of log2(Fold change). Red indicates upregulated and blue indicates down regulated.

Among the 64 DEGs associated with the glycolysis/gluconeogenesis pathway, 39 were upregulated in both WL and MT_WL relative to the CK, while 25 were downregulated (Figure 4C). The gene Prupe.8G018100 encoding ADH, exhibited the highest expression level, with Log2FC values of 12.0 and 11.0 in WL and MT_WL, respectively. Similarly, the expression levels of DEGs in the melatonin pretreatment group was lower compared to the control group. During the initial phase of waterlogging, glycolysis facilitates the production of a limited amount of energy to sustain plant metabolism and survival. Nevertheless, prolonged stress duration leads to the accumulation of glycolytic by-products, including ethanol and acetic acid, which can be detrimental to plant tissues. Melatonin pretreatment mitigates the exacerbation of damage by inhibiting excessive glycolytic reactions.




3.5 Proteomic analysis of DEPs in response to waterlogging

To delineate the DEPs associated with melatonin and waterlogging, proteomics analyses were conducted on the same samples used for RNA-seq (CK, MT, WL and MT_WL). A total of 48720 unique peptides were identified, corresponding to 8614 unique proteins across the four samples. Figure 5A illustrates the variation in protein expression following melatonin and waterlogging treatments. A total of 245 specifically expressed proteins were significantly different between MT and CK groups, with 182 upregulated and 63 downregulated. In the comparison of WL and CK groups, 176 proteins were upregulated, and 196 were upregulated. The comparison of MT_WL vs CK revealed 120 upregulated proteins and 129 downregulated proteins (Supplementary Table S3). The expression of the majority of proteins, exceeding 6000 in number, did not exhibit significant differences. Under waterlogging, the number of downregulated proteins surpassed that of upregulated proteins in the samples. All coding transcripts corresponding to the 6525 identified proteins were present within the 26811 transcripts identified by RNA-seq, indicating that transcripts were detected for each identified protein (Figure 5B). For functional annotation, the identified proteins were cross-referenced with the GO and KEGG databases. The GO database was utilized to predict potential functions and classify proteins functionally. The results revealed that the ‘catalytic activity’ of MFs, the ‘cell’ of CCs and the ‘metabolic process’ of BPs were the most significantly enriched in response to melatonin and waterlogging treatments (Supplementary Figure S2, Supplementary Table S4). Proteins within the ‘carbohydrate transport and metabolism’ category were predominantly involved in maintaining active metabolic processes. Proteins typically operate in conjunction with one another, engaging in various biological functions. KEGG pathway enrichment analysis was employed to construct a protein interaction network (Supplementary Figure S3, Supplementary Table S5). The DEPs were predominantly enriched within the metabolic categories ‘Global and overview maps’ and ‘Carbohydrate metabolism’, aligning with the RNA-seq findings.

[image: Panel A shows a bar chart comparing the numbers of up-regulated, non-regulated, and down-regulated proteins across MT vs. CK, WL vs. CK, and MT_WL vs. CK groups. Non-regulated proteins are the most numerous. Panel B displays a Venn diagram with a large circle representing 20,286 transcripts and a smaller overlapping circle for 6,525 proteins.]
Figure 5 | Analysis of DEPs. (A) Total number of DEPs identified in the three comparisons. Red bars represent proteins with upregulated, blue bars represent downregulated, and grey bars represent non-regulated. (B) Congruency of the detected transcriptome and proteome in different groups. CK, control condition; MT, melatonin pretreated followed with control condition; WL, waterlogging treatment; MT_WL, melatonin pretreated followed with waterlogging treatment.




3.6 Conjoint analysis of DEGs and DEPs

A combined analysis of DEGs and DEPs during waterlogging was conducted. To investigate the concordance between the differential expression levels of transcripts and proteins, Venn diagrams revealed 818 co-expressed genes and proteins in response to melatonin pretreatment, which 15 being both DEGs and DEPs (Figure 6A). Following waterlogging, 7593 genes were co-expressed with corresponding proteins, which 153 being both DEGs and DEPs (Figure 6B). When waterlogging was performed following melatonin pretreatment, there were 5991 co-expressed genes and proteins, of which 115 were both DEGs and DEPs (Figure 6C).

[image: Venn diagrams (A, B, C) and scatter plots (D, E, F) depict data analysis. Venn diagrams compare DEGs and DEPs across different conditions: MT vs CK, WL vs CK, MT_WL vs CK. Scatter plots show DEGs Log2(Ratio) versus DEPs Log2(Ratio) with varying data point densities and distributions.]
Figure 6 | Conjoint analysis of DEGs and DEPs in response to waterlogging and melatonin. The Venn diagram of DEGs and DEPs identified in comparison MT vs CK (A), WL vs CK (B), and MT_WL vs CK (C). Comparison of changes in protein and cognate mRNA abundance levels in comparison MT vs CK (D), WL vs CK (E), and MT_WL vs CK (F). CK, control condition; MT, melatonin pretreated followed with control condition; WL, waterlogging treatment; MT_WL, melatonin pretreated followed with waterlogging treatment.

Additionally, we performed a correlation analysis between the common DEGs and DEPs to determine the co-expression relationships under each condition. Initially, among the 15 common DEGs and DEPs in the MT vs CK comparison, 11 were positively correlated (Figure 6D). For the WL vs CK and MT_WL vs CK, 61.4% (94/153) and 61.7% (71/115) of the common genes/proteins presented the same expression tendencies, respectively (Figures 6E, F). The coincidence of expression trends among many common genes/proteins suggests that a significant number of genes are regulated at both the transcriptional and translational levels. Under waterlogging stress, a higher number of DEGs and DEPs exhibited greater fold changes compared to normal conditions. Moreover, of the 94 and 71 DEGs/DEPs with consistent expression trends in WL vs CK and MT_WL vs CK, 48 were common to all samples, indicating that these genes and proteins play special roles in response to waterlogging and melatonin media tolerance (Figure 7).
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Figure 7 | Core DEGs/DEPs in conjoint analysis of transcriptome and proteome. The expression heatmap and cis-element in the promoter region of common DEGs and DEPs in different comparison groups. The color scale on the right represents the value of log2(Fold change). Red indicates upregulated and blue indicates down regulated. Purple cycles indicate the number of waterlogging related cis-elements.

A combined analysis of the transcriptome and proteome identified 48 core DEGs/DEPs. 5 heat shock proteins were upregulated across all the groups (Figure 7). Additionally, among the stress-related proteins, those involved in hypoxia response, including the ethylene-responsive transcription factor ERF071, plant cysteine oxidase 2, alcohol dehydrogenase, and pyruvate decarboxylase 2, were found in the core members. Analysis of cis-elements in the promoter regions showed that one or more of the three hypoxia-related cis-elements, ‘anaerobic induction’, ‘ethylene response’, and ‘stress response’, were present in the promoters of the 48 genes. Of the 48 DEGs, 91.7% contained anaerobic induction elements, indicating that majority of these DEGs/DEPs are inducible by the low-oxygen conditions associated with waterlogging. The range of hypoxia-related cis-elements in these genes varies from 2 to 18. Notably, Prupe.6G065900, which encodes a 18.5 kDa class I heat shock protein, possesses 13 anaerobic induction elements, 1 ethylene response element, and 4 stress response elements. Similarly, Prupe.7G011000, which encodes plant cysteine oxidase 2, contains 16 cis-elements.





4 Discussion

Abiotic stresses, such as extreme temperatures (cold and heat), water imbalances (drought and waterlogging), salinity, and heavy metal exposure, markedly impede plant growth and development. The peach, celebrated for its exquisite taste, nutritional benefits, and broad appeal, is extensively cultivated in China (Li and Wang, 2020). Nevertheless, peach trees are especially susceptible to waterlogging due to their shallow root systems, which are highly oxygen-dependent and profoundly impacted by the hypoxic conditions of waterlogged soils. Waterlogging represents a significant impediment to the peach industry in southern China (Tian et al., 2021). Elucidating the regulatory mechanisms behind peach seedling responses to waterlogging is vital for comprehending plant adaptation in rainy environments. This insight can be leveraged to develop waterlogging-tolerant Prunus germplasms, thereby improving peach yield under challenging conditions (Ateeq et al., 2023). In this research, we utilized RNA-seq and DIA proteomic analyses to pinpoint genes and proteins involved in the response to melatonin and waterlogging. By integrating multiomics data, we conducted a systematic examination of peach roots to establish correlations between mRNA and protein expression. As a result, we identified DEGs and DEPs associated with waterlogging responses in peach.

The number of DEGs in the MT vs CK was lower compared to the other two comparisons, with the WL vs CK exhibiting the highest number of DEGs, in agreement with the proteomic data. These results imply that melatonin pretreatment induced a relatively modest differential gene expression, whereas waterlogging, representing a more severe stressor, triggered a substantially larger number of DEGs. This suggests that melatonin pretreatment may have mitigated the necessity for a robust activation of stress-responsive genes in response to subsequent waterlogging stress. Recent transcriptomic studies have illuminated the involvement of various metabolic pathways, including ‘global and overview maps’, ‘carbohydrate metabolism’, ‘amino acid metabolism’, and ‘energy metabolism’, in the responses to waterlogging (Kuai et al., 2016; Zhang et al., 2022) as well as in response to other abiotic stresses (Zhou D. et al., 2020). In the current study, KEGG annotation identified that the DEGs were mainly grouped in pathways associated with ‘global and overview maps’, ‘carbohydrate metabolism’, and ‘environmental adaptation’. These observations imply that waterlogging may affect the metabolism of soluble sugars, organic acids, and phenols in peach.

Based on Venn diagram analysis, 92 annotated transcription factors were identified, including members of the AP2/ERF family, which are prominent activated by flooding in plants (Mustroph et al., 2009; Wang et al., 2021). Previous research has demonstrated that AP2/ERF transcription factors play critical roles in regulating fermentation and ROS signalling by modulating the expression of genes such as ADH, PDC, RBOHD, HRU1 (Wang K. et al., 2024). Additionally, members of the ERF subfamily within group VII, which are involved in hypoxia response, have been functionally analysed in Arabidopsis and rice (Gasch et al., 2016; Lin C. et al., 2019; Weits et al., 2021). In the present study, the three most highly expressed transcription factors, Prupe.8G264900, Prupe.2G272300, and Prupe.5G090700, were classified as ERF transcription factors (Figure 3A). Furthermore, Prupe.8G264900 (ERF071) was identified as an ERF VII member (Supplementary Table S6) (Zhao et al., 2018), highlighting the significance of ERF VII members in regulating the response of peach to waterlogging. In Arabidopsis, ERF VIIs have been identified as regulators of hypoxia survival responses, mediating the increase activities of PDC and ADH, which facilitate the transition from aerobic to anaerobic metabolism (Gibbs et al., 2011). Studies indicate that the upregulation of specific ERFVII transcription factors can induce the activation of genes such as LOB41, ADH1/2, and PDC2, involved in alcoholic fermentation and scavenge ROS, thereby enhancing waterlogging tolerance in kiwifruit (Pan et al., 2019; Liu et al., 2022; Bai et al., 2023). Consequently, in response to waterlogging signals like ethylene and hypoxia, ERF VIIs rapidly accumulate and initiate a signalling pathway that promotes tolerance to waterlogging.

In addition to AP2/ERF family, WRKY transcription factors are crucial for integrating environmental cues and influencing plant growth under stress conditions. In our study, 14 out of the 17 WRKY genes were upregulated in response to waterlogging, indicating a significant role for WRKYs in the waterlogging response of peach. Previous research on Phoebe bournei has shown that WRKY members are highly responsive to waterlogging, with PbWRKY36 identified as a candidate gene potentially plays a pivotal role in enhancing resilience to waterlogging (Wang Z. et al., 2024). Other studies have demonstrated that WRKYs act as positive regulators of hypoxia responses, such as at the onset of waterlogging in sesame (Wang et al., 2021) and submergence in rice (Viana et al., 2018). Moreover, the heterologous expression of the sunflower transcription factor HaWRKY76 in Arabidopsis was shown to confer submergence tolerance with preserved carbohydrate and increased cell membrane stability (Raineri et al., 2015).

Together, the robust expression of ERFs and WRKYs revealed in our study that these transcription factors are involved in the response to waterlogging in peach. Previous research by Gao indicated that the WRKY22/33 and AP2-EREBP genes may be implicated in antioxidant defense and enhance waterlogging tolerance in kiwifruit (Gao et al., 2022). The transcriptional alterations induced by waterlogging are predominantly mediated by the ERF and WRKY transcription factors. Nonetheless, it is yet to be determined whether these two gene families interact within the same signalling pathways during waterlogging. Exploring the potential interplay between WRKYs and ERFs in the context of waterlogging responses is a subject that deserves additional experimental investigation.

The KEGG pathway enrichment analysis of coregulated genes indicated that DEGs under waterlogging stress and melatonin priming were significantly enriched in pathways associated to ‘glycolysis/gluconeogenesis’, ‘Starch and sucrose metabolism’, and ‘plant hormone signal transduction’ (Figure 4A; Supplementary Figure S1). Beyond several commonly regulated expression pathways, glycolysis/gluconeogenesis exhibited the most pronounced response to waterlogging. Typically, plants depend on glycolysis and ethanol fermentation as alternative energy sources during the energy deficit induced by waterlogging (Zhou W. et al., 2020; Habibi et al., 2023). The expression of most genes encoding key enzymes in the glycolysis/gluconeogenesis pathway was upregulated compared to the control, with marked increases in fold change. These expression patterns are align with previous findings that underscore the importance of glycolysis/gluconeogenesis in the transcriptional regulation and metabolic adaptation of sweet cherry (Michailidis et al., 2021) and Chinese bayberry (Jiao et al., 2023). Furthermore, the enhanced expression of specific energy metabolism pathways aids peach in better managing waterlogging (Ateeq et al., 2023). This adaptive strategy reinforces the plant’s ability to withstand waterlogging, thereby enhancing survival.

Due to ATP depletion under waterlogging stress, soluble sugars are transported to the roots to furnish substrates for glycolysis and anaerobic respiration. Glycolysis maintains a sufficient supply of carbohydrates, enabling plants to endure hypoxic conditions (Habibi et al., 2023). In our study, both gene transcripts and metabolites, including ADH, PDC, PK, 6-phosphofructokinase (PFK), diphosphate-dependent phosphofructokinase (PFP), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), were significantly enriched in the glycolysis/gluconeogenesis and pyruvate metabolism pathways during waterlogging. These results suggest that the response of peach to waterlogging is closely associated with respiratory metabolism. Anaerobic metabolism is sustained through the activation of fermentative pathways, which support ATP production via the glycolytic route. Glycolysis can proceed with NADH oxidation through lactic acid and ethanol fermentation from pyruvate (Bailey-Serres and Voesenek, 2008). Nevertheless, the fermentation pathway can be detrimental to plant cells due to the production of lactic acid and acetaldehyde (van Dongen and Licausi, 2015). The onset of ethanol fermentation involves inhibition of lactate dehydrogenase (LDH) activity and the stimulation of PDC. Transcripts of four ADH genes (Prupe.8G018100, Prupe.8G018300, Prupe.8G018400, and Prupe.8G018600) and two PDC genes (Prupe.4G058300 and Prupe.6G280800) were upregulated by waterlogging. However, melatonin priming in peach led to reduced expression levels of ADH, PDC, and other fermentation-related genes, indicating a regulatory role for melatonin in modulating the anaerobic metabolism pathway before waterlogging.

Although the multifunctional roles of melatonin in plants have been extensively studied, comprehensive transcriptomic and proteomic profiling of Prunus genotypes under stress conditions remains scarce. In our previous work, we demonstrated that 200 μM melatonin effectively enhanced the tolerance of peach plantlets to waterlogging by reducing lipid membrane peroxidation while also enhancing the antioxidant system (Gu et al., 2021). Building on these findings, subsequent omics analyses can elucidate the underlying regulatory mechanisms. Transcriptomic sequencing of Clematis varieties under waterlogging was performed to examine the effects of melatonin on waterlogging tolerance, revealing that melatonin enhanced flooding tolerance in Clematis by improving photosynthetic efficiency and antioxidant enzyme activity (Chen et al., 2024). In tomato, appropriate melatonin application significantly enhanced tolerance to low night temperatures, as evidenced by transcriptomic and proteomic approaches (Yang et al., 2022). In drought-stressed wheat treated with 100 μM melatonin, integrative physiological, transcriptomic, and proteomic data analyses indicated that melatonin modulated JA related genes, transcription factors, and starch and sucrose metabolism genes, thereby enhancing wheat drought tolerance (Luo et al., 2023). In apple, melatonin positively contributes to the accumulation of plant dry weight by upregulating genes associated with N cycling and significantly augmented the abundance of beneficial bacteria in the rhizosphere, facilitating the recovery of apple following waterlogging (Cao et al., 2024a). In the current study, through the combination of transcriptomic and proteomic analyses, we identified that more stress-responsive genes, such as ERF071, PCO2, HSP, and ATG11, were upregulated by waterlogging at both the transcriptional and protein levels. However, under melatonin priming, the expression levels of these genes did not exceed those observed under waterlogging alone, and protein levels remained comparable. Melatonin pretreatment may alter the internal physiological equilibrium of plants, prompting the adoption of alternative coping strategies to waterlogging. Peach pretreated with melatonin may prioritize energy allocation for maintaining the stability of fundamental cell metabolism over the induction of numerous stress-related genes. This could involve protective mechanisms that prevent excessive activation of these genes or proteins.

Significant challenges relate to the scalability of melatonin priming in field applications. In a controlled laboratory milieu, the precise delivery of melatonin and the monitoring of its effects are relatively straightforward. However, scaling up to field-level operations introduces a layer of complexity. Variations in soil types, fluctuating weather patterns, and differences in plant populations can all influence the effectiveness of melatonin priming. Moreover, the financial implications of applying melatonin across extensive agricultural areas could be daunting, which might limit its broader implementation. Consequently, additional research is essential to address both the practical application of melatonin in field settings and the genetic improvement of melatonin-associated genes to enhance plants’ ability to cope with stress.




5 Conclusion

In summary, waterlogging stress adversely affects the membrane system and oxidative balance in peach, while melatonin facilitates growth recovery and modulates the waterlogging response regulation (Figure 8). Transcriptomic and proteomic analyses indicated that the number of upregulated DEGs was fewer compared to downregulated ones following waterlogging, and exogenous melatonin prevented excessive activation of genes or proteins. Furthermore, transcription factors from the AP2/ERF and WRKY families were implicated in the response to waterlogging. The glycolysis/gluconeogenesis pathway has been identified as a pivotal pathway for peach to withstand waterlogging. The ERF VII family member ERF071 (Prupe.8G264900), ADH (Prupe.8G018100), and PCO (Prupe.7G011000) are promising candidates for manipulating the waterlogging response. Future research should aim to develop transgenic lines and perform biochemical assays to delineate their functions more precisely. Our findings provide actionable targets for breeding waterlogging-tolerant peach varieties and strategies to alleviate abiotic stress in horticulture.

[image: Diagram of plant response to waterlogging and melatonin priming. Waterlogging affects starch and sucrose metabolism, plant hormone signal transduction, and glycolysis/gluconeogenesis, leading to ROS generation from H2O2 and O2⁻. Melatonin priming helps protect the cell membrane, decrease toxin accumulation, and improve stress response, preventing excessive activation. Key genes and elements like WRKY, HSF, W-box, HPRE, HSE, PCO, ATG, HSP, ADH, and PDC are involved.]
Figure 8 | A hypothetical model of waterlogging response and melatonin priming mechanisms in peach.
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Introduction

Polyploid hybrid progeny have both ploidy and hybridization effect, and abound in genetic variation of traits, which is an important material for the breeding of excellent new varieties.Ploidy breeding is an important means to improve and cultivate new varieties, which could overcome distant hybridization incompatibility and play a great significance to species evolution and environmental adaptation.Therefore, triploid breeding has a wide range of application value in germplasm innovation and cultivation of excellent new varieties of fruit trees.





Methods

In order to reveal the trait characteristics and variation analysis of leaves and fruits of triploid hybrids, the ploidy identifications and SSR analysis were carried out through all progeny, and the leaf, stomata, thorn, fruit quality and other traits were compared and analyzed between the triploid and diploid progeny. The genetic variation of the triploid progeny were further analyzed, which could provide reference for hybrid parents selection, offspring traits prediction, ploidy breeding of jujube.





Results

The results indicated that the triploid progeny exhibited significantly higher values for leaf width, straight thorn length, and stomatal length compared to diploid individuals. However, the leaf shape index and stomatal density were significantly lower in triploids than in diploids. Furthermore, a low genetic trend was observed for leaf traits in triploid progeny, while needle prick traits displayed a high genetic trend. In contrast, stomatal width and stomatal density showed moderate to low genetic trends. Significantly, the single fruit weight, single fruit kernel weight and soluble solids content were significantly higher in triploids compared to diploids. However, the kernel index and titratable acid content were significantly lower in triploids than diploids. The genetic trend showed a high inclination towards single fruit weight, fruit length, fruit shape index, kernel transverse diameter and vitamin C content in triploid offspring. The edible rate exhibited a moderate genetic trend, while kernel longitudinal diameter, kernel index, and titratable acid content displayed a low genetic trend.





Discussion

First, the occurrence of polypoloid hybrid progeny. Second, triploid hybrid progeny of jujube has typical polypolid traits. Finally, abondance of genetic variations of traits in triploid progeny.





Keywords: jujube, triploid, hybrid progeny, leaves, fruits, variation analysis




1 Introduction

Jujube (Ziziphus jujuba Mill.) is native to China, which is an important fruit tree and the largest cultivated species in the world with the highest economic and ecological values (Liu M. J. et al., 2010). Jujube is increasingly favored and recognized by consumers because of its rich nutritional components and medicinal value (Lu et al., 2010). In 2020, the area of jujube in Xinjiang was 4.45 million Mu, and the yield was 3.8124 million tons, accounting for about 52% of China (Guo et al., 2023). Jujube industry is not only an important pillar industry of agricultural development in Xinjiang, but also an important way for farmers to increase their income. Jujube has the characteristics of resistance to drought, barren soil, salt and alkali stresses, but less tolerance to cold stress (Qi et al., 2024; Wang et al., 2023). It plays an important role in ecological construction, agricultural industrial structure adjustment, returning farmland to forest, sand prevention, wind and sand fixation in arid areas of northwest China such as Xinjiang (Wu et al., 2016). At present, the development of Xinjiang jujube industry faced several challenges, such as unreasonable variety structure, lack of special processing varieties, imbalance of early, middle and late maturing varieties (Li and Wei, 2013). In the process of cross breeding of jujube, due to the important limitation of small flowers, low fruit setting rate and high embryo abortion rate (Liu et al., 2013), the hybridization efficiency is low and the breeding process of new varieties is slow. Therefore, finding an efficient and accurate breeding method can effectively solve the current dilemma of jujube breeding and promote the creation of new jujube germplasms.

Ploidy breeding is an important means to improve and cultivate new varieties, which could overcome distant hybridization incompatibility and play a great significance to species evolution and environmental adaptation. Excellent polyploid germplasms has been created by sexual polyploidization means in different fruit tree species, including apple, pear, grape, plum, kiwi, etc (Wang et al., 2004). Hybridization between different ploidy is an important way to create polyploid progeny. For example diploid seedless grapes and tetraploid Kyoho hybridization was applied to obtain triploid grape offsprings (Wang S. Y. et al., 2014). The triploid citrus offsprings were obtained by hybridization of polyembryony diploid and tetraploid citrus (Xie et al., 2014). The triploid ‘Huaxing’ pear was obtained by crossing tetraploid ‘Dayali’ with diploid ‘Xuehua’ (Wang F. et al., 2014). Triploid apple ‘Jonagold’, tetraploid grape ‘Kyoho’, and nine-ploid persimmon flat-core cultivars were cross bred by ploidy breeding (Pu et al., 2013). Fruit polyploid germplasm has significant advantages of huge organs, no nuclei, strong stress resistance and high metabolite content, and is also an excellent material for studying the relationship between genome doubling and plant reproduction and growth. In recent years, the citrus team of Huazhong Agricultural University has obtained a large number of new citrus triploid karyofree germplasm by using the hybrid combination of monoembryonic diploid citrus varieties and tetraploid somatic hybrids as parents (Xie et al., 2013). Zhao et al. (2006) studied the flowering characteristics of wild plants related to sweetpotato and found that tetraploid I.littoralis had more flowering numbers than hexploid I.rifida. In terms of physiology, the polyploid sweetpotato group plants also show certain differences in seed setting rate. Du (2021) studied Epigenetic regulation mechanism of vegetative growth advantage in allotriploid Populus spp. (Section Tacamahaca) showed that the expression of differential genes in the triploid of populus spp. resulted in rapid accumulation of auxin and cytokinin, which were positively related to vegetative growth, and decreased the contents of ethylene, abscisic acid and salicylic acid, which were negatively related to vegetative growth, resulting in accelerated cell division and growth, larger leaves, and increased chlorophyll content in the triploid leaves of populus spp. The chlorophyll degradation is slowed down, the photocontracting ability is enhanced, and more sucrose and starch can be accumulated, which has obvious growth advantages. By using diploid and tetraploid hybridization to create triploid germplasm, breeders have cultivated many new triploid varieties of apple, pear, grape, citrus, etc. Therefore, triploid breeding has a wide range of application value in germplasm innovation and cultivation of excellent new varieties of fruit trees.

Morphological traits evaluation is the most effective means to study plant genetic diversity, and the results of morphological traits can reflect the phenotypic variation of different materials (Gao, 2011). Xiang et al. (2019) determined the morphological traits of grape tetraploid progeny, which found that the coefficient of variation of 14 traits was higher than 20%. The separation interval of the maximum and minimum of the traits was in a large range, and there was a phenomenon of hyperparental separation. Xiao (2013) proposed that jujube germplasm in Jinshan area of the Yellow River Basin had high inter-population and intra-population variation and rich genetic diversity. The fruit size and sugar traits of citrus triploid hybrid progeny were quantitative traits controlled by multiple genes, and the acid traits might be regulated by main control genes. The fruit sugar and acid content of triploid citrus group which was derived from ploid hybridization tended to the high acid and low sugar parents, and was significantly impacted by the male parent (Guan et al., 2024; Wang et al., 2022).The fruit size of the hybrid progeny of tetraploid ‘Gala’ and diploid ‘Tengmu No.1’ showed a high-parent genetic trend of large fruit type, titratable acid showed a low-parent genetic trend of low acid, and fruit hardness showed a low-parent genetic trend of low hardness. The orthogonal group of fruit soluble sugar showed a high-parent genetic trend of high sugar, and the reverse cross population of fruit soluble sugar showed a low-parent genetic trend of low sugar. Overall, the reciprocal hybrids showed a genetic trend of separation in fruit flavor, with the majority of sour-sweet types (Yu, 2022). The triploid hybrid lines of diploid ‘Hanfu’ and tetraploid ‘Gala’ had a maternal genetic tendency (He et al., 2015). It is evident that polyploidy progeny represents rich trait variation and transgressive inheritance. Therefore, ploidy breeding and genetic mechanism of polyploid plant traits variation has been widely concerned by fruits breeding researchers.

Jujube germplasm resources are abundant in China, and there are 944 known varieties and excellent lines (Liu and Wang, 2009). However, only two varieties ‘Zanhuangdazao’ (Peng et al., 2005) and ‘Pingguozao’ (Liu et al., 2013) were identified as natural triploid varieties currently. Ploidy hybridization is the most simple and effective way to obtain new polyploids, but polyploid breeding of jujube is still dominated by colchicine homologous induction. Liu et al. (2010) induced the stem tip of ‘Linyilizao’ (2x) through colchicine mutagenesis, and resulting in the production of the first tetraploid jujube variety ‘Chenguang’. Thus, these researchers successfully obtained the world’ first tetraploid jujube variety ‘Chenguang. Yan et al. (2018) created 3 triploid and 1 diploid germplasms by using ‘Chenguang’ as a parent firstly. The above materials have important application values in ploidy breeding research and provide the better material support for developing new jujube polyploid varieties. The previous studies found that there are rich and popular variation in the traits of polyploid materials such as stem diameter, large leaves, large flowers and fruits (Wang et al., 2022). Luckily, more triploid and diploid germplasms were created by the hybridization of ‘Dongzao’×’Chenguang’ in the current study. In order to reveal the trait characteristics and variation analysis of leaves and fruits of triploid hybrids, the ploidy identifications and SSR analysis were carried out through all progeny, and the leaf, stomata, thorn, fruit quality and other traits were compared and analyzed between the triploid and diploid progeny. The genetic variation of the triploid progeny were further analyzed, which could provide reference for hybrid parents selection, offspring traits prediction, ploidy breeding of jujube.




2 Materials and methods



2.1 Materials

The female parent was diploid ‘Dongzao’ (DZ, 2x=24) and the male parent was tetraploid ‘Chenguang’ (CG, 4x=48). For two consecutive years, controlled hybridization was carried out through pollination by bees in nets (Qiu et al., 2022). The nets were made of thin, breathable white mosquito net gauze, with 10 to 12 plants in each cage. At the early flowering stage (mid-late May), beehives were placed in the net to raise young bees for assisting pollination. A box of 2 spleen bees were placed in each net cage, and the bees were fed with fresh water and sugar water every other week. In 2016-2017, the harvested seeds were sown in the No.4 greenhouse of the Horticultural Experimental Station of Tarim University and grew to seedlings. In 2021, the hybrid offsprings and parent scions were collected and grafted in the 12th jujube breeding test base of the First Division in Alar City, Xinjiang. The grafting rootstock is 6-year ‘Huizao’. The plants were cultivated with sufficient water, fertilizer and high consistent managements.

In 2021, 124 progeny were used to identify ploidy and hybrids. Among them, 68 were triploid progeny and 56 were diploid progeny. However, due to salinity and freezing damage in Xinjiang, some test materials are missing. Therefore, 54 triploid progeny and 16 diploid progeny with good fruit bearing and stable traits were selected as experimental materials.




2.2 Methods



2.2.1 Flow cytometry identification

Ploidy identification was based on the method of Wang et al. (2018), with partially improvements. During the early June 2021, the tender leaves of the hybrid offsprings were collected. 0.2 g of tender leaves were taken, washed with distilled water to remove the surface dust, and then dried with filter paper and placed in a pre-cooled (4°C) petri dish. 2 mL cell lysate was added and chopped with a sharp blade to fully extract the complete nucleus. The extraction time was 60 s. Lcell lysate was extracted from the petri dish, filtered with the help of 400 mesh filter membrane into sample tube and then 200 μL of DAPI dye was added. After mixing, the sample tubes were placed in a refrigerator at 4°C and dye for 30 min in dark. After staining, the samples were analyzed by using by BD FACSCalibur flow cytometry and samples were placed in upper sample tubes for further testing and then 5,000 to 10,000 nuclei were collected. The diploid ‘Dongzao’ and tetraploid ‘Chenguang’ were used as the control. The DNA curve was generated directly by the instrument, and the ploidy of the hybrid progeny was preliminarily determined based on the measurement introduction.




2.2.2 SSR identification

Genomic DNA was extracted by modified CTAB method (Xiao, 2014). In the early June 2021, the tender leaves of each testing material were collected. The SSR primers were developed based on jujube genome sequencing data through literature searching, and 5 primers with optimum polymorphism and high repeatability were screened for genetic diversity analysis and PCR amplification (Supplementray Table 1). The PCR reaction system was 12.5 μL, including genomic DNA 0.5 μL (about 10-25 ng), Taq Master Mix 6.25 μL, dd H2O 4.75 μL. Both forward and reverse primers are 0.5 μL. The PCR procedure was as follows: Pre-denaturation at 94°C for 5 mins, Denatured at 94°C for 30 s, annealed at 50-64°C for 30 s, extended at 72°C for 30 s, 27 cycles, extended at 72°C for 7 mins. The PCR amplification products were detected by 8% polyacrylamide gel electrophoresis.




2.2.3 Assay of leaf and thorn traits

Leaf traits were determined according to the methods described by Qiu et al. (2021). In mid-September 2023, mature or nearly mature leaves of jujube bearing shoots were collected from the trees in the morning from 8:00 to 9:00. The leaves were placed in a zip-lock bag and stored in an ice box to bring back to the laboratory. The leaves were washed with distilled water and placed on filter paper to remove the water. Then, the leaves were scanned by Wanshen LA-S series plant image analyzer. The leaf length, leaf width, leaf area and leaf circumference were measured by ImageJ-64, and the leaf shape index (leaf length/leaf width) was calculated. Each test material has 30 replications, and the average value was calculated.

Thorn traits were assessed using the method proposed by Pu (1990) with some modifications. In March 2023, the middle of the secondary branch thorns were selected and the digital display vernier caliper (0.01 mm) was used to measure the straight thorn length, straight thorn thickness, hooked thorn length and thickness. Each test material has 6 replications and the average value was calculated.




2.2.4 Assay of stomatal traits

Stomatal mounts were made by the nail polish smearing and tearing method (Miller-Rushing et al., 2009). In mid-September 2023, the leaves of jujube bearing shoots on different directions around the canopy were randomly picked. Thin layer of nail polish, approximately 1.5cm wide and 2cm long, was applied to the middle of the underside of the leaves. After allowing it to settle down for 3~6 min, the nail polish was carefully removed with the help of tweezers and placed it on the slide. 1~2 drops of water were added and on the top and cover glass was placed on its top to prepare a temporary slide. The temporary slide was observed with a 20×objective lens of an electron microscope (BX51 Olympus). Each test material has 6 replications, each time 2~4 view fields were randomly selected, a total of 15~20 view fields. The length and width of 50 stomata were measured with ImageJ-64, and the density of stomata was calculated.

Calculation formula of stomatal density (number·mm−2) = number of stomata in the field of view/field area.




2.2.5 Assay of fruit size and fruit kernel traits

Fruit size and kernel traits were determined according to the method proposed by Liu et al. (2013). In September-October 2022-2023, 30 semi-red fruits with the same size and without any disease were picked from the middle of the jujube bearing shoots in different directions of canopy. The fruit weight, fruit longitudinal and transverse diameters were measured by electronic balance (0.01 g) and digital vernier caliper (0.01 mm), and the fruit shape index (fruit length/fruit diameter) was calculated. Each test material has 30 replications, and the average value was taken.

[image: Formula for edible rate calculation: Edible rate equals the difference between fruit weight (W_F) and single fruit kernel weight (W_C), divided by fruit weight (W_F), multiplied by one hundred percent.]	




2.2.6 Assay of fruit outer quality and sensory traits

The semi-red fruits with the same size and without any disease were picked from the middle of the jujube bearing shoot in different directions of canopy. According to the classification criteria and professional terms of ‘Chinese Jujube Germplasm Resources’ (Liu and Wang, 2009), the classification, description and recording were carried out. Two fruit outer quality traits (fruit shape and color) and four sensory quality traits (peel thickness, flesh color, flesh texture and fruit flavor) were determined by eyeballing method and group tasting method. Each test material has 10 replications and proportion of each trait was calculated.




2.2.7 Assay of fruit nutritional traits

Use a laboratory beater to mash and mix 30 jujube pulps, repeat 3 times for each test material and calculate the average value. Soluble solids content: Automatic benchtop refractometer (RX-5000α, ATAGO, Japan) (Mao et al., 2008) was used for determination of soluble solids content. Vitamin C content: The molybdenum blue colorimetric method (Chen et al., 2021) was used to determine the vitamin C content. Soluble sugar content: The anthrone sulfuric acid colorimetric method (Li et al., 2021) was used to determine the soluble sugar content. Titratable acid content: The acid-base neutralization titration method (Wang et al., 2021) was used to determine the titratable acid content.





2.3 Date processing

Excel 2016 was used to sort out the data, and SPSS 26.0 was used to analyze the data. Genetic variation formula:

[image: Formula for coefficient of variation: CV equals standard deviation (SD) divided by the mean (F), multiplied by one hundred percent.]	

[image: Formula depicting midpoint calculation: MP equals the sum of P1 and P2 divided by two.]	

[image: Mathematical formula for calculating percentage error: MPH equals open parenthesis F minus MP close parenthesis divided by MP times one hundred percent.]	

[image: Equation illustrating the formula for relative humidity: \( \text{RH} = \left(\frac{\text{NH}}{\text{N}}\right) \times 100\% \).]	

[image: RL equals the fraction of NL over N, multiplied by one hundred percent.]	

In the formula, CV is the variation coefficient, SD is the standard deviation of each trait. MP is the mid-parent value, P1 is the mean value of ‘Dongzao’ traits, P2 is the mean value of ‘Chenguang’ traits. MPH is the mid-parent heterosis, F is the mean values of progeny traits. RH is ultra-high parent ratio, NH is higher than the number of high parent progeny, RL is ultra-low parent ratio, NL is lower than the number of low parent progeny, N is the total number of hybrid progeny.





3 Results



3.1 Hybrid progeny identification



3.1.1 Ploidy identification of hybrid progeny

The ploidy of the two parents (‘Dongzao’×’Chenguang’) and hybrid progeny was detected by flow cytometry. The flow cytometry of the two parents showed clear and stable peaks. Each had a high single peak (Figures 1A, B). Because the female parent ‘Dongzao’ is diploid, the peak of chromosome fluorescence intensity appeared at about 200, the male parent ‘Chenguang’ is tetraploid, the peak of chromosome fluorescence intensity appeared at about 400. In addition, the peak of chromosome fluorescence intensity of progeny appeared at about 300, which demonstrated they were triploid progeny (Figure 1C), while the peak appeared at about 200, which demonstrated they were diploid progeny (Figure 1D). The statistical results of ploidy detection in the progeny were as follows: out of 124 hybrid progeny, 68 triploids were detected, accounting for 54.84%, and 56 diploids were detected, accounting for 45.16%.

[image: Four histograms labeled A, B, C, and D display data counts versus FL2-A values. Each graph shows a similar peak pattern, with counts peaking around 200 to 400 on the FL2-A axis and decreasing towards the ends. The graphs differ in data sets, labeled as Data.163, Data.210, Data.277, and Data.192, respectively.]
Figure 1 | Ploidy detection of the two parents and hybrid progeny by flow cytometry. Note: (A): 'Dongzao'; (B): 'Chenguang '; (C): Triploid progeny; (D): Diploid progeny; The abscissa axis represented the fluorescence intensity value, the ordinate axis represented the number of cell nucleus, and the location of the peak represented the ploidy of progeny..




3.1.2 SSR identification of the progeny

To conform whether the hybrid progeny are true hybrids, 5 SSR primers were used to identify the diploid and triploid progeny obtained from the hybridization of ‘Dongzao’×’Chenguang’ (Figure 2). Having paternal specific bands or both parents specific bands is considered to be the key evidence for the identification of true hybrids. The results showed that 118 of the 124 hybrids were identified as true hybrids with specific bands of paternity or both parents, including 50 diploid hybrids and 68 triploid hybrids. By comparing the bands of 5 SSR primers (Table 1), Primer JSSR239 had the best efficiency in the identification of triploid progeny. The hybrid rate of triploid progeny identified by primer JSSR239 was the highest. Among them, 38 strains had both parent specific bands and 12 strains had paternal specific bands. The hybrid rate of diploid progeny identified by primer JSSR131 was the highest. Among them, 25 strains had both parent specific bands and 4 strains had paternal specific bands.

[image: Gel electrophoresis image showing DNA bands. Lanes labeled "M," "♂," "♀," and numbers one to twelve contain DNA fragments. Sizes are indicated on the left as one hundred sixty-five, one hundred forty-nine, and one hundred thirty-five base pairs.]
Figure 2 | The band amplification of primer JSSR239 in parents and some diploid and triploid progeny. (M): DNA maker; (♂): The female parent; (♀): The male parent; (1~6): Triploid progeny; (7~12): Diploid progeny.

Table 1 | Distribution of different SSR loci in diploid and triploid progeny.


[image: Table displaying genetic marker data for various primers, showing values for ploidy levels (three x and two x), markers presented in both parents, only in female or male parents, new markers in progeny, and markers absent in progeny, expressed as plants and percentages for each primer type (JSSR131, JSSR214, JSSR239, JSSR314, JSSR318).]




3.2 Analysis of leaf traits in triploid progeny



3.2.1 Comparative analysis of leaf traits

By comparing the leaf size of triploid progeny with that of parents and diploid progeny, it was found that the leaf size of the triploid progeny was significantly larger than that of the diploids (Figure 3). The leaf length, width, area and circumference of triploid and diploid progeny were lower than those of both parents, and the leaf shape index was between that of both parents. The leaf shape index of triploid progeny was significantly lower than that of diploids, and the leaf width and area was significantly higher than those of diploids (Table 2), showing the characteristics of round leaves. With the increase of chromosome ploidy, the leaves of triploid progeny were shorter and wider, and the leaf shape index was smaller, which was significantly different from that of diploid progeny. This feature can be used as a morphological indexes to preliminarily determination of the ploidy of jujube hybrid progeny.

[image: Leaves labeled A, B, C, and D are displayed in a row against a white background. Leaf A is narrow and elongated. Leaf B is broad with visible veins. Leaf C is small and pointed. Leaf D is similar to B but slightly shorter. A scale indicates 10 millimeters.]
Figure 3 | Leaf morphology of two parents, diploid and triploid progeny. (A) Leaf of ‘Dongzao’; (B) Leaf of ‘Chenguang’; (C) Leaf of diploid progeny; (D) Leaf of triploid progeny.

Table 2 | Comparison of leaf traits between triploid and diploid progeny.


[image: Table comparing leaf traits among four groups: ‘Dongzao’ (2x), ‘Chenguang’ (4x), triploid progeny (3x), and diploid progeny (2x). Traits include leaf length, width, area, and circumference in millimeters, and a leaf shape index. Significant differences are noted for triploid progeny in leaf width, area, and shape index with p-values less than 0.05 and 0.01.]
By comparing the thorn size of triploid progeny with that of parents and diploid progeny, it was found that the thorn size of triploid progeny was significantly larger than the diploid (Figure 4). The female parent ‘Dongzao’ showed thorn degradation, while straight and hook thorn of the male parent ‘Chenguang’ are pairs of thorns. In the diploid and triploid progeny, there was no thorn degradation, but only one triploid hybrid presents equal thorns between straight and hooked thorn (Figure 4F). The thorn traits of triploid progeny were greater than that of the male parent ‘Chenguang’. The straight thorn length, hooked thorn length in triploid progeny was significantly higher than that of diploid, showing the characteristics of larger thorn (Table 3). The straight thorn thickness of triploid progeny was lower than that of diploid progeny. It can be seen that the thorn of triploid progeny was longer and thicker, which was different from that of diploid progeny. This feature can be used as an auxiliary index to judge the ploidy of jujube hybrid progeny.

[image: illustration of six black spikes labeled A to F, progressively increasing in size from left to right. A scale indicating 10 millimeters is shown on the right.]
Figure 4 | Thorn morphology comparison of two parents and diploid and triploid progeny. (A) Thorn of ‘Chenguang’. (B, C) Thorn of diploid progeny. (D, E) Thorn of triploid progeny. (F): Equal thorns (triploid hybrid T92).

Table 3 | Comparison of thorn traits between triploid and diploid progeny.


[image: Table displaying thorn traits for different progenies: Dongzao (2x), Chenguang (4x), Triploid (3x), and Diploid (2x). Traits include straight thorn length, thickness, hooked thorn length, and thickness, with mean ± SD values. Notable differences are indicated with asterisks, showing significant statistical differences between triploid and diploid progenies.]
By comparing the stomatal size of triploid progeny with that of parents and diploid progeny, it can be seen that the stomatal size of triploid progeny was significantly larger than the diploid (Figure 5). The stomatal length, stomatal density and stomatal width of triploid offsprings were intermediate between the parent values. The stomatal length and stomatal width of triploid progeny were significantly higher than those of diploid, but the stomatal density of triploid progeny was significantly lower than that of diploid (Table 4), showing the characteristics of larger stomata. Thus, with the increase of chromosome ploidy, the stomata of triploid progeny were larger and rounder, while the stomatal density decreased, indicating significant difference from the stomatal size traits of diploid progeny. This characteristic can also be used as one of the morphological indicators to identify whether the plant chromosome had been doubled.

[image: Microscopic images labeled A, B, C, and D show a collection of oval-shaped structures, resembling spores, distributed across each panel. Each image has a scale marker of twenty micrometers, indicating magnification level. The background texture appears consistent across the images, suggesting similar sample preparation.]
Figure 5 | Stomatal morphology of two parents and diploid and triploid progeny. (A) Stomata of ‘Dongzao’; (B) Stomata of ‘Chenguang’; (C) Stomata of diploid progeny; (D) Stomata of triploid progeny.

Table 4 | Comparison of stomatal traits between triploid and diploid progeny.


[image: Table showing stomatal traits of different progenies with mean and standard deviation values. 'Dongzao' (2x) has length 16.43, width 8.48, density 316.09; 'Chenguang' (4x) has length 24.98, width 10.48, density 181.88; Triploid progeny (3x) has length 20.99**, width 9.25**, density 214.59**; Diploid progeny (2x) has length 18.72, width 8.28, density 256.69. Significant differences indicated by * for p<0.05 and ** for p<0.01.]



3.2.2 Variation analysis of leaf traits in triploid progeny

The variation in leaf traits of triploid progeny was conducted statistical analysis (Table 5). The variation coefficients of leaf indicators in triploid progeny ranged from 13.13% to 33.35%, indicating that leaf indicators were widely separated in triploid progeny. The mid-parent heterosis of leaf indicators in triploid progeny were negative, and the ultra-low parent ratio in leaf indicators was more than 70%, showing an obvious tendency of low genetic variation. The variation coefficient of thorn indicators in triploid progeny ranged from 12.50~34.29%, indicating that the thorn indicators were separated to a greater degree in triploid progeny. The mid-parent heterosis of thorn indicators in triploid progeny was positive, and the ultra-high parent ratio of thorn indicators was more than 70%, showing a trend of high genetic variation. The variation coefficient of stomatal indicators in triploid progeny ranged from 11.96~15.08%, indicating that stomatal indicators were widely separated in triploid progeny. The mid-parent heterosis of stomatal width and density in triploid progeny were negative, and the super-high parent ratio in stomatal width and density was small, indicating a trend from intermediate to lower genetic variation. The mid-parent heterosis of stomatal length in triploid progeny was 1.35%, and the ultra-low parent ratio was 3.28% in stomatal length, showing a trend of intermediate genetic variation.

Table 5 | Variation analysis of leaf traits in triploid progeny.


[image: Table displaying various plant traits including leaf, thorn, and stomatal characteristics. Columns list variation coefficient, variation range, mid-parent heterosis, and ultra-high and ultra-low parent ratios. Each row details specific traits like leaf length, thorn thickness, and stomatal dimensions, with corresponding numerical values.]




3.3 Analysis of fruit traits in triploid progeny



3.3.1 Comparative analysis of fruit outer and sensory quality

The distribution of fruit outer and sensory quality of triploid progeny were shown in Table 6. From the perspective of fruit shape, the fruit outer traits of diploid and triploid progeny were quite different. The fruit shape of triploid progeny was predominantly oblate, accounting for 42.00% and 43.14% respectively in two consecutive years. However, the proportion of oval and round shapes was the smallest. There were 5 and 6 malformed fruits in the two years. The fruit color of the hybrid progeny showed separation of four traits, among which the diploid and triploid progeny were mostly red, accounting for more than 85.00%, and it indicated the inheritance of fruit color traits was relatively stable. It was one of the breeding objectives to select plants with thin pericarp. By comparing the peel thickness of diploid and triploid progeny, it was found that there were 27 and 11 plants with thin peel among triploid progeny during the two years, accounting for 54.00% and 21.57% of triploid progeny, respectively. It demonstrates a significant thinning trend of peel thickness in triploid progeny. From the perspective of flesh color, the proportion of light green flesh in triploid progeny was more than 80.00%, which was similar as compared to parents. Flesh texture (Wang et al., 2016) and fruit flavor (Wang et al., 2016) are important factors affecting fruit quality. From the perspective of flesh texture, both parents had crisp taste. There were 17 and 14 plants with crisp flesh in triploid progeny in 2 years, accounting for 34.00% and 27.45% of triploid progeny, respectively. These findings indicated that the flesh texture of triploid progeny could be inherited stably. From the perspective of fruit flavor, the parents were mainly sweet-sour, but the sour-sweet flavors of diploid and triploid progeny accounted for a large proportion, which the sour-sweet flavors of triploid progeny accounted for 46.00% and 45.10% respectively in two years.

Table 6 | Distribution of fruit outer and sensory traits in diploid and triploid progeny.


[image: Table showing distribution of traits for Dongzao (2x) and Chenguang (4x) progeny in 2022 and 2023. Traits include fruit shape, color, peel thickness, flesh color, texture, and flavor. Data specifies number and percentage of plants exhibiting specific traits such as oblate, globose, red, thin, light green, crisp, and sweet-sour characteristics.]



3.3.2 Comparative analysis of fruit and fruit kernel traits

By comparing the fruit size of triploid progeny with that of parents and diploid progeny, it can be seen that the fruit size of the triploid progeny was significantly larger than the diploid (Figure 6). The single fruit weight, fruit diameter and fruit length of triploid progeny were larger than that of female parent ‘Dongzao’, and smaller than that of male parent ‘Chenguang’, but the fruit shape index was larger than that of parents. The single fruit weight, fruit diameter, fruit length and fruit shape index of triploid progeny were significantly higher than those of diploid. The edible rate of triploid progeny was higher and significantly higher than that of diploid (Table 7), showing the characteristics of large fruit type. It can be seen that after doubling, the single fruit weight, fruit diameter, fruit length, fruit shape index and edible rate all increased, which was different from the fruit size traits of diploid progeny, laying a foundation for the breeding of excellent large fruit progeny.

[image: Six apples labeled A to F, varying in size and color. Apple A is dark red and round. B has an uneven surface. C is small with yellow patches. D is medium-sized and red. E and F are larger with red and yellow hues. A scale indicates a size reference of twenty millimeters.]
Figure 6 | Fruit morphology of two parents and diploid and triploid progeny. (A) Fruit of ‘Dongzao’; (B) Fruit of ‘Chenguang’; (C, D) Fruits of diploid progeny; (E, F) Fruits of triploid progeny.

Table 7 | Comparison of fruit size traits between triploid and diploid progeny.


[image: Table comparing fruit size traits for different progenies ('Dongzao', 'Chenguang', Triploid, Diploid) across 2022 and 2023. Columns include single fruit weight (g), fruit length (mm), fruit diameter (mm), fruit shape index, and edible rate (%), with means and standard deviations. Significant differences are marked with lowercase letters for analysis at p<0.05 level.]
By comparing the size of fruit kernel of triploid progeny with that of parents and diploid progeny, it can be seen that the size fruit kernel of the triploid progeny was significantly larger than the diploid (Figure 7). The single fruit kernel weight, longitudinal diameter and transverse diameter of triploid progeny were larger, but fruit kernel index was smaller when compared with female parent ‘Dongzao’. The single fruit kernel weight, transverse diameter, longitudinal diameter of triploid offsprings were significantly higher and the fruit kernel index was significantly lower as compared to diploid progeny (Table 8), and it demonstrated the characteristics of larger fruit kernel. Our results demonstrated that with the increase of chromosome ploidy, single fruit kernel weight, longitudinal diameter and transverse diameter also increased, but decrease in the index of fruit kernel observed, which was significantly different from the size of fruit kernel in diploid progeny but consistent with the trends in fruit size of triploid progeny. These findings indicated that this characteristic can be used as a key indicator to determine whether the hybrid progeny have undergone chromosomal doubling.

[image: Six leaves labeled A to F are displayed in a row, each varying slightly in shape and size. The leaves are brown with a smooth texture, and a scale bar indicating 10 millimeters is present for reference.]
Figure 7 | Kernel morphology of two parents and diploid and triploid progeny. (A) Kernel of ‘Dongzao’; (B) Kernal of ‘Chenguang’; (C, D) Kernal of diploid progeny; (E, F) Kernal of triploid progeny.

Table 8 | Comparison of kernel traits between triploid and diploid progeny.


[image: Table comparing kernel size traits across different progenies for the years 2022 and 2023. Metrics: single fruit kernel weight, longitudinal diameter, transverse diameter, and kernel index. 'Dongzao', 'Chenguang', triploid, and diploid progenies are listed. Values include mean and standard deviation, with distinct lowercase letters denoting significant differences at p < 0.05.]



3.3.3 Comparative analysis of fruit nutritional traits

By comparing the fruit nutritional traits of triploid progeny with that of parents and diploid progeny, it was concluded that the soluble solids and soluble sugar content of triploid progeny were between those of parents, while the vitamin C content of triploid progeny was less than that of diploid. The titratable acid content of triploid progeny was significantly lower than that of diploid, and the soluble solids and soluble sugar content were higher than those of diploid (Table 9), showing the characteristics of high sugar and low acid. Thus, we proposed that after doubling the triploid offsprings was higher than the diploid in terms of sugar substances, but less than the diploid in terms of acid substances. Therefore, it was speculated that the phenomenon of high sugar and low acid was an important feature of triploid offsprings.

Table 9 | Comparison of fruit nutritional traits between triploid and diploid progeny.


[image: Table comparing fruit nutritional traits of different progeny types across 2022 and 2023. It includes Vitamin C, soluble solid, sugar, and titratable acid content. 'Dongzao' (2x), 'Chenguang' (4x), triploid (3x), and diploid progeny (2x) show variations in these contents. Statistical significance is noted for specific values, indicated by asterisks.]



3.3.4 Variation analysis of fruit traits in triploid progeny

The variation of fruit size traits in triploid progeny was analyzed (Table 10). The variation coefficient of fruit size indicators in triploid progeny ranged from 1.00~50.14%, indicating that fruit size indicators were widely separated in triploid progeny. The mid-parent heterosis of single fruit weight, fruit length and fruit shape index in triploid progeny was positive with a high super parent ratio. It indicated a trend of high genetic variation. The edible rate of triploid progeny showed a trend of intermediate genetic variation. The ultra-low parent heterosis ratio of fruit size indicators in triploid progeny was positive, and the ultra-low parent heterosis appeared. The variation coefficient of fruit kernel indicators in triploid progeny ranged from 14.88~52.73%, indicating that there was a wide separation in fruit kernel size indicators in triploid progeny. The mid-parent heterosis of fruit kernel longitudinal diameter and fruit kernel index in triploid progeny was negative, and the ultra-low parent ratio was high, indicating a trend of low genetic variation. The mid-parent heterosis of the transverse diameter of the fruit kernel in triploid progeny was positive, and the super-high parent ratio was high, demonstrating a trend of large genetic variation. The variation coefficient of fruit nutritional indicators in triploid progeny ranged from 9.79~22.13% indicating that fruit nutritional indicators were widely separated in triploid progeny. Due to different years, the variation of fruit nutritional indicators has a certain degree of differences. In 2022, the mid-parent heterosis of fruit nutritional indicators in triploid progeny were negative, and the ultra-low parent ratio was higher, showing a trend of low genetic variation. In 2023, the mid-parent heterosis ratio of fruit nutritional indicators in triploid progeny were positive, the ultra-high parent of vitamin C content was higher, showing a trend of high genetic variation. While the ultra-low parent ratio of titratable acid content was higher, showing a trend of low genetic variation.

Table 10 | Variation analysis of fruit traits in triploid progeny.


[image: Table displaying data on fruit traits across two years, 2022 and 2023. Categories include fruit size, kernel, and nutritional traits. Columns cover metrics such as variation coefficient, variation range, mid-parent heterosis, ultra-high parent ratio, and ultra-low parent ratio, with specific numerical values for each trait.]




3.4 Screening of large-fruit and high-sugar triploid lines

All the triploid progeny were ordered according to the single fruit weight and soluble sugar content from high to low, and the top 3 large-fruit triploid superior lines and the top 3 high-sugar triploid superior lines were selected from the triploid progeny (Table 11). The single fruit weight of T11 was 52.84 g, which was about 20 g than that of the male parent. The soluble sugar content of T167 was 33.01%, which was about 10% higher than that of the parents.

Table 11 | Superior lines of large-fruit and high-sugar in triploid progeny.


[image: A table comparing large fruit and high sugar fruit types. Categories include type, number, single fruit weight in grams, fruit length in millimeters, fruit diameter in millimeters, fruit shape index, vitamin C content in milligrams per 100 grams, soluble solid content percentage, soluble sugar content percentage, and titratable acid content percentage. Numerical values are listed for each fruit type and category.]




4 Discussion



4.1 The occurrence of polyploid hybrid progeny

Meiosis is an important way of cell division, and its normal operation is of great significance to the genetic stability of organisms. However, abnormal meiosis behavior can lead to abnormalities in the number or structure of chromosomes in gametes, and can also affect pollen size and fertility. The male parent ‘Chenguang’ occurs abnormal behavior in the process of meiosis. The chromosomal configuration is complex at meiotic diakinesis, with univalents, bivalents, trivalents, quadrivalents, and two nucleoli. Anaphase I and anaphase II showed the phenomenon of abnormal cytokinesis. Diad, triad, polyad and some micronucleus cells also appeared in the tetrad period (Lv et al., 2018). We measured the size of ‘Chenguang’ pollen and found that the proportion of normal pollen (2x) was 67.33%, the proportion of small pollen (x) and large pollen (3x) was 30% and 2.67%, respectively (to be published). We speculated that the pollen size and fertility of ‘Chenguang’ were affected by the abnormal behavior at different periods of meiosis, resulting in the emergence of diploid progeny. However, the occurrence of diploid remains unclear, and further research is needed. Through sexual polyploidy hybridization, we created a batch of allotriploid germplasm. These materials have the advantages of hybridization and ploidy effect, the gene heterozygosity is higher, and the genome impact phenomenon makes them more abundant phenotype and biological traits variation, which is more suitable for plant genetic improvement.




4.2 Triploid hybrid progeny of jujube has typical polyploid traits

After sexual polyploidization, the biological characteristics of most fruit trees changed due to chromosome doubling, such as strong growth, thick branches, large leaves, big fruits and seedless, and these traits showed high genetic stability in the process of reproduction (Liu et al., 2011). Qiu (2022) found that, the leaf length of jujube polyploid progeny became shorter, the leaf width became wider, and the leaf shape index became smaller, indicating that the leaf of jujube polyploid progeny was rounder. This study found that the progeny of jujube triploid had polyploid characteristics such as shorter leaf length, wider leaf width and smaller leaf shape index. Wei et al. (2022) found that the leaf length and leaf shape index of cassava tetraploid were smaller than that of diploid, while the leaf width was larger than that of diploid, which was consistent with our research results. The outcomes demonstrated by other researchers have shown that stomatal size and stomatal density have a certain correlation with plant resistance (Franks et al., 2015). As stomatal density decreases, the plant resistance tends to increase (Ramos and Volin, 1987). Dang et al. (2011) showed that apple varieties with smaller stomatal density had stronger resistance to brown spot disease. Zhao et al. (2017) found that the stomatal density of pear varieties resistant to black star disease was lower than that of pear varieties susceptible to black star disease. In this study, the stomatal density of jujube triploid was lower than that of diploid, indicating that jujube triploid had strong stress resistance. Liu et al. (2024) found that the stomatal length and width of tetraploid Cyclocarya paliurus were larger than that of diploid, and the stomatal density was smaller than that of diploid. In addition, tetraploid Fortunella hindsii Swingle (Zhang et al., 2022) have similar stomatal characteristics. This study investigated and analyzed characters of jujube triploid offspring for the first time, found that the stomatal length and stomatal width of the triploid offsprings of jujube became larger, and the stomatal density became smaller, which refers to the characteristics of typical polyploid. It also showed that the triploid progeny of jujube had strong resistance from a biological point of view. The above-mentioned characteristics of leaves and stomatal traits in triploid progeny of jujube were in line with the characteristics of polyploidy, which can be used as the most direct and effective method for preliminary identification of ploidy of hybrid offspring of jujube, and it will greatly reduce the workload and difficulty during jujube breeding process.

After polyploidy of fruit trees, different characters of different species will also show some differences (Abdolinejad et al., 2021). In terms of fruit size, polyploid fruits are generally larger than diploid ones. Wang et al. (2022) found that the single fruit weight, longitudinal diameter and transverse diameter of apple triploid fruits all increased. Liu et al. (2022) found that the single fruit weight, transverse diameter, longitudinal diameter and edible rate of jujube tetraploid increased. However, in the pear tetraploid (Wang et al., 2015), the fruit does not increase, and its growth rate is higher than that of the diploid. In this study, it was found that single fruit weight, transverse diameter, longitudinal diameter, fruit shape index and edible rate of jujube triploid increased, indicating that the offspring of jujube triploid fruit had typical characteristics of large fruit. Studies have found that a single plant with high sugar and low acid appeared in the hybrid progeny of apple (Huang et al., 2024) and apricot (Jiang et al., 2018), while a single plant with high sugar and high acid appeared in the hybrid offspring of grape (Jia et al., 2021). This study found that the titratable acid content of the fruit of jujube triploid progeny was lower, the soluble solid content and soluble sugar content were higher, and the phenomenon of high sugar and low acid appeared. We speculate that this may be related to the genetic characteristics of the parents, or it may be related to environmental factors. It can be seen that with the increase of ploidy, the fruit quality of jujube triploid progeny has been improved, and resources with excellent quality traits can be selected to provide important materials for new variety breeding.




4.3 Abondance of genetic variations of traits in triploid progeny

As the main vegetative organ of fruit trees, leaves play an important role in the growth and development of fruit trees. Liu et al. (2023) Studied the leaf phenotypic traits of F1 generation in Eucommia ulmoides showed that the coefficient of variation ranged from 6.29% to 36.97%. Among them, the variation range of leaf area was higher, the coefficient of variation was 36.97%. In addition, the study on F1 generation of persimmon (Diao et al., 2017)showed that the coefficient of variation of leaf phenotypic traits ranged from 6.87 to 42.78%, and the mid-parent heterosis ratio of 11 traits was negative. This study found that the coefficient of variation of leaf traits in triploid progeny was 13.13~33.35%. Among them, the variation range of leaf area was higher, the coefficient of variation was 33.35%, while the variation range of leaf shape index was smaller, the coefficient of variation was 13.13%, and the mid-parent heterosis ratio is negative. The results showed that the leaf traits had heterosis with dominant genetic effects and that jujube trees had high heterozygosity, which was basically consistent with previous studies on leaf variation of apple (Dang et al., 2012) and jujube (Qiu et al., 2023). Thorns is a special character of jujube, which mainly plays the role of self-protection. In production practice, it is easy to pick jujube fruit without or with few thorns. Qi et al. (2009) found that the variation coefficient of thorn length ranged from 23.53% to 27.86%, and the variation of traits among individuals was large, while the difference between traits was small. Lu et al. (2003) found that the variation coefficient of thorn traits of the naturally pollinated seedlings of different varieties varied greatly. In this study, the variation coefficient of thorn traits of jujube triploid progeny ranged from 16.95% to 34.29%, and showed a trend of large genetic variation, the heterosis and super high parent advantage was noticeable. The variation of leaf and thorn traits of triploid progeny was abundant, and it might be due to the highly heterozygous nature of jujube trees, non-additive effect of the gene was recombined during the hybridization process and ploidy effect.

Stomata is an important organ for gas and water exchange between plants and the external environment, and playing a crucial role in plants physiological processes. In the study of Dong (2016), the stomatal density, length and width of the ‘Qinguan’×’Honeycrisp’ hybrid showed varying degrees of variation, and the phenomenon of bidirectional superparental separation was presented. In this study, the genetic variation of stomatal traits in jujube triploid offspring was analyzed. It was found that the coefficient of variation of stomatal traits in triploid hybrid progeny was 11.96~15.18%, indicating rich genetic diversity and great selection potential. The mid-parent heterosis rate of stomatal traits in triploid progeny was -13.82~1.35%, and the genetic transmission ability was 86.18~101.35%. The genetic tendency of stomatal width and stomatal density showed a small genetic trend, but the genetic tendency of stomatal length showed a large genetic trend, and the heterosis was obvious. Shang et al. (2020) found that the variation of stomatal traits of Populus cathayana was mainly due to ploidy effect, followed by genotype effect and environmental effect. Bai et al. (2015) found that ploidy had a great impact on leaf, stomata and other characters of Populus tomentosa. In this study, compared with the diploid offspring, the leaves and stomata of the triploid progeny in jujube were significantly larger. It is speculated that the main reason for the variation of stomatal traits in triploid progeny of jujube is ploidy effect, and the secondary reason is hybridization effect.

Fruit quality is an important indicator to measure whether fruit tree varieties are excellent, and it also directly affects the consumers’ willingness to purchase, thereby improving their economic value. Genetic improvement of fruit size and shape can be achieved by sexual polyploidization. Han et al. (2022) found that the variation coefficient of single fruit weight of kiwi hybrid offspring was above 20% for three consecutive years, the genetic transmission ability was lower than 100%, and the mid-parent heterosis rate was negative, indicating that single fruit weight was susceptible to environmental influences and heterosis was not obvious. Wu et al. (2022) studied the fruit quantitative traits of 116 jujube germplasm resources and found that the variation coefficient of single fruit quality was the largest (41.30%) and the variation coefficient of edible rate was the smallest (1.76%). In this study, the diversity of fruit size traits of triploid progeny of jujube was analyzed. The variation coefficient of single fruit weight was the largest (50.14%) and the variation coefficient of edible rate was the smallest (1%), indicating that single fruit weight was widely separated, the variation degree was large, and the influence of genetic regulation and environment was great, and the genetic improvement potential was great. This is consistent with the results of Pan et al. (2023) on fruit size traits of jujube. The variation coefficient of fruit size traits in this study was generally higher than that in previous studies, indicating that the genetic diversity of fruit size in triploid progeny was richer, which may be related to different test materials or ploidy hybridization. Yang et al. (2023) found that the fruit appearance heredity of the hybrid offspring of Jujube and Wild Jujube was more biased to the father, while the fruit nutrition index heredity was more biased to the mother. In this study, the genetic transmission ability of fruit traits in jujube triploid offspring was higher than 80%, showed a large genetic trend, obvious heterosis, and fruit size traits were more biased to the father, which may be due to gene recombination in the process of sexual polyploidy, resulting in the appearance of ‘Chenguang’ large fruit traits. Therefore, when breeding large fruit type progeny as the breeding objectives, we should choose large fruit varieties as parents as much as possible, in order to obtain more large fruit type progeny. Due to the unusual situations in 2022, the fruit picking was delayed, which may have impacted the determination of fruit nutritional traits, mainly measured in 2023. In this study, the variation analysis of fruit nutritional traits of jujube triploid progeny was analyzed, and the variation coefficient of vitamin C content was the largest (20.57%), and showed ultra-high parent heritability, indicating greater genetic potential and selection space in triploid progeny, which is consistent with the research results of Xie et al. (2022) on the content of vitamin C in ‘Dongzao’ × ‘Jinsi 4’ hybrid F1 generation. On the contrary, the variation coefficient of vitamin C content in strawberry Wang and Wang (2023) hybrids was the lowest, the degree of variation was small, and the trait inheritance was more stable. Therefore, we inferred that the genetic variation of vitamin C content is mainly additive effect, and there is a positive non-additive effect.

The biological traits of polyploid progeny obtained by sexual polyploidization are usually affected by both ploidy and hybridization effect. Ploidy effect is an important factor affecting the variation of sexual offspring traits. Liu et al. (2024) found that ploidy variation had an effect on leaf size, shape, branch diameter and internode length of ‘Cuimi Kumquat’. Zhang et al. (2017) found that with the increase of ploidy, the leaf thickness, upper epidermis, palisade tissue and sponge tissue in rubber trees indicated significantly differences. This study found that the leaf and fruit traits of different ploidy progeny were significantly different, and the variation degree of triploid progeny was greater than that of diploid progeny, indicating that ploidy effect had a certain degree of influence on progeny traits. Hybridization effect is the premise of the variation of progeny traits. Li et al. (2023) studied the genetic diversity of two different jujube hybrid offspring groups and natural pollination progeny groups, and found that the genetic diversity levels of the three groups were significantly different. Ma et al. (2024) studied the variation of long branch and leaf traits of diploid and triploid hybrids of Populus cathayana. It was found that leaf traits such as leaf length, leaf width, leaf area and petiole length were mainly affected by genotype effect, and stomatal length, stomatal width and stomatal density were mainly affected by ploidy effect. The comprehensive analysis of this study found that the phenotypic traits such as leaf size, stomatal size, and fruit size of the triploid progeny of jujube were more susceptible to ploidy effects, while the internal quality of the fruit was affected by ploidy and hybridization effects.

Polyploidy is an important driving force for plant evolution. After polyploidy, there are corresponding changes in chromosome number and chromosome recombination in the genome, and epigenetic changes in gene expression, such as gene silencing and activation, gene non-additive expression, sequence elimination, transposon and DNA methyl pattern, small molecule RNA, and nucleolar dominance, etc. Many genes and gene families also exhibit copy number changes after multiploidy. It was found that genome hybridization had more effect on gene expression than genome doubling. Based on genomic evidence, Feng et al. (2024) proposed a framework model of the polyploidization-rediploidization process to reveal the mechanism of plant genome ploidy change and adaptive evolution in the context of global climate change. Blasio et al. (2022) proposed that genomic changes and transcriptome modifications produced in primitive allopolyploids can add complexity during evolution, resulting in phenotypic innovations. Harun et al. (2024) found that If polyploid plants are stable effectively, they provide advantages over their diploid counterparts. Polyploid has higher biomass, yield, vigor, larger vegetative organs, seeds, and seed pods compared to diploid. Therefore, allopolyploids are more complex in terms of genetic mechanism and molecular regulation, and their character variation is more obvious.





5 Conclusion

This study indicate that the triploid progeny exhibit typical polyploid characteristics, such as round leaves and large stomata, which can serve as preliminary indicators for identifying the ploidy of hybrid progeny. The fruit size of triploid offspring demonstrates a prominent trait of larger fruits, while their nutritional quality exhibits distinct features of high sugar content and low acidity, thus indicating excellent fruit quality traits in the progeny. The leaf structure, stomatal characteristics, and fruit size in triploid jujube progeny are significantly influenced by ploidy effects; however, both ploidy effects and hybridization effects impact the fruit quality. The allotriploid germplasm of jujube showed the advantages of huge fruit and high metabolic content, which provided new material for breeding and genetic research of jujube cultivars in the future, and also provided a method reference for ploidy hybridization of other varieties and tree species.
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Background

Frigida (FRI) genes are crucial for regulating flowering time in plants. While the biological importance of the Frigida-like (FRL) gene family has been recognized in Arabidopsis, a systematic analysis of these genes in soybean is lacking. Characterizing FRL genes in soybean will help uncover their roles in flowering regulation, offering valuable insights for improving soybean adaptation.





Results

In this study, we identified 16 Frigida genes in soybean, naming them based on their relationship to the FRL genes in Arabidopsis thaliana. These genes are unevenly distributed across thirteen chromosomes. Phylogenetic analysis categorizes Frigida-like proteins from Arabidopsis, soybean, and rice into four distinct subfamilies (I–IV). Our findings indicate that eight GmFRLs arose from whole-genome duplication (WGD) events, alongside two tandem duplication events. Gene structure analysis confirmed that all GmFRL members contain Frigida domains. Additionally, promoter analysis revealed numerous cis-acting elements related to photoperiodic response, suggesting their significant role in soybean’s light response mechanisms. RNA-seq data demonstrated variable expression levels of GmFRL genes across tissues, including flower, leaf, pod, and seed, and other tissues, while subcellular localization and qPCR analyses further support their vital role in light responsiveness in soybean.





Conclusion

In summary, our comprehensive analysis offers valuable insights into the evolution and potential functions of GmFRL genes, emphasizing their significance in photoperiodic responses and establishing a foundation for further research on the GmFRL family.





Keywords: Glycine max, FRIGIDA-LIKE, photoperiod response, gene expression, genome-wide identification




1 Introduction

Seasonal flowering is fundamental to the reproductive success and survival of higher plants. Plants have evolved a complex response of endogenous clues and environmental factors, such as day length and temperature control of flowering time of genetic networks (Choi et al., 2011; Takada et al., 2019; Dean, 2002). FRI (FRIGIDA) is a key regulator of flowering time and can inhibit flowering without vernalization (Chen et al., 2020). The FRL gene encodes a novel protein that lacks structural domains indicative of immediate functions, yet it contains two potential coiled-coil domains (Goff et al., 2002), which are believed to interact with other proteins or nucleic acids. This unique domain activates the expression of FLC (FLOWERING LOCUS C), which encodes a MADS-box transcription factor that quantitatively suppresses the floral transition by inhibiting flowering pathway integrators, such as FT (Flowering Locus T) and SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) in Arabidopsis (Schmitz and Amasino, 2007). FRI acts as a scaffold protein, interacting with FRL1, SUF4, FLX, FES1, UBC1, and CBP20 to form a transcriptional activation complex. This complex recruits chromatin-modifying factors, including the SWR1 complex and SET2 homologs, to epigenetically modify the histone methylation levels at the FLC locus (Choi et al., 2011; Li et al., 2018).

Recent studies have indicated that FRI mediates the activation of the floral repressor FLC, thereby negatively regulating flowering time (Zhu et al., 2021). Most rapid-cycling Arabidopsis carry loss-of-function mutations in FRL, leading to low levels of FLC and rapid flowering in the absence of vernalization (Ding et al., 2013). Studies related to FRI genes have been carried out in A. thaliana (Risk et al., 2010), Medicago sativa (Chao et al., 2013), Oryza sativa (Goff et al., 2002), Populus balsamifera (Keller et al., 2011) and Vitis vinifera (Risk et al., 2010). The AtFRL regulates flowering in Arabidopsis, but the orthologs of FRL from EjFRL (from loquat) also have the ability to influence Arabidopsis flowering. The FRL gene is not only related to the regulation of flowering time but also involved in other biological processes related to reproduction, such as embryo development and seed maturation (Hu et al., 2014; Vieira et al., 2019).They found that PmFRL may be linked to ABA signal regulators and gibberellin signal regulators, thereby exerting their biological functions during dormancy and flowering in P. mume (Li et al., 2021). In tomatoes, they found that Brassinosteroid (BR) regulate tomato flowering through the interaction between SlFRLs and SlBIN2 (Khan et al., 2022). Apple orthologs of Arabidopsis genes, FRIGIDA, exhibit similar expression patterns as reported in Arabidopsis, suggesting that functional conservation in floral signal integration and meristem determination pathways (Kumar et al., 2016a). These studies reveal the potential important functions of the FRL family genes in plant response to regulates flowering.

Soybean serves as a quintessential example of a crop that demonstrates significant sensitivity to photoperiod. The various developmental stages, including the growth, flowering, and maturity periods, as well as the resulting plant morphology, are closely regulated by photoperiodic conditions. The complete genome sequence of the Williams 82 variety (Glycine max) was finalized in 2010 and has since been widely used (Schmutz et al., 2010). The primary reference genome assembly, Wm82, which has been in use for the past decade, has undergone significant improvements. Over 3,600 gaps have been closed, adding more than 5 Mbp, and regions previously exhibiting high heterozygosity in the earlier reference assembly have been enhanced. Notably, recent updates to the high-resolution linkage map have significantly strengthened the assembly of the Wm82 reference genome (Valliyodan et al., 2019), incorporating more sequence information and fewer errors. This provides more detailed and accurate gene function annotations, establishing a stronger foundation for the identification and characterization of the FRL gene family.

The FRL gene family is a key regulatory factor in the control of flowering time in plants. It is essential to identify and analyze FRLs on a genomic scale to uncover their molecular functions, which may provide deeper insights into plant development. The identification of FRLs has been reported in Arabidopsis (Risk et al., 2010) and Oryza sativa (Goff et al., 2002), while the phylogenetic and structural characteristics of the FRL family have only been studied in Prunus mume (Li et al., 2021). Currently, there is no systematic research reporting on the GmFRL gene family in soybeans. Therefore, the functional roles of its members within the soybean genome require further investigation. In this study, we identified 16 GmFRL genes and conducted a genome-wide analysis of their evolutionary characteristics and biological functions. We examined the phylogenetic relationships, gene structures, conserved motifs, repetitive patterns, cis-element organization, and tissue-specific expression patterns of the GmFRL genes. Additionally, since soybean cultivation is not affected by vernalization, the inhibitory role of the GmFRL gene in flowering may have potential functions in soybeans. Some evidence suggests that FRI does not appear to change photoperiodic responsiveness but rather shifts the response to much later flowering times (Lee and Amasino, 1995). Therefore, we also analyzed the expression response of the GmFRL gene to photoperiod in soybeans and its subcellular localization. The systematic analysis of GmFRL gene family lays a foundation for further study of its key role in the regulation of soybean light response.




2 Materials and methods



2.1 Plant materials and growth conditions

The Glycine max Williams 82 was used in this study. The seeds were sterilized in 1% sodium hypochlorite for 1 minute, followed by three washes with sterilized water. They were then germinated in a growth chamber for 15 days under LD (16 h light/8 h dark) at 25°C and 60% relative humidity. Fifteen days later, during the seedling stage of soybeans, which is highly sensitive to changes in photoperiod, leaf samples were collected at 0, 4, 8, 12, 16, 20, and 24 hours of Zeitgeber time (ZT). The samples were immediately frozen in liquid nitrogen and stored at -80°C for gene expression analysis (Cao et al., 2015). Three biological replicates were obtained for each time point.




2.2 In silico identification of FRIGIDA family genes in Glycine max

The Hidden Markov Model (HMM) of FRIGIDA (PF07899) was obtained from PFAM (http://pfam.xfam.org/) and then used as a query to retrieve the soybean proteome sequences. Soybean proteome sequences (Wm82.a4.v1) were downloaded from the phytozome database. To avoid missing FRIGIDA family members, a new HMM based on the resulting sequence is constructed using HMMER software (http://hmmer.org/), and the model is presented as a query sequence (E values < 10-5), and the sequence data of soybean proteome were retrieved again. After removing the redundant sequences, the SMART online platform (http://smart.embl-heidelberg.de/) checks the remaining sequences to predict the full FRIGIDA domain. The gene encoding a protein with the FRIGIDA domain was identified as a member of the FRIGIDA family. TBtools-II were used to calculate the protein properties of FRIGIDA family members, such as amino acid number, isoelectric point (pI) (Chen et al., 2023). The SOPMA tool (https://www.npsa-prabi.ibcp.fr/cgi-binpsa_automat.pl?page=/NPSApsa_sopma.html) was used to predicted the secondary structure of GmFRL protein, and AlphaFold3 (http://alphafoldserver.com) was used to predicted the tertiary structures of GmFRL proteins.




2.3 Evolutionary analysis, chromosomal location, and synteny analysis

ClustalW is used for multiple sequence alignment of all GmFRL proteins, and a phylogenetic tree of GmFRL proteins was constructed using MEGA 11.0 (Hall, 2013; Thompson et al., 2003; Tamura et al., 2021), and a comprehensive phylogenetic tree that includes Arabidopsis, soybean, and rice. Both phylogenetic trees were constructed using the maximum likelihood (ML) algorithm with 1000 Bootstrap repeats (Kumar et al., 2016b), Gene duplication events and synteny analysis (Glycine max vs. Arabidopsis; Glycine max vs. Glycine max) were performed using the default parameters of Tbtools-II software (Chen et al., 2023).




2.4 Structural characterization, conserved motif analysis, and cis-acting elements

The exon/intron structure of each GmFRL gene was analyzed by TBtools-II (Chen et al., 2023). The conserved motifs of all GmFRL proteins were analyzed by MEME tool (http://meme-suite.org/tools/meme). Conserved domains within all GmFRL proteins were identified using the CD-Search tool (https://www.ncbi.nlm.nih.gov/cdd/) from the NCBI database. Cis-acting elements in the promoter sequences (upstream of 2000 bp) of the GmFRL gene family were predicted using the PlantCare website (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). Tbtools-II is used to visualize results (Chen et al., 2023).




2.5 Subcellular localization of GmFRL proteins

CELLO v.2.5 (http://cello.life.nctu.edu.tw/) was used to predict the subcellular localization of all GmFRL proteins. Subsequently, four GmFRLs were cloned and transiently overexpressed in tobacco leaves for subcellular localization experiments to validate the prediction results. The GmFRL genes were amplified and subsequently ligated into the fusion expression vector pSuper1300-MAS-EGFP following digestion, leading to the successful construction of the expression vector. The recombinant plasmids were then transformed into Agrobacterium strain GV3101. Both the Agrobacterium containing the pSuper1300-MAS-GmFRL01/04/09/13-EGFP expression vector and those harboring the empty control vector pSuper1300-MAS-EGFP were cultured, and the bacterial cells were harvested by centrifugation at 4000 rpm for 15 minutes, followed by the removal of the supernatant. Subsequently, 1 mL of tobacco transformation solution (OD600 = 0.7–1.0) was added to resuspend the Agrobacterium. After resuspension, the tobacco leaves were injected following a 2-hour incubation at room temperature or 28°C. Approximately 2–3 days post-injection, the lower epidermis of the tobacco leaves was peeled off, and the subcellular localization of the fused protein was observed using confocal microscopy, with images captured simultaneously.




2.6 Analysis of expression patterns of GmFRL genes

According to the RNA-seq data (TPM) of GmFRL extracted from SoyMD (Yang et al., 2024), the expression pattern of GmFRL genes in different tissues of soybean was studied. Transcriptomic data on soybean were obtained from the National Center for Biotechnology Information (NCBI) publicly accessible database (Accession number: GSE94228). After removing adapter sequences and low-quality reads from the RNA-seq data using fastp (v.0.23.0) (Chen et al., 2018), we aligned the cleaned RNA-seq data to the Wm82.a4.v1 genome using HISAT2 (v.2.1.2) (Kim et al., 2015) with default parameters. We then quantified and normalized the data using StringTie (v.1.3.5) (Pertea et al., 2015) with default settings. The heat map function in Tbtools-II was used for further expression analysis (Chen et al., 2023).




2.7 RNA extraction and qPCR analysis

Total RNA was extracted from 15-day-old seedlings with TRIzol Reagent (Invitrogen) and reverse transcribed by MMLV reversetranscriptase (Promega). Quantitative Real-time PCR (q-PCR) was performed with a SYBR Green PCR Master Mix kit. Analysis was performed using the Applied Biosystems StepOnePlus real-time PCR system. Whole plant seedlings from wild-type on the same place were collected separately at the same time. Three independent experiments were conducted. Relative transcript levels were normalized to GmACT11. The reaction and the calculation of relative expression levels were performed as described previously (Miura et al., 2007). The qRT-PCR was carried out as described previously (Iqbal et al., 2020; Tong et al., 2009).





3 Results



3.1 Identification of GmFRL genes in soybean

A total of 16 GmFRL genes were identified from the soybean genome (Wm82.a4.v1) within the Phytozome v13 database. Based on their homology with members of AtFRL family, the 16 GmFRL family genes were designated as GmFRL1 to GmFRL16 reflecting their homology with members of the AtFRL family (Table 1). The physicochemical properties of GmFRL genes were predicted as shown in the Table 1, including the number of amino acids, molecular weight, and theoretical isoelectric point (pI). The full lengths of the GmFRL proteins varied between 519 amino acids (GmFRL3) and 1297 amino acids (GmFRL16), with molecular weights ranging from 56.80 kDa to 152.26 kDa. Additionally, the isoelectric points varied from 5.90 (GmFRL5) to 9.13 (GmFRL10). Overall, the pI of GmFRL family proteins showed significant differences. All proteins were hydrophilic, as reflected by Grand Average of Hydropathicity less than 0.

Table 1 | Analysis of the physicochemical properties and primary and secondary structure of 16 GmFRL genes.
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According to secondary structure prediction by the SOPMA tool, the GmFRL proteins were found to encompass α-helix, extended strand, and random coil secondary structural elements (Table 1). The α-helix content was the highest overall, constituting 37.36%-70.01%, followed by random coil, constituting 23.52%-52.01%, while the extended strand was the lowest, constituting 6.48%-12.82%. Prediction using the Alpha Fold3 tool revealed that the tertiary structures of same subfamily of GmFRL proteins were largely similar (Figure 1), which was consistent with the gene structure analysis outcomes.

[image: Protein structures labeled GmFRL01 to GmFRL16 are displayed in a grid. Each structure is depicted in ribbon form with varying colors. The structures are grouped by color: Class I (GmFRL01-04) in orange, Class II (GmFRL05-08) in purple, Class III (GmFRL09-12) in pink, and Class IV (GmFRL13-16) in green. A legend indicates the class colors.]
Figure 1 | Tertiary structure model of GmFRL proteins. The different colored labels the different class of GmFRL proteins.




3.2 Chromosomal distribution and expansion patterns of GmFRL genes

TBtools software was used to illustrate the physical locations of GmFRL genes on soybean chromosomes. The results indicated that the 16 GmFRL genes were unevenly distributed across 13 chromosomes (Figure 2A). Specifically, chromosomes 3, 5, and 8 each contained two GmFRL genes each, while the remaining chromosomes carried only one gene. Notably, chromosomes 1, 7, 9, 13, 14, 15, and 19 did not harbor any GmFRL genes. These findings suggest that the distribution of GmFRL genes across soybean chromosomes is not uniform. Co-linearity analysis of the GmFRL genes revealed two pairs of tandemly repeated sequences among the 16 identified GmFRL genes. To investigate the evolutionary relationship between AtFRL and GmFRL, a syntenic map of the genomes of Arabidopsis and Glycine max was visualized using a circos plot (Figure 3A). The syntenic map exhibited a linear relationship between GmFRL11, GmFRL12, AtFRL4a and AtFRL4b. Furthermore, GmFRL06 and AtFRL2 displayed a linear relationship, suggesting that they share homology and may serve similar functions.

[image: Diagram showing two panels. Panel A illustrates the distribution of GmFRL genes across various Glycine max chromosomes labeled Gm02 to Gm20, highlighted in red. Panel B presents a phylogenetic tree showcasing evolutionary relationships among Glycine max, Arabidopsis, and Oryza sativa genes, classified into four color-coded classes: I (orange), II (purple), III (blue), and IV (green). Symbols indicate different species: red squares for Glycine max, yellow circles for Arabidopsis, and blue stars for Oryza sativa. Percentage values indicate evolutionary similarity at nodes.]
Figure 2 | Genomic distribution and phylogenetic analysis of the GmFRL genes. (A) Distribution of GmFRL genes across chromosomes. The scale at the bottom indicates the length of the chromosomes, with the chromosome numbers displayed on the left side of each chromosome. (B) Phylogenetic analysis of Frigida-like proteins from soybean, Arabidopsis and rice. Phylogenetic trees were constructed using the maximum likelihood (ML) algorithm with 1000 bootstrap repetitions.
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Figure 3 | Collinear analysis of GmFRL proteins and FRL proteins from different plants. (A) The chromosomal distribution and Syntenic relationships prediction of Glycine Max and Arabidopsis thaliana FRL genes. (B) Distribution and synteny analysis of GmFRL genes. The soybean chromosomes are resented in different-colored partial circles. The different colored labels the different class of GmFRLs.

The duplication events among GmFRL genes were analyzed, focusing on segmental and tandem duplications, to gain insights into their expansion within the soybean genome (Figure 3B). The results indicated that the gene pair GmFRL04 and GmFRL05 expanded through tandem duplication. In contrast, the gene pairs GmFRL01/02/03, GmFRL07/08, GmFRL04/06, GmFRL09/10, GmFRL11/12, GmFRL13/14, and GmFRL15/16 underwent expansion through segmental duplication. These findings suggest that segmental duplication is the primary driving force behind the significant expansion of GmFRL genes in the soybean genome. According to the KaKs_Calculator 3.0, the Ka/Ks values of the tandemly repeated GmFRL sequences (GmFRL04/GmFRL05) were 0.1679 (Ka = 0.0584, Ks = 0.3479), which is less than 1. This suggests that purifying selection has acted on these genes during the process of evolution. In other words, GmFRL genes are highly conserved and evolve slowly.




3.3 Phylogenetic analysis of the GmFRL proteins

Phylogenetic analysis of 36 FRL proteins from 3 species of different affinities was performed that including 16 from Glycine max, 8 from Arabidopsis thaliana, and 12 from Oryza sativa. The results of the phylogenetic analysis indicated that these FRL proteins were classified into four distinct subgroups (I~IV) (Figure 2B). Each subgroup contains 3 to 5 members. The presence of both soybean FRL proteins and AtFRL proteins within the same subgroup suggests a possible conservation of function among dicot species. Generally, members within the same subgroup may have similar functions, which aids in our understanding of the potential biological functions of GmFRLs. In subgroup I, three members of the GmFRL family (GmFRL1/2/3) clustered with two members of the AtFRL family, including AtFRL1 and AtFRL2. AtFRL1 and AtFRL2 play crucial roles in regulating FLC expression in Arabidopsis, with their functions dependent on the genes that affect the chromatin structure of the FLC locus (Emami and Kempken, 2019). In subgroup II, five members of the GmFRL family clustered with an AtFRL family protein named AtFRL3, which can regulate the photoperiod pathway in Arabidopsis (Li et al., 2019). In a previous study, GmFRL07 was identified as potentially participating in the regulation of soybean growth stages, based on the strong correlation peak SNP and LD blocks of four significant SNPs (Gm5_27111367, Gm11_10629613, Gm11_10950924, Gm19_34768458) (Li et al., 2019).




3.4 Gene structures and protein motifs of GmFRL family

Through the screening of sequences and annotation files, we delineated the gene structures for the GmFRL family (Figure 4). The number of introns within the GmFRL genes spanned from 2 to 8, whereas the number of exons fluctuated between 3 and 4. Among the GmFRL genes, GmFRL03 demonstrated the maximum number of introns, totaling eight. Furthermore, eight genes possessed two introns (GmFRL01, GmFRL04, GmFRL07, GmFRL06, GmFRL08, GmFRL09, GmFRL10, GmFRL15, and GmFRL16), whereas the remaining GmFRL genes possessed either three or four introns.

[image: Diagram of gene structure and motif organization for a set of GmFRL markers. Each marker has exons, introns, and motifs represented in distinct colors. Classes are labeled in shades of purple, pink, green, and orange. The legend explains colors for UTR, CDS, eight motifs, and six superfamilies. A linear scale is present on the bottom.]
Figure 4 | Analysis of the intron and exon compositions of GmFRL genes, as well as the conserved domains and motifs of GmFRL proteins, is conducted in the context of their phylogenetic relationships.

Conserved domain analysis revealed that all members of four subfamily possess Frigida domains, implying a potential conservation of function. To further elucidate the structural diversity of the GmFRL proteins, we identified a total of eight conserved motifs utilizing the MEME suite (Figure 3, Supplementary Figure S1). As illustrated in Figure 3, all GmFRL proteins exhibited motif-1. Although the types and numbers of motifs among members of the same subfamily were comparable, some variations in motif patterns were observed among specific members. In summary, the members of the same subfamily displayed similar structures and conserved motifs, thereby reinforcing the reliability of the constructed phylogenetic tree.




3.5 Cis−acting elements in GmFRL promoters

Cis-acting elements in the promoter region play a crucial role in how plants respond to growth factors and environmental stresses by regulating gene expression through transcription (Walther et al., 2007). In this study, in addition to the abundant core promoter (TATA box) and enhancer elements (CAAT box), four types of cis-regulatory elements were identified: light-responsive, stress-responsive, hormone-responsive, and development-responsive elements (see Figure 5). Among these, light-responsive elements were the most abundant. The number of stress-related response elements and hormone-responsive elements was roughly equivalent, while development-related elements were the least prevalent. Nearly all GmFRL genes contained various types of light-responsive elements. For example, GmFRL01 included the GT1-motif (a light-responsive element), the AE-box (part of a module for light response), and Box 4 (a conserved DNA module associated with light responsiveness). These findings suggest that GmFRL genes may play a significant role in light responsiveness in soybeans. Further analysis of hormone-related response elements in the promoters of GmFRL family members indicates that these elements can be classified into categories associated with auxin, gibberellic acid (GA), abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). This categorization underscores their potential significance in plant hormone signaling and stress responses.

[image: Heatmap showing the presence of different motifs in four classes of GmFRL genes. Rows represent motifs related to light responsiveness, environmental stress, development, and hormone responses, while columns represent different GmFRL genes. The intensity of red indicates the number of motifs, from zero to ten.]
Figure 5 | Predicted cis-elements in the promoters of GmFRL genes. Types and numbers of cis-elements in the promoter regions of GmFRL genes.




3.6 Expression patterns in different soybean tissues and subcellular localization of GmFRL family

To understand the potential functions of GmFRL family, The RNA-seq data (TPM) to study GmFRL gene expression patterns in different soybean tissues, including shoot apical meristem (SAM), root, root hair, stem, leaf, flower, pod, nodule, and seed (Figure 6A). The heatmap illustrates the expression of 16 GmFRL genes across 9 tissues. The results indicate that all 16 GmFRL genes are expressed in at least one tissue, with most family members showing high expression levels in flowers and seeds. There are notable differences in tissue-specific expression among the different subfamilies of GmFRLs, Class II GmFRLs exhibit specific expression in flowers and leaf buds, while Class III GmFRLs are specifically expressed in pods and seeds. Additionally, compared to other GmFRL family members, certain GmFRL genes, such as GmFRL03, and GmFRL09 are specifically expressed in leaf buds; GmFRL06, GmFRL08, and GmFRL16 are specifically expressed in leaf buds; GmFRL13 exhibits significantly higher expression levels in flowers, leaves, and leaf buds; and GmFRL15, are virtually non-expressed in all tissues except for seeds. This observation may indicate that some GmFRLs play a potential role in regulating flowering or seed development in plants.

[image: Heatmap and graphs depicting gene expression analysis. Panel A shows a clustered heatmap of different GmFRL genes across various plant tissues and times, with expression levels ranging from low (blue) to high (red). Four classes are color-coded: Class I (orange), Class II (purple), Class III (pink), and Class IV (green). Panel B features line graphs of relative expression levels for GmFRL genes over time, expressed as ZT hours. Each graph includes statistical annotations (letters) to denote significance.]
Figure 6 | Expression pattern analysis of GmFRL genes. (A) Expression levels of GmFRL genes at different tissues. And the expression levels of GmFRL genes in LD. (B) Relative expression levels of GmFRL genes in response to LD light. The soybean cultivar Wm82 was cultured for 15 days, and the relative expression levels of GmFRL genes were measured at 0h, 4h, 8h, 12h, 16h, 20h, and 24h under LD. The GmACT11 gene served as the internal control. The data represented the mean ± SD of three independent biological repetitions.

In addition, we utilized CELLO to predict the subcellular localization of all members, with the results indicating that they are primarily localized in the nucleus (Table 1). To further validate the subcellular localization of GmFRL proteins, we conducted transient expression experiments with GFP-GmFRL01/04/09/13 constructs in Nicotiana benthamiana. The results indicated that the green fluorescence of GmFRL01/04/09/13 was distinctly visible in the nucleus (Figure 7). This observation leads us to hypothesize that GmFRL proteins may be primarily localized in the nucleus.

[image: Microscopy images of plant cells expressing GFP and various GmFRL proteins. The panels show three rows labeled as Merge, EGFP, and Bright across five columns: GFP, GmFRL01, GmFRL04, GmFRL09, and GmFRL13. Merge images combine GFP signals with a bright field. EGFP images show fluorescent signals, while Bright images provide background contrast. Cells exhibit green fluorescence indicating protein expression.]
Figure 7 | Subcellular localization analysis of GmFRL genes. eGFP indicates the fusion protein; Bright, bright field; Merge, merged GFP and Bright. Bars 50μm.




3.7 Expression patterns of GmFRL genes in different light condition

Previous studies have emphasized the significant role of phytochrome-mediated regulation in flowering time. RNA-seq transcriptome data from soybean leaves at multiple time points (0, 4, 8, 12, 16, 20, and 24 hours) under long-day (LD) light was analyzed. The expression of GmFRLs exhibits a rhythmic pattern across multiple cycles (Supplementary Figure S2A). The results from a single cycle demonstrate that, except for GmFRL15, which is virtually non-expressed in leaves, all other Class I-IV GmFRLs exhibit a rhythmic expression pattern, with higher expression levels observed around ZT16, approximately 12 hours after light exposure or at dusk (Figure 6A; Supplementary Figure S2B). To further investigate whether the expression of GmFRL genes is indeed influenced by circadian rhythms, RT-qPCR was performed under LD conditions to analyze the relative expression levels of GmFRL genes across different time points. The results indicated that several GmFRL genes (GmFRL01, GmFRL08, GmFRL10, GmFRL11, GmFRL13, and GmFRL14) exhibited higher expression levels at ZT12 or around dusk at ZT16 (Figure 6B). Based on these findings, we propose that certain GmFRL members may play a potential role in the response to light under long-day conditions in soybean.





4 Discussion

FRL genes play an important role in the process of plant growth and development. To date, FRL family have not been identified or analyzed in Glycine max. The continuously updated whole-genome sequencing of soybean provides a valuable resource for bioinformatics analyses of various gene families within this species (Wang et al., 2023). In this study, we identified a total of 16 GmFRLs from Glycine max, a significantly greater number than the 8 AtFRLs identified in Arabidopsis (Michaels et al., 2004). Furthermore, we conducted comparative analyses of FRL-like proteins from different plant genomes, including mosses, ferns, and various angiosperms (Supplementary Figure 3). The evolutionary analysis of the FRL family indicates that the FRL structure was established prior to the divergence of terrestrial plants and algae, as we identified proteins with FRL configurations in the unicellular alga Chlamydomonas reinhardtii. Comparative analyses of FRLs among mosses, rice, and Arabidopsis reveal that the FRL family underwent independent expansions during the early evolution of terrestrial plant lineages, following the divergence of angiosperms and bryophytes, and throughout the diversification of each angiosperm lineage. The most pronounced expansions were observed in the lineages of soybean and maize, where the number of FRL members is nearly double or even four times that found in Arabidopsis.

Gene duplication is a major driving force for the expansion of gene families and the evolution of novel functions, such as adaptation to stress and induction of disease (Cannon et al., 2004; Panchy et al., 2016; Vision et al., 2000). The presence of two or more genes on the same chromosome indicate a tandem duplication event, while two or more genes present on different chromosomes reveal a segmental duplication event. Tandem duplication and segmental duplications have been considered as the main duplication patterns for gene family expansion (Kong et al., 2007; Yu et al., 2005). Previous studies indicate that the soybean genome experienced two rounds of segmental duplication in its evolutionary history, occurring approximately 13 and 59 million years ago (Mya). This has led to a highly duplicated genome, in which nearly 75% of the genes are present in multiple copies across various genomes (Schmutz et al., 2010). The genes that arise from these genomic duplication events provide the raw material for the generation of new genes, which in turn promotes the development of new functions, thereby facilitating the expansion of gene families and functional evolution. A comprehensive review of existing literature on genomic repeat events in soybean and its ancestral species, Glycine soja, indicates that 8 (50%) of the GmFRL genes are derived from whole genome duplication (WGD) events in wild soybean (Du et al., 2012), while 4 (25%) of the GmFRL genes are classified as singletons. These findings suggest that the GmFRL gene family in soybean has undergone significant gene duplication throughout its evolutionary history and has been retained through multiple WGD events. Furthermore, this study identifies that 2 of the 16 GmFRL genes have experienced tandem duplication, which may be associated with an early legume duplication event that occurred approximately 28 million years ago. This observation underscores the contribution of tandem repeats to the expansion of the GmFRL gene family. In summary, segmental duplication emerges as the primary mechanism driving the expansion of the GmFRL family, occurring in conjunction with tandem duplication events among certain members, thereby facilitating the overall proliferation of the GmFRL gene family. The Ka/Ks ratio is a measure used to examine the mechanisms of gene duplication evolution after divergence from their ancestors (Salih et al., 2016). The Ka/Ks ratio provides insight into the selection pressure acting on amino acid substitutions: a Ka/Ks ratio < 1 indicates purifying selection, a ratio of 1 suggests neutral selection, and a ratio > 1 indicates positive selection. The Ka/Ks values for the tandem duplicate GmFRL genes are less than 1, suggesting that these genes have undergone negative selection. This result reflects a slow evolutionary rate and significant conservation within this gene family.

In addition, the molecular weights of different GmFRL proteins exhibit variability, indicating potential differences in their structure and composition, which suggests that their functions may also differ. A phylogenetic tree analysis showed that members of the GmFRL family were classified into 4 distinct subgroups. Some GmFRL proteins and AtFRL proteins belong to the same subfamily, perhaps this part of the GmFRL proteins have a genetic structures and conserved motifs, which may contribute to their crucial biological functions. In this study, we identified the number of introns for 16 GmFRL members; GmFRL03 had 8 introns, others genes had 2-4 introns (Figure 3). Introns were considered to be a necessary way to acquire new gene functions and preferred to rise at the earlier stages of gene expansion and gradually diminish over time (Roy and Gilbert, 2006; Rose, 2018; Roy and Penny, 2007; Iwamoto et al., 1998).

Expression pattern analyses can provide valuable insights into the potential functions of genes. RNA-seq data indicate that all 16 GmFRL genes were expressed in at least one tissue, with the majority of gene family members exhibiting high expression levels in flowers and seeds, suggesting their essential roles in these developmental stages. The tissue-specific expression of GmFRL genes varies among different classes, which may imply functional diversification. Some GmFRLs may have specific functions in particular tissues and could be involved in the soybean life cycle. Environmental signals are typically sensed by leaves, while flowers develop from primordia that form on the sides of the SAM (Searle et al., 2006). In Arabidopsis, the localized expression of FRI in the phloem and leaves activates FLC, thereby delaying flowering (Searle et al., 2006). At the same time, the spatial expression of FRI in roots may generate a mobile signal that is transmitted from the roots to the shoot apex, antagonizing FT signaling to further delay flowering (Kong et al., 2019). Therefore, the specific tissue expression patterns of GmFRLs may be related to the mechanism by which FLC regulates flowering in a spatially dependent manner. FRI itself encodes a large protein that cannot move over long distances, but by upregulating FLC expression, FRI can function in specific tissues, including the phloem, leaves, shoot apical meristem, and roots, to delay flowering (Kong et al., 2019).

Previous studies have identified that a major determinant of flowering time in natural variants of Arabidopsis thaliana is the AtFRI gene. AtFRI functions by upregulating the expression of the floral repressor FLC, thereby establishing a vernalization requirement and promoting a winter annual growth habit (Zhu et al., 2021). In other research, they analyzed the localization of AtFRI in vivo of the Arabidopsis. Like many other co-transcriptional regulators (Sabari et al., 2020; Bienz, 2020) they found that FRI–GFP forms nuclear condensates, which were increased in size and number after cold exposure (Zhu et al., 2021). Other research showed that FRI function is also suppressed by mutations in the FRI homologs FRL1 and FRL2, and these FRI-related proteins, therefore, may all form a complex in vivo. these FRI interactors both influence FLC capping but fall into different groups of FRI suppressors: those that are specific for FRI and those that suppress FLC up-regulation more generally. FRI suppressors with apparently different specificities might appear to influence a common mechanism through intimate connection of the co-transcriptional processes linking 5’ capping, 3’ end formation, nuclear export, and transcriptional elongation (Geraldo et al., 2009). In our study, we analyzed the subcellular localization of the GmFRL gene family. The subcellular localization results revealed that four genes (GmFRL01, GmFRL04, GmFRL09, and GmFRL13) exhibited a surprising and intriguing observation: the GmFRL01/04/09/13-GFP fusion proteins localize primarily in nuclear condensates. This finding suggests that certain GmFRL genes may share functional similarities with AtFRI in Arabidopsis, possibly acting as transcriptional activators. However, functional analysis of the GmFRL family is still in its early stages, and these results warrant further investigation through gene cloning and expression analysis in future studies.

In Arabidopsis, the winter annual growth habit is conferred by FRIGIDA (FRI) and FLC. FRI encodes a plant-specific scaffold protein and functions dominantly to upregulate FLC expression to a high level that inhibits flowering (Choi et al., 2011). RNA-seq data and qPCR results show that most GmFRL genes have an expression pattern that is upregulated during midday, and downregulated in dusk. These results reveal that GmFRL genes might play potential roles in the photoperiod pathway, in addition to responding to cold signals to regulate flowering time in soybean. However, within the molecular network regulating flowering in plants, the expression of the FLC gene is directly or indirectly regulated by various key factors through different pathways. This study focused solely on exploring and validating the photoperiodic response of GmFRLs under long-day conditions. Further research is needed on the light-responsive expression patterns of GmFRL, as well as its effects on plant flowering under combined regulatory conditions with light response.




5 Conclusions

This study presents a comprehensive and systematic analysis of the GmFRL gene family utilizing bioinformatics approaches. A total of 16 members of the soybean FRL gene family were identified, and the amplification and functional differentiation of the GmFRL gene family were explored. The expression profiles generated under varying photoperiods, along with the results from subcellular localization studies, underscore the potential roles of GmFRL genes in the photoperiodic responses of soybean. The extensive bioinformatics and expression analyses conducted on the GmFRL genes significantly enhance our understanding of their functions in light responses and the regulation of flowering time. Collectively, these findings establish a robust theoretical framework and provide a valuable reference for future investigations into the associated functions and regulatory mechanisms of these genes.
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Supplementary Figure 1 | Motif logo of GmFRL conserved domains.

Supplementary Figure 2 | The expression levels of GmFRL genes. (A). According to the RNA-seq data, the expression levels of GmFRL genes in LD within 48h. (B). The relative expression levels of the remaining GmFRL genes were measured at 0, 4, 8, 12, 16, 20, and 24 hours under long-day (LD) conditions.

Supplementary Figure 3 | Inventory of FRL genes in different plant genomes.
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As calcium responders, calcium dependent protein kinases (CDPKs) play an important role in plant growth and development and in response to biotic and abiotic stresses. However, information on CDPKs in jujube (Ziziphus jujuba Mill.) (ZjCDPKs) is limited. In the current study, a total of 21 ZjCDPKs were identified, which are located on eight chromosomes. Gene structure and conserved motif analysis showed that all ZjCDPKs have similar gene structures and conserved motifs, except for ZjCDPK9 and ZjCDPK21. The CDPKs from Arabidopsis, rice, tomato, alfalfa, and jujube were divided into eight subgroups, and the members of ZjCDPKs were unevenly distributed across these subgroups. Colinear analysis revealed that 12 homozygous CDPKs were detected between jujube and Arabidopsis, and 14 pairs were found between jujube and tomato. Additionally, four types of cis-acting elements were identified in the promoters of the ZjCDPKs, including hormone, stress, development, and light response elements. The expression profiles of ZjCDPKs at different fruit growth stages, in response to phytoplasma infection, cold, and salt stresses revealed that most ZjCDPKs were either up- or down-regulated. Finally, varying numbers of transcription factors were observed to interact with the promoter region of ZjCDPK4/6/7/8/10/14/16 and showed opposite expression patterns in response to cold or salt stress. The systematic analysis of ZjCDPKs provides important information for further functional characterization of CDPKs in jujube in response to multiple biological processes.
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1 Introduction

In nature, plants have evolved sophisticated mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses (Wang et al., 2020b). Calcium (Ca2+), as an important second messenger, plays a crucial role in signal transduction during stress adaptation and plant growth and development (Wang et al., 2023a; Tuteja and Mahajan, 2007; Wang et al., 2020b). Three calcium sensors have been identified in plants, including calmodulin (CaM)/calmodulin-like proteins (CML), calcineurin B-like protein (CBL), and calcium dependent protein kinase (CDPK) (Wang et al., 2023b). Among them, the signaling system composed of CBLs and their interacting protein kinases participates in the regulation of plant response to low-temperature stress through the phosphorylation induction and decoding of Ca2+ signals (Ma et al., 2020). CMLs can directly bind with Ca2+, which is involved in the responses to numerous stresses (Wang et al., 2023b). Moreover, previous research has reported the activation of CDPKs by Ca2+ to perform phosphorylation, indicating the key role of CDPKs as Ca2+ responders (Dekomah et al., 2022a).

CDPKs are a class of serine/threonine type protein kinases with four characteristic domains, including a variable N-terminal domain (VNTD), a catalytic Ser/thr protein kinase domain (PKD) (which can bind the ATP phosphate donor and phosphorylates the serine and threonine residues of its substrates), an autoinhibitory domain (AIR), and a carboxyl-terminal calmodulin-like domain (CLD) (which has one to four conserved EF-hand motifs for calcium-binding) (Cheng et al., 2001; Hrabak et al., 2003; Liese and Romeis, 2013). Apart from the functions of PKD and CLD, the VNTD domain typically contains N-myristoylation sites or N-myristoylation and S-palmitoylation sites, and plays an important role in subcellular location and substrate recognition. The AIR domain, also denoted as the junction domain function, acts as a pseudo substrate to maintain CDPK inactive in the absence of Ca2+ stimulation (Hrabak et al., 2003; Hamel et al., 2014). When Ca2+ increases, the EF-hand can bind motifs, leading to conformation changes in CLD and the subsequent activation of the CDPK kinase domain, which can recognize and phosphorylate downstream targets (Dekomah et al., 2022a).

Similar to CaM/CML and CBLs, CDPKs play an important role in the signal transduction pathway, including secondary metabolites, hormone regulation, and stress tolerance (Dekomah et al., 2022a). For example, in maize, the overexpression of ZmCDPK7 can enhance thermotolerance by decreasing the accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) (Zhao et al., 2021). In tomato, virus-induced gene silencing stimulates the silencing of ShCDPK6, while ShCDPK26 shows less resistance to Botrytis cinerea, cold, and drought stress (Li et al., 2022). In potato, StCDPK21/22 and StCDPK3 can regulate the content of MDA and proline to facilitate drought tolerance (Dekomah et al., 2022b). During peach storage, PpCDPK7 has been reported to interact with PpRBOH, which further mediates the Ca2+ and reactive oxygen species (ROS) signal cascades to enhance chilling tolerance (Zhao et al., 2022). In wheat, TaCDPK25-U is significantly induced by drought stress and can be positively regulated by TaDREB3 to improve drought tolerance (Linghu et al., 2023). In Arabidopsis, AtCPK28 can be activated by Ca2+ and phosphorylated downstream NLP7 to improve cold tolerance (Ding et al., 2022). Moreover, resveratrol levels can increase following the overexpression of VaCPK20 or VaCPK29 in Vitis amurensis cells (Aleynova-Shumakova et al., 2014). AtCPK6 acts as a positive regulator in stomatal movement or closure by ABA and methyl jasmonate, respectively, in a signaling-dependent manner (Xu et al., 2010; Ye et al., 2013). With the development of plant genome sequencing and the important biological function of CDPKs, the CDPKs members in different plant species have been widely identified, including 34 members in Arabidopsis thaliana (Hrabak et al., 2003), 31 in rice (Kong et al., 2013), 29 in tomato (Wang et al., 2016), 40 in maize (Kong et al., 2013), 30 in pear (Liu et al., 2022), and 17 in peach (Zhao et al., 2022). However, the identification of CDPKs in jujube and their biological function has not yet been reported.

Jujube (Ziziphus jujuba Mill.) belongs to the Rhamnaceae family and has important economic and ecological value in China (Liu et al., 2020). Jujube is widely planted in sandy alkali arid areas, which has facilitated its advanced tolerance to salt, drought, and cold tolerance (Wang et al., 2020a; Gao et al., 2021; Wang et al., 2025). With the whole genome sequencing completed in jujube, it has become an ideal fruit tree for research on abiotic stress mechanisms. Thus, in the current study, the identification, phylogenetic analysis, gene structure, and conserved motifs of CDPKs in jujube were conducted. The RNA-seq data was then used to analyze the expression levels of CDPKs in response to various biotic and abiotic stresses and fruit growth development. The results provide a theoretical basis for clarifying the biological function of CDPKs in jujube.




2 Materials and methods



2.1 Identification and analysis of the physicochemical properties of the CDPKs in jujube

To screen the CDPKs members in jujube, the complete genome and annotated information files of jujube were downloaded from the NCBI database (https://www.ncbi.nlm.nih.gov), and the CDPK Hidden Markov model (PF00069 and PF13499) was downloaded from the InterPRO database (https://www.ebi.ac.uk/interpro/). HMMER with an E value of 1e-3 parameter was employed to search for the CDPK protein sequences in the jujube genome database and obtain the initial members of potential CDPKs. Following this, 34 CDPKs in Arabidopsis were retrieved from the TAIR database (https://www.arabidopsis.org) to perform BLASTP analysis against the jujube genome. The Conserved Domain Database (CDD) with a P-score cutoff 0.03 (http://www.ncbi.nlm.nih.gov/cdd/) was then employed to determine the conservative domains, remove the redundant sequence (Cao et al., 2024b), and finally obtain the CDPK members in jujube (ZjCDPKs).

The online ExPASy tool (http://web.expasy.org/protparam/) was used to determine the molecular weight (kDa), isoelectric points (pI), and other physicochemical properties of the ZjCDPKs (Wilkins et al., 1999).




2.2 Chromosomal location prediction of ZjCDPKs

The CDS, protein sequences (Supplementary Table 1), and chromosome position information of the ZjCDPKs were obtained from the NCBI database.




2.3 Gene structure and conserved motif analysis

TBtools was employed to extract the CDS and related genome formation of the ZjCDPKs for the visualization analysis of the gene structure (Chen et al., 2020). The MEME online tool (http://meme-suite.org/) was used to analyze the conserved motifs of the ZjCDPKs, with a maximum motif number of 10 and an optimal motif width for the 6–50 amino acid residues (Bailey et al., 2009). The conserved motifs were then visualized in TBtools.




2.4 Phylogenetic analysis of the CDPKs in jujube and four other species

The CDPK protein sequences of Arabidopsis, rice, tomato, alfalfa, and jujube were retrieved from the NCBI database. MEGA 5.0 was used to construct the phylogenetic tree using the neighbor joining (NJ) method, with a bootstrap value of 1,000 (Tamura et al., 2011). The visualization of the phylogenetic tree was improved with the iTOL online tool (https://itol.embl.de).




2.5 Collinearity and cis-acting element analysis

The genome data of Z. jujuba Mill., Arabidopsis thaliana, and Solanum lycopersicum were used to determine duplication events and perform collinearity analysis of the CDPKs using MCScanX with Ka/Ks value (Qi et al., 2024). The results were visualized in TBtools.

For the cis-acting elements analysis, the 2 kb sequences upstream of each ZjCDPK were extracted as the promoter region and submitted to the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html) to search for cis-acting elements (Higo et al., 1998). TBtools was used to visualize the results and create the heat maps.




2.6 Expression profile analysis of ZjCDPKs during jujube fruit development and in response to biotic and abiotic stresses

To understand the biological functions of ZjCDPKs, the expression profiles of ZjCDPKs were mined from the transcriptome data in response to low-temperature and salt stresses, phytoplasma infection materials, and different jujube fruit growth stages of ‘Jinsixiaozao’ and ‘Jinkuiwang’, respectively. The transcriptome assembly process could be referred to Cao et al. (2024a, 2025) and Jiang et al. (2025). Briefly, for cold treatment, samples of Z. jujuba Mill. ‘Dongzao’ and its autotetraploid were treated under a cold temperature (4°C) for 0, 6 and 24 h (Gao et al., 2021). For salt stress, 400 mM NaCl was treated on sour jujube seedlings for 0, 6, 24, and 192 h (Zhu et al., 2023). For phytoplasma infection analysis, different growth stages (S1, S2, and S3) of Z. jujuba Mill. ‘Pozao’ (‘PZ’) and Z. jujuba Mill. ‘T13’ were selected for RNA-seq analysis, where PZ_D and T13_D denote samples infected by phytoplasma, respectively, and PZ_H and T13_H denote healthy samples (Wang et al., 2022). For the jujube fruit growth analysis of ‘Jinsixiaozao’ (JS) and ‘Jinkuiwang’ (JKW), fruit from nine growth stages, namely, the early stage of young fruit (F1), the middle stage of young fruit (F2), the early stage of stone formation (F3), the stone formation stage (F4), the white mature stage (F5), the late white mature stage (F6), the quarter coloring stage (F7), the half red stage (F8), and the full red stage (F9), were selected for RNA-seq analysis (Zhao et al., 2023). The expression levels of ZjCDPKs were presented on a heat map in TBtools.




2.7 Mining and expression analysis of related transcription factor of ZjCDPKs

The PlantRegMap database (http://plantregmap.gao-lab.org/network.php) was employed to identify the potential transcription factors (TFs) upstream of ZjCDPK4/6/7/8/10/14/16 and their expression profiles in response to cold and salt stresses were then evaluated (Tian et al., 2020).





3 Results



3.1 Identification, physicochemical characteristics, and chromosome locations of ZjCDPKs

Through the systematic and genome-wide identification of ZjCDPKs, a total of 21 ZjCDPK members were screened and denoted as ZjCDPK1–ZjCDPK21 based on their chromosome positions. As shown in Table 1, the physicochemical characteristics (e.g., amino acid length and theoretical isoelectric point (pI) values) of the ZjCDPKs varied. The number of amino acids ranged from 291aa (ZjCDPK9) to 646 aa (ZjCDPK19). The molecular weight (mw) ranged from 33.15 kD (ZjCDPK9) to 72.70 kD (ZjCDPK19) and the pI values ranged from 5.20 (ZjCDPK18) to 9.03 (ZjCDPK11). In addition, the ZjCDPKs were located on eight chromosomes (Chr). Among them, three members of the ZjCDPKs (ZjCDPK1–ZjCDPK3) were located on Chr1, while ZjCDPK8– ZjCDPK10 was located on Chr4. Two and one ZjCDPKs were identified on Chr2/3 and Chr8/9/12, respectively. Four members of the ZjCDPKs were located on Chr 11, while ZjCDPK18–ZjCDPK21 did not match with any Chrs.

Table 1 | The characteristics of CDPKs in Chinese jujube.
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3.2 Conserved motifs and gene structure of ZjCDPKs

CDPKs have four characteristic domains, namely, VNTD, PKD, AIR, and CLD. Through MEME analysis, 10 conserved motifs were identified in the ZjCDPKs (Supplementary Table 2). As shown in Figure 1A, all the ZjCDPKs contained nine or ten conserved motifs, except for ZjCDPK9 and ZjCDPK21, which only contained five and six, respectively. The upstream of motif1 was found to be the kinase domain and the auto-inhibitory junction region was observed in motif4. Moreover, the EF-hand domains were identified in the motifs. The ZjCDPKs exhibited a similar number and spatial distribution of motifs in the same subgroup, indicating that the ZjCDPK proteins have evolutionary conservatism.

[image: Phylogenetic tree diagrams labeled A and B, each showing gene structures for ZjCDPK family members. Diagram A features various colored motifs, each identified in a legend. Diagram B displays gene structures with marked exons (CDS) in yellow and untranslated regions (UTR) in green. Both diagrams align with a scale indicating base pair lengths.]
Figure 1 | Conservative motifs and gene structures of ZjCDPKs. (A) Schematic diagram of the conserved motifs of ZjCDPKs. Ten motifs are represented by different colored boxes. (B) Gene structures of ZjCDPKs. Exons, introns, and UTR are represented by yellow boxes, black lines, and green boxes, respectively.

Gene structure analysis showed that all ZjCDPKs had similar gene structures and were interrupted by 5–11 introns. In particular, nine ZjCDPKs had seven introns and seven ZjCDPKs had six introns (Figure 1B). ZjCDPK9, ZjCDPK20, and ZjCDPK21 had fewer introns (five, five, and four, respectively), while ZjCDPK11 had the largest number of introns (eleven). The similarity and diversity of the ZjCDPKs gene structures may indicate their similar and distinct biological functions.




3.3 Phylogenetic analysis of the CDPKs

To study the evolutionary relationship of the CDPKs in jujube, Arabidopsis, rice, tomato, and alfalfa, we constructed an NJ phylogenetic tree using CDPK protein sequences from the above species. As shown in Figure 2, the CDPKs were divided into eight subgroups. The 21 ZjCDPKs members were distributed into different subgroups, including four in subgroup A, two in subgroup B, one in subgroup C, two in subgroup D, and three in subgroups E, F, G, and L, accounting for 18.18%, 13.33%, 8.30%, 12.50%, 12.50%, 23.07%, 15.00%, and 27.27% respectively. In Arabidopsis, three (13.63%), three (20.00%), three (25%), three (18.75%), ten (41.67%), three (23.07%), five (25.00%), and three (27.27%) CDPKs were categorized in subgroups A to H, respectively. The same was observed for rice, tomato, and alfalfa. In addition, the proportion of ZjCDPKs in different subgroups was similar to that of Arabidopsis, rice, tomato, and alfalfa, indicating that the evolution of CDPK in different plant species was conservative.

[image: A circular phylogenetic tree diagram with labeled branches divided into eight groups (A to H). Each group is color-coded and represents different gene clusters labeled with alphanumeric codes.]
Figure 2 | Phylogenetic tree analysis of the CDPKs in jujube, Arabidopsis, rice, tomato, and alfalfa, represented by yellow circles, blue squares, purple triangles, light purple circles, and green triangles, respectively. Different subgroups are represented by different line colors.




3.4 Colinear analysis of ZjCDPKs

The tandem and segmental duplication functions are important in gene evolution analysis. Here, through collinearity analysis in the jujube genome, two pairs of ZjCDPKs (ZjCDPK7/9 and ZjCDPK14/15) exhibited tandem duplication (Figure 3). In addition, one pair of collinearity genes (ZjCDPK6/7) was identified, indicating that segmental duplication occurred on the same chromosome.

[image: Circular heatmap chart displaying gene expression data across twelve segments, each labeled with ZjCDPK identifiers. Segments 1, 4, 8, and 11 feature red line graphs indicating varying data trends. A color gradient from blue to red represents value intensity, with a legend showing values from zero to twenty-seven.]
Figure 3 | Colinear analysis of the ZjCDPKs. The outermost circle represents 12 chromosomes. The gray and colored connecting genes represent collinear blocks and segmental duplication events. The color lines in the middle and inner layers of the circle represent the gene density of the chromosome.

To explore the evolutionary relationship of the CDPKs in different species, collinearity analysis of the CDPKs from jujube, Arabidopsis, and Solanum lycopersicum was performed. The collinearity plot identified 12 pairs of homozygous genes between jujube and Arabidopsis, while two ZjCDPK genes (ZjCDPK1 and ZjCDPK11) simultaneously formed homozygous gene pairs with three Arabidopsis CDPKs (Figure 4). In addition, a total of 14 homologous gene pairs were detected in jujube and tomato, and ZjCDPK1 and ZjCDPK4 also formed homologous gene pairs with three tomato CDPKs. This suggests that these genes may play an important role in the phylogeny of the CDPKs.

[image: Diagram showing synteny relationships among Arabidopsis thaliana, Ziziphus jujuba, and Solanum lycopersicum. Blocks numbered one to twelve are connected by lines illustrating genomic correspondences, with Arabidopsis and Solanum blocks in pink and Ziziphus in green.]
Figure 4 | Colinear analysis of the CDPKs from jujube, Arabidopsis, and Solanum lycopersicum. The gray line represents the collinear blocks among jujube, Arabidopsis, and Solanum lycopersicum genomes, while the blue line represents the collinearity of CDPK gene pairs among these three species.




3.5 Cis-acting element analysis of ZjCDPKs

To investigate the possible transcriptional regulation network of the ZjCDPKs, TBtools was used to extract the 2 kb sequences upstream of the ZjCDPKs. These sequences were uploaded to PlantCARE to identify the cis-acting elements (Supplementary Table 3). As shown in Figure 5, four types of cis-acting elements were identified in the promoters of ZjCDPKs, including hormone, stress, development, and light response elements. Hormone-related cis-acting elements mainly included the abscisic acid response element (ABRE), the auxin response element (TGA element), the gibberellin response element (GARE motif/P-box/TATC box), the methyl jasmonate response element (CGTCA motif/TGACG motif), and the salicylic acid response element. The methyl jasmonate response element was most abundant in the ZjCDPKs promoters (21 occurrences), followed by the salicylic acid response element (10 occurrences). The auxin response element was the least abundant (4 occurrences), and was identified in the ZjCDPK3, ZjCDPK10, ZjCDPK15, and ZjCDPK18 promoter regions, respectively.

[image: A graphic showing the distribution of motifs in ZjCDPK genes on the left, with lines representing each gene and colored boxes for motifs. The right side has a color-coded heatmap displaying motif frequency across genes, with values indicating occurrence rates.]
Figure 5 | Identification of the cis-acting elements of the ZjCDPK promoters. The different types of cis-acting elements in the promoter region of the ZjCDPKs are represented by different colors. The different colors in the grid represent cis-acting elements.

We identified three stress-related cis-acting elements, namely, MBS, TC rich repeats, and LTR. Among them, MBS was observed the most (9 times), followed by LTR (8 times) and TC rich repeats (5 times).

Developmental response cis-acting elements, including circadian, CAT box, and ARE, and photoreactive elements such as G-BOX, MRE, and GT1 motifs, were also identified. All ZjCDPK promoters contained ARE, except for ZjCDPK9 and ZjCDPK18. ZjCDPK18 promoter contained a relatively large number of cis-acting elements, suggesting that it may participate in more biological and stress-related processes than other ZjCDPK members.




3.6 Expression profiles of the ZjCDPKs during fruit growth

Plant CDPKs play important roles in plant growth and development. Thus, to understand how ZjCDPKs are involved in fruit growth development, the expression levels of the ZjCDPKs in fruit nine growth stages (F1–F9) of ‘Jinkuiwang’ (large fruit size) and ‘Jinsixiaozao’ (small fruit size) were analyzed. The different expression patterns of 17 ZjCDPKs were identified (Figure 6). The majority of ZjCDPKs (e.g., ZjCDPK1/2/4/18) showed a down-regulation pattern from F1 to F9 in both cultivars, while other ZjCDPKs (e.g., ZjCDPK 3/5/14/15) did not exhibit any significant expressing patterns and had high expression levels. Most of the ZjCDPKs showed higher expression levels from F1 to F4 and were subsequently down-regulated in the other stages. The expression levels of ZjCDPK11/14/17/19 increased from F1 to F2 in ‘Jinkuiwang’, but decreased in ‘Jinsixiaozao’. This may indicate the important functions of these ZjCDPKs in the different fruit size formation between ‘Jinkkuiwang’ and ‘Jinsixiaozao’.

[image: Heatmap displaying data values with a gradient from blue to red, representing values from -6.00 to 8.00. Rows are labeled ZjCDPK1 to ZjCDPK19, and columns are labeled JKV_F1 to JS_F9.]
Figure 6 | Expression profiles of ZjCDPKs during the fruit growth of ‘Jinkuiwang’ (JWK) and ‘Jinsixiaozao’ (JS). F1 to F9 are defined in Section 2.6.




3.7 Expression profiles of ZjCDPKs in response to phytoplasma infection

CDPKs are involved in the regulating mechanism of biotic stress. Thus, we analyzed the expression profiles of the ZjCDPKs in response to phytoplasma infection on the susceptible cultivar ‘Pozao’ and resistant cultivar ‘T13’. As shown in Figure 7, compared to the healthy control at stage S1, most of the ZjCDPKs exhibited down-regulation in PZ and only ZjCDPK8/9/11/17/19 was upregulated, while ZjCDPK3/8/9/11/12/14/15/17/19 showed an upregulating pattern in ‘T13’. As phytoplasma infection growth progressed (S2 to S3) in ‘PZ’, more ZjCDPKs were upregulated (e.g., ZjCDPK1/2/3/5/8/9/10/11/12/13/14/16/17/19/21) compared to the healthy control. Moreover, most of the ZjCDPK expression levels in ‘T13’ did not exhibit any significant changes at S2 and were significantly down-regulated in S3. These results may demonstrate the varying expression patterns of the ZjCDPKs involved in the different resistant levels to phytoplasma infection between ‘Pozao’ and ‘T13’.

[image: Heatmap displaying expression levels of ZjCDPK genes across different conditions. Rows represent ZjCDPK1 to ZjCDPK21, columns represent treatments like PZS1D and T13S3H. Colors range from red (higher expression) to blue (lower expression), with values from about 8.00 to -8.00.]
Figure 7 | Expression profiles of ZjCDPKs in response to phytoplasma infection in ‘Pozao’ (PZ) and ‘T13’ from the S1 to S3 growth stages. H, healthy; D, diseased.




3.8 Expression profiles of ZjCDPKs in response to salt stress

CDPKs also play important roles in response to abiotic stress. Thus, the expression levels of ZjCDPKs in response to salt stress were investigated. In response to salt stress, most of the ZjCDPKs were upregulated from 6 h to 24 h, while others initially exhibited a down-regulation pattern and were then regulated at 192 h (Figure 8). Among them, ZjCDPK15 maintained a down-regulation trend from 0 h to 192 h, while the expression levels of ZjCDPK3/5/11/12/17 increased from 0 h to 192 h and stayed high at 192 h, indicating that these ZjCDPKs are positively involved in salt stress.

[image: A heatmap visualizes the expression of ZjCDPK genes under different conditions: Na192h, Na24h, Na6h, and W0h. Shades of red and blue indicate varying expression levels, with red for higher and blue for lower values. A color scale on the right ranges from -4.00 to 8.00.]
Figure 8 | Expression profiles of ZjCDPKs in response to salt stress.




3.9 Expression profiles of ZjCDPKs in response to cold stress

ZjCDPKs may have important functions in salt stress, and thus the expression profiles of ZjCDPKs in response to cold stress were further analyzed. As shown in Figure 9, the expression pattern of ZjCDPKs exhibited down- and upregulation patterns in ‘Dongzao’ and its autotetraploid. Among them, most of the ZjCDPKs, (e.g., ZjCDPK1/8/9/10/13/14/15/16) exhibited a down-regulation trend, while the expression levels of ZjCDPK3/11/12/17 were upregulated from 0 h to 24 h. In addition, the expression level of ZjCDPK19 was significantly induced in the ‘Dongzao’ autotetraploid compared to ‘Dongzao’, while the expression level of ZjCDPK16 was significantly upregulated in ‘Dongzao’ and down-regulated in its autotetraploid. This may indicate the important gene functions of this gene in cold differential resistance between ‘Dongzao’ and its autotetraploid.

[image: Heatmap depicting the expression levels of ZjCDPK genes across different conditions and time points. Rows represent ZjCDPK genes, columns represent DZ2C and DZ4C conditions at 24 hours, 6 hours, and control. Color gradient ranges from blue (low expression) to red (high expression), with specific values displayed in each cell.]
Figure 9 | Expression profiles of ZjCDPKs in response to cold stress for ‘Dongzao’ and its autotetraploid at 0, 6, and 24 h respectively.




3.10 Prediction of ZjCDPK-related TFs and their expression analysis in response to cold and salt stress

To explore the regulatory network of ZjCDPKs under cold or salt stress, the TFs that could modulate the expression pattern of ZjCDPKs were predicted. As shown in Figure 10A, ZjCDPK4/6/7/8/10/14/16 interacted with six, one, one, two, two, one, and three TFs, respectively. The TFs mainly belonged to the ERF, DOF, MADS, and BBM families. Moreover, the expression profiles of these TFs in response to cold and salt stress (Figures 10B, C) were analyzed. In response to cold stress, the expression patterns of most TFs showed a down-regulation pattern. However, TFs such as LOC107405089 of ZjCDPK10 and LOC101706029 of ZjCDPK16 were significantly upregulated, indicating that these two TFs may play important regulatory roles in cold stress. In addition, under salt stress, the expression patterns of most related TFs showed opposite expressing patterns to that under cold stress. Most TFs were upregulated, while LOC107408788 and LOC107409268 of ZjCDPK4 were significantly inhibited under salt stress.

[image: A composite image includes three sections: (A) Network diagrams show interactions among LOC genes, including ZjCDPK4 and ZjCDPK6 to ZjCDPK16, with connecting arrows. (B) Heatmaps (a-f) display expression levels of LOC genes, with color gradients representing intensity across different developmental stages. (C) Heatmaps (a-f) show corresponding data under different conditions, with color variations indicating changes.]
Figure 10 | Prediction analysis of ZjCDPK-related transcription factors (A) and their expression patterns in response to cold (B) and salt stress (C).





4 Discussion

CDPKs, as serine/threonine type protein kinases widely found in plants, which function as calcium sensor and responder. Plant CDPKs and their mediated signaling cascades regulate plant growth and development, participate in hormone signal transduction, and play a role in abiotic stress response. The CDPKs family has undergone a long evolutionary process, which can be traced back to the earliest terrestrial plants, such as pteridophytes and bryophytes (Dekomah et al., 2022a). In the current study, 21 CDPKs were identified in the jujube genome using bioinformatics, which is fewer than the number identified in other species such as Arabidopsis, poplar, banana, and tomato. The number of gene families may be related to the extensive genomic diversity and tandem and segment duplications that took place in the history of plant evolution (Shi and Zhu, 2022). Thus, the smaller number of ZjCDPKs may be attributed to the small number of segment and tandem gene duplications that occurred in the jujube genome.

CDPK has four typical conserved domains, and the conserved kinase domain is a typical feature of Ser/Thr protein kinase. Calcium sensors mainly rely on the binding of Ca2+ to the EF-hand motif, which is a unique and conserved helical-ring-helical structure (Dekomah et al., 2022a). Our study showed that ZjCDPKs contain two highly conserved domains such as kinase and EF-hand domains. Among them, ZjCDPKs have 2–4 conserved EF-hand motifs, which is consistent with those in Arabidopsis (Yip Delormel and Boudsocq, 2019). In addition, gene structure analysis showed that the ZjCDPKs have multiple introns. The existence of more introns may increase the functional diversity of ZjCDPKs through alternative splicing and exon shuffling (Zhu et al., 2016). Moreover, cis-acting element analysis revealed that there was numerous hormone, developmental, and stress response elements in the promoters of ZjCDPKs. We also found that the methyl jasmonate hormone response element appeared frequently in the ZjCDPKs. Methyl jasmonate has many physiological functions, and CDPKs that were associated with plant hormones were also involved in the plant defense and development process. For example, AtCDPK32 can bind and phosphorylate the ABA response transcription factor ABF4, while overexpressing AtCDPK32 exhibits ABA sensitivity phenotype (Choi et al., 2005). Furthermore, exogenous ABA treatment increases the expression of BrrCDPK38/42 and FaCDPK4/11 in brassica and strawberry, respectively (Wang et al., 2017; Crizel et al., 2020). However, studies on the relationship between methyl jasmonate and CDPKs are limited, and methyl jasmonate may play an important role in the CDPK-mediated biological process of plant development and defense against various stresses.

Although calcium functions are important in plant growth and development, the function of calcium sensors such as CDPKs during fruit development has rarely been reported. In our study, we found that most of the ZjCDPKs in ‘Jinkuiwang’ and ‘Jinsixiaozao’ showed higher expressing levels during stages F1 to F4 and were then down-regulated during the subsequent stages. Among them, the expression levels of ZjCDPK11/14/17/19 increased from F1 to F2 in ‘Jinkuiwang’, but decreased in ‘Jinsixiaozao’. ‘Jinkuiwang’ and ‘Jinsixiaozao’ are big- and small-sized fruit cultivars of jujube, respectively. During fruit development, stages F1 to F3 belong to the rapid growth period, and stages F4 to F9 belong to the slow and pre-mature growth period (Zhao et al., 2022). Thus, the different expression levels of ZjCDPK11/14/17/19 between ‘Jinkuiwang’ and ‘Jinsixiaozao’ at F1 to F2 may determine the fruit size differences. However, further functional verification experiments should be conducted to confirm this hypothesis.

Calcium signaling plays a key role in response to biotic and abiotic stresses. For example, Ca2+-permeable channels can be regulated by phytoplasma infection, which can further affect Ca2+ signaling in sieve elements (Musetti et al., 2013). In our study, we found that more ZjCDPKs were induced with the severe jujube witches’ broom (‘Zaofeng’) disease symptoms in ‘Pozao’ at S3 after phytoplasma infection (Wang et al., 2022). In contrast, when the witches’ broom symptoms recovered in ‘T13’ at S2, the expression levels of most ZjCDPKs were maintained constant compared with healthy plants. These results may indicate that the early calcium signal compared with the most expression of ZjCDPKs conferred the phytoplasma resistance in ‘T13’. Moreover, CDPKs play an important role in cold stress response. For example, PbCDPK2, PbCDPK7, PbCDPK10, and PbCDPK13 have been associated with post-harvest low-temperature stress in peach. In particular, PbCDPK7 can interact with PbRBOH4 on the cell membrane, which can induce Ca2+-ROS signaling and maintain intracellular ROS homeostasis to reduce chilling injury in peach (Zhao et al., 2022). In rice, OsCDPK13 (Komatsu et al., 2007), OsCDPK17 (Almadanim et al., 2017), and OsCDPK24 (Liu et al., 2018) participate in cold stress responses, while AtCDPK28 in Arabidopsis (Ding et al., 2022) functions as a positive regulatory factor for cold resistance. In our study, we found that the expression level of ZjCDPK16 was significantly upregulated in ‘Dongzao’ and down-regulated in its autotetraploid. Previous research reported that ‘Dongzao’ is more cold-tolerant than its autotetraploid (Gao et al., 2021). Therefore, ZjCDPK16 may have an important function in cold differential resistance between ‘Dongzao’ and its autotetraploid. Moreover, CDPKs play a role in salt stress resistance. In Arabidopsis, the overexpression of AtCDPK6 can increase the accumulation of proline and reduce the content of MDA, thereby improving salt stress resistance (Xu et al., 2010). In rice, OsCDPK7 and OsCDPK12 play important roles in response to salt stress (Saijo et al., 2001; Asano et al., 2012). VpCDPK9 is involved in salt stress regulation in grapevine (Zhang et al., 2015). Here, we found that the expression level of ZjCDPK3/5/11/12/17 increased from 0 h to 192 h and maintained a high level at 192 h in response to salt stress. The transcription factor analysis revealed that most TFs belonging to the MADS and ERF families were significantly upregulated in response to salt stress, demonstrating that TFs could regulate related ZjCDPKs to facilitate salt tolerance in sour jujube. The systematic analysis of ZjCDPKs can provide important information for further functional analysis of the CDPKs in jujube during fruit development and in response to biotic and abiotic stresses. However, the relationship between TFs and ZjCDPKs, and their biological functions should be solidified by molecular experiments in the future.




5 Conclusion

In this study, a total of 21 ZjCDPKs were identified, which are located on eight chromosomes. Gene structure and conserved motif analysis showed that all ZjCDPKs have similar gene structures and conserved motifs, except for ZjCDPK9 and ZjCDPK21. All the CDPKs from the Arabidopsis, rice, tomato, alfalfa, and jujube were divided into eight subgroups and the members of the ZjCDPKs were unevenly distributed across these subgroups. Colinear analysis showed that 12 homozygous CDPKs were detected between jujube and Arabidopsis, and 14 pairs were found between jujube and tomato. Additionally, four types of cis-acting elements were identified in the promoters of ZjCDPKs, including hormone, stress, development and light response elements were identified. The expression profiles of ZjCDPKs in response to phytoplasma infection and cold and salt stresses, during different fruit growth stages indicated that most ZjCDPKs were up or down-regulated. Finally, a varying number of TFs could interact with the promoter regions of ZjCDPK4/6/7/8/10/14/16 and exhibited opposite expression patterns in response to cold and salt stress.
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Introduction

The sucrose synthase (SUS), a crucial enzyme in the sucrose metabolism, is encoded by a multigene family in plant kingdom. 





Methods

In our study, we utilized bioinformatics tools to identify and characterize the members of the SUS gene family within the blueberry genome. Our analysis encompassed the physicochemical properties, gene structures, conserved motifs, promoter cis-acting elements, chromosomal locations, evolutionary relationships and expression profiles of these family members, allowing us to predict their potential functions. 





Results

We identified seven distinct SUS genes, mapped across six chromosomes, showcasing the complexity of this gene family in blueberries. Phylogenetic analysis, constructed through a multi-species phylogenetic tree, revealed that the SUS gene family can be categorized into three subfamilies: SUS I, SUS II and SUS III. Notable variations were observed among the VdSUS gene family members, particularly in the number of amino acids, molecular weight, isoelectric point, and hydrophobicity of the encoded proteins. Intriguingly, our predictive analysis of the promoter regions of VdSUS genes uncovered a wealth of cis-acting elements linked to light response, hormonal regulation, and stress responses, suggesting a role in adaptive mechanisms. Expression studies indicated that VdSUS genes were highly expressed in fruit tissues, with the application of exogenous sucrose leading to significant downregulation of VdSUS2, VdSUS3 and VdSUS6. Furthermore, the expression of VdSUS genes was found to be responsive to abiotic stresses, such as salt, drought, and low temperatures, with varying degrees of upregulation or downregulation observed. Most notably, the overexpression of VdSUS4 in Arabidopsis thaliana resulted in enhanced tolerance to salt stress. 





Discussion

These findings have shed new light on the multifaceted roles of VdSUS gene family members in the complex physiological processes of blueberries, highlighting their potential in the context of stress adaptation and fruit development.
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1 Introduction

In the plant kingdom, sucrose serves as a vital source of carbon and energy, underpinning cellular life cycles (Huang et al., 2021). It is the predominant carbohydrate produced during photosynthesis and is subsequently transported to non-photosynthetic organs via the phloem (Liu and Zheng, 2022). Sucrose is implicated in a myriad of metabolic pathways that are central to plant growth and development. These include critical processes such as cell division, tissue differentiation, seed germination, flowering initiation, fruit maturation, and the accumulation of metabolic products. Sucrose also plays a pivotal role in responding to both biotic and abiotic stresses, as well as facilitating recovery from damage, as highlighted in various studies (Huang et al., 2021; Gaudin et al., 2000; Iraqi and Tremblay, 2001; Rook et al., 2001; Yang et al., 2001).

In higher plants, sucrose synthesis occurs via two pathways: (1) Sucrose-phosphate synthase (SPS) catalyzes the formation of sucrose-6F-phosphate (Suc6P), which is then hydrolyzed to sucrose by sucrose-phosphatase (SPP); (2) Sucrose synthase (SUS) catalyzes the conversion of UDP-glucose and fructose to sucrose and UDP, though this process is reversible (Huber and Huber, 1996; Lunn and MacRae, 2003). Research has shown that Trehalose 6-phosphate (Tre6P) functions as a specific signal for sucrose, with Tre6P levels regulating sucrose concentration. When sucrose levels increase or decrease, corresponding changes in Tre6P levels occur due to the relative activities of trehalose 6-phosphate synthases (TPS) and trehalose 6-phosphate phosphatases (TPP). In source leaves, Tre6P modulates sucrose synthesis by influencing sucrose levels, while in sink organs it regulates sucrose consumption (Figueroa and Lunn, 2016; Yadav et al., 2014). Furthermore, sucrose has been established as a signaling molecule that modulates gene expression and shapes enzyme metabolic pathways (Ciereszko et al., 2001). Sucrose specifically promotes the expression of the Ugp gene, which encodes UDP-glucose pyrophosphorylase. This enzyme converts UDP-glucose, produced via sucrose cleavage by SUS, into glucose-1-phosphate (Yoon et al., 2021). For instance, when detached Arabidopsis leaves are fed with 50 mM sucrose, Ugp gene expression is upregulated (Ciereszko et al., 2001). In isolated barley leaves, exogenous sucrose application increases fructan concentration by inducing the expression of the fructan 6-fructosyltransferase (6-SFT) gene (Nagaraj et al., 2001).

Prior to its transport to recipient tissues within the plant, sucrose is subjected to hydrolysis by two key enzymes. Invertase (INV) is responsible for breaking down sucrose into glucose and fructose, while SUS facilitates the transformation of sucrose and uridine diphosphate (UDP) into UDP-glucose and fructose (Chourey et al., 1998; Yoon et al., 2021). These enzymes are crucial for sucrose unloading in the phloem, with SUS playing a key role in carbon partitioning, biomass accumulation, and sink tissue strength (Stein and Granot, 2019). SUS has been shown to regulate the distribution of sucrose between source and sink tissues (Haigler et al., 2001), and to influence starch synthesis (Barratt et al., 2001). It also contributes to cellulose synthesis in secondary cell walls (Albrecht and Mustroph, 2003), impacts nitrogen fixation (Baier et al., 2010), and is associated with survival rates following exposure to stress (Harada et al., 2005). These functions underscore the multifaceted importance of SUS in plant physiology and adaptation.

SUS, a key player in carbohydrate metabolism, is encoded by a compact yet diverse multigene family that can be found across both monocotyledonous and dicotyledonous plants. The SUS gene family size differs among species: it comprises six members in Arabidopsis (Baud et al., 2004), rice (Hiros et al., 2008), cocoa (Li et al., 2015), tomato (Duan et al., 2021), and citrus (Islam et al., 2014), five in grape (Zhu et al., 2017), and three in maize (Duncan et al., 2006). Notably, cotton has seven SUS genes (Chen et al., 2012), apple boasts eleven (Tong et al., 2018), and poplar exhibits an expansive family of fourteen (An et al., 2014). Remarkably, the largest SUS gene family, with an impressive thirty members, has been identified in pear (Harada et al., 2005). Variation is a hallmark of the SUS gene family across species, with each member exhibiting unique functional roles and structural characteristics. Their expression patterns also diverge, highlighting distinct stages of plant growth and development. For example, in pea, the SUS gene family is divided into three clear subfamilies SUS I, SUS II, and SUS III each with its own distinct expression profile during organogenesis. SUS I members demonstrate broad tissue expression and are particularly abundant in developing seeds. In contrast, SUS II members are predominantly expressed in mature ovaries and leaves, while SUS III members exhibit limited expression, primarily in flowers and young ovaries (Barratt et al., 2001). This tissue-specific expression pattern underscores the evolution of SUS genes towards specialized physiological functions, reflecting their intricate involvement in the developmental and adaptive processes of plants.

In maize, SUS genes associated with cell wall synthesis are abundantly expressed in developing endosperm, while ZmSUS1 is widely expressed and plays a central role in starch synthesis (Duncan et al., 2006). Moreover, the overexpression of ZmSUS1 significantly improves maize seed traits, increasing starch content (Li et al., 2023). In Arabidopsis, the six AtSUS genes also exhibit differential expression, and extensive research has been conducted on their specific functions in studies involving knockout mutants (Baud et al., 2004; Bieniawska et al., 2007). Mutants of pea SUS (rug4) exhibit reduced seed starch content, while the overexpression of SUS in potato stems leads to starch accumulation (Barratt et al., 2001; Zrenner et al., 1995; Baroja-Fernández et al., 2009). The wheat SUS gene TaSUS1 is a determinant of grain number per spike (Shen et al., 2023). In hybrid aspen (Populus tremula × tremuloides), specific reduction of SUS (PtrSUS1 and PtrSUS2) expression levels in wood through RNAi technology, leads to changes in cell wall structure and significant reduction in wood density in the transgenic lines (Gerber et al., 2014). Similarly, overexpression of PsnSUSy1 and PsnSUSy2 genes in tobacco thickens the secondary cell wall, enhancing nutritional growth and mechanical strength (Li et al., 2019). In stress studies, the Arabidopsis sus1/sus4 double mutant exhibits normal growth but shows significant growth retardation when the roots are subjected to hypoxic conditions (Bieniawska et al., 2007). In cucumber, the expression and activity of CsSUS3 increase when subjected to flooding low-oxygen stress, especially in lateral roots (Wang et al., 2014).

Blueberry, recognized as one of the five major health foods for humans and hailed as the “king of fruits worldwide”, is known for its delicious taste and rich content of functional components such as organic acids, phenolics, minerals and vitamins. It possesses medicinal value with antioxidant, anti-inflammatory, anti-cancer, neuroprotective and vision-improving properties (Duan et al., 2022). The storage of sugars in blueberry fruits begins with SUS, which converts fructose and UDP-glucose into sucrose and UDP. Understanding the function of SUS in sucrose synthesis and cleavage is crucial for addressing fruit over-acidification and enhancing the quality of blueberry fruits.

In this study, using blueberry (O’ Neal) as the material, we identified members of the SUS gene family from the genome database of evergreen blueberry (Vaccinium darrowii). We conducted bioinformatic analysis, including chromosome localization, gene structure, conserved motifs and evolutionary relationships. Additionally, we investigated the expression patterns of VdSUS genes in different tissues and developmental stages. By externally applying sucrose to blueberry fruits, we analyzed the role of VdSUS genes in fruit ripening. We also investigated the response of the VdSUS genes to abiotic stress. Moreover, overexpression of the VdSUS4 gene enhanced salt tolerance in transgenic Arabidopsis. In summary, our results contributed to a comprehensive understanding of physiological functions of the blueberry SUS gene family in abiotic stress tolerance.




2 Materials and methods



2.1 Identification of VdSUS gene family members in blueberry

We obtained the blueberry protein sequences from the NCBI database (https://www.ncbi.nlm.nih.gov/). The SUS family protein domain feature files (PF00534 and PF00862) were obtained from the Pfam website (https://pfam.xfam.org/). A Hidden Markov Model (HMM) was built using HMMER 3.0, and the hmmsearch program from HMMER 3.0 was employed to search for protein sequences containing the SUS family protein domain features in the blueberry protein database. Redundant protein sequences were manually removed. A total of 7 protein sequences were identified as candidate members of the blueberry SUS family. The identified protein sequences were validated for conserved domains using NCBI-CDD (https://www.ncbi.nlm.nih.gov/cdd/) and SMART (http://smart.embl-heidelberg.de/). The physicochemical properties of the VdSUS gene family proteins, including the number of amino acids, molecular weight, theoretical isoelectric point and hydropathicity, were predicted using the ExPASy (https://web.expasy.org/protparam/) online website. The subcellular localization of VdSUS proteins were predicted using the website (http://www.genscript.com/tools/wolf-psort).




2.2 Chromosome localization, sequence alignment, gene structure, conserved motifs and three-dimensional structural domain analysis

According to information from the GFF annotation file (NCBI), the TBtools software was employed to visualize the chromosome positions and gene structures of VdSUS gene family (Chen et al., 2020). Sequence alignment of SUS protein sequences was conducted using Jalview software. The analysis of conserved motifs was performed using the online tool MEME (https://meme-suite.org/meme/). Three-dimensional structural analysis of VdSUS protein sequences was carried out using the online tool SWISS-MODEL (https://swissmodel.expasy.org/). To ensure the accuracy of the model, AtSUS1, which shares high sequence similarity with VdSUS, was used as a template.




2.3 Phylogenetic tree analysis of the SUS gene family across multiple species

To construct a systematic phylogenetic tree of SUS, protein sequences of SUS from Arabidopsis, maize, rice, tomato, wheat, and sugar beet were extracted from previous studies. Multiple sequence alignment was performed using MEGA X software, and a neighbor-joining (NJ) method was employed to build the phylogenetic tree with a bootstrap value of 1000 (Kumar et al., 2018). Subsequently, the tree was visualized and enhanced using the online tool Evolgenius (https://evolgenius.info//evolview-v2).




2.4 Collinearity analysis

Downloaded the genome files and GFF files for Arabidopsis, rice, and grape from the NCBI database. Utilized the multiple collinearity scanning toolkit in MCScanX within TBtools for the analysis of cross-species collinearity relationships, followed by visualization using TBtools (Chen et al., 2020).




2.5 The analysis of the promoter cis-elements of VdSUS

A 2 kb DNA sequence upstream of the start codon (ATG) was extracted from the VdSUS gene family. Predictions for cis-acting elements were performed using the Plant-CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) website (Higo et al., 1999). Subsequently, a classification analysis was conducted using Excel, and visualization was performed using TBtools.




2.6 Plant materials, growth conditions, sucrose and stress treatments

This study utilized blueberry (O’Neal) and Arabidopsis thaliana (Columbia-0) as experimental materials. Blueberry and Arabidopsis plants were cultivated in plant growth chambers under 16 h of light and 8 h of darkness, with a light intensity of 100 μmolm−2s−1, and temperatures at 23°C (light) and 20°C (dark). Various tissues, representing different developmental stages and tissue types, were collected from soil-grown blueberry plants, including roots, young stems, mature stems, young leaves, mature leaves, young flowers, mature flowers, early green fruits, late green fruits and mature fruits.

Sucrose treatment involved the external application of sucrose to late green fruits. Uniform-sized fruits were selected, and 100 μL 50 mM sucrose was injected into the fruits using 1 mL syringe. And 100 μL 50 mM sorbitol served as an osmotic potential control. Samples were collected at 0 h, 6 h, 12 h and 24 h post-treatment. Additionally, blueberry seedlings were subjected to drought, salt and low-temperature (4°C) treatments. For drought treatment, seedlings were exposed to drought for 0–15 d. Salt stress was treated using 200 mM NaCl for 0–11 d. Low-temperature stress involved placing the seedlings in a 4°C incubator for 0–24 h after pre-cooling the incubator to 4°C the day before. After treatment, plant leaves were immediately frozen in liquid nitrogen and stored at -80°C for further analysis.

For salt stress treatment, wild-type and transgenic Arabidopsis seeds were surface-sterilized and sown on Murashige and Skoog medium (pH 5.9) supplemented with 100 mM NaCl. The plates were placed at 4°C for 2 days, and then at 22°C for vertical growth. Phenotypic images were captured, and root length and fresh weight were recorded. In addition, wild-type and transgenic Arabidopsis seeds were surface-sterilized and sown on 1/2 MS medium. After 7 days of cultivation, seedlings were transplanted into pots (10 × 10 cm) filled with a 1:1 mixture of nutrient soil and vermiculite, and then cultured in a plant growth chamber. Three weeks post-transplantation, healthy wild-type and transgenic Arabidopsis plants were irrigated with equivalent volumes of 150 mM NaCl solution. Growth performance was subsequently monitored and recorded. Regarding the measurement of seed germination rate, surface-sterilized seeds were sown on 1/2 MS medium, and germination rates were assessed after 4 d of incubation based on the emergence of radicles and cotyledons.




2.7 Physiological analysis

Following salt stress treatment, collected leaf samples (0.2 g) were homogenized in 5 mL of ice-cold 25 mM phosphate-buffered saline (PBS, pH 7.8) containing 0.2 mM EDTA. POD (peroxidase), SOD (superoxide dismutase), CAT (Catalase) activities and MDA contents were determined using commercial assay kits according to the manufacturer’s instructions (Nanjing Jiancheng Bioengineering Institute, China).




2.8 Vector construction and plant transformation

To construct the plant expression vector pCAMBIA1300-VdSUS4 under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter, the complete coding sequence of VdSUS4 was inserted into the pCAMBIA1300 vector using the ClonExpress II One Step Cloning Kit (Vazyme, China). The recombinant vector was transformed into Agrobacterium tumefaciens strain GV3101, and the transformation of Arabidopsis plants was performed as previously described (Clough and Bent, 1998). Homozygous transgenic plants were selected on 1/2 MS medium containing 50 mg/L kanamycin for subsequent experiments.




2.9 RNA extraction and quantitative real-time PCR analysis

Total RNA extraction was performed using the FastPure Universal Plant Total RNA Isolation Kit (Vazyme, China), and cDNA synthesis was conducted using the HiScript III 1st Strand cDNA Synthesis Kit (Vazyme, China). The reference gene VdTub2 (Vda09G008900.1) was utilized, and quantitative PCR was carried out using the CFX Connect Real-Time System (Bio-Rad, America) with ChamQ Universal SYBR qPCR Master Mix (Vazyme, China). Gene-specific primers for VdSUS were designed using Premier 5.0 software, and the sequences are listed in Supplementary Table S3. The reaction conditions were as follows: pre-denaturation at 95°C for 1 min, denaturation at 95°C for 15 s, annealing/extension at 60°C for 15 s, and a total of 40 cycles. The comparative CT method was employed to assess the relative expression levels of qRT-PCR products (Schmittgen and Livak, 2008).




2.10 Data analysis

Data were organized and categorized using Excel (Version 2019), visualized with TBtools (Version 2.042), and refined in Adobe Illustrator 2020. Statistical analyses were carried out using Prism 8 and SPSS 20. All results are presented as means ± standard deviation (SD) from three biological replicates. Significant differences were analyzed by Student’s t-test.





3 Results



3.1 Identification and characterization of the blueberry SUS gene family members

To elucidate the biological functions of the SUS gene family in blueberries, we constructed a Hidden Markov Model. Seven protein sequences containing the Sucrose_synth and Glyco_trans_1_4 domains were identified in the blueberry whole genome. Based on their phylogenetic relationship with Arabidopsis, they were named VdSUS1-VdSUS7 (Supplementary Figure S1). The amino acid sequences of the blueberry SUS gene family ranged from 811 to 1059. The molecular weights ranged from 92254.59 (VdSUS3) to 119144.5 (VdSUS7), with isoelectric points between 5.73 (VdSUS3) and 8.16 (VdSUS5). The instability index ranged from 28.97 (VdSUS6) to 92.68 (VdSUS2), and all had negative average hydrophobicity coefficients, indicating hydrophilic proteins. Subcellular localization prediction indicates that VdSUS may be located in the cytoplasm, nucleus, and mitochondria (Table 1).

Table 1 | The main detail characteristics of 7 VdSUSs proteins in blueberry.
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The conserved domains and phylogenetic relationships of VdSUS proteins were explored through a multiple sequence alignment of the VdSUS gene family. The results of the multiple sequence alignment showed that all seven VdSUS proteins possessed two domains, Sucrose_synth and Glyco_trans_1_4 (Supplementary Figure S2A). Analysis of the position of these two domains in the protein sequences revealed that the domain sequences of VdSUS4 and VdSUS7 were slightly shorter than those of the other members (Supplementary Figure S2B). The amino acid sequences of the SUS gene family proteins exhibited a predominance of α-helix secondary structures, each exceeding 50%, with the least proportion being β-turn, which was around 6% (Supplementary Figure S2C). The tertiary structure of VdSUS proteins consisted of two symmetric tetramers (Supplementary Figure S2D, Supplementary Figure S3), forming a three-lobed structure, with four distinct domains (Supplementary Figure S2E). The first two domains were designated as the Cellulose Targeting Domain (CTD, residues 1–121) and the Early Nodulin 40 Peptide Binding Domain (EPBD, residues 161–271). The last two domains included the GT-B glycosyltransferase with its Rossmann fold domain (Supplementary Figure S2E). These folds form an active site suited for substrate binding, responsible for recognizing and binding sucrose and UDP, and participating in the catalytic reaction of glycosyl transfer. The N-terminal and C-terminal domains of GT-B glycosyltransferase are referred to as GT-BN and GT-BC, respectively (Zheng et al., 2011). The GT-BN domain extended from residues 275 to 528, and the GT-BC domain extended from residues 529 to 760.

To investigate the evolution of the SUS gene family across different plant species, we collated the amino acid sequences of seven VdSUS proteins from blueberry, six AtSUS proteins from Arabidopsis (Bieniawska et al., 2007), seven OsSUS proteins from rice, four SiSUS proteins from tomato, three ZmSUS proteins from maize, two TaSUS proteins from wheat, and two BvSUS proteins from sugar beet. We constructed a neighbor-joining (NJ) phylogenetic tree (Figure 1; Supplementary Table S1) to analyze the evolutionary relationships. The results of the phylogenetic tree analysis revealed that the 31 SUS proteins from the seven species could be divided into three groups: SUS I, SUS II and SUS III. Blueberry VdSUS proteins were distributed in each subgroup, with only one protein (VdSUS1) in the SUS I group. Notably, these three groups were present in both monocotyledonous and dicotyledonous plants, suggesting a common ancestor. Additionally, VdSUS exhibited a unique clustering pattern, but most collinear orthologous gene pairs were distributed in AtSUS and OsSUS, indicating a shared evolutionary history among these genes across different species (Figure 1). This observation may be attributed to evolutionary variations between monocotyledonous and dicotyledonous plants, influencing the distribution of these gene pairs in their respective species.
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Figure 1 | Phylogenetic analysis of the SUS gene family. VdSUSs were labeled with red stars.




3.2 Chromosomal localization and collinearity of the blueberry SUS gene family

To investigate the chromosomal localization of SUS gene in the blueberry genome, we downloaded the blueberry GFF file from NCBI and visualized it using TBtools. The results showed that the seven SUS genes were distributed on 6 chromosomes of blueberry (Figure 2A). The vd-10 chromosome has 2 SUS genes, while the other chromosomes have one gene each (Figure 2A).
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Figure 2 | Characteristics of VdSUS proteins. (A) Chromosomal localization. (B) Collinearity relationship between blueberry and Arabidopsis SUS genes. (C) Collinearity relationship between blueberry and rice SUS genes. (D) Collinearity relationship between blueberry and grape.

Gene duplication was a common occurrence in plant evolution, including whole-genome duplication, tandem duplication and segmental duplication, which could generate homologous genes with similar sequences. We performed intraspecific collinearity analysis of the VdSUS gene family and found no collinear gene pairs (Figure 2B). To further investigate the phylogenetic and evolutionary relationships of SUS genes between species, and to reveal the collinearity relationships of SUS genes in different species, we selected three representative model species, including two dicotyledonous plants (Arabidopsis and grape) and one monocotyledonous plant (rice), for collinearity analysis with blueberry. These results showed that there were 5 pairs of collinear SUS gene pairs between blueberry and Arabidopsis, including VdSUS4 and AtSUS6, VdSUS6 and AtSUS5, VdSUS1 and AtSUS3, VdSUS1 and AtSUS1, and VdSUS3 and AtSUS3 (Figure 2B). In comparison with rice genome (7 genes), four collinear gene pairs were identified between VdSUS and OsSUS (Figure 2C; Supplementary Table S2). The VdSUS genes exhibited higher homology with the VvSUS genes of grape (5 genes) (Figure 2D; Supplementary Table S2), indicating a close relationship between them. These results also suggested that, compared to monocotyledonous plant genomes, blueberry exhibited more significant collinearity with dicotyledonous plant genomes, and individual homologous genes showed one-to-many or many-to-one homology. These genes had undergone multiple genes duplication events, indicating a close phylogenetic relationship between the studied species. Their evolutionary functions might be conserved, and their ancestral functions had not been lost or altered during the duplication process, playing an important role in the evolution of the SUS gene family.




3.3 Blueberry SUS gene family structure and conserved motif analysis

To further investigate the structural features and evolutionary mechanisms of the SUS gene family, we conducted phylogenetic tree analysis of the SUS proteins in the blueberry genome, as well as a comparative analysis of the distribution of conserved motifs and intron-exon structures. Predicted gene structures revealed that SUS gene sequences contained 12 or more introns (Figure 3B). The sequences of all VdSUS proteins contained Motif 1, Motif 2, Motif 4, Motif 5 and Motif 9 (Figure 3C), with most motifs consisting of 50 amino acids (except for Motif 4 and Motif 9) (Figure 3D). VdSUS5 and VdSUS6 belonged to the SUS III group (Figure 3A), but they exhibited differences in gene structure while sharing the same motif distribution. This divergence in gene structure may contribute to functional differences among VdSUS genes. In contrast, the gene structures and conserved motifs of VdSUS2/VdSUS3 and VdSUS4/VdSUS7 were consistent, indicating a strong correlation between phylogenetic relationships among gene family members and their gene structures. This might suggest functional redundancy among these genes in blueberries.
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Figure 3 | Structural features of VdSUS sequences. (A) Phylogenetic tree of the VdSUS protein family, where I represents SUS I, II represents SUS II, and III represents SUS III. (B) Gene structure features of the VdSUS genes family. (C) Motif analysis of the VdSUS proteins. (D) Conserved motif sequences.




3.4 Analysis of promoter cis-acting elements in the blueberry SUS gene family

Cis-regulatory elements (CREs) are non-coding DNA sequences in the gene promoter region that play a crucial role in gene expression, widely participating in the regulation of plant growth, development and stress responses (Zhao et al., 2018). By analyzing the CREs of VdSUS, we aimed to further understand the potential roles of VdSUS in plant growth and development, as well as in response to plant hormones and abiotic stress. To identify genes functions and regulatory patterns, we investigated the CREs in the promoter regions of each gene by searching the 2000 bp region around each transcription activation site in the Plant CARE database. The analysis of VdSUS promoter regions revealed various CREs. We selected 20 representative CREs for visualization of their distribution (Figure 4B). Among them, VdSUS3 had the highest number of CREs, totaling 33, while VdSUS7 had 21 CREs. All CREs could be broadly classified into three categories (Figure 4C). The first category was hormone response, with a total of 51 CREs in the VdSUS gene family. Some genes, such as VdSUS4 and VdSUS6, contained multiple hormone response elements in their promoter regions, suggesting a rapid and intense response to specific hormones. The second category was abiotic stress, with a total of 120 CREs in the VdSUS gene family. All VdSUS genes contained abiotic stress-related elements such as ARE (anaerobic stress-related) and MYC (salt stress-related), indicating their potential role in regulating anaerobic stress and salt stress responses. The third category was growth and development, with a total of 31 CREs related to growth and development. Among them, VdSUS1 and VdSUS6 contained the highest number of AAGAA-motif (auxin response element), suggesting their involvement in blueberry growth and development regulation.
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Figure 4 | Analysis of cis-regulatory elements in the promoter regions of SUS genes in blueberry. (A) Phylogenetic tree of the VdSUS protein family in blueberry. (B) The positions of cis-regulatory elements in the promoter regions of VdSUS genes in blueberry. (C) Statistical analysis of the number of cis-regulatory elements in the promoter regions of VdSUS genes in blueberry.

In summary, these results indicated that the composition and quantity of CREs in different VdSUS promoter regions vary among subfamilies (Figure 4A). This suggested that the functional expression of SUS genes in blueberries was regulated by various CREs associated with hormones, abiotic stress, and plant growth and development processes.




3.5 Expression analysis of blueberry SUS genes in different organs, tissues and developmental stages

To better elucidate the physiological functions of VdSUS gene family members, we employed qRT-PCR to examine the spatiotemporal gene expression patterns of VdSUS genes in different organs, tissues and developmental stages of blueberry. Fluorescence quantitative PCR primers were designed based on the CDS region of the 7 members of the VdSUS gene family, VdTub2 serving as the internal reference control. The expression levels of the 7 VdSUS genes were detected by qRT-PCR in various tissues, including young flowers (YFl), mature flowers (MFl), early green fruits (EGF), late green fruits (LGF), mature fruits (MF), young stems (YS), mature stems (MS), young leaves (YL), mature leaves (ML) and roots (R) (Figure 5A). In flowers, the expression levels of most VdSUS genes were higher in mature flowers than young flowers. In fruits, except for VdSUS4, which showed higher expression in mature fruits than in early and late green fruits, other VdSUS members exhibited the highest expression in early green fruits, followed by a decline in late green fruits (Figure 5B). Interestingly, their expression levels increased again in mature fruits. In stems, the expression levels of VdSUS1, VdSUS3 and VdSUS7 were relatively high, while the expression levels of other members were generally low (Figure 5B). In leaves, except for VdSUS2, the expression levels of other members were higher in young leaves than in mature leaves (Figure 5B). In roots, the expression levels of VdSUS3, and VdSUS5 were relatively high, while expression levels of other members were low (Figure 5B). Overall, VdSUS5 and VdSUS6 showed lower expression levels in various tissues, indicating their contribution to the growth, sucrose metabolism and fruit development in blueberries (Figure 5B).

[image: A diagram showing two sections: A) displays various plant parts labeled YFI, MFI, EGF, LGF, MF, MS, YL, ML, and R, with a scale bar indicating 1 cm. B) features a heatmap and dendrogram for VdSUS genes, divided into groups I, II, and III, with numerical values indicating expression levels. A color gradient from blue to red represents increasing values from zero to three hundred fifty.]
Figure 5 | Spatial expression patterns analysis of VdSUS genes. (A) Phenotypes of extracted blueberry samples in different organs, tissues and developmental stages. YFl, young flowers; MFl, mature flowers; EGF, early green fruits; LGF, late green fruits; MF, mature fruits; YS, young stems; MS, mature stems; YL, young leaves; ML, mature leaves; R, roots. (B) Expression levels of VdSUS family genes.




3.6 Expression patterns of VdSUS genes in blueberry fruits under sucrose treatment and abiotic stress conditions

Exogenous sucrose had been demonstrated to act as a signaling molecule, promoting the ripening of tomato and strawberry fruits (Jia et al., 2013, 2016). In order to further identify which VdSUS genes influence the ripening and softening of blueberry fruits, the expression of VdSUS genes in blueberry fruits was modulated by exogenous sucrose application. The results revealed that, compared to blueberry fruits treated with sorbitol (negative control), the expression of VdSUS4 in blueberry fruits was upregulated after 6 hours of sucrose treatment, reaching its peak after 12 h with a threefold increase compared to the negative control. VdSUS1 and VdSUS7 showed an upregulation in expression after 24 h of sucrose treatment, while expression of VdSUS2, VdSUS3, and VdSUS6 exhibited a slight decrease after sucrose treatment. VdSUS5 showed no significant change compared to the negative control (Supplementary Figure S4).

In order to further explore the potential role of VdSUS in abiotic stress, we investigated the expression patterns of VdSUS under drought, salt and low temperature stress conditions. The results revealed differential expression patterns of VdSUS under drought (Figure 6A), salt (Figure 6C), and low temperature stress (Figure 6E). The expression levels of VdSUS1, VdSUS6 and VdSUS7 were downregulated, while the expression levels of VdSUS2-VdSUS5 were upregulated after drought treatment (Figure 6B). After NaCl treatment, the general trend of VdSUS1-VdSUS5 gene expression was upregulated, and VdSUS7 showed initial upregulation followed by downregulation at 5 d, while VdSUS6 was almost unaffected (Figure 6D). Under low temperature treatment, except for VdSUS5 was induced upregulation, all other genes were significantly downregulated (Figure 6F).

[image: Six images showing plant responses and gene expression levels under various stress conditions. A: Two plants in pots under drought stress before and after treatment. B: Bar graph of gene expression for drought over 15 days. C: Two plants in pots under NaCl stress before and after treatment. D: Bar graph of gene expression for NaCl over 11 days. E: Two plants in pots under low temperature stress before and after treatment. F: Bar graph of gene expression for low temperature over 24 hours.]
Figure 6 | Expression patterns of VdSUS genes in response to abiotic stress treatment. (A) Phenotypic charts before and after drought treatment. (B) Expression levels of VdSUS genes under drought treatment conditions. (C) Phenotypic charts before and after NaCl treatment. (D) Expression levels of VdSUS genes under NaCl treatment conditions. (E) Phenotypic charts before and after low temperature treatment. (F) Expression levels of VdSUS genes under low temperature treatment conditions. Values are the average ± standard deviation of three biological replicates. The transcription levels of VdSUS genes at 0 days and 0 hours were set as “1”. P-values < 0.05, 0.01 and 0.001 are denoted by “*”, “**” and “***” respectively (Student’s t-test).




3.7 Overexpression of VdSUS4 confers salt stress tolerance

To explore the potential functions of VdSUS4 in enhancing plant salt tolerance, we first generated transgenic Arabidopsis overexpressing VdSUS4 (Supplementary Figure S5) and assessed their seedling growth under salt stress conditions. Under normal conditions, there were no significant differences in germination and root elongation between wild-type and transgenic seedlings. However, compared with the wild-type, transgenic plants exhibited a nearly 100% increase in root elongation on media containing NaCl (Figures 7A, B). And, the fresh weight of transgenic plants demonstrated a 40% increase compared to the wild-type plants (Figures 7A, C). Further analysis revealed an exceeding 40% increase in germination rate of transgenic seeds relative to wild-type under 150 mM NaCl treatment (Figures 8A, B).

[image: Panel A shows seedlings of wild type (WT) and overexpressed lines (OE4-37, OE4-40, OE4-42) on different media, with varying root lengths. Panel B is a bar graph comparing root lengths in centimeters for WT and overexpressed lines on MS media and 100 millimolar NaCl. Panel C displays a bar graph comparing fresh weight in milligrams under the same conditions. Asterisks denote statistically significant differences.]
Figure 7 | Overexpression of VdSUS4 enhanced salt stress tolerance in Arabidopsis. (A) Germination of WT and VdSUS4 overexpressing lines on media with or without 100 mM NaCl, photographed after 15 d. (B) Root length measurement of 15-day-old WT and VdSUS4 overexpressing lines. (C) Fresh weight measurement of 15-day-old WT and VdSUS4 overexpressing lines. Values are the mean ± standard deviation of three biological replicates. p-values < 0.05 are represented by “*” (Student’s t-test).

[image: Panels display the effects of NaCl on plant genotypes. A shows germination with WT and OE lines under stress. B presents germination rates in a bar chart. C depicts plant growth before and after NaCl exposure. D, E, F, and G are bar graphs showing POD, SOD, CAT activities, and MDA content, respectively. OE lines generally outperform WT under salt stress. Statistical significance is indicated by asterisks.]
Figure 8 | VdSUS4 enhances salt tolerance by strengthening the plant antioxidant system. (A, B) Germination rate of WT and transgenic seeds. (C) Phenotypic comparison of WT and transgenic lines after treatment with 150 mM NaCl for 8 d. (D) POD activity. (E) SOD activity. (F) CAT activity. (G) MDA content. Values are the mean ± standard deviation of three biological replicates. p-values < 0.01 are represented by “**” (Student’s t-test). p-values < 0.05 are represented by "*".

We also performed salt tolerance experiments with wild-type and transgenic plants in soil. The plants were watered with or without 150 mM NaCl solution for 8 days, clearly difference was observed in the leaves and boltings of wild-type and transgenic plants. Both plant groups completed flowering under salt stress, but wild-type plants displayed significantly chlorosis leaves, shorter stems and fewer pods compared to the transgenic lines (Figure 8C). All these results indicated that overexpression of VdSUS4 enhanced salt stress tolerance in Arabidopsis.

Plants adapt to saline-alkaline environments through specific physiological and biochemical regulatory mechanisms. The level of plants salt tolerance can be evaluated by measuring key physiological and biochemical parameters. Our experimental results indicated that, under normal growth conditions, the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) showed no significant differences between wild-type and transgenic lines. However, under salt stress conditions, the activities of POD, SOD, and CAT increased in both wild-type and transgenic plants, with significantly higher enzyme activities observed in the transgenic lines. This suggested that plants activated their antioxidant defense systems to mitigate salt-induced oxidative damage, and the transgenic lines possessed a stronger capacity to scavenge reactive oxygen species (ROS), thereby reducing the harmful effects of superoxide radicals and enhancing salt tolerance (Figures 8D–F).

Lipid hydroperoxidation serves as an effective indicator of cellular oxidative damage (Yoshimura et al., 2004). Oxidative stress-induced alterations in lipid hydroperoxide accumulation kinetics were assessed through quantitative determination of malondialdehyde (MDA) in foliar disk samples. Upon NaCl stress, malondialdehyde (MDA) concentration markedly increased in wild-type plants, whereas the transgenic lines exhibited only a marginal increase (Figure 8G). These findings suggested that VdSUS4 enhanced the plant’s antioxidant defense system, reduced ROS accumulation, and helped maintain cellular homeostasis, thereby mitigating salt stress-induced damage.





4 Discussion

As one of the most common berries, blueberry was domesticated during the 20th century (Miller et al., 2019). Due to its flavor and health-promoting properties, blueberries are now cultivated and consumed worldwide. However, blueberry cultivation still faces various challenges, including the demand for varieties with higher yield and better fruit quality. Moreover, compared to other high-value crops, molecular tools for blueberry breeding are relatively limited, making breeding more challenging (Yocca et al., 2023). In this context, the identification of valuable genetic resources becomes a crucial step in promoting genetic improvement through the application of genetic engineering technologies.

Sucrose synthase (SUS) is widely recognized as a key enzyme involved in sucrose metabolism in higher plants and is considered a biochemical marker for crop strength (Xu et al., 2019). Therefore, conducting systematic study on SUS and identifying candidate genes involved in blueberry fruit ripening and response to abiotic stress is of great significance. In our study, seven members of the VdSUS gene family were identified from the blueberry genome (Table 1). SUS is a member of the conserved GT-4 glycosyltransferase subfamily, belonging to the larger metal-independent GT-B glycosyltransferase superfamily. In Arabidopsis, AtSUS1 possesses a typical sequence structure of SUS. Similarly, the SUS proteins in blueberries form a symmetrical tetramer (Supplementary Figure S1D), with the polypeptide chains folding into four distinct domains. This structural arrangement is well-suited for catalyzing and cleaving sucrose and regulating SUS. Additionally, the secondary structure is predominantly composed of α-helices (Supplementary Figure S1C).

Differences in the number of SUS genes across species are primarily due to gene duplication and chromosomal segmental or whole-genome duplication events, which lead to varying rates of SUS gene birth and loss. This process is a major driving force in species evolution, involving the functional innovation of new genes and the evolution of their expression patterns (Agarwal et al., 2017). Chromosome localization and collinearity analysis suggest that the SUS gene family in blueberries may primarily undergo segmental duplication (Figure 2). Although genes within a gene family evolve through various mechanisms, comprehensive phylogenetic and structural analysis can provide insights into the evolutionary origin and relationships of different isozymes. Based on their phylogeny and molecular structure, plant SUS proteins have been classified into three major groups (Zou et al., 2013). Our phylogenetic analysis of VdSUS genes in blueberry, Arabidopsis, rice, tomato, corn, wheat, and sugar beet confirmed this classification (Supplementary Figure S1F).

As observed in other plants, such as Arabidopsis (Bieniawska et al., 2007) and rice (Hiros et al., 2008), closely related VdSUS members generally exhibit similar motifs and exon/intron structures (Figures 3A, B), indicating that different SUS proteins may function in a similar manner. However, we also observed differences in genes structure between VdSUS5 and VdSUS6, despite their close proximity in the phylogenetic tree (Figure 3B), suggesting that structural divergence among gene family members is caused by mechanisms such as exon/intron loss or gain, insertion/deletion and exonization. Therefore, the analysis of exon/intron structure is crucial for revealing the evolutionary footprint of gene families (Xu et al., 2012). Among the identified 10 motifs, motif 1, 2, 4, 5 and 9 are present in all VdSUS proteins (Figure 3C), indicating their high conservation. These motifs constitute the conserved SUS domains essential for the specificity of SUS functions. Cis-regulatory elements (CREs) are closely related to gene function and play a crucial role in the transduction of biological signals. In this study, we found that the promoter region of VdSUS contains numerous CREs related to hormone regulation, abiotic stress and growth and development (Figure 4B), such as response elements related to AAGAA-motif (auxin response), ARE (anaerobic stress-related) and MYC (salt stress-related) (Figure 4C), indicating a close correlation between VdSUS and the potential regulatory effects on growth and development under different environmental changes.

Functional diversity resulting from gene duplication leads to changes in protein properties and differential expression. This is one of the major evolutionary driving forces for plants to adapt to new environments (Flagel and Wendel, 2009). The expression levels of VdSUS1 and VdSUS3 were higher in flowers (YFI and MFI) than other VdSUS genes, and both expression levels in MFI were higher than those in YFI (Figure 5B), suggesting their potential role in providing energy during the maturation process of flowers. Similarly, VvSUS4 in grapes is also highly expressed in flowers (Zhu et al., 2017). In fruits, VdSUS3 shows more expression in MF than those in LGF, while the expression of VdSUS1 decreases accompanied by the fruit ripening (Figure 5B). This phenomenon had been observed in apples as well, where SUS transcription levels were higher in the early stages of fruit development, but decrease as the fruit continues to grow (Li et al., 2012). In the stem, the expression level of VdSUS1 was significantly higher than that of other members, and its expression in YS was higher than in MS (Figure 5B).

In sweet potatoes, IbSUS3, IbSUS4 and IbSUS8 were highly expressed in the stem (Jiang et al., 2023). These SUS gene families were likely involved in carbohydrate transport and assimilation. Additionally, in transgenic poplars, enhanced cellulose deposition leaded to thicker secondary cell walls in the xylem, thereby increasing wood density (Coleman et al., 2009). Sucrose, as the main form of transport for photosynthetic assimilates, was produced in mature leaves, which served as source organs for sucrose synthesis and acted as centers for sucrose export. On the other hand, young leaves, flowers and fruits acted as sink organs, receiving sucrose for development or storing sucrose (Nebauer et al., 2011). In tobacco, SUS2 and SUS3 were highly expressed in leaves (Wang et al., 2015). The expression of VdSUS1 reached peak in young leaves and decreased with leaf development, reaching its lowest level in mature leaves (Figure 5B). Meanwhile, BjSUS5, 6, and 7 are significantly overexpressed in young leaves (Koramutla et al., 2019). Similarly, we observed that except for VdSUS2, the expression levels of other members in young leaves were higher than those in mature leaves, indicating their unique roles in leaf development. Moreover, in roots, VdSUS3 exhibits the highest expression level among different VdSUS genes, indicating its important role in the development of roots (Figure 5B).

An increasing body of research had indicated that the SUS gene families were associated with plant responses to environmental stress. Under abiotic stresses such as cold, drought, salinity, and hypoxia, sucrose biosynthesis can protect cell membrane integrity, stabilize proteins, and accelerate metabolism (Strand et al., 2003). During plant recovery from abiotic stress, sucrose serves as an energy source to promote metabolic activity (Strand et al., 2003). Soluble sugars regulate various functions, acting as fuel for growth and development, precursors in metabolism, short- and long-distance signaling molecules, and as components of osmotic protection and reactive oxygen species scavenging systems under stress conditions (Hennion et al., 2019; Salmon et al., 2020). The expression of AtSUS1 could be induced by cold or drought treatments, and AtSUS3 could serve as a molecular marker for dehydration (Baud et al., 2004). HbSUS5 responded to low-temperature and drought stress (Xiao et al., 2014), while HvSUS1 and HvSUS3 also responded to low-temperature and drought stress (Barrero-Sicilia et al., 2011). VvSUS5 was induced by high temperature, cold, salt, darkness and drought conditions (Zhu et al., 2017). ItbSUS2, ItbSUS5 and ItbSUS6 responded to salt stress (Jiang et al., 2023). In our study, after drought treatment, VdSUS2, VdSUS3, VdSUS4 and VdSUS5 were highly expressed with increasing treatment time, while VdSUS1, VdSUS6 and VdSUS7 gradually decreased (Figure 6B). After salt treatment, the expression levels of VdSUS1-VdSUS5 enhanced with increasing treatment time (Figure 6D). Under low-temperature treatment, except for VdSUS5 was induced upregulation, all other genes were significantly downregulated (Figure 6F). The expression levels of SUS genes might be due to increased demand for glycolysis under abiotic stress conditions (Kleines et al., 1999). The observed downregulation of some VdSUS genes in blueberry fruits after sucrose application may be attributed to high concentrations of sucrose acting through energy sensors, such as SnRK1 kinase, to suppress SUS gene expression. This suppression likely serves to prevent further sucrose breakdown, thereby avoiding carbon metabolic imbalance.

In our study, we observed that transgenic Arabidopsis overexpressing VdSUS4 did not exhibit growth and developmental defects, while it enhanced plant tolerance to salt stress (Figure 7). The overexpression of VdSUS4 enhanced salt stress tolerance in Arabidopsis, indicating that VdSUS4 was a valuable candidate gene for improving plant tolerance to abiotic stress through genetic engineering. However, the molecular mechanisms behind this phenomenon are not yet clear, posing an interesting question for future research. In conclusion, our study provides important insights into the SUS gene family of blueberry, validates their functions, and lays a theoretical foundation for further functional studies of SUS genes in blueberry. This research holds potential applications in future genetic engineering projects.




5 Conclusion

In conclusion, our study identified seven VdSUS genes within the blueberry genome. Analyses were conducted on their physicochemical properties, phylogenetic relationships, conserved motifs, gene structure, cis-acting elements in promoters and expression patterns to elucidate their potential functions in blueberries. Functional studies in transgenic Arabidopsis suggested that VdSUS genes may play a role in response to salt stress. Our research findings will provide valuable insights into the response of VdSUS genes to various abiotic stresses in blueberry.
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Supplementary Figure 1 | Phylogenetic tree of the SUS genes family in blueberry and Arabidopsis.

Supplementary Figure 2 | Characteristics and evolutionary relationships of VdSUS proteins. (A) Multiple sequence alignment of VdSUS family proteins. (B) Visualization of the Sucrose_synthesis and Glyco_trans_1_4 domains of VdSUS proteins. (C) Statistic analysis of the secondary structure of VdSUS amino acid sequences. (D) Front view of the overall tertiary structure of VdSUS amino acid sequences. (E) Peptide chain structure of VdSUS amino acids.

Supplementary Figure 3 | Three-dimensional structures of VdSUS proteins.

Supplementary Figure 4 | Expression levels of VdSUS genes family after treated with sucrose. Values are the average ± standard deviation of three biological replicates. The transcription levels of VdSUSs at 0 h were set as “1”. P-values < 0.05 is denoted by “*” respectively (Student’s t-test).

Supplementary Figure 5 | Identification of VdSUS4 transgenic Arabidopsis. (A) Construct used for Arabidopsis transformation. (B) PCR verification of different transgenic Arabidopsis lines. M: marker, P: VdSUS4 plasmid, WT: Wild-type. (C) RT-PCR confirmed the expression of VdSUS4 in different transgenic lines. (D) qRT-PCR analysed the expression of VdSUS4 in different transgenic lines.
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Cymbidium sinense is a significant traditional Chinese horticultural crop, valued both economically and ornamentally. The APETALA2/ethylene response factor (AP2/ERF) transcription factors play crucial roles in regulating growth, development, cell differentiation, and responses to both biotic and abiotic stresses in plants. However, the regulatory functions of AP2/ERF factors in C. sinense remain poorly understood. In the present study, 116 AP2/ERF genes were first identified from C.sinense genome. Based phylogenetic analysis, these genes were categorized into five groups: AP2, RAV, ERF, DREB, and Soloist. Within the ERF group, two subtypes were identified: ERF (containing six subtypes from ERF B1 to ERF B6) and DREB (containing six subtypes from DREB A1 to DREB A6), consistent with the classification in Arabidopsis. Significant variation was observed in gene exon-intron structures, though motifs and domain structures were highly conserved. Duplication events and collinearity analyses across five species were also conducted. Further investigations into potential cis-elements in promoter regions and expression profiles of 44 different samples, along with the analysis of 11,197 CsAP2/ERF target genes (functional annotation of 9,566), revealed diverse transcriptional regulatory patterns. GO enrichment and KEGG pathway analysis further elucidated these patterns. To validate transcriptome-based predictions, qRT-PCR analysis was performed on ten key CsAP2/ERF genes, showing high consistency with RNA-seq data. Moreover, a yeast one-hybrid (Y1H) assay confirmed that CsAP2_51 directly binds to the promoter of CsAG, a key gene involved in gynostemium development, providing experimental evidence for the regulatory role of CsAP2/ERF in floral morphogenesis. A regulatory model was proposed to illustrate the potential roles of CsAP2/ERF genes in floral patterning and flower color variation. Our findings deepen the understanding of CsAP2/ERF gene functions in C. sinense and provide a valuable foundation for future studies on the molecular mechanisms underlying its growth, development, and ornamental traits.




Keywords: Cymbidium sinense, AP2/ERF, expression pattern, floral patterning, ciselements





Introduction

The AP2/ERF (APETALA2/ethylene-responsive factor) gene family is one of the largest transcription factor families in plants, with members playing crucial roles in development, stress responses, and metabolic regulation (Xu et al., 2011; Liu et al., 2016; Hu et al., 2020; Huang et al., 2023). These genes typically contain one or two conserved AP2/ERF domains, each consisting of 60 to 70 amino acid residues. The domains adopt a characteristic three-dimensional (3D) structure formed by three β-folds and one α-helix (Allen et al., 1998). Based on the number of AP2/ERF domains and their specific functions, the AP2/ERF family is divided into five subfamilies: AP2, RAV (Related to ABI3/VP1), DREB (dehydration-responsive element-binding protein), ERF, and Soloist (Sakuma et al., 2002; Feng et al., 2020). The AP2 subfamily contains two similar AP2 domains, whereas the RAV subfamily has one AP2 domain and one B3 domain (Sakuma et al., 2002). Both the ERF and DREB subfamilies contain one AP2 domain and are further subdivided into six groups: ERF (A1–A6) and DREB (B1–B6) (Gu et al., 2017). The ERF subgroup binds to the GCC box, while the DREB subgroup interacts with DRE/CRT cis-acting elements (Hao et al., 1998; Fujimoto et al., 2000). The Soloist subfamily includes an AP2 domain but exhibits limited homology to other family members (Feng et al., 2020).

C. sinense, an evergreen terrestrial orchid noted for its remarkable natural diversity, winter flowering, celebrated fragrance, extended floral longevity, and moderate tolerance to shade and cold, stands out both as a premier ornamental species and as an emerging genomic model within the Orchidaceae (Hew and Wong, 2023b; Chen et al., 2024). Meanwhile, with the advent of genome sequencing, functional studies of AP2/ERF transcription factors have been conducted in a range of plant species. The first AP2/ERF gene was isolated from Arabidopsis thaliana, where it was found to regulate flower development (Jofuku et al., 1994; Elliott et al., 1996). This was followed by the identification of DREB proteins involved in drought and cold stress responses (Liu et al., 1998; Sakuma et al., 2002). In tobacco, four ERF proteins were found to regulate ethylene-responsive genes (Ohme-Takagi and Shinshi, 1995), and the roles of ERF1 and ERF6 in regulating defense responses, growth, and development were characterized (Berrocal-Lobo et al., 2002; Lorenzo et al., 2004; Cheng et al., 2013). Additional genome-wide analyses have shed light on the functional diversity and evolutionary history of the AP2/ERF gene family. For example, in tomato, AP2/ERF genes regulate processes such as carotenoid biosynthesis, fruit ripening, and stress responses (Liu et al., 2014; Chen et al., 2023a), as well as salt tolerance (Bouzroud et al., 2018; Jiang et al., 2024), and influence hypocotyl elongation and plant height (Chen et al., 2023b). In apples, AP2/ERF proteins modulate carotenoid accumulation, affecting fruit color (Dang et al., 2021; Ampomah-Dwamena et al., 2022). In maize, the BRANCHED SILKLESS1 (BD1)/FRIZZY PANICLE (FZP) gene, a member of the AP2/ERF family, is essential for promoting determinacy and producing sex organs (Du et al., 2022). However, little is known about how the AP2/ERF gene family regulates development in C. sinense. Considering the AP2/ERF superfamily plays a central role in floral organ patterning, pigment biosynthesis, and abiotic stress responses, all of which are key targets for orchid improvement, a comprehensive identification and functional annotation of AP2/ERF genes in C. sinense has become an urgent priority. The function of AP2/ERF genes in C. sinense makes it an ideal candidate for functional genomics and molecular breeding, offering potential for the development of new cultivars with enhanced ornamental features, improved environmental resilience, and optimized flowering schedules.

In this study, we investigate the AP2/ERF transcription factors in C. sinense by analyzing both transcriptomic and genomic data. We identified 116 AP2/ERF genes from the C. sinense genome and studied their gene structure, chromosomal localization, conserved motifs, phylogenetic relationships, duplication events, and cis-acting elements. Additionally, transcriptome data were used to analyze the expression patterns of these genes during various stages of development. Finally, we propose a model of the potential regulatory roles of CsAP2/ERF genes in the floral variations observed in C. sinense. This research not only enhances our understanding of the roles of CsAP2/ERF genes but also provides valuable resources for the genetic improvement of orchids.





Materials and methods




Plant materials, growth conditions, and treatment

In this study, Orchid plants (C. sinensis ‘Qihei’) were grown in a growth chamber at the Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences (Guangzhou, China). The chamber was maintained at 80% relative humidity with a temperature regime of 25°C during a 16-hour light cycle and 18°C during an 8-hour dark period. Adult plants, aged two years, were used for sample collection. We harvested roots, stems, leaves, flowers, and fruits, which were then rapidly frozen in liquid nitrogen and stored at -80°C for further analysis. To investigate the effects of stress treatments, C. sinense plants were sprayed weekly with a 100 μM solution of abscisic acid (ABA) for one month. After the treatment period, leaves and flowers were collected, frozen in liquid nitrogen, and stored at -80°C. Untreated plants were used as controls. For RNA-seq analysis, both ABA-treated and control groups included three independent biological replicates to ensure statistical robustness.





Identification of AP2/ERF genes from C.sinense

The genome sequences of C. sinense were obtained from our laboratory (Yang et al., 2021). To identify AP2/ERF genes, protein sequences of AP2/ERF family members from Oryza sativa and Arabidopsis thaliana were retrieved from the database (https://www.ncbi.nlm.nih.gov/). These sequences were used as queries for BLASTP searches against the C. sinense genome with an E-value threshold of 1e-5. In parallel, the Hidden Markov Model (HMM) profile of the AP2 domains (PF00847) were obtained from the PFAM database (https://pfam.xfam.org/), and used to perform HMMER-based domain searches. Candidate proteins identified by both methods were further examined to confirm the presence of conserved AP2 domains using the Conserved Domains Database (CDD) online tool (https://www.ncbi.nlm.nih.gov/cdd/). A total of 116 CsAP2/ERF genes were identified. The molecular weights and isoelectric points of these proteins were predicted using the ProtParam tool on the ExPASy proteomics server (https://web.expasy.org/compute_pi/). Subcellular localization was predicted using the CELLO tool (http://cello.life.nctu.edu.tw/).





Phylogenetic analysis of C.sinense AP2/ERF genes

To explore the phylogenetic relationships of the CsAP2/ERF genes, we performed multiple sequence alignments using ClustalW (Larkin et al., 2007) with default parameter. Phylogenetic trees were constructed using the IQ-TREE v.1.6.9 (Nguyen et al., 2015) under a VT+F+I+G4 model, which was selected as the best-fit substitution model based on ModelFinder (Kalyaanamoorthy et al., 2017). The tree was generated with 1000 ultrafast bootstrap replicates following multiple sequence alignment using pairwise deletion.





Gene structure and conserved motif analyses

Conserved motifs in CsAP2/ERF proteins were identified using the MEME Suite v.5.0.5 (Bailey et al., 2009). The following parameters were applied: (1) zero or one occurrence of each motif per sequence; (2) a maximum of 25 motifs; (3) motif width ranging from 6 to 50 amino acids; and (4) E-value < 0.05. Gene structures were visualized using the GSDS 2.0 tool (http://gsds.cbi.pku.edu.cn/). Phylogenetic trees, conserved motifs, and gene structures were integrated using TBtools v1.09876 software (Chen et al., 2020). The 3D structures of the CsAP2/ERF proteins were modeled using AlphaFold2 (Cramer, 2021) and visualized with PyMOL (Janson et al., 2016).





Chromosomal distribution, duplication, and collinearity analysis of AP2/ERF superfamily genes

Chromosomal distribution of the identified CsAP2/ERF genes was mapped against the reference C. sinense genome. Gene duplication events were analyzed using MCScanX (Wang et al., 2012), and syntenic relationships between CsAP2/ERF genes and those from selected plant species were identified. Tandem duplications were defined as pairs of genes with greater than 40% similarity and separated by four or fewer loci, while segmental duplications were those separated by more than five genes. The results were visualized using Circos software (version 0.69-9) (Krzywinski et al., 2009).





Transcriptome-based expression profiling and quantitative real-time PCR validation of CsAP2 genes

Transcriptomic datasets of C. sinense across various tissues (root, stem, leaf, flower, and fruit), floral developmental stages, floral color and morphological variants, and dissected floral organs (sepal, petal, labellum, and gynostemium) were obtained from NCBI BioProject PRJNA743748. Raw reads were preprocessed using Trimmomatic v0.39 to remove adapter sequences and low-quality bases (Bolger et al., 2014). Clean reads were subsequently aligned to the C. sinense reference genome using HISAT2 (Kim et al., 2019). Gene expression levels were quantified and normalized to FPKM (Fragments Per Kilobase of transcript per Million mapped reads) using RSEM v1.3.0 (Li and Dewey, 2011). For visualization, expression values were transformed using log2(FPKM + 1) and displayed as heatmaps generated with the R package the R package pheatmap (Kolde, 2015).

To validate RNA-seq-based expression profiles, five key CsAP2 genes were selected for qRT-PCR analysis. Total RNA was extracted from representative tissue samples, and cDNA synthesis was performed using standard protocols. Gene-specific primers used for qRT-PCR are listed in Supplementary Table S1.





Identification and characterization of target genes of CsAP2/ERF

To identify potential target genes regulated by CsAP2/ERF factors, we analyzed the 2000-bp upstream regions of transcription start sites (considered putative promoter regions). AP2/ERF binding site motifs, such as DRE/CRT (G/ACCGAC, MA1670.1 and MA1670.2) and GCC-Box (AGCCGCC, MA0567.1, MA1049.1, and MA1049.2), were retrieved from the JASPAR CORE database (https://jaspar.genereg.net/) (Khan et al., 2018). The FIMO tool (part of the MEME Suite) was used to identify AP2-binding motifs within the C. sinense promoter regions, with a significance threshold of p < 1 × e-4. We further predicted the potential regulatory effects of representative CsAP2/ERF proteins on the identified target genes using AlphaFold3 (Abramson et al., 2024). Candidate genes were functionally annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.





Yeast one-hybrid assay

The coding sequence (CDS) of CsAP2_51 was cloned into the pB42AD vector. Promoter fragments of CsAG (Mol017710) were amplified from C. sinense genomic DNA and inserted into the pLacZi vector. Yeast strain EGY48 was co-transformed with combinations of these plasmids or empty vector controls using the Yeastmaker™ Yeast Transformation System 2 (Clontech, USA). Transformants were grown initially on SD/-Trp/-Ura medium at 30°C for three days, then transferred onto SD/-Trp/-Ura/Gal/Raf medium containing X-Gal for another three days. Blue colony formation indicated positive DNA-protein interactions.






Results




Basic characterization of AP2 genes in 
C. sinense

In this study, candidate genes from the AP2/ERF superfamily were initially identified using the Cymbidium sinense genomic database. To confirm the presence of the AP2/ERF domain, all protein sequences of the putative CsAP2/ERF genes were analyzed using the SMART search tool and the NCBI Conserved Domain Database (CDD). A total of 116 CsAP2/ERF genes were identified, each encoding proteins with one or more AP2/ERF domains. Based on the number of AP2/ERF domains and the similarity of amino acid sequences, these 116 CsAP2/ERF proteins were classified into five distinct families: AP2 (13 genes), ERF (65 genes), DREB (34 genes), RAV (2 genes), and Soloist (2 genes). Among the AP2 family members, 6 out of 13 contained two AP2/ERF domains. The RAV family included 2 genes, each with both an AP2/ERF and a B3 domain. The Soloist family contained 2 genes, both of which featured a single AP2/ERF domain and showed the highest homology to the Arabidopsis thaliana gene At4g13040 (Rao et al., 2015) (Table 1). As shown in Supplementary Table S2, the proteins exhibited a wide range of characteristics, with sequence lengths varying from 99 to 1,128 amino acids and molecular weights ranging from 11.32 kDa to 128.12 kDa.

Table 1 | Summary of the AP2/ERF superfamily in Cymbidium sinense genome.
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Phylogenetic analysis of C. sinense AP2/ERF proteins

A phylogenetic tree was constructed using the protein sequences of AP2/ERF genes from C. sinense and Arabidopsis thaliana. The analysis revealed that the CsAP2/ERF proteins clustered into distinct clades, including ERF, DREB, AP2, RAV, and Soloist (Figure 1). Notably, the majority of the CsAP2/ERF proteins were classified into the ERF and DREB families, a pattern consistent with previous studies (Nakano et al., 2006; Cao et al., 2020).
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Figure 1 | Phylogenetic tree of AP2/ERF genes in C. sinense and A. thaliana. The ERF, DREB, AP2, RAV, and Soloist families are represented in different colors.





Domains and gene structure analysis

To investigate the diversity and similarities within the AP2/ERF transcription factors in C. sinense, we analyzed the domain organization and exon-intron structure of the CsAP2/ERF genes based on their phylogenetic distribution (Supplementary Figure 1). The structural domains of the CsAP2/ERF proteins revealed two main conserved regions: (1) a 60–70 amino acid long AP2 region (motifs 1, 2, 3, and 4) located in the N-terminal region, which serves as the DNA-binding domain, and (2) a 100–120 amino acid long B3 region (motif 25), a distinctive feature of the RAV subfamily (Supplementary Table S3).

Exon-intron structure analysis showed significant variation among the CsAP2/ERF genes in C. sinense. A total of 74 genes were intronless, while the remaining 42 genes contained between 1 and 11 introns. The number of exons ranging from 1 to 12 (Supplementary Figure 1). Notably, all AP2 subfamily members contained four or more exons, suggesting that the exon distribution within the AP2 subfamily is highly conserved. In contrast, most members of the other subfamilies had a single exon containing the AP2 domain in the exon region (Supplementary Figure 1). This variation in exon-intron structure did not seem to affect the conservation of the key exons in the AP2 subfamily. Interestingly, proteins with similar amino acid sequences were classified into the same subfamily and likely share similar functions. However, proteins with the same domain may exhibit distinct functions due to conformational differences.

To further explore the structure-function relationship, we selected four representative CsAP2/ERF proteins from the five subfamilies for 3D structure analysis. The predicted structures were modeled using AlphaFold2 (Figure 2). The 3D structure analysis revealed that all proteins contained a highly conserved AP2/ERF domain, typically arranged in a parallel α-helix and three anti-parallel β-sheets. Further inspection of the AP2/ERF domain highlighted two key regions: the YRG region (located in the N-terminal) and the RAYD region (near the C-terminal). The YRG region, approximately 20 amino acids in length, is rich in hydrophilic and basic amino acids, while the RAYD region, spanning 40 amino acids, is involved in protein-protein interactions through an α-helix structure. Additionally, the AP2 subfamily members were characterized by two AP2/ERF domains connected by a 25-amino acid linker, which is responsible for organizing the DNA-binding domain (Klucher et al., 1996). These findings underscore the structural consistency and provide essential insights into the molecular functions of CsAP2/ERF proteins.

[image: Four molecular structures of CsAP2 proteins are shown, labeled as CsAP2-24 AP2, CsAP2-82 RAV, CsAP2-7 ERF, and CsAP2-2 DREB. Each structure is depicted with colorful, interconnected chains representing protein complexity and conformation.]
Figure 2 | Structural predictions of CsAP2/ERF proteins. The color gradient from red to blue represents the orientation from the N-terminal to the C-terminal of each protein.





Chromosomal locations, duplication, and collinearity of the AP2/ERF TFs in C. sinense

The 116 AP2/ERF transcription factor (TF) genes in C. sinense are distributed across the twenty chromosomes, with their physical locations displayed in Figure 3. The number of AP2/ERF genes on each chromosome ranges from 1 to 14. Chromosomes 4, 5, and 6 harbor the highest number of AP2/ERF genes, containing 14, 10, and 10 genes, respectively. Among all chromosomes, chromosomes 14 and 16 contain the lowest number of AP2/ERF genes, with 11 and 10 genes, respectively. Notably, the distribution of AP2/ERF genes is not random, as several gene clusters referred to as “hot regions”—are present on specific chromosomes. For example, chromosome 10 contains 9 AP2/ERF genes within a small region (~41.13 Mb), and similar gene clusters are also found on chromosomes 5 and 6 (Figure 3).
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Figure 3 | Chromosomal distribution and gene duplication of AP2 genes in C. sinense, and synteny of the CsAP2/ERF genes with those of A. thaliana, O. sativa, Z. mays, V. vinifera, and M. nana. The scale is in megabases (Mb), with chromosome lengths indicated at the top. Gene positions are shown with gray lines, and paralogous CsAP2 genes are connected by red lines.

To investigate gene duplication, we identified 18 pairs of duplicated genes that contributed to the expansion of the CsAP2/ERF gene family. These duplications are spread across different chromosomes and are primarily the result of segmental duplications. For instance, CsAP2 genes 59, 69, 81, 85, and 87 from the ERF-B5 group are located on separate chromosomes: CsAP2_59 on chromosome 8, CsAP2_69 on chromosome 6, CsAP2_81 on chromosome 2, CsAP2_85 on chromosome 11, and CsAP2_87 on chromosome 4. These genes represent products of segmental duplications across the genome.

We also explored the orthologous relationships between C. sinense and several other plant species, including dicotyledons (Arabidopsis thaliana and Vitis vinifera) and monocotyledons (Oryza sativa, Musa nana, and Zea mays), to better understand the evolutionary dynamics of the AP2/ERF gene family (Figure 3). A total of 235 CsAP2/ERF genes exhibited syntenic relationships with genes from A. thaliana (40 genes), V. vinifera (29 genes), O. sativa (57 genes), M. nana (68 genes), and Z. mays (41 genes). Notably, three CsAP2/ERF genes (CsAP2_66, CsAP2_71, and CsAP2_73) showed collinearity with all five species (Supplementary Table S4). As shown in Figure 4, the number of orthologous gene pairs between C. sinense and monocot species is significantly higher than those with dicot species. Some collinear genes were found exclusively between C. sinense and other monocotyledons.
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Figure 4 | Cis-acting elements analysis of CsAP2/ERF promoters. The 2,000 bp upstream sequence from the transcription initiation site of CsAP2/ERF genes was analyzed.





Expression profiles of CsAP2/ERF genes in C. sinense

The expression profiles of CsAP2/ERF genes in various tissues of C. sinense, including roots, stems, leaves, flowers, and fruits, were investigated based on previous transcriptomic data (Figure 5). The results revealed substantial variation in the expression levels of the 116 identified CsAP2/ERF genes (Supplementary Table S5). Among them, 110 genes were expressed in at least one of the five tissue types, while six genes were not detected in any tissue. A total of 70 genes were expressed across all tested tissues, although some of them exhibited relatively low expression levels.
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Figure 5 | Expression profiles of the CsAP2/ERF genes in C. sinense. (A) Hierarchical clustering of the expression profiles in five major tissues: root, stem, leaf, flower, and fruit tissues. (B) Expression patterns across six stages of floral development: S0 (dormant lateral buds), S1 (1–5 mm floral buds), S2 (6–10 mm), S3 (11–15 mm), S4 (16–20 mm), and S5 (blooming flowers). (C) Expression profiles among different flower colors: yellow, green, pink, and red. (D) Expression patterns in different floral organs from four floral morphotypes: LaPV (labellum-like perianth variety), MPV (multi-perianth variety), NLV (null-lip variety), and GPV (gynostemium-like perianth variety). For (D) numerals 1 to 4 represent sepal, petal, labellum, and gynostemium, respectively. Expression levels are shown as log2(FPKM + 1).

To further analyze the transcriptional profiles of CsAP2 genes, we clustered their expression patterns across all tissues (Figure 5). Several genes showed tissue-specific expression or high expression levels in particular tissues. For example, five genes (CsAP2_12, CsAP2_31, CsAP2_39, CsAP2_53, CsAP2_94) were predominantly expressed in roots. Eleven genes (e.g., CsAP2_03, CsAP2_61) showed high expression levels in stems compared to other tissues. Furthermore, 33 genes (e.g., CsAP2_04, CsAP2_99) were preferentially expressed in leaves, suggesting their potential involvement in leaf development. Additionally, 10 genes (e.g., CsAP2_02, CsAP2_24) showed predominant expression during flower development, while another 10 genes (e.g., CsAP2_05, CsAP2_85) were mainly expressed during fruit development. The full list of tissue-specific genes is available in Supplementary Table S6.

In flowers, further analysis was performed to investigate expression patterns across various floral tissues (sepals, petals, lips, and gynostemiums) and stages of flower development (dormant lateral buds, 1–5 mm, 6–8 mm, 11–15 mm, 16–20 mm floral buds, and blooming flowers). The expression of CsAP2/ERF genes was also analyzed based on flower color (yellow, green, pink, red) and flower patterning (standard type, gynostemium-like perianth variety, multi-perianth variety, labellum-like perianth variety, and null-lip variety). Genes were grouped into clusters based on their expression patterns (Figure 5), with most showing higher expression in the 1–5 mm floral bud stage compared to other stages of flower development. Fewer genes were detected in yellow flowers compared to other flower colors. Interestingly, tissue-specific expression was observed in various floral tissues among different flower varieties. For example, CsAP2_56 and CsAP2_51 exhibited higher expression in the petal and gynostemium, respectively, suggesting their potential roles in floral tissue differentiation.

Further analysis was conducted to characterize the expression patterns of CsAP2 genes across distinct leaf color variants (green, yellow, and red leaves) in C. sinense. Genes were grouped based on their specific expression profiles (Supplementary Figure 2). Notably, six CsAP2 genes exhibited higher expression specifically in yellow leaves, while another distinct set of six genes showed elevated expression exclusively in red leaves. In contrast, only one gene, CsAP2_61, demonstrated high expression uniquely in green leaves. These results suggest that different subsets of CsAP2 genes potentially regulate leaf color differentiation in C. sinense.

To validate the reliability of the transcriptome data, five CsAP2 genes showing differential expression across various tissues and phenotypic variants were selected for qRT-PCR analysis. The qRT-PCR results were generally consistent with the expression patterns observed in the transcriptome dataset (Supplementary Figure 3), thereby confirming the accuracy of the RNA-seq data. These findings support the selection of these candidate CsAP2 genes for further investigation into their roles in the growth, development, and natural variation of C. sinense.

To further explore the potential regulatory roles of CsAP2/ERF genes, we examined their expression patterns under ABA treatment, a key phytohormone involved in flowering regulation and abiotic stress responses in C. sinense. The expression profiles revealed pronounced transcriptional changes in response to ABA. For instance, CsAP2_3 exhibited more than a 700-fold decrease in expression in flowers without treatment, while CsAP2_52 showed a 10-fold increase in leaves. After ABA treatment, CsAP2_74 demonstrated a more than 3000-fold increase in expression in leaves, and CsAP2_108 showed over a 77-fold increase in flowers. These results suggest that CsAP2/ERF genes are likely involved in the regulation of floral and leaf development in C. sinense, particularly through ABA-responsive pathways (Supplementary Figure 4, Supplementary Table S5).





Cis-acting elements analysis of CsAP2 gene family

Plants regulate gene expression through two key mechanisms: cis-acting elements and trans-acting elements (Stamatoyannopoulos, 2010). These mechanisms interact to modulate gene expression, either enhancing or repressing it. Cis-acting elements, found in both coding and non-coding regions of genes, particularly the promoter regions, are involved in processes such as stress response, tissue-specific expression, and environmental adaptability.

To gain insights into the regulatory roles of CsAP2/ERF genes, we analyzed the 2000-bp upstream sequence from the start codon (ATG) of each gene using the PlantCARE database. Our analysis revealed that a diverse range of cis-acting elements are present in the promoter regions of CsAP2/ERF genes (Figure 4). These elements can be grouped into major categories: regulatory elements related to hormone responses, such as methyl jasmonate (597), abscisic acid (327), and gibberellin (88); regulatory elements related to stress responses, such as low temperature (127), defense and stress (167), and wound responses (103); regulatory elements serving as transcription factor binding sites, such as MYB (536) and MYC (410); and regulatory elements related to growth and developmental processes, such as light-responsive (1328), metabolism regulation (80), and meristem expression (49) (Figure 4 and Supplementary Table S7). Significantly, hormone-responsive elements suggest roles for CsAP2/ERF genes in hormonal pathways, while stress-responsive elements indicate their involvement in adaptation to biotic and abiotic stress. Additionally, elements related to growth and developmental processes emphasize their broader regulatory roles during plant development. Collectively, these findings underscore the multifaceted regulatory potential of CsAP2/ERF genes across diverse biological contexts.





Uncovering and characterizing target genes of CsAP2/ERF in Cymbidium

To investigate potential downstream genes regulated by CsAP2/ERF transcription factors in C. sinense, we analyzed the 2000-bp upstream promoter sequences of C. sinense genes using the JASPAR database to identify consensus AP2/ERF binding motifs. This analysis revealed a total of 11,197 potential target genes, which are illustrated in Figure 6A and listed in Supplementary Table S8. We further explored the biological roles of these target genes through Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The GO analysis, which assigned functional annotations to 5420 target genes (Supplementary Table S9), showed a broad range of protein functions. The top 20 enriched GO terms are presented in Figure 6B, providing insight into the functional diversity of the target genes. In addition to GO analysis, we performed KEGG pathway enrichment analysis, which identified 3075 target genes significantly associated with various biological pathways (Supplementary Table S10). The most notable pathways include: metabolism (1485) and Ribosome biogenesis (173) with statistical significance (p < 0.05). Both GO and KEGG analyses suggest that CsAP2/ERF genes may play crucial roles in regulating metabolic processes, ribosome biogenesis, and other vital pathways.
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Figure 6 | (A) Venn diagram of consensus motifs in different AP2/ERF DNA binding sites (Site 1, MA0567.1; Site 2, MA1049.1; Site 3, MA1049.2; Site 4, MA1670.1; Site 5, MA1670.2) in C. sinense. (B) Top 20 enriched Gene Ontology (GO) terms for candidate CsAP2/ERF target genes. MF, molecular function; CC, cellular component; BP, biological process.

Furthermore, we found that these target genes are associated with over 1,000 distinct protein domains, such as protein kinase, MADS-box, cytochrome P450, and zinc finger domains. The diversity of these domains indicates that CsAP2/ERF transcription factors could regulate a wide range of target genes, impacting multiple aspects of C. sinense growth and development (Supplementary Table S11).

To provide empirical support for the bioinformatic predictions of regulatory interactions, we selected CsAG (Mol016808), a key gene controlling floral development that contains predicted AP2 transcription factor binding motifs within its promoter region. Integration of transcriptomic analyses with RT-qPCR validation confirmed tissue-specific expression patterns of both CsAP2_51 and CsAG (Supplementary Figure 5). In yeast one-hybrid assays, yeast cells co-transformed with the pB42AD-CsAP2_51 activation construct and the pLacZi reporter harboring the CsAG promoter fragment showed robust growth on selective medium and developed distinct blue colonies on X-Gal-containing medium. This result conclusively demonstrates that CsAP2_51 can transcriptionally activate the promoter of CsAG. These findings experimentally validate the predicted AP2 regulatory module and substantiate the functional relevance of candidate gene networks identified through integrative genomic approaches in this study.






Discussion




CsAP2 gene family structure and characteristics

The AP2/ERF superfamily among the largest families of transcription factors (TFs) plants and orchestrates diverse developmental processes (Licausi et al., 2013; Feng et al., 2020). While most studies have focused on model and crop plants, genome-wide identification of AP2/ERF genes in ornamental plants remains limited. In this study, we identified 116 CsAP2/ERF genes and characterized their structures, revealing common features across the family. Notably, RAV TFs, characterized by a B3 domain in their C-terminus, are known to be involved in defense responses against bacterial and fungal infections (Xie et al., 2024). Interestingly, CsRAV contains two AP2 domains, unlike other species that typically have only one, which may suggest it has a broader functional capacity. Structural analysis also revealed that 74 CsAP2 genes lacked introns, accounting for 63.73% of the family members. The RAV subfamily was also intronless, while the AP2 subfamily contained more than three introns, a pattern similar to that observed in Rhododendron (Guo et al., 2023). These structural signatures provide a framework for understanding the lineage-specific expansion and regulatory innovation of this gene family in orchids.

To further explore the structural features of the CsAP2/ERF proteins, we modeled their tertiary conformations using AlphaFold2. The predicted structures confirmed the presence of conserved AP2 DNA-binding domains across the family. In addition, we observed that many CsAP2/ERF proteins possess extended unstructured C-terminal regions enriched with negatively charged residues. These disordered regions resemble structural features reported in A. thaliana, where they are known to enhance the efficiency of DNA target searching by increasing binding flexibility (Wang et al., 2023). Such intrinsically disordered tails can also contribute to protein stability, mediate interactions with co-factors, and serve as regulatory hubs in response to environmental signals (Zaharias et al., 2021; Bigman et al., 2022). These insights suggest that structural diversification in terminal regions of CsAP2/ERF proteins may underpin functional divergence and plasticity, reinforcing their roles in regulating complex developmental and adaptive processes in C. sinense.





Gene duplication and cis-regulatory characteristics

Plants can rapidly adapt to environmental changes through gene family expansions driven by segmental and tandem duplications (Flagel and Wendel, 2009). In C. sinense, the distribution of tandem duplications was uneven, with 21 CsAP2/ERF genes clustered into 12 regions of tandem duplication across chromosomes 1, 4, 5, 6, 10, 12, 17, and 18. Additionally, 25 segmental duplication events involving 41 CsAP2 genes were identified. These findings suggest that both tandem and segmental duplications have significantly contributed to the evolution of the CsAP2/ERF gene family.

Cis-acting elements in the promoters are crucial for transcriptional regulation, and polymorphisms in these regions often play an important role in gene expression variation (Rosas et al., 2014; Wang et al., 2021). Among the CsAP2/ERF genes, ABRE (abscisic acid response element) motifs were found widely distributed upstream of 88 genes, with 66 of these showing multiple occurrences. ABA treatment further confirmed the differential expression of these genes, highlighting their potential role in ABA-mediated stress responses.





Expression profiling of CsAP2 genes and their potential regulatory networks

Orchids are one of the most diverse groups of angiosperms, with an estimated 25,000 - 30,000 species. C. sinense, a representative species of this family, is renowned for its extensive natural variation in flower organs, flower and leaf colors, and other traits. Confucius famously praised them as the “King of Fragrance” (Hew and Wong, 2023a). Floral patterning variation in orchids is primarily regulated by the MADS-box gene family (Li et al., 2022). Meanwhile, variations in leaf color, such as the yellowing observed in some varieties, result mainly from chlorophyll degradation and carotenoid accumulation (Gao et al., 2020; Cao et al., 2022). The red coloration in flowers and leaves is largely attributed to anthocyanin synthesis (Albert et al., 2010; Sunil and Shetty, 2022). Floral scent production is closely associated with terpene synthase (TPS) genes (Dötterl and Gershenzon, 2023). In this study, we identified several potential CsAP2/ERF downstream target genes that are involved in these key traits. These include 30 genes related to the MADS-box family, 26 genes involved in the anthocyanin biosynthesis pathway, 34 genes related to the photosynthetic system, and 8 genes related to terpene biosynthesis (TPS).

By integrating differential gene expression data with predicted target genes, we have mapped out a regulatory network that underlies key phenotypic traits in C. sinense (Figure 7). For example, CsAP2_55 and CsAP2_81 are implicated in regulating leaf and flower color. Specifically, CsAP2_55 regulates leaf color by modulating the expression of the F3’H gene, which is involved in flavonoid biosynthesis, while CsAP2_81 affects flower color by regulating the CHS gene, which plays a central role in the production of anthocyanins. Additionally, CsAP2_61 indirectly regulates chlorophyll synthesis in leaves by influencing the expression of PsaI, a component of the photosystem I complex. A hallmark feature of orchids is the fusion of male and female reproductive organs into a gynostemium (Endress, 2015). In C. sinense, the AGAMOUS (CsAG) gene has been shown to play a critical role in gynostemium development (Su et al., 2018).

[image: Diagram illustrating gene expression related to the anthocyanin and chlorophyll pathways in a flower. It shows three genes (AG, SEP, CHS) influencing anthocyanin and one gene (PsaI) affecting chlorophyll. Various arrows and color-coded bars depict gene interactions and expression levels.]
Figure 7 | Model map of CsAP2/ERF gene regulation in the growth, development, and variation of C. sinense.

Our study finds that CsAP2_51 binds to the promoter region of the CsAG gene and indirectly regulates gynostemium development. Furthermore, CsAP2_56 may influence flower morphology by binding to the promoter of the CsSEP gene, potentially contributing to the formation of six-petaled flowers. These findings are further supported by predictions from AlphaFold3 (Supplementary Figure 6). These findings provide valuable insights into the functional roles of AP2/ERF genes in regulating key biological processes in C. sinense. The regulatory mechanisms we uncovered not only shed light on the molecular basis of traits such as flower and leaf color, floral scent, and gynostemium development, but also offer exciting directions for further research into the roles of these genes in other orchid species and angiosperms more broadly.

Through an integrative approach combining transcriptomic profiling, RT-qPCR validation, and detailed functional annotations, our study elucidates the extensive involvement of the CsAP2 gene family in both vegetative and reproductive developmental processes of C. sinense. Importantly, the yeast one-hybrid assay provided direct experimental evidence confirming that CsAP2_51 binds specifically to the promoter region of CsAG, a key floral developmental regulator. This interaction points to a previously uncharacterized regulatory pathway potentially critical for floral morphogenesis and developmental plasticity in orchids. Collectively, these findings enhance our understanding of the evolutionary diversification and functional specialization within the AP2 transcription factor family. The regulatory insights and candidate genes described herein constitute an essential resource for future molecular and genetic studies aiming to unravel complex regulatory networks underlying orchid developmental biology and phenotypic diversification.
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Background

Caffeic acid O-methyltransferase (COMT) is an S-adenosyl-L-methionine (SAM)-dependent O-methyltransferase that catalyzes the methylation of caffeic acid to form ferulic acid, a critical step in lignin biosynthesis. Lignin is essential for the development of stone cells in pear fruit, imparting their characteristic texture. Although COMT has been extensively studied in model organisms, its function in pears remains less explored.





Results

In this study, we identified 29 COMT genes in the pear variety ‘Dangshan Su’, classified into five subfamilies. These genes exhibit five conserved motifs, and promoter analysis indicates potential hormonal regulation. Transcriptome data showed that PbrCOMT1 is the predominant COMT gene in ‘Dangshan Su’ fruit and is likely crucial for lignin synthesis. In situ hybridization revealed that the expression of PbrCOMT1 coincides with lignin, highlighting its role in stone cell development. Functional studies, including transient transformation of pear and strawberry fruit, as well as stable transformation of Arabidopsis thaliana, demonstrated that PbrCOMT1 overexpression enhances lignin content, while gene silencing diminishes it. Overexpression in Arabidopsis and fruit models resulted in growth inhibition, associating PbrCOMT1 with lignin-related developmental processes.





Conclusions

Our findings indicate that PbrCOMT1 is a key gene involved in lignin synthesis and stone cell development in pear fruit. This provides a molecular basis for enhancing pear fruit quality through targeted genetic approaches.





Keywords: Chinese white pear (Pyrus bretschneideri Rehd), COMT, Dangshan Su, lignin, stone cell




1 Introduction

Pear (Pyrus L.), a significant woody perennial fruit tree of the Rosaceae family, is widely distributed globally (Wu et al., 2013). Originating in China, pear exhibits considerable genetic diversity and dominates global production, representing over 70% of the world’s cultivated area and production (Wu et al., 2018). The quality of pear fruit is adversely affected by stone cells, which form clusters in the pulp (Cai et al., 2010; Cheng et al., 2018). Larger and more abundant clusters of these cells detract from the quality of the pear pulp, underscoring the importance of their size and concentration in determining fruit quality (Xue et al., 2020; Zhang et al., 2021; Cao et al., 2025).

Stone cells develop through the accumulation of lignin in the cell walls of parenchyma cells, culminating in the deposition of a secondary cell wall (SCW) (Choi et al., 2007; Yan et al., 2014). Thus, exploring lignin synthesis in pear fruit is vital for understanding stone cell formation and developing strategies to regulate their number, aiming to enhance pear quality.

The development of pear fruit, in relation to stone cell development, can be segmented into four periods: pre: up to 15 days after flowering (DAF), when thin-walled cells begin to split; middle: 15 DAF to 23 DAF, during which the secondary wall thickens and stone cells start to form and aggregate into masses (Su et al., 2019); late: 23 DAF to 67 DAF, when the stone cell mass peaks at 67 DAF; end: post 67 DAF until fruit ripening, where thin-walled cells around the stone cell mass expand into elongated and oval shapes, and the content of the stone cell mass decreases (Choi and Lee, 2013; Tusong et al., 2022).

Stone cell distribution in pear fruit is uneven and changes markedly during the growth period (Li et al., 2020). In ‘Dangshan Su’ pears, stone cell content increases from 15 to 55 DAF, with a significant rise between 35 and 55 DAF, resulting in a high stone cell density in the pulp. From 55 DAF to maturity, as the fruit expands, stone cell density declines and becomes concentrated near the core. Observations indicate that stone cells are denser near the peel and core compared to the pulp (Wang et al., 2023; Gong et al., 2023).

Lignin synthesis proceeds through three stages:

	Shikimate pathway: Photosynthetic products generate phenylalanine, tyrosine, and tryptophan.

	Phenylpropanoid pathway: Lignin monomers are produced through hydroxylation, methylation, and reduction of phenylpropanoid monomers.

	Polymerization: Various lignin monomers polymerize to form lignin (Zhao, 2016; Cheng et al., 2019).



There are three primary types of lignin monomers: Syringyl lignin (S-lignin), derived from syringyl propane units; Guaiacyl lignin (G-lignin), originating from guaiacyl propane units; and Para-hydroxyphenyl lignin (H-lignin), produced from para-hydroxyphenyl propane units (Boerjan et al., 2003; Wang et al., 2013).

Differential methylation of aromatic rings characterizes these monomers. CCoAOMT and COMT are key enzymes in lignin biosynthesis (Fornale et al., 2017).

COMT is particularly critical for the O-methylation at the C5 position of the phenolic ring, facilitating the conversion of caffeic acid to ferulic acid and 5-hydroxyconiferaldehyde or 5-hydroxyconiferyl alcohol to sinapaldehyde or sinapyl alcohol. This process, essential for forming G and S units of lignin, has been observed in Arabidopsis thaliana (Guo et al., 2001; Lam et al., 2007). A lack of COMT impairs plant growth and reduces flavonoid lignin units, resulting in a “brown midrib” leaf phenotype in maize (Fornale et al., 2017). Conversely, in COMT knockout/deletion mutations, benzodioxane substructures are detected in Arabidopsis thaliana, oilseed rape, and poplar, attributable to the presence of 5-hydroxyconiferyl alcohol (5-OH-CA), a rare substance in normal plants (Lu et al., 2010; Oraby and Ramadan, 2015; Moinuddin et al., 2010). It has been demonstrated that COMT is highly expressed in pear fruit, and changes in its expression correlate with lignin levels, suggesting that COMT is likely to play a critical role in the development of stone cells (Cao et al., 2019; Mamat et al., 2019).

In this study, we screened and identified the COMT gene in Chinese White Pear (Pyrus bretschneideri) and analyzed the gene and protein structures, including the cis-acting elements on the COMT promoter. The role of PbrCOMT1 in lignin synthesis and stone cell development was investigated through in situ hybridization in pear fruit, transient transformation in both pear and strawberry fruit, and stable transformation in Arabidopsis.




2 Materials and methods



2.1 Identification of COMT genes in Pyrus bretschneideri

Genomic data, including CDSs, protein sequences, and gene annotation files (in GFF/GFF3 format), were accessed from five Rosaceae species—Pyrus bretschneideri(GCF_000315295.1) (Wu et al., 2013), Fragaria vesca, Malus × domestica, Prunus mume, and Prunus avium—via the Rosaceae Genome Database (GDR) (https://www.rosaceae.org/). A local database was created using DNATOOLS software, incorporating the amino acid sequences of the Pyrus bretschneideri COMT gene (Cao et al., 2019).

Following the method described by Molinari, the Methyltransf_2 family structural domain (PFam: PF00891) was used as the query sequence. Following the method described by Molinari et al., the Methyltransf_2 family domain (Pfam accession: PF00891) was used as a query. Candidate COMT genes were identified from the Pyrus bretschneideri genome using DNATOOLS software, applying an E-value threshold of 0.001(Cao et al., 2024b). Candidate sequences were further analyzed for conserved domains using SMART (http://smart.embl-heidelberg.de/) and Pfam (http://pfam.xfam.org/) to confirm the presence of COMT family domains. Additionally, the molecular weight and isoelectric points of the identified COMT proteins were calculated using the ExPASy online tool (http://web.expasy.org/protparam/).




2.2 Phylogenetic analysis

All COMT protein sequences were aligned using ClustalW in MEGA 11.0. A phylogenetic tree was constructed using the Neighbor-Joining (NJ) method with 1,000 bootstrap replicates to assess branch support.




2.3 COMT gene structure and conserved motif prediction

Gene structures were analyzed using the Gene Structure Display Server (http://gsds.cbi.pku.edu.cn) to compare the arrangements. Conserved motifs in PbCOMT protein sequences were identified using the MEME Suite (http://meme-suite.org/tools/meme). The search parameters were set to identify a maximum of 5 motifs, with motif widths ranging from 6 to 200 amino acids.




2.4 Cis-acting element analysis in Pyrus bretschneideri COMT gene promoters

Promoter sequences spanning 2000 bp upstream of the start codon (ATG) for each COMT gene were retrieved from the Pyrus bretschneideri Genome Database. Analysis of the cis-acting elements within these promoter regions was conducted using the PlantCARE tool (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (Cao et al., 2024a).




2.5 Comparison of pear transcriptome data with reference genomes

Transcriptome data for pear fruit at various developmental stages in this study are available in the SRA database under accession numbers SRR5965142, SRR5965144, and SRR5965146. Transcriptome data for different tissue types can be accessed through the Pear Multiomics Database (https://pearomics.njau.edu.cn/) (Hu et al., 2023). The reference genome is available at https://www.ncbi.nlm.nih.gov/sra. Gene annotation of the transcriptome was carried out using pear genome data (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000315295.1/). The expression levels of individual genes were quantified by calculating fragments per kilobase of transcript per kilobase of exon model per million mapped reads (FPKM), which were used to assess expression patterns.

The FPKM values of COMT family genes across different tissue types and developmental stages of pear fruit were normalized using the normalize function for column scaling. A heatmap was then generated, and hierarchical clustering was applied to the rows of the heatmap to analyze gene expression patterns.




2.6 Plant materials

This investigation used ‘Dangshan Su’ pears grown in the erstwhile Yichang Agricultural Park, Dangshan County, Anhui Province, China. For the experimental procedures, pears that were 39 DAF were chosen for injection. Additionally, ‘Flanders’ strawberry plants from Yanjutian Strawberry Base, Changfeng County, Hefei City, Anhui Province, were employed, selecting those at the near-white fruit stage for injection.




2.7 in situ hybridization of pbcomt1

In situ hybridization was performed on 39 DAF ‘Dangshan Su’ pear fruit tissues. In situ hybridization involves multiple steps:

1, Tissue fixation: Pear fruit tissues were excised, rinsed, and immediately immersed in fixation solution prepared with DEPC-treated water for over 12 hours.

Dehydration and embedding: Following fixation, tissues were dehydrated through a graded ethanol series and embedded in paraffin wax.

Sectioning: Paraffin-embedded tissues were sectioned using a microtome and incubated at 62°C for 2 hours.

Dewaxing and rehydration: Sections were dewaxed in xylene I and II for 15 min each, followed by immersion in absolute ethanol I and II for 5 min each. After air-drying, sections were rehydrated in DEPC-treated water.

Enzymatic digestion: Sections were treated with 20 μg/mL proteinase K at 37°C for 22 min, rinsed with distilled water, and washed three times with PBS for 5 min each.

Pre-hybridization: A pre-hybridization solution was added and incubated at 37°C for 1 hour.

Hybridization: The pre-hybridization solution was removed, and a COMT hybridization buffer containing a 1 μM probe was added. Hybridization was carried out overnight at 42°C.

Post-hybridization washing: Slides were sequentially washed with 2× SSC at 37°C for 10 min, 1× SSC at 37°C for 5 min (twice), and 0.5× SSC at room temperature for 10 min. If nonspecific signals were observed, formamide was added to enhance specificity.

Blocking: Sections were incubated with normal rabbit serum at room temperature for 30 min.

Antibody incubation: Mouse anti-digoxigenin-conjugated alkaline phosphatase (anti-DIG-AP) was applied and incubated at 37°C for 50 min, followed by four washes in TBS for 5 min each.

Color development and mounting: BCIP/NBT substrate solution was added dropwise, and color development was monitored under a microscope. Finally, the sections were mounted with glycerol gelatin for microscopic observation.




2.8 Gene cloning and plant expression vector construction

To clone the gene and construct plant expression vectors, sequence-specific primers targeting PbrCOMT1 were designed using Primer Premier 6.0 software. RT-PCR was performed with cDNA from ‘Dangshan Su’ fruit to isolate the PbrCOMT1 gene. A COMT1-RNAi fragment was created using a specific PbrCOMT1 fragment as the template.

Primers incorporating homology arms were also designed using Primer Premier 6.0. The pCAMBIA1301 vector was then digested with SmaI and SalI restriction enzymes. After digestion, the vector was ligated with the target gene using the Hieff Clone® Plus One Step Cloning Kit, resulting in the construction of pCAMBIA1301-PbrCOMT1 and pCAMBIA1301-PbrCOMT1-RNAi recombinant plasmids.




2.9 Fruit transient transformation experiments in pears and strawberries

Prepare Agrobacterium suspensions containing pCAMBIA1301-PbrCOMT1, pCAMBIA1301-PbrCOMT1-RNAi, and pCAMBIA1301-empty vectors for use with ‘Dangshan Su’ and Frankland strawberries. Collect the injected materials one week post-injection. Select a subset of fresh pear fruits and strawberries for staining observations to assess the lignin content in stone cells. Store the remaining material at -80°C for future use.




2.10 Genetic transformation of PbCOMT1 overexpressing Arabidopsis thaliana

(1) Agrobacterium-mediated transformation of Arabidopsis by flower immersion:

Agrobacterium harboring the recombinant plasmid pCAMBIA1301- was enriched and cultured in LB liquid double antibiotic medium (Rif+ and K+) until OD600 reached approximately 1.0. The Agrobacterium suspension was used to infest Arabidopsis thaliana using the floral dip method, followed by incubation in dark conditions for 16h~24h before returning to normal light conditions and repeating the infestation weekly. This cycle was repeated three times, and seeds were collected after maturation.

(2) Screening of PbrCOMT1 over-expressing Arabidopsis positive plants

Seeds were sterilized and evenly sown onto plates containing MS solid medium with chaotropic acid. Seedlings were then transferred to nutrient soil and grown in the greenhouse for about 2 weeks until four true leaves or long root whiskers had developed. Transgenic Arabidopsis plants were immersed in GUS staining solution (SL7160, Coolaber, China) at 25–37 °C for 12 hours. After staining, plants were decolorized with 70% ethanol 2–3 times until negative control tissues appeared colorless.




2.11 Histochemical section staining observation

Pear and strawberry fruits: Fresh fruits were cut longitudinally and stained using phloroglucinol (1% phloroglucinol staining for 5 min, followed by 18% HCl immersion for 5 min) and photographed for observation.

Arabidopsis thaliana: T3 generation Arabidopsis thaliana inflorescence axes, grown for 50 days, were selected for section observation and stained with toluidine blue (dewaxed to water and washed three times with distilled water, then soaked in 0.1% toluidine blue solution for 10 min, washed with water to remove excess staining solution, dehydrated by alcohol grading, made transparent with xylene, and sealed with neutral gum for observation).




2.12 Determination of stone cells and lignin in pear fruit

To assess the lignin content in ‘Dangshan Su’ fruits, 10 fruits were collected from each treatment group, and the fruit pulp was chopped and thoroughly mixed. Three 5g samples were taken from the mixture and stored at -20°C for 24 hours. The frozen samples were homogenized for three minutes at 20,000 rpm. After homogenization, distilled water was added, and the mixture was allowed to stand until the stone cells settled at the bottom of the beaker. The supernatant was carefully decanted, and this process was repeated multiple times until the upper liquid became clear. The remaining stone cells were dried and weighed. Stone cell content was calculated using the formula:

[image: Formula for calculating stone cell content percentage: (weight of stone cells in grams dry weight divided by weight of fruit flesh in grams fresh weight) multiplied by 100.]	

To measure the lignin content in ‘Dangshan Su’ fruits post-injection, the pear’s skin and core were removed, and the remaining tissue was dried in an oven at 37°C. The dried material was ground into powder and passed through a 20-mesh sieve. The powder was first extracted with methanol, and the residue was dried.

Next, 0.2 g of the dried residue was weighed and extracted in 15 mL of 70% H2SO4 for 1 hour at 30°C. After the extraction, 115 mL of distilled water was added, and the solution was boiled for 1 hour, ensuring the volume remained constant. The boiled mixture was filtered using filter paper and rinsed with distilled water at 70°C until the rinse water was clear and neutral.

The remaining lignin residue was dried and weighed. All samples were analyzed in triplicate.




2.13 Determination of strawberry lignin

Ten strawberries from each treatment group were collected, oven-dried to a constant weight, and subsequently ground into powder. The powdered samples from each treatment group were mixed together. For lignin content analysis, five 1.0 g samples of strawberry fruit powder from each treatment group were taken. The powder was measured and mixed with 3 mL of 95% ethanol (v/v). The mixture was then centrifuged at 4°C for 10 minutes. The resulting precipitate was washed three times with 95% ethanol and three times with a 1:2 ethanol solution. To stop the reaction, 1 mL of 2 M NaOH was added, followed by 2 mL of CH3COOH and 1 mL of 7.5 M hydroxylamine hydrochloride. Subsequently, the mixture underwent centrifugation for 15 minutes.

Afterwards, 0.5 mL of supernatant was extracted and its absorbance was measured at 280 nm using glacial acetic acid. Lignin content was quantified using the formula: Lignin% = (Abs × volume × 100%)/(sample dry weight × standard absorbance), where:

	Lignin% denotes the percentage of lignin,

	Abs refers to the absorbance at 280 nm,

	Volume indicates the solution’s volume in liters,

	Sample dry weight is the total dry weight of the sample in grams,

	Standard absorbance is measured against the Arabidopsis lignin standard of 17.2.



Results were expressed as OD280 per gram. This analysis was conducted in triplicate for each sample.




2.14 Extraction of total plant RNA and qRT-PCR

Pear and strawberry fruits were collected one week after injection. For each group, 3–5 fruits were selected, and the injected areas were pooled as one biological replicate. Three independent biological replicates were used for each material. RNA extraction was performed using a Plant RNA Extraction Kit (V1.5, Chengdu Bafetech Co.). This RNA was subsequently converted into cDNA using the Easy Script One-Step gDNA Removal and cDNA Synthesis Super Mix Kit (Beijing All Style Gold Biotech Co.). Primers for the quantitative reverse transcription polymerase chain reaction (qRT-PCR) were designed using Primer Premier 5 software and synthesized by Sangon Biotech (Shanghai, China) (Supplementary File 1: Supplementary Table S1).

The qRT-PCR assays were conducted in a 20 μL final volume, which included 10 μL of SYBR® Premix Ex Taq™ II (2X), 6.4 μL of distilled water, 0.8 μL of each primer, and 2 μL of cDNA. The microtubulin gene (AB239680.1) served as the internal control (Imai et al., 2014). Each gene was assessed with three biological replicates, and relative expression levels were calculated using the 2-ΔΔCT method as described by Livak and Schmittgen (Livak and Schmittgen, 2001).





3 Results



3.1 Identification and phylogenetic analysis of COMT gene

A total of 29 COMT genes were identified in pears for subsequent analysis. Basic information for all COMT genes was compiled, revealing that most COMT proteins exhibited pI values below 7, except for Pbr020369.1, which had a pI value of 9.11. The molecular weights (MW) of the COMT proteins were relatively similar, with the exception of five proteins, which had MW values below 27 kDa. The remaining 24 COMT proteins displayed MWs ranging from 32.35 to 43.38 kDa (Supplementary Table S1). Chromosomal distribution of the COMT genes showed a concentration in Chr10 (6 genes), followed by Chr7 (5 genes), while three COMT genes were distributed across Chr1, Chr10, and Chr15.

A phylogenetic tree, constructed using the NJ method from 218 COMT proteins across Arabidopsis and five species of Rosaceae, including Pyrus bretschneideri, revealed five distinct groups (Figure 1). Group 1 was the largest, containing 61 COMT genes, including 11 from Pyrus bretschneideri. Group 5 included only 14 genes, with no genes from Pyrus bretschneideri, while Groups 2, 3, and 4 contained 48, 43, and 42 genes, respectively with 4 genes from Pyrus bretschneideri.

[image: Circular phylogenetic tree illustrating the relationships among different plant species, grouped by color-coded segments. Key species include Prunus mume (red circles), Pyrus bretschneideri (green circles), Malus x domestica (red squares), Arabidopsis thaliana, Fragaria vesca (red triangles), and Prunus avium (green triangles). The outer ring highlights four groups in yellow, pink, blue, and grey.]
Figure 1 | Phylogenetic tree of five Rosaceae and Arabidopsis thaliana COMT genes The neighbor-joining (NJ) method is used to construct the phylogenetic tree At, Arabidopsis thaliana; Pbr, Pyrus bretschneideri; Pav, Prunus avium; Fv, Fragaria vesca; MDP, Malus x domestica; Pm, Prunus mume.




3.2 Structural and conserved motif analysis of COMT proteins

The structural analysis of COMT genes in Pyrus bretschneideri involved generating an exon-intron map for the 29 identified COMT genes (Figure 2). All 29 genes contained motif 1, and most of them contained all five conserved motifs. Three genes (Pbr040038.1, Pbr020339.1 and Pbr008826.1) contained only two conserved motifs. Two genes (Pbr000418.1 and Pbr030676.1) had UTR regions in their sequences. The analysis of conserved structural domains is presented in Supplementary Figure S1.

[image: Diagram comparing motifs and gene structures of multiple sequences. Panel a shows motifs 1 to 5 in various colors, while panel b illustrates coding sequences (CDS) in green and untranslated regions (UTR) in yellow. Each row corresponds to a sequence labeled with identifiers such as Pbr040044.1, with motif positions marked. The x-axis represents nucleotide positions, highlighting sequence differences.]
Figure 2 | Predicted conserved motifs and gene structures of Pyrus bretschneideri COMT proteins. (a) Phylogenetic tree of PbrCOMT family members; (b) Exon-intron structure of PbrCOMT family members, black lines indicate introns, yellow wedges indicate exons; green wedges indicate protein coding regions.




3.3 Analysis of cis-acting elements in the COMT gene promoter

To explore the regulatory mechanisms of the COMT genes, cis-acting elements in the promoters of 29 PbrCOMT genes from Pyrus bretschneideri were predicted (Figure 3). The MYC element was the most prevalent, with 115 MYC cis-acting elements identified across the 29 COMT genes, except for Pbr035407.1. Light-responsive elements were found in all promoters, including G-box, Box 4, GT1-motif, GATA-motif, and TCCC-motif. Hormone-responsive cis-acting elements were also abundant, including TGACG and CGTCA motifs responsive to methyl jasmonate (MeJA), TCA-element responsive to salicylic acid, and ABRE, which responds to abscisic acid. Additionally, cis-acting elements such as TC-rich repeats and ARE were identified, which are involved in stress and defense responses, as well as anaerobic induction. The analysis also indicated several MYB binding sites in the promoters, suggesting that MYB transcription factors may play a significant role in regulating lignin synthesis in Pyrus bretschneideri.

[image: Stacked bar chart displaying various motifs within genomic sequences labeled from Pbr008825.1 to Pbr008826.1 on the x-axis. Each bar represents a different gene sequence, colored segments within bars indicate different motifs, such as G-box, TCT-motif, MYC, and GT1-motif, among others. A color legend correlates each motif with its respective color.]
Figure 3 | Stacking diagram of cis-acting elements in the promoter of the pear COMT gene. Horizontal coordinates are gene numbers, and different numbers in the graph represent the number of corresponding cis-acting elements in the promoter.




3.4 Expression pattern analysis of the PbCOMT1 gene

The expression profiles of the PbCOMT genes in ‘DangShan Su’ were analyzed using transcriptome data from different tissue types and developmental stages of pear fruit. Pbr013512.1 and Pbr035407.1 showed higher expression levels in pollen grains and pollen tubes, indicating their central role in pollen maturation and development. In other tissues such as petal, sepal, ovary, stem, and bud, five genes (Pbr013510.1, Pbr032564.1, Pbr025887.1, Pbr020369.1, and Pbr036056.1) exhibited higher expression levels compared to other genes. In pear fruit at different developmental stages, Pbr013510.1 and three other genes (Pbr000418.1, Pbr025887.1, Pbr020369.1) showed relatively high expression levels at various stages. Notably, Pbr013510.1 exhibited consistently high expression in all tissues and developmental stages of pear fruit, except for pollen grains and pollen tubes, and its expression was significantly higher than that of other COMT family genes. This suggests that Pbr013510.1 is the primary functional COMT gene in these tissues and developmental stages of pear fruit (Figure 4a, Supplementary Table S2).

[image: Panel a displays a heatmap showing gene expression levels across different plant tissues, with red indicating high expression and blue indicating low. Panels b and c feature microscopic images of plant tissue labeled "SC," showing cells under different conditions, with scales indicated as 100 micrometers. Panel b is labeled "anti-sense" and panel c as "sense."]
Figure 4 | Expression profiles of COMT family genes in the fruit of ‘DangShan Su’. (a) Heatmap of COMT family gene expression in different tissue types and developmental stages of pear fruit. In situ hybridization results of PbrCOMT1 antisense (b) and sense (c) RNA probes in pear fruit at 39 DAF. SC, stone cells.

To further investigate the role of the COMT gene family in Pyrus bretschneideri, Pbr013510.1 (designated PbrCOMT1) was selected for further functional validation. RNA in situ hybridization was performed on fresh ‘Dangshan Su’ fruit collected 39 days post-flowering to explore the correlation between PbrCOMT1 expression and lignin deposition and SCW thickening. The positive expression of PbrCOMT1 transcripts was visualized using BCIP/NBT staining, which produced a blue-purple coloration. In situ hybridization with antisense probes confirmed that PbrCOMT1 transcripts were localized in specific regions of the pulp cell walls and in clusters of stone cells within the pear fruit (Figure 4b). As a control, the sense probe showed no significant staining in the pear fruit, indicating that PbrCOMT1 is involved in both lignin synthesis and the formation of stone cells (Figure 4c).




3.5 Histochemical staining observations of PbrCOMT1 transiently transformed pear fruit

Fresh pear fruit samples, injected with either Pcambia1301- PbrCOMT1 or pCAMBIA1301 empty vector, were subjected to phloroglucinol staining. The staining patterns revealed significant differences between the two treatments. The pear fruit injected with pCAMBIA1301-PbrCOMT1 exhibited a noticeably darker staining on one side compared to the empty vector control, suggesting a higher lignin content (Figure 5a).

[image: An image collage: (a) A pear cross-section with areas labeled pCAMBIA1301 and pCABIA1301-PbrCOMT1 pointing to different sections. (b) A bar graph displaying lignin content percentage across three groups: 1301, COMT1-OE, and COMT1-OD, with COMT1-OE showing the highest value. (c) A bar graph showing stone cell content percentage for the same groups, also depicting COMT1-OE with the highest value. Asterisks indicate statistical significance.]
Figure 5 | Analysis of PbrCOMT1 in 39DAF pear fruit. (a) Staining plots of PbrCOMT1 transiently transformed pear fruits after mesotrione staining. (b) Stone cell statistics of PbrCOMT1 transiently transformed pear fruit. (c) Lignin content statistics of PbrCOMT1 transiently transformed pear fruit. COMT-OE: Instantaneous overexpression of PbrCOMT1 in pear fruit, COMT-OD: Instantaneous Silence PbrCOMT1 Pear Fruit,* indicates P<0.05, the bar = 100 µm.




3.6 Comparative analysis of the stone cell and lignin content in pear fruit derived from COMT-OE and COMT-OD

To further investigate the effects of transient transformation on pear fruit, we quantified the lignin and stone cell content in the transformed samples. The results showed that the lignin content in COMT-OE pear fruit was 7.4 ± 0.25%, representing a 23% increase compared to the 6.0 ± 0.57% observed in the pCAMBIA1301 empty vector control. In contrast, the lignin content in COMT-OD fruit was 4.6 ± 0.16%, approximately 76% of the control level (Figure 5b). Similarly, stone cell content was higher in COMT-OE fruit (11 ± 0.46%), showing a 22% increase compared to the control (8.97%), while COMT-OD fruit contained 7.98% stone cells, about 89% of the control level (Figure 5c). These findings indicate that the transient overexpression of PbrCOMT1 promotes lignin biosynthesis and increases stone cell content in pear fruit.




3.7 Expression pattern analysis of essential enzyme genes involved in lignin biosynthesis in transiently transformed pear fruit

We further examined the expression patterns of key structural genes involved in lignin biosynthesis in COMT-OE and COMT-OD pear fruits using fluorescence quantification. The results revealed that the overexpression of PbrCOMT1 significantly upregulated the expression of several essential lignin biosynthesis genes, including CAD3, C4H3, HCT49, PAL3, POD3, and SAD. Notably, PbrPAL3 exhibited the most substantial increase, with its expression level elevated by 6.33-fold. In contrast, the expression of lignin biosynthesis genes in COMT-OD pear fruit was considerably reduced, with CAD3 expression only reaching 0.19-fold of that in the wild type (WT) (Figure 6).

[image: Bar chart comparing expression levels of six genes (CAD3, C4H3, HCT49, PAL3, POD3, SAD) across three groups: WT (black), COMT-OE (light gray), COMT-OD (dark gray). PAL3 in COMT-OE shows the highest expression with a significant increase, marked by an asterisk. Error bars indicate variability.]
Figure 6 | Analysis of the expression patterns of key lignin synthesis enzyme-encoding genes in PbrCOMT1-overexpressing pear fruits. COMT-OE indicates pear fruits overexpressing PbrCOMT1, COMT-OD indicates pear fruits in which PbrCOMT1 is silenced. * denotes P<0.05.




3.8 Staining and lignin content analysis of strawberry plants transiently transformed with PbrCOMT1

To further validate the function of PbrCOMT1, we transiently transformed strawberry plants from the Rosaceae family, specifically the ‘Yuexiu’ variety at the white fruit stage. Phloroglucinol staining revealed that the overexpression of PbrCOMT1 resulted in a much darker red staining compared to the control, indicating a significant increase in lignin content in the strawberries (Figure 7a). Lignin content was quantitatively assessed, showing that strawberries injected with the pCAMBIA1301 empty vector contained approximately 0.385% lignin. In contrast, strawberries overexpressing PbrCOMT1 exhibited a slight increase in lignin content to approximately 0.396% (Figure 7b).

[image: Split image depicting two panels: Panel a shows a leaf labeled with vectors pCAMBIA1301 and pCABIA1301-PbrCOMT1. Panel b is a graph comparing lignin content, showing higher levels in COMT compared to 1301, with data points indicated.]
Figure 7 | Transient transformation of strawberry fruit by PbrCOMT1. (a) Staining of strawberry fruits with resorcinol (b) Statistics of lignin content in strawberry fruits.




3.9 Plant height statistics of PbrCOMT1-transformed Arabidopsis with mutants

To confirm the successful transformation of PbrCOMT1-GUS into Arabidopsis thaliana, we performed GUS staining on T3 generation plants. The COMT (PbrCOMT1-overexpressing) Arabidopsis plants were visibly stained blue, while the WT plants remained almost transparent, confirming successful transformation (Figure 8). Plant height measurements taken after 50 days of growth showed that the average height of WT plants was 43.4 cm, whereas the height of COMT and comt mutant plants was reduced to 37.3 and 31.0 cm respectively, in comparison to the WT (Figure 9b).

[image: Two plant specimens are displayed side by side. The left specimen is stained blue, while the right specimen appears translucent. Both have similar leaf and root structures. A scale indicates a length of one centimeter.]
Figure 8 | Arabidopsis GUS staining, left, overexpression of PbrCOMT1, right, WT.

[image: Three panels are shown. Panel a displays images of potted plants labeled WT, COMT, and comt, each measured against a ruler. Panel b is a box plot of plant height in centimeters, comparing WT (black), COMT (red), and comt (green), with WT being the tallest. Panel c is a bar graph showing lignin content, with COMT having the highest content, indicated by asterisks for statistical significance.]
Figure 9 | Growth status and lignin statistics of Arabidopsis overexpressing PbrCOMT1 and PbrCOMT1 mutant Arabidopsis thaliana (a) Pictures of 50-d-old Arabidopsis thaliana plants. (b) Average plant height statistics of Arabidopsis thaliana plants. (c) Lignin content statistics of Arabidopsis thaliana. wt: wild-type Arabidopsis thaliana, COMT: PbrCOMT1 overexpressing T3 generation Arabidopsis thaliana; comt: PbrCOMT1 homozygous Arabidopsis thaliana mutant line. ** indicates P<0.01.




3.10 Changes in lignin content of PbrCOMT1-transformed Arabidopsis and mutants

Arabidopsis has been stably transformed with PbrCOMT1 to investigate its role in lignin synthesis. Toluidine blue staining on wild-type (WT), COMT-overexpressing (COMT), and COMT-deficient (comt) Arabidopsis plants visualized lignin distribution within the inflorescence axis. Staining results showed that COMT-overexpressing plants displayed more intense staining in the xylem and interbundle fibers, with a notable increase in stem diameter compared to WT plants. In contrast, COMT-deficient mutants exhibited less intense staining. Quantitative analysis of lignin content using the acetyl bromide method revealed a 23% increase in COMT-overexpressing plants and a 13% decrease in comt mutants compared to WT (Figure 10).

[image: Cross-sections of plant stems under a microscope, labeled "WT," "COMT," and "comt." Each set includes a full view of the stem and a detailed close-up, highlighting cellular structure. The scale bars indicate measurements of two hundred micrometers for full views and fifty micrometers for close-ups.]
Figure 10 | Toluidine blue staining plots of inflorescence axes of PbrCOMT1 overexpressing Arabidopsis and mutants. wt: wild-type Arabidopsis, COMT: PbrCOMT1 overexpressing T3-generation Arabidopsis; comt: PbrCOMT1 homozygous Arabidopsis mutant lines.





4 Discussion

Genes and protein structures, and most PbrCOMT genes share the same motif, indicating similar protease functions. However, analyses of PbrCOMT promoters revealed significant differences; some are regulated by hormones, while others respond to external stress. A large number of these promoters are influenced by transcription factors, suggesting that functionally identical genes may respond differently to stimuli, facilitating varied functions in plants. Drought, MeJA, and ABA have been shown to enhance CmCOMT expression in melon (Liu et al., 2021), whereas MeJA also promotes COMT expression in Hibiscus cannabinus (Kim et al., 2013), tobacco (Toquin et al., 2003), and Arabidopsis (Joshi et al., 2022). Furthermore, COMT is regulated by transcription factors, and MYB has been identified as a regulator of COMT expression in maize (Velez-Bermudez et al., 2015), willowherb (Alexander et al., 2020), Arabidopsis (Kim et al., 2020), and blueberry (Yang et al., 2022).

Upon examining the three-dimensional structure of the PbrCOMT1 protein, it was found to be a dimer, which may underlie its methylation function. The dimerization site of COMT proteins likely occurs at the C-terminus, and each monomer contains a ligand that catalyzes SAH/SAM (Singh and Sharma, 2022).

A significant increase in lignin content was observed in PbrCOMT1-transformed pear fruits. However, the increase in PbrCOMT1-transiently transformed strawberry fruits was not substantial, possibly due to the inherently low lignin content of strawberries and the low expression of other lignin synthesis genes (Yeh et al., 2014). In these strawberry fruits, the expression of other lignin genes limited the synthesis rate, and the low expression of upstream and downstream genes in the lignin synthesis pathway resulted in insufficient substrates and the accumulation of products, thereby reducing the overall synthesis rate.

When overexpressing and silencing PbrCOMT1 in pear fruit, consistent trends were observed in the content of lignin and stone cells. This consistency is attributed to the concentration of lignin in the stone cells of pears, where an increase in lignin content accelerates SCW production and promotes stone cell generation (Gong et al., 2020; Xu et al., 2021).

In Arabidopsis, inconsistent phenotypes of inflorescence axes were observed following overexpression and silencing of COMT, although both modifications followed similar trends in plant height. Overexpression of COMT may increase the lignin content of the plant stalk, inhibiting growth, while silencing COMT could result in insufficient lignin for proper conduit development, thus impeding plant growth and affecting the development of Arabidopsis. It has been reported that either excessive or insufficient lignin can restrict plant growth (Ha et al., 2021; Xie et al., 2018), likely due to a balance between defense mechanisms and growth, which when disrupted by external factors, leads to the plant prioritizing defense over growth.




5 Conclusion

A total of 29 PbrCOMTs were screened in pears, revealing structural similarities but diverse cis-acting elements in their promoters. In situ hybridization studies demonstrated that PbrCOMT1 is associated with stone cell development in pear fruits. Following the transient transformation of PbrCOMT1, an increase in both stone cell and lignin content was observed in pear fruits. Conversely, silencing PbrCOMT1 resulted in decreased stone cell and lignin contents, while overexpression of PbrCOMT1 enhanced lignin production in both strawberry and Arabidopsis thaliana. PbrCOMT1 has been identified as a key gene in lignin synthesis in ‘Dangshan Su’ pears, suggesting its role in promoting lignin synthesis and stone cell production, thereby providing a theoretical foundation for enhancing the quality of pear fruits.
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Introduction

Nicotiana tabacum, widely cultivated for its economic and scientific value, produces a broad range of secondary metabolites that play critical roles in determining leaf quality and flavor. Despite substantial progress, the comprehensive regulatory landscape governing secondary metabolite biosynthesis during N. tabacum leaf development remains largely unclear.





Methods

To better understand the molecular regulatory mechanisms underlying the biosynthesis of secondary metabolites, particularly flavonoids, during N. tabacum leaf development, we conducted a transcriptomic and non-targeted metabolomic sequencing and analysis at three critical developmental stages: vigorous growth stage (T1), topping stage (T2), and harvest stage (T3).





Results

Based on our transcriptomic and metabolomic data, 25 unigenes exhibiting stage-specific expression patterns that were strongly associated with flavonoid accumulation were identified. We found that during early developmental stages (T1-T2), upregulated expression of chalcone synthase (CHS) and chalcone isomerase (CHI) correlated with enhanced flavonoid backbone biosynthesis. In contrast, during the later stage (T3), increased expression of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) was consistent with elevated anthocyanin accumulation.





Conclusion

This study systematically analyzed the coordinated regulatory network of flavonoid biosynthesis during leaf development in N. tabacum, revealing dynamic metabolic shifts across developmental stages. The findings offer novel molecular insights into the mechanisms underlying leaf quality formation and establish a theoretical framework for functional studies of candidate genes, reinforcing the utility of N. tabacum as a model species for secondary metabolism research and breeding innovation.
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1 Introduction

Tobacco (Nicotiana tabacum L.), a significant economic crop in the Solanaceae family, originated in the Americas and is now extensively cultivated in Cuba, China, the United States, and other regions. Beyond its commercial value, tobacco serves as an important model organism for studying the regulatory mechanisms of plant secondary metabolism (Jassbi et al., 2017). The plant produces diverse secondary metabolites, including alkaloids, phenolic compounds, and terpenoids, which play pivotal roles in plant defense (Yan et al., 2017; Elser et al., 2023), stress adaptation (Hu et al., 2023; Gu et al., 2024), and environmental interactions (Wu et al., 2025). While nicotine and related alkaloids have been the primary focus of previous research, metabolites such as flavonoids, polyamines, and diterpenes also contribute significantly to the chemical diversity and biological functionality of tobacco leaves (Wu et al., 2023). These compounds not only participate in plant defense and environmental adaptation, but also play key roles in determining tobacco leaf quality and flavor (Wang et al., 2024).

The biosynthesis of secondary metabolites is regulated at multiple levels, exhibiting distinct dynamic patterns during leaf development (Qin et al., 2020; Lv et al., 2024). Using an integrated metabolomics approach, we can characterize the dynamic changes of metabolites and bioactivities during plant leaf development (Bai et al., 2024). The changes in metabolic profiles during leaf growth and development accurately reflect alterations in plant physiological functions, energy metabolism requirements, and environmental adaptation strategies (Zhang et al., 2018). For instance, young leaves are primarily characterized by active cell division and primary metabolic activities, while mature leaves tend to accumulate secondary metabolites associated with tissue differentiation and environmental defense functions (Zhou and Liu, 2022).

The application of multi-omics technologies has become a widely adopted method for exploring intricate biosynthetic mechanisms. Multi-dimensional data analysis enables in-depth exploration of the intricate regulatory networks governing secondary metabolite biosynthesis. Transcriptomics can precisely reflect gene expression patterns, comprehensively revealing the dynamics of gene expression in metabolic pathways and providing a crucial foundation for identifying key structural genes and transcription factors. For example, transcriptomic analysis of cold-stressed tobacco revealed 16,204 differentially expressed genes and highlighted the role of photosynthesis and flavonoid biosynthesis pathways (Song et al., 2024). Metabolomics technologies, particularly untargeted metabolomics, can directly capture end-product information of gene expression, comprehensively detecting metabolite species and providing evidence for further elucidating the mechanisms underlying phenotypic formation (Zhang et al., 2022). By integrating transcriptomics and metabolomics, researchers can systematically investigate the relationship between transcriptional regulatory networks and metabolite biosynthesis during plant development (Xu et al., 2020; Yang et al., 2023a). Through an integrative analysis of transcriptomic and metabolite profiles (Wang et al., 2023), demonstrated that phosphate application enhanced cold tolerance in alfalfa by modulating the biosynthesis of key metabolites. Similarly, Moschen et al. identified transcription factors that were pregulated under drought conditions in sunflower, enhanced understanding of the molecular mechanisms involved in sunflower under drought conditions (Moschen et al., 2017).

In tobacco research, integrated multi-omics analyses have successfully identified stage-specific metabolic pathways and candidate regulatory genes involved in nicotine biosynthesis, flavonoid modification, and terpenoid diversification, which deepens our understanding of the complex regulatory networks underlying tobacco leaf development and secondary metabolism (Jiao et al., 2020; Yang et al., 2023b; Niu et al., 2025). These findings not only reveal the dynamic coordination between metabolic flux and gene expression but also provide potential molecular targets for variety improvement and metabolic engineering (Qi et al., 2021; Pan et al., 2025). Moreover, a deeper understanding of the developmental regulation of secondary metabolism offers valuable guidance for optimizing leaf harvesting timing, curing methods, and processing techniques. As tobacco continues to serve as a model for studying specialized metabolism, such omics-driven insights will also benefit the broader plant science community by informing research on stress adaptation, metabolite regulation, and biomass quality improvement.

Despite significant progress, the complete regulatory landscape of secondary metabolite biosynthesis during tobacco leaf development remains to be fully elucidated (Chang et al., 2020). The complexity arises from the diversity of metabolites, spatiotemporal specificity of gene expression, and the confounding effects of environmental factors (Hu et al., 2024). Therefore, systematically integrating transcriptomic and metabolomic data across critical developmental stages offers valuable insights into the regulation of secondary metabolism in model plant systems, and provides a solid foundation for reconstructing comprehensive metabolic networks.




2 Materials and methods



2.1 Plants and sample preparation

Samples of a flue-cured tobacco cultivar LY09A were collected from the experimental field of the Yunnan Academy of Tobacco Agricultural Sciences, located in Kunming City, Yunnan Province (25°03′N, 102°39′E). Leaf samples were harvested at three key developmental stages: the vigorous growth stage (T1, 60 days after transplanting), the topping stage (T2, 90 days after transplanting), and the harvest stage (T3, 150 days after transplanting).




2.2 Metabolite extraction and profiling

Metabolite extraction and profiling were performed by Wuhan Metware Biotechnology Co., Ltd. using non-targeted metabolomics approaches. Briefly, 20 mg of powdered tobacco leaf samples were homogenized with 400 μL of 70% methanol containing internal standards (2-chlorophenylalanine) and vortexed for 15 min. After adding 200 μL petroleum ether, the mixture was vortexed for 5 min and centrifuged at 12,000 ×g for 10 min at 4°C. The lower aqueous phase was filtered through a 0.22-μm PTFE membrane and stored at −20°C prior to LC-MS/MS analysis. Chromatographic separation was achieved on a Waters ACQUITY UPLC HSS T3 C18 column (1.8 μm, 2.1 × 100 mm) maintained at 40°C. The mobile phases consisted of (A) ultrapure water with 0.1% formic acid and (B) acetonitrile with 0.1% formic acid, delivered at 0.4 mL/min with the following gradient: 5% B (0 min), linear increase to 90% B (11 min), held for 1 min, then returned to 5% B (12.1 min) and re-equilibrated for 1.9 min. The injection volume was 2 μL.Mass spectrometry was performed on an Agilent 6545 QTOF/MS system equipped with an ESI source operating in both positive (ESI+) and negative (ESI−) ionization modes. Key parameters included: ion source voltage (± 2,500 V for ESI+, ± 1,500 V for ESI−), nebulizer gas (40 psi), drying gas flow (8 L/min at 325°C), and sheath gas flow (11 L/min at 325°C). Data acquisition covered m/z 50–1,000 with MS/MS fragmentation at 135 V.

Raw data were converted to mzXML format using ProteoWizard (Holman et al., 2014), processed via XCMS for peak alignment, retention time correction, and SVR-based normalization. Metabolites were annotated by matching against in-house and public databases (KEGG), with stringent QC criteria (CV < 30% in QC samples). A total of 8,651 metabolites were detected, including 3,063 with MS/MS verification (2,525 in ESI+, 538 in ESI−).




2.3 Whole-transcriptome sequencing and transcriptomic analysis

Samples for RNA sequencing were collected in 2022. Three replicates of each plant were sent to BGI for RNA-seq on the BGISEQ-500 platform and bisulfate-seq. mRNA was purified using poly-T oligo-attached magnetic beads, fragmented at high temperature with divalent cations, and converted to first-strand cDNA with reverse transcriptase and random primers. Second-strand cDNA was synthesized using DNA Polymerase I and RNase H, followed by adapter ligation after adding an ‘A’ base. Products were purified and enriched via PCR amplification. PCR yield was quantified by Qubit, and samples were pooled to form single-stranded DNA circles (ssDNA circles) for the final library. ssDNA circles underwent rolling circle replication (RCR) to generate DNA nanoballs (DNBs), which enhanced fluorescent signals during sequencing (Zhai et al., 2020). DNBs were loaded onto patterned nanoarrays, and 100 bp (or 150 bp) paired-end reads were performed on the BGISEQ-500 platform (Fehlmann et al., 2016) using the Combinational Probe-Anchor Synthesis Sequencing Method for subsequent data analysis.




2.4 Statistical analysis

Raw RNA-seq reads were initially quality-filtered and trimmed using fastp (version 0.21.0) (Chen et al., 2018) with default parameters. Clean reads longer than 60 bp and without ambiguous bases (N) were retained for downstream analysis. The filtered reads were then aligned to the Nicotiana tabacum version ZY300 reference genome (https://www.ebi.ac.uk/ena/browser/view/PRJEB85578) using HISAT2 (Kim et al., 2015). Gene expression levels were quantified using StringTie (version 2.1.4) (Pertea et al., 2015) and normalized using two metrics: transcripts per million (TPM) and fragments per kilobase of exon per million mapped fragments (FPKM). Differential expression analysis between different developmental stages was conducted using the DESeq2 (Love et al., 2014), and genes with |log2(fold change)| ≥ 1 and adjusted p-value < 0.05 were considered significantly differentially expressed. Functional annotation of differentially expressed and novel genes was performed using BLAST searches against public databases, including Gene Ontology (GO) (The Gene Ontology Consortium, 2021) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and enrichment analyses were used to identify significantly associated biological processes and metabolic pathways.





3 Results



3.1 Transcriptomic and metabolomic profiling in tobacco leaves

After rigorous data processing and quality control, we obtained high-quality transcriptomic datasets (Supplementary Table S1). RNA sequencing (RNA-seq) and untargeted metabolomic profiling were employed to systematically investigate transcriptomic and metabolic changes in tobacco leaves across three developmental stages: T1, T2, and T3. Principal component analysis (PCA) revealed distinct stage-specific clustering at both the transcriptomic and metabolomic levels. For the RNA-seq data, principal components 1 and 2 (PC1 and PC2) accounted for 23.15% and 16.75% of the total variance, respectively (Figure 1A). In the metabolomic data, PC1 and PC2 explained 40.51% and 16.50% of the variance (Figure 1D), highlighting substantial transcriptional and metabolic reprogramming during leaf development. Pearson correlation analysis further confirmed the reliability and consistency of both datasets. Biological replicates from the same developmental stage exhibited strong positive correlations (r > 0.9), while correlations between different stages—particularly between T1 and T3—were significantly lower (Figures 1B, E). Violin plots of log-transformed gene expression values showed consistent distributions across all RNA-seq samples (Figure 1C), indicating uniform sequencing depth and high data quality. To enhance the resolution of metabolomic differences, orthogonal partial least squares discriminant analysis (OPLS-DA) was conducted. This analysis clearly separated the metabolic profiles of the T1, T2, and T3 stages (Figure 1F), further supporting distinct metabolic reprogramming during tobacco leaf development.
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Figure 1 | Overview of transcriptomic and metabolomic data of tobacco leaves at different developmental stages. (A) Principal component analysis (PCA) of transcriptomic data from T1, T2, and T3 stages. (B) Pearson correlation heatmap of transcriptomic data across all biological replicates. (C) Violin plots showing the distribution of gene expression values across all transcriptomic samples. (D) PCA of untargeted metabolomic data from T1, T2, and T3 stages. (E) Pearson correlation heatmap of metabolomic data across all biological replicates. (F) Orthogonal partial least squares discriminant analysis (OPLS-DA) score plot showing clear separation of metabolic profiles among the three developmental stages.

Meanwhile, we annotated and classified the differentially accumulated metabolites based on their chemical structures and biological functions detected by non-targeted metabolomics technology. In total, over 2,300 high-confidence metabolites were identified, with heterocyclic compounds (373), organic acid derivatives (298), and aldehyde/ketone derivatives (284) representing the three major categories (Figure 2A). In addition to primary metabolites, several key secondary metabolites associated with plant growth and defense were also detected, including flavonoids, alkaloids, lignans/coumarins, and terpenoids. Further analysis of their relative abundance revealed distinct accumulation patterns of secondary metabolites across developmental stages: alkaloids increased significantly at the T3 stage, whereas flavonoids and lignans accumulated progressively during leaf maturation (Figure 2B). This phenomenon may be attributed to the substantial allocation of nitrogen resources to
nicotine synthesis during tobacco leaf maturation, leading to alkaloid accumulation. In contrast,
the rise in flavonoid and lignan levels might be linked to enhanced antioxidant capacity and adaptive responses to environmental stress during leaf development (Supplementary Table S2) (Figure 2C). Collectively, these results demonstrate the rich metabolic diversity of tobacco leaves during development and highlight the dynamic changes in secondary metabolites, particularly flavonoids.
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Figure 2 | Classification of metabolites identified in tobacco leaves and dynamic changes in secondary metabolite contents. (A) Column chart of the classification of metabolites, with the height of different columns representing the number of different compound classes. (B) Line chart of the trend of different compound species over time. (C) Heatmap of flavonoid metabolite accumulation patterns at different developmental stages.




3.2 Stage-specific functional pathway shifts during tobacco leaf development

To reveal the stage-specific transcriptomic changes and their causes during tobacco leaf
development, differential gene expression (DEG) analysis and KEGG pathway enrichment were performed
across three developmental stages (T1, T2, and T3). The results showed a large number of DEGs in each pairwise comparison, with 9,962 genes between T1 and T2, 9,863 genes between T1 and T3, and 4,626 genes between T2 and T3. Notably, more drastic transcriptomic changes were observed between T1 and the later stages (T2 and T3) (Supplementary Tables S4-S6) (Supplementary Figures S1A-C). Further enrichment analysis of the KEGG pathway on DEGs revealed that the biological
processes involved in different developmental stages showed significant differences. In the T1 vs. T2 comparison, DEGs were significantly enriched in pathways related to energy metabolism and pigment biosynthesis, such as photosynthesis, carbon fixation, flavonoid biosynthesis, and terpenoid backbone biosynthesis (Supplementary Figure S1D). In the T1 vs. T3 comparison, in addition to these pathways, DEGs were also enriched in
plant hormone signal transduction, Th17 cell differentiation, and Toll-like receptor signaling, indicating activation of complex hormonal and immune regulatory networks during leaf maturation (Supplementary Figure S1E). The T2 vs. T3 comparison revealed enrichment in detoxification and stress response
pathways, including cytochrome P450-mediated metabolism, glutathione metabolism, and xenobiotic metabolism. Lipid-related pathways such as linoleic acid metabolism, steroid hormone biosynthesis, and PPAR signaling were also significantly enriched (Supplementary Figure S1F). These findings suggest a clear developmental trajectory in tobacco leaves, transitioning from early-stage energy assimilation and pigment production to late-stage stress adaptation and metabolic specialization.

Venn diagram analysis identified 710 differentially expressed genes (DEGs) that were shared across all three pairwise comparisons (Figure 3A), representing a core set of genes dynamically regulated throughout the developmental and
maturation stages of tobacco leaves (Supplementary Table S7). Gene Ontology (GO) enrichment analysis of these overlapping DEGs revealed significant enrichment in biological processes related to metabolism and response to stimuli, as well as cellular components such as membranes and organelles (Figure 3B). These results suggest that common molecular pathways are engaged during various developmental transitions, potentially playing critical roles in determining leaf phenotype and function.
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Figure 3 | Overlap and functional classification of differentially expressed genes (DEGs) during tobacco leaf development. (A) Venn diagram showing the number of DEGs identified in three pairwise comparisons: T1 vs T2, T1 vs T3, and T2 vs T3. A total of 710 DEGs were shared among all three comparisons. (B) GO enrichment analysis of the overlapping DEGs.




3.3 Metabolomic studies revealed differentially accumulated metabolites in tobacco leaves at different developmental stages

In order to study the dynamic changes of metabolites during tobacco leaves development, we compared the metabolomic data of T1, T2, and T3 with each other. A total of 28 differentially accumulated metabolites (DAMs) were identified between T1 and T2, and most showed significant up-accumulation (log2FC > 1, p < 0.05) (Figure 4A). In the comparison between T1 and T3, more DAMs were detected, indicating that the metabolites changed more significantly with leaves development (Figure 4B). It is worth noting that several metabolites showed continuous accumulation from T1 to T3, possibly participating in the metabolic process of leaves maturation. In the comparison of T2 and T3, there were only fewer DAMs, which means that the most significant metabolic changes occurred during the early transition from T1 to T2 (Figure 4C). The Venn diagram illustrates the overlaps of DAMs between pairwise comparisons of developmental stages (T1 vs. T2, T1 vs. T3, and T2 vs. T3) (Figure 4D). Notably, 14 DAMs were shared between T1 vs. T2 and T1 vs. T3, primarily including amino
acids and their derivatives (e.g., O-acetyl-L-serine, L-phenylalanine), benzene derivatives (e.g.,
oxadixyl, benzaldehyde), nucleotides, and various aldehydes and ketones, indicating their consistent
involvement in early to late leaf development transitions. Additionally, 9 DAMs were common between T1 vs. T3 and T2 vs. T3, comprising carbohydrates, organic acids, heterocyclic compounds, steroids, and other metabolites, reflecting metabolic shifts associated with the maturation and harvest stages. The absence of shared DAMs between T1 vs. T2 and T2 vs. T3 comparisons, as well as no metabolites common across all three stages, underscores the stage-specific metabolic remodeling in tobacco leaves, supporting the notion of a tightly regulated biosynthetic network modulating secondary metabolism throughout development. These DAMs are mainly enriched in pathways related to secondary metabolism, including alkaloid biosynthesis, phenylpropane metabolism, and flavonoid biosynthesis, and may play potential roles in regulating tobacco leaves quality and adapting to environmental stresses during development. A detailed list of DAMs and their statistical parameters can be found in Supplementary Table S8.
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Figure 4 | Specific changes at different stages of differentially accumulated metabolites (DAMs) in tobacco leaves. (A) T1 and T2 comparison, (B) T1 and T3 comparison, (C) T2 and T3 comparison, (D) Venn diagram illustrating the overlap of DAMs among the three pairwise comparisons. "**" indicates a statistically significant difference at p < 0.01 based on Student's t-test.




3.4 The transcription levels of genes related to the flavonoid biosynthesis pathway at different developmental stages

Based on KEGG pathway enrichment and GO functional annotation, a total of 25 unigenes encoding key enzymes involved in the flavonoid biosynthesis pathway were identified in this study. These included five unigenes encoding chalcone synthases (CHS), two for chalcone isomerases (CHI), two for flavanone 3-hydroxylases (F3H), three for dihydroflavonol 4-reductases (DFR), two for flavonol synthases (FLS), and two for anthocyanidin synthases (ANS), among others — all of which play vital roles in catalyzing distinct steps of the flavonoid biosynthetic pathway (Figure 5A). Heatmap analysis revealed distinct expression patterns of these genes across the three developmental stages (T1, T2, and T3) (Figure 5B). For example, CHS genes (e.g., chr7.3897 and chr7.1255) and CHI genes showed significantly
higher expression levels during the early stage (T1), suggesting their critical roles in the initial
synthesis of flavonoid backbones. In contrast, downstream genes such as DFR (chr4.7209, chr7.6759) and ANS (chr6.2245, chr7.4145), which are involved in anthocyanin biosynthesis, were markedly upregulated at the late developmental stage (T3), indicating a potential accumulation of anthocyanin compounds during leaf maturation (Supplementary Table S9). Overall, these results demonstrate that the transcriptional regulation of flavonoid biosynthesis-related genes is highly stage-specific, with different enzymatic steps activated at specific growth stages to coordinate the metabolic flow of flavonoids. These findings provide important insights into the regulatory mechanisms of flavonoid biosynthesis and the identification of key genes for future research.
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Figure 5 | The transcriptional map of flavonoid biosynthesis pathway genes in tobacco across different developmental stages. (A) A total of 25 unigenes encoding key enzymes involved in the flavonoid biosynthesis pathway were identified, including CHS, CHI, F3H, F3’H, FNS, IFS, FLS, DFR, and ANS. The heatmaps next to each enzyme represent the relative expression levels of the corresponding unigenes at three developmental stages. (B) Hierarchical clustering heatmap of 27 flavonoid biosynthesis-related genes at three developmental stages.





4 Discussion

In this study, we identified 25 key candidate genes potentially involved in flavonoid metabolism regulation through transcriptomics and non-targeted metabolomics, laying a crucial theoretical foundation for deciphering the flavonoid metabolic network in tobacco leaves. Notably, although this research primarily focused on flavonoids as important secondary metabolites, the significant dynamic changes and biosynthetic mechanisms of other metabolic pathways—such as terpenoids, alkaloids, and phenolic acids—during tobacco growth and development remain worthy of investigation. This is particularly relevant given existing studies demonstrating pronounced changes in alkaloids during tobacco root development. These secondary metabolites may exhibit spatiotemporal coordination with flavonoid biosynthesis, providing valuable insights for further research into their potential roles in regulating tobacco quality, stress responses, and developmental processes. Future studies should expand the analytical scope to elucidate the interactions among different metabolic pathways, thereby achieving a comprehensive, systems-level understanding of metabolic regulation during tobacco development.

Moreover, although the integration of metabolomic and transcriptomic data has enabled preliminary construction of a regulatory network for flavonoid biosynthesis, the universality and robustness of these regulatory mechanisms still require further validation. Transcript-level expression changes alone are insufficient to comprehensively and accurately determine the biological functions of the 25 candidate genes. Therefore, subsequent studies should employ experimental validation approaches, such as gene overexpression and CRISPR/Cas9 genome editing, to elucidate the specific roles of these genes in flavonoid synthesis while further characterizing their core expression patterns.

With the continuous advancement of sequencing technologies, it is imperative to conduct population-scale investigations across diverse tobacco germplasm resources. Strategies such as metabolome-wide association studies (mGWAS), expression quantitative trait loci (eQTL) mapping, and genetic variation analysis can reveal conserved regulatory patterns and core regulatory elements within natural populations. These findings will not only provide theoretical guidance for breeding high-quality tobacco varieties but also yield valuable molecular markers for practical applications.

In summary, this study systematically elucidates the metabolic regulatory mechanisms of flavonoid biosynthesis during tobacco leaf development while highlighting the need for functional validation and population-level studies to fully uncover its biological significance and breeding potential.

In addition to the current findings, there are several valuable directions for future research. For example, the identification of key candidate genes involved in flavonoid biosynthesis provides a valuable starting point for future functional studies and it will be better to perform in-depth functional analyses, including gene editing and overexpression experiments, to uncover the specific regulatory roles of these genes. Furthermore, recognizing the diversity among tobacco varieties—such as flue-cured, cigar, and other types, it is important to explore their metabolomic and transcriptomic differences during similar developmental stages. The integrated their datasets and comparative analyses will help elucidate the molecular basis underlying varietal differences in leaf characteristics and contribute to a broader understanding of metabolic regulation across tobacco types.




5 Conclusion

This study employed an integrated transcriptomic and metabolomic approach to investigate the molecular characteristics of flavonoid biosynthesis and associated differential metabolites across different developmental stages of tobacco leaves. A total of 25 unigenes involved in flavonoid biosynthesis were identified, whose expression patterns showed strong correlation with the accumulation profiles of flavonoid metabolites, including flavones, flavonols, and anthocyanins. The early developmental stages (T1-T2) were characterized by upregulated expression of CHS, CHI, and F3H genes, promoting flavonoid skeleton formation. In contrast, the later stage (T3) exhibited a metabolic shift toward anthocyanin biosynthesis, marked by increased expression of DFR and ANS genes. These findings elucidate the coordinated regulatory network between gene expression and metabolite accumulation in secondary metabolism, providing a theoretical foundation for improving tobacco leaf quality through metabolic engineering and precision breeding strategies.
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Hydroponics is emerging as a vital method for producing resilient leafy greens in controlled environments. To systematically capture how hydroponically grown crops respond to stress, we subjected three species—cai xin, lettuce, and spinach—to 24 environmental and nutrient treatments. Growth measurements showed that extreme temperatures, reduced photoperiods, and severe macronutrient (N, P, K) deficiencies significantly limit fresh weight. Transcriptomic profiling (276 RNA-seq libraries) highlighted strong, shared downregulation of photosynthesis-related genes and upregulation of stress response and signaling genes across all three species. Leveraging a novel pipeline that merges regression-based gene network inference with orthology, we identified highly conserved gene regulatory networks (GRNs) spanning all three species—marking the first cross-species analysis of stress-responsive GRNs in economically important hydroponic leafy vegetables. These networks are anchored by well-known transcription factor families (e.g., WRKY, AP2/ERF, GARP), yet show lineage-specific differences compared to Arabidopsis, suggesting partial divergence in key regulatory components. Lastly, we introduce StressCoNekT (https://stress.plant.tools/), an interactive, publicly available database that hosts our transcriptomic data and offers comparative tools to accelerate the discovery of robust stress-responsive genes and cross-species analysis. This study not only deepens our understanding of abiotic stress adaptation in hydroponic systems but also provides a critical foundation for breeding stress-resilient crops and developing smart agriculture solutions.
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Introduction


With changing dynamics in global food markets and an expanding population, more studies are needed to develop resilient food production systems in urban environments. Hydroponics has emerged as a potential solution for urban farming (Martin and Molin, 2019), as this technology can be deployed on rooftops and indoors, and allows controlled light, temperature and nutrient levels to maintain high growth rates, with the additional advantage of saving water. Thus, in light of food security, independence from soil quality and local climate, hydroponic techniques have become a major part of global agriculture, particularly for leafy greens (Rajaseger et al., 2023). In combination with ‘smart farming,’ which uses sensors and other control systems to constantly monitor nutrient levels and plant vitality, hydroponics can produce up to 20 times the yield per acre of soil-planted crops—e.g., for lettuce—with only 1/20th the amount of water (Majid et al., 2021; Gul and Bora, 2023). Still, hydroponics also faces challenges including high energy demands, water-quality oversight, disease and pest management complexities, co-cultivation limitations, and the lack of crop varieties specifically bred for indoor cultivation.


Abiotic stresses can affect hydroponically grown plants, for example when nutrient levels are too high or too low, or when temperature and light conditions are not optimal for plant growth. High temperatures greatly reduce the efficiency of photosynthesis and respiration due to changes in membrane fluidity and permeability (Ding et al., 2020; Zhao et al., 2020). Heat also leads to an increase in ROS generation in the photosystems, which in turn induces lipid peroxidation, inactivates enzymes, and degrades proteins (Zhao et al., 2020). Low levels of macronutrients, such as nitrogen (N), phosphorus (P), and potassium (K), cause typical deficiency symptoms in plants (van Maarschalkerweerd and Husted, 2015). As an essential component of DNA, RNA, proteins, and chlorophyll, N deficiency causes drastic changes in plant morphology and metabolism, as reflected in stunted growth, small leaves, and chlorosis (de Bang et al., 2021). NO3− also acts as a signaling molecule and plays a central role in protecting plants from various environmental stresses (Wang et al., 2018; Khan et al., 2023). Phosphorus is essential for nucleic acids (DNA, RNA), phospholipids in cell membranes, and is central to protein phosphorylation. Low P levels have a profound impact on energy metabolism (ATP, NADPH), and consequently on photosynthesis and respiration (de Bang et al., 2021). The physiological functions of K include stomatal regulation, photosynthesis, and water uptake (Johnson et al., 2022). Potassium deficiency activates a range of sensing and signaling systems in plants, involving ROS, Ca2+, phytohormones, and microRNAs (de Bang et al., 2021). Increasing light intensities within a physiological range (up to 300 uE) typically result in better growth and higher levels of soluble sugars and proteins in leafy vegetables. However, high light intensity can alter leaf morphology and lead to leaf curling and/or tipburn (Miao et al., 2023).


Another important consideration is how these stresses affect photosynthetic processes and carbon fixation. Stresses such as heat, cold, drought, and high light can accelerate photodegradative processes in the chloroplast, thereby reducing photosynthetic efficiency (Chauhan et al., 2023). Adaptive physiological changes, such as stomatal closure and leaf or chloroplast movement, aim to dynamically adjust the photosynthetic and carbon fixation rates, balancing growth and stress acclimation. These responses are typically regulated through broader stress signaling networks that protect the plant and enhance adaptation to future stress conditions (Murchie et al., 2022). Some of these networks, especially in the context of biotic stresses and herbivory, are conceptualized under the Growth-Defense Tradeoff (GDT), which posits that defense and growth signaling pathways antagonistically regulate one another (Huot et al., 2014). As previously discussed, nutrient stress leads to deficiencies in key intermediates involved in plant homeostasis, which can impair both the functioning of the photosynthetic machinery and growth signaling pathways (Murchie et al., 2022). Given the diverse genetic backgrounds of different plant species, sensitivity to abiotic stress and the associated gene regulatory programs are likely to vary; however, the extent of these differences remains underexplored across species.


Despite the increasing relevance of hydroponics for crop production, few studies have examined how different plant species respond to abiotic stress within this system. Most existing knowledge derives from model plants like Arabidopsis thaliana or staple crops such as rice, which are typically grown under soil-based conditions (Kobayashi and Nishizawa, 2012; Bouain et al., 2014; Bouain et al., 2018). Transcriptomics has been widely used to study stress (Hirayama and Shinozaki, 2010), yet insights into conserved stress responses remain limited. Plants have evolved mechanisms to perceive abiotic stress and adjust gene expression—along with growth and development—to ensure survival and reproduction (Gong et al., 2020). However, comparative transcriptomic studies—especially in hydroponically grown leafy vegetables—remain scarce, leaving significant gaps in our understanding of shared versus species-specific stress responses. In addition, inconsistencies in stress application, developmental stages, and experimental design in existing studies often hinder direct cross-species comparisons (Julca et al., 2023). To address these limitations, we conducted a systematic investigation of 24 different environmental and nutrient conditions affecting the growth yield of three hydroponically grown leafy crops: cai xin, lettuce, and spinach. Using a unified experimental framework, we identified growth conditions that either maximize yield or induce abiotic stress, enabling direct comparisons of gene expression responses across species. This design enabled us to examine the conservation of stress-responsive genes and regulatory modules, offering deeper insight into how plants perceive and transcriptionally adapt to stress in controlled-environment agriculture.


We observed that abiotic stresses significantly impact multiple biological pathways. We then conducted an in-depth, parallel gene expression analysis across the three species and identified sets of conserved, high-confidence genes likely involved in abiotic stress responses across the plant kingdom. To construct high-confidence gene regulatory networks for stress response, we developed a novel method integrating regression analysis with genomic data. Surprisingly, although the gene regulatory networks were largely conserved across the three crop species, comparison of key transcription factors to their A. thaliana counterparts revealed low functional conservation, suggesting substantial functional differences in transcription factor activity across species. Finally, we also established an online stress-response database of gene expression profiles for the three crops (https://stress.plant.tools/), enabling researchers to perform comparative analyses and facilitate the discovery of stress-responsive genes.







Methods






Growth conditions and chambers


We used Aspara® Nature+ Smart Growers (Growgreen Ltd., Hong Kong), which were placed either in an MT-313 Plant Growth Chamber (HiPoint, Taiwan), a PGC-9 series controlled environment chamber (Percival Scientific, Inc., Perry, US), or under ambient conditions of 23°C–24°C for cai xin and lettuce, and 22°C (for spinach) across different laboratories.







Germination of cai xin and lettuce


Two to three seeds were placed in each seed holder of the Aspara® unit, which was filled with tap water and covered with a germination dome. Germination occurred under continuous white light for 24 h (40 μmol·m−2·s−1) at a temperature of 23°C–24°C. The Aspara® Smart Grower Hydroponic System operates using an ebb-and-flow system and holds 2 L of medium.







Germination of spinach (Spinacia oleracea var Carmel)


Spinach seeds were sown on cotton balls, kept in the dark, and regularly sprayed with water to maintain moisture. Within 3 days, 80% of the seedlings had germinated, indicated by visible radicles on the seed coat (designated as DAG 0, or days after germination). Germinated seedlings were exposed to continuous white light for 24 h (40 μmol·m−2·s−1) at a temperature of 23°C–24°C.







Growth medium


The half-strength Hoagland’s solution consisted of KH2PO4 (500 μM), KNO3 (3,000 μM), Ca(NO3)2 × 4 H2O (2,000 μM), and MgSO4 × 7 H2O (1,000 μM). To prepare the solution, 0.5 mL of micronutrient stock (1,000×), was added to 1 L of the half-strength Hoagland’s solution. One liter of the micronutrient stock solution contained H3BO3 (2.86 g), MnCl2 × 4 H2O (1.81 g), ZnSO4 × 7 H2O (0.22 g), CuSO4 × 5 H2O (0.08 g), Na2MoO4 × 2 H2O (0.025 g), and CoCl2 × 6 H2O (0.025 g). One liter of the chelated iron stock solution (200×) contained FeSO4 × 7H2O (5.56 g) and Na2EDTA (7.45 g). A volume of 2.5 mL was added to the half-strength Hoagland’s solution. The pH was adjusted to 5.5 using KOH. Growth medium levels were checked daily and replenished regularly in each unit to maintain a stable water level. In addition, pH and EC (1.3 dSm−1) were monitored every 2–3 days and adjusted by replacing the medium with fresh solution. Plants were harvested on DAG 21. We used a modified Hoagland’s solution containing KH2PO4 instead of NH4H2PO4, as KH₂PO₄ offers greater pH stability in hydroponic systems. Moreover, the accumulation of ammonium can harm root development. Lettuce, spinach, and cai xin are known to be sensitive to elevated ammonium levels over time, particularly under higher temperatures conditions.







Growth conditions during stress experiments


All seedlings were germinated on cotton, transferred to the Aspara unit for growth, and on DAG 5, the growth medium was replaced with various nutrient solutions or stress treatments were applied. Nutrient stress conditions were induced by modifying the growth medium (see 
Tables 1
–
3
). For cai xin and lettuce, control growth conditions included a light intensity of 202.5 μmol·m−2·s−1, an R:B:W ratio of 4:1:1, and a 20-hour photoperiod at 25°C. For spinach, the control conditions consisted of a light intensity of 130 μmol·m−2·s−1, an R:B:W ratio of 4:1:1, and a 15-hour photoperiod at 22°C.


In the light intensity experiment, cai xin and lettuce were grown under light intensities of 67 μmol·m−2·s−1, 135 μmol·m−2·s−1, 202.5 μmol·m−2·s−1, and 268 μmol·m−2·s−1 with a 16-h photoperiod at 25°C. Spinach was grown under light intensities of 65 μmol·m−2·s−1, 130 μmol·m−2·s−1, 200 μmol·m−2·s−1, and 260 μmol·m−2·s−1 with a 15-hour photoperiod at 22°C. In the photoperiod experiment, cai xin and lettuce were grown at 8 h, 12 h, 20 h, and 24 h light at 25 °C, 200 μmol·m−2·s−1 and R:B:W 4:1:1. For spinach, photoperiods of 8 h, 13 h, 18 h, 24 h were tested at 22 °C, with a light intensity of 130 μmol·m−2·s−1 and an R:B:W ratio of 4:1:1. In the light quality experiments, R:B:W ratios of 4:1:1, 4:1:0, 3:1:1, and 3:1:0 were applied to all plant species under otherwise control conditions. For the temperature experiments, all plant species were grown at 20°C, 25°C, 30°C, and 35°C under otherwise control conditions.


In the modified N solution (
Table 1
), KNO3 and Ca(NO3)2 were replaced with KCl and CaCI2, respectively, to maintain equivalent concentrations of K and Ca as in the original formulation. In the modified P solution (
Table 2
), KH2PO4 was replaced by KCl, while in the modified K solution (
Table 3
), KH2PO4 and KNO3 were substituted with NaH2PO4 and NaNO, respectively3. Although careful efforts were made to ensure ion concentrations were equivalent across all complete and nutrient-deficient media formulations, some variance still exists. Therefore, while all treatments were normalized against their respective growth controls to minimize within-treatment variability, cross-treatment comparisons should be interpreted with caution due to potential residual differences.



Table 1 | 
Composition of modified nitrogen (N) solutions at different concentrations (0–150%).




	Modified N Solution

	0% N (μM)

	25% N (μM)

	50% N (μM)

	100% N (μM)

	150% N (μM)






	KNO3

	0
	750
	1,500
	3,000
	4,500



	KCl
	3,000
	2,250
	1,500
	0
	0



	Ca(NO3)2

	0
	500
	1,000
	2,000
	3,000



	CaCI2

	2,000
	1,500
	1,000
	0
	0






The table shows the concentrations (in μM) of KNO3, KCl, Ca(NO3)2, and CaCl2 used to create solutions with 0%, 25%, 50%, 100%, and 150% nitrogen levels.





Table 2 | 
Composition of modified phosphorus (P) solutions at different concentrations (0–150%).




	Modified P solution

	0% P (μM)

	25% P (μM)

	50% P (μM)

	100% P (μM)

	150% P (μM)






	KH2PO4
	0
	125
	250
	500
	750



	KCl
	500
	375
	250
	0
	0






The table displays the concentrations (in μM) of KH2PO4 and KCl for generating phosphorus solutions across five concentration levels.





Table 3 | 
Composition of modified potassium (K) solutions at different concentrations (0–150%).




	Modified K Solution

	0% K (μM)

	25% K (μM)

	50% K (μM)

	100% K (μM)

	150% K (μM)






	KH2PO4
	0
	125
	250
	500
	750



	NaH2PO4
	500
	375
	250
	0
	0



	KNO3

	0
	750
	1,500
	3,000
	4,500



	NaNO3

	3,000
	2,250
	1,500
	0
	0






The table outlines the concentrations (in μM) of KH2PO4, NaH2PO4, KNO3, and NaNO3 used to prepare potassium solutions at varying concentrations.

NaOH was used to adjust the pH to 5.5.









Sampling of plants and determination of fresh weight


On DAG 21, out of the five biological replicates per condition, the three most healthy biological replicates with similar growth characteristics were selected. Three to four mature leaves were cut, weighed (minimum total weight 0.5 g), immediately flash-frozen in liquid nitrogen, and stored at −80°C. After RNA sampling, the rest of the leaves were cut, and the fresh weight (FW) was measured to obtain the total fresh weight of each biological replicate.







RNA isolation and sequencing


All leaf samples were ground with a mortar and pestle, and the frozen powder was aliquoted and stored at −80°C until use. RNA was isolated from stressed and control plants (three biological replicates each) using a Spectrum™ Plant Total RNA Kit (Sigma). Quality control of all extracted RNA (triplicates for each condition) was performed by Novogene (Singapore) using Nanodrop and agarose gel electrophoresis (for purity and integrity) before sample quantitation and further analyses of integrity (Agilent 2100 Bioanalyzer). The library type was a eukaryotic directional mRNA library. Library construction from total RNA, including eukaryotic mRNA enrichment by oligo(dT) beads, library size selection, and PCR enrichment, was performed using a Novogene using NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina®. The libraries were sequenced with NovaSeq-6000, paired-end sequencing at 150 base pairs and at sequencing depths of approximately 20 million reads per sample (6 Gb/sample).







Gene expression and differential gene expression estimation


Transcript abundance from RNA-sequencing data was quantified using kallisto v0.46.1 (Bray et al., 2016). Pseudoalignment was performed against the CDSs of Brassica rapa (BRADv1.2 Cheng et al., 2011; Chen et al., 2022), Lactuca sativa (V8 Reyes-Chin-Wo et al., 2017), and S. oleracea (Spov3 Hulse-Kemp et al., 2021) all obtained from Phytozome (Goodstein et al., 2012). Gene expression output from kallisto includes count and TPM (transcripts per million). Pearson correlation coefficients (PCCs) was calculated based on TPM values to assess expression similarities across replicates and stress treatments. For each species, clustermaps were generated to visualize correlations, and sample similarities were further analyzed using Euclidean distances.


Differential gene expression was determined using DESeq2 v1.40.1 (Love et al., 2014) with count outputs from kallisto. For the various stress conditions, comparisons were made against their respective stress experiment controls. Genes were identified as differentially expressed at 
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Gene annotation and differentially expressed biological functions


The biological function annotations of the genes from all three species were assigned using Mercator4 v5.0 (Schwacke et al., 2019), where each annotation refers to a MapMan bin. Transcription factors (TFs) and their corresponding gene families for cai xin and lettuce were identified using iTAK v1.6 (Zheng et al., 2016), while those for spinach were identified using iTAK v1.7.


Survival function was used to identify significantly differentially expressed biological functions, with significance defined as a Benjamini–Hochberg (BH) adjusted p-value of less than 0.05. To infer similarities between biological functions (rows) and stress conditions (columns), Jaccard distances (JDs) were computed between them, respectively. These JDs were then used to perform hierarchical clustering of both biological functions and stress conditions.






Pathway correlation with Normalized Differential Expression Index analysis


Differential expression of a biological function within each species was quantified using the Normalized Differential Expression Index (NDEI), which indicates the activation or repression of a given MapMan bin under each stress. NDEI is defined as the normalized difference between the number of up- and downregulated genes under each stress condition, relative to the MapMan bin size, as follows:
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where U and D represent the total number of up- and downregulated genes, respectively, under stress condition 
σ

, and B is the total number of genes assigned to MapMan bin m. This index enables direct comparison of functional responses across different stresses and species by normalizing for pathway size. Positive NDEI values indicate predominant upregulation of a biological process, while negative values reflect dominant repression. As such, NDEI highlights the overall transcriptional shift of each biological process in a consistent and interpretable way.


The correlation between pairs of biological functions was assessed using Pearson correlation coefficients (PCCs), computed between all MapMan bins at the same level based on their respective NDEI values. A pair of biological functions was determined to be conserved when they were significantly differentially expressed in a similar manner (up- or downregulated) under the same surplus or deficient stress condition—where surplus referred to an increase in the stress parameter relative to the control, and deficient the inverse—in at least two species.







Detection of orthogroups and calculation of significant similarities between stresses


Orthologues were inferred with OrthoFinder v2.5.5 (Emms and Kelly, 2015; Emms and Kelly, 2019), through which differentially expressed orthogroups were identified by mapping differentially expressed genes (DEGs) to their orthogroups. To assess the similarity of stress responses within and between species, we used the Jaccard Index (JI), a standard measure of set similarity. It quantifies the proportion of shared differentially expressed genes or orthogroups between conditions, offering a straightforward and interpretable way to compare transcriptional responses across multiple datasets. For comparison of stress conditions within a species, the JI was computed between all stress conditions using the DEGs datasets. For cross-species comparison, JI was computed between all stress conditions and species based on the differentially expressed orthogroups. The significance of the quantified similarities was evaluated through permutation analysis, where observed JIs were compared to permuted JIs. A thousand permutations were executed for each observed JI, and significance was assumed at BH p-adjusted <0.05. Conserved orthogroups were defined as those differentially expressed in all three species and in a similar manner (up- or downregulated) under the same surplus or deficient stress condition.


Based on the conserved orthogroups, the conserved DEGs in all three species were queried against A. thaliana (Araport11 Cheng et al., 2017; TAIR: The Arabidopsis Information Resource) using BLAST (Camacho et al., 2009), a local sequence similarity tool, to identify their best hits. A literature review was subsequently conducted on these best hits to determine their experimentally verified functions and assess their relevance to the stresses analyzed in this study.







Construction of gene regulatory networks


We used GENIE3 (Huynh-Thu et al., 2010; Aibar et al., 2017), a machine learning algorithm based on random forests, to construct gene regulatory networks (GRNs) for individual species using the TPM expression values of DEGs. By predicting which transcription factors regulate which target genes, GENIE3 enables robust identification of regulatory interactions, especially when direct perturbation data are unavailable. TFs were specified as the regulators. For high-confidence networks, the top 5% of TF-target edges (ranked by non-zero weight) were used for downstream analyses. The relationships between TFs and their target genes were assessed using PCC analysis of gene expression data (TPM), where positive and negative correlations indicated TFs acting as activators and repressors, respectively.


Stress-specific GRNs were constructed using conserved TF-target edges. Similar to the identification of conserved orthogroups, TF-target edges were first mapped to their respective orthogroups for cross-species comparison. Conserved TF-target edges were defined as those differentially expressed in a similar manner (up- or downregulated) under the same surplus or deficient stress condition in more than one species. The significance of the conserved edges was evaluated through permutation analysis, comparing the observed conserved edges to permuted ones. The enrichment score was calculated as the ratio of observed conserved edges to the mean of permuted conserved edges. Significance was assumed when the p-value (corrected using the BH procedure) was <0.05 and the enrichment score >1. Henceforth, TFs from significantly conserved TF-target edges were referred to as “the stress-specific conserved TFs.”







Identifying biological functions of stress-specific conserved TFs


The biological functions of TFs were predicted by identifying the MapMan bins of their target genes. The number of target genes assigned to each biological function was normalized by the corresponding MapMan bin size. For each species, the normalized values of all TFs linked to a specific gene family were summed and then divided by the total number of TFs associated with that gene family for the respective biological function. This process was repeated for each biological function across the three species. The regulatory strength of a gene family for a biological function across species was calculated as the average of these species-specific values, expressed as:
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where t is the number of target genes of conserved TF j of gene family g assigned to MapMan bin m, Ti
 is the total number of conserved TFs of gene family g in species i, and S = 3 is the total number of species.







Stress-specific conserved TF response with experimentally verified Arabidopsis genes


The stress-specific conserved TFs that regulated at least five biological functions were queried against A. thaliana using BLAST to identify their best hits. The stress conditions under which the conserved TFs (columns) were differentially expressed under were mapped against the experimentally verified functions of the best BLAST hits (rows) based on their Gene Ontology (GO) terms; a match indicated conservation of the TFs’ roles in A. thaliana. The A. thaliana best BLAST hits (rows) were grouped by function, with the miscellaneous category including GO terms such as “response to hydrogen peroxide,” “response to wounding,” “cellular response to hypoxia,” “response to water deprivation,” and other functions not represented as separate categories.


Permutation analysis was performed to evaluate the significance of functional conservation between the predicted roles of the stress-specific conserved TFs and the functions of their A. thaliana best BLAST hit functions. The observed matches were compared to permuted matches from 1,000 permutations of the stress conditions under which the conserved TFs were differentially expressed, while keeping the best hits and their experimentally verified functions constant. Significance was assumed when the p-value (corrected using the BH procedure) was <0.05.







Establishment of StressPlantTools database


Using the CoNekT framework admin panel (Proost and Mutwil, 2018), we constructed the database from the generated gene expression data. We employed the Highest Reciprocal Rank metric to construct the coexpression networks (Mutwil et al., 2010). For each species, coexpression clusters were obtained using the Heuristic Cluster Chiseling Algorithm (HCCA). The database is hosted on an Apache server running Windows OS.







Data availability


The raw sequencing data are available at ENA under accession number E-MTAB-14018.








Results






Growth responses of lettuce, cai xin, and spinach under abiotic stresses reveals differential requirements for optimal growth


The hydroponic crops lettuce, cai xin, and spinach are grown mainly for their shoot portions, thus, we aimed to understand how various abiotic and nutrient stresses affect their growth and functional phenotypes. To determine the effects of environmental conditions on these crops, plants were grown for 16 days under their respective experimental conditions (
Figure 2A
), and phenotypes and fresh weights (FWs) were recorded on DAG 21 (days after germination; 
Figure 2B
; 
Supplementary Table S1
). The control medium for all plants was half-strength Hoagland solution, a widely used standard growth medium characterized by high levels of N and K, making it suitable for plants with high nutrient demands.


[image: Panel A shows plant growth of Cai xin, lettuce, and spinach under varying conditions such as phosphate, potassium, nitrate levels, temperature, light intensity, photoperiod, and light quality. Panel B presents a heatmap of responses by each species to these conditions. Panel C is a bar graph depicting the number of differentially expressed genes in response to stress conditions, with bars colored for up-regulation and down-regulation.]
Figure 1 | 
Abiotic stress experiments for hydroponically grown cai xin, lettuce, and spinach. (A) Phenotypes of cai xin, lettuce, and spinach on DAG 21 under phosphate, potassium, nitrate, temperature, light intensity, photoperiod, and light quality stress experiments. The control condition of each stress is underlined. (B) The mean fresh weight data (rounded to the nearest gram) from triplicates are annotated in the cells of the heatmaps for phosphate, potassium, nitrate, temperature, light intensity, photoperiod, and light quality stress experiments. (C) Differential gene expression analysis of cai xin, lettuce, and spinach. The red and blue bars represent upregulated and downregulated genes, respectively. The x-axis represents different stress conditions while the y-axes show the number of differentially expressed genes (DEGs) for a given stress (left y-axis for cai xin and lettuce; right y-axis for spinach).




Complete removal of a macronutrient from the growth medium—0% N, 0% P, or 0% K—resulted in severely reduced growth of all three species (
Figures 2A, B
). In media with reduced P and K macronutrients (25%, 50%; 
Figure 2B
), cai xin displayed FWs similar to the control (100%). In contrast, it was highly sensitivity to reduced N levels, with fresh weight reaching 13 g at 100% (
Figure 2B
). This indicates that cai xin depends on high N—but not P or K—for better growth. Lettuce grew well at lower P levels (25%, 50%) but showed decreased growth under low K (25%, 50%) and low N (25%). Spinach grew better with increasing K concentrations (
Figure 2B
) but showed variable fresh weights at different P and N levels. Increasing nutrient concentrations (N, P, and K) to 150% did not significantly enhance growth in any species. Overall, these results show that the three species have different requirements for optimal fresh weight.


[image: Illustration showing three panels: A) A heatmap with species comparison, displaying gene expression patterns in response to various stress factors. B) A color-coded heatmap indicating the normalized differential expression index of genes involved in photosynthesis, coenzyme metabolism, and multi-process regulation under different stress conditions. C) A multi-level network diagram representing interactions among biological processes like photosynthesis and protein modification across different stress levels, annotated at four hierarchical levels.]
Figure 2 | 
Expression profiles and co-expression analyses of stress responses. (A) Significantly (BH p-adj <0.05) upregulated (red), downregulated (blue), or both (pink) biological functions for the different stress conditions and species. The different stress conditions are shown in columns, while the biological functions are in rows. Only biological functions that were differentially expressed in three or more columns are shown. Similarities between the responses were highlighted by clustering the columns and biological functions across all three species, with the columns color-coded such that tan, turquoise, and pink represent cai xin, lettuce, and spinach, respectively. The labels of the stress conditions are also colored according to their respective stress experiments. (B) Normalized Differential Expression Index (NDEI) values of photosynthesis, coenzyme metabolism, and multi-process regulation of cai xin under various stress conditions, where red and blue represent positive and negative NDEI values, respectively. (C) Correlations between biological functions defined by various levels (levels 1, 2, 3, and terminal) of MapMan bins. The biological functions are depicted as nodes and color-coded according to level 1 bins. The thickness of the edges represents the number of stresses in which the relationship is conserved. Edge colors represent positively correlated functions in orange and negatively correlated functions in purple. For brevity, only correlations conserved across all three species and in at least five conditions are shown.




Temperature played an important role in achieving maximum FW. Both cai xin and lettuce grew well at 25°C and 30°C but showed reduced growth at 20°C and 35°C (
Figures 2A, B
). Spinach grew best at 25°C but was more sensitive to heat at 30°C and 35°C. While cai xin and lettuce could still grow at 35°C, spinach plants died after a few days (
Figures 2A, B
).


Low light intensities (65 μmol·m−2·s−1 to 135 μmol·m−2·s−1) and shorter photoperiod (8 h to 13 h of light) significantly decreased growth of all three species compared to controls. In cai xin and lettuce, the highest light intensity (268 μmol·m−2·s−1) and longest photoperiod (24 h light) did not promote further growth (
Figure 2B
). In contrast, spinach showed maximum FW at the highest light intensity (260 μmol·m−2·s−1) or the longest photoperiod (24 h light). However, some leaves showed yellowing at the tips and curling (data not shown). Thus, a lower light intensity of 130 μmol·m−2·s−1 and a shorter photoperiod of 13 h light were chosen as the default for spinach in other experiments, consistent with previous reports (Zou et al., 2020). Variation in light quality by modifying ratios of red, blue, and white light did not cause significant phenotypic changes in any of the three species (
Figure 2B
).






Nutrient deficiencies and photoperiod changes induce major gene expression shifts


To better understand how the three species respond to different growth conditions at the gene
expression level, we performed RNA-sequencing. For each of species and stress conditions, gene
expression data were generated in triplicates (
Supplementary Data 1
–
3
) for expression matrices of cai xin, lettuce, and spinach, respectively). A total of 276
RNA-seq samples (
Supplementary Table S2
) were obtained across 31 stress conditions (30 for spinach, as the plants died at 35°C)
from all three species. Clustering of the samples revealed high similarity among nearly all replicates, and distinct clustering patterns for N, P, and K deficiencies in cai xin (
Supplementary Figure S1
), lettuce (
Supplementary Figure S2
), and spinach (
Supplementary Figure S3
), indicating a strong transcriptional response to these stresses.


To determine the genes that exhibit differential expression in various stress conditions, differentially expressed genes (DEGs) were identified using DESeq2 for all stress conditions and species (
Figure 2C
; 
Supplementary Tables S3
–
S5
). Among the species analyzed, spinach demonstrated the fewest DEGs (<4,000 DEGs across all stress conditions), while the other two species exhibited a higher number (12,000 DEGs). Deficiencies in N, P, and K (0% to 50%) induced the highest number of DEGs in all species. Conversely, surplus levels of N, P, and K (150%) had minimal effect on gene expression, with the exception of 150% K in cai xin, which showed 2,080 DEGs.


While light quality resulted in a low number of DEGs for all species (<397, 
Figure 2C
), changes in light intensity and photoperiod had pronounced effects on the gene expression. Lettuce showed a large number (2,690) of DEGs under low light (67.5 μmol·m−2·s−1). A shorter photoperiod induced a high number of DEGs in cai xin (7,421 DEGs, 8 h light) and lettuce (4,160 DEGs, 8 h light). Conversely, a long photoperiod (24 h light) resulted in few DEGs in cai xin (732) and lettuce (485), but many in spinach (1,770).


Temperature variations had a prominent effect on the gene expression of all three species, with high temperatures (35°C for cai xin and lettuce, and 30°C for spinach) resulting in an increase in DEGs. Evidently, lettuce was sensitive to temperatures lower than the control, with a substantial number of DEGs reported at 20°C. Overall, nutrient deficiencies elicited the strongest transcriptional responses across all species, with nitrogen deficiency consistently inducing the highest number of differentially expressed genes. This trend aligns with the observed phenotypic data (
Figures 2A, B
), where nutrient deficiencies led to the most pronounced growth reductions. In contrast, nutrient surplus conditions generally provoked minimal changes in gene expression, suggesting that plants can tolerate elevated nutrient levels more easily than shortages. The magnitude of the transcriptional response mirrored the growth impairments seen under stress, reinforcing the tight coupling between physiological performance and underlying gene regulation. Light-related stresses, particularly shortened photoperiods and low light intensities also produced moderate to strong DEG responses, which matched their detrimental effects on fresh weight. Together, these results highlight that nutrient and light availability are dominant factors shaping transcriptional stress responses in hydroponic crops, both at the phenotypic and molecular levels.







Conserved biological pathway responses revealed by cross-species gene expression analysis


To gain insight into the biological functions affected by the stress conditions, we identified significantly differentially expressed MapMan bins. We observed high similarities among the N, P, and K deficiencies across all species, with coenzyme metabolism and photosynthesis being significantly downregulated (BH p-adj <0.5); solute transport, enzyme classification and phytohormone action being both significantly up- and downregulated; and protein modification and RNA biosynthesis significantly upregulated, indicating conserved responses (
Figure 3A
). In particular, under 0% N and 0% P stress conditions, certain biological functions were similarly regulated across all three species. Under 0% N, cytoskeleton organization, cell division, chromatin organization, and cell wall organization were upregulated, suggesting enhanced root developmental activity, likely promoting lateral root initiation and elongation to improve nutrient foraging (Forde and Lorenzo, 2001; Krouk et al., 2010). The downregulation of the response to external stimuli may reflect a growth-defense trade-off, whereby immune signaling is suppressed to conserve energy for growth (Huot et al., 2014). For 0% P, the downregulation of photosynthesis and coenzyme metabolism across species indicates reduced energy production and metabolic activity, consistent with the central role of P in ATP and NADPH synthesis (Plaxton and Tran, 2011). The upregulation of RNA biosynthesis suggests transcriptional reprogramming in response to P deprivation, enabling stress-specific gene expression (Misson et al., 2005).


[image: A multi-panel scientific figure featuring a triangular matrix (Panel A) comparing gene expression in cai xin, lettuce, and spinach, with colors indicating upregulated (red) and downregulated (blue) genes. Panels B through D display bar charts and plots detailing conserved differentially expressed genes across different stress conditions. Key elements are color-coded for clarity, depicting relationships and shared orthogroups among species and conditions.]
Figure 3 | 
Conservation analysis of transcriptomic stress responses. (A) The heatmap shows the conservation of differentially upregulated (upper right triangle) and downregulated (lower left triangle) genes (and orthogroups) across the three species in the various stress conditions. For the across-species analysis, Jaccard index values between 0.01–0.02 (light red) and 0.02–0.04 (dark red) were computed between the upregulated orthogroups of two stress conditions. Similarly, Jaccard indices between 0.01–0.02 (light blue) and 0.02–0.04 (dark blue) indicate similarities between the downregulated orthogroups of two stress conditions. For the within-species analysis, Jaccard indices between 0.1–0.4 (light green) and 0.4–0.8 (dark green) were computed between the upregulated DEGs of two stress conditions. Similarly, Jaccard indices between 0.1–0.4 (light brown) and 0.4–0.8 (dark brown) indicate similarities between the downregulated DEGs of two stress conditions. Gray cells represent Jaccard indices of 0 to 0.01 and 0 to 0.1 for across- and within-species analyses, respectively. White cells indicate no significance (BH p-adj >0.05) for the Jaccard index computed between two stress conditions. (B) All 165 DEGs (N) conserved across three species under phosphate deficiency are shown in different columns (x-axis), where 73 are upregulated (red, left to right of the x-axis), and 92 are downregulated (blue, right to left of the x-axis). The experimentally verified functions of the conserved DEGs’ respective Arabidopsis thaliana best BLAST hits are shown in rows. The category ‘Others’ encompasses osmotic stress and light–dark cycle. Conserved DEGs with verified functions are represented as bars, color-coded according to the different stress categories, and unverified functions are depicted as gray bars. Upset plots for (C) upregulated and (D) downregulated conserved orthogroups across species. The x-axis indicates the different stress condition combinations, while the y-axis indicates the number of orthogroups in a given combination. Subscripts “d” and “s” represent deficient and surplus, respectively.




The consistent enrichment of biological functions such as protein modification and RNA biosynthesis across N, P, and K deficiencies suggests that these pathways play a central role in orchestrating general stress adaptation mechanisms. Protein modification processes, such as phosphorylation and ubiquitination, are essential for fine-tuning signaling cascades and for activating or repressing key metabolic and defense pathways under stress (Stone, 2014). Similarly, RNA biosynthesis supports global transcriptomic reprogramming, prioritizing protective functions and suppressing growth-related genes (Baena-González and Sheen, 2008). These functions act as regulatory hubs—flexible yet conserved—enabling rapid and coordinated responses to environmental changes. Their evolutionary conservation likely stems from strong selective pressure to maintain core cellular infrastructure that supports plasticity in response to diverse abiotic stressors. Thus, their recurrence across species and stress types underscores their role as foundational elements of the plant stress response network.






Correlation analysis unveils functional linkages between biological functions


Given that the stresses affect multiple biological functions that are likely functionally linked,
we propose that the gene expression data provide an opportunity to better understand how these
different processes are interconnected. To this end, we investigated the correlation of the Normalized Differential Expression Index (NDEI) values across the different stresses in the three species (
Supplementary Tables S6
–
S8
). NDEI values range from −1 (all genes assigned to the pathway are downregulated in a given stress) to 1 (all genes are upregulated), and biological pathways that are functionally linked should show high NDEI value correlations. For example, photosynthesis and coenzyme metabolism (comprising several cofactors important for photosynthesis) showed a strong NDEI correlation of PCC = 0.93 (p-adj = 2.65E−09) in cai xin (NDEI values of 0.28942 and 0.13217, respectively, under 8 h of light stress; 
Figure 3B
; 
Supplementary Table S6
), while multi-process regulation (comprising stress-responsive genes) tended to show a negative correlation (NDEI value of −0.07051 under 8 h of light stress; 
Figure 3B
; 
Supplementary Table S6
), which aligns with photosynthesis being negatively regulated by stress (Ferrari and Mutwil, 2020).


To better understand how the different biological functions are connected, we performed NDEI correlation analysis across the three species and investigated the conservation of the responses. From the level 1 MapMan bin network, we observed that all conserved correlations between biological functions were positive, and that protein modification was positively correlated with multiple biological functions across various stresses in the three species (
Figure 3C
; 
Supplementary Table S9
).


The more fine-grained level 2 network showed that photosynthesis-related processes (light blue nodes), such as photophosphorylation, photorespiration, and the Calvin cycle, were significantly positively correlated with coenzyme metabolism processes—such as tetrapyrrole and chlorophyll metabolism (lilac nodes)—and with protein modification processes such as protein folding (orange). These relationships indicate that stress conditions significantly affect photosynthesis and chlorophyll production, a well-established phenomenon. Interestingly, a pathogen-specific response (green) was also induced under stress; it was strongly associated with protein phosphorylation (orange) and RNA biosynthesis (pink), but strongly negatively correlated with photophosphorylation in photosynthesis. While it is known that pathogen-specific responses—such as pathogen triggered immunity (PTI) and effector triggered immunity (ETI)—can lead to decreased photosynthetic efficiency, chlorosis, and cell death (Su et al., 2018; Nguyen et al., 2021), the regulatory mechanisms connecting pathogen response and photosynthesis remain poorly understood.


A more fine-grained level 3 network showed that various photosynthesis-related (light blue) and plastidal ribosomal machinery (orange) processes were highly interconnected and positively correlated with each other. Conversely, WRKY transcription factors (pink) were negatively correlated with various photosynthetic pathway processes, such as chlororespiration, photosystem I and photosystem II; this correlation was conserved across multiple stresses (thick edges). WRKY transcription factors also showed positive correlations with responses to biotic stresses (pathogen defense and PTI responses), likely reflecting their established roles as key regulators of downstream genes in both abiotic and biotic stresses (Khoso et al., 2022; Ma and Hu, 2024). The identity of the specific WRKY transcription factor(s) involved in this process may be inferred from their negative correlation with LHCB proteins (light blue), consistent with previous findings that WRKY40 represses LHCB expression (Liu et al., 2013). While some of these associations—such as those between stress and photosynthetic efficiency, or between growth and defense—are already known, our analysis allows us to pinpoint likely sites of interaction among these various major signaling modules.







Identification of conserved abiotic stress responses across species


Plants have evolved elaborate mechanisms to cope with stress, many of which are conserved to some extent across species (Ferrari and Mutwil, 2020; Wu et al., 2021; Leong et al., 2023). To better understand how stress responses are conserved across species, we investigated whether the three species exhibited significantly similar gene expression changes. Using permutation analysis we found that N, P, and K deficiency responses were significantly similar across species for downregulated genes (BH p-adj <0.05) (
Figure 4A
), brown rectangles, 
Supplementary Tables S10
–
S13
). For instance, 0% N to 50% N stress conditions in lettuce elicited responses similar to N, P, and K deficiency conditions in cai xin (
Figure 4A
), lower left corner, blue cells). This shows that different stresses can elicit similar downregulation patterns.


[image: Diagram depicting steps for inferring and conserving transcription factor (TF)-target edges across species. Panel A shows GENIE3 used to infer TF-target edges in three species. Panel B is a bar chart comparing conserved edge numbers across species (spinach, lettuce, cai xin). Panel C is a heatmap illustrating enrichment scores and p-values for edge conservation. Panel D shows network diagrams of conserved TF-target edges within metabolic pathways, color-coded by enzyme type. A legend clarifies symbol and color meanings.]
Figure 4 | 
Construction and comparison of gene regulatory networks for cai xin, lettuce, and spinach. (A) Schematic workflow for identifying conserved TF-target edges. Step 1: GRNS were generated for each species using GENIE3, and the top 5% of TF-target edges (ranked by non-zero weight) were retained. Step 2: All TF-target edges were mapped to their respective OGs, and edges conserved across at least two species were identified. Step 3: Conserved TF-target edges under specific stress conditions were further refined by identifying edges that were consistently differentially expressed across species under the same stress. (B) Number of differentially expressed TF-target edges (top 5% by edge weight rank) in cai xin, lettuce, and spinach, categorized by the number of species in which they are conserved: blue bars (n = 1) for species-specific edges, green bars (n = 2) for edges conserved between two species, and orange bars (n = 1) for edges conserved across all three species. (C) Pairwise comparison of GRNs: adjusted p-values for edge conservation are shown in the lower right triangle, and enrichment scores (observed vs. expected overlap) are shown in the upper right triangle. (D) Conserved GARP TFs in phosphate deficiency GRNs across all three species, showing nodes of various shapes representing different functional protein types. Node colors correspond to different orthogroups. Delta and T-shaped arrows indicate activators and repressors, respectively. A down arrow (↓) indicates genes that are downregulated under phosphate deficiency.




For upregulated DEGs, identical stress conditions tend to upregulate similar sets of genes, particularly between lettuce and cai xin (upper right triangle, red squares found on the diagonal, 
Figure 4A
). Furthermore, similar to the downregulated DEGs, N, P, and K deficiencies also upregulate comparable sets of genes across different nutrient deficiency conditions. For example, the 0% K stress condition in lettuce upregulated gene sets similar to those induced by 0% N and 0% P stress conditions in cai xin. In spinach, cross-species similarities in upregulated genes were also observed, although they were less frequent. Within each species, gene expression patterns were also observed across different stress conditions within the same stress experiment (
Figure 4A
), near main diagonal, yellow and green cells). Overall, we conclude that downregulated genes exhibit conserved but less condition-specific expression patterns compared to upregulated genes.







Conserved upregulated genes are enriched for stress-related functions


To better understand the functions of the conserved upregulated genes, we performed a literature
search of their best BLAST hits from A. thaliana (
Supplementary Table S14
). Several of the observed genes have already been reported to be involved in N, P, or K deprivation, such as a growth-regulating factor (Lantzouni et al., 2020), an R2R3 MYB transcription factor (Gaudinier et al., 2018), a calcium-dependent protein kinase (Qin et al., 2020; Liu et al., 2021; Adavi and Sathee, 2024) and other signaling components like the purple acid phosphatase AtPAP12 (Wang et al., 2014). These conserved upregulated genes likely represent core regulators of abiotic stress responses, as they belong to TF families, kinases, and signaling enzymes that are known to act upstream in regulatory networks. Additionally, their consistent upregulation across three divergent species—and their previously validated functions in A. thaliana—suggest that they are part of a shared core stress signaling module. Thus, the genes in this list constitute valuable targets for studying how plants respond to abiotic stresses.


To investigate whether the identification of the conserved DEGs can enhance the inference of functionally relevant genes, we took a closer look at the experimental characterization of the Arabidopsis orthologs. A total of 165 DEGs were identified as conserved across all three species under phosphate deficiency, of which 73 were upregulated and 92 were downregulated (
Figure 4B
; 
Supplementary Table S14
). The experimentally verified functions of these conserved DEGs, based on their best BLAST hits from A. thaliana, revealed that 76 DEGs have experimentally verified functions, and the majority were involved in light, salt and drought stress. Strikingly, nearly all genes that were verified to be involved in phosphate responses were upregulated (11 upregulated and one downregulated), further reinforcing the observation that upregulated—but not downregulated—genes tend to have stress-specific functions. Notably, eight upregulated and 18 downregulated DEGs were implicated in three or more stress responses, suggesting broader functionality of these genes and their role in fundamental regulatory networks. A substantial proportion of these genes were also implicated in other abiotic stress responses such as drought, light, and salt, further reinforcing their broad functionality and importance in integrating multiple environmental cues. Given their central regulatory roles and evolutionary conservation, these genes are attractive targets for translational applications. For instance, marker-assisted selection or genome editing to modulate their expression could lead to cultivars with enhanced resilience to combination stress without compromising yield—an outcome highly relevant for both field and controlled-environment agriculture.







Functional analysis of conserved stress-responsive gene families


To identify gene families that might be important for stress responses, we identified orthogroups that exhibited conserved responses across all species under the deficient and/or surplus stress conditions (
Figures 4C, D
). In complement to 
Figure 4A
’s observations, N, P, and K deficiency stress conditions encompassed the largest numbers of stress-specific, significantly conserved orthogroups, where 6, 9, and 10 upregulated, and 13, 14, and 9 downregulated orthogroups were identified, respectively. Notably, some conserved orthogroups show up- and/or downregulation in more than one surplus and/or deficient stress condition, as seen for N and P deficiencies (five upregulated and four downregulated orthogroups), K and P deficiencies (four upregulated and four downregulated orthogroups). and N, P, and K deficiencies (one upregulated and three downregulated orthogroups) (
Figures 4C, D
).


A total of 82 conserved orthogroups were identified under N, P, and K deficiencies, of which only
nine had verified functions based on their best BLAST hits from Arabidopsis (
Supplementary Table S14
). Several of the conserved orthogroups were associated with phosphate acquisition and metabolism. Orthogroup OG0002122 (upregulated in P deficiency) encodes purple acid phosphatases 10 and 12 (PAP10 and PAP12), which are known for their roles in phosphate scavenging and recycling. These enzymes have been shown to enhance P deficiency tolerance by improving plant growth when overexpressed under P deficient conditions in A. thaliana and B. napus (Lu et al., 2008; Wang et al., 2011; Wang et al., 2014). Similarly, OG0002510 (upregulated in P deficiency) encodes phospholipase D zeta 1 (PLDζ1), which promotes root development under P deficiency by hydrolyzing phosphatidylcholine to release inorganic phosphate and support galactolipid synthesis (Li et al., 2006a; Li et al., 2006b). Lastly, OG0003037 (upregulated in P and K deficiencies) encodes glucose 6-phosphate/phosphate translocator 1 (GPT1), a gene critical for P stress adaptation in B. napus under low P conditions, and its Arabidopsis homolog, AtGPT1, also contributes to P efficiency under similar stress conditions (Yang et al., 2010).


Other conserved orthogroups function in stress signaling and redox regulation. OG0000492 (up- and downregulated in P and N deficiencies, respectively), encoding a catalase (CAT) enzyme, exhibited condition-dependent regulation—being repressed under N deprivation while induced by P starvation (Kandlbinder et al., 2004). OG0000699 (downregulated in N, P, and K deficiencies), corresponding to glutamine synthetase 2 (GS2), is a well-characterized nitrogen-responsive gene in barley, Thellungiella halophila and Arabidopsis (Kant et al., 2008; Schildhauer et al., 2008; Guiboileau et al., 2013). Similarly, OG0002621 (upregulated under P deficiency), which encodes glutamate decarboxylase 1 (GAD1), supports plant acclimation to P deficiency by upregulating the GABA shunt pathway and alleviating reduced 2-OGDH activity (Benidickson et al., 2023).


Conserved regulation was also observed among transcriptional regulators. OG0001470 (upregulated in P and N deficiencies), which encodes MYB62—a transcription factor known to suppress the expression of P starvation-induced genes—is specifically induced in leaves during P deprivation and regulates several aspects of the P stress response (Devaiah et al., 2009). OG0000576 (downregulated in P deficiencies), encoding indole-3-acetic acid inducible 14 (IAA14), is involved in lipid remodeling and P homeostasis under P deficiency in Arabidopsis (Narise et al., 2010).


Lastly, conserved regulation of ion transport was observed. OG000854 (downregulated in K deficiency) corresponds to K+ efflux antiporter 1 and 2 (KEA1 and KEA2), which are important for potassium homeostasis under K+ deficiency in Arabidopsis, with AtKEA1 being specifically expressed in both shoots and roots under low K+ stress (Zheng et al., 2013).


Taken together, this functional analysis of conserved stress-responsive gene families highlights how conserved gene families mediate nutrient sensing, signal transduction, transcriptional reprogramming, and ion transport during abiotic stress responses. Their consistent regulation across diverse species and nutrient conditions underscores their likely importance as central components of stress adaptation and suggests their potential utility in breeding programs aimed at improving nutrient stress resilience.







Stress-responsive gene regulatory networks are conserved across species


Transcription factors are essential components of stress responses, and because they can control the expression of hundreds of target genes, they represent valuable targets for engineering stress adaptation. Because our dataset captures the stress responses of three species subjected to similar stresses, we developed a new approach that combines orthology and gene regulatory network analysis and identified conserved TF-target edges between two or more species (
Figure 1A
). From the GRNs of cai xin, 1071 TF-target edges were found to be conserved with the GRNs of either lettuce or spinach, and 19 TF-target edges were conserved with the GRNs of both lettuce and spinach (
Figure 1B
; 
Supplementary Tables S15
–
S17
). Permutation analysis revealed that the TF-target edges were significantly conserved (BH p-adj <0.05) between two or more species, with especially strong conservation between cai xin and spinach, and between lettuce and spinach, where enrichment scores of 1.24 (i.e., 24% more edges than expected by random) and 1.27 were computed, respectively (
Figure 1C
).


Surplus- and deficiency-specific GRNs were built with significantly conserved TF-target edges for
each species (
Supplementary Data 4
; 
Supplementary Tables S15
-
S17
). In the conserved phosphate deficiency GRNs in cai xin, Bra023066 (GRF)
was observed to regulate 14 genes and two TFs—Bra025775 (B3) and Bra039733 (LOB) (
Supplementary Figure S4
). Additionally, Bra023066 was regulated by four other
TFs—Bra000638 (HB), Bra027050 (HB), Bra017852 (AP2/ERF), and Bra011782 (AP2/ERF) (
Supplementary Figure S4
). This reveals the complexity of the gene regulatory system, where multiple TFs are interconnected to coordinate responses to stressors. An independent network, consisting solely of GARP TFs—Bra016734, Bra019824, Bra026048, Bra026720, and Bra038360—was also observed under phosphate deficiency. Despite lacking interconnectivity with other TFs, they regulate a substantial number of genes, supporting previous findings that GARP TFs play an important role in phosphate signaling pathways (Safi et al., 2017; Yang et al., 2025).


A deeper investigation of the conserved GARP TFs, under phosphate deficiency GRNs across all three species revealed that, in cai xin, the GARP TF network formed a complete structure composed of two primary sub-networks (
Figure 1D
). These two sub-networks were primarily anchored by TFs from OG0002025 (Bra016734 and Bra019824, depicted in red) and OG0006322 (Bra004330 and Bra038360, shown in gray), which would otherwise function independently were it not for their connectivity to OG0001470 (Bra026048 and Bra026720, colored green). The conservation of these two primary sub-networks—OG0002025 and OG0006322—was traced to lettuce and spinach, respectively. The complete network predominantly regulates enzymes involved in primary metabolism (e.g., arabinose mutase, monogalactosyldiacylglycerol synthase), secondary metabolism enzymes (e.g., enolase, DAHP synthase), as well as transferases and kinases (e.g., CLK/LAMMER kinase, glycosyltransferase). A conserved negative GARP network was also observed between lettuce and spinach only, in which the TFs activate a transcriptional repressor, an ABC1-atypical protein-kinase, and a CSC-interaction protein, while repressing a ubiquitin-fold protein. The partial overlap of these sub-networks highlights a unique yet conserved regulatory mechanism shared among the three species in response to phosphate deficiency.







Regulatory strength identifies key transcription factors and associated biological functions under specific stress condition


To predict the biological functions of the conserved TF gene families, we analyzed the MapMan bins associated with their target genes. The resulting transcription factor–MapMan bin network illustrates which biological processes are likely regulated by TFs across multiple species under specific stress conditions. Potassium, phosphate and nitrogen deficiencies exhibited extensive conservation across two or more species, with a total of 150, 100, and 67 conserved TFs, respectively (
Figure 5A
; 
Supplementary Table S18
). On the contrary, surplus temperature and shorter photoperiod exhibited lower conservation, with 14 and five conserved TFs, respectively (
Figure 5A
; 
Supplementary Table S18
).
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Figure 5 | 
Transcription factor-biological process regulatory networks. (A) Networks of biological functions (MapMan bins) regulated by conserved TFs specific to potassium deficiency, nitrogen deficiency, phosphate deficiency, surplus temperature, and photoperiod deficiency-specific conserved TFs. (B) Regulatory network of conserved GARP TFs under phosphate deficiency, showing the biological functions governed by this TF family. The network is organized with conserved TFs from all three species positioned at the center of concentric circles. Each concentric layer represents a successive MapMan bin level, arranged radially from level 1 at the center to the terminal level on the outermost ring. Elliptical nodes represent TFs, while rectangular nodes represent biological functions, respectively. Gene families are distinguished by color, while biological functions are color-coded according to their corresponding level 1 MapMan bin. Each TF is connected to the level 1 MapMan bins it regulates. For deeper levels (levels 2, 3, and terminal), connections are established between adjacent MapMan bins levels (e.g., level 2 to level 1). An edge between two MapMan bins represents the regulation of a downstream function by a gene family, with edge colors indicating the corresponding gene family. The regulatory strength of a gene family for a given biological function is indicated by the weight of the edge, with thicker edges denoting stronger regulation.




Among the conserved TF families, Growth-Regulating Factors (GRFs) were predominant under nitrogen
deficiency, photoperiod deficiency, and surplus temperature, primarily regulating cell division,
nucleotide metabolism, and DNA damage responses (
Supplementary Table S19
). These functions align with GRFs’ established roles in coordinating growth and developmental plasticity under fluctuating environmental conditions (Tu et al., 2024). Their strong regulatory activity under photoperiod stress, in particular, suggests that GRFs may serve as key levers for tuning plant architecture and biomass accumulation in low-light indoor farming systems.


In contrast, the WRKY and AP2/ERF TF families were predominant under potassium and phosphate deficiency. Under potassium deficiency, these TFs regulated amino acid metabolism, RNA biosynthesis, polyamine metabolism, and multi-process regulatory pathways. Under phosphate deficiency, they were associated with the regulation of coenzyme metabolism, protein modification, photosynthesis, redox homeostasis, and both RNA and protein biosynthesis. These findings are consistent with the well-documented roles of WRKYs and AP2/ERFs in nutrient stress signaling and broad transcriptome reprogramming (Jiang et al., 2017; Ma et al., 2024).


To examine more deeply the biological functions of GARP TFs under phosphate deficiency, we determined their regulatory strength—ranging from 0 to 1, where 1 indicates the target genes of a gene family from all species consistently regulate a biological function under specific stress—across various biological processes (
Figure 5B
). We observed high regulatory strength for phenylalanine ammonia lyase, UDP-monosaccharide pyrophosphorylase, DNA phosphodiesterase, and the R2R3-MYB TF family. The roles of the GARP TFs that regulate at least five biological functions were further validated against the experimentally confirmed functions of their best BLAST hit orthologs in A. thaliana, revealing that four of the seven TFs were responsive in phosphate starvation (Liu et al., 2009; Nagarajan et al., 2016; Ueda et al., 2020). Thus, our integrated analysis pinpoints transcription factors that govern specific stress-responsive pathways, highlighting genetic targets for improving crop resilience.







Gene regulatory networks are conserved despite divergent biological functions across species


To verify whether the functions of the identified transcription factors are conserved in
A. thaliana, we examined the experimentally validated functions of their best BLAST
hit orthologs in A. thaliana (
Supplementary Figure S5A
; 
Supplementary Table S20
). Only nine out of 139 (~6.5%) TFs exhibited conserved responses with their A. thaliana orthologs, the majority of which were associated with phosphate deficiency responses. A nitrogen-responsive hit was identified for gn_4_20080.1, which was downregulated under N deficiency and upregulated under P deficiency. Its best BLAST hit, AT1G13300, has also been shown to respond to nitrogen and phosphate starvation based on Gene Ontology annotations (Liu et al., 2009; Safi et al., 2021). Bra016734 and Bra019824 also share AT1G13300 as their best BLAST hit, but only exhibit a conserved response under P deficiency. Notably, Bra006085 and gn_6_20120.1, are differentially expressed under both N and photoperiod deficiency, yet their best hit, AT5G11060, has only been reported to be regulated by light (Serikawa et al., 1996). The mismatches between the conserved TFs and their A. thaliana orthologs suggest that the orthologs might have diverged in function or have not yet been studied under these specific stress conditions in Arabidopsis.


To assess whether the functions of the TFs are significantly conserved relative to A.
thaliana, a permutation analysis was conducted. The results indicated significant
conservation (BH p-adj = 0.001, 
Supplementary Figure S5B
), with the observed proportion of functional matches exceeding that of the permuted matches (enrichment score = 1.67). However, although there is overall conservation of biological functions between the three crops and Arabidopsis, the conservation is primarily driven by shared responses to P and light.







Identification of stress-related genes with StressCoNekT database


The gene expression data for all stress experiments on the three species are made available on the StressCoNekT database (https://stress.plant.tools/), along with stress data for Marchantia polymorpha (Tan et al., 2023). The database serves as a platform for visualizing expression profiles, co-expression networks, and various comparative analyses. To demonstrate the utility of the database, we analyzed a co-expression cluster containing photosynthesis-relayed genes. The average expression profile (
Figure 6A
) revealed that photosynthetic gene expression was lower under N, P, and K deficiencies, consistent with what was observed in 
Figure 3
). Meaningful co-expression networks can also be visualized; for example, the cluster included many known genes important for photosynthesis (
Figure 6B
). A comparative heatmap allows visualization of multiple gene expressions across stress conditions and species for comparison. For example, the photosystem I subunit H protein showed downregulation across all stresses, particularly during nitrogen deficiency (
Figure 6C
). Genes that show conserved responses can be identified using the ‘Compare specificities’ tool. In cai xin and lettuce under phosphate deficiency, 31 orthogroups were found to show conserved responses (
Figure 6D
). By cross-referencing the conserved orthogroup gene families with A. thaliana, six orthogroups (~20%) had been experimentally verified to have distinct roles under phosphate deficiency (
Table 4
). While the functions of the other genes on the list have not yet been reported as important for phosphate deficiency, their conservation strongly suggests a role in responding to this stress. In conclusion, the stress.plant.tools database enables the exploration of stress-specific expression profiles and will be an invaluable platform for stress-related studies.
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Figure 6 | 
Example usage of StressCoNekT database. (A) Average expression profiles in the photosynthetic cluster. Colors indicate different stress experiments (x-axis), while average expression is shown on the y-axis. (B) Co-expression network of genes in the photosynthetic cluster. Nodes represent genes, edges connect co-expressed genes, and colored shapes represent different orthogroups. (C) Expression values of PSI-H genes in cai xin, lettuce, spinach, and Marchantia polymorpha. Genes are shown in rows, and stresses and controls in columns. (D) Venn diagram showing genes with conserved upregulation under phosphate deficiency in cai xin and lettuce.





Table 4 | 
Phosphate starvation-specific orthogroups for Brassica rapa and Lactuca sativa.




	Orthogroup

	
Brassica rapa gene ID

	PubMed ID

	
Lactuca sativa gene ID

	PubMed ID






	OG0000304
	Bra004502 (PPa3), Bra040479 (PPa3)
	 
	gn_6_11381.1 (PPa1), gn_6_32441.1 (PPa1), gn_2_77240.1 (PPa2)
	 



	OG0006190
	Bra005226
	 
	gn_3_36220.1 (MEF37)
	 



	OG0000895
	Bra005261 (LOS2)
	 
	gn_8_61901.1 (LOS2), gn_2_129481.1 (LOS2)
	 



	OG0006216
	Bra005540 (PFA-DSP2)
	 
	gn_9_48960.1 (PFA-DSP3)
	 



	OG0000371
	Bra005568 (VAMP725)
	 
	gn_8_90080.1 (VAMP7B)
	 



	OG0002656
	Bra018335 (PCK1), Bra021612 (PCK1)
	 
	gn_9_18361.1 (PCK1)
	 



	OG0002710
	Bra029697 (PLC2)
	 
	gn_5_150521.1 (PLC7)
	 



	OG0001949
	Bra029831 (PAL4)
	 
	gn_2_106540.1 (PAL1)
	 



	OG0000738
	Bra031389
	 
	gn_5_33881.1
	 



	OG0000880
	Bra039165 (RGP1)
	 
	gn_5_23541.1 (RGP1), gn_4_113220.1 (RGP1)
	 



	OG0006958
	Bra008171 (KJC1)
	 
	gn_4_180561.1 (KJC2)
	 



	OG0006923
	Bra020104 (MGD2), Bra037199 (MGD3)
	31201686, 18808455, 16762032, 11553816, 21506606, 17419847, 14730084
	gn_7_44320.1 (MGD3)
	21506606, 18808455, 17419847, 16762032, 14730084, 11553816



	OG0004400
	Bra020624 (MYB78), Bra010021 (MYB78), Bra010022 (MYB78)
	 
	gn_6_70301.1 (BOS1)
	 



	OG0002993
	Bra033127, Bra014868
	 
	gn_6_113580.1, gn_4_124081.1
	 



	OG0004295
	Bra038357 (PHO1;H1), Bra004017 (PHO1;H1), Bra004334 (PHO1;H1)
	17461783
	gn_4_20480.1 (PHO1;H1)
	17461783



	OG0001200
	Bra003102, Bra024235
	 
	gn_5_89840.1 (UUAT3)
	 



	OG0000551
	Bra018841 (STP9)
	 
	gn_6_7321.1 (STP1)
	 



	OG0002152
	Bra019824 (HRS1), Bra016734 (HRS1)
	19341407, 29636481, 31811679
	gn_4_20080.1 (HRS1)
	19341407, 29636481, 31811679



	OG0000634
	Bra025150 (ALA10)
	 
	gn_8_37961.1 (ALA9), gn_4_17140.1 (ALA9)
	 



	OG0002955
	Bra026068 (GAPCP-2)
	 
	gn_7_110780.1 (GAPCP-1)
	 



	OG0001609
	Bra003443 (LMI2)
	 
	gn_7_5000.1 (LMI2), gn_3_120520.1 (MYB14), gn_8_50241.1 (MYB93)
	 



	OG0000928
	Bra012067 (GMD1)
	 
	gn_4_152760.1 (MUR1)
	 



	OG0013618
	Bra016176
	 
	gn_8_44580.1
	 



	OG0000282
	Bra007651
	 
	gn_2_87800.1
	 



	OG0002253
	Bra029482 (MEE51)
	 
	gn_0_27020.1
	 



	OG0000963
	Bra032846 (RSL4)
	38267225, 1913310, 29651114, 30154812, 27427911
	gn_7_20720.1 (RSL4), gn_5_114261.1 (RSL2)
	38267225, 1913310, 29651114, 30154812, 27427911



	OG0002936
	Bra036222
	 
	gn_2_90021.1
	 



	OG0003131
	Bra037176 (PRX72)
	 
	gn_3_74860.1 (PRX72), gn_3_74880.1 (PRX72), gn_4_151960.1 (PRX72)
	 



	OG0002255
	Bra034307 (PAP12)
	30341950, 24528675, 25270985, 20545876, 18716755, 12172020
	gn_1_16540.1 (PAP12), gn_1_16580.1 (PUP3), gn_1_16600.1 (PAP12)
	30341950, 24528675, 25270985, 20545876, 18716755, 12172020



	OG0002810
	Bra040330 (MAX3)
	30466598
	gn_3_130781.1 (MAX3)
	30466598



	OG0003095
	Bra030749 (HAP5C)
	 
	gn_2_64201.1 (NF-YC3)
	 






For brevity, lettuce gene IDs have been shortened.










Discussion and conclusion


Hydroponic cultivation is increasingly favored globally for its efficient resource management and the production of high-quality food. Traditional soil-based agriculture faces numerous obstacles, including urbanization, natural disasters, climate change, and the detrimental effects of excessive chemical and pesticide use, which diminish soil fertility (Sharma et al., 2019). Our studies show that, although plant growth often does not surpass control conditions, it is possible to reduce the levels of certain nutrients, such as PKN, to 50% of their recommended amounts without significantly impacting growth (
Figures 2A, B
). Beyond its resource efficiency, hydroponics serves as an invaluable research tool, enabling swift experimentation with various growth parameters. Our research demonstrated this capability by testing 24 growth conditions across three species simultaneously in a hydroponics-mimicking setup. Studying stress in a ‘production environment’ is critically important, given the low success rate in translating growth-promoting genes from models like A. thaliana to crops; of 1,671 genes tested in maize, only 22 (1.3%) yielded promising leads for further development (Simmons et al., 2021; Inzé and Nelissen, 2022). Unlike field experiments where environmental variables remain uncontrolled, hydroponics offers the flexibility to alter these parameters on the target crop in a parallelized manner, thereby enhancing the throughput, reproducibility, and reliability of research findings.


In recent years, nutrient deficiencies have emerged as significant threats to crop growth, production, food safety, and quality (Neset and Cordell, 2012; Shahzad et al., 2014). Prior research predominantly explored the mechanisms and signaling pathways that model plants, such as Arabidopsis and rice, employ to maintain homeostasis during individual nutrient shortages (Fan et al., 2021). These studies have enriched our understanding of the genes crucial for mineral nutrient balance under such deficiencies. Through molecular biology, genetics, and omics techniques, key regulators of nitrogen (N), phosphorus (P), zinc (Zn), and iron (Fe) absorption and equilibrium in A. thaliana and rice have been pinpointed during mineral scarcities (Kobayashi and Nishizawa, 2012; Park et al., 2014; Bouain et al., 2018; Yang et al., 2018). However, gene expression analyses, despite their value, often identify thousands of differentially expressed genes (
Figure 2C
), posing challenges in distinguishing genes important for stress survival from those that are merely secondary stress responses. This issue can be mitigated by comparative research, prioritizing genes with consistent expression patterns across species (Julca et al., 2023). For instance, conserved co-expression modules likely denote groups of truly functionally interconnected genes (Movahedi et al., 2011; Mutwil et al., 2011; Hansen et al., 2014). Our findings corroborate this approach, showing a high enrichment of genes essential for survival under phosphate deprivation survival in both cai xin and lettuce (
Table 4
; 
Figure 6D
). Furthermore, we observed a unified response mechanism to NPK depletion across species (
Figure 4
), hinting at the potential for engineering resilience to these deficiencies by modifying the activity of the shortlisted genes.


The observation that downregulated genes were more broadly conserved yet functionally non-specific suggests a generalized stress response strategy, rather than one tailored to particular biological processes. This pattern may reflect a form of global gene expression suppression, a phenomenon also reported in basal algae such as Cyanophora paradoxa (Ferrari and Mutwil, 2020). In that study, genes downregulated across multiple abiotic stresses were associated with core biosynthetic processes and cellular functions, mirroring what has been observed in angiosperms. This supports the idea that repression of energetically demanding processes such as translation, transcription, and cell growth is an evolutionarily conserved feature of abiotic stress adaptation (Ferrari and Mutwil, 2020). In addition to energy conservation, the broad conservation of downregulated genes may also result from shared upstream signaling cascades that non-specifically suppress growth-related pathways in favor of defense and stress-mitigation programs (Baena-González et al., 2007; Nakashima et al., 2014). For example, stress-responsive pathways such as the MAPK cascade or ABA signaling are known to globally suppress transcription and translation machinery during the early phases of stress response (Kovtun et al., 1998; Aerts et al., 2024). Thus, the nonspecific but widespread downregulation of conserved genes across species likely reflects an ancient, coordinated mechanism for rebalancing cellular priorities under stress, rather than discrete functional modules being independently downregulated (Baena-González et al., 2007; Nakashima et al., 2014). The current analysis is based on bulk RNA-seq of whole leaf tissue, which may limit our understanding of how stress responses are coordinated across different tissues—and even within specific cell types. Future experiments investigating stress responses at the single-cell level using single-cell or spatial transcriptomics may help resolve how stress adaptation is coordinated across different cell types.


Correlation analyses of Normalized Differential Expression Index (NDEI) values further elucidate functional linkages between biological pathways. Positive correlations between photosynthesis and coenzyme metabolism, as well as protein modification and RNA biosynthesis, indicate coordinated regulation of these processes under stress conditions (
Figures 3B, C
). Our analysis revealed negative correlations between pathogen-specific responses and photosynthesis, suggesting an interaction between defense mechanisms and energy production, which aligns with the concept of growth-defense trade-offs (GDT) in plants. GDT is commonly observed in experiments on biotic stress and herbivory, in which defense signaling pathways are upregulated in response, resulting in the downregulation of growth-related pathways (Huot et al., 2014). MAP kinases, as first responders to pathogen-related effector molecules and other damage-associated molecular patterns (DAMPs) interact with WRKY transcription factors to suppress gibberellic acid signaling gene expression, stymying growth (Züst and Agrawal, 2017). RLKs and RLCKs have also been implicated in GDT, as many of these proteins serve as receptors for pathogenic molecules (Figueroa-Macías et al., 2021). While some associations—such as the relationship between stress and photosynthetic efficiency—are known, our analysis pinpoints likely sites of interaction among these major signaling modules. Here, we highlight the relationship between WRKY transcription factors and their connection with the photosynthetic component LHCB, without any a priori assumptions. However, we note that the observed pathogen-specific responses may, in part, be driven by WRKY-dominated patterns, suggesting that some findings could be biased due to the strong regulatory footprint of this TF family. The analysis effectively identifies relationships and components, offering meaningful perspectives on the intricate underlying mechanisms connecting various biological functions.


Stress adaptation mechanisms are orchestrated at the transcriptional level by transcription factors (TFs), leading to the accumulation of stress-responsive cellular factors (Ramanjulu and Bartels, 2002; Manna et al., 2021), thereby highlighting TFs as pivotal targets for genetic engineering. Leveraging the power of comparative transcriptomics and the parallel nature of our stress experiments, we have devised a novel pipeline that merges traditional regression methods with comparative genomics to construct conserved gene regulatory networks (
Figure 5A
). Our findings demonstrate significant conservation of these networks across species, delineating the biological pathways influenced by these TFs (
Figure 5
), yet they reveal limited conservation of functions attributed to Arabidopsis
orthologs—except in phosphate and nitrogen deprivation (
Supplementary Figure S5
). This partial conservation may be attributed to the species-specific divergence of gene functions, a phenomenon also noted in animal studies (Berthelot et al., 2018). Additionally, morphological distinctions could influence the impact of certain genes. For instance, the SAMBA gene—a negative regulator of cell cycle progression—boosts leaf growth in Arabidopsis through enhanced cell division upon inactivation (Eloy et al., 2012; however, in maize, its mutation leads to reduced growth, possibly due to excessive cell division during later development stages (Gong et al., 2022a). This indicates that some growth-regulatory networks are exclusive to eudicots and absent in monocots—for example, the PEAPOD-KIX-TOPLESS repressor complex (Schneider et al., 2021), which limits growth in various eudicot organs (Naito et al., 2017; Cookson et al., 2022), but is absent in grasses (Schneider et al., 2021). Furthermore, while mutations in DA1 and BIG BROTHER genes result in larger organs in Arabidopsis (Chen et al., 2021), similar mutations in maize do not produce growth-related phenotypes (Gong et al., 2022b), despite gene conservation. However, we cannot exclude the possibility that the roles of Arabidopsis TFs in the stresses examined here remain unexplored, as negative findings are often unreported due to publication bias against non-positive results (Nimpf and Keays, 2020). Fortunately, there is a growing acknowledgment of the value of reporting such “lost in translation” findings, as evidenced by recent publications (Gong et al., 2022b). The extensive availability of public data across diverse stresses and species presents a unique opportunity to accurately identify genes that confer stress resilience (Julca et al., 2023), emphasizing the importance of cross-species analyses and the potential for translational insights into stress tolerance mechanisms.


To maximize the impact of these findings, it is important to consider their potential applications in crop improvement and smart agriculture. The conserved stress-responsive genes and regulatory modules identified here serve as promising candidates for genetic engineering or marker-assisted selection to enhance nutrient stress tolerance in leafy crops. Given the relevance of controlled-environment agriculture, these targets may support the development of high-yield cultivars optimized for indoor or vertical farming systems. Additionally, the stress treatment and transcriptomic analysis framework used in this study—standardized across multiple species and stress conditions—is broadly applicable to other leafy crops. While currently limited to leaf tissues and transcriptomic data, the platform can be extended to incorporate root responses and additional omics layers. To support further research and data exploration, we developed the StressCoNekT database (https://stress.plant.tools), which enables users to query conserved gene expression profiles and predicted gene regulatory networks. The tool is especially useful for researchers and breeders working with leafy vegetables in hydroponic or controlled environments, though users should note that it presently excludes root data and post-transcriptional regulation. Future iterations will aim to address these limitations.
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Plant abiotic stress refers to the unfavorable effects on plants caused by any abiotic factors in a specific environment, such as drought, high temperature, low temperature, etc., which cause disruption of plant physiology and metabolism, and seriously affect the growth and yield of plants. Mounting evidence demonstrates that WRKY transcription factors modulate plant abiotic stress responses by regulating sugar metabolic pathways. Sugar metabolism pathway plays an essential role in plant stress resistance, and WRKY transcription factors, as an important class of regulatory factors, have attracted wide attention for their mechanism of action in abiotic stress. Therefore, this review primarily aims to analyze the structure and classification of WRKY transcription factors, summarize the research progress on how WRKY transcription factors themselves respond to stress, and how they participate in regulating plant stress responses through sugar metabolism pathways. Through in-depth investigation of the relationship between WRKY transcription factors and sugar metabolic pathways we uncovered novel abiotic stress-related gene regulatory networks providing theoretical basis and practical guidance for genetic improvement of plants under abiotic stress.
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1 Introduction

Plant abiotic stress has become one of the key constraints to agricultural production and food security. Among them, drought, cold, and salinity stress are primary abiotic factors that impair plant growth and development and constrain their geographic distribution. These stresses often cause similar effects on plants, such as disrupting cellular osmotic balance, damaging cell membrane structures, and impairing antioxidant defense systems (Qu et al., 2019). To survive adverse environmental conditions, plants have evolved intricate signaling and gene regulatory pathways. These sophisticated mechanisms enable adaptation and mitigation against the detrimental impacts of abiotic stresses. Sugar metabolism, as one of these pathways, plays a crucial role in the process by which plants resist abiotic stress (Qin et al., 2018; Ma et al., 2019; Yoon et al., 2020). Sugars not only provide energy and carbon sources but also participate in signal transduction and the regulation of physiological processes. Although a large number of studies have shown that sugar metabolism is extensively involved in plant stress, relatively few studies have been conducted on how sugar mediates stress mechanisms.

Transcription factors, as key components of signal transduction, play the role of “molecular switches” in the transcriptional regulatory networks of abiotic stress responses. WRKY transcription factors (TFs), a unique class of proteins in higher plants, are widely involved in regulating various physiological and metabolic pathways. They are capable of highly specific recognition and binding to cis-acting elements called W-box on DNA sequences. This binding directly regulates the transcription levels of target genes, including self and other stress-related genes, and thus plays a key role in plant response to abiotic stresses. In addition, WRKY TFs can also bind to cis-acting elements in the promoter regions of sugar metabolism genes and regulate the expression of sugar metabolism-related genes (Sun et al., 2003; Govardhana and Kumudini, 2020; Goyal et al., 2020). Through regulation of the sugar metabolism pathway, they mediate responses to stress, thus improving plant tolerance to abiotic stresses and injury, and mitigating the damage inflicted by stress on plants (Wu et al., 2020).

Therefore, this paper mainly analyzed the structure and classification of WRKY transcription factors, summarized the research results and reviewed the regulatory mechanisms of WRKY transcription factors themselves in response to abiotic stresses as well as their involvement in abiotic stresses in plants through sugar metabolism pathways, with a view to providing a theoretical basis for the genetic improvement of plant stress tolerance, and providing a technological safeguard for the enhancement of agricultural production and the assurance of food safety.




2 Structural characteristics and classification of WRKY TFs

WRKY TFs are among the largest families of transcription factors in higher plants and are designated as the “central regulators” of the abiotic stress response. The first WRKY TFs, SPF1, was originally identified and isolated from Ipomoea batatas (Ishiguro and Nakamura, 1994). Subsequent studies have characterized numerous WRKY TFs across diverse plant species, including. Arabidopsis (Glöckner et al., 2002), Oryza sativa (Kim et al., 2000), soybean (Schmutz et al., 2010), and Hordeum vulgare (Mangelsen et al., 2008). Comprehensive research has elucidated the extensive membership and multifaceted regulatory mechanisms characterizing the WRKY transcription factor family. By constructing complex signaling networks, WRKY TFs play a crucial role in plant growth, development, and stress responses (ülker and Somssich, 2004; Rushton et al., 2010).

WRKY TFs derive their nomenclature from the characteristic WRKY domain, defined by the highly conserved WRKYGQK motif (Wu et al., 2020). This family of proteins is characterized by the fact that all family members contain at least one WRKY structural domain consisting of about 60 highly conserved amino acids, the N-terminal end of which contains the highly conserved WRKYGQK heptapeptide sequence, and the C-terminal end of which has a zinc-finger motif of either the C2H2 or the C2HC type (Wang et al., 2014b). WRKY TFs specifically recognize W-box cis-elements (A/TAACCA; C/TAACG/TG) in target gene promoters, thereby modulating transcription. Depending on the number of conserved WRKY domains and the type of zinc finger structure, WRKY transcription factors are usually divided into three families: family I contains two WRKY domains and two C2H2 zinc finger structures, family II contains one WRKY domain and one C2H2 zinc finger structure, and family III contains one WRKY domain and one C2H2 zinc finger structure. Family II is subdivided into five subfamilies: a, b, c, d, and e. Family II WRKY proteins are involved in the regulation of plant growth and development, such as senescence, seed dormancy, and germination; they are also involved in plant responses to drought, salt stress, and cold damage (Rushton et al., 2012). WRKYs cannot form homologous or heterodimers if they do not have LZ (leucine zipper) motifs (Narusaka et al., 2016). In addition to the above structural domains, WRKY transcription factor families have many other structures, such as kinase domains, glutamine rich regions, proline rich regions, nuclear localization signals, and so on. The existence of these structural domains makes it possible for these WRKY proteins to regulate the expression of target genes through the formation of homodimers or heterodimers by protein-protein interactions (Zhang and Wang, 2005; Agarwal et al., 2011) (Figure 1).

[image: Diagram of DNA-binding domains and zinc-finger structures across different groups. Each group has a WRKYGQK domain linked to varying zinc-finger domains: CX₄C, CX₅C, or CX₇C, paired with HXH or HXC motifs. Beta strands are indicated at the bottom.]
Figure 1 | Domain structures of different WRKY subfamilies in higher plants. The WRKY motif, the cysteines, and the histidines that form the zinc finger are shown in boxes. I N and I C denote the N-terminal and C-terminal domains from Group I WRKY proteins, respectively. The 4 β-strands are shown with dashed arrows.




3 WRKY TFs involved in abiotic stress responses

In recent years, as climate change and extreme weather events have increased, the impact of abiotic stress on crop production has become more pronounced, resulting in slowed growth, deteriorating quality, and reduced yields (Hrmova and Hussain, 2021; Khoso et al., 2022). Consequently, over the course of long-term natural selection and evolutionary processes, plants have developed a complex and finely tuned regulatory network that enables them to detect and respond effectively to various environmental stresses (Su et al., 2023). Facing abiotic stress, WRKY TFs could dynamically modulate downstream gene expression, either enhancing transcriptional activation or imposing repression, directly regulating the expression of genes involved in stress response, or participate in other signaling pathways and regulatory networks to manage the stress response (Figure 2). This activation of defense mechanisms helps enhance crop resilience against abiotic stress (Ma and Hu, 2024). Given that extensive and in-depth studies and reviews have already been conducted on WRKY TFs’ roles in responding to abiotic stress (Table 1), this paper provides only a concise summary of the key findings.

[image: Flowchart illustrating the role of WRKY transcription factors in plant stress response. Abiotic stress activates WRKY TF via MAPK, leading to binding with target gene promoters, protein interactions, and signaling pathways. This affects stress resistance, growth development, and metabolic-related genes. At the bottom, it states, "WRKY transcription factor regulating the response of plants to stresses."]
Figure 2 | The diagram of WRKY transcription factor regulating stress responses in plants. The solid black arrows indicate that WRKYs regulating plant stress response pathway; The dotted black arrow indicates that WRKY transcription factors might be activated by the MAPK cascade and thus participates in the regulation of stress response.


Table 1 | WRKY TFs involved in abiotic stress responses in plants.
	No.
	Gene
	Species
	Stress responses
	References



	1
	MaWRKY70
	Musa acuminata
	Tolerance to cold
	(Lin et al., 2024)


	2
	OsWRKY63
	Oryza sativa
	Tolerance to cold
	(Zhang et al., 2022b)


	3
	OsWRKY76
	Oryza sativa
	Tolerance to cold
	(Naoki et al., 2013)


	4
	OsWRKY74
	Oryza sativa
	Tolerance to phosphate (Pi) starvation
	(Dai et al., 2016)


	5
	CsWRKY19
	Camellia sinensis
	Tolerance to cold
	(Guo et al., 2024)


	6
	VpWRKY1
	Vitis pseudo-reticulata
	Tolerance to salt and cold
	(Li et al., 2010)


	7
	VpWRKY2
	Vitis pseudo-reticulata
	Tolerance to salt and cold
	(Li et al., 2010)


	8
	GmWRKY13
	Glycine max
	Tolerance to drought and cold
	(Zhou et al., 2008)


	9
	GmWRKY21
	Glycine max
	Tolerance to drought and cold
	(Zhou et al., 2008)


	10
	GmWRKY54
	Glycine max
	Tolerance to drought and cold
	(Zhou et al., 2008)


	11
	CsWRKY51
	Cucumis sativus
	Tolerance to cold
	(Lu et al., 2025)


	12
	CwWRKY65
	Camellia weiningensis
	Tolerance to cold
	(Xu and Xu, 2024)


	13
	VbWRKY32
	Verbena bonariensis
	Tolerance to cold
	(Wang et al., 2020)


	14
	VvWRKY24
	Vitis vinifera
	Tolerance to cold
	(Wang et al., 2014a)


	15
	AtWRKY34
	Arabidopsis
	Tolerance to cold
	(Zou et al., 2010)


	16
	PoWRKY69
	Paeonia ostii
	Tolerance to drought
	(Luan et al., 2024)


	17
	MbWRKY46
	Malus baccata
	Tolerance to drought and cold
	(Liu et al., 2023)


	18
	ChaWRKY40
	Corylus avellana
	Enhances Drought Tolerance
	(Zhang et al., 2024a)


	19
	PwuWRKY48
	Populus wulianensis
	Enhances Drought Tolerance
	(Wang et al., 2024)


	20
	EjWRKY17
	Eriobotrya japonica
	Enhances Drought Tolerance
	(Wang et al., 2021)


	21
	IgWRKY32
	Iris germanica
	Enhances Drought Tolerance
	(Zhang et al., 2022a)


	22
	IgWRKY50
	Iris germanica
	Enhances Drought Tolerance
	(Zhang et al., 2022a)


	23
	PtWRKY33
	Populus trichocarpa
	Tolerance to drought and salt
	(Yang et al., 2023)


	24
	ZmWRKY40
	Zea mays
	Enhances Drought Tolerance
	(Wang et al., 2018)


	25
	IlWRKY70
	Iris laevigata
	Tolerance to drought and salt
	(Shi et al., 2023)


	26
	BnWRKY49
	Boehmaeria nivea
	Enhances Drought Tolerance
	(Bao et al., 2024)


	27
	AfWRKY2
	Amorpha fruticosa
	Enhances Drought Tolerance
	(Li et al., 2023)


	28
	StWRKY6
	Solanum tuberosum
	Tolerance to cadmium (Cd)
	(He et al., 2023)


	29
	OsWRKY54
	Oryza sativa
	Tolerance to salt
	(Huang et al., 2022a)


	30
	VuWRKY21
	Vigna unguiculata
	Tolerance to salt
	(Crispim et al., 2023)


	31
	VuWRKY87
	Vigna unguiculata
	Tolerance to salt
	(Crispim et al., 2023)


	32
	ZjWRKY18
	Ziziphus jujuba
	Tolerance to salt
	(Wen et al., 2023)


	33
	AhWRKY75
	Arachis hypogaea
	Tolerance to salt
	(Zhu et al., 2021)


	34
	GmWRKY16
	Glycine max
	Tolerance to drought and salt
	(Ma et al., 2019)







Drought stress, as an essential abiotic stress, poses a serious threat to plant growth, development, and yield. Recent studies have identified multiple WRKY TFs as key regulators of drought tolerance. IgWRKY50 and IgWRKY32 in Iris germanica, which can enhance drought resistance in transgenic Arabidopsis by coordinated up-regulation of drought-responsive downstream genes (Zhang et al., 2022a). In Glycine max, GmWRKY17 directly binds to promoters of drought-inducible genes GmDREB1D and GmABA2, activating their transcription under water deficit (Yi and Yueping, 2023). SbWRKY30 in Sorghum bicolor directly activates the drought-response gene SbRD19, conferring improved growth and survival rates under drought stress (Yang et al., 2020).

Salt stress critically constrains plant growth and development, wherein WRKY transcription factors (TFs) execute pivotal regulatory roles. ZmWRKY104 in Zea mays overexpression enhances salt tolerance via positive regulation of ZmSOD4, reducing ROS accumulation, MDA content, and electrolyte leakage (Yan et al., 2022).In Gossypium hirsutum, GhWRKY34 confers salt tolerance by modulating selective Na+/K+ uptake and maintaining low Na+/K+ ratios in leaves/roots (Zhou et al., 2015).GmWRKY54 in Glycine max activates transcription in response to salt stress by binding to the W-box elements of the promoters of the DREB2A and STZ/ZAT10 genes, which are key transcription factors in the ABA-independent pathway that regulates osmoprotective substance synthesis, and STZ/ZAT10, which is involved in ROS scavenging and ion homeostasis maintenance (Zhou et al., 2008).

WRKY TFs also have a significant job in responding to heavy metal stresses. In Oryza sativa, OsWRKY74 regulates the expression of a set of downstream genes involved in phosphorus uptake, transport, and metabolism, collectively enhancing rice tolerance to phosphorus starvation (Dai et al., 2016). Similarly, OsWRKY72 negatively regulates lignin synthesis and accumulation by inhibiting the expression of OsGLP8-7 (germin-like protein), thereby reducing the ability of the cell wall to retain heavy metal ions and realizing the regulation of Cd/Cu toxicity (Shangguan et al., 2024). TaWRKY70 in Triticum aestivum reduces root Cd²+influx by re-pressing the expression of AtNRAMP5, AtHMA3, AtYSL3, and AtIRT1 heavy-metal transporter genes, which act as Cd transporters, while TaWRKY70 activates the expression of the TaCAT5 promoter by directly binding to its W-box motif to enhance catalase activity, reduce membrane lipid peroxidation, scavenge ROS, and confer resistance to Cd stress in transgenic Arabidopsis (Jia et al., 2021).

In addition, with global climate change in recent years, both high and low temperatures have become significant agricultural meteorological disasters, severely limiting normal plant and crop development. Heat stress triggers upregulation of WRKY25 and WRKY26 yet downregulates WRKY33 in Arabidopsis thaliana. Molecular evidence reveals that these three factors synergistically enhance thermotolerance by coordinating ethylene signaling activation with heat shock protein (HSP) pathways, leveraging functional crosstalk and complementary effects (Li et al., 2011). In Capsicum annuum, the transcription of CaWRKY40 is induced by Ralstonia solanacearum and high temperature. Heat stress induces an upregulation of CaWRKY40 expression, and its overexpression enhances heat stress tolerance, likely through the regulation of antioxidant systems and maintenance of cell membrane stability (Dang et al., 2013). Regarding low temperature, Zhang et al. (2022b) proposed a transcriptional regulatory cascade model involving OsWRKY63–OsWRKY76–OsDREB1B, where OsWRKY63 acts as a transcriptional repressor by inhibiting the expression of OsWRKY76, thereby suppressing the activation of OsDREB1B, which leads to reduced cold tolerance (Zhang et al., 2022b). The expression of VbWRKY32 was significantly increased in Verbena leaves under cold stress. Overexpression of the VbWRKY32 gene in Verbena and comparison of the expression profiles of cold-responsive genes between overexpressed and wild-type plants under cold stress revealed that VbWRKY32 acted as a positive regulator to enhance the cold resistance of plants by up-regulating the transcript levels of cold-responsive genes (Wang et al., 2020). In Camellia sinensis, CsWRKY6, CsWRKY31, CsWRKY48 were induced to be up-regulated under 4 °C cold treatment, indicating that they acted as positive regulators involved in the regulatory pathway of Camellia sinensis in response to cold (Wang et al., 2019). All these studies confirmed that WRKY TFs plays an essential role in defense against abiotic stresses.




4 Sugar metabolism involved in abiotic stress responses

Adversities such as low temperature, high temperature, drought, and salinity usually produce water stress in plants, and osmoregulation is one of the important physiological mechanisms for plants to resist such abiotic stresses. Plants through the regulation of various physiological metabolism in body accumulation of a wide range of organic or inorganic substances to increase the concentration of cell membranes, reduce the osmotic potential, and enhance the cellular water absorption or retention capacity. Sugars are an effective carbohydrate in plant response to abiotic stress, which not only keep the cellular osmotic balance, but also participate in the signaling molecules for the perception and conduction of adversity signals, and regulate the growth and development of plants and their ability to cope with adversity (Sun et al., 2015).



4.1 The mechanism by which sugar responds to abiotic stress

The role played by sugar compounds in response to abiotic stresses in plants is characterized by four main aspects: First, under abiotic stress, plants accumulate sugars within cytoplasmic and vacuolar compartments. This solute accumulation elevates cytosolic concentration, modulates tissue osmotic potential, depresses freezing point, and mitigates cellular dehydration—collectively establishing a physical defense barrier against environmental adversities (Sun et al., 2015; Hu et al., 2016). Second, sugar compounds provide protective effects on biomembranes and macromolecules. Specifically, fructans demonstrate membrane-stabilizing properties by reducing the phase transition temperature between lipid gel and liquid crystalline states (Hincha et al., 2002). This phenomenon facilitates enhanced molecular interactions between sugar moieties and membrane phospholipids, thereby preserving membrane structural integrity under stress conditions. Third, plant sugar catabolism integrates bio-oxidative pathways with oxidative phosphorylation systems. This integrative mechanism can provide not only sufficient reducing power and energy for other biosynthetic processes, it also produces other protective substances that protect plant organizations from stress-induced damage (Savitch et al., 2010). Fourth, sugar compounds form complex signaling networks with other signaling molecules, regulating the expression of stress-related genes involved in metabolic activities, thereby helping plants respond to adverse environmental conditions (Smeekens et al., 2010). For instance, low-temperature stress upregulates key sucrose metabolic enzymes such as sucrose synthase (SUS) and sucrose phosphate synthase (SPS), enhancing their catalytic activity and thereby driving sucrose accumulation in plants. On the one hand, sucrose acts as an osmotic regulator, maintaining cellular osmotic potential under low temperatures and preventing cell freezing. On the other hand, as an important signaling molecule and antioxidant, sucrose can induce the expression of cold tolerance genes and key enzymes in the antioxidant system (Turhan and Ergin, 2012; Cao et al., 2014). Therefore, sugar compounds play an indispensable and crucial role in plant stress resistance, and they help plants maintain their normal physiological functions and growth status in the face of various abiotic stresses at multiple levels and through the utilization of different regulatory mechanisms.




4.2 The response of glucose metabolism to abiotic stress

Regarding the study of the pathway of sugar metabolism involved in stress tolerance, a large number of studies have shown that the pathway of sugar metabolism involved in stress tolerance is mainly related to the accumulation of saccharides, and that the higher the content of soluble sugars in the body of a plant, the stronger its cold tolerance will be (Ouyang et al., 2019). By accumulating soluble sugar content, plants are able to increase cellular osmotic potential, which in turn enhances cellular water retention capacity (Ouyang et al., 2019). Current research predominantly focuses on abiotic stress-induced accumulation of soluble sugars. For instance, cold acclimation elevates levels of soluble sugars like sucrose, glucose, trehalose, and raffinose in Camellia sinensis leaves, concomitantly increasing cold tolerance (Yue, 2015). In Medicago sativa, low-temperature stress induces up-regulated expression of the Galactinol Synthase (GoLS) and improves cold tolerance in Medicago sativa (Zhuo et al., 2013). Low temperature induces enhanced SPS activity, leading to increased sucrose accumulation (Lundmark et al., 2006; Miao et al., 2007). Similarly, overexpression of ZmSUS1, a key enzyme in sugar metabolism, has been found to increase drought tolerance in Zea mays by regulating sucrose metabolism and soluble sugar content (Xiao et al., 2024). Furthermore, seaweed extract-based bio-stimulants mitigate drought stress in Saccharum officinarum by enhancing leaf metabolic activity and total sugar levels (Jacomassi et al., 2022). Therefore, soluble sugars and their metabolic pathways play a pivotal role in plant responses to abiotic stress. By regulating the synthesis and metabolism of soluble sugars, plants bolster their osmotic adjustment capacity and antioxidant defenses, thereby enhancing their overall adaptability to abiotic stress.





5 WRKY TFs are involved in plant abiotic stress responses mediated by sugar metabolism



5.1 The mechanism of WRKY TFs regulate sugar metabolism

WRKY TFs regulate plant sugar metabolism through multiple distinct pathways. First, WRKY TFs directly bind to W-box cis-elements within the promoters of sugar-metabolic genes, enabling their transcriptional regulation (Chen et al., 2019). Second, WRKY TFs indirectly modulate sugar metabolism by integrating into intricate plant signaling networks. These transcription factors are activated by diverse signals, including plant hormones, biotic stresses, and abiotic stresses, subsequently modulating sugar metabolic pathways via signaling cascades. Furthermore, WRKY TFs can form complexes with other proteins, achieving cooperative regulation of sugar metabolism through cross-family collaboration with other transcription factor families or interaction with epigenetic regulators, integrating signals and expanding the target range (Li et al., 2025). Here, this paper concludes the modes of action of WRKY TFs involved in the regulation of plant sugar metabolism and classifies them into three types: direct regulation, indirect regulation, and cooperative regulation (Figure 3) (Li et al., 2025). Elucidating the regulatory mechanisms of WRKY TFs in sugar metabolism will deepen our understanding of the intricate relationship between WRKY TFs and sugar metabolism.

[image: Diagram illustrating the role of WRKY transcription factors in abiotic stress response and sugar metabolism. It shows interactions with other proteins and transcription factors via co-regulation, direct and indirect regulation pathways involving the nucleus, W-box, CREs, and signal networks. The process links abiotic stresses to sugar metabolism and consequent response.]
Figure 3 | The mechanism by which WRKY TFs regulate glucose metabolism and mediate abiotic stress. We categorized the modes of regulation of WRKY transcription factors in plant sugar metabolism into three different types: Direct regulation, Indirect regulation, and Cooperative regulation.



5.1.1 Direct regulation

WRKY TFs directly regulate the expression of genes encoding sugar-metabolic enzymes by binding to cis-regulatory elements (e.g., W-box or CRT/DRE motifs) within their promoters. This modulates sugar biosynthesis, degradation, and transport, ultimately enhancing plant stress tolerance. For example, SUSIBA2, a WRKY-like transcription factor isolated from barley, binds not merely to the W-box on the ISO1 (isoamylase) promoter (Sun et al., 2003), and also to SURE (Sugar Metabolism Cis-Acting Element), thereby regulating starch synthesis. MdWRKY126 in Malus dasyphylla enhances the activity of the SPS enzyme by directly binding to the promoter region of the SPS gene and upregulating its expression level (Zhang et al., 2025). In Oryza sativa, OsWRKY71 binds to W-box sequences in the promoter of α-amylase genes, repressing gibberellin-induced expression of Amy32b (Zhang et al., 2004). Furthermore, AtWRKY18 and AtWRKY53 in Arabidopsis directly couple to the promoters of sugar-responsive genes and trigger their expression upon glucose treatment (Chen et al., 2019). In Pitaya (Hylocereus), WRKY TFs (e.g., HpWRKY3, HpWRKY18, and HpWRKY44) are associated with up-regulated expression of genes involved in betalain biosynthesis and sugar metabolism (HpCytP450-like1, HpSS2, and HpAI2) (Cheng, 2018).Similarly, HpWRKY3 activates the expression of HpINV2 and HpSuSy1, suggesting it may directly target their promoters to modulate transcription and regulate sucrose metabolism (Cheng, 2018; Wei et al., 2019).




5.1.2 Indirect regulation

Plant sugar metabolism exhibits intricate cross-talk with hormone signaling path-ways, including ABA, JA, and SA. WRKY TFs frequently serve as pivotal integrators within hormone signal transduction networks to indirectly modulate sugar metabolism. For instance, in Camellia sinensis, CsWRKY29 binds to the promoter of CsABI5, an ABA signaling component harboring a W-box element, and activates its expression. Subsequently, as a downstream regulator, CsABI5 binds to ABREs (ABA-responsive elements) within the promoters of CsHXK1 and CsSUS4 (Xue et al., 2024). This establishes a “CsWRKY29-CsABI5-HXK1/SUS4” regulatory cascade, mediating indirect control of sugar metabolism (Xue et al., 2024). In Oryza sativa, OsWRKY5 functions as a negative regulatory hub in the ABA pathway; it indirectly suppresses the activation of sugar metabolism-related genes by re-pressing OsMYB2 expression. Following OsWRKY5 knockout, the repression on the ABA signaling pathway is lifted, activating sugar metabolic pathways and leading to a significant increase in soluble sugar content (Lim et al., 2021). Beyond ABA signaling, Vitis vinifera VviWRKY10 and VviWRKY30 modulate the expression of sugar metabolism-related genes by engaging with SA and JA signaling pathways. VviWRKY10 primarily responds to SA signals, upregulating SUS and sucrose transporter (SUT) gene expression, thereby promoting sucrose accumulation to enhance osmotic adjustment capacity (Zhou et al., 2024). In contrast, VviWRKY30 acts through the JA signaling pathway to repress glycolysis, reducing glucose consumption and thereby prioritizing carbon allocation toward defense-related metabolism (Zhou et al., 2024). By integrating SA and JA signals, VviWRKY10 and VviWRKY30 cooperatively regulate powdery mildew resistance and sugar metabolism partitioning in grapevine (Zhou et al., 2024). This “bidirectional regulatory” mode exemplifies the finely tuned balance WRKY factors achieve between sugar metabolism and stress resilience (Zhou et al., 2024).




5.1.3 Cooperative regulation

WRKY transcription factors achieve coordinated regulation of sugar metabolism at multiple levels by forming complexes or interactions networks with other families of transcription factors or other proteins (Li et al., 2025). For instance, in Glycine max, GmWRKY27 assembles into a complex with MYB-family transcription factor GmMYB174, co-repressing the expression of NAC-family factor GmNAC29 to attenuate ABA biosynthesis while enhancing sucrose transporter GmSWEET15 expression (Li et al., 2025). In Vitis vinifera, VvWRKY22 interacts with sucrose non-fermenting-1-related kinases (VvSnRK1.1/VvSnRK1.2) to form a regulatory complex that phosphorylates downstream targets (VvTPP, VvHXK), thereby modulating glucose accumulation during cold stress (Huang et al., 2021). Furthermore, in Prunus persica, PpWRKY40 physically associates with NPR1 protein to activate PpPRs gene expression, while concurrently upregulating sucrose synthase (PpSS1) and sucrose phosphate synthase (PpSPS3) genes (Li et al., 2021). The WRKY structural domain of PoWRKY69 binds directly to the VQ motif of PoVQ11 to form a stable transcriptional regulatory complex; the PoWRKY69-PoVQ11 module shifts the carbon flow from glycolysis to fructose synthesis through the activation of PoFBA5 (fructose-1,6-bisphosphate aldolase gene), while inhibiting the sucrose synthase (SUS) activity and decreasing the sucrose consumption. thereby specifically elevating fructose levels (Luan et al., 2024).





5.2 The WRKY TFs respond to abiotic stress by regulating the glucose metabolism pathway

WRKY TFs, as an influential class of transcriptional regulators in plants, play a crucial role in plant responses to various environmental stresses. Recent studies have shown that the deep involvement of WRKY transcription factors in plant stress response is largely realized through the precise regulation of multiple pathways of sugar metabolism.



5.2.1 Drought stress

Drought stress seriously threatens plant growth, development and viability. Under water deficit conditions, water absorption by the plant root system is blocked and leaf stomata are closed to reduce water loss. At the same time, cell dehydration destroys membrane structural integrity and reactive oxygen species (ROS) accumulate in large quantities, accelerating cellular senescence and even cell death. WRKY transcription factors are able to target sugar metabolism-related genes through different pathways, coordinate sugar transport, synthesis and utilization, and enhance osmoprotection and ROS scavenging, thus improving plant drought resistance. For instance, in Paeonia ostii, the PoWRKY69-PoVQ11 transcription complex directly activates the key sugar metabolism gene PoFBA5 (fructose-1,6-bisphosphate aldolase), promoting efficient fructose accumulation via its reverse catalytic function (Luan et al., 2024). The accumulated fructose exerts dual core roles: as an osmolyte to reduce cellular osmotic potential and maintain water balance, and by activating the antioxidant enzyme system while directly quenching ROS to mitigate membrane lipid peroxidation damage (Luan et al., 2024). This physiologic defense network mediated by sugar metabolism ultimately confers significant enhancement of plant drought tolerance, confirming that PoFBA5 serves as an indispensable metabolic hub converting WRKY transcriptional regulation into drought-resistant phenotypes (Luan et al., 2024). In Oryza sativa, OsWRKY11 acts as a molecular switch, specifically activating the expression of the raffinose synthase gene to promote synthesis of raffinose precursors, leading to specific raffinose accumulation in leaves (Wu et al., 2009). The accumulated raffinose functions as an efficient osmolyte to significantly decrease cellular osmotic potential, maintain cell turgor and water balance, and mitigate oxidative damage by inhibiting ROS burst. This osmotic-antioxidant collaborative network mediated by sugar metabolism translates WRKY transcriptional regulation signals into cellular homeostasis protection, ultimately endowing plants with drought-resistant phenotypes.​Under dehydration stress, the ABA signaling pathway rapidly activates BhWRKY1 transcription factor in Boea hygrometrica (Wang et al., 2009). This factor precisely recognizes and binds to the W-box cis-element in the BhGolS1 promoter, directly driving BhGolS1 transcription. With significantly enhanced BhGolS1 activity, massive galactinol accumulates, triggering synthesis of raffinose and stachyose, which together form key osmoprotectants (RFOs) (Wang et al., 2009). These RFOs exert drought resistance through multiple mechanisms: decreasing cellular osmotic potential and activating antioxidant enzyme systems, while promoting hydrogen bond interactions with phospholipid bilayers and membrane proteins to effectively resist dehydration-induced cell damage. Phenotypically, this results in improved cell viability, enhanced membrane structural integrity, and significantly optimized plant recovery capacity after rewatering. However, the regulatory mechanisms of WRKY transcription factors in response to drought stress show remarkable diversity. In addition to positively mediated mechanisms, some members negatively regulate sugar metabolism through distinct molecular pathways. Under drought stress, activation of AtWRKY53 specifically binds to the promoter W-box elements of the starch-degrading gene QQS and the antioxidant genes CAT2/CAT3, initiating reprogramming of sugar metabolism. Overexpression of QQS accelerates the hydrolysis of starch to soluble sugars, which promotes the accumulation of malic acid via the glycolytic pathway (Sun and Yu, 2015). Malic acid, as an osmotic substance, acted synergistically with potassium ions to regulate the osmotic potential and expansion pressure of defense cells, while the attenuation of ROS signaling blocked the stomatal closure cascade, which ultimately led to an abnormal increase in stomatal conductance, an increase in transpirational loss of water, and a significant reduction in drought tolerance. This coexistence of positive and negative regulatory mechanisms reveals that the sugar metabolism pathway, as a core effector, plays a key pivotal role in connecting the molecular transcriptional network with drought stress response under the differential regulation of WRKY transcription factors.




5.2.2 Salt stress

Salt stress on plants mainly manifests the triple effects of osmotic stress, ionic toxicity and oxidative damage. High-salt environments lead to elevated soil osmotic pressure, which prevents water uptake by the root system and causes drought-like physiological dehydration. Under salt stress-induced ion toxicity and osmotic stress, WRKY TFs alleviate osmotic imbalance by triggering starch-to-soluble sugar conversion. They orchestrate synergistic coordination between sugar signaling and ion transport systems (e.g., Na+/H+ antiporters), thereby reinforcing membrane integrity. Concurrently, sugar-derived metabolites modulate antioxidant defenses to mitigate oxidative injury. For instance, under salt stress, VvWRKY30 drives remodeling of sugar metabolism by specifically activating sugar transport genes (VvHT1/5) and metabolic genes (VvSS, VvHXK, VvTRE). On one hand, it promotes the accumulation of glucose, fructose, and trehalose as osmotic regulators to lower cellular osmotic potential and maintain turgor pressure. On the other hand, it enhances the pentose phosphate pathway to supply NADPH, which boosts the activities of antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) – effectively scavenging H2O2 and reducing membrane lipid peroxidation (Cao et al., 2025b). Additionally, HXK-mediated sugar signaling amplifies stress responses in a cascading manner, forming a positive feedback loop with ethylene signaling. This ultimately maintains photosynthetic function, safeguards reproductive development, and reduces biomass loss at the phenotypic level, achieving an integrated salt-tolerance mechanism from transcriptional regulation to physiological adaptation (Zhu et al., 2019). In Rosa rugosa, RrWRKY1 maintains cellular osmotic balance by regulating proline accumulation under salt stress (Zang et al., 2024). As an intermediate metabolite in sugar metabolism, proline is generated from glutamate via the glycolytic pathway. Experiments show that silencing RrWRKY1 leads to a significant decrease in proline content and an increase in malondialdehyde (MDA) content, indicating that this transcription factor enhances antioxidant capacity through sugar metabolism-related pathways to alleviate oxidative damage caused by salt stress (Zang et al., 2024).​ In conclusion, WRKY transcription factors regulate sugar metabolic pathways to not only cope with osmotic stress and ion toxicity from salt stress but also enhance plant antioxidant defense capabilities. This establishes multilayered salt-tolerance mechanisms spanning from gene expression regulation to physiological function adaptation, providing crucial molecular guarantees for plant survival in high-salt environments.




5.2.3 Cold stress

WRKY transcription factors play a central role in plant responses to low-temperature stress by dynamically regulating sugar metabolic pathways. Under low-temperature conditions, which disrupt membrane fluidity and inhibit photosynthesis, plants maintain osmotic balance and energy supply through the accumulation of soluble sugars. Members of the WRKY family activate the expression of key enzymes such as amylase and sucrose synthase, thereby promoting sugar accumulation and enhancing cold tolerance. Take the cold-inducible WRKY transcription factor CdWRKY2 as an example (Huang et al., 2022b). It directly binds to the W-box elements in the promoter regions of the sucrose phosphate synthase gene (CdSPS1) and the CBF1 gene, activating their transcriptional expression (Huang et al., 2022b). The product of CdSPS1, serving as both an osmolyte and a signaling molecule, exerts dual regulatory functions: it enhances cellular osmotic homeostasis by accumulating sucrose, which lowers the freezing point and maintains membrane integrity; meanwhile, it activates the pentose phosphate pathway to generate NADPH, thereby improving cellular antioxidant capacity. Additionally, CdWRKY2 collaborates with the core gene CdCBF1 of the CBF signaling pathway to coordinately regulate the expression of downstream cold-responsive genes. The synergistic action of these two regulatory pathways ultimately enhances the tolerance of transgenic Arabidopsis to low-temperature stress significantly. In Raphanus sativus, the RsWRKY40 transcription factor acts as a central regulatory hub to coordinate cold resistance mechanisms through a dual-function mode (Chen et al., 2025). It not only directly activates the sucrose phosphate synthase gene RsSPS1 to promote sucrose accumulation for osmotic protection and energy supply but also simultaneously induces the CBF signaling pathway to activate downstream antifreeze genes. Sucrose serves as a critical bridging molecule in this process: it functions as a protective metabolite to maintain membrane stability and reactive oxygen species (ROS) scavenging, while also reinforcing the CBF pathway and its own synthesis through feedback regulation. Research in Camellia sinensis has shown that CsWRKY29 activates sugar metabolic genes such as sucrose phosphate synthase (CsSPS1) and hexokinase (CsHXK1) under low temperature, promoting the synthesis and accumulation of sucrose and hexoses (Xue et al., 2024). This transcription factor orchestrates two parallel processes: one involves activating sucrose degradation and glycolysis to ensure adenosine triphosphate (ATP) supply, and the other promotes the synthesis of osmoprotective oligosaccharides (trehalose, raffinose) and flavonoid glycosides. The former maintains cellular osmotic balance and membrane stability, while the latter enhances antioxidant activity through glycosylation modification. Furthermore, CsWRKY29 strengthens the expression of sugar metabolic genes via the abscisic acid (ABA) signaling pathway, forming a “ABA-CsWRKY29-Sugar metabolism” positive feedback loop (Xue et al., 2024). It also synergistically activates the CBF-COR pathway, integrating sugar metabolism with antifreeze protein synthesis to achieve enhanced freezing tolerance through multi-pathway coordination. Beyond endogenous regulatory mechanisms, WRKY transcription factors may also mediate low-temperature stress responses through exogenous sugar application. For instance, exogenous sucrose supplementation compensates for the insufficient sucrose synthesis caused by RsWRKY40 silencing, indirectly demonstrating that exogenous sugars alleviate cold damage by regulating the RsWRKY40-mediated sugar metabolic network (Chen et al., 2025). In Cucumis sativus, treatment with exogenous trehalose significantly upregulates WRKY gene expression, induces soluble sugar synthesis, and thereby mitigates cold injury (Pan et al., 2022).

In summary, WRKY transcription factors can precisely regulate the metabolism of sugars by utilizing the “WRKY - Sugar Metabolism” module in order to participate in plant stress response, and this module plays a key role in drought, salt, low temperature, and a variety of abiotic stresses, which provides an important survival and reproduction of plants in harsh natural environments. However, significant gaps remain in understanding WRKY-mediated thermotolerance (Zhang et al., 2024b). Limited studies suggest WRKYs participate in heat stress by regulating anti-oxidant systems and membrane stability, but whether this involves sugar metabolism remains elusive, presenting a key avenue for future research (Dang et al., 2013).






6 Conclusions and perspectives

WRKY transcription factors are ubiquitously distributed across the plant kingdom and play pivotal roles in regulating plant growth, developmental programs, and stress-responsive mechanisms. In recent years, a growing body of research has focused on the mediation of abiotic stress by WRKY transcription factors through sugar metabolic pathways, with remarkable advancements achieved in research methodologies. Notwithstanding these progresses, this field still harbors significant prospects and unresolved research gaps that warrant systematic exploration.

First and foremost, future investigations should endeavor to elucidate in greater detail the specific molecular mechanisms underlying the interaction between WRKY transcription factors and sugar metabolic pathways. Although existing evidence has established that WRKY transcription factors modulate the expression of sugar metabolism-related genes, the intricate regulatory networks and precise target sites thereof remain incompletely characterized. To address this, future studies are expected to employ cutting-edge technical approaches, including gene-editing technologies (particularly multi-gene editing to circumvent functional redundancy) (Cao et al., 2025a), high-resolution protein-protein interaction analyses (such as in vivo co-immunoprecipitation, yeast two-hybrid library screening, and proximity labeling techniques) (Cao et al., 2024), and single-cell omics. These methodologies will facilitate the precise dissection of how WRKY proteins recognize and bind to the promoter regions of downstream sugar metabolism genes, as well as how their complexes with other transcription factors or coregulatory molecules exert fine-scale regulation over the activity of key enzymes, thereby influencing the dynamic homeostasis of critical sugar molecules.

Second, it is imperative to resolve the long-standing challenges of functional redundancy and specificity within the WRKY gene family. Comprising a large repertoire of members, the WRKY family often exhibits extensive functional redundancy or overlap, rendering traditional genetic approaches inadequate for accurately evaluating the contribution of individual members in sugar metabolism-stress response cascades. Moreover, distinct WRKY members may exhibit context-dependent functions under varying stress conditions, in different tissues/organs, or at specific developmental stages. Future research should integrate systems biology approaches with conditional gene-editing/inducible expression systems to meticulously dissect the specific roles of different WRKY members in regulating sugar metabolism under defined environmental and physiological contexts, along with the underlying molecular determinants.

Furthermore, more direct physiological and metabolic evidence is required to establish the causal relationship between WRKY-mediated sugar metabolism and enhanced stress tolerance. Current investigations predominantly focus on molecular-level analyses or terminal phenotypic observations, whereas the evidentiary chain for intermediate links remains fragmented. Specifically, following the regulation of specific sugar metabolism genes by WRKY, how do changes in sugar composition, concentration, spatiotemporal distribution, and cellular energy status directly impact key physiological processes, including stress signal perception, reactive oxygen species scavenging, osmotic adjustment, and maintenance of cell membrane integrity? Future studies should integrate metabolomics, enzyme activity assays, subcellular localization analyses, and live-cell imaging technologies to track, at high spatiotemporal resolution, how WRKY-mediated reprogramming of sugar metabolism translates into specific physiological and biochemical responses that underpin plant stress resilience.

In conclusion, the field of WRKY transcription factors mediating abiotic stress through sugar metabolic pathways presents substantial scope for advancement. Future research should prioritize the in-depth investigation of regulatory mechanisms, expansion of research frontiers, and comprehensive consideration of their roles across multiple metabolic networks, thereby fostering a holistic understanding of WRKY transcription factors in plant stress adaptation. Such endeavors are critical for the breeding of stress-tolerant crop varieties and the promotion of sustainable development in China’s forestry and agricultural sectors.
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Transcription factors serve as key regulators in orchestrating fruit ripening, modulating gene expression networks that govern physiological processes such as color change, texture softening, and sugar accumulation in response to hormonal signals like ethylene and abscisic acid. SlBEL11, a BEL1-like transcription factor, was previously shown to mediate premature fruit abscission in tomato. However, the molecular mechanisms by which SlBEL11 regulates ripening, including its direct target genes, metabolic pathways, and interaction networks, remain largely unknown. In this study, an integrated approach combining untargeted metabolomics and transcriptomics was employed to investigate the metabolic and molecular alterations in wild-type (WT) and SlBEL11-RNAi knockdown tomato fruits. UPLC-MS/MS analysis identified a total of 189 differentially expressed metabolites (DEMs), with 74 upregulated and 115 downregulated in SlBEL11-RNAi compared to the WT. Meanwhile, transcriptome analysis uncovered 665 differentially expressed genes (DEGs), including key regulators directly associated with ripening processes. Conjoint analysis demonstrated significant enrichment of both DEGs and DEMs in critical metabolic pathways, such as ascorbate and aldarate metabolism, glycolysis, and phenylpropanoid biosynthesis. These pathways were demonstrated to be directly or indirectly modulated by SlBEL11, highlighting its central role in coordinating metabolic reprogramming during fruit maturation. Specifically, SlBEL11 appears to fine-tune the balance among energy supply, cell wall modification, and antioxidant biosynthesis, thereby influencing fruit texture, nutritional quality, and shelf-life. Collectively, these findings not only provide novel insights into the regulatory network of SlBEL11 in tomato ripening but also offer potential genetic targets for the development of tomato cultivars with improved postharvest traits and enhanced fruit quality and secondary metabolite production.
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1 Introduction

Tomato is a globally important economic crop and a model species for fleshy fruit development research. Its ripening process directly influences the nutritional quality, storage processing, and commercial value of the harvested fruits. Fruit firmness, a central phenotypic trait, is regulated by multiple metabolic pathways. Specifically, ascorbic acid metabolism impacts cell wall cross-linking through hydroxyproline synthesis (Vaughan, 1973), henylpropanoid-mediated lignin deposition directly enhances cell wall mechanical strength (Liu et al., 2016), and energy supply from glycolysis may indirectly modulate the softening rate by regulating cell wall degrading enzyme activities (Adetunjia et al., 2016). Concurrently, tomato ripening entails a cascade of physiological and biochemical transitions, such as chlorophyll degradation, carotenoid biosynthesis and volatile compound accumulation (Ming et al., 2023; Gambhir et al., 2024), under tight regulation of complex transcriptional networks and phytohormone signaling pathways, notably ethylene and abscisic acid.

Previous studies have uncovered the pivotal roles of several transcription factor (TF) families during tomato fruit ripening. For instance, tomato MADS-RIN protein regulates fruit ripening through direct binding to CArG box element in the promoter regions of ripening-associated genes and forming multi-complexes with other MADS-box proteins like FUL1 and FUL2 (Wang et al., 2014). NAC family protein NOR-like1 positively regulates the expression of ethylene biosynthesis related genes (SlACS2, SlACS4), color formation (SlGgpps2, SlSGR1), and cell wall metabolism (SlPG2a, SlPL, SlCEL2, SlEXP1) to promote ripening initiation (Gao et al., 2018). Ethylene responsive factor SlERF6 exhibits tissue-specific regulatory patterns and positively regulates tomato fruit ripening through modulating the expression of another transcription factors, SlDEAR2 and SlTCP12 (Chen et al., 2025).

BEL1-like (BELL) proteins are ubiquitous transcription factors in plants. They belong to three-amino acid-loop-extension (TALE) superfamily, and usually form heterodimers with other proteins to regulate organogenesis, hormone metabolism, and environmental adaptability (Sharma et al., 2014; Wang et al., 2025). For instance, in Arabidopsis thaliana, members of the BEL1-like homeodomain family, including PENNYWISE (PNY), POUND-FOOLISH (PNF), ARABIDOPSIS THALIANA HOMEOBOX 1 (ATH1), and VAAMANA (VAN), interact with KNOX family proteins BREVIPEDICELLUS (BP) and SHOOT MERISTEMLESS (STM) through heterodimer formation. This regulatory complex orchestrates critical developmental processes, such as apical meristem maintenance, inflorescence architecture specification, and floral transition (Smith and Hake, 2003; Bhatt et al., 2004; Kanrar et al., 2006; Rutjens et al., 2009). In potato (Solanum tuberosum L.), StBEL5 interacts with potato homeobox 1 (POTH1) and modulates tuber formation by suppressing the expression of a gibberellin biosynthesis gene GA20ox1 (Chen et al., 2004). In tomato, fourteen BEL1-like genes have been identified (He et al., 2022b). Among them, two members have been reported to be involved in fruit development. SlBL4 acts as a central regulator coordinating chlorophyll homeostasis by modulating chloroplast ultrastructure formation, pectin methylesterase-mediated cell wall remodeling, and carotenoid biosynthesis during fruit maturation. Meanwhile it drives the expansion of pedicel abscission zone via auxin gradient redistribution and programmed cell death, thereby mediating ripening-associated fruit detachment (Yan et al., 2020, 2021). In contrast, SlBEL11 is hypothesized to be a downstream regulator of ethylene signaling during ripening, which is supported by its marked upregulation during the breaker-stage and the presence of ethylene-responsive elements (EREs) in its promoter (He et al., 2022b). Previous studies revealed that silencing SlBEL11 prevents premature fruit drop, affects chloroplast development and enhances chlorophyll accumulation in tomato fruit (Meng et al., 2018; Dong et al., 2024). However, the molecular mechanisms through which SlBEL11 regulates fruit ripening, including its direct target genes, metabolic pathways, and epigenetic mechanisms, remains unclear. The breaker stage, characterized by the initiation of chlorophyll degradation and the onset of carotenoid accumulation (as evidenced by the first visible color transition from green to yellowish-orange at the stylar end), represents a phenologically critical checkpoint in tomato fruit ripening (Sato et al., 2012) This phase coincides with the burst of ethylene biosynthesis and transcriptional activation of ripening-related genes governing cell wall modification, volatile synthesis, and chloroplast-to-chromoplast transition (Klee and Giovannoni, 2011; Gambhir et al., 2024). Selection of this developmental window is grounded in its role as a definitive molecular switch from maturation to ripening—a period when transcriptional reprogramming events directly associated with quality trait establishment are initiated. Furthermore, SlBEL11 exhibits stage-specific upregulation during this phase, as previously reported (He et al., 2022a), making it an optimal time point to dissect its regulatory hierarchy. Sampling at this stage minimizes confounding effects from pre-ripening developmental processes while capturing early transcriptomic and metabolomic signatures linked to ripening progression, thereby enabling precise identification of SlBEL11-dependent pathways before secondary regulatory networks mask primary molecular responses.

Transcriptomics and metabobolics are the main approaches that utilize high-throughput sequencing technologies. Transcriptomics, leveraging high-throughput sequencing technologies (e.g., Illumina platforms), enable deep sequencing and differential expression analysis of whole transcriptomes to dissect molecular mechanisms at the gene expression level (Sarfraz et al., 2025). Metabolomics focuses on systematically identifying the composition and dynamics of metabolites in biological samples through high-resolution mass spectrometry, enabling precise quantification to reveal terminal phenotypic responses and biochemical regulatory networks under environmental stress (Oh et al., 2023). This study integrates transcriptomic and metabolomic approches to elucidate the specific regulatory role of the SlBEL11 in tomato fruit ripening. By comparing two groups, a wild-type control with normal SlBEL11 expression and another with perturbed SlBEL11 expression, we aim to unravel the precise regulatory mechanisms of SlBEL11 during ripening, thereby providing genetic resources and technical foundations for optimizing secondary metabolite production in tomato.




2 Materials and methods



2.1 Preparation of plant samples

SlBEL11-RNAi transgenic line was kindly donated by Dr. Daqi Fu, School of Food Science and Nutrition Engineering, China Agricultural University. All tomato plants, wild type (Micro-tom) and SlBEL11-RNAi line used in this experiment were cultivated in a growth incubator under photo-cycle condition of 16-h light (22000 Lux) at 25°C and 8-h dark at 20°C and a maintained humidity at 70%~80%. Fresh fruit samples were collected at breaker stage and used for the subsequent transcriptomic and metabolic analyses. Three biological and technical replicates were implemented for both transcriptome and metabolome profiling.




2.2 Measurement of tomato fruit firmness

Fruit firmness was measured using a pointer-type fruit firmness tester (Model GY-3, Aipu Measuring Instruments Co., Ltd., China). The test sample was placed face up on a horizontal experimental bench, and the compression force required to break the fruit was recorded. The value was divided by the surface area of the compressed region, and the pressure required per unit area was taken as the firmness metric of the tomato fruit.




2.3 Transcriptomics analysis

Tomato fruit samples were flash-frozen in liquid nitrogen, freeze-dried using a vacuum freeze-dryer (Scientz-100F), and ground into powder with zirconium oxide beads using a mixer mill at 65 Hz for 1 minute. Total RNA was extracted using a RNA extraction kit (Tiangen Biotech, Beijing, China) according to the manufacturer’s instructions. RNA quantity and purity were measured using a Nano Drop ND-1000 (Thermo Fisher), with acceptable thresholds set as A260/A280 = 1.8-2.1 and A260/A230 ≥ 2.0. RNA integrity was evaluated using an Agilent Bioanalyzer 2100, and only samples with RNA Integrity Number (RIN) ≥ 7.0 were selected for downstream analysis. cDNA libraries were constructed using the Illumina TruSeq Stranded mRNA Library Prep Kit, including mRNA enrichment, fragmentation, double-stranded cDNA synthesis, end repair, adapter ligation, and PCR amplification. After quality validation, libraries were sequenced on an Illumina NovaSeq 6000 system (LC-Bio, Hangzhou, China) in paired-end (PE150) mode, generating ≥6 GB of raw data per sample.

Raw sequencing reads were preprocessed using Fastp to remove low-quality reads (Q < 20), adapter-contaminated sequences, and reads with >5% ambiguous bases (N). Paired-end reads were aligned to the tomato reference genome (SL4.0, downloaded from Sol Genomics Network) using HISAT2 v2.2.1 with parameters: –rna-strandness RF –dta –phred33. Index files were generated using hisat2-build with default settings. Gene expression levels were quantified as Fragments Per Kilobase of transcript per Million mapped reads (FPKM), a widely used metric for estimating transcript abundance. Differential expression analysis was performed using DESeq2 (v1.38.3), with significance thresholds set as |log2(fold change)| ≥1 and Benjamini-Hochberg adjusted P-value (FDR) < 0.05. Functional enrichment analysis included KEGG pathway analysis via hypergeometric testing (FDR < 0.05) and Gene Ontology (GO) term analysis using Fisher’s exact test, both referenced against the tomato genome annotation database.




2.4 Metabolomics analysis

The pretreatment process for tomato samples was consistent with transcriptomics protocols. A 50 mg aliquot of the powdered sample was mixed with 1 mL of pre-chilled extraction solvent (methanol/water/formic acid, 15:4:1, v/v/v), vortexed, and sonicated in an ice bath (20 kHz, 5-second intervals, total duration 1 hour). The mixture was centrifuged at 8,000 × g for 5 minutes at 4°C, and the supernatant was collected, vacuum-dried, and reconstituted in 80% methanol. After purification via centrifugation (20,000 × g, 20 minutes, 4°C), the solution was filtered through a 0.22 μm cellulose acetate membrane and stored in HPLC vials at -80°C. Three biological replicates were included per group, with quality control (QC) samples prepared by pooling equal amounts of WT and SlBEL11-RNAi extracts. Three consecutive injections of QC samples were performed prior to formal analysis to stabilize the instrument. Chromatographic separation was carried out on an Agilent SB-C18 column (1.8 μm × 2.1 mm × 100 mm) using a UPLC system (ExionLC™ AD) coupled with a 6500 QTRAP mass spectrometer. The mobile phases consisted of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B), with a gradient program: 95% A to 95% B over 9 minutes, held for 1 minute, then returned to initial conditions in 70 seconds (flow rate: 0.35 mL/min; column temperature: 40°C). Mass spectrometry parameters included electrospray ionization (ESI) in positive/negative switching mode, ion source temperature of 550°C, and spray voltages of ±5,500/4,500 V.

Raw data were processed using MS-DIAL for peak alignment, retention time correction, and peak area extraction. Metabolites were identified by matching accurate mass (mass tolerance < 0.01 Da) and MS/MS spectra (mass tolerance < 0.02 Da) against in-house standards, the Human Metabolome Database (HMDB), and MassBank. Features detected in > 50% non-zero measurements within at least one experimental group were retained for downstream analysis. Differential metabolites were identified through a dual-filter approach combining Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) parameters and statistical criteria: (1) variable importance in projection (VIP) scores > 1,(2) absolute fold-change (FC) ≥ 2 with p< 0.05.





2.5 RNA extraction and RT-qPCR analysis

Total RNA was extracted from tomato tissues using the RNApure Plant Kit (CWBIO, Beijing, China). For first-strand cDNA synthesis, 2 μg of total RNA was reverse-transcribed using reverse transcriptase and oligo(dT) primers. Quantitative PCR (qPCR) was performed on a qTOWER3/G real-time system (Analytik Jena, Germany). Each reaction (20 μL total volume) contained 25 ng cDNA, 200 nM of each primer, and 4 μL SuperReal PreMix Plus (Tiangen Biotech, Beijing, China; containing DNA polymerase, dNTPs, and optimized buffer components). The thermal cycling program included an initial denaturation at 95°C for 30 s, followed by 40 cycles of 95°C for 5 s (denaturation) and 59°C for 30 s (annealing/extension). Melt curve analysis was performed to verify amplification specificity. Gene expression levels were normalized to the tomato actin gene as an internal control. the 2-ΔΔCt was rigorously applied for relative quantification of gene expression (Livak and Schmittgen, 2001). The primer sequences used in this study are provided in Supplementary Table S1.




2.6 Statistical analysis

Data are presented as mean ± standard deviation (SD). Multivariate data analysis and graphical visualization were performed using R (version 4.0.3) and associated R packages.





3 Result



3.1 Transcriptomic analysis of SlBEL11’s role in tomato fruit ripening

Observations of developing fruits in wild-type and SlBEL11-RNAi lines revealed that silencing SlBEL11 expression significantly enhanced chlorophyll accumulation in immature fruits (a phenotype previously reported by Meng et al., 2018). No obvious signs of fruit softening were detected during the growth phase (Figure 1A). However, fruits began to abscise progressively upon entering the ripening stages (Dong et al., 2024), with noticeable softening observed via tactile evaluation. Subsequent analysis confirmed the silencing efficiency of SlBEL11 in transgenic lines, demonstrating a marked reduction in SlBEL11 transcript levels at the breaker stage fruits (Figure 1B). Firmness measurements revealed a 30% reduction in SlBEL11-RNAi fruits at breaker stage (Figure 1C).

[image: (A) Two rows of tomato images from different developmental stages: 10, 20, and 30 days post-anthesis (DPA), and breaker stage (Br). The first row shows wild type (WT) tomatoes; the second shows SIBEL11-RNAi tomatoes. (B) Bar graph depicting SIBEL11 expression levels, with WT higher than SIBEL11-RNAi. (C) Bar graph showing fruit firmness, with WT being firmer than SIBEL11-RNAi.]
Figure 1 | Fruit developmental status and firmness in wild-type and SlBEL11-RNAi plants. (A) Fruit development stages of WT and SlBEL11-RNAi plants, DPA, day post anthesis, Br, breaker, scale=1cm. (B) The relative expression of SlBEL11 in WT and SlBEL11-RNAi fruits at breaker stage, p < 0.0001. (C) The fruit firmness of WT and SlBEL11-RNAi fruits at breaker stage. Statistical significance was assessed using a one‐way analysis of variance (ANOVA) with Tukey's multiple comparisons test; different lowercase letters indicate significant differences (P < 0.05). Statistical significance was assessed using a two way analysis of variance (ANOVA)with Sidak's multiple comparisons test. ****P < 0.0001.

To elucidate the molecular mechanisms, we conducted comparative transcriptome profiling of wild-type and SlBEL11-RNAi fruits using Illumina NovaSeq 6000 sequencing. As shown in Supplementary Table S2, a total of 13.43 GB of raw data (267,776,280 paired-ended reads) were generated. Stringent quality control using Fastp v0.23.4 was conducted to remove low-quality reads, adapter sequences and reads containing > 5% ambiguous bases (N), yielding 39.72 GB of high-quality clean data (263,556,950 valid reads) with Q30 > 95.97%, and GC content of 42%-45%.

The biological repeatability of the samples was evaluated using Pearson correlation coefficient (Supplementary Figure S1A). Intra-group sample correlations exceed R² > 0.9, revealing the reliability and reproducibility of the experimental design. Gene expression levels were normalized using the FPKM method and visualized via violin plots (Supplementary Figure S1B) and density distribution map (Supplementary Figure S1C). These analyses revealed similar gene expression patterns between groups, with log10(FPKM) values concentrated in the range of -2 to 2, indicating that SlBEL11 silencing did not induce global transcriptional alterations.




3.2 GO and KEGG pathway analyses of differentially expressed genes

Differentially expressed genes (DEGs) were further detected using DESeq2 v1.38.3 with a threshold of |log2 Fold Change| > 1 and FDR-corrected P < 0.05 (Figure 2A, Supplementary Table S3). Only 665 DEGs were identified, including 417 up-regulated and 248 down-regulated genes. Hierarchical clustering heatmap (Figure 2B) revealed distinct intergroup segregation and tight intragroup clustering of DEGs. To verify the transcriptomic results, 14 DEGs were selected for RT-qPCR analysis (Supplementary Figure S2). The expression patterns of the tested DEGs were consistent with that in the transcriptome.

[image: Panel (A) shows a volcano plot of gene expression changes comparing WT and SIBEL1-RNAi, with blue and orange dots indicating downregulated and upregulated genes, respectively. Panel (B) displays a heatmap of gene expression, with color gradients representing expression levels across different samples. Panel (C) is a bar graph showing gene ontology terms categorized into biological processes, cellular components, and molecular functions. Panel (D) depicts a bubble plot of enriched pathways, with bubble size representing the number of genes and color indicating q-value.]
Figure 2 | Identification of DEGs in SlBEL11-RNAi tomatoes compared to WT group. (A) Volcano plot to show the DEGs. (B) Cluster heatmap of DEGs. (C) GO enrichment analysis of DEGs. (D) KEGG enrichment analysis of DEGs.

GO enrichment analysis of DEGs are shown in Figure 2C and Supplementary Table S4. In the category of Biological Process, DEGs are significantly enriched in the pathways of single-organism process like single-organism metabolic process, single-organism localization, single-organism transport, suggesting that SlBEL11 regulates basal physiological functions. The enrichment of DEGs in other processes, such as oxidative-reduction process, localization and transport related processes, are also detected. In the category of molecular function, the significant enrichment of oxidoreductase activity, cofactor binding, and coenzyme binding, further supported the alteration of oxidative-reduction process in SlBEL11-RNAi tomatoes. The detection of binding and transport activities, such as tetrapyrrole binding, heme binding, fructose 1,6-bisphosphate 1-phosphatase activity, benzoate and xenobiotic transporters, hinted at potential changes in secondary metabolism. In the category of cellular component, however, only the “photosystem II oxygen evolving complex” was significantly enriched, indicating a potential impact on chloroplast function. This finding aligns with the result of KEGG enrichment analysis (Figure 2D, Supplementary Table S5) where DEGs clustered in photosynthesis-antenna protein pathways. Additionally, enrichment in linoleic acid metabolism, brassinosteroid biosynthesis and ABC transporter were also detected.





3.3 Metabolite statistics and quality control

As the chromatography system/mass spectrometer is in direct contact with the samples, the accumulation of residues in the chromatographic column and the mass spectrometry ion source may cause signal drift or system errors with increasing sample load (Hao et al., 2023). To ensure data reliability and repeatability, three quality control (QC) samples were used for continuous monitoring of the instrument in this study. The superimposed analysis of total ion chromatograms in both positive and negative ion modes showed that the peak intensities and time reproducibility of the QC samples were highly consistent (Supplementary Figure S3), demonstrating excellent signal stability of the instrument. Further pearson correlation analysis of the QC samples showed that the correlation coefficients were greater than 0.9 (Supplementary Figure S4), confirming the stability of the experimental procedure and the optimal performance of the instrument.

Metabolites were structurally identified by matching retention time, molecular mass (mass error <10 ppm), MS/MS fragmentation patterns, and collision energy against both in-house and public databases. All identifications were subjected to rigorous manual verification. Metabolites with a coefficient of variation (CV) <30% in QC samples were retained for subsequent analysis. A total of 714 metabolites were identified in wild-type (WT) and SlBEL11-RNAi tomato samples, spanning 22 metabolic categories, including alcohols(16), alkaloids(41), amino acid and derivatives(92), anthocyanins(12), carbohydrates(20), flavanone(21), flavone(51), flavonoid(18), flavonol(29), indole derivatives(6), isoflavone(5), lipids(75), nucleotide and derivates(59), organic acids and derivatives(106), phenolamides(27), phenylpropanoids(62), polyphenol(7), proanthocyanidins(1), quinones(2), sterides(5), Terpene(13), Vitamins and derivatives(16) and unclassified compounds(30) (Supplementary Table S6).




3.4 Multivariate statistical analysis of tomato fruits metabolites

Multivariate analyses of 714 metabolites revealed distinct metabolic profiles between WT and SlBEL11-RNAi tomato lines. Principal component analysis (PCA) separated the two groups along the primary axis (PC1, 66.93% variance), with WT and SlBEL11-RNAi samples clustering negatively and positively, respectively (Figure 3A). While PCA validated experimental stability and intergroup variability, its unsupervised nature limited sensitivity to subtle biological differences. To address this, supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) was employed, yielding an enhanced group discrimination (Figure 3B). The model exhibited high reliability (permutation test: R²Y > 0.5, Q² >0.5) with no overfitting (Figure 3C), confirming robust metabolic distinctions between genotypes.

[image: Three graphs are presented. (A) A PCA scatter plot displays two groups: WT and SIBEL11-RNAi, separated along PC1 (41.1%) and PC2 (25.83%). (B) An orthogonal T score scatter plot separates the same groups along T score[1] (43.8%) and Orthogonal T score[1] (23.7%). (C) A line plot shows R2Y and Q2 values against Y,Y' similarity, indicating model fit with R2Y = 0.996 and Q2 = 0.942.]
Figure 3 | Multivariate statistical analysis of tomato metabolites. (A) PCA score plot. (B) OPLS-DA score plot. (C) 200 permutation tests of the OPLS-DA model verification.




3.5 Identification and cluster analysis of differential metabolites

A three-tiered screening strategy (absolute FC > 2, P < 0.05, OPLS-DA-derived VIP > 1) was implemented to identify metabolically significant features. A total of 189 differential metabolites were identified in the WT and SlBEL11-RNAi tomato samples. As shown in Figure 4A, compared with WT, 115 metabolites were up-regulated and 74 were down-regulated in SlBEL11-RNAi tomatoes compared to WT. These differential metabolites include 26 lipids, 25 organic acids and derivatives, 20 phenylpropanoids, 18 amino acids and derivatives, 16 phenolic amines, 16 flavonoids, 11 nucleotides and derivatives, 10 flavonols, 10 alkaloids, 7 flavones, 7 flavanones, 4 terpenoids, 3 alcohols, 3 vitamins and derivatives, 2 polyphenols, 2 anthocyanins, 2 isoflavones, 2 indoles and derivatives, 1 carbohydrate, 1 proanthocyanidin and 3 unclassified compounds (Figure 4B).

[image: (A) A scatter plot showing variable importance in projection (VIP) against log2 fold change (Log2FC) between WT and SIBEL11-RNAi. The data is categorized into upregulated, downregulated, and insignificant metabolites. (B) A pie chart categorizing compounds by types such as lipids, organic acids, phenylpropanoids, and more, with percentages indicated. (C) A bar chart displaying Log2FC of various compounds, both upregulated and downregulated, including fumaric acid and syringic acid. (D) KEGG pathway enrichment bubble chart highlighting pathways like puromycin biosynthesis and PI3K-Akt signaling with varying P-values and metabolite counts.]
Figure 4 | Screening and analysis of differential metabolites in tomato plants of the WT and SlBEL11-RNAi groups. (A) Volcano plot of differential metabolites. (B) Pie Chart of differential metabolite categories. (C) Bar plot of the top 10 differentially expressed metabolites based on absolute log2 fold change (log2FC) values. (D) KEGG enrichment analysis of differential metabolites.

A clustering heatmap was generated to visualize sample relationships and the differences of metabolite intensity, based on the normalized expression values of differential metabolites. As shown in Supplementary Figure S5, a distinct hierarchical clustering of metabolite among groups was observed. The top 10 up-regulated and down-regulated differential metabolites were selected using fold change as a criterion. As shown in Figure 4C, the top 10 up-regulated differential metabolites included fumaric acid, N-caffeoyl spermidine, geniposide, syringic acid, tricin O-hexosyl-O-syringin alcohol, N-sinapoyl cadaverine, O-p-coumaroyl quinic acid O-rutinoside derivative, 3-O-p-coumaroyl shikimic acid, cinnamoyl tyramine, phosphatidylcholine acyl 19:2/16:0. The top 10 down-regulated differential metabolites were O-feruloyl coumarin, D-erythro-sphinganine, coumarin O-rutinoside, tricin 5-O-hexoside, 3-(4-hydroxyphenyl)propionic acid, eriodictiol C-hexosyl-O-hexoside N-acetyl-L-tyrosine, sakuranetin, hesperetin O-hexosyl-O-hexoside, N-p-coumaroyl hydroxyagmatine.




3.6 Analysis of KEGG enrichment pathways for differential metabolites

KEGG pathway enrichment analysis of the differentially expressed metabolites was performed using Metaboanalyst 4.0. The top 20 significantly enriched metabolic pathways are presented in Figure 4D, including flavonoid biosynthesis, phenylpropanoid biosynthesis, biosynthesis of phenylpropanoids, ubiguinone and other terpenoid-guinone biosynthesis, longevity regulating pathway, toluene degradation, dopaminergic synapse, stilbenoid, diarylheptanoid and gingerol biosynthesis, asthma, betalain biosynthesis, biosynthesis of enediyne antibiotics, biosynthesis of vancomycin group antibiotics, bisphenol degradation, fc epsilon RI signaling pathway, folate biosynthesis, histamine H2/H3 receptor agonists/antagonists, monoterpenoid biosynthesis, phosphatidylinositol signaling system, PI3K-akt signaling pathway, puromycin biosynthesis.




3.7 Integrated analysis of metabolomic and transcriptomic of tomato in the two groups

KEGG enrichment analysis of differential genes and metabolites identified 25 co-enriched KEGG-enriched pathways (Figure 5A). To further explore the relationship between DEMs and DEGs and determine the pathways affected by SlBEL11, we overlaid p-values thresholds on KEGG histograms, prioritizing pathways enriched by both DEMs (p < 0.05) and DEGs (p < 0.01) (Figure 5B). This approach identified six key pathways, including ABC transporters, ascorbate and aldarate metabolism, glycine/serine/threonine metabolism, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, and pyruvate metabolism.

[image: Venn diagram and bar chart illustrating the relationship between "Meta" and "Gene" data. The Venn diagram (A) shows "Meta" with 91 elements (54%), "Gene" with 51 elements (31%), and a shared 25 elements (15%). The bar chart (B) presents −log10(p-value) for various metabolic pathways, with bars colored according to type: orange for "Gene" and blue for "Meta." Significance levels are indicated by dashed lines at p-value less than 0.01 and 0.05. Bars represent various metabolic processes such as "ABC transporters," "Glycolysis/Glucogenesis," "Purine metabolism," and more.]
Figure 5 | Combined analysis of the metabolic and transcriptional profiles of SlBEL11-RNAi tomatoes compared to WT group. (A) Venn diagram to show the number of shared KEGG pathways enriched by DEGs (Gene) and DEMs (Meta). (B) Bar chart to show the p-values of the enriched KEGG pathways. The x-axis represents the KEGG pathways, and the y-axis indicates the -log10p-value. The dashed lines drawn at -log10(0.05) marks the statistical significance threshold.

Expression and regulatory patterns of differential metabolites and genes associated with glycolysis/gluconeogenesis, ascorbate/aldarate metabolism, and phenylpropanoid biosynthesis are summarized in Figure 6. In glycolysis/gluconeogenesis, salicin decreased twofold, accompanied by downregulation of ADH1 (3.3-fold) and PK (2.4-fold) (Figure 6A, Supplementary Table S7). For ascorbate/aldarate metabolism, inositol declined 2.7-fold, while APX (24-fold), ALDH (5.7-fold), and GME (2.1-fold) were upregulated, contrasting with the marked suppression of AO (5.7-fold) (Figure 6B, Supplementary Table S7). In phenylpropanoid biosynthesis, seven metabolites, including coniferyl alcohol (5.1-fold), sinapyl alcohol (4.7-fold), L-tyrosine (4.6-fold), Scopoletin (2.9-fold), caffeate (2.6-fold), coniferyl aldehyde (2.6-fold) and cinnamic acid (2.2-fold), showed elevated abundance, whereas syringin declined 5.9-fold. Concurrently, UGT72E (69.2-fold), CCR (11.3-fold) and E1.11.1.7 (2.3-fold) were upregulated, opposing the 1.9-fold downregulation of PAL (Figure 6C, Supplementary Table S7). Figure 7 illustrates coordinated metabolic and transcriptional interactions across ABC transporters, pyruvate metabolism, and glycine/serine/threonine metabolism. In the category of ABC transporters, ornithine (5.3-fold) and biotin (4.3-fold) accumulated, while inositol decreased 2.7-fold alongside the upregulation of ABCB14 and ABCB3 (8-fold and 7.6-fold, respectively) (Figure 7A, Supplementary Table S7). Pyruvate metabolism exhibited fumaric acid accumulation with four upregulated genes, including ALDH (5.7-fold), maeB (5.4-fold), DLD (4.8-fold) and chMDH (2.2-fold), contrasting with the suppression of PK (2.4-fold) (Figure 7B, Supplementary Table S7). Glycine/serine/threonine metabolism featured elevated L-tryptophan (4.0-fold) and phosphoserine (2.2-fold), concurrent with upregulation of gcvH(5.4-fold), DLD (4.8-fold) and AGXT (2.9-fold), opposing the downregulation of glyA (2.2-fold). (Figure 7C, Supplementary Table S7).

[image: Diagram showing three metabolic pathways: (A) Glycolysis/Gluconeogenesis, highlighting enzymes and genes like HK/HXK and ADH1, with associated heat maps of expression levels. (B) Ascorbate and aldarate metabolism, detailing enzymes and components like myo-Inositol and GME, with heat maps. (C) Phenylpropanoid biosynthesis, illustrating pathways from phenylalanine to lignin and related compounds, with genes such as PAL and UGT72E, accompanied by heat maps showing expression differences in WT and SHELL+RNAi samples. Arrow directions indicate reaction flows, with color-coded nodes for expression data.]
Figure 6 | The differential metabolites and differential gene regulatory networks related to SlBEL11 in tomatoes. (A) Glycolysis/Gluconeogenesis Pathway. (B) Ascorbate and aldarate metabolism. (C) Phenylpropanoid biosynthesis. The arrows connecting the metabolites represent genes, and the circular diagrams represent metabolites. Genes in red indicate upregulation, while those in blue indicate downregulation. Metabolites in purple indicate upregulation, and those in orange indicate downregulation.

[image: Diagram illustrating metabolic pathways across three sections. (A) ABC transporters feature pathways for Biotin, myo-Inositol, Arginine, Ornithine with associated heatmaps indicating gene expression changes between WT and SIBEL1 RNAi. (B) Pyruvate metabolism displays pathways with key enzymes like PK and ALDH, and related heatmaps showing expression differences. (C) Glycine/serine/threonine metabolism highlights enzymes such as AGXT and gcvII, mapped with arrows showing interactions, accompanied by a heatmap. Color bars denote expression levels ranging from -0.5 to 0.5.]
Figure 7 | The differential metabolites and differential gene regulatory networks related to SlBEL11 in tomatoes. (A) ABC transporters pathway. (B) Pyruvate metabolism. (C) Cysteine, serine and threonine metabolism. The arrows connecting the metabolites represent genes, and the circular diagrams represent metabolites. Genes in red indicate upregulation, while those in blue indicate downregulation. Metabolites in purple indicate upregulation, and those in orange indicate downregulation.





4 Discussion

The transcription factor SlBEL11, a member of the BEL1-like family, has emerged as a key regulator of plant development in recent studies (Meng et al., 2018; He et al., 2022a; Dong et al., 2024). Our integrated multi-omics approach unveiled its comprehensive influence on transcriptional reprogramming and metabolic remodeling across six interconnected pathways, providing mechanistic insights into its role in coordinating ripening-associated physiological transitions.

Ascorbic acid (vitamin C), a critical antioxidant in fruits, governs ripening and postharvest storage quality through its dynamic accumulation (Corpas et al., 2024; Lin et al., 2025). The ascorbate metabolism pathway serves as a critical node in SlBEL11-mediated regulation. In SlBEL11-RNAi fruits, despite significant downregulation of L-galactose pathway rate-limiting enzyme GME (2.1-fold upregulation), which typically drives ascorbate biosynthesis (Zheng et al., 2022), we observed depleted myo-inositol levels (2.7-fold decrease) (Figure 6B, Supplementary Table S7). This paradox suggests preferential metabolic flux diversion through the alternative L-gulose salvage pathway, likely compensating for restricted precursor availability. Simultaneous suppression of ascorbate oxidase (AO, 5.7-fold) aligns with elevated APX (24-fold) and ALDH (5.7-fold) expression, indicating a strategic trade-off between ascorbate degradation inhibition and enhanced antioxidant capacity (Figure 6B, Supplementary Table S7). Such coordinated regulation ensures sufficient hydroxyproline biosynthesis for cell wall cross-linking while mitigating oxidative stress—a dual mechanism underlying the observed 30% firmness reduction (Wu et al., 2024). Notably, this metabolic tension mirrors findings in SlBL4-mutant tomatoes (Yan et al., 2020), suggesting a conserved BEL-family regulatory paradigm in redox-structural coupling.

The phenylpropanoid pathway constitutes a central metabolic network in plant secondary metabolism, respobsible for the biosynthesis of lignin, flavonoid derivatives, and phenolic acid compounds that collectively mediate cell wall reinforcement and oxidative stress mitigation (Anwar et al., 2021; Yao et al., 2021; Liang et al., 2024). Which displayed hierarchical dysregulation characterized by upstream repression and terminal activation. While PAL suppression (1.9-fold) constrained cinnamic acid biosynthesis, consequent accumulation of L-tyrosine (4.6-fold) and cinnamic acid (2.2-fold) implies alternative substrate provisioning through tyrosine ammonia-lyase (TAL) activity—a compensatory mechanism previously undocumented in BEL-regulated systems (Figure 6C, Supplementary Table S7). Downstream activation of CCR (11.3-fold) and UGT72E (69.2-fold) contrasts sharply with syringin depletion (5.9-fold), revealing metabolic bottlenecks at monolignol glycosylation steps (Figure 6C, Supplementary Table S7). This transcriptional-metabolic disconnect may arise from substrate competition between UGT72E isoforms, as evidenced by differential affinity for coniferyl/sinapyl alcohol derivatives (Anwar et al., 2021). The net physiological outcome—reduced lignification coupled with enhanced soluble phenolic accumulation—mirrors the “metabolic channeling” strategy observed in pathogen-challenged plants (Yao et al., 2021), positioning SlBEL11 as a plasticity regulator during ripening-stress cross-talk.

As the central energy-converting hub of sugar metabolism, the glycolysis/gluconeogenesis pathway underpins cellular energy supply during fruit ripening (Stroka et al., 2024). SlBEL11 knockdown induced a paradoxical glycolytic profile: upregulated HK and ADH1 contrasted with PK suppression and salicin depletion (Figure 6A, Supplementary Table S7). This pattern suggests bifurcated carbon flux—enhanced sucrose cleavage drives ethanolic fermentation rather than mitochondrial respiration, potentially optimizing ATP yield under reduced TCA cycle activity. The resultant NAD+ regeneration could mitigate ROS accumulation from RBOH-mediated respiratory burst (Jones et al., 2007), explaining maintained fruit integrity despite accelerated softening. Such metabolic flexibility aligns with the “overflow hypothesis” in glycolytic regulation (Liu et al., 2021), establishing SlBEL11 as an energy rheostat balancing catabolic efficiency and oxidative damage.

The ABC transporter system emerged as a SlBEL11-dependent hub for secondary metabolite trafficking. While ABCB14 (8-fold) and ABCB3 (7.6-fold) induction typically enhances phytoalexin efflux (Gani et al., 2021), concomitant myo-inositol depletion suggests compromised osmoregulation-mediated turgor maintenance (Figure 7A, Supplementary Table S7). This creates a metabolic dilemma—increased defense compound export vs. cellular dehydration risk. The ornithine/biotin accumulation-inositol depletion axis mirrors stress-adapted solute redistribution in drought-tolerant cultivars (Liang et al., 2024), implying SlBEL11’s role in abiotic-biotic stress integration during ripening.




5 Conclusion

This study unveils the mechanism by which the transcription factor SlBEL11 regulates in tomato fruit ripening. Through integrated transcriptomics and metabolomics analyses, we demonstrate that SlBEL11 modulates gene expression and metabolite accumulation across critical pathways, including ABC transporters, ascorbate and aldarate metabolism, glycine/serine/threonine metabolism, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, and pyruvate metabolism. These pathways collectively govern fruit nutritional quality, firmness, antioxidant capacity and ripening initiation. SlBEL11 affects ascorbate homeostasis and cell wall remodeling by regulating ascorbic acid metabolism, enhances phenolic compounds accumulation and antioxidant defenses via phenylpropane pathway activation, fine-tunes energy metabolism through modulation of sugar catabolism, with downstream impacts on redox homeostasis. Meanwhile, SlBEL11 influences the ABC transporter-mediated pathway to alter the transmembrane transport of secondary metabolite trafficking and boosts pathogen defense mechanism. Collectively, our findings reveal a multi-layered regulatory network through which SlBEL11 integrates metabolic, structural, and defensive processes during fruit ripening.
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The study of chloroplast genome evolutionary dynamics provides critical insights into plant adaptive evolution and phylogenetic relationships. This research conducted a systematic comparative analysis of chloroplast genomes across 35 species within the Rutaceae family. All genomes displayed the typical quadripartite structure, with sizes ranging from 155 to 161 kb, GC contents between 38.17% and 38.83%, and gene counts varying from 122 to 144. Structural conservation was high across species, with variations mainly localized at the boundaries of inverted repeat (IR) regions. AT-rich mononucleotide simple sequence repeats (SSRs) were dominant and primarily distributed in non-coding regions. Collinearity analysis revealed high sequence conservation alongside lineage-specific rearrangements. Relative synonymous codon usage (RSCU) analysis revealed significant heterogeneity among species, with values ranging from 0.386 to 1.797. ENC-GC3s, GC3-GC12, and PR2 analyses indicated a marked deviation from neutral evolution. Selection pressure analysis indicated strong purifying selection (Ka/Ks < 0.2) acting on photosynthetic system genes, while certain genes (e.g., matK, rpl20) exhibited signals of positive selection, highlighting adaptive evolutionary features in specific genomic regions. Phylogenetic reconstruction placed Murraya paniculata within a clade containing other Murraya species, closely related to Citrus and Clausena, reflecting morphological and biogeographic patterns. This study provides a molecular framework for taxonomic revision in Rutaceae and enhances understanding of chloroplast genome evolution in the family.
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1 Introduction

Chloroplasts, as essential organelles for photosynthesis and various metabolic pathways in plants, have become a vital tool for phylogenetic reconstruction, species identification, and evolutionary studies due to their maternal inheritance, structural conservation, and moderate evolutionary rate (Daniell et al., 2016, 2021). The typical chloroplast genome exhibits a circular quadripartite structure, comprising a large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeats (IRs). It encodes approximately 110 – 150 genes, primarily involved in photosynthesis, transcription, translation, and metabolic regulation (Wicke et al., 2011; Jin and Daniell, 2015). Recent advancements in high-throughput sequencing technologies have significantly propelled research on chloroplast genomes, yielding remarkable progress in understanding plant phylogenetics and adaptive evolution (Ahmad and Nixon, 2025; Cauz-Santos, 2025; Li et al., 2015; Narra et al., 2025; Zhang et al., 2025; Zheng et al., 2025). However, comparative studies of chloroplast genomes within the Rutaceae family remain relatively limited, particularly for the genus Murraya and its closely related species. The lack of systematic characterization of their chloroplast genomic features and evolutionary mechanisms hinders a comprehensive understanding of the evolutionary history and adaptive strategies within this lineage.

Owing to their structural conservation, chloroplast genomes offer unique advantages for comparative genomics and phylogenetic studies. Systematic comparisons of genome size, IR boundary shifts, gene arrangement, simple sequence repeats (SSRs), codon usage bias, and protein-coding sequences can reveal genetic divergence and evolutionary trajectories among species (Agnello et al., 2016). SSRs, as highly variable elements predominantly located in non-coding regions, exhibit substantial polymorphism and serve as valuable tools for analyzing interspecific relationships and developing molecular markers (Ping et al., 2021; Zhao et al., 2022). In eukaryotes, 61 codons encode 20 amino acids, and codon usage bias is shaped by a combination of evolutionary forces, including natural selection, mutational bias, and genetic drift (Quax et al., 2015; Parvathy et al., 2022). Studies have demonstrated that codon usage preferences in chloroplast genomes are often correlated with gene expression levels, translational efficiency, and functional importance (Frumkin et al., 2018; Yang et al., 2023a). Such biases are generally regarded as the outcome of a balance between non-synonymous codon mutation drift and selective pressures favoring optimal codons (Behura and Severson, 2013). Additionally, these biases are influenced by multiple factors, including nucleotide composition, GC content, gene expression levels, and tRNA abundance (Romero et al., 2000; Blake et al., 2003; Schwark et al., 2020; Niu et al., 2021). For instance, highly expressed photosynthesis-related genes often exhibit stronger codon preferences, a phenomenon attributed to natural selection optimizing translational efficiency (Yang et al., 2023b). Furthermore, the ratio of non-synonymous to synonymous substitution rates (Ka/Ks) can identify functional genes under positive selection, providing insights into the role of specific genes in adaptive evolution. Multidimensional comparative analyses not only elucidate the conservation and variability of chloroplast genomes but also offer theoretical foundations for species identification, taxonomic revision, molecular adaptation to environmental changes, gene expression regulation, and resource conservation (Tang et al., 2000; Zhou et al., 2016).

Collinearity analysis and phylogenetic reconstruction based on chloroplast genomes are pivotal methods for investigating plant evolutionary history (Jansen et al., 2007; Li et al., 2019). Compared to traditional single-gene or multi-gene fragment approaches, whole-genome sequences provide more comprehensive phylogenetic signals, particularly in resolving complex relationships among closely related species (Lemmon and Lemmon, 2013; Wickett et al., 2014). Within Rutaceae, previous studies have predominantly focused on economically significant groups such as Citrus, while the systematic positions of genera like Murraya remain understudied (Carbonell-Caballero et al., 2015). Moreover, Ka/Ks analysis can delineate evolutionary patterns of different genes and identify functional genes potentially undergoing adaptive evolution (Hurst, 2002). These analytical approaches will provide novel insights into the evolutionary history and adaptive mechanisms of Murraya species. In recent years, the growing accumulation of chloroplast genome sequences in public databases has enabled systematic comparative studies at both genus and family levels (Li et al., 2025a, 2025). For taxonomically ambiguous or contentious groups, leveraging existing chloroplast data with well-designed sampling strategies has become a key trend in molecular phylogenetic research.

This study systematically investigates the chloroplast genomes of 35 Rutaceae species, focusing on structural characteristics, sequence variation, repeat sequences, codon usage bias, collinearity, selection pressure, and phylogenetic relationships. The research aims to elucidate the conservation and variability of chloroplast genomes within Rutaceae and explore the genetic basis underlying phylogenetic divergence and ecological adaptation. Notably, this study reports the complete chloroplast genome of an important Murraya germplasm resource, integrating it into a family-wide comparative framework to clarify its phylogenetic position and relationships within Rutaceae. The findings not only provide molecular evidence for resolving complex taxonomic issues in Rutaceae but also offer new perspectives and theoretical support for understanding the adaptive evolution and conservation of biodiversity within this family.




2 Materials and methods



2.1 Plant material collection and DNA sequencing

Fresh leaves of Murraya paniculata were collected from Fuzhou city, Fujian Province, China. Plants were cultivated under controlled greenhouse conditions (temperature: 24 - 26 °C; humidity: 50 - 70%; photoperiod: 16 h light/8 h dark). Genomic DNA was extracted from fresh leaf tissue using an improved CTAB method (Liu et al., 2025). High-throughput sequencing was performed on the DNBSEQ-T7 platform (MGI Tech), generating approximately 20 GB of 150 bp paired-end raw reads per sample, achieving approximately 100× coverage depth of the chloroplast genome. The complete chloroplast genome sequence of M. paniculata has been deposited in the NCBI GenBank database under accession number PX214363. For comparative analysis, chloroplast genome sequences of 34 additional Rutaceae species were retrieved from the NCBI database (https://www.ncbi.nlm.nih.gov/).




2.2 Chloroplast genome assembly and annotation

The complete chloroplast genome of Murraya paniculata was assembled using assembled using oatk (Organellar Assembly Toolkit) with PacBio HiFi sequencing data. The assembly was performed using the following parameters: k-mer size of 1001 (-k 1001), coverage threshold of 150 (-c 150), and 8 threads (-t 8). Organellar genome identification and separation was achieved using angiosperm-specific HMM profiles for mitochondrial genomes. Assembly quality was rigorously validated using QUAST v5.0.2, revealing high-quality metrics with N50 values ranging from 87,592 bp (LSC region) to 26,994 bp (IR regions), total assembly length of 160,179 bp, and zero assembly gaps. Preliminary genome annotation was conducted using the GeSeq tool with default settings (Tillich et al., 2017), referencing annotated chloroplast genomes from closely related Murraya species to enhance accuracy. To further ensure the precision of gene identification, particularly regarding start/stop codons and exon-intron junctions, all annotations were manually curated and refined using the Sequin software package provided by NCBI. A circular chloroplast genome map was then generated using the web-based visualization tool Chloroplot (https://irscope.shinyapps.io/Chloroplot/). This map illustrates the typical quadripartite structure of the genome and shows the precise locations and orientations of genes across the large single-copy (LSC), small single-copy (SSC), and inverted repeat (IR) regions.




2.3 SSR analysis

Simple sequence repeat (SSR) analysis was conducted to characterize the distribution and composition of microsatellites across the chloroplast genomes. SSRs were identified using IMEx v2.1 software (Mudunuri and Nagarajaram, 2007) with the following minimum repeat thresholds: 10 repeats for mononucleotides, 5 for dinucleotides, 4 for trinucleotides, and 3 for tetra- to decanucleotides. In this study, repeats of >6 bp were included to provide a more comprehensive survey of chloroplast SSR diversity. Although SSRs are typically defined as 1 – 6 bp units, larger motifs occur at lower frequency and can contribute to species-specific polymorphism and comparative resolution. Detected SSRs were systematically classified based on: (1) repeat unit length (mono- to decanucleotide), (2) genomic location (coding regions, introns, or intergenic spacers), and (3) nucleotide composition (AT-rich or GC-rich motifs). The distribution patterns of SSR types were visualized as a heatmap using the R package pheatmap, highlighting interspecific variations in SSR abundance and composition. This analysis revealed the prevalence of AT-rich SSRs, particularly in noncoding regions, reflecting mutation biases and selective constraints in chloroplast genome evolution.




2.4 RSCU analysis

The Relative Synonymous Codon Usage (RSCU) method was employed to evaluate codon usage bias across chloroplast genomes. The analysis proceeded in three main steps: First, all protein-coding sequences (CDSs) were extracted based on genome annotations. Next, the RSCU value for each synonymous codon was calculated using the formula: RSCU = (observed frequency of a codon)/(expected frequency under equal usage of all synonymous codons for that amino acid). An RSCU value of 1.0 indicates no bias, values >1.0 suggest a codon is preferentially used, and values <1.0 denote underrepresentation (Wang et al., 2018). To facilitate cross-species comparison, heatmaps were constructed using the pheatmap package in R, allowing for a clear visualization of codon usage patterns among different species. This approach eliminates the influence of amino acid composition by standardizing codon counts, thereby accurately reflecting genome-wide codon usage preferences (Perrière and Thioulouse, 2002). The RSCU-based analysis offers insights into the evolutionary pressures acting on chloroplast genomes and helps reveal lineage-specific codon usage strategies. These findings are essential for understanding the molecular evolution, gene expression regulation, and functional optimization of chloroplast-encoded proteins in Rutaceae.




2.5 ENC analysis

To assess codon usage diversity, the Effective Number of Codons (ENC) was calculated using the ENC-GC3s analytical approach (Wright, 1990). The ENC value was derived from the formula: ENC = 2 + 9/F2 + 1/F3 + 5/F4 + 3/F6, where F2 to F6 represent the homozygosity (codon usage bias) indices for amino acids encoded by 2 to 6 synonymous codons, respectively. ENC values theoretically range from 20 (indicating extreme codon usage bias) to 61 (indicating no bias). In this study, custom Python scripts were employed to compute the ENC values for each protein-coding gene, along with the GC content at the third codon position (GC3s). Subsequently, ENC-GC3s scatter plots were generated using the R programming environment. These plots incorporated a standard expected curve representing the theoretical relationship between ENC and GC3s under the assumption that codon usage is solely dictated by GC compositional constraints. The extent to which observed data points deviated from this expected curve was used to infer the relative influence of mutational pressure and translational selection on codon usage bias. Genes aligning closely with the theoretical curve were interpreted as being mainly influenced by mutational bias, whereas genes deviating significantly from the curve were considered to be under selection-driven codon usage patterns. This analytical framework enabled a nuanced understanding of the evolutionary forces shaping codon usage in chloroplast genomes.




2.6 Neutrality plot analysis

Neutrality plot analysis was conducted to explore the selective forces influencing chloroplast genome evolution in Rutaceae species. For each gene, the average GC content at the first and second codon positions (GC12) and at the third codon position (GC3) were calculated. A GC3-GC12 neutrality plot was then constructed, with each data point representing a gene’s GC content characteristics. Linear regression analysis was applied to assess the correlation between GC12 and GC3. The regression slope was interpreted as follows: a slope close to 1 indicates that mutational pressure predominantly influences the gene’s GC content, while a slope near 0 suggests that natural selection primarily drives the gene’s GC content variation (Tang et al., 2021; Yang et al., 2024). This analysis allowed for the assessment of the relative contributions of mutational bias and selective forces to codon usage in the chloroplast genomes of Rutaceae species.




2.7 PR2 plot analysis

PR2 (Parity Rule 2) analysis was employed to examine the evolutionary driving forces behind codon usage preferences in the chloroplast genomes of Rutaceae species. According to the principle of base-pairing equilibrium, under the absence of selection pressures, the third codon position should exhibit an equal distribution of A = T and G = C (Yang et al., 2023a). However, natural selection typically results in a deviation from this equilibrium. To investigate this, the ratios of A3/(A3+T3) and G3/(G3+C3) were calculated for each gene. A two-dimensional scatter plot was constructed, with G3/(G3+C3) on the x-axis and A3/(A3+T3) on the y-axis. The central point (0.5, 0.5) represents the theoretical balance, and the distance of data points from this central point reflects the extent of base composition bias. The plot was divided into four quadrants using the 0.5 reference line, with regions of deviation indicating the presence of natural selection pressures. The analysis, visualized using the ggplot2 package, highlighted distinct selection patterns across species and provided a detailed comparison of codon usage biases across different Rutaceae lineages.




2.8 Correspondence analysis

Correspondence analysis (COA) was performed to systematically explore the codon usage patterns in Rutaceae species. Based on the RSCU matrix (excluding amino acids encoded by single codons, such as methionine and tryptophan), each protein-coding sequence was converted into a 59-dimensional vector. Principal component analysis (PCA) was conducted using the FactoMineR package to reduce the dimensionality, and the first two principal components, which accounted for the highest proportion of variation, were extracted. Visualization of the results was achieved through a two-dimensional plot generated by the factoextra package. This analysis revealed the major trends in codon usage variation across species and provided insights into the functional constraints and evolutionary pressures shaping codon usage preferences in the Rutaceae family.




2.9 Collinearity analysis

Collinearity analysis was performed across the chloroplast genomes of 28 species. The analysis was visualized using the genoPlotR package in R (v4.1.0). The workflow included the following steps: (1) gene feature information was extracted from the GFF3 annotation files and standardized; (2) genes were categorized based on functional groups (e.g., photosystem, ATP synthase, transcription and translation-related genes), with differential coloring applied to each category; (3) pairwise sequence similarity was calculated using BLASTN; (4) a phylogenetic tree based on the maximum likelihood method (Newick format) was integrated. The results clearly illustrated the conserved quadripartite structure of the chloroplast genome, with gray connecting lines indicating regions of high sequence similarity. This analysis provided critical evidence of genome structure variation, such as rearrangements and inversions, particularly near the inverted repeat (IR) region boundaries, which are linked to phylogenetic differentiation.




2.10 Selection pressure analysis

Selection pressure analysis was performed using the Ka/Ks Calculator v2.0 (Wang et al., 2010) to calculate the non-synonymous substitution rate (Ka) and synonymous substitution rate (Ks) for homologous genes, and the Ka/Ks ratio (ω) was subsequently calculated. The ω ratio is used to assess the type of selection: ω > 1 indicates positive selection, reflecting the fixation of adaptive mutations; ω ≈ 1 indicates neutral evolution; and ω < 1 suggests purifying selection, which eliminates deleterious mutations. This analysis provided molecular evidence for understanding the adaptive evolutionary processes of chloroplast-encoded genes in Rutaceae species.




2.11 Phylogenetic reconstruction

Phylogenetic analysis was performed using conserved protein-coding genes from the chloroplast genomes. Multiple sequence alignment was carried out with MAFFT v7.450 using the L-INS-i algorithm for accurate alignment of highly variable regions (Katoh and Standley, 2013), and the resulting alignment was concatenated using PhyloSuite v1.2.2 (Zhang et al., 2020). To optimize the alignment quality, trimAl v1.4 (automated1 parameter) was applied to remove poorly aligned positions and divergent regions. The optimal partitioning scheme and substitution models were determined using PartitionFinder v2.1.1 with the Bayesian Information Criterion (BIC) for model selection (Lanfear et al., 2017). Phylogenetic reconstruction was performed using the maximum likelihood method (RAxML-NG v1.2.2) with 1000 bootstrap replicates (Kozlov et al., 2019), and the final phylogenetic tree robustly resolved the evolutionary relationships among Rutaceae species. All analyses were conducted with default parameters unless otherwise specified, and complete parameter settings are detailed in the supplementary methods.





3 Results



3.1 Chloroplast genome features

The complete chloroplast genome of M. paniculata exhibits a typical quadripartite structure commonly found in angiosperms, with a total length of 160,179 bp. It consists of a large single-copy (LSC) region of 87,592 bp, a small single-copy (SSC) region of 18,599 bp, and a pair of inverted repeats (IRs), each 26,994 bp in length (Figure 1A). The overall GC content of the genome is 38.64%, and the total length of coding regions is 79,755 bp. A total of 131 genes were identified, comprising 86 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. Genes associated with photosynthetic functions—such as psaA/B, psbC/D/E/F, among others—are predominantly located in the LSC region (Figure 1A; Table 1 and Supplementary Table S1). The chloroplast genome map clearly illustrates the spatial distribution and orientation of genes across the four structural regions, as well as the exon–intron architecture of key chloroplast genes. Notably, some genes such as rps16 contain relatively long intronic regions, which may be involved in transcriptional regulation (Figures 1A, B). Comparative analysis of 35 Rutaceae species, including M. paniculata, revealed that their chloroplast genome sizes ranged from 155 kb to 161 kb, with GC content varying between 38.17% and 38.83%, and gene counts ranging from 122 to 144. These findings indicate an overall high level of genomic conservation within the family (Table 1). Analysis of nucleotide composition showed a consistent AT bias across all species, with
average base proportions of A (30.46%), T (31.10%), C (19.58%), and G (18.86%). GC content exhibited a positional gradient among codon sites, following the trend GC1 (mean 46.16%) > GC2 (38.34%) > GC3 (31.83%), with the GC content at third codon positions (GC3s) averaging 28.98%, indicating a pronounced AT preference at these positions (Supplementary Table S1). The average length of the coding regions across the 35 chloroplast genomes was 78,245 bp,
accounting for 49.38% of the total genome length. In contrast, non-coding regions averaged 68,392 bp. The GC content of coding regions (mean 38.78%) was notably higher than that of non-coding regions (mean 35.08%), suggesting greater structural stability and functional constraint in coding sequences (Supplementary Table S1).

[image: Circular map and bar chart depicting genetic information of Murraya paniculata. Part A: Circular genome map detailing regions and genes with color-coded functional categories. Inner arcs represent gene connections. Part B: Cis-splicing genes chart showing exon (black) and intron (white) regions with gene names and position numbers, indicating gene structure.]
Figure 1 | Chloroplast genome features of M. paniculata. (A) Circular map of the chloroplast genome of Murraya paniculata. The map contains six concentric tracks. From center outward: the first track shows dispersed repeats consisting of direct (D, red arcs) and palindromic (P, green arcs) repeats; the second track displays long tandem repeats (short blue bars); the third track shows short tandem repeats or microsatellite sequences (short bars in different colors); the fourth track indicates the small single-copy (SSC), inverted repeat (IRa and IRb), and large single-copy (LSC) regions; the fifth track plots GC content along the genome; the sixth track shows gene distribution. Genes are color-coded by functional classification. Transcription directions for inner and outer genes are clockwise and anticlockwise, respectively. Numbers in parentheses after gene names indicate codon usage bias values. (B) Schematic representation of cis-splicing genes in the chloroplast genome. Genes are arranged from top to bottom based on their order in the chloroplast genome. Gene names are shown on the left, and gene structures are displayed on the right. Exons are shown in black, and introns in white. Arrows indicate the transcription direction of genes. Note that the lengths of exons and introns are not drawn to scale.


Table 1 | Summary of chloroplast genome features in rutaceae species.
	no.
	Species
	Acc. No
	Length
	GC%
	Protein
	rRNA
	tRNA
	Total gene



	1
	Clausena excavata
	KU949003
	161172
	38.28
	86
	8
	33
	127


	2
	Glycosmis mauritiana
	KU949004
	160131
	38.49
	85
	8
	29
	122


	3
	Glycosmis pentaphylla
	KU949005
	159844
	38.39
	85
	8
	29
	122


	4
	Micromelum minutum
	KU949007
	160416
	38.54
	86
	8
	29
	123


	5
	Phellodendron amurense
	KY707335
	158442
	38.38
	88
	8
	37
	133


	6
	Clausena anisata
	LC794893
	159569
	38.4
	91
	8
	44
	143


	7
	Glycosmis citrifolia
	LC794899
	159008
	38.52
	89
	8
	45
	142


	8
	Murraya caloxylon
	LC794902
	160020
	38.46
	91
	8
	45
	144


	9
	Murraya koenigii
	LC794904
	159337
	38.58
	91
	8
	43
	142


	10
	Ruta graveolens
	MN326012
	157434
	38.83
	87
	8
	37
	132


	11
	Zanthoxylum nitidum
	MN508801
	157253
	38.5
	87
	8
	37
	132


	12
	Zanthoxylum motuoense
	MT990981
	158509
	38.52
	86
	8
	37
	131


	13
	Citrus reticulata
	MW147176
	160699
	38.42
	87
	8
	37
	132


	14
	Melicope lucida
	MW221969
	160407
	38.57
	86
	8
	35
	129


	15
	Zanthoxylum asiaticum
	MW478801
	158394
	38.47
	87
	8
	37
	132


	16
	Phellodendron chinense
	MW478802
	158490
	38.36
	87
	8
	37
	132


	17
	Tetradium ruticarpum
	MW478803
	158762
	38.33
	87
	8
	37
	132


	18
	Tetradium daniellii
	MZ145060
	158446
	38.33
	86
	8
	37
	131


	19
	Dictamnus albus
	MZ750957
	157139
	38.49
	87
	8
	37
	132


	20
	Murraya paniculata
	This study
	160179
	38.64
	86
	8
	37
	131


	21
	Boronia ternata
	OL591162
	157247
	38.17
	87
	8
	37
	132


	22
	Brombya platynema
	OL591163
	158837
	38.29
	87
	8
	37
	132


	23
	Crowea saligna
	OL591172
	155807
	38.48
	87
	8
	37
	132


	24
	Cyanothamnus anemonifolius
	OL591173
	155860
	38.28
	85
	8
	36
	129


	25
	Drummondita fulva
	OL591177
	157286
	38.28
	86
	8
	37
	131


	26
	Eriostemon australasius
	OL591179
	157114
	38.39
	87
	8
	37
	132


	27
	Euodia pubifolia
	OL591181
	159341
	38.22
	87
	8
	37
	132


	28
	Halfordia kendack
	OL591187
	158159
	38.27
	87
	8
	38
	133


	29
	Leionema ellipticum
	OL591190
	157187
	38.42
	86
	8
	37
	131


	30
	Corynonema pinoides
	OL591215
	156595
	38.49
	87
	8
	37
	132


	31
	Corynonema pungens
	OL591216
	155376
	38.46
	87
	8
	37
	132


	32
	Chorilaena anceps
	OL591221
	155363
	38.41
	82
	8
	37
	127


	33
	Clausena lansium
	OL944012
	159787
	38.67
	87
	6
	37
	130


	34
	Citrus sinensis
	ON641345
	160121
	38.48
	87
	8
	37
	132


	35
	Zanthoxylum avicennae
	OP580971
	158506
	38.45
	87
	8
	37
	132










3.2 Simple sequence repeat analysis

The analysis of SSRs across the chloroplast genomes of 35 Rutaceae species revealed distinct patterns of distribution and evolutionary significance. A total of 4,517 SSR loci were identified, with their abundance and composition exhibiting substantial variation among species (Figures 2A, B; Supplementary Table S2). Mononucleotide repeats (MonoSSRs) were the most prevalent type, accounting for 59.11% of all SSRs, followed by octanucleotide (OctaSSR, 12.51%) and nonanucleotide repeats (NonaSSR, 8.30%). In contrast, hexanucleotide (HexaSSR, 0.18%) and heptanucleotide repeats (HeptaSSR, 0.07%) were exceedingly rare, together comprising less than 1% of total SSRs (Figure 2C). Species-specific differences in SSR composition were observed. For instance, Leionema ellipticum exhibited a markedly higher proportion of MonoSSRs compared to Eriostemon australasius (Figure 2D). The majority of SSR motifs displayed a pronounced AT richness, while GC-rich repeats—such as those composed of C or G nucleotides—were relatively uncommon. This strong AT bias aligns with the overall base composition of Rutaceae chloroplast genomes, which exhibit average AT contents ranging from 61.17% to 61.83%, and may reflect underlying mutational biases or selective pressures (Figure 2E). The genomic distribution of SSRs was non-random, with the majority localized to non-coding regions. Specifically, 55.83% of SSRs were found in intergenic spacer (IGS) regions, 31.61% within introns, and only 12.55% in coding sequences (CDS) (Figure 2F). This pattern suggests that SSRs are more likely to accumulate in genomic regions subject to weaker selective constraints. The low SSR density in coding regions may result from purifying selection acting to prevent frameshift mutations or disruptions of protein function.

[image: A series of six visualizations analyzing SSR categories and motifs in Rutaceae species. Panel A: Bar chart showing frequency distribution of SSR categories with mononucleotide as the most frequent. Panel B: Heatmap depicting SSR motif distribution across species. Panel C: Pie chart illustrating percentage distribution of SSR categories, showing mononucleotides as most prevalent. Panel D: Stacked bar chart of SSR categories across Rutaceae species. Panel E: Scatterplot indicating conservation of SSR motifs, with percentage distribution across species. Panel F: Bar chart displaying SSR distribution by genomic location, with coding sequence and non-coding areas identified.]
Figure 2 | Comprehensive analysis of SSRs in Rutaceae chloroplast genomes. (A) Bar chart showing the distribution of different SSR categories based on repeat unit length. (B) SSR motif distribution heatmap showing presence/absence patterns across 35 Rutaceae species, with blue indicating presence and white indicating absence, grouped by repeat unit length. (C) Pie chart showing the relative distribution of different SSR categories. (D) Stacked bar chart displaying SSR category distribution across different Rutaceae species. (E) Scatter plot illustrating SSR motif conservation levels across species, with bubble size indicating species count and color representing SSR category. (F) Stacked bar chart showing SSR distribution across different genomic locations. SSR categories are defined by repeat unit length: MonoSSR (1 bp), DiSSR (2 bp), TriSSR (3 bp), TetraSSR (4 bp), PentaSSR (5 bp), HexaSSR (6 bp), HeptaSSR (7 bp), OctaSSR (8 bp), NonaSSR (9 bp), DecaSSR (10 bp), and ExtendedSSR (>10 bp).




3.3 Relative synonymous codon usage analysis

The RSCU analysis revealed notable codon usage bias across the chloroplast genomes of 35 Rutaceae species. The RSCU values ranged from 0.386 to 1.797 (Figure 3; Supplementary Table S3), confirming that all investigated species exhibit non-random usage of synonymous codons. Among the 20 amino acids, tryptophan (Trp, encoded solely by UGG) and methionine (Met, encoded solely by AUG) are represented by single codons, while the remaining 18 amino acids are encoded by two to six synonymous codons. Three codons showed strong preferential usage with RSCU values greater than 1.6: AGA (Arg, RSCU = 1.753), UUA (Leu, RSCU = 1.732), and GCU (Ala, RSCU = 1.702). Conversely, 19 codons were significantly underrepresented (RSCU < 0.6), including UAC (Tyr, RSCU = 0.406), AGC (Ser, RSCU = 0.417), and GGC (Gly, RSCU = 0.424). An additional 13 codons exhibited neutral usage patterns, with RSCU values between 0.8 and 1.2. Comparative analysis among species indicated that closely related genera (e.g., Citrus and Murraya) displayed highly similar RSCU profiles, suggesting conserved codon usage preferences within these lineages. In contrast, more distantly related taxa such as Boronia and Zanthoxylum exhibited divergent codon usage patterns, highlighting lineage-specific evolutionary trajectories. These findings demonstrate that codon usage bias in Rutaceae is both conserved within genera and variable across the family, reflecting the combined effects of mutational pressure and selection.

[image: Heatmap displaying Relative Synonymous Codon Usage (RSCU) analysis for various species. Columns represent different codons, and rows represent species. Color gradient ranges from light to dark green, indicating codon usage levels: less than 0.5 (pale green) to greater than or equal to 2.5 (dark green). Species names, such as Clausena excavata and Zanthoxylum armatum, are listed on the right.]
Figure 3 | Relative synonymous codon usage (RSCU) values for all codons across 35 Rutaceae species. Each species is labeled with its scientific name and corresponding GenBank accession number. Codons are presented alongside their associated amino acids [Codon (Amino Acid)]. RSCU values represent the relative frequency of codon usage: values >1 indicate codons used more frequently than expected under uniform synonymous usage; values <1 indicate less frequent usage; values =1 indicate codons used at expected frequency. This analysis provides a comprehensive overview of codon usage patterns in Rutaceae, offering insights into underlying evolutionary pressures and preferences for translational efficiency.





3.4 Effective number of codons plot analysis

The ENC analysis revealed significant variation in codon usage bias across the chloroplast genomes of Rutaceae species. The ENC values among species ranged from 51.00 to 53.78, with an average of 52.10, while the GC content at the third codon position (GC3s) varied from 0.275 to 0.294, averaging 0.281 (Supplementary Table S4). These values suggest that, although codon usage in Rutaceae chloroplast genomes is not highly constrained, a moderate degree of bias exists. The ENC-GC3s scatter plot showed that the vast majority of gene data points were positioned above the expected theoretical curve (Figure 4), which represents codon usage governed solely by GC3s composition under neutral evolutionary conditions. The average ENC value across all species was 52.10, which is markedly lower than the neutrality expectation of 61.0 (Supplementary Table S4). This deviation, observed consistently across the 35 Rutaceae species, supports the conclusion that codon usage in chloroplast protein-coding genes is not solely dictated by mutational bias but is also influenced by natural selection. This consistent deviation across species indicates that codon usage in chloroplast protein-coding genes is not solely dictated by mutational bias but is also influenced by natural selection and other evolutionary forces. Species within the genera Citrus (e.g., C. reticulata and C. sinensis) and Murraya exhibited highly similar ENC-GC3s distribution patterns, reflecting conserved codon usage traits within these lineages. In contrast, more distantly related genera such as Boronia ternata and Zanthoxylum nitidum displayed distinct patterns, suggesting that codon usage bias has also undergone lineage-specific adaptive divergence.

[image: Grid of scatter plots showing the relationship between ENC and GC3s for different species and genes. Points are color-coded by gene function, indicated in the legend on the right. ENC values vary, shown with a red curve illustrating expected ENC values for given GC3s. Each plot reflects species-specific gene data, emphasizing various gene functions such as Photosystem I and II, ATP synthase, and more.]
Figure 4 | Effective number of codons (ENC) plotted against GC content at the third codon position (GC3s) for chloroplast protein-coding genes in 35 Rutaceae species. Each point represents a single gene, with point size proportional to its ENC value. The red dashed line indicates the theoretical expectation under neutral evolution, where codon usage bias is solely dictated by GC3s. Genes falling below the curve exhibit stronger codon usage bias than expected from compositional constraints alone, implying the action of natural selection. Species are displayed in faceted panels arranged alphabetically to facilitate cross-species comparison within Rutaceae. Deviations from the expected curve reflect the influence of non-neutral evolutionary forces shaping codon usage patterns.




3.5 Neutrality plot analysis

To investigate the evolutionary forces shaping codon usage in Rutaceae chloroplast genomes, neutrality plot analysis was performed based on nucleotide composition at different codon positions. Among the 3,041 protein-coding genes analyzed, GC content at the third codon position (GC3) ranged from 0.3054 to 0.3238 (mean = 0.3110), whereas the average GC content at the first and second codon positions (GC12) ranged from 0.4294 to 0.4308 (mean = 0.4295). This positional gradient indicates that codon sites are subject to heterogeneous evolutionary constraints. Linear regression analysis between GC3 and GC12 showed slopes ranging from –0.0834 to 0.1030 (mean = 0.0326), with relatively low R² values (0 to 0.0191, mean = 0.0033) (Figure 5; Supplementary Table S5). These results suggest that natural selection, rather than mutational bias, plays a dominant role in shaping codon usage patterns in the chloroplast genomes of Rutaceae species.

[image: Scatter plot grid showing GC12 versus GC3 for various species, highlighting gene function and ENC values. Each plot includes a regression line, equation, and R-squared value. Gene functions are color-coded, and ENC values are indicated by point size. The key on the right explains the coding for gene function and ENC value.]
Figure 5 | Neutrality analysis of codon usage in chloroplast protein-coding genes from 35 Rutaceae species. Each panel illustrates the relationship between GC content at the third codon position (GC3) and the mean GC content at the first and second codon positions (GC12). Each point corresponds to a single gene, with point size proportional to its effective number of codons (ENC). The blue dashed line represents the fitted regression line for each species, while the red dashed line denotes the neutral expectation (GC12 = GC3). Deviations from the red line suggest non-neutral evolutionary processes, where a strong positive correlation between GC3 and GC12 implies mutational bias as the dominant force, rather than selection on codon usage. Regression equations and R² values are shown in each panel to indicate the strength of the GC3–GC12 relationship. Species are arranged alphabetically in faceted panels to enable comparative assessment across the Rutaceae family.




3.6 PR2 plot analysis

PR2 (Parity Rule 2) analysis was conducted to assess potential asymmetry in base usage at the third codon position, thereby evaluating the relative impact of mutation versus selection on codon usage. Under neutral expectations, the frequencies of complementary bases (A = T and G = C) should be balanced. Deviations from this symmetry suggest the influence of selective constraints (Parvathy et al., 2022). For the 35 Rutaceae species analyzed, the average ratio of A3/(A3 + T3) was 0.4694 ± 0.0747, significantly lower than the neutral expectation of 0.5 (p < 0.01), indicating a general preference for T over A. Similarly, the average G3/(G3 + C3) ratio was 0.5369 ± 0.0993, showing a moderate bias toward G over C (Figure 6; Supplementary Table S6). In PR2 plots, most gene data points clustered in the fourth quadrant (A3/(A3 + T3) < 0.5 and G3/(G3 + C3) > 0.5), supporting the presence of directional base usage bias. This asymmetric pattern was highly conserved across phylogenetic branches within Rutaceae, implying a shared selective landscape. At the genus level, codon usage asymmetry also exhibited lineage-specific characteristics. For example, Citrus species (n = 174) showed G3/(G3 + C3) = 0.5375 and A3/(A3 + T3) = 0.4708, while Murraya species (n = 268) exhibited G3/(G3 + C3) = 0.5406 and A3/(A3 + T3) = 0.4672. These subtle differences suggest genus-specific patterns of codon bias potentially shaped by ecological or functional constraints.

[image: Scatter plots show the relationship between \( A_3 / (A_2 + T_3) \) and \( G_3 / (G_3 + C_3) \) for various species represented by different colored dots. Each subplot corresponds to a specific species listed on the right, with colors indicating ENC values: 20, 30, 40, 50, and 60. Vertical and horizontal dashed lines denote key thresholds at 0.5.]
Figure 6 | Parity rule 2 (PR2) analysis of chloroplast protein-coding genes in 35 Rutaceae species. Each panel depicts the relationship between the G3/(G3+C3) and A3/(A3+T3) ratios for individual genes within each species. Each point represents a single gene, with point size proportional to its effective number of codons (ENC). The blue dashed lines represent the theoretical expectation under PR2 (0.5 for both axes), which assumes equal usage of complementary nucleotides (A = T, G = C) at the third codon position under neutral conditions. Deviations from the center point (0.5, 0.5) indicate violations of PR2 symmetry and suggest the influence of factors such as transcriptional or replicational strand bias, or selective constraints. Species are arranged alphabetically in faceted panels to support comparative analysis across the Rutaceae family.




3.7 COA analysis

To explore the primary trends and potential driving factors of synonymous codon usage, Correspondence Analysis (COA) was performed on the chloroplast genomes of 35 Rutaceae species. The first and second axes together accounted for 16.54% of the total variation in codon usage bias (CUB), with axis 1 explaining 8.76% and axis 2 explaining 7.78% (Figure 7; Supplementary Table S7). These results indicate that codon usage in Rutaceae chloroplast genomes is shaped by multiple interacting factors, including mutational bias, translational selection, and possibly functional constraints. Although interspecific differences in codon usage patterns were evident, most species exhibited similar distribution trends. For example, most coding sequences (CDSs) from Murraya and Citrus clustered near the center of the plot, reflecting a relatively conserved CUB landscape within these genera. In contrast, a small subset of genes appeared at the periphery of the plot, indicating distinct codon usage preferences potentially linked to differential gene expression or lineage-specific selection.

[image: Scatter plots showing distributions for various plant species, each labeled with species names and specimen codes. Each plot features data points around zero, using axes labeled primarily as Axis 1 and Axis 2 with associated percentages. Each plot is color-coded uniquely.]
Figure 7 | Correspondence analysis (COA) of codon usage bias in chloroplast protein-coding genes across 35 Rutaceae species. Each panel represents a single species and displays the distribution of genes in a two-dimensional COA space. Each point corresponds to a gene, positioned based on its codon usage pattern as determined by relative synonymous codon usage (RSCU) values. The first two axes represent the major sources of variation in codon usage among genes, with the percentages along Axis 1 and Axis 2 indicating the proportion of total variance explained by each dimension. This analysis reveals species-specific codon usage patterns and helps identify the primary factors shaping synonymous codon selection in Rutaceae chloroplast genomes. Species are arranged alphabetically to facilitate systematic comparison across different lineages within the family.




3.8 Collinearity analysis

A comprehensive collinearity analysis of chloroplast genomes from 35 Rutaceae species was conducted to systematically reveal conserved structural features and evolutionary relationships within the family. The results showed that Rutaceae chloroplast genomes maintain a highly conserved quadripartite structure (LSC–IRb–SSC–IRa), with gene order largely preserved across species. For instance, the genomic locations of key photosynthetic genes (psaA, psaB) and ATP synthase-related genes (atpA, atpF) were completely conserved across all species. Closely related taxa exhibited highly collinear patterns in gene order, orientation, and arrangement, confirming the slow evolutionary rate of chloroplast genome structure among closely related Rutaceae lineages. Phylogenetic reconstruction further clarified intrafamilial relationships within Rutaceae: Subtropical fruit-bearing genera such as Citrus, Murraya, and Clausena clustered into a monophyletic group, while temperate woody genera like Zanthoxylum, Tetradium, and Phellodendron formed distinct clades, and Australian-endemic genera such as Boronia and Crowea were positioned basally in the phylogenetic tree. The collinearity analysis showed that genomic regions encoding photosynthesis-related genes, ribosomal proteins, and tRNAs were highly conserved, but gene rearrangements were also observed near the IR boundaries in certain species (Figure 8). These findings not only confirm the overall structural conservation of Rutaceae chloroplast genomes, but also highlight subtle structural variations that have arisen during long-term evolutionary divergence.

[image: Phylogenetic tree with gene maps showing the genomic structure of various plant species. Each line represents a species, with genes color-coded for different functions, such as photosystem, ribosomal proteins, and NADH dehydrogenase. The tree organizes species based on their genetic similarities, with annotations for specific gene sequences. A legend at the bottom explains the color coding for each gene type.]
Figure 8 | Synteny analysis of chloroplast genomes from 35 Rutaceae species. The phylogenetic tree inferred from complete chloroplast genome sequences is shown on the left, while linear representations of genome structures are displayed on the right. Gene types are color-coded as follows: green shades for photosystem genes (psa, psb), yellow-green for cytochrome b6/f complex genes (pet), orange for ATP synthase genes (atp), yellow for NADH dehydrogenase genes (ndh), light green for the Rubisco large subunit gene (rbcL), brown shades for ribosomal protein genes (rpl, rps), red for RNA polymerase genes (rpo), blue for transfer RNA genes (trn), dark brown for ribosomal RNA genes (rrn), and gray for other functional genes. Gray connecting lines represent conserved syntenic blocks between genomes. The scale bar indicates genome length in kilobases (kb).




3.9 Patterns of selection pressure across chloroplast genes

In this study, a systematic Ka/Ks analysis was performed on protein-coding genes from the chloroplast genomes of 35 Rutaceae species, revealing patterns of evolutionary selection across different functional gene categories (Figure 9). Among the 83 gene comparisons analyzed, 77% of genes were found to be under strong purifying selection (Ka/Ks < 0.5), with core photosynthetic genes—such as psaB and psbA/B/C/D—exhibiting the strongest selective constraints (Ka/Ks < 0.05), whereas genes such as clpP, accD, and rpl20 showed significant signals of positive selection (Ka/Ks > 1.5) (Figure 9A; Supplementary Table S8). Functional comparisons indicated that ribosomal protein genes had a significantly higher average Ka/Ks ratio (0.42) than ATP synthase genes (0.11), reflecting varying levels of evolutionary constraint among functional modules (Supplementary Table S8). Scatter plot analysis of Ka/Ks values revealed that most genes were located below the neutral evolution threshold (Figure 9B), with photosystem II and ATP synthase genes showing the strongest signatures of purifying selection, whereas NDH complex genes displayed a broader range of Ka/Ks values, with some members approaching the threshold for neutral evolution (Figure 9C). Notably, conserved hypothetical proteins and other chloroplast genes exhibited the most diverse selection pressure profiles (Figure 9C). Gene-by-gene Ka/Ks distribution analysis further demonstrated substantial heterogeneity in selection pressure across different chloroplast genes (Figure 9D). Overall, quantitative analysis showed that 77.1% of the genes were under strong purifying selection (Ka/Ks < 0.5), 14.5% exhibited weak purifying selection (0.5 < Ka/Ks ≤ 1.0), and only 8.4% of gene comparisons showed potential signs of positive selection (Ka/Ks > 1.0) (Figure 9A; Supplementary Table S8), with most positive selection signals associated with specific members of the NDH complex and hypothetical proteins.

[image: Panel A is a histogram displaying the density of K\(_a\)/K\(_s\) ratios, indicating relaxed and purifying versus positive selection. Panel B is a scatter plot showing K\(_a\) against K\(_s\) with points representing gene families differentiated by color and size, indicating substitution rate. Panel C is a density plot comparing K\(_a\)/K\(_s\) ratios across different gene families. Panel D is a box plot analyzing K\(_a\)/K\(_s\) ratios for specific gene types.]
Figure 9 | Comprehensive Ka/Ks analysis of chloroplast genes in Rutaceae species. (A) Histogram with overlaid density curve depicting the overall distribution of Ka/Ks ratios across all analyzed genes. Background shading indicates regions under different selection regimes: green for strong purifying selection (Ka/Ks ≤ 0.5), blue for relaxed purifying selection (0.5 < Ka/Ks ≤ 1.0), and red for positive selection (Ka/Ks > 1.0). The black curve represents the smoothed density distribution. (B) Scatter plot showing the relationship between synonymous (Ks) and nonsynonymous (Ka) substitution rates for individual chloroplast genes. Points are color-coded by functional gene family and scaled by Ka/Ks ratio. The dashed diagonal line represents the neutral evolution threshold (Ka = Ks), while the solid line with shaded area indicates the fitted linear regression and its 95% confidence interval. Italicized gene names highlight representative genes with notable Ka/Ks values from each functional category. (C) Density plots showing the distribution of Ka/Ks ratios across different functional gene families. Each colored curve represents a distinct gene family, with overlapping areas revealing differences in evolutionary constraints. Vertical dashed red and dotted blue lines indicate thresholds for neutral evolution and strong purifying selection, respectively. (D) Box plots illustrating the distribution of Ka/Ks ratios for individual chloroplast genes, ordered by their median Ka/Ks values. Boxes represent interquartile ranges with medians indicated by horizontal lines. The dashed red line marks the neutral evolution threshold (Ka/Ks = 1), and the dotted blue line marks the threshold for strong purifying selection (Ka/Ks = 0.5). Gene names are italicized.




3.10 Phylogenetic analysis of Murraya species

A phylogenetic analysis was conducted on 35 species within the Rutaceae family, based on complete chloroplast genome data. The maximum likelihood phylogenetic tree (Figure 10) revealed that all studied species formed well-supported monophyletic clades, validating their current taxonomic placements. The phylogenetic topology further indicated that Murraya and Citrus species clustered into a highly supported clade, suggesting a close genetic relationship between the two genera. This clade was further grouped with Clausena, Glycosmis, and Micromelum to form a larger evolutionary lineage, reflecting close phylogenetic affinities among these genera. Multiple lines of evidence supported the reliability of the phylogenetic reconstruction: First, most internal nodes were associated with high bootstrap support values; Second, genetic distance analysis among species suggested relatively recent divergence events, with an average Ks value of 0.0241. Collectively, these findings indicate that the studied Rutaceae species may have undergone relatively recent adaptive radiation events. The phylogenetic framework established in this study provides molecular evidence for elucidating the evolutionary history and taxonomic relationships of economically important Rutaceae crops. The results confirm that chloroplast genome data serve as effective molecular markers for phylogenetic inference and species identification within the Rutaceae. These findings have significant theoretical implications for germplasm conservation, cultivar improvement, and the sustainable utilization of Rutaceae genetic resources.

[image: Phylogenetic tree depicting relationships within Rutaceae based on CDs and rRNA sequences. The tree shows bootstrap support values with colored circles, ranging from 0.5 to 1.0. Different genera, such as Citrus and Glycosmis, are represented by distinct colors. The layout illustrates hierarchical branching patterns among the species.]
Figure 10 | Phylogenetic relationships among Rutaceae species inferred from chloroplast protein sequences. The rectangular phylogenetic tree was constructed from concatenated chloroplast target sequences, with bootstrap support values shown at nodes. Branch lengths correspond to evolutionary distances.





4 Discussion

By comparing chloroplast genomes of 35 Rutaceae species, this study systematically elucidated the evolutionary characteristics of the family in terms of genome structure, repeat sequence distribution, and selection pressure. The results confirmed that Rutaceae chloroplast genomes exhibit the typical and highly conserved quadripartite structure (LSC–IRb–SSC–IRa), with genome size (155 – 161 kb), GC content (38.17 – 38.83%), and gene number (122 – 144) all falling within the typical range observed in angiosperm chloroplast genome (Wicke et al., 2011; Jansen and Ruhlman, 2012; Daniell et al., 2016). Notably, variation at the boundaries of the inverted repeat (IR) regions and the strong AT-rich preference in mononucleotide SSRs (accounting for 59.11%) reflect the plasticity of non-coding regions in genome evolution, a pattern consistent with recent findings in Citrus, Glycosmis, and the Leguminosae family (Sabir et al., 2014; Carbonell-Caballero et al., 2015; Zhao et al., 2022). These observations are further supported by recent studies in other plant families, such as the Zingiberaceae and Gnetales, which also highlight the role of IR boundary shifts and SSR accumulation in driving structural diversity and adaptation (Yang et al., 2023b, 2024). Collinearity analysis further revealed that gene order of key photosynthetic genes (e.g., psaA/B, psbC/D) and ATP synthase genes (atpA/F) was completely conserved across species, whereas lineage-specific rearrangements detected near IR boundaries may be associated with ecological adaptation within the family (Jansen et al., 2007; Mower et al., 2010). These structural features provide important insights into the mechanisms of chloroplast genome stability in Rutaceae and their utility as molecular markers for phylogenetic reconstruction.

Analysis of codon usage bias (CUB) in chloroplast genomes offers new perspectives on the evolutionary forces acting on Rutaceae. We found that codon usage patterns in Rutaceae chloroplast genomes were markedly heterogeneous (RSCU values ranging from 0.386 to 1.797), with highly preferred codons (e.g., AGA, UUA, GCU) ending in A or T, consistent with the overall AT-rich nature of these genomes (mean AT content = 61.56%). These findings support the dominant role of mutational pressure in shaping codon usage bias (Behura and Severson, 2013). However, both ENC-GC3s analysis and neutrality plots (GC12–GC3) showed that empirical data points deviated significantly from the theoretical neutral curve (mean regression slope = 0.0326, R² = 0.0033), indicating that natural selection also plays a significant role in constraining codon usage (Morton, 2003), particularly for highly expressed photosynthesis-related genes such as psbA and rbcL. These results are consistent with recent findings from chloroplast genomes of Zingiberaceae and Gnetales species, suggesting that chloroplasts may enhance environmental adaptability through translational efficiency optimization (Yang et al., 2023b, 2024). PR2 analysis further revealed asymmetry in third-position base usage (A3/T3 = 0.4694, G3/C3 = 0.5369), a deviation from the neutral expectation (0.5) that remained highly conserved across Rutaceae lineages, possibly reflecting an evolutionary equilibrium shaped by long-term selective pressure (Parvathy et al., 2022). These multidimensional CUB patterns offer molecular evidence for dissecting adaptive evolutionary mechanisms in Rutaceae.

The observed genomic patterns in Rutaceae chloroplast genomes likely reflect adaptations to the family’s remarkably diverse ecological niches and climatic conditions. Rutaceae species exhibit extraordinary ecological diversity, spanning tropical rainforests (e.g., Murraya and Clausena species in Southeast Asia), Mediterranean climates (e.g., Citrus species), temperate deciduous forests (e.g., Zanthoxylum and Tetradium species), and arid Australian environments (e.g., Boronia and Crowea species). The pronounced AT-rich bias in SSRs (59.11% mononucleotide repeats) and the consistent deviation from neutral codon usage patterns may represent genomic signatures of adaptation to temperature stress and UV radiation exposure. AT-rich regions in chloroplast genomes have been associated with enhanced thermal stability of DNA-protein interactions and improved photosystem efficiency under high-temperature conditions, which would be particularly advantageous for tropical and subtropical Rutaceae lineages. The genus-specific codon usage patterns we observed may reflect lineage-specific environmental pressures. For instance, the subtropical Citrus-Murraya clade, which predominantly occupies monsoon-influenced regions with high temperature variability, shows distinct codon preferences compared to temperate Zanthoxylum species, which experience pronounced seasonal temperature fluctuations. These differences in synonymous site evolution could facilitate optimization of translational efficiency under different temperature regimes, as has been documented in other plant families subjected to contrasting climatic conditions. Similarly, the Australian-endemic genera (Boronia, Crowea) occupy some of the most arid and climatically variable environments within Rutaceae’s range, and their basal phylogenetic position combined with distinct codon usage signatures may reflect ancient adaptations to drought stress and extreme temperature fluctuations characteristic of the Australian continent. The positive selection signals detected in genes such as clpP, accD, and rpl20 may be particularly relevant to environmental adaptation. The clpP gene encodes a protease involved in chloroplast protein quality control, and positive selection on this gene could reflect adaptation to oxidative stress conditions prevalent in high-light, high-temperature environments typical of many Rutaceae habitats. Similarly, accD encodes acetyl-CoA carboxylase, a key enzyme in fatty acid biosynthesis that is crucial for maintaining membrane fluidity under temperature stress—a critical adaptation for species spanning tropical to temperate climatic zones. The ribosomal protein gene rpl20, which showed signatures of positive selection, could be involved in fine-tuning translational efficiency under varying environmental conditions, particularly important for species experiencing seasonal temperature and light fluctuations.

Selection pressure analysis revealed a complex relationship between gene functional divergence and adaptive evolution in Rutaceae chloroplast genomes. Ka/Ks analysis indicated that 77.1% of genes were under strong purifying selection (Ka/Ks < 0.5), with core photosynthesis genes such as psbA and psaB showing the strongest selective constraints (Ka/Ks < 0.05), which is consistent with their essential roles in maintaining photosynthetic efficiency (Wang et al., 2010). Notably, genes such as clpP, accD, and rpl20 exhibited significant signals of positive selection (Ka/Ks > 1.5), suggesting their involvement in the adaptive divergence of Rutaceae species. This observation aligns with recent findings in Leguminosae and Zingiberaceae, indicating that certain functional modules in the chloroplast genome may be driven by positive selection to facilitate adaptation to diverse ecological niches (Li et al., 2019; Yang et al., 2023b). Selection pressure varied notably among functional categories: ribosomal protein genes (mean Ka/Ks = 0.42) were under weaker constraint than ATP synthase genes (0.11), reflecting a gradient of mutational tolerance across cellular functions (Hurst, 2002). NDH complex genes exhibited the most diverse selection profiles, with some members approaching the threshold of neutral evolution, possibly due to their functional redundancy in cyclic electron transport. These findings offer new insights into the evolutionary dynamics of chloroplast genomes in Rutaceae, particularly by identifying positively selected genes that may serve as targets for future research into adaptive molecular evolution.

The phylogenetic tree constructed in this study provides essential molecular evidence for resolving taxonomic relationships within the Rutaceae. The maximum likelihood tree based on complete chloroplast genome data strongly supports the monophyly of Murraya and Citrus, consistent with their shared morphological characteristics (e.g., pinnate compound leaves and aromatic flowers) and ecological adaptation to subtropical environments (Carbonell-Caballero et al., 2015). Notably, the clade comprising Clausena, Glycosmis, and Micromelum forms a sister lineage to the Murraya–Citrus branch, suggesting that these genera may share key evolutionary innovations. Compared with traditional phylogenetic analyses based on a few loci (e.g., ITS or matK), whole chloroplast genome data significantly enhanced node support values, particularly in resolving complex intrageneric relationships within Murraya (Wickett et al., 2014). However, the phylogenetic placement of certain Australian-endemic genera (e.g., Boronia) remains ambiguous, potentially reflecting incomplete lineage sorting caused by early rapid radiation events. These phylogenetic insights not only provide a refined framework for taxonomic revision within Rutaceae but also shed new light on the biogeographic history of the family, particularly its dispersal trajectory from Asia to Oceania. Future research should integrate nuclear genomic data to overcome the inherent limitations of single chloroplast genome analyses, especially in resolving reticulate evolution and deep phylogenetic uncertainty.




5 Conclusion

This comprehensive comparative analysis of 35 Rutaceae chloroplast genomes, including the newly sequenced M. paniculata, reveals a highly conserved quadripartite structure alongside lineage-specific variations in genome size, SSR distribution, codon usage bias, and IR boundary dynamics. The observed codon usage patterns, selection pressure signatures, and phylogenetic reconstructions collectively underscore the dual influence of purifying selection and adaptive evolution in shaping chloroplast genome architecture within the family. Notably, key photosynthetic and translational genes exhibit strong conservation, while genes such as rpl20 and clpP show evidence of positive selection, indicating their potential roles in lineage-specific adaptation. The robust phylogenetic placement of Murraya paniculata enhances our understanding of its evolutionary relationships with economically important genera like Citrus and Clausena. Together, these findings provide valuable genomic resources and a refined molecular framework for taxonomic clarification, evolutionary studies, and biodiversity conservation in Rutaceae.
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Spatiotemporal heterogeneity is recognized as a key driver of functional diversity in tissues. Spatial transcriptomics, which integrates high-throughput transcriptomics with high-resolution tissue imaging, enables the precise mapping of gene expression patterns at the tissue section level. This technology overcomes the limitations of traditional transcriptomics by providing spatial context and applying unbiased bioinformatics approaches. With the rapid advancement of sequencing technologies, spatial transcriptomics is a pivotal tool for exploring cell fate determination, tissue development, and disease mechanisms, and its underlying principles, technical variations, practical performance, and future directions collectively provide robust theoretical and methodological support for systematically unveiling the spatiotemporal regulation of life processes.
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1 Introduction

As the fundamental structural and functional units of organisms, cells display profound spatiotemporal heterogeneity across developmental stages, spatial locations, and microenvironments, rendering the dissection of intricate transcriptional regulatory networks within multicellular systems a central challenge in modern life-science research. Traditional bulk RNA sequencing, which analyzes whole tissues or organs, can only obtain averaged gene expression levels, making it difficult to reveal rare cell subpopulations and their subtle gene expression differences (Figure 1) (Jiang et al., 2022; Li et al., 2022; Cao et al., 2024a, 2024b, 2025; Jiang et al., 2025). While single-cell RNA sequencing (scRNA-seq) overcomes this limitation by capturing expression profiles at the single-cell level, the tissue dissociation, cell capture, and library construction processes require cells to be removed from their native environment, preventing the recording of their original spatial coordinates (Luo et al., 2025). Spatial transcriptomics, propelled by advances in in-situ capture chemistry, barcoded matrix multiplexing, optical imaging, and high-throughput sequencing, now enables concurrent mapping of gene expression and tissue architecture at single-cell resolution (Rao et al., 2021; Tian et al., 2023). By integrating molecular tagging, precise spatial indexing, and omics readouts, spatial transcriptomics affords an unprecedented view of cellular heterogeneity and spatial organization (Burgess, 2019; Rao et al., 2021; Tian et al., 2023; Wang et al., 2023b). Consequently, spatial transcriptomics has become indispensable for dissecting cell-fate decisions, unraveling mechanisms of tissue morphogenesis, and characterizing the dynamic remodeling of disease microenvironments. In recent years, spatial transcriptomics has advanced rapidly: matrix-capture platforms such as Visium, Slide-seq, and HDST now provide subcellular-resolution, two-dimensional transcriptomic maps, while optical in-situ hybridization methods like MERFISH and seqFISH+ use large probe libraries and iterative imaging to approach whole-transcriptome spatial profiling (Burgess, 2019; Wang et al., 2023a; Sun et al., 2025). Building on this progress, technologies including STARmap and Stereo-seq couple single-cell nucleic acid amplification with three-dimensional imaging, greatly increasing sequencing depth and expanding the spatial dimension of analysis (Bawa et al., 2024; Fang et al., 2025). In conclusion, a systematic review of the development, core principles, and applications of spatial transcriptomics in diverse fields like plants and microbiology not only offers novel perspectives for exploring cell fate lineages and organogenesis mechanisms but also lays a theoretical and practical foundation for subsequent technological advancements and interdisciplinary integration.

[image: Diagram comparing three transcriptomics methods: traditional bulk, single-cell, and spatial. Each begins with tissue sampling followed by high-throughput sequencing. Bulk transcriptomics leads to relative quantification using circles, single-cell to absolute quantification depicted by diverse colored circles, and spatial to absolute quantification represented by a tissue map with colored sections.]
Figure 1 | Comparison of transcriptomic technologies. Colored circles indicate distinct cell types, whereas gray circles show that RNA-seq cannot differentiate them.




2 Overview of spatial transcriptomics technology

Spatial transcriptomics combines deep transcriptome profiling with microscopy to map gene expression in intact tissues, revealing cell identities, developmental lineages, and regulatory networks beyond the reach of conventional single-cell methods (Longo et al., 2021; Bawa et al., 2024; Zhao et al., 2024b). High-throughput chip-based platforms, such as 10× Visium, Slide-seq V2, Stereo-seq and related technologies, now predominate because they combine sub-cellular resolution, near-complete transcriptome capture and automation, enabling quantitative, spatially explicit analyses of tissue heterogeneity and phenotype–gene associations (Figure 1) (Ståhl et al., 2016; Rodriques et al., 2019; Yin et al., 2023; Bawa et al., 2024; Zhao et al., 2024b). By encoding positional barcodes and unique molecular identifiers, these methods yield absolute transcript counts instead of pseudo-temporal inferences alone (Zhao et al., 2024a). However, advancing spatial multi-omics in plants is still constrained by structural and biochemical hurdles: rigid cell walls impede clean cryosectioning, expansive vacuoles dilute intracellular content, and abundant polyphenols inhibit enzymatic reactions, while limited reference genomes hinder precise read mapping (Giacomello and Lundeberg, 2018; Gurazada et al., 2021; Chen et al., 2023; Yin et al., 2023). Overcoming these obstacles will require coordinated advances in sample preparation, reaction chemistry, microfluidic chip engineering, and bioinformatic pipelines to align plant research capabilities with those achieved in animal systems.




3 Spatiotemporal transcriptomics technologies: principles and evolution

Spatial transcriptomics has progressed from low-throughput but precise laser-capture microdissection (LCM), to in situ hybridization and sequencing that map gene expression in tissue but are limited by probe number and imaging depth, and finally to in situ capture with high-throughput sequencing, which preserves spatial coordinates while greatly expanding coverage and resolution (Emmert-Buck et al., 1996; Femino et al., 1998; Ke et al., 2013; Nichterwitz et al., 2016; Ståhl et al., 2016; Chen et al., 2022). While these methodologies have revolutionized our understanding of cellular heterogeneity in mammalian systems, their adaptation to plants lags behind owing to the presence of rigid cell walls, limited probe penetration, and the frequent need for transgenic material in auxiliary techniques such as FACS and INTACT (Deal and Henikoff, 2011; Giacomello and Lundeberg, 2018; Gurazada et al., 2021; Chen et al., 2022). Current plant-focused efforts therefore pursue two parallel objectives: optimizing existing spatial transcriptomic platforms-whether next-generation sequencing-based or imaging-based-for botanical tissues, and applying these refined tools to address fundamental questions in plant development, physiology, and stress responses (Chen et al., 2023; Yin et al., 2023; Serrano et al., 2024). Continued innovation in probe chemistry, tissue processing, and data integration is essential to surmount plant-specific barriers and to unlock the full potential of spatial transcriptomics across the plant kingdom.



3.1 Microdissection-based gene expression technologies

Microanatomy-based gene expression technologies employ laser or mechanical microdissection to isolate cells from precisely defined spatial regions within a tissue section (Deal and Henikoff, 2011; Nichterwitz et al., 2016; Luo et al., 2020). By capturing these targeted cells directly, the method preserves the native microenvironmental context while minimizing contamination from neighboring cell types. The harvested material can then be subjected to transcriptomic analyses, enabling high-resolution profiling of gene expression patterns linked to specific histological niches (Deal and Henikoff, 2011; Nichterwitz et al., 2016).

The earliest laser capture microdissection (LCM) laid the foundation for direct cutting of target cells under a microscope using lasers (Espina et al., 2006). Subsequently, researchers prepared tissues into numerous frozen sections and sequenced them separately to obtain regionalized transcriptome data. Tomo-seq further improved quantitative accuracy and spatial resolution by refining the cDNA library construction process. In vivo transcriptomics analysis (TIVA) pioneered overcoming in vitro limitations by utilizing cell-penetrating peptides to carry photosensitive tags into living cells, capturing mRNA after light activation to achieve spatiotemporal expression analysis of live cells (Lovatt et al., 2014). Geo-seq, combining LCM with single-cell RNA-seq, enables the resolution of transcriptomes in specific regions at the subcellular-level, while NICHE-seq, using GFP labeling and flow cytometry sorting, achieves high-throughput sequencing, though it struggles to resolve precise relative positions between cells, despite locating to specific niches (Chen et al., 2017; Medaglia et al., 2017). ProximID, through gentle dissociation that preserves cell-cell interaction structures, coupled with LCM sorting units, enables single-cell sequencing of local cell interaction environments (Boisset et al., 2018; Asp et al., 2020).




3.2 In-situ hybridization technologies

In recent years, in-situ hybridization (ISH) has progressed rapidly, evolving from rudimentary chromogenic assays to highly sensitive, multiplexed fluorescent platforms that enable precise spatial mapping of nucleic acids within intact tissues (Raj et al., 2008). Early smFISH, limited by probe number, detected only a few genes, though shorter, more numerous probes raised throughput (Raj et al., 2008). SeqFISH then used repeated hybridization–imaging–stripping cycles with binary encoding to broaden transcript detection (Shah et al., 2018). MERFISH followed, adding error-robust codes and combinatorial labeling to improve accuracy and speed (Chen, 2015). Most recently, smHCR and seqFISH+ expanded laser channels and encoding capacity, enabling visualization of tens of thousands of genes in a single experiment (Zhou et al., 2019). Besides barcode-based techniques, osmFISH uses iterative hybridization and direct imaging to quickly survey large tissues (Codeluppi et al., 2018). RNAscope employs paired “Z” probes with signal amplification, achieving single-molecule sensitivity and high specificity while preserving tissue architecture (Wang et al., 2012). DNA microscopy dispenses with optics, inferring molecular positions from ligation frequency data; its resolution is still limited, but it inaugurates a novel paradigm for spatiotemporal transcriptomics (Chang et al., 2006; Weinstein et al., 2019).





3.3 In-situ sequencing technologies

In-situ sequencing is a class of methods for directly detecting and sequencing transcripts at high resolution within the spatial context of cells, which core principle involves signal amplification using DNA nanoballs at the micrometer to nanometer scale, thereby enabling the acquisition of transcriptomic data at the molecular level while preserving tissue structural information (Ke et al., 2013). However, limited by inherent cellular crowding and the resolution of optical systems, this technology has been restricted to analyzing a limited number of transcripts simultaneously (Qian and Lloyd, 2003). Consequently, researchers are continuously developing diverse strategies to overcome this bottleneck (Qian and Lloyd, 2003). In 2013, the first in-situ sequencing protocol used padlock probes to capture reverse-transcribed cDNA, amplified it into micrometer-scale rolling circle products (RCPs), and decoded them by sequencing-by-ligation (SBL), laying the groundwork for the field (Ke et al., 2013). Subsequently, BaristaSeq, while retaining padlock probes, significantly improved signal stability and sequencing read length by chemically crosslinking RCPs to the cellular matrix and employing SBS for sequencing (Chen et al., 2018). HybISS, on the other hand, integrated the process into a microfluidic platform for automated operation and replaced SBL with SBH to achieve a higher signal-to-noise ratio; this refinement not only reduced background noise but also enhanced experimental reproducibility (Gyllborg et al., 2020). Another significant advancement, STARmap, directly deployed barcoded padlock probes at the RNA level and added a second primer to replace the traditional reverse transcription step, successfully circumventing the limitations of cDNA synthesis efficiency (Lugmayr et al., 2023). It also utilized secondary hybridization to reduce noise, ultimately generating single-stranded DNA nanoballs via RCA and employing SBL for decoding, thereby balancing sensitivity and specificity (Lugmayr et al., 2023).




3.4 In-situ capture technologies

In-situ capture technology, centered around spatially barcoded primers pre-fixed on tissue sections, achieves localized RNA capture through in-situ recognition and hybridization (Miyazu et al., 2010; Amini et al., 2025). Subsequently, the signals are amplified, sequenced ex situ, and the three-dimensional spatiotemporal distribution is reconstructed using barcode analysis. Compared to traditional in-situ hybridization or in-situ sequencing methods, this technology eliminates the need for large-scale fluorescent probe libraries, significantly reducing probe throughput limitations. Simultaneously, it utilizes barcode decoding instead of multiple rounds of fluorescence imaging, avoiding spectral crosstalk and enhancing imaging depth (Miyazu et al., 2010; Amini et al., 2025). Since Ståhl et al. introduced spatial transcriptomics in 2016, the field has advanced from coarse regional analyses to whole-transcriptome quantification within a single tissue section (Ståhl et al., 2016). 10x Genomics’ Visium streamlined workflows and data analysis, enabling large, multi-center studies. To meet the demand for finer detail, NanoString’s GeoMx uses UV-released barcoded probes to reach 10 μm resolution and detect proteins (Hernandez et al., 2022). Slide-seq employs micron-scale barcoded beads with SBL and scRNA-seq for high-throughput profiling, while DBiT-seq “prints” orthogonal barcodes onto tissue, capturing mRNA and proteins in the same pixel-the first spatial multi-omics demonstration (Rodriques et al., 2019). APEX-seq uses APEX2 peroxidase to biotinylate and isolate RNAs from specific compartments in living cells, demonstrating subcellular transcriptome capture, yet its dependence on recombinant expression confines its application to in vitro systems (Fazal et al., 2019; Wu et al., 2021). High-definition spatial transcriptomics (HDST) raised barcode density to 2 μm, mapping hundreds of thousands of transcripts with high precision (Vickovic et al., 2019; Rao et al., 2021). Stereo-seq delivers subcellular (~500 nm) resolution across centimeter-scale areas to combine morphology with molecular data (Wei et al., 2022), while Seq-Scope overlays high-density barcodes on an Illumina flow cell to attain sub-micron resolution and uncover organelle-level heterogeneity (Cho et al., 2021; Kim et al., 2025). PIXEL-seq replaces discrete barcodes with continuous polony patterns, enabling the detection of over 1,000 transcripts within a 10 μm² area at 1 μm resolution and markedly enhancing sensitivity (Fu et al., 2022). In parallel, sci-Space merges nuclear barcoding from sci-Plex with sci-RNA-seq, efficiently linking single-cell transcriptomes to their spatial coordinates (Srivatsan et al., 2021; Robles-Remacho et al., 2023).





4 Applications of spatiotemporal transcriptomics in plant research

Spatial transcriptomics, with its exceptional spatiotemporal resolution, enables the detailed characterization of plant developmental programs, the identification of rare cell types, and the analysis of stress response networks. Initially challenging to apply directly to plant systems due to the cell wall and vacuole, the technology has been successfully implemented in various plants and organs through systematic optimization of key steps such as tissue fixation, permeabilization, and sectioning. Since Giacomello et al. first constructed a high-throughput plant spatial transcriptome atlas in 2017, the technology has progressed from feasibility validation to broad application across multiple species and tissues (Giacomello et al., 2017), with modified protocols repeatedly validated in systems such as Arabidopsis, lentil, Lotus japonicas, and wheat (Geng et al., 2013; Du et al., 2023; Yu et al., 2023; Ye et al., 2024; Li et al., 2025; Zhang et al., 2025). Spatial transcriptomics has not only deepened our understanding of plant development, physiology, and evolutionary mechanisms but also provided a novel molecular perspective and technological platform for crop improvement and precision breeding.

Meiosis, a highly conserved and critical division process during the maturation of sexual reproductive cells, has long been a focal point in plant reproductive and developmental biology research. By precisely isolating maize male reproductive cells at distinct meiotic stages with LCM and analyzing them via scRNA-seq, Nelms and Walbot (2019) systematically connected meiotic cell-cycle dynamics to cellular physiology and developmental differentiation trajectories, laying a robust data foundation for dissecting meiotic regulatory networks (Nelms and Walbot, 2019). Buds, transient structures formed during branch and floral organ development, are governed by intricate signaling pathways; through spatiotemporal transcriptomic profiling of Norway spruce female buds across budding (August), elongation (September) and maturation/dormancy (October) stages, Orozco (2020) pinpointed stage-specific gene-expression loci that drive morphological and functional transitions, thereby unveiling the spatial core regulatory network of bud development (Orozco, 2020). Concurrently, Lieben (2017) conducted a comparative transcriptomic study on poplar leaf buds during dormancy and regrowth, clarifying the distinct expression patterns of various cell types at different developmental stages, providing valuable insights into the molecular basis of bud dormancy and regeneration in woody plants (Lieben, 2017). Recent breakthroughs in single-cell spatial omics technologies have further pushed the resolution limits of plant development research. The first application of Stereo-seq in Arabidopsis leaves (Xia et al., 2022) achieved true single-cell spatiotemporal transcriptome profiling, revealing the divergent spatial developmental trajectories of microtubule cells and guard cells in leaves (Xia et al., 2022). Significantly, Liu et al. (2022) optimized the tissue permeabilization conditions for Stereo-seq using a “two-step method” and successfully constructed high-resolution spatiotemporal transcriptomic maps in the fruit pegs, stems, roots, and hypocotyls of the non-model plant peanut (Liu et al., 2022). Guo et al. used 10x Genomics spatial and single-nucleus transcriptomics to map gene activity in early bamboo shoots, reconstruct developmental trajectories, and identify genes and pathways governing procambium differentiation, intercalary meristem formation, and vascular development, thereby advancing our understanding of bamboo growth and guiding molecular improvement (Guo et al., 2024). Using spatial transcriptomics, Li et al. dissected wheat grains 4–12 days after pollination, identified 10 distinct cell types with 192 marker genes, and, through WGCNA, demonstrated that cell-type-specific highly expressed genes exhibit differential functional enrichments that critically regulate grain development and filling (Li et al., 2025).




5 Conclusion

While single-cell transcriptomics reveals cellular heterogeneity, it lacks spatial and tissue-level context. Spatiotemporal transcriptomics overcomes this limitation by simultaneously capturing cellular time-space distribution and gene expression, offering unprecedented insights into development, pathology, and evolution. However, its application in plants lags due to limited reference genomes, structural barriers like cell walls, and incompatibility with animal-based platforms. Common challenges, including balancing resolution and throughput, standardizing sample preparation, algorithmic mining, multi-omics integration, and cost control, remain prominent. With continued advancements in sequencing chemistry, micro-nanofabrication, optical imaging, and artificial intelligence, spatiotemporal omics holds the promise of mapping cellular and even subcellular-level four-dimensional expression atlases, driving profound innovations in precision breeding.
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Gene name Gene ID CHEE)] MW (kDa) pl romosome Start site = Termination s
ZjCDPK1 LOC107419468 549 61752.03 6.05 1 13142856 13147600
ZjCDPK2 LOC107422810 516 58401.49 5.81 1 17240003 17243858
ZjCDPK3 LOC107433024 547 61375.77 621 1 34726940 34731327
ZjCDPK4 LOC107410708 530 59059.96 5.74 2 5905790 5908997
ZjCDPK5 LOC107412614 534 60283.69 6.5 2 26793548 26798433
ZjCDPK6 LOC107412864 544 60753.24 5.69 3 1927705 1931577
ZjCDPK7 LOC107412936 536 59732.92 5.6 3 2710718 2716459
ZjCDPK8 LOC107415637 524 59941.14 8.08 4 5377350 5381638
ZjCDPK9 LOC107415638 291 33148.81 527 4 5390033 5393488
ZjCDPK10 LOC107415799 493 55600.52 5.48 4 6802773 6806523
ZjCDPK11 LOC107424366 578 65409 9.03 8 6141911 6147215
ZjCDPK12 LOC107427186 568 63548.74 5.53 9 15299792 15305830
ZjCDPK13 LOC107430235 531 59439.54 59 11 4243697 4248879
ZjCDPK14 LOC107430444 572 63798.54 5.5 11 9548635 9554274
ZjCDPK15 LOC107430482 497 55928.77 5.41 11 9776374 9782317
ZjCDPK16 LOC107430894 526 59401.79 5.86 1 13519246 13526811
ZjCDPK17 LOC107432385 530 59988.48 631 12 7128171 7132262
ZjCDPK18 LOC107433607 622 68998.17 52 NW_015453408.1 39769 45173
ZjCDPK19 LOC107433642 646 7270243 533 NW_015453408.1 153660 157696
ZjCDPK20 LOC107435963 487 56309.16 6.96 NW_015453584.1 26584 30613
ZjCDPK21 LOC107409377 307 34459.65 523 NW_015456732.1 5 2683
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Mean + SD

Fruit size traits

Single fruit Fruit Fruit Fruit .
g . . Edible rate/%
weight/g length/mm diameter/mm shape index
2022 10.39 + 2.03b 28.00 + 2,10 26,84 + 199 0.96 + 0.03a 94.37 + 1.68b
‘Dongzao’ (2x)
2023 8.76 + 2.24c 32.96 + 2.92b 2294 % 181c 0.70 + 0.09d 96.67 + 1.14b
2022 3643 + 4.88a 45.06 + 2.57a 3948 + 3.16a 088 +0.07b 97.32 049
‘Chenguang’ (4x)
2023 33.58 £ 9.07a 41.87 + 4562 39.89 + 3.69 096 +0.07b 98.88 + 0.72a
2022 2956 + 14.82a 39.09 + 8.53b 37.27 + 6.44a 0.97 +0.10a 97.58 + 0.98a
Triploid progeny (3x)
2023 2456 + 11.37b 33.57 +7.93b 34.65 + 622b 1.05 +0.13a 97.35 + 1.36b
2022 965 + 8.91b 28.15 + 9.66¢ 2334+ 7.30b 0.84 +0.07b 94.77 + 247b
Diploid progeny (2x) -
2023 7.37 + 86lc 2249 +7.97¢ 20.06 + 8.22d 0.88 = 0.18¢ 92.52 + 3.50¢

Triploid and diploid progeny of the same year were analyzed for significance analysis, and different lowercase letters marked in the table indicated significant difference at p< 0.05 level.
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Mean + SD

Kernel size traits Years Single fruit kernel =~ Kernel longitudinal =~ Kenel transverse ;
a ; - Kernel index
weight/g diameter/mm diameter/mm
2022 056 + 0.11b 1949 +2.20b 7.84 +0.79¢ 250 + 031a
‘Dongzac’ (2x)
2023 027 + 0.04b 15.66 + 1.21c 636 + 0.34c 246 £ 0.152
2022 0.96 + 0.16a 2256 + 0.68a 10.27 £ 0.48a 220 £ 0.13b
‘Chenguang’ (4x)
2023 036 + 0.20b 20.55 + 2.79 863 + 1.57a 2.46 £ 0552
2022 062 + 031b 20.52 + 4.66ab 9.34 + 1.39b 223+ 037b
Triploidprogeny (3x)
2023 055 + 0.29% 18.05 + 4.38b 928 + 1.56a 1.97 £ 0.37b
2022 036 + 0.20c 16.66 + 4.59¢ 7.12 + 1.50¢ 238 + 0.55ab
Diploid progeny (2x)

2023 0.33 + 0.20b 14.80 + 4.37¢ 7.32 + 1.65b 2.07 £ 0.42b

Triploid and diploid progeny of the same year were analyzed for significance analysis, and different lowercase letters marked in the table indicated significant difference at p< 0.05 level.
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Mean + SD

Thorn traits

Hooked thorn
length/mm

Hooked thorn
thickness/mm

Straight thorn Straight thorn
length/mm thickness/mm
‘Dongzao’ (2x) 0.00 0.00
‘Chenguang’ (4x) 465+ 1.11 1.09 +0.34
Triploid progeny (3x) 21.58:% 5.78** 224 +£0.28
Diploid progeny (2x) 15.09 £ 5.19 234 +034

0.00

4.42 + 145

5.60 + 1.92**

3.83+ 1.57

0.00

0.89 +0.24

1.18 £ 0.20

115+ 0.19

t-test of independence between triploid and diploid progeny, * represented the significant difference at p<0.05 level, and ** represented the significant difference at p<0.01 level.
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Mean + SD

Stomatal traits ~ Stomatal o, ) Stomatal
length/ e density/

um M (humber-pum?)
‘Dongzao’ (2x) 1643+ 188 | 848+ 141 316,09 + 80.20
‘Chenguang’ (4x) | 2498 %257 1048 +1.53 181.88 + 34.04

Triploid progeny (3x) | 20.99 + 2.51** | 9.25 + 1.31** 214.59 + 32.35%* ‘
Diploid progeny (2x) = 18.72 + 1.82 8.28 £0.90 256.69 + 27.58 ‘

t-test of independence between triploid and diploid progeny, * represented the significant
difference at p<0.05 level, and ** represented the significant difference at p<0.01 level.
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Leaf
traits

Thorn traits

Stomatal traits

I piprent Cparent paren
- ° ratio/% ratio/%

Leaf length/mm 16.57 34.18~70.33 -33.63 0 98.33

Leaf width/mm 17.89 17.63~46.06 -26.37 0 71.67

Leaf area/mm’ 33.35 485.52~2363.52 -48.55 0 96.67

Leaf circumference/mm 17.78 l 101.36~227.05 -30.63 1.67 96.67
Leaf shape index 13.13 1.36~2.43 -13.98 1.67 0
S;:'::'}:/:::e 2678 8.92~36.06 826.18 100.00 =
Straight barbed wire thickness/mm 12.50 1.54~2.85 305.45 100.00 -
Hooked barbs length/mm 34.29 2.27~14.15 153.39 74.58 -
Barbed wire thickness/mm 16.95 0.87~1.60 162.22 9322 -

Stomatal length/pm 11.96 15.05~26.53 135 6.56 3.28

Stomatal width/pum 14.16 7.21~12.64 -243 1475 27.87

Stomatal density /(number-umz) 15.08 114.77~271.56 -13.82 0.00 16.39
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‘Dongzao’ (2x)

Parents

‘Chenguang’ (4x)

Distribution of fruit outer and sensory traits

Number of progeny (plants/percentage%)

Ploidy

Fruit shape

Fruit color

Peel thickness

Flesh color

Flesh texture

Fruit flavor

2022

2023

2022

2023

2022

2023

2022

2023

2022

2023

2022

2023

Oblate

Oblate

Red

Thin

Thin

Light green

Light green

Crisp

Crisp

Sweet-sour

Sweet-sour

Obovate

Obovate

Red

Thin

Thick

Light green

White

Crisp

Crisp

Sweet-sour

Sour-sweet

2

3x

2

3x

2

3x

2

3x

2

3x

2

3x

2

3x

2x

3x

2

3x

2x

3x

2

3x

2x

3x

Flat
cylinder

Oblate
0(000) | 0(000)
21(4200) 4 (8.00)
2(1429) | 0(0.00)
2(314)  6(1177)
Light red
0 (0.00)
1(200)
0 (0.00)
2(392)
Thin
6(75.00)
27 (54.00)
5(35.71)
11(21.57)
White
4(5000)
2(4.00)
4(2857)
4(7.89)
Loose
2(25.00)
10 (20.00)
2(1429)
1(1.96)
Sour
6 (75.00)
1(200)
4(2857)

3(5.88)

Obovate Ovoid
1(1250) 1(1250)
4(800) 0(0.00)
1713 0(0.00)
6(11.77) 2(392)
Red
7 (87.50)
43 (86.00)
13 (92386)
46 (90.2)

Intermediate
2(25.00)
22 (44.00)
5(35.71)
24 (47.06)
Light green
4(50.00)
46 (9200)
9 (64.29)
43 (84.32)
Crisp
1(12.50)
17 (34.00)
7 (50.00)
14(27.45)
Sweet-sour
0 (0.00)
5(1000)
1(7.14)

16 (31.37)

Globose | Cylinder

102500 | 2(25.00)
3(600) | 7(14.00)
2(1429) | 2(1429)
1(1.96) 3(5.88)
Mauve
0 (0.00)
6(12.00)
1(7.14)
2(392)
Thick
0 (0.00)
1200
4(2858)
16 (31.37)
Green
0/(0.00)
2 (4.00)
107.14)
4(7.84)
Intermediate
5 (62.50)
19 (38.00)
2(1429)
25 (49.02)
Sour-sweet
1(12.50)
23 (46.00)
6 (4286)

23 (45.10)

Oblong i
daboss | Abnormality
3 (37.50) 0 (0.00)

6 (12.00) 5 (10.00)

7 (50.00) 0(0.00)

5(9.80) 6(11.76)
Reddish brown
1(1250)
0(0.00)
0 (0.00)

1(196)

Compact
0 (0.00)
4(8.00)
3(142)
11 (2157)
sweet
1(1250)
21 (42.00)
3(2143)

9 (17.65)
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Markers

Markers pre-

New Markers

Marker: 5 7 - Marker: nt
apKers presented only in sented only in presented in aliers EleEEmies
. . presented in both in progeny
Primers Ploidy female parent male parent progeny
parents (plants/ (plants/
5 (plants/ (plants/ (plants/ 5
percentage%) ° o o percentage?%)
percentage%) percentage%) percentage%)

3x 40/58.82 22/32.35 6/8.83 0/0.00 0/0.00
JSSR131

2x 25/44.64 27/48.21 4/7.14 0/0.00 0/0.00

3x 0/0.00 37/54.41 30/44.12 0/0.00 1/147
JSSR214

2x 1/1.79 50/89.28 3/5.36 0/0.00 2/3.57

3x 38/55.88 16/23.52 12/17.65 0/0.00 2/2.94
JSSR239

2x 8/14.29 27/48.21 18/32.14 0/0.00 3/5.36

3x 0/0.00 36/52.94 21/30.88 4/5.88 7/10.29
JSSR314

2x 0/0.00 17/30.36 9/16.07 29/51.79 1/1.79

3x 0/0.00 20/29.41 47/69.12 0/0.00 1/147
JSSR318

2x 0/0.00 53/94.64 3/5.36 0/0.00 0/0.00
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jaiiation Variation Mid-parent Ultra-high Uit

Years coefficient/ : : parent
range heterosis/% arent ratio/% :
% 9 e | P = ratio/%
2022 50.14 3.82~6434 2627 27.08 417
Single fruit weight/g
2023 4629 5.12~52.84 16.01 17.65 11.76
P 2022 2182 20.49~59.01 7.01 2292 833
ruit
length/mm 2023 2362 18.28~55.82 1029 588 5098
— 2022 17.28 19.14~51.91 1239 3333 625
uit size x "
= Fruit diameter/mm
traits 2023 17.95 20.21~44.51 1028 17.65 392
2022 10.31 0.72~1.14 543 54.17 1875
Fruit shape index
2023 1238 0.77~138 2651 7451 0.00
2022 1.00 94.09~98.74 1.80 7234 426
Edible rate/% |
2023 140 92.36~99.10 -0.43 1.89 18.87
& ; 2022 50.00 0.21~1.59 -18.42 10.64 44.68
ingle fruit
kernel weight/g 2023 5273 020~154 66.67 67.92 9.43
Kernel longitudinal 2022 271 12.00~31.58 238 27.66 4255
diameter/mm |
fruit kemel 2023 2427 11.52~33.44 093 18.87 | 30.19
traits |
Fendifransverse 2022 14.88 691~13.15 320 2553 1277
diameter/mm 2023 1681 6.16~14.39 2243 58.49 1.89
2022 16.59 156~3.29 511 2128 4894
Kernel index
2023 18.78 134~2.92 -19.59 9.43 88.68
N —— 2022 14.19 207.20~387.39 -9.07 2292 72.92
(mg/100g) 2023 2057 285.46~633.55 3699 7273 0.00
Soluble solid 2022 11.30 23.93-38.00 -12.38 0.00 4167
: - content/% 2023 1050 30.03~46.15 083 1455 1455
fruit nutritional | |
traits
RT— 2022 2213 | 1787~4050 315 2128 14.89
content/e 2023 9.79 1922-33.01 256 14.55 3455
Titsstable e 2022 18.00 0.31~0.76 -12.28 | 70.21 | 17.02
content/2 2023 1639 0.42~0.92 15.09 9.09 6182
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Fruit Fruit Vitamin C Soluble Soluble Titratable

Single fruit 5 Fruit 2 .
wgight/g Length diameter shape index content solid sugar acid
/mm /mm /(mg/100g) Content/% Content/% Content/%

T11 52.84 55.82 43.10 0.77 36.07 508.82 2213 0.63

"f:ie Ti56 1933 5129 4198 0.82 214 47168 2446 058

TI80 4788 50,54 4451 0.90 35.44 308.94 25,69 056

Ti67 2355 35.48 3205 0.91 16.15 396.51 3301 0.49

High gy 6.97 2146 23.10 108 36.85 506.56 2684 0.82
sugar

Ti6 1348 2697 29.93 L11 40.45 435.54 26.69 0.54
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Mean + SD

SeafiEs Leaf length/mm = Leaf width/mm Leaf area/mm? Leaf circumference/mm | Leaf shape index
‘Dongzao’ (2x) 78.92 + 5.69 3344 £ 245 1863.16 + 231.71 210.52 + 1491 236 +0.13
‘Chenguang’ (4x) 66.19 +8.35 49.16 + 6.86 2394.98 + 607.24 213.98 + 27.02 135+ 0.11
Triploid progeny (3x) 48.16 +7.98 3041 + 5.44* 1095.45 + 365.36* 147.23 = 26.18 1.60 % 0.21%
Diploid progeny (2x) 49.11 £ 7.59 23.58 £4.21 849.64 + 271.02 137.18 + 21.78 2.11+024

t-test of independence between triploid and diploid progeny, * represented the significant difference at p<0.05 level, and ** represented the significant difference at p<0.01 level.
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Fruit nutritional
traits

Mean + SD

‘Dongzao’ (2x)

‘Chenguang’ (4x)

Triploid progeny (3x)

Diploid progeny (2x)

t-test of independence between triploid and diploid progeny, * represented the significant difference at p<0.05 level.

Years Vitamin C content/ Soluble solid Soluble sugar Titratable acid
(mg/100g) content/% content/% content/%
202 289.23 +20.18 2131012 36.80 + 1.87 0.60 % 0.18
2023 253.96 + 4.58 4148 £ 1.72 24724134 0.49 £ 0.04
2022 301.19 + 15.48 33.00 +0.20 2347 £ 4.75 0.54 + 0.18
2023 37273 £ 19.50 3296 +0.23 2208+ 073 0.56 + 0.03
2022 268.44 + 38.08* NN EIT2 29.19 + 6.46 0.50 £ 0.09**
2023 429.25 + 88.28 37.53 + 3.94* 24.00 + 2.35** 0.61 £ 0.10*
2022 297.82 + 50.59 3070 + 3.60 26.10 + 4.06 0.70 % 0.17
2023 167,81 + 143.95 3423+ 488 2035 + 2.90 0.89 % 0.23
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/*************************************************************
 *
 *  MathJax.js
 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;
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Gene ID DNA attributes Protein attributes

Gene Nucleotide Ingtability GRAVY Length MW Pl Subclellu_lar
locus (MSU) length (bp) index (aa) (Da) localization
VdSUS1 Vadar_g22938 2418 -0.252 92.51 806 92733.84 6.16 Cyto,Chlo
VdSus2 Vadar_g38054 2433 -0.253 92.68 811 92430.52 5.81 | Cyto
VdSUS3 Vadar_g7208 2433 -0.247 92.33 811 ‘ 92254.59 573 Mito, Chlo, Cyto
VdsUs4 Vadar_g10639 3159 -0.456 46.92 1,053 11849652 | 6.11 NuclChlo,Cyto
VdsUs5 Vadar_g41615 2700 0337 4241 900 10192411 | 8.16 Cyto.Nucl, Mito
VdsUS6 Vadar_g25886 2454 -0324 28.97 818 92467.95 | 7.87 Cyto
Vdsus7 Vadar_g37562 3177 -0.442 85.88 1,059 119144.5 6.31 Nucl,Cyto

MW, molecular weight; PL, isoelectric point.
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Phylogenetic Relationships within Rutaceae Based on CDS+rRNA Sequences

Maximum likelihood tree with bootstrap support values (1000 replicates)

Glycosmis_mauritiana_KU949004

Glycosmis_pentaphylla_KU949005

Micromelum_minutum_KU949007

Clausena_excavata_KU949003

Clausena_lansium_0OL944012

Clausena_anisata_LC794893

Murraya_koenigii_LC794904

Murraya_paniculata_Seq2

Murraya_caloxylon_LC794902

Citrus_reticulata_ MWI147176

Citrus_sinensis_ON641345

Glycosmis_citrifolia_LC794899

Ruta_graveolens_MN326012

Dictamnus_albus_MZ750957

Tetradium_daniellii_MZ145060

Tetradium_ruticarpum_MW478803

Phellodendron_amurense_KY707335

Phellodendron_chinense_MW478802

Zanthoxylum_nitidum_MN508801

Zanthoxylum_motuoense_MT990981

Zanthoxylum_asiaticum_MW478801

Zanthoxylum_avicennae_OP580971

Cyanothamnus_anemonifolius_OL591173

Melicope_lucida_MW221969

Euodia_pubifolia_OL591181

Brombya_platynema_OL591163

Boronia_ternata_OL591162

Halfordia_kendack_OL591187

Leionema_ellipticum_OL591190

Corynonema_pungens_OL591216

Corynonema_pinoides_OL591215

Eriostemon_australasius_OL591179

Crowea_saligna_OL591172

Chorilaena_anceps_OL591221

Drummondita_fulva_OL591177

Bootstrap
Support

1.0
0.9

0.7

0.5

0.0

Genus

Boronia
Brombya
Chorilaena
Citrus
Clausena
Corynonema
Crowea
Cyanothamnus
Dictamnus
Drummondita

Eriostemon

Euodia
Glycosmis
Halfordia
Leionema
Melicope
Micromelum
Murraya
Phellodendron
Ruta
Tetradium

Zanthoxylum





OPS/images/fpls.2025.1675536/fpls-16-1675536-g009.jpg
Density

Density

0.0

0.0

Bdhe | Relaxed
ingEPurif}'ing

0.5

0.5

Positive

Selection

1.0 1.5
K./K Ratio

1.0 1.5
K. /K Ratio

2.0

2.0

2.5

2.5

KK

1 2.0
1.5
1.0

I 05
0.0

Gene Family

OO e e

ATP Synthase

Carbon Fixation
Conserved Hypothetical
Cytochrome Complex
Large Ribosomal Subunit
Maturase

NDH Complex

Other

Photosystem I
Photosystem IT

RNA Polymerase

Small Ribosomal Subunit

K (Synonymous Substitution Rate)

0.08

0.06

0.04

0.02

0.00

matK
rbcL
rpl22
accD
petA
rpoC2
ndhF
ndhD
rpoB
ndhG
rps3
ccsA
psbD
atpE
rpoA
ndhH
atpA
psbB
psbC
atpl

O
e
'&
.

/,])/I 4

0.00

rpsi2

0.01 0.02
K, (Nonsynonymous Substitution Rate)

K./K; Ratio

0.03

0909090000009

Gene Family

ATP Synthase

Carbon Fixation
Conserved Hypothetical
Cytochrome Complex
Large Ribosomal Subunit
Maturase

NDH Complex

Other

Photosystem I
Photosystem 11

RNA Polymerase

Small Ribosomal Subunit

Q
(o]
=
(-]
-
<
=]
o

rpoC2

I} I} I I I} 03 T3 T {I {1 AT I3 I3 {23 40 {13 4T T 03T
:





OPS/images/fpls.2025.1675536/fpls-16-1675536-g008.jpg
— Glycosmis citrifolia LC794899

-Glycosmis mauritiana KU949004

-Glycosmis pentaphylla KU949005

Citrus reticulata MW147176

~Citrus sinensis ON641345

~Clausena lansium OL944012

— Murraya caloxylon LC794902

~Clausena anisata LC794893

Micromelum minutum KU949007
Clausena excavata KU949003
[Murmya koenigii LC794904
~Dictamnus albus MZ750957
Phellodendron amurense KY707335
Phellodendron chinense MW478802
Tetradium daniellii MZ145060

Tetradium ruticarpum MW478803

-Zanthoxylum asiaticum MW478801

-Zanthoxylum avicennae OP580971

-Zanthoxylum motuoense MT990981
Zanthoxylum nitidum MN508801

Ruta graveolens MN326012
{Hayordia kendack OL591187
Leionema ellipticum OL591190

— Corynonema pinoides OL591215

— Corynonema pungens OL591216

Chorilaena anceps OL591221

— Eriostemon australasius OL591179

— Crowea saligna OL591172

“— Drummondita fulva OL591177

— Melicope lucida MW221969

— Brombya platynema OL591163

— Euodia pubifolia OL591181

-Boronia ternata OL591162

\—— Cyanothamnus anemonifolius OL591173

Gene Type:

okb

Photosystem I (psa) [ Cytochrome b6/f complex (pet)
Photosystem II (psb)

ATP synthase (atp)

P— 3 a 9 o< o
§8 &8 g & 22 2% §¢2

S ] W= [y ———y == r‘
J40 ko

il.“"l b
[40 kb )

danl (o ool I UILL by ol o
B0 kb

—Erren w

60 kb

=y ——=——

[40 kb

=11} == =y =1}

l40 ko

— il]l W=y ==

=y — =
J40 kb

[ |y —— ==
40 kb

| =1 1 == =y =

140 kb

R =y === ==y
Ja0 ko

-y ——— k | gl
a0 ko

urrEe
160 kb

T™Erres
160 kb

I-ll'fFl‘ -

i+ ———-
) 80 kb

ndhB
tps7
16S_rANA
23S_RNA
ndhF

yeft

i

bl |
z

R P P )

E

ndhD
© hdhe

ndhA
ndhH

23S_rRNA
16S_rRNA

ndhB

= 1ps7.

I
2 |1acEb

1y

P

L o
140 kb

ey

|| ===ErT=

iy =

100Ky 2

i

Z

g

o e
1002>

——rr—
|100 ki

J100 k2

e
100 kiz Z

|

i
Y

Z |14@o

|’ | & |

160 kb

|160 kb

Ty —

2 140 kb

160 kb

g ey
2 240 kb

160 kb

i ol

i .

160 kb

160 kb

L o

160 kb

Z Z [140 kb

160 kt

|y
> 2140 kb

—— -

Udiamlnian

g e ey
i
B0 kb

NADH dehydrogenase (ndh) l Large ribosomal proteins (rpl) || Small ribosomal proteins
M Rubisco large subunit (rbcL) [l RNA polymerase (rpo)

M Ribosomal RNA (rrn)

e

T e b

ogb | 2

)
e e

100 kb

o) === ==y
100 kb

o e e
100 ko Z

= 140 ko

ey
140 kb

By =
210 kb

|
ll0oko 2

P e

| S—— 3
B0k

B iy =

d
[160 kb

10a2b

(ps) = Transfer RNA (trn)

Other genes (accD, ccsA, cemA, clpP, matK, ycf)

Z 2 |140kb

140 kb

20 kb





OPS/images/fpls.2025.1675536/fpls-16-1675536-g007.jpg
Axis 2 (7.06 %) Axis 2 (7.5 %) Axis 2 (7.72 %) Axis 2 ( 8.51 %) Axis 2 (7.88 %) Axis 2 (7.51 %)

Axis 2 ( 8.06 %)

Boronia ternata OL591162

-1.0 05 0.0 0.5 1.0
Axis 1 (8.49 %)

Clausena anisata LC794893

-1.0 05 0.0 0.5 1.0
Axis 1 (8.92 %)

Crowea saligna OL591172

-1.0 05 0.0 0.5 1.0
Axis 1 (9.09 %)

Euodia pubifolia OL591181
1.0

0.5
0.0
-0.5

-1.0
-1.0 -05 0.0 0.5 1.0

Axis 1 (8.48 %)

Leionema ellipticum OL591190

-1.0 -0.5 0.0 0.5 1.0
Axis 1 ( 8.51 %)

Murraya paniculata PX214363

-1.0 05 0.0 0.5 1.0
Axis 1 (8.63 %)

Tetradium ruticarpum MW478803
1.0

0.5
0.0
-0.5

-1.0
-1.0  -05 0.0 0.5 1.0

Axis 1 (8.46 %)

Axis 2 (7.92 %) Axis 2 (7.95 %) Axis 2 (8.13 %) Axis 2 (7.98 %) Axis 2 (7.05 %) Axis 2 (7.78 %)

Axis 2 (7.79 %)

Brombya platynema OL591163

-1.0 05 0.0 0.5 1.0
Axis 1 (8.72 %)

Clausena excavata KU949003

-1.0 -0.5 0.0 0.5 1.0
Axis 1 ( 8.08 %)

Cyanothamnus anemonifolius OL591173
1.0

0.5
0.0
-0.5

-1.0
-1.0 05 0.0 0.5 1.0

Axis 1 (8.44 %)

Glycosmis citrifolia LC794899

-1.0 05 0.0 0.5 1.0
Axis 1 (9.07 %)

Melicope lucida MW221969

-1.0 -0.5 0.0 0.5 1.0
Axis 1 (8.3 %)

Phellodendron amurense KY707335

-1.0 05 0.0 0.5 1.0
Axis 1 (8.36 %)

Zanthoxylum asiaticum MW478801

-1.0 05 0.0 0.5 1.0
Axis 1 (8.59 %)

Axis 2 (7.9 %) Axis 2 (7.83 %) Axis 2 (7.35 %) Axis 2 ( 8.07 %) Axis 2 (745 %) Axis 2 (7.76 %)

Axis 2 (7.98 %)

Chorilaena anceps OL591221

-1.0 05 00 0.5 1.0
Axis 1 (8.77 %)

Clausena lansium OL944012

-1.0 -0.5 0.0 0.5 1.0
Axis 1 (8.71 %)

Dictamnus albus MZ750957

-1.0 05 00 0.5 1.0
Axis 1 (8.52 %)

Glycosmis mauritiana KU949004

-1.0 05 00 0.5 1.0
Axis 1 (8.29 %)

Micromelum minutum KU949007

-10  -05 0.0 0.5 1.0
Axis 1 ( 8.61 %)

Phellodendron chinense MW478802

-1.0 05 00 0.5 1.0
Axis 1 (841 %)

Zanthoxylum avicennae OP580971

-1.0 05 00 0.5 1.0
Axis 1 ( 8.63 %)

Axis 2 (7.17 %) Axis 2 (7.93 %) Axis 2 (7.5 %) Axis 2 (7.22 %) Axis 2 (7.93 %) Axis 2 (7.55 %)

Axis 2 (7.82 %)

Citrus reticulata MW147176

-1.0 05 0.0 0.5 1.0
Axis 1 (8.78 %)

Corynonema pinoides OL591215

-1.0 05 0.0 0.5 1.0
Axis 1 (9.02 %)

Drummondita fulva OL591177

-1.0 05 0.0 0.5 1.0
Axis 1 (8.78 %)

Glycosmis pentaphylla KU949005

-1.0  -05 0.0 0.5 1.0
Axis 1 (8.24 %)

Murraya caloxylon LC794902

-1.0 -0.5 0.0 0.5 1.0
Axis 1 ( 8.87 %)

Ruta graveolens MN326012

-1.0 05 0.0 0.5 1.0
Axis 1 (9.92 %)

Zanthoxylum motuoense MT990981

-1.0  -05 0.0 0.5 1.0
Axis 1 (10.85 %)

Citrus sinensis ON641345

Axis 2 (7.31 %)

-1.0  -05 0.0 0.5 1.0
Axis 1 (8.7 %)

Corynonema pungens OL591216

Axis 2 (7.59 %)

-1.0 0.5 0.0 0.5 1.0
Axis 1 (8.92 %)

Eriostemon australasius OL591179

Axis 2 (8.52 %)

-1.0 05 0.0 0.5 1.0
Axis 1 (9 %)

Halfordia kendack OL591187

§ 1.0
= 05
2
™ o0
a
@ 05
>
< 10
-10  -05 00 0.5 1.0
Axis 1 (8.74 %)
Murraya koenigii LC794904
§ 1.0
~ 05
&
® 00
a
@ 05
>
< 210

-10 05 00 0.5 1.0
Axis 1 (10.01 %)

Tetradium daniellii MZ145060

Axis 2 (7.88 %)

-1.0  -05 0.0 0.5 1.0
Axis 1 (8.43 %)

Zanthoxylum nitidum MN508801

Axis 2 (8.14 %)

-1.0  -05 0.0 0.5 1.0
Axis 1 ( 8.38 %)





OPS/images/fpls.2025.1675536/fpls-16-1675536-g006.jpg
A3/(A3+T;)

Boronia ternata OL591162 Brombya platynema OL591163 Chorilaena anceps OL591221 Citrus reticulata MW147176 Citrus sinensis ON641345

1.00
0.75
0.50
0.25
0.00 ENC Value
Corynonema pinoides OL591215 e 30
1.00 o 40
0.75 ¢ 50
® 60
0.50
0.25 Species
® Boronia ternata OL591162
%80 ® Brombya platynema OL591163
Cyanothamnus anemonifolius OL591173 Drummondita fulva OL591177 ® Chorilacna anceps OL591221
100 ©  Citrus reticulata MW147176
0.75 @  Citrus sinensis ON641345
® Clausena anisata LC794893
050 ©® Clausena excavata KU949003
0.25 ©  Clausena lansium OL944012
Corynonema pinoides OL591215
.00 @ Corynonema pungens OL591216
Halfordia kendack OL591187 ® Crowea saligna OL591172
100 ® Cyanothamnus anemonifolius OL591173
0.75 ® Dictamnus albus MZ750957
® Drummondita fulva OL591177
030 ® Eriostemon australasius OL591179
0.25 ® Euodia pubifolia OL591181
® Glycosmis citrifolia LC794899
000 ® Glycosmis mauritiana KU949004
MiTaie MR R Glycosmis pentaphylla KU949005
100 Halfordia kendack OL591187
0.75 ® Leionema ellipticum OL591190
©  Melicope lucida MW221969
B0 ©®  Micromelum minutum KU949007
0.25 ©® Murraya caloxylon LC794902
©  Murraya koenigii LC794904
0:00 ® Murraya paniculata PX214363
1.00 Phellodendron amurense KY707335 ®  Phellodendron amurense KY707335
@ Phellodendron chinense MW478802
0.75 ® Ruta graveolens MN326012
©  Tetradium daniellii MZ145060
B0 ® Tetradium ruticarpum MW478803
0.25 ©  Zanthoxylum asiaticum MW478801
©  Zanthoxylum avicennae OP580971
0:00 ©  Zanthoxylum motuoense MT990981
Zanthoxylum asiaticum MW478801 Zanthoxylum nitidum MN508801 .
1.00 Zanthoxylum nitidum MN508801
0.75
0.50
0.25
0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

G3/(G3+C3)





OPS/images/fpls.2025.1675536/fpls-16-1675536-g005.jpg
GC12

Citrus reticulata MW147176 Citrus sinensis ON641345

Boronia ternata OL591162 Brombya platynema OL591163 Chorilaena anceps OL591221

1.00
y =0.0786x + 0.4046 " y = 0.0683x + 0.4085 J y=10.0892x + 0.4031 P y =0.0124x + 0.4259 J y=-0.0193x + 0.4364

075 R?=0.0052 R?=0.0041 R?=0.0067 R?=1e-04 R?=3e-04

0.50

0.25

0.00

Clausena anisata LC794893 Clausena lansium OL944012

Clausena excavata KU949003

1.00
y =0.0948x + 0.3989

y=0.0329x + 0.421 y=-0.0017x + 0.4305 J y=0.0726x + 0.4062 J y=0.0811x + 0.4037
R>=0.0147

075 R?=0.001 R>=0 R?=0.0043 R>=0.0056

0.50

0.25

0.00

Crowea saligna OL591172 Dictamnus albus MZ750957 Eriostemon australasius OL591179

1.00
v =0.0213x +0.4222 y = -0.0834x + 0.4495 ] v =0.0395x + 0.4174 ] v =0.0628x + 0.4102 ] y = -0.0034x + 0.43 ]
0.75 R2=4e-04 R2=0.0044 R2=10.0015 R2=0.0034 Rz2=0 Gene Function
@ Photosystem I
0.50
@ Photosystem II
0.25 @ Cytochrome b/f complex
@ ATP synthase
0.00
@ NADH dehydrogenase
Euodia pubifolia OL591181 . .
100 @ RubisCO large subunit
y=0.0459x +0.4155 y=0.0937x + 0.4004 ] y=0.0183x +0.4263 J y=0.0455x +0.418 ) y=0.0228x +0.4215 ® RNA polymerase

R?>=0.0018 R>=0.0145 R?=4e-04 R?=0.0021 R?=5e-04

0.75 Small ribosomal protein
0.50 ’ v .- @ Large ribosomal protein
€ (2
z ) clpP, matK, infA
0.25 s :
@ Hypothetical reading frame
0.00 @ Other
Melicope lucida MW221969 Micromelum minutum KU949007 Murraya koenigii LC794904
1.00
y = 0.002x + 0.4288 y = 0.059x + 0.4129 ) y = 0.0292x + 0.4234 ) y = 0.0866x + 0.4017 ) y=0.103x + 0.3974 ) ENC Value
R2=0 R2=10.0033 R2?=8e-04 R2=0.0131 R2=10.0191
0.75 e 30
e 40
0.50
50
0.25 ® 60
0.00
Phellodendron amurense KY707335 Phellodendron chinense MW478802 Ruta graveolens MN326012 Tetradium daniellii MZ145060
1.00
y =-0.0206x + 0.4385 y=0.0432x + 0.4161 55 y=0.0155x + 0.4228 5! y =-0.0658x + 0.4503 o y=0.0245x + 0.4214
075 R2=4e-04 R2=0.0016 R2=2e-04 R2=0.0038 R2?=5e-04
0.50
0.25
0.00
1.00
y=0.0159x + 0.4227 y=0.0041x + 0.4272 B! y=0.0175x + 0.4228 J y=0.03x + 0.4202 y =0.0254x + 0.4202
075 R2=2e-04 R2=0 R2=3e-04 R?=8e-04 R2=5e-04
0.50 on .7
»-
0.25 Ll
0.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

G(C3





OPS/images/fpls.2025.1675536/fpls-16-1675536-g004.jpg
ENC

0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75

1.00

Clausena anisata LC794893

0.00 025 050 0.75 1.00

Clausena excavata KU949003

0.00 025 050 0.5 1.00

Clausena lansium OL944012

0.00 025 050 0.75 1.00

Corynonema pinoides OL591215

0.00 025 050 0.5 1.00

Corynonema pungens OL591216

0.00  0.25 0.50  0.75

1.00

Crowea saligna OL591172

000 025 050 075 1.00

Cyanothamnus anemonifolius OL591173

0.00 025 050 0.75 1.00

Dictamnus albus MZ750957

000 025 050 075 1.00

Drummondita fulva OL591177

0.00 025 050 0.75 1.00

Eriostemon australasius OL591179

000 025 050 0.75

1.00

Euodia pubifolia OL591181

000 025 050 075 1.00

Glycosmis citrifolia LC794899

000 025 050 0.75 1.00

Glycosmis mauritiana KU949004

000 025 050 075 1.00

Glycosmis pentaphylla KU949005

0.00 025 050 0.75 1.00

Halfordia kendack OL591187

000 025 050 0.75

1.00

Leionema ellipticum OL591190

0.00 025 050  0.75 1.00

Melicope lucida MW221969

0.00 025 0.50  0.75 1.00

Micromelum minutum KU949007

0.00 025 0.50  0.75 1.00

Murraya caloxylon LC794902

0.00 025 050  0.75 1.00

Murraya koenigii LC794904

0.00  0.25 0.50  0.75

1.00

Murraya paniculata PX214363

0.00 025 050  0.75 1.00

Phellodendron amurense KY707335

0.00 025 0.50  0.75 1.00

Phellodendron chinense MW478802

0.00 025 0.50  0.75 1.00

Ruta graveolens MN326012

0.00 025 050 0.75 1.00

Tetradium daniellii MZ145060

0.00 025 0.50  0.75

1.00

Tetradium ruticarpum MW478803

Zanthoxylum asiaticum MW478801

Zanthoxylum avicennae OP580971

Zanthoxylum motuoense MT990981

Zanthoxylum nitidum MN508801

Gene Function

&

Photosystem I
Photosystem I1
Cytochrome b/f complex
ATP synthase

NADH dehydrogenase
RubisCO large subunit
RNA polymerase

Small ribosomal protein
Large ribosomal protein
clpP, matK, infA
Hypothetical reading frame
Other

ENC Value

30
40
50
60





OPS/images/fpls.2025.1675536/fpls-16-1675536-g003.jpg
Relative Synonymous Codon Usage (RSCU) Analysis

Clausena excavata KU949003 >=05
Glycosmis mauritiana KU949004

Glycosmis pentaphylla KU949005 i
Micromelum minutum KU949007 1.5-2.0
Phellodendron amurense KY707335 g
Clausena anisata LC794893

Glycosmis citrifolia LC794899 Sl
Murraya caloxylon LC794902 <=05

Murraya koenigii LC794904

Ruta graveolens MN326012
Zanthoxylum nitidum MN508801
Zanthoxylum motuoense MT990981
Citrus reticulata MW147176
Melicope lucida MW221969
Zanthoxylum asiaticum MW478801
Phellodendron chinense MW478802
Tetradium ruticarpum MW478803
Tetradium daniellii MZ145060
Dictamnus albus MZ750957
Murraya paniculata Seq2

Boronia ternata OL591162
Brombya platynema OL591163
Crowea saligna OL591172
Cyanothamnus anemonifolius OL591173
Drummondita fulva OL591177
Eriostemon australasius OL591179
Euodia pubifolia OL591181
Halfordia kendack OL591187
Leionema ellipticum OL591190
Corynonema pinoides OL591215
Corynonema pungens OL591216
Chorilaena anceps OL591221
Clausena lansium OL944012

Citrus sinensis ON641345
Zanthoxylum avicennae OP580971

3322333555002 22E8299598823388828222229228833853888¢22885565555855¢5¢c¢c¢
AQQEZQQEZQQEZQQEEQQEQOQC>OOCZOOC£QOE>OOC>OOC20®CQE£OOCOOC20QC
C P P 3333 P 0 >0 5 5 230 I 0 T T TI TIPS LT T T O P O P 2335 00080s<<<3 000 0CTTT
8333333628883 %3%35553333868c2222c828555528882885385833583¢888§3523523





OPS/images/fpls.2025.1675536/fpls-16-1675536-g002.jpg
Distribution of SSR Categories SSR Motif Distribution Across Rutaceae Species

2670 3 4 S 8 9
Euodia pubifolia OL591181 [T [T 1 ] [

Brombya platynema OL591163

Melicope lucida MW221969

Cyanothamnus anemonifolius OL591173

Boronia ternata OL591162

Corynonema pungens OL591216

Corynonema pinoides OL591215

Chorilaena anceps OL591221

2000 Crowea saligna OL591172
Leionema ellipticum OL591190

Eriostemon australasius OL591179

Halfordia kendack OL591187

Drummondita fulva OL591177

Zanthoxylum avicennae OP580971

Zanthoxylum asiaticum MW478801

Zanthoxylum motuoense MT990981

Zanthoxylum nitidum MN508801

Tetradium daniellii MZ145060

Tetradium ruticarpum MW478803

Phellodendron chinense MW478802

Phellodendron amurense KY707335

1000 Clausena lansium OL944012
Micromelum minutum KU949007
Murraya paniculata

Murraya caloxylon LC794902
Glycosmis citrifolia LC794899
Glycosmis pentaphylla KU949005
Glycosmis mauritiana KU949004
Murraya koenigii LC794904
Clausena excavata KU949003
Citrus sinensis ON641345

Citrus reticulata MW147176
Clausena anisata LC794893
Dictamnus albus MZ750957

Ruta graveolens MN326012

-

Frequency

Cgmy =

AATA

ATAC
ATTT

TAAA
[TAAA
TATACCAAA

AACAAAGG
AATTCTTC
AATTTAAT

ACTTATCG
ATACTAAG
ATAGTAAA
. ATATTGAT
ATCAATAT

CATTCTGA

GAAATTTC

TTAAAGTA
TTAAATAA
TTAAATTA
TTATAAAA

TTCCAAAA
TTCTTTAT

AACAAA
sTATACAG
GAAGAAGGA
TCCTTCTTC
TTAGTATAC

GAGATTTTC
GCTAAAGTA
GTACTATTC

AATGAACAAA
AATTCGATAG

SSR Category
C D SSR Category Distribution Across Rutaceae Species

5 @ & @& O D S A e
S ) 9@ SRS
O 4O \u“ @i\ ol 5;‘ REOSRAF v\"‘ o {x\’
\\o \L %" \ \\ \\' \)o \N\
o ‘\"’ v \\‘ t\\\“ Al\\‘ \‘\\‘ ¥ & LW
& o &(Q W \\Q °,\°\ &

w
w
=
=
)
=3

Percentage Distribution of SSR Categories

w
w
~
Q
&
-
&
1]
=]
=
<

MonoSSR

w
w
~
Q
&
-
@
(1]
=]
=
<

DiSSR

MonoSSR TriSSR

DiSSR TetraSSR

Count

TriSSR PentaSSR

TetraSSR OctaSSR

PentaSSR NonaSSR

HexaSSR DecaSSR

HeptaSSR
OctaSSR
NonaSSR

DecaSSR

PR P P E SN O @A DE D E
SR O RJR o b9\ N «%“" AP ,»b\\\ PRGNS

PR & o>
CalP P P R & 9 & Y o
F PP IS & & & § N v"" o" F V§ & & &V v &
& @ \\o \o & oé\o & e

Q' ) )
& ‘&- \(\ & & & W

q

R 3 &
‘L‘\’ & W
o o

Conservation of SSR Motifs Across Rutaceae Species F SSR Distribution by Genomic Location

E: %
AT
T
PR 2500

TCCTTCTTC
CTT
AAAT e
A _— "
TTC —.
e %
TTAAATAA
T
T - e 2000
AR :‘
TTA
GTACTATIC _ %
-’-— - C"‘eg‘"’
::I"]:(l;l:‘ % SSR Category -
:. “ DecaSSR DiSSR
oty :‘
-é,‘;; TTEe MonoSSR HexaSSR
CTAAAGTA
TCCAARA % NonaSSR MonoSSR
ﬂ[ AAATTAAA

Count

mu AGANTS OctaSSR NonaSSR
(a8

TTCCAAAA - e
TCrT —_— )

TTTTCCAATA
TATACCAAA
TTCTTITTT
TTAAAGTA
TITCTCTC
TAT
GAAATTTC _———————— @

TTATAAAA
TACTTCTA
TAAT

GAGATTTTC
AATTANTTA 500

TTAAATTA

PentaSSR OctaSSR

1000
TetraSSR

PentaSSR

Pes 00000

TriSSR TetraSSR

TriSSR

AATTTAAT
AAC
AATC
ATC
ATATTGAT
AAAAT
AATA
AATTCGATAG
TCTTTTAG
TCCATGTA

ATAGTAAA
ATACTAAG 0
ATTT
N

0 25 50 75 100 CDS Intron NA
Percentage of Species (%) Location Type





OPS/images/back-cover.jpg
Frontiers in
Plant Science

Cultivates the science of plant biology andits
applications.

journal, which

ed plant scien
ing of plant biology for

y, functional ecosystems

and human health.

Discover the latest
Research Topics






OPS/images/fpls.2025.1553316/M4.jpg





OPS/images/fpls.2025.1553316/M5.jpg





OPS/images/fpls.2025.1553316/M6.jpg





OPS/images/fpls.2025.1553316/fpls-16-1553316-g007.jpg





OPS/images/fpls.2025.1553316/M1.jpg
e b kL
x 100% (W, is fruit weight, W is single fruit kernel weight)






OPS/images/fpls.2025.1553316/M2.jpg





OPS/images/fpls.2025.1553316/M3.jpg
(P1 +P2)/2





OPS/images/fpls.2025.1553316/fpls-16-1553316-g004.jpg





OPS/images/fpls.2025.1553316/fpls-16-1553316-g005.jpg
—

A NS N\

i ?.
LU
" ot '
) A
"






OPS/images/fpls.2025.1553316/fpls-16-1553316-g006.jpg





OPS/images/fpls.2024.1506523/fpls-15-1506523-g004.jpg
S -~ down
O © no-diff
s ; : &

b < .
a 107 <« i
\é :
(o]
o 5

-20 -10 0 10 20
log,FoldChange

 Identified

1 Stressresponse

* Primary metabolism

¥ Translation

W Transport

B Photosynthesis and Respiration
W Transcription factors

B Cell morphogenesis

W Secondary metabolism

B Polynucleotide biosynthesis
B Bio-signaling

B Hormone biosynthesis

 uncharacteri
zed

* Repetition






OPS/images/fpls.2024.1506523/fpls-15-1506523-g005.jpg
Level2 GO terms of R-vs-Y

||hiili.LLLLI—LL-L.__. B iill.illﬂ.L__ I
P
g
&é\
S
$

o 1n o w1
S N 1 N
- S O ©

e‘...
=2
2
& i
o

Molecular Function

Cellular Component

Top 20 of KEGG Enrichment

Photosynthesis{ W7 (©s6)

Metabolic pathways I 141 (1)

Biological Process
Pyruvate metabolism{ 10m

Ether lipid metabolism 461
Riboflavin metabolismy 12

400
300

Oxidative phosphorylation I 36 (6.3¢-07)
Carotenoid biosynthesis; 4.1

Protein processing in endoplasmic reticulury I 30 0.031)
Plant-pathogen interaction Wl 13 (:6)

Anthocyanin biosynthesiq 2022
Arginine and proline metabolisn 9 ©:26)
Phenylalanine metabolism 14386
Isoquinoline alkaloid biosynthesis |3 (36

200
100

Pentose phosphate pathway| H7m

Aminoacyl-tRNA biosynthesis| B9
Glycerophospholipid metabolism 57
Plant hormone signal transduction 12

Photosynthesis - antenna proteing [3m

S9UDD JO JaqUINN

Pentose and glucuronate interconversiong W9 ©22)
Carbon fixation in photosynthetic organismis [l 13 ©0.66)

Kemyied

20 40 60

Gene Percent(%)

0





OPS/images/fpls.2024.1506523/crossmark.jpg
©

2

i

|





OPS/images/fpls.2024.1506523/fpls-15-1506523-g001.jpg
fresh samples fresh sample slices dry samples dry samples slices = sample powders





OPS/images/fpls.2024.1506523/fpls-15-1506523-g002.jpg
00 © <t o =
=] =] o =) o
= <) <) <) <)

B/6w)usjuoy splouone|





OPS/images/fpls.2024.1506523/fpls-15-1506523-g003.jpg
Inositol

Loganic acid
8-Epiloganic acid
Ribitol
Heptamethoxyflavone

gamma,gamma-Dimethylallyl pyrophosphate

m.
i Low

Pilocarpine

Bergenin

N6-Succinyl Adenosine
Maltotriose
L-Saccharopine
4-Hydroxybenzoate

Phenylacetylglutamine

1.96 2.00 2.04
VIP

Top 20 of KEGG Enrichment

Ubiquinone and other terpenoid-quinone biosynthesis Il 2 055
Riboflavin metabolisr{ M 2055
Monoterpenoid biosynthesis Il 2(055)
Phosphatidylinositol signaling system Ill1 055
Folate biosynthesis{ 255
Pentose phosphate pathway I 3 (055
Biosynthesis of terpenoids and steroids I 3 ©55)
Biosynthesis of alkaloids derived from histidine and purine I 3 ©055)

> One carbon pool by folate] Il 1055 qualue

; Terpenoid backbone biosynthesis [l 1 (055 0.70
% Diterpenoid biosynthesiy Il 1 (055 0.65
. Benzoic acid family{ 1055 z.:g

Carbon metabolism I 4 0.64)
Inositol phosphate metabolism Bl 1064
Glycolysis / Gluconeogenesis{ Il 2(064)
Fructose and mannose metabolismy [ 2 (068)
Glycerolipid metabolisr{ #1072
Pentose and glucuronate interconversions [ 2(0.73)
Biosynthesis of secondary metabolites| I 12(073)
Zeatin biosynthesis] [ 2074

0 20 40 60
Gene Percent(%)





OPS/images/fpls.2024.1511713/fpls-15-1511713-g011.jpg
---~

® CTK

L Inhibit rooting
X Promote EOOUNE

-~
~
~~~
~
~
S
~
S

-
———‘
-

-
\N\
~
S

—
r il
-’

BUSIS LD

<I

MdAHP6

MdAHP1

-
-

MdAHP3

MdJAHP3

.,
-,
-,
-
”’
-
‘—
_—

Se
~

~

~

~
S

-~

‘h-—

i





OPS/images/fpls.2024.1511713/table1.jpg
Gene ID ocation CDS (bp) Peptide (aa)
AHP1 AT3G21510 Chr3:7578432-7579537 465 154
AHP2 AT3G29350 Chr3:11264379-11265408 471 156
AHP3 AT5G39340 Chr5:15748941-15750248 468 155
AHP4 AT3G16360 Chr3:5554351-5555518 438 145
AHP5 AT1G03430 Chr1:848159-849235 474 157
AHP6 AT1G80100 Chr1:30133818-30134652 465 154
AHP2 AT1G13330 Chr1:4568008-4569410 681 226
DAHP2 AT4G33510 Chrd:16116496-16118549 1524 507
MdAHPL MD02G1065100 Chr02:5274203-5275042 219 60
MdAHP2 MD03G1272900 Chr03:5623827-35626300 459 152
MdJAHP3 MD04G1212100 Chr04:29654492-29656643 483 160
MdAHP4 MD08G1111300 Chr08:9779829-9781444 573 189
MdAHP5 MD09G1203100 Chr09:18975574-18977109 453 150
MAAHPG MD11G1293900 Chrl1:41305280-41307736 459 152
MdAHP7 MD12G1226800 Chr12:30252651-30254431 483 160
MdAAHPS MD13G1176300 Chr13:14595883-14597631 465 154
MdJAHPY MD14G1019100 ‘ Chr14:1804629-1805852 420 139
MdAHP10 MD15G1090700 Chr15:6287020-6289085 444 147
MdAHP11 MD15G1195900 ‘ Chr15:15559650-15560922 474 157
MdAHP12 MD16G1178100 Chr16:15212549-15214510 468 155
MAAHP13 MD17G1211900 Chr17:25911289-25912804 474 157

Chr, Chromosome; CDS, Coding Sequence.
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Name
MdJAHP1
MdJAHP2
MdJAHP3
MdAHP4
MdJAHP5
MdJAHP6
MdAHP7
MdJAHP8
MJAHP9

MdJAHP10
MdJAHP11
MdJAHP12

MdJAHP13

G Locus

MD02G1065100

MD03G1272900

MD04G1212100

MD08G1111300

MD09G1203100

MD11G1293900

MD12G1226800

MD13G1176300

MD14G1019100

MD15G1090700

MD15G1195900

MD16G1178100

MD17G1211900

GRAVY
-0.598
-0.392
-0.359
-0.581
-0.946
-0.359
-0.369
-0.256
0.096
-0.539
-0.657
-0.290

-0.343

S(T)]
219
459
483
573
453
459
483
465
420
444
474
468

474

e(aa)
60
152
160
189
150
152
160
154
139
147
157
155

157

MW
7024.79
17788.18
18339.70
22511.53
17613.88
17671.00
18250.54
17691.13
15602.02
17323.66
18059.67
17837.30

18187.89

Pl
4.10
5.21
4.74
6.83
8.93
491
4.72
4.95
4.64
6.83
6.12
4.95

7.79

¥
46.18
34.67
32.74
55.72
56.17
3917
39.71
28.96
42.47
61.14
52.64
29.54

44.10

GRAVY, grand average of hydropathicity; e (aa), amino acid number; MW, molecular weight, Da; P1, isoelectric point; II, Instability Index; Al Aliphatic Index.
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Salicylic Abscisic Zeatin

Gene name MeJA Stress Gibberellin e acid Meristem Ethylene  Circadian rnetabolistn Total
MdAHP1 2 1 0 1 0 4 0 0 8 2 18
MdAHP2 4 0 0 0 0 2 0 0 12 1 19
MdAHP3 0 0 0 2 1 4 0 0 15 4 26
MdAHP4 0 0 0 3 0 2 0 0 9 4 18
MdAHP5 4 1 0 0 0 2 | 0 4 2 14
MdAdAHP6 4 1 0 0 1 5 | 0 0 16 0 27
MdAAHP7 4 1 0 2 0 0 1 | 0 7 3 18
MdAAHP8 2 1 1 1 0 2 0 0 8 2 17
MdAdAHP9 0 3 0 0 1 0 1 0 9 2 16
MdAAHPI0 0 3 0 0 0 1 1 0 5 1 11
MdAHP11 4 4 0 1 0 3 0 0 12 3 27
MdAAHPI2 2 3 1 0 1 1 0 0 6 2 16
MdAAHPI13 0 2 1 1 ! 0 0 0 7 2 14

The 1.5 kb sequence upstream from the start codon of MAAHPs genes were analyzed using the PlantCARE database.
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Class

Flavonoids

Carbohydrates And
Its Derivatives

Terpenoids

Amino Acid And
Its Derivatives

Organic Acid And
Its Derivatives

Alcohols and polyols

Phenols And Its Derivatives

Nucleotide And Its Derivates

Organoheterocyclic
compounds

Lipids

Phytohormones

Alkaloids and derivatives

Compounds Name
Heptamethoxyflavone
Apigenin 5-O-glucoside
Chrysoeriol 7-O-hexoside
di-C,C-hexosyl-methylluteolin
Prim-O-glucosylcimifugin
Lobetyolin
Maltotriose
phosphoribosyl pyrophosphate
Ribitol
D-Xylulose
L-Sorbose
D-Galactose
Fructose bisphosphate
D-Fructose-1,6-biphosphate
D-3-Phosphoglyceric acid
Loganic acid
8-Epiloganic acid
Geniposidic acid
Diosgenin
Ajugol
N-(Phenylacetyl)-L-phenylalanine
Phenylacetylglutamine
DI-2-Aminooctanoic Acid
L-Saccharopine
4-Acetamidobutyric Acid
L-Dihydroorotic acid
Nicotianamine
3-Hydroxybutyrate
Homogentisic Acid
Bergenin
4-Hydroxybenzoate
2-(Formylamino)benzoic acid
Patchouli alcohol
Inositol
Androsin
N6-Succinyl Adenosine
Uridine 5’-Diphospho-N-Acetylgalactosamine
UDP-D-xylose
Griffonilide
1-Methylnicotinamide
10-Formyl-THF
4-Hydroxyquinazoline
3-Indoleacrylic acid
Purine
Rhodomyrtone
gamma,gamma-Dimethylallyl pyrophosphate
Gibberellin A3
trans-zeatin N-glucoside
Salicylic acid O-glucoside

Pilocarpine

ormula
CyoHa40s
Co1Ha040
CooHaOy
[
CoaHaOny
CaoHagOg
CisH32016
CsHpsO4P5
CsH1,05
C5H1005
CeH1206
CeH1206
CeH1101:P,
CeH1015P>
C;H,0,P
Ci6H21010
CisHaO10
CiH22010
Cy7HipOs
CisHa406
C7H;NO;
Ci3H N0y
CgH,,NO,
Ci1HaoN,05
CgH,;NO;
CsHeN,0,
Ci2Hu N304
C,H{05
CsHy04
CigHi6Os
CHO;
CgH,NO;
CisHa0
CeH1206
CisHayOs
C4H7N5Og
Ci7HyyN;017P,
C14H2N046P2
CgHyO4
CHoN,O+
CooH,3N;0;
CgHgN,0
C1HsNO,
CsH,N,
Ca6H3406
CsHp,0,P,
Ci9Hp,06
Ci6H2sN5O5
Ci3H;605

CiiH1eN;0,

log2FC

1.596530003

1.447270251

1.370956862

0.731838968

2.333384812

1.617890962

1.187420217

1.072165515

0.768077062

-0.484836655

-0.692733624

-0.781704466

-1.420545477

-1.443818607

-1.449220241

2448518374

1.919374294

1.383149201

-0.103390846

-0.742785267

1.990506548

1.737855689

1.016689663

0.787699404

0.613913384

-0.585123705

-1.365123664

2770608595

2.006082946

1.764766976

1.559592207

1.210922373

-0.440339709

-1.695632363

2.111889472

1.288666118

-0.575550096

-0.644147008

2.841063021

2.020807033

1.358362619

1.019823465

0.815885719

0.638248526

-0.108492437

-1.942820847

3.179982394

2.086869061

1.60165752

2.36136598
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