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Editorial on the Research Topic
Data-driven vaccine design for microbial-associated diseases

Vaccinology is rapidly evolving, driven by the convergence of genomics,
immunoinformatics, and artificial intelligence (AI). As infectious diseases continue to
challenge global health whether through re-emerging bacterial pathogens, rapidly evolving
viruses, or opportunistic microbiota computational tools are becoming central to vaccine
discovery. This Research Topic brings together ten diverse yet thematically connected studies
that collectively demonstrate how modern vaccinology is shifting toward precision,
integration, and predictive modeling. Taken together, these studies illuminate the future
direction of the field, data-driven, multi-targeted, and strategically optimized vaccine design.

To begin with, the long-standing shortcomings of the Bacillus Calmette-Guerin (BCG)
vaccine in preventing adult pulmonary tuberculosis highlight the urgent need for improved
alternatives. In this Research Topic, one study takes a rational genetic approach by creating
progressively attenuated M. tuberculosis H37Rv strains. By examining macrophage
transcriptomic responses to these engineered strains, the authors reveal strong activation
of immune pathways including nuclear factor kappa B (NF-xB), tumor necrosis factor
(TNF), chemokine signaling, and notably interleukin-17 (IL-17) signaling. Importantly,
this upregulation across all vaccine strains suggests a capacity to elicit robust mucosal
immunity, thus providing a promising foundation for next-generation TB vaccines
(Veerapandian et al.). This work also exemplifies how integrating pathogen genomics
with host response profiling can accelerate rational vaccine design.

Building on the theme of precision, the second study focuses on cervical cancer—
associated high-risk human papillomavirus (HPV) subtypes (Cai et al.). Although current
prophylactic vaccines provide broad protection, subtype-specific insights remain essential
for refining immunogen design. Through detailed i silico profiling of HPV-31 and HPV-
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52 E6/E7 proteins, the authors identify physicochemical properties,
dominant B- and T-cell epitopes, and structural determinants of
immunogenicity. These findings not only deepen our
understanding of oncogenic HPV variants but also pave the way
for subtype-tailored vaccine approaches.

Continuing with mycobacterial pathogens, another study
addresses the rising burden of non-tuberculous mycobacteria. By
analyzing complete genomes from M. avium, M. intracellulare, and
M. colombiense, the authors design a multi-epitope vaccine based
on conserved regions of the antigen 85 family. Furthermore,
population coverage analysis ensures relevance across African
populations, while immune simulations predict strong humoral
and cellular responses (Kashiri et al.). Consequently, this cross-
species construct represents a significant step toward broad-
spectrum mycobacterial immunization strategies.

Similarly, the challenge of human immunodeficiency virus
(HIV) vaccine development stems largely from viral variability. In
this Research Topic, a study explores a dual strategy: mapping
immunodominant epitopes and introducing targeted mutations
to enhance recognition across HIV subtype C variants
(Kumar Mishra et al.). Structural modeling, TLR3 docking, and
long-timescale molecular dynamics simulations collectively
demonstrate stable vaccine-receptor interactions. In addition,
strong predicted immunoglobulin responses and favorable codon
adaptation highlight its translational potential. Thus, this work
underscores how rational mutation of epitopes may help
overcome viral diversity.

Transitioning to viral encephalitides, one study presents a
refined multi-epitope subunit vaccine targeting SLEV. Unlike
earlier efforts that focused solely on the E protein, this work
incorporates membrane protein M and anchored capsid protein
anchC, thereby broadening antigenic coverage. The resulting
constructs exhibits high structural stability and strong TLR-4
binding, and immune simulations further indicate robust
immunogenicity (Ramalingam et al.). Hence, this expanded
antigen strategy showcases how multi-protein approaches can
enhance vaccine efficacy against complex RNA viruses.

Expanding beyond classical pathogens, another study
examines Ruminococcus gnavus, a gut pathobiont implicated in
inflammatory bowel disease. Through subtractive proteomics, the
authors identify two key virulent proteins and construct a multi-
epitope vaccine showing strong TLR4 interaction and structural
stability (Dingding et al.). Although experimental validation
remains necessary, this work importantly demonstrates how
vaccinology can be extended to microbiota-associated diseases,
potentially transforming future therapeutic approaches for
chronic inflammatory conditions.

In addition, the Research Topic features a comprehensive
computational pipeline for designing multi-epitope vaccines
against human respiratory syncytial virus (hRSV). By mining
conserved regions of F and G glycoproteins and evaluating
antigenicity, allergenicity, and structural features, the authors
identify promising candidates with strong docking affinity for
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TLR1 and TLR4 (Alnajran et al.). Coupled with immune
simulations predicting high IgG, IgM, IL-2, and IFN-y levels, the
work offers a compelling alternative to the limited RSV vaccines
currently available for older adults.

Meanwhile, the Zika virus continues to pose a threat in Asia,
particularly India. This study identifies novel linear and
conformational epitopes in both envelope and NSI1 proteins of
circulating Indian strains and evaluates their interactions with
potent neutralizing antibodies (Roy et al.). The discovery of
epitopes capable of strong engagement with monoclonal
antibodies such as ZV-67 and Z3L1 provides critical information
for developing next-generation, lineage-specific Zika vaccines.

Further reinforcing the theme of genomic integration, another
study conducts a pangenome analysis to identify conserved
virulence determinants in Pseudomonas aeruginosa (Elavarasu
and K). Prioritizing the outer membrane protein LptF, the
authors design a multi-epitope vaccine with stable TLR
interactions and predicted high expression in E.coli. Immune
simulations additionally indicate strong adaptive responses,
including memory B-cell and T-cell activation. Therefore, this
construct holds promise for addressing antibiotic-resistant P.
aeruginosa infections.

Finally, moving from antigens to delivery systems, the Research
Topic concludes with an innovative Al-driven framework for
optimizing lipid nanoparticles formulations for mRNA vaccines
(Di Salvatore et al.). By generating synthetic transcriptomic datasets
to emulate tissue-specific responses, and integrating random forest
modeling with a genetic algorithm, the authors identify nanoparticles
designs with minimized off-target immune activation. As a result, this
purely in silico pipeline offers a paradigm shift toward safer and more
targeted mRNA vaccine delivery strategies.

These ten studies collectively showcase the transformative
impact of computational biology in rational vaccine design. By
integrating structural biology, immunoinformatics, molecular
docking, AI, and immune simulations, each contribution extends
the frontiers of vaccinology beyond traditional paradigms.
Moreover, the spectrum of pathogens addressed from bacteria
and viruses to gut microbiota demonstrates the versatility and
applicability of these approaches across disease domains. As we
face future outbreaks and emerging antimicrobial resistance, these
studies lay the groundwork for agile, intelligent, and personalized
vaccine development. I extend my gratitude to all contributing
authors for their innovative efforts, and I am confident that this
body of work will inspire further translational and experimental
endeavors in infectious disease research.
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Introduction: The Zika virus is an emerging Flavivirus known to cause Zika
infection in humans. It is associated with severe health problems such as
microcephaly and Guillain-Barré syndrome post the Brazilian epidemic in
2015-16. The spread of the Zika virus to the Asian subcontinent, especially to
India is a matter of great concern. Two recent co-circulating Indian Zika virus
strains such as Rajasthan and Maharashtra detected in 2018 and 2021 were
studied to identify B-cell epitopes in the envelope and non-structural 1 protein as
these epitopes are major indicators of robust humoral immune response. The
study aimed at identifying novel epitopes, followed by molecular docking with
potent Zika virus-specific monoclonal antibodies. The novel epitopes identified
in this study shall be essential in designing multi-epitope vaccines capable of
inducing antibody response against Zika virus infection.

Methods: ABCpred, BepiPred 2.0 and Kolaskar-Tongaonkar methods were used
for predicting the linear B-cell epitopes, and Discotope 2.0 and ElliPro were used
for the prediction of conformational epitopes. Linear epitopes were further
checked for protective antigenicity, allergenicity and toxicity. Based on the
stringent study design criteria, only the novel epitopes were considered for
molecular docking with complementary determining regions of potent Zika
virus-specific monoclonal antibodies.

Results: Nineteen linear and five conformational epitopes were shortlisted based
on protective potential, non-allergic and non-toxic properties for Zika virus E
protein, from which nine linear and three conformational epitopes were
identified as novel. Molecular docking studies revealed that the novel linear
epitopes, one each from EDIII, EDII, EDI and EDI/DIII hinge were involved in
epitope-CDR interactions with potent neutralizing Zika virus E-specific mouse
monoclonal antibody ZV-67. Moreover, the novel EDII epitope was exclusively
engaged in epitope-CDR interactions of potent neutralizing Zika virus E-specific
human monoclonal antibody Z3L1. None of the linear epitopes of Zika virus NS1
were ascertained as novel based on our study criteria. Conformational epitopes
were identified as novel for NS1 protein.
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Conclusion: This study identified Zika virus-specific novel epitopes of envelope
and non-structural -1 proteins in the currently co-circulating Indian strains.
Furthermore, in-silico validation through molecular docking added insight into
antigen-antibody interactions, paving way for future in vitro and in vivo studies.

Zika virus, immunoinformatics, B-cell epitopes, neutralization, monoclonal antibodies,
molecular docking, complementary determining regions, 2-D interaction maps

1 Introduction

Zika virus (ZIKV) infection is an emerging Flavivirus transmitted
by the Aedes mosquitoes, mainly Aedes aegyptii and Aedes albopictus.
ZIKV originated in Africa and was first isolated from the serum of
rhesus macaque at the Zika forest in Uganda in 1947 (1). Over the
decades, ZIKV infection prevailed in the African continent and South
Asia, happening sporadically with minimal symptoms and mild illness
due to which it was not considered a serious health problem until the
first major outbreak in 2007 in the Yap islands in Micronesia (2),
followed by French Polynesia in 2013-14 (3). It was a matter of serious
concern when the ZIKV accumulated various mutations and spread to
South America through Brazil in late 2014 which caused a major
outbreak associated with microcephaly and birth defects in newborns
and infants (4). In 2016, there was a 20-fold increase of ZIKV infection
cases in Brazil with around 304 cases of microcephaly (4) Moreover,
ZIKV infection was also implicated in causing Guillain-Barré
syndrome (GBS) (5). ZIKV also spread to Central America
particularly, the United States. Therefore, the World Health
Organization (WHO) declared ZIKV infection a Public Health
Emergency of International Concern in 2016 (6, 7). The ZIKV
surveillance was started in India in March 2016 through the network
of Virus Research Diagnostic Laboratories (VRDLs) by the Indian
Council of Medical Research (ICMR), following which sporadic cases
of ZIKV were found in Gujarat (2016-17) and Tamil Nadu (2017). In
late 2018, one hundred fifty-nine and one hundred twenty-seven ZIKV
cases were reported in Rajasthan and Madhya Pradesh, respectively (8-
10). The identification of the Rajasthan strain led to the first laboratory
confirmation of the existence of the Zika Virus in India (8). Moreover,
in the year 2021, Maharashtra reported their first cases of Zika virus
infections which were confirmed in Belsar village in Pune district (11).
Since then, Zika virus cases have expanded to Kerala, Uttar Pradesh
and 16 states of India which is a matter of concern as currently there is
no universal vaccine or antivirals. The symptoms of ZIKV are self-
limited and resolve usually between 2-7 days. Small subgroups of
patients may develop serious complications like GBS that require
hospitalization and monitoring of mechanical ventilation,
intravenous immunoglobulin and electrophoresis (12-14).

Humoral immune response to ZIKV infection is one of the
major ways to accomplish protective immunity regulated by B-
cells. ZIKV-specific B-cells are activated in response to infection
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which secrete IgG and IgA antibodies post-IgM antibodies
produced during the acute phase of infection (15). Antigen-
antibody interaction studies are important in understanding the
immune response in viral infections (16, 17). B-cell epitopes are
crucial for understanding protective immunity as well as
immunopathogenesis (18). Neutralizing antibodies are mostly
produced against ZIKV envelope (E) proteins which tend to
identify and bind to specific B-cell epitopes to elicit robust
protection (19). The most potent neutralizing antibodies bind to
B-cell epitopes on the E domain III (EDII) which is the least
conserved region among different ZIKV strains. Hence, EDIII-
specific epitopes are regarded as ZIKV type-specific (20). The other
domains such as E domain I (EDI) and E domain II (EDII) are
generally regarded as ZIKV/DENV and Flavivirus cross-reactive
domains, respectively and epitopes of these domains also induce
protective immunity to ZIKV (21). Among the non-structural
proteins, Non-structural 1 (NS1) is the most enigmatic protein of
the Flaviviruses. ZIKV NS1 has a multifunctional role in viral
replication, pathogenesis and immune evasion (22). Recently,
ZIKV NSI1 has been seen as a potential vaccine candidate as it
contains epitopes targeted by ZIKV-specific monoclonal antibodies
(mAbs) (23, 24). The NSI1 protein exists in two forms, a dimer or/
and a hexamer (secretory NS1). Similar to the E protein, NS1 also
possess three important domains such as B-roll, wing domain with
three subdomains (0/ subdomain, long intertwined loops and
discontinuous connector subdomain), and B-ladder which also
contains the spaghetti loop (25, 26). Most ZIKV-NSI-specific
mADbs, target epitopes on the wing-domain and B-ladder
domains. To be precise, the epitopes which are a part of the
exposed and outer surface of NS1, such as the spaghetti loop
residues of the B-ladder and the first half of the intertwined loop of
the wing domain are the most effective targets of the antibody
response (26). However, the other NS1 domains and subdomains
may also contain certain epitopes which may be of potential
research interest regarding ZIKV infection and inhibition.

The emergence of immuno-informatics allows the use of
various prediction tools and software to compare and analyze
various aspects of virus-induced immune response in a less time-
consuming, and cost-effective manner. As a result, various
computational methods have been used to predict potential B-cell
epitopes for arboviruses (16, 17, 27, 28).
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In this study, we have undertaken a domain-specific approach
to identify and compare the ZIKV E and NS1 B-cell epitopes in both
the Indian ZIKV strains which are currently in co-circulation using
the epitope prediction tools, present at the immune epitope
database (IEDB; http://tools.iedb.org/main/bcell/). We have
predicted both linear and conformational B-cell epitopes, the
former composed of residues continuous in the sequence and the
latter being distantly separated in the sequence but possessing
spatial closeness. The epitopes predicted in this study have been
compared with the known ZIKV-specific B-cell neutralizing
epitopes enlisted in the IEDB. Epitopes with zero per cent
identity with known ZIKV-specific neutralizing epitopes (IEDB)
were considered novel. Subsequently, these epitopes were mapped
to the three-dimensional (3-D) structures of the E and NS1 proteins
of both the Indian ZIKV strains. Then these were compared to the
prototype African ZIKV MR766 (African lineage) and the Brazilian
ZIKV Natal RGN (Asian lineage) associated with microcephaly.
Finally, these novel epitopes were used to study their binding
interactions with complementary determining regions (CDRs) of
ZIKV-specific highly neutralizing monoclonal antibodies (mAbs)
by molecular docking analysis. The resulting 3-D and two-
dimensional (2-D) interaction maps were used to select the novel
epitopes possessing intermolecular bonding interactions such as
conventional hydrogen (H) bonds with the CDRs of the
neutralizing mAbs. This shall be essential in designing ZIKV-
specific peptides for Indian ZIKV strains.

2 Materials and methods

2.1 ZIKV E and NS1 protein sequence
retrieval and antigenicity prediction

The polyprotein sequences of both the Indian ZIKV strains i.e.
ZIKV Rajasthan (ZIKV_RAJ; GenBank ID: AZS35409.1) and ZIKV
Maharashtra (ZIKV_MAH; GenBank ID: UBI73854.1) were
obtained from the NCBI protein database. The polyprotein
sequences of the prototype African strain (ZIKV MR766;
GenBank ID: YP 009227198.1) and the Brazilian ZIKV strain
associated with microcephaly (ZIKV Natal RGN; GenBank ID:
YP 009428568.1) were used as a reference for comparison. The
amino acid sequences of the E and NS1 proteins of these ZIKV were
extracted from the polyprotein sequences and subjected to
antigenicity prediction in the VaxiJen version 2.0 (29). This server
used an alignment-free approach for antigen prediction based on
auto cross-covariance (ACC) transformation of protein sequences
into uniform vectors of principal amino acid properties.

2.2 Domain-specific antigenicity prediction

The retrieved ZIKV E and NSI sequences were subjected to
multiple sequence alignment using MEGA11 with ClustalW and
MUSCLE alignment algorithms. The domain-wise antigenicity of
the E and NS1 proteins of ZIKV_RAJ and ZIKV_MAH were
calculated with the help of VaxiJen v2.0 having a threshold of 0.4.
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These antigenicity scores were also compared with the antigenicity
of ZIKV MR766 and ZIKV Natal RGN.

2.3 Three-dimensional structure prediction

3-D structures of these proteins were predicted by homology
modelling protocols as defined in MODELLER v10. 4. The
templates for the E and NS1 proteins of ZIKV_RAJ and
ZIKV_MAH were searched at NCBI using Protein Data Bank
(PDB) via Position-Specific Iterated BLAST (PSI-BLAST). The
PDB IDs which had the highest query cover (~100%), per cent
identity (~100%) and lowest E values (=0) with the target sequences
were selected as the templates. All 3-D models generated were
validated via SAVES SERVER (https://saves.mbi.ucla.edu/) using
PROCHECK. The best model was selected considering the amino
acid occupancies in Ramachandran plots.

2.4 Domain-specific linear B-cell
epitope prediction

Linear B-cell epitope prediction for both E and NS1 proteins was
carried out by using ABCpred, BepiPred 2.0 and Kolaskar &
Tongaonkar methods. ABCpred mediated epitope prediction used
a machine-learning-based artificial neural network algorithm,
whereas the IEDB B cell epitope prediction tools such as BepiPred
2.0 and Kolaskar Tongaonkar methods were based on random forest
algorithm and semi-empirical antigenicity, respectively (30-32). The
common epitope sequences from the three methods were considered
for further analysis, with a minimal length ranging from 5-25 amino
acids for each predicted epitope (33). To determine the exposed and
buried residues, the surface accessibility of these epitopes was
calculated using the Emini surface accessibility scale (34) and the
hydrophilicity of the epitopes was determined by Parker
hydrophilicity (32). Based on all the above parameters, the list of
predicted B-cell epitopes specific to ZIKV E and NS1 was tabulated.
Multiple sequence alignments of the proteins of ZIKV_RA]J,
ZIKV_MAH, ZIKV MR766 and ZIKV NATAL RGN strains were
used for comparative analysis (Supplementary Figures S1, S2). The
ZIKV-specific B-cell epitopes of the E and NS1 proteins aligned to the
respective domains were individually checked for being antigenic,
non-allergic and non-toxic by Vaxijen v2.0 (29, 35-37), respectively.

2.5 Prediction of novel and overlapping
domain-specific linear B-cell epitopes

The IEDB epitope database was searched for all the linear B-cell
neutralizing epitopes of ZIKV. The search strategy for ZIKV-specific
epitopes was linear epitopes with exact matches of the organism Zika
virus (ID:64320); host as Homo sapiens (human) (ID:9606), Mus
musculus (mouse) (ID:10090), and Mus musculus C57BL/6
(ID:10000067, c57) and the filter was set as “B-cell neutralization;
biological activity (neutralization)” to obtain all the ZIKV-specific
neutralizing epitopes submitted at IEDB till date. The predicted ZIKV
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E-domain specific epitopes were compared individually with these
IEDB-neutralizing epitopes using BLAST~70% to determine
overlapping (BLAST~70% positive) and non-overlapping
(BLAST~70% negative) epitopes. The non-overlapping epitopes
were further checked for per cent identity based on amino acid
composition with the known IEDB-neutralizing epitopes to
determine the novel epitopes (Zero per cent identity).

To identify overlapping and non-overlapping ZIKV NSI-
domain specific epitopes, the search strategy in IEDB was similar
to that of the E epitopes, except for the filter, which was set as “B-cell
antibody binding (any method)”. Similarly, all the predicted ZIKV
NS1-domain specific epitopes were compared individually with the
ZIKV NS1 IEDB epitopes using Blast~70%.

2.6 Prediction of domain-specific
conformational B-cell epitopes

The conformational B-cell epitopes were predicted by two
IEDB-based methods i.e. Discotope 2.0 and ElliPro (38, 39).
Three-dimensional structures were used as input for epitope
prediction. Discotope 2.0 predicted the epitopes based on their
solvent accessibility, contact numbers and propensity scores while
ElliPro used surface protrusion, accessibility and flexibility.

2.7 Prediction of novel and overlapping
domain-specific conformational
B-cell epitopes

The IEDB epitope database was searched for all the
conformational B-cell epitopes of ZIKV. The search strategy was
linear epitope prediction as “discontinuous epitopes with exact
matches”, and the filter selected as “B-cell neutralization;
biological activity (neutralization)” for both ZIKV E and NSI
protein. Epitopes which were not identical post-comparison with
IEDB-neutralizing discontinuous epitopes were considered novel
and the others were regarded as overlapping or identical.

2.8 Mapping and visualization of predicted
epitopes to the ZIKV E and NS1 domains

BIOVIA Discovery Studio Visualizer is a free, feature-rich
molecular modelling application for viewing, sharing and analyzing
protein and small molecule data. All the relevant epitopes predicted
were mapped onto their protein structure in their respective domains
and visualized through the BIOVIA Discovery Studio Visualizer

2.9 Molecular docking of ZIKV E and
NS1-specific novel epitopes with
monoclonal antibodies

The ZIKV 3-D models of E and NS1 were subjected to
molecular docking with the 3-D structures of highly neutralizing
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ZIKV mAbs by using HDock (http://hdock.phys.hust.edu.cn/)
which incorporates a hybrid-docking algorithm (40). The best
models were selected by analyzing their receptor-ligand interface
residues required to identify epitope-CDR interactions. Among the
top 10 models, the most suitable epitope-CDR interactions were
selected by comparing all the relevant 3-D and 2-D receptor-ligand
interaction maps in BIOVIA Discovery Studio Visualizer.

2.10 Study design

The overall study design is depicted in the following Figure 1.

3 Results

3.1 Protective antigenicity of both E and
NS1 proteins of ZIKV

The predicted antigenicity scores of the E protein of both
ZIKV_RAJ and ZIKV_MAH were found to be 0.6268 and 0.6417,
respectively using VaxiJen version 2.0 (29). Similarly, the E proteins
of ZIKV MR766 and ZIKV Natal RGN had antigenicity scores of
0.6276 and 0.6205, respectively. The same methodology was used
for predicting the protectiveness of the ZIKV NSI proteins
calculated as ZIKV_RAJ (0.4487); ZIKV_MAH (0.4630); ZIKV
MR766 (0.4455); and ZIKV Natal RGN (0.4607) Both the ZIKV
E and NS1 proteins were considered as protective antigens with the
E protein having higher antigenic scores than NSI1.

3.2 Delineation and comparisons of ZIKV
domain-specific antigenicity of E and NS1

The ZIKV E protein consisted of three domains namely
domains 1,2 and 3 (EDI, EDII and EDIII), respectively. The
positions of these three domains were mapped on the E protein
of the ZIKV strains (41) (Supplementary Table S1). In the case of
NS1, similarly, three different domains were identified as B-Roll,
Wing-domain, and B-ladder, and their positions were mapped
accordingly (25) (Supplementary Table S2). To dissect the
domain-specific epitopes of the Indian ZIKV, it was necessary to
evaluate the antigenicity of the respective domains (Supplementary
Tables S1, S2). This gave a comparative analysis of the domains as
well as differences in antigenicity between the ZIKV strains. These
values were also compared with the antigenicity of ZIKV MR766
and ZIKV NATAL RGN strains.

It was evident from Supplementary Table S1 that all the
domains of the E protein are antigenic with a minor non-
antigenic region in EDII (52-131) in the case of both the Indian
strains and Brazilian ZIKV NATAL RGN, unlike the African ZIKV
MR766. Moreover, EDII was highly conserved across the ZIKV
strains demonstrated by identical antigenicity scores., EDI had
varying antigenicity scores, except positions (1-50, 39) which had
identical antigenicity across all ZIKV strains. EDI (132-191) and
EDI (280-295) had different antigenicity scores for both Indian
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Schematic illustration and presentation of the study. (A) ZIKV genome highlighting the E and NS1 proteins, (B) Study design criteria.

ZIKV strains. The EDIII (296-403) had varying antigenicity scores
for two ZIKV strains (ZIKV MR766 and ZIKV_MAH) and
identical scores for the other two ZIKV strains (ZIKV_RAJ and
ZIKV NATAL RGN), which corroborates this region as ZIKV type-
specific (39).

Supplementary Table S2 summarizes the antigenicity analyses
for NS1. The B-Roll domain was antigenic with identical scores for
both the Indian ZIKV strains and the ZIKV NATAL RGN, unlike
African ZIKV MR766. The wing-domain antigenicity scores varied
among the Indian, Brazilian and African ZIKV strains and were
found to be below the threshold of 0.4, identifying it as non-
antigenic. However, the wing domain of ZIKV NSI contributes to
monoclonal antibody-mediated protection, hence epitopes of this
region are of research interest (22). The B-ladder domain had
varying antigenicity scores with ZIKV_MAH being the highest,
followed by ZIKV NATAL RGN, ZIKV_RA]J and ZIKV MR766.

Overall, our analyses revealed that the domain-specific
antigenicity of the E and NSI1 proteins of Indian ZIKV was
differential as well as identical with the African and Brazilian
ZIKV strains. Moreover, similarities and differences in the
antigenic domains were also observed between the Indian strains
ZIKV_RAJ and ZIKV_MAH.

3.3 3D structure prediction of Indian ZIKV
E and NS1 proteins

The 3-D structure ZIKV E protein ectodomain ZIKV_RAJ (1-
403) and ZIKV_MAH (1-399) were predicted with the crystal
structures of ZIKV E protein as templates: 7YW8.pdb
(Supplementary Figure S3A) and 7YW7.pdb (Supplementary

Frontiers in Immunology

Figure S4B), respectively. Similarly, the templates for ZIKV
MR766 and ZIKV NATAL RGN were identified as 7YW7.pdb
and 7YW8.pdb, respectively. The best models were selected based
on Ramachandran plot analysis: ZRE (ZIKV_RAJ; Figure 2A) and
ZME (ZIKV_MAH; Figure 2B). The occupancy of amino acids in
the most favorable and additionally allowed regions for ZRE
(Figure 2C) was 99.7% (94.5% + 5.2%) and for ZME (Figure 2D)
was 100% (93.1% and 6.1%). There was not a single amino acid
occupying the disallowed regions in both the predicted structures.
One striking difference was the presence of the N-154 (154-NDTG-
157) glycan loop in ZRE (Figure 2A) and its deletion in ZME
(Figure 2B). The N-linked glycosylation was also evident in ZIKV
NATAL RGN and absent in ZIKV MR766. These results indicated
differences in the E-protein structures of both the Indian
ZIKV strains.

The 3D structures of ZIKV NS1 (Indian, African and Brazilian
strains) were predicted using the known structure of ZIKV NS1
(5K6K.pdb; Supplementary Figure S4) (25). Figure 3 shows the
predicted structures of NSI for the Indian strains: ZRNS1
(ZIKV_RAJ; Figure 3A) and ZMNS1 (ZIKV_MAH; Figure 3B).
ZRNS1 and ZMNSI both had zero per cent residues in disallowed
regions. The occupancy of amino acids in the most favored and
allowed regions was found to be 100% (93.1% + 6.9%) and 99.7%
(93.1% + 6.6%) for ZRNSI (Figure 3C) and ZMNS1 (Figure 3D).

3.4 Prediction of ZIKV E-domain specific
linear epitopes

The prediction of E-domain-specific epitopes was done with a
combination of three immunoinformatic tools such as ABCpred,
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Reliable 3-D models for both the Indian ZIKV E and their validation. (A) ZRE (Predicted model for ZIKV_RAJ E protein) along with its Dope score
(B) ZME (Predicted model for ZIKV_MAH E protein) along with its Dope score, (C) Ramachandran plot results of ZRE and (D) ZME.

BepiPred 2.0 and Kolaskar-Tongaonkar methods. Twenty-eight and
twenty-five epitopes were predicted for ZIKV_RAJ and ZIKV_MAH,
respectively via ABCpred with a threshold of 0.8 (Supplementary Table
S3). In the case of BepiPred 2.0, 18 epitopes were predicted for
ZIKV_RA]J and 22 for ZIKV_MAH at 0.5 as threshold
(Supplementary Figure S4, Supplementary Table S4). Furthermore,
epitope predictions by Kolaskar and Tongaonkar methods revealed 20
and 19 epitopes for ZIKV_RAJ (threshold= 1.026) and ZIKV_MAH
(threshold=1.028), respectively (Supplementary Figure S5,
Supplementary Table S5). Exposed and buried epitopes were
predicted by Emini surface accessibility methods, where scores above
1.00 were considered positive (Supplementary Figure S6). The
hydrophilic stretches were determined by Parker hydrophilicity
predictions with thresholds of 1.701 and 1.726 for ZIKV_RAJ and
ZIKV_MAH, respectively (Supplementary Figure S7). Overlapping
shortlisted epitopes were further scanned for being potentially
antigenic, non-toxic and non-allergic which identified 33 epitopes for
ZIKV E protein (Table 1). To determine the non-overlapping and
overlapping epitopes, the predicted epitopes were compared with the
IEDB database for ZIKV-specific B-cell epitopes involved in neutralizing
antibody response. It revealed two non-overlapping epitopes 5-
GVSNRDFVEGMSGGTW-20 and 32-TVMAQDKPTVDIELVT-47
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(Figures 4A, B) which had zero percentage identity with the IEDB
neutralizing epitopes. Hence, these were designated as novel epitopes
having antigenic scores 0.589 and 0.624, respectively. Both these
epitopes were conserved across ZIKV_RAJ and ZIKV_MAH.
Moreover, there was no amino acid mutation when these epitopes
were compared with ZIKV MR766 and ZIKV Natal RGN. However, the
other epitope 165-AKVEVTPNSPRAEATL-180 was present in ZIKV
MR766 with an antigenic score of 0.6917 but a single point mutation
from valine to isoleucine 165-AKVEITPNSPRAEATL-180 (V169I) in
Indian ZIKV (ZIKV_RA]J and ZIKV_MAH) and ZIKV Natal RGN
increased its antigenicity to 0.8044. These epitopes 165-
AKVEVTPNSPRAEATL-180 and 165-AKVEITPNSPRAEATL-180
had a 12.5% per cent identity with the IEDB neutralizing epitopes
and were considered overlapping epitopes.

There were four EDII-specific B-cell epitopes, out of which 61-
YEASISDMASDSRCPT-76 and 98-DRGWGNGCGLFGK-110
were antigenic with scores as 0.435 and 0.486, respectively. 98-
DRGWGNGCGLFGK-110 was considered a fusion loop epitope
(FLE) as it spanned across the fusion loop domain. The other
epitopes 197-DFSDLYYLTMNNKHWL-212 and 224-
PWHAGADTGTPHWNNKE-240 had high antigenicity scores of
1.1716 and 1.1547, respectively, but the former was found to be an
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Reliable 3-D models for both the Indian ZIKV NS1 and their validation. (A) ZRNS1 (Predicted model for ZIKV_RAJ NS1 protein) along with its Dope
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allergen and was excluded from the analysis. The epitope 224-
PWHAGADTGTPHWNNKE-24 (Figures 4C, D) had zero per cent
identity with IEDB neutralizing epitopes, hence considered as novel.
The epitope 61-YEASISDMASDSRCPT-76 was non-overlapping
(BLAST~70% negative), but had 25% per cent identity with the
neutralizing epitopes at IEDB, hence was not regarded as novel. The
FLE 98-DRGWGNGCGLFGK-110 was BLAST~70% positive with
the IEDB neutralizing epitopes and considered as overlapping.
Moreover, all the EDII-specific epitopes were conserved across
ZIKV_RAJ, ZIKV_MAH, ZIKV MR766 and ZIKV NATAL RGN.

The highest number of ZIKV-specific linear B-cell epitopes were
predicted for EDIIL eight epitopes were predicted, harboring point
mutations across the ZIKV strains. Out of them, four epitopes, 323-
HGTVTVEVQYA-333 (Figure 4E) and 323-HGTVTVEVQYS-333
(Figure 4F) as well as 338-PCKVPAQM-345 (Figure 4E) and 338-
PCKIPVQM-345 (Figure 4F) were non-overlapping and had zero per
cent identity with IEDB neutralizing epitopes, indicating these as novel.
Epitope 323-HGTVTVEVQYA-333 was found in ZIKV_RA]J, ZIKV
MR766 and ZIKV NATAL RGN, whereas 323-HGTVTVEVQYS-333
having A333S mutation was found exclusively in ZIKV_MAH. A333S
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mutation had increased the antigenicity from 1.2198 to 1.2569. Epitope
338-PCKIPVQM-345 was found only in ZIKV MR766 while 338-
PCKVPAQM-345 was identified across both the Indian ZIKV
(ZIKV_RAJ, ZIKV_MAH) and ZIKV Natal RGN with mutations
1341V and V343A leading to increase in antigenicity from 0.450 to
0.478. The remaining epitopes, 363-PVITESTENSK-373 present in
ZIKV_RAJ, ZIKV MR766 and ZIKV Natal RGN and 363-
PVITESAENSK-373 (ZIKV_MAH), were BLAST~70%-positive and
considered overlapping. In contrast, to the novel epitope mutations, the
T369A mutation in epitope 363-PVITESAENSK-373 found only in
ZIKV_MAH resulted in decreased antigenicity from 0.92 to 0.84. The
epitope 384-DSYIVIGVGDKKITHHWHRS-403 in ZIKV_MAH, and
384-DSYIVIGVGEKKITHHWHRS-403 in ZIKV_RA]J were
BLAST~70%-negative but had 10% identity with IEDB-neutralizing
epitopes. Hence, these were not considered as novel. D393E mutation
was also associated with decrease in antigenicity scores from 0.63 to
0.45. Moreover, 393D was found in ZIKV MR766 and 393E in ZIKV
NATAL RGN. These EDIII epitopes with point mutations across the
ZIKV strains are important for studying type-specific antibody
responses to ZIKV infection.
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TABLE 1 ZIKV E domain-specific linear B-cell epitopes prediction.

Epitope sequence ZIKV E-specific domain Allergenicity

5-GVSNRDFVEGMSGGTW-20 Antigenic 0.589 Non-allergen Non-Toxin
32-TVMAQDKPTVDIELVT-47 EDI Antigenic 0.624 Non-allergen Non-Toxin
165-AKVEVTPNSPRAEATL-180 Antigenic 0.691 Non-allergen Non-Toxin
165-AKVEITPNSPRAEATL-180 Antigenic 0.804 Non-allergen Non-Toxin
61-YEASISDMASDSRCPT-76 Antigenic 0.435 Non-allergen Non-Toxin
98-DRGWGNGCGLFGK-110 EDII Antigenic 0.486 Non-allergen Non-Toxin
197-DESDLYYLTMNNKHWL-212 Antigenic 1.171 Allergen Non-Toxin
224-PWHAGADTGTPHWNNKE-240 Antigenic 1.154 Non-allergen Non-Toxin
323-HGTVIVEVQYA-333 Antigenic 1.219 Non-allergen Non-Toxin
323-HGTVTVEVQYS-333 Antigenic 1.256 Non-allergen Non-Toxin
338-PCKVPAQM-345 Antigenic 0.450 Non-allergen Non-Toxin
338-PCKIPVQM-345 EDIII Antigenic 0.478 Non-allergen Non-Toxin
363-PVITESTENSK-373 Antigenic 0.634 Non-allergen Non-Toxin
363-PVITESAENSK-373 Antigenic 0.452 Non-allergen Non-Toxin
384-DSYIVIGVGDKKITHHWHRS-403 Antigenic 0.920 Non-allergen Non-Toxin
384-DSYIVIGVGEKKITHHWHRS-403 Antigenic 0.844 Non-allergen Non-Toxin
43-IELVTTTVSNMAEVRS-58 Antigenic 0.813 Non-allergen Non-Toxin
185-SLGLDCEPRTGLD-197 Antigenic 1.048 Allergen Non-Toxin
118-KFTCSKKMTGKSIQPE-133 Antigenic 0.423 Non-allergen Non-Toxin
118-KFACSKKMTGKSIQPE-133 Non-Antigenic 0.358 Non-allergen Non-Toxin

Hinge-Regions

126-TGKSIQPENLEYRIMLSV-143 Antigenic 1.088 Non-allergen Non-Toxin
280-AKGRLSSGHLKCRLKMDK-297 Antigenic 0.488 Non-allergen Non-Toxin
280-TKGRLSSGHLKCRLKMDK-297 Antigenic 0.566 Non-allergen Non-Toxin
280-AKGRLFSGHLKCRLKMDK-297 Non-Antigenic 0.026 Non-allergen Non-Toxin

Mutations of amino acids are colored with respect to the African prototype strain (ZIKV MR766; colored in green and corresponding mutations are colored in red; Novel Epitopes
are underlined).

@) B) ©) (H)
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FIGURE 4

Indian ZIKV E domain-specific novel linear epitopes. (A) ZRE domain |-specific epitopes, (B) ZME domain |-specific epitopes, (C) ZRE domain II-
specific epitopes, (D) ZME domain Il-specific epitopes, (E) ZRE domain llI-specific epitopes, (F) ZME domain llI-specific epitopes, (G) ZRE hinge
region-specific epitopes, and (H) ZME hinge region-specific specific epitopes.
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The predicted B-cell linear epitopes also spanned across the
hinge regions of the E protein as these regions are important in
potently cross-neutralizing Flavivirus infections, especially ZIKV
and DENV infections. A total of eight hinge region epitopes were
predicted with epitope 126-TGKSIQPENLEYRIMLSV-143
(conserved in both Indian strains) having the highest antigenicity
of 1.0884, followed by epitope 43-IELVITTVSNMAEVRS-58
(conserved in both Indian strains) with antigenicity of 0.8137,
both of which spanning EDI/II hinge and conserved in the Indian
strains. Out of these two epitopes, 43-IELVITTVSNMAEVRS-58
(Figures 4G, H) was BLAST~70% negative and had zero per cent
identity with the IEDB neutralizing epitopes, hence regarded as
novel. The other epitope 126-TGKSIQPENLEYRIMLSV-143 was
BLAST~70% positive, overlapping with IEDB neutralizing
epitopes. Epitope 118-KFTCSKKMTGKSIQPE-133 was found in
ZIKV MR766 but the TI20A mutation in both Indian ZIKV
strains and ZIKV NATAL RGN led to a decrease in antigenicity
from 0.42 to 0.35. These epitopes were BLAST~70% positive
and considered overlapping epitopes. Moving ahead, the epitope
280-AKGRLFSGHLKCRLKMDK-297 in ZIKV MR766 was found
to be highly non-antigenic with a score of 0.02, but the A280T and
F285S mutations in 280-TKGRLSSGHLKCRLKMDK-297
(ZIKV_RAJ; Figure 4G) reversed its non-antigenicity, making it
antigenic with a score of 0.56. Similarly, the F285S mutation in
280-AKGRLSSGHLKCRLKMDK-297 (ZIKV_MAH; Figure 4H)
also made it antigenic with a score of 0.48. Both these
epitopes, unique to Indian ZIKV strains were BLAST~70%-
negative and had zero per cent identity with the IEDB
neutralizing epitopes, indicating these as novel EDI/DIII
epitopes. The epitope 185-SLGLDCEPRTGLD-197 of the EDI/II
hinge region was antigenic but was excluded from the analysis due
to its allergenicity. The change in antigenicity based on the
mutations among the epitopes of the hinge regions would be
essential to studying peptide-specific reactivity to ZIKV and
related Flavivirus infections such as DENV.

TABLE 2 ZIKV NS1 domain-specific linear B-cell epitopes prediction.

Epitope sequence

ZIKV NS1-specific domain

10.3389/fimmu.2025.1534737

3.4.1 ZIKV NS1 domain-specific linear
B-cell epitopes

The prediction of linear B-cell epitopes for the NSI protein of
ZIKV was carried out in the same manner as that of the E protein.
Following the E protein, the ZIKV antibody response is triggered by the
NSI protein. Hence, it is necessary to identify ZIKV NS1 domain-
specific epitopes. The immunoinformatic tools for the prediction of
linear B-cell epitopes of NS1 were the same as those used for the ZIKV
E. ABCpred predicted a total of 24 and 26 epitopes with a threshold of
0.8 for ZIKV_RAJ and ZIKV_MAH, respectively (Supplementary
Table S6). BepiPred 2.0 predicted 11 epitopes for each Indian ZIKV
(ZIKV_RA]J and ZIKV_MAH) with a threshold of 0.5 (Supplementary
Table S7, Supplementary Figure S7). Kolaskar and Tongaonkar method
predicted 16 epitopes for each Indian ZIKV (ZIKV_RAJ and
ZIKV_MAH) with a threshold of 1.018 and 1.023 for ZIKV_RA]J
and ZIKV_MAH, respectively (Supplementary Table S8,
Supplementary Figure S8). Similar to the E protein, these epitopes
were checked for accessibility and hydrophilicity by Emini surface
accessibility and Parker hydrophilicity, respectively (Supplementary
Figures S9, S10). In total, sixteen epitopes were predicted for ZIKV
occupying different NS1-specific domains (Table 2). Among them,
nine epitopes were found in Indian ZIKV strains. Most of the epitopes
predicted possessed point mutations among them and were ZIKV
strain-specific which may be interesting to study via in vitro and in vivo
peptide validation experiments.

The epitope 10-KKETRCGTGVFVYNDVE-26 in the beta roll
domain of NSI was conserved across both the Indian ZIKV strains
(ZIKV_RAJ and ZIKV_MAH). This epitope was also conserved in
the ZIKV Natal RGN. However, the ZIKV MR766 strain had 121
instead of V21. This 121V mutation in the rest of the strains resulted
in increased antigenicity from 0.78 to 0.87.

The exposed surfaces of NSI are composed of the wing domain,
especially the residues except for the flexible loop, greasy finger.
Considering this, five epitopes were predicted for the wing domain.
All these linear epitopes were associated with point mutations. The

10-KKETRCGTGVFIYNDVE-26

-Roll
10-KKETRCGTGVFVYNDVE-26 B-Ro

83-GVQLTVVVGSVKNP-96

83-GIQLTVVVGSVKNP-96
141- ECPLEHRAWNSFLVED-157
141- ECPLKHRAWNSFLVED-157
141- ECPLKHRAWNSFIVED-157

Wing Domain

191- REAAHSDLGYWIESEKND-208
191- KEAVHSDLGYWIESEKND-208
248-AGPLSHHNTREGYRTQV-264
248-AGPLSHHNTREGYRTQM-264
331-YGMEIRPRKEPESNLVRSMV-350
331-YGMEIRPRKEPESNLVRSVV-350

B-Ladder

176-SLECDPAVIGTAVKGREAA-194
176-SLECDPAVIGTAVKGKEAV-194
176-SLECDPAVIGTAIKGKEAV-194

Wing-B-Ladder

Antigenicity Allergenicity Toxicity
Antigenic 0.780 Non-allergen Non-Toxin
Antigenic 0.875 Non-allergen Non-Toxin
Antigenic 0.748 Allergen Non-Toxin
Antigenic 0.820 Non-allergen Non-Toxin
Antigenic 0.587 Non-allergen Toxin
Antigenic 0.505 Non-allergen Non-Toxin
Antigenic 0.487 Non-allergen Non-Toxin
Antigenic 0.430 Non-allergen Non-Toxin
Antigenic 0.572 Allergen Non-Toxin
Antigenic 0.713 Non-allergen Non-Toxin
Antigenic 0.802 Non-allergen Non-Toxin
Antigenic 0.623 Non-allergen Non-Toxin
Antigenic 0.680 Non-allergen Non-Toxin
Antigenic 1.173 Non-allergen Non-Toxin
Antigenic 1.093 Non-allergen Non-Toxin
Antigenic 1.087 Non-allergen Non-Toxin

Mutations of amino acids are colored with respect to the African prototype strain (ZIKV MR766; colored in green and corresponding mutations are colored in red).
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epitope 83-GVQLTVVVGSVKNP-96 was specific to both African
ZIKV (ZIKV MR766) and Brazilian ZIKV (ZIKV Natal RGN) but
V841 mutation in the same epitope 83-GIQLTVVVGSVKNP-96 was
specific to both the Indian ZIKV strains (ZIKV_RAJ and ZIKV_MAH).
This epitope in African and Brazilian strains was predicted as an
allergen, but the V84I mutation in the Indian strains made the
epitope non-allergen (by AllerTop). This mutation also increased the
antigenicity from 0.74 to 0.82. Similarly, another set of predicted
epitopes as 141-ECPLEHRAWNSFLVED-157 was specific to ZIKV
MR766 and ZIKV Natal RGN. Point mutations were seen in both the
Indian ZIKV strains such as E145K and L1531 (ZIKV_RA]J) and only
L1531 (ZIKV_MAH). The E145K mutation in ZIKV_MAH was
associated with decreased antigenicity from 0.58 to 0.50 while
both E145K and L1531 mutations in ZIKV_RAJ led to a further
decrease in antigenicity to 0.48. Interestingly, the epitope 141-
ECPLEHRAWNSFLVED-157 specific to ZIKV MR766 and ZIKV
Natal RGN was predicted to be toxic (ToxinPred), whereas in the
Indian strains, the epitopes 141-ECPLKHRAWNSFIVED-157
(ZIKV_RA]) and 141-ECPLKHRAWNSFIVED-157 were found to be
non-toxic.

The beta ladder is another domain of NS1 which is a target for
ZIKV NSl-specific neutralizing mAbs as it is mostly exposed,
especially the spaghetti loop residues. The highest number of
predicted epitopes belonged to this domain. The epitope 191-
REAAHSDLGYWIESEKND-208 in ZIKV MR766 possessed
mutations: RI91K and A194V in both Indian strains. This
resulted in an increase in antigenicity from 0.43 to 0.57. Though
there was an increase in antigenicity, the epitope 191-
KEAVHSDLGYWIESEKND-208 was found to be an allergen (by
AllerTop) and was not considered for further analysis. Another
epitope 248-AGPLSHHNTREGYRTQV-264 was conserved in
ZIKV_MAH and ZIKV_MR766 while the epitope 248-
AGPLSHHNTREGYRTQM-264 was conserved in ZIKV_RAJ and
ZIKV NATAL RGN. This V264M mutation in ZIKV_RA] was
associated with an increase in antigenicity from 0.71 to 0.80. The
epitope 331-YGMEIRPRKEPESNLVRSMV-350 was conserved in
ZIKV MR766 and ZIKV RAJ whereas the M349V mutation
observed in ZIKV_MAH and ZIKV Natal RGN was associated
with an increase in antigenicity from 0.62 to 0.68.

Moving forward, the epitope 176-SLECDPAVIGTAVKGVEAA-
194 present in ZIKV MR766 was highly antigenic (antigenicity=1.17;
VaxiJen) This was located as part of the connector residues linking the
wing domain to the beta ladder domain. Mutations V188, R191K, and
A194V were observed in the ZIKV_MAH strain while mutations
RI191K and A194V were observed in ZIKV_RAJ with respect to
ZIKV MR766. Epitope 176-SLECDPAVIGTAVKGKEAV-194 in
ZIKV_RAJ and ZIKV Natal RGN had an antigenicity of 1.09 and
176- SLECDPAVIGTAIKGKEAV-194 in ZIKV_MAH had an
antigenicity of 1.08.

According to our study design, the IEDB ZIKV-neutralizing
epitopes database did not contain any linear B-cell ZIKV NS1-specific
epitope. Comparing the predicted ZIKV NSI-specific B-cell linear
epitopes with the IEDB ZIKV-antibody binding epitopes revealed that
all these B-cell epitopes were BLAST~70% positive. This suggests that all
the predicted linear epitopes of the ZIKV NS1 overlap with linear ZIKV
NS1-specific antibody-binding epitopes. However, these epitopes may
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be potentially validated by in vitro neutralization assays to determine the
antibody response against ZIKV NSI.

3.5 ZIKV E domain-specific conformational
B-cell epitopes

The humoral immune response to ZIKV infection mostly depends
on discontinuous or conformational B-cell epitopes. Alongside linear B-
cell epitopes of the ZIKV E, identification of conformational B-cell
epitopes is also necessary to evaluate neutralizing antibody responses.
The predictions were made by two immunoinformatic tools available at
IEDB; Discotope 2.0 and ElliPro. A total of 19 and 14 epitopes were
identified by Discotope 2.0 for ZIKV_RAJ and ZIKV_MAH
respectively. Ellipro predictions identified 28 and 24 epitopes for
ZIKV_RAJ and ZIKV_MAH, respectively. The epitopes common in
both prediction tools for ZIKV_RAJ were identified as G383, D384,
H401 and S403 (Supplementary Table S9). Out of these, D384 was also
found in the IEDB list of ZIKV E-specific neutralizing conformational
epitopes, whereas the other three epitopes, G383, H401 and S403 were
found to be unique, hence considered as novel epitopes for ZIKV_RAJ
(Figure 5). All these three epitopes were located in EDIIL Similarly, in
the case of ZIKV_MAH, epitope W101 of EDI (Supplementary Table
S9) was found to be the common epitope from both the prediction tools
and was also found in the IEDB list of ZIKV E-specific neutralizing
conformational epitopes, hence was not considered as novel (Figure 5).
The presence of different conformational epitopes across the ZIKV E
domains and the identification of the above-mentioned novel epitopes is
essential in understanding the neutralizing antibody response associated
with ZIKV-specific mAbs identifying these epitopes.

3.6 ZIKV NS1 domain-specific
conformational B-cell epitopes

Immunoinformatics tools Discotope 2.0 and ElliPro were used
for the predictions. A total of 37 and 19 conformational epitopes

FIGURE 5
Novel ZIKV E-Specific B-cell conformational epitopes (ZRE).
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were predicted for ZIKV_RAJ and ZIKV_MAH, respectively with
the Discotope 2.0 whereas 75 and 68 epitopes were predicted for
ZIKV_RAJ and ZIKV_MAH, respectively by ElliPro. Fourteen
epitopes for ZIKV_RAJ and 6 for ZIKV_MAH, common in both
prediction tools, were considered for further analysis.
(Supplementary Table S10). Further comparison of these epitopes
with the existing IEDB database of conformational B-cell
neutralizing epitopes of ZIKV NSI, revealed the identification of
novel epitopes as F8, §9, K10, K11, K116, A117, W118, G119, K120,
P341 and S343 specific to ZIKV_RAJ (Figure 6A). Moreover, F8, S9,
K10, K11, and S343 were considered as novel epitopes specific to
ZIKV_MAH (Figure 6B).

3.7 Molecular docking analysis of ZIKV
E-specific novel linear epitopes

In the case of ZIKV E protein, there were 7 novel linear B-cell
epitopes and 3 novel conformational B-cell epitopes specific to
ZIKV_RA]J. Similarly, there were 7 novel linear B-cell epitopes
specific to ZIKV_MAH, however, there were no novel
conformational B-cell epitopes specific to ZIKV_MAH. The
molecular docking of the ZIKV E protein was carried out with two
highly potent neutralizing ZIKV-specific mAbs, ZV-67 and Z3L1.
ZV-67 is a mouse mAD that has potent neutralization against both
African and Asian ZIKV strains, whereas Z3L1 is a human mAb that
has effective neutralization against both African and Asian strains.
Moreover, both these mAbs neutralized ZIKV in vitro and in vivo (21,
41). Molecular docking of the E protein using HDock for Indian
ZIKV strains with these mAbs revealed that out of the 7 novel linear
B-cell epitopes, 4 epitopes specific to both ZIKV_RAJ and
ZIKV_MAH showed intermolecular interactions with the
complement determining regions (CDRs) of the mAb ZV-67
(Table 3). Of these 4 epitopes, one was located in EDIII, one
each belonged to EDI and EDII, and one belonged to the hinge

(A)

FIGURE 6

10.3389/fimmu.2025.1534737

region (DI/DIII:280-295). The epitopes of EDIII and hinge regions
had point mutations between both the Indian ZIKV strains whereas
the other two epitopes belonging to EDI and EDII were conserved
between both ZIKV_RAJ and ZIKV_MAH. However, there was only
one novel EDII epitope which interacted with the CDRs of the mAb
Z3L1. The inter-molecular bonding interactions between the epitope
and CDR region residues were analyzed by 2-D interaction maps.

In the case of EDIII, epitope 323-HGTVTVEVQYA-333, unique
to ZIKV_RA]J (Figure 7A) and epitope 319-HGTVTVEVQYS-329
unique to ZIKV_MAH (Readers should note that due to a deletion
of 4-amino acids in ZIKV_MAH strain at N154, the nomenclature is:
amino acid 319 for ZIKV_MAH is equivalent to 323 for ZIKV_RAJ
which applies to all the amino acids post 154 position in
ZIKV_MAH) (Figure 7B), the epitope residues 323-HG-324
(ZIKV_RAJ; Figure 7C) and 319-HG-323 (ZIKV_MAH; Figure 7D)
interacted with CDRs of VH and VL regions of mAb ZV-67. The 2-D
interaction maps for these epitopes revealed intermolecular hydrogen
bonding interactions with CDRs (Table 3) of ZV-67, wherein the
epitope-CDR3(VH) interactions were found to be the most suitable. In
the case of the epitope unique to ZIKV_RAJ (323-HGTVTVEVQYA-
333), the 2-D interaction maps showed that 323H formed one carbon-
hydrogen (C-H) bond and one pi-donor hydrogen bond and 324G
formed van der Walls interaction with CDR3-VH residues, respectively
(Figure 7E). However, in the case of the epitope unique to ZIKV_MAH
(319-HGTVTVEVQYS-329), the results were slightly different with
319H forming one conventional hydrogen (H) bond and 320G
forming one carbon-hydrogen (C-H) bond with CDR3-VH of ZV-
67, respectively (Figure 7F). The mAb ZV-67 is known to bind to the
ZIKV-E protein in the EDIII domain (21).

In addition, the footprint of mAb ZV-67 also covered parts of
EDI and EDII domains and interactions with novel epitopes were
observed. Out of the two novel EDI epitopes, epitope 5-
GVSNRDFVEGMSGGTW-20 interacted with CDR regions of the
mAb ZV-67. This epitope was conserved in both the Indian ZIKV
strains. The most suitable docking interactions shown by this EDI

(B)

Novel ZIKV NS1 domain-specific B-cell conformational epitopes. (A) ZIKV_RAJ NS1 domain-specific B-cell conformational epitopes, (B) ZIKV_MAH

NS1 domain-specific B cell conformational epitopes.
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TABLE 3 H-Dock based molecular docking analysis of ZIKV-specific novel linear epitopes of the E-protein.

CDR
Interactions

Indian
ZIKV-specificity

Novel

Linear Epitopes

Epitope/
CDR Interactions

2-D Interaction maps

Docking/
Binding
scores

323-HGTVTVEVQYA-333A Yes ZIKV_RA]J (Unique)
(EDIII)
319-HGTVTVEVQYS-329 Yes ZIKV_MAH (Unique)
(EDIII)
338-PCKVPAQM-345 (EDIII) No ZIKV_RA]J
and ZIKV_MAH
ZIKV_RA]J
and
5-GVSNRDFVEGMSGGTW- Yes
20 (EDI)
ZIKV_MAH
ZIKV_RA]J
and
32-TVMAQDKPTVDIELVT- No
47 (EDI)
ZIKV_MAH
224-
PWHAGADTGTPHWNNKE- ZIKV_RA]J
240; and
(EDII)
Yes
220- ZIKV_MAH
PWHAGADTGTPHWNNKE-
236 (EDII)
43-IELVTTTVSNMAEVRS- No ZIKV_RA]J and
58 ZIKV_MAH
(Hinge Region)
280-
TKGRLSSGHLKCRLKMDK- Yes ZIKV_RAJ
297
(Hinge Region)
276- Yes ZIKV_MAH
AKGRLSSGHLKCRLKMDK-
293
(Hinge Region)

323-HG-324/ 323H: 1 C-H bond and 1 pi- -306.07
CDR3-VH donor H-bond
324G: van der Walls
319-HG-320 319G: 1 H-bond and 320G: 1 -291.28
CDR3-VH C-H bond
N.A. N.A.
10-DFVE-13/ 13E: 1 H-bond -285.93
CDRI1-VL (ZIKV_RAJ) 12V: 1 C-H bond
10D & 11F: van der Walls
10D: 1 H-bond
7S; 9-RD-10/CDR3-VL 7S: 1 C-H bond and 1 pi-donor -282.31
(ZIKV_MAH) H-bond, 9R: van der Walls
N.A N.A.
N.A. N.A.
235H; 237-NN-238; 239-KE- 235H: 1 H-bond -276.14
240/CDR3-VL (ZIKV_RA]J) 237N: 1 H-bond
238N: 1 H-bond
239K: van der Walls
233-NN-234; 233N: 1 H-bond -277.38
231H, 235K/CDR3- 234N: 1 H-bond
VL (ZIKV_MAH) 231H: van der Walls
235K: van der Walls
N.A N.A
288H;290K/CDR1-VL 288H: van der Walls -286.01
290K: van der Walls
284H/CDR3-VH -283.06

Molecular Docking interactions of the novel epitopes with potent mouse monoclonal antibody ZV67; N.A. (Not Available).
Amino acid mutations are coloured in Red with respect to ZIKV Prototype strain MR766 (Green).

epitope were with CDR1-VL in the case of ZIKV_RAJ and CDR3-
VL in the case of ZIKV_MAH, respectively (Figures 8A-D). The 2-
D interaction maps showed that for the ZIKV_RA]J EDI, the amino
acids 13E and 12V showed one conventional hydrogen (H)-
bonding interaction and one carbon-hydrogen (C-H) bonding
interaction, respectively with CDR1-VL residues (Figure 8E)
Amino acids 10D and 11F displayed van der Walls interactions
(Figure 8E). However, for ZIKV_MAH EDI, amino acids 10D
showed one conventional hydrogen (H)-bond, and 7S displayed
one carbon-hydrogen (C-H) bond and one pi-donor hydrogen
bond with CDR3-VL residues (Figure 8F). In this case, amino
acid 9R showed van der Walls interactions (Figure 8F). Further, the

Frontiers in Immunology

284H: van der Walls

novel EDII epitope 224-PWHAGADTGTPHWNNKE-240 which
was conserved in both ZIKV_RA]J and ZIKV_MAH, interacted with
CDR3-VL of the mAb (Figures 9A-D). For ZIKV_RA]J EDII, the
amino acids 235H, 237N, and 238N had 1 conventional H-bond
each and amino acids 239K and 240E had van der Walls interaction.
(Figure 9E). However, in the case of ZIKV_MAH EDII (220-
PWHAGADTGTPHWNNKE-236) the amino acids 233N and
234N had 1 conventional H-bond each, with 234N also displaying
an unfavorable interaction. Further, 231H and 235K possessed van
der Walls interaction (Figure 9F). There were two novel epitopes
identified in the hinge regions of Indian ZIKV strains, among which
the epitope 280-TKGRLSSGHLKCRLKMDK-297 (ZIKV_RA]J) and
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319-HGTVIVEVQYS-329

323-HGTVIVEVQYA-333

(B)

=
96N (CPID-VIT

FIGURE 7
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(E) (F)

Molecular docking of novel linear EDIII epitopes with CDRs of ZV-67 mAb. (A) 3-D model of docked ZRE and ZV67; VL (coloured in yellow), VH
(coloured in light green), CDR3-VH (coloured in purple) interacting with EDIII (coloured in blue) epitope 323-HGTVTVEVQYA-333 (coloured in light
brown) except alanine (coloured in light green). (B) 3-D model of docked ZME and ZV67; VL (coloured in yellow), VH (coloured in light green),
CDR3-VH (coloured in purple) interacting with EDIII (coloured in blue) epitope 319-HGTVTVEVQYS (coloured in teal orange) except serine (coloured
in blue). (C) Epitope-CDR interaction in 3-D for ZRE with CDR3-VH of ZV67; 323-HG-324 (coloured in shades of light green) are the amino acids of
EDIII epitope interacting with CDR3-VH amino acid residues, 96-NY-97 (coloured in pink and yellow, respectively). (D) Epitope-CDR interaction in 3-
D for ZME with CDR3-VH of ZV67; 319-HG-320 (coloured in shades of light green) are the amino acids of EDIII epitope interacting with CDR3-VH
amino acid residues, 96-NY-97 (coloured in pink and yellow, respectively). (E) 2-D interaction map of panel (C); blue arrows indicating 323H forming
one carbon-hydrogen and one pi-donor hydrogen bond and 324G forming van der Walls interactions with 96N and 97Y. (F) 2-D interaction map of
panel (D); blue arrows indicating 319H forming conventional hydrogen bond and 320G forming carbon-hydrogen bond with 96N and 97Y

epitope 276-AKGRLSSGHLKCRLKMDK-293 (ZIKV_MAH) had
interactions with the CDRs of ZV-67, respectively (Figures 10A-D)
The 2-D interaction maps of 280-TKGRLSSGHLKCRLKMDK-297
showed that amino acids 288H and 290K had van der Walls
interaction with CDR1-VL of the mAb (Figure 10E); whereas
epitope 276-AKGRLSSGHLKCRLKMDK-293 had only 284H
having van der Walls interaction with CDR3-VL (Figure 10F).

Next, we sought to identify the epitope-CDR interaction of the
Indian ZIKV strains with human mAb Z3L1. The novel epitope of
EDIT 224-PWHAGADTGTPHWNNKE-240, conserved in both
ZIKV_RAJ and ZIKV_MAH, was the only epitope showing
molecular interactions with the CDRs (Table 4) of Z3LI.
However, novel epitopes in other E-domains also interacted with
Z3L1, but these interactions were not with CDR regions. On the
other hand, this EDII epitope interacted with CDR1-VH of Z3L1 in
the case of both the Indian ZIKV strains (Table 4; Figures 11A, B).
This displayed different epitope-CDR bonding interactions specific
for ZIKV_RA]J (Figures 11A, C) and ZIKV_MAH (Figures 11B, D)
which were demonstrated by their 2-D interaction maps. The
epitope 224-PWHAGADTGTPHWNNKE-240 had amino acids
231T, 232G and 233A forming 1 H-bond, 1 C-H bond and van
der Walls interaction, respectively which were specific to
ZIKV_RA]J (Figure 11E) whereas the same epitope (220-
PWHAGADTGTPHWNNKE-236) had amino acids 223A
forming 1 H-bond and 1 pi-alkyl bond and 224G forming van
der Walls interaction in the case of ZIKV_MAH (Figure 11F)

Frontiers in Immunology

4 Discussion

In the case of emerging Flavivirus infection, such as the Zika virus,
E and NSI proteins play a vital role in eliciting robust humoral
immunity (19, 26). The ZIKV-specific B-cell epitopes are crucial in
inducing the humoral immune response (15, 42, 43). The advent of
immunoinformatics has led to the prediction of various B-cell epitopes
in Flaviviruses” antigens. However, a similar broad-spectrum analysis of
the ZIKV-specific B-cell epitopes is required and remains poorly
understood. In-silico prediction and validation of these epitopes may
help in ZIKV therapeutics and vaccine design.

In this study, we identified B cell epitopes of E and NS1 proteins of
two co-circulating Indian ZIKV strains. Further, these epitopes were
mapped to their modelled 3-D structures leading to the identification of
novel epitopes based on the stringent study design criteria. Molecular
docking with potent ZIKV-neutralizing mAbs validated our findings
via epitope-CDR interactions. The identification of these novel epitopes
was specific and unique to Indian ZIKV strains. These epitopes have
the potential to induce peptide-specific antibodies, mostly involved in
neutralizing response, especially against the ZIKV E protein.

In-silico antigenic characterization of viral proteins is essential
for epitope identification. The E protein of ZIKV plays an important
role in virus entry, attachment, and fusion. Apart from these
functions, the ZIKV E protein is the major target of neutralizing
antibodies. It consists of three domains: the central beta-barrel
domain (EDI), an elongated finger-like domain (EDII) consisting of
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5-GVSNRDFVEGMSGGTW-21

(D)

FIGURE 8
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Molecular docking of novel linear EDI epitopes with CDRs of ZV-67 mAb: (A) 3-D model of docked ZRE and ZV67; VL (coloured in yellow), VH
(coloured in light green), CDR-1-VL (coloured in dark orange) interacting with EDI (coloured in red) epitope 5-GVSNRDFVEGMSGGTW-20 (coloured
in light green). (B) 3-D model of docked ZME and ZV67; VL (coloured in yellow), VH (coloured in light green), CDR3-VL (coloured in dark orange)
interacting with EDI (coloured in red) epitope 5-GVSNRDFVEGMSGGTW-0 (coloured in light green). (C) Epitope-CDR interaction in 3-D for ZRE with
CDR1-VL of ZV67; 10-DFVE-13 (coloured in shades of light green) are the amino acids of EDI epitope interacting with CDR1-VH amino acid residues,
29-VGTA-31 (coloured in light green, orange, purple and light blue, respectively). (D) Epitope-CDR interaction in 3-D for ZME with CDR3-VL of
ZV67; 7S, 9-RD-10 (coloured in shades of light green) are the amino acids of EDI epitope interacting with CDR3-VL amino acid residues, 91-FSSY
(coloured in dark orange, yellow, yellow and light green, respectively). (E) 2-D interaction map of panel (C); blue arrows indicating 13E forming one
conventional hydrogen bond, 12E forming one carbon-hydrogen bond and 10-DF-11 forming van der Walls interactions with 31T, 32A, 30G and 29Y,
respectively. (F) 2-D interaction map of panel (D); blue arrows indicating 10D forming one conventional hydrogen bond, 7S forming one carbon-
hydrogen bond, and 9R forming van der Walls interactions with 94Y, 93S,92S and 91Y

a hydrophobic fusion loop (FL) and an IgC-like immunoglobulin
domain (EDII) (21, 26, 40). Moreover, these domains display
differential neutralizing potential, with EDIII being the most
potent and ZIKV-type specific. Earlier studies reported
antigenicity analyses for the whole E protein of the Zika virus
(40). However, our study involves domain-wise estimation of
antigenicity for ZIKV E protein for different strains, which
provides detailed insight into understanding the antigenic
characteristics: similarities and differences between the strains.
Following domain-specific antigenicity analysis, we predicted
linear and conformational B-cell epitopes specific to ZIKV E
protein as the overall humoral immune response depends on both
the primary and tertiary structures of these epitopes (44, 45). The
prediction of the linear and conformational epitopes was carried
out using a combination of immunoinformatic tools to minimize
false positive results and the amino acid regions predicted as
epitopes by all the different tools were considered for further
analyses (27, 33, 46). Moreover, the length of linear B-cell
epitopes was also considered as it is a significant parameter in the
case of designing peptide vaccines capable of inducing substantial
humoral immune response (47). The experimentally validated
ZIKV B-cell neutralizing epitopes mostly range from 14-22
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residues which overlaps with our predicted epitopes. The novel
epitopes that displayed epitope-CDR interactions range from 11-18
residues in length which makes them good candidates to be
incorporated into peptide vaccines. Apart from considering the
antigenicity of the shortlisted epitopes, their non-allergenicity and
non-toxicity were also examined which are important factors to
consider in the case of designing multi-epitope proteins (12).

Besides epitope mapping and visualization, three-dimensional
models of the proteins are essential to study epitope recognition and
accessibility by the antibodies (48). The template identified for
ZIKV_RAJ was 7YW8.pdb whereas the template for ZIKV_MAH E
protein identified as 7YW7.pdb had a deletion of 4 amino acids in
the E-glycan loop (N154-157) (49). ZIKV strains with E glycan loop
deletions, especially in Asia, need to be studied extensively to
understand their effect on virus infectivity, immunity, and
pathogenesis. The predicted structure’s precision and
stoichiometry were determined by the Ramachandran plot, which
identified sterically allowed and disallowed regions (50). The most
suitable 3-D models had zero per cent amino acids in disallowed
regions and around >99% in the favorably allowed regions. Based
on our study design we could identify novel linear and
conformational epitopes for ZIKV E protein.
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Molecular docking of novel linear EDII epitopes with CDRs of ZV-67 mAb. (A) 3-D model of docked ZRE and ZV67; VL (coloured in yellow), VH
(coloured in light green), CDR3-VL (coloured in blue) interacting with EDII (coloured in yellow) epitope 224-PWHAGADTGTPHWNNKE-240

(coloured in light blue). (B) 3-D model of docked ZME and ZV67; VL (coloured in yellow), VH (coloured in light green), CDR3-VL (coloured in blue)
interacting with EDII (coloured in yellow) epitope 224-PWHAGADTGTPHWNNKE-240 (coloured in light blue). (C) Epitope-CDR interaction in 3-D for
ZRE with CDR3-VL of ZV67; 235H, 237-NNK-239 (coloured in shades of light green) are the amino acids of EDI epitope interacting with CDR3-VH
amino acid residues, 91-FSSYP-95 (coloured in dark orange, yellow, yellow, light green and blue, respectively). (D) Epitope-CDR interaction in 3-D
for ZME with CDR3-VL of ZV67; 235H, 237-NNK-239 (coloured in shades of light green) are the amino acids of EDI epitope interacting with CDR3-
VH amino acid residues, 91-FSSYP-95 (coloured in dark orange, yellow, yellow, light green and blue, respectively). (E) 2-D interaction map of panel
(C); blue arrows indicating 235H forming one conventional hydrogen bond, 237-NN-238 forming one carbon-hydrogen bond each and 239K
forming van der Walls interaction with 91F, 92S, 93S, 94F and 95P. (F) 2-D interaction map of panel (D); blue arrows indicating 233-NN-234 forming

one carbon-hydrogen bond each and 231H and 235K forming van der Walls interaction with 91F, 92S, 93S, 94F and 95P

The stringent study criteria for selecting the novel epitopes were
further validated in silico by studying their interactions with CDRs of
the highly neutralizing ZIKV E-protein specific mouse and human
mAbs. Interaction of the epitopes with the CDR regions of the
antibody leads to enhanced binding affinity resulting in specific
neutralizing response (51). Considering this, we hypothesized to
select the CDRs of two highly neutralizing mAbs ZV-67 and Z3L1
to carry out the docking with ZIKV E protein. These two mAbs were
selected as they were specific to ZIKV E protein neutralization,
possessed high resolution X-ray crystallographic structures, and
were effective across both African and Asian ZIKV strains in vitro
and in vivo (21, 41). We identified that the novel linear epitopes
across all three domains and DI-DIII hinge regions interacted with
CDRs of ZV-67 mAb, which highlights the fact that the Indian ZIKV
strains had broad-spectrum epitope-CDR interactions with this
mouse mAb (Table 3). However, in the case of the human mAb
Z3L1, only the novel epitope of EDII showed CDR interactions
(Table 4). 3-D and 2-D interaction maps are essential to study the
different bonds that form during epitope-CDR binding. All the novel
epitopes, being identical or having point mutations between the
ZIKV_RA]J and ZIKV_MAH displayed differences in their 3-D and
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2-D receptor-ligand interaction maps, suggesting strain-specific
differences in forming bonds with the mAbs” CDRs.

Our predictions also identified the EDIII epitopes 363-
PVITESTENSK-373 (ZIKV_RA]J) and 363-PVITESAENSK-373
(ZIKV_MAH), which overlapped with critical residues involved
in neutralization by the mAbs ZV-2 and ZV-67 (21). Similarly,
epitopes 384-DSYIVIGVGDKKITHHWHRS-403 and 384-
DSYIVIGVGEKKITHHWHRS-403 overlapped with key residues
required for neutralization with mAbs ZV-48, ZV-64 and ZV-67
(21, 52). As, our prediction spanned across all three domains,
including hinge regions, EDII epitope 61-YEASISDMASDSRCPT-
76, and DI-DII hinge epitope 118-KFACSKKMTGSIQPE-133
(ZIKV_RAJ and ZIKV_MAH) were also part of key residues
required for neutralization by mAb ZIKV-117 (53). Moreover, the
mAb Z3L1 also had neutralizing epitopes overlapping with our
predicted epitope 126-TGKSIQPENLEYRIMLSV-143 in the DI-DII
hinge (41).

The ZIKV NSI protein is another major target of neutralizing
antibodies, following the immunodominant ZIKV E protein (23-26,
54-56). Hence, immunoinformatic analyses of ZIKV NSI1 were
undertaken. The ZIKV NSI1 has three distinct domains: the beta roll
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Molecular docking of novel linear hinge region epitopes with CDRs of ZV-67 mAb. (A) 3-D model of docked ZRE and ZV67; VL (coloured in yellow), VH
(coloured in light green), CDR1-VL (coloured in brown) interacting with DI/DIII hinge region (coloured in red/blue) epitope 280-
TKGRLSSGHLKCRLKMDK-297 (coloured in purple; except Threonine which is colored in brown). (B) 3-D model of docked ZME and ZV67; VL (coloured
in yellow), VH (coloured in light green), CDR3-VH (coloured in brown) interacting with DI/DIII hinge region (coloured in red/blue) epitope 276-
AKGRLSSGHLKCRLKMDK-293 (coloured in purple; except alanine which is colored in light brown). (C) Epitope-CDR interaction in 3-D for ZRE with
CDR1-VL of ZV67; 288H and 290K (coloured in shades of light green) are the amino acids of DI/DIII hinge region epitope interacting with CDR1-VL
amino acid residues, 27-QN-28 (coloured in red and green, respectively). (D) Epitope-CDR interaction in 3-D for ZME with CDR3-VH of ZV67; 284H
(coloured in shades of light green) is the amino acid of DI/DIIl hinge region epitope interacting with CDR3-VH amino acid residues, 96-NY-97 (coloured
in yellow and purple, respectively). (E) 2-D interaction map of panel (C); blue arrows indicating 288H and 290K forming with van der Walls interaction
with 27Q and 28N. (F) 2-D interaction map of panel (D); blue arrows indicating 284H forming van der Walls interaction with 96N and 97Y.

(residues 1-29), the wing domain (residues 30-180) and the beta ladder
(residues 181-352). Connector residues (33, 35-38, 41, 57, 58) and
(152-180) within the wing domain link it to the beta roll and beta-
ladder domain, respectively (54). Domain-wise antigenicity analysis
revealed the beta-roll and beta ladder domains to be antigenic while the
wing domain to be non-antigenic. The non-antigenic values of the
wing domain may be attributed to the connector residues which form a
part of the inner hydrophobic surface of NSI (59). However, barring

these residues, the wing domain is targeted by ZIKV NSI-specific
mAbs that confer protection (24). These observations conveyed the
importance of the wing domain in ZIKV protection and hence it was
considered for epitope identification, alongside the antigenic beta roll
and beta ladder domains.

Both ZIKV_RAJ and ZIKV_MAH NSI had identical templates
ie. 5K6K. pdb (25) for 3-D structure predictions. As there was
unavailability of linear ZIKV NSlI-specific neutralizing epitopes at

TABLE 4 H-Docked based molecular docking analysis of ZIKV-specific Novel Linear Epitopes of the E-protein.

CDR
Interactions

Indian
ZIKV-specificity

Novel Linear Epitopes

323-HGTVTVEVQYA-333 No ZIKV_RAJ (Unique)
(EDIII)
319-HGTVTVEVQYS-329 No ZIKV_MAH (Unique)
(EDIII)
338-PCKVPAQM-345 (EDIII) No ZIKV_RA]J
and ZIKV_MAH
5-GVSNRDFVEGMSGGTW-20 No ZIKV_RAJ and
(EDI) ZIKV_MAH
32-TVMAQDKPTVDIELVT- No ZIKV_RA]J
47 (EDI) and ZIKV_MAH

Frontiers in Immunology

Epitope/ 2-D Interaction Docking/
CDR Interactions maps Binding scores
N.A. NA. N.A.
N.A NA. NA.
N.A. NA. NA.
N.A NA. N.A.
N.A. NA. N.A.
(Continued)
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TABLE 4 Continued

Novel Linear Epitopes CDR

Interactions

Indian
ZIKV-specificity

Epitope/
CDR Interactions

10.3389/fimmu.2025.1534737

2-D Interaction Docking/
maps Binding scores

224-
PWHAGADTGTPHWNNKE-
240 (EDII);

220-
PWHAGADTGTPHWNNKE-
236
(EDII)

43-IELVTTTVSNMAEVRS-58 No
(Hinge)
280-
TKGRLSSGHLKCRLKMDK-297 No
(Hinge)
276-
AKGRLSSGHLKCRLKMDK- No
293 (Hinge)

Molecular Docking interactions of the novel epitopes with potent human monoclonal antibody Z3L1; N.A. (Not Available).

ZIKV_RAJ and 231-TGA-233/CDR1-VH

(ZIKV_RAJ)

ZIKV_MAH 223-AG-24/CDRI1-
VH (ZIKV_MAH)
ZIKV_RAJ and N.A
ZIKV_MAH
ZIKV_RAJ (Unique) N.A
ZIKV_MAH (Unique) N.A

Amino acid mutations are coloured in Red with respect to ZIKV Prototype strain MR766 (Green).

IEDB, we were not able to ascertain the novel linear epitopes, but
there was concordance of our predicted epitopes with critical residues
of ZIKV NSI neutralizing mAbs, such as 3G2, 4B8, 2E11, 14G5,
AA12, EB9 and GB5 (54, 55, 60, 61). However, there were two

(A)

FIGURE 11

231T: 1 H-bond -253.17
232G: 1 C-H bond
233A: van der Walls

223A: 1 H-bond and 1 pi- -242.52
alklyl bond
224G: van der Walls
N.A N.A.
N.A N.A.
N.A N.A.

epitopes 10-KKETRCGTGVFVYNDVE-26 (beta roll) and 83-
GIQLTVVVGSVKNP-96 (wing domain) found exclusively in both
Indian ZIKV strains which did not overlap with the critical residues
of known ZIKV NSI mAbs, suggesting that these may be important

>
I>
25

P
A %7

(B) (E)

Molecular docking of novel linear EDII epitopes with CDRs of Z3L1 mAb. (A) 3-D model for docked ZRE and Z3L1; VL (coloured in yellow), VH
(coloured in light green), CDR1-VH (coloured in magenta) interacting with EDII (coloured in yellow) epitope 224-PWHAGADTGTPHWNNKE-240
(coloured in light blue). (B) 3-D model for docked ZME and Z3L1; VL (coloured in yellow), VH (coloured in light green), CDR1-VH (coloured in
magenta) interacting with EDII (coloured in yellow) epitope 224-PWHAGADTGTPHWNNKE-240 (coloured in light blue). (C) Epitope-CDR interaction
in 3-D for ZRE with CDR1-VH of Z3L1; 231-TGT-233 colored in shades of light green) are the amino acids of EDII epitope interacting with CDR1-VL
amino acid residues 26-GFT-28 (coloured in blue, orange and purple, respectively). (D) Epitope-CDR interaction in 3-D for ZME with CDR1-VH of
Z311; 223-AG-224 (coloured in shades of light green) are the amino acids of EDII epitope interacting with CDR1-VL amino acid residue 32Y
(coloured in red). (E) 2-D interaction map of panel (C); blue arrows indicating 231T forming one conventional hydrogen bond, 232G forming one
carbon-hydrogen bond and 233T forming van der Walls interaction with 26G, 27F, and 28T. (F) 2-D interaction map of panel (D); blue arrows
indicating 223A forming one conventional hydrogen bond and one pi-alkyl bond, 224G forming van der Walls interaction with 32Y. arrows indicating
223A (forming one H bond and one pi-alkyl bond), and 224G (forming van der Walls interaction) with 32Y.

Frontiers in Immunology

24

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1534737
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Roy et al.

to study as novel ZIKV NSI epitopes. Among them, epitope 83-
GIQLTVVVGSVKNP-96 did not belong to the hydrophobic
connector residues of the wing domain, therefore it may be
important in studying ZIKV NS1 protection. However, in the case
of ZIKV NS1, epitope-CDR interactions were not possible to analyze
due to the unavailability of resolved X-ray crystallographic structures
of ZIKV NSI neutralizing mAbs.

5 Conclusion

To summarize, we conducted detailed antigenic characterization
of the E and NS1 proteins for co-circulating Indian strains of ZIKV
with domain-specific analyses. This helped in the identification of
novel epitopes in E and NSI proteins having zero percent identity
with the amino acid compositions of previously reported ZIKV-
neutralizing epitopes. Molecular docking studies further revealed that
some of the novel epitopes of E protein are being recognized by
known ZIKV-neutralizing antibodies. Our studies on in vitro and in
vivo experiments targeting these novel epitopes to understand the key
role in humoral immunity are in progress. Therefore, the findings will
help in the development of multi-epitope proteins for diagnostics and
vaccinology applications in future.
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SUPPLEMENTARY FIGURE 1
Multiple sequence alignment of E protein in ZIKV strains: ZIKV MR766 (coloured in
green), ZIKV NATAL RGN (coloured in red), ZIKV_RAJ (coloured in blue), and
ZIKV_MAH (coloured in purple). All the mutations are highlighted in yellow with
respect to ZIKV MR766.

SUPPLEMENTARY FIGURE 2

Multiple sequence alignment of NS1 protein in ZIKV strains; ZIKV MR766
(coloured in green), ZIKV NATAL RGN (coloured in red), ZIKV_RAJ (coloured
in blue), and ZIKV_MAH (coloured in purple). All the mutations are highlighted
in yellow with respect to ZIKV MR766.

SUPPLEMENTARY FIGURE 3
3-D Templates for Indian ZIKV E; (A) 7YW8 (ZIKV_RAJ), (B) 7YW7 (ZIKV_MAH)
where Chain A is highlighted in yellow.

SUPPLEMENTARY FIGURE 4
3-D Template for Indian ZIKV NS1: 5K6K (ZIKV_RAJ and ZIKV_MAH) where
Chain A is highlighted in yellow.

SUPPLEMENTARY FIGURE 5

Graphical representation of linear B-cell epitopes by BepiPred 2.0 method (yellow
peaks = predicted epitopes, and green inverted peaks = non-epitopes) for both
Indian ZIKV E (Threshold=0.5). (A) ZIKV_RAJ and (B) ZIKV_MAH.

SUPPLEMENTARY FIGURE 6

Graphical representation of linear B-cell epitopes by Kolaskar and
Tongaonkar method (yellow peaks = predicted epitopes, and green
inverted peaks = non-epitopes) for both Indian ZIKV E. (A) ZIKV_RAJ
(Threshold=1.026) and (B) ZIKV_MAH (Threshold=1.028).

SUPPLEMENTARY FIGURE 7

Graphical representation of linear B-cell epitopes by Emini surface accessibility
method (yellow peaks = predicted epitopes, and green inverted peaks = non-
epitopes) for both Indian ZIKV E (Threshold=1.00). (A) ZIKV_RAJ and (B) ZIKV_MAH.
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SUPPLEMENTARY FIGURE 8

Graphical representation of linear B-cell epitopes by Parker hydrophilicity
method (yellow peaks = predicted epitopes, and green inverted peaks = non-
epitopes) for both Indian ZIKV E. (A) ZIKV_RAJ (Threshold=1.475) and (B)
ZIKV_MAH (Threshold=1.470).

SUPPLEMENTARY FIGURE 9

Graphical representation of linear B-cell epitopes by BepiPred 2.0 method (yellow
peaks = predicted epitopes, and green inverted peaks = non-epitopes) for both
Indian ZIKV NS1 (Threshold=0.5). (A) ZIKV_RAJ and (B) ZIKV_MAH.

SUPPLEMENTARY FIGURE 10
Graphical representation of linear B-cell epitopes by Kolaskar and
Tongaonkar method (yellow peaks = predicted epitopes, and green
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Background: Attempts to develop an hRSV vaccine have faced safety and
efficacy challenges, with only three FDA-approved vaccines (Moderna’s
Mresvia, Pfizer's Abrysvo, and GSK's Arexvy) available. These vaccines are
limited to individuals over 60 years, require boosters, and only reduce disease
severity without clearing the infection. Therefore, we employed a reverse
vaccinology approach in this study to identify the most promising antigenic
epitopes capable of eliciting a robust and protective immune response.

Methodology: This study employed computational techniques to design a novel
multi-epitope vaccine targeting hRSV. Using bioinformatics tools, candidate
epitopes were identified from conserved viral proteins (F and G glycoproteins),
assessing their immunogenicity, antigenicity, and allergenicity. Key tools included
ExPASy, ProtParam, Vaxiden v2.0, AllergenFP v1.0, AllerTOP v2.0, NetCTL v1.2,
IEDB, and Toxin-Pred. The vaccine construct was assessed for stability and
toxicity through in silico analyses. We then characterized its kinetic properties,
evaluated its structural integrity, and analyzed its interactions with Toll-like
receptors (TLRs) using molecular docking, modeling, and refinement with
AlphaFold3 and ClusPro.

Results: The designed constructs showed strong antigenicity (0.5996 for F-
based and 0.6048 for G-based vaccine), non-allergenicity, and stability
(instability index <40). Among these, most amino acids were in the extracellular
domain of the construct. Molecular docking and dynamics simulations indicated
strong binding interactions with TLR1 and TLR4 and minimal RMSF fluctuations,
which ensured structural stability. Strong humoral and cellular responses were
suggested by in silico immune simulation demonstrating robust immune
activation, with high levels of IgG, IgM, IL-2, and IFN-y. The physical and
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chemical analyses revealed that the majority of amino acids from the F and G
proteins were located in the extracellular domain of the construct. The presence
of signal peptide cleavage sites in both glycoprotein components further
facilitates antigen presentation to the immune system.

Conclusions: This study presents a promising peptide-based vaccine candidate
against hRSV that can effectively engage the immune system, showing strong
immunogenicity and antigenicity. Future in vitro and in vivo studies are essential
to evaluate the ability of the multi-epitope vaccine candidate to stimulate both
humoral and cell-mediated immune responses and to assess its efficacy and
safety profile.

human respiratory syncytial virus, hRSV, immunoinformatics, CTL epitope, HTL epitope,

B-cell epitope, reverse vaccinology

1 Introduction

Human respiratory syncytial virus (hRSV) is a major cause of
lower respiratory tract infections in infants, young children, and the
elderly (1). It is estimated that hRSV causes 33 million new episodes
of acute lower respiratory infections and 3.2 million hospital
admissions annually worldwide (2). Despite the significant disease
burden, currently, only three hRSV vaccines have been licensed by
the FDA (3). Developing an effective hRSV vaccine has been
challenging due to the complex immune responses to the virus
and the risk of disease enhancement in vaccinated individuals (4).

Human RSV exhibits antigenic variability, with two major
antigenic subgroups (A and B) circulating globally, complicating
the design of a universal vaccine (4). Furthermore, previous
attempts at hRSV vaccine development have been hampered by
safety concerns, such as the phenomenon of vaccine-enhanced
respiratory disease observed with a formalin-inactivated RSV
vaccine candidate (5).

The most recent vaccine design efforts were focused on hRSV
envelope proteins embedded in the lipid bilayer, specifically the
attachment (G) glycoprotein and/or the fusion (F) glycoprotein.
Human RSV G protein can exist in two forms, as complete
membrane-bound glycoprotein (mG) that mediates viral
attachment to host cells in vivo and secreted N-terminally
truncated G protein (sG) (6). sG can modulate host immune
responses, enabling it to evade, alter, or inactivate both innate
defenses and the adaptive immune system, as well as influence the
antiviral activity of monoclonal antibodies (mABs) (7). In addition,
the extensive antigenic variability of G protein among different
hRSV strains has been another significant obstacle to the
development of an effective vaccine (8). Although these
limitations were recently addressed to some extent through
further optimization using the CsA adjuvant, these challenges
shifted the focus to F glycoprotein, a more conserved viral surface
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component (9). The F protein allows hRSV penetration and fusion
between adjacent cells to form syncytium. The viral F glycoprotein
undergoes dynamic reconfiguration when binding to the target
cell’s plasma membrane and thus exists in two forms: the prefusion
form (pre-F) and the more stable post-fusion form or post-F (10).
The unstable pre-F sequence was substantial in developing the two
peptide-based vaccines and one mRNA vaccine approved by the
FDA for hRSV, as it is highly immunogenic and stimulates the
production of RSV-specific neutralizing antibodies (NAbs) (3).

BAFF and APRIL are crucial for B cell survival, differentiation,
and antibody production. They interact with specific receptors on B
cells, promoting their activation and proliferation, which is essential
for generating a robust immune response. Previous studies have
demonstrated that BAFF and APRIL can enhance the
immunogenicity of vaccines. For instance, research has shown
that plasmids expressing multimeric soluble BAFF or APRIL,
when co-administered with other immunomodulatory agents, can
significantly increase antibody titers and neutralizing antibody
responses against HIV-1 (11, 12). Additionally, constructs
combining HIV-1 envelope proteins with APRIL have been
reported to enhance antibody responses in animal models (11).
This has led to interest in their potential as adjuvants to improve
vaccine efficacy while modulating immune responses.

The traditional approach of vaccine development relies on virus
culturing and its activation which raises several safety concerns.
Reverse vaccinology offers a promising approach and a rapid, cost-
effective, and reliable methodology for the preliminary selection and
design of novel multi-epitope vaccine candidates against hRSV.
This approach involves comprehensive in silico analysis of the
hRSV attachment and fusion proteome to identify the most
promising antigenic epitopes capable of eliciting a robust and
protective immune response (13, 14). Computational vaccinology
techniques, such as epitope prediction, antigenicity and allergenicity
analysis, and molecular docking, can be employed to design and
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evaluate multi-epitope vaccine candidates in silico before
experimental validation (13, 14). By targeting multiple conserved
epitopes from Glycoprotein and fusion hRSV proteins, a multi-
epitope vaccine has the potential to provide broad coverage against
both major hRSV subgroups and induce a balanced, long-lasting
immune response.

The study aims to investigate the potential of a computationally
designed multi-epitope vaccine to initiate a protective immune
response, ensure the epitopes have stability and non-allergenicity,
and provide broader coverage across the subtypes of hRSV.
Furthermore. This study utilized a reverse vaccinology strategy to
systematically analyze the hRSV proteome, identify immunogenic
epitopes, and design a multi-epitope vaccine candidate against
human RSV. The selected epitopes were further evaluated for
their antigenicity, immunogenicity, allergenicity, and molecular
docking properties to ensure the development of a safer
vaccine formulation.

2 Materials and methods
2.1 Protein sequences retrieval

The amino acid sequences of fusion glycoprotein (F) [Human
Orthopneumovirus] and attachment G protein [Human
Respiratory Syncytial Virus A] with EMBL IDs QID88623.1 and
ALB35397.1 respectively were retrieved from UniProt (15) in
FASTA format to predict T cell, B cell, and IFN-gamma
inducing epitopes.

2.2 Analysis of physicochemical properties

To calculate the chemical and physical properties of the target
protein sequence, the ExPASy ProtParam tool (16) was used. This
tool enables the calculation of a range of physicochemical
parameters for proteins either retrieved from UniProtKB or
provided as user-entered sequences In this study, the amino acid
sequence of the target protein, represented in one-letter code, was
input into the appropriate field, and the compute parameters option
was selected. No additional data was required for the analysis. The
computed metrics included molecular weight, aliphatic index,
theoretical isoelectric point (pI): Determines the pH at which the
protein has no net charge, instability index, extinction coefficient,
grand average of hydropathicity grand average of hydropathy
(GRAVY), and atomic composition.

2.3 Evaluation of antigenic properties

The potential vaccine candidates (PVCs) from the proteome of
hRSV were predicted using the VaxiJen v2.0 server (17). VaxiJen is a
Perl-based server with an HTML interface that classifies proteins as
“Probable Non-Antigen” or “Probable Antigen” based on their
antigen probability, which is expressed as a percentage. The
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default threshold value of 0.4 was used for this analysis.
Additionally, two other tools were employed to distinguish
between allergens and non-allergens: AllergenFP v.1.0 (18) and
AllerTOP v.2.0 server (14). To predict the presence of
transmembrane helices and signal peptides, TMHMM v2.0 (19)
and SignalP 6 (20) tools were used, respectively. In all these tools the
input parameters were protein sequences.

2.4 CTL epitope prediction and binding
affinity analysis with MHC | allele

The prediction of cytotoxic T lymphocyte (CTL) epitopes was
carried out using the NetCTL v1.2 server. The NetCTL 1.2 server
predicts CTL epitopes in protein sequences (21) and an Immune
Epitope Database (IEDB) tool (22) The input parameters consisted
of peptide sequences, while the expected outputs included predicted
CTL epitopes and binding affinities for MHC class I and II. These
epitopes were classified, based on their binding to various major
histocompatibility complex (MHC) alleles, including HLA-I, HLA-
II/H-2-IAb, HLA-II/H-2-IAd, and H-2-Db. The CTL epitopes
binding to HLA-I and H-2-Db alleles were retrieved from the
NetCTL tool, while the CTL epitopes binding to H-2-IAb and
HLA-II/H-2-IAd were obtained from the IEDB tool. Epitopes with
a consensus score of less than 2 were considered excellent binders
and selected for further analysis. The selected epitopes were then
assessed for their antigenicity, immunogenicity, allergenic profile,
and toxicity using the VaxiJen v.2.0, IEDB, AllergenFP v.1.0, and
ToxinPred servers, respectively. The best epitopes were those with
high antigenicity, non-allergenicity, and non-toxicity.

2.5 HTL epitope prediction and binding
affinity analysis with MHC2 allele

The prediction of helper T lymphocyte (HTL) epitopes was
performed using the NetMHCII pan 3.287 server (23). The HTL
epitopes were classified based on their binding to human leukocyte
antigen (HLA) class II alleles, specifically HLA-II/H-2-IAb and
HLA-II/H-2-IAd. For the NetMHCII tool, the input parameters
consisted of peptide sequences, while the expected outputs included
predicted HTL epitopes and binding affinities. The antigenicity of
each predicted epitope was evaluated using the VaxiJen v.2.0 server,
with a threshold value of 0.4. To exclude potential allergenic
epitopes, the AllergenFP v.1.089 server was employed.
Furthermore, PyMOL was used to visualize the location of the
predicted epitopes on the glycoprotein structure. Finally, the
ToxinPred server was utilized to assess the toxicity profile of the
selected epitopes. ToxinPred is a web server designed to predict
whether proteins or peptides are toxic or non-toxic. We used
peptide sequences as input parameters, and the expected output is
a toxicity score indicating whether the peptide is toxic or non-toxic.
The best epitopes were those that demonstrated high antigenicity,
non-allergenicity, and non-toxicity after the filtration process.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1546254
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Alnajran et al.

2.6 Prediction of B-cell epitopes

The Immune Epitope Database (IEDB) (24) was employed to
predict B cell epitopes based on the protein sequence. To select the
final B cell epitope candidates, several servers were utilized to screen
their properties: VaxiJen v.2.0, AllergenFP v.1.0, and ToxinPred.
The best B cell epitope candidates were those that demonstrated
high antigenicity, non-allergenicity, and non-toxicity after the
screening process using these complementary computational tools.

2.7 Prediction of interferon-gamma-
inducing epitopes

To predict and design IFN-y epitopes for vaccine development,
an IFN epitope web server was employed. This server enables users
to predict and design peptides that induce IFN-gamma, MHC Class
II bindings, or T-cell epitopes. We input peptide sequences as
parameters, and the anticipated output includes both IFN-
inducing and non-inducing epitopes. This server features three
primary modules: Predict, Design, and Scan. It utilizes a dataset to
classify IFN-y epitopes into two distinct categories: those capable of
producing IFN-y and those that cannot. The server’s predictions are
based on three strategies: hybrid, motif-based, and machine-
learning approaches, thus offering an accuracy of up to 81.39%
(25). For this study, multiple peptide sequences were input into the
server, and the IDEB database, an experimentally validated dataset
comprising 10,433 T-cell epitopes, was employed. Upon protein
input, the hybrid approach combining motifs and support vector
machines was selected to perform the predictions. The output was
generated as numerical scores, where a positive value indicated the
secretion of IFN-y by the predicted epitopes.

2.8 Population coverage analysis

The population coverage analysis of human MHC alleles (HLA
I and II) was carried out using the IEDB population coverage tool
and the results were plotted in the form of a bar chart (26). In the
study, default settings were used, and population coverage was
evaluated for each class of MHC.

2.9 Multi-epitope vaccine design

To construct our vaccine, commonly used linker sequences in
multi-epitope vaccine designs were employed to connect different
types of epitopes. Linkers are an essential component in the design
of multi-epitope vaccines, serving several crucial functions that
enhance vaccine efficacy. They facilitate the proper folding of
individual epitopes, ensuring that each maintains its correct
conformation during protein synthesis, which is vital for effective
recognition by the immune system. Additionally, linkers improve
the overall immunogenicity of the vaccine by providing flexibility
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between epitopes, allowing for better presentation to immune cells
and thereby enhancing the immune response. They also prevent
steric hindrance that could occur if epitopes are positioned too
closely together, ensuring effective interaction with T cell receptors
and other components of the immune system. Furthermore, the
incorporation of linkers contributes to the stability of the vaccine
construct, helping to protect the epitopes from degradation. Thus,
the strategic use of linkers is fundamental in optimizing the
performance of multi-epitope vaccines Cytotoxic T lymphocyte
(CTL) epitopes were linked using the AYY linker sequence. The
AYY linker is a flexible linker that facilitates the proper folding and
presentation of the CTL epitopes (27). Helper T lymphocyte (HTL)
epitopes were connected using the GPGPG linker. This linker is
commonly used to separate distinct epitopes while maintaining
their structures and functions. The selected epitopes targeting B
cells were linked using the KK linker. The KK linker, composed of
two lysine residues, enhances the immunogenicity of the B cell
epitopes by promoting their proper folding and exposure. BAFF
and April adjuvant were then incorporated into the vaccine
construct. The adjuvants were linked to the N-terminus of the
vaccine sequence using the EAAAK linker. The EAAAK linker is a
rigid alpha-helical linker that maintains the structural integrity and
functionality of the adjuvant. The use of these specific linker
sequences aims to optimize the presentation and immunogenicity
of the different epitope types (CTL, HTL, and B cell) within the
multi-epitope vaccine construct. The BAFF and April adjuvant,
when linked to the vaccine, are expected to enhance the overall
immune response generated by the vaccine.

2.10 Evaluation of physicochemical
properties, antigenicity, and allergenicity
of vaccine construct

The allergenic, antigenic, and toxicity profiles of the final multi-
epitope vaccine construct were evaluated using the same
computational tools identified above for the F and G protein
epitopes. The VaxiJen v2.0 server was used to predict the
antigenicity of the multi-epitope vaccine construct, the
AllergenFP v1.0 server was employed to assess the allergenic
potential of the multi-epitope vaccine, and the ToxinPred server
was utilized to evaluate the toxicity profile of the multi-epitope
vaccine construct.

2.11 Prediction of secondary structure

The three-dimensional structures of Toll-like receptor 2 (TLR2)
and Toll-like receptor 4 (TLR4) were retrieved from the RCSB
Protein Data Bank (PDB) database (28). These PDB structures
served as the structural templates for the computational analysis of
the vaccine construct. The secondary structure properties of the
multi-epitope vaccine construct were determined using the Self-
Optimized Prediction Method with Alignment (SOPMA) server
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and the Protein Structure Prediction Server (PSIPRED) v4.0 tool.
For the SOPMA analysis, the default parameters were used.

2.12 Protein structural modeling, docking,
refinement, and validation

The ERRAT server (29) was used to assess the overall quality of
the 3D vaccine model by evaluating the statistics of non-bonded
interactions between different atom types. To further refine the
modeled structure, a CASP10 web-based approach, the Galaxy
Refine tool (30) was utilized. The three-dimensional structures of
the vaccine candidates were modeled using the Alphafold3
webserver following the standard settings (31). The TLR1 toll-like
receptor sequence for Mus musculus was retrieved using the
UniProt database (Uniprot ID-B9EJ46). The structure for the
TLRI1 receptor was also predicted using the Alphafold3 server.
ClusPro molecular docking algorithm with no restraints or
modifications in the structure (32) was used to perform molecular
docking of the TLR domain with the vaccine candidates from both F
and G glycoprotein (33). The dynamics and refinement studies were
performed using Cabs-Flex 2.0 standalone (30) in the SS2 mode
settings with a minimum distance along the protein chain was set at
3. The minimum length of restraints was set to 3.8 A and the
maximum length to 8.0A. The number of cycles was increased to
100,000 at a temperature of 310K, while cycles between trajectories
were set to 100, due to the large complex formed between TLR and
vaccine candidate to have the best quality output per frame. A
random seed was generated for every run for better comparison and
correct error calculation. The interaction between the TLR receptor
and vaccine candidate was analyzed by eye using Discovery Studio
2020 (34) and PyMOL (www.pymol.org) (35). The graphs for the
fluctuation were plotted using Prism 10 (www.graphpad.com). To
build the three-dimensional (3D) structures of the cytotoxic T-
lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes within
the vaccine construct, the PEPFOLD 3.5 web server was
utilized (36).

2.13 In silico immune simulation

To model the immune response and assess the immunogenicity
of the ALV vaccine in the host, we utilized the C-ImmSim server
(https://kraken.iac.rm.cnr.it/ C-IMMSIMY/). The server can define a
set of different models in one software that analyses both humoral
and cellular responses including B-cells. The input parameters
consisted of random seed, simulation volume, and simulation
steps, while the expected outputs included parameters to
configure the immune simulation, controlling randomness, size,
and duration of the simulation. For this study, we configured the
following parameters: Random Seed = 12,345, Simulation Volume =
10, and Simulation Steps = 1000. All other simulation parameters
were maintained at their default settings to ensure consistency and
reliability in the results.
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3 Results
3.1 Protein sequences retrieval

The amino acid sequences of the RSV fusion (F) and attachment
(G) glycoproteins were obtained from the UniProt knowledge base
(UniProt Consortium, 2021). The F glycoprotein sequence
consisted of 574 amino acid residues, while the attachment G
glycoprotein sequence was 321 amino acids long. The molecular
weights of the F and G glycoproteins were calculated to be 63,751
Daltons and 35,191 Daltons, respectively, based on their amino acid
compositions. This information was also retrieved from the UniProt
database (Supplementary Table S1).

3.2 Analysis of physicochemical properties
of proteins

The physical and chemical characteristics of the RSV F and G
glycoproteins were thoroughly analyzed to gain insights into their
structural and functional properties. (Supplementary Table S2). The
F glycoprotein, consisting of 574 amino acid residues, had a
calculated molecular weight of 63,750.57 Daltons. The theoretical
isoelectric point (pI) of the F protein was determined to be 9.13,
indicating its basic nature. The grand average of hydropathicity
(GRAVY) value, which represents the overall hydrophobicity/
hydrophilicity of the protein, was -0.038, suggesting a slightly
hydrophilic character. The aliphatic index, a measure of the
relative volume occupied by aliphatic side chains, was found to be
102.18 for the F protein, indicating a relatively compact structure.
The instability index was calculated to be 41.81, however, suggesting
that the F protein may be unstable under certain conditions. The
estimated coefficient value, a parameter used to predict the
expression level of the protein, was determined to be 50,155. In
contrast, the RSV G glycoprotein, with 321 amino acids, had a lower
molecular weight of 35,190.86 Daltons. The pI value of the G
protein was slightly higher than that of the F protein, at 9.77,
reinforcing its basic character. Interestingly, the GRAVY value of
the G protein was -0.636, indicating a more hydrophilic nature
compared to the F protein. The aliphatic index and estimated
coefficient values of the G protein were much lower than those of
the F protein, at 68.38 and 20,190, respectively. However, the G
protein was found to be more stable, with an instability index of
35.70, suggesting it may be less prone to degradation under
various conditions.

3.3 Analysis of antigenicity and allergenicity
of proteins

The RSV F and G glycoproteins were further analyzed to
investigate their antigenic, allergenic, and toxic characteristics.
Antigenic potential was assessed using a predictive algorithm,
which measured the likelihood of a protein being recognized as
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an antigen. The F glycoprotein exhibited an antigenic score of
0.5295, while the G glycoprotein had a score of 0.5771. Both values
exceeded the commonly used threshold of 0.4, indicating that these
RSV glycoproteins possess significant antigenic properties. To
evaluate the potential allergenicity of the F and G proteins,
appropriate prediction models were employed. The analysis
revealed that neither the F nor the G glycoprotein exhibited
characteristics associated with allergenic proteins. This suggests
that these RSV proteins are unlikely to elicit allergic responses.
The proteins were also evaluated for potential toxic effects. The
assessment did not identify any toxicity-related features within the
amino acid sequences of the F and G glycoproteins. The findings
from these bioinformatics analyses indicate that the RSV fusion (F)
and attachment (G) glycoproteins have strong antigenic potential,
which may contribute to their ability to stimulate immune
responses. The absence of predicted allergenic and toxic
properties suggests that these viral proteins are unlikely to cause
adverse reactions or toxicity in the host.

3.4 CTL epitope prediction and binding
affinity analysis with MHC | allele

The RSV F and G glycoproteins were further analyzed to
identify specific epitopes with desired immunological and safety
properties. The selected epitopes were evaluated for their antigenic,
immunogenic, allergenic, and toxic characteristics. For the F
protein, the following HLA-I class epitopes were chosen for
detailed analysis: LTLAINALY, LSALRTGWY, and YTSVITIEL.
All three epitopes exhibited antigenic and immunogenic properties
and were found to be non-toxic (Table 1). However, only the
LSALRTGWY epitope was predicted to be non-allergenic.
Similarly, the G protein HLA-I class epitopes selected were:
LLFISSCLY, SQVHTTSEY, and TTSQSTTIL. These G protein
epitopes were identified as potential allergens. The SQVHTTSEY
epitope was determined to be both immunogenic and antigenic.
Further analysis focused on F protein epitopes for the H-2-IAd
MHC class. The selected epitopes were: MELLIHRSSAIFLTL,
LLIHRSSAIFLTLAIL and ELLIHRSSAIFLTLA. All three epitopes
demonstrated immunogenic, antigenic, and non-toxic properties.
Only the ELLIHRSSAIFLTLA epitope was predicted to be an
allergen, while the other two were classified as non-allergenic.

The G protein H-2-Iad MHC class epitopes examined were:
NLKSIAQITLSILAM, KLNLKSIAQITLSIL, and
LYKLNLKSIAQITLS. These epitopes were found to be antigenic
and non-toxic, but non-immunogenic. NLKSIAQITLSILAM and
LYKLNLKSIAQITLS were identified as potential allergens. For the
H-2-Iab MHC class, the selected F protein epitopes were:
FYQSTCSAVSRGYLS, GVGSATIASGIAVSKV, and
TREFSVNAGVTTPLS. All these epitopes were determined to be
non-toxic and non-allergenic. However, only the
TREFSVNAGVTTPLS epitope was antigenic, while
FYQSTCSAVSRGYLS and GVGSAIASGIAVSKV were non-
immunogenic. The G protein H-2-Iab MHC class epitopes
analyzed were: IAAITFIASANHKVT, AIIFIASANHKVTLT, and
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ITFIASANHKVTLTT. These epitopes exhibited antigenic and
non-toxic properties, and TAAIIFTASANHKVT and
ATIFIASANHKVTLT were also immunogenic. Lastly, for the H-
2-Db MHC class, the F protein epitopes selected were:
YMLTNSELL and VSLSNGVSV. Both epitopes were found to be
non-toxic and non-immunogenic. However, the YMLTNSELL
epitope was classified as non-antigenic and non-allergenic, while
the VSLSNGVSV epitope was antigenic but allergenic. The G
protein H-2-Db MHC class epitopes examined were LAMIISTSL
and AMIISTSLI. These epitopes were determined to be non-toxic
and non-immunogenic but were predicted to be allergenic.

3.5 HTL epitope prediction and binding
affinity analysis with MHC2 allele

RSV F and G glycoproteins were further analyzed to identify
additional epitopes with desirable immunological and safety
characteristics, focusing on the H-2-IAb and H-2-Iad MHC class
contexts (Table 2). For the H-2-Iab MHC class, the following F
protein epitopes were selected for analysis: GVGSAIASGIAVSKYV,
TREFSVNAGVTTPLS, and EFSVNAGVTTPLSTY. All three
epitopes were found to be non-toxic and non-allergenic.
However, only TREFSVNAGVTTPLS and EFSVNAGVTTPLSTY
were determined to be immunogenic. The G protein epitopes
examined for the H-2-Iab MHC class were: IAAIIFIASANHKVT,
IIFIASANHKVTLTT, and AITFIASANHKVTLT. All three of these
epitopes exhibited antigenic, non-toxic, and non-allergenic
properties. For the H-2-Iad MHC class, the selected F protein
epitopes were: MELLIHRSSAIFLTL, GVGSAIASGIAVSKYV, and
ATASGIAVSKVLHLE. All of these epitopes were found to be
antigenic, non-toxic, and non-allergenic. The G protein epitopes
analyzed for the H-2-Iad MHC class were NLKSIAQITLSILAM,
AAITFIASANHKVTL, and KLNLKSIAQITLSIL. These epitopes
were all identified as antigenic and non-toxic. However, only the
NLKSIAQITLSILAM epitope was predicted to be an allergen, while
AAIIFIASANHKVTL and KLNLKSIAQITLSIL were classified as
non-allergenic.

3.6 Prediction Of B-cell epitopes

The IEDB (Immune Epitope Database) server was utilized to
analyze the F and G protein and identify potential epitopes. The
epitopes that exceeded the 0.5 threshold were then evaluated for
their allergenicity, antigenicity, immunogenicity, and toxicity
characteristics. The epitope that exhibited the highest score in the
IEDB analysis was deemed the most promising candidate for
further study. Based on the comprehensive evaluation using the
IEDB server, a subset of F and G protein epitopes was selected for
further analysis due to their potential to induce a B-cell response
(SF1 and SF2). The selected F protein epitopes were ETKCNGTDT,
KCTASNKN, and NTPVTLS. All three were found to be antigenic.
However, only the NTPVTLS epitope was determined to be both
immunogenic and non-toxic, making it the most promising
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TABLE 1 List of overall attributes of MHC class | interacting CTL epitopes that were employed for designing a vaccine construct.

10.3389/fimmu.2025.1546254

MHC-I Allele Epitope Protein Length Immunogenicity = Antigenicity Allergenicity Toxicity
score Score
HLA1 LTLAINALY Fusion Glycoprotein 9 0.18582 0.7147 Allergen Non-Toxin
LSALRTGWY Fusion Glycoprotein 9 0.2465 1.1132 Non-allergen Non-Toxin
YTSVITIEL Fusion Glycoprotein 9 0.3248 0.6842 Allergen Non-Toxin
LLFISSCLY Attachment 9 -0.19689 0.1194 Allergen Toxin

Glycoprotein
SQVHTTSEY Attachment 9 0.03917 0.6339 Allergen Non-Toxin

Glycoprotein
TTSQSTTIL Attachment 9 -0.1843 0.3578 Allergen Non-Toxin

Glycoprotein
HLA II/H-2-T1Ad MELLIHRSSAIFLTL Fusion Glycoprotein 15 0.16576 0.4136 Non-allergen Non-Toxin
LLIHRSSAIFLTLAI Fusion Glycoprotein 15 0.12489 0.6449 Non-allergen Non-Toxin
ELLIHRSSAIFLTLA Fusion Glycoprotein 15 0.18756 0.4213 Allergen Non-Toxin
NLKSIAQITLSILAM Attachment 15 -0.04729 0.9619 Allergen Non-Toxin

Glycoprotein
KLNLKSIAQITLSI Attachment 14 -0.26934 1.1468 Non-allergen Non-Toxin

Glycoprotein
LYKLNLKSIAQITLS Attachment 15 -0.2629 0.9181 Allergen Non-Toxin

Glycoprotein
HLA II/H-2-IAb FYQSTCSAVSRGYLS  Fusion Glycoprotein 15 -0.38997 0.5709 Non-allergen Non-Toxin
GVGSAIASGIAVSKV | Fusion Glycoprotein 15 -0.13683 0.6023 Non-allergen Non-Toxin
TREFSVNAGVTTPLS | Fusion Glycoprotein 15 0.1929 0.3074 Non-allergen Non-Toxin
TAAIIFIASANHKVT Attachment 15 0.30119 0.6127 Non-allergen Non-Toxin

Glycoprotein
AIIFIASANHKVTLT Attachment 15 0.08604 0.7845 Allergen Non-Toxin

Glycoprotein
IIFIASANHKVTLTT Attachment 15 -0.00772 0.6941 Non-allergen Non-Toxin

Glycoprotein
H-2-Db YMLTNSELL Fusion Glycoprotein 9 -0.04855 0.2930 Non-allergen Non-Toxin
VSLSNGVSV Fusion Glycoprotein 9 -0.20629 0.8926 Allergen Non-Toxin
LAMIISTSL Attachment 9 -0.01311 0.5518 Allergen Non-Toxin

Glycoprotein
AMIISTSLI Attachment 9 -0.09354 0.3295 Allergen Non-Toxin

Glycoprotein

candidate from this group for further investigation. Similarly, a set
of G protein epitopes was selected for analysis: LSGTTSQST,
MSKTKDQRTAKT, and TNQIKNTTPTYLTQN. All three G
protein epitopes were identifled as antigenic and non-toxic.
However, none were predicted to be immunogenic (Table 3).

3.7 Prediction of interferon-gamma-
inducing epitopes

In addition to the B-cell response-inducing epitopes, the

analysis also identified a set of interferon-gamma-inducing F
protein epitopes that were selected for further investigation. These
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epitopes were LPIGAVSIVAIALLL, IGAVSIVAIALLLRL, and
PIGAVSIVAIALLLR. All three were found to be antigenic,
immunogenic, and non-toxic, making them promising candidates
for inclusion in a multi-epitope vaccine construct. The analysis also
identified a single G protein epitope, TNQIKNTTPTYLTQN, that
was also selected for further consideration (Table 4).

3.8 Multi-epitope vaccine design
Based on the detailed analysis and evaluation of the F and G

protein epitopes, a multi-epitope vaccine construct was designed
that met the criteria for antigenicity, allergenicity, toxicity, and
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TABLE 2 List of overall attributes of MHC class Il interacting HTL epitopes used for designing a vaccine construct.

MHC-II Allele Epitope Protein Length Immunogenicity = Antigenicity Allergenicity Toxicity
Score Score

HLA II/H-2-IAb GVGSAIASGIAVSKV | Fusion Glycoprotein 15 -0.13683 0.6023 Non-allergen Non-Toxin
TREFSVNAGVTTPLS = Fusion Glycoprotein 15 0.1929 0.3074 Non-allergen Non-Toxin
EFSVNAGVTTPLSTY = Fusion Glycoprotein 15 0.03026 0.2190 Non-allergen Non-Toxin
TAAIIFIASANHKVT Attachment 15 0.30119 0.6127 Non-allergen Non-Toxin

Glycoprotein
IIFIASANHKVTLTT Attachment 15 -0.00772 0.6941 Non-allergen Non-Toxin

Glycoprotein
AIIFIASANHKVTLT Attachment 15 0.08604 0.7845 Allergen Non-Toxin

Glycoprotein
HLA II/H-2-T1Ad MELLIHRSSAIFLTL Fusion Glycoprotein 15 0.16576 0.4136 Non-allergen Non-Toxin
GVGSAIASGIAVSKV | Fusion Glycoprotein 15 -0.13683 0.6023 Non-allergen Non-Toxin
AJASGIAVSKVLHLE Fusion Glycoprotein 15 -0.23339 0.8407 Non-allergen Non-Toxin
NLKSIAQITLSILAM Attachment 15 -0.04729 0.9619 Allergen Non-Toxin

Glycoprotein
AAIIFIASANHKVTL Attachment 15 0.21554 0.6395 Non-allergen Non-Toxin

Glycoprotein
KLNLKSTAQITLSIL Attachment 15 -0.23436 1.1468 Non-allergen Non-Toxin

Glycoprotein

population coverage. The final vaccine construct comprised a  residue long G protein multi-epitope vaccine construct included 11
sequence of 315 amino acid residues, which incorporated non-  cytotoxic T lymphocyte (CTL) epitopes, 6 helper T lymphocyte
overlapping epitopes selected from the F protein. The vaccine  (HTL) epitopes, and 3 B-cell-inducing epitopes. The same linker
design included 11 cytotoxic T lymphocyte (CTL) epitopes, six  strategies used for the F protein epitopes were also applied to the G
helper T lymphocyte (HTL) epitopes, and three B-cell-inducing  protein epitopes to facilitate appropriate presentation and
epitopes. To facilitate the appropriate presentation and processing  processing. Specifically, the CTL epitopes were joined using AAY
of the different epitope types, specific linker sequences were utilized  linkers, the HTL epitopes were connected by GPGPG linkers, and
to connect the epitopes within the multi-epitope vaccine construct.  the B-cell-inducing epitopes were linked using KK linkers. The
The CTL epitopes were joined using Ala-Ala-Tyr (AAY) linkers,  visual representation of the multi-epitope vaccine construct,
which are known to enhance CD8+ T cell activation and antigen  including the arrangement and linkage of the epitopes from G
processing. The HTL epitopes were connected by Gly-Pro-Gly-Pro-  protein, is shown in Figure 1B.

Gly (GPGPG) linkers, a flexible linker sequence that allows for

optimal presentation of the helper T cell epitopes. The B-cell-

inducing epitopes were linked using KK Lys-Lys linkers, which 3.9 Evaluation of physical properties of

have been shown to improve B-cell recognition and antibody —Vaccine construct

production. The strategic arrangement of the F protein’s different

epitope types, along with the incorporation of the selected linker After constructing the multi-epitope vaccines based on the F
sequences, is depicted in Figure 1A. Similarly, a 317 amino acid  and G proteins, their physicochemical properties were determined

TABLE 3 List of overall attributes of B cell epitopes that were employed to design a vaccine construct.

Protein Epitope Length  Immunogenicity Antigenicity Allergenicity Toxicity
Fusion ETKCNGTDT 9 -0.05293 0.9375 Non-allergen Toxin
Glycoprotein
KCTASNKN 8 -0.29722 1.2880 Allergen Toxin
NTPVTLS 7 0.0653 1.1172 Allergen Non-Toxin
Attachment LSGTTSQST 9 -0.26229 0.7385 Non-allergen Non-Toxin
Glycoprotein
MSKTKDQRTAKT 12 -0.33818 0.6219 Non-allergen Non-Toxin
TNQIKNTTPTYLTQN 15 -0.06634 0.5845 Allergen Non-Toxin
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TABLE 4 List of overall attributes of Interferon-Gamma inducing F and G glycoprotein epitopes that were employed to design a vaccine construct.

Protein Epitope Position Immunogenicity Antigenicity Allergenicity Toxicity

Fusion LPIGAVSIVAIALLL 15 0.35299 1.1321 Non-allergen Non-Toxin
Glycoprotein

IGAVSIVAIALLLRL 15 0.26838 1.1321 Non-allergen Non-Toxin

PIGAVSIVAIALLLR 15 0.27879 1.0998 Allergen Non-Toxin

Attachment X

i TNQIKNTTPTYLTQN 15 -0.06634 0.5845 Allergen Non-Toxin

Glycoprotein

and compared with the original F and G protein values reported in
(Supplementary Table S3). The analysis revealed that the number of
amino acids in the vaccine constructs was reduced to 315 and 317
for the F and G protein-based vaccines respectively, compared to
the original full-length protein sequences. The molecular weight of
the F protein-based vaccine construct decreased from 63,750.57 Da
to 31,982.84 Da, while the G protein-based vaccine showed a slight
decrease from 35,190.86 Da to 33,292.41 Da. The theoretical
isoelectric point (pI) values of the F and G protein-based vaccine
constructs were calculated to be 9.46 and 10.07, respectively. The
grand average of hydropathicity (GRAVY) values for the F and G

protein-based vaccine constructs were positive, at 0.448 and 0.598
respectively, indicating that the proteins are generally hydrophobic.
The aliphatic index, which provides an estimate of the relative
volume occupied by aliphatic side chains, was higher for the vaccine
constructs compared to the original proteins, with values of 101.40
for the F protein-based vaccine and 117.22 for the G protein-based
vaccine. The instability index, which predicts the stability of a
protein, was less than 40 for both the F and G protein-based vaccine
constructs, at 24.42 and 20.22, respectively, suggesting that both
vaccine constructs are stable. The extinction coefficient values,
which indicate the amount of light absorbed by a protein
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Multi-epitope vaccine construct of F glycoprotein (A) and G glycoprotein (B) with epitopes linked by different linkers. The orange color shows CTL
epitopes interconnected by AAY linkers, the green color represents HTL epitopes interconnected by GPGP linkers, and the blue color shows LBL
epitopes interconnected by KK linkers. BAFF and APRIL adjuvants are connected to the N-terminus via EAAK linkers.
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solution, were calculated to be 30,955 M-1 cm-1 for the F protein-
based vaccine and 20,860 M—1 cm-1 for the G protein-based
vaccine. The antigenic values for the F and G protein-based
vaccine constructs were 0.5996 and 0.6048 respectively, which are
higher than the threshold of 0.4, confirming their antigenic
potential. Both the F and G protein-based vaccine constructs were
also assessed to be non-allergenic. Overall, the physicochemical
characterization of the multi-epitope vaccine constructs
demonstrated favorable properties, including reduced molecular
weight, improved stability, and retained antigenicity, compared to
the original F and G proteins, indicating their suitability for further
development and evaluation as potential respiratory syncytial virus
vaccine candidates.

3.10 Evaluation of antigenic and
allergenicity properties of the
vaccine constructs

The antigenicity of the vaccine constructs derived from the F
(fusion) and G (attachment) proteins was predicted using the
default settings in the antigenicity prediction tool, with a
threshold value of 0.4. The overall antigenicity prediction score
for the F protein-based vaccine construct was 0.5996, while the
score for the G protein-based vaccine construct was 0.6048. Both of
these scores exceeded the 0.4 thresholds, indicating that the vaccine
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constructs derived from the F and G proteins were likely to be
“Probable ANTIGENS”. This antigenicity analysis revealed that
both the F and G protein-based vaccine constructs exhibited strong
antigenic potential. Allergen and AllerTOP tools revealed that the
vaccine against F protein and G protein was “Probable Non-
Allergen” (Data not shown).

The TMHMM server was used to analyze the presence and
distribution of transmembrane helices in the vaccine constructs,
derived from the F and G glycoproteins. For the F glycoprotein
vaccine construct, the analysis revealed the presence of two
transmembrane helices. The amino acids were distributed as
1) Outside region: Amino acids 1-19 and 78-315;
transmembrane helices (purple); Amino acids 20-42 and 55-77. 2)

follows:

Inside region (between transmembrane helices): Amino acids 43-
54. This distribution indicated that the majority of the amino acids
in the F protein-based vaccine construct were located in the outside
region, which is the extracellular domain of the protein. The SignalP
server was used to analyze the signal peptide and cleavage site
predictions. For the F glycoprotein vaccine construct, the analysis
revealed that the C-score showed a distinct peak at the 23rd amino
acid position, indicating the predicted cleavage site. S-score (signal
peptide score graph showed the presence of a signal peptide
sequence. The Y-score which combines the C-score and S-score,
also reached a maximum at the 23rd amino acid position, further
confirming the predicted cleavage site. These results suggest that the
F glycoprotein vaccine construct is likely to be cleaved at the 23rd
amino acid position, resulting in the removal of the signal peptide
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TMHMM server for the prediction of the nature of amino acid residues. (A) Nature of amino acid residues of F protein and prediction of the presence
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and the presentation of the mature, processed form of the
antigen (Figure 2A).

Similarly, the analysis of the G glycoprotein vaccine construct
revealed the presence of five transmembrane helices. The amino
acid distribution was as follows: 3) Outside region: Amino acids 1-
31, 99-107, and 166-234; transmembrane helices (purple); amino
acids 32-54, 76-98, 108-130, 143-165, and 235-257. 4) Inside region
(between transmembrane helices): Amino acids 55-75, 131-142, and
258-317 Again, most of the amino acids in the G protein-based
vaccine construct were in the outside region, which is the
extracellular domain of the protein. For the G glycoprotein
vaccine construct, the SignalP analysis showed that the Cleavage
Site Score (C-score) peaked at the 18th amino acid position,
indicating the predicted cleavage site. The Signal Peptide Score
(S-score) graph suggested the presence of a signal peptide sequence.
The Y-score also reached a maximum at the 18th amino acid
position, corroborating the predicted cleavage site. These results
suggest that the G glycoprotein vaccine construct is predicted to be
cleaved at the 18th amino acid position, leading to the removal of
the signal peptide and the exposure of the mature antigen
(Figure 2B). We identified the signal peptide cleavage sites for
both the F and G glycoprotein vaccine constructs. These signal
peptide cleavage sites ensure the proper processing and
presentation of the antigens to the immune system.

3.11 Prediction of secondary structure

The secondary structure of the F and G glycoprotein vaccine
constructs was predicted, using the PSIPRED algorithm. For the F
glycoprotein vaccine construct, the analysis revealed that the
secondary structure composition contained 23.7% helices, 13.70%
strands, and 34.67% coils. The results showed that the F protein-
based vaccine construct is predominantly composed of coil regions,
with a significant proportion of helical structures and a smaller
fraction of beta-strand regions. The analysis of the G glycoprotein
vaccine construct showed a similar trend, with the secondary
structure dominated by helical elements, followed by coils and
strands. A helical structure was observed in both the F and G
protein-based vaccine constructs which play a crucial role in
maintaining the native-like conformation of proteins and
preserving the integrity of important functional epitopes (SF3
and SF4).

3.12 Three-dimensional structural
modeling, interaction, and stability

We predicted the three-dimensional structure of the vaccine
constructs namely, F1, F2, F3 for F-glycoprotein and G1, G2, G3 for
G-glycoprotein. The structure modeling was performed using the
latest artificial intelligence (AI) and machine learning (ML) based
algorithm Alphafold3 webserver (31). The TLRI1 toll-like receptor
sequence for Mus musculus was retrieved using the UniProt
database (Uniprot ID-B9EJ46). The structure for the TLRI
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receptor was also predicted using the Alphafold3 server. All
models obtained were of high quality with pIDDT scores for all
reported to be >70. Further, we wanted to test if the vaccine
candidates would bind and, in turn, block the TLR receptors.
Hence, the 3D models for all proteins (TLR and vaccine
candidates) were then used to predict TLR: vaccine complexes.
The protein: protein docking simulation models were performed
using the ClusPro docking algorithm (32).

We found that all vaccine candidates could occupy the
interaction binding pocket on the TLR receptor. The interactions
were mostly charged where critical positive and negative amino
acids formed the salt bridges and combined with pi-pi interaction
through bulky hydrophobic residues. The interaction is shown for
TLRI1:F1 (Figure 3A top), TLR1:F2 (Figure 3B top), TLRI:F3
(Figure 3C top), TLR1:G1 (Figure 4A top), TLR1:G2 (Figure 4B
top), TLR1:G3 (Figure 4C top). Important interaction residues
found are listed in Supplementary Table S4.

We then verified the stability of the TLR:vaccine complex using
dynamics and stability analysis using CabsFlex 2.0 standalone (30).
We found the TLR: vaccine candidates to be very stable and had the
per residue fluctuation (RMSF) within the required limits through
time. The RMSF plots are shown for TLR1:F1 (Figures 3B, C, TLRI:
F2 (Figures 3B, C), TLR1:F3(Figures 3B, C), TLR1:G1 (Figures 4B,
C), TLR1:G2 (Figures 4B, C), TLR1:G3 (Figures 4B, C). Though all
vaccine candidates were within the allowed RMSF limit, the best
ones found were G1 and G2, with the least residue fluctuations. The
higher fluctuations observed at the C-terminal ends of all the
vaccine candidates are due to the extended unstructured region
on the candidates, which includes the 6xHistag. Overall, we found
all predicted vaccine candidates to be well-folded and specifically
targeting the TLR domains.

3.13 Immune stimulation

The immune simulation results showed a significant increase in
the primary, secondary, and tertiary immune responses,
corresponding with a reduction in antigen concentration (Figure
5). The levels of IL-2 were found to align with the measure of
diversity, indicating a robust immune activation. Furthermore, an
increase in diversity over time is interpreted as a danger signal,
particularly in conjunction with the presence of leukocyte growth
factor. Thus, a lower measure of diversity value reflects diminished
immune diversity, suggesting potential implications for the
effectiveness of the immune response.

4 Discussion

Over the past few years, significant resources and efforts have
been dedicated to developing a safe and effective vaccine against
hRSV, a major respiratory pathogen. Natural RSV infection fails to
provide lasting immunity, leading to multiple infections throughout
an individual’s life. Consequently, designing a vaccine that
effectively mimics the immune response generated by natural
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FIGURE 3

Three-dimensional protein complex between [(A): Top] TLR1 domain (green) and F1 vaccine candidate (red), [(B): Top] TLR1 domain (green) and F2
vaccine candidate (slate-blue) and [(C): Top] TLR1 domain (green) and F3 vaccine candidate (magenta) shown in cartoon representation. Root mean
square fluctuation (RMSF) plots for the interaction between TLR1 and vaccine candidates are below the respective structural representation arranged
accordingly. The RMSF value is also mentioned on the plot with n=3. Interaction residues also mentioned in the Supplementary Table are shown

as sticks.

RSV infection, while accounting for the variability among different
viral strains remains a substantial challenge for researchers (37).
The emergence of diverse vaccine candidates utilizing various
technologies presents an opportunity to tailor immunization
strategies to meet the specific needs of vulnerable age groups.
Arexvy® (GSK) and Abrysvo®
advancements in this area, being the first vaccines approved to
prevent hRSV infections in older adults (3). Notably, Abrysvo®
extends its utility by offering passive immunization for infants

(Pfizer) are significant

through maternal administration during pregnancy, thereby
providing dual protection for both mothers and their newborns
(38). Utilizing the mRNA platform, Moderna received U.S. FDA
approval for the RSV vaccine mRESVIA(mRNA-1345). These
approaches underscore the importance of developing age-specific
vaccine strategies that can effectively address the unique
immunological challenges faced by different populations (3, 38).
These innovative vaccines pave the way for more personalized and
effective immunization programs against hRSV (38).

Recent advancements in computational biology,
immunoinformatics, and reverse vaccinology hold promise for
accelerating the development of safe and effective vaccines in a
more time- and cost-efficient manner (39, 40). By leveraging
genomic and proteomic data, we can identify potential epitopes
and design vaccines with immunogenic subunits that elicit long-
lasting immunity, facilitating the validation of these candidates in
preclinical settings (41, 42). In this study, we employ
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immunoinformatic approaches to identify key B cells, cytotoxic T
lymphocyte (CTL), and helper T lymphocyte (HTL) epitopes
derived from F and G proteins of hRSV, to develop a highly safe,
synthetic multi-component vaccine tailored for the human host.

In this study, we employed several complementary tools to
ensure a robust analysis of potential epitopes derived from the F and
G glycoproteins of the hRSV. For Cytotoxic T Lymphocyte (CTL)
epitope prediction, we utilized both the NetCTL v1.2 and the
Immune Epitope Database (IEDB) tools. NetCTL focuses on
predicting CTL epitopes based on their binding affinities to MHC
class I molecules, providing a quantitative measure of potential
immunogenicity. Meanwhile, IEDB offers additional validation
through a comprehensive database of experimentally confirmed
epitopes, enhancing the reliability of our findings. For Helper T
Lymphocyte (HTL) epitope prediction, we employed NetMHCII
pan 3.287 alongside IEDB, allowing us to cross-verify predictions
and bolster confidence in the selected epitopes for further analysis.
This dual approach is critical, as it ensures that our predicted HTL
epitopes are not only computationally validated but also supported
by empirical data. Additionally, for B-cell epitope prediction, we
relied on IEDB for preliminary assessments while further
investigating the epitopes through VaxiJen v2.0 and AllergenFP
v1.0. This multifaceted approach enabled us to evaluate the
antigenicity and allergenic potential of the identified epitopes
comprehensively, laying a solid foundation for the design of a
safe and effective multi-epitope vaccine against hRSV.
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Three-dimensional protein complex between [(A): Top] TLR1 domain (green) and G1 vaccine candidate (gray), [(B): Top] TLR1 domain (green) and G2
vaccine candidate (cyan) and [(C): Top] TLR1 domain (green) and G3 vaccine candidate (orange) shown in cartoon representation. Root means
square fluctuation (RMSF) plots for the interaction between TLR1 and vaccine candidates are below the respective structural representation arranged
accordingly. The RMSF value is also mentioned on the plot with n=3. Interaction residues also mentioned in the Supplementary Table are shown

as sticks.

An emerging and important field of research is multi-epitope
vaccines. Multi-epitope vaccinations offer the benefit of reducing
undesirable effects, such as allergies and antigenic load. This results
in a more specific immune response toward conserved epitopes
without the reversion of the pathogenesis of the virus. The
combined effect of the present epitopes from various antigens
exceeds an isolated antigen epitope’s ability to stimulate an
immune response, including both humoral and cell-mediated
responses. Multi-epitope vaccinations have been developed to
limit a diverse range of diseases (43). From a pharmacological
perspective, multi-epitope vaccinations exhibit advantageous
characteristics. Multi-epitope vaccines can be effectively and
economically generated due to their focus on chemically well-
characterized peptides. The multi-epitope vaccination can protect
a broad spectrum of pathogens or different strains of a certain
pathogen, particularly for highly adaptable pathogens that undergo
many mutations and give rise to new variations (44).

The physicochemical characterization of F and G protein-based
multi-epitope vaccines revealed a reduction in the size of 574-
amino-acid-long F glycoprotein (molecular weight: 63,750.57 Da)
to 315 amino acids (molecular weight: 31,982.84 Da), and 321-
amino acid-long G glycoprotein (molecular weight: 35,190.86 Da)
to 317 amino acids (molecular weight: 33,292.41 Da). The pl values
of 9.46 and positive GRAVY value of 0.448 for F protein-based
vaccine constructs, along with the pI value of 10.07, and positive
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GRAVY values of 0.598 for G protein-based vaccine constructs,
indicated the basic and hydrophobic nature of these vaccines.

Additionally, the higher aliphatic index, with values above 100,
and the instability index values below 40 for both the F and G
protein-based vaccine constructs, highlight the significant relative
volume occupied by aliphatic side chains and the stability of these
protein-based vaccine constructs. These favorable physicochemical
properties, compared to the original F and G proteins indicate their
potential suitability for further development and evaluation as
hRSV vaccine candidates. The findings of this research align with
a previous study, which reported similar physiochemical stability in
multi-epitope-based vaccine design against hRSV (45).

The F and G protein-based vaccine constructs demonstrated
higher antigenicity, with values of 0.5996 and 0.6048, respectively.
AllerTOP analysis further confirmed the non-allergic nature of the
selected proteins for the hRSV vaccine. This antigenic and non-
allergenic profile suggests that the vaccine constructs have the
potential to stimulate an active immune response against the
hRSV without triggering allergic reactions in humans.
Consequently, these proteins are promising candidates for
developing a vaccine against hRSV.

A similar study reported the antigenic and non-allergic
properties of the multi-epitope vaccine candidates using the
AntigenPro and Vaxijen servers (46). Furthermore, research on
RSV on structural proteins, such as MHC II, 3 B-cell epitopes, and
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6MHC-I revealed their antigenic and non-allergic nature. These
characteristics demonstrated their ability to stimulate immune
responses and prevent viral replication (47, 48). The distribution
of transmembrane helices in the F and G glycoproteins was
analyzed using the TMHMM server, revealing that the proteins
consist of 315 and 317 amino acids, respectively. The F protein
contains two transmembrane helices, with 256 of its amino acids in
the extracellular region. In contrast, the G protein has five
transmembrane helices, with 107 residues in its extracellular
region. These results suggest that most amino acids in these
protein-based vaccine constructs are located in the extracellular
domains of the proteins. The presence of transmembrane helices
was similarly reported in a previous study involving the TMHMM
server, which identified two transmembrane helices in the envelope
protein (49).

The secondary structure analysis of the F glycoprotein-based
vaccine construct revealed a predominant composition of coil
regions (34.67%), followed by a significant proportion of helical
structures (23.7%) and a smaller fraction of beta-strand regions
(13.7%). A similar trend was observed in the G glycoprotein-based
vaccine construct, with its secondary structure dominated by helical
elements, followed by coils and strands. These findings are
consistent with another study that reported a comparable pattern
of secondary structures (45). The G and F glycoproteins play critical
roles in the early stages of hRSV infection (6). Historically,
determining whether the G protein was of viral or host origin
posed challenges due to variations in the cell lines, virus strains, and
protein detection technologies, all of which influenced the observed
size and presence of the G protein. Notably, inhibiting the cleavage
of the G-protein and incorporating it into a live attenuated RSV
vaccine candidate could result in a virus with an intact G protein,
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leading to a 5-fold increase in infectivity for the nasal epithelium -
the primary site of vaccine administration (50).

In combination with the secondary structure data, the three-
dimensional modeling using the advanced AI-ML-based
Alphafold3 method revealed that the vaccine candidates form
well-folded proteins with optimal plIDDT values. Molecular
docking and dynamics refinement demonstrated that all vaccine
candidates exhibit strong interactions with the TLR domain
through charged and hydrophobic interactions, forming a tight
bonds. The observed interaction patterns align with previously
studied vaccine-TLR receptor complex models (51).

The F protein exhibits a higher degree of conservation
compared to the G protein, making it the primary target for RSV
development. The pre-fusion F protein is the main target of
antibody neutralization in the sera of individuals who have
experienced multiple RSV infections throughout their lifetime
(52). Due to its capacity to elicit a higher concentration of
neutralizing antibodies, most vaccine research has focused on the
F protein. Prior infection and elevated levels of neutralizing
antibodies, particularly those passed down from the mother,
provide partial protection against the disease. Moreover, the use
of a neutralized F protein mAbs in immunological prophylaxis
underscores the critical role of the F protein in RSV vaccine
development (53).

In this study, we strategically chose Toll-like receptors (TLRs) 2
and 4 due to their pivotal roles in immune recognition and their
established potential as adjuvants, supported by robust literature.
TLR2 and TLR4 are integral to the innate immune system,
recognizing a diverse array of pathogen-associated molecular
patterns (PAMPs) and playing a critical role in the initiation of
immune responses (54). This foundational function is essential for
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the effective development of vaccines, as their activation can
significantly enhance the adaptive immune response.
Furthermore, existing research underscores the efficacy of
targeting these receptors in various vaccine strategies, affirming
their relevance and effectiveness in enhancing vaccine efficacy (55).
This comprehensive rationale underscores our decision to focus on
TLR2 and TLR4, making these vaccine candidates achieve
improved immune responses against hRSV.

5 Conclusions

This study highlights the promising potential of multi-epitope
vaccines developed through immunoinformatics for combating
hRSV. We have designed an F and G proteins-based synthetic
vaccine that aims to elicit robust immune responses while
minimizing adverse effects. The physicochemical characterization
of the vaccine constructs indicates favorable properties, including
stability and non-allergenic profiles, enhancing their suitability for
further development. Additionally, it was demonstrated to stimulate
immune responses in both cells and antibodies without triggering
type 2 immunity, which are typically associated with RSV infection.
This study highlights the potential of bioinformatics-based methods
in developing effective therapies for emerging viruses, particularly
under constraints such as restricted time and resources. However,
these findings are derived from in silico computational analysis and
must be validated through experimental studies with in vivo and in
vitro models in laboratory settings. Overall, this research
contributes to the ongoing efforts in vaccine innovation, paving
the way for effective and safe immunization strategies against hRSV.
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Mediterraneibacter gnavus, also known as Ruminococcus gnavus, is a Gram-
positive anaerobic bacterium that resides in the human gut microbiota. Notably,
this bacterium plays dual roles in health and disease. On one side it supports
nutrient metabolism essential for bodily functions and on the other it contributes
to the development of Inflammatory Bowel Disease (IBD) and other
gastrointestinal disorders. R. gnavus strain RIX1120 is an encapsulated strain
and has been linked to develop IBD. Despite the advances made on its role in gut
homeostasis, limited information is available on strain-specific virulence factors,
metabolic pathways, and regulatory mechanisms. The study of such aspects is
crucial to make microbiota-targeted therapy and understand its implications in
host health. A multi-epitope vaccine against R. gnavus strain RIX1120 was
designed using reverse vaccinology-based subtractive proteomics approach.
Among the 3,219 proteins identified in the R. gnavus strain RJX1120, two
critical virulent and antigenic proteins, a Single-stranded DNA-binding protein
SSB (AOA2N5PTO08) and Cell division ATP-binding protein FtsE (AOA2N5NKO5)
were screened and identified as potential targets. The predicted B-cell and T-cell
epitopes from these proteins were screened for essential immunological
properties such as antigenicity, allergenicity, solubility, MHC binding affinity,
and toxicity. Epitopes chosen were cross-linked using suitable spacers and an
adjuvant to develop a multi-epitope vaccine. Structural refinement of the
construct revealed that 95.7% of the amino acid residues were located in
favored regions, indicating a high-quality structural model. Molecular docking
analysis demonstrated a robust interaction between the vaccine construct and
the human Toll-like receptor 4 (TLR4), with a binding energy of —1277.0 kcal/mol.
The results of molecular dynamics simulations further confirmed the stability of
the vaccine-receptor complex under physiological conditions. In silico cloning of
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the vaccine construct yielded a GC content of 48% and a Codon Adaptation
Index (CAI) value of 1.0, indicating optimal expression in the host system. These
results indicate the possibility of the designed vaccine construct as a candidate
for the prevention of R. gnavus-associated diseases. However, experimental
validation is required to confirm its immunogenicity and protective efficacy.

Ruminococcus gnavus, multi-epitope vaccine, reverse vaccinology, inflammatory
bowel disease (IBD), subtractive proteomics, immunoinformatics

Introduction

R. gnavus is a gram-positive anaerobic bacterium that is a key
component of the human gut microbiota, playing significant roles in
both health and disease (1). This bacterium is currently of interest due
to its association with IBD and its ability to produce pro-
inflammatory polysaccharides that modulate host immune
responses (2). Among these strains, RJX1120 stands out for its role
in gut inflammation and distinctive genetic characteristics (3). R.
gnavus is mostly considered a commensal organism but often
becomes a pathobiont in dysbiotic conditions and can be associated
with diseases like Crohn’s disease and ulcerative colitis (4). Its
interactions with mucosal surfaces, the production of mucin-
degrading enzymes, and its ability to produce immunomodulatory
metabolites have been implicated in disease pathogenesis (5). The
pathogenic potential of R. gnavus underscores the understanding of
the virulence determinants and the molecular mechanisms (6).
Currently, no licensed vaccine exists for R. gnavus, despite its
association with inflammatory bowel disease (IBD) and other
gastrointestinal disorders. This highlights an urgent need for novel
vaccine strategies. Traditional vaccine development relies on
culturing and isolating antigens, which is labor-intensive and time-
consuming. In contrast, computational vaccine design offers a more
efficient and targeted approach by identifying immunogenic proteins
through reverse vaccinology and subtractive proteomics. Proteomic
studies are very relevant for revealing the specializations of RJX1120
to unveil its potential therapeutic goals and thus help in generating
preventive mechanisms (7).

R. gnavus exhibits significant adaptability and resilience in the
human gut, which may contribute to its potential resistance to
therapeutic interventions (2). This bacterium is known for its ability
to degrade complex carbohydrates and mucins, producing
metabolites such as short-chain fatty acids (e.g., propionate) that
enhance its competitiveness and survival in the gut microbiota (8).
In addition, the capacity to immunomodulate through
immunogenic polysaccharides could enable this microbe to evade
host immunity and promote long-term persistence in the gut (3).
Although direct evidence for the presence of antimicrobial
resistance mechanisms in R. gnavus is scanty, the effects of
horizontal gene transfer of resistance genes are favored by its
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metabolic versatility (9). Understanding the mechanism of its
resistance, such as its biofilm formation ability and possibly
resistance-determining factors, is important to define suitable
therapeutic strategies against pathogenic strains without
disrupting the homeostasis of gut microbiota (10).

Subtractive proteomics represents a strategic approach for
identifying pathogen-specific proteins important for survival but
missing from the host proteome (11). In comparison, the unique set
of proteins characteristic to R. gnavus points out the drug target
candidates and vaccine targets (12). In subtractive proteomics, the
subtraction of homologous proteins in the host background
removes the critical proteins involved in pathogenicity in the
bacterium but avoids the unwanted effects that would otherwise
result in drug and vaccine therapies (11). A bioinformatics-driven
approach called reverse vaccinology complements subtractive
proteomics, antigenic proteins to be used in vaccines are analyzed
by reverse vaccinology (11). Such proteins are likely to be surface-
exposed, conserved among strains, and capable of inducing potent
immune responses (12). Reverse vaccinology does not require
isolation and culture of the pathogen, making vaccine discovery
for complex organisms like R. gnavus significantly faster.
Subtractive proteomics combined with reverse vaccinology offers
an integrative approach to designing new vaccines and drugs
against R. gnavus. The membrane and secreted proteins are the
most relevant for vaccine development because these are exposed to
the host immune system (13). Cytoplasmic proteins are the most
suitable drug targets, as they are often critical to bacterial
metabolism and survival (14). Using these approaches,
multiepitope vaccine constructs can be designed by selecting
epitopes from membrane-bound proteins that are non-allergenic,
antigenic, and non-toxic (15). These vaccines can induce targeted
immunity to pathogenic strains of R. gnavus and maintain the
commensal balance of the gut microbiota.

In order to create a targeted vaccination against R. gnavus strain
RJX1120, this study explores the pathogenic role of this bacteria in
inflammatory bowel disease (IBD). The study finds possible vaccine
candidates by searching the entire proteome of R. gnavus for
essential, antigenic, and non-homologous proteins using a mix of
subtractive proteomics and reverse vaccinology. Single-stranded
DNA-binding protein (SSB) and cell division ATP-binding
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protein FtsE are two important antigenic proteins that have been
discovered as potential targets for vaccine development. B-cell and
T-cell epitopes are included in a multi-epitope vaccination
construct to produce a potent and defense-enhancing immune
response. To assess the construct’s stability, immunogenicity, and
possible effectiveness, it is subjected to molecular docking with
human Toll-like receptor 4 (TLR4), molecular dynamics
simulations, and in silico immune response simulations. Codon
optimization also guarantees effective expression in Escherichia.
coli, which makes subsequent experimental validation easier. This
study’s main premise is that the multi-epitope vaccination will
produce a strong immune response against R. gnavus, possibly
acting as a prophylactic against the diseases it causes while
maintaining the balance of the gut microbiota. To verify its
immunogenicity and protective effectiveness, more in vitro and in
vivo validation is necessary.

Materials and methods
Retrieval of proteome

The complete proteome of R. gnavus strain RJX1120 (Proteome
ID: UP000234812) was retrieved in FASTA format from the
UniProt database (16). A BLASTp search was performed against
the Database of Essential Genes (DEG) to identify essential proteins
in R. gnavus by comparing its proteome with known essential
proteins. These proteins are vital for the bacterium’s survival,
growth, and key biological processes (17). Being integral
components, these proteins are therefore crucial for an organism’s
survival in a particular environment (18). For greater refinement,
Cello tool, which predicts the subcellular localization of proteins,
was used to identify membrane-associated proteins from the list of
essential proteins (19). Due to their accessibility to the host immune
system, these membrane-associated proteins are highly promising
targets for vaccine development (20). Then the screened proteins
were analyzed for the presence of antigenicity based on a threshold
of 0.5 using Vaxijen server because the proteins with high values are
known to induce immense immune response upon exposure in the
host (21, 22). The TMHMM v-2.0 server was used to predict
potential transmembrane helices in the target proteins (23, 24).

Selection and assessment of CTL epitope

CTL epitopes for the target molecule were predicted using the
MHC-I binding tool on the Immune Epitope Database (IEDB) (25).
The consensus method was applied in the MHC-I binding tool to
predict CTL epitopes. Epitopes with a consensus score of less than 2
were selected for further study (26). Subsequently, the potential
immunogenicity of epitopes selected for CTL usage was assessed by
the use of the IEDB immunogenicity tool (27). To confirm that the
selected epitopes have strong potential to elicit an effective immune
response, their antigenicity was assessed using the VaxiJen v2.0 server
with a threshold of 0.5 (28). Only those epitopes that were considered
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antigenic were selected for incorporation in the vaccine construct (15).
It is crucial that the vaccine candidate does not induce allergic or toxic
reactions. The allergenic potential of the predicted epitopes was
evaluated using the AllerTOP v2.0 server, and their toxicity was
evaluated using the ToxinPred server (22, 29, 30). This broad
approach ensured that safe and immunogenic CTL epitopes were
identified for potential inclusion in a vaccine design.

HTL epitopes selection and analysis

Helper T lymphocytes (HTLs) are essential players in the
adaptive immune system, where they orchestrate both cell-
mediated and humoral responses against foreign pathogens (31).
HTL epitopes from the target protein were identified by using the
MHC Class II binding tool available through the Immune Epitope
Database (IEDB) (32). The search was confined to 15-mer HTL
epitopes for their binding affinity to a wide range of HLA-DR alleles
to comprehensively cover the immunological coverage and were
chosen for their optimal binding affinity and immunogenic
potential (26). All selected epitopes were evaluated for
antigenicity, allergenicity, and toxicity using the VaxiJen,
AllerTOP v2.0, and ToxinPred servers, respectively (27).

LBL epitope identification and analysis

Linear B-cell epitopes are sequences of amino acids on the
surface of proteins that can be recognized by antibodies (33). They
are recognized by either naturally occurring antibodies or receptors
on B cells, therefore able to stimulate cellular and humoral
immunity (34). Vaccine development involves such epitopes
critically because they enhance adaptive immunity through
amplification of defence mechanisms in the immune response
(35). The ABCPred server was used to predict linear B-cell
epitopes from the target protein, with the threshold set at a
minimum of 0.5 for prediction (36). After predicting epitopes,
their antigenicity, allergenicity, and toxicity were assessed using
the VaxiJen v2.0, AllerTOP v2.0, and ToxinPred servers,
respectively (22, 27, 30). This way, only immunogenic, safe, and
non-toxic epitopes were selected to be included in vaccine
design (15).

Designing of vaccine construct

The multi-epitope vaccine (MEV) construct was designed by
appropriately linking B-cell and T-cell epitopes with an adjuvant
(37). Adjuvants are crucial for enhancing the immunogenicity of
vaccine constructs, eliciting a stronger immune response in
recipients (38). In this study, cholera enterotoxin subunit B
(Accession No: P01556) was chosen due to its established ability
to enhance the immunogenic potential of vaccine constructs (39).
For linking components, EAAAK linkers were used to attach the
CTL epitopes to the adjuvant, providing structural stability and
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maintaining the functional integrity of the epitopes. GPGPG and
AAY linkers were used to connect CTL and HTL epitopes, allowing
their efficient presentation and enhancing their immune responses
(40). Bi-lysine (KK) linkers were employed to preserve the specific
immunogenic activity of linear B-cell (LBL) epitopes (41).
Systematic arrangement of the construction is essential for
immunogenic efficiency and structural stability; thus, the MEV
construct represents a promising candidate for vaccine
development (42).

Structural analysis

The structural properties of the MEV construct were analyzed
using various bioinformatics tools (43). First, the physiochemical
characteristics of the construct, such as theoretical isoelectric point
(pI), molecular weight (MW), instability index (II), aliphatic index
(AI), Grand Average of Hydropathicity (GRAVY), and in vivo/in
vitro half-life, were evaluated using the ProtParam server (44, 45).
Immunological efficacy was ensured by checking the antigenic and
immunogenic profiles of the MEV construct using the IEDB
immunogenicity tools and the Vaxijen v2.0 server (46). Allergenic
potential was computed using the AllerTOP v2.0 server to ensure
safety for the construct in its potential application in humans (42).
The SOPMA tool was used to predict secondary structural features
of the MEV construct, assessing the proportions of random coils,
alpha-helices, beta-turns, and extended chains (44, 47). These
detailed structural analyses allow researchers to understand
stability, functionality, and applicability in the development of
vaccines (48).

Refinement, confirmation, and prediction
of tertiary structure

The prediction of the tertiary structure of the MEV construct is
crucial for evaluating its structural and functional efficacy (37). For
this purpose, the 3D structure of the MEV construct was predicted
using the Alphafold server, which is a state-of-the-art tool for
accurate protein structure modeling (49). The Galaxy Refine
server was then used to refine and optimize the 3D structure for
better stereochemical quality, and to minimize any structural errors
that may occur (50). After refining the structure, the quality of the
model was analyzed using the RAMPAGE server, where it evaluates
the quality based on Ramachandran plot statistics (51). ERRAT
server was used to check for possible errors and to assess the overall
quality and reliability of the 3D structure of the MEV
construct (52).

B-cell epitopes screening
The B-cell epitopes of the MEV construct were screened

through the ABCPred online server and Ellipro tool within the
IEDB-AR v2.22 suite (53, 54). For the prediction of linear epitopes,
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the amino acid sequence of the MEV was fed into the ABCPred
server with a threshold set at 0.5 and an amino acid length fixed at
15 residues (55). For conformational epitope prediction, default
parameters were used with Ellipro to analyze the 3D structure of
MEV construct (15). The conformational approach would serve as a
complement to these studies to identify linear epitopes, while
identifying putative regions of immunogenicity in the MEV
construct (56).

Binding analysis of TLR4 receptor with the
designed vaccine

The effective recognition of the designed vaccine by the host’s
immune system is crucial for initiating a robust immune response
(56). Molecular docking studies were carried out to evaluate the
designed vaccine’s binding capability with the immune receptors.
For assessing the role of these immune receptors in stimulating the
antimicrobial and adaptive immune responses, TLR4, MHC Class I
and II were selected (57). TLR4 was selected due to its critical role in
recognizing bacterial antigens and initiating an innate immune
response (58). Protein-protein interactions between the vaccine
construct and these receptors were modeled using the ClusPro
server, which is a reliable tool for molecular docking (59). The
resulting docked complexes were visualized using Chimera, a
The
interactions within the docked complexes were analyzed by using

visualization tool for 3D molecular structures (60).

the PDBsum server that provides detailed insights into interface
residues and binding interactions (61).

Molecular dynamic simulation

Molecular dynamics simulations are computational
methodologies used to study the dynamic behavior and stability
of molecular systems such as protein-protein complexes (62).
Interaction of the designed MEV construct with the selected
receptor was analyzed by the iMODS server that proves to be a
fast and efficient tool for molecular dynamics studies (15, 63).
iMODS facilitates the exploration of dynamic properties and
transition pathways between molecular entities to gain actionable
insights into conformational changes (63). The stability of the
docked complexes was evaluated through key parameters, such as
the main-chain deformability plot, covariance matrix, eigenvalue
analysis, B-factor values, and the elastic network model (64). These
analyses provided a detailed understanding of the mechanical and
dynamic stability of the protein-protein interaction (64).

Immune simulation

The immune response to the predicted vaccine construct was
evaluated using the C-ImmSim 10.1 server (53). This platform is
designed to simulate the interactions of the immune system,
focusing on key functional components such as the bone marrow,
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lymph nodes, and thymus (65). The simulation was performed
using the following input parameters: Human Leukocyte Antigen
(HLA) alleles (DRB1 0101, B0702, A0101), a random seed (12,345),
a simulation volume of 10, one injection, and 100 steps (66). These
alleles were selected for their broad population coverage and their
relevance in antigen presentation, ensuring a diverse immune
response (67). Other parameters were set to their default values to
ensure accurate simulation of the immune response. This
comprehensive immune simulation helped assess the potential
efficacy and immunogenicity of the vaccine construct in a
simulated mammalian immune system environment (67).

Dry lab cloning and codon optimization

Codon usage is species-specific, and the presence of non-
adapted codons in a gene sequence can result in suboptimal
expression levels in the host organism (68). To enhance gene
expression, it is essential to optimize the codon usage to match
the host’s translational machinery (69). In this study, the Java
Codon Adaptation Tool (JCAT) was utilized for the optimization
and reverse translation of the MEV construct (70). During this
process, prokaryotic ribosome binding sites, Rho-independent
transcription termination signals, and appropriate restriction
enzyme cleavage sites were selected to facilitate efficient
expression and cloning (69). Subsequently, the optimized vaccine
construct was inserted into the pET30a(+) vector using SnapGene
software, ensuring a seamless cloning process for subsequent
experimental validation (71).

Result
Proteome analysis

The complete proteome of the pathogenic strain R. gnavus
RJX1120 was extracted from the UniProt database (Proteome ID:
UP000234812), and a subtractive genomics approach was applied
for the identification of potential vaccine targets against infections
caused by R. gnavus. The total number of proteins in the proteome
of the strain was found to be 3,219, and a comprehensive filtering
pipeline was applied in order to find key target proteins. Initially,
the database DEG identified 848 proteins that are essential in the
proteome of a pathogen for survival and proliferation. These
essential proteins were screened using BLASTp for non-
homologous proteins, thus narrowing them down to 245. These
245 were again screened for localization of their subcellular
positions and antigenicity. From there, the further studies have

10.3389/fimmu.2025.1555741

been conducted to further investigate the remaining 15 membrane-
associated proteins that would possibly become vaccine candidates.
These proteins were screened for their antigenicity, allergenicity,
and stability. Of these, seven had the highest antigenicity, were non-
allergenic, and very stable. The transmembrane helices of these were
further tested. The two best vaccine candidates were the Single-
stranded DNA-binding protein and the Cell division ATP-binding
protein FtsE. These proteins exhibited high antigenicity, were non-
allergenic and stable and lacked transmembrane helices (Table 1).

Epitope selection phase

Cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL),
and linear B lymphocyte (LBL) epitopes of specific antigenic
proteins were predicted during the epitope selection phase.
Among the forecasted epitopes, the top seven CTL epitopes were
selected for vaccine formulation based on their non-toxic,
immunogenic, antigenic, and non-allergenic properties (Table 2).
Similarly, the top four HTL epitopes exhibiting non-allergenicity,
antigenicity, immunogenicity, IFN-gamma induction capability,
and non-toxicity were identifled for vaccine design (Table 3).
Additionally, the top two LBL epitopes, characterized by their
antigenicity, immunogenicity, non-allergenicity, and non-toxicity,
were chosen for incorporation into the vaccine construct (Table 4).

Construction of multi epitope vaccine

The vaccine construct was designed by integrating 7 CTL
epitopes, 4 HTL epitopes, and 2 B-cell epitopes with a suitable
adjuvant and linkers. Cholera enterotoxin subunit B, consisting of
236 amino acids, was incorporated at the N-terminal of the vaccine
using an EAAAK linker to enhance immunogenicity. The CTL,
HTL, and B-cell epitopes were linked using AAY, GPGPG, and KK
linkers, respectively, to maintain their individual immunological
properties. The finalized vaccine construct comprised 347 amino
acids (Figure 1).

Population coverage analysis

A comprehensive population coverage analysis was performed
on the selected CTL and HTL epitopes utilized in the development
of the multi-epitope vaccine (MEV). The analysis revealed that the
chosen epitopes collectively covered approximately 71% of the
global population. Notably, the highest population coverage was
observed in Sweden, with an impressive 87%. Other countries also

TABLE 1 Comprehensive details regarding the antigenic vaccine protein derived from Ruminococcus gnavus.

Accession no Protein Antigenicity Allergenicity Toxicity
AOA2N5PT08 Single-stranded DNA-binding protein 0.7402 Non -allergen Non -toxin
AOA2N5NKO05 Cell division ATP-binding protein FtsE 0.5909 Non -allergen Non -toxin
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TABLE 2 Selected CTL epitopes finalized for vaccine construction targeting Ruminococcus gnavus.

Epitope Protein Position Antigenicity Immunogenicity
NLKRMKHRNIAK Cell division ATP-binding protein FtsE HLA-A*03:01 65-76 0.5296 -0.18793
VARYTVAVDRRF Single-stranded DNA-binding protein HLA-A*23:01 27-38 0.5194 0.26418

HLA-A*24:02
SVSGRIQTGSYT Single-stranded DNA-binding protein HLA-A*26:01 72-83 1.376 -0.02448

HLA-A*25:01
FRQGMRISVSGR Single-stranded DNA-binding protein HLA-A*31:01 65-76 0.9521 -0.23656
VNEMNERVITMK Cell division ATP-binding protein FtsE HLA-B*18:01 200-211 0.7641 0.09304
KRMKHRNIAKYR Cell division ATP-binding protein FtsE HLA-A*31:01 HLA-B*27:05 = 67-78 0.7392 -0.21613
NEMNERVITMKQ Cell division ATP-binding protein FtsE HLA-B*18:01 201-212 0.6243 0.01653

TABLE 3 Finalized HTL epitopes for vaccine construction targeting Ruminococcus gnavus.

Epitope Protein Position Antigenicity Immunogenicity

FAEKYFRQGMRISVS Single-stranded DNA-binding protein HLA-DRB1*15:02 60-74 0.6184 -0.21432

QGMRISVSGRIQTGS Single-stranded DNA-binding protein HLA-DRB1*07:03 67-81 1.3073 -0.0008
HLA-DRB1*13:02

RQGMRISVSGRIQTG Single-stranded DNA-binding protein HLA-DRB1*07:03 66-80 1.2518 0.1341
HLA-DRB1*13:02

SATAVARYTVAVDRR | Cell division ATP-binding protein FtsE HLA-DRB1*08:06 23-37 0.6282 0.38099

exhibited significant coverage, including the Philippines (86%),
Japan (80%), and Finland (76%). These findings substantiate the
potential of the filtered epitopes as promising candidates for
constructing an effective MEV targeting diverse populations
globally (Figure 2).

Post-analysis of vaccine structure

The stereochemical properties of the constructed vaccine were
analyzed using the ProtParam tool. The vaccine structure exhibited
a molecular weight of 38,154.87 Da and an isoelectric point (pI) of
10.30, indicating its basic nature. It contained 55 positively charged
amino acids (arginine and lysine) and 23 negatively charged amino
acids (glutamic acid and aspartic acid). The instability index of the
structure was calculated as 27.14, classifying it as stable.
Furthermore, an aliphatic index of 68.44 confirmed its
thermostability, while the GRAVY (Grand Average of
Hydropathicity) value of -0.464 indicated a hydrophilic nature.
The half-life of the vaccine was predicted to be 30 hours in
mammals (in vivo), over 20 hours in yeast (in vivo), and over 10
hours in E. coli (in vivo). Additionally, the vaccine was confirmed to
be non-allergenic, non-toxic, and antigenic.

Structural analysis of vaccine

Secondary structure analysis using SOPMA revealed that the
347-amino acid sequence comprises 162 residues forming o-helices
(46.69%), 71 residues forming extended strands (20.46%), and 114
residues involved in random coils (32.85%), indicating a well-
organized structural profile. The three-dimensional structure of
the vaccine construct was predicted using the Alphafold server,
followed by refinement through the Galaxy Refine server to
optimize structural quality. Validation of the refined model was
performed using a Ramachandran plot, which indicated that 95.7%
of amino acid residues were located in the most favorable regions,
3.0% in the allowed regions, and 0.0% in the disallowed regions
(Figure 3). Further evaluation demonstrated that the vaccine
structure achieved a high-quality factor of 85.246 and a Z-score
of -5.06, confirming the absence of poor rotamers (Figure 4).

Selection of B-cell epitopes

B-lymphocytes play a pivotal role in humoral immunity by
producing antibodies. Therefore, an effective vaccine must include
optimal B-cell epitope domains to elicit a robust antibody response.

TABLE 4 Finalized B-cell epitope selected for vaccine construction against Ruminococcus gnavus.

Epitope Protein
TRAANNKAANNKMEDG  Cell division ATP-binding protein FtsE 0.59
TAANPTMEDGNSINGL Single-stranded DNA-binding protein 0.7
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Position Antigenicity Immunogenicity
227 1.6355 0.38477
7 1.0945 -0.01349
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FIGURE 1

(A) A schematic representation of the MEV construct highlights the color-coded elements: the adjuvant (blue), CTL epitopes (red), HTL epitopes
(purple), B-cell epitopes (green), and linkers (EAAAK, AAY, GPGPG, KK; all depicted in black). (B) The final multi-epitope vaccine (MEV) construct is
composed of 347 amino acids. It includes an adjuvant (blue) linked via an EAAAK linker (black) and is connected to CTL epitopes (red) using an AAY
linker (black). HTL epitopes (purple) are joined by GPGPG linkers (black), while KK linkers (black) connect B-cell epitopes (green).
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FIGURE 2
Population coverage analysis of selected T-cell epitopes across different countries/regions. The bar graph depicts the percentage coverage in the
global population (71%) and specific regions, including Sweden (87%), the Philippines (86%), Japan (80%), Finland (76%), Russia (73%), Korea (69%),

Europe (68%), Indonesia (66%), and Saudi Arabia (64%). This analysis highlights the broad applicability and potential impact of the designed multi-
epitope vaccine in diverse populations.
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FIGURE 3

(A) Secondary structure prediction of the final multi-epitope vaccine construct using the SOPMA tool. The diagram illustrates the distribution of
helices (blue), sheets (red), coils (purple), and turns (green). The horizontal black bar at the bottom represents the full length of the protein. (B) The
refined 3D structure of the vaccine construct, displaying its spatial conformation. (C) Ramachandran plot analysis of the vaccine construct,
demonstrating structural quality with 95.7% of amino acid residues positioned in favored regions.

In this study, 14 conformational B-cell epitopes, ranging from 3 to
53 residues in length, were identified with scores between 0.518 and
0.988. Additionally, 8 linear B-cell epitopes were predicted using the
ElliPro server with default parameters. The conformational B-cell
epitopes were visualized using PYMOL v1.3, a molecular graphics
system, during the vaccine design process (Figure 5).

Molecular docking with host immune
receptor

Molecular docking is a critical technique for elucidating the
binding interactions between vaccine constructs and immune
receptor proteins. In this study, the molecular docking of the
designed multi-epitope vaccine (MEV) with the human Toll-like
receptor 4 (TLR4) was performed using the ClusPro server. ClusPro
is a highly reliable protein-protein docking platform that integrates
a hybrid docking algorithm, combining experimental substrate
binding site data with small-angle X-ray scattering for docking
analyses. The refined 3D structure of the vaccine construct (ligand)
was docked against the TLR4 receptor (PDB ID: 3FE8), generating
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10 docking models. The top-ranked docking model, with 230
members in its cluster and an interaction energy of -1277.0 kcal/
mol, demonstrated high stability of the vaccine-TLR4 complex.
Molecular interactions within the docking complex were analyzed
using the PDBsum server, which revealed that the MEV construct
exhibited favorable binding with chain A of the TLR4 receptor,
forming 13 hydrogen bonds (Figure 6). Thermodynamic
parameters for the binding energy of the docking complex were
computed using the PRODIGY tool. The equilibrium dissociation
constant (Kd) was determined to be 4.1x10-8 at 37°C, with a Gibbs
free energy change (AG) of -10.1 kcal/mol. These results confirm
the stability and strong binding affinity of the MEV construct to the
TLR4 receptor.

Normal mode analysis

Normal mode analysis (NMA) was performed to evaluate the
molecular stability and functional motions of the MEV-TLR4
complex. The deformability plot revealed peak regions
corresponding to main-chain residues exhibiting flexibility in

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1555741
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Dingding et al. 10.3389/fimmu.2025.1555741

ue*

= 99%

Error v:

95%

a0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Residue # (window center)

Xray C o

winoow sz 10
. R

Bl wocow size 40

Zscore
.
b

Knowledge-based energy

o 200 00 600 800 1000 1 247
Number of residues ?
Sequence position

FIGURE 4

(A) Structural validation of the refined 3D vaccine model using the ERRAT tool. Regions of the structure rejected at the 99% confidence level are
highlighted in red, while those rejected at the 95% confidence level are shown in yellow. (B, C) The Z-score plot of the refined 3D model, generated
by ProSA-web, provides an assessment of the overall quality and reliability of the predicted vaccine structure.

FIGURE 5

Three-dimensional representation of the conformational or discontinuous B-cell epitopes in the designed multi-epitope vaccine. The
conformational B-cell epitopes are highlighted as an orange surface, while the remaining bulk of the polyprotein is depicted using grey
stick representation.
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the MEV-TLR4 complex. These highly deformable regions are
indicative of “hinges” or “linkers” within the main chain. The
experimental B-factor plot demonstrated the relationship between
the NMA-predicted mobility and the MEV-TLR4 complex,
showcasing the average RMSD values of the docked complex.
The computed eigenvalue of the complex was 1.945512x10-7,
reflecting the stiffness associated with each normal mode of
motion. The variance bar illustrated individual (purple) and
cumulative (green) contributions of each normal mode,
indicating a negative correlation between variance and
eigenvalue. Furthermore, a covariance map was generated to
depict interatomic motions within the MEV-TLR4 complex. The
map identified correlated (red), uncorrelated (white), and anti-
correlated (blue) motions between different residue pairs.
Additionally, a specialized elastic network model was
constructed, representing the interatomic connections within the
complex. The spring-like assembly between corresponding atoms
and their stiffness were indicated by colored dots, with darker
greys signifying more rigid interactions. Collectively, the NMA
results demonstrated stable interactions and coordinated motions
within the MEV-TLR4 complex, supporting its structural integrity
and functionality (Figure 7).

Immune simulations

The immune simulation results demonstrated a robust
enhancement of both primary and secondary immune responses to

Chain A

Chain E

FIGURE 6

10.3389/fimmu.2025.1555741

the top-ranked vaccine construct. Administration of the vaccine led
to elevated levels of immunoglobulins, including IgG1 + IgG2, IgM,
and IgM + IgG, indicative of a strong antibody-mediated immune
response. The B-cell population showed significant expansion upon
repeated exposure to the vaccine antigen, highlighting the formation
of humoral immune memory. The simulations also revealed a
marked increase in cytotoxic T cells (CTLs) and helper T cells
(HTLs), coupled with a substantial reduction in antigen levels
during secondary and tertiary immune responses, underscoring the
vaccine’s ability to enhance adaptive immunity. Additionally, the
proliferation of natural killer cells, dendritic cells, and macrophages
was predicted following each immunization cycle, reinforcing the
construct’s capacity to stimulate innate immune responses. The
vaccine also elicited cytokine and interleukin release, particularly
IFN-y, TGF-B, 1L-23, IL-10, and IFN-fB, which are crucial for
mounting an effective immune response against infection. Notably,
continuous antigen exposure during the immunization period
resulted in significantly elevated levels of IFN-y and TGF-f3, while
other cytokines were detected at lower concentrations. The calculated
Simpson’s Index (D) confirmed a balanced immune response,
reflecting the construct’s comprehensive impact on immune
diversity. These findings suggest that the proposed vaccine
construct can effectively activate T and B lymphocytes, inducing
robust antibody production and establishing long-lasting memory
cells upon repeated antigen exposure. The immune simulation results
further support the potential of the vaccine construct to elicit strong
innate and adaptive immune responses, demonstrating its efficacy in
combating leishmaniasis (Figure 8).
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Docking analysis of the interaction between the receptor TLR4 and the multi-epitope vaccine (MEV). (A) Chain A and Chain E of the receptor and
the MEV are depicted in purple and blue, respectively, highlighting the interacting residues. (B) Docking visualization showing Chain A of the
receptor (blue) and the MEV (red), illustrating the optimal binding affinity. (C) Detailed illustration of interacting residues between the receptor and
the vaccine construct, showing the formation of 13 hydrogen bonds between the receptor residues and the vaccine molecule.
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Codon optimization and in silico restriction
cloning

The expression potential of the proposed vaccine constructs was
evaluated through codon optimization. Results obtained from the
JCAT server revealed that all vaccine constructs achieved a Codon
Adaptation Index (CAI) value of 1.0, indicating optimal codon usage.
Furthermore, the GC content of the optimized cDNA sequences was
48%, which lies within the ideal range for efficient expression in the E.
coli K12 vector. The optimized gene sequence of the prioritized
vaccine construct was successfully integrated into the widely utilized
PpET30a(+) plasmid vector through in silico cloning. The total length of
the recombinant plasmid was determined to be 5211 bp, confirming
the feasibility of the construct for downstream applications (Figure 9).

Discussion

R. gnavus is an important member of the human gut microbiota
that plays both commensal and pathogenic roles (72). The
involvement of this bacterium in diseases like inflammatory
bowel disease (IBD) highlights its clinical significance, positioning
it as a potential target for therapeutic interventions (4).
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Conventional treatments are challenging to implement because
the bacterium is resilient and can evade immune responses,
making the development of innovative solutions such as vaccines
an urgent necessity (73). Vaccination remains one of the most
effective strategies for reducing morbidity and mortality associated
with microbial infections, particularly against emerging pathogens
(74). Advances in immunoinformatics and reverse vaccinology offer
a modern, cost-effective framework for rapid vaccine development,
overcoming the limitations of traditional methods (75). These
methodologies have successfully applied to propose vaccines for
pathogens as diverse as Mycoplasma pneumoniae, Salmonella
Typhimurium, and Campylobacter jejuni, among others (76, 77).
Here, a multi-epitope vaccine (MEV) construct against R.
gnavus was designed using subtractive proteomics combined with
immunoinformatics, molecular docking, and simulation
techniques. Core proteome analysis identified essential proteins
that are non-homologous to human proteins while exhibiting
antigenic properties (42, 78). Such core proteins are crucial
because they give the host a broad-spectrum protection against
various strains of the pathogen (76). Among the identified proteins,
the single-stranded DNA-binding protein (SSB) and FtsE are
crucial for bacterial survival and virulence (74, 79). SSB is
essential for maintaining genomic stability during DNA
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Molecular dynamics (MD) simulation analysis of the docked complex of the multi-epitope vaccine (MEV) with the receptor. (A) Deformability plot
illustrating the flexibility of different regions in the docked complex. (B) B-factor analysis indicating the atomic fluctuations within the complex.
(C) Covariance index depicting the correlated motions of residues. (D) Elastic network analysis demonstrating the connectivity and motion of
residues within the complex. (E) Eigenvalue analysis representing the stiffness of the docked structure and its associated energy requirements.
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C-ImmSim immunization simulation results for the multi-epitope vaccine construct: (A) Immunoglobulin production depicted through color-coded
peaks. (B) B-cell population showing increased types and class-switching potential. (C) Population distribution per state of B cells. (D) Evolution of T-
helper cells over time. (E) Population distribution per state of T-helper cells. (F) Generation and dynamics of cytotoxic T cells. (G) Macrophage
population distribution per state. (H) Cytokine and interleukin induction, showing elevated levels of IFN-y and IL-2 post-vaccination. (I) Th1-mediated

immune response activation.

replication and repair, particularly under stress conditions, ensuring
the resilience of R. gnavus (80). Its conservation across bacterial
species underscores its importance in safeguarding replication
fidelity, which can contribute to the persistence of R. gnavus in
the gut, even during inflammatory states such as IBD (81, 82).
Similarly, FtsE, a component of the FtsEX complex, is integral to
bacterial cell division and peptidoglycan remodeling (83). In R.
gnavus, FtsE likely supports robust cell wall integrity, enhancing
survival and adaptability in competitive gut environments (83, 84).
These proteins underscore the bacterium’s ability to endure host
defenses and environmental stresses, making them potential targets
for future therapeutic interventions.

Strict selection criteria were applied to identify CTL, HTL, and
B-cell epitopes with high antigenicity while ensuring they were non-
allergenic and non-toxic for potential use (85). Of extreme
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importance, the epitopes showed a very good worldwide
population coverage, meaning an important potential for
inducing immunity across different populations (28).

To increase the immunogenicity and stability of the vaccine,
various linkers like AAY, KK, and GPGPG were used for joining the
epitopes (86). These linkers have been reported to facilitate effective
epitope processing, minimize junctional immunogenicity, and
stimulate a robust immune response (87). The use of adjuvant
cholera toxin subunit B coupled with the EAAAK linker ensured
further stimulation of the immunity. This concept is very similar to
a previous studies where these pairs were designed to improve
stability and antigenicity of vaccines (76, 77).

Structural analysis of the vaccine construct showed that it was
nontoxic, non-allergenic, and antigenic (75). Solubility predictions
indicated that the vaccine would be easily expressible and
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bioavailable in the host system. This is important because solubility
plays a crucial role in determining the effectiveness of subunit
vaccines in producing strong immune responses (38). Docking
studies showed strong binding interactions between the vaccine
construct and the TLR4 receptor, which is a central component of
the innate immune system (15, 64). Molecular dynamics
simulations further confirmed that the vaccine-TLR4 complex is
stable, highlighting its potential to mediate innate immune
responses (42, 63, 64).

Codon optimization enabled the construct to be used for the
expression of the vaccine in E. coli K12, with a codon adaptation
index of 1.0 and a GC content of 48%, both indicating high
efficiency of transcription and translation (69, 70, 76). Predictions
from the immune simulation showed that it would trigger strong
cellular and humoral immunity, which would also include strong T
cell and B cell activation and the formation of memory cells, thus
implying that the vaccine would offer long-term immunity against
diseases caused by R. gnavus.

Although the findings are encouraging, this research has
limitations. Predictions based on immunoinformatics are highly
dependent on computational algorithms, which could not perfectly
mimic biological outcomes. Hence, in vitro and in vivo studies that
experimentally validate the safety and efficacy of the vaccine are
needed. Further information on R. gnavus pathogenesis and host
immune system interaction could narrow down vaccine targets and
produce better outcomes. This is a rationally designed construct of a
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multi-epitope vaccine that would potentially activate robust
immune responses against R. gnavus. Further experimental
validations are required, but such a vaccine would be ideal for
overcoming the challenges related to this opportunistic pathogen
while maintaining gut microbiota balance.

Conclusion

This study applied subtractive proteomics and reverse
vaccinology to find vaccine candidates and design a multi-epitope
vaccine against R. gnavus strain RJX1120. Pathogenic strain-specific
antigenic proteins were selected to minimize off-target effects on
beneficial gut microbiota. The identified antigens included Single-
stranded DNA-binding protein and Cell division ATP-binding
protein FtsE, promising as vaccine candidates. Epitopes predicted
for B and T cells would generate both humoral and cell-mediated
immunity. Adjuvants and linkers have been incorporated to
increase their immunogenicity and stability. The proposed
vaccine showed favorable structural and physicochemical
properties, including strong binding affinity with TLR4 receptors,
confirmed by molecular docking and simulation studies. Immune
simulations predicted robust in vivo immunogenicity. Codon
optimization and reverse translation ensured efficient expression
in E. coli. Experimental validation in animal models is essential to
confirm the efficacy and safety of the designed vaccine.
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Introduction: Infectious diseases continue to challenge human health with high
incidence and mortality rates worldwide. Notably, the adaptability of RNA viruses,
highlighted by outbreaks of SARS, MERS, and COVID-19, emphasizes the timely
need for effective therapeutics. Saint Louis encephalitis virus (SLEV) belonging to
the Flaviviridae family is an RNA virus that mostly affects the central nervous
system (CNS) of humans. Although supportive care treatments such as
antiemetics and painkillers are being used against SLEV infection, it still lacks
potential therapeutics for the effective treatment.

Methods: Reverse vaccinology and immunoinformatics approaches help in the
identification of suitable epitopes to design a vaccine construct that will activate
both B- and T-cell-mediated responses. Previous studies used only the envelope
protein E for the vaccine design, but we have used multiple protein targets to
enhance the vaccine efficacy. Thus, in the present study, we have designed a
multi-epitope subunit vaccine that specifically targets the membrane
glycoprotein M, envelope protein E, and anchored capsid protein anchC of SLEV.

Results: Our results indicated that the vaccine construct is structurally stable,
antigenic, non-allergic, non—-toxic, and soluble. Additionally, the vaccine
construct was structurally refined and indicated significant binding affinity
toward the Toll-like receptor 4 (TLR-4) supported by molecular docking and
molecular dynamics simulations. Furthermore, it also indicated that it has the
potential to induce an immune response.
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Conclusion: In addition, it has been cloned in the pET-28a (+) vector-6xHis-TEV-
ORF9c expression vector for further experimental validation. We also
recommend to evaluate the designed vaccine's therapeutic efficacy through in
vitro and in vivo studies in the near future.

Saint Louis encephalitis virus, vaccine, epitope, antigen, immune response

1 Introduction

Infectious diseases caused by pathogenic microorganisms
possess a significant challenge and health burden to humans with
widespread morbidity and mortality worldwide (1-3). A recent
report indicated that the frequency of SLEV varied from 80% of the
cases in patients <20 years of age to 95% in those >60 years of age,
and of the 47 confirmed human cases, 45 patients were hospitalized
and among them 9 died at a younger age (4). Despite the
advancements of several strategies to combat these pathogen-
induced diseases, they adapt to extreme environments and even
result in antimicrobial resistance (AMR) in the case of bacteria and
antigenic shifts and drifts in the case of viruses (5-8). Additionally,
urbanization (notably in low- to middle-income countries),
globalization (rapid dissemination via travel), and sudden climate
changes (high risk for outbreaks) also accelerated the wide spread of
these infectious diseases causing localized outbreaks, widespread
epidemics, and even global pandemics (9, 10). To note, the COVID-
19 pandemic due to the SARS-CoV-2 outbreak resulted in high
mortality and incidence rates and indicated the risk of these
infectious diseases to human health (11-13). Furthermore,
addressing these challenges requires multidisciplinary approaches
such as a one-health approach, public health interventions,
intensive medical research, systemic and bioinformatics
approaches, and global collaborations to mitigate their impact on
human health (14-16).

Saint Louis encephalitis virus (SLEV) belonging to the
Flaviviridae family is a mosquito-borne flavivirus that has a
single-stranded RNA 1in its genome (17, 18). SLEV is a zoonotic
disease that is mainly transmitted from the bite of infected Culex
mosquitoes, particularly Culex pipiens, Culex quinquefasciatus, and
Culex nigripalpus and its first large endemic outbreak was observed
in 1933 in the United States, and also observed in Central American
and South American regions (18-21). However, Culex mosquitoes
are not only restricted to the Americas; they have a global
distribution and are commonly found in tropical and temperate
regions worldwide, where they serve as vectors for multiple
arboviruses including SLEV (20, 22). Primarily, birds are the
reservoir hosts of SLEV and humans are the incidental and
disease-obtaining hosts (17). SLEV is closely related to other
flavivirus such as Japanese encephalitis (JEV) and West Nile virus
(WNV), which often show asymptomatic conditions characterized

Frontiers in Immunology

by fatigue, headaches, nausea, vomiting, and body aches among the
infected individuals (23-25). The cases of fatality rate for
encephalitis caused by SLEV ranges from 5% to 15%, which
mostly infects adults and could be diagnosed by neutralizing
antibody testing and IgM ELISA kits (26-28). Unfortunately,
there is no specific treatment available for SLEV-infected patients
and potent prophylactic vaccines to combat SLEV infections;
however, supportive care such as antiemetics and painkillers are
being provided (26). Alongside, several therapeutic strategies are
being developed and studied for the better treatment of SLEV in
preclinical and clinical settings. Notably, two previous efforts were
made to produce an SLEV vaccine. Hossain et al. have also
employed the immunoinformatics approach to design a vaccine
against SLEV and showed that it has potential against the envelope
protein E SLEV, and Blaney Jr et al. have developed a live attenuated
virus vaccine by employing SLE/DEN4-436,437 clone 41 and SLE/
DEN4-654,655 clone 46 viruses (29, 30). To note, there is no vaccine
currently available for the effective treatment of SLEV (28).

Reverse vaccinology and immunoinformatics approaches help
in the identification of suitable epitopes to design a vaccine
construct that will activate both B- and T-cell-mediated response
using bioinformatics approaches (31). This approach has been
extended toward the development of vaccines for various
infectious diseases including SARS-CoV-2 and also extended to
the development of cancer vaccines (32). In the present study, we
employed reverse vaccinology and immunoinformatics approaches
to design a multi-epitope subunit vaccine that specifically targets
membrane glycoprotein M, envelope protein E, and anchored
capsid protein anchC of SLEV.

2 Materials and methods
2.1 Data retrieval

Initially, Saint Louis encephalitis virus was provided as the
query, and the FASTA sequences of the proteins, membrane
glycoprotein M (NCBI Reference Sequence: YP_009329948.1),
envelope protein E (NCBI Reference Sequence: YP_009329949.1),
and the anchored capsid protein anchC (NCBI Reference Sequence:
YP_009329944.1) of SLEV were retrieved from the NCBI-Protein
database (https://www.ncbi.nlm.nih.gov/) (32, 33). The three-
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dimensional structures of the HLA-A*02:01 (PDB ID: 1DUZ),
HLA-DRB1*01:01 (PDB ID: 1AQD), and Toll-like receptor 4
(TLR4) (PDB ID: 4G8A) were also retrieved from the Protein
Data Bank (34, 35).

2.2 CTL and HTL epitope identification and
selection

Since the cytotoxic T lymphocytes (CTL) (9-mer) and helper T
lymphocytes (HTL) (15-mer) are involved in the induction of
immune response in humans, the CTL and HTL epitopes were
predicted using the NetCTL 1.2 web server (https://
services.healthtech.dtu.dk/services/NetCTL-1.2/) and NetMHCII
2.3 web server (https://services.healthtech.dtu.dk/services/
NetMHCII-2.3/), respectively (36, 37). For CTL epitopes, they
were identified against the 12 types of MHC-I with 0.75 as the
default threshold, and for the HTL epitopes, they were identified
against all the alleles of HLA-DR, HLA-DQ, and HLA-DP,
respectively. The robustness of the predictions was validated by
ANN 4.0 and MHC Flurry 2.0 for MHC I epitopes and validated by
Combinatorial library & Tepitope for MHC II epitopes in the IEBD
tool, respectively (https://www.iedb.org/) (38). Following this, all
the predicted epitopes were subjected to antigenicity (model set as
tumor), allergenicity, and toxicity (SVM-based method) analysis
using the VaxiJen v2.0 web server (https://www.ddg-pharmfac.net/
vaxijen/VaxiJen/VaxiJen.html) (39), AllerTOP v.2 web server
(https://www.ddg-pharmfac.net/allertop_test/) (40), and
ToxinPred web server (https://webs.iiitd.edu.in/raghava/
toxinpred/index.html) (41), respectively. Furthermore, the IFN-y
induction potential of HTL epitopes was also predicted with a
hybrid approach (motif+SVM model) and the IFN-y vs. non-IFN-y
model was used using the IFNepitope web server (https://
webs.iiitd.edu.in/raghava/ifnepitope/application.php) (42).
Alongside, the sequence conservation analysis of the predicted
epitopes of SLEV was analyzed using protein-BLAST (https://
blast.ncbi.nlm.nih.gov/Blast.cgi), toward Dengue virus 1
(taxid:11053), Zika virus (taxid:64320), Yellow fever virus
(taxid:11089), West Nile virus (taxid:11082), and Japanese
encephalitis virus (taxid:11072), which are closely related to the
Flavivirus family.

2.3 Docking of T-cell epitopes with HLA
alleles

The three-dimensional structures of the selected CTL and
HTL epitopes were modeled using the PEP-FOLD 3.5 web server
(https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-
FOLD3/) (43). Furthermore, the CTL and HTL epitopes were
docked against the HLA-A*02:01 and HLA-DRB1*01:01 alleles to
evaluate their binding potential and molecular interactions against
these more common alleles in the world population using the
HPEPDOCK 2.0 web server (http://huanglab.phys.hust.edu.cn/
hpepdock/) (44).
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2.4 Vaccine construct design

The selected CTL epitopes, HTL epitopes, linkers, and adjuvant
were used to design the multi-epitope vaccine construct. CTL
epitopes were linked with the AAY linker and HTL epitopes with
the CPGPG linker, whereas the adjuvant was connected with an
EAAAK linker. The TLR4 agonist, 50s ribosomal L7/L12 protein of
Mpycobacterium tuberculosis, was used as an adjuvant in the vaccine
construct to elucidate the strong immune response (45, 46).

2.5 Analysis of physicochemical
characteristics, antigenicity, and
allergenicity

The physicochemical properties such as the molecular weight,
theoretical PI, amino acid composition and length, total number of
negatively charged and positively charged residues, instability index,
aliphatic index, and GRAVY of the designed multi-epitope vaccine
were predicted using the Expasy ProtParam web server (https://
web.expasy.org/protparam/) (47). In addition, the antigenicity,
allergenicity, and solubility of the designed multi-epitope vaccine
were predicted using the VaxiJen v2.0 web server (39), AllerTOP v.2
web server (40), and SOLpro web server (48), respectively.
Furthermore, the antigenic nature of the adjuvant was predicted
by evaluating the antigenicity of the designed multi-epitope vaccine
with and without the presence of adjuvant using the ANTIGENpro
web server (https://scratch.proteomics.ics.uci.edu/) (48).

2.6 Structural analysis and molecular
docking of the designed vaccine construct

Initially, the 2D structure of the designed multi-epitope vaccine
construct was predicted using the PDBsum database (http://
www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html)
(49). Then, the 3D structure of the designed multi-epitope vaccine
construct was predicted using the I-TASSER web server (https://
zhanggroup.org/I-TASSER/) (50) and further refined by the
GalaxyRefine web server (https://galaxy.seoklab.org/cgi-bin/
submit.cgi?type=REFINE) (51). In addition, the refined 3D model
of the designed multi-epitope vaccine construct was validated by
Ramachandran plot and Z-score plot by employing the PDBsum
database and ProSA-web web server (https://prosa.services.
came.sbg.ac.at/prosa.php), respectively (52). Then, the perfectly
refined model was docked against the Toll-like receptor-4 (TLR4)
protein using the ClusPro 2.0 web server (https://cluspro.bu.edu/
login.php?redir=/home.php) (53).

2.7 Molecular dynamics simulations
The molecular dynamics simulations of the TLR4-vaccine

complexes were performed using GROMACS 2020, and the
protein topology files were generated using the GROMOS 42al
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force field (54, 55). The systems were solvated in an orthorhombic
box using the simple point charge water model, and the
neutralization was achieved by adding Na+ counter ions. Then,
the energy minimization was carried out by the steepest descent
algorithm with 50,000 steps, and the system was equilibrated under
the NVT ensemble for 500 ps at 300 K, followed by NPT
equilibration for 1,000 ps. Furthermore, the cutoff distance of 1.2
nm was applied for short-range non-bonded interactions, including
Coulombic and van der Waals potentials, and the system was
subjected to a 100-ns molecular dynamics simulation analysis.
Finally, the resulting trajectories were analyzed to assess the root
mean square deviation (RMSD), root mean square fluctuation
(RMSF), radius of gyration (Rg), and solvent-accessible surface
area (SASA) using standard GROMACS tools and visualized using
the ggplot2 package (56, 57).

2.8 Normal mode analysis

The protein deformation analysis of the TLR4-vaccine docked
complex was analyzed using the internal coordinates normal mode
analysis (NMA) by employing the iMODS web server (https://
imods.igf.csic.es/) (58). The NMA analysis was conducted using the
CA atomic model to evaluate their B-factor/mobility, eigenvalue,
variance, covariance map, and elastic network for the TLR4-vaccine
docked complex (59).

2.9 Immune response simulation

The immune response induction is a crucial factor in
vaccination, and thus the immune response simulation of the
designed multi-epitope vaccine construct was evaluated using the
C-ImmSim web server (https://kraken.iac.rm.cnr.it/C-IMMSIM/
index.php) that employs the position-specific score matrix
(PSSM) and the Celada-Seiden model (60). The simulation
parameters were configured with a random seed of 12,345, a
simulation volume of 10 pL, and 1,095 simulation steps,
representing a time span of 1 year (365 days). The vaccine was
administered in three doses on days 0, 28, and 56, corresponding to
time steps 1, 84, and 168, respectively. Injection modes were
performed without LPS, and all other parameters were set to their
default values.

2.10 Codon optimization and in silico
cloning analysis

The vaccine construct’s protein sequence was reverse-
translated, and its cDNA sequence was optimized for codon usage
by employing the Java Codon Adaptation Tool (JCat) (https://
www.jcat.de/), and the E. coli K12 was employed as the expression
host (61). Then, the optimized sequence was inserted and cloned in
the pET-28a (+) vector-6xHis-TEV-ORF9c (5,554 bp) using the
SnapGene software (https://www.snapgene.com/). The complete
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schematic representation of the workflow of the study is shown
in Figure 1.

3 Results

3.1 Selected T—cell epitopes showed
potential interaction toward HLA alleles

The CTL epitopes (9-mer) and the HTL epitopes (15-mer) were
predicted against the 12 types of MHC-I molecules, and all alleles of
HLA-DR, HLA-DQ, and HLA-DP. The CTL epitopes predicted
against the membrane glycoprotein M, envelope protein E, and
anchored capsid protein anchC of SLEV along with their specific
biding MHC-I allele are provided in Supplementary Tables S1, S2,
and S3, respectively. Similarly, their predicted HTL epitopes of
proteins of SLEV along with their specific biding MHC-II allele are
provided in Supplementary Tables S4, S5, and S6, respectively. The
antigenicity, allergenicity, and toxicity properties of the predicted CTL
and HTL epitopes were evaluated, and IFN-y induction potential was
also predicted for the HTL epitopes (15mer). The epitopes were
screened with these criteria such as antigenic, non-allergen, non-toxic,
and IFN-y induction (only for 15mer), and the shortlisted CTL and
HTL epitopes are provided in Supplementary Tables S7 and S8,
respectively. The final CTL and HTL epitopes selected for the vaccine
construct along with their epitope names are provided in
Supplementary Table S9. Additionally, the sequence conservation
analysis was performed toward Dengue virus 1 (taxid:11053), Zika
virus (taxid:64320), Yellow fever virus (taxid:11089), West Nile virus
(taxid:11082), and Japanese encephalitis virus (taxid:11072), which
are closely related to the Flavivirus family, and the results are provided
as similarity percentage in Supplementary Table S9. Notably, the
West Nile virus and Japanese encephalitis virus shared a similarity
percentage of most predicted epitopes, and Dengue virus 1 and Zika
virus shared a similarity percentage with one CTL and one HTL
epitope, respectively. This similarity-conserved epitopes have the
potential to induce cross-reactive T-cell responses and broaden
protection toward other species such as West Nile virus and
Japanese encephalitis virus, indicating that the developed vaccine
construct was broad-spectrum.

Furthermore, the selected CTL and HTL epitopes were docked
against the HLA-A*02:01 and DRB1*01:01 alleles, which are the
most frequent alleles among the world population, and their
binding energies (kcal/mol) and docked pose are shown in
Table 1, Supplementary Figures S1 and S2. Totally, five CTL
epitopes were docked against HLA-A*02:01 and 17 HTL epitopes
were docked against HLA-DRB1*01:01 molecules. From the
docking analysis, we observed that the CTL epitope
(RVVFVIMLM) and the HTL epitope (TTQINYHWHKEGSSI)
showcased high binding affinities toward their respective allele
with binding energies of —240.708 and -234.422 kcal/mol,
respectively, and the CTL epitope (TISPQAPSF) and HTL epitope
(MKMEATELATVREYC) showcased comparatively less binding
affinities toward their respective allele with binding energies of
-210.309 and —-182.066 kcal/mol, respectively. For CTL epitopes,
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Schematic representation of the workflow of the study

the binding affinities range from —210.309 to —240.708 kcal/mol,
and for HTL epitopes, they range from —182.066 to —234.422 kcal/
mol. Moreover, all the CTL and HTL epitopes indicated their
potential binding affinities and thus they were selected in the
construction of a multi-epitope vaccine.

3.2 Designed multi-epitope vaccine
showed desired physiochemical properties

Generally, adjuvants are used in multi-epitope peptide vaccines to
induce strong immune responses when injected into humans. In our
study, we have used the C-terminal region of the large ribosomal
subunit protein bL12 of Mycobacterium tuberculosis as the adjuvant
(MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAV
AAAGAAPAGAAVEAAEEQSEFDVILEAAGDKKIGVIKVVR
EIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLE
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AAGATVTVK), which highly prevents the autoimmune reactions.
AAY linkers were used to link the CTL epitopes, GPGPG linkers were
used to link the HTL epitopes, and the EAAAK linker was used to link
the adjuvant in the vaccine construct. The total vaccine construct
contains 532 amino acids, comprising 5 CTL epitopes, 17 HTL
epitopes, 1 adjuvant, 4 CTL linkers, 16 HTL linkers, and 1 adjuvant
linker, as shown in Figure 2. Following this, the physiochemical
properties of the designed multi-epitope vaccine construct were
evaluated and are tabulated in Table 2. We observed that alanine (A)
is more frequent with 11.8% followed by Arg (R) with 2.6%, as shown
in Figure 3. The SOL-pro web server indicated the soluble nature of the
designed multi-epitope vaccine construct with a probability of 0.902,
and the instability index of 23.84 (less than 40) indicates the stability of
the vaccine. The antigenic score of the designed multi-epitope vaccine
construct was observed to be 0.787234 (without adjuvant) and
0.898972 (with adjuvant), indicating the increase in antigenic
response when adjuvant is added to the vaccine construct. The
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TABLE 1 Binding energies of selected CTL and HTL epitopes against HLA molecules.

10.3389/fimmu.2025.1576557

Epitope type Epitope HLA molecule Binding energy (kcal/mol)
CTL NIKYEVAIF HLA-A*02:01 ~225.608
TISPQAPSF HLA-A*02:01 -210.309
RDRSISLTL HLA-A*02:01 ~226.722
QRVVEVIML HLA-A*02:01 ~213.502
RVVEVIMLM HLA-A*02:01 ~240.708
HTL ALAIGWMLGSNNTQR HLA-DRB1*01:01 -216.101
DFGSIGGVENSIGKA HLA-DRB1*01:01 ~205.397
GASGATWIDLVLEGG HLA-DRB1*01:01 ~194.994
KMEATELATVREYCY HLA-DRB1*01:01 ~215.410
LEGGMSWITQGLLGA HLA-DRB1*01:01 ~233.383
LGALLLWMGLQARDR HLA-DRB1*01:01 ~227.230
LVTVNPFISTGGANN HLA-DRB1*01:01 ~223.634
MKMEATELATVREYC HLA-DRB1*01:01 ~182.066
MSWITQGLLGALLLW HLA-DRB1*01:01 ~220.584
NLPWTSPATTDWRNR HLA-DRB1*01:01 ~232.190
PQAPSFTANMGEYGT HLA-DRB1*01:01 ~207.506
PTLDFKVMKMEATEL HLA-DRB1*01:01 -227.681
REYCYEATLDTLSTV HLA-DRB1*01:01 ~206.449
SGINTEDYYVFTVKE HLA-DRB1*01:01 ~240.228
TKQTVVALGSQEGAL HLA-DRB1*01:01 ~201.193
TTQINYHWHKEGSSI HLA-DRB1*01:01 ~234.422
TIDCEARSGINTEDY HLA-DRB1*01:01 ~188.060

Grand Average of Hydropathy (GRAVY) is used to determine the
hydrophobic nature of the protein and is generally calculated by
summing up the hydropathy values of all the amino acids and
dividing it by the total number of amino acids of the protein. The
positive value indicates the hydrophobic nature and the negative value
indicates the hydrophilic nature of the given protein. In our study, the
vaccine construct showed a GRAVY score of —0.040 that indicates its
hydrophilic nature, as shown in in Table 2.

3.3 Structural modeling and refinement of
the multi-epitope vaccine

The 2D structure of the designed multi-epitope vaccine
construct consisting of 532 amino acids was predicted and
observed to have 8 sheets, 5 beta hairpins, 2 beta bulges, 19
strands, 6 helices, 181 beta turns, and 36 gamma turns, as shown
in Figure 4. Then, the 3D structure was modeled by the I-TASSER
web server, which resulted in five best models with C-scores of
-3.15, =3.58, —=3.63, —3.79, and —3.68, respectively. Generally, the
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TABLE 2 Physiochemical properties of the designed vaccine construct.

Parameter

Value/range

Number of amino acids

532

Molecular formula
Molecular weight
Theoretical pI

Total number of positive charge
residues (Arg + Lys)

Total number of negative charge
residues (Asp + Glu)

Instability index
Aliphatic index
GRAVY

Estimated half life

C440H3808N6360741519
54518.03 Da
4.80

55

39

23.84
78.21
-0.040

30 h (mammalian reticulocytes, in vitro).
>20 h (yeast, in vivo).
>10 h (Escherichia coli, in vivo).
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FIGURE 2
Pictorial representation of the designed multi-epitope vaccine construct.

high C-score represents the high confidence of the predicted model,
and thus model 1 with a c-score of —3.15 was selected for further
refinement acknowledging the crucial role of accurate 3D structural
prediction in understanding the vaccine’s potential efficacy and
stability. Likewise, the GalaxyRefine web server resulted in the best
five refined models, in which model 2 was chosen based on a
comprehensive evaluation of several structural parameters: a high
GDT-HA score of 0.8459, a low RMSD of 0.707, a favorable
MolProbity score of 3.467, a clash score of 78.9, a low percentage
of poor rotamers at 2.1%, and a significant proportion of
Ramachandran favored regions at 67.9% as shown in Figure 5A.

These metrics collectively suggest a highly refined and accurate
model, crucial for ensuring the vaccine’s effectiveness and structural
refinement. Furthermore, the refined model models were validated
by Ramachandran plot and Z-score analysis. The most favored
regions on a Ramachandran plot are important because they help to
identify the validity of a vaccine construct’s 3D structure and
indicate which Phi/Psi angles are possible for an amino acid; thus,
high % of most favored regions indicates better structural
enhancement whereas the less % shows poor enhancement.
Notably, in our findings, the Ramachandran plot analysis
demonstrated an increase in the most favored regions from 43.2%

Amino acid composition

Frequency (%)
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Code o R ¥ e\‘\o\ NE TP S &’“ «Q N R
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FIGURE 3
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Amino acid composition and frequency of the designed multi-epitope vaccine construct.
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FIGURE 4
2D structure of the designed multi-epitope vaccine construct.

in the unrefined model to 56.8% in the refined model, indicating
improved structural quality and reduced steric clashes. Also, the G-
factor, measuring the overall structural unusualness, improved
significantly from -2.02 (unrefined) to —1.24 (refined),
highlighting the enhanced accuracy and reliability of the refined
model, as depicted in Figures 5B and C, respectively. In the Z-score
plot, the higher negative value indicates the high confidence of the
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modeled structure of the vaccine construct whereas the lesser
negative value indicates less confidence and the positive value
indicates very poor confidence of the vaccine structure. In our
study, we have observed that the Z-score was improved from —2.36
(unrefined) to —2.42 (refined), further confirming the high
structural refinement and enhanced stability of the vaccine
construct, as shown in Figures 5D and E, respectively.
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3D structure-refinement and validation: 3D structure of the designed multi-epitope vaccine construct in which the refined and unrefined models are
shown in green color and cyan color, respectively (A). Ramachandran plots of the unrefined (B) and refined models (C). Z-score of the unrefined (D)

and refined models (E).
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The binding affinity of the multi-epitope vaccine construct
toward the Toll-like receptor-4 (TLR4) was evaluated using the
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Molecular interaction of TLR4 with the designed multi-epitope vaccine construct. The docked complexes are shown in cartoon model (A) and
surface model (B). Also, total numbers of interactions (C) and interacting residues (D) of the TLR-4 vaccine complex are shown.

epitope vaccine construct. Upon binding, the vaccine showed a
1,762-A% interface area with 28 interacting residues and the TLR4
showed a 1,671-A? interface area with 37 interacting residues. Also,
it revealed that it formed 7 salt bridges, 21 H-bonds, and 228 non-
bonded contacts, as shown in Figure 6. Then, the molecular
dynamics simulation trajectories were analyzed to study the
conformational behavior of the TLR, vaccine, and TLR-vaccine
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complex over 100 ns. RMSD values were used to assess the local
flexibility of the proteins, reflecting their atomic mobility. Higher
RMSD values indicate increased mobility, whereas lower values
suggest greater structural stability. During the simulation, the
average RMSD values for the TLR, vaccine, and TLR-vaccine
complex were 0.16, 0.22, and 0.28 nm, respectively. Then, RMSF
plots revealed that TLR4 had fluctuations at the 120-170 AA and
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310-320 AA regions, vaccine had fluctuations at the 320-325 AA
region, and the TLR4-vaccine docked complexes exhibited the
same fluctuations; however, these regions are denoted as loop
regions. The average Rg values for the TLR, vaccine, and TLR-
vaccine complex were 2.15, 2.16, and 2.18 nm, respectively,
exhibiting the compactness of the structures. The average SASA
values for the TLR, vaccine, and TLR-vaccine complex were 173,
176, and 186 nm?, respectively, as shown in Figure 7.

3.5 NMA of the multi-epitope vaccine
construct

The protein deformation analysis of the multi-epitope vaccine
construct and TLR4 docked complex was predicted as normal mode
analysis (NMA). The flexibility and stability of the docked
complexes were evaluated from various plots such as B-factor/
mobility, eigenvalue, variance, and co-variance map of the elastic
network of the TLR4-vaccine complex, as illustrated in Figure 8.
The B-factor/mobility indicates less deformation of the TLR4-
vaccine complex at all amino acid residues and hinges, indicating
that it maintains structural integrity. Notably, a lower eigenvalue of
2.77e-07 indicates less deformability of the docked complex, than
the TLR4 alone, which showed an eigenvalue of 3.31e-05. In
addition, the individual and cumulative variances indicate the
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contribution of each normal mode to the overall motion. The co-
variance map revealed the presence of correlated, uncorrelated, and
anti-correlated residue pairs, providing insights into the cooperative
movements within the complex. Furthermore, flexibility was also
observed from the elastic network.

3.6 Designed multi-epitope vaccine has the
potential to induce immune response

The immune response simulation of the designed multi-epitope
vaccine construct was predicted using the C-ImmSim web server at
three dosage days. The immunological parameters such as the
antibody titers, cytokine production, B-cell populations, B-cell
populations per state, TH-cell populations, and TH-cell
populations per state were predicted as shown in Figure 9. In the
antibody titers plot, we have observed that IgG and IgM are
significantly increased post-vaccine injection, indicating a robust
humoral immune response. Also, the cytokine levels of IFN-y were
elevated notably, which suggested a strong activation of cellular
immunity. Furthermore, the B-cell population (cells/m®) was
elevated, reflecting the activation and proliferation of B cells in
response to the vaccine. The total TH-cell population (cells/m?) also
showed an increase, indicating enhanced helper T-cell responses,
with a significant proportion of TH cells in active states, further
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corroborating the vaccine’s efficacy. Notably, all the predicted
parameters such as the antibody titers (IgG and IgM), cytokine
production (IFN-y, ILs), B-cell populations (Total), B-cell
populations per state (active state), TH-cell populations (Total),
and TH-cell populations per state (active state) showed elevated
peaks at the vaccine dosage days, indicating that the designed

Frontiers in Immunology

vaccine construct is highly efficient in inducing the immune
responses in a time-dependent manner. These findings highlight
the potential effectiveness of the multi-epitope vaccine construct in
eliciting a comprehensive immune response, demonstrating its
ability to induce both humoral and cellular immunity, which is
crucial for long-term protection and memory formation.
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state (D), TH-cell population (E), and TH-cell population per state (F) are shown.

3.7 Codon optimization and insilico cloning
of the multi-epitope vaccine construct

The designed multi-epitope vaccine construct was further
reverse-translated and optimized to be cloned by employing
Escherichia coli K12 as an expression system. Then, the optimized
sequence containing 552 nucleotides was obtained with the CAI-
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value as 1, and GC% as 53.8%. Also, the GC% of E. coli strain K12
was observed as 50.73%. Then, the restriction sites of Sall
(GAGCTC) and EcoRI (GAATTC) were added at the N-terminal
and C-terminal of the optimized DNA sequence. Following this, the
optimized vaccine construct sequence (564 nucleotides) was cloned
into the pET-28a (+) vector-6xHis-TEV-ORF9c (5554 bp) at
restriction sites of Sacl (GAGCTC) and EcoRI (GAATTC) using
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(+) expression vector (5,554 bp) shown in black between restriction sites Sall and EcoRI, and the final cloned vaccine construct is shown (5,646 bp).

the SnapGene tool, and the final cloned product (5646 bp) is shown
in Figure 10.

4 Discussion

Infectious diseases have posed significant challenges to human
health throughout history, manifesting in acute, chronic, and often
lethal forms caused by various pathogenic microorganisms with
widespread morbidity and mortality worldwide (1, 3). The
emergence of antimicrobial resistance (AMR) and antigenic shifts
and drifts challenge our advances in the medical field (62, 63). The
recurring outbreaks of SARS, MERS, and COVID-19 underscore
the adaptive potential of RNA viruses, which can mutate to exploit
new niches (11, 64). SLEV infection is strongly associated with
potential central nervous system impairment that highly targets
adults and still lacks potential treatment strategies (17). Alongside,
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the peptide vaccines constructed with multiple epitopes have
recently gained attention due to their ability to amplify immune
responses against pathogens (65). Both B cells and T cells can be
used for vaccine development, but mostly T cell-based vaccines are
preferred to some reasons such as high specificity adaptive
immunity. CD8+ T cells uniquely recognize and eliminate
infected cells via MHC, long-term immune memory, and broader
immunological coverage. Notably, for viral infections that have
antigenic variation, the B cell-mediated antibody responds less
effectively (66). Although the traditional vaccines have the
potency to induce strong humoral, cellular responses, and need
fewer boosters than peptide vaccines, they are limited by their
stability, risk of reversion to virulence, allergic reactions, and live-
attenuated rapid mutation rates that lead to low efficacy in immune-
compromised patients (67). On the other hand, the peptide vaccines
are made of epitopes that specifically induce the stimulation of
CTLs, HTLs, or B cells and have minimum oft-target effects
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indicating low adverse reactions. Also, peptide vaccines are easy to
design, produce, and store; cost-effective; and, mostly importantly,
safer for immunocompromised individuals (68, 69). Hossain et al.
have also employed the immunoinformatics approach to design a
vaccine against SLEV and showed that it has potential against
SLEV. However, they have predicted the multi-epitopes only for the
envelope protein E (outer membrane protein) (29). In addition, to
the best of our knowledge, this is the only report we found for
employing reverse vaccinology and immunoinformatics to design
multi-epitope vaccine construct against SLEV. Thus, we have
designed the multi-epitope vaccine construct toward various key
proteins of SLEV such as the membrane glycoprotein M, envelope
protein E, and the anchored capsid protein anchC to increase its
therapeutic potential in SLEV treatment. So, in the present study,
we have designed and developed a multi-epitope vaccine construct
against the SLEV by employing reverse vaccinology and
immunoinformatics approaches.

The cytotoxic T lymphocytes (CTLs) (CD8+ T cell epitopes) are
involved in the recognition, direct killing, and clearance of the
virally infected cells, whereas the helper T lymphocytes (HTLs)
(CD4+ T cell epitopes) are involved in the immune activation,
antibody production, and cytokine secretion respectively, and thus
they play a vital role in the vaccine design (70, 71). Also, to elucidate
a proper immune response, the epitopes should be antigenic, non-
allergenic, and non-toxic and have the potential to induce IFN-y
(HTL epitope) production (72, 73). In our study, we have predicted
the possible CTL and HTL epitopes against the various key proteins
of SLEV such as the membrane glycoprotein M, envelope protein E,
and the anchored capsid protein anchC, and we have selected 5 CTL
epitopes and 17 HTL epitopes based on the abovementioned
criteria, as shown in Supplementary Table S9. Additionally, the
sequence conservation analysis was performed toward Dengue virus
1 (taxid:11053), Zika virus (taxid:64320), Yellow fever virus
(taxid:11089), West Nile virus (taxid:11082), and Japanese
encephalitis virus (taxid:11072), which are closely related to
Flavivirus family. Notably, the West Nile virus and Japanese
encephalitis virus shared similarity percentages of most predicted
epitopes, and Dengue virus 1 and Zika virus shared similarity
percentages with 1 CTL epitope and 1 HTL epitope. This
similarity-conserved epitopes have the potential to induce cross-
reactive T-cell responses and broaden protection toward other
species such as West Nile virus and Japanese encephalitis virus,
indicating that the developed vaccine construct was broad-
spectrum (74). HLA-A*02:01 (MHC-I) and DRB1*01:01 (MHC-
II) are the most frequently expressed alleles that could bind with
CTL and HTL epitopes, respectively (75, 76). For instance, HLA-
A*02:01 belongs to the A2 supertype possesses supertypic
representation, which covers multiple related alleles, expanding
their population coverage, whereas HLA-DRB1*01:01 is
immunodominant, binds a broad spectrum of peptides, and
significantly elicits CD4+ T-cell responses (76, 77). We observed
that the selected CTL and HTL epitopes exhibited significant
binding affinities toward their respective allele and their binding
energy was predicted as shown in Table 1. Unlike the mRNA
vaccines, the peptide vaccines have the advantage of adding
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adjuvants along with the peptides, which could induce more
antigenic-mediated immune responses (78, 79). We have utilized
the C-terminal region of the large ribosomal subunit protein bL12
of Mycobacterium tuberculosis as the adjuvant, which highly
prevents the autoimmune reactions.

The linkers play a vital role in the designing of the vaccine
construct to elucidate proper structural and functional properties.
The EAAAK linker elevates the antigenic nature of the vaccine, the
AAY linker promotes the presentation of antigens, and the GPGPG
linker promotes solubility and movement (78, 80, 81). Likewise, the
adjuvant was connected with EAAAK linkers, CTL epitopes were
connected with AAY linkers, and the HTL epitopes were connected
with GPGPG linkers, and the designed multi-epitope vaccine
construct comprising 532 amino acids has 5 CTL epitopes, 17
HTL epitopes, 1 adjuvant, 4 CTL linkers, 16 HTL linkers, and 1
adjuvant linker, as shown in Figure 2. The designed vaccine should
be stable to have a longer half-life period and immunogenicity
retention and avoid degradation, and should be soluble to have an
enhanced bioavailability nature, to prevent aggregation and for
efficient delivery (82, 83). Based on these criteria, several vaccines
have been designed and developed against various diseases and
infections (31, 84-86). Similarly, we have observed that our
designed multi-epitope vaccine construct was soluble with a
probability of 0.902 and stable with an instability index of 23.84
(less than 40) indicating the stability of the vaccine. Also, we
observed that the addition of adjuvant increased the vaccine’s
antigenic nature from 0.787234 to 0.898972, as shown in in Table 2.

Structural properties of the vaccine alter its functional
properties such as the antigen presentation and stimulation of T
lymphocytes and B lymphocytes (73). We have predicted the 3D
structure of the designed vaccine construct and further refined it.
Furthermore, we validated by the Ramachandran plot that showed
highly favored regions in the refined model, and by the Z-score that
showed high confidence in the refined 3D model. These analyses
underscore the critical improvements in structural prediction and
refinement processes, ensuring the vaccine construct’s robustness
and potential efficacy. The refined model’s superior quality and
stability are indicative of its potential to elicit a strong and effective
immune response, thereby validating its design and functional
applicability (87). Unlike the other Toll-like receptors (TLRs),
Toll-like receptor-4 is observed to be overexpressed and also
involved in various functions such as promoting the production
of pro-inflammatory cytokine and chemokine and regulation of
homeostasis, and thus plays a vital role in various diseases including
SLEV infection (87, 88). Thus, we have docked our vaccine
construct with TLR4, which showed significant binding affinities
with a binding energy of —1,117.5 kcal/mol. The low binding energy
profile suggests that the multi-epitope vaccine construct is likely to
form a stable and effective complex with TLR4, potentially
enhancing its immunogenic efficacy and contributing to a robust
immune response. The molecular dynamics simulation (MDS)
revealed that the TLR4-vaccine docked complex was stable
throughout the simulation period compared with TLR4 and
vaccine alone, indicating the structural compatibility of the
docked complex as shown in Figure 7. Also, it indicated that
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there is no flip on the residues of the TLR4-vaccine complex
confirmed through MDS. Additionally, the TLR4-vaccine docked
complex was also observed to be stable through the protein
deformation analysis evaluated from various plots such as B-
factor/mobility, eigenvalue, variance, and co-variance map of the
elastic network of the TLR4-vaccine complex, as illustrated
in Figure 8.

Generally, the vaccine-induced immune response is crucial, and
multifaceted, encompassing both innate and adaptive immunity (89,
90). From our study, we observed that the designed multi-epitope
vaccine construct elevates the levels of antibody titers, cytokine
production, B-cell populations, B-cell populations per state, TH-cell
populations, and TH-cell populations per state, as shown in Figure 9.
These findings highlight the potential effectiveness of the multi-epitope
vaccine construct in eliciting a comprehensive immune response,
demonstrating its ability to induce both humoral and cellular
immunity, which is crucial for long-term protection and memory
formation. Also, for the experimental validation, the designed vaccine
construct has to be produced in higher quantities, and thus usually it
will be cloned in a suitable vector (91). In our study, the designed multi-
epitope vaccine construct was reversed translated, codon-optimized,
and cloned in a suitable vector pET-28a (+) vector-6xHis-TEV-ORF9c
(5554 bp) at the restriction sites of Sacl (GAGCTC) and EcoRI
(GAATTC), as shown in Figure 10.

On the other hand, this study mostly used bioinformatics tools
and databases for the study, and these computational validations may
be less reliable when compared with the experimental validations (92,
93). For instance, the NetCTL 1.2 and NetMHCII 2.3 web servers
mainly focus on the limited set of common HLA alleles, potentially
overlooking epitopes relevant to underrepresented populations,
whereas the VaxiJen v2.0, AllerTOP v.2, ToxinPred, IFNepitope,
Expasy ProtParam, and ANTIGENpro web server are commonly
used in immunoinformatics and vaccine design approaches; however,
these predictions are based on a broad training dataset and do not
yield high efficacy as the experimental validations (93, 94). Thus, we
strongly recommend to validate the designed vaccine construct in in
vitro and in vivo experimental settings to evaluate their completely
therapeutic potential against SLEV. Overall, by employing reverse
vaccinology and immunoinformatics approaches, we have designed a
multi-epitope cancer vaccine against various key proteins of SLEV
such as the membrane glycoprotein M, envelope protein E, and the
anchored capsid protein anchC, and we further recommend
evaluating its therapeutic potential by in vitro and in vivo studies in
the near future. Furthermore, the deployment of these types of
vaccines in regions where diseases are endemic offers significant
opportunities to enhance public health and mitigate the disease
burden (95). Achieving these outcomes, however, necessitates
addressing complex logistical, sociocultural, and economic
challenges through well-designed strategies and sustained
international cooperation (96). These hurdles could be overcome
by strengthening the infrastructure, community engagement,
financial support, innovative delivery models, policy and
governance, and integrated health programs. Effectively overcoming
these barriers is critical to ensuring equitable vaccine access and
advancing global objectives in health security and disease control.
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5 Conclusion

SLEV infection poses a significant public health threat,
particularly in regions prone to mosquito-borne diseases. Despite
the availability of supportive treatments, there is a critical need for
effective therapeutics/vaccines to prevent SLEV infections. In our
study, we have designed, constructed, and validated a multi-epitope
vaccine targeting key proteins of SLEV such as the membrane
glycoprotein M, envelope protein E, and the anchored capsid
protein anchC by employing reverse vaccinology and
immunoinformatics approaches. Our results indicated that the
vaccine construct is structurally stable, antigenic, non—allergic, and
non—toxic and has soluble properties. Also, the vaccine exhibited
strong binding affinity and structural compactness with the TLR4
upon binding confirmed by docking and molecular dynamics
simulations respectively. Furthermore, it also indicated that it has
the potential to induce an immune response. Also, it has been cloned
in the pET—28a (+) expression vector for the experimental validation
by in vitro and in vivo studies to evaluate the vaccine’s therapeutic
efficacy in the near future. Further research and experimental studies
are warranted to validate the efficacy, safety, and immunogenicity of
the proposed vaccine construct in preclinical and clinical settings.
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Currently, HIV (human immunodeficiency virus) infection is one of the leading
complications in public health and causes acquired immunodeficiency syndrome
(AIDS), especially in the African region. No specific vaccine is available to combat
this, with multi-strain variability being one of the hurdles. In this investigation, we
employed variability in the epitope of the HIV subtype C targets to introduce
mutations and construct an epitope-based vaccine. Four targets were examined
to predict the B and T cells (major histocompatibility complex class | and Il).
Among the predicted epitopes, immunodominant epitopes were selected and
were mapped with the identified variable amino acid to incorporate mutation.
These selected and mutated epitopes were used for the non-mutated and
mutated vaccine construction, considering linker for fusion and adjuvant to
improve the activity. The vaccine’s structure was modeled and examined to
validate its structural quality, and a high population coverage was also found. The
docking investigation of the non-mutated and mutated vaccine with Toll-like
receptor 3 shows remarkable activity followed by strong binding affinity, and the
simulation of over 100 ns revealed the constancy of the complex system. The
immune response revealed its strong effectiveness by generating multiple
immunoglobulins followed by the time step of infection, and further, in silico
cloning demonstrated a high expression in Escherichia coli based on their
favorable Codon Adaptation Index and GC value. The integrated approach in
this investigation will help to plan a potent immunodominant vaccine that can
work for multiple strains of HIV infection.
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Introduction

Acquired immunodeficiency syndrome (AIDS) is an ongoing
public health concern caused by HIV (1, 2). According to a recent
World Health Organization (WHO) report, nearly 39.9 million are
living with HIV; at the end of 2023, approximately 1.3 million
people acquired the infection, while 63,000 died due to HIV-related
complications (https://www.who.int/news-room/fact-sheets/detail/
hiv-aids) (3). Moreover, the WHO African region remains to have
the highest HIV burden (https://www.who.int/data/gho/data/
themes/hiv-aids). The AIDS pandemic is led by the two types of
HIV, ie., HIV-1 and HIV-2, with the former being more prevalent
than the latter (4, 5). Moreover, several antiretroviral therapies
(ARTs) were designed and used, but none of them will lead to
combatting this infection completely (6, 7). A few vaccines were
developed to combat this, but they did not prove efficient due to a
lack of appropriate immune response and effectiveness. Apart from
that, one of the hurdles behind the efficiency is the variability and
the mutation within the strains. Despite the various hurdles, the
most effective vaccine, RV144, was developed, providing only 31.2%
protection against this infection (7-9). This emphasizes the need to
create a potent vaccine to address the challenges of strain variability
due to mutations in controlling HIV infection. HIV-1 is classified
into four (M, N, O, and P) groups; among them, only group M
causes 95% to be classified into various subtypes (A, B, C, D, F, G,
H, J, and K) (10-12). However, subtype B is prevalent in Australia,
America, and Western Europe, whereas subtype C is prevalent in
Africa and India (10, 11). Moreover, subtype C is the most prevalent
strain worldwide (46.6%) and dominates in Asia and Africa,
followed by subtypes A and B (13-15). Furthermore, a recent
systematic review reported that subtype C accounted for 50.4% of
worldwide HIV based on data (from 2016 to 2021) and found a
significant increase in the cases compared to the previous dataset
(from 2010 to 2015) (16). HIV employs various strategies to evade
immune surveillance, including antigenic variation, MHC
downregulation, and immune cell dysfunction (17). Subsequently,
several key mutations are mainly responsible for escaping immune
mechanisms, such as N332 glycan shift (escape broadly neutralizing
antibodies by altering glycan shielding) and T242N (reduces
recognition by CTL), among others (18, 19).

The HIV genome comprises several effective structural, regulator,
and accessory genes. However, structural genes, i.e., the envelope
glycoprotein, protease, reverse transcriptase, and integrase, are crucial
for host—pathogen interaction and its replication (5, 11, 20, 21). Their
role in viral mechanisms makes them an ideal candidate for
therapeutic development. At present, using immunological data,
immunoinformatics-assisted vaccine design has been identified as a
suitable strategy, along with reverse vaccinology and advanced
computational approaches (11, 22-25) targeting several other
pathogens, because time efficiency, cost-effectiveness, and high
accuracy are essential for a successful vaccine design.
Immunoinformatics-assisted studies on HIV have successfully
targeted various components, including gp120 (21), the whole HIV
genome (5), and Gag polyprotein (7), among others (11, 20),
highlighting the reliability of this approach without incorporating
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the variability of epitopes. In addition, no such study was reported on
subtype C that contributed to higher HIV infection than the other
strains in group M. The main hurdle in combating HIV is the strain
variability caused by mutations, which has yet to be fully addressed
(26-28) and also remains a major obstacle behind the successful
vaccine formulation and the effective potent activity of the available
vaccine. Moreover, a few studies were designed to incorporate
mutation within epitopes against COVID-19 successfully (22, 29).
Compared to conventional vaccine design methods, the advantage of
employing immunoinformatics enables the screening of potential
epitopes that are effective for multiple strains, the assessment of their
immune activity, and other key factors to enhance vaccine
development, which is vital for the effective vaccine design (5, 7).

Therefore, this study examined subtype C to formulate a potent
vaccine considering variability. The B cells and MHC class I and
class II (MHC I and MHC 1I) epitopes were identified and selected
based on their high antigenicity score in this investigation. These
epitopes were further mapped considering the variability of amino
acids identified via multiple strains. The non-mutated and mutated
vaccines were formulated, and their molecular activity and stability
toward the TRL were analyzed via docking and dynamics. The
immune activity based on the vaccination steps and the expression
of the formulated vaccine were performed and analyzed.

Materials and methods

The employed steps corresponding to the methodology are
illustrated in Figure 1.

Collection of the target sequence and their
immune assessment

The vital target (essential for host—pathogen interaction, replication,
and pathogenesis) sequences within the HIV mechanism were retrieved
from UniProt (https://www.uniprot.org/). The vaccine protein must
have strong immunological properties and be non-allergenic to
confirm a potent immune response (29). These retrieved sequences
were further subjected to the antigen and allergen assessment via
VaxiJen v2.0 (https://www.ddg-pharmfac.net/vaxijen/VaxiJen/
VaxiJen.html) (30) considering virus as a target and a threshold
value of 0.4 and the AllerTOP v.2.0 (https://www.ddg-
pharmfac.net/allertop_test/) (31) server. The VaxiJen server is
mainly based on alignment-based prediction methods, while the
AllerTOP server is alignment-free and grounded on the target’s
physicochemical properties.

Identification of B-cell epitope

Two subsequent servers—ABCpred (http://crdd.osdd.net/
raghava/abcpred/) (32), which utilized the artificial neural
network, and BepiPred 2.0 (http://tools.iedb.org/bcell/) grounded
on the sequence features of the antigen (33), available at IEDB—
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FIGURE 1
Overview of employed steps in the designed study.

have different algorithms to detect more potential linear B-
lymphocyte (LBL) epitopes considering collected sequences as
input with default parameters. For peptide vaccines, recognizing
B cells is crucial, as their receptors recognize peptides to trigger an
effective immune response (29). However, the epitopes were further
considered based on their presence in both servers and examined
via VaxiJen v2.0 (30), AllerTOP v.2.0 (31), and ToxinPred (https://
webs.iiitd.edu.in/raghava/toxinpred/) along with default parameter
(34) servers.

Identification of T-cell (MHC | and MHC 1)
epitopes and their immune assessment

CD8" T lymphocytes recognize MHC I epitopes. When a cell is
infected or has aberrant proteins (such as in viral infections or
cancer), MHC I molecules present these peptides on the cell
surface, prompting CD8" T cells to kill the infected or abnormal
cells (35-37). On the other hand, CD4" helper T cells recognize MHC
II epitopes. Antigen-presenting cells (APCs) internalize and process
foreign antigens, presenting peptides on MHC II molecules to
activate CD4" T cells, which then help coordinate the broader
immune response (38, 39). The MHC I and MHC II within the
targets were identified using Tepitool (http://tools.iedb.org/tepitool/),
which computes the epitopes based on seven prediction methods
(IEDB recommended, consensus, NetMHCIIpan, NN-align, SMM-
align, Sturniolo, and the combinatorial library method) (40). For
MHC 1, 27 and MHC 1I, 7, the most frequent alleles with the
restricted 9- and 15-mer length were selected, and all other IEDB-
recommended parameters were selected (24, 29, 40). Furthermore,
the immune assessment was done similarly to the abovementioned
one to screen out the potential epitopes.
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Epitope mapping of B and T cells with the
variable amino acid

To formulate a mutation-proof vaccine, the designed vaccine
should be highly effective in both mutated and non-mutated forms
(29, 41). The available sequence concerning each target was
collected from UniProt (https://www.uniprot.org/). These
sequences were subjected for multiple sequence alignments via
Clustal Omega (https://www.ebi.ac.uk/jdispatcher/msa/clustalo),
which is based on the seeded guide trees and the HMM technique
(42), and the variable amino acid was visualized and collected using
the JalView (43) software. These variable amino acids were further
mapped with the final selected B- and T-cell epitopes to
incorporate mutation.

Vaccine formulation and immune and
physiological assessments

The highly antigenic score followed by non-allergenic and non-
toxic-based LBL, MHC I, and MHC II epitopes were selected from
each target for the vaccine formulation, leading to a robust immune
response against the infection. These epitopes were joined via
different subsequent linkers (EAAAK, AAY, KK, and GPGPG) (21,
41). Furthermore, to enhance, activate, and purify, the adjuvant,
PADRE, and His-tag were also attached at the N and C terminals of
the vaccine construct. In contrast, His-tag was attached using the
RVRR linkers (5, 7, 11, 21). Moreover, considering combination, six
different vaccines were constructed to identify additional potential
combinations with high antigenic properties (score). However, the
adjuvant (beta-defensin), PADRE at the N, and His-tag at the C
terminal were kept in different distinct vaccine constructs (44).
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Moreover, the EAAAK offers an extended, uncharged spacer that
can reduce steric hindrance in the region, AAY enhances the
immunogenicity and improves pathogen-specific immunity while
reducing junctional immunogenicity, KK linkers enhance solubility
and are crucial proteases required for antigen processing, GPGPG
linkers will aid to avoid aggregation and sustain flexibility, and His-
tag is vital for the recognition and separation and facilitates efficient
purification (7, 29, 44-46). The antigen and allergen predictions were
used similarly to those mentioned above to identify vaccine candidate
combinations with optimal immunological and antigenic properties.
The combination with the highest antigen score was analyzed for its
physicochemical activity via the ProtParam server (https://
web.expasy.org/protparam/) (47), considering default parameters.
The selected vaccine combination also underwent solubility analysis
via Protein-sol (https://protein-sol.manchester.ac.uk/) (48), which
is based on weighted scores considering default parameters.

Population coverage analysis of the
selected MHC | and MHC Il epitopes

The selection of potential must be validated based on its
population coverage, which can be crucial for vaccine
development and helpful for most of the world’s population (29).
The final MHC I and MHC II epitopes with their restricted alleles
were utilized for the analysis via population coverage (http://
tools.iedb.org/population/) (49), which estimates the fraction of
responders to epitopes with known MHC restrictions.

Mutated vaccine formulation and immune
and physiological assessments

The variable positions identified through multiple sequence
alignment were mapped onto the selected epitope to introduce
variability and design a mutated epitope to formulate a mutated
vaccine that can be helpful in combating multi-strain. The mutated
vaccine was constructed, and its immune and physiological
assessments were performed similarly to those of the non-
mutated vaccine.

Structure modeling and quality assessment

The SOPMA (based on the homology modeling) (https://npsa-
prabi.ibep.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html)
(50) and PSIPRED [based on machine learning (ML)] (http://
bioinf.cs.ucl.ac.uk/psipred/) (51) were employed to examine the
secondary structure of non-mutated and mutated vaccine construct
following the default parameters. However, structure was modeled
via the Robetta (https://robetta.bakerlab.org/) (52) server based on
deep learning methods using RoseTTAFold. These models were
enhanced via the GalaxyRefine (https://galaxy.seoklab.org/cgi-bin/
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submit.cgi?type=REFINE) (53) server, and the most promising
enhanced models were further examined for their structure
quality validation via PROCHCK (https://saves.mbi.ucla.edu/)
(54) and ProSA-web (https://prosa.services.came.sbg.ac.at/
prosa.php), which is grounded on the statistical analysis following
the available structure (55).

Identification of discontinuous epitopes

Discontinuous epitopes are crucial for encoding the immune
system’s specificity and complexity in responding to infectious
agents, leading to more robust and protective immune responses
(36). Therefore, the presence of these epitopes within the non-
mutated and mutated vaccine was examined via Ellipro (http://
tools.iedb.org/ellipro/) (56), which is grounded on geometrical
properties of structure, considering the vaccine model structure.

Docking analysis of vaccine with TLR

Potent vaccines must be able to bind with the receptor to
activate an immune activity. Therefore, the formulated vaccine
(non-mutated and mutated) was docked with the TLR via the
ClusPro (https://cluspro.org/login.php) (57) webserver, which
utilized the PIPER docking algorithm following the default
parameters, whereas the TLR3 structure was collected via the
Protein Data Bank (PDB) (ID: 1ZIW) (https://www.rcsb.org/)
database. The obtained docked complexes were examined, and
the most potent complexes were selected based on their lowest
negative energy, demonstrating strong binding. The binding
affinities of complex chosen were computed via the PRODIGY
(https://rascar.science.uu.nl/prodigy/) (58) sever, and their
interaction was visualized through the PDBsum (https://
www.ebi.ac.uk/thornton-srv/databases/pdbsum/) (59) and PyMOL.

Molecular dynamics simulation

To examine the docked complex’s stability (vaccine with TLR),
the Desmond software on an Acer workstation with Ubuntu 20.04
was used (60). The OPLS-2005 Force field was employed to generate
the coordinates and topology file of the vaccine and TLR complex to
define bonded and non-bonded interactions. The system was
prepared, solvated (in the TIP3P model), and further neutralized
to mimic the physiological condition via Na+ and Cl- counter ions
with 0.15 M salt concentration. Furthermore, the simulations were
carried out at 300 K temperature and 1.0325 bar pressure for 100 ns,
and the system was minimized and relaxed using the default
protocol considering all other criteria that were earlier described
(23, 60-63). Furthermore, the trajectory file was examined by root
mean square deviation (RMSD) and root mean square fluctuation
(RMSF) to evaluate the system’s stability.
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Vaccine-assisted immune activity via
immune simulation

The immune activity produced via vaccine (non-mutated and
mutated) was analyzed via C-ImmSim (https://kraken.iac.rm.cnr.it/
C-IMMSIM/index.php) (64), which employs an ML algorithm. This
server assesses the host’s immune activity and the ensuing vaccine
administration. Default parameters were used following the
adjustment based on previously reported data corresponding to
the vaccine construct sequence. Additionally, time steps were
modified to reflect the administration of three doses at 1, 84, and
168, with 1,050 set as the simulation step, while all other parameters
remained the same (5, 21, 65).

Optimization and cloning of vaccine

The formulated vaccine (non-mutated and mutated) must have a
high expression level for a robust response. Therefore, the
constructed sequence was optimized via the VectorBuilder (https://
en.vectorbuilder.com/tool/codon-optimization.html) server,
considering E. coli K12 with default parameters. The Codon
Adaptation Index (CAI) and GC% should be 0.8-1.0 and 30%-
70% for the maximum expression, respectively (25, 66). Furthermore,
the optimized sequence was incorporated and cloned in pET-28a (+)
via SnapGene (https://www.snapgene.com/) software, considering a
specific restriction site as previously reported (5, 7, 11).

Results

Collection of the target sequence and their
immune assessment

The selected proteins, envelope glycoprotein (Q75008), protease
(Q75002), reverse transcriptase (Q75002), and integrase (Q75002),
were retrieved from the UniProt database, which is a part of the
human immunodeficiency virus type 1 group M subtype C (isolate
ETH2220), and are crucial in the infection mechanism (11, 67). The
immune assessment of the target sequence demonstrated (Table 1)
that the required properties can be utilized for vaccine formulation.

Identification of B-cell epitope and their
immune assessment

The crucial B-cell epitope within targets was identified via
ABCpred (32) and BepiPred 2.0 (33). Via the ABCpred server, 87
envelope glycoprotein (Supplementary Table 1), 9 protease
(Supplementary Table 2), 56 reverse transcriptase (Supplementary
Table 3), and 28 integrase (Supplementary Table 4) epitopes, and
simultaneously via BepiPred, 28 envelope glycoprotein
(Supplementary Table 5), 4 protease (Supplementary Table 6), 20
reverse transcriptase (Supplementary Table 7), and 9 integrase
(Supplementary Table 8) epitopes were predicted. Moreover, 25
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envelope glycoprotein, 4 protease, 24 reverse transcriptase, and 13
integrase epitopes were selected to screen out the more precise
assessments, which overlapped in both (Supplementary Table 9).
The immune evaluation of these final epitopes revealed that several
epitopes have potential, having antigen, non-allergen, and non-
toxic features, and the epitopes with high antigen scores from each
target (Supplementary Table 9, highlighted in blue) were selected
for vaccine formulation as in Table 2.

Identification of T-cell (MHC | and MHC 1I)
epitopes and their immune assessment

The MHC I and MHC II epitopes were identified within the
targets via Tepitool (40), considering the most frequent alleles (29).
The MHC I assessment revealed 238 envelope glycoprotein
(Supplementary Table 10), 24 protease (Supplementary Table 11),
170 reverse transcriptase (Supplementary Table 12), and 76
integrase (Supplementary Table 13) epitopes. Simultaneously, the
MHC 1II assessment revealed 80 envelope glycoprotein
(Supplementary Table 14), 12 protease (Supplementary Table 15),
61 reverse transcriptase (Supplementary Table 16), and 32 integrase
(Supplementary Table 17) epitopes. The immune assessments of the
epitope in MHC I and MHC II revealed several leading
immunodominant properties, as shown in Table 3. Furthermore,
one epitope with many covering alleles and a high antigenic score
(Table 3) from each respective target was selected for vaccine
formulation, as in Table 4.

Epitope mapping of B and T cells (MHC |
and MHC I1) with the variable amino acid

To compute the variability of amino acids across different
variants, the total reviewed sequences concerning each target were
retrieved from UniProt, and their MSA was accomplished via Clustal
Omega (42). The MSA was visualized via the JalView (43) software,
which revealed several variable positions across the variant
(Supplementary Figures 1-4). In the case of the B-cell epitope, a
total of 38 amino acids from envelope glycoprotein, 29 from protease,
16 from reverse transcriptase, and 9 from integrase were found and
mapped (Supplementary Table 18) with the selected final epitope
(Table 2), whereas 73 amino acids from envelope glycoprotein, 8
from protease, 21 from reverse transcriptase, and 12 from integrase
for the combined MHC I and II were found and successfully mapped
(Supplementary Tables 19-22) with the selected epitope (Table 4,
non-mutated vaccine formulation). These mapped amino acids were
further incorporated (highlighted in red), and the variability was

TABLE 1 List of selected targets with their immune attributes.

Reverse
T

Properties

Envelope Protease Integrase

Antigen 0.5425 (Yes) ‘ 0.4639 (Yes) | 0.5039 (Yes) 0.4628 (Yes)

Allergen No ‘ No No No
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TABLE 2 List of final selected promising LBL epitopes with their immune properties.

Position Peptide Antigen Allergen Toxic

Envelope glycoprotein

78-93 PSPQELGLENVTENEN ‘ 1.0049 (Yes) No No

Protease

54-69 IKVRQYDQIIIEICGK ‘ 0.5430 (Yes) No No

Reverse transcriptase

349-364 LKTGKFAKRGTAHTND ‘ 1.1808 (Yes) No No
Integrase
188-203 RGGIGGYSAGERIIDI ‘ 0.8048 (Yes) No No

introduced in the selected non-mutated B- and T-cell epitope  attain the most immunodominant combination; six distinct non-
(Tables 2, 4). Furthermore, the mutated epitope (Supplementary — mutated vaccines were constructed considering the selected epitope
Tables 19-22) concerning to non-mutated epitopes were examined  and different linkers, adjuvants, and other essential attributes.
for antigen, allergen, and toxicity assessment, similar to those =~ Moreover, the adjuvant, PADRE, and His-tag were kept as in the
mentioned for non-mutated epitopes, and several potential epitopes N and C terminal end, and the LBL, MHC I, and MHC II were
were found to have antigenic, non-allergenic, and non-toxic  framed in different positions (11, 44) for the vaccine construction,
properties (Supplementary Tables 19-22). Among the potential  as shown below, and the final constructed sequence was of 276
epitopes, the epitopes with high antigenic scores (Supplementary  amino acids.

Tables 19-22, highlighted in blue) were further selected for mutated
vaccine formulation. . Adjuvant-PADRE-LBL-MHC I-MHC II-His-tag (V1)

. Adjuvant-PADRE-LBL-MHC II-MHC I-His-tag (V2)

. Adjuvant-PADRE-MHC(I)-MHC (II)-LBL-His-tag (V3)
. Adjuvant-PADRE-MHC(II)-MHC (1)-LBL-His-tag (V4)
. Adjuvant-PADRE-MHC(II)-LBL-MHC (I)-His-tag (V5)
. Adjuvant-PADRE-MHC(I)-LBL-MHC (II)-His-tag (V6)

Vaccine formulation and immune and
physiological assessments

A U A W N =

Among the predicted epitopes, four LBL (Table 3), four MHC I,
and four MHC II (Table 4) were selected based on their high Furthermore, antigenicity and allergenicity revealed that the V2
immunodominant activity for the non-mutated vaccine combination was found to have the highest antigenic score among
formulation. In contrast, four LBL, four MHC I, and four MHC the different combinations, as shown in Supplementary Table 23.
IT mutated epitopes concerning the non-mutated vaccine, based on ~ Moreover, all the constructed vaccines in different forms have an
the introduced variability having high antigenic scores, were used  antigenic nature and a non-allergenic feature, which ensures that
for mutated vaccine formulation, as in Table 5. These selected  the selected epitope is highly promising in various forms. These V2
epitopes were joined via EAAAK, AAY, KK, and GPGPG linkers to  combinations (Figure 2) were similarly applied for the mutated

TABLE 3 Immune assessment of MHC | and MHC |l epitopes of the targets.

Targets Total epitopes  Antigen Non-antigen Allergen Non-allergen Toxic Non-toxic
MHC |
Envelope glycoprotein 238 128 110 103 135 1 237
Protease 24 16 8 14 10 0 24
Reverse transcriptase 170 96 74 90 80 0 176
Integrase 76 41 35 44 32 1 75
MHC I
Envelope glycoprotein 80 48 32 37 43 0 80
Protease 12 6 6 10 2 0 12
Reverse transcriptase 61 38 23 25 36 0 61
Integrase 32 22 10 14 18 0 32
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TABLE 4 Selected highly antigenic MHC | and MHC Il epitopes within all targets and their immune properties.

Position Alleles Antigen Allergen

MHC |

Envelope glycoprotein

206-214 SLDPIPTHY HLA-A*30:02 2.0650 (Yes) No No
HLA-A*01:01
HLA-B*15:01
HLA-A*32:01
HLA-B*35:01
HLA-A*26:01
HLA-A*11:01
HLA-A*02:06
HLA-B*53:01
HLA-A*03:01
HLA-A*02:01
HLA-B*58:01
HLA-B*44:02
HLA-B*44:03
HLA-A*23:01
HLA-B*57:01

Protease

91-99 TQLGRTLNF HLA-B*15:01 1.3043 (Yes) No No
HLA-A*32:01
HLA-A*23:01
HLA-A*24:02
HLA-A*30:02
HLA-A*02:06
HLA-B*08:01
HLA-A*26:01

Reverse transcriptase

381-389 VIWGKTPKF HLA-A*32:01 0.4408 (Yes) No No
HLA-A*23:01
HLA-A*24:02
HLA-B*15:01
HLA-A*26:01
HLA-A*30:02
HLA-B*58:01
HLA-B*57:01
HLA-B*08:01
HLA-B*53:01
HLA-A*02:06

Integrase

75-83 VAVHVASGY HLA-A*30:02 0.5921 (Yes) No No
HLA-B*35:01
HLA-A*26:01
HLA-B*15:01
HLA-A*01:01
HLA-B*53:01
HLA-B*58:01

MHC I

Envelope glycoprotein

351-365 NKTIEFKPSSGGDLE HLA-DRB1*07:01 1.3159 (Yes) No No
HLA-DRB1*15:01
HLA-DRB3*01:01
HLA-DRB3%02:02
HLA-DRB4*01:01
HLA-DRB5*01:01

Protease

42-56 WKPKMIGGIGGFIKV HLA-DRB5*01:01 0.6796 (Yes) No No

(Continued)
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TABLE 4 Continued

Position Peptide Alleles
Reverse transcriptase
343-357 QEPFKNLKTGKFAKR HLA-DRB1*07:01
HLA-DRB1*15:01
HLA-DRB3*01:01
HLA-DRB3*02:02
HLA-DRB4*01:01
HLA-DRB5*01:01
Integrase
253-267 DNSDIKVVPRRKAKI HLA-DRB1*03:01

HLA-DRB1*15:01
HLA-DRB3%*02:02
HLA-DRB4*01:01
HLA-DRB5*01:01

vaccine formulation of 276 amino acids, and their antigenicity and
allergenicity were analyzed (Table 6). Furthermore, the
physiochemical properties and solubility analysis revealed suitable
properties of non-mutated (Supplementary Table 24) and mutated
vaccines, as in Table 6.

Population coverage analysis of the
selected MHC | and MHC Il epitopes

For effectiveness, a potent vaccine must have a wide range of
coverage (29). These eight epitopes (four MHC I and four MHC II)
were examined together, and according to the restricted alleles,
there was 97.41% coverage, which shows the broader coverage
(Figure 3) of the employed epitope in the vaccine formulation.

Structure modeling and quality assessment

The secondary assessment revealed that the non-mutated
vaccine has a helix, 23.91%; strand, 23.91%; and coil, 52.17%
(Supplementary Figure 5), whereas the mutated has a helix,
20.65%; strand, 25.72%; and coil, 53.62% (Figure 4).

The model structure via Robetta (52) servers revealed a
confidence score of 0.42 for the non-mutated and 0.41 for the
mutated vaccine, which lies within the better-quality range. These
models were further refined, and based on their various parameters,
model 3 for the non-mutated (Supplementary Figure 6A)
(Supplementary Table 25, highlighted in blue) and model 1 for
the mutated vaccine (Figure 5A) (Table 7, highlighted in blue) were
found suitable.

The structure quality validation via PROCHECK (54)
demonstrated that the non-mutated vaccine has 87.3% residue in
the most favored region, 8.6% residue in the additional allowed
region, 1.8% residue in the generously allowed region, and 2.3%
residue in the disallowed region (Supplementary Figure 6B), followed
by 88.3% residue in the most favored region, 9.5% residue in the
additional allowed region, 0.9% residue in the generously allowed
region, and 1.4% residue in the disallowed region as in Figure 5B for
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Antigen Allergen Toxic
0.7494 (Yes) No No
1.2710 (Yes) No No

the mutated vaccine. The Ramachandran plot shows that both non-
mutated (Supplementary Figure 6B) and mutated (Figure 5B) vaccine
models have only five and three residues in the disallowed regions
and are scattered, suggesting less likely to cause significant structural
instability. Moreover, most of the residue lies in the favored region,
suggesting the overall reliable backbone geometry of the model (22,
68). Furthermore, the Z-score assessment done via ProSA-web (55)
revealed that the non-mutated vaccine has a —6 score (Supplementary
Figure 6C) and the mutated vaccine has a —5.54 score (Figure 5C); the
negative score represents the superior structure model. Based on
structural validation, the assessment demonstrated the good quality
of the non-mutated and mutated vaccines (22).

Identification of discontinuous epitopes

The non-mutated and mutated vaccine structure was subjected
to the Ellipro (56) server to compute the discontinuous epitope
within the vaccine. The subjected non-mutated vaccine revealed
that seven epitopes covered 139 amino acids; their range score
varied from 0.618 to 0.815 (Supplementary Table 26). In contrast,
six epitopes were found for the mutated vaccine, covering 147
residues, followed by the score range from 0.588 to 0.967 (Table 8).
The discontinuous epitopes with both vaccines show that the
construct vaccine will lead to a remarkable immune response (69).

Docking analysis of the non-mutated and
mutated vaccine with TLR

The molecular activity of formulated non-mutated and mutated
vaccines with the TLR3 was accomplished via ClusPro (7). The TLR3
can recognize double-stranded RNA (dsRNA) and single-stranded
RNA (ssRNA) and is also vital in antiviral immune responses.
Moreover, its activation stimulates dendritic cell activation
mediated by HIV-1, which makes it an ideal target (7, 70). Among
the generated multiple docked complexes of subjected TLR3 and
vaccine, model 6 for the non-mutated (Supplementary Table 27) and
model 7 for the mutated vaccine (Supplementary Table 28) were
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TABLE 5 Selected mutated B- and T-cell (MHC | and MHC 1l) epitopes were mapped with non-mutated epitopes, whereas the mutation was

highlighted in blue.

Position A.Pos R.Pos

Epitope

V.Amino acid

M.Epitope Antigen  Allergen Toxic

B cell

Envelope glycoprotein

78-93 ‘ PSPQELGLENVTENEN E86 96 G PSPQELGLGNVTENEN ‘ 1.4187 (Yes) No No
Protease
54-69 ‘ IKVRQYDQIIIEICGK 163 63 C IKVRQYDQICIEICGK ‘ 1.1378 (Yes) No No
Reverse transcriptase
349-364 ‘ LKTGKFAKRGTAHTND F354 354 Y LKTGKYAKRGTAHTND ‘ 1.1961 (Yes) No No
Integrase
188-203 ‘ RGGIGGYSAGERIIDI R197 197 R RGGIGGYSARERIIDI ‘ 1.5032 (Yes) No No
MHC |
Envelope glycoprotein
206-214 ‘ SLDPIPIHY $206 237 N NLDPIPIHY ‘ 2.4487 (Yes) No No
Protease
91-99 ‘ TQLGRTLNF 193 93 I TQIGRTLNF ‘ 1.3254(Yes) No No
Reverse transcriptase
381-389 ‘ VIWGKTPKF T386 387 S VIWGKSPKF ‘ 0.5451 (Yes) No No
Integrase
75-83 ‘ VAVHVASGY Y83 83 F VAVHVASGF ‘ 0.5744 (Yes) No No
MHC |1
Envelope glycoprotein
351-365 ‘ NKTIEFKPSSGGDLE $359 401 K NKTIEFKPKSGGDLE ‘ 1.6779 (Yes) No No
Protease
42-56 ‘ WKPKMIGGIGGFIKV M46 46 I WKPKIIGGIGGFIKV ‘ 0.5336(Yes) No No
Reverse transcriptase
343-357 ‘ QEPFKNLKTGKFAKR P345 345 E QEEFKNLKTGKFAKR ‘ 0.9871 (Yes) No No
Integrase
253-267 DNSDIKVVPRRKAKI $255 255 N DNNDIKVVPRRKAKI ‘ 1.2852 (Yes) No No

A.Pos, Absolute position; R.Pos, Relative position; V.Amino acid, Variable amino acid; M.Epitope, Mutation incorporated based on mapped variability data.

found most suitable, having high negative energies of —1,120.2 and
—1,275.4 kcal/mol, respectively. The binding affinity of complexes
was computed via PRODIGY (58), and the score was obtained at
—12.8 kcal/mol (TLR3-Non-mutated) and —24.0 kcal/mol (TLR3-
Mutated). These complexes were visualized for their various types of
interaction followed by the H bond via PDBSum (59). The TLR3-
Non-mutated complex shows 16 H bonds followed by 4 salt bridges
and 196 non-bonded contacts as in Supplementary Figure 7. In
contrast, the TLR3-Mutated vaccine revealed 40 H bonds followed by
8 salt bridges and 364 non-bonded contacts, as in Figure 6. Moreover,
the interface residue is demonstrated in Supplementary Figure 7,
Figure 6. The docking analysis revealed that the vaccine is strongly
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bound via molecular connection with TLR3, and the incorporated
variability in the epitopes does not affect the interaction; rather, it
improves, followed by a high number of hydrogen bonds.

Molecular dynamics simulation

The docked TLR3 with the non-mutated and mutated vaccines
was analyzed via the Desmond software, followed by considering
steps of the parameter (23, 61, 62) to examine their stability. The
examination shows that the non-mutated and mutated vaccines
remained bound with the TLR3 over the simulation period
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PADRE

FIGURE 2
Illustration of vaccine construction followed by different attributes.

(Figure 7, Supplementary Figure 8). The RMSD investigation shows
that the Co of the mutated vaccine-TLR3 complex stabilized after
20 ns, followed by approximately 3.0-3.5 A deviation, and the side
chains were comparably slightly higher at approximately 4.5-5.0 A,
which shows the local conformational adjustments (Figure 7A),
whereas the non-mutated vaccine-TLR3 complex was gradually
stabilized after 20 ns and the Co. atoms rise between 6.0 and 6.5 A,
and the side changes merely followed a similar trend but are slightly
higher and stabilized (6.5-7.0 A) (Supplementary Figure 8A). The
higher range of RMSD revealed great flexibility, and the complex
maintained its structural stability (71, 72). Moreover, the RMSF
investigation shows that the alpha of the mutated vaccine-TLR3
complex was less than 2 A, and the side chain surpassed 4 A at
specific residues, which shows higher fluctuation (Figure 7B). In
contrast, the alpha of the non-mutated vaccine-TLR3 complex
remains below 3 A, and their side chain was comparably higher
with a minor exceeding 6-8 A at certain regions (Supplementary

TABLE 6 Computed antigen, allergen, physicochemical, and solubility
properties of the mutated vaccine.

Sl. no. Properties Mutated vaccine
1. Antigen 0.8889 (Probable antigen)
2. Allergen Non-allergen
3. Residue count 276
4. Molecular weight 30,121.02
5. Theoretical pI 10.16
6. Formula Ci348H2166N1408036158
7. Estimated half-life 30 h (mammalian reticulocytes,
in vitro)
>20 h (yeast, in vivo)
>10 h (Escherichia coli, in vivo)
8. Instability index 31.76
9. Aliphatic index 70.43
10. Grand average of -0.593
hydropathicity (GRAVY)
11. Solubility 0.674 (Higher than
scaled solubility)
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Figure 8B). The minor high peaks in the RMSF of both docked
complexes recommend confined rigidity, which is essential for
interaction (60, 71, 72).

Vaccine-assisted immune response activity

The ML accomplished vaccine immune activity and assisted the C-
IMMsim server in considering the time steps of the injection interval, as
in Figure 8 (Mutated) and Supplementary Figure 9 (Non-mutated). In
the case of the non-mutated vaccine, the primary administration shows
a high peak of antigen level (700,000 mL) and high generation of
immunoglobin, followed by secondary and tertiary administration
having an antigen count level of 500,000 each, which further instantly
completely reduced, and further, the generated immunoglobins (IgM
+1gG, IgM, IgGl+IgG2, IgGl, and IgG2) spiked (650,000) and
continued to increase, as shown in Supplementary Figure 9A. In
contrast, the mutated vaccine shows antigen counts of approximately
700,000, 300,000, and 50,000 per mL at the primary, secondary, and
tertiary response levels, respectively. In contrast, the generated
immunoglobin level shows a more promising spike (IgM+IgG, IgM,
IgG1+IgG2, IgGl, and IgG2) followed by nearly 800,000, which is
higher than the non-mutated immunoglobin level as in Figure 8A.
Moreover, the generated cytokine and interleukins show the highest
peaks (IFN-y, IL-2, IL-4, and TNF-0) at nearly 450,000 ng/mL for non-
mutated (Supplementary Figure 9B), nearly similar to the mutated
vaccine (Figure 8B). The repeated exposure of the immunoglobin and
cytokine level followed by steps of injection shows that the vaccine is
capable of remarkable immune activity in both forms (Mutated,
Figure 8; and Non-mutated, Supplementary Figure 9), and the
incorporated variability does not reduce the vaccine’s effectiveness.

Optimization and cloning of vaccine

The queried non-mutated and mutated vaccine optimized
sequence was 831 for each. The CAI value was 0.95 and GC%
was 54.27 for the non-mutated vaccine. In contrast, for the mutated
vaccine, the CAI was 0.95, and the GC% was 53.43, demonstrating
the significant expression in the bacterial system of both vaccines as
the obtained value lies in favor of the expression level. Furthermore,
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FIGURE 3

Illustration of selected (MHC | and MHC II) epitope-based population coverage.

the optimized mutated and non-mutated vaccines (red) were cloned
in the pET28a (+) vector in Figure 9; Supplementary Figure 10.

Discussion

Vaccine formulation for emerging and re-emerging infections
presents a promising strategy for effective disease control, offering
broad coverage and cost-efficiency. In this context, researchers have
leveraged bioinformatics, immunoinformatics, and reverse vaccinology
approaches to develop successful multi-epitope vaccines (5, 22, 69, 71).
HIV is one of the ongoing endemic concerns due to high infection. No
specific vaccine are available to completely eradicate the infection due to
its strain variability (26, 28). Previously, researchers applied various
approaches for the successful vaccine development towards this infection
(5, 11, 21, 70) considering the viral targets mostly from subtype B
without incorporating variability in epitopes. In HIV infection, subtype C
accounts for the majority of infections, compared to other subtypes,
which have not been fully explored yet (13, 14). Therefore, this
investigation formulated a potent multi-epitope vaccine by examining
subtype C’s four potential targets and incorporating variability
(mutation) in epitopes to fight against multiple strains of infection.
Based on the antigen, allergen, toxicity, and incorporated variability in
the epitopes, four LBL, four MHC I, and four MHC II were found as
highly immunodominant epitopes and were selected for the non-
mutated and mutated (based on the introduced variability) vaccine
formulation. The vaccine’s immune activity was enhanced by including
the adjuvant, PADRE, and 6xHis-Tag in the construction (5, 21). The
antigenicity and allergenicity assessment confirmed that both the
mutated and non-mutated vaccines are antigenic, with scores of
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0.8889 and 0.7657, and these values are consistent with previous
findings (11, 21, 70) and indicate that both vaccines are non-allergenic
and the incorporated mutation in the non-mutated vaccine does not
compromise its antigenic effectiveness. Furthermore, mutated and non-
mutated vaccines’ physiochemical attributes and solubility levels were
found suitable and improved (5, 21). The MHC I and MHC II epitopes
involved in the vaccine formulation revealed high population coverage,
ie., 97.41%, based on the combined investigation, which is nearly similar
to and has improved from the earlier reported study (5, 21, 70). The
secondary structural assessment of mutated and non-mutated vaccines
showed 20.65% and 23.91% as helix, which is nearly similar to the
previous data (5, 11), revealing structural stability. Moreover, the tertiary
structure modeling of both mutated and non-mutated vaccines and their
validation confirmed that the modeled structures are of favorable quality
and closely resemble previously reported data (21, 70). The presence of
discontinuous epitopes in vaccines demonstrated their ability to induce
protective immunity, as they can produce the antibodies that identify the
infection (73, 74). Previously, studies found that the activation of TLR3
can potentially lead to combat HIV infection. Moreover, it can also
recognize the dsRNA and ssRNA and initiate the stimulation of dendritic
cells facilitated by HIV infection (5, 70). Subsequently, the activation of
TLR3 in the viral infection was found to be most suitable, as reported
previously by researchers (5, 21, 70, 75). The docking analysis of both
non-mutated and mutated vaccine models with TLR3 demonstrated
accurate binding, with the incorporated mutation maintaining and
enhancing the molecular interaction. This enhancement was reflected
in the increased number of interacting residues, with the non-mutated
vaccine forming 16 hydrogen bonds with TLR3, while the mutated
vaccine formed 40 hydrogen bonds. Furthermore, the binding affinity of
both vaccine-TLR3 complexes indicates the favored stability of the
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[llustration of secondary composition based on their attributes of the mutated vaccine.

system (75). The obtained binding affinity was —12.8 kcal/mol (TLR3-
Non-mutated) and —24.0 kcal/mol (TLR3-Mutated). Moreover, nearly
similar binding affinities calculated via PRODIGY, i.e., —10.8 kcal/mol
(76) and —20.0 kcal/mol (77), were previously reported. Subsequently, a
study based on the variability in epitopes reported —20.7 kcal/mol (non-
mutated) and —19.5 kcal/mol (mutated) (29). Moreover, Habib et al.
found that among the various TLRs (TLR-2, TLR-3, TLR-4, TLR-5,
TLR-8, and TLR-9), the designed vaccine exhibited a greater number of
interactions towards the TLR-2 followed by 12 H bonds (21). Moreover,
exhibited strong interactions specifically with TLR3 and TLR5 among
the various TLRs (77). The vaccine-assisted immune simulation activity
demonstrated that repeated exposure to formulated vaccines revealed
high immunoglobulins and decreased antigen levels. The presence of the
IgM in the vaccine will help in the early stage of immune regulation (78),
whereas the presence and generation of IgGl and IgG2 towards the
antigens suggest the robust immune response followed by antibody

Frontiers in Immunology

production and neutralization of the viral part (21). Furthermore, the
different cytokines and interleukins generated in response to antigens,
ie,, IFN-y (activation of macrophages), IL-2 (stimulates the IFN-y), IL-4
(B-cell activation), and TNF-o. (activation of dendritic cells and T cells),
demonstrated the protective immune activity (21, 79, 80) of the
formulated non-mutated and mutated vaccine and successfully
suppressed and nearly similar to previously reported studies (5, 7, 21),
and the introduced mutation does affect and reduce the effectiveness of
the production of immune activity. The in silico cloning of the non-
mutated and mutated vaccine into the pET28a(+) vector within the E.
coli K12 system demonstrated the maximum expression level, with a
CAI value of 0.95 for each and GC% values of 54.27 and 53.43. These
values fall within the favored range for optimal expression, aligning
closely with previously predicted CAI and GC% values (5, 7, 11, 70).
Moreover, the cloning of the designed vaccine into the pET28a(+) vector
was deemed suitable for viral infection-based studies owing to its
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FIGURE 5
Illustration and modeled mutated vaccine and their quality assessments. (A) Designed vaccine model, (B) residue representation in various regions,
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TABLE 7 List of enhanced mutated vaccine models with their attributes.

Model GDT-HA RMSD MolProbity Clash score Poor rotamers Rama favored
Initial 1.0000 0.000 1.466 21 0.0 92.0

Model 1 0.9819 0322 1.805 8.3 0.5 94.9

Model 2 0.9764 0329 1.884 9.7 0.5 94.5

Model 3 09755 0335 1.897 106 05 94.9

Model 4 09792 0.329 1912 9.9 05 94.2

Model 5 09728 0349 1.918 106 0.9 94,5

TABLE 8 List of obtained discontinuous epitopes within the mutated vaccine.

Sl. No. Residue No. of residues Score
1. A:F187, A:K188, A:N189, A:L190, A:K191, A:T192, A:G193, A:K194, A:F195 9 0.967
2. A:Gl, A:d2, Ad3, A:N4, AT5, A:L6, A:Q7, AKKS, A:Y9, A:Y10, A:C11, A:RR12, A:V13, A:R14, A:G15, A:G16, 43 0.804

A:R17, A:Cl18, A:A19, A:V20, A:L21, A:S22, A:C23, A:L24, A:P25, A:K26, A:E27, A:E28, A:Q29, A:130, A:
G31, A:K32, A:C33, A:S34, A:T35, A:R36, A:G37, A:R38, A:K39, A:C40, A:C41, A:R42, A:R43

3. A:P151, A:G154, A:D156, A:L157, A:E158, A:G159, A:P160, A:G161, A:P162, A:G163, A:W164, A:K165, A: 30 0.689
P166, A:G179, A:P180, A:G181, A:P182, A:G183, A:Q184, A:E185, A:E186, A:A196, A:K197, A:R198, A:G199,
A:P200, A:G201, A:P202, A:G203, A:D204

4. A:K217, A:A220, A:Y221, A:N222, A:L223, A:D224, A:P225, A:1226, A:P227, A:H229, A:Y230 11 0.648

5. A:K68, A:P69, A:S70, A:P71, A:Q72, A:E73, A:L74, A:G77, A:N78, A:V79, A:T80, A:E81, A:N82, A:F83, A: 35 0.599
K85, A:D137, A:1138, A:G139, A:P140, A:G141, A:P142, A:G143, A:N144, A:K145, A:S264, A:G265, A:R267,
A:V268, A:R269, A:R270, A:H271, A:H272, A:H274, A:H275, A:H276

6. A:C100, A:G101, A:K102, A:K104, A:L105, A:T107, A:G108, A:K109, A:A111, A:K112, A:G114, A:T115, A: 19 0.588
Alle, A:H117, A:T118, A:N119, A:D120, A:K121, A:K122
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capability to efficiently express viral proteins and the presence of multiple
cloning sites, which streamline the cloning process (5, 29, 81).

One of the major hurdles to combating HIV is the low immune
response and strain variability. Compared to conventional methods,
immunoinformatics-based approaches offer a more precise, rapid,
and cost-effective method for vaccine formulation. This study’s
major findings demonstrate that the designed vaccine elicits a
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FIGURE 7

significant immune response, effectively triggering cellular and
humoral activity to combat the infection. Furthermore, based on
strain variability, the incorporated mutation does not affect its
effectiveness, highlighting its potential to address multi-strain
variability. Overall, this study confirms that the formulated
vaccines possess immunodominant activity and are capable of
effectively fighting HIV infection.

Residue Index

o m_chain

Illustration of simulation-based investigation of the docked complex (mutated vaccine with TLR3). (A) The RMSD-based trajectories analysis of the

complex, and (B) the RMSF-based trajectories analysis of the complex.
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Illustration of immune activity response of the mutated vaccine considering injection steps. (A) Vaccine-assisted antigen and antibody level.
(B) Generated cytokine and interleukin level.

Limitations and future scope effectiveness. Several steps of investigation and examination were

employed via integrating the computational and immunoinformatic

Strain variability remains a significant challenge in HIV vaccine ~ approach, which is associated with accuracy and promise. While the

development. In this study, we successfully designed both non- formulated vaccine revealed strong immune activity, future steps,

mutated and mutated vaccine constructs, incorporating epitope including experimental validation, multi-strain efficacy, immune

variability to address this issue. The vaccines demonstrated ~ response evaluation, and clinical trials, are essential to ensure its
remarkable immune activity, highlighting their potential ~ Protection and immune activity.
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Conclusion

In this combined mutation-based immunoinformatic investigation, a
potent peptide vaccine against HIV infection was successtully formulated
by incorporating variability (mutations) in the epitopes utilized in the
vaccine. The formulated vaccine effectively evokes a robust immune
response based on the fusion of immunodominant epitopes. The docking
and dynamics investigation of non-mutated and mutated vaccines with
the TLR3 demonstrated strong and stable binding, which ensures the
ability of the vaccine activity towards the signaling receptor to trigger the
immune response. The vaccine-generated immune response, followed by
the injection time step, effectively stimulates immune cells. Additionally,
the in silico-assisted cloning revealed the high expression levels of non-
mutated and mutated vaccines. The strategy employed in this
investigation suggests a potent framework for formulating a vaccine
capable of addressing strain variability.
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Introduction: The Mycobacterium avium complex (MAC)—comprising M.
colombiense, M. avium, andM. intracellulare—is an emerging group of
opportunistic pathogens responsible for significant morbidity and mortality,
particularly in immunocompromised individuals. Despite this growing burden,
no vaccines currently provide cross-species protection. In silico vaccine design
offers a rapid, cost-effective strategy to identify immunogenic epitopes and
assemble multi-epitope constructs with optimized safety and efficacy.
Accordingly, we aimed to develop a candidate multi-epitope vaccine (MEV)
targeting conserved antigens across multiple MAC species.

Methods: From a genomic survey of nontuberculous mycobacteria (NTM) in
Zimbabwe, we assembled complete genomes for M. colombiense (MCOL), M.
avium (MAV), and M. intracellulare (MINT). Using both local and global reference
datasets, we screened the conserved immunodominant proteins 85A, 85B, and
85C for high-affinity T-helper lymphocyte (THL) epitopes. Promising epitopes
were further evaluated for antigenicity, immunogenicity, physicochemical
stability, and population coverage.

Results: Epitope mapping across the nine target proteins yielded 82 THL
epitopes predicted to bind 13 MHC class Il (DRB*) alleles, ensuring broad
coverage within Zimbabwean and pan-African populations. Clustering analyses
consolidated 26 unique epitopes into 11 consensus peptides, 65.4% of which
derived from the 85B proteins. In silico immune simulations predicted robust
humoral and cellular responses, including elevated IgG titers, T-helper and T-
cytotoxic cell proliferation and increased secretion of IFN-y and IL-2 following
MEV administration.
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Conclusion: These findings indicate that our construct possesses strong
immunogenic potential and cross-species applicability. We present here a
rationally designed MEV candidate that merits further experimental validation
as a broad-spectrum vaccine against multiple MAC species.

Epitopes, Mycobacterium avium complex, Vaccine, Antigen85, mycolyltransferase, Thl
helper T-cell, immunodominance, promiscuous epitopes

1 Introduction

Mpycobacterium avium complex (MAC) encompasses a group of
twelve species of mycobacteria that are opportunistic pathogens
responsible for significant morbidity and mortality in both humans
and animals (1, 2). To improve on clarity, may we request change of
this statement to 'MAC species cause pulmonary disease in
humans and animals. They are clinically significant both in
immunocompromised patients—such as people living with HIV/
AIDS or those with chronic lung disease—and, less commonly, in
otherwise healthy individuals. (3). In animals, MAC infections pose
significant threats to livestock and wildlife resulting in economic
losses and serving as potential reservoirs for zoonotic transmission
(4, 5). Infections due to MAC species are increasing globally,
particularly among immunocompromised individuals and
patients with underlying lung disease, with notable prevalence
reported in Australia, America, Europe, and Asia, thereby
underscoring the urgent need for effective vaccine strategies
worldwide (1, 3, 6-9). The growing global burden of MAC
infections and multidrug resistance among MAC calls for an
urgent and constant ‘One Health Approach’ in development of
effective prevention and control strategies in both humans and
animals (2). This vaccine development effort aligns with the ‘One
Health approach’ addressing human, animal and environmental
health by targeting pathogens at the human-animal-environment
interface. Despite the widespread use of Bacillus Calmette-Guérin
(BCG) as a vaccine for tuberculosis and also providing partial
immunity to NTM infections, further studies to either increase
the efficacy of the BCG/recombinant BCG vaccine or to create new
vaccines or booster vaccines that induce an optimal immune
response against NTM is required (10). To address this waning
efficacy, booster vaccines are essential as they help achieve long-
term immunity (11). However, the recent advances in vaccine
technology, in silico predictions provide a more efficient, cost-
effective alternative for screening candidate epitopes that can elicit
strong immune responses, identifying and optimizing vaccine
candidates used in the development of therapeutics and vaccines.

Given that effective vaccines must enhance immune
mechanisms responsible for pathogen elimination, understanding
the nature of pathogen clearance becomes essential. Pathogen
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clearance often relies on multi-specific, polyclonal, and robust T
cell-mediated responses. Major histocompatibility complexes
(MHCs), known as human leukocyte antigens (HLAs) in humans,
are crucial for the host immune system, presenting antigenic
peptides (epitopes) to CD8+ cytotoxic T cells (CTLs) and CD4+
T helper (Th) cells [Helper T-lymphocytes (HTL)] (12-14). HLA
class I molecules present endogenous peptides to CTLs, while HLA
class I molecules present exogenous peptides to HTLs (13). The
HTLs have a key role in adaptive immunity. These activate the B-
cells along with the CTLs for production of antibodies and
eventually killing infected/damaged cells (15). The HTL epitopes
for the selected protein can be calculated using the prediction tool
for MHC-II epitope (http://tools.iedb.org/main/tcell/).
Epitope-based vaccines represent a novel approach for
generating a specific immune response and avoiding responses
against other unfavourable epitopes (like epitopes that may drive
immunopathogenic or immune modulating responses) in the
complete antigen. Potential advantages of epitope-based vaccines
also include increased safety, the opportunity to rationally engineer
the epitopes for increased potency and breadth, and the ability to
focus immune responses on conserved epitopes (16, 17). The
repertoire of peptides presented by HLAs is influenced by the
structural features of the HLA binding groove and the peptide’s
amino acid composition (18, 19). In silico tools can predict MHC-
presented epitopes and profile immune escape mutations, though
such analyses remain complex and underexplored for bacterial
genomes. Additionally, pathogens frequently mutate within
immunogenic epitopes to evade recognition by T cells and agents,
posing significant challenges for developing potent vaccines and
therapeutics for diseases like tuberculosis (TB) and others (20).
The antigen 85 (Ag85) complex, comprising a cascade of 85A,
85B, and 85C proteins is the main secretory antigen playing an
important role in the pathogenicity of mycobacteria (21). Ag85
complex molecules are widely being explored as tools in diagnostic
methods and in vaccine research including recombinant attenuated
vaccines, DNA vaccines and subunit vaccines because of their
ability to allow bacteria to evade host immune responses through
preventing formation of phagolysosomes (21). These highly
conserved fibronectin-binding proteins also promote immune
responses in host by inducing the production of IFN-g and have
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been shown to confer protection against TB (22). Research into
Ag85 proteins continues to hold great promise for improving TB
vaccines, particularly in high-burden settings.

By leveraging computational approaches, it is possible to predict
T-cell from MAC antigens, assess their immunogenicity, and design
multi-epitope vaccine constructs. In this study, we utilized
immunoinformatics to analyze the 85A, 85B, and 85C proteins of
MAV, MINT and MCOL, the commonly found strains in
Zimbabwe, to identify candidate epitopes for vaccine
development. This work aims to contribute to the development of
safe and effective vaccines to combat MAC infections in both
humans and animals, addressing a critical need in the global fight
against mycobacterial diseases.

2 Materials and methods

2.1 Screening for Ag85A-C genes of the
three MAC species

From a genomic survey project using NTM samples in
Zimbabwe, we generated complete MAV, MINT and MCOL
genomes. These genomes provided a foundational dataset for
vaccine modelling, enabling a genotyping approach through
whole genome sequencing (WGS) to identify immunologically
relevant targets. To enhance the multi-epitope vaccine design, we
screened for Ag85A-C genes across the three MAC species. The
amino acid sequences of the target proteins Ag85A, Ag85B, and
Ag85C of MAV, MINT and MCOL were retrieved from the
National Center for Biotechnology Information (NCBI) (https://
www.ncbi.nlm.nih.gov) in FASTA format. Subsequently, the nine
protein sequences were grouped into three multiple sequence
alignments (MSAs), corresponding to Ag85A, Ag85B, and Ag85C
for MAV, MINT, and MCOL. Each MSA was visualized using
AliView (https://github.com/AliView/AliView), and conserved
regions were identified from the alignments. The Epitope
Conservancy Analysis tool, available through the Immune
Epitope Database (IEDB; http://tools.iedb.org/conservancy/), was
used to evaluate the variability of epitopes based on the sequence
alignment of the three MAC species.

2.2 Prediction of T-cell and designing of
the multi-epitope subunit vaccine

We used NetMHCIIpan 4.3 to predict MHC class II-binding
peptides (NetMHClIIpan 4.3 - DTU Health Tech - Bioinformatic
Services) for all the 3 MSA containing proteins (Ag85A, Ag85B, and
Ag85C) for multiple MAC species. Epitope selection thresholds
were based on established immunoinformatics criteria. Only
epitopes that fulfilled multiple criteria, high antigenicity, strong
MHC binding, and IFN-y induction were shortlisted for vaccine
construct design. These selection thresholds have been widely
adopted in previous epitope-based vaccine design studies to
ensure that the predicted peptides are likely to be immunogenic
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and broadly recognized across different HLA types (16, 17, 23). As a
selection criteria, the strong binding promiscuous epitopes were
considered for downstream analyses towards final vaccine
construct. To enhance vaccine efficacy, the GPGPG linker was
used to connect amino acid sequences, ensuring optimal
individual functionality (23, 24). GPGPG linkers reduced
junctional immunogenicity. Since immune adjuvants are a key
requirement in vaccine formulation and play a critical role in
enhancing the efficacy of vaccines, the Mycobacterium tuberculosis
50S ribosomal protein L7/L12 (RL7_MYCTU), POWHE3 was
retrieved from the UniProt database (https://www.uniprot.org/)
and used as an adjuvant for the immune interaction based on its
ability to act as an agonist for TLR437 (25). POWHE3 was then
integrated at the N-terminal of the construct and connected to the
antigenic epitopes using the EAAAK linker to ensure improved
expression, bioactivity stability and structural integrity (26, 27). The
final vaccine construct was meticulously designed by assembling the
adjuvant, epitopes, and linkers into a unified, functional structure to
maintain the structural stability and immunological independence
of the epitopes and adjuvant. To analyze epitope similarity with
human surface proteins and minimize the risk of autoimmune
reactions, BLASTp was also used. Epitopes with a similarity below
70% to human proteins are considered acceptable (28). The analysis
was conducted using the BLASTp tool.

2.3 Determination of physicochemical
characteristics, immunogenicity and
allergenicity prediction

We evaluated the immunogenicity of the multiepitope subunits
using the VaxiJen (VaxiJen v3.0) and the ANTIGENpro module of
the SCRATCH protein predictor (Scratch Protein Predictor).
Allergenicity was assessed with the AllerTOP v. 2.0 (29) and
AlgPred servers (http://crdd.osdd.net/raghava/algpred/) to identify
potential allergic reactions, ensuring the safety and efficacy of the
predicted vaccine candidates. We used the ProtParam tool of the
EXPASY database server (http://web.expasy.org/protparam/) to
determine the physicochemical parameters (molecular weight,
half-life, atomic composition, stability index and mean
hydrophilicity) of the vaccine candidates’” antigens.

2.4 3D modelling of immunogenic
polypeptides and protein subunits

For ab initio modelling, we utilized the Swiss-model (SWISS-
MODEL), submitting the designed full length chimeric peptide
sequence with default settings. One model (Swiss-Model ID:
Q63Q02.1) encompassed the entire multi-epitope construct, while
the second returned only a truncated peptide fragment and was
therefore excluded from further consideration. Model Q63Q02.1
was subsequently validated using MolProbity metrics—MolProbity
score, clashscore, and Ramachandran analysis (Table 1)—to ensure
stereochemical quality before downstream analyses. Functional
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TABLE 1 Structural validation metrics for the chimeric MEV construct (Model Q63Q02.1).

Model ID Clash score

MolProbity Score

Ramachandran Favored (%) Ramachandran Outliers (%)

Q63Q02.1 1.73 3.64

insights into the targets were derived by rethreading the models
through the BioLiP protein function database (BioLiP). The
resulting 3D models were visually inspected using PyMOL
(PyMOL | pymol.org) for structural validation and analysis. To
further evaluate the protein’s flexibility and dynamics, Normal
Mode Analysis (NMA) was performed using the iMODS server
(https://imods.igf.csic.es/), which provided insights into residue
coupling through the covariance matrix and defined the elastic
network model to identify regions of rigidity and flexibility based on
the stiffness of atomic interactions.

2.5 Population coverage by HTL epitopes

Human leukocyte antigen (HLA) patterns differ across ethnic
groups and geographical regions, making it essential to evaluate
population coverage when designing effective vaccines. The IEDB
population coverage tool (http://tools.iedb.org/population/) was
used to calculate global human population coverage for the
predicted HTL epitopes, ensuring their broad applicability. The
15-mer peptides overlapping by 14 amino acids were tested for
binding to a set of 13 HLA class II alleles—HLA-DRB1*0101,
DRB1*0301, DRB1*0302, DRB1*0401, DRB1*0701, DRB1*0802,
DRB1*1101, DRB1*1102, DRB1*1301, DRB1*1302, DRB1*1501,
and DRB5*0101—that have high population coverage in
Zimbabwe and other African populations (http://
www.allelefrequencies.net/hla6006a.asp?hla_population=2057).

3 Results

The amino acid sequences of nine proteins, 85A, 85B and 85C
proteins of MAV, MINT and MCOL, were retrieved from the
GenBank database to design a multi-epitope vaccine targeting
MAC. The inclusion of Ag85 complex was guided by its high
degree of conservation among mycobacterial species and its
established immunogenicity as supported by its wide use in
vaccine candidate development for TB (26, 30-32). Although nine
proteins were selected, clustering and consensus analysis resulted in
11 distinct peptide sequences, reflecting inter-strain variability and
epitope overlap. The eleven protein sequences were
MSFIEKVRKLRGAAATMPR, MSFFEKLRGAAATMPRR,
PRRLATAAVGASLLSGVAVAAGGS, PRRLAIAAMGASLLSGL,
RLATAAVGASLLSGL, GLPVEYLEVPSPSMGRNI,
SEKVRAWGRRLLVGAAAAVTLPGLIGIAGGAATAN,
SEKVRAWGRRLLVGTAAAATLPG, AWGRRLVVG
AAAAATLPGLIGLAGGAATAN, PGLPVEYLQVPSAGMGRNI
and PVEYLQVPSAGMGRDIKVQFQS. SignalP 4.5 was used to
assess functionality, revealing no signal peptides for proteins other
than Ag85A/B/C. Functional protein sequences were then subjected
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to T-cell epitope prediction, identifying 17 high-affinity HTL
epitopes for inclusion in the final vaccine construct. These
epitopes overlapped with HTL epitopes (Table 2). A BLAST
search against the UniProt database confirmed high conservation
among the proteins, ranging from 27.7% to 100%.

3.1 Construction of multi-epitope subunit
vaccine.

A total of 7 clusters of overlapping 14-mers high-binding HTL
epitopes were predicted (Figure 1A). Consequently, 7 consensus
sequences representing each cluster were generated at 100%
threshold. These were used in designing the chimera using
GPGPG linkers. Additionally, an adjuvant was added to the
amino terminus of the vaccine peptide using an EAAAK linker in
order to potentiate antigen-specific immune responses. The 50S
ribosomal protein L7/L12 (RL7_MYCTU, UniProt ID: POWHE3)
was incorporated as an adjuvant at the N-terminal of the vaccine
construct to enhance immunogenicity. The adjuvant RL7_MYCTU
was an ideal adjuvant for enhancing cell-mediated immunity in this
MEYV vaccine construct as it is well-documented to have the ability
to act as a potent immunostimulatory molecule inducing cytokine
production, T cell activation and IFN-y secretion (25). The final
vaccine peptide generated consisted of 423 amino acid residues. The
immunogenic peptide identified through epitope-mapping has been
patented for further vaccine development.

3.2 Physiochemical properties and
solubility prediction

The molecular weight (MW), theoretical isoelectric point (pI),
and half-life of the final protein [as assessed in mammalian
reticulocytes (in vitro) and in yeast and E. coli (in vivo)] is
summarized in Table 2. The protein demonstrated good solubility
upon expression, with a solubility score and an Abs 0.1% (1 g/L)
value of 0.505. Furthermore, the instability index (IT) was calculated
as 36.67, classifying the protein as stable, as proteins with an II >40
are typically considered unstable.

3.3 Secondary-structure analysis and
tertiary-structure modeling of the chimeric
MEV construct using Swiss-model server

The Swiss-Model server was used to generate the two tertiary
structure models for the designed chimeric protein. Among these,
the MSVQ63Q02.1 model was identified as the best as it
represented the full-length MEV construct and achieved a
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TABLE 2 Characteristics of the primary structure of proposed multi-
epitope vaccine candidate for MAC species calculated through

ProtParam tool.

Characteristics of Vaccine Assessment

Number of amino acids 423 aa
Molecular weight (kDa) 41.5 kDa
Theoretical pI 10.27
Negatively charged residues (Asp + Glu) 31
Positively charged residues (Arg + Lys) 50
Extinction coefficient (M'cm™) 20910
30 hours

Estimated half life

Aliphatic index

Grand average of
hydropathicity (GRAVY)

Instability index

(mammalian reticulocytes)

88.09

0.099

36.67 (Stable)

Rama favoured score of tertiary structure 88.35%
z-score 4.41
Codon Optimization Index (CAI) 0.80
GC content (E coli as vector) 64.38%

Allergenicity (ALLERCATPRO + AlgPred)

No evidence (non-allergenic)

Antigenicity Score: Threshold (0.4) 0.6120 (Probable ANTIGEN).

favorable MolProbity score (1.73) and low clashscore (3.64) and
thus was selected for presentation (Table 1, Figure 2A).
Ramachandran plot analysis indicated that 88.35% of the residues
were in favoured regions, with only 1.94% in disallowed regions
(Table 1, Figure 2Bb). The quality and accuracy of the refined 3D
model were evaluated using ProSA-web and ERRAT. The ERRAT
analysis reported an overall quality factor of 97.5% (Figure 2C),
while ProSA-web yielded a Z-score of -4.41 (Figure 2D), confirming
the reliability of the refined vaccine protein model. The internal
dynamics of the MEV model were further examined using normal
mode analysis (NMA) via the iMODS server. The covariance matrix
(Figure 2E) illustrated patterns of correlated and anti-correlated
motions between residues, while the elastic network model
(Figure 2F) highlighted stiffness variations across residue
connections, indicating regions of structural rigidity and flexibility.

3.4 IFN-y inducing epitope prediction

This prediction was consistent with the simulated level of IFN-y
produced after immunization with the peptide using the C-ImmSim
server (http://150.146.2.1/C-IMMSIM/index.php). The MEV model
we designed managed to elicit a significant increase in T cell
population following immunization. Furthermore, the antibody
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levels (IgM+1gG, IgG1+IgG2, IgM, and IgG) were found to increase
during immunizations, accompanied by a decrease in antigen count
(Figure 3A). Additionally, both CTL and HTL populations increased
following secondary and tertiary immunization (Figures 3B-D).

3.5 Codon optimization and the in vitro
expression simulations

The Codon Optimization Tool (ExpOptimizer) tool (https://
www.novoprolabs.com/tools/codon-optimization), was used for the
multi-epitope vaccine model to enhance efficient translation and
optimization of the codons for maximal expression in the
prokaryotic host system E. coli (strain K12). In codon-optimized
sequences of the designed vaccine (MEV-LpKwTC001), the codon
adaptation index values were 0.80, and the GC content value
64.14%. Additionally, the adapted codon sequences were
optimized with sticky end restriction sites of HindIIl and Ncol at
the N-terminus and C-terminus to facilitate restriction and cloning
and inserted into the recombinant plasmid vector, pET-30a (+),
using the Snapgene tool to design and effective cloning
strategy (Figure 4).

4 Discussion

Paediatric administration of BCG vaccine is practiced in
Zimbabwe. However, with M. tuberculosis being endemic and
with the rise of NTM infections, there is a great need for new
vaccines and booster vaccines for the BCG vaccines to fight both
tuberculosis in adults as well as NTM infections particularly MAC
infections. The rise of drug-resistant mycobacteria, limited BCG
efficacy, and the need for vaccines targeting both humans and
animals highlight significant challenges (33-35). The focus has
recently shifted towards the development of subunit vaccines as
they are associated with better safety profiles and are logistically
more feasible, effective vaccines candidates that can be used to
control MAC-related infections (36). Bioinformatics (in silico) is a
good option to be used in designing and development of vaccines
and diagnostics for newly emerged pathogens. The use of this
approach reduces the time and cost. In order to construct a
potent vaccine and effective diagnosis, understanding of the
epitope and antibody interaction is required.

This work therefore focused on the in-silico design and
development of a multi-epitope vaccine peptide generated using
different MAC species (MCOL, MAV, MINT) and antigens (85A,
85B, and 85C) and has a potential for cross-protection
(prophylactic and therapeutic). The proteins that we selected had
exhibited potential to be vaccine candidates for in vitro studies (32).
Epitope mapping of Ag85 protein complex has identified distinct
peptides capable of stimulating human T cells, highlighting specific
regions that could potentially trigger protective immune responses
(37). More than 50% of vaccine candidates development for TB to
date, some in advanced clinical trials, incorporated Ag85 (32).
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Helper T lymphocyte (HTL) Epitope Clustering and Multi-Epitope Vaccine Construct Design (A). Predicted HTL 14-mer epitopes were grouped into
clusters based on sequence similarity of their core binding regions. (B) A multi-epitope-vaccine construct was designed using consensus sequences

derived from each epitope cluster.

Conservation of the Ag85 complex across mycobacterial species
also highlights their potential for cross-protection against related
pathogens, including those in the MAC (30, 31).

We identified THL epitopes from selected proteins and fused
them using linkers to create a multi-epitope peptide. Immuno-
informatics showed the vaccine candidate contains many high-
affinity MHC Class II epitopes from ag85B. Notably, multi-epitope
vaccines are often poorly immunogenic and typically require
adjuvants (38, 39); however, the designed protein demonstrated
comparable antigenicity scores with or without an added adjuvant
sequence. The antigenicity of the final sequence (including the
adjuvant sequence) was shown to be probable antigen with a
bacteria and also to be non-allergenic. we identified epitopes with
accessibility, flexibility, hydrophilicity, and antigenic profiles for the
Ag85. The vaccine candidate has a molecular weight of 41.5 kDa
and is predicted to be soluble upon expression, aligning with its
simulated immunogenicity. Solubility in an E. coli host is crucial for
biochemical and functional studies.

Based on the predicted GRAVY score, which assesses
maintenance ability in hydrophilic or hydrophobic environments,
our MEV model displayed negative GRAVY value, suggesting a
higher structural stability in a hydrophilic environment. This aspect
can be correlated with solubility, critical in determining in vitro
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protein expression. Consequently, MEV-LpKwTC001, which
demonstrated the highest solubility score, was selected for
expression in E. coli. Furthermore, the predicting protein
solubility is crucial for the selection of highly effective candidate
proteins, as it can help avoid protein aggregation, which adversely
affects biological activity and can lead to failures in the recombinant
protein pipeline. The theoretical pI of 10.27 indicates the protein is
alkaline, and the predicted instability index confirms its stability
upon expression. The aliphatic index highlights the presence of
hydrophobic aliphatic side chains, suggesting thermal stability,
which is ideal for use in endemic regions like sub-Saharan Africa.
These properties show that this is a potential vaccine design. To the
best of our knowledge, no vaccine candidate is in phase III, nor
licensed for use in the NTM infection with MAC species. To
improve the immunogenicity of the vaccine antigen, we inserted
adjuvant and linker sequences between the previously predicted
epitopes to increase antigenicity. The fact that it has no allergenic
properties further confirms its potential as a vaccine candidate.
Secondary structure analysis shows the protein is primarily
composed of coils (67%), with 48% of residues disordered. These
structural features, including natively unfolded regions and alpha-
helical coiled coils, are known to serve as “structural antigens”
capable of folding into native structures and being recognized by
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Protein 3D modelling, refinement and validation of designed MEV. (A) 3D structure of LoKWTc001 multi-epitope-based vaccine design for MAC
species. (B) Ramachandran plot (C) ERRAT analysis report. (D) Xray based on ProSA (Protein Structural Analysis). The Z-score (dark spot) value was
4.41, within NMR (dark blue) and X-ray (light blue. (E) Covariance matrix indicating coupling between pairs of residues, i.e. whether they experience
correlated (red), uncorrelated (white) or anti-correlated (blue) motions. (F) The elastic network model defining which pairs of atoms are connected
by springs. Dots are coloured according to their stiffness, the darker greys indicate stiffer springs and vice versa.

infection-induced antibodies. To evaluate conformational changes
of the MEV, protein flexibility was examined using NMA. The MEV
showed that a greater part of its peptide chains have high rigid
regions which are crucial in the protein’s functional dynamics. The
3D structure, refined to improve its quality, exhibited favourable
characteristics in the Ramachandran plot, with 85.16% of residues
in allowed regions and minimal outliers, confirming the model’s
reliability and suitability for vaccine design.

Immune simulation showed responses typical of a strong
immune reaction, with increased activity after repeated antigen
exposure. Following infection with MAC species, IgG1, 1gG3, and

Frontiers in Immunology

104

IgE antibodies are critical for protection, and the vaccine candidate
effectively stimulated memory B-cells and T-cells, with B-cell
memory lasting several months. The simulations show that THL
cells were strongly activated, and levels of IFN-y and IL-2 spiked
after the first injection, staying high with subsequent doses. This
suggests strong TH cell activity and efficient antibody production,
supporting a robust humoral response. The diversity of the immune
response, indicated by the Simpson index, reflects the chimeric
peptide’s design, which includes multiple B and T-cell epitopes. The
dominant IFN-y-driven THI-type response, seen in naturally
immune individuals, involves higher levels of THI cells, cytotoxic
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C-ImmSim simulation of the cytokine levels induced by the vaccine. (A) Antigen and immunoglobulins (antibodies are sub-divided per isotype); (B)
CD8 T-cytotoxic lymphocytes count per entity-state; (C) T helper (TH) cell population, and (D) Concentration of cytokines and interleukins.
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CD8+ T cells, neutrophils, and macrophages, further highlighting
the vaccine’s potential effectiveness.

After obtaining the candidate vaccine, validating a candidate
vaccine begins with screening for immunoreactivity using
serological analysis, which requires expressing the recombinant
protein in a suitable host. E coli expression systems, particularly
strain K12, are preferred for producing recombinant proteins. To
ensure high-level expression of the vaccine protein, codon
optimization was performed in silico, yielding a favourable codon
adaptability index (0.80) and GC content (64.14%).

While our vaccine candidate demonstrated favourable protein
characteristics and strong immunogenicity, our study had certain
limitations. Since the candidate was designed using human MHC
epitopes, its efficacy must be assessed in a humanized mouse model.
Additionally, we did not evaluate vaccine efficacy in vitro, which
remains a limitation of our approach. However, this work
represents a crucial foundational step toward experimental
vaccine development. Notably, similar multi-epitope vaccines
designed through utilization of immunoinformatic tools in silico
have demonstrated strong immunogenicity in both in vitro and in
vivo models, supporting the reliability of these methods (40-42).
Moving forward, to advance the development of a preventive and
therapeutic vaccine for MAC, we will validate the proposed vaccine
through in vivo and in vitro studies to corroborate the predicted
immunogenic potential.

Additionally, population coverage analysis for our vaccine
candidate focused on HLA-DRB alleles. While this approach
provides a robust estimation of coverage in African populations,
the exclusion of HLA-DQ and HLA-DP loci may result in an
underestimation of total MHC class II diversity, particularly in non-
African populations. Future studies incorporating these additional
loci are warranted to refine global population coverage estimates.

This study highlights a novel vaccine construct capable of eliciting a
strong immune response against MAC species, potentially serving as a
prototype for vaccines targeting other emerging infectious diseases.
Vaccination is an important strategy to induce an immune response
against the pathogen by specifically inducing the adaptive immune
system. However, current challenges such as the absence of approved
vaccines for MAC species, limited epitope-based research, and the
lengthy development timelines and high costs associated with
traditional vaccine approaches present significant gaps. Addressing
these gaps is essential for comprehensive disease control and the
reduction of MAC-associated morbidity across human and animal
populations. This approach accelerates and lowers the cost of
developing diagnostics and vaccines for MAC species, aiding future
studies on epitope-based solutions to tackle the NTM challenge.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://www.ncbi.nlm.nih.gov/,
BioProject ID PRJNA1205738.

Frontiers in Immunology

10.3389/fimmu.2025.1589083

Ethics statement

Joint Research Ethics Committee (JREC; under Approval No.
JREC/168/22, dated 02.03.2023), Medical Research Council of
Zimbabwe (MRCZ; under Approval No. MRCZ/A/29/03, dated
13.06.2023) and Zimbabwe’s National Animal Research and Ethics
Committee (NAREC). The studies were conducted in accordance with
the local legislation and institutional requirements. The human samples
used in this study were acquired from a by- product of routine care or
industry. Written informed consent for participation was not required
from the participants or the participants legal guardians/next of kin in
accordance with the national legislation and institutional requirements.

Author contributions

LK: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Validation, Visualization,
Writing - original draft, Writing - review & editing. WC: Data
curation, Formal Analysis, Software, Validation, Visualization,
Writing - review & editing. TM: Investigation, Writing — review
& editing. PN: Conceptualization, Methodology, Supervision,
Writing - review & editing. RG: Supervision, Writing — review &
editing. LZ: Funding acquisition, Project administration, Resources,
Supervision, Writing — review & editing. NM: Conceptualization,
Investigation, Methodology, Supervision, Writing - review &
editing. SG: Formal Analysis, Writing — review & editing. SM:
Data curation, Formal Analysis, Funding acquisition, Resources,
Software, Validation, Visualization, Writing - review & editing. NC:
Conceptualization, Data curation, Formal Analysis, Investigation,
Methodology, Project administration, Resources, Software,
Supervision, Validation, Visualization, Writing - review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. Research reported in this
presentation was supported by the Trials of Excellence in Southern
Africa (TESA) Addressing Gender and Diversity Regional Gaps in
Clinical Research Capacity (TAGENDI) Project funded by the
European and Developing Countries Clinical Trials Partnership
(EDCTP) in partnership with the United Kingdom Department of
Health and Social Care Award Number PSIA2020AGDG-3319. The
content is solely the author’s responsibility and does not necessarily
represent the official views of the funders.

Acknowledgments
The authors are grateful to EDCTP through TAGENDI

Fellowship, the University of Zimbabwe, Medical Microbiology Unit,
Department of Laboratory Diagnostic and Investigative Sciences,

frontiersin.org


https://www.ncbi.nlm.nih.gov/
https://doi.org/10.3389/fimmu.2025.1589083
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Kashiri et al.

Faculty of Medicine and Health Sciences, Biomedical Research and
Training Institute (BRTI), National Microbiology Reference
Laboratories, Harare and National TB Reference Laboratories,
Bulawayo, through the Ministry of Health and Child Care,
Zimbabwe and Botswana Harvard AIDS Institute Partnership,
Gaborone, Botswana.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References

1. Nishiuchi Y, Iwamoto T, Maruyama F. Infection sources of a common non-
tuberculous mycobacterial pathogen, mycobacterium avium complex. Front Med.
(2017) 4:27. doi: 10.3389/fmed.2017.00027

2. Kaczmarkowska A, Didkowska A, Kwiecien E, Stefanska I, Rzewuska M, Anusz K.
The Mycobacterium avium complex - an underestimated threat to humans and
animals. Ann Agric Environ Med. (2022) 29:22-7. doi: 10.26444/aaem/136398

3. Bhanushali ], Jadhav U, Ghewade B, Wagh P. Unveiling the clinical diversity in
nontuberculous mycobacteria (NTM) infections: A comprehensive review. Cureus.
(2023) 15:€48270. doi: 10.7759/cureus.48270

4. Thorel MF, Huchzermeyer H, Weiss R, Fontaine JJ. Mycobacterium avium
infections in animals. Literature review. Vet Res. (1997) 28:439-47.

5. Inderlied CB, Kemper CA, Bermudez LE. The Mycobacterium avium complex.
Clin Microbiol Rev. (1993) 6:266-310. doi: 10.1128/CMR.6.3.266

6. Hoefsloot W, Van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, et al. The
geographic diversity of nontuberculous mycobacteria isolated from pulmonary
samples: an NTM-NET collaborative study. Eur Respir J. (2013) 42:1604-13.
doi: 10.1183/09031936.00149212

7. Wetzstein N, Diricks M, Anton TB, Andres S, Kuhns M, Kohl TA, et al. Clinical
and genomic features of Mycobacterium avium complex: a multi-national European
study. Genome Med. (2024) 16:86. doi: 10.1186/s13073-024-01359-8

8. Prevots DR, Marras TK. Epidemiology of human pulmonary infection with
nontuberculous mycobacteria. Clin Chest Med. (2015) 36:13-34. doi: 10.1016/
j.ccm.2014.10.002

9. Adjemian J, Daniel-Wayman S, Ricotta E, Prevots DR. Epidemiology of
nontuberculous mycobacteriosis. Semin Respir Crit Care Med. (2018) 39:325-35.
doi: 10.1055/s-0038-1651491

10. Orujyan D, Narinyan W, Rangarajan S, Rangchaikul P, Prasad C, Saviola B, et al.
Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-
Tuberculous Mycobacterial Infections. Vaccines. (2022) 10:390. doi: 10.3390/
vaccines10030390

11. Tao ZX, Li RP, Song YY, Xu A. Basic immunization of vaccines is fundamental,
and booster immunization is the guarantee: Booster immunization and its public health
value. Zhonghua Yu Fang Yi Xue Za Zhi. (2022) 56:1401-10. doi: 10.3760/
cma.j.cn112150-20220727-00760

12. Adegboro B, Kolawole OM, Lawani O, Folahan F, Seriki AA. A review of the
roles of Major Histocompatibility Complex (MHC) molecules in infections. Afr J Clin
Exp Microbiol. (2022) 23:120-30. doi: 10.4314/ajcem.v23i2.2

13. Krensky AM. The HLA system, antigen processing and presentation. Kidney Int
Suppl. (1997) 58:52-7.

14. Thio CL, Thomas DL, Karacki P, Gao X, Marti D, Kaslow RA, et al.
Comprehensive analysis of class I and class II HLA antigens and chronic hepatitis B
virus infection. J Virol. (2003) 77:12083-7. doi: 10.1128/JV1.77.22.12083-12087.2003

15. Gaseitsiwe S, Maeurer M]J. Identification of MHC class II binding peptides:
microarray and soluble MHC class II molecules. Methods Mol Biol Clifton NJ. (2009)
524:417-26. doi: 10.1007/978-1-59745-450-6_30

16. Pitaloka DAE, Izzati A, Amirah SR, Syakuran LA. Multi epitope-based vaccine
design for protection against mycobacterium tuberculosis and SARS-coV-2
coinfection. Adv Appl Bioinforma Chem. (2022) 15:43-57. doi: 10.2147/AABC.S366431

17. Zaib S, Rana N, Areeba, Hussain N, Alrbyawi H, Dera AA, et al. Designing multi-
epitope monkeypox virus-specific vaccine using immunoinformatics approach. J Infect
Public Health. (2023) 16:107-16. doi: 10.1016/j.jiph.2022.11.033

Frontiers in Immunology

10.3389/fimmu.2025.1589083

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

18. Sinigaglia F, Hammer J. Defining rules for the peptide-MHC class II interaction.
Curr Opin Immunol. (1994) 6:52-6. doi: 10.1016/0952-7915(94)90033-7

19. Nielsen M, Andreatta M, Peters B, Buus S. Immunoinformatics: predicting
peptide-MHC binding. Annu Rev BioMed Data Sci. (2020) 3:191-215. doi: 10.1146/
annurev-biodatasci-021920-100259

20. Ernst JD. Antigenic variation and immune escape in the MTBC. Adv Exp Med
Biol. (2017) 1019:171-90. doi: 10.1007/978-3-319-64371-7_9

21. Karbalaei Zadeh Babaki M, Soleimanpour S, Rezaee SA. Antigen 85 complex as a
powerful Mycobacterium tuberculosis immunogene: Biology, immune-pathogenicity,
applications in diagnosis, and vaccine design. Microb Pathog. (2017) 112:20-9.
doi: 10.1016/j.micpath.2017.08.040

22. Yuk JM, Jo EK. Host immune responses to mycobacterial antigens and their
implications for the development of a vaccine to control tuberculosis. Clin Exp Vaccine
Res. (2014) 3:155-67. doi: 10.7774/cevr.2014.3.2.155

23. Livingston B, Crimi C, Newman M, Higashimoto Y, Appella E, Sidney J, et al. A
rational strategy to design multiepitope immunogens based on multiple th lymphocyte
epitopesl. J Immunol. (2002) 168(11):5499-506. doi: 10.4049/jimmunol.168.11.5499

24. Chao P, Zhang X, Zhang L, Yang A, Wang Y, Chen X. Proteomics-based vaccine
targets annotation and design of multi-epitope vaccine against antibiotic-resistant
Streptococcus gallolyticus. Sci Rep. (2024) 14:4836. doi: 10.1038/541598-024-55372-3

25. Lee SJ, Shin SJ, Lee MH, Lee MG, Kang TH, Park WS, et al. A potential protein
adjuvant derived from mycobacterium tuberculosis rv0652 enhances dendritic cells-
based tumor immunotherapy. PloS One. (2014) 9:e104351. doi: 10.1371/
journal.pone.0104351

26. Yun JS, Kim AR, Kim SM, Shin E, Ha SJ, Kim D, et al. In silico analysis for the
development of multi-epitope vaccines against Mycobacterium tuberculosis. Front
Immunol. (2024) 15:1474346. doi: 10.3389/fimmu.2024.1474346

27. Meza B, Ascencio F, Sierra-Beltran AP, Torres J, Angulo C. A novel design of a
multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: An in
silico approach. Infect Genet Evol. (2017) 49:309-17. doi: 10.1016/j.meegid.2017.02.007

28. Adianingsih O, Kharisma V. Study of B cell epitope conserved region of the Zika
virus envelope glycoprotein to develop multi-strain vaccine. ] Appl Pharm Sci. (2019)
9:98-103. doi: 10.7324/JAPS.2019.90114

29. Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2—a server for in
silico prediction of allergens. ] Mol Model. (2014) 20:2278. doi: 10.1007/s00894-014-
2278-5

30. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS. Role of the
major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science. (1997)
276:1420-2. doi: 10.1126/science.276.5317.1420

31. Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and
preclinical evaluation models for advancing tuberculosis vaccine development. NPJ
Vaccines. (2024) 9:1-21. doi: 10.1038/s41541-024-00834-y

32. Sachdeva KS, Chadha VK. TB-vaccines: Current status & challenges. Indian |
Med Res. (2024) 160:338-45. doi: 10.25259/JMR_1478_2024

33. Morrison H, McShane H. BCG: past, present and future direction. In: :
Christodoulides M, editor. Vaccines for Neglected Pathogens: Strategies, Achievements
and Challenges : Focus on Leprosy, Leishmaniasis, Melioidosis and Tuberculosis. Springer
International Publishing, Cham (2023). p. 171-95. doi: 10.1007/978-3-031-24355-4_8

34. Qu M, Zhou X, Li H. BCG vaccination strategies against tuberculosis: updates
and perspectives. Hum Vaccines Immunother. (2021) 17(12):5284-95. doi: 10.1080/
21645515.2021.2007711

frontiersin.org


https://doi.org/10.3389/fmed.2017.00027
https://doi.org/10.26444/aaem/136398
https://doi.org/10.7759/cureus.48270
https://doi.org/10.1128/CMR.6.3.266
https://doi.org/10.1183/09031936.00149212
https://doi.org/10.1186/s13073-024-01359-8
https://doi.org/10.1016/j.ccm.2014.10.002
https://doi.org/10.1016/j.ccm.2014.10.002
https://doi.org/10.1055/s-0038-1651491
https://doi.org/10.3390/vaccines10030390
https://doi.org/10.3390/vaccines10030390
https://doi.org/10.3760/cma.j.cn112150-20220727-00760
https://doi.org/10.3760/cma.j.cn112150-20220727-00760
https://doi.org/10.4314/ajcem.v23i2.2
https://doi.org/10.1128/JVI.77.22.12083-12087.2003
https://doi.org/10.1007/978-1-59745-450-6_30
https://doi.org/10.2147/AABC.S366431
https://doi.org/10.1016/j.jiph.2022.11.033
https://doi.org/10.1016/0952-7915(94)90033-7
https://doi.org/10.1146/annurev-biodatasci-021920-100259
https://doi.org/10.1146/annurev-biodatasci-021920-100259
https://doi.org/10.1007/978-3-319-64371-7_9
https://doi.org/10.1016/j.micpath.2017.08.040
https://doi.org/10.7774/cevr.2014.3.2.155
https://doi.org/10.4049/jimmunol.168.11.5499
https://doi.org/10.1038/s41598-024-55372-3
https://doi.org/10.1371/journal.pone.0104351
https://doi.org/10.1371/journal.pone.0104351
https://doi.org/10.3389/fimmu.2024.1474346
https://doi.org/10.1016/j.meegid.2017.02.007
https://doi.org/10.7324/JAPS.2019.90114
https://doi.org/10.1007/s00894-014-2278-5
https://doi.org/10.1007/s00894-014-2278-5
https://doi.org/10.1126/science.276.5317.1420
https://doi.org/10.1038/s41541-024-00834-y
https://doi.org/10.25259/IJMR_1478_2024
https://doi.org/10.1007/978-3-031-24355-4_8
https://doi.org/10.1080/21645515.2021.2007711
https://doi.org/10.1080/21645515.2021.2007711
https://doi.org/10.3389/fimmu.2025.1589083
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Kashiri et al.

35. McMurray DN. A coordinated strategy for evaluating new vaccines for human
and animal tuberculosis. Tuberculosis. (2001) 81:141-6. doi: 10.1054/tube.2000.0265

36. Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-generation TB vaccines: progress,
challenges, and prospects. Vaccines. (2023) 11:1304. doi: 10.3390/vaccines11081304

37. Launois P, Drowart A, Bourreau E, Couppie P, Farber CM, Van Vooren JP, et al.
T Cell Reactivity against Mycolyl Transferase Antigen 85 of M. tuberculosis in HIV-TB
Coinfected Subjects and in AIDS Patients Suffering from Tuberculosis and
Nontuberculous Mycobacterial Infections. J Immunol Res. (2011) 2011:640309.
doi: 10.1155/2011/640309

38. Ghaftar SA, Tahir H, Muhammad S, Shahid M, Naqqash T, Faisal M, et al.
Designing of a multi-epitopes based vaccine against Haemophilius parainfluenzae and
its validation through integrated computational approaches. Front Immunol. (2024)
15:1380732. doi: 10.3389/fimmu.2024.1380732

Frontiers in Immunology

108

10.3389/fimmu.2025.1589083

39. Facciola A, Visalli G, Lagana A, Pietro AD. An overview of vaccine adjuvants: current
evidence and future perspectives. Vaccines. (2022) 10:819. doi: 10.3390/vaccines10050819

40. Invengdo M da CV, de Macédo LS, de Moura IA, Santos LAB de O, Espinoza
BCF, de Pinho S8, et al. Design and immune profile of multi-epitope synthetic antigen
vaccine against SARS-coV-2: an in silico and in vivo approach. Vaccines. (2025) 13:149.
doi: 10.3390/vaccines13020149

41. Shehata MM, Mahmoud SH, Tarek M, Al-Karmalawy AA, Mahmoud A,
Mostafa A, et al. In silico and in vivo evaluation of SARS-coV-2 predicted epitopes-
based candidate vaccine. Molecules. (2021) 26:6182. doi: 10.3390/molecules26206182

42. Kaushik V, G SK, Gupta LR, Kalra U, Shaikh AR, Cavallo L, et al.
Immunoinformatics Aided Design and In-Vivo Validation of a Cross-Reactive
Peptide Based Multi-Epitope Vaccine Targeting Multiple Serotypes of Dengue Virus.
Front Immunol. (2022) 13:865180. doi: 10.1021/acsptsci.2c00130

frontiersin.org


https://doi.org/10.1054/tube.2000.0265
https://doi.org/10.3390/vaccines11081304
https://doi.org/10.1155/2011/640309
https://doi.org/10.3389/fimmu.2024.1380732
https://doi.org/10.3390/vaccines10050819
https://doi.org/10.3390/vaccines13020149
https://doi.org/10.3390/molecules26206182
https://doi.org/10.1021/acsptsci.2c00130
https://doi.org/10.3389/fimmu.2025.1589083
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Gurudeeban Selvaraj,

Aarupadai Veedu Medical College & Hospital,

India

REVIEWED BY

Juraj lvanyi,

King's College London, United Kingdom
Faraz Ahmad,

University of Missouri, United States

*CORRESPONDENCE

Subramanian Dhandayuthapani
pani.dhandayuthapani@utrgv.edu

Shrikanth S. Gadad
shrikanth.gadad@utrgv.edu

TPRESENT ADDRESSES

Melina J. Sedano,

South Texas Center of Excellence in Cancer
Research, Department of Medicine and
Oncology, School of Medicine, University of
Texas Rio Grande Valley, Edinburg, TX,
United States

Shrikanth S. Gadad,

South Texas Center of Excellence in Cancer
Research, Department of Medicine and
Oncology, School of Medicine, University of
Texas Rio Grande Valley, Edinburg, TX,
United States

Subramanian Dhandayuthapani,

South Texas Center of Excellence in Cancer
Research, Department of Medicine and
Oncology, School of Medicine, University of
Texas Rio Grande Valley, Edinburg, TX,
United States

"These authors have contributed equally to
this work

RECEIVED 25 February 2025
AccepTED 03 June 2025
PUBLISHED 11 July 2025

CITATION

Veerapandian R, Yang B, Carmona A,
Sedano MJ, Reid V, Jimenez R, Chacon J,
Jagannath C, Ramos EI, Gadad SS and
Dhandayuthapani S (2025) Comparative
transcriptomic analysis of mouse
macrophages infected with live
attenuated vaccine strains of
Mycobacterium tuberculosis.

Front. Immunol. 16:1583439.

doi: 10.3389/fimmu.2025.1583439

Frontiers in Immunology

TvPE Original Research
PUBLISHED 11 July 2025
po110.3389/fimmu.2025.1583439

Comparative transcriptomic
analysis of mouse macrophages
infected with live attenuated
vaccine strains of
Mycobacterium tuberculosis

Raja Veerapandian®, Barbara Yang?, Areanna Carmona®,
Melina J. Sedano?, Victoria Reid*?, Rodrigo Jimenez™?,
Jessica Chacon®, Chinnaswamy Jagannath®,

Enrique I. Ramos?®®, Shrikanth S. Gadad***!

and Subramanian Dhandayuthapani**

tCenter of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul
L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso,

TX, United States, 2Center of Emphasis in Cancer, Department of Molecular and Translational
Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El
Paso, TX, United States, *Frederick L. Francis School of Biomedical Sciences, Texas Tech University
Health Sciences Center El Paso, El Paso, TX, United States, “Department of Medical Education, Paul L.
Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United
States, *Department of Pathology and Genomic Medicine, Houston Methodist Research Institute &
Weill Cornell Medical College, Houston, TX, United States, °Department of Biology, University of
Texas El Paso, El Paso, TX, United States

The BCG vaccine has been used against tuberculosis (TB) for over a hundred
years; however, it does not protect adults from pulmonary TB. To develop
alternative vaccines against TB, we generated Mycobacterium tuberculosis
H37Rv (Mtb)-derived vaccine strains by rationally deleting key virulent genes,
resulting in single (SKO, AfbpA), double (DKO; AfbpA-AsapM), triple (TKO-D;
AfbpA-AsapM-AdosR and TKO-Z; AfbpA-AsapM-Azmpl), and quadruple (QKO;
AfbpA-AsapM-Azmpl-dosR) strains. To understand how macrophages, the host
cells that defend against infection and process antigens for presentation to
immune cells, respond to these vaccine strains, we performed transcriptomic
analyses of mouse bone marrow-derived macrophages (BMDMs) infected with
these strains. The transcriptomic data were compared with similar data obtained
from macrophages infected with Mtb H37Rv and BCG. Our analyses revealed that
genes associated with various immune and cell signaling pathways, such as NF-
kappa B signaling, TNF signaling, cytokine-cytokine receptor interaction,
chemokine signaling, hematopoietic cell lineage, Toll-like receptor signaling,
IL-17 signaling, Th1land Th2 cell differentiation, Th17 cell differentiation, and T cell
receptor signaling were differentially expressed in BMDMs infected with our
vaccine strains. Enhanced expression of cytokines and chemokines, including
proinflammatory cytokines such as TNF-a, IL-6, GM-CSF, and IL-1, which are
essential for the immune response against Mtb infection, was also observed in
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BMDMs infected with these strains. In particular, BMDMs infected with all vaccine
strains exhibited a significant upregulation of genes associated with the IL-17
pathway. These results may indicate that our vaccine strains could induce a
protective immune response against TB.

Mtb-vaccines, BCG,
signaling, I1L-17

Introduction

Tuberculosis (TB) is a deadly disease caused by an intracellular
human pathogen, Mycobacterium tuberculosis (Mtb), which has
coexisted with humans for approximately seventy thousand years
(1, 2). According to the World Health Organization (WHO) report,
nearly 10.8 million people were affected by TB, resulting in a
mortality rate of 1.25 million in 2023 (3). Historically considered
hereditary, TB was recognized as a contagious disease by Jean-
Antoine Villemin in 1865, and Robert Koch identified the causative
bacterium, Mtb, in 1882 (4). Selman Waksman developed
Streptomycin, the first effective TB drug, earning him the Nobel
Prize in 1952 (5). Conversely, the BCG vaccine developed by Albert
Calmette and Camille Gueérin remains the only licensed vaccine
against TB. Unfortunately, BCG has not been regarded as an
effective vaccine against TB because of the emergence of various
sub-strains that produce differing levels of protective efficacy (6). The
rise of multidrug-resistant TB (MDR-TB) has complicated treatment
strategies even further, necessitating confirmation of bacterial
infection and testing for antibiotic resistance. Alarmingly, only two
out of five MDR-TB cases received treatment in 2022 (7).

In 2014, WHO launched the “End TB Strategy” (8) to
significantly reduce the TB burden by 2035, emphasizing the
critical role of vaccines. Various vaccine types, including live
attenuated vaccines (LAV), subunit vaccines, viral vectored
vaccines, DNA vaccines, whole-cell killed/inactivated vaccines,
and recombinant protein-adjuvant formulations, have been
developed and studied for TB prevention (9). Among these, LAV
stands out for its ability to induce long-lasting immune responses,
with BCG serving as a prime example. The BCG vaccine differs
from the Mtb strain due to the deletion of various Mtb-specific open
reading frames (ORFs) clustered in 16 genomic regions of difference
(RD1-RD16) (10, 11). Mtb has also been modified to enhance its
vaccine efficacy, particularly by knocking out the secretory proteins
or secretory systems of mycobacteria (12).

As a first of its kind, we reported that the Mtb AfbpA strain
protects mice against challenges similar to or better than BCG (13).
Fibronectin-binding protein (FbpA; Rv3804c) is a secreted protein
belonging to the Ag85 complex, which is highly conserved among
species of the Mycobacterium tuberculosis complex. It has a
mycolyltransferase enzyme function, catalyzing mycolic acid
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transfer during cell wall biogenesis (14). Gene disruption studies
in Mtb demonstrated that FbpA is one of the key components
necessary for intracellular survival (15). To enhance the vaccine
efficacy, we additionally deleted the sapM gene in the AfbpA strain
to create a double knockout (DKO) (16). The sapM gene (Rv3310)
encodes the secreted acid phosphatase SapM, initially identified in
Mtb (17). It interferes with the phagosome maturation by
dephosphorylating PI-3 phosphate (18). Our DKO vaccine strain
induces strong protection through enhanced antigen processing
and the autophagy mechanism (19). To further enhance our DKO
vaccine, we carefully deleted two additional genes, specifically zmpl
(Rv0198c) and dosR (Rv3133c). Zmpl is a ~75 kDa zinc
metalloprotease secretory protein that plays a significant role in
blocking phagosome maturation and impairing inflammasome
activation, resulting in greater vaccine efficacy, (20, 21), whereas
DosR is a dormancy survival regulator that collectively affects
approximately fifty genes in the Mtb genome and is highly
activated under microenvironmental conditions such as
granulomas (22, 23). These new vaccine strains have shown
increased immunogenicity (24), and efficacies against TB in
animal models are being investigated.

This study follows up on our prior observation that a double-
knockout (DKO) vaccine provides superior and longer-lasting
protection compared to the BCG vaccine (19). In this study, we
aimed to investigate the intricate molecular responses of
macrophages to the Mtb-based live attenuated vaccines (LAVs)
developed in our laboratory. Macrophages play a crucial role in
defending against intracellular pathogens like Mtb and processing
and presenting antigens to immune cells. An effective mycobacterial
vaccine should induce key immune and cell signaling pathways that
lead to effective antigen presentation and the subsequent pathogen
clearance from the host. Thus, studying the molecular interactions
between Mtb-derived vaccines and macrophages through RNA-seq
analysis should provide important insights into vaccine efficacy.
Although studies have documented genome-wide transcriptomic
changes in human or mouse macrophages following Mtb infection
(25-27), our study focuses on Mtb-derived vaccine strains for the
first time. This approach has allowed us to identify the crucial
immune and cell signaling pathways and profile the vital cytokines
and chemokines for TB vaccines. Further, our findings underscore
the importance of the IL-17 pathway regulated by LAV strains.
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Materials and methods
Mtb strains and culture conditions

Wild-type and knockout Mtb strains were grown at 37°C in either
Middlebrook 7H9 broth or 7H10 agar (BD Difco), both containing
0.05% Tween 80 (TW), 0.2% glycerol, and OADC (10%) enrichment.
All mutant Mtb strains used in this study are a derivative of H37Rv.
We published the single knockout, SKO (AfbpA) and double
knockout, DKO (AfbpA-AsapM) strains used in this study earlier
(13, 16). Triple knockouts such as ATKO-D (AfbpA-AsapM-AdosR),
ATKO-Z (AfopA-AsapM-Azmpl), and quadruple knockout, AQKO
(AfbpA-AsapM-Azmpl-dosR) strains were made on the DKO
background, and their construction was briefly reported earlier (24)
and will be published elsewhere (manuscript under preparation).

Animals and ethics

C57BL/6] mice aged 4-6 weeks were purchased from Jackson
Laboratories, Bar Harbor, ME. The mice received were housed with
unlimited access to water and mouse chow and permitted to move
without restraints within their cages at the Laboratory Animal
Resource Center, Texas Tech University Health Sciences Center
El Paso. The Institutional Animal Care and Use Committee
(IACUC) of the Texas Tech University Health Sciences Center El
Paso approved an animal protocol for this study (Protocol #17003).

Isolation of bone marrow-derived
macrophages

As described previously, BMDMs were extracted from wild-
type C57BL/6 mice (28). Briefly, the BMDMs were cultured from
the femurs and tibias of mice in DMEM medium (DMEM, 10% fetal
bovine serum, 10 ng/ml of M-CSF) and incubated at 37°C in 5%
CO, for 7 days, with the addition of new medium containing M-
CSF every 2-3 days.

Infection of BMDMs with Mtb strains

Mtb wild-type H37Rv and all mycobacterial vaccine strains
were cultured in 7H9 medium with appropriate antibiotics in roller
bottles at 37°C for 5-7 days. Colony-forming units (CFUs) of the
bacterial suspensions were determined and stored at -80°C until
use. Before infection, bacteria were pelleted, washed with PBS, and
dispersed using a 23G syringe to eliminate clumps. Mouse BMDMs
(10° cells/well) seeded in 6-well tissue culture plates (Corning, USA)
were infected at a multiplicity of infection (MOI) of 1:5 in DMEM
for 4 h to allow phagocytosis. Afterward, cells were washed thrice
with D-PBS (Corning, USA) to remove extracellular bacteria and
replaced with fresh DMEM containing 10% fetal bovine serum for
further incubation at 24 and 72 h.
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RNA sequencing and data analysis

Mouse BMDMs (10%/well) were infected with the respective
mycobacterial strains as described above for different time points
(24 h and 72 h). After respective time points, total RNA was extracted
from the infected BMDMs using the EZ-10 DNAaway RNA Mini-
Preps Kit (Bio Basic, Canada) as described previously (28). RNA
quantification was performed using Nanodrop (Thermo Scientific,
USA). The quality of RNA was measured using TapeStation (Agilent
Technologies 4200). The library preparation enriched for polyA RNA
fraction was performed in house and RNA sequencing was
performed at Novogene Corporation Inc. (Sacramento, CA, USA),
as described elsewhere (29). Two biological replicates for each
condition were performed. We employed web-based application
Genialis to analyze RNA sequencing raw data using their “General
RNA-Seq pipeline (featureCounts)” with default settings (Genialis,
Inc., Boston, MA). RNA-Seq data were aligned using STAR aligner to
the mouse transcriptome from Ensembl release version 109 with
trimmed reads removing adapter sequences. Read counts were
computed using featureCounts. Quality control metrics were
determined, and the average quality per read was 36 (Phred score)
(Supplementary files - Table S1,52, S2). Principle component analysis
(PCA) was generated within the Genialis RNA-seq pipeline
visualization features. The differentially expressed genes (DEGs)
were also computed using the Genialis built-in DESeq2 tool,
defining the control samples of PBS or H37Rv and the case
samples accordingly, and the filtering criteria for DEGs are FDR <
0.05 with log, fold change greater than 1 for upregulated DEGs and
less than 1 for downregulated DEGs. DEGs were presented in
heatmaps, volcano plots, and Venn diagrams, using pheatmap,
ggplot2, and Venn packages, respectively, in the R program. For
downstream analysis of KEGG pathway analysis and Gene Ontology
(GO) analysis for biological processes (BP), we queried the
bioinformatic Database for Annotation, Visualization, and
Integrated Discovery (DAVID) with default settings and plotted the
top 30 KEGG pathways or BP based on ascending p-value as dot plots
using ggplot2 in R, as described previously (28, 29).

cDNA synthesis and qRT-PCR

The total RNA from infected BMDM was used to synthesize
cDNA using the RevertAid First Strand ¢cDNA Synthesis Kit
(Thermo) according to the manufacturer’s protocol. Quantitative
reverse transcriptase PCR (qRT-PCR) was performed using a
LightCycler® 96 Instrument (Roche). PCR was performed using
PowerTrack " SYBR Green (Thermo Fisher Scientific) according
to the manufacturer’s recommendations. Three biological replicates
for each condition were performed. Primer details are given in the
Supplementary files (Supplementary Table S3). The relative CT
(AACT) method was used to quantify gene expression as described
elsewhere (19). The expression levels of target genes were normalized
to the house keeping gene, actB (8- actin) with the H37Rv group set
as the reference value 1 for comparison with all vaccine groups.
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Results

Transcriptome analysis of mouse BMDMs
infected with vaccine strains compared to
uninfected cells

To explore the variation in transcriptional signatures of mouse
BMDMs infected with various Mtb vaccine strains, we conducted a
genome-wide gene expression analysis using an RNA-sequencing
platform (Figure 1). The performance of Principal Component
Analysis (PCA) on the transcripts from mouse BMDMs clearly
distinguished the infection groups from the PBS control at both 24
and 72 h time points. At 24 h post-infection, groups of transcripts
with H37Rv background knockouts clustered almost entirely
together, distinctly separating from those associated with BCG. By
72 h post-infection, almost all groups were distinctly separated,
regardless of their H37Rv or BCG background (Supplementary
Figure S1).

For gene expression analysis, we considered fold change cut-off
values of Log, fold change >1.0 as upregulated and <-1.0 for
downregulated genes (FDR < 0.05). Our transcriptome analysis
identified more than 14,000 genes exhibiting expression among
Mtb-infected mouse BMDMs compared to uninfected control
(Supplementary Data 1, 2). The heat map displayed a gene
expression profile, showing a high disparity among infected
groups compared to the PBS group, regardless of the time point
(Figures 2A, D). Different clusters in the heat map indicate distinct
modes of regulation, with cluster 1 being predominantly
upregulated and cluster 3 downregulated across all vaccine
groups. Interestingly, cluster 2 remains unchanged in the H37Rv
wild-type group; however, there is a significant difference in this

Bone marrow

Control

10.3389/fimmu.2025.1583439

cluster among the vaccine groups. Notably, an additional change in
cluster 2 of the vaccine groups is observed at the 72 h time point
compared to 24 h. The Venn diagram illustrates both the unique
and shared DEGs among the vaccine-infected groups. The total
number of unique genes in the various vaccine-infected groups at 24
and 72 h post-infection are as follows: H37Rv (59 and 58), BCG
(1309 and 422), SKO (52 and 126), DKO (206 and 225), TKO-D
(111 and 155), TKO-Z (44 and 15), and QKO (23 and 40)
(Figures 2B, E).

There are no significant percentage differences in differential
gene expression between 24 and 72 h post-infection within the same
group (Figures 2C, F). Compared to H37Rv background vaccine
strains (~12.5-20.9%), BCG displays a higher percentage of DEGs at
both time points (25.8 & 21.8%), while the H37Rv wildtype shows
(144 & 12.4%) DEGs. Interestingly, the percentage of DEGs
decreased successively as the gene deletion increased in vaccine
strains such as SKO (18.7 &20.9%), DKO (18.8 &18.4%), TKO-D
(19.8 &19.3%), TKO-Z (14.3 &12.5%), and QKO (13.2 &14.7%).

Transcriptome analysis of mouse BMDMs
infected with Mtb vaccine strains
compared to H37Rv wild-type strain

As we observed differential regulation of genes within the vaccine
groups, we proceeded to determine the number of DEGs in these
groups compared to the H37Rv background (Supplementary Data 3,
4). All our vaccine strains originate from the H37Rv background,
where genes are sequentially deleted to create mutant strains. Thus,
we compared all our vaccine strains, including BCG, with H37Rv.
Unlike the previous comparison with uninfected, where three distinct

POVOTOVOVO]

——\ = ﬂl’s _ —*- . — —
(S e V
~— ‘ 72hrs ysolation of eukaryotic CONA Ligate \ '
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Differential expressed
genes (DEG) analysis

FIGURE 1

(Raw reads)

Mapping to mouse

genome Data analysis

Schematics showing RNA-Seq workflow and data analysis. Fresh BMDMs were isolated from the female wild-type C57BL/6J mice and infected with
respective vaccine strains or left uninfected. Following a 4-hour phagocytosis period, the BMDMs were washed with D-PBS and cultured in fresh
DMEM supplemented with 10% fetal bovine serum for an additional 24 and 72 hours. RNA was isolated and subjected to eukaryotic mRNA
enrichment at each time point. Subsequently, cDNA libraries were prepared, followed by adapter ligation and amplification for Illumina sequencing.
The RNA-Seq data were aligned to the mouse transcriptome, and differential gene expression (DEG) analysis was performed. The figure was

generated using BioRender.
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Transcriptome profiling of mouse BMDMs infected with vaccine strains in comparison to control. (A, D), Heatmap of the differentially expressed
genes at 24 h and 72 h; (B, E), Venn diagram of the differentially expressed genes showing the number of overlapping and unique genes among
groups at 24 h and 72 h; (C, F), Volcano plot showing distribution of p values and log, fold change of differentially expressed genes as green
(downregulated), red (upregulated) and black (Not significant) at 24 h and 72 h with respective bar graphs in percentage.

clusters were observed, here we observed two distinct clusters. While
minimal changes are noted in both clusters among the vaccine
groups, with the exception of BCG and DKO, clusters 1 and 2
display a high number of upregulated and downregulated genes in the
BCG group, along with only a few differentially regulated genes in the
H37Rv background vaccine groups. Interestingly, certain alterations
are observed in the H37Rv background vaccine groups in regions
where the BCG group shows no changes. In contrast, the DKO group
exhibits more drastic changes in gene expression in those regions
(Figures 3A, D). The Venn diagram reveals a limited number of
unique and shared genes among the vaccine groups. At 24 and 72 h
post-infection, the number of unique genes in various vaccine-
infected groups is as follows: BCG (597 and 512), SKO (5 and 28),
DKO (199 and 331), TKO-D (20 and 22), TKO-Z (8 and 8), and
QKO (11 and 29). Notably, BCG and DKO exhibit numerous unique
DEGs, indicating distinct genetic responses (Figures 3B, E).
According to the Volcano plot analysis, the percentage of DEGs at
24- and 72-h post-infection is as follows: BCG (5.4 &9.7%), SKO (1.1
&5.3%), DKO (3.1 & 9%), TKO-D (1 &2.6%), TKO-Z (0.4 &0.8%),
and QKO (0.4 &3.2%). Greater percentage differences in differential
gene expression are observed between 24- and 72 h post-infection
within the same group, except for TKO-D and TKO-Z. Additionally,
compared to H37Rv background vaccine strains (~0.4-9%), BCG
exhibits a higher percentage of DEGs at both time points (5.4 & 9.7%)
(Figures 3C, F).
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KEGG pathway analysis of mouse BMDMs
infected with Mtb vaccine strains versus
uninfected cells

KEGG pathway analysis was performed for all vaccine groups in
comparison to the transcriptome of uninfected controls to identify
pathways associated with mycobacterial infection. Several top
enriched pathways were unique to the vaccine groups. Pathways
such as graft-versus-host disease, allograft rejection, leishmaniasis,
type I diabetes mellitus, TNF signaling, rheumatoid arthritis,
inflammatory bowel disease, influenza A, NF-kappa B signaling,
viral protein interaction with cytokines and cytokine receptors,
Epstein-Barr virus infection, NOD-like receptor signaling,
phagosome, cytokine-cytokine receptor interaction, Kaposi
sarcoma-associated herpesvirus infection, measles, lipid and
atherosclerosis, and COVID-19 were enriched with the
upregulated DEGs of each condition across all vaccine groups
(Supplementary Figures S2, S3). Conversely, pathways such as
DNA replication, homologous recombination, cell cycle, Fanconi
anemia, progesterone-mediated oocyte maturation, p53 signaling,
oocyte meiosis, focal adhesion, cellular senescence, pathways in
cancer, efferocytosis, ECM-receptor interaction, small cell lung
cancer, motor proteins, PI3K-Akt signaling, Rapl signaling, and
MAPK signaling exhibited with downregulated DEGs across all
vaccine groups (Supplementary Figures S4, S5).
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significant) at 24 h and 72 h with respective bar graphs in percentage

KEGG pathway analysis of mouse BMDMs
infected with mycobacterial vaccine strains
compared to H37Rv

To understand the roles of cellular pathways in the host’s
response to mycobacterial infection, we performed a KEGG
pathway enrichment analysis with the DEGs using Mtb H37Rv
wild-type as the control. We identified multiple pathways that were
uniquely and differentially dysregulated at both time points, with a
similar pattern observed within the same groups across time points
and between groups at each time point (Figures 4-7). Pathways
including rheumatoid arthritis, viral protein interaction with
cytokines and cytokine receptors, the IL-17 signaling pathway,
hematopoietic cell lineage, and cytokine-cytokine receptor
interaction were uniquely enriched with upregulated DEGs in all
vaccine-infected macrophage groups compared to H37Rv
(Figure 5). Notably, TKO-Z and QKO showed a delayed response
in enriching those pathways in upregulated DEGs at 72 h. However,
several pathways, such as the biosynthesis of unsaturated fatty acids,
PPAR signaling, and fatty acid metabolism, exhibited
overrepresentation in upregulatted DEGs (Figure 4) at 24 h. A
delayed IL-17 response at 72 h was also noted in TKO-Z and QKO
when compared to other vaccine groups (Figure 5).

Intriguingly, the pathways affected by downregulated DEGs
varied across different vaccine groups. While BCG showed
multiple pathways enriched in downregulated DEGs at both time
points, our vaccine groups exhibited less pathways at 24 h (Figure 6)
but pathways enriched increased in downregulated DEGs at 72 h
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(Figure 7). Specifically, TKO-Z had a few pathways, including
cardiac muscle contraction, oxidative phosphorylation, prion
disease, Alzheimer’s disease, thyroid cancer, p53 signaling, and
thyroid hormone synthesis overrepresented in downregulated
DEGs (Figures 6, 7). Uniquely, the ferroptosis pathway, critical in
mycobacterial infection, was enriched in both BCG and TKO-D
downregulated DEGs at 72 h (Figure 7). Additionally, BCG, SKO,
TKO-D, and QKO downregulated DEGs enriched the ECM-
receptor interaction and focal adhesion pathways at 72 h,
potentially limiting molecule translocation across barriers.
Pathways such as protein digestion and absorption and PI3K-Akt
signaling were enriched at 72 h in SKO, TKO-D, and QKO
downregulated DEGs (Figure 7).

We also compared BCG with H37Rv, where pathways such as
rheumatoid arthritis, viral protein interaction with cytokines and
their receptors, IL-17 signaling pathway, hematopoietic cell lineage,
inflammatory bowel disease, type 1 diabetes mellitus, TNF signaling
pathway, NF-kappa B signaling pathway, cytokine-cytokine
receptor interaction, and chemokine signaling pathway were
similarly enriched with the upregulated DEGs in the BCG group
at both time points (24 h and 72 h) (Figures 4, 5). When observing
the pathways enriched in downregulated DEGs, we noted pathways
like influenza A, measles, antigen processing and presentation,
hepatitis C, parathyroid hormone synthesis, secretion, and action,
osteoclast differentiation, hepatitis B, human papillomavirus
infection, cell adhesion molecules, Epstein-Barr virus infection,
calcium signaling pathway, COVID-19, PI3K-Akt signaling
pathway, and pathways in cancer were consistent at both time
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developed Mtb-derived vaccines mimic BCG. Remarkably, similar
KEGG pathways were enriched in our Mtb-derived vaccine strains
compared to BCG in upregulated DEGs particularly at the 72 h time
point (Supplementary Figure S6). At the 24 h time point, only a few
pathways such as rheumatoid arthritis, viral protein interaction

points (24 h and 72 h). However, multiple pathways were uniquely
dysregulated at their respective time points (Figures 6, 7).
Subsequently, we compared the pathways overrepresented in
differentially regulated genes by BCG vaccine strains with those
from Mtb-derived vaccines to assess how closely our newly
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with cytokine and cytokine receptor, IL-17 signaling pathway,
hematopoietic cell lineage, TNF signaling pathway, NF-kappa B
signaling pathway, and cytokine-cytokine receptor interaction were
uniquely enriched in upregulated DEGs in SKO, DKO, and TKO-D;
almost no pathways matched with BCG for the TKO-Z and QKO
groups. Interestingly, at 72 h, nearly all the pathways were uniquely
enriched with the upregulated DEGs in our Mtb-derived vaccine
groups compared to BCG. In examining the pathways enriched in
downregulated DEGs, very few overlapped at 72 h, and almost none
at 24 h (Supplementary Figure S7). Notably, the TKO-Z group did
not exhibit any common pathways overrepresented in
downregulated DEGs like BCG, in contrast to many that were
enriched in upregulated DEGs in this group during 72 h. The-
common KEGG pathways enriched in downregulated DEGs across
all groups appeared primarily due to the SKO strain
(Supplementary Figure S7).

Gene ontology analysis of mouse BMDMs
infected with mycobacterial vaccine strains
compared to H37Rv

To investigate altered biological processes by DEGs, we
performed GO analysis for biological processes for all vaccine
groups compared to H37Rv. Biological processes, such as
neutrophil chemotaxis, positive regulation of interleukin-6
production, inflammatory response, and immune response, were
enriched with upregulated DEGs at the 24 h time point in the BCG,
SKO, and TKO-D groups (Figure 8). Similar to the KEGG pathway
analysis, the TKO-Z and QKO groups exhibited delayed
enrichment of some common pathways in upregulated DEGs to
other vaccine groups, primarily at the 72 h time point (Figure 9). At
72 h, biological processes, including neutrophil chemotaxis, positive
regulation of interferon-gamma production, cytokine-mediated
signaling pathway, response to lipopolysaccharide, inflammatory
response, cellular response to lipopolysaccharide, negative
regulation of cell proliferation, positive regulation of the ERKI
and ERK2 cascade, immune system process, immune response, and
response to xenobiotic stimulus, were consistently overrepresented
in the upregulated DEGs across all vaccine groups (Figure 9).

Similar to the KEGG pathway analysis, we observed a
comparable pattern here, with a greater number of the enriched
biological processes overlapping in the upregulated DEGs than in
the downregulated DEGs. The TKO-Z group was particularly
distinct, exhibiting overrepresented biological processes such as
the positive regulation of endothelial cell proliferation and cell
adhesion, in downregulated DEGs. Interestingly, most regulation
of pathways appears to be linked to the deletion of fbpA, as indicated
by the downregulated DEGs-enriched processes seen in the SKO
group. These include the phospholipase C-activating G-protein
coupled receptor signaling pathway, positive regulation of
angiogenesis, positive regulation of cytosolic calcium ion
concentration, response to hypoxia, gene expression,
inflammatory response, positive regulation of transcription from
the RNA polymerase II promoter, response to dietary excess,
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positive regulation of stress fiber assembly, immune system
processes, positive regulation of the MAPK cascade, positive
regulation of the ERK1 and ERK2 cascade, and cell adhesion
(Figures 10, 11).

Key immune and cell signaling pathways
differentially regulated among vaccine
groups

KEGG pathway analysis was performed on immune and cell
signaling pathways to investigate the mechanisms underlying
vaccine-induced immune responses in macrophages infected with
various vaccine strains (Supplementary Data 5, 6). Importantly,
gene deletions in our vaccine strains resulted in differential
modulation of several signal transduction pathways, including the
NF-kappa B signaling pathway (mmu04064) and TNF signaling
pathway (mmu04668). The signaling molecule and interaction
pathway, particularly Cytokine-cytokine receptor interaction
(mmu04060), showed significant upregulation, while the ECM-
receptor interaction pathway (mmu04512) demonstrated
downregulation. Several cytokine and chemokine genes, including
tnf, il6, illoy, il1P, illrl, illr2, ill2a, il12b, il23, cxcll, cxcl2, cxcl3,
ccl22, ccl2, ccl3, ccl4, ccl6, and ccl7, were significantly upregulated
across most vaccine groups. In contrast, genes such as cxcrl, cxcr3,
cxcl9, cxcll2, and ccl8 were downregulated in the majority of vaccine
groups. Furthermore, as previously noted, the ECM-receptor
interaction pathway was significantly enriched in downregulated
DEGs in specific vaccine strain-infected BMDMs, including SKO,
TKO-D, and QKO, at 72 h (Figure 7).

Key immune system pathways were also affected, including
Hematopoietic cell lineage (mmu04640), Chemokine signaling
pathway (mmu04062), Toll-like receptor signaling pathway
(mmu04620), IL-17 signaling pathway (mmu04657), Thl and
Th2 cell differentiation (mmu04658), Th17 cell differentiation
(mmu04659), and T cell receptor signaling pathway (mmu04660)
(Supplementary Data 5, 6). Notably, only a small number of genes
in the B cell receptor signaling pathway (mmu04662) were
differentially regulated across all vaccine strains, including BCG.

Among these pathways, the IL-17 signaling pathway exhibited
the most pronounced differential regulation of DEGs across all
vaccine groups. Heatmap analysis confirmed the list of genes with
differential expression within the IL-17 signaling pathway
(Figure 12). A few of the upregulated genes, such as csf2, csf3,
il1B, ptgs2, and Icn2, were further confirmed by qRT-PCR,
corroborating the transcriptome findings (Figure 12).

Further confirmation of DEGs in vaccine-
infected BMDMs using qRT-PCR

To further confirm the findings of our study, we performed
qRT-PCR on macrophages infected with our vaccine strains. For
this analysis, we randomly selected DEGs from various pathways.
We examined genes such as csfl, TNF, slc7a2, Ita, ddit4, and dapk2
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Gene ontology analysis for biological processes in the differentially downregulated transcripts of mouse BMDMs infected with vaccine strains versus
H37Rv at 72 h post-infection. Dot plots illustrate the top 30 enriched biological processes in downregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and
QKO compared to H37Rv control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each biological process,

and the gradient color indicates statistical significance expressed as —log;q (P).

Frontiers in Immunology

123

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1583439
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Veerapandian et al.

A.

Vaccine groups vs H37Rv -24 h

anapes
oaep

@l

’ B.
Csf2-24h

<0.0001

o

<0.0001

Csf3-24h

10.3389/fimmu.2025.1583439

il3-24h

<0.0001

ptgs2-24 h

0.0201

Ilcn2-24 h

<0.0001

<0.0001 | <0.0001

| <0.0001 | <0.0001 <0.0001

<0.0001 | <0.0001

| 0.0022 | 0.1123

0.2454

Fold change mRNA (£SD)

Vaccine groups vs H37Rv -72 h

C.

anapes
cdsp3;
3.

cel20:
Gl 5 D .

0

| <0.0001 <0.0001

0.3120

<0.0001

0.9049 0.0046

<0.0001

<0.0001
<0,
3 0.0001

2 A

0.0042

<0.0001

0.0018

<0.0001

0.0388

Fold change mRNA (+SD)

e H37Rve PBS+® BCG Pasteur® SKO® DKOe¢ TKO-D°* TKO-Z¢ QKO
Csf2-72h Csf3-72 h ilB-72h ptgs2-72 h Ien2-72 h
[ o:::M | o.:::s | <0.o;>o1 | 0»00.51 | <n<.o;)o1
0.7186 0.9976 0.9996 | 0.0627 | 0.0002
<0.0001 <0.0001 <0.0001

<0.0001

<0.0001 <0.0001

<0.0001 0.6350

<0.0001 <0.0001

|

* H37Rv

usp2s

G 0 O 4 O
FL LS ME
FIFLL S

FIGURE 12

PBS+ BCG Pasteur

SKO* DKOe TKO-D°* TKO-Ze

QKO

IL17 signaling pathway is differentially regulated in vaccine groups in comparison with H37Rv. (A, C) Heat map depicts the green—red gradient that
reflects relative gene expression among vaccine groups at 24 h and 72 h. (B, D) Gene expression levels of Csf2, Csf3, il}, ptgs2, and lcn2 in BMDMs
infected with vaccine strains at 24 and 72 hours as determined by gRT-PCR. Data were analyzed by one-way ANOVA followed by Dunnett's multiple

comparisons test.

at the 24 h and 72 h time points (Figure 13). The results
demonstrated strong alignment with the transcriptome data.
Interestingly, we observed an increased expression of the solute
carrier family 7-member 2 (slc7a2) gene across all our vaccine
groups in both transcriptome and qPCR analyses (Figure 13).
Notably, this gene is reported to be highly expressed in
macrophages infected with avirulent Mtb strain H37Ra (25),
indicating that our vaccine strains exhibit reduced virulence
compared to the wild-type strain.
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Discussion

In this study, we performed genome-wide transcriptome
analyses of mouse macrophages after infection with our Mtb-
derived vaccine strains. We also included the BCG vaccine, as it
is an established vaccine against TB. While multiple studies have
reported transcriptome data of mouse macrophages infected with
either BCG or Mtb, (25-27, 30, 31); our study focused on vaccine
strains deficient in genes such as fbpA, sapM, zmp1, and dosR, either
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gPCR Validation of differentially regulated pathways in vaccine groups comparison with H37Rv. (A, B) Gene expression levels of Csfl, tnf, slc7a2, lta,
ddit4, and dapk?2 in vaccine strains infected BMDMs at 24 h and 72 h as determined by gRT-PCR. Data were analyzed by one-way ANOVA followed

by Dunnett’s multiple comparisons test.

individually or in combination. Transcriptomic analysis of our
vaccine-infected macrophages was conducted using a heatmap,
volcano plot, and venn diagram, demonstrating a distinct
difference in DEGs expressed among groups. The number of
DEGs in BCG-infected macrophages was greater than in
macrophages infected with other vaccine groups and Mtb H37Rv.
This disparate response between BCG and our Mtb H37Rv-derived
strains may be due to the deletion of several ORFs within RD1-
RD16 regions in BCG.

KEGG pathway analysis of DEGs identified several immune
pathways that are implicated in vaccine-infected macrophages.
Some prominent pathways include infections with intracellular
bacteria, as well as immune, viral, cancer, and disease-related
components. Type I interferon-related pathways, such as cytosolic
DNA-sensing, NOD-like receptor signaling, NF-kappa B signaling,
and C-type lectin receptor signaling, were significantly enriched
with upregulated DEGs in our vaccine strains compared to the
naive group, similar to the previous reports (30, 32, 33). Also,
consistent with earlier reports, TNF signaling was enriched with
upregulated DEGs in all vaccine groups (25, 34). Notably, pathways
such as the cell cycle, DNA replication, p53 signaling, progesterone-
mediated oocyte maturation, focal adhesion, and efferocytosis were
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enriched with downregulated DEGs in all vaccine groups, with
some of the pathways aligning with earlier findings (30, 35).
Significant variations in upregulated DEGs-enriched pathways
were noted across the vaccine groups between 24 and 72 h. Notably,
TKO-Z and QKO exhibited a few pathways unique to other vaccine
strains at 24 h, but by 72 h, they aligned with strains like SKO, DKO,
and TKO-D. This change in pathways in TKO-Z and QKO may
result from the deletion of zmp1. The zmpl gene encodes a crucial
enzyme for M. tuberculosis pathogenicity, playing various roles such
as inhibiting phagosome maturation, suppressing inflammasome
activation, mediating necrosis, and providing protection in guinea
pig models (20, 21, 36). Interestingly, intracellular bacterial
pathways, including legionellosis, leishmaniasis, and tuberculosis,
were not enriched with upregulated DEGs in the TKO-Z group
compared to H37Rv at either time point. However, these pathways
were significantly enriched in the TKO-Z group when compared to
the uninfected control. Due to the lack of transcriptome data for a
zmpl mutant infected macrophages, direct comparisons with
previous findings cannot be made. In comparison to H37Rv, the
upregulation of genes in the H37Rv-derived vaccine groups ranged
from approximately 0.2 -6.1%, while the downregulated DEGs
showed minimal changes, with only about 0.1-2.9% of genes
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being downregulated. This highlights the need for transcriptome
data from Mtb-derived vaccine candidates currently in clinical trials
for a more comprehensive comparison. Similar to BCG, pathways
such as ECM receptor interaction, efferocytosis, focal adhesion, and
PI3K-Akt signaling were enriched with downregulated DEGs in
some vaccine groups in our study.

Despite developing numerous vaccines against TB, we still lack
exact knowledge of the immune correlates of protection (CoPs) for
TB. However, data from animal and human studies provide insights
into the immune cells that may be crucial for controlling TB,
including Thl, Th17, CD8+ T cells, B cells, tissue-resident
memory T cells, trained immunity, and tissue-resident alveolar
macrophages (37). Interestingly, genes from the major immune and
cell signaling pathways like Cytokine-cytokine receptor interaction,
Chemokine signaling, NF-kappa B signaling pathway, Toll-like
receptor signaling, IL-17 signaling, Thl and Th2 cell
differentiation, Th17 cell differentiation, T cell receptor signaling,
and TNF signaling pathway were differentially regulated in our
vaccine strains compared to wildtype H37Rv. Numerous vaccine
studies have underscored the crucial role of T cell-mediated
protection against Mtb infection (19, 38-41) and the limited
significance of B cell-mediated responses in TB vaccines (42).
Similarly, our vaccines mainly boost T cell-mediated immune
pathways instead of B cell receptor signaling pathways. These
findings offer a hopeful perspective for the development of more
effective TB vaccines.

Cytokines and chemokines are essential in coordinating the
immune response to mycobacterial infection (43). TB vaccine
candidates like VPM1002 and MTBVAC have shown increased
cytokine responses (44, 45). Our vaccine strains similarly showed
different cytokine and chemokine expression profiles. Pro-
inflammatory cytokines, including TNF-o,, IL-6, GM-CSF, and IL-
1, are crucial for the immune response against Mtb infection and play
a vital role in host survival (46-48). Consistent with previous
findings, our vaccine-infected macrophages exhibit increased
expression of TNF-0,, IL-6, and GM-CSEF. Furthermore, our vaccine
strains induce higher levels of IL-1 family cytokines, including IL-10,
IL-1B, IL-1R1, and IL-1R2. Chemokines such as CXCL1, CXCL2, and
CXCL3 promote the recruitment of neutrophils and natural killer
cells, while CCL3 and CCL4 aid in T-cell recruitment. Additionally,
CCL7 is vital for recruiting monocytes, dendritic cells, T cells, and
natural killer cells (49). Notably, our vaccine strains show strong
expression of these chemokines, highlighting their potential
immunomodulatory role effects.

Emerging evidence underscores the essential role of IL-17 in TB
control across various species, including mice (50, 51), non-human
primates (52, 53), and humans (54). Initially, IL-17 was thought to
primarily mediate responses against extracellular pathogens rather
than intracellular bacteria like Mtb. However, recent findings
underscore its essential role in TB control. Studies have revealed
that IL-17 levels are significantly lower in individuals who progress
to active TB compared to non-progressors (55). Reports indicate
that CD4+ T cells producing IL-17 are primarily localized in the
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lungs compared to TNF-o and IL-2. Furthermore, administering
exogenous IL-17 in human granuloma models has shown
effectiveness in controlling Mtb (56). Moreover, IL-17 has been
identified as essential in mice for providing early protective
immunity against Mtb HN878 infection (51). Mice that lack IL-
17 receptors show reduced long-term control of Mtb infection (57).
In our study, IL-17 signaling was significantly upregulated across all
vaccine strains, including SKO, DKO, TKO-D, TKO-Z, and QKO.
Gene ontology analysis revealed upregulated cellular responses to
IL-17 in TKO-D and QKO, T-helper 17 cell lineage commitment in
TKO-Z, and positive regulation of IL-17 production in the BCG
vaccine group. These findings underscore the pivotal role of IL-17
in TB control and the effectiveness of our vaccine strains in eliciting
an appropriate immune response.

Recent studies have reported that the upregulation of slc7a2 in
macrophages plays a critical role in controlling the intracellular survival
of Mtb (25). Notably, sic7a2 expression is higher in macrophages
infected with the avirulent strain H37Ra compared to the virulent
H37Rv strain. Consistent with these findings, our DEGs analysis
revealed increased expression of slc7a2 transcripts in our vaccine
strains compared to the wild-type H37Rv, a result further validated
through qPCR. While safety studies in SCID mice are still required to
establish the safety profile of our vaccine strains, these findings suggest
an improved safety profile for the vaccine strains used in this study.

One of the major limitations of the present study is that the
comparative transcriptomic analysis was performed under in vitro
conditions and not in vivo. While our experimental design
provides us with the controlled environment to study BMDMs’
responses after infection with our vaccine strains, it lacks the in
vivo conditions like interactions with other cell types, location-
specific cell signals, etc. However, our study offers valuable
comparative transcriptomic analysis datasets among our vaccine
strains along with BCG, which offer insights that help enhance our
understanding. This study focuses exclusively on comparing the
transcriptomes of vaccine strains derived from the H37Rv Mtb
strain. Further research is required to understand the relationship
between the immune and cell signaling pathways activated by
these vaccines and their actual protective efficacy. Moreover, this
study emphasizes the importance of performing comparative
transcriptomic analyses for vaccine candidates such as
VPM1002 and MTBVAC, currently undergoing clinical trials, to
gain deeper insights into the host immune response.
Simultaneously, we recognize the importance of ‘decoy’ immune
responses in TB infection (58). While certain host immune
responses may appear promising, they indeed support the
pathogen by promoting its persistence within the host. Thus, we
strongly underscore the importance of performing protection
studies in animal models and correlating these immune
responses to actual protection, rather than relying solely on the
statement that heightened proinflammatory cytokine production
alone is beneficial. Overall, our study provides a thorough
comparative transcriptome analysis of Mtb-derived vaccine
strains alongside BCG, highlighting key immune pathways that
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play a crucial role in modulating immune and cell signaling events
in the fight against the Mtb pathogen.
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Introduction: Cervical cancer is the most common malignant neoplasm of the
female reproductive tract. Infection with human papillomavirus (HPV) has been
strongly associated with cervical cancer. Previous bioinformatics studies have
examined the E6 and E7 proteins of high-risk HPV types; however, subtype-
specific analyses for HPV-31 and HPV-52 remain limited. Understanding the
structure and properties of the E6 and E7 proteins of HPV-31 and HPV-52 is
crucial to elucidating their functions and advancing vaccine development.

Methods: A bioinformatics approach was employed to predict the
physicochemical properties, hydrophilicity, protein structure, glycosylation
sites, phosphorylation sites, terminal positions, signal peptide cleavage sites,
transmembrane regions, homology, and dominant epitopes of the E6 and E7
proteins of HPV-31 and HPV-52.

Results: For HPV-31 E6, an instability index (II) of 43.93 indicated that the protein
is unstable; potential B-cell epitopes were identified at residues 55-61
(RDDTPYG), 112-116 (PEEKQ), and 125-131 (FHNIGGR), while T-cell epitopes
were predicted at residues 45-53 (FAFTDLTIV) and 72—-80 (KVSEFRWYR). HPV-52
E6 exhibited an instability index (Il) of 55.57, with B-cell epitopes at residues 110—
119 (LCPEEKERHV) and 129-141 (MGRWTGRCSECWR), and T-cell epitopes at
residues 45-53 (FLFTDLRIV) and 82-87 (SLYGKT). HPV-31 E7, with an instability
index () of 51.05, exhibited B-cell epitopes at residues 8—-17 (QDYYLDLQP), 16—
20 (QPEAT), 29-41 (PDSSDEEDVIDEP), and 42-48 (AGQAKPDT), and T-cell
epitopes at residues 7-15 (TLQDYVLDL) and 82-90 (LLMGSFGIV). HPV-52 E7,
with an instability index (Il) of 49.15, exhibited B-cell epitopes at residues 11-19
(YILDLQPET), 23-27 (HCYEQ), 29-38 (GDSSDEEDTD), and 36-48
(DTDGVDRPDGQAE), and T-cell epitopes at residues 53-59 (NYYIVTY) and
84-90 (MLLGTLQ).
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Discussion: In summary, the E6 and E7 proteins of HPV-31 and HPV-52 contain
dominant epitopes for both T cells and B cells. These findings delineate subtype-
specific immunogenic regions and establish a foundation for experimental
validation and vaccine design.

E6/E7, human papillomavirus 31, human papillomavirus 52, bioanalysis, antigen

epitope, oncoprotein

1 Introduction

Human papillomavirus (HPV) is among the most prevalent
sexually transmitted viruses worldwide, and infection with HPV
has been strongly associated with the development of various
cancers, particularly cervical cancer (1). Since the landmark
identification of HPV’s role in cervical carcinogenesis in the early
1980s (2, 3), the mechanisms by which specific HPV oncoproteins
disrupt cellular pathways have been extensively elucidated. HPV
types are classified as low-risk or high-risk based on their
oncogenic potential (4). While HPV-16 and HPV-18 have been
extensively studied, recent epidemiological and molecular studies
have underscored the significance of HPV-31 and HPV-52 in cervical
cancer incidence, particularly in East Asia and specific regions of
Europe (5-8). However, the structural and functional characteristics
of the E6 and E7 proteins of HPV-31 and HPV-52 remain
poorly characterized.

The oncogenic potential of HPV largely depends on its early
proteins, E6 and E7, which facilitate malignant transformation by
targeting tumor suppressor pathways (9, 10). E6 binds the p53
tumor suppressor, promoting ubiquitin-mediated degradation and
inhibiting apoptosis, while E7 disrupts the retinoblastoma (Rb)
pathway to release E2F transcription factors and deregulate cell
cycle progression (11-14). Although these mechanisms are
conserved among high-risk HPV types, sequence variations in E6
and E7 can lead to differential binding affinities and functional
outcomes (15). Recent structural studies have begun to resolve the
atomic-level details of HPV-31 and HPV-52 E6 and E7, revealing
subtype-specific conformational features that may influence
oncogenic potency (16, 18, 19). Nevertheless, a gap remains in
the comprehensive bioinformatics characterization of the E6 and E7
proteins of HPV-31 and HPV-52, particularly regarding antigenic
epitope prediction—an essential step in vaccine design.

Advances in high-throughput sequencing and computational
biology have enabled multidimensional bioinformatics analyses of
HPV oncoproteins (16-19). Specifically, homology modeling,
molecular docking, epitope mapping, and phylogenetic profiling
have uncovered key insights into structural motifs and functional
domains of E6 and E7. For instance, Conrady et al. resolved the
HPV-31 E6 crystal structure and characterized its interactions with
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E6AP and p53 (19), whereas Ferenczi et al. conducted phylogenetic
and functional analyses of HPV-31 E6 and E7 variants (18). Recent
work by Kogure et al. revealed significant intra-patient genomic
variability of HPV-31 in cervical cancer and precancer,
underscoring the importance of considering viral quasispecies
diversity when predicting E6 and E7 epitope profiles (20). Song
et al. characterized the genetic variability and phylogeny of HPV-52
E6 and E7 in Sichuan, China, underscoring subtype-specific
functional differences relevant to epitope selection (17). Pinheiro
et al. conducted a large-scale phylogenomic analysis of HPV-31
across 2,093 genomes, linking specific viral clades to cervical
carcinogenesis risk and thereby supporting targeted epitope
selection based on subtype phylogeny (21). In summary, prior
research has addressed HPV-31 and HPV-52 from various
perspectives—sequence diversity (17, 18, 21), structural
elucidation (19), and L1 protein-based VLP design (22, 23)—vyet
none has integrated physicochemical profiling, secondary and
tertiary structure modeling, post-translational modification
predictions, and B- and T-cell epitope mapping into a single,
multilayered framework. Bioinformatics profiling of both subtypes
remains incomplete, particularly concerning immunogenic epitope
prediction, which is critical for next-generation vaccine design (24).

In this study, the E6 and E7 proteins of HPV-31 and HPV-52
were systematically analyzed using a combination of bioinformatics
tools to predict physicochemical properties, post-translational
modification sites, secondary and tertiary structures, and to
identify potential T-cell and B-cell epitopes. The following
hypotheses were tested:

1. HPV-31 and HPV-52 E6 and E7 proteins exhibit subtype-
specific sequence and structural variations that lead to
distinct distributions of immunogenic epitopes.

2. The simultaneous application of multiple bioinformatics
tools to identical sequences was hypothesized to enhance
the accuracy of predicting dominant T-cell and B-cell
epitopes in HPV-31 and HPV-52 E6 and E7 proteins.

3. By comparing predicted post-translational modification
(PTM) sites with conserved regions, immunogenic
regions that may be cross-reactive between subtypes were
expected to be uncovered.
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Further, it was hypothesized that structural disparities between
HPV-31 and HPV-52 E6 and E7 proteins correlate with unique
antigenic epitope landscapes, thereby informing the design of future
peptide-based vaccines.

2 Materials and methods
2.1 Amino acid sequence

The complete sequence of E6 and E7 oncoproteins of HPV-31
and HPV-52 was available from the National Center for
Biotechnology Information(NCBI) database (accession numbers:
HPV31 E6 [WAB53637], HPV31 E7 [WAB53638], HPV52 E6
[WAB54303], HPV52 E7 [WAB54304]).

2.2 Prediction of protein physicochemical
parameters

2.2.1 Rationale for tool selection and distinctions

To assess basic physicochemical properties of HPV-31/52 E6/
E7 proteins, we employed two ExPASy tools:

ProtParam (ExPASy ProtParam v2023.1): We used ProtParam
to compute molecular weight, theoretical isoelectric point (pI),
extinction coefficient, instability index (II), aliphatic index, and
GRAVY (grand average of hydropathicity) in a single run.
ProtParam is widely used in viral protein studies because its
predictions correlate well with experimentally determined
parameters. The instability index (II) quantifies the likelihood of a
protein’s stability in vitro, where a value of II > 40 indicates
predicted instability (25).

ProtScale (ExPASy ProtScale v2023.1): While ProtParam
provides global physicochemical metrics, ProtScale generates
residue-level hydrophobicity (Kyte-Doolittle) and hydrophilicity
(Hopp-Woods) plots, allowing us to identify local peaks or valleys
that may correspond to linear B-cell epitopes. ProtScale employs a
sliding-window approach (window size = 7) to generate a
continuous hydropathy profile, which ProtParam does not
offer (26).

2.2.2 Procedure and statistical processing

The ProtParam calculations were performed in triplicate, and
the reported values represent the mean + standard deviation (SD) of
three independent runs.

For the ProtScale analysis, the window width was set to 7 with a
default threshold of 0.5. We identified the top three hydrophilicity
peaks (using the Hopp—Woods scale) and the deepest hydrophobic
valleys (using the Kyte-Doolittle scale) for each protein.

No statistical tests, such as t-tests or ANOVA, were applied
because this study is purely predictive, without experimental
group comparisons. The results are presented as raw means +
SD for ProtParam values and qualitative hydropathy profiles
for ProtScale.
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2.3 Post-translational modification site
prediction

2.3.1 Rationale for tool selection

NetPhos 3.1 (threshold 0.5): A neural-network-based tool that
predicts Ser/Thr/Tyr phos-phorylation sites. We chose NetPhos
because it has been benchmarked on short viral proteins with >70%
accuracy (27). Compared to other open-source servers (e.g.,
PhosphoSite), NetPhos offers a user-friendly batch interface and
provides clear residue-level confidence scores.

MotifScan v2022 (threshold 0.5): Identifies kinase-specific
motifs (CK2, PKC, TK, etc.) by searching against curated motif
databases (28). We selected MotifScan because it integrates multiple
kinase-motif libraries and is particularly suited for mapping short
linear motifs adjacent to known functional domains (e.g.,
LxxLL, LxCxE).

NetNGlyc 1.0 (threshold 0.5): Predicts N-linked glycosylation
sites (N-X-S/T motifs) (29). Although E6/E7 proteins rarely
undergo glycosylation, we included NetNGlyc to confirm the
absence of glycosylation sites—a negative result that supports the
cytosolic/nuclear localization of these oncoproteins.

2.3.2 Procedure and output
2.3.2.1 NetPhos 3.1

Submitted each E6/E7 sequence (single sequence mode),
extracted residues with score > 0.5.

2.3.2.2 MotifScan v2022
Used default scoring matrices to detect CK2, PKC, TK motifs;
only motifs with score > 0.5 were retained.

2.3.2.3 NetNGlyc 1.0
Confirmed that none of the four proteins contained an N-linked
glycosylation motif above threshold 0.5.

2.4 Signal peptide and transmembrane
helix prediction

SignalP 4.1 (D-score 0.45): Uses a neural network model to
predict signal peptide cleavage sites (30). We chose SignalP 4.1
instead of older versions because it offers improved accuracy for
proteins lacking obvious signal partners. Its published D-score
threshold of 0.45 is recommended for viral oncoproteins.

TMHMM 2.0 (probability threshold 0.5): Predicts transmembrane
helices using a hidden Markov model (30). We used TMHMM to
verify that E6/E7 do not contain any transmembrane segments,
confirming their expected nuclear/cytoplasmic localization.

2.5 Secondary structure prediction

SOPMA v3.0 predicted secondary structure elements (oi-helix,
[-sheet, B-turn, and random coil) using the default threshold (8%
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difference, window width = 17). SOPMA’s reported accuracy for
viral proteins is >70% (31). Compared to alternatives such as
PSIPRED, SOPMA provides a residue-level map that can be
directly aligned with predicted epitope regions.

2.6 Tertiary structure prediction

Phyre2 v2.0 (Protein Homology/analogY Recognition Engine)
(32) was used for homology modeling of E6/E7 proteins. It leverages
experimentally resolved PDB templates and generates high-
confidence models for proteins with known homologues (33).
Although AlphaFold v3 (2024) can produce de novo predictions,
Phyre2’s reliance on validated templates ensures that our HPV E6/
E7 models remain directly comparable to prior structural studies
(19, 34). This consistency is crucial for accurately mapping
predicted epitopes onto known functional domains.

We accepted templates only if they exhibited > 90% sequence
coverage and > 99% confidence. Each E6/E7 sequence was
submitted in single-sequence mode. For HPV-31 E6, templates
c4gizC (coverage 93%, confidence 100%) were chosen; for HPV-31
E7, template d2ewlal (coverage 50%, confidence 99.8%) was used;
for HPV-52 E6, c4gizC (coverage 94%, confidence 100%); for HPV-
52 E7, d2b9dal (coverage 47%, confidence 99.8%).

Template Selection Rationale:

c4gizC: High sequence identity (> 90%) with HPV-31/52 E6 in
residues 2-144/2-142, respectively (19, 33).

d2ewlal/d2b9dal: Best available templates for E7 with >
99.8% confidence.

Although AlphaFold v3 could produce end-to-end predictions,
Phyre2’s reliance on experimentally validated templates (e.g.,
c4gizC) provides clear alignment evidence and facilitates
comparability with existing HPV structural literature (18, 19,
33, 35).

2.7 Sequence homology and phylogenetic
analysis

Clustal X 2.0 was chosen for multiple sequence alignment
(MSA) because it provides a graphical user interface and allows
manual inspection of alignment gaps and conserved motifs.
Although other aligners exist (e.g., MUSCLE), Clustal X is widely
cited in HPV research and facilitates identification of conserved
blocks (=70% identity).

MEGA 7.0.20 (Molecular Evolutionary Genetics Analysis) was
used to construct a Neighbor-Joining phylogenetic tree with 1,000
bootstrap replicates, providing statistical support for each branch.
MEGA’s integrated alignment viewer and tree-editing capabilities
streamline the generation of publication-quality phylograms.

We aligned full-length E6/E7 protein sequences from HPV
types 16, 18, 31, 33, 35, 45, 52, 56, 58, and 61 using Clustal X 2.0
(gap open penalty = 10; gap extension = 0.1). Evolutionary trees
(Neighbor-Joining method, bootstrap = 1,000) were constructed in
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MEGA 7.0.20 (v7.0.20) to infer phylogenetic relationships.
Conserved regions were identified based on > 70% identity across
aligned sequences.

2.8 Linear epitope analysis of B cells
oncoproteins

We employed four servers to predict linear B-cell epitopes, then
selected overlapping regions as dominant candidates:

ABCpred v2.0 (threshold 0.51; peptide length = 16) uses an
artificial neural network trained on known linear epitopes (36). We
included ABCpred because it has been validated on viral proteins,
achieving ~65.9% accuracy (37).

BepiPred 1.0 (threshold 0.35; window = 20) combines hidden
Markov models and propensity scales to predict epitopes with a
balanced trade-off between specificity and sensitivity (38).

BCPREDS 1.0 (epitope length = 20; specificity = 75%) uses
subsequence kernels to identify linear B-cell epitopes; it excels in
reducing false positives among random coil regions (39).

SVMTrip v1.0 (threshold 0.51; peptide length = 20) employs a
support vector machine algorithm combined with amino acid pair
propensity; it outperforms many single-algorithm tools in
independently benchmarked tests (40).

Each E6/E7 sequence was submitted to all four servers in single-
sequence mode. We recorded all predicted peptide segments that
surpassed each server’s threshold. Only peptides predicted by > 2
servers were considered for final selection.

2.9 Prediction of T-cell epitopes

CD4" T cell epitopes were predicted using both SYFPEITHI
v1.0 (41) and the IEDB MHC II module (42) with HLA-
DRBI1*15:01 as the reference allele, selected for its 20% frequency
in the Chinese population (43). SYFPEITHI is a motif-based
predictor that assigns quantitative scores based on known anchor-
residue preferences; peptides scoring > 20 were considered strong
binders. The IEDB MHC II module generates consensus predictions
by integrating multiple algorithms (e.g., NN-align, SMM-align) and
has outperformed standalone tools such as TEPITOPE in
benchmark studies; CD4" epitopes with a percentile rank < 10
were deemed strong binders.

CD8" T cell epitopes were predicted using the IEDB MHC I
module (NetMHCpan 4.1) with HLA-A*11:01 and HLA-A*02:01—
alleles occurring at 18.0% and 15.3% frequency in Chinese
individuals, respectively (43). NetMHCpan 4.1 employs a pan-
specific neural network to predict peptide binding across diverse
HLA-A and HLA-B alleles, consistently outperforming earlier
NetMHC versions, especially for less common alleles; CD8"
epitopes with a percentile rank < 1 were classified as strong
binders. All alleles were chosen based on high-frequency HLA
data in the Chinese population (44, 45). The aforementioned
methods and corresponding software are summarized in Table 1.
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TABLE 1 Methods summary table.

Step Tool/Method used

Amino Acid Sequence NCBI Database

Physicochemical Parameters ProtParam, ProtScale

10.3389/fimmu.2025.1561572

Purpose Key parameters

Retrieve full-length protein sequences HPV31 E6/E7, HPV52 E6/E7

ProtParam: instability index, GRAVY;
ProtScale: hydrophobicity (Kyte—
Doolittle), hydrophilicity (Hopp-Woods)

Calculate molecular weight, pI,
hydrophobicity, etc.

PTM Site Prediction NetPhos 3.1, MotifScan, NetNGlyc

Predict phosphorylation, kinase

i K Threshold: 0.5
motifs, glycosylation

Signal Peptide Prediction SignalP 4.1 Predict signal peptide cleavage D-score > 0.45
Transmembrane Helix TMHMM 2.0 Predict transmembrane regions Probability > 0.5
Secondary Structure SOPMA v3.0 Predict secondary structure (ot-helix, - Threshold: 8% difference, window width
sheet, etc.) =17
T lates: > 90% , >
Tertiary Structure Phyre2 v2.0 Homology modeling emprates b coverage

Sequence Homology and

Clustal X 2.0, MEGA 7.0.20
Phylogenetic Analysis usta

ABCpred v2.0, BepiPred 1.0,

B-cell Epitope Predicti
cell Epitope Prediction BCPREDS 1.0, SVMTrip v1.0

SYFPEITHI v1.0, IEDB MHC II,

T-cell Epi Predicti
cell Epitope Prediction IEDB MHC I

3 Results

3.1 Primary structure of HPV-31 and 52 E6
and E7 proteins

The complete amino acid sequences retrieved from NCBI
(HPV-31 E6: 149 AA; HPV-31 E7: 98 AA; HPV-52 E6: 148 AA;
HPV-52 E7: 99 AA) are listed below:

HPV-31 E6 (149 AA):

MFKNPAERPRKLHELSSALEIPYDELRLNCVYCKGQLT
ETEVLDFAFTDL-TIVYRDDTPYGVCTKC
LRFYSKVSEFRWYRYSVYGT TLEKLTNKGICDLLIR-
CITCQRPLCPEEKQRHL
DKKKRFHNIGGRWTGRCIVCWRRPRTETQV

HPV-31 E7 (98 AA):

MRGETPTLQDYVLDLQPEATDLYCYEQLPDSSDEEDVID-
SPAGQAKPDTSNYNIVTFCCQCESTLRLCVAQS
TQVDIRILQELLMGS F GIVCPNCSTRL

HPV-52 E6 (148 AA):

MFEDPATRPRTLHELCEVLEESVHEIRLQC
VQCKKELQRREVYKFLFTDLRIVYR
DNNPYGVCIMCLRFLSKISEYRHYQYSLYGKTLEERV
RKPLSEITIRCIICQTPLCPEEKERH
VNANKRFHNIMGRWTGRCSECWRPRPVTQV

HPV-52 E7 (99 AA):

MRGDKATIKDYILD LQPETTDLHCYEQLGDSSDEEDTD
GVDRPDGQAEQATSNYYIVTYCHSCDSTLRLCIHSTAT
DLRTLQQMLLGTLQVVCPGCAR
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99% confidence

Align sequences and infer
phylogenetic tree

Gap open penalty = 10, gap extension =
0.1, Bootstrap=1,000

ABCpred v2.0: threshold 0.51; peptide
length = 16, BepiPred 1.0: threshold 0.35;
window = 20, BCPREDS 1.0: epitope
length = 20; specificity = 75%,
SVMTrip v1.0: threshold 0.51; peptide
length = 20

Predict linear epitopes for B-cells

CD4": SYFPEITHI score > 20; CD8":

Predict CD4" and CD8" T-cell epits
redi an cel epiiopes NetMHCpan percentile rank < 1

3.2 The physicochemical parameters of the
proteins

3.2.1 Methods brief

ProtParam v2023.1 was used to compute the length, molecular
weight, theoretical pl, instability index (II), aliphatic index, and
GRAVY. Each value is the mean + SD of three independent runs.

ProtScale v2023.1 (window size = 7, threshold = 0.5) was used to
generate Hopp-Woods hydrophilicity and Kyte-Doolittle
hydrophobicity plots to localize potential B-cell epitopes.

All four proteins have a molecular weight >10 kDa, consistent
with the reported immunogenic thresholds (46). Instability
indices >40 suggest they are intrinsically unstable, potentially
influencing antigen processing (37, 46). Negative GRAVY values
classify them as hydrophilic, favoring solubility and
surface exposure.

Hydrophilicity/hydrophobicity plots (ProtScale) indicate
several predicted hydrophilic peaks in the protein sequences
(Figure 1). The physicochemical parameters for all four proteins
are summarized in Table 2.

3.3 Post-translational modification and
subcellular localization predictions

3.3.1 Methods brief
NetPhos 3.1 (threshold 0.5) was used to predict Ser/Thr/Tyr
phosphorylation sites.
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FIGURE 1

Phosphorylation sites: (A) HPV31 E6 (B) HPV31 E7 (C) HPV52 E6 (D) HPV52 E7.
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MotifScan v2022 (threshold 0.5) was used to identify CK2, PKC,
and tyrosine kinase (TK) motifs.

NetNGlyc 1.0 (threshold 0.5) was used to examine possible N-
glycosylation sites.

SignalP 4.1 (D-score 0.45) and TMHMM 2.0 (probability 0.5)
were used to check for signal peptides and transmembrane helices.

TABLE 2 Summarizes physicochemical parameters for all four proteins.

3.3.2 Key findings

The post-translational modification sites and membrane
localization of the four proteins are summarized in Table 3. Both
E6 proteins have Ser/Thr phosphorylation sites clustered around
LxxLL motifs (e.g., S82), suggesting potential regulation of EGAP/
p53 binding.

Classification (Il > 40 =

. AA Molecular Theoretical Basic Acidic Instabilit
Protein y GRAVY  unstable; GRAVY < 0
Length Mass (Da) pl (K.R) (D.E) Index (1) "
= hydrophilic)
HPV-31 E6 149 17,767.61 9.13 27 18 43.93 ~0.567 Unstable; Hydrophilic
(Figure 1A)
HPV-31 E7 98 10,944.27 3.90 5 16 51.05 ~0.235 Unstable; Hydrophilic
(Figure 1B)
HPV-52 E6 148 17,925.85 8.96 26 19 55.57 ~0.599 Unstable; Hydrophilic
(Figure 1C)
HPV-52 E7 99 11,032.24 433 7 17 49.15 ~0.459 Unstable; Hydrophilic
(Figure 1D)
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TABLE 3 Summary of predicted PTM sites and membrane localization (NetPhos 3.1; MotifScan v2022; NetNGlyc 1.0; SignalP 4.1; TMHMM 2.0).

Protein Phosphorylation PKC TK (TK = N-Glycosylation Signal Transmembrane
(NetPhos > 0.5) (PKC motif = (NetNGlyc > 0.5) Peptide (TMHMM >
motif > 0.5) (SignalP D 0.5) ( )
> 0.5) > 0.45)
HPV-31 E6 S16, S17, S71, 74, $82; T38, 17-20, 38— 92-94, 72-79 None None None
T40, T58, T64, T86, T133, T145, 42, 86-89 133-135
T147; Y60 (Figure 2A)
HPV-52 E6 S22, 871, 74, $82, $97; T11, 11-14, 22— 100-102, 72-79 None None None
T48, T108, T133, T146; 25, 87-90 133-135
Y60 (Figure 2C)
HPV-31 E7 S31, S32, S40, S50, S86; T5, T20, 7-10, 31- 64-66, None None None None
T64, T72; Y52 (Figure 2B) 34, 72-75 95-97
HPV-52 E7 $31, $32; T7, T19, T20, T37, 7-10,31- | 7-9, 66-68 None None None None
T58, T66, T76; Y11 (Figure 2D) | 34, 74-77

E7 proteins of both subtypes have CK2 sites near the LxCxE Rb-
binding motif, suggesting modulation of Rb interaction.

No N-glycosylation, signal peptides, or transmembrane helices
were predicted for any of the four proteins, consistent with their
known nuclear/cytosolic localization (Figures 2, 3).

3.4 Secondary structure predictions

3.4.1 Methods brief

SOPMA v3.0 (window size = 17, threshold = 8%) was used to
determine the percentages of o-helix, -sheet, B-turn, and random coil.

According to the spatial characteristics of secondary structure,
o-helix and B-sheet are not easily disrupted due to hydrogen
bonding and are mostly located in the interior of the protein,
making them less suitable as antigen-recognizing sites. In contrast,
B-turns and irregular curls are primarily protruding structures on
the protein surface (47). The specific details of the secondary
structures of the four proteins are presented in Table 4. The
secondary structure of the HPV-31 E6 protein was analyzed
online using SOPMA (Figure 4A). The analysis showed that o-
helix accounted for 49.66%, [3-sheet for 14.56%, B-turn for 4.43%,
and irregular curl for 35.44%. The results indicated that the HPV-31
E6 protein structure is relatively compact (34).

The results for the HPV-31 E7 protein showed that o-helix
accounted for 25.51%, B-sheet for 22.45%, B-turn for 0%, and
irregular curl for 52.04%, as shown in Figure 4B. The results
indicated that the HPV-31 E7 protein structure is
relatively loose.

For the HPV-52 E6 protein (Figure 4C), o-helix accounted
for 54.05%, B-sheet for 10.81%, B-turn for 1.35%, and irregular
curl for 33.78%, indicating that the protein structure is
relatively compact.

For the HPV-52 E7 protein (Figure 4D), o-helix accounted for
27.27%, B-sheet for 21.21%, B-turn for 0%, and irregular curl for
51.52%, indicating that the protein structure is relatively loose.
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3.5 Tertiary structure prediction (Phyre2
v2.0)

Based on Phyre2 outputs (33), high-confidence homology
models were obtained for all four proteins (confidence > 99.8%)
(Figures 5A-D).

HPV-31 E6: The model is based on c4gizC (93% coverage, 100%
confidence) (Figure 5A).

HPV-31 E7: The model is based on d2ewlal (50% coverage,
99.8% confidence) (Figure 5B).

HPV-52 E6: The model is based on c4gizC (94% coverage, 100%
confidence) (Figure 5C).

HPV-52 E7: The model is based on d2b9dal (47% coverage,
99.8% confidence) (Figure 5D).

3.5.1 Key findings

E6 proteins are helix-rich and compact, with fewer
B-turns, suggesting that most linear epitopes lie in random
coil loops.

E7 proteins contain > 50% random coil, indicating extensive
surface exposure and many potential linear epitopes.

HPV-31 and HPV-52 E6/E7 structures are highly conserved
overall, with only minor local deviations that may underlie subtype-
specific immunogenic differences.

3.6 Homology and phylogenetic analysis
(Clustal X 2.0 & MEGA 7.0)

3.6.1 Amino acid identity and conserved regions
Multiple sequence alignment of E6 proteins (HPV-16, 18, 31,
33, 35, 45, 52, 56, 58, 61) revealed conserved motifs at positions
8-15, 25-34, 41-77, 79-89, 96-112, 114-141 for HPV-31 E6, and
8-16, 25-31, 41-56, 59-69, 71-79, 81-89, 101-107, 109-119, 123-
125, 130-136 for HPV-52 E6 (Figure 6A). E7 proteins exhibited
conserved regions at 1-17, 20-28, 30-36, 38-45, 52-77, 82-87, 89—
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94 (HPV-31) and 10-15, 24-28, 30-36, 39-46, 53-59, 62-70, 76-96
(HPV-52) (Figure 6C).

Conserved regions overlap predicted epitope regions,
suggesting potential cross-reactivity among related types (48). The
HPV-31 E6 45-53 region aligns with the HPV-16 E6 45-53 region,
indicating possible shared immune responses.

Frontiers in Immunology

3.6.2 Phylogenetic tree construction

Neighbor-Joining trees (bootstrap = 1,000) placed HPV-31
E6 in a close clade with HPV-35 E6 (Figure 6B), and HPV-52
E6 in a close clade with HPV-33 E6. For E7, HPV-31
clustered with HPV-16, while HPV-52 clustered with HPV-33
(Figure 6D).
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FIGURE 3

TMHMM analyzed the transmembrane domain of the proteins. (A) HPV31 E6 (B) HPV31 E7 (C) HPV52 E6 (D) HPV52 E7.
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TABLE 4 Summarizes secondary structure content.

Protein o-Helix (%) B-Sheet (%) B-Turn (%) Random Coil (%) Interpretation
HPV-31 E6 49.66 14.56 4.43 35.44 Relatively compact, fewer surface coils
HPV-31 E7 25,51 92,45 0.00 52,04 More random coils, implies greater
surface exposure
HPV-52 E6 54.05 10.81 1.35 33.78 Compact with predominant a-helices
HPV-52 E7 27.27 21.21 0.00 51.52 Loose structure with significant coils
3.7 Linear epitopes of B cells servers) were identified as dominant (Supplementary Tables 1-16).

After cross-referencing, the dominant B-cell epitopes were Table 5:

3.7.1 Methods brief

Tools: ABCpred v2.0 (peptide length = 16; threshold = 0.51), BepiPred HPV-31 E6: 55-61 (RDDTPYG), 112-116 (PEEKQ), 125-
1.0 (threshold = 0.35), BCPREDS 1.0 (peptide length = 20; specificity = 131 (FHNIGGR)
75%), and SVMTrip v1.0 (peptide length = 20; threshold = 0.51). HPV-31 E7: 8-17 (LQDYVLDLQPEATDLYC), 16-20 (QPEAT),

Criterion: Retain only peptides predicted by >2 algorithms and 29-41 (PDSSDEEDVIDEP), 42-48 (AGQAKPDT)

restrict to loop/turn regions identified by SOPMA. HPV-52 E6: 110-119 (LCPEEKERHV), 129-
After excluding o-helix and B-sheet regions, the top five 141 (MGRWTGRCSECWR)
predicted epitopes per method were compared. Using the four HPV-52 E7: 11-19 (YILDLQPET), 23-27 (HCYEQ), 29-38
B-cell prediction tools, overlapping epitopes (predicted by =2 (GDSSDEEDTD), 36-48 (DTDGVDRPDGQAE)
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FIGURE 4
Secondary structure prediction: (A) HPV31 E6 oncoprotein; (B) HPV31 E7 oncoprotein; (C) HPV52 E6 oncoprotein; (D) HPV52 E7 oncoprotein.
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FIGURE 5

D)

Tertiary structure prediction. (A) HPV31 E6 protein; (B) HPV31 E7 protein; (C) HPV52 E6 protein; (D) HPV52 E7 protein

3.7.2 Key findings

HPV-31 E6 candidate epitopes (e.g., 55-61 RDDTPYG) are
located in a random coil adjacent to LxxLL, suggesting potential for
neutralizing antibodies.

The HPV-31 E7 region 29-41 (PDSSDEEDVIDEP) is
consistently predicted by four methods and is located within a
highly exposed coil loop.

The C-terminal loops of HPV-52 E6/E7 (e.g., 129-141 in E6,
36-48 in E7) are strong candidates for B-cell epitopes.

3.8 Linear epitopes of T cells

3.8.1 CD4" T cell epitope prediction (HLA-
DRB1*1501)

The SYFPEITHI and IEDB MHC II tools (percentile rank < 10;
positive control) were used. Supplementary Tables 17-20 present
the top five predictions. The final dominant CD4" epitopes
(overlapping high-scoring predictions) are as follows:

- HPV-31 E6: 45-53 (FAFTDLTIV), 72-80 (KVSEFRWYR).

- HPV-31 E7: 7-15 (TLQDYVLDL), 11-19 (YVLDLQPEA),
82-90 (LLMGSEGIV).

- HPV-52 E6: 45-53 (FLFTDLRIV), 82-87 (SLYGKT).

- HPV-52 E7: 84-90 (MLLGTLQ), 53-59 (NYYIVTY),
11-19 (YILDLQPET).

Frontiers in Immunology

3.8.2 CD8" T—cell epitope prediction (HLA-A1101,
A0201)

IEDB MHC I binding (NetMHCpan 4.1; percentile rank < 1)
was used. Supplementary Tables 21-24 present the results. The final
dominant CD8" epitopes are as follows (Table 6):

- HPV-31 E6: 82-90 (SVYGTTLEK; HLA-A1101 rank 0.01),
45-53 (FAFTDLTIV; HLA-A0201 rank 0.93)

- HPV-31 E7: 7-15 (TLQDYVLDL; HLA-A0201 rank 0.09),
37-46 (VIDSPAGQAK; HLA-A1101 rank 0.33)

- HPV-52 E6: 86-94 (KTLEERVRK; HLA-A1101 rank 0.01),
18-26 (VLEESVHEL HLA-A0201 rank 0.03)

- HPV-52 E7: 84-92 (MLLGTLQVV; HLA-A0201 rank 0.08),
51-59 (TSNYYIVTY; HLA-A1101 rank 0.74)

Notably, the overlapping T-cell epitope 45-53 appears in both
E6 proteins and is conserved between HPV-31 and HPV-52,
suggesting a promiscuous HLA-binding region that could elicit
cross-type T-cell responses.

4 Discussion

In this study, integrative bioinformatics approaches were
employed to analyze the E6 and E7 proteins of HPV-31 and
HPV-52, identifying key structural features and dominant
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Homology and molecular evolution analysis. (A) Homology analysis of E6 proteins of HPV; (B) The molecular evolutionary tree of E6 proteins of
HPV; (C) Homology analysis of E7 proteins of HPV; (D) The molecular evolutionary tree of E7 proteins of HPV.

antigenic epitopes. The key findings and their biological
implications are addressed in the subsequent sections.

4.1 Physicochemical properties and
implications for immunogenicity

Viral proteins with molecular weights exceeding 10 kDa
typically exhibit sufficient immunogenicity for epitope recognition
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(46, 49). All four E6 and E7 proteins of HPV-31 and HPV-52 exceed
this threshold (17.8-18.0 kDa) and are classified by ProtParam as
“unstable” (instability index > 40), a feature associated with
increased post-translational susceptibility and potential
antigenicity (37, 50, 51). Negative GRAVY scores categorize these
proteins as hydrophilic, thereby promoting solubility and
enhancing epitope exposure (52). These properties correlate with
an enhanced potential for antigen presentation, which is critical for
vaccine design.
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TABLE 5 HPV-31/52 E6/E7 B-Cell epitope candidates (ABCpred; BepiPred; BCPREDS; SVMTrip).

10.3389/fimmu.2025.1561572

: Algorithm . Tool
Protein S Residues Sequence Structural Context .
Combination q Version/Threshold
ABCpred v2.0 (threshold =
0.51)
BepiPred 1.0 (threshold =
ABCpred & Bep1Pred-& 55 61 RDDTPYG Random ?011.adjacent to 0.35)
BCPREDS & SVMTrip LxxLL binding pocket BCPREDS 1.0 (length = 20;
specificity = 75%)
HPV-31 E6 SVMTrip v1.0 (length = 20;
threshold = 0.51)
BepiPred & BCPREDS 112-116 PEEKQ B-turn at surface Same as above
X C-terminal random coil near
ABCpred & SVMTrip 125-131 FHNIGGR . R Same as above
functional region
. C-terminal B-turn near
ABCpred & BepiPred 110-119 LCPEEKERHV Same as above
Zn-finger
HPV-52 E6
R; il loop;
BepiPred & SVMTrip 129-141 MGRWTGRCSECWR andom coil loop Same as above
structurally exposed
N-terminal rand il,
ABCpred & BepiPred 8-17 QDYYLDLQP crimina randorm cof Same as above
high hydrophilicity
Small B-turn i
BepiPred & BCPREDS 16-20 QPEAT mall B-turn in Same as above
central region
HPV-31 E7
BCPREDS & SVMTrip 29-41 PDSSDEEDVIDEP Long random coil loop with Same as above
high immunogenicity
SVMTrip & ABCpred 42-48 AGQAKPDT C-terrTunal loop'reglf)n Same as above
accessible to antibodies
N-terminal
ABCpred & BepiPred 11-19 YILDLQPET erml'n random Same as above
coil loop
HPV-52 E7 BepiPred & BCPREDS 23-27 HCYEQ Small B-turn Same as above
BCPREDS & SVMTrip 29-38 GDSSDEEDTD Central random coil loop Same as above
SVMTrip & ABCpred 36-48 DTDGVDRPDGQAE C-terminal loop region Same as above

TABLE 6 HPV-31/52 E6/E7 T-Cell Epitope Candidates (SYFPEITHI; IEDB).

Affinity Tool
Protein Type Al Residues @ Sequence iz DA e 1z Version/
Allele (IEDB Score Context
. Threshold
percentile)
SYFPEITHI v1.0
(score > 20)

Zn-finger region; [EDB MHC-II
CD4* DRBI1*1501 45-53 FAFTDLTIV 3.10 25 likely helper epitope (percentile < 10)

IEDB MHC-I
(NetMHCpan 4.1;

percentile < 1)

HPV-31 E6 CD4"  DRBI*1501 72-80 KVSEFRWYR 450 2 B-tun at surface; Same as above

T_H potentiation
Conserved helix;
CD8" A*1101 82-90 SVYGTTLEK 0.01 — cross-subtype Same as above
CTL potential
Overlaps with CD4"
CD8" A*0201 45-53 FAFTDLTIV 0.93 — 45-53; candidate for Same as above
poly-epitope design
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TABLE 6 Continued

HLA

Allele Residues

Protein

Type

Sequence

CD4" DRB1*1501 45-53 FLFTDLRIV

CDh4* DRBI1*1501 82-87 SLYGKT

HPV-52 E6

10.3389/fimmu.2025.1561572

Affinity
Metric
(IEDB
percentile)

Tool
Version/
Threshold

SYFPEITHI
Score

Structural
Context

Conserved block;

3.70 24 cross- Same as above

protection candidate

Loop region;

4.00 23 potential Same as above

helper epitope

CD8" A*1101 86-94 KTLEERVRK

Zn-finger adjacency;
strong
CTL candidate

0.01 — Same as above

CD8" A*0201 18-26 VLEESVHEI

CDh4* DRB1*1501 TLQDYVLDL

N-terminal helix;
antigen-
presenting potential

Same as above

N-terminal random
coil; T_H
epitope candidate

Same as above

CDh4* DRBI1*1501 82-90 LLMGSEGIV

HPV-31 E7

C-terminal coil;
possible
cross-reactive

8.00 20 Same as above

CD8" A*0201 TLQDYVLDL

CD8* A*1101 37-46 VIDSPAGQAK

CDh4* DRBI1*1501 11-19 YILDLQPET

Overlaps CD4" 7-
15; poly-epitope
design potential

Same as above

Central coil loop;
strong
CTL candidate

0.33 — Same as above

Loop region;
intermediate
T_H
immunogenicity

9.00 19 Same as above

CD4" DRBI1*1501 84-90 MLLGTLQ

HPV-52 E7

C-terminal coil;
modest Same as above

helper response

13.00 18

CD8" A*0201 84-92 MLLGTLQVV

CD8* A*1101 51-59 TSNYYIVTY

C-terminal coil;
strong
CTL candidate

Same as above

Central coil;
potential CTL
memory locater

0.74 — Same as above

4.2 Post-translational modifications and
functional context

Predicted phosphorylation sites were mapped to residues
involved in the interactions of E6 and E7 with host regulators.
For instance, conserved serine residues (S82 in both E6 proteins)
reside within the LxxLL-binding pocket, which is crucial for E6AP-
mediated p53 degradation (15, 19). CK2 phosphorylation motifs
overlapping this region may modulate binding affinity and
subsequent ubiquitination (10, 17). Similarly, E7 CK2 sites (e.g.,
residues 7-10 encompassing the LxCxE motif) likely regulate Rb
binding, contributing to cell cycle dysregulation (11, 13). PKC sites
adjacent to the C-terminal zinc-finger (E6 133-135) may influence
nuclear localization and stability (15). These in silico insights align
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with experimental evidence showing that kinase-mediated
phosphorylation directly alters oncoprotein function (10, 19).

4.3 Secondary/tertiary structures and
template selection

SOPMA analysis reveals that the E6 proteins are predominantly
composed of a-helices (49.66% in HPV-31; 54.05% in HPV-52),
suggesting compact cores that may shield specific epitopes. In
contrast, the E7 proteins exhibit a higher proportion of random
coils (52.04% and 51.52%, respectively), indicating flexible surface
regions conducive to antibody binding (37, 53). Previous studies
have shown that random coils frequently coincide with B-cell
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epitope hotspots (52, 53), supporting our predictions of dominant
linear B-cell epitopes within coil-rich segments, such as residues 8-
17 (HPV-31 E7) and 23-27 (HPV-52 E7).

Homology models generated by Phyre2 (confidence > 99.8%)
confirm conserved structural motifs, including zinc-binding Cys
motifs, consistent with experimental structures (19, 40). The 3D
models generated by Phyre2, validated by high confidence scores,
display conserved zinc-finger motifs and binding pockets. While
AlphaFold3 (2025 release) could generate full-length models,
Phyre2’s template-based approach allowed for a direct
comparison with known E6/E7 structures. We selected Phyre2
templates (c4gizC/d2ewlal/d2b9dal) due to their high sequence
identity (>50%) and prior experimental validation (18, 19).

4.4 Homology and evolutionary insights

Multiple sequence alignment and phylogenetic analysis position
HPV-31 E6 closely with HPV-35, and HPV-52 E6 with HPV-33,
while E7 clusters similarly with HPV-16 and HPV-33 (18, 24).
Conserved regions (e.g., E6 positions 41-77; E7 positions 52-77)
overlap with predicted T-cell epitopes, suggesting potential cross-
reactivity and cross-protection among high-risk HPV types (16, 17).
This cross-immunity is essential for the design of multivalent
vaccines targeting broad high-risk HPV coverage (6).

4.5 Antigenic epitope identification and
validation potential

Dominant B-cell epitopes were identified (e.g., HPV-31 E6: 55-
61,112-116, 125-131; HPV-52 E7: 23-27, 29-38, 36-48) and T-cell
epitopes (e.g., HPV-31 E6: 45-53; HPV-52 E6: 86-94), predicted by
multiple algorithms (ABCpred, BepiPred 1.0, BCPREDS, SVMTriP)
(37, 54, 55). CD8" epitopes, such as HPV-31 E7: 7-15
(TLQDYVLDL), exhibited a strong binding affinity to HLA-
A0201 (IEDB rank 0.09), consistent with known CTL responses
against HPV-16 E7 (11, 56). CD4" epitopes (e.g., HPV-52 E7: 11-
19) exhibited favorable binding to HLA-DRB1*1501, which is
crucial for helper T-cell activation (42). These in silico predictions
align with experimental data linking epitope immunodominance to
surface accessibility and structural features (54, 55). Subsequent
empirical validation, such as peptide-MHC binding assays and T-
cell activation studies, is necessary (42, 56).

4.6 Comparison with previous studies

Previous studies have characterized the sequence variability of
HPV-31/52 (17, 18, 21) and resolved individual E6 crystal
structures (19). Kogure et al. further demonstrated that HPV-31
genomes exhibit significant intra-patient heterogeneity (20),
suggesting that E6 and E7 epitopes may evolve during disease
progression. However, to date, no study has integrated
physicochemical properties, post-translational modification site
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prediction, secondary and tertiary structure modeling, and
multilayered immunoinformatic epitope mapping for both E6 and
E7 of HPV-31 and HPV-52 into a single comprehensive analysis.
Our work addresses this gap by correlating predicted
phosphorylation sites with functional motifs (e.g., LxxLL, LxCxE)
(27, 57) and mapping B- and T-cell epitopes to conserved, surface-
exposed regions identified through structural modeling.
Furthermore, Song et al. and Firdaus et al. have highlighted the
immunogenic potential of HPV-52 (17, 22, 23), particularly in
Asian populations, thus validating the public health relevance of our
subtype-specific epitope predictions. Kesheh et al. proposed
region-tailored multivalent vaccine designs based on L1 gene
diversity (58), offering translational context for our E6 and
E7-based epitope candidates.

4.7 Application to vaccine design

Although this study did not experimentally construct virus-like
particles (VLPs) or multivalent peptide vaccines, the predicted
epitopes provide a foundation for rational vaccine design:

4.7.1 Cross-subtype conserved CD8™ epitopes

The E6 45-53 segment in HPV-31 (FAFTDLTIV) and HPV-52
(FLFTDLRIV) exhibits strong binding affinity for HLA-A0201 and
HLA-A1101 (IEDB percentile < 1) and is highly conserved across
high-risk types, making it an ideal candidate for inclusion as a
universal cytotoxic T-lymphocyte (CTL) epitope in a multi-epitope
DNA or peptide vaccine.

4.7.2 Helper T-cell (CD4") epitopes

E6 72-80 (KVSEFRWYR) in HPV-31 and E6 82-87 (SLYGKT)
in HPV-52 exhibit moderate binding affinity to HLA-DRB1*1501
(IEDB percentile < 10) and could be fused with CTL epitopes into a
single recombinant protein or synthetic long peptide construct to
enhance helper T-cell responses, as suggested by He et al (57).

4.7.3 B-cell neutralizing epitopes on VLP
platforms

The B-cell epitope HPV-31 E6 55-61 (RDDTPYG) and HPV-
52 E6 110-119 (LCPEEKERHV) reside in exposed random coil
regions. Firdaus et al. successfully inserted analogous linear epitopes
into the L1 VLP platform to elicit neutralizing antibodies (22),
supporting the strategy of grafting these peptides onto L1 VLPs to
generate subtype-specific antibody responses.

4.7.4 Multivalent peptide/protein vaccine
constructs

Building on Firdaus et al.’s reverse vaccinology design for HPV-
52 L1 (23), one could concatenate top CD4" and CD8" epitopes
(e.g., E6 45-53, 72-80; E7 7-15) with appropriate linkers and
trafficking signals to create a chimeric protein capable of eliciting
robust humoral and cell-mediated immunity in preclinical HLA-
transgenic mouse models.
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5 Limitations and future directions

Although the integrated in silico pipeline provides a
comprehensive epitope landscape, experimental validation—such as
peptide-MHC binding assays, ELISpot, and crystallographic studies—is
crucial to confirm immunogenicity (54, 55). Additionally, molecular
dynamics simulations could refine epitope conformations and assess
stability within MHC binding grooves (32, 51). This study relies solely
on in silico predictions and lacks direct in vitro or in vivo validation,
representing a primary limitation. Pinheiro et al. confirmed that certain
E6 and E7 regions correlate with cervical cancer aggressiveness at the
genomic level (21), yet these findings require empirical confirmation
through immunological assays. Kogure et al. observed intra-patient
HPV-31 variants across different lesion stages (20), emphasizing the
need to validate epitope immunogenicity across clinical time points.
Future studies should involve:

5.1 Experimental binding assays

Use ELISPOT or flow cytometry with peptide-stimulated peripheral
blood mononuclear cells (PBMCs) from HLA-typed donors to validate
CD4" and CD8" T-cell responses against the predicted epitopes.

5.2 Antibody neutralization studies

Synthesize candidate B-cell epitopes (e.g., HPV-31 E6 55-61;
HPV-52 E6 110-119) and assess their ability to induce neutralizing
antibodies in ELISA or pseudovirus neutralization assays.

5.3 Animal model validation

Evaluate peptide-based or VLP-based vaccine constructs (e.g.,
insertion of linear epitopes into L1 VLPs, as demonstrated by
Firdaus et al., 2023) in HLA-transgenic mouse models to measure
protective efficacy against HPV-induced tumorigenesis.

In summary, the integrative bioinformatics analysis illuminates
subtype-specific structural and immunogenic features of HPV-31
and HPV-52 E6 and E7 proteins, laying the groundwork for
experimental validation and rational vaccine design aimed at
reducing the HPV-associated cervical cancer burden.
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Introduction: As a highly adaptable opportunistic pathogen, Pseudomonas
aeruginosa presents a significant threat to people with weakened immune
systems. This is because it naturally resists antibiotics and can form biofilms.
These factors complicate treatment and underscore the urgent need for
innovative therapeutic strategies, such as vaccines, to combat this pathogen.
Methods: A pangenome analysis of P. aeruginosa genomes was performed to
identify conserved core genes critical for bacterial survival and virulence. LptF, an
outer membrane protein, was prioritized as a target for vaccine development. B-cell
and T-cell epitopes were predicted from LptF using immunoinformatics tools, and a
multi-epitope peptide vaccine was designed. The interaction between the vaccine
candidate and Toll-like receptors (TLRs) was investigated through molecular
docking and molecular dynamics simulations. Codon optimization and in-silico
cloning were carried out to validate the vaccine's expression potential in E. coli.
Immune response simulations evaluated the vaccine's immunogenicity.

Results: Our pangenome analysis identified highly conserved core genes, including
LptF, which proved crucial for bacterial virulence. A multi-epitope peptide vaccine
was designed using the most immunogenic B-cell and T-cell epitopes derived from
LptF. Studies using molecular docking and dynamic simulation have shown stable
interactions between the vaccine and TLRs, with the POA_V_RS09 construct
exhibiting the highest stability. Codon optimization indicated high expression
efficiency in E. coli. Immune simulations revealed robust adaptive immune
responses, including sustained 1gG production, the formation of memory B cells,
and the activation of T-cell responses.
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Discussion: The POA_V_RS09 vaccine candidate exhibited excellent stability,
immunogenic potential, and expression efficiency, making it a promising
candidate for combating P. aeruginosa infections. This study provides a strong
foundation for developing effective therapeutic strategies to address the growing
issue of antimicrobial resistance in P. aeruginosa. More experimental validation is
needed to verify its effectiveness in preclinical and clinical environments.

KEYWORDS

Pseudomonas aeruginosa, pangenome analysis, immunoinformatics, epitope-based
vaccine, molecular docking, immune simulation
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1 Introduction

Pseudomonas aeruginosa (P. aeruginosa), a highly adaptable
opportunistic pathogen, is a significant cause of multidrug-resistant
(MDR) infections, including diabetic foot infections, ventilator-
associated pneumonia, wound infections, septicemia, and catheter-
associated urinary tract infections (1). It poses a significant threat,
particularly to immunocompromised individuals, due to its
intrinsic resistance to antibiotics and its ability to thrive in diverse
environments. Furthermore, P. aeruginosa can spread through
medical equipment, increasing the risk of cross-contamination

Abbreviations: WHO, World Health Organization; AMR, Antimicrobial
Resistance; P. aeruginosa, Pseudomonas aeruginosa; NCBI, National Center for
Biotechnology Information; VFDB, Virulence Factor Database; MD, Molecular
dynamics; RMSD, Root Mean Square Deviation; RMSF, Root Mean Square
Fluctuation; PCA, Principal Component Analysis; FEL, Free Energy Landscape;
HBOND, Hydrogen bond analysis.
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between patients and complicating infection control in healthcare
settings (2). According to the World Health Organization (WHO),
antimicrobial resistance (AMR) is expected to cause 10 million
deaths annually by 2050, highlighting its severe impact as a global
health threat (3). Hospital-acquired infections caused by ESKAPE
pathogens, Enterobacter species, P. aeruginosa, Staphylococcus
aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and
Enterococcus faecium are particularly concerning as they employ
diverse mechanisms to resist antibiotics, making treatment
increasingly challenging (4). Addressing P. aeruginosa’s virulence
and its role as a key contributor to AMR highlights the urgent need
for new therapeutic strategies, such as vaccines, to mitigate its
impact (5, 6).

According to the WHO’s 2024 list of critical diseases, P.
aeruginosa is a high-burden resistant bacterium resistant to last-
resort antibiotics (7). Factors contributing to its pathogenicity
include secretion systems, biofilm formation, and toxin production.
Biofilms protect bacteria from host immune responses and
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medications, promoting the formation of multidrug-resistant persister
cells that cause recurrent infections, particularly in patients with cystic
fibrosis (8). P. aeruginosa employs its Type III secretion system to
inject effector proteins into the host cells, interfering with cellular
processes and facilitating immune evasion (9). The bacterium exhibits
three primary resistance mechanisms: intrinsic resistance (efflux
pumps, antibiotic-inactivating enzymes, limited outer membrane
permeability), acquired resistance (mutations or horizontal gene
transfer leading to resistance to aminoglycosides, quinolones, and [3-
lactams), and adaptive resistance (driven by persister cells and biofilm
formation) (10). Clinical outcomes of P. aeruginosa infections are
generally worse than those caused by other bacteria (11-13). During
the COVID-19 pandemic, despite a decrease in the overall number of
isolates, the percentage of MDR P. aeruginosa isolates increased
significantly, from 23.8% in 2019 to 38.8% in 2020 (14). This trend
was influenced by longer hospital stays, increased ICU admissions,
and a greater reliance on empirical antibiotics, primarily due to the
severity of cases and the extensive use of mechanical ventilation. This
highlights how AMR is exacerbated in healthcare settings during
pandemics (15). With the overuse of antibiotics, slow development of
new drugs, and increasing complexity of healthcare, AMR is expected
to worsen, leading to higher mortality rates and a greater burden on
healthcare systems globally. Traditional antibiotics are becoming
ineffective against MDR and extensively drug-resistant (XDR)
strains, which no longer respond to standard treatments (16). The
limited efficacy of last-resort drugs, such as colistin, coupled with their
toxicity risks, makes managing resistant infections even more
challenging (17). The lack of specific, targeted therapies for resistant
infections leaves healthcare providers with limited options,
underscoring the need for novel treatments and more effective
alternatives to combat AMR (18). Among vaccine development
studies for P. aeruginosa, outer membrane proteins such as Porin F
(OprF) and Lipoprotein I (Oprl) have been extensively explored as
potential antigen targets (19).

Vaccines are crucial for preventing infections and reducing
antibiotic use in low- and middle-income countries, significantly
contributing to the fight against AMR. By lowering the incidence of
infectious diseases, vaccines help minimize antibiotic misuse and
overuse, particularly in populations with limited access to
healthcare (20). Vaccines hold significant promise in addressing
AMR by preventing infections, reducing antibiotic dependency, and
curbing the spread of resistant strains (21). However, designing a
vaccine for P. aeruginosa has been challenging due to its complex
genetic diversity, biofilm formation, and immune evasion
capabilities (22). Recent advancements in genomics and
immunoinformatics offer new opportunities to overcome these
obstacles. Computational tools for identifying novel vaccine
candidates pave the way for developing targeted vaccines that can
address the diversity of P. aeruginosa strains and enhance immune
protection (23). In this study, we employed a high-resolution pan-
genomic analysis of complete P. aeruginosa genomes from the
NCBI RefSeq database to identify core, virulence-associated
proteins. Among the prioritized candidates, LptF, a component of
the LPS transport system, has been classified as a lipotoxin (LPT)
due to its ability to trigger strong pro-inflammatory responses via
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TLR2 activation, particularly in cystic fibrosis. LptF is a pro-
inflammatory lipotoxin involved in the excessive induction of IL-
8 in cystic fibrosis and remains underexplored as a vaccine target
(24). Our pan-genome analysis has identified LptF as a key
membrane-associated protein that interacts with virulence factors,
such as Oprl and LptE, which supports its potential as a new
therapeutic candidate (25). Our pipeline integrates reverse
vaccinology, structural modeling, and molecular dynamics
simulations to design a multi-epitope subunit vaccine construct.
Unlike previous studies that relied on reference strains, metabolic
enzymes, or limited proteome screening, our approach emphasizes
strain-wide conservation, immune accessibility, and functional
relevance. This integrative, pathogen-focused design offers a
rational and potentially effective strategy for developing a broad-
coverage vaccine against MDR P. aeruginosa. Using linkers, these
epitopes can be linked to effective adjuvants to develop vaccines.

2 Materials and methods
2.1 Genome data retrieval

A comprehensive dataset of P. aeruginosa genomes, all at the
“complete” assembly level, was obtained from the National Center
for Biotechnology Information (NCBI) database (https://
www.ncbi.nlm.nih.gov/) using the NCBI Genome Download
Toolkit (26). To ensure comprehensive genomic representation,
this dataset included a variety of strains, encompassing both clinical
isolates and reference strains.

2.2 Pangenome construction and analysis

P. aeruginosa strains underwent pangenome analysis using the
Roary tool (Version 3.13.0) (27). A diverse set of strains was initially
selected to capture extensive genetic variability by collecting whole
genomes from the NCBI RefSeq database. These genomes were
annotated using Prokka (Version 1.14.6), which converted raw
sequences into functional gene and protein data (28). Prokka is used
to annotate essential genetic elements such as transfer RNA (tRNA),
ribosomal RNA (rRNA), and coding sequences (CDS) for each
genome, ensuring consistent annotation across all strains. Roary
identifies the core and the accessory genes, revealing the conserved
and variable genomic regions among P. aeruginosa strains. Core genes
from all genomes were extracted from the Roary output for further
detailed analysis, providing insights into essential genomic elements
and potential targets for vaccine or therapeutic development. This
pangenome analysis elucidated the genetic composition of the species
and identified potential targets for further therapeutic advancements.

2.3 Prediction of subcellular localization

Following the identification of core genes, we employed the
PSORTD tool (version 3.0.3) to predict their subcellular localization
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(29). PSORTD, a robust tool for prokaryotic genome analysis,
categorized the core genes based on their predicted cellular
locations, including cytoplasmic, periplasmic, and outer
membrane regions. This study primarily focused on outer
membrane proteins due to their accessibility on the bacterial
surface, making them ideal targets for vaccine development. To
confirm that the selected outer membrane-associated genes did not
show homology with the human proteins, we conducted a
comparison against the human proteome using BLASTP analysis
(E-value 0.0001) (30). This step was essential to avoid potential
cross-reactivity and enhance the specificity of vaccine
candidate selection.

2.4 Analysis using the virulence factor
database

The identified outer membrane proteins were analyzed by
comparing them to the Virulence Factor Database (VFDB) using
BLASTP [E-value = 0.0001, protein sequences from the VFDB full
dataset (set B)] (31). This comparative analysis aimed to determine
whether the selected protein candidates possess virulence potential,
thereby assessing their suitability as targets for therapeutic or vaccine
development. By aligning these outer membrane proteins with known
virulence factors, we identified candidates with established roles in
pathogenicity, enhancing the selection of proteins with significant
implications in host-pathogen interactions. The selected target
underwent an additional BLASTP search against the P. aeruginosa
database for further validation (32). This analysis provided insights
into the protein’s potential role, supporting its relevance for
subsequent stages of the study.

2.5 Immunogenic potential and structural
characterization of vaccine candidate

We evaluated the selected sequence’s antigenic potential using the
VaxiJen v2.0 (https://www.ddg-pharmfac.net/vaxijen/VaxiJen/
VaxiJen.html) server (33) to determine its suitability as an
antigenic candidate. The sequence was analyzed with Allertop
v2.0 (34) to assess allergenic risk, ensuring it lacked properties
that could trigger allergic reactions. We used the ProtParam tool
(https://web.expasy.org/protparam/) to determine the
physicochemical properties, including molecular weight,
instability index, grand average of hydropathicity (GRAVY), and
hydrophobicity (35). These analyses provided essential insights into
the protein’s suitability for vaccine development by assessing its
immunogenicity, safety, and stability.

2.6 Signal peptide prediction analysis
SignalP 6.0 (https://services.healthtech.dtu.dk/services/SignalP-

6.0/) is a sophisticated bioinformatics tool designed to detect signal
peptides in protein sequences and pinpoint their cleavage sites (36).
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Utilizing protein language models (LMs), it analyzes the N-terminal
region of proteins. Based on the predicted pathway and cleavage
mechanism, SignalP classifies signal peptides into various types,
such as Sec/SPI and Tat/SPI. The tool provides crucial scores,
including the S-score for signal peptide probability and the C-
score for predicting cleavage sites. This is essential for developing
vaccines, as it helps identify secreted or surface-exposed proteins
that could serve as potential immunogenic targets.

2.7 Prediction of linear B-cell epitopes

For the prediction of linear B-cell epitopes, we utilized BepiPred
2.0, which relies on the Immune Epitope Database (IEDB) Analysis
resource (https://www.iedb.org/) (37, 38). This tool analyses amino
acid propensity scores and identifies patterns typical of B-cell
epitopes, using propensity scales to identify regions likely to
consist of these epitopes. Improved accuracy of predictions is
achieved by training on known antigen-antibody complexes, with
the Random Forest method refining the results. The antigenic
potential of the predicted epitopes was further assessed using
VaxiJen v2.0 to determine their ability to stimulate an immune
response. In this study, it served as an additional screening tool to
prioritize epitopes (B and T Cell epitopes) with higher intrinsic
antigenic potential before subjecting them to downstream
immunoinformatics and structural analyses. Allertop v2.0
assessed allergenicity, ensuring the epitopes would not trigger
allergic reactions. Additionally, the toxicity profiles of the selected
epitopes were evaluated using the ToxinPred server (39), making
sure they had a low risk of allergic reactions was a key step in
designing the vaccine.

2.8 Prediction of T-cell epitopes (MHC
Class | and Il)

Epitope prediction for helper (HTL) and cytotoxic (CTL) T
lymphocytes was performed using the NetMHCpan 4.1 algorithm
provided by the Immune Epitope Database (IEDB) Analysis
Resource (40). The focus was on non-structural (NS) proteins,
which are conserved across various strains of P. aeruginosa and
serve as key targets for immune responses. A human-specific
approach was employed for CTL epitopes, identifying 10-mer
peptides (ten amino acids long) that included 27 common HLA
alleles as a reference panel. These epitopes were chosen for their
ability to bind to MHC class I molecules and activate cytotoxic T
cells, which is essential for targeting and eliminating infected cells.
We selected T-cell epitopes based on recommendations from the
IEDB for binding predictions. Specifically, we selected epitopes with
a percentile rank of < 1% for MHC class I, and a median percentile
rank of <20% for MHC class II. These thresholds represent high and
moderate affinity binders, and we mapped them to our scoring scale
(= 0.60 for class I and = 0.75 for class II) to include biologically
relevant epitopes (41). For HTL epitopes, 15-mer peptides likely to
stimulate helper T cells were identified using the IEDB-
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recommended method. These epitopes were designed to bind to
MHC class IT molecules, thereby activating B cells and initiating the
humoral immune response. The input included antigenic, non-
allergenic, and NS proteins from P. aeruginosa to ensure the
predicted epitope’s efficacy and safety for vaccine development.

2.9 Prediction of interferon-y inducing
MHC-II epitopes

In this study, the IFNepitope server was used to predict MHC-II
epitopes capable of inducing Interferon-gamma (IFN-y) responses.
This web-based tool leverages a comprehensive dataset from the
IEDB, comprising 6,728 non-inducing epitopes and 3,705 confirmed
IFN-y-inducing epitopes (42). Utilizing the Support Vector Machine
(SVM) technique, the server combines sequence analysis with
predictive algorithms to identify epitopes with a high potential to
stimulate IFN-y production. We also analyzed the IL-4 prediction web
server (43), the IL-6 prediction web server (44), the IL-10 prediction
web server (45), and the IL-13 prediction web server (46). Epitopes
were selected for vaccine development based on their prior assessment
for antigenicity and non-allergenicity. This tool also prioritizes safe
and immunologically relevant epitopes, which boosts the chances of a
successful immune response.

2.10 Analysis of population coverage

The finalized T-cell epitopes and their associated HLA binding
data were evaluated using the IEDB’s Population Coverage module
to determine their global distribution across diverse populations
(47). This analysis provided valuable insights into the epitope’s
coverage across different demographics and regions, enhancing our
understanding of their potential immunological effectiveness. By
examining the global distribution of these epitopes, the study
highlighted their relevance to diverse demographic groups. This
crucial step demonstrated the epitope’s ability to address global
healthcare needs, ensuring the vaccine candidate’s potential to
protect a wide range of populations, thereby increasing its
worldwide applicability and efficacy.

2.11 Vaccine design and construction

This study enhanced the vaccine design by incorporating carefully
selected adjuvants, linkers, and epitopes to amplify the immune
response. Two adjuvants were selected for their immune-boosting
properties: RS-09 (APPHALS), a short peptide mimicking bacterial
lipopolysaccharide, and Beta-defensin, a potent antimicrobial peptide
known for its strong immunological activation (48, 49). Four linkers
were used to achieve the best positioning and presentation of the
epitopes. The EAAAK linker connected the adjuvants to the epitopes.
This rigid helical linker promotes spatial separation between the
adjuvant and the epitope region, thereby minimizing potential
structural interference and enhancing adjuvant-mediated immune
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activation. The Alanine-Alanine-Tyrosine (AAY) linker was employed
between MHC-I epitopes to enhance processing and presentation by
MHC class I molecules. The MHC-II epitopes were separated using the
Glycine-Proline-Glycine-Proline-Glycine (GPGPG) linker, which is a
flexible and hydrophilic linker that aids in preserving epitope integrity
and enhances recognition by helper T cells. Finally, the KK (Lysine-
Lysine) linker was used to connect B-cell epitopes, ensuring adequate
exposure for B-cell activation while maintaining their conformational
flexibility and immunogenicity (50). These strategic additions of
adjuvants and linkers were designed to optimize the vaccine’s ability
to elicit strong and targeted immune responses, effectively combating
the intended disease.

2.12 Analysis of the physicochemical
properties of the formulated vaccines

The ProtParam server was utilized to conduct a physicochemical
analysis of the developed vaccine candidates, assessing their stability
and suitability for development (51). We analyzed the amino acid
sequences to identify key structural and functional features. We
calculated the molecular weight to estimate the proteins’ size,
solubility, and potential antigenicity. To assess their biochemical
behavior under physiological conditions, we determined the
theoretical isoelectric point (pI), which indicated their net charge
and acid-base characteristics. We also computed the instability index
to predict the likelihood of protein degradation. However, the aliphatic
index was evaluated to determine temperature stability based on the
contribution of aliphatic amino acids. The GRAVY index was also
evaluated to determine the vaccine’s overall hydrophobic or
hydrophilic nature, aiding in understanding its solubility and stability.

2.13 Secondary structure analysis and
prediction

The secondary structure of the developed vaccine was predicted
using the PSIPRED tool (52), a widely used online resource for protein
structure annotation and prediction. PSIPRED offers comprehensive
protein analysis tools (53), with a focus on structural feature
prediction. This analysis yielded valuable insights into how the
vaccine might interact, its stability, and its functional properties.
After entering the amino acid sequence of the final vaccine
construct, the PSIPRED server analyzed the sequence and predicted
the secondary structure, identifying coil, B-sheet, and o-helical
regions. These predictions provide crucial insights about the overall
structure and organization of the vaccine’s protein backbone.

2.14 Prediction and computational
refinement of tertiary structure

To predict the three-dimensional (3D) structure of the

developed vaccine and facilitate docking analysis, the ROBETTA
server and AlphaFold (54, 55), which employ deep-learning
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techniques for accurate protein modeling, were utilized. The
complete amino acid sequence of the vaccine was entered into
both platforms, resulting in the prediction of multiple 3D structures
in PDB format. These structures were enhanced in quality and
accuracy using the GalaxyRefine tool (56). This tool refines the
models by correcting structural errors, optimizing energy levels, and
minimizing steric clashes. A comparative analysis of the refined
models was conducted, and the best-performing structure, as
determined by structural validation using a Ramachandran plot
and other quality metrics, was selected for further docking studies.

2.15 Molecular docking and interaction
studies

We employed molecular docking analysis to examine the
interactions between the vaccine construct and Toll-like receptors
TLR2 and TLR4, which are critical mediators of innate immune
responses to infection. TLR2 was selected for its ability to detect
various pathogen-associated molecular patterns and initiate immune
responses (57). RS09 is a synthetic TLR4 agonist peptide that stimulates
innate immunity. The TLR4 receptor recognizes a TLR4 agonist linked
to the N-terminus of the vaccine construct. When TLR4 is activated, it
triggers an intracellular signaling process via the NF-kB pathway,
resulting in the production of inflammatory cytokines (58, 59). We
retrieved the 3D structures of TLR2 and TLR4 from the RCSB PDB
database, using IDs 2Z7X and 3FXI for TLR2 and TLR4, respectively,
for further analysis (60, 61). Before docking, we thoroughly prepared
the receptor structures by removing heteroatoms, water molecules, and
bound ligands to ensure accurate analysis. This step was vital to prevent
any interference during the docking process. Docking simulations were
performed using the HDOCK web server (http://
hdock.phys.hust.edu.cn/) (62). It employs a hybrid docking
algorithm that combines template-based and free docking
methods. In this study, we did blind docking to allow unbiased
prediction of potential interaction sites between the vaccine
construct and immune receptors. HDOCK, which is known for
its intuitive interface and robust protein-protein docking
capabilities, facilitated the simulation process by leveraging the
refined 3D structure of the vaccine and the immune receptor
models of TLR2 and TLR4. The docking affinity scores, indicating
the strength of interaction between the vaccine and the receptors,
were used to evaluate the results. Additionally, key residues
involved in binding interactions were identified, providing
insights into how these immune receptors recognize the vaccine.
This study helps elucidate how the vaccine may effectively interact
with TLR2 and TLR4, key components of the innate immune
system, to trigger an immune response.

2.16 Molecular dynamics simulation
analysis

To conduct molecular dynamics (MD) simulations for 1000ns, we
utilized the CHARMM-GUI server’s Solution Builder protocol,
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applying the CHARMMS36 force field to generate the necessary input
files (63). The TIP3P water model was used to solvate the protein-
protein complexes, creating a realistic simulation environment by
enclosing the system in a periodic cubic box extending 10 A from
the protein atoms in all directions (64). Counter ions were added to
neutralize the system, ensuring overall charge balance. The Verlet cutoff
method was employed with a 10 A cutoff distance, striking a balance
between computational efficiency and accuracy to calculate electrostatic
and van der Waals interactions. Bond constraints were applied using
the LINCS algorithm to stabilize the simulation by maintaining fixed
bond lengths. The Particle Mesh Ewald (PME) method was used to
precisely calculate long-range electrostatic interactions, enhancing
simulation accuracy in systems with periodic boundary conditions
(65). To remove undesirable interactions and stabilize the system, the
solvated system was subjected to energy minimization using the
steepest descent technique (66). Two equilibration phases followed:
the first in the NVT ensemble (constant Number of particles, Volume,
and Temperature) to stabilize temperature, and the second in the NPT
ensemble (constant number of particles, Pressure, and Temperature) to
stabilize pressure. Proper thermostat and barostat techniques
maintained constant temperature and pressure levels. This dual
equilibration ensured system stability before the production run. The
simulation recorded coordinates every 1 ps with a time step of 2 fs,
striking a balance between computational efficiency and accuracy.
CHARMM-GUI provided Python scripts to convert topology (top)
and parameter (itp) files into GROMACS-compatible formats,
simplifying input file preparation (67). Following the post-
production run, we performed thorough trajectory analyses,
including calculating Root Mean Square Deviation (RMSD) for
structural stability, Root Mean Square Fluctuation (RMSF) for
flexibility, hydrogen bond analysis (HBOND) for molecular
interactions, Principal Component Analysis (PCA) for dominant
motion patterns, Buried Surface Area (BSA) for evaluating binding
stability, and Free Energy Landscape (FEL) analysis for the
conformational states of the protein-protein complexes. Free energy
calculations were performed for the interaction between TLR
complexes and the vaccine construct (POA_V_RS09,
POA_V_BDEF) using the MM-PBSA method with a Poisson-
Boltzmann approach (68, 69). These approaches account for various
energy components, including bonded interactions, van der Waals
forces, electrostatic effects, and both polar and non-polar solvation
energies. Here in MM-PBSA, the polar solvation energy is derived from
the Poisson-Boltzmann equation, utilizing the molecular dynamics
(MD) trajectory to compute interaction energies throughout the
simulation. These analyses provided valuable insights into structural
stability, flexibility, interaction dynamics, and potential conformational
changes, enhancing our understanding of protein-protein interactions
over time (70-72).

2.17 In silico cloning and expression
analysis

To ensure optimal expression in the desired host, the gene of
interest was first subjected to codon optimization using the
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GenScript program (www.genscript.com), aligning the gene
sequence with the host’s preferred codon usage (73). Using
SnapGene software (https://www.snapgene.com/), we cloned the
vaccine construct via in silico. The result showed that the gene of
interest and the pET-28a(+) plasmid did not share any restriction
sites. This was addressed by adding specific nucleotide sequences to
the gene’s N-terminal and C-terminal ends, which matched the
restriction sites Xhol and Ndel, thereby aiding in cloning. These
sequences provided suitable restriction sites for the accurate
insertion of the gene into the plasmid. The appropriate
recombinant plasmid construct was then produced by cloning the
codon-optimized gene into the pET-28a(+) plasmid in silico using
additional restriction sequences (74).

2.18 C-IMMSIM-based immune simulation

The C-IMMSIM server (https://kraken.iac.rm.cnr.it/C-
IMMSIM/index.php) (75), a widely used tool for simulating
immune responses, was employed to evaluate the in-silico
immunological response of the developed vaccine. This server
utilizes a simulation-based framework to replicate the function of
the human immune system and its organs, with a particular
emphasis on primary lymphoid tissues. It uses a position-specific
scoring matrix, enhanced by machine learning algorithms, to
predict immune reactions. To achieve a total simulation period of
1050 steps, the vaccine and adjuvant were given in three doses: an
initial dose, a second dose administered 84 days later, and a third
dose administered 1050 days later, spaced eight hours apart. The
adjuvant concentration was set to 100, and the injected antigen
amount was 1000, following the server’s default parameters. This
setup enabled a comprehensive evaluation of the immune response
triggered by the vaccine or the adjuvant.

3 Results
3.1 NCBI data retrieval

A diverse array of 864 complete P. aeruginosa genomes,
encompassing strains such as PAOI1, PA14, PAK, LESB58, and
CF39S, was sourced from the NCBI Assembly database utilizing the
NCBI-genome-download toolkit. Supplementary Table S1 contains
detailed information on all included genomes, ensuring a
comprehensive genomic representation for subsequent analyses.

3.2 Pangenome analysis

A thorough pangenome analysis was performed on 864 complete
genomes of P. aeruginosa sourced from the NCBI Assembly database.
Genome annotation was executed using Prokka, followed by
pangenome analysis with Roary, which identified a total of 63,239
genes. Of these, 3,325 were classified as core genes. Within this core
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set, 296 genes were consistently present across all genomes, with 79
hypothetical genes excluded from further analysis. Additionally, 3,149
accessory genes were identified in 15-95% of the genomes. The
significant genomic diversity revealed by this open pangenome
analysis highlights the extensive variability within P. aeruginosa
(Figure 1). The figures were generated using R. This variability
provides crucial insights into strain-specific adaptations,
pathogenicity, and antibiotic resistance. Furthermore, identifying
universally conserved targets among the core genes points to
promising candidates for vaccine development applicable across
diverse P. aeruginosa strains. These findings are pivotal in guiding
future research and therapeutic strategies.

3.3 Subcellular localization and virulence
prediction

PSORTDb analysis identified three outer membrane proteins, while
the remaining proteins were classified as cytoplasmic or belonging to
other categories (Table 1). Subsequent BLASTP analysis against the
human proteome in NCBI showed no homologous hits for the outer
membrane proteins, ensuring their specificity and minimizing the risk
of cross-reactivity in vaccine development. BLASTP analysis against
the VFDB revealed that only the PAL_1 protein matched known
virulence factors, confirming its potential as a relevant target for
further therapeutic or vaccine development. Further analysis of PAL_1
against the P. aeruginosa database identified the protein as LptF, with
an e-value of 0. To validate the conservation of the selected vaccine
target LptF across diverse P. aeruginosa strains, a multiple sequence
alignment was performed using LptF sequences from 864 genomes
using Python (76). The conservation analysis revealed that over 98%
of the amino acid positions were fully conserved (with 100% identity),
and a pairwise sequence identity of greater than 99% was observed
among all strains. A corresponding heatmap of the pairwise identity
matrix further confirmed the uniform conservation pattern
(Supplementary Figure S1). These results underscore the
evolutionary stability of LptF and support its candidacy as a
universal target for vaccine or therapeutic development.

3.4 Analysis of immunogenic and
physicochemical characteristics

The ProtParam tool was used to predict the physicochemical
characteristics of the LptF protein. It has a molecular weight of 28.5
kDa and displays slight instability under standard laboratory
conditions, with an instability index of 42.30. The GRAVY index
of -0.574 indicates its hydrophilic nature. With an aliphatic index of
80.15, which reflects the protein’s thermostability, LptF is
considered a strong candidate for vaccine development due to its
stability at physiological temperatures. Its potential as an
immunogenic candidate is further supported by an antigenicity
score of 0.6442 (classified as likely antigenic with a threshold of 0.4)
and its classification as non-allergenic by AllerTOP.
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impact on vaccine development.

3.5 Signal peptide prediction

The analysis identified a Sec/SPII cleavage site at position 20 of the
protein sequence, indicating the presence of a signal peptide that is
likely cleaved during the maturation process via the Sec-dependent
secretion pathway or the Sec/SPII system (Figure 2). With the signal
peptide removed, the mature protein sequence begins at position 20.
The signal peptide was excluded from further analysis, and the mature
protein sequence was used in subsequent bioinformatics analyses. This
sequence underwent secondary structure prediction, functional
annotation, and potential epitope mapping, all of which are essential
for understanding the protein’s biological function and its potential use
in vaccine design. This approach ensures that only the biologically
relevant mature protein is considered for downstream analyses.

3.6 Prediction of B-cell epitope

The BepiPred Linear Epitope Prediction 2.0 tool was initially used
to predict B-cell epitopes, identifying nine epitopes for the LptF protein.
One of these epitopes, a 72-mer, was re-analyzed to ensure no potential
epitopes were missed. This re-evaluation revealed eight additional
epitopes (Figure 3), with figures generated in R (77). They were
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carefully selected based on several critical factors to confirm the
suitability of the identified epitopes for vaccine development. VaxiJen
v2.0 predicted high antigenicity scores for these epitopes, indicating
their potential to trigger a robust immune response. Additionally, their
non-toxic nature was confirmed using ToxinPred, ensuring they would
not cause adverse effects. The non-allergenic properties of the epitopes
were verified using AllerTOP v2.0, further ensuring their safety. As
shown in Table 2, the selected epitopes were chosen for further research
after careful consideration of these factors. Supplementary Table S2
provides a detailed analysis of the epitope’s suitability for inclusion in
potential vaccine formulations, including their toxicity, allergenicity,
and antigenicity profiles.

3.7 Prediction of T-cell epitope (MHC-I and
MHC-11)

The MHC-I and MHC-II epitopes were predicted for the LptF
protein sequence using NetMHCpan 4.1 from IEDB. The finalized
epitopes are presented in Tables 3, 4, with detailed T-cell epitope
analyses in Supplementary Tables S3, S4. While VaxiJen v2.0 is
primarily designed for complete proteins, it was utilized here as an
additional tool to assess the antigenicity of both MHC class I and II T
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TABLE 1 Subcellular localization predictions for selected proteins based
on PsortB analysis.

Sno Protein PSORTD result

1 oprB OuterMembrane - 10.00
2 bamB OuterMembrane - 10.00
3 pal_1 OuterMembrane - 10.00

cell epitopes, supporting selection alongside MHC binding,
immunogenicity, and toxicity criteria. Initially, 6,265 MHC-I epitopes
were predicted and filtered based on a rank cutoff of 0.5 and a core
score cutoff of 0.60. Similarly, 6,130 MHC-II epitopes were filtered
using a rank cutoff of 2 and a score of 0.75. These thresholds were
chosen because lower rank and score values indicate a higher binding
affinity to MHC alleles, which is crucial for identifying effective
immunogenic candidates. The finalized epitopes were further
assessed for toxicity, antigenicity, and allergenicity to confirm their
immunogenic potential while minimizing the risk of adverse reactions.
All selected epitopes were predicted to be IL-10 inducers, suggesting
their potential to regulate immune responses and prevent excessive
inflammation. Notably, epitope 3 exhibited balanced induction of IL-4,
IL-6, IL-10, and IL-13, making it a strong vaccine candidate. Epitopes 2
and 4 also induced IL-6 alongside IL-10, supporting a mixed pro-
inflammatory and regulatory profile (Supplementary Table S5).
Interferon-y scores were computed for MHC-II epitopes to rank
those that could elicit a strong immunological response. The chosen
MHC-T and MHC-II epitopes, identified according to these criteria, are
presented in Table 4.

3.8 Vaccine design and conservancy
evaluation

Two vaccine constructs were developed, incorporating adjuvants
such as RS-09 and Beta-defensin and with the predicted epitopes from

10.3389/fimmu.2025.1617251

the LptF protein. Each vaccine included the selected epitopes,
comprising five MHC-II, four MHC-I, and five B-cell epitopes.
Fifteen epitopes were incorporated into the final vaccine constructs
(Figure 4). The sequences and corresponding lengths of both
constructions are described in Table 5, and the proposed vaccines
ranged from 248 to 283 amino acids. The combined term for these
constructs was POA_V. The presence of the chosen epitopes in
P. aeruginosa was verified using a BLASTP analysis. The results
demonstrated 100% sequence similarity across P. aeruginosa strains,
indicating that the chosen epitopes are conserved and present in
all strains.

3.9 Analysis of population coverage

Based on estimated population coverage, the vaccine could
potentially reach 87.35% of the global population. Tables 3, 4
comprehensively analyse the epitope distribution, demonstrating
its adaptability across different regions and demographic groups.
Additionally, Figure 5 visually represents the global coverage,
underscoring the vaccine’s potential for widespread impact
(Supplementary Table S6, Supplementary Figure S2). Notably,
regions such as the United States (98.33%), Kenya (98.58%),
Germany (98.26%), Brazil (97.93%), France (98.04%), and Canada
(95.58%) showed high predicted population coverage, emphasizing
the vaccine’s potential effectiveness across diverse geographic and
genetic backgrounds. Moderate coverage was observed in countries
such as India (85.56%), Japan (87.60%), and China (89.81%),
further confirming the vaccine’s adaptability in densely populated
and genetically diverse regions. On the other hand, lower coverage
was observed in regions such as the United Kingdom (56.38%),
Hong Kong (56.64%), and American Samoa (56.40%), which may
be attributed to regional HLA allele distribution patterns. Overall,
the population coverage analysis strongly supports the broad
usability and potential of the designed vaccine to fight the
targeted pathogen worldwide.

SignalP 6.0 prediction: pal_1
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Signal peptide prediction for the LptF protein sequence was performed using SignalP.
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FIGURE 3
B-cell Epitope Prediction. (A) depicts the prediction of epitopes from the entire protein sequence, while (B) highlights the re-analyzed 72-mer
epitope to ensure no potential epitope is overlooked.

3.10 Physicochemica[ property ana[ysis exhibits hydrophilicity, as indicated by a GRAVY score of -0.856,
and is considered stable with an instability index of 23.29. Similarly,

The physicochemical evaluation of the vaccine candidates =~ POA_V_BDEF has a molecular weight of 29,763.15 Da, a pI of 9.53,
POA_V_RS09 and POA_V_BDEF underscores their potential  and consists of 283 amino acids. Its instability index, 26.34, also
viability. POA_V_RS09, with a molecular weight of 25,734.39 Da  suggests stability, and the GRAVY score of -0.761, which confirms
comprising 248 amino acids, has an isoelectric point (pI) of 9.43. 1t  its hydrophilic nature. These favorable stability and solubility

TABLE 2 Predicted B-cell epitopes for the LptF protein, identified as potential targets for vaccine development.

Peptide Length = Antigenicity Score Probable Antigen Allergenicity Toxicity
8 201 217 YGKEYPVASNGTSSGRA 17 1.3767 Antigen Non-allergen Non-toxic
5 127 136 DLDKSDLKPG 10 1.1824 Antigen Non-allergen Non-toxic
3 18 37 LQSQPDATKVAALETKDAGD = 20 0.7914 Antigen Non-allergen Non-toxic
1 5 13 GEDQRDVDQ 9 1.4255 Antigen Non-allergen Non-toxic
5 42 51 SAQRAQARLD 10 1.2283 Antigen Non-allergen Non-toxic
8 62 69 SQLNAKQT 8 1.4671 Antigen Non-allergen Non-toxic
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TABLE 3 Finalized MHC-I epitopes identified for the LptF protein.

10.3389/fimmu.2025.1617251

Allele Length Peptide Score Antigenicity Score Antigen Allergenicity Toxicity
HLA-A*01:01 = 10 YTDSTGSANY 0.9955 0.01 1.3013 Antigen Non-Allergen Non-Toxin
HLA-B*57:01 | 10 QTSRGTMVTFE | 0.7892 0.22 0.5176 Antigen Non-Allergen Non-Toxin
HLA-B*40:01 = 10 GEDQRDVDQL = 0.6866 0.16 1.0027 Antigen Non-Allergen Non-Toxin
HLA-A*31:01 = 10 KSDLKPGAMR | 0.6452 0.19 0.9618 Antigen Non-Allergen Non-Toxin

properties render both candidates promising for further validation
as vaccine prospects.

3.11 Secondary structure, tertiary structure,
and refinement

The secondary structure of the vaccines was estimated using the
PSIPRED approach, concentrating on the ratios of coils, 3-sheets, and
o-helices due to their immunogenic potential. PSIPRED’s analysis of the
vaccine candidates POA_V_RS09 and POA_V_BDEF revealed distinct
structural features. POA_V_RS09 comprised 58.87% alpha helices,
4.03% beta strands, and 37.10% random coils. In contrast,
POA_V_BDEF consisted of 50.53% alpha helices, 7.07% beta strands,
and 42.40% random coils (Supplementary Figure S3). These findings
indicate a predominance of alpha helices and a significant presence of
coils in both candidates, with a relatively low content of beta strands.
This structural profile suggests a balance between stability and flexibility,
which is beneficial for antigenic presentation in vaccine design. Using
ROBETTA and AlphaFold, we modelled the vaccine’s 3D structures.
Following structure generation, we refined all the models using
GalaxyRefine to improve stereochemical accuracy. Among the
generated models, Model 1 demonstrated superior performance for
both vaccines, with RMSD values ranging from 0.9744 to 0.9889.
Further validation was conducted using QMEAN4 scores and
Ramachandran plot analysis to evaluate the structural quality at both
global and local levels. For the POA_V_BDEF construct, the ROBETTA
model yielded a QMEAN4 score of —0.72, while the AlphaFold model

scored -2.67. Similarly, for the POA_V_RS09 construct, the ROBETTA
model scored -0.19, compared to -2.24 for the AlphaFold prediction.
QMEAN4 integrates four structural descriptors and is widely used to
evaluate model quality in the absence of a native structure. These results
indicate that the ROBETTA-generated models exhibit superior
reliability and structural accuracy for both constructs. Further
structural assessment using Ramachandran plot analysis (Table 6)
revealed that ROBETTA models have over 96% of residues in favored
regions, with only 0.71-0.81% falling in the disallowed areas. In contrast,
AlphaFold models had a higher percentage of disallowed residues (up to
2.44%), particularly in functionally important loops and epitope-
accessible regions. While AlphaFold has shown remarkable success in
protein structure prediction and has been used in several recent vaccine
design studies with promising results (78), we opted for ROBETTA-
refined models in our research. This decision was based on comparative
structural validation, where ROBETTA constructs exhibited fewer steric
clashes and better Ramachandran statistics. Therefore, the ROBETTA-
generated models were chosen for both POA_V_RS09 and
POA_V_BDEF constructs and used in all downstream docking and
immunological simulations to ensure structural reliability and predictive
robustness. The Ramachandran plot of POA_V_RS09 and
POA_V_BDEF shows that the structural value exceeds 90% of
residues in favored regions, indicating a good overall geometry
(Supplementary Figure S4). For the POA_V_BDEF construct,
residues like Ser-26 and Gly-134 were located in disallowed areas,
while for the POA_V_RS09 construct, residues Pro-100 and Gly-141
were also found in similar disallowed areas. The vaccine models are
detailed in Supplementary Figure S5.

TABLE 4 Finalized MHC-II epitopes identified for the LptF protein, optimized for vaccine design.

Allele Score | Rank

Peptide

Antigenicity Score = Antigen Allergenicity IFN-y Score

HLA-DRBI*03:01 VEVTISNDAKPVAPR | 0.9766 0.05 0.4458 Antigen Non-Allergen 0.0856
HLA- VLRNAEAQLQNASAQ = 0.8975 0.01 07313 Anti Non-All 05321
R A . ntigen - rgen ..
DQA101:02/DQB106:02 8¢ on-Aflerge
HLA-DRBI*01:01 EAQLQNASAQRAQAR = 0.8624 0.61 13141 Antigen Non-Allergen 0.7388
HLA- IVLRNAEAQLQNASA  0.8601 0.03 0.7121 Anti Non-All 0.2149
R A . ntigen on- ergen ..
DQA101:02/DQB106:02 & 8
HLA- EAQLQNASAQRAQAR | 0.8171 031 13141 Anti Non-All 0.7388
R . . ntugen on- ergen .
DQA105:01/DQB103:01 3 8
HLA- TIVLRNAEAQLQNAS 0.7961 0.10 0.5276 Antigen Non-Allergen 0.2391
DQA101:02/DQB106:02 i : : ' 8 :
HLA- EAQLQNASAQRAQAR | 0.7768 0.13 1.3141 Antigen Non-Allergen 0.7388
DQA101:02/DQB106:02 : : : 8 8 i
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FIGURE 4

Graphical representation showcasing the formulation of the designed vaccine.

3.12 Molecular docking analysis

The HDOCK server performed docking tests to evaluate the
interactions between the suggested vaccine candidates POA_V_RS09
and POA_V_BDEF and the immunological receptors TLR2 and
TLR4, respectively. These receptors are vital in recognizing
pathogen-associated molecular patterns (PAMPs) and triggering
immune responses, such as cytokine production and the
recruitment of immune cells. The results indicated strong binding
affinities for all complexes, with POA_V_RS09 achieving the highest
docking scores of -310.2 (kcal/mol) for TLR4 and -286.76 (kcal/mol)
for TLR2 (Table 7, Figure 6). The MD simulations were conducted to
further validate the interactions by examining the stability and
conformational behavior of the docked complexes under
physiological conditions. Both vaccine candidates exhibited stable
interactions, with minimal fluctuations at the receptor-binding
interface, suggesting their ability to engage immune receptors

GPGPG Linker

MHC - II Epitope 2
MHC - II Epitope 3
MHC - II Epitope 4
MHC - 11 Epitope 5

AAY Linker

and potentially elicit robust immune responses eftectively. These
findings highlight the promising immunogenic potential of the
designed vaccines.

3.13 Molecular dynamics simulation
analysis

The MD simulations for the vaccine complexes (POA_V_RS09
and POA_V_BDEF) with TLR2 and TLR4 were conducted over
1000 ns and revealed notable differences in stability and interaction
properties (Table 8). The RMSD (backbone) value indicated that the
POA_V_RS09 vaccine complex was the most stable, with the
TLR4_POA_V_RS09 complex showing the lowest RMSD
(0.57 £0.06 nm), followed by TLR2_POA_V_RS09 (0.80 + 0.19)
nm. These complexes remained stable throughout the 1000-ns MD
simulation. In contrast, the POA_V_BDEF-based vaccine

TABLE 5 Amino acid sequences and sequence lengths of the finalized vaccine constructs.

POA_V Sequence

FTQGISNPSSCRRNRGECLAFWCPGSMRQIGTCEGEPVKCCREAAAKSQLNAKQTKKGEDQR
DVDQKKYGKEYPVASNGTSSGRAKKSAQRAQARLDKKDLDKSDLKPGKKLQSQPDATKVAAL
ETKDAGDGPGPGVEVTISNDAKPVAPRGPGPGVLRNAEAQLQNASAQGPGPGEAQLQNASAQ
RAQARGPGPGIVLRNAEAQLQNASAGPGPGTIVLRNAEAQLQNASAAYYTDSTGSANYAAYQT
SRGTMVTFAAYGEDQRDVDQLAAYKSDLKPGAMR

POA_V_BDEF

APPHALSEAAAKSQLNAKQTKKGEDQRDVDQKKYGKEYPVASNGTSSGRAKKSAQRAQARLDK
KDLDKSDLKPGKKLQSQPDATKVAALETKDAGDGPGPGVEVTISNDAKPVAPRGPGPGVLRNAE
AQLQNASAQGPGPGEAQLQNASAQRAQARGPGPGIVLRNAEAQLQNASAGPGPGTIVLRNAEA
QLQNASAAYYTDSTGSANYAAYQTSRGTMVTFAAYGEDQRDVDQLAAYKSDLKPGAMR

POA_V_RS09
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Global population coverage of the designed vaccine was analyzed using the IEDB tool, considering HLA allele frequencies across regions.

complexes had higher RMSD values, with TLR2_POA_V_BDEF
(1.08+0.14 nm) and TLR4_POA_V_BDEF (1.03+0.10 nm),
indicating more significant structural deviations and less stable
interactions (Figure 7A). These complexes slightly fluctuated at
the beginning of the MD simulation (0-200ns), and later they
equilibrated at 1 nm. To investigate the observed fluctuations, we
analyzed the backbone RMSD and Calpha RMSF of TLR2 and
TLR4. Both receptors exhibited considerable structural stability,
with average RMSD values of TLR2 in POA_V_BDEF at (0.33 +
0.03 nm), TLR2 in POA_V_RS09 at (0.40 + 0.07 nm), TLR4 in
POA_V_BDEEF at (0.26 + 0.03 nm), and TLR4 in POA_V_RS09 at
(0.23 + 0.03 nm). The RMSF profiles also indicated stable
conformations across all complexes, TLR2 in POA_V_BDEF at
(0.15 + 0.08 nm), TLR2 in POA_V_RS09 at (0.16 + 0.14 nm), TLR4
in POA_V_BDEF at (0.15 + 0.07 nm), and TLR4 in POA_V_RS09

012 3456 7 8 91011121314151617 1819 2021 2223
Number of epitope hits/HLA combination recognized

at (0.14 + 0.07 nm), as illustrated in Supplementary Figure S6. The
predicted POA_V_BDEF complex displayed enhanced flexibility,
primarily attributed to the presence of less structured epitope and
linker regions Supplementary Figure S7. This inherent structural
looseness likely accounts for the comparatively elevated average
RMSD observed across its associated complexes. When coming to
the vaccine stability in residue wise, RMSF (Calpha) analysis
showed that the RS09 vaccine complexes were more rigid, with
the TLR4_POA_V_RS09 complex showing the lowest RMSF (0.21
+ 0.07 nm) and the TLR2_POA_V_RS09 complex showing (0.32 +
0.18 nm), indicating minimal flexibility at the interaction interface
and that all the residues were around 0.5nm. Conversely, the
POA_V_BDEF-based vaccine complexes had higher RMSF
values, with TLR2_POA_V_BDEF (0.64 +0.23 nm) and
TLR4_POA_V_BDEF (0.47 £0.25 nm), suggesting increased

TABLE 6 Structural validation of POA_V_RS09 and POA_V_BDEF-based vaccine models generated using Robetta and AlphaFold.

Metric Robetta (RS09) AlphaFold (RS09) Robetta (BDEF) AlphaFold (BDEF)
Total residues 248 248 283 283
Favored regions 96.34% 91.46% 96.09% 92.53%
Allowed regions 2.85% 6.10% 3.20% 5.69%
Disallowed regions 0.81% 2.44% 0.71% 1.78%

Disallowed residues Pro-100, Gly-141

Better geometry &

Asp-28, Asp-30, Pro-138,
Glu-227, Asp-228, GIn-229

Val-75, Leu-112, Pro-175,

Ser-26, Gly-134 Gly-261, Gly-280

Quality fewer outliers More outliers Better geometry More outliers
QMEANDIsCo Global Score 0.41 + 0.05 0.55 + 0.05 0.52 + 0.05 0.48 + 0.05
QMEAN -0.19 -2.24 -0.72 -2.67
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TABLE 7 Molecular docking scores of POA_V_BDEF and POA_V_RS09 with TLR2 and TLR4, showing binding affinities.

10.3389/fimmu.2025.1617251

Rank Docking Score (kcal/mol) Confidence Score Interface residues Complex
1 -299.98 09526 | model_1 TLR2 - POA_V_BDEF
1 -286.76 0.9391 | model_1 TLR2 - POA_V_RS09
1 -305.23 09571 | model_1 TLR4 - POA_V_BDEF
1 -3102 0961  model_1 TLR2 - POA_V_RS09

flexibility and dynamic behaviour (Figure 7B). In contrast, the
POA_V_BDEF vaccine construct exhibited pronounced
fluctuations, particularly in regions interacting with TLR4 and
TLR2. For the TLR4_POA_V_BDEF complex, notable flexibility
was observed in the N-terminal linker region (residues 53-57), as
well as in combined epitope and linker segments spanning residues
50-85, 165-180, and 207-216, in addition to the C-terminal end.
Similarly, the TLR2_POA_V_BDEF complex showed continuous
fluctuation across the linker (55-60), the epitope region (73-83),
the extended linker—epitope stretch (109-150), and residues 173-
180 and 195-220, along with the C-terminal region. In contrast to
the POA_V_BDEF construct, the POA_V_RS09-based vaccine
formulation demonstrated notably greater structural stability.
PCA was performed on the vaccine constructs extracted from
their respective TLR2 and TLR4 complexes to evaluate their
conformational dynamics. The POA_V_RS09 construct, when

analyzed post-interaction with both TLR2 and TLR4, exhibited
compact PCA clusters, indicating limited conformational
fluctuations and stable structural behavior throughout the 1000 ns
simulation. In contrast, the POA_V_BDEF construct displayed
broader dispersions in PCA space, suggesting greater structural
flexibility and reduced conformational stability. This trend remained
consistent when the standalone vaccine models were analyzed, where
POA_V_RS09 continued to show tight clustering and structural
integrity, while POA_V_BDEF exhibited higher variability. These
results align with earlier RMSD and RMSF analyses, collectively
highlighting POA_V_RS09 as the more stable and potentially
immunogenic vaccine candidate. (Supplementary Figure S8).
Hydrogen bond (HBOND) analysis was conducted over the 1000 ns
molecular dynamics simulation using GROMACS. The default criteria
were used, which include a donor-acceptor distance cutoff of 0.35 nm
and a hydrogen-donor-acceptor angle cutoff of >150° (i.e., <30°

POA_V_BDEF - TLR4
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Illustrates the docking models of the vaccine constructs with the receptor, focusing on the lowest binding energy conformations. The identified
interaction residues reveal strong binding affinities, highlighting critical contacts that contribute to the complex’s stability and potential efficacy.
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TABLE 8 Post-MD analysis averages for protein-protein complexes,
including RMSD, RMSF, and H-bond values, reflecting structural stability
and interactions.

Complexes RMSD (nm) RMSF (hm)  Avg. H-bond
POA_V_RS09_TLR2 ~ 0.80£0.19 0.32£0.18 11
POA_V_RS09_TLR4  0.57 £0.06 0.21£0.07 10
POA_V_BDEF_TLR2  1.08+0.14 0.64+0.23 19
POA_V_BDEF_TLR4  1.03+0.10 047 £0.25 14
POA_V_RS09_APO 0.83 % 0.10 0.26 £0.13 -
POA_V_BDEF_APO 175025 1.07 +£ 035 -

deviation from linearity), consistent with established definitions for
biologically relevant hydrogen bonds. The analysis focused specifically
on the intermolecular hydrogen bonds formed between the vaccine
constructs and the TLR receptors. The POA_V_BDEF vaccine
complexes exhibited a higher average number of hydrogen bonds
(19 with TLR2 and 14 with TLR4) compared to the POA_V_RS09
complexes (11 with TLR2 and 10 with TLR4). However, the relatively
higher RMSD and RMSF values observed in the POA_V_BDEF
complexes suggest that these additional hydrogen bonds may be less
stable or more transient (Figure 7C). The buried surface area (BSA)
during the 1000 ns simulation at the interface of the
TLR4_POA_V_RS09 complex was 42.09 nm* + 3.98, indicating
stable interactions and low variability. This was closely followed by
TLR4_POA_V_BDEF, with a BSA of 41.12 nm” + 5.83, showing a
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similar interaction pattern. In contrast, TLR2_POA_V_BDEF had a
higher BSA of 52.37 nm” + 6.60, while TLR2_POA_V_RS09 showed a
BSA of 35.70 nm?® + 5.19, both with higher standard deviations,
suggesting relatively fewer stable interactions (Figure 7D). Analysis of
the apo forms revealed that POA_V_BDEF exhibited the highest
RMSD (1.75 + 0.25 nm) and RMSF (1.07 + 0.35 nm), indicating
significant conformational flexibility in the absence of receptor
binding. In contrast, POA_V_RS09 exhibited lower deviation (0.83
+ 0.10 nm RMSD and 0.26 + 0.13 nm RMSF), suggesting it remains
relatively stable even when unbound. The FEL analysis effectively
showed us the structural stability and flexibility of the vaccine-protein
complexes. All complexes exhibited energy basins, indicating the
presence of metastable states. However, notable differences were
observed in the shape and depth of these energy wells. Complexes
involving TLR4 exhibited more compact and deeper energy minima
compared to those involving TLR2, suggesting a higher degree of
structural stability. In particular, the TLR4_POA_V_RS09 complex
exhibited a well-defined global minimum, indicating a stable and
energetically favorable conformation throughout the simulation.
Although the TLR4_POA_V_BDEF complex also reached stable
conformations, it showed slightly more conformational variability.
Conversely, the TLR2 complexes exhibited broader and more
scattered low-energy regions, indicating increased conformational
flexibility and less stable interaction patterns. Among them, the
TLR2_POA_V_RS09 complex exhibited relatively smoother energy
transitions compared to TLR2_POA_V_BDEEF, which displayed more
rugged features in its energy landscape (Supplementary Figure S9).

RMSF
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Molecular dynamics (MD) analysis results. (A) Root mean square deviation (RMSD) Backbone analysis. (B) Root mean square fluctuation (RMSF)
Calpha Analysis. (C) Hydrogen bond (HBOND) analysis. (D) Buried surface analysis (BSA).
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We calculated the binding free energy using MMPBSA, which
revealed notable differences between the POA_V_RS09 and
POA_V_BDEF-based vaccine constructs in complex with TLR2 and
TLR4 receptors. The TLR2_POA_V_RS09 showed a more favorable
binding energy (-1483.14 kJ/mol) than TLR2 POA_V_BDEF (-
1335.16 kJ/mol), indicating that RS09 forms a more stable and
energy-efficient complex with TLR2, compared to POA_V_BDEF.
In contrast, TLR4 POA_V_BDEF exhibited a significantly stronger
binding energy (-4600.83 kJ/mol) than TLR4_RS09 (-2682.66 kJ/
mol), likely due to its extended area, which enables an increased
contact surface. However, prior dynamic and structural analyses, such
as RMSF and FEL plots, indicate that POA_V_BDEF is more flexible,
particularly at the linker and epitope regions. This flexibility may
contribute to reduced structural stability, especially in the TLR2
complex compared to POA_V_RS09.

3.14 In silico codon adaptation, cloning,
and immune simulation

Codon optimization was performed using GenScript to enhance
the expression of the POA_V_RS09 vaccine sequence in E. coli K-
12. With a GC content of 60.22% and a total length of 744 base
pairs, the optimized sequence falls within the ideal range (30-70%)
for effective expression in E. coli. This balanced GC content ensures
efficient transcription and translation, making the sequence suitable
for high-level expression in the host. The optimized vaccine
sequence was then used for in-silico cloning with SnapGene
software, successfully inserting the gene into the pET-28a(+)
expression plasmid (Figure 8). The immune response dynamics
elicited by POA_V_RS09 are shown in Figure 9. Figure 9A
illustrates the antigen (Ag) and antibody responses over a 350-
day period, where an early antigen peak, followed by a sharp
decline, indicates effective recognition and clearance by the host
immune system. This is accompanied by a strong humoral
response, characterized by an initial surge in IgM, typical of a
primary response, followed by a sustained increase in IgGl and
IgG2, which shows class switching and maturation of the immune
response. The dominance of IgG subclasses over time reflects the
development of long-term protective immunity. Notably, IgG1 and
IgG2 are associated with Thl-type immune responses, which are
essential for combating pathogens such as viruses and certain
bacteria. Figure 9B illustrates cytokine dynamics, where high
levels of Interleukin-2 (IL-2) and IFN-y early on indicate strong
T-cell activation and a Thl-biased immune response, which is
particularly important for combating pathogens. Their gradual
decline over time suggests immune regulation and resolution of
inflammation, highlighting the vaccine’s safety profile. Figure 9C
illustrates the dynamics of the B-cell population, exhibiting an
increasing trend in memory B cells and a shift in isotype
expression from IgM to IgG, which further validates class
switching and the generation of long-lasting humoral memory.
Figure 9D focuses on B-cell states, showing that active and antigen-
internalizing B cells peak early, while anergic cells remain relatively
constant, suggesting efficient antigen processing and presentation.
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The low level of anergic B cells suggests that immune tolerance is
not induced, further supporting the vaccine’s immunogenicity.
Figure 9E presents helper T-cell (TH) populations, with an initial
spike in total TH cells, followed by the emergence of memory TH
cells, supporting long-term immunity. Finally, Figure 9F depicts
cytotoxic T-cell (TC) states, showing early activity and duplication
followed by a steady increase in resting memory TC cells, which are
critical for sustained immune surveillance. This can contribute to
the direct killing of bacteria or infected host cells in bacterial
infections that evade extracellular immune mechanisms. These
outcomes underscore the successful initiation of both humoral
and cellular immune responses, supporting the potential for the
development of long-lasting immunological memory. Moreover,
the observed immune signatures align with the protective responses
typically seen in effective bacterial vaccines, validating the rational
design of POA_V_RS09, which incorporates TLR agonists, multi-
epitope constructs, and immune-enhancing linkers to induce broad,
durable immunity against bacterial pathogens.

4 Discussion

The opportunistic pathogen P. aeruginosa is a significant cause
of hospital-acquired infections worldwide. It presents a serious
threat to human health, especially in immunocompromised
individuals, due to its innate antibiotic resistance and ability to
develop biofilms (79, 80). The increasing prevalence of drug-
resistant strains has complicated treatment options, highlighting
the urgent need for alternative therapeutic strategies (81). Despite
progress in antimicrobial therapies, no licensed vaccine exists for P.
aeruginosa, revealing a critical gap in combating this pathogen (82).
Immunoinformatics has emerged as a powerful tool in vaccine
development, facilitating the rational design of in silico vaccines, as
demonstrated in the development of vaccines against pathogens
such as the Ebola virus, SARS-CoV-2, and Mycobacterium
tuberculosis (83-85). These approaches hold significant promise
for addressing the challenges posed by P. aeruginosa.

Previous immunoinformatics-based vaccine studies against P.
aeruginosa often relied on single-strain datasets or focused on a
narrow range of targets. Some selected cytoplasmic proteins have
limited surface accessibility, while others used previously known
antigens without assessing their conservation across diverse strains.
Additionally, several studies selected targets which is completely based
on literature without genome-wide screening (86-89). Other broader
approaches involving multiple pathogens have also identified shared
virulence or essential gene-derived epitopes while filtering for self-
tolerance (90). However, such strategies typically lack species-specific
optimization, structural validation, and comprehensive strain-level
genomic coverage—critical aspects that our study addresses. In this
study, we conducted a comprehensive pangenome analysis (91) of 864
P. aeruginosa genomes. This extensive dataset enabled robust
pangenome analysis and the identification of conserved, surface-
exposed, and virulence-associated targets, distinguishing our study
from previous investigations. Here we identified 63,239 genes,
including 3,325 core genes and 3,149 accessory genes. We focused on
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FIGURE 8
In silico cloning of POA_V_RS09. (A) Cloning of RS09 (which is POA_V_RSQ9) into the pET-28a(+) vector. (B) final vaccination design with additional
restriction sites.

conserved core genes essential for bacterial survival and pathogenicity to  and lipotoxins have been identified as potential targets in studies (24).
ensure broad-spectrum coverage. The Pal_1 protein was identified asa ~ The LptF protein exhibited favorable physicochemical and
potential vaccine candidate, which is classified as an outer membrane ~ immunogenic properties, with a molecular weight of 28.5 kDa,
protein via PSORTD, and confirmed as a virulence-associated factor ~ thermostability indicated by an aliphatic index of 80.15, and a
through BLASTP analysis against the VFDB. Its sequence was validated ~ hydrophilic nature reflected in a GRAVY index of -0.574.
against the P. aeruginosa database, where it was identified with 100%  Immunogenic analysis revealed its suitability as a vaccine target, with
confidence and an E-value of 0, and it is known as LptF (lipotoxin F).  an antigenicity score of 0.6442 and classification as a non-allergen.
Sequence comparison with the human proteome confirmed the absence  SignalP analysis showed that the protein has a signal peptide, which is
of homologous hits, minimizing the risk of adverse cross-reactivity.  likely removed during maturation. This was accounted for in later
LptF, an OmpA-like outer membrane protein, plays a crucial role in P.  analyses that focused on the mature protein sequence. We identified B-
aeruginosa’s survival, particularly in stressful environments such aslung  cell epitopes and chose high-affinity T-cell epitopes based on their
colonization in cystic fibrosis, and may serve as an important target for ~ binding affinities to MHC-I and MHC-II molecules, with additional
therapeutic strategies (92). LptF remains an underexplored target. Its  refinement based on their potential to stimulate interferon-y production.
classification as a lipotoxin, along with evidence from structural  Ultimately, 15 epitopes were incorporated into the vaccine design,
proteomics revealing interactions with key membrane proteins like  comprising four MHC-I epitopes, five MHC-II epitopes, and six B-
OprI and LptE, further highlights its relevance as a promising vaccine  cell epitopes. Additionally, the cytokine prediction analysis revealed that
candidate against P. aeruginosa. Due to the increasing antibiotic  all selected epitopes possess IL-10-inducing potential, a cytokine shown
resistance of P. aeruginosa, an effective vaccine is urgently needed,  to be critical in controlling inflammation and enhancing bacterial
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clearance during P. aeruginosa infection (93). The vaccine constructs
POA_V_RS09 and POA_V_BDEF were designed, incorporating RS-09
and Beta-defensin as adjuvants. We selected RS09 as it functions as a
TLR4 agonist, effectively stimulating the innate immune response. 3-
defensin was chosen for its dual role in activating both innate and
adaptive immunity. Incorporating these adjuvants aimed to enhance the
immunogenic potential of the constructs. This strategic design allowed
us to evaluate and compare their impact on vaccine performance. These
constructs exhibited broad global population coverage (87.35%) and
strong immunogenic potential. Secondary structure analysis revealed
that both vaccines predominantly consisted of o-helices and random
coils, enhancing antigenic presentation. Structural validation through
Ramachandran plot analysis ensured the reliability of the tertiary
structures. We selected the Robetta server over AlphaFold for tertiary
structure prediction because Robetta offers more reliable modeling for
synthetic, chimeric constructs involving multiple domains, such as
adjuvants, epitopes, and linkers. Unlike AlphaFold, which is
optimized for natural protein sequences, Robetta’s de novo prediction
approach is better suited for handling novel vaccine constructs. For the
BDEF-based construct, serine-26 (Ser-26) and glycine-134 (Gly-234)
residues were found in disallowed regions, while the RS09-based
construct showed proline-100 (Pro-100) and glycine-141 (Gly-141)
residues in disallowed regions. These residues were primarily located
in loop and linker regions and were not associated with key epitope or
adjuvant domains, suggesting that they are unlikely to compromise the
overall structural integrity of the protein. Therefore, the refined and
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validated vaccine structures were subsequently used for molecular
docking studies to assess receptor interactions. Molecular docking
analyses revealed high-affinity interactions between the vaccine
constructs and Toll-like receptors TLR2 and TLR4, which play pivotal
roles in initiating innate immune responses. POA_V_RS09 showed
superior docking scores, with -310.2 (kcal/mol) for TLR4 and -286.76
(kcal/mol) for TLR2, while MD simulations confirmed the stability of
these interactions under physiological conditions. We conducted
extensive 1000-ns molecular dynamics simulations to analyze the
long-term structural stability and interaction dynamics of the vaccine-
receptor complexes. This extended simulation duration exceeds the
standard practice in similar studies, providing deeper insights into
conformational behavior, particularly in flexible regions such as
linkers and epitopes. It enhances the structural validation of our
vaccine constructs and reinforces the reliability of our results. The
TLR4_POA_V_RS09 complex demonstrated minimal structural
fluctuations, with the lowest RMSD and RMSF values, indicating
stable interactions compared to POA_V_BDEF. Although
POA_V_BDEF demonstrated good structural quality based on
validation metrics, MD simulations revealed considerable flexibility,
even in its apo form (without receptor binding). This inherent flexibility,
especially in the epitope-linker regions, might weaken stable receptor
binding and influence immune activation. While some mobility
facilitates epitope presentation, too much fluctuation can reduce
vaccine effectiveness. These findings underscore the importance of
dynamic assessment in conjunction with static validation when
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evaluating multi-epitope vaccine designs. Further analysis confirmed
POA_V_RS09’s stable conformational states, with tighter cluster
dispersion and distinct energy minima. MMPBSA analysis showed
that although POA_V_BDEF has a strong binding affinity with TLR4,
POA_V_RS09 exhibits a more balanced and consistent interaction
profile with both TLR2 and TLR4, along with fewer structural
fluctuations. These qualities make POA_V_RS09 a robust and
dependable adjuvant candidate for the design of multi-epitope
vaccines. Codon optimization for POA_V_RS09 allowed efficient
expression in E. coli (K-12), and in silico cloning into pET-28a(+)
validated its expression potential. Immune simulations demonstrated
robust adaptive immune responses, characterized by sustained IgG
production, memory B-cell formation, and effective cytokine
engagement, rendering POA_V_RS09 a promising vaccine candidate
for long-term immunity. The POA_V_RS09 vaccine demonstrated
strong stability, optimal expression potential, and robust immune
activation, positioning it as an ideal candidate for further
development. By targeting P. aeruginosa, a highly resistant pathogen,
the POA_V_RS09 vaccine could offer a valuable strategy for preventing
infections and addressing the global threat of antimicrobial resistance,
ultimately improving patient outcomes. In this study, we designed two
separate vaccine constructs using RS09 and B-defensin adjuvants to
independently evaluate their immunostimulatory potential. This
separation allows for comparative assessment of construct stability,
population coverage, and immunogenicity. However, future studies
could explore the integration of both adjuvants into a single
construct, as combinatorial adjuvants have been shown to enhance
immune responses more effectively than individual components (78).
One limitation of this study is that it lacks experimental validation.
While our computational approach provides a cost-effective and time-
efficient method for epitope screening, future in vitro and in vivo studies
(e.g., ELISA, ELISPOT) are essential to confirm immunogenicity and
support vaccine development of the POA_V_RS09 vaccine candidate
against P. aeruginosa. However, we have thoroughly examined the
structural and immunological characteristics of the vaccine candidate
through in silico methods, including 1000 ns molecular dynamics
simulations, epitope mapping, TLR docking, population coverage
analysis, and immunogenicity prediction. Long-timescale MD
simulations allow for the capture of biologically relevant
conformational changes, showing that microsecond to millisecond
scale simulations can uncover protein folding pathways and slow
structural transitions. This supports the use of 1000 ns MD to study
dynamic molecular interactions (94). Several previous studies have
demonstrated that immunoinformatics-based vaccine designs can
reliably predict antigenic determinants and immune interactions,
often correlating well with experimental outcomes (95-97). These
findings support the translational relevance of computational
predictions in the early stages of vaccine design. Further validation
using comprehensive in vitro assays is also necessary to evaluate the
safety profile and immunogenic potential of the POA_V_RS09-based
vaccine, including its ability to induce pro-inflammatory cytokines,
activate T cells, and generate specific antibody responses. Such
investigations will provide valuable insights into the clinical feasibility
of POA_V_RS09 as a vaccine candidate for P. aeruginosa infections.
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5 Conclusion

This study utilized an integrated pangenome and
immunoinformatics approach to develop an epitope-based peptide
vaccine targeting P. aeruginosa. Through pangenome analysis, we
identified LptF as a promising and underexplored vaccine target,
specifically. From LptF, we predicted potential epitopes. The resulting
vaccine candidate, POA_V_RS09, demonstrated promising immune
response outcomes and strong binding affinity to immunological
receptors (TLRs). Notably, the 1000-ns molecular dynamics
simulation provided valuable insights into the structural stability of
the vaccine-receptor complexes over an extended timescale,
reinforcing the robustness of the construct under physiological
conditions. This computational strategy holds significant potential
for addressing the escalating issue of antimicrobial resistance,
particularly in resource-limited settings and low-income countries.
This strategy provides a comprehensive and practical approach to
combating infections by targeting conserved NS proteins, identifying
high-affinity B-cell and T-cell epitopes, and utilizing suitable
adjuvants. Future studies should assess the vaccine’s safety,
effectiveness, and scalability through in vitro investigations, animal
model testing, and ensuing clinical trials. To transform this
computational framework into a valuable tool for combating P.
aeruginosa resistance to multiple drugs, these steps are crucial.
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Recent concerns about off-target immune activation following non-targeted
MRNA vaccine delivery have prompted the need for rational design strategies
that optimize nanoparticle formulations. Building upon our previous in silico
work using the Universal Immune System Simulator to characterize immune
responses to mRNA vaccines, we present a computational framework that
integrates synthetic transcriptomics with artificial intelligence-driven
optimization to guide the development of safer and more targeted lipid
nanoparticles. We generated biologically informed, synthetic RNA-seq datasets
to emulate gene expression profiles in immune-related tissues post-vaccination.
Differential gene expression analysis identified compartment-specific
transcriptional responses, which were then used to construct a risk index
based on predicted immune activation and the number of upregulated
immune markers. Parallelly, we trained a Random Forest regression model on
simulated lipid nanoparticles formulations to predict immune activation values
and embedded this model into a genetic algorithm to identify optimal lipid
nanoparticles design parameters (size, charge, polyethylene glycol content, and
targeting). The proposed framework enables early-stage, fully in silico screening
of mMRNA vaccine delivery strategies. Our results highlight the potential of
combining mechanistic immune modeling, synthetic transcriptomic validation,
and Artificial Intelligence-based design to accelerate the development of safer
and more effective mRNA-based therapies. By enabling rapid, data-driven
optimization of delivery systems prior to experimental validation, this approach
can significantly shorten vaccine development timelines, reduce costs, and
support the creation of more personalized and adaptable immunization
strategies. In the long term, this paradigm shift toward computationally guided
vaccine development could redefine the future of immunization, paving the way
for next-generation vaccines that are safer, more targeted, and rapidly adaptable
to emerging infectious threats and individual patient needs.

mMRNA vaccines, lipid nanoparticles, synthetic transcriptomics, Al-driven optimization,
immune modeling, synthetic omics data, optimization algorithms, vaccine delivery
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1 Introduction

Messenger RNA (mRNA) vaccines have revolutionized the field
of immunization, offering rapid development timelines, high
efficacy, and adaptability to various pathogens. The success of
mRNA-based vaccines against COVID-19 has underscored their
potential in combating infectious diseases and beyond. Central to
the efficacy of these vaccines is the delivery system, with lipid
nanoparticles (LNPs) emerging as the leading non-viral vectors for
mRNA delivery. LNPs protect mRNA from degradation, facilitate
cellular uptake, and promote endosomal escape, ensuring efficient
translation of the antigenic protein (1).

Despite these advantages, significant challenges remain in
optimizing LNP formulations to achieve an optimal balance
between efficacy and safety. Variations in key physicochemical
properties, such as particle size, surface charge, PEGylation
density and lipid composition, can substantially affect
biodistribution, cellular uptake, endosomal escape, and ultimately,
the magnitude and specificity of the immune response. For
example, LNPs with highly cationic surfaces may enhance cellular
internalization but also activate Toll-like receptors (TLRs) or
inflammasome pathways, potentially inducing undesired innate
immune responses, systemic inflammation, or even reactogenicity.
Conversely, overly neutral or PEG-shielded formulations may
escape immune surveillance altogether, limiting antigen
presentation and immunogenicity (2).

Moreover, the biodistribution of LNPs is highly context-
dependent, influenced by physiological barriers, tissue tropism,
and inter-patient variability, making empirical optimization
challenging (3). Conventional methodologies for LNP design rely
on iterative, trial-and-error testing of individual components, a
process that is both time-consuming and resource-intensive, often
requiring extensive in vitro and in vivo validation to assess delivery
efficiency and immune activation profiles.

Traditional Design of Experiments (DOE) approaches have been
widely employed to systematically explore the impact of formulation
variables on nanoparticle characteristics and performance. By using
structured experimental matrices, DOE enables the simultaneous
evaluation of multiple parameters and their interactions, significantly
improving the efficiency and robustness of formulation optimization
compared to traditional one-variable-at-a-time methods (4, 5). For
example, factorial and response surface methodologies have proven
effective in optimizing lipid nanoparticle properties such as size, charge,
and encapsulation efficiency for mRNA delivery (4). However, while
DOE provides a powerful framework for structured experimentation, it
still requires substantial experimental resources and may be limited in
capturing the full complexity of biological responses. This highlights
the need for complementary in silico approaches that can simulate
biological systems, reduce experimental burden, and guide rational
design more efficiently.

In this context, to overcome these limitations and fully capture
the complexity of nanoparticle-biology interactions, computational
modeling and artificial intelligence (AI)-driven optimization offer a
powerful alternative for systematically exploring the vast design
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space of LNPs. By simulating biological outcomes and predicting
key response metrics such as immunogenicity or off-target
activation, these tools enable a more rational and cost-effective
approach to LNP development, potentially accelerating the pipeline
from formulation design to preclinical validation.

Recent advancements in computational biology and AI offer
promising avenues to streamline LNP design. Machine learning
models can predict the physicochemical properties of LNPs and
their biological interactions, enabling the rational design of
nanoparticles with desired characteristics (6). Additionally,
synthetic transcriptomics allows for the simulation of gene
expression profiles post-vaccination, providing insights into
potential immune responses without the need for extensive in
vivo studies.

Building upon our previous work utilizing the Universal
Immune System Simulator (UISS) to model immune responses to
mRNA vaccines (7), we propose an integrated in silico framework
that combines synthetic transcriptomics with AI-driven
optimization strategies. While recent advances in computational
biology have introduced simulation-based approaches and machine
learning for drug delivery design, comprehensive platforms that
integrate immune modeling, synthetic omics data, and optimization
algorithms for vaccine delivery remain scarce. Our framework
addresses this gap by offering a modular, reproducible pipeline
capable of generating biologically informed synthetic RNA-seq
datasets, performing differential expression analysis, computing
immune activation risk scores, and identifying optimal lipid
nanoparticle (LNP) formulations via machine learning and
evolutionary computation.

The pipeline was developed entirely in R and Python, leveraging
robust and widely used packages. This integrated approach enables
both hypothesis generation and rational design in the early stages of
mRNA vaccine development, with the goal of minimizing off-target
immune activation and maximizing targeted delivery efficiency. By
simulating transcriptional responses and incorporating
interpretable machine learning models into an optimization
framework, our methodology aims to accelerate the design of
safer and more effective mRNA-based therapeutics.

2 Methods

The workflow, shown in Figure 1, includes the following
key steps:

a) Synthetic RNA-seq Data Generation

A synthetic RNA-seq dataset was constructed to mimic gene
expression profiles post-vaccination. It included immune-related
marker genes for key compartments (e.g., CD19 for B cells, CD3D
for T cells, IGHGI for plasma cells), with differential expression
patterns reflecting simulated immune activation.

b) Transcriptomic Analysis and Immune Risk Indexing

The synthetic RNA-seq dataset was analyzed for differential
gene expression. The number of significantly upregulated immune
marker genes per compartment was used to compute a risk index by
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FIGURE 1

Graphical representation of the in silico framework for optimizing mRNA vaccine delivery.

multiplying with corresponding Delta_ AUC values. This yielded a
semi-quantitative estimate of off-target immune activation risk.

¢) Synthetic LNP Dataset for AI Training

A synthetic dataset of LNP formulations was generated by
varying four key physicochemical parameters: particle size (50-
150 nm), surface charge (-10 to +10 mV), PEGylation percentage
(0.1-0.5 mol%), and targeting ligand presence (binary). Delta_ AUC
values were assigned to each formulation using a custom nonlinear
scoring function designed to reflect optimal biodistribution
and immunogenicity.

d) Machine Learning Model Development

A Random Forest regression model was trained to predict
Delta_ AUC values based on LNP parameters. The model was
validated internally using performance metrics such as RMSE
and R%.

e) Genetic Algorithm Optimization

The trained model was embedded within a genetic algorithm to
identify LNP configurations predicted to maximize immune
delivery efficiency while minimizing off-target activation. The top
10 candidates were selected for further analysis.

f) Data Visualization and Interpretation

A heatmap and ranked plots were used to summarize the
properties of optimized LNP formulations and their predicted
immune activation scores. These visualizations highlighted
common design features among the best-performing candidates.

This approach enables rational design of mRNA vaccine
formulations with improved targeting and reduced off-target
immune activation, and it will be discussed in detail in
next paragraphs.

All simulations, data generation, and analyses were performed
using a custom R and Python-based workflow developed for this
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study. Core statistical procedures and expression modeling were
conducted in R (v4.4.1) within RStudio 2024.04.2 + 764, leveraging
established packages including DESeq2 (version ‘1.48.1°) for
differential gene expression analysis (8) randomForest (version
4.7.1.2°) for predictive modeling (9), GA (version ‘3.2.4°) for
genetic algorithm optimization (10), and ggplot2 (version ‘4.0.0°)
and pheatmap (‘1.0.13’) (https://github.com/raivokolde/pheatmap)
for initial data visualization (11). To enhance figure aesthetics and
consistency, key visualizations (e.g., AAUC comparisons, immune
risk index, LNP ranking) were refined using Python (v3.13.2) in a
virtual environment with the matplotlib (12) and seaborn
(13) libraries.

All analyses were performed on an iMac with Apple M3 chip (8-
core CPU, 10-core GPU) equipped with 24 GB unified memory,
running macOS Sequoia 15.6.1.

2.1 Synthetic RNA-seq generation

To model transcriptional responses to mRNA vaccination, we
generated a synthetic RNA-seq dataset based on biologically
informed assumptions and guided by immunological response
profiles simulated using the UISS platform in our previous work.
The dataset comprised 300 genes measured across 10 samples (5
Control and 5 Post-Vaccination). A subset of genes was designed to
simulate vaccine-induced immune activation: 30 genes were
upregulated and 30 downregulated in the post-vaccination group
relative to controls.

Additionally, well-established immune marker genes were
included to represent specific compartments, B cells (CDI9,
MS4A1) (14), T cells (CD3D, CD8A, CD4) (15), plasma cells
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(IGHG1, IGHM, PRDM]I) (16), and others, artificially upregulated
to reflect canonical immune activation following antigen exposure.

Gene expression values were sampled from normal
distributions, with mean shifts used to simulate differential
regulation. To preserve biological plausibility, negative values,
resulting from the statistical properties of normal distributions,
were truncated to zero. This step ensures that all simulated
expression values remain non-negative, reflecting the reality that
gene expression levels, being measures of transcript abundance,
cannot be less than zero. This approach enables the simulation of
genes with no detectable expression while avoiding artifacts that
could compromise downstream analysis.

This synthetic dataset serves a dual purpose. On one hand, it
allows controlled benchmarking of the transcriptomic analysis
pipeline, particularly in assessing its ability to recover known
patterns of immune activation. On the other hand, it acts as a
bridge to validate predictions generated by the Universal Immune
System Simulator (UISS), a mechanistic, agent-based platform
capable of modeling immune responses at multiple scales, from
molecular signaling to cellular interactions and tissue-level
dynamics (17, 18).

Specifically, UISS has been used to simulate host responses to
mRNA vaccines, including the biodistribution of lipid nanoparticles
(LNPs), antigen presentation, and subsequent activation of
adaptive immunity (7). Based on its simulations, UISS produces
immunological outputs, such as the expansion of specific
immune cell subsets or the secretion of key cytokines, that can be
mapped to gene expression patterns. While UISS does not generate
RNA-seq data directly, these outcomes can be qualitatively
and semi-quantitatively translated into gene expression
profiles, enabling the construction of biologically plausible
synthetic datasets.

By constructing a synthetic RNA-seq dataset that reflects these
expected transcriptional signatures, we can assess whether
downstream analysis methods (e.g., differential expression,
immune risk indexing) can faithfully recapitulate the immune
activation patterns originally predicted by UISS. This integration
provides a robust framework for evaluating the predictive
alignment between mechanistic modeling and transcriptomic data
analytics in the context of rational vaccine design.

2.2 Transcriptomic analysis and immune
risk indexing

Differential gene expression analysis was performed using the
DESeq2 package in R, employing negative binomial distribution
modeling and Wald tests to identify significantly differentially
expressed genes between the post-vaccination and control groups
within the synthetic RNA-seq dataset (8). Gene-wise fold changes
and adjusted p-values (Benjamini-Hochberg correction) were
computed to isolate significantly upregulated immune-related
genes (FDR < 0.05).

To infer the immunological profiles of each condition, marker
genes characteristics of major immune compartments were selected
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based on established immunological literature. Specifically, we
considered CD19 and MS4A1 for B cells (19), CD3D, CDS8A, and
CD4 for T cells (20) and IGHG1, IGHM, and PRDM1 (BLIMP-1)
for plasma cells (21).

Based on prior immune simulation results, we introduced a
compartment-specific risk index designed to quantitatively evaluate
the potential for unintended immune activation (off-target effects).
The immune risk index for each compartment was calculated by
multiplying the simulated Delta_AUC (area under the curve
representing cumulative immune activation over time, as
established in previous immunological modeling studies (17)) by
the count of significantly upregulated marker genes identified in the
differential expression analysis for that immune compartment. This
integrated approach combines functional simulation data with
empirical transcriptomic profiles, providing a robust, interpretable,
and semi-quantitative metric for assessing immune activation risks
associated with vaccination or other therapeutic interventions.

2.3 Synthetic LNP dataset for Al training

To support the development and evaluation of an Al-driven
optimization pipeline for lipid nanoparticle (LNP) formulations, we
generated a synthetic dataset consisting of diverse LNPs
characterized by defined physicochemical parameters and
corresponding immune activation scores (Delta_AUC). Each LNP
formulation was parameterized based on four key physicochemical
attributes known to significantly impact biodistribution, cellular
uptake, and immunogenicity: particle size (ranging from 50 to 150
nm), which influences circulation time and tissue penetration (22);
surface charge (-10 to +10 mV), affecting cellular interaction (23)
and colloidal stability (24); PEGylation percentage (0.1 to 0.5 mol
%), referring to the covalent attachment of polyethylene glycol
(PEG) chains to the nanoparticle surface, a modification that
confers a steric barrier against opsonization, reduces recognition
and clearance by the mononuclear phagocyte system, prolongs
systemic circulation time, and imparts a “stealth” property that
enhances in vivo stability (24); and the presence or absence of active
targeting ligands (binary encoded, where 0 represents untargeted
and 1 represents targeted nanoparticles), enabling selective binding
to specific cellular receptors (24, 25). A total of 100 distinct LNP
formulations were systematically sampled across this four-
dimensional parameter space, ensuring uniform representation
and adequate coverage for robust AI model training. A summary
of the main effects of these physicochemical parameters on
biodistribution, cellular uptake, and immunogenicity, are
summarized in Table 1:

Each formulation was assigned a Delta_ AUC value, calculated
using a biologically informed, non-linear scoring function explicitly
designed to simulate realistic biodistribution and immunological
response patterns observed experimentally:

Delta_ AUC = —0.01(Size — 90)* - 0.02(Charge)* + 0.5PEG

+ 1.5 Targeting +¢
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TABLE 1 Physicochemical attributes of LNPs and their predicted
biological effects.

LNP attribute Main biological effects

Affects biodistribution and tissue penetration: smaller
Particle size
(50-150 nm)

LNPs circulate longer and diffuse more effectively,
whereas larger LNPs tend to accumulate in the liver and
spleen.

Modul [lul k ility; 1 ch
Surface Charge odulates cellular uptake and stability; neutral charge

improves circulation; positive charge increases uptake but
(10 to +10 mV) P P 5 P

may raise immunogenicity.

Reduces opsonization and clearance, prolonging

PEGylation
4 circulation, and provides stealth properties; excessive PEG

- 0
(0.1-0.5 mol%) reduces cellular uptake.

Determines targeting specificity: without ligands, LNPs

Targeting Ligands accumulate passively in the liver; with ligands, delivery is

more specific, efficacy improves, and toxicity is reduced.

Each attribute, such as particle size, surface charge, PEGylation, and targeting ligands, affects
biodistribution, cellular uptake, circulation time, and delivery specificity.

In this formulation, € represents Gaussian-distributed noise
(mean = 0, standard deviation = 0.1), reflecting biological variability
and measurement uncertainty typically encountered in
experimental settings (26).

The scoring function for Delta_ AUC was constructed to reflect
biologically plausible relationships between key nanoparticle
properties and delivery performance, based on known
experimental trends. Specifically, the quadratic penalty terms for
size and surface charge were introduced to model the existence of
optimal values: nanoparticle diameters around 90 nm and near-
neutral charges are experimentally associated with enhanced
circulation times and improved biodistribution profiles.
Therefore, the terms -0.01(Size - 90)* and —0.02(Charge)2 penalize
deviations from these optimal values, with the choice of coefficients
scaling the relative importance of size and charge in the
delivery performance.

Conversely, PEGylation and active targeting were modeled as
linear contributors to performance. The positive coefficients (+0.5
for PEGylation and +1.5 for targeting) reflect the experimental
evidence that moderate PEGylation improves nanoparticle stealth
properties, and the presence of active targeting ligands substantially
enhances cellular uptake by promoting receptor-
mediated endocytosis.

Finally, Gaussian-distributed noise (¢, mean = 0, standard
deviation = 0.1) was added to each Delta_AUC value to simulate
biological variability and measurement uncertainty typically
observed in vivo and in vitro assays. This biologically informed
functional form allowed us to create a synthetic dataset, through an
in-house R script, where optimal nanoparticle configurations
(around 90 nm in size, with near-neutral surface charge,
moderate PEGylation, and active targeting) systematically achieve
higher Delta_ AUC values, while suboptimal configurations are
penalized. This design ensures that machine learning models
trained on the dataset are exposed to realistic, non-linear, and
multi-parametric optimization challenges, mimicking the
complexity of real-world nanoparticle formulation tasks (27, 28).
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This synthetic dataset was subsequently used to train and
evaluate a supervised machine learning model, as described in the
following section.

2.4 Machine learning model development

A supervised machine learning approach was employed to
predict immune activation potential (AAUC) of lipid nanoparticle
(LNP) formulations based on key physicochemical descriptors. A
Random Forest regression model (29) was implemented using the
randomForest package in R. Input features included particle size
(nm), surface charge (mV), PEGylation percentage (mol%), and
presence of targeting ligands (binary encoding).

The synthetic dataset described above, comprising 100
simulated LNP formulations generated by systematically varying
key physicochemical parameters across biologically relevant ranges,
was randomly partitioned into training (80%) and validation (20%)
subsets. Model performance was assessed using root mean square
error (RMSE) and the coefficient of determination (R*) on the
validation set, providing quantitative estimates of predictive
accuracy and generalizability (30). RMSE measures the average
magnitude of the prediction errors, providing an estimate of how
close the predicted values are to the actual ones: lower values
indicate better accuracy. R* quantifies the proportion of variance
in the observed data that is explained by the model, with values
closer to 1 indicating higher predictive power and generalizability.

Feature importance was assessed using the mean decrease in
node impurity, a standard metric in Random Forest models that
quantifies how much each variable contributes to improving
decision tree splits. This analysis revealed that surface charge and
PEGylation were the most influential predictors of AAUC, in line
with their well-established roles in modulating nanoparticle
biodistribution and immunogenicity. The trained model was
subsequently used to predict AAUC values for all LNP candidates
in the dataset. The top 10 formulations were selected based on their
predicted scores and visualized accordingly, forming the basis for
downstream optimization via genetic algorithms.

Full model and optimization settings, cross-validation protocol,
and sensitivity analysis are reported in Supplementary Table S2 and
Supplementary Methods S1.

2.5 Genetic algorithm optimization

Building on the predictive model trained on the synthetic LNP
dataset, we used the optimized Random Forest as a surrogate fitness
function within a genetic algorithm (GA) to search for new LNP
formulations predicted to yield high Delta_AUC values, ie., strong
immune activation profiles. The GA was implemented using the GA
library in R, which simulates an evolutionary process to solve
optimization problems. We began with an initial population of 50
LNP formulations, randomly generated within biologically plausible
parameter ranges (for size, charge, PEGylation, and targeting). Each
formulation in the population was evaluated using the trained
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Random Forest model, which predicted its Delta_ AUC score: this
prediction served as the fitness value for the GA. The selection of
individuals for reproduction was performed using a tournament
strategy, where multiple candidates compete and the best is chosen
for mating. To simulate genetic diversity and exploration of the
solution space, we applied crossover (with a probability of 0.8) to
exchange parameter values between formulations, and mutation (with
a probability of 0.2) to introduce small random changes. This process
was repeated over 100 generations. As the algorithm progressed, it
increasingly favored formulations with higher predicted Delta_AUC,
gradually converging towards optimal solutions. At the end of the run,
we selected the top 10 formulations, those with the highest predicted
Delta_AUC scores, for further analysis.

2.6 Statistical confidence and clustering
analyses

To quantify the robustness of the model predictions and the
associated uncertainty, we performed statistical confidence and
clustering analyses on both the immune risk index and the
AAUC predictions.

For the immune risk index (Figure 2), 95% confidence intervals
were estimated using a nonparametric bootstrap procedure (B =
1000 resamplings) applied to compartment-specific immune
markers, weighted by their respective AAUC coefficients.

For the AAUC predictions (Figure 3), a bootstrap approach was
applied to the random forest model, which was re-trained on 500

10.3389/fimmu.2025.1628583

bootstrap samples of the synthetic LNP dataset to estimate
prediction variability.

In addition, hierarchical clustering was incorporated into the
heatmaps (Figure 4) to highlight parameter co-variation, and a
correlation heatmap (Spearman’s p) was generated to visualize
relationships among LNP physicochemical parameters and
AAUC values.

2.7 Data visualization and software

All data preprocessing, statistical analyses, and initial
visualizations were performed using R (v4.4.1) within RStudio
2024.04.2 + 764. Differential expression analysis was carried out
with DESeq2 (v1.48.1), while predictive modeling and optimization
were implemented using randomForest (v4.7.1.2) and GA (v3.2.4),
respectively. Exploratory plots were generated with ggplot2 (v4.0.0)
and pheatmap (v1.0.13).

To refine figure design and ensure visual consistency, selected
key plots—such as AAUC comparisons, immune risk index
distributions, and LNP ranking—were reproduced using Python
(v3.13.2) in a dedicated virtual environment with matplotlib
(v3.9.2) and seaborn (v0.13.2).

All analyses were executed on an iMac with Apple M3 chip (8-
core CPU, 10-core GPU) equipped with 24 GB unified memory,
running macOS Sequoia 15.6.1. This hybrid R/Python workflow
ensured both graphical uniformity and full reproducibility across
the study.

Estimated Risk Index by Immune Compartment (95% CI)
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FIGURE 2

Estimated immune risk index by compartment, computed as the product of Delta_AUC and the number of upregulated immune marker genes. This

index reflects potential off-target immune activation.
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FIGURE 3

Delta_AUC values for immune compartments, calculated as the difference in activation between targeted and non-targeted formulations. Higher
values indicate stronger compartment-specific immune responses to targeted delivery.

3 Results

3.1 Synthetic RNA-seq differential
expression analysis

Differential gene expression analysis of the synthetic RNA-seq
dataset accurately identified the simulated transcriptional changes.
Among the 300 analyzed genes, all 30 genes designed to be
upregulated, and the 30 genes designated as downregulated post-
vaccination were correctly identified as significantly differentially
expressed (FDR < 0.05), demonstrating the reliability and validity of
the synthetic data generation methodology. Additionally, key
immune marker genes representing distinct immune
compartments, such as B cells (CD19, MS4Al), T cells (CD3D,
CD8A, CD4), and plasma cells (IGHG1, IGHM, PRDM1), were
significantly upregulated, consistent with expected immune
activation patterns.

3.2 Immune risk indexing

To assess potential off-target immune activation, we computed
a compartment-specific immune risk index by multiplying the
predicted AAUC values by the number of differentially expressed
(DE) immune marker genes within each compartment, as shown
in Figure 2:

The Ig compartment, representing antibody-producing plasma
cells, displayed the highest risk index (~4.2), suggesting a strong
activation of humoral responses, consistent with mRNA vaccine
effects (31). The T cell compartment followed (~3.6), indicating
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robust T cell engagement. Memory T cells (Tmem) and cytotoxic T
cells (TC) showed moderate risk levels (~2.2 and ~1.8, respectively),
while B cells had a slightly lower activation (~1.6). Notably, the EP
compartment, likely representing epithelial or non-immune cells, had
the lowest index (~1.2), suggesting minimal off-target transcriptional
activation. These results support the capacity of the simulated
nanoparticle formulation to preferentially activate relevant immune
pathways while sparing non-target tissues, aligning with the immune
response patterns previously predicted by UISS.

The calculated immune risk index effectively quantified
compartment-specific immune activation, clearly distinguishing
between post-vaccination and control conditions. Specifically, the
highest immune risk index values were observed in the T cell
compartment, driven by strong upregulation of CD3D, CD8A,
and CD4 genes, in alignment with simulated Delta_ AUC scores
derived from the UISS model. B cell and plasma cell compartments
exhibited moderate immune risk scores, correlating with fewer
significantly upregulated marker genes. Overall, the immune risk
indexing method demonstrated strong correlation with simulated
immune activation, offering a robust and interpretable approach for
evaluating potential off-target immune responses.

3.3 Simulated immune compartment
activation

Based on prior UISS simulations, immune compartments
showed distinct activation patterns when comparing targeted and
non-targeted mRNA vaccine delivery. Delta_ AUC values were
calculated to quantify the difference in immune activation
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FIGURE 4

Top 10 LNP formulations ranked by predicted AAUC. Barplot showing the predicted immune activation scores (AAUC) for the top LNP candidates
identified by the genetic algorithm. LNP-2 achieved the highest predicted score (AAUC = 1.73), with others following in descending order.

between conditions. Compartments such as B cells and plasma cells
(Ig) showed the highest differential activation, indicating
preferential targeting and stronger immune engagement when
delivery was optimized.

The difference in immune activation between targeted and non-
targeted formulations (AAUC) was computed for each
immune compartment.

As illustrated in Figure 3, the Ig compartment exhibited the
highest increase in AAUC, followed by B and T cells, indicating a
stronger activation under targeted delivery.

In contrast, epithelial (EP), cytotoxic (TC), and memory T
(Tmem) compartments showed smaller AAUC values, suggesting
that their activation is less affected by the delivery modality within
the current simulation setup.

3.4 Al-based prediction and ranking of LNP
formulations

Using the synthetic dataset previously described, which
uniformly sampled a four-dimensional physicochemical
parameter space, we trained a Random Forest regression model to
predict Delta_AUC values based on LNP characteristics. The model
achieved strong predictive performance, with R* values exceeding
0.9 and low RMSE on the validation set, confirming its ability to
capture non-linear relationships between input features and
immune activation potential.

The model was then embedded as a surrogate fitness function
within a genetic algorithm to identify LNP formulations predicted
to maximize Delta_ AUC. After 100 generations, the GA
consistently converged toward optimal configurations, that is,
nanoparticles around 90 nm in size, with near-neutral surface
charge, moderate PEGylation, and active targeting, closely
matching profiles known to enhance biodistribution and
immunogenicity. Following model training and validation, AAUC
values were predicted for the entire synthetic LNP dataset. After
convergence, the genetic algorithm identified a set of top 10 LNP
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formulations that consistently exhibited superior predicted
performance as shown in Table 1:

All selected candidates included active targeting ligands and
exhibited particle sizes ranging from 88.8 to 93.9 nm, with a central
tendency around 90-92 nm, aligning with theoretical optima for
biodistribution. This outcome reflects the influence of the scoring
function used during model training, which included a positive
weighting for the presence of targeting ligands, thereby favoring
formulations predicted to enhance receptor-mediated uptake and
compartment-specific immune activation. Surface charges were
consistently near-neutral, varying between —1.0 and —4.4 mV, and
PEGylation percentages ranged from 0.26 to 0.34 mol%, centering
around the biologically favorable 0.3 mol%. This near-neutral
charge is known to minimize non-specific interactions with
serum proteins and immune cells, thereby improving circulation
time and reducing innate immune activation (32). Similarly, an
optimal PEGylation density has been shown to balance nanoparticle
stealth and cellular uptake, preventing rapid clearance while
maintaining delivery efficiency.

The predicted AAUC values, calculated using the biologically
informed non-linear scoring function described in the Methods
section, ranged from 0.99 to 1.73. The highest score (1.73) was
achieved by the top-performing formulation (Rank 2), while the
lowest among the top 10 (Rank 4) was 0.99. Although the AAUC
range was narrower than initially anticipated, the results highlight
the genetic algorithm’s ability to finely discriminate between LNP
designs with subtle yet functionally meaningful differences.

Notably, all top-ranked formulations exhibited overlapping
physicochemical features: particle sizes around 90-92 nm, near-
neutral surface charges, and PEGylation levels close to 0.3 mol%,
indicating strong convergence toward a shared optimal profile.
These findings not only validate the effectiveness of the GA in
identifying high-performing candidates but also reinforce design
patterns observed in earlier model-driven rankings. In particular,
the convergence toward moderate PEGylation and near-neutral
charge mirrors experimental literature that associates such profiles
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(A) Hierarchical clustering of the top 10 GA-optimized LNP formulations. Each column represents a normalized (z-scored) physicochemical
parameter, and each row corresponds to an optimized LNP ranked by predicted AAUC. The color gradient indicates relative deviation from the
mean, highlighting co-variation patterns among size, charge, PEG content, and predicted performance. (B) Spearman correlation matrix illustrating
relationships among key continuous parameters. Positive correlations between size and charge, and negative associations with PEG content, reflect
the balance between stability and delivery efficiency captured by the optimization framework.

with optimal biodistribution and reduced innate
immune activation.

The distribution of predicted AAUC scores for the top 10 LNP
candidates is shown in Figure 4. Notably, LNP-2 achieved the
highest predicted score, followed by a gradual decline among the
subsequent formulations.

To complement the tabulated summary of physicochemical
features (Table 2), we generated a heatmap (Figure 5A) to provide

Frontiers in Immunology

a visual overview of parameter distributions among the top 10 GA-
optimized LNP candidates. As previously noted, the selected
formulations exhibited broadly consistent trends across size, surface
charge, PEGylation, and targeting, reflecting convergence toward a
shared optimal physicochemical profile. The heatmap reinforces
these findings, offering an intuitive depiction of the design space
occupied by the top-performing nanoparticles.
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TABLE 2 Physicochemical characteristics and predicted AAUC values of the top 10 LNP formulations identified through genetic algorithm

optimization.

Rank Size (nm) Charge (mV) PEG (%) Targeting Predicted AAUC
1 91.2 22 034 Yes 15
2 89.7 22 029 Yes 1.73
3 91.6 -11 03 Yes 1.6
4 93.8 -44 026 Yes 0.99
5 89.4 -4.1 028 Yes 1.38
6 89.4 2.3 03 Yes 142
7 93.9 -3 027 Yes 1.32
8 91.9 -1 031 Yes 14
9 88.8 2.9 028 Yes 1.32
10 91.4 36 029 Yes 1.39

Each formulation is characterized by its particle size, surface charge, PEGylation percentage, and presence of targeting ligands.

The heatmap presents the z-score-normalized physicochemical
parameters—PEG content, predicted AAUC, particle size, and
surface charge—for the ten GA-optimized LNP formulations.

Two main patterns emerge:

1. Consistency in design parameters:

Most top-performing LNPs occupy a narrow region of the
design space, showing moderate PEG percentages (~0.27-0.31%),
near-neutral to slightly negative charges (-4 to -1 mV), and
diameters close to 90-94 nm. This convergence indicates that the
optimization process favored formulations with balanced stability
and cellular uptake potential.

2. AAUC-driven clustering:

The AAUC column highlights subtle differences in predicted
immunogenic performance across formulations. LNP-1 and LNP-8
exhibit the highest relative AAUC (lighter shades), while others
form a compact cluster with lower but comparable predicted
responses, reflecting minor variations around the optimal region.

TABLE 3 To assess the plausibility of the simulated immune response,
the synthetic transcriptomic signatures have been validated against
public RNA-seq data (GSE171110).

Metric Value Description
Universe (shared 11,342 Common genes between simulated and
genes) GSE171110 datasets
Simulated DEGs 43 DEGs identified in the synthetic dataset
Validation DEGs 3,625 DEGs identified in the public RNA-seq
(GSE171110) dataset
Overlap 8 genes Shared DEGs between simulated and real
datasets
Fisher’s exact test p= Significance of overlap
0.0707
Concordant direction 62.5% DEGs with matching up/down-regulation
Pearson correlation r=022 Correlation of fold-change magnitudes
(log2FC)
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Overall, the figure visually reinforces the model-driven
convergence toward an optimal physicochemical profile,
characterized by ~90 nm size, low PEG content, and slightly
negative charge, consistent with literature-reported parameters for
clinically validated mRNA-LNP systems.

To further explore interdependencies among physicochemical
variables, a Spearman correlation matrix (Figure 5B) was computed
using the top 10 GA-optimized LNP formulations.

Size and surface charge showed moderate positive correlation (p
= 0.59), while PEG content was inversely correlated with both size
and charge, indicating that formulations with lower PEG fractions
tend to have slightly larger and less negatively charged particles.

Collectively, these findings illustrate the effectiveness of the machine
learning-driven design strategy in prioritizing LNP formulations for
further refinement and experimental validation. This approach provides
a rational and scalable pathway for accelerating the development of safe
and effective mRNA delivery systems.

Finally, to evaluate whether the simulated transcriptomic patterns
and model-driven predictions align with experimentally observed
vaccine responses, we performed an external validation using public
RNA-seq data from COVID-19-vaccinated individuals (GSE171110).

The results of this comparative analysis are presented in the
following section.

3.5 Biological validation of simulated
transcriptomics

To assess the biological plausibility of the simulated immune
response, we validated the synthetic transcriptomic signatures
against a public RNA-seq dataset (GSE171110) profiling
peripheral blood samples from COVID-19-vaccinated and
healthy individuals.

This dataset was selected because it captures in vivo immune
activation after SARS-CoV-2 vaccination, closely reflecting the
biological processes represented in our simulation (e.g., B-cell, T-
cell, and immunoglobulin upregulation).
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Differential gene expression analysis was performed using
DESeq2 on both datasets with identical thresholds (|log2FC| >
0.5, FDR < 0.1). Comparative validation metrics were then
computed between the two sets of differentially expressed genes
(DEGs), including overlap significance (Fisher’s exact test),
directionality concordance, and Pearson correlation of log2
fold-changes.

These metrics are derived from the comparative analysis
between simulated and real datasets and do not represent raw
biological measurements.

As shown in Table 3, although the overlap between simulated
and experimental DEGs was modest (8 shared genes, Fisher’s p =
0.0707), 62.5 % of them displayed concordant regulation direction,
and the overall fold-change correlation (r = 0.22) indicated a
positive trend in expression magnitude, supporting the biological
plausibility of the simulated immune response.

These results confirm that the simulated immune activation
patterns, particularly those involving B-cell and plasma-cell
markers, exhibit partial but consistent agreement with
experimental vaccine transcriptomics. The positive correlation
and directional concordance demonstrate that the synthetic
simulation preserves biologically plausible immune activation
trends without overfitting to specific datasets.

This validation step provides an important bridge between in
silico predictions and experimental evidence, reinforcing the
translational relevance of the proposed computational framework.

3.6 Comparison with existing COVID-19
MRNA—-LNP formulations and experimental
response variables

To contextualize the optimized LNPs generated by the in silico
framework, their physicochemical characteristics were compared
with those reported for clinically validated mRNA-LNP
formulations, such as those used in the authorized COVID-19
mRNA vaccines. The parameter space explored in this study
(particle size 50-150 nm, surface charge —10 to +10 mV,
PEGylation 0.1-0.5 mol % and targeting presence/absence) was
designed to represent generic LNPs carriers before
mRNA encapsulation.

Publicly available data indicate vaccine LNPs to be small (80-
100 nm), slightly negative (~ =5 mV), to contain PEG-lipids around
1.5-2 mol%, and to lack active targeting. Our optimized LNPs
converge to the same size window (~90-92 nm) and to a similarly
neutral/slightly negative charge, but to a lower PEGylation (~0.30
mol%) and to the presence of targeting ligands (33, 34).

These parameters are summarized in Table 4, together with the
corresponding optimized values obtained from the top 10 genetic-
algorithm candidates. The ideal LNP identified in this study falls
within the experimentally observed range of vaccine-like LNPs,
while exhibiting slightly more neutral surface charge, lower PEG-
lipid content, and active targeting features predicted to enhance
biodistribution and reduce off-target immune activation.
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Despite being generated from a pre-encapsulation design space, the
optimized LNPs fall within the clinically observed ranges for size and
surface charge. Two systematic differences emerge: (i) the optimized
candidates feature a lower PEG fraction (~0.30 mol%) than marketed
vaccines (1.5-2 mol%), and (ii) they all include targeting ligands, while
current products do not. The first difference reflects that our simulations
considered PEGylation as an adjustable parameter within a simplified
lipid mixture; extending the PEG dimension to 0-2 mol% in future
simulations would be straightforward and would not require changing
the optimization logic. The second difference reflects the objective
function used here, which rewarded predicted improvements in
delivery specificity and reduced off-target immune activation; this is
consistent with next-generation LNPs but not yet with first-generation
COVID-19 products.

The incorporation of mRNA is known to slightly alter these
physicochemical properties, generally increasing particle size by 5-
15 nm and shifting the surface charge neutrality, while maintaining
values within the same overall range (35).

To provide an experimental reference for the biological effects
associated with these physicochemical parameters, Table 5
summarizes how the key response variables, such as biodistribution,
cellular uptake, and immunogenicity, are typically evaluated in mRNA-
LNPs vaccines.

These variables are quantified through established experimental
methods, such as in vivo imaging or qPCR for biodistribution, flow
cytometry or confocal microscopy for cellular uptake, and
immunoassays (ELISA, ELISpot, cytokine profiling) for
immunogenicity (34, 36).

The reported experimental ranges highlight consistent
biological behaviors across LNP-based vaccine systems,
supporting the predictive validity and translational relevance of
the optimized in silico framework.

A more detailed comparison between the optimized in silico
parameters and experimental data from recent literature is provided
in Supplementary Table S1.

TABLE 4 The table summarizes typical measurement methods and value
ranges for biodistribution, cellular uptake, and immunogenicity reported
in experimental studies of mMRNA—LNP vaccines.

Measurement
method

Response

Representative
experimental
values

variable

Biodistribution In vivo imaging of labeled Liver 40-60%; spleen 10—
LNPs, gPCR of mRNA per 20%ID/g at 6-24h post-
organ. (%ID/g) dose
Cellular uptake Flow cytometry or confocal 20-50% positive cells

microscopy of LNP-positive depending on surface
charge and PEGylation

density

APCs in draining lymph node.

Neutralizing Ab > 1:1000;
TFN-y 100-500 pg/mL
(Th1-biased)

Immunogenicity ELISA, ELISpot, cytokine

profiling

These data outline the expected biological performance range of clinically validated
formulations and support the relevance of the optimized in silico LNP profiles proposed in
this work.
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TABLE 5 Comparison of physicochemical parameters for vaccine-like and ideal LNPs.

Formulation Particle size

COVID-19 mRNA-LNP (Pfizer-like) ~90 nm (midpoint of 80-100)
COVID-19 mRNA-LNP (Moderna-like) ~90 nm

Ideal LNP ~91 nm (midpoint of 88.8-93.9 nm)

Surface charge PEGylation Targeting
~-5mV ~1.5 mol% (50:10:38.5:1.5) No
~-5mV ~1.5-2 mol% No

~ —2.7 mV (range -1 — 4.4 mV) ~ 0.30 mol% Yes

(range 0.26-0.34 mol%)

The ideal LNP remains within the experimentally observed range of mRNA-LNP formulations but shows a more neutral charge, lower PEG content, and active targeting, features predicted to

enhance biodistribution and reduce off-target immune activation.

This comparison indicates that the in silico search was
conducted within clinically realistic physicochemical boundaries,
while deliberately extending the design space toward targeted and
lower-PEGylation to explore safer delivery profiles.

4 Discussion

The unprecedented success of mRNA vaccines against COVID-
19 has propelled messenger RNA technology to the forefront of
vaccinology, showcasing its potential for rapid development and
high efficacy. Central to this success is the role of lipid nanoparticles
(LNPs), which have emerged as the most clinically advanced non-
viral platforms for mRNA delivery. LNPs protect the fragile mRNA
strands and facilitate their efficient delivery into cells, overcoming
previous challenges associated with mRNA therapeutics.

Building upon this foundation, our study presents an in silico
framework that bridges mechanistic immune simulations with AI-
driven optimization strategies to guide the rational design of safer
and more effective mRNA vaccine delivery systems. By leveraging
synthetic RNA-seq data aligned with immune activation patterns,
predicted by multiscale simulations, and integrating these insights
into a machine learning-guided formulation pipeline, we
demonstrate a systematic approach to optimizing LNP
parameters under biologically informed constraints.

Traditional Design of Experiments (DOE) methodologies have
historically played a central role in formulation development by
enabling structured exploration of formulation variables and their
interactions. However, while DOE remains a cornerstone of
experimental design, its reliance on extensive empirical data
collection can limit its scalability, particularly in complex
biological systems where multidimensional interactions are
critical. Our in silico framework complements and extends the
DOE philosophy by virtually exploring the formulation space,
thereby significantly reducing experimental burden while
maintaining a systematic and interpretable optimization process.

The application of a genetic algorithm, coupled with a
predictive model trained on physicochemical attributes, enabled
the identification of top-performing formulations that consistently
shared favorable traits such as near-neutral charge, moderate
PEGylation, and optimal size. These features are well-established
in the literature as critical for efficient biodistribution and reduced
immunogenicity of nanoparticle systems. Beyond enhancing
delivery precision, this pipeline offers a powerful tool for
hypothesis generation, dramatically reducing the need for costly
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and time-consuming in vivo screening in early-stage
vaccine development.

Interestingly, the optimized LNP parameters predicted by our
Al-guided workflow (~90 nm diameter, near-neutral charge, and
~0.3% PEG) are consistent with experimental findings reported in
previous studies (37, 38).

The optimized formulations identified by our algorithm—
ranging between 88.8 and 93.9 nm in diameter, with surface
charges between —-1.0 and —-4.4 mV and PEGylation levels of
0.26-0.34 mol%—thus fall squarely within the experimental range
associated with efficient lymphatic transport and reduced innate
immune activation. This strong convergence between simulated
and experimentally validated parameters reinforces the reliability
and practical significance of our in silico design framework.

5 Limitations

This study introduces and tests a computational framework for
in silico vaccine design by integrating artificially generated RNA-
seq data and simulated immune activation profiles derived from a
previously validated UISS-COVID19 model. While simulated
datasets cannot fully capture the complexity and heterogeneity of
biological systems, they provide a valuable platform for prototyping
analytical pipelines, exploring mechanistic hypotheses, and
informing experimental design in data-scarce contexts.

The synthetic RNA-seq data were generated under biologically
grounded assumptions, including expected transcriptional shifts
following mRNA vaccination and compartment-specific immune
activation. Simulated immune activation scores (Delta_AUC) were
assigned to virtual lipid nanoparticle (LNP) formulations using a
custom scoring function to reflect known principles of
biodistribution and immunogenicity. These components were
combined with Al-based optimization strategies, such as random
forest regression and genetic algorithms, to identify LNP
configurations predicted to minimize off-target activation and
maximize delivery efficiency.

All transcriptomic data were simulated and must ultimately be
validated using experimental datasets. Similarly, the predictive
model was trained on artificially generated Delta_ AUC values,
which, although biologically plausible, do not replace empirical
measurements. The framework is modular and scalable, but its
predictive accuracy remains sensitive to the assumptions embedded
in the simulation and data generation processes. Therefore, all
findings derived from synthetic data should be interpreted as
proof-of-concept rather than biological evidence.
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Nonetheless, this in silico foundation offers a powerful tool for
early-phase vaccine development, enabling efficient hypothesis
generation, risk estimation, and preclinical prioritization of
candidate formulations prior to experimental validation.

6 Conclusion

This study presents a novel in silico pipeline that integrates
multiscale immune simulation outcomes with synthetic RNA-seq
data and machine learning algorithms to systematically identify
optimized mRNA-LNP formulations. By simulating post-
vaccination gene expression profiles and using these to guide the
selection of physiochemically favorable LNP candidates, our
framework provides a rational and scalable approach for early-
stage vaccine design. The integration of a predictive model with a
genetic algorithm allowed us to converge on nanoparticle
configurations exhibiting key features, such as near-neutral
surface charge, appropriate particle size, and moderate
PEGylation, associated with enhanced delivery efficiency and
minimal off-target effects.

Our findings underscore the feasibility of computational
vaccine design, complementing and accelerating empirical
approaches that are often time-consuming, costly, and ethically
challenging due to the need for extensive in vivo testing. The
pipeline supports more sustainable and reproducible development
processes by minimizing experimental burden and enabling rapid,
data-driven iteration.

Moreover, the framework is modular and adaptable: it can be
extended to incorporate patient-derived transcriptomic data,
support personalized vaccine strategies, or be applied to other
therapeutic delivery systems beyond mRNA, such as siRNA,
CRISPR components, or protein-based biologics. Its compatibility
with existing data standards and modeling infrastructures also
makes it suitable for integration into industrial development
pipelines and regulatory decision-making workflows. As
computational tools continue to evolve, this integrative strategy
holds promise for accelerating the development of safe, targeted,
and cost-effective immunotherapies and vaccines with wide-ranging
applications in infectious disease, oncology, and beyond.
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