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Editorial on the Research Topic

Data-driven vaccine design for microbial-associated diseases
Vaccinology is rapidly evolving, driven by the convergence of genomics,

immunoinformatics, and artificial intelligence (AI). As infectious diseases continue to

challenge global health whether through re-emerging bacterial pathogens, rapidly evolving

viruses, or opportunistic microbiota computational tools are becoming central to vaccine

discovery. This Research Topic brings together ten diverse yet thematically connected studies

that collectively demonstrate how modern vaccinology is shifting toward precision,

integration, and predictive modeling. Taken together, these studies illuminate the future

direction of the field, data-driven, multi-targeted, and strategically optimized vaccine design.

To begin with, the long-standing shortcomings of the Bacillus Calmette-Guérin (BCG)

vaccine in preventing adult pulmonary tuberculosis highlight the urgent need for improved

alternatives. In this Research Topic, one study takes a rational genetic approach by creating

progressively attenuated M. tuberculosis H37Rv strains. By examining macrophage

transcriptomic responses to these engineered strains, the authors reveal strong activation

of immune pathways including nuclear factor kappa B (NF-kB), tumor necrosis factor

(TNF), chemokine signaling, and notably interleukin-17 (IL-17) signaling. Importantly,

this upregulation across all vaccine strains suggests a capacity to elicit robust mucosal

immunity, thus providing a promising foundation for next-generation TB vaccines

(Veerapandian et al.). This work also exemplifies how integrating pathogen genomics

with host response profiling can accelerate rational vaccine design.

Building on the theme of precision, the second study focuses on cervical cancer–

associated high-risk human papillomavirus (HPV) subtypes (Cai et al.). Although current

prophylactic vaccines provide broad protection, subtype-specific insights remain essential

for refining immunogen design. Through detailed in silico profiling of HPV-31 and HPV-
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52 E6/E7 proteins, the authors identify physicochemical properties,

dominant B- and T-cell epitopes, and structural determinants of

immunogenicity. These findings not only deepen our

understanding of oncogenic HPV variants but also pave the way

for subtype-tailored vaccine approaches.

Continuing with mycobacterial pathogens, another study

addresses the rising burden of non-tuberculous mycobacteria. By

analyzing complete genomes from M. avium,M. intracellulare, and

M. colombiense, the authors design a multi-epitope vaccine based

on conserved regions of the antigen 85 family. Furthermore,

population coverage analysis ensures relevance across African

populations, while immune simulations predict strong humoral

and cellular responses (Kashiri et al.). Consequently, this cross-

species construct represents a significant step toward broad-

spectrum mycobacterial immunization strategies.

Similarly, the challenge of human immunodeficiency virus

(HIV) vaccine development stems largely from viral variability. In

this Research Topic, a study explores a dual strategy: mapping

immunodominant epitopes and introducing targeted mutations

to enhance recognition across HIV subtype C variants

(Kumar Mishra et al.). Structural modeling, TLR3 docking, and

long-timescale molecular dynamics simulations collectively

demonstrate stable vaccine-receptor interactions. In addition,

strong predicted immunoglobulin responses and favorable codon

adaptation highlight its translational potential. Thus, this work

underscores how rational mutation of epitopes may help

overcome viral diversity.

Transitioning to viral encephalitides, one study presents a

refined multi-epitope subunit vaccine targeting SLEV. Unlike

earlier efforts that focused solely on the E protein, this work

incorporates membrane protein M and anchored capsid protein

anchC, thereby broadening antigenic coverage. The resulting

constructs exhibits high structural stability and strong TLR-4

binding, and immune simulations further indicate robust

immunogenicity (Ramalingam et al.). Hence, this expanded

antigen strategy showcases how multi-protein approaches can

enhance vaccine efficacy against complex RNA viruses.

Expanding beyond classical pathogens, another study

examines Ruminococcus gnavus, a gut pathobiont implicated in

inflammatory bowel disease. Through subtractive proteomics, the

authors identify two key virulent proteins and construct a multi-

epitope vaccine showing strong TLR4 interaction and structural

stability (Dingding et al.). Although experimental validation

remains necessary, this work importantly demonstrates how

vaccinology can be extended to microbiota-associated diseases,

potentially transforming future therapeutic approaches for

chronic inflammatory conditions.

In addition, the Research Topic features a comprehensive

computational pipeline for designing multi-epitope vaccines

against human respiratory syncytial virus (hRSV). By mining

conserved regions of F and G glycoproteins and evaluating

antigenicity, allergenicity, and structural features, the authors

identify promising candidates with strong docking affinity for
Frontiers in Immunology 026
TLR1 and TLR4 (Alnajran et al.). Coupled with immune

simulations predicting high IgG, IgM, IL-2, and IFN-g levels, the

work offers a compelling alternative to the limited RSV vaccines

currently available for older adults.

Meanwhile, the Zika virus continues to pose a threat in Asia,

particularly India. This study identifies novel linear and

conformational epitopes in both envelope and NS1 proteins of

circulating Indian strains and evaluates their interactions with

potent neutralizing antibodies (Roy et al.). The discovery of

epitopes capable of strong engagement with monoclonal

antibodies such as ZV-67 and Z3L1 provides critical information

for developing next-generation, lineage-specific Zika vaccines.

Further reinforcing the theme of genomic integration, another

study conducts a pangenome analysis to identify conserved

virulence determinants in Pseudomonas aeruginosa (Elavarasu

and K). Prioritizing the outer membrane protein LptF, the

authors design a multi-epitope vaccine with stable TLR

interactions and predicted high expression in E.coli. Immune

simulations additionally indicate strong adaptive responses,

including memory B-cell and T-cell activation. Therefore, this

construct holds promise for addressing antibiotic-resistant P.

aeruginosa infections.

Finally, moving from antigens to delivery systems, the Research

Topic concludes with an innovative AI-driven framework for

optimizing lipid nanoparticles formulations for mRNA vaccines

(Di Salvatore et al.). By generating synthetic transcriptomic datasets

to emulate tissue-specific responses, and integrating random forest

modeling with a genetic algorithm, the authors identify nanoparticles

designs with minimized off-target immune activation. As a result, this

purely in silico pipeline offers a paradigm shift toward safer and more

targeted mRNA vaccine delivery strategies.

These ten studies collectively showcase the transformative

impact of computational biology in rational vaccine design. By

integrating structural biology, immunoinformatics, molecular

docking, AI, and immune simulations, each contribution extends

the frontiers of vaccinology beyond traditional paradigms.

Moreover, the spectrum of pathogens addressed from bacteria

and viruses to gut microbiota demonstrates the versatility and

applicability of these approaches across disease domains. As we

face future outbreaks and emerging antimicrobial resistance, these

studies lay the groundwork for agile, intelligent, and personalized

vaccine development. I extend my gratitude to all contributing

authors for their innovative efforts, and I am confident that this

body of work will inspire further translational and experimental

endeavors in infectious disease research.
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Introduction: The Zika virus is an emerging Flavivirus known to cause Zika

infection in humans. It is associated with severe health problems such as

microcephaly and Guillain-Barré syndrome post the Brazilian epidemic in

2015-16. The spread of the Zika virus to the Asian subcontinent, especially to

India is a matter of great concern. Two recent co-circulating Indian Zika virus

strains such as Rajasthan and Maharashtra detected in 2018 and 2021 were

studied to identify B-cell epitopes in the envelope and non-structural 1 protein as

these epitopes are major indicators of robust humoral immune response. The

study aimed at identifying novel epitopes, followed by molecular docking with

potent Zika virus-specific monoclonal antibodies. The novel epitopes identified

in this study shall be essential in designing multi-epitope vaccines capable of

inducing antibody response against Zika virus infection.

Methods: ABCpred, BepiPred 2.0 and Kolaskar-Tongaonkar methods were used

for predicting the linear B-cell epitopes, and Discotope 2.0 and ElliPro were used

for the prediction of conformational epitopes. Linear epitopes were further

checked for protective antigenicity, allergenicity and toxicity. Based on the

stringent study design criteria, only the novel epitopes were considered for

molecular docking with complementary determining regions of potent Zika

virus-specific monoclonal antibodies.

Results: Nineteen linear and five conformational epitopes were shortlisted based

on protective potential, non-allergic and non-toxic properties for Zika virus E

protein, from which nine linear and three conformational epitopes were

identified as novel. Molecular docking studies revealed that the novel linear

epitopes, one each from EDIII, EDII, EDI and EDI/DIII hinge were involved in

epitope-CDR interactions with potent neutralizing Zika virus E-specific mouse

monoclonal antibody ZV-67. Moreover, the novel EDII epitope was exclusively

engaged in epitope-CDR interactions of potent neutralizing Zika virus E-specific

human monoclonal antibody Z3L1. None of the linear epitopes of Zika virus NS1

were ascertained as novel based on our study criteria. Conformational epitopes

were identified as novel for NS1 protein.
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Conclusion: This study identified Zika virus-specific novel epitopes of envelope

and non-structural -1 proteins in the currently co-circulating Indian strains.

Furthermore, in-silico validation through molecular docking added insight into

antigen-antibody interactions, paving way for future in vitro and in vivo studies.
KEYWORDS

Zika virus, immunoinformatics, B-cell epitopes, neutralization, monoclonal antibodies,
molecular docking, complementary determining regions, 2-D interaction maps
1 Introduction

Zika virus (ZIKV) infection is an emerging Flavivirus transmitted

by the Aedes mosquitoes, mainly Aedes aegyptii and Aedes albopictus.

ZIKV originated in Africa and was first isolated from the serum of

rhesus macaque at the Zika forest in Uganda in 1947 (1). Over the

decades, ZIKV infection prevailed in the African continent and South

Asia, happening sporadically with minimal symptoms and mild illness

due to which it was not considered a serious health problem until the

first major outbreak in 2007 in the Yap islands in Micronesia (2),

followed by French Polynesia in 2013-14 (3). It was a matter of serious

concern when the ZIKV accumulated various mutations and spread to

South America through Brazil in late 2014 which caused a major

outbreak associated with microcephaly and birth defects in newborns

and infants (4). In 2016, there was a 20-fold increase of ZIKV infection

cases in Brazil with around 304 cases of microcephaly (4) Moreover,

ZIKV infection was also implicated in causing Guillain–Barré

syndrome (GBS) (5). ZIKV also spread to Central America

particularly, the United States. Therefore, the World Health

Organization (WHO) declared ZIKV infection a Public Health

Emergency of International Concern in 2016 (6, 7). The ZIKV

surveillance was started in India in March 2016 through the network

of Virus Research Diagnostic Laboratories (VRDLs) by the Indian

Council of Medical Research (ICMR), following which sporadic cases

of ZIKV were found in Gujarat (2016–17) and Tamil Nadu (2017). In

late 2018, one hundred fifty-nine and one hundred twenty-seven ZIKV

cases were reported in Rajasthan andMadhya Pradesh, respectively (8–

10). The identification of the Rajasthan strain led to the first laboratory

confirmation of the existence of the Zika Virus in India (8). Moreover,

in the year 2021, Maharashtra reported their first cases of Zika virus

infections which were confirmed in Belsar village in Pune district (11).

Since then, Zika virus cases have expanded to Kerala, Uttar Pradesh

and 16 states of India which is a matter of concern as currently there is

no universal vaccine or antivirals. The symptoms of ZIKV are self-

limited and resolve usually between 2-7 days. Small subgroups of

patients may develop serious complications like GBS that require

hospitalization and monitoring of mechanical ventilation,

intravenous immunoglobulin and electrophoresis (12–14).

Humoral immune response to ZIKV infection is one of the

major ways to accomplish protective immunity regulated by B-

cells. ZIKV-specific B-cells are activated in response to infection
029
which secrete IgG and IgA antibodies post-IgM antibodies

produced during the acute phase of infection (15). Antigen-

antibody interaction studies are important in understanding the

immune response in viral infections (16, 17). B-cell epitopes are

crucial for understanding protective immunity as well as

immunopathogenesis (18). Neutralizing antibodies are mostly

produced against ZIKV envelope (E) proteins which tend to

identify and bind to specific B-cell epitopes to elicit robust

protection (19). The most potent neutralizing antibodies bind to

B-cell epitopes on the E domain III (EDIII) which is the least

conserved region among different ZIKV strains. Hence, EDIII-

specific epitopes are regarded as ZIKV type-specific (20). The other

domains such as E domain I (EDI) and E domain II (EDII) are

generally regarded as ZIKV/DENV and Flavivirus cross-reactive

domains, respectively and epitopes of these domains also induce

protective immunity to ZIKV (21). Among the non-structural

proteins, Non-structural 1 (NS1) is the most enigmatic protein of

the Flaviviruses. ZIKV NS1 has a multifunctional role in viral

replication, pathogenesis and immune evasion (22). Recently,

ZIKV NS1 has been seen as a potential vaccine candidate as it

contains epitopes targeted by ZIKV-specific monoclonal antibodies

(mAbs) (23, 24). The NS1 protein exists in two forms, a dimer or/

and a hexamer (secretory NS1). Similar to the E protein, NS1 also

possess three important domains such as b-roll, wing domain with

three subdomains (a/b subdomain, long intertwined loops and

discontinuous connector subdomain), and b-ladder which also

contains the spaghetti loop (25, 26). Most ZIKV-NS1-specific

mAbs, target epitopes on the wing-domain and b-ladder
domains. To be precise, the epitopes which are a part of the

exposed and outer surface of NS1, such as the spaghetti loop

residues of the b-ladder and the first half of the intertwined loop of

the wing domain are the most effective targets of the antibody

response (26). However, the other NS1 domains and subdomains

may also contain certain epitopes which may be of potential

research interest regarding ZIKV infection and inhibition.

The emergence of immuno-informatics allows the use of

various prediction tools and software to compare and analyze

various aspects of virus-induced immune response in a less time-

consuming, and cost-effective manner. As a result, various

computational methods have been used to predict potential B-cell

epitopes for arboviruses (16, 17, 27, 28).
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In this study, we have undertaken a domain-specific approach

to identify and compare the ZIKV E and NS1 B-cell epitopes in both

the Indian ZIKV strains which are currently in co-circulation using

the epitope prediction tools, present at the immune epitope

database (IEDB; http://tools.iedb.org/main/bcell/). We have

predicted both linear and conformational B-cell epitopes, the

former composed of residues continuous in the sequence and the

latter being distantly separated in the sequence but possessing

spatial closeness. The epitopes predicted in this study have been

compared with the known ZIKV-specific B-cell neutralizing

epitopes enlisted in the IEDB. Epitopes with zero per cent

identity with known ZIKV-specific neutralizing epitopes (IEDB)

were considered novel. Subsequently, these epitopes were mapped

to the three-dimensional (3-D) structures of the E and NS1 proteins

of both the Indian ZIKV strains. Then these were compared to the

prototype African ZIKV MR766 (African lineage) and the Brazilian

ZIKV Natal RGN (Asian lineage) associated with microcephaly.

Finally, these novel epitopes were used to study their binding

interactions with complementary determining regions (CDRs) of

ZIKV-specific highly neutralizing monoclonal antibodies (mAbs)

by molecular docking analysis. The resulting 3-D and two-

dimensional (2-D) interaction maps were used to select the novel

epitopes possessing intermolecular bonding interactions such as

conventional hydrogen (H) bonds with the CDRs of the

neutralizing mAbs. This shall be essential in designing ZIKV-

specific peptides for Indian ZIKV strains.
2 Materials and methods

2.1 ZIKV E and NS1 protein sequence
retrieval and antigenicity prediction

The polyprotein sequences of both the Indian ZIKV strains i.e.

ZIKV Rajasthan (ZIKV_RAJ; GenBank ID: AZS35409.1) and ZIKV

Maharashtra (ZIKV_MAH; GenBank ID: UBI73854.1) were

obtained from the NCBI protein database. The polyprotein

sequences of the prototype African strain (ZIKV MR766;

GenBank ID: YP 009227198.1) and the Brazilian ZIKV strain

associated with microcephaly (ZIKV Natal RGN; GenBank ID:

YP 009428568.1) were used as a reference for comparison. The

amino acid sequences of the E and NS1 proteins of these ZIKV were

extracted from the polyprotein sequences and subjected to

antigenicity prediction in the VaxiJen version 2.0 (29). This server

used an alignment-free approach for antigen prediction based on

auto cross-covariance (ACC) transformation of protein sequences

into uniform vectors of principal amino acid properties.
2.2 Domain-specific antigenicity prediction

The retrieved ZIKV E and NS1 sequences were subjected to

multiple sequence alignment using MEGA11 with ClustalW and

MUSCLE alignment algorithms. The domain-wise antigenicity of

the E and NS1 proteins of ZIKV_RAJ and ZIKV_MAH were

calculated with the help of VaxiJen v2.0 having a threshold of 0.4.
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These antigenicity scores were also compared with the antigenicity

of ZIKV MR766 and ZIKV Natal RGN.
2.3 Three-dimensional structure prediction

3-D structures of these proteins were predicted by homology

modelling protocols as defined in MODELLER v10. 4. The

templates for the E and NS1 proteins of ZIKV_RAJ and

ZIKV_MAH were searched at NCBI using Protein Data Bank

(PDB) via Position-Specific Iterated BLAST (PSI-BLAST). The

PDB IDs which had the highest query cover (~100%), per cent

identity (~100%) and lowest E values (=0) with the target sequences

were selected as the templates. All 3-D models generated were

validated via SAVES SERVER (https://saves.mbi.ucla.edu/) using

PROCHECK. The best model was selected considering the amino

acid occupancies in Ramachandran plots.
2.4 Domain-specific linear B-cell
epitope prediction

Linear B-cell epitope prediction for both E and NS1 proteins was

carried out by using ABCpred, BepiPred 2.0 and Kolaskar &

Tongaonkar methods. ABCpred mediated epitope prediction used

a machine-learning-based artificial neural network algorithm,

whereas the IEDB B cell epitope prediction tools such as BepiPred

2.0 and Kolaskar Tongaonkar methods were based on random forest

algorithm and semi-empirical antigenicity, respectively (30–32). The

common epitope sequences from the three methods were considered

for further analysis, with a minimal length ranging from 5-25 amino

acids for each predicted epitope (33). To determine the exposed and

buried residues, the surface accessibility of these epitopes was

calculated using the Emini surface accessibility scale (34) and the

hydrophilicity of the epitopes was determined by Parker

hydrophilicity (32). Based on all the above parameters, the list of

predicted B-cell epitopes specific to ZIKV E and NS1 was tabulated.

Multiple sequence alignments of the proteins of ZIKV_RAJ,

ZIKV_MAH, ZIKV MR766 and ZIKV NATAL RGN strains were

used for comparative analysis (Supplementary Figures S1, S2). The

ZIKV-specific B-cell epitopes of the E and NS1 proteins aligned to the

respective domains were individually checked for being antigenic,

non-allergic and non-toxic by Vaxijen v2.0 (29, 35–37), respectively.
2.5 Prediction of novel and overlapping
domain-specific linear B-cell epitopes

The IEDB epitope database was searched for all the linear B-cell

neutralizing epitopes of ZIKV. The search strategy for ZIKV-specific

epitopes was linear epitopes with exact matches of the organism Zika

virus (ID:64320); host as Homo sapiens (human) (ID:9606), Mus

musculus (mouse) (ID:10090), and Mus musculus C57BL/6

(ID:10000067, c57) and the filter was set as “B-cell neutralization;

biological activity (neutralization)” to obtain all the ZIKV-specific

neutralizing epitopes submitted at IEDB till date. The predicted ZIKV
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E-domain specific epitopes were compared individually with these

IEDB-neutralizing epitopes using BLAST~70% to determine

overlapping (BLAST~70% positive) and non-overlapping

(BLAST~70% negative) epitopes. The non-overlapping epitopes

were further checked for per cent identity based on amino acid

composition with the known IEDB-neutralizing epitopes to

determine the novel epitopes (Zero per cent identity).

To identify overlapping and non-overlapping ZIKV NS1-

domain specific epitopes, the search strategy in IEDB was similar

to that of the E epitopes, except for the filter, which was set as “B-cell

antibody binding (any method)”. Similarly, all the predicted ZIKV

NS1-domain specific epitopes were compared individually with the

ZIKV NS1 IEDB epitopes using Blast~70%.
2.6 Prediction of domain-specific
conformational B-cell epitopes

The conformational B-cell epitopes were predicted by two

IEDB-based methods i.e. Discotope 2.0 and ElliPro (38, 39).

Three-dimensional structures were used as input for epitope

prediction. Discotope 2.0 predicted the epitopes based on their

solvent accessibility, contact numbers and propensity scores while

ElliPro used surface protrusion, accessibility and flexibility.
2.7 Prediction of novel and overlapping
domain-specific conformational
B-cell epitopes

The IEDB epitope database was searched for all the

conformational B-cell epitopes of ZIKV. The search strategy was

linear epitope prediction as “discontinuous epitopes with exact

matches”, and the filter selected as “B-cell neutralization;

biological activity (neutralization)” for both ZIKV E and NS1

protein. Epitopes which were not identical post-comparison with

IEDB-neutralizing discontinuous epitopes were considered novel

and the others were regarded as overlapping or identical.
2.8 Mapping and visualization of predicted
epitopes to the ZIKV E and NS1 domains

BIOVIA Discovery Studio Visualizer is a free, feature-rich

molecular modelling application for viewing, sharing and analyzing

protein and small molecule data. All the relevant epitopes predicted

were mapped onto their protein structure in their respective domains

and visualized through the BIOVIA Discovery Studio Visualizer
2.9 Molecular docking of ZIKV E and
NS1-specific novel epitopes with
monoclonal antibodies

The ZIKV 3-D models of E and NS1 were subjected to

molecular docking with the 3-D structures of highly neutralizing
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ZIKV mAbs by using HDock (http://hdock.phys.hust.edu.cn/)

which incorporates a hybrid-docking algorithm (40). The best

models were selected by analyzing their receptor-ligand interface

residues required to identify epitope-CDR interactions. Among the

top 10 models, the most suitable epitope-CDR interactions were

selected by comparing all the relevant 3-D and 2-D receptor-ligand

interaction maps in BIOVIA Discovery Studio Visualizer.
2.10 Study design

The overall study design is depicted in the following Figure 1.
3 Results

3.1 Protective antigenicity of both E and
NS1 proteins of ZIKV

The predicted antigenicity scores of the E protein of both

ZIKV_RAJ and ZIKV_MAH were found to be 0.6268 and 0.6417,

respectively using VaxiJen version 2.0 (29). Similarly, the E proteins

of ZIKV MR766 and ZIKV Natal RGN had antigenicity scores of

0.6276 and 0.6205, respectively. The same methodology was used

for predicting the protectiveness of the ZIKV NS1 proteins

calculated as ZIKV_RAJ (0.4487); ZIKV_MAH (0.4630); ZIKV

MR766 (0.4455); and ZIKV Natal RGN (0.4607) Both the ZIKV

E and NS1 proteins were considered as protective antigens with the

E protein having higher antigenic scores than NS1.
3.2 Delineation and comparisons of ZIKV
domain-specific antigenicity of E and NS1

The ZIKV E protein consisted of three domains namely

domains 1,2 and 3 (EDI, EDII and EDIII), respectively. The

positions of these three domains were mapped on the E protein

of the ZIKV strains (41) (Supplementary Table S1). In the case of

NS1, similarly, three different domains were identified as b-Roll,
Wing-domain, and b-ladder, and their positions were mapped

accordingly (25) (Supplementary Table S2). To dissect the

domain-specific epitopes of the Indian ZIKV, it was necessary to

evaluate the antigenicity of the respective domains (Supplementary

Tables S1, S2). This gave a comparative analysis of the domains as

well as differences in antigenicity between the ZIKV strains. These

values were also compared with the antigenicity of ZIKV MR766

and ZIKV NATAL RGN strains.

It was evident from Supplementary Table S1 that all the

domains of the E protein are antigenic with a minor non-

antigenic region in EDII (52–131) in the case of both the Indian

strains and Brazilian ZIKV NATAL RGN, unlike the African ZIKV

MR766. Moreover, EDII was highly conserved across the ZIKV

strains demonstrated by identical antigenicity scores., EDI had

varying antigenicity scores, except positions (1–50, 39) which had

identical antigenicity across all ZIKV strains. EDI (132–191) and

EDI (280–295) had different antigenicity scores for both Indian
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ZIKV strains. The EDIII (296–403) had varying antigenicity scores

for two ZIKV strains (ZIKV MR766 and ZIKV_MAH) and

identical scores for the other two ZIKV strains (ZIKV_RAJ and

ZIKV NATAL RGN), which corroborates this region as ZIKV type-

specific (39).

Supplementary Table S2 summarizes the antigenicity analyses

for NS1. The b-Roll domain was antigenic with identical scores for

both the Indian ZIKV strains and the ZIKV NATAL RGN, unlike

African ZIKV MR766. The wing-domain antigenicity scores varied

among the Indian, Brazilian and African ZIKV strains and were

found to be below the threshold of 0.4, identifying it as non-

antigenic. However, the wing domain of ZIKV NS1 contributes to

monoclonal antibody-mediated protection, hence epitopes of this

region are of research interest (22). The b-ladder domain had

varying antigenicity scores with ZIKV_MAH being the highest,

followed by ZIKV NATAL RGN, ZIKV_RAJ and ZIKV MR766.

Overall, our analyses revealed that the domain-specific

antigenicity of the E and NS1 proteins of Indian ZIKV was

differential as well as identical with the African and Brazilian

ZIKV strains. Moreover, similarities and differences in the

antigenic domains were also observed between the Indian strains

ZIKV_RAJ and ZIKV_MAH.
3.3 3D structure prediction of Indian ZIKV
E and NS1 proteins

The 3-D structure ZIKV E protein ectodomain ZIKV_RAJ (1–

403) and ZIKV_MAH (1–399) were predicted with the crystal

structures of ZIKV E protein as templates: 7YW8.pdb

(Supplementary Figure S3A) and 7YW7.pdb (Supplementary
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Figure S4B), respectively. Similarly, the templates for ZIKV

MR766 and ZIKV NATAL RGN were identified as 7YW7.pdb

and 7YW8.pdb, respectively. The best models were selected based

on Ramachandran plot analysis: ZRE (ZIKV_RAJ; Figure 2A) and

ZME (ZIKV_MAH; Figure 2B). The occupancy of amino acids in

the most favorable and additionally allowed regions for ZRE

(Figure 2C) was 99.7% (94.5% + 5.2%) and for ZME (Figure 2D)

was 100% (93.1% and 6.1%). There was not a single amino acid

occupying the disallowed regions in both the predicted structures.

One striking difference was the presence of the N-154 (154-NDTG-

157) glycan loop in ZRE (Figure 2A) and its deletion in ZME

(Figure 2B). The N-linked glycosylation was also evident in ZIKV

NATAL RGN and absent in ZIKV MR766. These results indicated

differences in the E-protein structures of both the Indian

ZIKV strains.

The 3D structures of ZIKV NS1 (Indian, African and Brazilian

strains) were predicted using the known structure of ZIKV NS1

(5K6K.pdb; Supplementary Figure S4) (25). Figure 3 shows the

predicted structures of NS1 for the Indian strains: ZRNS1

(ZIKV_RAJ; Figure 3A) and ZMNS1 (ZIKV_MAH; Figure 3B).

ZRNS1 and ZMNS1 both had zero per cent residues in disallowed

regions. The occupancy of amino acids in the most favored and

allowed regions was found to be 100% (93.1% + 6.9%) and 99.7%

(93.1% + 6.6%) for ZRNS1 (Figure 3C) and ZMNS1 (Figure 3D).
3.4 Prediction of ZIKV E-domain specific
linear epitopes

The prediction of E-domain-specific epitopes was done with a

combination of three immunoinformatic tools such as ABCpred,
FIGURE 1

Schematic illustration and presentation of the study. (A) ZIKV genome highlighting the E and NS1 proteins, (B) Study design criteria.
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BepiPred 2.0 and Kolaskar-Tongaonkar methods. Twenty-eight and

twenty-five epitopes were predicted for ZIKV_RAJ and ZIKV_MAH,

respectively via ABCpred with a threshold of 0.8 (Supplementary Table

S3). In the case of BepiPred 2.0, 18 epitopes were predicted for

ZIKV_RAJ and 22 for ZIKV_MAH at 0.5 as threshold

(Supplementary Figure S4, Supplementary Table S4). Furthermore,

epitope predictions by Kolaskar and Tongaonkar methods revealed 20

and 19 epitopes for ZIKV_RAJ (threshold= 1.026) and ZIKV_MAH

(threshold=1.028), respectively (Supplementary Figure S5,

Supplementary Table S5). Exposed and buried epitopes were

predicted by Emini surface accessibility methods, where scores above

1.00 were considered positive (Supplementary Figure S6). The

hydrophilic stretches were determined by Parker hydrophilicity

predictions with thresholds of 1.701 and 1.726 for ZIKV_RAJ and

ZIKV_MAH, respectively (Supplementary Figure S7). Overlapping

shortlisted epitopes were further scanned for being potentially

antigenic, non-toxic and non-allergic which identified 33 epitopes for

ZIKV E protein (Table 1). To determine the non-overlapping and

overlapping epitopes, the predicted epitopes were compared with the

IEDB database for ZIKV-specific B-cell epitopes involved in neutralizing

antibody response. It revealed two non-overlapping epitopes 5-

GVSNRDFVEGMSGGTW-20 and 32-TVMAQDKPTVDIELVT-47
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(Figures 4A, B) which had zero percentage identity with the IEDB

neutralizing epitopes. Hence, these were designated as novel epitopes

having antigenic scores 0.589 and 0.624, respectively. Both these

epitopes were conserved across ZIKV_RAJ and ZIKV_MAH.

Moreover, there was no amino acid mutation when these epitopes

were compared with ZIKVMR766 and ZIKVNatal RGN.However, the

other epitope 165-AKVEVTPNSPRAEATL-180 was present in ZIKV

MR766 with an antigenic score of 0.6917 but a single point mutation

from valine to isoleucine 165-AKVEITPNSPRAEATL-180 (V169I) in

Indian ZIKV (ZIKV_RAJ and ZIKV_MAH) and ZIKV Natal RGN

increased its antigenicity to 0.8044. These epitopes 165-

AKVEVTPNSPRAEATL-180 and 165-AKVEITPNSPRAEATL-180

had a 12.5% per cent identity with the IEDB neutralizing epitopes

and were considered overlapping epitopes.

There were four EDII-specific B-cell epitopes, out of which 61-

YEASISDMASDSRCPT-76 and 98-DRGWGNGCGLFGK-110

were antigenic with scores as 0.435 and 0.486, respectively. 98-

DRGWGNGCGLFGK-110 was considered a fusion loop epitope

(FLE) as it spanned across the fusion loop domain. The other

epi topes 197-DFSDLYYLTMNNKHWL-212 and 224-

PWHAGADTGTPHWNNKE-240 had high antigenicity scores of

1.1716 and 1.1547, respectively, but the former was found to be an
FIGURE 2

Reliable 3-D models for both the Indian ZIKV E and their validation. (A) ZRE (Predicted model for ZIKV_RAJ E protein) along with its Dope score
(B) ZME (Predicted model for ZIKV_MAH E protein) along with its Dope score, (C) Ramachandran plot results of ZRE and (D) ZME.
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allergen and was excluded from the analysis. The epitope 224-

PWHAGADTGTPHWNNKE-24 (Figures 4C, D) had zero per cent

identity with IEDB neutralizing epitopes, hence considered as novel.

The epitope 61-YEASISDMASDSRCPT-76 was non-overlapping

(BLAST~70% negative), but had 25% per cent identity with the

neutralizing epitopes at IEDB, hence was not regarded as novel. The

FLE 98-DRGWGNGCGLFGK-110 was BLAST~70% positive with

the IEDB neutralizing epitopes and considered as overlapping.

Moreover, all the EDII-specific epitopes were conserved across

ZIKV_RAJ, ZIKV_MAH, ZIKV MR766 and ZIKV NATAL RGN.

The highest number of ZIKV-specific linear B-cell epitopes were

predicted for EDIII. eight epitopes were predicted, harboring point

mutations across the ZIKV strains. Out of them, four epitopes, 323-

HGTVTVEVQYA-333 (Figure 4E) and 323-HGTVTVEVQYS-333

(Figure 4F) as well as 338-PCKVPAQM-345 (Figure 4E) and 338-

PCKIPVQM-345 (Figure 4F) were non-overlapping and had zero per

cent identity with IEDB neutralizing epitopes, indicating these as novel.

Epitope 323-HGTVTVEVQYA-333 was found in ZIKV_RAJ, ZIKV

MR766 and ZIKV NATAL RGN, whereas 323-HGTVTVEVQYS-333

having A333S mutation was found exclusively in ZIKV_MAH. A333S
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mutation had increased the antigenicity from 1.2198 to 1.2569. Epitope

338-PCKIPVQM-345 was found only in ZIKV MR766 while 338-

PCKVPAQM-345 was identified across both the Indian ZIKV

(ZIKV_RAJ, ZIKV_MAH) and ZIKV Natal RGN with mutations

I341V and V343A leading to increase in antigenicity from 0.450 to

0.478. The remaining epitopes, 363-PVITESTENSK-373 present in

ZIKV_RAJ, ZIKV MR766 and ZIKV Natal RGN and 363-

PVITESAENSK-373 (ZIKV_MAH), were BLAST~70%-positive and

considered overlapping. In contrast, to the novel epitope mutations, the

T369A mutation in epitope 363-PVITESAENSK-373 found only in

ZIKV_MAH resulted in decreased antigenicity from 0.92 to 0.84. The

epitope 384-DSYIVIGVGDKKITHHWHRS-403 in ZIKV_MAH, and

384-DSYIVIGVGEKKITHHWHRS-403 in ZIKV_RAJ were

BLAST~70%-negative but had 10% identity with IEDB-neutralizing

epitopes. Hence, these were not considered as novel. D393E mutation

was also associated with decrease in antigenicity scores from 0.63 to

0.45. Moreover, 393D was found in ZIKV MR766 and 393E in ZIKV

NATAL RGN. These EDIII epitopes with point mutations across the

ZIKV strains are important for studying type-specific antibody

responses to ZIKV infection.
FIGURE 3

Reliable 3-D models for both the Indian ZIKV NS1 and their validation. (A) ZRNS1 (Predicted model for ZIKV_RAJ NS1 protein) along with its Dope
score, (B) ZMNS1 (Predicted model for ZIKV_MAH NS1 protein) along with its Dope score, (C) Ramachandran plot results of ZRNS1 and (D) ZMNS1.
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TABLE 1 ZIKV E domain-specific linear B-cell epitopes prediction.

Epitope sequence ZIKV E-specific domain Antigenicity Allergenicity Toxicity

5-GVSNRDFVEGMSGGTW-20
32-TVMAQDKPTVDIELVT-47
165-AKVEVTPNSPRAEATL-180
165-AKVEITPNSPRAEATL-180

EDI

Antigenic 0.589
Antigenic 0.624
Antigenic 0.691
Antigenic 0.804

Non-allergen
Non-allergen
Non-allergen
Non-allergen

Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin

61-YEASISDMASDSRCPT-76
98-DRGWGNGCGLFGK-110

197-DFSDLYYLTMNNKHWL-212
224-PWHAGADTGTPHWNNKE-240

EDII

Antigenic 0.435
Antigenic 0.486
Antigenic 1.171
Antigenic 1.154

Non-allergen
Non-allergen
Allergen

Non-allergen

Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin

323-HGTVTVEVQYA-333
323-HGTVTVEVQYS-333
338-PCKVPAQM-345
338-PCKIPVQM-345

363-PVITESTENSK-373
363-PVITESAENSK-373

384-DSYIVIGVGDKKITHHWHRS-403
384-DSYIVIGVGEKKITHHWHRS-403

EDIII

Antigenic 1.219
Antigenic 1.256
Antigenic 0.450
Antigenic 0.478
Antigenic 0.634
Antigenic 0.452
Antigenic 0.920
Antigenic 0.844

Non-allergen
Non-allergen
Non-allergen
Non-allergen
Non-allergen
Non-allergen
Non-allergen
Non-allergen

Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin

43-IELVTTTVSNMAEVRS-58
185-SLGLDCEPRTGLD-197

118-KFTCSKKMTGKSIQPE-133
118-KFACSKKMTGKSIQPE-133
126-TGKSIQPENLEYRIMLSV-143
280-AKGRLSSGHLKCRLKMDK-297
280-TKGRLSSGHLKCRLKMDK-297
280-AKGRLFSGHLKCRLKMDK-297

Hinge-Regions

Antigenic 0.813
Antigenic 1.048
Antigenic 0.423

Non-Antigenic 0.358
Antigenic 1.088
Antigenic 0.488
Antigenic 0.566

Non-Antigenic 0.026

Non-allergen
Allergen

Non-allergen
Non-allergen
Non-allergen
Non-allergen
Non-allergen
Non-allergen

Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
F
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Mutations of amino acids are colored with respect to the African prototype strain (ZIKV MR766; colored in green and corresponding mutations are colored in red; Novel Epitopes
are underlined).
FIGURE 4

Indian ZIKV E domain-specific novel linear epitopes. (A) ZRE domain I-specific epitopes, (B) ZME domain I-specific epitopes, (C) ZRE domain II-
specific epitopes, (D) ZME domain II-specific epitopes, (E) ZRE domain III-specific epitopes, (F) ZME domain III-specific epitopes, (G) ZRE hinge
region-specific epitopes, and (H) ZME hinge region-specific specific epitopes.
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The predicted B-cell linear epitopes also spanned across the

hinge regions of the E protein as these regions are important in

potently cross-neutralizing Flavivirus infections, especially ZIKV

and DENV infections. A total of eight hinge region epitopes were

predicted with epitope 126-TGKSIQPENLEYRIMLSV-143

(conserved in both Indian strains) having the highest antigenicity

of 1.0884, followed by epitope 43-IELVTTTVSNMAEVRS-58

(conserved in both Indian strains) with antigenicity of 0.8137,

both of which spanning EDI/II hinge and conserved in the Indian

strains. Out of these two epitopes, 43-IELVTTTVSNMAEVRS-58

(Figures 4G, H) was BLAST~70% negative and had zero per cent

identity with the IEDB neutralizing epitopes, hence regarded as

novel. The other epitope 126-TGKSIQPENLEYRIMLSV-143 was

BLAST~70% positive, overlapping with IEDB neutralizing

epitopes. Epitope 118-KFTCSKKMTGKSIQPE-133 was found in

ZIKV MR766 but the T120A mutation in both Indian ZIKV

strains and ZIKV NATAL RGN led to a decrease in antigenicity

from 0.42 to 0.35. These epitopes were BLAST~70% positive

and considered overlapping epitopes. Moving ahead, the epitope

280-AKGRLFSGHLKCRLKMDK-297 in ZIKV MR766 was found

to be highly non-antigenic with a score of 0.02, but the A280T and

F285S mutations in 280-TKGRLSSGHLKCRLKMDK-297

(ZIKV_RAJ; Figure 4G) reversed its non-antigenicity, making it

antigenic with a score of 0.56. Similarly, the F285S mutation in

280-AKGRLSSGHLKCRLKMDK-297 (ZIKV_MAH; Figure 4H)

also made it antigenic with a score of 0.48. Both these

epitopes, unique to Indian ZIKV strains were BLAST~70%-

negative and had zero per cent identity with the IEDB

neutralizing epitopes, indicating these as novel EDI/DIII

epitopes. The epitope 185-SLGLDCEPRTGLD-197 of the EDI/II

hinge region was antigenic but was excluded from the analysis due

to its allergenicity. The change in antigenicity based on the

mutations among the epitopes of the hinge regions would be

essential to studying peptide-specific reactivity to ZIKV and

related Flavivirus infections such as DENV.
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3.4.1 ZIKV NS1 domain-specific linear
B-cell epitopes

The prediction of linear B-cell epitopes for the NS1 protein of

ZIKV was carried out in the same manner as that of the E protein.

Following the E protein, the ZIKV antibody response is triggered by the

NS1 protein. Hence, it is necessary to identify ZIKV NS1 domain-

specific epitopes. The immunoinformatic tools for the prediction of

linear B-cell epitopes of NS1 were the same as those used for the ZIKV

E. ABCpred predicted a total of 24 and 26 epitopes with a threshold of

0.8 for ZIKV_RAJ and ZIKV_MAH, respectively (Supplementary

Table S6). BepiPred 2.0 predicted 11 epitopes for each Indian ZIKV

(ZIKV_RAJ and ZIKV_MAH) with a threshold of 0.5 (Supplementary

Table S7, Supplementary Figure S7). Kolaskar and Tongaonkarmethod

predicted 16 epitopes for each Indian ZIKV (ZIKV_RAJ and

ZIKV_MAH) with a threshold of 1.018 and 1.023 for ZIKV_RAJ

and ZIKV_MAH, respectively (Supplementary Table S8,

Supplementary Figure S8). Similar to the E protein, these epitopes

were checked for accessibility and hydrophilicity by Emini surface

accessibility and Parker hydrophilicity, respectively (Supplementary

Figures S9, S10). In total, sixteen epitopes were predicted for ZIKV

occupying different NS1-specific domains (Table 2). Among them,

nine epitopes were found in Indian ZIKV strains. Most of the epitopes

predicted possessed point mutations among them and were ZIKV

strain-specific which may be interesting to study via in vitro and in vivo

peptide validation experiments.

The epitope 10-KKETRCGTGVFVYNDVE-26 in the beta roll

domain of NS1 was conserved across both the Indian ZIKV strains

(ZIKV_RAJ and ZIKV_MAH). This epitope was also conserved in

the ZIKV Natal RGN. However, the ZIKV MR766 strain had I21

instead of V21. This I21V mutation in the rest of the strains resulted

in increased antigenicity from 0.78 to 0.87.

The exposed surfaces of NS1 are composed of the wing domain,

especially the residues except for the flexible loop, greasy finger.

Considering this, five epitopes were predicted for the wing domain.

All these linear epitopes were associated with point mutations. The
TABLE 2 ZIKV NS1 domain-specific linear B-cell epitopes prediction.

Epitope sequence ZIKV NS1-specific domain Antigenicity Allergenicity Toxicity

10-KKETRCGTGVFIYNDVE-26
10-KKETRCGTGVFVYNDVE-26

b-Roll
Antigenic 0.780
Antigenic 0.875

Non-allergen
Non-allergen

Non-Toxin
Non-Toxin

83-GVQLTVVVGSVKNP-96
83-GIQLTVVVGSVKNP-96

141- ECPLEHRAWNSFLVED-157
141- ECPLKHRAWNSFLVED-157
141- ECPLKHRAWNSFIVED-157

Wing Domain

Antigenic 0.748
Antigenic 0.820
Antigenic 0.587
Antigenic 0.505
Antigenic 0.487

Allergen
Non-allergen
Non-allergen
Non-allergen
Non-allergen

Non-Toxin
Non-Toxin

Toxin
Non-Toxin
Non-Toxin

191- REAAHSDLGYWIESEKND-208
191- KEAVHSDLGYWIESEKND-208
248-AGPLSHHNTREGYRTQV-264
248-AGPLSHHNTREGYRTQM-264

331-YGMEIRPRKEPESNLVRSMV-350
331-YGMEIRPRKEPESNLVRSVV-350

b-Ladder

Antigenic 0.430
Antigenic 0.572
Antigenic 0.713
Antigenic 0.802
Antigenic 0.623
Antigenic 0.680

Non-allergen
Allergen

Non-allergen
Non-allergen
Non-allergen
Non-allergen

Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin
Non-Toxin

176-SLECDPAVIGTAVKGREAA-194
176-SLECDPAVIGTAVKGKEAV-194
176-SLECDPAVIGTAIKGKEAV-194

Wing-b-Ladder
Antigenic 1.173
Antigenic 1.093
Antigenic 1.087

Non-allergen
Non-allergen
Non-allergen

Non-Toxin
Non-Toxin
Non-Toxin
Mutations of amino acids are colored with respect to the African prototype strain (ZIKV MR766; colored in green and corresponding mutations are colored in red).
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epitope 83-GVQLTVVVGSVKNP-96 was specific to both African

ZIKV (ZIKV MR766) and Brazilian ZIKV (ZIKV Natal RGN) but

V84I mutation in the same epitope 83-GIQLTVVVGSVKNP-96 was

specific to both the Indian ZIKV strains (ZIKV_RAJ and ZIKV_MAH).

This epitope in African and Brazilian strains was predicted as an

allergen, but the V84I mutation in the Indian strains made the

epitope non-allergen (by AllerTop). This mutation also increased the

antigenicity from 0.74 to 0.82. Similarly, another set of predicted

epitopes as 141-ECPLEHRAWNSFLVED-157 was specific to ZIKV

MR766 and ZIKV Natal RGN. Point mutations were seen in both the

Indian ZIKV strains such as E145K and L153I (ZIKV_RAJ) and only

L153I (ZIKV_MAH). The E145K mutation in ZIKV_MAH was

associated with decreased antigenicity from 0.58 to 0.50 while

both E145K and L153I mutations in ZIKV_RAJ led to a further

decrease in antigenicity to 0.48. Interestingly, the epitope 141-

ECPLEHRAWNSFLVED-157 specific to ZIKV MR766 and ZIKV

Natal RGN was predicted to be toxic (ToxinPred), whereas in the

Indian strains, the epitopes 141-ECPLKHRAWNSFIVED-157

(ZIKV_RAJ) and 141-ECPLKHRAWNSFIVED-157 were found to be

non-toxic.

The beta ladder is another domain of NS1 which is a target for

ZIKV NS1-specific neutralizing mAbs as it is mostly exposed,

especially the spaghetti loop residues. The highest number of

predicted epitopes belonged to this domain. The epitope 191-

REAAHSDLGYWIESEKND-208 in ZIKV MR766 possessed

mutations: R191K and A194V in both Indian strains. This

resulted in an increase in antigenicity from 0.43 to 0.57. Though

there was an increase in antigenicity, the epitope 191-

KEAVHSDLGYWIESEKND-208 was found to be an allergen (by

AllerTop) and was not considered for further analysis. Another

epitope 248-AGPLSHHNTREGYRTQV-264 was conserved in

ZIKV_MAH and ZIKV_MR766 while the epitope 248-

AGPLSHHNTREGYRTQM-264 was conserved in ZIKV_RAJ and

ZIKV NATAL RGN. This V264M mutation in ZIKV_RAJ was

associated with an increase in antigenicity from 0.71 to 0.80. The

epitope 331-YGMEIRPRKEPESNLVRSMV-350 was conserved in

ZIKV MR766 and ZIKV RAJ whereas the M349V mutation

observed in ZIKV_MAH and ZIKV Natal RGN was associated

with an increase in antigenicity from 0.62 to 0.68.

Moving forward, the epitope 176-SLECDPAVIGTAVKGVEAA-

194 present in ZIKV MR766 was highly antigenic (antigenicity=1.17;

VaxiJen) This was located as part of the connector residues linking the

wing domain to the beta ladder domain. Mutations V188I, R191K, and

A194V were observed in the ZIKV_MAH strain while mutations

R191K and A194V were observed in ZIKV_RAJ with respect to

ZIKV MR766. Epitope 176-SLECDPAVIGTAVKGKEAV-194 in

ZIKV_RAJ and ZIKV Natal RGN had an antigenicity of 1.09 and

176- SLECDPAVIGTAIKGKEAV-194 in ZIKV_MAH had an

antigenicity of 1.08.

According to our study design, the IEDB ZIKV-neutralizing

epitopes database did not contain any linear B-cell ZIKV NS1-specific

epitope. Comparing the predicted ZIKV NS1-specific B-cell linear

epitopes with the IEDB ZIKV-antibody binding epitopes revealed that

all these B-cell epitopes were BLAST~70% positive. This suggests that all

the predicted linear epitopes of the ZIKVNS1 overlap with linear ZIKV

NS1-specific antibody-binding epitopes. However, these epitopes may
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be potentially validated by in vitro neutralization assays to determine the

antibody response against ZIKV NS1.
3.5 ZIKV E domain-specific conformational
B-cell epitopes

The humoral immune response to ZIKV infection mostly depends

on discontinuous or conformational B-cell epitopes. Alongside linear B-

cell epitopes of the ZIKV E, identification of conformational B-cell

epitopes is also necessary to evaluate neutralizing antibody responses.

The predictions were made by two immunoinformatic tools available at

IEDB; Discotope 2.0 and ElliPro. A total of 19 and 14 epitopes were

identified by Discotope 2.0 for ZIKV_RAJ and ZIKV_MAH

respectively. Ellipro predictions identified 28 and 24 epitopes for

ZIKV_RAJ and ZIKV_MAH, respectively. The epitopes common in

both prediction tools for ZIKV_RAJ were identified as G383, D384,

H401 and S403 (Supplementary Table S9). Out of these, D384 was also

found in the IEDB list of ZIKV E-specific neutralizing conformational

epitopes, whereas the other three epitopes, G383, H401 and S403 were

found to be unique, hence considered as novel epitopes for ZIKV_RAJ

(Figure 5). All these three epitopes were located in EDIII. Similarly, in

the case of ZIKV_MAH, epitope W101 of EDI (Supplementary Table

S9) was found to be the common epitope from both the prediction tools

and was also found in the IEDB list of ZIKV E-specific neutralizing

conformational epitopes, hence was not considered as novel (Figure 5).

The presence of different conformational epitopes across the ZIKV E

domains and the identification of the above-mentioned novel epitopes is

essential in understanding the neutralizing antibody response associated

with ZIKV-specific mAbs identifying these epitopes.
3.6 ZIKV NS1 domain-specific
conformational B-cell epitopes

Immunoinformatics tools Discotope 2.0 and ElliPro were used

for the predictions. A total of 37 and 19 conformational epitopes
FIGURE 5

Novel ZIKV E-Specific B-cell conformational epitopes (ZRE).
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were predicted for ZIKV_RAJ and ZIKV_MAH, respectively with

the Discotope 2.0 whereas 75 and 68 epitopes were predicted for

ZIKV_RAJ and ZIKV_MAH, respectively by ElliPro. Fourteen

epitopes for ZIKV_RAJ and 6 for ZIKV_MAH, common in both

prediction tools, were considered for further analysis.

(Supplementary Table S10). Further comparison of these epitopes

with the existing IEDB database of conformational B-cell

neutralizing epitopes of ZIKV NS1, revealed the identification of

novel epitopes as F8, S9, K10, K11, K116, A117, W118, G119, K120,

P341 and S343 specific to ZIKV_RAJ (Figure 6A). Moreover, F8, S9,

K10, K11, and S343 were considered as novel epitopes specific to

ZIKV_MAH (Figure 6B).
3.7 Molecular docking analysis of ZIKV
E-specific novel linear epitopes

In the case of ZIKV E protein, there were 7 novel linear B-cell

epitopes and 3 novel conformational B-cell epitopes specific to

ZIKV_RAJ. Similarly, there were 7 novel linear B-cell epitopes

specific to ZIKV_MAH, however, there were no novel

conformational B-cell epitopes specific to ZIKV_MAH. The

molecular docking of the ZIKV E protein was carried out with two

highly potent neutralizing ZIKV-specific mAbs, ZV-67 and Z3L1.

ZV-67 is a mouse mAb that has potent neutralization against both

African and Asian ZIKV strains, whereas Z3L1 is a human mAb that

has effective neutralization against both African and Asian strains.

Moreover, both these mAbs neutralized ZIKV in vitro and in vivo (21,

41). Molecular docking of the E protein using HDock for Indian

ZIKV strains with these mAbs revealed that out of the 7 novel linear

B-cell epitopes, 4 epitopes specific to both ZIKV_RAJ and

ZIKV_MAH showed intermolecular interactions with the

complement determining regions (CDRs) of the mAb ZV-67

(Table 3). Of these 4 epitopes, one was located in EDIII, one

each belonged to EDI and EDII, and one belonged to the hinge
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region (DI/DIII:280-295). The epitopes of EDIII and hinge regions

had point mutations between both the Indian ZIKV strains whereas

the other two epitopes belonging to EDI and EDII were conserved

between both ZIKV_RAJ and ZIKV_MAH. However, there was only

one novel EDII epitope which interacted with the CDRs of the mAb

Z3L1. The inter-molecular bonding interactions between the epitope

and CDR region residues were analyzed by 2-D interaction maps.

In the case of EDIII, epitope 323-HGTVTVEVQYA-333, unique

to ZIKV_RAJ (Figure 7A) and epitope 319-HGTVTVEVQYS-329

unique to ZIKV_MAH (Readers should note that due to a deletion

of 4-amino acids in ZIKV_MAH strain at N154, the nomenclature is:

amino acid 319 for ZIKV_MAH is equivalent to 323 for ZIKV_RAJ

which applies to all the amino acids post 154th position in

ZIKV_MAH) (Figure 7B), the epitope residues 323-HG-324

(ZIKV_RAJ; Figure 7C) and 319-HG-323 (ZIKV_MAH; Figure 7D)

interacted with CDRs of VH and VL regions of mAb ZV-67. The 2-D

interaction maps for these epitopes revealed intermolecular hydrogen

bonding interactions with CDRs (Table 3) of ZV-67, wherein the

epitope-CDR3(VH) interactions were found to be the most suitable. In

the case of the epitope unique to ZIKV_RAJ (323-HGTVTVEVQYA-

333), the 2-D interaction maps showed that 323H formed one carbon-

hydrogen (C-H) bond and one pi-donor hydrogen bond and 324G

formed van derWalls interaction with CDR3-VH residues, respectively

(Figure 7E). However, in the case of the epitope unique to ZIKV_MAH

(319-HGTVTVEVQYS-329), the results were slightly different with

319H forming one conventional hydrogen (H) bond and 320G

forming one carbon-hydrogen (C-H) bond with CDR3-VH of ZV-

67, respectively (Figure 7F). The mAb ZV-67 is known to bind to the

ZIKV-E protein in the EDIII domain (21).

In addition, the footprint of mAb ZV-67 also covered parts of

EDI and EDII domains and interactions with novel epitopes were

observed. Out of the two novel EDI epitopes, epitope 5-

GVSNRDFVEGMSGGTW-20 interacted with CDR regions of the

mAb ZV-67. This epitope was conserved in both the Indian ZIKV

strains. The most suitable docking interactions shown by this EDI
FIGURE 6

Novel ZIKV NS1 domain-specific B-cell conformational epitopes. (A) ZIKV_RAJ NS1 domain-specific B-cell conformational epitopes, (B) ZIKV_MAH
NS1 domain-specific B cell conformational epitopes.
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epitope were with CDR1-VL in the case of ZIKV_RAJ and CDR3-

VL in the case of ZIKV_MAH, respectively (Figures 8A–D). The 2-

D interaction maps showed that for the ZIKV_RAJ EDI, the amino

acids 13E and 12V showed one conventional hydrogen (H)-

bonding interaction and one carbon-hydrogen (C-H) bonding

interaction, respectively with CDR1-VL residues (Figure 8E)

Amino acids 10D and 11F displayed van der Walls interactions

(Figure 8E). However, for ZIKV_MAH EDI, amino acids 10D

showed one conventional hydrogen (H)-bond, and 7S displayed

one carbon-hydrogen (C-H) bond and one pi-donor hydrogen

bond with CDR3-VL residues (Figure 8F). In this case, amino

acid 9R showed van der Walls interactions (Figure 8F). Further, the
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novel EDII epitope 224-PWHAGADTGTPHWNNKE-240 which

was conserved in both ZIKV_RAJ and ZIKV_MAH, interacted with

CDR3-VL of the mAb (Figures 9A–D). For ZIKV_RAJ EDII, the

amino acids 235H, 237N, and 238N had 1 conventional H-bond

each and amino acids 239K and 240E had van der Walls interaction.

(Figure 9E). However, in the case of ZIKV_MAH EDII (220-

PWHAGADTGTPHWNNKE-236) the amino acids 233N and

234N had 1 conventional H-bond each, with 234N also displaying

an unfavorable interaction. Further, 231H and 235K possessed van

der Walls interaction (Figure 9F). There were two novel epitopes

identified in the hinge regions of Indian ZIKV strains, among which

the epitope 280-TKGRLSSGHLKCRLKMDK-297 (ZIKV_RAJ) and
TABLE 3 H-Dock based molecular docking analysis of ZIKV-specific novel linear epitopes of the E-protein.

Novel
Linear Epitopes

CDR
Interactions

Indian
ZIKV-specificity

Epitope/
CDR Interactions

2-D Interaction maps Docking/
Binding
scores

323-HGTVTVEVQYA-333A
(EDIII)

319-HGTVTVEVQYS-329
(EDIII)

338-PCKVPAQM-345 (EDIII)

Yes

Yes

No

ZIKV_RAJ (Unique)

ZIKV_MAH (Unique)

ZIKV_RAJ
and ZIKV_MAH

323-HG-324/
CDR3-VH

319-HG-320
CDR3-VH

N.A.

323H: 1 C-H bond and 1 pi-
donor H-bond

324G: van der Walls
319G: 1 H-bond and 320G: 1

C-H bond

N.A.

-306.07

-291.28

5-GVSNRDFVEGMSGGTW-
20 (EDI)

32-TVMAQDKPTVDIELVT-
47 (EDI)

Yes

No

ZIKV_RAJ
and

ZIKV_MAH

ZIKV_RAJ
and

ZIKV_MAH

10-DFVE-13/
CDR1-VL (ZIKV_RAJ)

7S; 9-RD-10/CDR3-VL
(ZIKV_MAH)

N.A

N.A.

13E: 1 H-bond
12V: 1 C-H bond

10D & 11F: van der Walls
10D: 1 H-bond

7S: 1 C-H bond and 1 pi-donor
H-bond, 9R: van der Walls

N.A.

N.A.

-285.93

-282.31

224-
PWHAGADTGTPHWNNKE-

240;
(EDII)

220-
PWHAGADTGTPHWNNKE-

236 (EDII)

Yes

ZIKV_RAJ
and

ZIKV_MAH

235H; 237-NN-238; 239-KE-
240/CDR3-VL (ZIKV_RAJ)

233-NN-234;
231H, 235K/CDR3-
VL (ZIKV_MAH)

235H: 1 H-bond
237N: 1 H-bond
238N: 1 H-bond

239K: van der Walls

233N: 1 H-bond
234N: 1 H-bond

231H: van der Walls
235K: van der Walls

-276.14

-277.38

43-IELVTTTVSNMAEVRS-
58

(Hinge Region)

280-
TKGRLSSGHLKCRLKMDK-

297
(Hinge Region)

276-
AKGRLSSGHLKCRLKMDK-

293
(Hinge Region)

No

Yes

Yes

ZIKV_RAJ and
ZIKV_MAH

ZIKV_RAJ

ZIKV_MAH

N.A

288H;290K/CDR1-VL

284H/CDR3-VH

N.A

288H: van der Walls
290K: van der Walls

284H: van der Walls

-286.01

-283.06
Molecular Docking interactions of the novel epitopes with potent mouse monoclonal antibody ZV67; N.A. (Not Available).
Amino acid mutations are coloured in Red with respect to ZIKV Prototype strain MR766 (Green).
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epitope 276-AKGRLSSGHLKCRLKMDK-293 (ZIKV_MAH) had

interactions with the CDRs of ZV-67, respectively (Figures 10A–D)

The 2-D interaction maps of 280-TKGRLSSGHLKCRLKMDK-297

showed that amino acids 288H and 290K had van der Walls

interaction with CDR1-VL of the mAb (Figure 10E); whereas

epitope 276-AKGRLSSGHLKCRLKMDK-293 had only 284H

having van der Walls interaction with CDR3-VL (Figure 10F).

Next, we sought to identify the epitope-CDR interaction of the

Indian ZIKV strains with human mAb Z3L1. The novel epitope of

EDII 224-PWHAGADTGTPHWNNKE-240, conserved in both

ZIKV_RAJ and ZIKV_MAH, was the only epitope showing

molecular interactions with the CDRs (Table 4) of Z3L1.

However, novel epitopes in other E-domains also interacted with

Z3L1, but these interactions were not with CDR regions. On the

other hand, this EDII epitope interacted with CDR1-VH of Z3L1 in

the case of both the Indian ZIKV strains (Table 4; Figures 11A, B).

This displayed different epitope-CDR bonding interactions specific

for ZIKV_RAJ (Figures 11A, C) and ZIKV_MAH (Figures 11B, D)

which were demonstrated by their 2-D interaction maps. The

epitope 224-PWHAGADTGTPHWNNKE-240 had amino acids

231T, 232G and 233A forming 1 H-bond, 1 C-H bond and van

der Walls interaction, respectively which were specific to

ZIKV_RAJ (Figure 11E) whereas the same epitope (220-

PWHAGADTGTPHWNNKE-236) had amino acids 223A

forming 1 H-bond and 1 pi-alkyl bond and 224G forming van

der Walls interaction in the case of ZIKV_MAH (Figure 11F)
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4 Discussion

In the case of emerging Flavivirus infection, such as the Zika virus,

E and NS1 proteins play a vital role in eliciting robust humoral

immunity (19, 26). The ZIKV-specific B-cell epitopes are crucial in

inducing the humoral immune response (15, 42, 43). The advent of

immunoinformatics has led to the prediction of various B-cell epitopes

in Flaviviruses’ antigens. However, a similar broad-spectrum analysis of

the ZIKV-specific B-cell epitopes is required and remains poorly

understood. In-silico prediction and validation of these epitopes may

help in ZIKV therapeutics and vaccine design.

In this study, we identified B cell epitopes of E and NS1 proteins of

two co-circulating Indian ZIKV strains. Further, these epitopes were

mapped to their modelled 3-D structures leading to the identification of

novel epitopes based on the stringent study design criteria. Molecular

docking with potent ZIKV-neutralizing mAbs validated our findings

via epitope-CDR interactions. The identification of these novel epitopes

was specific and unique to Indian ZIKV strains. These epitopes have

the potential to induce peptide-specific antibodies, mostly involved in

neutralizing response, especially against the ZIKV E protein.

In-silico antigenic characterization of viral proteins is essential

for epitope identification. The E protein of ZIKV plays an important

role in virus entry, attachment, and fusion. Apart from these

functions, the ZIKV E protein is the major target of neutralizing

antibodies. It consists of three domains: the central beta-barrel

domain (EDI), an elongated finger-like domain (EDII) consisting of
FIGURE 7

Molecular docking of novel linear EDIII epitopes with CDRs of ZV-67 mAb. (A) 3-D model of docked ZRE and ZV67; VL (coloured in yellow), VH
(coloured in light green), CDR3-VH (coloured in purple) interacting with EDIII (coloured in blue) epitope 323-HGTVTVEVQYA-333 (coloured in light
brown) except alanine (coloured in light green). (B) 3-D model of docked ZME and ZV67; VL (coloured in yellow), VH (coloured in light green),
CDR3-VH (coloured in purple) interacting with EDIII (coloured in blue) epitope 319-HGTVTVEVQYS (coloured in teal orange) except serine (coloured
in blue). (C) Epitope-CDR interaction in 3-D for ZRE with CDR3-VH of ZV67; 323-HG-324 (coloured in shades of light green) are the amino acids of
EDIII epitope interacting with CDR3-VH amino acid residues, 96-NY-97 (coloured in pink and yellow, respectively). (D) Epitope-CDR interaction in 3-
D for ZME with CDR3-VH of ZV67; 319-HG-320 (coloured in shades of light green) are the amino acids of EDIII epitope interacting with CDR3-VH
amino acid residues, 96-NY-97 (coloured in pink and yellow, respectively). (E) 2-D interaction map of panel (C); blue arrows indicating 323H forming
one carbon-hydrogen and one pi-donor hydrogen bond and 324G forming van der Walls interactions with 96N and 97Y. (F) 2-D interaction map of
panel (D); blue arrows indicating 319H forming conventional hydrogen bond and 320G forming carbon-hydrogen bond with 96N and 97Y.
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a hydrophobic fusion loop (FL) and an IgC-like immunoglobulin

domain (EDIII) (21, 26, 40). Moreover, these domains display

differential neutralizing potential, with EDIII being the most

potent and ZIKV-type specific. Earlier studies reported

antigenicity analyses for the whole E protein of the Zika virus

(40). However, our study involves domain-wise estimation of

antigenicity for ZIKV E protein for different strains, which

provides detailed insight into understanding the antigenic

characteristics: similarities and differences between the strains.

Following domain-specific antigenicity analysis, we predicted

linear and conformational B-cell epitopes specific to ZIKV E

protein as the overall humoral immune response depends on both

the primary and tertiary structures of these epitopes (44, 45). The

prediction of the linear and conformational epitopes was carried

out using a combination of immunoinformatic tools to minimize

false positive results and the amino acid regions predicted as

epitopes by all the different tools were considered for further

analyses (27, 33, 46). Moreover, the length of linear B-cell

epitopes was also considered as it is a significant parameter in the

case of designing peptide vaccines capable of inducing substantial

humoral immune response (47). The experimentally validated

ZIKV B-cell neutralizing epitopes mostly range from 14-22
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residues which overlaps with our predicted epitopes. The novel

epitopes that displayed epitope-CDR interactions range from 11-18

residues in length which makes them good candidates to be

incorporated into peptide vaccines. Apart from considering the

antigenicity of the shortlisted epitopes, their non-allergenicity and

non-toxicity were also examined which are important factors to

consider in the case of designing multi-epitope proteins (12).

Besides epitope mapping and visualization, three-dimensional

models of the proteins are essential to study epitope recognition and

accessibility by the antibodies (48). The template identified for

ZIKV_RAJ was 7YW8.pdb whereas the template for ZIKV_MAH E

protein identified as 7YW7.pdb had a deletion of 4 amino acids in

the E-glycan loop (N154-157) (49). ZIKV strains with E glycan loop

deletions, especially in Asia, need to be studied extensively to

understand their effect on virus infectivity, immunity, and

pathogenesis. The predicted structure ’s precision and

stoichiometry were determined by the Ramachandran plot, which

identified sterically allowed and disallowed regions (50). The most

suitable 3-D models had zero per cent amino acids in disallowed

regions and around >99% in the favorably allowed regions. Based

on our study design we could identify novel linear and

conformational epitopes for ZIKV E protein.
FIGURE 8

Molecular docking of novel linear EDI epitopes with CDRs of ZV-67 mAb: (A) 3-D model of docked ZRE and ZV67; VL (coloured in yellow), VH
(coloured in light green), CDR-1-VL (coloured in dark orange) interacting with EDI (coloured in red) epitope 5-GVSNRDFVEGMSGGTW-20 (coloured
in light green). (B) 3-D model of docked ZME and ZV67; VL (coloured in yellow), VH (coloured in light green), CDR3-VL (coloured in dark orange)
interacting with EDI (coloured in red) epitope 5-GVSNRDFVEGMSGGTW-0 (coloured in light green). (C) Epitope-CDR interaction in 3-D for ZRE with
CDR1-VL of ZV67; 10-DFVE-13 (coloured in shades of light green) are the amino acids of EDI epitope interacting with CDR1-VH amino acid residues,
29-VGTA-31 (coloured in light green, orange, purple and light blue, respectively). (D) Epitope-CDR interaction in 3-D for ZME with CDR3-VL of
ZV67; 7S, 9-RD-10 (coloured in shades of light green) are the amino acids of EDI epitope interacting with CDR3-VL amino acid residues, 91-FSSY
(coloured in dark orange, yellow, yellow and light green, respectively). (E) 2-D interaction map of panel (C); blue arrows indicating 13E forming one
conventional hydrogen bond, 12E forming one carbon-hydrogen bond and 10-DF-11 forming van der Walls interactions with 31T, 32A, 30G and 29Y,
respectively. (F) 2-D interaction map of panel (D); blue arrows indicating 10D forming one conventional hydrogen bond, 7S forming one carbon-
hydrogen bond, and 9R forming van der Walls interactions with 94Y, 93S,92S and 91Y.
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The stringent study criteria for selecting the novel epitopes were

further validated in silico by studying their interactions with CDRs of

the highly neutralizing ZIKV E-protein specific mouse and human

mAbs. Interaction of the epitopes with the CDR regions of the

antibody leads to enhanced binding affinity resulting in specific

neutralizing response (51). Considering this, we hypothesized to

select the CDRs of two highly neutralizing mAbs ZV-67 and Z3L1

to carry out the docking with ZIKV E protein. These two mAbs were

selected as they were specific to ZIKV E protein neutralization,

possessed high resolution X-ray crystallographic structures, and

were effective across both African and Asian ZIKV strains in vitro

and in vivo (21, 41). We identified that the novel linear epitopes

across all three domains and DI-DIII hinge regions interacted with

CDRs of ZV-67 mAb, which highlights the fact that the Indian ZIKV

strains had broad-spectrum epitope-CDR interactions with this

mouse mAb (Table 3). However, in the case of the human mAb

Z3L1, only the novel epitope of EDII showed CDR interactions

(Table 4). 3-D and 2-D interaction maps are essential to study the

different bonds that form during epitope-CDR binding. All the novel

epitopes, being identical or having point mutations between the

ZIKV_RAJ and ZIKV_MAH displayed differences in their 3-D and
Frontiers in Immunology 1522
2-D receptor-ligand interaction maps, suggesting strain-specific

differences in forming bonds with the mAbs’ CDRs.

Our predictions also identified the EDIII epitopes 363-

PVITESTENSK-373 (ZIKV_RAJ) and 363-PVITESAENSK-373

(ZIKV_MAH), which overlapped with critical residues involved

in neutralization by the mAbs ZV-2 and ZV-67 (21). Similarly,

epitopes 384-DSYIVIGVGDKKITHHWHRS-403 and 384-

DSYIVIGVGEKKITHHWHRS-403 overlapped with key residues

required for neutralization with mAbs ZV-48, ZV-64 and ZV-67

(21, 52). As, our prediction spanned across all three domains,

including hinge regions, EDII epitope 61-YEASISDMASDSRCPT-

76, and DI-DII hinge epitope 118-KFACSKKMTGSIQPE-133

(ZIKV_RAJ and ZIKV_MAH) were also part of key residues

required for neutralization by mAb ZIKV-117 (53). Moreover, the

mAb Z3L1 also had neutralizing epitopes overlapping with our

predicted epitope 126-TGKSIQPENLEYRIMLSV-143 in the DI-DII

hinge (41).

The ZIKV NS1 protein is another major target of neutralizing

antibodies, following the immunodominant ZIKV E protein (23–26,

54–56). Hence, immunoinformatic analyses of ZIKV NS1 were

undertaken. The ZIKV NS1 has three distinct domains: the beta roll
FIGURE 9

Molecular docking of novel linear EDII epitopes with CDRs of ZV-67 mAb. (A) 3-D model of docked ZRE and ZV67; VL (coloured in yellow), VH
(coloured in light green), CDR3-VL (coloured in blue) interacting with EDII (coloured in yellow) epitope 224-PWHAGADTGTPHWNNKE-240
(coloured in light blue). (B) 3-D model of docked ZME and ZV67; VL (coloured in yellow), VH (coloured in light green), CDR3-VL (coloured in blue)
interacting with EDII (coloured in yellow) epitope 224-PWHAGADTGTPHWNNKE-240 (coloured in light blue). (C) Epitope-CDR interaction in 3-D for
ZRE with CDR3-VL of ZV67; 235H, 237-NNK-239 (coloured in shades of light green) are the amino acids of EDI epitope interacting with CDR3-VH
amino acid residues, 91-FSSYP-95 (coloured in dark orange, yellow, yellow, light green and blue, respectively). (D) Epitope-CDR interaction in 3-D
for ZME with CDR3-VL of ZV67; 235H, 237-NNK-239 (coloured in shades of light green) are the amino acids of EDI epitope interacting with CDR3-
VH amino acid residues, 91-FSSYP-95 (coloured in dark orange, yellow, yellow, light green and blue, respectively). (E) 2-D interaction map of panel
(C); blue arrows indicating 235H forming one conventional hydrogen bond, 237-NN-238 forming one carbon-hydrogen bond each and 239K
forming van der Walls interaction with 91F, 92S, 93S, 94F and 95P. (F) 2-D interaction map of panel (D); blue arrows indicating 233-NN-234 forming
one carbon-hydrogen bond each and 231H and 235K forming van der Walls interaction with 91F, 92S, 93S, 94F and 95P.
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(residues 1-29), the wing domain (residues 30-180) and the beta ladder

(residues 181-352). Connector residues (33, 35–38, 41, 57, 58) and

(152–180) within the wing domain link it to the beta roll and beta-

ladder domain, respectively (54). Domain-wise antigenicity analysis

revealed the beta-roll and beta ladder domains to be antigenic while the

wing domain to be non-antigenic. The non-antigenic values of the

wing domainmay be attributed to the connector residues which form a

part of the inner hydrophobic surface of NS1 (59). However, barring
Frontiers in Immunology 1623
these residues, the wing domain is targeted by ZIKV NS1-specific

mAbs that confer protection (24). These observations conveyed the

importance of the wing domain in ZIKV protection and hence it was

considered for epitope identification, alongside the antigenic beta roll

and beta ladder domains.

Both ZIKV_RAJ and ZIKV_MAH NS1 had identical templates

i.e. 5K6K. pdb (25) for 3-D structure predictions. As there was

unavailability of linear ZIKV NS1-specific neutralizing epitopes at
FIGURE 10

Molecular docking of novel linear hinge region epitopes with CDRs of ZV-67 mAb. (A) 3-D model of docked ZRE and ZV67; VL (coloured in yellow), VH
(coloured in light green), CDR1-VL (coloured in brown) interacting with DI/DIII hinge region (coloured in red/blue) epitope 280-
TKGRLSSGHLKCRLKMDK-297 (coloured in purple; except Threonine which is colored in brown). (B) 3-D model of docked ZME and ZV67; VL (coloured
in yellow), VH (coloured in light green), CDR3-VH (coloured in brown) interacting with DI/DIII hinge region (coloured in red/blue) epitope 276-
AKGRLSSGHLKCRLKMDK-293 (coloured in purple; except alanine which is colored in light brown). (C) Epitope-CDR interaction in 3-D for ZRE with
CDR1-VL of ZV67; 288H and 290K (coloured in shades of light green) are the amino acids of DI/DIII hinge region epitope interacting with CDR1-VL
amino acid residues, 27-QN-28 (coloured in red and green, respectively). (D) Epitope-CDR interaction in 3-D for ZME with CDR3-VH of ZV67; 284H
(coloured in shades of light green) is the amino acid of DI/DIII hinge region epitope interacting with CDR3-VH amino acid residues, 96-NY-97 (coloured
in yellow and purple, respectively). (E) 2-D interaction map of panel (C); blue arrows indicating 288H and 290K forming with van der Walls interaction
with 27Q and 28N. (F) 2-D interaction map of panel (D); blue arrows indicating 284H forming van der Walls interaction with 96N and 97Y.
TABLE 4 H-Docked based molecular docking analysis of ZIKV-specific Novel Linear Epitopes of the E-protein.

Novel Linear Epitopes CDR
Interactions

Indian
ZIKV-specificity

Epitope/
CDR Interactions

2-D Interaction
maps

Docking/
Binding scores

323-HGTVTVEVQYA-333
(EDIII)

319-HGTVTVEVQYS-329
(EDIII)

338-PCKVPAQM-345 (EDIII)

No

No

No

ZIKV_RAJ (Unique)

ZIKV_MAH (Unique)

ZIKV_RAJ
and ZIKV_MAH

N.A.

N.A

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

5-GVSNRDFVEGMSGGTW-20
(EDI)

32-TVMAQDKPTVDIELVT-
47 (EDI)

No

No

ZIKV_RAJ and
ZIKV_MAH
ZIKV_RAJ

and ZIKV_MAH

N.A

N.A.

N.A.

N.A.

N.A.

N.A.

(Continued)
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IEDB, we were not able to ascertain the novel linear epitopes, but

there was concordance of our predicted epitopes with critical residues

of ZIKV NS1 neutralizing mAbs, such as 3G2, 4B8, 2E11, 14G5,

AA12, EB9 and GB5 (54, 55, 60, 61). However, there were two
Frontiers in Immunology 1724
epitopes 10-KKETRCGTGVFVYNDVE-26 (beta roll) and 83-

GIQLTVVVGSVKNP-96 (wing domain) found exclusively in both

Indian ZIKV strains which did not overlap with the critical residues

of known ZIKV NS1 mAbs, suggesting that these may be important
TABLE 4 Continued

Novel Linear Epitopes CDR
Interactions

Indian
ZIKV-specificity

Epitope/
CDR Interactions

2-D Interaction
maps

Docking/
Binding scores

224-
PWHAGADTGTPHWNNKE-

240 (EDII);

220-
PWHAGADTGTPHWNNKE-

236
(EDII)

Yes

ZIKV_RAJ and

ZIKV_MAH

231-TGA-233/CDR1-VH
(ZIKV_RAJ)

223-AG-24/CDR1-
VH (ZIKV_MAH)

231T: 1 H-bond
232G: 1 C-H bond
233A: van der Walls

223A: 1 H-bond and 1 pi-
alklyl bond

224G: van der Walls

-253.17

-242.52

43-IELVTTTVSNMAEVRS-58
(Hinge)
280-

TKGRLSSGHLKCRLKMDK-297
(Hinge)
276-

AKGRLSSGHLKCRLKMDK-
293 (Hinge)

No

No

No

ZIKV_RAJ and
ZIKV_MAH

ZIKV_RAJ (Unique)

ZIKV_MAH (Unique)

N.A

N.A

N.A

N.A

N.A

N.A

N.A.

N.A.

N.A.
Molecular Docking interactions of the novel epitopes with potent human monoclonal antibody Z3L1; N.A. (Not Available).
Amino acid mutations are coloured in Red with respect to ZIKV Prototype strain MR766 (Green).
FIGURE 11

Molecular docking of novel linear EDII epitopes with CDRs of Z3L1 mAb. (A) 3-D model for docked ZRE and Z3L1; VL (coloured in yellow), VH
(coloured in light green), CDR1-VH (coloured in magenta) interacting with EDII (coloured in yellow) epitope 224-PWHAGADTGTPHWNNKE-240
(coloured in light blue). (B) 3-D model for docked ZME and Z3L1; VL (coloured in yellow), VH (coloured in light green), CDR1-VH (coloured in
magenta) interacting with EDII (coloured in yellow) epitope 224-PWHAGADTGTPHWNNKE-240 (coloured in light blue). (C) Epitope-CDR interaction
in 3-D for ZRE with CDR1-VH of Z3L1; 231-TGT-233 colored in shades of light green) are the amino acids of EDII epitope interacting with CDR1-VL
amino acid residues 26-GFT-28 (coloured in blue, orange and purple, respectively). (D) Epitope-CDR interaction in 3-D for ZME with CDR1-VH of
Z3L1; 223-AG-224 (coloured in shades of light green) are the amino acids of EDII epitope interacting with CDR1-VL amino acid residue 32Y
(coloured in red). (E) 2-D interaction map of panel (C); blue arrows indicating 231T forming one conventional hydrogen bond, 232G forming one
carbon-hydrogen bond and 233T forming van der Walls interaction with 26G, 27F, and 28T. (F) 2-D interaction map of panel (D); blue arrows
indicating 223A forming one conventional hydrogen bond and one pi-alkyl bond, 224G forming van der Walls interaction with 32Y. arrows indicating
223A (forming one H bond and one pi-alkyl bond), and 224G (forming van der Walls interaction) with 32Y.
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to study as novel ZIKV NS1 epitopes. Among them, epitope 83-

GIQLTVVVGSVKNP-96 did not belong to the hydrophobic

connector residues of the wing domain, therefore it may be

important in studying ZIKV NS1 protection. However, in the case

of ZIKV NS1, epitope-CDR interactions were not possible to analyze

due to the unavailability of resolved X-ray crystallographic structures

of ZIKV NS1 neutralizing mAbs.
5 Conclusion

To summarize, we conducted detailed antigenic characterization

of the E and NS1 proteins for co-circulating Indian strains of ZIKV

with domain-specific analyses. This helped in the identification of

novel epitopes in E and NS1 proteins having zero percent identity

with the amino acid compositions of previously reported ZIKV-

neutralizing epitopes. Molecular docking studies further revealed that

some of the novel epitopes of E protein are being recognized by

known ZIKV-neutralizing antibodies. Our studies on in vitro and in

vivo experiments targeting these novel epitopes to understand the key

role in humoral immunity are in progress. Therefore, the findings will

help in the development of multi-epitope proteins for diagnostics and

vaccinology applications in future.
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SUPPLEMENTARY FIGURE 1

Multiple sequence alignment of E protein in ZIKV strains: ZIKVMR766 (coloured in

green), ZIKV NATAL RGN (coloured in red), ZIKV_RAJ (coloured in blue), and

ZIKV_MAH (coloured in purple). All the mutations are highlighted in yellow with
respect to ZIKV MR766.

SUPPLEMENTARY FIGURE 2

Multiple sequence alignment of NS1 protein in ZIKV strains; ZIKV MR766
(coloured in green), ZIKV NATAL RGN (coloured in red), ZIKV_RAJ (coloured

in blue), and ZIKV_MAH (coloured in purple). All the mutations are highlighted

in yellow with respect to ZIKV MR766.

SUPPLEMENTARY FIGURE 3

3-D Templates for Indian ZIKV E; (A) 7YW8 (ZIKV_RAJ), (B) 7YW7 (ZIKV_MAH)

where Chain A is highlighted in yellow.

SUPPLEMENTARY FIGURE 4

3-D Template for Indian ZIKV NS1: 5K6K (ZIKV_RAJ and ZIKV_MAH) where
Chain A is highlighted in yellow.

SUPPLEMENTARY FIGURE 5

Graphical representation of linear B-cell epitopes by BepiPred 2.0method (yellow
peaks = predicted epitopes, and green inverted peaks = non-epitopes) for both

Indian ZIKV E (Threshold=0.5). (A) ZIKV_RAJ and (B) ZIKV_MAH.

SUPPLEMENTARY FIGURE 6

Graphical representation of linear B-cell epitopes by Kolaskar and
Tongaonkar method (yellow peaks = predicted epitopes, and green

inverted peaks = non-epitopes) for both Indian ZIKV E. (A) ZIKV_RAJ
(Threshold=1.026) and (B) ZIKV_MAH (Threshold=1.028).

SUPPLEMENTARY FIGURE 7

Graphical representation of linear B-cell epitopes by Emini surface accessibility

method (yellow peaks = predicted epitopes, and green inverted peaks = non-
epitopes) for both Indian ZIKV E (Threshold=1.00). (A)ZIKV_RAJ and (B)ZIKV_MAH.
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SUPPLEMENTARY FIGURE 8

Graphical representation of linear B-cell epitopes by Parker hydrophilicity
method (yellow peaks = predicted epitopes, and green inverted peaks = non-

epitopes) for both Indian ZIKV E. (A) ZIKV_RAJ (Threshold=1.475) and (B)
ZIKV_MAH (Threshold=1.470).

SUPPLEMENTARY FIGURE 9

Graphical representation of linear B-cell epitopes by BepiPred 2.0method (yellow

peaks = predicted epitopes, and green inverted peaks = non-epitopes) for both
Indian ZIKV NS1 (Threshold=0.5). (A) ZIKV_RAJ and (B) ZIKV_MAH.

SUPPLEMENTARY FIGURE 10

Graphical representation of linear B-cell epitopes by Kolaskar and

Tongaonkar method (yellow peaks = predicted epitopes, and green
Frontiers in Immunology 1926
inverted peaks = non-epitopes) for both Indian ZIKV NS1. (A) ZIKV_RAJ
(Threshold=1.018) and (B) ZIKV_MAH (Threshold=1.023).

SUPPLEMENTARY FIGURE 11

Graphical representation of linear B-cell epitopes by Emini surface

accessibility method (yellow peaks = predicted epitopes, and green
inverted peaks = non-epitopes) for both Indian ZIKV NS1 (Threshold=1.00).

(A) ZIKV_RAJ and (B) ZIKV_MAH.

SUPPLEMENTARY FIGURE 12

Graphical representation of linear B-cell epitopes by Parker hydrophilicity method
(yellow peaks = predicted epitopes, and green inverted peaks = non-epitopes) for

both Indian ZIKV NS1. (A) ZIKV_RAJ (Threshold=1.701) and (B)
ZIKV_MAH (Threshold=1.726).
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Design of a peptide-based
vaccine against human
respiratory syncytial virus
using a reverse vaccinology
approach: evaluation of
immunogenicity, antigenicity,
allergenicity, and toxicity
Hadeel Alnajran1,2, Maaweya Awadalla2, Fahad M. Aldakheel1,
Intikhab Alam3, Afaque A. Momin3,
Wael Alturaiki4 and Bandar Alosaimi2*

1Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud
University, Riyadh, Saudi Arabia, 2Research Center, King Fahad Medical City, Riyadh Second Health
Cluster, Riyadh, Saudi Arabia, 3Center of Excellence for Smart Health (KCSH), King Abdullah University
of Science and Technology (KAUST), Thuwal, Saudi Arabia, 4Department of Medical Laboratory
Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
Background: Attempts to develop an hRSV vaccine have faced safety and

efficacy challenges, with only three FDA-approved vaccines (Moderna’s

Mresvia, Pfizer’s Abrysvo, and GSK’s Arexvy) available. These vaccines are

limited to individuals over 60 years, require boosters, and only reduce disease

severity without clearing the infection. Therefore, we employed a reverse

vaccinology approach in this study to identify the most promising antigenic

epitopes capable of eliciting a robust and protective immune response.

Methodology: This study employed computational techniques to design a novel

multi-epitope vaccine targeting hRSV. Using bioinformatics tools, candidate

epitopes were identified from conserved viral proteins (F and G glycoproteins),

assessing their immunogenicity, antigenicity, and allergenicity. Key tools included

ExPASy, ProtParam, VaxiJen v2.0, AllergenFP v1.0, AllerTOP v2.0, NetCTL v1.2,

IEDB, and Toxin-Pred. The vaccine construct was assessed for stability and

toxicity through in silico analyses. We then characterized its kinetic properties,

evaluated its structural integrity, and analyzed its interactions with Toll-like

receptors (TLRs) using molecular docking, modeling, and refinement with

AlphaFold3 and ClusPro.

Results: The designed constructs showed strong antigenicity (0.5996 for F-

based and 0.6048 for G-based vaccine), non-allergenicity, and stability

(instability index <40). Among these, most amino acids were in the extracellular

domain of the construct. Molecular docking and dynamics simulations indicated

strong binding interactions with TLR1 and TLR4 and minimal RMSF fluctuations,

which ensured structural stability. Strong humoral and cellular responses were

suggested by in silico immune simulation demonstrating robust immune

activation, with high levels of IgG, IgM, IL-2, and IFN-g. The physical and
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chemical analyses revealed that the majority of amino acids from the F and G

proteins were located in the extracellular domain of the construct. The presence

of signal peptide cleavage sites in both glycoprotein components further

facilitates antigen presentation to the immune system.

Conclusions: This study presents a promising peptide-based vaccine candidate

against hRSV that can effectively engage the immune system, showing strong

immunogenicity and antigenicity. Future in vitro and in vivo studies are essential

to evaluate the ability of the multi-epitope vaccine candidate to stimulate both

humoral and cell-mediated immune responses and to assess its efficacy and

safety profile.
KEYWORDS

human respiratory syncytial virus, hRSV, immunoinformatics, CTL epitope, HTL epitope,
B-cell epitope, reverse vaccinology
1 Introduction

Human respiratory syncytial virus (hRSV) is a major cause of

lower respiratory tract infections in infants, young children, and the

elderly (1). It is estimated that hRSV causes 33 million new episodes

of acute lower respiratory infections and 3.2 million hospital

admissions annually worldwide (2). Despite the significant disease

burden, currently, only three hRSV vaccines have been licensed by

the FDA (3). Developing an effective hRSV vaccine has been

challenging due to the complex immune responses to the virus

and the risk of disease enhancement in vaccinated individuals (4).

Human RSV exhibits antigenic variability, with two major

antigenic subgroups (A and B) circulating globally, complicating

the design of a universal vaccine (4). Furthermore, previous

attempts at hRSV vaccine development have been hampered by

safety concerns, such as the phenomenon of vaccine-enhanced

respiratory disease observed with a formalin-inactivated RSV

vaccine candidate (5).

The most recent vaccine design efforts were focused on hRSV

envelope proteins embedded in the lipid bilayer, specifically the

attachment (G) glycoprotein and/or the fusion (F) glycoprotein.

Human RSV G protein can exist in two forms, as complete

membrane-bound glycoprotein (mG) that mediates viral

attachment to host cells in vivo and secreted N-terminally

truncated G protein (sG) (6). sG can modulate host immune

responses, enabling it to evade, alter, or inactivate both innate

defenses and the adaptive immune system, as well as influence the

antiviral activity of monoclonal antibodies (mABs) (7). In addition,

the extensive antigenic variability of G protein among different

hRSV strains has been another significant obstacle to the

development of an effective vaccine (8). Although these

limitations were recently addressed to some extent through

further optimization using the CsA adjuvant, these challenges

shifted the focus to F glycoprotein, a more conserved viral surface
0229
component (9). The F protein allows hRSV penetration and fusion

between adjacent cells to form syncytium. The viral F glycoprotein

undergoes dynamic reconfiguration when binding to the target

cell’s plasma membrane and thus exists in two forms: the prefusion

form (pre-F) and the more stable post-fusion form or post-F (10).

The unstable pre-F sequence was substantial in developing the two

peptide-based vaccines and one mRNA vaccine approved by the

FDA for hRSV, as it is highly immunogenic and stimulates the

production of RSV-specific neutralizing antibodies (NAbs) (3).

BAFF and APRIL are crucial for B cell survival, differentiation,

and antibody production. They interact with specific receptors on B

cells, promoting their activation and proliferation, which is essential

for generating a robust immune response. Previous studies have

demonstrated that BAFF and APRIL can enhance the

immunogenicity of vaccines. For instance, research has shown

that plasmids expressing multimeric soluble BAFF or APRIL,

when co-administered with other immunomodulatory agents, can

significantly increase antibody titers and neutralizing antibody

responses against HIV-1 (11, 12). Additionally, constructs

combining HIV-1 envelope proteins with APRIL have been

reported to enhance antibody responses in animal models (11).

This has led to interest in their potential as adjuvants to improve

vaccine efficacy while modulating immune responses.

The traditional approach of vaccine development relies on virus

culturing and its activation which raises several safety concerns.

Reverse vaccinology offers a promising approach and a rapid, cost-

effective, and reliable methodology for the preliminary selection and

design of novel multi-epitope vaccine candidates against hRSV.

This approach involves comprehensive in silico analysis of the

hRSV attachment and fusion proteome to identify the most

promising antigenic epitopes capable of eliciting a robust and

protective immune response (13, 14). Computational vaccinology

techniques, such as epitope prediction, antigenicity and allergenicity

analysis, and molecular docking, can be employed to design and
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evaluate multi-epitope vaccine candidates in silico before

experimental validation (13, 14). By targeting multiple conserved

epitopes from Glycoprotein and fusion hRSV proteins, a multi-

epitope vaccine has the potential to provide broad coverage against

both major hRSV subgroups and induce a balanced, long-lasting

immune response.

The study aims to investigate the potential of a computationally

designed multi-epitope vaccine to initiate a protective immune

response, ensure the epitopes have stability and non-allergenicity,

and provide broader coverage across the subtypes of hRSV.

Furthermore. This study utilized a reverse vaccinology strategy to

systematically analyze the hRSV proteome, identify immunogenic

epitopes, and design a multi-epitope vaccine candidate against

human RSV. The selected epitopes were further evaluated for

their antigenicity, immunogenicity, allergenicity, and molecular

docking properties to ensure the development of a safer

vaccine formulation.
2 Materials and methods

2.1 Protein sequences retrieval

The amino acid sequences of fusion glycoprotein (F) [Human

Orthopneumovirus] and attachment G protein [Human

Respiratory Syncytial Virus A] with EMBL IDs QID88623.1 and

ALB35397.1 respectively were retrieved from UniProt (15) in

FASTA format to predict T cell, B cell, and IFN-gamma

inducing epitopes.
2.2 Analysis of physicochemical properties

To calculate the chemical and physical properties of the target

protein sequence, the ExPASy ProtParam tool (16) was used. This

tool enables the calculation of a range of physicochemical

parameters for proteins either retrieved from UniProtKB or

provided as user-entered sequences In this study, the amino acid

sequence of the target protein, represented in one-letter code, was

input into the appropriate field, and the compute parameters option

was selected. No additional data was required for the analysis. The

computed metrics included molecular weight, aliphatic index,

theoretical isoelectric point (pI): Determines the pH at which the

protein has no net charge, instability index, extinction coefficient,

grand average of hydropathicity grand average of hydropathy

(GRAVY), and atomic composition.
2.3 Evaluation of antigenic properties

The potential vaccine candidates (PVCs) from the proteome of

hRSV were predicted using the VaxiJen v2.0 server (17). VaxiJen is a

Perl-based server with an HTML interface that classifies proteins as

“Probable Non-Antigen” or “Probable Antigen” based on their

antigen probability, which is expressed as a percentage. The
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default threshold value of 0.4 was used for this analysis.

Additionally, two other tools were employed to distinguish

between allergens and non-allergens: AllergenFP v.1.0 (18) and

AllerTOP v.2.0 server (14). To predict the presence of

transmembrane helices and signal peptides, TMHMM v2.0 (19)

and SignalP 6 (20) tools were used, respectively. In all these tools the

input parameters were protein sequences.
2.4 CTL epitope prediction and binding
affinity analysis with MHC I allele

The prediction of cytotoxic T lymphocyte (CTL) epitopes was

carried out using the NetCTL v1.2 server. The NetCTL 1.2 server

predicts CTL epitopes in protein sequences (21) and an Immune

Epitope Database (IEDB) tool (22) The input parameters consisted

of peptide sequences, while the expected outputs included predicted

CTL epitopes and binding affinities for MHC class I and II. These

epitopes were classified, based on their binding to various major

histocompatibility complex (MHC) alleles, including HLA-I, HLA-

II/H-2-IAb, HLA-II/H-2-IAd, and H-2-Db. The CTL epitopes

binding to HLA-I and H-2-Db alleles were retrieved from the

NetCTL tool, while the CTL epitopes binding to H-2-IAb and

HLA-II/H-2-IAd were obtained from the IEDB tool. Epitopes with

a consensus score of less than 2 were considered excellent binders

and selected for further analysis. The selected epitopes were then

assessed for their antigenicity, immunogenicity, allergenic profile,

and toxicity using the VaxiJen v.2.0, IEDB, AllergenFP v.1.0, and

ToxinPred servers, respectively. The best epitopes were those with

high antigenicity, non-allergenicity, and non-toxicity.
2.5 HTL epitope prediction and binding
affinity analysis with MHC2 allele

The prediction of helper T lymphocyte (HTL) epitopes was

performed using the NetMHCII pan 3.287 server (23). The HTL

epitopes were classified based on their binding to human leukocyte

antigen (HLA) class II alleles, specifically HLA-II/H-2-IAb and

HLA-II/H-2-IAd. For the NetMHCII tool, the input parameters

consisted of peptide sequences, while the expected outputs included

predicted HTL epitopes and binding affinities. The antigenicity of

each predicted epitope was evaluated using the VaxiJen v.2.0 server,

with a threshold value of 0.4. To exclude potential allergenic

epitopes, the AllergenFP v.1.089 server was employed.

Furthermore, PyMOL was used to visualize the location of the

predicted epitopes on the glycoprotein structure. Finally, the

ToxinPred server was utilized to assess the toxicity profile of the

selected epitopes. ToxinPred is a web server designed to predict

whether proteins or peptides are toxic or non-toxic. We used

peptide sequences as input parameters, and the expected output is

a toxicity score indicating whether the peptide is toxic or non-toxic.

The best epitopes were those that demonstrated high antigenicity,

non-allergenicity, and non-toxicity after the filtration process.
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2.6 Prediction of B-cell epitopes

The Immune Epitope Database (IEDB) (24) was employed to

predict B cell epitopes based on the protein sequence. To select the

final B cell epitope candidates, several servers were utilized to screen

their properties: VaxiJen v.2.0, AllergenFP v.1.0, and ToxinPred.

The best B cell epitope candidates were those that demonstrated

high antigenicity, non-allergenicity, and non-toxicity after the

screening process using these complementary computational tools.
2.7 Prediction of interferon-gamma-
inducing epitopes

To predict and design IFN-g epitopes for vaccine development,

an IFN epitope web server was employed. This server enables users

to predict and design peptides that induce IFN-gamma, MHC Class

II bindings, or T-cell epitopes. We input peptide sequences as

parameters, and the anticipated output includes both IFN-

inducing and non-inducing epitopes. This server features three

primary modules: Predict, Design, and Scan. It utilizes a dataset to

classify IFN-g epitopes into two distinct categories: those capable of
producing IFN-g and those that cannot. The server’s predictions are
based on three strategies: hybrid, motif-based, and machine-

learning approaches, thus offering an accuracy of up to 81.39%

(25). For this study, multiple peptide sequences were input into the

server, and the IDEB database, an experimentally validated dataset

comprising 10,433 T-cell epitopes, was employed. Upon protein

input, the hybrid approach combining motifs and support vector

machines was selected to perform the predictions. The output was

generated as numerical scores, where a positive value indicated the

secretion of IFN-g by the predicted epitopes.
2.8 Population coverage analysis

The population coverage analysis of human MHC alleles (HLA

I and II) was carried out using the IEDB population coverage tool

and the results were plotted in the form of a bar chart (26). In the

study, default settings were used, and population coverage was

evaluated for each class of MHC.
2.9 Multi-epitope vaccine design

To construct our vaccine, commonly used linker sequences in

multi-epitope vaccine designs were employed to connect different

types of epitopes. Linkers are an essential component in the design

of multi-epitope vaccines, serving several crucial functions that

enhance vaccine efficacy. They facilitate the proper folding of

individual epitopes, ensuring that each maintains its correct

conformation during protein synthesis, which is vital for effective

recognition by the immune system. Additionally, linkers improve

the overall immunogenicity of the vaccine by providing flexibility
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between epitopes, allowing for better presentation to immune cells

and thereby enhancing the immune response. They also prevent

steric hindrance that could occur if epitopes are positioned too

closely together, ensuring effective interaction with T cell receptors

and other components of the immune system. Furthermore, the

incorporation of linkers contributes to the stability of the vaccine

construct, helping to protect the epitopes from degradation. Thus,

the strategic use of linkers is fundamental in optimizing the

performance of multi-epitope vaccines Cytotoxic T lymphocyte

(CTL) epitopes were linked using the AYY linker sequence. The

AYY linker is a flexible linker that facilitates the proper folding and

presentation of the CTL epitopes (27). Helper T lymphocyte (HTL)

epitopes were connected using the GPGPG linker. This linker is

commonly used to separate distinct epitopes while maintaining

their structures and functions. The selected epitopes targeting B

cells were linked using the KK linker. The KK linker, composed of

two lysine residues, enhances the immunogenicity of the B cell

epitopes by promoting their proper folding and exposure. BAFF

and April adjuvant were then incorporated into the vaccine

construct. The adjuvants were linked to the N-terminus of the

vaccine sequence using the EAAAK linker. The EAAAK linker is a

rigid alpha-helical linker that maintains the structural integrity and

functionality of the adjuvant. The use of these specific linker

sequences aims to optimize the presentation and immunogenicity

of the different epitope types (CTL, HTL, and B cell) within the

multi-epitope vaccine construct. The BAFF and April adjuvant,

when linked to the vaccine, are expected to enhance the overall

immune response generated by the vaccine.
2.10 Evaluation of physicochemical
properties, antigenicity, and allergenicity
of vaccine construct

The allergenic, antigenic, and toxicity profiles of the final multi-

epitope vaccine construct were evaluated using the same

computational tools identified above for the F and G protein

epitopes. The VaxiJen v2.0 server was used to predict the

antigenicity of the multi-epitope vaccine construct, the

AllergenFP v1.0 server was employed to assess the allergenic

potential of the multi-epitope vaccine, and the ToxinPred server

was utilized to evaluate the toxicity profile of the multi-epitope

vaccine construct.
2.11 Prediction of secondary structure

The three-dimensional structures of Toll-like receptor 2 (TLR2)

and Toll-like receptor 4 (TLR4) were retrieved from the RCSB

Protein Data Bank (PDB) database (28). These PDB structures

served as the structural templates for the computational analysis of

the vaccine construct. The secondary structure properties of the

multi-epitope vaccine construct were determined using the Self-

Optimized Prediction Method with Alignment (SOPMA) server
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and the Protein Structure Prediction Server (PSIPRED) v4.0 tool.

For the SOPMA analysis, the default parameters were used.
2.12 Protein structural modeling, docking,
refinement, and validation

The ERRAT server (29) was used to assess the overall quality of

the 3D vaccine model by evaluating the statistics of non-bonded

interactions between different atom types. To further refine the

modeled structure, a CASP10 web-based approach, the Galaxy

Refine tool (30) was utilized. The three-dimensional structures of

the vaccine candidates were modeled using the Alphafold3

webserver following the standard settings (31). The TLR1 toll-like

receptor sequence for Mus musculus was retrieved using the

UniProt database (Uniprot ID-B9EJ46). The structure for the

TLR1 receptor was also predicted using the Alphafold3 server.

ClusPro molecular docking algorithm with no restraints or

modifications in the structure (32) was used to perform molecular

docking of the TLR domain with the vaccine candidates from both F

and G glycoprotein (33). The dynamics and refinement studies were

performed using Cabs-Flex 2.0 standalone (30) in the SS2 mode

settings with a minimum distance along the protein chain was set at

3. The minimum length of restraints was set to 3.8 Å and the

maximum length to 8.0Å. The number of cycles was increased to

100,000 at a temperature of 310K, while cycles between trajectories

were set to 100, due to the large complex formed between TLR and

vaccine candidate to have the best quality output per frame. A

random seed was generated for every run for better comparison and

correct error calculation. The interaction between the TLR receptor

and vaccine candidate was analyzed by eye using Discovery Studio

2020 (34) and PyMOL (www.pymol.org) (35). The graphs for the

fluctuation were plotted using Prism 10 (www.graphpad.com). To

build the three-dimensional (3D) structures of the cytotoxic T-

lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes within

the vaccine construct, the PEPFOLD 3.5 web server was

utilized (36).
2.13 In silico immune simulation

To model the immune response and assess the immunogenicity

of the ALV vaccine in the host, we utilized the C-ImmSim server

(https://kraken.iac.rm.cnr.it/C-IMMSIM/). The server can define a

set of different models in one software that analyses both humoral

and cellular responses including B-cells. The input parameters

consisted of random seed, simulation volume, and simulation

steps, while the expected outputs included parameters to

configure the immune simulation, controlling randomness, size,

and duration of the simulation. For this study, we configured the

following parameters: Random Seed = 12,345, Simulation Volume =

10, and Simulation Steps = 1000. All other simulation parameters

were maintained at their default settings to ensure consistency and

reliability in the results.
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3 Results

3.1 Protein sequences retrieval

The amino acid sequences of the RSV fusion (F) and attachment

(G) glycoproteins were obtained from the UniProt knowledge base

(UniProt Consortium, 2021). The F glycoprotein sequence

consisted of 574 amino acid residues, while the attachment G

glycoprotein sequence was 321 amino acids long. The molecular

weights of the F and G glycoproteins were calculated to be 63,751

Daltons and 35,191 Daltons, respectively, based on their amino acid

compositions. This information was also retrieved from the UniProt

database (Supplementary Table S1).
3.2 Analysis of physicochemical properties
of proteins

The physical and chemical characteristics of the RSV F and G

glycoproteins were thoroughly analyzed to gain insights into their

structural and functional properties. (Supplementary Table S2). The

F glycoprotein, consisting of 574 amino acid residues, had a

calculated molecular weight of 63,750.57 Daltons. The theoretical

isoelectric point (pI) of the F protein was determined to be 9.13,

indicating its basic nature. The grand average of hydropathicity

(GRAVY) value, which represents the overall hydrophobicity/

hydrophilicity of the protein, was -0.038, suggesting a slightly

hydrophilic character. The aliphatic index, a measure of the

relative volume occupied by aliphatic side chains, was found to be

102.18 for the F protein, indicating a relatively compact structure.

The instability index was calculated to be 41.81, however, suggesting

that the F protein may be unstable under certain conditions. The

estimated coefficient value, a parameter used to predict the

expression level of the protein, was determined to be 50,155. In

contrast, the RSV G glycoprotein, with 321 amino acids, had a lower

molecular weight of 35,190.86 Daltons. The pI value of the G

protein was slightly higher than that of the F protein, at 9.77,

reinforcing its basic character. Interestingly, the GRAVY value of

the G protein was -0.636, indicating a more hydrophilic nature

compared to the F protein. The aliphatic index and estimated

coefficient values of the G protein were much lower than those of

the F protein, at 68.38 and 20,190, respectively. However, the G

protein was found to be more stable, with an instability index of

35.70, suggesting it may be less prone to degradation under

various conditions.
3.3 Analysis of antigenicity and allergenicity
of proteins

The RSV F and G glycoproteins were further analyzed to

investigate their antigenic, allergenic, and toxic characteristics.

Antigenic potential was assessed using a predictive algorithm,

which measured the likelihood of a protein being recognized as
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an antigen. The F glycoprotein exhibited an antigenic score of

0.5295, while the G glycoprotein had a score of 0.5771. Both values

exceeded the commonly used threshold of 0.4, indicating that these

RSV glycoproteins possess significant antigenic properties. To

evaluate the potential allergenicity of the F and G proteins,

appropriate prediction models were employed. The analysis

revealed that neither the F nor the G glycoprotein exhibited

characteristics associated with allergenic proteins. This suggests

that these RSV proteins are unlikely to elicit allergic responses.

The proteins were also evaluated for potential toxic effects. The

assessment did not identify any toxicity-related features within the

amino acid sequences of the F and G glycoproteins. The findings

from these bioinformatics analyses indicate that the RSV fusion (F)

and attachment (G) glycoproteins have strong antigenic potential,

which may contribute to their ability to stimulate immune

responses. The absence of predicted allergenic and toxic

properties suggests that these viral proteins are unlikely to cause

adverse reactions or toxicity in the host.
3.4 CTL epitope prediction and binding
affinity analysis with MHC I allele

The RSV F and G glycoproteins were further analyzed to

identify specific epitopes with desired immunological and safety

properties. The selected epitopes were evaluated for their antigenic,

immunogenic, allergenic, and toxic characteristics. For the F

protein, the following HLA-I class epitopes were chosen for

detailed analysis: LTLAINALY, LSALRTGWY, and YTSVITIEL.

All three epitopes exhibited antigenic and immunogenic properties

and were found to be non-toxic (Table 1). However, only the

LSALRTGWY epitope was predicted to be non-allergenic.

Similarly, the G protein HLA-I class epitopes selected were:

LLFISSCLY, SQVHTTSEY, and TTSQSTTIL. These G protein

epitopes were identified as potential allergens. The SQVHTTSEY

epitope was determined to be both immunogenic and antigenic.

Further analysis focused on F protein epitopes for the H-2-IAd

MHC class. The selected epitopes were: MELLIHRSSAIFLTL,

LLIHRSSAIFLTLAI, and ELLIHRSSAIFLTLA. All three epitopes

demonstrated immunogenic, antigenic, and non-toxic properties.

Only the ELLIHRSSAIFLTLA epitope was predicted to be an

allergen, while the other two were classified as non-allergenic.

The G protein H-2-Iad MHC class epitopes examined were:

N L K S I A Q I T L S I L AM , K L N L K S I A Q I T L S I L , a n d

LYKLNLKSIAQITLS. These epitopes were found to be antigenic

and non-toxic, but non-immunogenic. NLKSIAQITLSILAM and

LYKLNLKSIAQITLS were identified as potential allergens. For the

H-2-Iab MHC class, the selected F protein epitopes were:

F YQ STC SAVSRGYL S , GVGSA IA SG IAVSKV , a n d

TREFSVNAGVTTPLS. All these epitopes were determined to be

non - t ox i c and non - a l l e r g en i c . Howeve r , on l y th e

TREFSVNAGVTTPLS ep i tope was an t i g en i c , wh i l e

FYQSTCSAVSRGYLS and GVGSAIASGIAVSKV were non-

immunogenic. The G protein H-2-Iab MHC class epitopes

analyzed were: IAAIIFIASANHKVT, AIIFIASANHKVTLT, and
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IIFIASANHKVTLTT. These epitopes exhibited antigenic and

non- tox ic proper t i e s , and IAAIIFIASANHKVT and

AIIFIASANHKVTLT were also immunogenic. Lastly, for the H-

2-Db MHC class, the F protein epitopes selected were:

YMLTNSELL and VSLSNGVSV. Both epitopes were found to be

non-toxic and non-immunogenic. However, the YMLTNSELL

epitope was classified as non-antigenic and non-allergenic, while

the VSLSNGVSV epitope was antigenic but allergenic. The G

protein H-2-Db MHC class epitopes examined were LAMIISTSL

and AMIISTSLI. These epitopes were determined to be non-toxic

and non-immunogenic but were predicted to be allergenic.
3.5 HTL epitope prediction and binding
affinity analysis with MHC2 allele

RSV F and G glycoproteins were further analyzed to identify

additional epitopes with desirable immunological and safety

characteristics, focusing on the H-2-IAb and H-2-Iad MHC class

contexts (Table 2). For the H-2-Iab MHC class, the following F

protein epitopes were selected for analysis: GVGSAIASGIAVSKV,

TREFSVNAGVTTPLS, and EFSVNAGVTTPLSTY. All three

epitopes were found to be non-toxic and non-allergenic.

However, only TREFSVNAGVTTPLS and EFSVNAGVTTPLSTY

were determined to be immunogenic. The G protein epitopes

examined for the H-2-Iab MHC class were: IAAIIFIASANHKVT,

IIFIASANHKVTLTT, and AIIFIASANHKVTLT. All three of these

epitopes exhibited antigenic, non-toxic, and non-allergenic

properties. For the H-2-Iad MHC class, the selected F protein

epitopes were: MELLIHRSSAIFLTL, GVGSAIASGIAVSKV, and

AIASGIAVSKVLHLE. All of these epitopes were found to be

antigenic, non-toxic, and non-allergenic. The G protein epitopes

analyzed for the H-2-Iad MHC class were NLKSIAQITLSILAM,

AAIIFIASANHKVTL, and KLNLKSIAQITLSIL. These epitopes

were all identified as antigenic and non-toxic. However, only the

NLKSIAQITLSILAM epitope was predicted to be an allergen, while

AAIIFIASANHKVTL and KLNLKSIAQITLSIL were classified as

non-allergenic.
3.6 Prediction Of B-cell epitopes

The IEDB (Immune Epitope Database) server was utilized to

analyze the F and G protein and identify potential epitopes. The

epitopes that exceeded the 0.5 threshold were then evaluated for

their allergenicity, antigenicity, immunogenicity, and toxicity

characteristics. The epitope that exhibited the highest score in the

IEDB analysis was deemed the most promising candidate for

further study. Based on the comprehensive evaluation using the

IEDB server, a subset of F and G protein epitopes was selected for

further analysis due to their potential to induce a B-cell response

(SF1 and SF2). The selected F protein epitopes were ETKCNGTDT,

KCTASNKN, and NTPVTLS. All three were found to be antigenic.

However, only the NTPVTLS epitope was determined to be both

immunogenic and non-toxic, making it the most promising
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candidate from this group for further investigation. Similarly, a set

of G protein epitopes was selected for analysis: LSGTTSQST,

MSKTKDQRTAKT, and TNQIKNTTPTYLTQN. All three G

protein epitopes were identified as antigenic and non-toxic.

However, none were predicted to be immunogenic (Table 3).
3.7 Prediction of interferon-gamma-
inducing epitopes

In addition to the B-cell response-inducing epitopes, the

analysis also identified a set of interferon-gamma-inducing F

protein epitopes that were selected for further investigation. These
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epitopes were LPIGAVSIVAIALLL, IGAVSIVAIALLLRL, and

PIGAVSIVAIALLLR. All three were found to be antigenic,

immunogenic, and non-toxic, making them promising candidates

for inclusion in a multi-epitope vaccine construct. The analysis also

identified a single G protein epitope, TNQIKNTTPTYLTQN, that

was also selected for further consideration (Table 4).
3.8 Multi-epitope vaccine design

Based on the detailed analysis and evaluation of the F and G

protein epitopes, a multi-epitope vaccine construct was designed

that met the criteria for antigenicity, allergenicity, toxicity, and
TABLE 1 List of overall attributes of MHC class I interacting CTL epitopes that were employed for designing a vaccine construct.

MHC-I Allele Epitope Protein Length Immunogenicity
score

Antigenicity
Score

Allergenicity Toxicity

HLA1 LTLAINALY Fusion Glycoprotein 9 0.18582 0.7147 Allergen Non-Toxin

LSALRTGWY Fusion Glycoprotein 9 0.2465 1.1132 Non-allergen Non-Toxin

YTSVITIEL Fusion Glycoprotein 9 0.3248 0.6842 Allergen Non-Toxin

LLFISSCLY Attachment
Glycoprotein

9 -0.19689 0.1194 Allergen Toxin

SQVHTTSEY Attachment
Glycoprotein

9 0.03917 0.6339 Allergen Non-Toxin

TTSQSTTIL Attachment
Glycoprotein

9 -0.1843 0.3578 Allergen Non-Toxin

HLA II/H-2-IAd MELLIHRSSAIFLTL Fusion Glycoprotein 15 0.16576 0.4136 Non-allergen Non-Toxin

LLIHRSSAIFLTLAI Fusion Glycoprotein 15 0.12489 0.6449 Non-allergen Non-Toxin

ELLIHRSSAIFLTLA Fusion Glycoprotein 15 0.18756 0.4213 Allergen Non-Toxin

NLKSIAQITLSILAM Attachment
Glycoprotein

15 -0.04729 0.9619 Allergen Non-Toxin

KLNLKSIAQITLSI Attachment
Glycoprotein

14 -0.26934 1.1468 Non-allergen Non-Toxin

LYKLNLKSIAQITLS Attachment
Glycoprotein

15 -0.2629 0.9181 Allergen Non-Toxin

HLA II/H-2-IAb FYQSTCSAVSRGYLS Fusion Glycoprotein 15 -0.38997 0.5709 Non-allergen Non-Toxin

GVGSAIASGIAVSKV Fusion Glycoprotein 15 -0.13683 0.6023 Non-allergen Non-Toxin

TREFSVNAGVTTPLS Fusion Glycoprotein 15 0.1929 0.3074 Non-allergen Non-Toxin

IAAIIFIASANHKVT Attachment
Glycoprotein

15 0.30119 0.6127 Non-allergen Non-Toxin

AIIFIASANHKVTLT Attachment
Glycoprotein

15 0.08604 0.7845 Allergen Non-Toxin

IIFIASANHKVTLTT Attachment
Glycoprotein

15 -0.00772 0.6941 Non-allergen Non-Toxin

H-2-Db YMLTNSELL Fusion Glycoprotein 9 -0.04855 0.2930 Non-allergen Non-Toxin

VSLSNGVSV Fusion Glycoprotein 9 -0.20629 0.8926 Allergen Non-Toxin

LAMIISTSL Attachment
Glycoprotein

9 -0.01311 0.5518 Allergen Non-Toxin

AMIISTSLI Attachment
Glycoprotein

9 -0.09354 0.3295 Allergen Non-Toxin
fro
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population coverage. The final vaccine construct comprised a

sequence of 315 amino acid residues, which incorporated non-

overlapping epitopes selected from the F protein. The vaccine

design included 11 cytotoxic T lymphocyte (CTL) epitopes, six

helper T lymphocyte (HTL) epitopes, and three B-cell-inducing

epitopes. To facilitate the appropriate presentation and processing

of the different epitope types, specific linker sequences were utilized

to connect the epitopes within the multi-epitope vaccine construct.

The CTL epitopes were joined using Ala-Ala-Tyr (AAY) linkers,

which are known to enhance CD8+ T cell activation and antigen

processing. The HTL epitopes were connected by Gly-Pro-Gly-Pro-

Gly (GPGPG) linkers, a flexible linker sequence that allows for

optimal presentation of the helper T cell epitopes. The B-cell-

inducing epitopes were linked using KK Lys-Lys linkers, which

have been shown to improve B-cell recognition and antibody

production. The strategic arrangement of the F protein’s different

epitope types, along with the incorporation of the selected linker

sequences, is depicted in Figure 1A. Similarly, a 317 amino acid
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residue long G protein multi-epitope vaccine construct included 11

cytotoxic T lymphocyte (CTL) epitopes, 6 helper T lymphocyte

(HTL) epitopes, and 3 B-cell-inducing epitopes. The same linker

strategies used for the F protein epitopes were also applied to the G

protein epitopes to facilitate appropriate presentation and

processing. Specifically, the CTL epitopes were joined using AAY

linkers, the HTL epitopes were connected by GPGPG linkers, and

the B-cell-inducing epitopes were linked using KK linkers. The

visual representation of the multi-epitope vaccine construct,

including the arrangement and linkage of the epitopes from G

protein, is shown in Figure 1B.
3.9 Evaluation of physical properties of
vaccine construct

After constructing the multi-epitope vaccines based on the F

and G proteins, their physicochemical properties were determined
TABLE 3 List of overall attributes of B cell epitopes that were employed to design a vaccine construct.

Protein Epitope Length Immunogenicity Antigenicity Allergenicity Toxicity

Fusion
Glycoprotein

ETKCNGTDT 9 -0.05293 0.9375 Non-allergen Toxin

KCTASNKN 8 -0.29722 1.2880 Allergen Toxin

NTPVTLS 7 0.0653 1.1172 Allergen Non-Toxin

Attachment
Glycoprotein

LSGTTSQST 9 -0.26229 0.7385 Non-allergen Non-Toxin

MSKTKDQRTAKT 12 -0.33818 0.6219 Non-allergen Non-Toxin

TNQIKNTTPTYLTQN 15 -0.06634 0.5845 Allergen Non-Toxin
TABLE 2 List of overall attributes of MHC class II interacting HTL epitopes used for designing a vaccine construct.

MHC-II Allele Epitope Protein Length Immunogenicity
Score

Antigenicity
Score

Allergenicity Toxicity

HLA II/H-2-IAb GVGSAIASGIAVSKV Fusion Glycoprotein 15 -0.13683 0.6023 Non-allergen Non-Toxin

TREFSVNAGVTTPLS Fusion Glycoprotein 15 0.1929 0.3074 Non-allergen Non-Toxin

EFSVNAGVTTPLSTY Fusion Glycoprotein 15 0.03026 0.2190 Non-allergen Non-Toxin

IAAIIFIASANHKVT Attachment
Glycoprotein

15 0.30119 0.6127 Non-allergen Non-Toxin

IIFIASANHKVTLTT Attachment
Glycoprotein

15 -0.00772 0.6941 Non-allergen Non-Toxin

AIIFIASANHKVTLT Attachment
Glycoprotein

15 0.08604 0.7845 Allergen Non-Toxin

HLA II/H-2-IAd MELLIHRSSAIFLTL Fusion Glycoprotein 15 0.16576 0.4136 Non-allergen Non-Toxin

GVGSAIASGIAVSKV Fusion Glycoprotein 15 -0.13683 0.6023 Non-allergen Non-Toxin

AIASGIAVSKVLHLE Fusion Glycoprotein 15 -0.23339 0.8407 Non-allergen Non-Toxin

NLKSIAQITLSILAM Attachment
Glycoprotein

15 -0.04729 0.9619 Allergen Non-Toxin

AAIIFIASANHKVTL Attachment
Glycoprotein

15 0.21554 0.6395 Non-allergen Non-Toxin

KLNLKSIAQITLSIL Attachment
Glycoprotein

15 -0.23436 1.1468 Non-allergen Non-Toxin
fro
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and compared with the original F and G protein values reported in

(Supplementary Table S3). The analysis revealed that the number of

amino acids in the vaccine constructs was reduced to 315 and 317

for the F and G protein-based vaccines respectively, compared to

the original full-length protein sequences. The molecular weight of

the F protein-based vaccine construct decreased from 63,750.57 Da

to 31,982.84 Da, while the G protein-based vaccine showed a slight

decrease from 35,190.86 Da to 33,292.41 Da. The theoretical

isoelectric point (pI) values of the F and G protein-based vaccine

constructs were calculated to be 9.46 and 10.07, respectively. The

grand average of hydropathicity (GRAVY) values for the F and G
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protein-based vaccine constructs were positive, at 0.448 and 0.598

respectively, indicating that the proteins are generally hydrophobic.

The aliphatic index, which provides an estimate of the relative

volume occupied by aliphatic side chains, was higher for the vaccine

constructs compared to the original proteins, with values of 101.40

for the F protein-based vaccine and 117.22 for the G protein-based

vaccine. The instability index, which predicts the stability of a

protein, was less than 40 for both the F and G protein-based vaccine

constructs, at 24.42 and 20.22, respectively, suggesting that both

vaccine constructs are stable. The extinction coefficient values,

which indicate the amount of light absorbed by a protein
FIGURE 1

Multi-epitope vaccine construct of F glycoprotein (A) and G glycoprotein (B) with epitopes linked by different linkers. The orange color shows CTL
epitopes interconnected by AAY linkers, the green color represents HTL epitopes interconnected by GPGP linkers, and the blue color shows LBL
epitopes interconnected by KK linkers. BAFF and APRIL adjuvants are connected to the N-terminus via EAAK linkers.
TABLE 4 List of overall attributes of Interferon-Gamma inducing F and G glycoprotein epitopes that were employed to design a vaccine construct.

Protein Epitope Position Immunogenicity Antigenicity Allergenicity Toxicity

Fusion
Glycoprotein

LPIGAVSIVAIALLL 15 0.35299 1.1321 Non-allergen Non-Toxin

IGAVSIVAIALLLRL 15 0.26838 1.1321 Non-allergen Non-Toxin

PIGAVSIVAIALLLR 15 0.27879 1.0998 Allergen Non-Toxin

Attachment
Glycoprotein

TNQIKNTTPTYLTQN 15 -0.06634 0.5845 Allergen Non-Toxin
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solution, were calculated to be 30,955 M−1 cm−1 for the F protein-

based vaccine and 20,860 M−1 cm−1 for the G protein-based

vaccine. The antigenic values for the F and G protein-based

vaccine constructs were 0.5996 and 0.6048 respectively, which are

higher than the threshold of 0.4, confirming their antigenic

potential. Both the F and G protein-based vaccine constructs were

also assessed to be non-allergenic. Overall, the physicochemical

characterization of the multi-epitope vaccine constructs

demonstrated favorable properties, including reduced molecular

weight, improved stability, and retained antigenicity, compared to

the original F and G proteins, indicating their suitability for further

development and evaluation as potential respiratory syncytial virus

vaccine candidates.
3.10 Evaluation of antigenic and
allergenicity properties of the
vaccine constructs

The antigenicity of the vaccine constructs derived from the F

(fusion) and G (attachment) proteins was predicted using the

default settings in the antigenicity prediction tool, with a

threshold value of 0.4. The overall antigenicity prediction score

for the F protein-based vaccine construct was 0.5996, while the

score for the G protein-based vaccine construct was 0.6048. Both of

these scores exceeded the 0.4 thresholds, indicating that the vaccine
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constructs derived from the F and G proteins were likely to be

“Probable ANTIGENS”. This antigenicity analysis revealed that

both the F and G protein-based vaccine constructs exhibited strong

antigenic potential. Allergen and AllerTOP tools revealed that the

vaccine against F protein and G protein was “Probable Non-

Allergen” (Data not shown).

The TMHMM server was used to analyze the presence and

distribution of transmembrane helices in the vaccine constructs,

derived from the F and G glycoproteins. For the F glycoprotein

vaccine construct, the analysis revealed the presence of two

transmembrane helices. The amino acids were distributed as

follows: 1) Outside region: Amino acids 1-19 and 78-315;

transmembrane helices (purple); Amino acids 20-42 and 55-77. 2)

Inside region (between transmembrane helices): Amino acids 43-

54. This distribution indicated that the majority of the amino acids

in the F protein-based vaccine construct were located in the outside

region, which is the extracellular domain of the protein. The SignalP

server was used to analyze the signal peptide and cleavage site

predictions. For the F glycoprotein vaccine construct, the analysis

revealed that the C-score showed a distinct peak at the 23rd amino

acid position, indicating the predicted cleavage site. S-score (signal

peptide score graph showed the presence of a signal peptide

sequence. The Y-score which combines the C-score and S-score,

also reached a maximum at the 23rd amino acid position, further

confirming the predicted cleavage site. These results suggest that the

F glycoprotein vaccine construct is likely to be cleaved at the 23rd

amino acid position, resulting in the removal of the signal peptide
FIGURE 2

TMHMM server for the prediction of the nature of amino acid residues. (A) Nature of amino acid residues of F protein and prediction of the presence
of signal peptide on F proteins. (B) Nature of amino acid residues of G protein and prediction of the presence of signal peptide on G proteins.
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and the presentation of the mature, processed form of the

antigen (Figure 2A).

Similarly, the analysis of the G glycoprotein vaccine construct

revealed the presence of five transmembrane helices. The amino

acid distribution was as follows: 3) Outside region: Amino acids 1-

31, 99-107, and 166-234; transmembrane helices (purple); amino

acids 32-54, 76-98, 108-130, 143-165, and 235-257. 4) Inside region

(between transmembrane helices): Amino acids 55-75, 131-142, and

258-317 Again, most of the amino acids in the G protein-based

vaccine construct were in the outside region, which is the

extracellular domain of the protein. For the G glycoprotein

vaccine construct, the SignalP analysis showed that the Cleavage

Site Score (C-score) peaked at the 18th amino acid position,

indicating the predicted cleavage site. The Signal Peptide Score

(S-score) graph suggested the presence of a signal peptide sequence.

The Y-score also reached a maximum at the 18th amino acid

position, corroborating the predicted cleavage site. These results

suggest that the G glycoprotein vaccine construct is predicted to be

cleaved at the 18th amino acid position, leading to the removal of

the signal peptide and the exposure of the mature antigen

(Figure 2B). We identified the signal peptide cleavage sites for

both the F and G glycoprotein vaccine constructs. These signal

peptide cleavage sites ensure the proper processing and

presentation of the antigens to the immune system.
3.11 Prediction of secondary structure

The secondary structure of the F and G glycoprotein vaccine

constructs was predicted, using the PSIPRED algorithm. For the F

glycoprotein vaccine construct, the analysis revealed that the

secondary structure composition contained 23.7% helices, 13.70%

strands, and 34.67% coils. The results showed that the F protein-

based vaccine construct is predominantly composed of coil regions,

with a significant proportion of helical structures and a smaller

fraction of beta-strand regions. The analysis of the G glycoprotein

vaccine construct showed a similar trend, with the secondary

structure dominated by helical elements, followed by coils and

strands. A helical structure was observed in both the F and G

protein-based vaccine constructs which play a crucial role in

maintaining the native-like conformation of proteins and

preserving the integrity of important functional epitopes (SF3

and SF4).
3.12 Three-dimensional structural
modeling, interaction, and stability

We predicted the three-dimensional structure of the vaccine

constructs namely, F1, F2, F3 for F-glycoprotein and G1, G2, G3 for

G-glycoprotein. The structure modeling was performed using the

latest artificial intelligence (AI) and machine learning (ML) based

algorithm Alphafold3 webserver (31). The TLR1 toll-like receptor

sequence for Mus musculus was retrieved using the UniProt

database (Uniprot ID-B9EJ46). The structure for the TLR1
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receptor was also predicted using the Alphafold3 server. All

models obtained were of high quality with plDDT scores for all

reported to be >70. Further, we wanted to test if the vaccine

candidates would bind and, in turn, block the TLR receptors.

Hence, the 3D models for all proteins (TLR and vaccine

candidates) were then used to predict TLR: vaccine complexes.

The protein: protein docking simulation models were performed

using the ClusPro docking algorithm (32).

We found that all vaccine candidates could occupy the

interaction binding pocket on the TLR receptor. The interactions

were mostly charged where critical positive and negative amino

acids formed the salt bridges and combined with pi-pi interaction

through bulky hydrophobic residues. The interaction is shown for

TLR1:F1 (Figure 3A top), TLR1:F2 (Figure 3B top), TLR1:F3

(Figure 3C top), TLR1:G1 (Figure 4A top), TLR1:G2 (Figure 4B

top), TLR1:G3 (Figure 4C top). Important interaction residues

found are listed in Supplementary Table S4.

We then verified the stability of the TLR:vaccine complex using

dynamics and stability analysis using CabsFlex 2.0 standalone (30).

We found the TLR: vaccine candidates to be very stable and had the

per residue fluctuation (RMSF) within the required limits through

time. The RMSF plots are shown for TLR1:F1 (Figures 3B, C, TLR1:

F2 (Figures 3B, C), TLR1:F3(Figures 3B, C), TLR1:G1 (Figures 4B,

C), TLR1:G2 (Figures 4B, C), TLR1:G3 (Figures 4B, C). Though all

vaccine candidates were within the allowed RMSF limit, the best

ones found were G1 and G2, with the least residue fluctuations. The

higher fluctuations observed at the C-terminal ends of all the

vaccine candidates are due to the extended unstructured region

on the candidates, which includes the 6xHistag. Overall, we found

all predicted vaccine candidates to be well-folded and specifically

targeting the TLR domains.
3.13 Immune stimulation

The immune simulation results showed a significant increase in

the primary, secondary, and tertiary immune responses,

corresponding with a reduction in antigen concentration (Figure

5). The levels of IL-2 were found to align with the measure of

diversity, indicating a robust immune activation. Furthermore, an

increase in diversity over time is interpreted as a danger signal,

particularly in conjunction with the presence of leukocyte growth

factor. Thus, a lower measure of diversity value reflects diminished

immune diversity, suggesting potential implications for the

effectiveness of the immune response.
4 Discussion

Over the past few years, significant resources and efforts have

been dedicated to developing a safe and effective vaccine against

hRSV, a major respiratory pathogen. Natural RSV infection fails to

provide lasting immunity, leading to multiple infections throughout

an individual’s life. Consequently, designing a vaccine that

effectively mimics the immune response generated by natural
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RSV infection, while accounting for the variability among different

viral strains remains a substantial challenge for researchers (37).

The emergence of diverse vaccine candidates utilizing various

technologies presents an opportunity to tailor immunization

strategies to meet the specific needs of vulnerable age groups.

Arexvy® (GSK) and Abrysvo® (Pfizer) are significant

advancements in this area, being the first vaccines approved to

prevent hRSV infections in older adults (3). Notably, Abrysvo®

extends its utility by offering passive immunization for infants

through maternal administration during pregnancy, thereby

providing dual protection for both mothers and their newborns

(38). Utilizing the mRNA platform, Moderna received U.S. FDA

approval for the RSV vaccine mRESVIA(mRNA-1345). These

approaches underscore the importance of developing age-specific

vaccine strategies that can effectively address the unique

immunological challenges faced by different populations (3, 38).

These innovative vaccines pave the way for more personalized and

effective immunization programs against hRSV (38).

Recent advancement s in computa t iona l b io logy ,

immunoinformatics, and reverse vaccinology hold promise for

accelerating the development of safe and effective vaccines in a

more time- and cost-efficient manner (39, 40). By leveraging

genomic and proteomic data, we can identify potential epitopes

and design vaccines with immunogenic subunits that elicit long-

lasting immunity, facilitating the validation of these candidates in

preclinical settings (41, 42). In this study, we employ
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immunoinformatic approaches to identify key B cells, cytotoxic T

lymphocyte (CTL), and helper T lymphocyte (HTL) epitopes

derived from F and G proteins of hRSV, to develop a highly safe,

synthetic multi-component vaccine tailored for the human host.

In this study, we employed several complementary tools to

ensure a robust analysis of potential epitopes derived from the F and

G glycoproteins of the hRSV. For Cytotoxic T Lymphocyte (CTL)

epitope prediction, we utilized both the NetCTL v1.2 and the

Immune Epitope Database (IEDB) tools. NetCTL focuses on

predicting CTL epitopes based on their binding affinities to MHC

class I molecules, providing a quantitative measure of potential

immunogenicity. Meanwhile, IEDB offers additional validation

through a comprehensive database of experimentally confirmed

epitopes, enhancing the reliability of our findings. For Helper T

Lymphocyte (HTL) epitope prediction, we employed NetMHCII

pan 3.287 alongside IEDB, allowing us to cross-verify predictions

and bolster confidence in the selected epitopes for further analysis.

This dual approach is critical, as it ensures that our predicted HTL

epitopes are not only computationally validated but also supported

by empirical data. Additionally, for B-cell epitope prediction, we

relied on IEDB for preliminary assessments while further

investigating the epitopes through VaxiJen v2.0 and AllergenFP

v1.0. This multifaceted approach enabled us to evaluate the

antigenicity and allergenic potential of the identified epitopes

comprehensively, laying a solid foundation for the design of a

safe and effective multi-epitope vaccine against hRSV.
FIGURE 3

Three-dimensional protein complex between [(A): Top] TLR1 domain (green) and F1 vaccine candidate (red), [(B): Top] TLR1 domain (green) and F2
vaccine candidate (slate-blue) and [(C): Top] TLR1 domain (green) and F3 vaccine candidate (magenta) shown in cartoon representation. Root mean
square fluctuation (RMSF) plots for the interaction between TLR1 and vaccine candidates are below the respective structural representation arranged
accordingly. The RMSF value is also mentioned on the plot with n=3. Interaction residues also mentioned in the Supplementary Table are shown
as sticks.
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An emerging and important field of research is multi-epitope

vaccines. Multi-epitope vaccinations offer the benefit of reducing

undesirable effects, such as allergies and antigenic load. This results

in a more specific immune response toward conserved epitopes

without the reversion of the pathogenesis of the virus. The

combined effect of the present epitopes from various antigens

exceeds an isolated antigen epitope’s ability to stimulate an

immune response, including both humoral and cell-mediated

responses. Multi-epitope vaccinations have been developed to

limit a diverse range of diseases (43). From a pharmacological

perspective, multi-epitope vaccinations exhibit advantageous

characteristics. Multi-epitope vaccines can be effectively and

economically generated due to their focus on chemically well-

characterized peptides. The multi-epitope vaccination can protect

a broad spectrum of pathogens or different strains of a certain

pathogen, particularly for highly adaptable pathogens that undergo

many mutations and give rise to new variations (44).

The physicochemical characterization of F and G protein-based

multi-epitope vaccines revealed a reduction in the size of 574-

amino-acid-long F glycoprotein (molecular weight: 63,750.57 Da)

to 315 amino acids (molecular weight: 31,982.84 Da), and 321-

amino acid-long G glycoprotein (molecular weight: 35,190.86 Da)

to 317 amino acids (molecular weight: 33,292.41 Da). The pI values

of 9.46 and positive GRAVY value of 0.448 for F protein-based

vaccine constructs, along with the pI value of 10.07, and positive
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GRAVY values of 0.598 for G protein-based vaccine constructs,

indicated the basic and hydrophobic nature of these vaccines.

Additionally, the higher aliphatic index, with values above 100,

and the instability index values below 40 for both the F and G

protein-based vaccine constructs, highlight the significant relative

volume occupied by aliphatic side chains and the stability of these

protein-based vaccine constructs. These favorable physicochemical

properties, compared to the original F and G proteins indicate their

potential suitability for further development and evaluation as

hRSV vaccine candidates. The findings of this research align with

a previous study, which reported similar physiochemical stability in

multi-epitope-based vaccine design against hRSV (45).

The F and G protein-based vaccine constructs demonstrated

higher antigenicity, with values of 0.5996 and 0.6048, respectively.

AllerTOP analysis further confirmed the non-allergic nature of the

selected proteins for the hRSV vaccine. This antigenic and non-

allergenic profile suggests that the vaccine constructs have the

potential to stimulate an active immune response against the

hRSV without triggering allergic reactions in humans.

Consequently, these proteins are promising candidates for

developing a vaccine against hRSV.

A similar study reported the antigenic and non-allergic

properties of the multi-epitope vaccine candidates using the

AntigenPro and Vaxijen servers (46). Furthermore, research on

RSV on structural proteins, such as MHC II, 3 B-cell epitopes, and
FIGURE 4

Three-dimensional protein complex between [(A): Top] TLR1 domain (green) and G1 vaccine candidate (gray), [(B): Top] TLR1 domain (green) and G2
vaccine candidate (cyan) and [(C): Top] TLR1 domain (green) and G3 vaccine candidate (orange) shown in cartoon representation. Root means
square fluctuation (RMSF) plots for the interaction between TLR1 and vaccine candidates are below the respective structural representation arranged
accordingly. The RMSF value is also mentioned on the plot with n=3. Interaction residues also mentioned in the Supplementary Table are shown
as sticks.
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6MHC-I revealed their antigenic and non-allergic nature. These

characteristics demonstrated their ability to stimulate immune

responses and prevent viral replication (47, 48). The distribution

of transmembrane helices in the F and G glycoproteins was

analyzed using the TMHMM server, revealing that the proteins

consist of 315 and 317 amino acids, respectively. The F protein

contains two transmembrane helices, with 256 of its amino acids in

the extracellular region. In contrast, the G protein has five

transmembrane helices, with 107 residues in its extracellular

region. These results suggest that most amino acids in these

protein-based vaccine constructs are located in the extracellular

domains of the proteins. The presence of transmembrane helices

was similarly reported in a previous study involving the TMHMM

server, which identified two transmembrane helices in the envelope

protein (49).

The secondary structure analysis of the F glycoprotein-based

vaccine construct revealed a predominant composition of coil

regions (34.67%), followed by a significant proportion of helical

structures (23.7%) and a smaller fraction of beta-strand regions

(13.7%). A similar trend was observed in the G glycoprotein-based

vaccine construct, with its secondary structure dominated by helical

elements, followed by coils and strands. These findings are

consistent with another study that reported a comparable pattern

of secondary structures (45). The G and F glycoproteins play critical

roles in the early stages of hRSV infection (6). Historically,

determining whether the G protein was of viral or host origin

posed challenges due to variations in the cell lines, virus strains, and

protein detection technologies, all of which influenced the observed

size and presence of the G protein. Notably, inhibiting the cleavage

of the G-protein and incorporating it into a live attenuated RSV

vaccine candidate could result in a virus with an intact G protein,
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leading to a 5-fold increase in infectivity for the nasal epithelium –

the primary site of vaccine administration (50).

In combination with the secondary structure data, the three-

dimensional modeling using the advanced AI-ML-based

Alphafold3 method revealed that the vaccine candidates form

well-folded proteins with optimal plDDT values. Molecular

docking and dynamics refinement demonstrated that all vaccine

candidates exhibit strong interactions with the TLR domain

through charged and hydrophobic interactions, forming a tight

bonds. The observed interaction patterns align with previously

studied vaccine-TLR receptor complex models (51).

The F protein exhibits a higher degree of conservation

compared to the G protein, making it the primary target for RSV

development. The pre-fusion F protein is the main target of

antibody neutralization in the sera of individuals who have

experienced multiple RSV infections throughout their lifetime

(52). Due to its capacity to elicit a higher concentration of

neutralizing antibodies, most vaccine research has focused on the

F protein. Prior infection and elevated levels of neutralizing

antibodies, particularly those passed down from the mother,

provide partial protection against the disease. Moreover, the use

of a neutralized F protein mAbs in immunological prophylaxis

underscores the critical role of the F protein in RSV vaccine

development (53).

In this study, we strategically chose Toll-like receptors (TLRs) 2

and 4 due to their pivotal roles in immune recognition and their

established potential as adjuvants, supported by robust literature.

TLR2 and TLR4 are integral to the innate immune system,

recognizing a diverse array of pathogen-associated molecular

patterns (PAMPs) and playing a critical role in the initiation of

immune responses (54). This foundational function is essential for
FIGURE 5

Immune simulation of the predicted vaccine following two injections via the c-immsim server. (A) Immunoglobulin production in response to
antigen injections, with specific subclasses represented in different colors. (B) Cytokine secretion induced by the vaccine highlights IL-2 levels and a
measure of diversity.
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the effective development of vaccines, as their activation can

significantly enhance the adaptive immune response.

Furthermore, existing research underscores the efficacy of

targeting these receptors in various vaccine strategies, affirming

their relevance and effectiveness in enhancing vaccine efficacy (55).

This comprehensive rationale underscores our decision to focus on

TLR2 and TLR4, making these vaccine candidates achieve

improved immune responses against hRSV.
5 Conclusions

This study highlights the promising potential of multi-epitope

vaccines developed through immunoinformatics for combating

hRSV. We have designed an F and G proteins-based synthetic

vaccine that aims to elicit robust immune responses while

minimizing adverse effects. The physicochemical characterization

of the vaccine constructs indicates favorable properties, including

stability and non-allergenic profiles, enhancing their suitability for

further development. Additionally, it was demonstrated to stimulate

immune responses in both cells and antibodies without triggering

type 2 immunity, which are typically associated with RSV infection.

This study highlights the potential of bioinformatics-based methods

in developing effective therapies for emerging viruses, particularly

under constraints such as restricted time and resources. However,

these findings are derived from in silico computational analysis and

must be validated through experimental studies with in vivo and in

vitro models in laboratory settings. Overall, this research

contributes to the ongoing efforts in vaccine innovation, paving

the way for effective and safe immunization strategies against hRSV.
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Subtractive proteomics and
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for novel drug targets and
designing a chimeric vaccine
against Ruminococcus
gnavus strain RJX1120
Hou Dingding1,2†, Sher Muhammad3*†, Irfan Manzoor4,
Sana Abdul Ghaffar4, Hissah Abdulrahman Alodaini5,
Nadine MS. Moubayed5, Ashraf
Atef Hatamleh5 and Xu Songxiao1*

1Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM),
Chinese Academy of Sciences, Hangzhou, Zhejiang, China, 2Postgraduate Training Base Alliance of
Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China, 3Faculty of
Agriculture and Veterinary Sciences, Superior University Lahore, Lahore, Pakistan, 4Department of
Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF),
Faisalabad, Pakistan, 5Department of Botany and Microbiology, College of Science, King Saud
University, Riyadh, Saudi Arabia
Mediterraneibacter gnavus, also known as Ruminococcus gnavus, is a Gram-

positive anaerobic bacterium that resides in the human gut microbiota. Notably,

this bacterium plays dual roles in health and disease. On one side it supports

nutrient metabolism essential for bodily functions and on the other it contributes

to the development of Inflammatory Bowel Disease (IBD) and other

gastrointestinal disorders. R. gnavus strain RJX1120 is an encapsulated strain

and has been linked to develop IBD. Despite the advances made on its role in gut

homeostasis, limited information is available on strain-specific virulence factors,

metabolic pathways, and regulatory mechanisms. The study of such aspects is

crucial to make microbiota-targeted therapy and understand its implications in

host health. A multi-epitope vaccine against R. gnavus strain RJX1120 was

designed using reverse vaccinology-based subtractive proteomics approach.

Among the 3,219 proteins identified in the R. gnavus strain RJX1120, two

critical virulent and antigenic proteins, a Single-stranded DNA-binding protein

SSB (A0A2N5PT08) and Cell division ATP-binding protein FtsE (A0A2N5NK05)

were screened and identified as potential targets. The predicted B-cell and T-cell

epitopes from these proteins were screened for essential immunological

properties such as antigenicity, allergenicity, solubility, MHC binding affinity,

and toxicity. Epitopes chosen were cross-linked using suitable spacers and an

adjuvant to develop a multi-epitope vaccine. Structural refinement of the

construct revealed that 95.7% of the amino acid residues were located in

favored regions, indicating a high-quality structural model. Molecular docking

analysis demonstrated a robust interaction between the vaccine construct and

the human Toll-like receptor 4 (TLR4), with a binding energy of −1277.0 kcal/mol.

The results of molecular dynamics simulations further confirmed the stability of

the vaccine-receptor complex under physiological conditions. In silico cloning of
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the vaccine construct yielded a GC content of 48% and a Codon Adaptation

Index (CAI) value of 1.0, indicating optimal expression in the host system. These

results indicate the possibility of the designed vaccine construct as a candidate

for the prevention of R. gnavus-associated diseases. However, experimental

validation is required to confirm its immunogenicity and protective efficacy.
KEYWORDS

Ruminococcus gnavus, multi-epitope vaccine, reverse vaccinology, inflammatory
bowel disease (IBD), subtractive proteomics, immunoinformatics
Introduction

R. gnavus is a gram-positive anaerobic bacterium that is a key

component of the human gut microbiota, playing significant roles in

both health and disease (1). This bacterium is currently of interest due

to its association with IBD and its ability to produce pro-

inflammatory polysaccharides that modulate host immune

responses (2). Among these strains, RJX1120 stands out for its role

in gut inflammation and distinctive genetic characteristics (3). R.

gnavus is mostly considered a commensal organism but often

becomes a pathobiont in dysbiotic conditions and can be associated

with diseases like Crohn’s disease and ulcerative colitis (4). Its

interactions with mucosal surfaces, the production of mucin-

degrading enzymes, and its ability to produce immunomodulatory

metabolites have been implicated in disease pathogenesis (5). The

pathogenic potential of R. gnavus underscores the understanding of

the virulence determinants and the molecular mechanisms (6).

Currently, no licensed vaccine exists for R. gnavus, despite its

association with inflammatory bowel disease (IBD) and other

gastrointestinal disorders. This highlights an urgent need for novel

vaccine strategies. Traditional vaccine development relies on

culturing and isolating antigens, which is labor-intensive and time-

consuming. In contrast, computational vaccine design offers a more

efficient and targeted approach by identifying immunogenic proteins

through reverse vaccinology and subtractive proteomics. Proteomic

studies are very relevant for revealing the specializations of RJX1120

to unveil its potential therapeutic goals and thus help in generating

preventive mechanisms (7).

R. gnavus exhibits significant adaptability and resilience in the

human gut, which may contribute to its potential resistance to

therapeutic interventions (2). This bacterium is known for its ability

to degrade complex carbohydrates and mucins, producing

metabolites such as short-chain fatty acids (e.g., propionate) that

enhance its competitiveness and survival in the gut microbiota (8).

In addition, the capacity to immunomodulate through

immunogenic polysaccharides could enable this microbe to evade

host immunity and promote long-term persistence in the gut (3).

Although direct evidence for the presence of antimicrobial

resistance mechanisms in R. gnavus is scanty, the effects of

horizontal gene transfer of resistance genes are favored by its
0246
metabolic versatility (9). Understanding the mechanism of its

resistance, such as its biofilm formation ability and possibly

resistance-determining factors, is important to define suitable

therapeutic strategies against pathogenic strains without

disrupting the homeostasis of gut microbiota (10).

Subtractive proteomics represents a strategic approach for

identifying pathogen-specific proteins important for survival but

missing from the host proteome (11). In comparison, the unique set

of proteins characteristic to R. gnavus points out the drug target

candidates and vaccine targets (12). In subtractive proteomics, the

subtraction of homologous proteins in the host background

removes the critical proteins involved in pathogenicity in the

bacterium but avoids the unwanted effects that would otherwise

result in drug and vaccine therapies (11). A bioinformatics-driven

approach called reverse vaccinology complements subtractive

proteomics, antigenic proteins to be used in vaccines are analyzed

by reverse vaccinology (11). Such proteins are likely to be surface-

exposed, conserved among strains, and capable of inducing potent

immune responses (12). Reverse vaccinology does not require

isolation and culture of the pathogen, making vaccine discovery

for complex organisms like R. gnavus significantly faster.

Subtractive proteomics combined with reverse vaccinology offers

an integrative approach to designing new vaccines and drugs

against R. gnavus. The membrane and secreted proteins are the

most relevant for vaccine development because these are exposed to

the host immune system (13). Cytoplasmic proteins are the most

suitable drug targets, as they are often critical to bacterial

metabolism and survival (14). Using these approaches,

multiepitope vaccine constructs can be designed by selecting

epitopes from membrane-bound proteins that are non-allergenic,

antigenic, and non-toxic (15). These vaccines can induce targeted

immunity to pathogenic strains of R. gnavus and maintain the

commensal balance of the gut microbiota.

In order to create a targeted vaccination against R. gnavus strain

RJX1120, this study explores the pathogenic role of this bacteria in

inflammatory bowel disease (IBD). The study finds possible vaccine

candidates by searching the entire proteome of R. gnavus for

essential, antigenic, and non-homologous proteins using a mix of

subtractive proteomics and reverse vaccinology. Single-stranded

DNA-binding protein (SSB) and cell division ATP-binding
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protein FtsE are two important antigenic proteins that have been

discovered as potential targets for vaccine development. B-cell and

T-cell epitopes are included in a multi-epitope vaccination

construct to produce a potent and defense-enhancing immune

response. To assess the construct’s stability, immunogenicity, and

possible effectiveness, it is subjected to molecular docking with

human Toll-like receptor 4 (TLR4), molecular dynamics

simulations, and in silico immune response simulations. Codon

optimization also guarantees effective expression in Escherichia.

coli, which makes subsequent experimental validation easier. This

study’s main premise is that the multi-epitope vaccination will

produce a strong immune response against R. gnavus, possibly

acting as a prophylactic against the diseases it causes while

maintaining the balance of the gut microbiota. To verify its

immunogenicity and protective effectiveness, more in vitro and in

vivo validation is necessary.
Materials and methods

Retrieval of proteome

The complete proteome of R. gnavus strain RJX1120 (Proteome

ID: UP000234812) was retrieved in FASTA format from the

UniProt database (16). A BLASTp search was performed against

the Database of Essential Genes (DEG) to identify essential proteins

in R. gnavus by comparing its proteome with known essential

proteins. These proteins are vital for the bacterium’s survival,

growth, and key biological processes (17). Being integral

components, these proteins are therefore crucial for an organism’s

survival in a particular environment (18). For greater refinement,

Cello tool, which predicts the subcellular localization of proteins,

was used to identify membrane-associated proteins from the list of

essential proteins (19). Due to their accessibility to the host immune

system, these membrane-associated proteins are highly promising

targets for vaccine development (20). Then the screened proteins

were analyzed for the presence of antigenicity based on a threshold

of 0.5 using Vaxijen server because the proteins with high values are

known to induce immense immune response upon exposure in the

host (21, 22). The TMHMM v-2.0 server was used to predict

potential transmembrane helices in the target proteins (23, 24).
Selection and assessment of CTL epitope

CTL epitopes for the target molecule were predicted using the

MHC-I binding tool on the Immune Epitope Database (IEDB) (25).

The consensus method was applied in the MHC-I binding tool to

predict CTL epitopes. Epitopes with a consensus score of less than 2

were selected for further study (26). Subsequently, the potential

immunogenicity of epitopes selected for CTL usage was assessed by

the use of the IEDB immunogenicity tool (27). To confirm that the

selected epitopes have strong potential to elicit an effective immune

response, their antigenicity was assessed using the VaxiJen v2.0 server

with a threshold of 0.5 (28). Only those epitopes that were considered
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antigenic were selected for incorporation in the vaccine construct (15).

It is crucial that the vaccine candidate does not induce allergic or toxic

reactions. The allergenic potential of the predicted epitopes was

evaluated using the AllerTOP v2.0 server, and their toxicity was

evaluated using the ToxinPred server (22, 29, 30). This broad

approach ensured that safe and immunogenic CTL epitopes were

identified for potential inclusion in a vaccine design.
HTL epitopes selection and analysis

Helper T lymphocytes (HTLs) are essential players in the

adaptive immune system, where they orchestrate both cell-

mediated and humoral responses against foreign pathogens (31).

HTL epitopes from the target protein were identified by using the

MHC Class II binding tool available through the Immune Epitope

Database (IEDB) (32). The search was confined to 15-mer HTL

epitopes for their binding affinity to a wide range of HLA-DR alleles

to comprehensively cover the immunological coverage and were

chosen for their optimal binding affinity and immunogenic

potential (26). All selected epitopes were evaluated for

antigenicity, allergenicity, and toxicity using the VaxiJen,

AllerTOP v2.0, and ToxinPred servers, respectively (27).
LBL epitope identification and analysis

Linear B-cell epitopes are sequences of amino acids on the

surface of proteins that can be recognized by antibodies (33). They

are recognized by either naturally occurring antibodies or receptors

on B cells, therefore able to stimulate cellular and humoral

immunity (34). Vaccine development involves such epitopes

critically because they enhance adaptive immunity through

amplification of defence mechanisms in the immune response

(35). The ABCPred server was used to predict linear B-cell

epitopes from the target protein, with the threshold set at a

minimum of 0.5 for prediction (36). After predicting epitopes,

their antigenicity, allergenicity, and toxicity were assessed using

the VaxiJen v2.0, AllerTOP v2.0, and ToxinPred servers,

respectively (22, 27, 30). This way, only immunogenic, safe, and

non-toxic epitopes were selected to be included in vaccine

design (15).
Designing of vaccine construct

The multi-epitope vaccine (MEV) construct was designed by

appropriately linking B-cell and T-cell epitopes with an adjuvant

(37). Adjuvants are crucial for enhancing the immunogenicity of

vaccine constructs, eliciting a stronger immune response in

recipients (38). In this study, cholera enterotoxin subunit B

(Accession No: P01556) was chosen due to its established ability

to enhance the immunogenic potential of vaccine constructs (39).

For linking components, EAAAK linkers were used to attach the

CTL epitopes to the adjuvant, providing structural stability and
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maintaining the functional integrity of the epitopes. GPGPG and

AAY linkers were used to connect CTL and HTL epitopes, allowing

their efficient presentation and enhancing their immune responses

(40). Bi-lysine (KK) linkers were employed to preserve the specific

immunogenic activity of linear B-cell (LBL) epitopes (41).

Systematic arrangement of the construction is essential for

immunogenic efficiency and structural stability; thus, the MEV

construct represents a promising candidate for vaccine

development (42).
Structural analysis

The structural properties of the MEV construct were analyzed

using various bioinformatics tools (43). First, the physiochemical

characteristics of the construct, such as theoretical isoelectric point

(pI), molecular weight (MW), instability index (II), aliphatic index

(AI), Grand Average of Hydropathicity (GRAVY), and in vivo/in

vitro half-life, were evaluated using the ProtParam server (44, 45).

Immunological efficacy was ensured by checking the antigenic and

immunogenic profiles of the MEV construct using the IEDB

immunogenicity tools and the Vaxijen v2.0 server (46). Allergenic

potential was computed using the AllerTOP v2.0 server to ensure

safety for the construct in its potential application in humans (42).

The SOPMA tool was used to predict secondary structural features

of the MEV construct, assessing the proportions of random coils,

alpha-helices, beta-turns, and extended chains (44, 47). These

detailed structural analyses allow researchers to understand

stability, functionality, and applicability in the development of

vaccines (48).
Refinement, confirmation, and prediction
of tertiary structure

The prediction of the tertiary structure of the MEV construct is

crucial for evaluating its structural and functional efficacy (37). For

this purpose, the 3D structure of the MEV construct was predicted

using the Alphafold server, which is a state-of-the-art tool for

accurate protein structure modeling (49). The Galaxy Refine

server was then used to refine and optimize the 3D structure for

better stereochemical quality, and to minimize any structural errors

that may occur (50). After refining the structure, the quality of the

model was analyzed using the RAMPAGE server, where it evaluates

the quality based on Ramachandran plot statistics (51). ERRAT

server was used to check for possible errors and to assess the overall

quality and reliability of the 3D structure of the MEV

construct (52).
B-cell epitopes screening

The B-cell epitopes of the MEV construct were screened

through the ABCPred online server and Ellipro tool within the

IEDB-AR v2.22 suite (53, 54). For the prediction of linear epitopes,
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the amino acid sequence of the MEV was fed into the ABCPred

server with a threshold set at 0.5 and an amino acid length fixed at

15 residues (55). For conformational epitope prediction, default

parameters were used with Ellipro to analyze the 3D structure of

MEV construct (15). The conformational approach would serve as a

complement to these studies to identify linear epitopes, while

identifying putative regions of immunogenicity in the MEV

construct (56).
Binding analysis of TLR4 receptor with the
designed vaccine

The effective recognition of the designed vaccine by the host’s

immune system is crucial for initiating a robust immune response

(56). Molecular docking studies were carried out to evaluate the

designed vaccine’s binding capability with the immune receptors.

For assessing the role of these immune receptors in stimulating the

antimicrobial and adaptive immune responses, TLR4, MHC Class I

and II were selected (57). TLR4 was selected due to its critical role in

recognizing bacterial antigens and initiating an innate immune

response (58). Protein-protein interactions between the vaccine

construct and these receptors were modeled using the ClusPro

server, which is a reliable tool for molecular docking (59). The

resulting docked complexes were visualized using Chimera, a

visualization tool for 3D molecular structures (60). The

interactions within the docked complexes were analyzed by using

the PDBsum server that provides detailed insights into interface

residues and binding interactions (61).
Molecular dynamic simulation

Molecular dynamics simulations are computational

methodologies used to study the dynamic behavior and stability

of molecular systems such as protein-protein complexes (62).

Interaction of the designed MEV construct with the selected

receptor was analyzed by the iMODS server that proves to be a

fast and efficient tool for molecular dynamics studies (15, 63).

iMODS facilitates the exploration of dynamic properties and

transition pathways between molecular entities to gain actionable

insights into conformational changes (63). The stability of the

docked complexes was evaluated through key parameters, such as

the main-chain deformability plot, covariance matrix, eigenvalue

analysis, B-factor values, and the elastic network model (64). These

analyses provided a detailed understanding of the mechanical and

dynamic stability of the protein-protein interaction (64).
Immune simulation

The immune response to the predicted vaccine construct was

evaluated using the C-ImmSim 10.1 server (53). This platform is

designed to simulate the interactions of the immune system,

focusing on key functional components such as the bone marrow,
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lymph nodes, and thymus (65). The simulation was performed

using the following input parameters: Human Leukocyte Antigen

(HLA) alleles (DRB1 0101, B0702, A0101), a random seed (12,345),

a simulation volume of 10, one injection, and 100 steps (66). These

alleles were selected for their broad population coverage and their

relevance in antigen presentation, ensuring a diverse immune

response (67). Other parameters were set to their default values to

ensure accurate simulation of the immune response. This

comprehensive immune simulation helped assess the potential

efficacy and immunogenicity of the vaccine construct in a

simulated mammalian immune system environment (67).
Dry lab cloning and codon optimization

Codon usage is species-specific, and the presence of non-

adapted codons in a gene sequence can result in suboptimal

expression levels in the host organism (68). To enhance gene

expression, it is essential to optimize the codon usage to match

the host’s translational machinery (69). In this study, the Java

Codon Adaptation Tool (JCAT) was utilized for the optimization

and reverse translation of the MEV construct (70). During this

process, prokaryotic ribosome binding sites, Rho-independent

transcription termination signals, and appropriate restriction

enzyme cleavage sites were selected to facilitate efficient

expression and cloning (69). Subsequently, the optimized vaccine

construct was inserted into the pET30a(+) vector using SnapGene

software, ensuring a seamless cloning process for subsequent

experimental validation (71).
Result

Proteome analysis

The complete proteome of the pathogenic strain R. gnavus

RJX1120 was extracted from the UniProt database (Proteome ID:

UP000234812), and a subtractive genomics approach was applied

for the identification of potential vaccine targets against infections

caused by R. gnavus. The total number of proteins in the proteome

of the strain was found to be 3,219, and a comprehensive filtering

pipeline was applied in order to find key target proteins. Initially,

the database DEG identified 848 proteins that are essential in the

proteome of a pathogen for survival and proliferation. These

essential proteins were screened using BLASTp for non-

homologous proteins, thus narrowing them down to 245. These

245 were again screened for localization of their subcellular

positions and antigenicity. From there, the further studies have
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been conducted to further investigate the remaining 15 membrane-

associated proteins that would possibly become vaccine candidates.

These proteins were screened for their antigenicity, allergenicity,

and stability. Of these, seven had the highest antigenicity, were non-

allergenic, and very stable. The transmembrane helices of these were

further tested. The two best vaccine candidates were the Single-

stranded DNA-binding protein and the Cell division ATP-binding

protein FtsE. These proteins exhibited high antigenicity, were non-

allergenic and stable and lacked transmembrane helices (Table 1).
Epitope selection phase

Cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL),

and linear B lymphocyte (LBL) epitopes of specific antigenic

proteins were predicted during the epitope selection phase.

Among the forecasted epitopes, the top seven CTL epitopes were

selected for vaccine formulation based on their non-toxic,

immunogenic, antigenic, and non-allergenic properties (Table 2).

Similarly, the top four HTL epitopes exhibiting non-allergenicity,

antigenicity, immunogenicity, IFN-gamma induction capability,

and non-toxicity were identified for vaccine design (Table 3).

Additionally, the top two LBL epitopes, characterized by their

antigenicity, immunogenicity, non-allergenicity, and non-toxicity,

were chosen for incorporation into the vaccine construct (Table 4).
Construction of multi epitope vaccine

The vaccine construct was designed by integrating 7 CTL

epitopes, 4 HTL epitopes, and 2 B-cell epitopes with a suitable

adjuvant and linkers. Cholera enterotoxin subunit B, consisting of

236 amino acids, was incorporated at the N-terminal of the vaccine

using an EAAAK linker to enhance immunogenicity. The CTL,

HTL, and B-cell epitopes were linked using AAY, GPGPG, and KK

linkers, respectively, to maintain their individual immunological

properties. The finalized vaccine construct comprised 347 amino

acids (Figure 1).
Population coverage analysis

A comprehensive population coverage analysis was performed

on the selected CTL and HTL epitopes utilized in the development

of the multi-epitope vaccine (MEV). The analysis revealed that the

chosen epitopes collectively covered approximately 71% of the

global population. Notably, the highest population coverage was

observed in Sweden, with an impressive 87%. Other countries also
TABLE 1 Comprehensive details regarding the antigenic vaccine protein derived from Ruminococcus gnavus.

Accession no Protein Antigenicity Allergenicity Toxicity

A0A2N5PT08 Single-stranded DNA-binding protein 0.7402 Non -allergen Non -toxin

A0A2N5NK05 Cell division ATP-binding protein FtsE 0.5909 Non -allergen Non -toxin
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exhibited significant coverage, including the Philippines (86%),

Japan (80%), and Finland (76%). These findings substantiate the

potential of the filtered epitopes as promising candidates for

constructing an effective MEV targeting diverse populations

globally (Figure 2).
Post-analysis of vaccine structure

The stereochemical properties of the constructed vaccine were

analyzed using the ProtParam tool. The vaccine structure exhibited

a molecular weight of 38,154.87 Da and an isoelectric point (pI) of

10.30, indicating its basic nature. It contained 55 positively charged

amino acids (arginine and lysine) and 23 negatively charged amino

acids (glutamic acid and aspartic acid). The instability index of the

structure was calculated as 27.14, classifying it as stable.

Furthermore, an aliphatic index of 68.44 confirmed its

thermostability, while the GRAVY (Grand Average of

Hydropathicity) value of -0.464 indicated a hydrophilic nature.

The half-life of the vaccine was predicted to be 30 hours in

mammals (in vivo), over 20 hours in yeast (in vivo), and over 10

hours in E. coli (in vivo). Additionally, the vaccine was confirmed to

be non-allergenic, non-toxic, and antigenic.
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Structural analysis of vaccine

Secondary structure analysis using SOPMA revealed that the

347-amino acid sequence comprises 162 residues forming a-helices
(46.69%), 71 residues forming extended strands (20.46%), and 114

residues involved in random coils (32.85%), indicating a well-

organized structural profile. The three-dimensional structure of

the vaccine construct was predicted using the Alphafold server,

followed by refinement through the Galaxy Refine server to

optimize structural quality. Validation of the refined model was

performed using a Ramachandran plot, which indicated that 95.7%

of amino acid residues were located in the most favorable regions,

3.0% in the allowed regions, and 0.0% in the disallowed regions

(Figure 3). Further evaluation demonstrated that the vaccine

structure achieved a high-quality factor of 85.246 and a Z-score

of -5.06, confirming the absence of poor rotamers (Figure 4).
Selection of B-cell epitopes

B-lymphocytes play a pivotal role in humoral immunity by

producing antibodies. Therefore, an effective vaccine must include

optimal B-cell epitope domains to elicit a robust antibody response.
TABLE 2 Selected CTL epitopes finalized for vaccine construction targeting Ruminococcus gnavus.

Epitope Protein Allele Position Antigenicity Immunogenicity

NLKRMKHRNIAK Cell division ATP-binding protein FtsE HLA-A*03:01 65-76 0.5296 -0.18793

VARYTVAVDRRF Single-stranded DNA-binding protein HLA-A*23:01
HLA-A*24:02

27-38 0.5194 0.26418

SVSGRIQTGSYT Single-stranded DNA-binding protein HLA-A*26:01
HLA-A*25:01

72-83 1.376 -0.02448

FRQGMRISVSGR Single-stranded DNA-binding protein HLA-A*31:01 65-76 0.9521 -0.23656

VNEMNERVITMK Cell division ATP-binding protein FtsE HLA-B*18:01 200-211 0.7641 0.09304

KRMKHRNIAKYR Cell division ATP-binding protein FtsE HLA-A*31:01 HLA-B*27:05 67-78 0.7392 -0.21613

NEMNERVITMKQ Cell division ATP-binding protein FtsE HLA-B*18:01 201-212 0.6243 0.01653
TABLE 3 Finalized HTL epitopes for vaccine construction targeting Ruminococcus gnavus.

Epitope Protein Allele Position Antigenicity Immunogenicity

FAEKYFRQGMRISVS Single-stranded DNA-binding protein HLA-DRB1*15:02 60-74 0.6184 -0.21432

QGMRISVSGRIQTGS Single-stranded DNA-binding protein HLA-DRB1*07:03
HLA-DRB1*13:02

67-81 1.3073 -0.0008

RQGMRISVSGRIQTG Single-stranded DNA-binding protein HLA-DRB1*07:03
HLA-DRB1*13:02

66-80 1.2518 0.1341

SATAVARYTVAVDRR Cell division ATP-binding protein FtsE HLA-DRB1*08:06 23-37 0.6282 0.38099
TABLE 4 Finalized B-cell epitope selected for vaccine construction against Ruminococcus gnavus.

Epitope Protein Score Position Antigenicity Immunogenicity

TRAANNKAANNKMEDG Cell division ATP-binding protein FtsE 0.59 227 1.6355 0.38477

TAANPTMEDGNSINGL Single-stranded DNA-binding protein 0.7 7 1.0945 -0.01349
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FIGURE 1

(A) A schematic representation of the MEV construct highlights the color-coded elements: the adjuvant (blue), CTL epitopes (red), HTL epitopes
(purple), B-cell epitopes (green), and linkers (EAAAK, AAY, GPGPG, KK; all depicted in black). (B) The final multi-epitope vaccine (MEV) construct is
composed of 347 amino acids. It includes an adjuvant (blue) linked via an EAAAK linker (black) and is connected to CTL epitopes (red) using an AAY
linker (black). HTL epitopes (purple) are joined by GPGPG linkers (black), while KK linkers (black) connect B-cell epitopes (green).
FIGURE 2

Population coverage analysis of selected T-cell epitopes across different countries/regions. The bar graph depicts the percentage coverage in the
global population (71%) and specific regions, including Sweden (87%), the Philippines (86%), Japan (80%), Finland (76%), Russia (73%), Korea (69%),
Europe (68%), Indonesia (66%), and Saudi Arabia (64%). This analysis highlights the broad applicability and potential impact of the designed multi-
epitope vaccine in diverse populations.
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In this study, 14 conformational B-cell epitopes, ranging from 3 to

53 residues in length, were identified with scores between 0.518 and

0.988. Additionally, 8 linear B-cell epitopes were predicted using the

ElliPro server with default parameters. The conformational B-cell

epitopes were visualized using PyMOL v1.3, a molecular graphics

system, during the vaccine design process (Figure 5).
Molecular docking with host immune
receptor

Molecular docking is a critical technique for elucidating the

binding interactions between vaccine constructs and immune

receptor proteins. In this study, the molecular docking of the

designed multi-epitope vaccine (MEV) with the human Toll-like

receptor 4 (TLR4) was performed using the ClusPro server. ClusPro

is a highly reliable protein-protein docking platform that integrates

a hybrid docking algorithm, combining experimental substrate

binding site data with small-angle X-ray scattering for docking

analyses. The refined 3D structure of the vaccine construct (ligand)

was docked against the TLR4 receptor (PDB ID: 3FE8), generating
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10 docking models. The top-ranked docking model, with 230

members in its cluster and an interaction energy of -1277.0 kcal/

mol, demonstrated high stability of the vaccine-TLR4 complex.

Molecular interactions within the docking complex were analyzed

using the PDBsum server, which revealed that the MEV construct

exhibited favorable binding with chain A of the TLR4 receptor,

forming 13 hydrogen bonds (Figure 6). Thermodynamic

parameters for the binding energy of the docking complex were

computed using the PRODIGY tool. The equilibrium dissociation

constant (Kd) was determined to be 4.1×10−8 at 37°C, with a Gibbs

free energy change (DG) of -10.1 kcal/mol. These results confirm

the stability and strong binding affinity of the MEV construct to the

TLR4 receptor.
Normal mode analysis

Normal mode analysis (NMA) was performed to evaluate the

molecular stability and functional motions of the MEV-TLR4

complex. The deformability plot revealed peak regions

corresponding to main-chain residues exhibiting flexibility in
FIGURE 3

(A) Secondary structure prediction of the final multi-epitope vaccine construct using the SOPMA tool. The diagram illustrates the distribution of
helices (blue), sheets (red), coils (purple), and turns (green). The horizontal black bar at the bottom represents the full length of the protein. (B) The
refined 3D structure of the vaccine construct, displaying its spatial conformation. (C) Ramachandran plot analysis of the vaccine construct,
demonstrating structural quality with 95.7% of amino acid residues positioned in favored regions.
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FIGURE 4

(A) Structural validation of the refined 3D vaccine model using the ERRAT tool. Regions of the structure rejected at the 99% confidence level are
highlighted in red, while those rejected at the 95% confidence level are shown in yellow. (B, C) The Z-score plot of the refined 3D model, generated
by ProSA-web, provides an assessment of the overall quality and reliability of the predicted vaccine structure.
FIGURE 5

Three-dimensional representation of the conformational or discontinuous B-cell epitopes in the designed multi-epitope vaccine. The
conformational B-cell epitopes are highlighted as an orange surface, while the remaining bulk of the polyprotein is depicted using grey
stick representation.
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the MEV-TLR4 complex. These highly deformable regions are

indicative of “hinges” or “linkers” within the main chain. The

experimental B-factor plot demonstrated the relationship between

the NMA-predicted mobility and the MEV-TLR4 complex,

showcasing the average RMSD values of the docked complex.

The computed eigenvalue of the complex was 1.945512×10−7,

reflecting the stiffness associated with each normal mode of

motion. The variance bar illustrated individual (purple) and

cumulative (green) contributions of each normal mode,

indicating a negative correlation between variance and

eigenvalue. Furthermore, a covariance map was generated to

depict interatomic motions within the MEV-TLR4 complex. The

map identified correlated (red), uncorrelated (white), and anti-

correlated (blue) motions between different residue pairs.

Additionally, a specialized elastic network model was

constructed, representing the interatomic connections within the

complex. The spring-like assembly between corresponding atoms

and their stiffness were indicated by colored dots, with darker

greys signifying more rigid interactions. Collectively, the NMA

results demonstrated stable interactions and coordinated motions

within the MEV-TLR4 complex, supporting its structural integrity

and functionality (Figure 7).
Immune simulations

The immune simulation results demonstrated a robust

enhancement of both primary and secondary immune responses to
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the top-ranked vaccine construct. Administration of the vaccine led

to elevated levels of immunoglobulins, including IgG1 + IgG2, IgM,

and IgM + IgG, indicative of a strong antibody-mediated immune

response. The B-cell population showed significant expansion upon

repeated exposure to the vaccine antigen, highlighting the formation

of humoral immune memory. The simulations also revealed a

marked increase in cytotoxic T cells (CTLs) and helper T cells

(HTLs), coupled with a substantial reduction in antigen levels

during secondary and tertiary immune responses, underscoring the

vaccine’s ability to enhance adaptive immunity. Additionally, the

proliferation of natural killer cells, dendritic cells, and macrophages

was predicted following each immunization cycle, reinforcing the

construct’s capacity to stimulate innate immune responses. The

vaccine also elicited cytokine and interleukin release, particularly

IFN-g, TGF-b, IL-23, IL-10, and IFN-b, which are crucial for

mounting an effective immune response against infection. Notably,

continuous antigen exposure during the immunization period

resulted in significantly elevated levels of IFN-g and TGF-b, while
other cytokines were detected at lower concentrations. The calculated

Simpson’s Index (D) confirmed a balanced immune response,

reflecting the construct’s comprehensive impact on immune

diversity. These findings suggest that the proposed vaccine

construct can effectively activate T and B lymphocytes, inducing

robust antibody production and establishing long-lasting memory

cells upon repeated antigen exposure. The immune simulation results

further support the potential of the vaccine construct to elicit strong

innate and adaptive immune responses, demonstrating its efficacy in

combating leishmaniasis (Figure 8).
FIGURE 6

Docking analysis of the interaction between the receptor TLR4 and the multi-epitope vaccine (MEV). (A) Chain A and Chain E of the receptor and
the MEV are depicted in purple and blue, respectively, highlighting the interacting residues. (B) Docking visualization showing Chain A of the
receptor (blue) and the MEV (red), illustrating the optimal binding affinity. (C) Detailed illustration of interacting residues between the receptor and
the vaccine construct, showing the formation of 13 hydrogen bonds between the receptor residues and the vaccine molecule.
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Codon optimization and in silico restriction
cloning

The expression potential of the proposed vaccine constructs was

evaluated through codon optimization. Results obtained from the

JCAT server revealed that all vaccine constructs achieved a Codon

Adaptation Index (CAI) value of 1.0, indicating optimal codon usage.

Furthermore, the GC content of the optimized cDNA sequences was

48%, which lies within the ideal range for efficient expression in the E.

coli K12 vector. The optimized gene sequence of the prioritized

vaccine construct was successfully integrated into the widely utilized

pET30a(+) plasmid vector through in silico cloning. The total length of

the recombinant plasmid was determined to be 5211 bp, confirming

the feasibility of the construct for downstream applications (Figure 9).
Discussion

R. gnavus is an important member of the human gut microbiota

that plays both commensal and pathogenic roles (72). The

involvement of this bacterium in diseases like inflammatory

bowel disease (IBD) highlights its clinical significance, positioning

it as a potential target for therapeutic interventions (4).
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Conventional treatments are challenging to implement because

the bacterium is resilient and can evade immune responses,

making the development of innovative solutions such as vaccines

an urgent necessity (73). Vaccination remains one of the most

effective strategies for reducing morbidity and mortality associated

with microbial infections, particularly against emerging pathogens

(74). Advances in immunoinformatics and reverse vaccinology offer

a modern, cost-effective framework for rapid vaccine development,

overcoming the limitations of traditional methods (75). These

methodologies have successfully applied to propose vaccines for

pathogens as diverse as Mycoplasma pneumoniae, Salmonella

Typhimurium, and Campylobacter jejuni, among others (76, 77).

Here, a multi-epitope vaccine (MEV) construct against R.

gnavus was designed using subtractive proteomics combined with

immunoinformatics, molecular docking, and simulation

techniques. Core proteome analysis identified essential proteins

that are non-homologous to human proteins while exhibiting

antigenic properties (42, 78). Such core proteins are crucial

because they give the host a broad-spectrum protection against

various strains of the pathogen (76). Among the identified proteins,

the single-stranded DNA-binding protein (SSB) and FtsE are

crucial for bacterial survival and virulence (74, 79). SSB is

essential for maintaining genomic stability during DNA
FIGURE 7

Molecular dynamics (MD) simulation analysis of the docked complex of the multi-epitope vaccine (MEV) with the receptor. (A) Deformability plot
illustrating the flexibility of different regions in the docked complex. (B) B-factor analysis indicating the atomic fluctuations within the complex.
(C) Covariance index depicting the correlated motions of residues. (D) Elastic network analysis demonstrating the connectivity and motion of
residues within the complex. (E) Eigenvalue analysis representing the stiffness of the docked structure and its associated energy requirements.
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replication and repair, particularly under stress conditions, ensuring

the resilience of R. gnavus (80). Its conservation across bacterial

species underscores its importance in safeguarding replication

fidelity, which can contribute to the persistence of R. gnavus in

the gut, even during inflammatory states such as IBD (81, 82).

Similarly, FtsE, a component of the FtsEX complex, is integral to

bacterial cell division and peptidoglycan remodeling (83). In R.

gnavus, FtsE likely supports robust cell wall integrity, enhancing

survival and adaptability in competitive gut environments (83, 84).

These proteins underscore the bacterium’s ability to endure host

defenses and environmental stresses, making them potential targets

for future therapeutic interventions.

Strict selection criteria were applied to identify CTL, HTL, and

B-cell epitopes with high antigenicity while ensuring they were non-

allergenic and non-toxic for potential use (85). Of extreme
Frontiers in Immunology 1256
importance, the epitopes showed a very good worldwide

population coverage, meaning an important potential for

inducing immunity across different populations (28).

To increase the immunogenicity and stability of the vaccine,

various linkers like AAY, KK, and GPGPG were used for joining the

epitopes (86). These linkers have been reported to facilitate effective

epitope processing, minimize junctional immunogenicity, and

stimulate a robust immune response (87). The use of adjuvant

cholera toxin subunit B coupled with the EAAAK linker ensured

further stimulation of the immunity. This concept is very similar to

a previous studies where these pairs were designed to improve

stability and antigenicity of vaccines (76, 77).

Structural analysis of the vaccine construct showed that it was

nontoxic, non-allergenic, and antigenic (75). Solubility predictions

indicated that the vaccine would be easily expressible and
FIGURE 8

C-ImmSim immunization simulation results for the multi-epitope vaccine construct: (A) Immunoglobulin production depicted through color-coded
peaks. (B) B-cell population showing increased types and class-switching potential. (C) Population distribution per state of B cells. (D) Evolution of T-
helper cells over time. (E) Population distribution per state of T-helper cells. (F) Generation and dynamics of cytotoxic T cells. (G) Macrophage
population distribution per state. (H) Cytokine and interleukin induction, showing elevated levels of IFN-g and IL-2 post-vaccination. (I) Th1-mediated
immune response activation.
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bioavailable in the host system. This is important because solubility

plays a crucial role in determining the effectiveness of subunit

vaccines in producing strong immune responses (38). Docking

studies showed strong binding interactions between the vaccine

construct and the TLR4 receptor, which is a central component of

the innate immune system (15, 64). Molecular dynamics

simulations further confirmed that the vaccine-TLR4 complex is

stable, highlighting its potential to mediate innate immune

responses (42, 63, 64).

Codon optimization enabled the construct to be used for the

expression of the vaccine in E. coli K12, with a codon adaptation

index of 1.0 and a GC content of 48%, both indicating high

efficiency of transcription and translation (69, 70, 76). Predictions

from the immune simulation showed that it would trigger strong

cellular and humoral immunity, which would also include strong T

cell and B cell activation and the formation of memory cells, thus

implying that the vaccine would offer long-term immunity against

diseases caused by R. gnavus.

Although the findings are encouraging, this research has

limitations. Predictions based on immunoinformatics are highly

dependent on computational algorithms, which could not perfectly

mimic biological outcomes. Hence, in vitro and in vivo studies that

experimentally validate the safety and efficacy of the vaccine are

needed. Further information on R. gnavus pathogenesis and host

immune system interaction could narrow down vaccine targets and

produce better outcomes. This is a rationally designed construct of a
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multi-epitope vaccine that would potentially activate robust

immune responses against R. gnavus. Further experimental

validations are required, but such a vaccine would be ideal for

overcoming the challenges related to this opportunistic pathogen

while maintaining gut microbiota balance.
Conclusion

This study applied subtractive proteomics and reverse

vaccinology to find vaccine candidates and design a multi-epitope

vaccine against R. gnavus strain RJX1120. Pathogenic strain-specific

antigenic proteins were selected to minimize off-target effects on

beneficial gut microbiota. The identified antigens included Single-

stranded DNA-binding protein and Cell division ATP-binding

protein FtsE, promising as vaccine candidates. Epitopes predicted

for B and T cells would generate both humoral and cell-mediated

immunity. Adjuvants and linkers have been incorporated to

increase their immunogenicity and stability. The proposed

vaccine showed favorable structural and physicochemical

properties, including strong binding affinity with TLR4 receptors,

confirmed by molecular docking and simulation studies. Immune

simulations predicted robust in vivo immunogenicity. Codon

optimization and reverse translation ensured efficient expression

in E. coli. Experimental validation in animal models is essential to

confirm the efficacy and safety of the designed vaccine.
FIGURE 9

In silico cloning of the vaccine construct into the E. coli K12 host expression system. The plasmid backbone is represented in black, while the
inserted nucleotide sequence of the vaccine construct is highlighted in red.
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Seongnam-si, Gyeonggi-do, Republic of Korea, 5Department of Biomaterials, Saveetha Dental
College and Hospitals, SIMATS, Saveetha University, Chennai, India, 6Department of Biotechnology,
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Introduction: Infectious diseases continue to challenge human health with high

incidence andmortality rates worldwide. Notably, the adaptability of RNA viruses,

highlighted by outbreaks of SARS, MERS, and COVID-19, emphasizes the timely

need for effective therapeutics. Saint Louis encephalitis virus (SLEV) belonging to

the Flaviviridae family is an RNA virus that mostly affects the central nervous

system (CNS) of humans. Although supportive care treatments such as

antiemetics and painkillers are being used against SLEV infection, it still lacks

potential therapeutics for the effective treatment.

Methods: Reverse vaccinology and immunoinformatics approaches help in the

identification of suitable epitopes to design a vaccine construct that will activate

both B- and T-cell-mediated responses. Previous studies used only the envelope

protein E for the vaccine design, but we have used multiple protein targets to

enhance the vaccine efficacy. Thus, in the present study, we have designed a

multi-epitope subunit vaccine that specifically targets the membrane

glycoprotein M, envelope protein E, and anchored capsid protein anchC of SLEV.

Results: Our results indicated that the vaccine construct is structurally stable,

antigenic, non−allergic, non−toxic, and soluble. Additionally, the vaccine

construct was structurally refined and indicated significant binding affinity

toward the Toll-like receptor 4 (TLR-4) supported by molecular docking and

molecular dynamics simulations. Furthermore, it also indicated that it has the

potential to induce an immune response.
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Conclusion: In addition, it has been cloned in the pET-28a (+) vector-6xHis-TEV-

ORF9c expression vector for further experimental validation. We also

recommend to evaluate the designed vaccine’s therapeutic efficacy through in

vitro and in vivo studies in the near future.
KEYWORDS

Saint Louis encephalitis virus, vaccine, epitope, antigen, immune response
1 Introduction

Infectious diseases caused by pathogenic microorganisms

possess a significant challenge and health burden to humans with

widespread morbidity and mortality worldwide (1–3). A recent

report indicated that the frequency of SLEV varied from 80% of the

cases in patients <20 years of age to 95% in those >60 years of age,

and of the 47 confirmed human cases, 45 patients were hospitalized

and among them 9 died at a younger age (4). Despite the

advancements of several strategies to combat these pathogen-

induced diseases, they adapt to extreme environments and even

result in antimicrobial resistance (AMR) in the case of bacteria and

antigenic shifts and drifts in the case of viruses (5–8). Additionally,

urbanization (notably in low- to middle-income countries),

globalization (rapid dissemination via travel), and sudden climate

changes (high risk for outbreaks) also accelerated the wide spread of

these infectious diseases causing localized outbreaks, widespread

epidemics, and even global pandemics (9, 10). To note, the COVID-

19 pandemic due to the SARS-CoV-2 outbreak resulted in high

mortality and incidence rates and indicated the risk of these

infectious diseases to human health (11–13). Furthermore,

addressing these challenges requires multidisciplinary approaches

such as a one-health approach, public health interventions,

intensive medical research, systemic and bioinformatics

approaches, and global collaborations to mitigate their impact on

human health (14–16).

Saint Louis encephalitis virus (SLEV) belonging to the

Flaviviridae family is a mosquito-borne flavivirus that has a

single-stranded RNA in its genome (17, 18). SLEV is a zoonotic

disease that is mainly transmitted from the bite of infected Culex

mosquitoes, particularly Culex pipiens, Culex quinquefasciatus, and

Culex nigripalpus and its first large endemic outbreak was observed

in 1933 in the United States, and also observed in Central American

and South American regions (18–21). However, Culex mosquitoes

are not only restricted to the Americas; they have a global

distribution and are commonly found in tropical and temperate

regions worldwide, where they serve as vectors for multiple

arboviruses including SLEV (20, 22). Primarily, birds are the

reservoir hosts of SLEV and humans are the incidental and

disease-obtaining hosts (17). SLEV is closely related to other

flavivirus such as Japanese encephalitis (JEV) and West Nile virus

(WNV), which often show asymptomatic conditions characterized
0262
by fatigue, headaches, nausea, vomiting, and body aches among the

infected individuals (23–25). The cases of fatality rate for

encephalitis caused by SLEV ranges from 5% to 15%, which

mostly infects adults and could be diagnosed by neutralizing

antibody testing and IgM ELISA kits (26–28). Unfortunately,

there is no specific treatment available for SLEV-infected patients

and potent prophylactic vaccines to combat SLEV infections;

however, supportive care such as antiemetics and painkillers are

being provided (26). Alongside, several therapeutic strategies are

being developed and studied for the better treatment of SLEV in

preclinical and clinical settings. Notably, two previous efforts were

made to produce an SLEV vaccine. Hossain et al. have also

employed the immunoinformatics approach to design a vaccine

against SLEV and showed that it has potential against the envelope

protein E SLEV, and Blaney Jr et al. have developed a live attenuated

virus vaccine by employing SLE/DEN4-436,437 clone 41 and SLE/

DEN4-654,655 clone 46 viruses (29, 30). To note, there is no vaccine

currently available for the effective treatment of SLEV (28).

Reverse vaccinology and immunoinformatics approaches help

in the identification of suitable epitopes to design a vaccine

construct that will activate both B- and T-cell-mediated response

using bioinformatics approaches (31). This approach has been

extended toward the development of vaccines for various

infectious diseases including SARS-CoV-2 and also extended to

the development of cancer vaccines (32). In the present study, we

employed reverse vaccinology and immunoinformatics approaches

to design a multi-epitope subunit vaccine that specifically targets

membrane glycoprotein M, envelope protein E, and anchored

capsid protein anchC of SLEV.
2 Materials and methods

2.1 Data retrieval

Initially, Saint Louis encephalitis virus was provided as the

query, and the FASTA sequences of the proteins, membrane

glycoprotein M (NCBI Reference Sequence: YP_009329948.1),

envelope protein E (NCBI Reference Sequence: YP_009329949.1),

and the anchored capsid protein anchC (NCBI Reference Sequence:

YP_009329944.1) of SLEV were retrieved from the NCBI-Protein

database (https://www.ncbi.nlm.nih.gov/) (32, 33). The three-
frontiersin.org

https://www.ncbi.nlm.nih.gov/
https://doi.org/10.3389/fimmu.2025.1576557
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ramalingam et al. 10.3389/fimmu.2025.1576557
dimensional structures of the HLA-A*02:01 (PDB ID: 1DUZ),

HLA-DRB1*01:01 (PDB ID: 1AQD), and Toll-like receptor 4

(TLR4) (PDB ID: 4G8A) were also retrieved from the Protein

Data Bank (34, 35).
2.2 CTL and HTL epitope identification and
selection

Since the cytotoxic T lymphocytes (CTL) (9-mer) and helper T

lymphocytes (HTL) (15-mer) are involved in the induction of

immune response in humans, the CTL and HTL epitopes were

predicted using the NetCTL 1.2 web server (https ://

services.healthtech.dtu.dk/services/NetCTL-1.2/) and NetMHCII

2.3 web server (https://services.healthtech.dtu.dk/services/

NetMHCII-2.3/), respectively (36, 37). For CTL epitopes, they

were identified against the 12 types of MHC-I with 0.75 as the

default threshold, and for the HTL epitopes, they were identified

against all the alleles of HLA-DR, HLA-DQ, and HLA-DP,

respectively. The robustness of the predictions was validated by

ANN 4.0 and MHC Flurry 2.0 for MHC I epitopes and validated by

Combinatorial library & Tepitope for MHC II epitopes in the IEBD

tool, respectively (https://www.iedb.org/) (38). Following this, all

the predicted epitopes were subjected to antigenicity (model set as

tumor), allergenicity, and toxicity (SVM-based method) analysis

using the VaxiJen v2.0 web server (https://www.ddg-pharmfac.net/

vaxijen/VaxiJen/VaxiJen.html) (39), AllerTOP v.2 web server

(https://www.ddg-pharmfac.net/allertop_test/) (40), and

ToxinPred web server (https://webs.iiitd.edu.in/raghava/

toxinpred/index.html) (41), respectively. Furthermore, the IFN-g
induction potential of HTL epitopes was also predicted with a

hybrid approach (motif+SVM model) and the IFN-g vs. non-IFN-g
model was used using the IFNepitope web server (https://

webs.iiitd.edu.in/raghava/ifnepitope/application.php) (42).

Alongside, the sequence conservation analysis of the predicted

epitopes of SLEV was analyzed using protein-BLAST (https://

blast.ncbi.nlm.nih.gov/Blast.cgi), toward Dengue virus 1

(taxid:11053), Zika virus (taxid:64320), Yellow fever virus

(taxid:11089), West Nile virus (taxid:11082), and Japanese

encephalitis virus (taxid:11072), which are closely related to the

Flavivirus family.
2.3 Docking of T-cell epitopes with HLA
alleles

The three-dimensional structures of the selected CTL and

HTL epitopes were modeled using the PEP-FOLD 3.5 web server

(https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-

FOLD3/) (43). Furthermore, the CTL and HTL epitopes were

docked against the HLA-A*02:01 and HLA-DRB1*01:01 alleles to

evaluate their binding potential and molecular interactions against

these more common alleles in the world population using the

HPEPDOCK 2.0 web server (http://huanglab.phys.hust.edu.cn/

hpepdock/) (44).
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2.4 Vaccine construct design

The selected CTL epitopes, HTL epitopes, linkers, and adjuvant

were used to design the multi-epitope vaccine construct. CTL

epitopes were linked with the AAY linker and HTL epitopes with

the CPGPG linker, whereas the adjuvant was connected with an

EAAAK linker. The TLR4 agonist, 50s ribosomal L7/L12 protein of

Mycobacterium tuberculosis, was used as an adjuvant in the vaccine

construct to elucidate the strong immune response (45, 46).
2.5 Analysis of physicochemical
characteristics, antigenicity, and
allergenicity

The physicochemical properties such as the molecular weight,

theoretical PI, amino acid composition and length, total number of

negatively charged and positively charged residues, instability index,

aliphatic index, and GRAVY of the designed multi-epitope vaccine

were predicted using the Expasy ProtParam web server (https://

web.expasy.org/protparam/) (47). In addition, the antigenicity,

allergenicity, and solubility of the designed multi-epitope vaccine

were predicted using the VaxiJen v2.0 web server (39), AllerTOP v.2

web server (40), and SOLpro web server (48), respectively.

Furthermore, the antigenic nature of the adjuvant was predicted

by evaluating the antigenicity of the designed multi-epitope vaccine

with and without the presence of adjuvant using the ANTIGENpro

web server (https://scratch.proteomics.ics.uci.edu/) (48).
2.6 Structural analysis and molecular
docking of the designed vaccine construct

Initially, the 2D structure of the designed multi-epitope vaccine

construct was predicted using the PDBsum database (http://

www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html)

(49). Then, the 3D structure of the designed multi-epitope vaccine

construct was predicted using the I-TASSER web server (https://

zhanggroup.org/I-TASSER/) (50) and further refined by the

GalaxyRefine web server (https://galaxy.seoklab.org/cgi-bin/

submit.cgi?type=REFINE) (51). In addition, the refined 3D model

of the designed multi-epitope vaccine construct was validated by

Ramachandran plot and Z-score plot by employing the PDBsum

database and ProSA-web web server (https://prosa.services.

came.sbg.ac.at/prosa.php), respectively (52). Then, the perfectly

refined model was docked against the Toll-like receptor-4 (TLR4)

protein using the ClusPro 2.0 web server (https://cluspro.bu.edu/

login.php?redir=/home.php) (53).
2.7 Molecular dynamics simulations

The molecular dynamics simulations of the TLR4–vaccine

complexes were performed using GROMACS 2020, and the

protein topology files were generated using the GROMOS 42a1
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force field (54, 55). The systems were solvated in an orthorhombic

box using the simple point charge water model, and the

neutralization was achieved by adding Na+ counter ions. Then,

the energy minimization was carried out by the steepest descent

algorithm with 50,000 steps, and the system was equilibrated under

the NVT ensemble for 500 ps at 300 K, followed by NPT

equilibration for 1,000 ps. Furthermore, the cutoff distance of 1.2

nm was applied for short-range non-bonded interactions, including

Coulombic and van der Waals potentials, and the system was

subjected to a 100-ns molecular dynamics simulation analysis.

Finally, the resulting trajectories were analyzed to assess the root

mean square deviation (RMSD), root mean square fluctuation

(RMSF), radius of gyration (Rg), and solvent-accessible surface

area (SASA) using standard GROMACS tools and visualized using

the ggplot2 package (56, 57).
2.8 Normal mode analysis

The protein deformation analysis of the TLR4-vaccine docked

complex was analyzed using the internal coordinates normal mode

analysis (NMA) by employing the iMODS web server (https://

imods.iqf.csic.es/) (58). The NMA analysis was conducted using the

CA atomic model to evaluate their B-factor/mobility, eigenvalue,

variance, covariance map, and elastic network for the TLR4-vaccine

docked complex (59).
2.9 Immune response simulation

The immune response induction is a crucial factor in

vaccination, and thus the immune response simulation of the

designed multi-epitope vaccine construct was evaluated using the

C-ImmSim web server (https://kraken.iac.rm.cnr.it/C-IMMSIM/

index.php) that employs the position-specific score matrix

(PSSM) and the Celada–Seiden model (60). The simulation

parameters were configured with a random seed of 12,345, a

simulation volume of 10 μL, and 1,095 simulation steps,

representing a time span of 1 year (365 days). The vaccine was

administered in three doses on days 0, 28, and 56, corresponding to

time steps 1, 84, and 168, respectively. Injection modes were

performed without LPS, and all other parameters were set to their

default values.
2.10 Codon optimization and in silico
cloning analysis

The vaccine construct’s protein sequence was reverse-

translated, and its cDNA sequence was optimized for codon usage

by employing the Java Codon Adaptation Tool (JCat) (https://

www.jcat.de/), and the E. coli K12 was employed as the expression

host (61). Then, the optimized sequence was inserted and cloned in

the pET-28a (+) vector-6xHis-TEV-ORF9c (5,554 bp) using the

SnapGene software (https://www.snapgene.com/). The complete
Frontiers in Immunology 0464
schematic representation of the workflow of the study is shown

in Figure 1.
3 Results

3.1 Selected T−cell epitopes showed
potential interaction toward HLA alleles

The CTL epitopes (9-mer) and the HTL epitopes (15-mer) were

predicted against the 12 types of MHC-I molecules, and all alleles of

HLA-DR, HLA-DQ, and HLA-DP. The CTL epitopes predicted

against the membrane glycoprotein M, envelope protein E, and

anchored capsid protein anchC of SLEV along with their specific

biding MHC-I allele are provided in Supplementary Tables S1, S2,

and S3, respectively. Similarly, their predicted HTL epitopes of

proteins of SLEV along with their specific biding MHC-II allele are

provided in Supplementary Tables S4, S5, and S6, respectively. The

antigenicity, allergenicity, and toxicity properties of the predicted CTL

and HTL epitopes were evaluated, and IFN-g induction potential was

also predicted for the HTL epitopes (15mer). The epitopes were

screened with these criteria such as antigenic, non-allergen, non-toxic,

and IFN-g induction (only for 15mer), and the shortlisted CTL and

HTL epitopes are provided in Supplementary Tables S7 and S8,

respectively. The final CTL and HTL epitopes selected for the vaccine

construct along with their epitope names are provided in

Supplementary Table S9. Additionally, the sequence conservation

analysis was performed toward Dengue virus 1 (taxid:11053), Zika

virus (taxid:64320), Yellow fever virus (taxid:11089), West Nile virus

(taxid:11082), and Japanese encephalitis virus (taxid:11072), which

are closely related to the Flavivirus family, and the results are provided

as similarity percentage in Supplementary Table S9. Notably, the

West Nile virus and Japanese encephalitis virus shared a similarity

percentage of most predicted epitopes, and Dengue virus 1 and Zika

virus shared a similarity percentage with one CTL and one HTL

epitope, respectively. This similarity-conserved epitopes have the

potential to induce cross-reactive T-cell responses and broaden

protection toward other species such as West Nile virus and

Japanese encephalitis virus, indicating that the developed vaccine

construct was broad-spectrum.

Furthermore, the selected CTL and HTL epitopes were docked

against the HLA-A*02:01 and DRB1*01:01 alleles, which are the

most frequent alleles among the world population, and their

binding energies (kcal/mol) and docked pose are shown in

Table 1, Supplementary Figures S1 and S2. Totally, five CTL

epitopes were docked against HLA-A*02:01 and 17 HTL epitopes

were docked against HLA-DRB1*01:01 molecules. From the

docking analysis , we observed that the CTL epitope

(RVVFVIMLM) and the HTL epitope (TTQINYHWHKEGSSI)

showcased high binding affinities toward their respective allele

with binding energies of −240.708 and −234.422 kcal/mol,

respectively, and the CTL epitope (TISPQAPSF) and HTL epitope

(MKMEATELATVREYC) showcased comparatively less binding

affinities toward their respective allele with binding energies of

−210.309 and −182.066 kcal/mol, respectively. For CTL epitopes,
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the binding affinities range from −210.309 to −240.708 kcal/mol,

and for HTL epitopes, they range from −182.066 to −234.422 kcal/

mol. Moreover, all the CTL and HTL epitopes indicated their

potential binding affinities and thus they were selected in the

construction of a multi-epitope vaccine.
3.2 Designed multi-epitope vaccine
showed desired physiochemical properties

Generally, adjuvants are used in multi-epitope peptide vaccines to

induce strong immune responses when injected into humans. In our

study, we have used the C-terminal region of the large ribosomal

subunit protein bL12 of Mycobacterium tuberculosis as the adjuvant

(MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAV

AAAGAAPAGAAVEAAEEQSEFDVILEAAGDKKIGVIKVVR

EIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLE
Frontiers in Immunology 0565
AAGATVTVK), which highly prevents the autoimmune reactions.

AAY linkers were used to link the CTL epitopes, GPGPG linkers were

used to link the HTL epitopes, and the EAAAK linker was used to link

the adjuvant in the vaccine construct. The total vaccine construct

contains 532 amino acids, comprising 5 CTL epitopes, 17 HTL

epitopes, 1 adjuvant, 4 CTL linkers, 16 HTL linkers, and 1 adjuvant

linker, as shown in Figure 2. Following this, the physiochemical

properties of the designed multi-epitope vaccine construct were

evaluated and are tabulated in Table 2. We observed that alanine (A)

is more frequent with 11.8% followed by Arg (R) with 2.6%, as shown

in Figure 3. The SOL-pro web server indicated the soluble nature of the

designed multi-epitope vaccine construct with a probability of 0.902,

and the instability index of 23.84 (less than 40) indicates the stability of

the vaccine. The antigenic score of the designed multi-epitope vaccine

construct was observed to be 0.787234 (without adjuvant) and

0.898972 (with adjuvant), indicating the increase in antigenic

response when adjuvant is added to the vaccine construct. The
FIGURE 1

Schematic representation of the workflow of the study.
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Grand Average of Hydropathy (GRAVY) is used to determine the

hydrophobic nature of the protein and is generally calculated by

summing up the hydropathy values of all the amino acids and

dividing it by the total number of amino acids of the protein. The

positive value indicates the hydrophobic nature and the negative value

indicates the hydrophilic nature of the given protein. In our study, the

vaccine construct showed a GRAVY score of −0.040 that indicates its

hydrophilic nature, as shown in in Table 2.
3.3 Structural modeling and refinement of
the multi-epitope vaccine

The 2D structure of the designed multi-epitope vaccine

construct consisting of 532 amino acids was predicted and

observed to have 8 sheets, 5 beta hairpins, 2 beta bulges, 19

strands, 6 helices, 181 beta turns, and 36 gamma turns, as shown

in Figure 4. Then, the 3D structure was modeled by the I-TASSER

web server, which resulted in five best models with C-scores of

−3.15, −3.58, −3.63, −3.79, and −3.68, respectively. Generally, the
TABLE 1 Binding energies of selected CTL and HTL epitopes against HLA molecules.

Epitope type Epitope HLA molecule Binding energy (kcal/mol)

CTL NIKYEVAIF HLA-A*02:01 −225.608

TISPQAPSF HLA-A*02:01 −210.309

RDRSISLTL HLA-A*02:01 −226.722

QRVVFVIML HLA-A*02:01 −213.502

RVVFVIMLM HLA-A*02:01 −240.708

HTL ALAIGWMLGSNNTQR HLA-DRB1*01:01 −216.101

DFGSIGGVFNSIGKA HLA-DRB1*01:01 −205.397

GASGATWIDLVLEGG HLA-DRB1*01:01 −194.994

KMEATELATVREYCY HLA-DRB1*01:01 −215.410

LFGGMSWITQGLLGA HLA-DRB1*01:01 −233.383

LGALLLWMGLQARDR HLA-DRB1*01:01 −227.230

LVTVNPFISTGGANN HLA-DRB1*01:01 −223.634

MKMEATELATVREYC HLA-DRB1*01:01 −182.066

MSWITQGLLGALLLW HLA-DRB1*01:01 −220.584

NLPWTSPATTDWRNR HLA-DRB1*01:01 −232.190

PQAPSFTANMGEYGT HLA-DRB1*01:01 −207.506

PTLDFKVMKMEATEL HLA-DRB1*01:01 −227.681

REYCYEATLDTLSTV HLA-DRB1*01:01 −206.449

SGINTEDYYVFTVKE HLA-DRB1*01:01 −240.228

TKQTVVALGSQEGAL HLA-DRB1*01:01 −201.193

TTQINYHWHKEGSSI HLA-DRB1*01:01 −234.422

TIDCEARSGINTEDY HLA-DRB1*01:01 −188.060
F
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TABLE 2 Physiochemical properties of the designed vaccine construct.

Parameter Value/range

Number of amino acids 532

Molecular formula C2440H3808N636O741S19

Molecular weight 54518.03 Da

Theoretical pI 4.80

Total number of positive charge
residues (Arg + Lys)

55

Total number of negative charge
residues (Asp + Glu)

39

Instability index 23.84

Aliphatic index 78.21

GRAVY −0.040

Estimated half life 30 h (mammalian reticulocytes, in vitro).
>20 h (yeast, in vivo).
>10 h (Escherichia coli, in vivo).
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high C-score represents the high confidence of the predicted model,

and thus model 1 with a c-score of −3.15 was selected for further

refinement acknowledging the crucial role of accurate 3D structural

prediction in understanding the vaccine’s potential efficacy and

stability. Likewise, the GalaxyRefine web server resulted in the best

five refined models, in which model 2 was chosen based on a

comprehensive evaluation of several structural parameters: a high

GDT-HA score of 0.8459, a low RMSD of 0.707, a favorable

MolProbity score of 3.467, a clash score of 78.9, a low percentage

of poor rotamers at 2.1%, and a significant proportion of

Ramachandran favored regions at 67.9% as shown in Figure 5A.
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These metrics collectively suggest a highly refined and accurate

model, crucial for ensuring the vaccine’s effectiveness and structural

refinement. Furthermore, the refined model models were validated

by Ramachandran plot and Z-score analysis. The most favored

regions on a Ramachandran plot are important because they help to

identify the validity of a vaccine construct’s 3D structure and

indicate which Phi/Psi angles are possible for an amino acid; thus,

high % of most favored regions indicates better structural

enhancement whereas the less % shows poor enhancement.

Notably, in our findings, the Ramachandran plot analysis

demonstrated an increase in the most favored regions from 43.2%
FIGURE 2

Pictorial representation of the designed multi-epitope vaccine construct.
FIGURE 3

Amino acid composition and frequency of the designed multi-epitope vaccine construct.
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in the unrefined model to 56.8% in the refined model, indicating

improved structural quality and reduced steric clashes. Also, the G-

factor, measuring the overall structural unusualness, improved

significantly from −2.02 (unrefined) to −1.24 (refined),

highlighting the enhanced accuracy and reliability of the refined

model, as depicted in Figures 5B and C, respectively. In the Z-score

plot, the higher negative value indicates the high confidence of the
Frontiers in Immunology 0868
modeled structure of the vaccine construct whereas the lesser

negative value indicates less confidence and the positive value

indicates very poor confidence of the vaccine structure. In our

study, we have observed that the Z-score was improved from −2.36

(unrefined) to −2.42 (refined), further confirming the high

structural refinement and enhanced stability of the vaccine

construct, as shown in Figures 5D and E, respectively.
FIGURE 4

2D structure of the designed multi-epitope vaccine construct.
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3.4 Designed multi-epitope vaccine
showed significant binding affinities toward
TLR4

The binding affinity of the multi-epitope vaccine construct

toward the Toll-like receptor-4 (TLR4) was evaluated using the
Frontiers in Immunology 0969
ClusPro 2.0 web server, which generated nearly 29 clusters of

potential docked conformations, and the cluster 17 for its best

conformations of the docked complex. The binding energy of the

multi-epitope vaccine construct and TLR4 docked complex was

observed to be −1,117.5 kcal/mol, indicating the high binding

affinity and favorable interaction between TLR4 and the multi-
FIGURE 5

3D structure-refinement and validation: 3D structure of the designed multi-epitope vaccine construct in which the refined and unrefined models are
shown in green color and cyan color, respectively (A). Ramachandran plots of the unrefined (B) and refined models (C). Z-score of the unrefined (D)
and refined models (E).
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epitope vaccine construct. Upon binding, the vaccine showed a

1,762-Å2 interface area with 28 interacting residues and the TLR4

showed a 1,671-Å2 interface area with 37 interacting residues. Also,

it revealed that it formed 7 salt bridges, 21 H-bonds, and 228 non-

bonded contacts, as shown in Figure 6. Then, the molecular

dynamics simulation trajectories were analyzed to study the

conformational behavior of the TLR, vaccine, and TLR–vaccine
Frontiers in Immunology 1070
complex over 100 ns. RMSD values were used to assess the local

flexibility of the proteins, reflecting their atomic mobility. Higher

RMSD values indicate increased mobility, whereas lower values

suggest greater structural stability. During the simulation, the

average RMSD values for the TLR, vaccine, and TLR–vaccine

complex were 0.16, 0.22, and 0.28 nm, respectively. Then, RMSF

plots revealed that TLR4 had fluctuations at the 120–170 AA and
FIGURE 6

Molecular interaction of TLR4 with the designed multi-epitope vaccine construct. The docked complexes are shown in cartoon model (A) and
surface model (B). Also, total numbers of interactions (C) and interacting residues (D) of the TLR-4 vaccine complex are shown.
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310–320 AA regions, vaccine had fluctuations at the 320–325 AA

region, and the TLR4–vaccine docked complexes exhibited the

same fluctuations; however, these regions are denoted as loop

regions. The average Rg values for the TLR, vaccine, and TLR–

vaccine complex were 2.15, 2.16, and 2.18 nm, respectively,

exhibiting the compactness of the structures. The average SASA

values for the TLR, vaccine, and TLR–vaccine complex were 173,

176, and 186 nm², respectively, as shown in Figure 7.
3.5 NMA of the multi-epitope vaccine
construct

The protein deformation analysis of the multi-epitope vaccine

construct and TLR4 docked complex was predicted as normal mode

analysis (NMA). The flexibility and stability of the docked

complexes were evaluated from various plots such as B-factor/

mobility, eigenvalue, variance, and co-variance map of the elastic

network of the TLR4–vaccine complex, as illustrated in Figure 8.

The B-factor/mobility indicates less deformation of the TLR4–

vaccine complex at all amino acid residues and hinges, indicating

that it maintains structural integrity. Notably, a lower eigenvalue of

2.77e−07 indicates less deformability of the docked complex, than

the TLR4 alone, which showed an eigenvalue of 3.31e−05. In

addition, the individual and cumulative variances indicate the
Frontiers in Immunology 1171
contribution of each normal mode to the overall motion. The co-

variance map revealed the presence of correlated, uncorrelated, and

anti-correlated residue pairs, providing insights into the cooperative

movements within the complex. Furthermore, flexibility was also

observed from the elastic network.
3.6 Designed multi-epitope vaccine has the
potential to induce immune response

The immune response simulation of the designed multi-epitope

vaccine construct was predicted using the C-ImmSim web server at

three dosage days. The immunological parameters such as the

antibody titers, cytokine production, B-cell populations, B-cell

populations per state, TH-cell populations, and TH-cell

populations per state were predicted as shown in Figure 9. In the

antibody titers plot, we have observed that IgG and IgM are

significantly increased post-vaccine injection, indicating a robust

humoral immune response. Also, the cytokine levels of IFN-g were
elevated notably, which suggested a strong activation of cellular

immunity. Furthermore, the B-cell population (cells/m³) was

elevated, reflecting the activation and proliferation of B cells in

response to the vaccine. The total TH-cell population (cells/m³) also

showed an increase, indicating enhanced helper T-cell responses,

with a significant proportion of TH cells in active states, further
FIGURE 7

Molecular dynamics simulation of TLR4, vaccine, and docked complexes. The RMSD (A), RMSF (B), Rg (C), and SASA (D) plots of TLR4, vaccine, and
docked complexes are shown in red, blue, and green colors, respectively.
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corroborating the vaccine’s efficacy. Notably, all the predicted

parameters such as the antibody titers (IgG and IgM), cytokine

production (IFN-g, ILs), B-cell populations (Total), B-cell

populations per state (active state), TH-cell populations (Total),

and TH-cell populations per state (active state) showed elevated

peaks at the vaccine dosage days, indicating that the designed
Frontiers in Immunology 1272
vaccine construct is highly efficient in inducing the immune

responses in a time-dependent manner. These findings highlight

the potential effectiveness of the multi-epitope vaccine construct in

eliciting a comprehensive immune response, demonstrating its

ability to induce both humoral and cellular immunity, which is

crucial for long-term protection and memory formation.
FIGURE 8

NMA of TLR4 and the designed multi-epitope vaccine construct–TLR4 docked complex. The deformability, B-factor, eigenvalues, variance, co-
variance, and elastic network of the TLR4 (A1-F1) and TLR4–vaccine docked complex (A2-F2) are shown.
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3.7 Codon optimization and insilico cloning
of the multi-epitope vaccine construct

The designed multi-epitope vaccine construct was further

reverse-translated and optimized to be cloned by employing

Escherichia coli K12 as an expression system. Then, the optimized

sequence containing 552 nucleotides was obtained with the CAI-
Frontiers in Immunology 1373
value as 1, and GC% as 53.8%. Also, the GC% of E. coli strain K12

was observed as 50.73%. Then, the restriction sites of SalI

(GAGCTC) and EcoRI (GAATTC) were added at the N-terminal

and C-terminal of the optimized DNA sequence. Following this, the

optimized vaccine construct sequence (564 nucleotides) was cloned

into the pET-28a (+) vector-6xHis-TEV-ORF9c (5554 bp) at

restriction sites of SacI (GAGCTC) and EcoRI (GAATTC) using
FIGURE 9

Immune simulation of the multi-epitope vaccine construct. Antibody titer (A), cytokine production (B), B-cell population (C), B-cell population per
state (D), TH-cell population (E), and TH-cell population per state (F) are shown.
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the SnapGene tool, and the final cloned product (5646 bp) is shown

in Figure 10.
4 Discussion

Infectious diseases have posed significant challenges to human

health throughout history, manifesting in acute, chronic, and often

lethal forms caused by various pathogenic microorganisms with

widespread morbidity and mortality worldwide (1, 3). The

emergence of antimicrobial resistance (AMR) and antigenic shifts

and drifts challenge our advances in the medical field (62, 63). The

recurring outbreaks of SARS, MERS, and COVID-19 underscore

the adaptive potential of RNA viruses, which can mutate to exploit

new niches (11, 64). SLEV infection is strongly associated with

potential central nervous system impairment that highly targets

adults and still lacks potential treatment strategies (17). Alongside,
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the peptide vaccines constructed with multiple epitopes have

recently gained attention due to their ability to amplify immune

responses against pathogens (65). Both B cells and T cells can be

used for vaccine development, but mostly T cell-based vaccines are

preferred to some reasons such as high specificity adaptive

immunity. CD8+ T cells uniquely recognize and eliminate

infected cells via MHC, long-term immune memory, and broader

immunological coverage. Notably, for viral infections that have

antigenic variation, the B cell-mediated antibody responds less

effectively (66). Although the traditional vaccines have the

potency to induce strong humoral, cellular responses, and need

fewer boosters than peptide vaccines, they are limited by their

stability, risk of reversion to virulence, allergic reactions, and live-

attenuated rapid mutation rates that lead to low efficacy in immune-

compromised patients (67). On the other hand, the peptide vaccines

are made of epitopes that specifically induce the stimulation of

CTLs, HTLs, or B cells and have minimum off-target effects
FIGURE 10

In silico cloning of the optimized vaccine construct. The codon-optimized multi-epitope vaccine sequence shown in red was cloned in the pET-28a
(+) expression vector (5,554 bp) shown in black between restriction sites SalI and EcoRI, and the final cloned vaccine construct is shown (5,646 bp).
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indicating low adverse reactions. Also, peptide vaccines are easy to

design, produce, and store; cost-effective; and, mostly importantly,

safer for immunocompromised individuals (68, 69). Hossain et al.

have also employed the immunoinformatics approach to design a

vaccine against SLEV and showed that it has potential against

SLEV. However, they have predicted the multi-epitopes only for the

envelope protein E (outer membrane protein) (29). In addition, to

the best of our knowledge, this is the only report we found for

employing reverse vaccinology and immunoinformatics to design

multi-epitope vaccine construct against SLEV. Thus, we have

designed the multi-epitope vaccine construct toward various key

proteins of SLEV such as the membrane glycoprotein M, envelope

protein E, and the anchored capsid protein anchC to increase its

therapeutic potential in SLEV treatment. So, in the present study,

we have designed and developed a multi-epitope vaccine construct

against the SLEV by employing reverse vaccinology and

immunoinformatics approaches.

The cytotoxic T lymphocytes (CTLs) (CD8+ T cell epitopes) are

involved in the recognition, direct killing, and clearance of the

virally infected cells, whereas the helper T lymphocytes (HTLs)

(CD4+ T cell epitopes) are involved in the immune activation,

antibody production, and cytokine secretion respectively, and thus

they play a vital role in the vaccine design (70, 71). Also, to elucidate

a proper immune response, the epitopes should be antigenic, non-

allergenic, and non-toxic and have the potential to induce IFN-g
(HTL epitope) production (72, 73). In our study, we have predicted

the possible CTL and HTL epitopes against the various key proteins

of SLEV such as the membrane glycoprotein M, envelope protein E,

and the anchored capsid protein anchC, and we have selected 5 CTL

epitopes and 17 HTL epitopes based on the abovementioned

criteria, as shown in Supplementary Table S9. Additionally, the

sequence conservation analysis was performed toward Dengue virus

1 (taxid:11053), Zika virus (taxid:64320), Yellow fever virus

(taxid:11089), West Nile virus (taxid:11082), and Japanese

encephalitis virus (taxid:11072), which are closely related to

Flavivirus family. Notably, the West Nile virus and Japanese

encephalitis virus shared similarity percentages of most predicted

epitopes, and Dengue virus 1 and Zika virus shared similarity

percentages with 1 CTL epitope and 1 HTL epitope. This

similarity-conserved epitopes have the potential to induce cross-

reactive T-cell responses and broaden protection toward other

species such as West Nile virus and Japanese encephalitis virus,

indicating that the developed vaccine construct was broad-

spectrum (74). HLA-A*02:01 (MHC-I) and DRB1*01:01 (MHC-

II) are the most frequently expressed alleles that could bind with

CTL and HTL epitopes, respectively (75, 76). For instance, HLA-

A*02:01 belongs to the A2 supertype possesses supertypic

representation, which covers multiple related alleles, expanding

their population coverage, whereas HLA-DRB1*01:01 is

immunodominant, binds a broad spectrum of peptides, and

significantly elicits CD4+ T-cell responses (76, 77). We observed

that the selected CTL and HTL epitopes exhibited significant

binding affinities toward their respective allele and their binding

energy was predicted as shown in Table 1. Unlike the mRNA

vaccines, the peptide vaccines have the advantage of adding
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adjuvants along with the peptides, which could induce more

antigenic-mediated immune responses (78, 79). We have utilized

the C-terminal region of the large ribosomal subunit protein bL12

of Mycobacterium tuberculosis as the adjuvant, which highly

prevents the autoimmune reactions.

The linkers play a vital role in the designing of the vaccine

construct to elucidate proper structural and functional properties.

The EAAAK linker elevates the antigenic nature of the vaccine, the

AAY linker promotes the presentation of antigens, and the GPGPG

linker promotes solubility and movement (78, 80, 81). Likewise, the

adjuvant was connected with EAAAK linkers, CTL epitopes were

connected with AAY linkers, and the HTL epitopes were connected

with GPGPG linkers, and the designed multi-epitope vaccine

construct comprising 532 amino acids has 5 CTL epitopes, 17

HTL epitopes, 1 adjuvant, 4 CTL linkers, 16 HTL linkers, and 1

adjuvant linker, as shown in Figure 2. The designed vaccine should

be stable to have a longer half-life period and immunogenicity

retention and avoid degradation, and should be soluble to have an

enhanced bioavailability nature, to prevent aggregation and for

efficient delivery (82, 83). Based on these criteria, several vaccines

have been designed and developed against various diseases and

infections (31, 84–86). Similarly, we have observed that our

designed multi-epitope vaccine construct was soluble with a

probability of 0.902 and stable with an instability index of 23.84

(less than 40) indicating the stability of the vaccine. Also, we

observed that the addition of adjuvant increased the vaccine’s

antigenic nature from 0.787234 to 0.898972, as shown in in Table 2.

Structural properties of the vaccine alter its functional

properties such as the antigen presentation and stimulation of T

lymphocytes and B lymphocytes (73). We have predicted the 3D

structure of the designed vaccine construct and further refined it.

Furthermore, we validated by the Ramachandran plot that showed

highly favored regions in the refined model, and by the Z-score that

showed high confidence in the refined 3D model. These analyses

underscore the critical improvements in structural prediction and

refinement processes, ensuring the vaccine construct’s robustness

and potential efficacy. The refined model’s superior quality and

stability are indicative of its potential to elicit a strong and effective

immune response, thereby validating its design and functional

applicability (87). Unlike the other Toll-like receptors (TLRs),

Toll-like receptor-4 is observed to be overexpressed and also

involved in various functions such as promoting the production

of pro-inflammatory cytokine and chemokine and regulation of

homeostasis, and thus plays a vital role in various diseases including

SLEV infection (87, 88). Thus, we have docked our vaccine

construct with TLR4, which showed significant binding affinities

with a binding energy of −1,117.5 kcal/mol. The low binding energy

profile suggests that the multi-epitope vaccine construct is likely to

form a stable and effective complex with TLR4, potentially

enhancing its immunogenic efficacy and contributing to a robust

immune response. The molecular dynamics simulation (MDS)

revealed that the TLR4-vaccine docked complex was stable

throughout the simulation period compared with TLR4 and

vaccine alone, indicating the structural compatibility of the

docked complex as shown in Figure 7. Also, it indicated that
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there is no flip on the residues of the TLR4–vaccine complex

confirmed through MDS. Additionally, the TLR4–vaccine docked

complex was also observed to be stable through the protein

deformation analysis evaluated from various plots such as B-

factor/mobility, eigenvalue, variance, and co-variance map of the

elastic network of the TLR4–vaccine complex, as illustrated

in Figure 8.

Generally, the vaccine-induced immune response is crucial, and

multifaceted, encompassing both innate and adaptive immunity (89,

90). From our study, we observed that the designed multi-epitope

vaccine construct elevates the levels of antibody titers, cytokine

production, B-cell populations, B-cell populations per state, TH-cell

populations, and TH-cell populations per state, as shown in Figure 9.

These findings highlight the potential effectiveness of the multi-epitope

vaccine construct in eliciting a comprehensive immune response,

demonstrating its ability to induce both humoral and cellular

immunity, which is crucial for long-term protection and memory

formation. Also, for the experimental validation, the designed vaccine

construct has to be produced in higher quantities, and thus usually it

will be cloned in a suitable vector (91). In our study, the designedmulti-

epitope vaccine construct was reversed translated, codon-optimized,

and cloned in a suitable vector pET-28a (+) vector-6xHis-TEV-ORF9c

(5554 bp) at the restriction sites of SacI (GAGCTC) and EcoRI

(GAATTC), as shown in Figure 10.

On the other hand, this study mostly used bioinformatics tools

and databases for the study, and these computational validations may

be less reliable when compared with the experimental validations (92,

93). For instance, the NetCTL 1.2 and NetMHCII 2.3 web servers

mainly focus on the limited set of common HLA alleles, potentially

overlooking epitopes relevant to underrepresented populations,

whereas the VaxiJen v2.0, AllerTOP v.2, ToxinPred, IFNepitope,

Expasy ProtParam, and ANTIGENpro web server are commonly

used in immunoinformatics and vaccine design approaches; however,

these predictions are based on a broad training dataset and do not

yield high efficacy as the experimental validations (93, 94). Thus, we

strongly recommend to validate the designed vaccine construct in in

vitro and in vivo experimental settings to evaluate their completely

therapeutic potential against SLEV. Overall, by employing reverse

vaccinology and immunoinformatics approaches, we have designed a

multi-epitope cancer vaccine against various key proteins of SLEV

such as the membrane glycoprotein M, envelope protein E, and the

anchored capsid protein anchC, and we further recommend

evaluating its therapeutic potential by in vitro and in vivo studies in

the near future. Furthermore, the deployment of these types of

vaccines in regions where diseases are endemic offers significant

opportunities to enhance public health and mitigate the disease

burden (95). Achieving these outcomes, however, necessitates

addressing complex logistical, sociocultural, and economic

challenges through well-designed strategies and sustained

international cooperation (96). These hurdles could be overcome

by strengthening the infrastructure, community engagement,

financial support, innovative delivery models, policy and

governance, and integrated health programs. Effectively overcoming

these barriers is critical to ensuring equitable vaccine access and

advancing global objectives in health security and disease control.
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SLEV infection poses a significant public health threat,

particularly in regions prone to mosquito-borne diseases. Despite

the availability of supportive treatments, there is a critical need for

effective therapeutics/vaccines to prevent SLEV infections. In our

study, we have designed, constructed, and validated a multi-epitope

vaccine targeting key proteins of SLEV such as the membrane

glycoprotein M, envelope protein E, and the anchored capsid

protein anchC by employing reverse vaccinology and

immunoinformatics approaches. Our results indicated that the

vaccine construct is structurally stable, antigenic, non−allergic, and

non−toxic and has soluble properties. Also, the vaccine exhibited

strong binding affinity and structural compactness with the TLR4

upon binding confirmed by docking and molecular dynamics

simulations respectively. Furthermore, it also indicated that it has

the potential to induce an immune response. Also, it has been cloned

in the pET−28a (+) expression vector for the experimental validation

by in vitro and in vivo studies to evaluate the vaccine’s therapeutic

efficacy in the near future. Further research and experimental studies

are warranted to validate the efficacy, safety, and immunogenicity of

the proposed vaccine construct in preclinical and clinical settings.
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An integrated mutation-based
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epitopes: a study based
on HIV subtype C
Saurav Kumar Mishra1, Neeraj Kumar2, Md. Harun Or Rashid3,4,
Sharifa Sultana4, Turki M. Dawoud5, Mohammed Bourhia6

and John J. Georrge1*

1Department of Bioinformatics, University of North Bengal, Darjeeling, West Bengal, India,
2Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Udaipur,
Rajasthan, India, 3School of Engineering, Macquarie University, Sydney, NSW, Australia,
4Computational Biology Research Laboratory, Department of Pharmacy, Faculty of Health and Life
Sciences, Daffodil International University, Dhaka, Bangladesh, 5Department of Botany and
Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia, 6Department of
Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University,
Laayoune, Morocco
Currently, HIV (human immunodeficiency virus) infection is one of the leading

complications in public health and causes acquired immunodeficiency syndrome

(AIDS), especially in the African region. No specific vaccine is available to combat

this, with multi-strain variability being one of the hurdles. In this investigation, we

employed variability in the epitope of the HIV subtype C targets to introduce

mutations and construct an epitope-based vaccine. Four targets were examined

to predict the B and T cells (major histocompatibility complex class I and II).

Among the predicted epitopes, immunodominant epitopes were selected and

were mapped with the identified variable amino acid to incorporate mutation.

These selected and mutated epitopes were used for the non-mutated and

mutated vaccine construction, considering linker for fusion and adjuvant to

improve the activity. The vaccine’s structure was modeled and examined to

validate its structural quality, and a high population coverage was also found. The

docking investigation of the non-mutated and mutated vaccine with Toll-like

receptor 3 shows remarkable activity followed by strong binding affinity, and the

simulation of over 100 ns revealed the constancy of the complex system. The

immune response revealed its strong effectiveness by generating multiple

immunoglobulins followed by the time step of infection, and further, in silico

cloning demonstrated a high expression in Escherichia coli based on their

favorable Codon Adaptation Index and GC value. The integrated approach in

this investigation will help to plan a potent immunodominant vaccine that can

work for multiple strains of HIV infection.
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Introduction

Acquired immunodeficiency syndrome (AIDS) is an ongoing

public health concern caused by HIV (1, 2). According to a recent

World Health Organization (WHO) report, nearly 39.9 million are

living with HIV; at the end of 2023, approximately 1.3 million

people acquired the infection, while 63,000 died due to HIV-related

complications (https://www.who.int/news-room/fact-sheets/detail/

hiv-aids) (3). Moreover, the WHO African region remains to have

the highest HIV burden (https://www.who.int/data/gho/data/

themes/hiv-aids). The AIDS pandemic is led by the two types of

HIV, i.e., HIV-1 and HIV-2, with the former being more prevalent

than the latter (4, 5). Moreover, several antiretroviral therapies

(ARTs) were designed and used, but none of them will lead to

combatting this infection completely (6, 7). A few vaccines were

developed to combat this, but they did not prove efficient due to a

lack of appropriate immune response and effectiveness. Apart from

that, one of the hurdles behind the efficiency is the variability and

the mutation within the strains. Despite the various hurdles, the

most effective vaccine, RV144, was developed, providing only 31.2%

protection against this infection (7–9). This emphasizes the need to

create a potent vaccine to address the challenges of strain variability

due to mutations in controlling HIV infection. HIV-1 is classified

into four (M, N, O, and P) groups; among them, only group M

causes 95% to be classified into various subtypes (A, B, C, D, F, G,

H, J, and K) (10–12). However, subtype B is prevalent in Australia,

America, and Western Europe, whereas subtype C is prevalent in

Africa and India (10, 11). Moreover, subtype C is the most prevalent

strain worldwide (46.6%) and dominates in Asia and Africa,

followed by subtypes A and B (13–15). Furthermore, a recent

systematic review reported that subtype C accounted for 50.4% of

worldwide HIV based on data (from 2016 to 2021) and found a

significant increase in the cases compared to the previous dataset

(from 2010 to 2015) (16). HIV employs various strategies to evade

immune surveillance, including antigenic variation, MHC

downregulation, and immune cell dysfunction (17). Subsequently,

several key mutations are mainly responsible for escaping immune

mechanisms, such as N332 glycan shift (escape broadly neutralizing

antibodies by altering glycan shielding) and T242N (reduces

recognition by CTL), among others (18, 19).

The HIV genome comprises several effective structural, regulator,

and accessory genes. However, structural genes, i.e., the envelope

glycoprotein, protease, reverse transcriptase, and integrase, are crucial

for host–pathogen interaction and its replication (5, 11, 20, 21). Their

role in viral mechanisms makes them an ideal candidate for

therapeutic development. At present, using immunological data,

immunoinformatics-assisted vaccine design has been identified as a

suitable strategy, along with reverse vaccinology and advanced

computational approaches (11, 22–25) targeting several other

pathogens, because time efficiency, cost-effectiveness, and high

accuracy are essential for a successful vaccine design.

Immunoinformatics-assisted studies on HIV have successfully

targeted various components, including gp120 (21), the whole HIV

genome (5), and Gag polyprotein (7), among others (11, 20),

highlighting the reliability of this approach without incorporating
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the variability of epitopes. In addition, no such study was reported on

subtype C that contributed to higher HIV infection than the other

strains in group M. The main hurdle in combating HIV is the strain

variability caused by mutations, which has yet to be fully addressed

(26–28) and also remains a major obstacle behind the successful

vaccine formulation and the effective potent activity of the available

vaccine. Moreover, a few studies were designed to incorporate

mutation within epitopes against COVID-19 successfully (22, 29).

Compared to conventional vaccine design methods, the advantage of

employing immunoinformatics enables the screening of potential

epitopes that are effective for multiple strains, the assessment of their

immune activity, and other key factors to enhance vaccine

development, which is vital for the effective vaccine design (5, 7).

Therefore, this study examined subtype C to formulate a potent

vaccine considering variability. The B cells and MHC class I and

class II (MHC I and MHC II) epitopes were identified and selected

based on their high antigenicity score in this investigation. These

epitopes were further mapped considering the variability of amino

acids identified via multiple strains. The non-mutated and mutated

vaccines were formulated, and their molecular activity and stability

toward the TRL were analyzed via docking and dynamics. The

immune activity based on the vaccination steps and the expression

of the formulated vaccine were performed and analyzed.
Materials and methods

The employed steps corresponding to the methodology are

illustrated in Figure 1.
Collection of the target sequence and their
immune assessment

The vital target (essential for host–pathogen interaction, replication,

and pathogenesis) sequences within the HIV mechanism were retrieved

from UniProt (https://www.uniprot.org/). The vaccine protein must

have strong immunological properties and be non-allergenic to

confirm a potent immune response (29). These retrieved sequences

were further subjected to the antigen and allergen assessment via

VaxiJen v2.0 (https://www.ddg-pharmfac.net/vaxijen/VaxiJen/

VaxiJen.html) (30) considering virus as a target and a threshold

value of 0.4 and the AllerTOP v.2.0 (https://www.ddg-

pharmfac.net/allertop_test/) (31) server. The VaxiJen server is

mainly based on alignment-based prediction methods, while the

AllerTOP server is alignment-free and grounded on the target’s

physicochemical properties.
Identification of B-cell epitope

Two subsequent servers—ABCpred (http://crdd.osdd.net/

raghava/abcpred/) (32), which utilized the artificial neural

network, and BepiPred 2.0 (http://tools.iedb.org/bcell/) grounded

on the sequence features of the antigen (33), available at IEDB—
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have different algorithms to detect more potential linear B-

lymphocyte (LBL) epitopes considering collected sequences as

input with default parameters. For peptide vaccines, recognizing

B cells is crucial, as their receptors recognize peptides to trigger an

effective immune response (29). However, the epitopes were further

considered based on their presence in both servers and examined

via VaxiJen v2.0 (30), AllerTOP v.2.0 (31), and ToxinPred (https://

webs.iiitd.edu.in/raghava/toxinpred/) along with default parameter

(34) servers.
Identification of T-cell (MHC I and MHC II)
epitopes and their immune assessment

CD8+ T lymphocytes recognize MHC I epitopes. When a cell is

infected or has aberrant proteins (such as in viral infections or

cancer), MHC I molecules present these peptides on the cell

surface, prompting CD8+ T cells to kill the infected or abnormal

cells (35–37). On the other hand, CD4+ helper T cells recognize MHC

II epitopes. Antigen-presenting cells (APCs) internalize and process

foreign antigens, presenting peptides on MHC II molecules to

activate CD4+ T cells, which then help coordinate the broader

immune response (38, 39). The MHC I and MHC II within the

targets were identified using Tepitool (http://tools.iedb.org/tepitool/),

which computes the epitopes based on seven prediction methods

(IEDB recommended, consensus, NetMHCIIpan, NN-align, SMM-

align, Sturniolo, and the combinatorial library method) (40). For

MHC I, 27 and MHC II, 7, the most frequent alleles with the

restricted 9- and 15-mer length were selected, and all other IEDB-

recommended parameters were selected (24, 29, 40). Furthermore,

the immune assessment was done similarly to the abovementioned

one to screen out the potential epitopes.
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Epitope mapping of B and T cells with the
variable amino acid

To formulate a mutation-proof vaccine, the designed vaccine

should be highly effective in both mutated and non-mutated forms

(29, 41). The available sequence concerning each target was

collected from UniProt (https://www.uniprot.org/). These

sequences were subjected for multiple sequence alignments via

Clustal Omega (https://www.ebi.ac.uk/jdispatcher/msa/clustalo),

which is based on the seeded guide trees and the HMM technique

(42), and the variable amino acid was visualized and collected using

the JalView (43) software. These variable amino acids were further

mapped with the final selected B- and T-cell epitopes to

incorporate mutation.
Vaccine formulation and immune and
physiological assessments

The highly antigenic score followed by non-allergenic and non-

toxic-based LBL, MHC I, and MHC II epitopes were selected from

each target for the vaccine formulation, leading to a robust immune

response against the infection. These epitopes were joined via

different subsequent linkers (EAAAK, AAY, KK, and GPGPG) (21,

41). Furthermore, to enhance, activate, and purify, the adjuvant,

PADRE, and His-tag were also attached at the N and C terminals of

the vaccine construct. In contrast, His-tag was attached using the

RVRR linkers (5, 7, 11, 21). Moreover, considering combination, six

different vaccines were constructed to identify additional potential

combinations with high antigenic properties (score). However, the

adjuvant (beta-defensin), PADRE at the N, and His-tag at the C

terminal were kept in different distinct vaccine constructs (44).
FIGURE 1

Overview of employed steps in the designed study.
frontiersin.org

https://webs.iiitd.edu.in/raghava/toxinpred/
https://webs.iiitd.edu.in/raghava/toxinpred/
http://tools.iedb.org/tepitool/
https://www.uniprot.org/
https://www.ebi.ac.uk/jdispatcher/msa/clustalo
https://doi.org/10.3389/fimmu.2025.1540253
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kumar Mishra et al. 10.3389/fimmu.2025.1540253
Moreover, the EAAAK offers an extended, uncharged spacer that

can reduce steric hindrance in the region, AAY enhances the

immunogenicity and improves pathogen-specific immunity while

reducing junctional immunogenicity, KK linkers enhance solubility

and are crucial proteases required for antigen processing, GPGPG

linkers will aid to avoid aggregation and sustain flexibility, and His-

tag is vital for the recognition and separation and facilitates efficient

purification (7, 29, 44–46). The antigen and allergen predictions were

used similarly to those mentioned above to identify vaccine candidate

combinations with optimal immunological and antigenic properties.

The combination with the highest antigen score was analyzed for its

physicochemical activity via the ProtParam server (https://

web.expasy.org/protparam/) (47), considering default parameters.

The selected vaccine combination also underwent solubility analysis

via Protein-sol (https://protein-sol.manchester.ac.uk/) (48), which

is based on weighted scores considering default parameters.
Population coverage analysis of the
selected MHC I and MHC II epitopes

The selection of potential must be validated based on its

population coverage, which can be crucial for vaccine

development and helpful for most of the world’s population (29).

The final MHC I and MHC II epitopes with their restricted alleles

were utilized for the analysis via population coverage (http://

tools.iedb.org/population/) (49), which estimates the fraction of

responders to epitopes with known MHC restrictions.
Mutated vaccine formulation and immune
and physiological assessments

The variable positions identified through multiple sequence

alignment were mapped onto the selected epitope to introduce

variability and design a mutated epitope to formulate a mutated

vaccine that can be helpful in combating multi-strain. The mutated

vaccine was constructed, and its immune and physiological

assessments were performed similarly to those of the non-

mutated vaccine.
Structure modeling and quality assessment

The SOPMA (based on the homology modeling) (https://npsa-

prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html)

(50) and PSIPRED [based on machine learning (ML)] (http://

bioinf.cs.ucl.ac.uk/psipred/) (51) were employed to examine the

secondary structure of non-mutated and mutated vaccine construct

following the default parameters. However, structure was modeled

via the Robetta (https://robetta.bakerlab.org/) (52) server based on

deep learning methods using RoseTTAFold. These models were

enhanced via the GalaxyRefine (https://galaxy.seoklab.org/cgi-bin/
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submit.cgi?type=REFINE) (53) server, and the most promising

enhanced models were further examined for their structure

quality validation via PROCHCK (https://saves.mbi.ucla.edu/)

(54) and ProSA-web (https://prosa.services.came.sbg.ac.at/

prosa.php), which is grounded on the statistical analysis following

the available structure (55).
Identification of discontinuous epitopes

Discontinuous epitopes are crucial for encoding the immune

system’s specificity and complexity in responding to infectious

agents, leading to more robust and protective immune responses

(36). Therefore, the presence of these epitopes within the non-

mutated and mutated vaccine was examined via Ellipro (http://

tools.iedb.org/ellipro/) (56), which is grounded on geometrical

properties of structure, considering the vaccine model structure.
Docking analysis of vaccine with TLR

Potent vaccines must be able to bind with the receptor to

activate an immune activity. Therefore, the formulated vaccine

(non-mutated and mutated) was docked with the TLR via the

ClusPro (https://cluspro.org/login.php) (57) webserver, which

utilized the PIPER docking algorithm following the default

parameters, whereas the TLR3 structure was collected via the

Protein Data Bank (PDB) (ID: 1ZIW) (https://www.rcsb.org/)

database. The obtained docked complexes were examined, and

the most potent complexes were selected based on their lowest

negative energy, demonstrating strong binding. The binding

affinities of complex chosen were computed via the PRODIGY

(https://rascar.science.uu.nl/prodigy/) (58) sever, and their

interaction was visualized through the PDBsum (https://

www.ebi.ac.uk/thornton-srv/databases/pdbsum/) (59) and PyMOL.
Molecular dynamics simulation

To examine the docked complex’s stability (vaccine with TLR),

the Desmond software on an Acer workstation with Ubuntu 20.04

was used (60). The OPLS-2005 Force field was employed to generate

the coordinates and topology file of the vaccine and TLR complex to

define bonded and non-bonded interactions. The system was

prepared, solvated (in the TIP3P model), and further neutralized

to mimic the physiological condition via Na+ and Cl− counter ions

with 0.15 M salt concentration. Furthermore, the simulations were

carried out at 300 K temperature and 1.0325 bar pressure for 100 ns,

and the system was minimized and relaxed using the default

protocol considering all other criteria that were earlier described

(23, 60–63). Furthermore, the trajectory file was examined by root

mean square deviation (RMSD) and root mean square fluctuation

(RMSF) to evaluate the system’s stability.
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Vaccine-assisted immune activity via
immune simulation

The immune activity produced via vaccine (non-mutated and

mutated) was analyzed via C-ImmSim (https://kraken.iac.rm.cnr.it/

C-IMMSIM/index.php) (64), which employs an ML algorithm. This

server assesses the host’s immune activity and the ensuing vaccine

administration. Default parameters were used following the

adjustment based on previously reported data corresponding to

the vaccine construct sequence. Additionally, time steps were

modified to reflect the administration of three doses at 1, 84, and

168, with 1,050 set as the simulation step, while all other parameters

remained the same (5, 21, 65).
Optimization and cloning of vaccine

The formulated vaccine (non-mutated and mutated) must have a

high expression level for a robust response. Therefore, the

constructed sequence was optimized via the VectorBuilder (https://

en.vectorbuilder.com/tool/codon-optimization.html) server,

considering E. coli K12 with default parameters. The Codon

Adaptation Index (CAI) and GC% should be 0.8–1.0 and 30%–

70% for the maximum expression, respectively (25, 66). Furthermore,

the optimized sequence was incorporated and cloned in pET-28a (+)

via SnapGene (https://www.snapgene.com/) software, considering a

specific restriction site as previously reported (5, 7, 11).
Results

Collection of the target sequence and their
immune assessment

The selected proteins, envelope glycoprotein (Q75008), protease

(Q75002), reverse transcriptase (Q75002), and integrase (Q75002),

were retrieved from the UniProt database, which is a part of the

human immunodeficiency virus type 1 group M subtype C (isolate

ETH2220), and are crucial in the infection mechanism (11, 67). The

immune assessment of the target sequence demonstrated (Table 1)

that the required properties can be utilized for vaccine formulation.
Identification of B-cell epitope and their
immune assessment

The crucial B-cell epitope within targets was identified via

ABCpred (32) and BepiPred 2.0 (33). Via the ABCpred server, 87

envelope glycoprotein (Supplementary Table 1), 9 protease

(Supplementary Table 2), 56 reverse transcriptase (Supplementary

Table 3), and 28 integrase (Supplementary Table 4) epitopes, and

simultaneously via BepiPred, 28 envelope glycoprotein

(Supplementary Table 5), 4 protease (Supplementary Table 6), 20

reverse transcriptase (Supplementary Table 7), and 9 integrase

(Supplementary Table 8) epitopes were predicted. Moreover, 25
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envelope glycoprotein, 4 protease, 24 reverse transcriptase, and 13

integrase epitopes were selected to screen out the more precise

assessments, which overlapped in both (Supplementary Table 9).

The immune evaluation of these final epitopes revealed that several

epitopes have potential, having antigen, non-allergen, and non-

toxic features, and the epitopes with high antigen scores from each

target (Supplementary Table 9, highlighted in blue) were selected

for vaccine formulation as in Table 2.
Identification of T-cell (MHC I and MHC II)
epitopes and their immune assessment

The MHC I and MHC II epitopes were identified within the

targets via Tepitool (40), considering the most frequent alleles (29).

The MHC I assessment revealed 238 envelope glycoprotein

(Supplementary Table 10), 24 protease (Supplementary Table 11),

170 reverse transcriptase (Supplementary Table 12), and 76

integrase (Supplementary Table 13) epitopes. Simultaneously, the

MHC II assessment revealed 80 envelope glycoprotein

(Supplementary Table 14), 12 protease (Supplementary Table 15),

61 reverse transcriptase (Supplementary Table 16), and 32 integrase

(Supplementary Table 17) epitopes. The immune assessments of the

epitope in MHC I and MHC II revealed several leading

immunodominant properties, as shown in Table 3. Furthermore,

one epitope with many covering alleles and a high antigenic score

(Table 3) from each respective target was selected for vaccine

formulation, as in Table 4.
Epitope mapping of B and T cells (MHC I
and MHC II) with the variable amino acid

To compute the variability of amino acids across different

variants, the total reviewed sequences concerning each target were

retrieved from UniProt, and their MSA was accomplished via Clustal

Omega (42). The MSA was visualized via the JalView (43) software,

which revealed several variable positions across the variant

(Supplementary Figures 1–4). In the case of the B-cell epitope, a

total of 38 amino acids from envelope glycoprotein, 29 from protease,

16 from reverse transcriptase, and 9 from integrase were found and

mapped (Supplementary Table 18) with the selected final epitope

(Table 2), whereas 73 amino acids from envelope glycoprotein, 8

from protease, 21 from reverse transcriptase, and 12 from integrase

for the combined MHC I and II were found and successfully mapped

(Supplementary Tables 19–22) with the selected epitope (Table 4,

non-mutated vaccine formulation). These mapped amino acids were

further incorporated (highlighted in red), and the variability was
TABLE 1 List of selected targets with their immune attributes.

Properties Envelope Protease Reverse
T

Integrase

Antigen 0.5425 (Yes) 0.4639 (Yes) 0.5039 (Yes) 0.4628 (Yes)

Allergen No No No No
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introduced in the selected non-mutated B- and T-cell epitope

(Tables 2, 4). Furthermore, the mutated epitope (Supplementary

Tables 19–22) concerning to non-mutated epitopes were examined

for antigen, allergen, and toxicity assessment, similar to those

mentioned for non-mutated epitopes, and several potential epitopes

were found to have antigenic, non-allergenic, and non-toxic

properties (Supplementary Tables 19–22). Among the potential

epitopes, the epitopes with high antigenic scores (Supplementary

Tables 19–22, highlighted in blue) were further selected for mutated

vaccine formulation.
Vaccine formulation and immune and
physiological assessments

Among the predicted epitopes, four LBL (Table 3), four MHC I,

and four MHC II (Table 4) were selected based on their high

immunodominant activity for the non-mutated vaccine

formulation. In contrast, four LBL, four MHC I, and four MHC

II mutated epitopes concerning the non-mutated vaccine, based on

the introduced variability having high antigenic scores, were used

for mutated vaccine formulation, as in Table 5. These selected

epitopes were joined via EAAAK, AAY, KK, and GPGPG linkers to
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attain the most immunodominant combination; six distinct non-

mutated vaccines were constructed considering the selected epitope

and different linkers, adjuvants, and other essential attributes.

Moreover, the adjuvant, PADRE, and His-tag were kept as in the

N and C terminal end, and the LBL, MHC I, and MHC II were

framed in different positions (11, 44) for the vaccine construction,

as shown below, and the final constructed sequence was of 276

amino acids.
1. Adjuvant-PADRE-LBL-MHC I-MHC II-His-tag (V1)

2. Adjuvant-PADRE-LBL-MHC II-MHC I-His-tag (V2)

3. Adjuvant-PADRE-MHC(I)-MHC (II)-LBL-His-tag (V3)

4. Adjuvant-PADRE-MHC(II)-MHC (I)-LBL-His-tag (V4)

5. Adjuvant-PADRE-MHC(II)-LBL-MHC (I)-His-tag (V5)

6. Adjuvant-PADRE-MHC(I)-LBL-MHC (II)-His-tag (V6)
Furthermore, antigenicity and allergenicity revealed that the V2

combination was found to have the highest antigenic score among

the different combinations, as shown in Supplementary Table 23.

Moreover, all the constructed vaccines in different forms have an

antigenic nature and a non-allergenic feature, which ensures that

the selected epitope is highly promising in various forms. These V2

combinations (Figure 2) were similarly applied for the mutated
TABLE 3 Immune assessment of MHC I and MHC II epitopes of the targets.

Targets Total epitopes Antigen Non-antigen Allergen Non-allergen Toxic Non-toxic

MHC I

Envelope glycoprotein 238 128 110 103 135 1 237

Protease 24 16 8 14 10 0 24

Reverse transcriptase 170 96 74 90 80 0 176

Integrase 76 41 35 44 32 1 75

MHC II

Envelope glycoprotein 80 48 32 37 43 0 80

Protease 12 6 6 10 2 0 12

Reverse transcriptase 61 38 23 25 36 0 61

Integrase 32 22 10 14 18 0 32
TABLE 2 List of final selected promising LBL epitopes with their immune properties.

Position Peptide Antigen Allergen Toxic

Envelope glycoprotein

78–93 PSPQELGLENVTENFN 1.0049 (Yes) No No

Protease

54–69 IKVRQYDQIIIEICGK 0.5430 (Yes) No No

Reverse transcriptase

349–364 LKTGKFAKRGTAHTND 1.1808 (Yes) No No

Integrase

188–203 RGGIGGYSAGERIIDI 0.8048 (Yes) No No
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TABLE 4 Selected highly antigenic MHC I and MHC II epitopes within all targets and their immune properties.

Position Peptide Alleles Antigen Allergen Toxic

MHC I

Envelope glycoprotein

206–214 SLDPIPIHY HLA-A*30:02
HLA-A*01:01
HLA-B*15:01
HLA-A*32:01
HLA-B*35:01
HLA-A*26:01
HLA-A*11:01
HLA-A*02:06
HLA-B*53:01
HLA-A*03:01
HLA-A*02:01
HLA-B*58:01
HLA-B*44:02
HLA-B*44:03
HLA-A*23:01
HLA-B*57:01

2.0650 (Yes) No No

Protease

91–99 TQLGRTLNF HLA-B*15:01
HLA-A*32:01
HLA-A*23:01
HLA-A*24:02
HLA-A*30:02
HLA-A*02:06
HLA-B*08:01
HLA-A*26:01

1.3043 (Yes) No No

Reverse transcriptase

381–389 VIWGKTPKF HLA-A*32:01
HLA-A*23:01
HLA-A*24:02
HLA-B*15:01
HLA-A*26:01
HLA-A*30:02
HLA-B*58:01
HLA-B*57:01
HLA-B*08:01
HLA-B*53:01
HLA-A*02:06

0.4408 (Yes) No No

Integrase

75–83 VAVHVASGY HLA-A*30:02
HLA-B*35:01
HLA-A*26:01
HLA-B*15:01
HLA-A*01:01
HLA-B*53:01
HLA-B*58:01

0.5921 (Yes) No No

MHC II

Envelope glycoprotein

351–365 NKTIEFKPSSGGDLE HLA-DRB1*07:01
HLA-DRB1*15:01
HLA-DRB3*01:01
HLA-DRB3*02:02
HLA-DRB4*01:01
HLA-DRB5*01:01

1.3159 (Yes) No No

Protease

42–56 WKPKMIGGIGGFIKV HLA-DRB5*01:01 0.6796 (Yes) No No

(Continued)
F
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vaccine formulation of 276 amino acids, and their antigenicity and

allergenicity were analyzed (Table 6). Furthermore, the

physiochemical properties and solubility analysis revealed suitable

properties of non-mutated (Supplementary Table 24) and mutated

vaccines, as in Table 6.
Population coverage analysis of the
selected MHC I and MHC II epitopes

For effectiveness, a potent vaccine must have a wide range of

coverage (29). These eight epitopes (four MHC I and four MHC II)

were examined together, and according to the restricted alleles,

there was 97.41% coverage, which shows the broader coverage

(Figure 3) of the employed epitope in the vaccine formulation.
Structure modeling and quality assessment

The secondary assessment revealed that the non-mutated

vaccine has a helix, 23.91%; strand, 23.91%; and coil, 52.17%

(Supplementary Figure 5), whereas the mutated has a helix,

20.65%; strand, 25.72%; and coil, 53.62% (Figure 4).

The model structure via Robetta (52) servers revealed a

confidence score of 0.42 for the non-mutated and 0.41 for the

mutated vaccine, which lies within the better-quality range. These

models were further refined, and based on their various parameters,

model 3 for the non-mutated (Supplementary Figure 6A)

(Supplementary Table 25, highlighted in blue) and model 1 for

the mutated vaccine (Figure 5A) (Table 7, highlighted in blue) were

found suitable.

The structure quality validation via PROCHECK (54)

demonstrated that the non-mutated vaccine has 87.3% residue in

the most favored region, 8.6% residue in the additional allowed

region, 1.8% residue in the generously allowed region, and 2.3%

residue in the disallowed region (Supplementary Figure 6B), followed

by 88.3% residue in the most favored region, 9.5% residue in the

additional allowed region, 0.9% residue in the generously allowed

region, and 1.4% residue in the disallowed region as in Figure 5B for
Frontiers in Immunology 0887
the mutated vaccine. The Ramachandran plot shows that both non-

mutated (Supplementary Figure 6B) and mutated (Figure 5B) vaccine

models have only five and three residues in the disallowed regions

and are scattered, suggesting less likely to cause significant structural

instability. Moreover, most of the residue lies in the favored region,

suggesting the overall reliable backbone geometry of the model (22,

68). Furthermore, the Z-score assessment done via ProSA-web (55)

revealed that the non-mutated vaccine has a −6 score (Supplementary

Figure 6C) and the mutated vaccine has a −5.54 score (Figure 5C); the

negative score represents the superior structure model. Based on

structural validation, the assessment demonstrated the good quality

of the non-mutated and mutated vaccines (22).
Identification of discontinuous epitopes

The non-mutated and mutated vaccine structure was subjected

to the Ellipro (56) server to compute the discontinuous epitope

within the vaccine. The subjected non-mutated vaccine revealed

that seven epitopes covered 139 amino acids; their range score

varied from 0.618 to 0.815 (Supplementary Table 26). In contrast,

six epitopes were found for the mutated vaccine, covering 147

residues, followed by the score range from 0.588 to 0.967 (Table 8).

The discontinuous epitopes with both vaccines show that the

construct vaccine will lead to a remarkable immune response (69).
Docking analysis of the non-mutated and
mutated vaccine with TLR

The molecular activity of formulated non-mutated and mutated

vaccines with the TLR3 was accomplished via ClusPro (7). The TLR3

can recognize double-stranded RNA (dsRNA) and single-stranded

RNA (ssRNA) and is also vital in antiviral immune responses.

Moreover, its activation stimulates dendritic cell activation

mediated by HIV-1, which makes it an ideal target (7, 70). Among

the generated multiple docked complexes of subjected TLR3 and

vaccine, model 6 for the non-mutated (Supplementary Table 27) and

model 7 for the mutated vaccine (Supplementary Table 28) were
TABLE 4 Continued

Position Peptide Alleles Antigen Allergen Toxic

Reverse transcriptase

343–357 QEPFKNLKTGKFAKR HLA-DRB1*07:01
HLA-DRB1*15:01
HLA-DRB3*01:01
HLA-DRB3*02:02
HLA-DRB4*01:01
HLA-DRB5*01:01

0.7494 (Yes) No No

Integrase

253–267 DNSDIKVVPRRKAKI HLA-DRB1*03:01
HLA-DRB1*15:01
HLA-DRB3*02:02
HLA-DRB4*01:01
HLA-DRB5*01:01

1.2710 (Yes) No No
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found most suitable, having high negative energies of −1,120.2 and

−1,275.4 kcal/mol, respectively. The binding affinity of complexes

was computed via PRODIGY (58), and the score was obtained at

−12.8 kcal/mol (TLR3-Non-mutated) and −24.0 kcal/mol (TLR3-

Mutated). These complexes were visualized for their various types of

interaction followed by the H bond via PDBSum (59). The TLR3-

Non-mutated complex shows 16 H bonds followed by 4 salt bridges

and 196 non-bonded contacts as in Supplementary Figure 7. In

contrast, the TLR3-Mutated vaccine revealed 40 H bonds followed by

8 salt bridges and 364 non-bonded contacts, as in Figure 6. Moreover,

the interface residue is demonstrated in Supplementary Figure 7,

Figure 6. The docking analysis revealed that the vaccine is strongly
Frontiers in Immunology 0988
bound via molecular connection with TLR3, and the incorporated

variability in the epitopes does not affect the interaction; rather, it

improves, followed by a high number of hydrogen bonds.
Molecular dynamics simulation

The docked TLR3 with the non-mutated and mutated vaccines

was analyzed via the Desmond software, followed by considering

steps of the parameter (23, 61, 62) to examine their stability. The

examination shows that the non-mutated and mutated vaccines

remained bound with the TLR3 over the simulation period
TABLE 5 Selected mutated B- and T-cell (MHC I and MHC II) epitopes were mapped with non-mutated epitopes, whereas the mutation was
highlighted in blue.

Position Epitope A.Pos R.Pos V.Amino acid M.Epitope Antigen Allergen Toxic

B cell

Envelope glycoprotein

78–93 PSPQELGLENVTENFN E86 96 G PSPQELGLGNVTENFN 1.4187 (Yes) No No

Protease

54–69 IKVRQYDQIIIEICGK I63 63 C IKVRQYDQICIEICGK 1.1378 (Yes) No No

Reverse transcriptase

349–364 LKTGKFAKRGTAHTND F354 354 Y LKTGKYAKRGTAHTND 1.1961 (Yes) No No

Integrase

188–203 RGGIGGYSAGERIIDI R197 197 R RGGIGGYSARERIIDI 1.5032 (Yes) No No

MHC I

Envelope glycoprotein

206–214 SLDPIPIHY S206 237 N NLDPIPIHY 2.4487 (Yes) No No

Protease

91–99 TQLGRTLNF L93 93 I TQIGRTLNF 1.3254(Yes) No No

Reverse transcriptase

381–389 VIWGKTPKF T386 387 S VIWGKSPKF 0.5451 (Yes) No No

Integrase

75–83 VAVHVASGY Y83 83 F VAVHVASGF 0.5744 (Yes) No No

MHC II

Envelope glycoprotein

351–365 NKTIEFKPSSGGDLE S359 401 K NKTIEFKPKSGGDLE 1.6779 (Yes) No No

Protease

42–56 WKPKMIGGIGGFIKV M46 46 I WKPKIIGGIGGFIKV 0.5336(Yes) No No

Reverse transcriptase

343–357 QEPFKNLKTGKFAKR P345 345 E QEEFKNLKTGKFAKR 0.9871 (Yes) No No

Integrase

253–267 DNSDIKVVPRRKAKI S255 255 N DNNDIKVVPRRKAKI 1.2852 (Yes) No No
front
A.Pos, Absolute position; R.Pos, Relative position; V.Amino acid, Variable amino acid; M.Epitope, Mutation incorporated based on mapped variability data.
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(Figure 7, Supplementary Figure 8). The RMSD investigation shows

that the Ca of the mutated vaccine–TLR3 complex stabilized after

20 ns, followed by approximately 3.0–3.5 Å deviation, and the side

chains were comparably slightly higher at approximately 4.5–5.0 Å,

which shows the local conformational adjustments (Figure 7A),

whereas the non-mutated vaccine–TLR3 complex was gradually

stabilized after 20 ns and the Ca atoms rise between 6.0 and 6.5 Å,

and the side changes merely followed a similar trend but are slightly

higher and stabilized (6.5–7.0 Å) (Supplementary Figure 8A). The

higher range of RMSD revealed great flexibility, and the complex

maintained its structural stability (71, 72). Moreover, the RMSF

investigation shows that the alpha of the mutated vaccine–TLR3

complex was less than 2 Å, and the side chain surpassed 4 Å at

specific residues, which shows higher fluctuation (Figure 7B). In

contrast, the alpha of the non-mutated vaccine–TLR3 complex

remains below 3 Å, and their side chain was comparably higher

with a minor exceeding 6–8 Å at certain regions (Supplementary
Frontiers in Immunology 1089
Figure 8B). The minor high peaks in the RMSF of both docked

complexes recommend confined rigidity, which is essential for

interaction (60, 71, 72).
Vaccine-assisted immune response activity

The ML accomplished vaccine immune activity and assisted the C-

IMMsim server in considering the time steps of the injection interval, as

in Figure 8 (Mutated) and Supplementary Figure 9 (Non-mutated). In

the case of the non-mutated vaccine, the primary administration shows

a high peak of antigen level (700,000 mL) and high generation of

immunoglobin, followed by secondary and tertiary administration

having an antigen count level of 500,000 each, which further instantly

completely reduced, and further, the generated immunoglobins (IgM

+IgG, IgM, IgG1+IgG2, IgG1, and IgG2) spiked (650,000) and

continued to increase, as shown in Supplementary Figure 9A. In

contrast, the mutated vaccine shows antigen counts of approximately

700,000, 300,000, and 50,000 per mL at the primary, secondary, and

tertiary response levels, respectively. In contrast, the generated

immunoglobin level shows a more promising spike (IgM+IgG, IgM,

IgG1+IgG2, IgG1, and IgG2) followed by nearly 800,000, which is

higher than the non-mutated immunoglobin level as in Figure 8A.

Moreover, the generated cytokine and interleukins show the highest

peaks (IFN-g, IL-2, IL-4, and TNF-a) at nearly 450,000 ng/mL for non-

mutated (Supplementary Figure 9B), nearly similar to the mutated

vaccine (Figure 8B). The repeated exposure of the immunoglobin and

cytokine level followed by steps of injection shows that the vaccine is

capable of remarkable immune activity in both forms (Mutated,

Figure 8; and Non-mutated, Supplementary Figure 9), and the

incorporated variability does not reduce the vaccine’s effectiveness.
Optimization and cloning of vaccine

The queried non-mutated and mutated vaccine optimized

sequence was 831 for each. The CAI value was 0.95 and GC%

was 54.27 for the non-mutated vaccine. In contrast, for the mutated

vaccine, the CAI was 0.95, and the GC% was 53.43, demonstrating

the significant expression in the bacterial system of both vaccines as

the obtained value lies in favor of the expression level. Furthermore,
FIGURE 2

Illustration of vaccine construction followed by different attributes.
TABLE 6 Computed antigen, allergen, physicochemical, and solubility
properties of the mutated vaccine.

Sl. no. Properties Mutated vaccine

1. Antigen 0.8889 (Probable antigen)

2. Allergen Non-allergen

3. Residue count 276

4. Molecular weight 30,121.02

5. Theoretical pI 10.16

6. Formula C1348H2166N408O361S8

7. Estimated half-life 30 h (mammalian reticulocytes,
in vitro)

>20 h (yeast, in vivo)
>10 h (Escherichia coli, in vivo)

8. Instability index 31.76

9. Aliphatic index 70.43

10. Grand average of
hydropathicity (GRAVY)

−0.593

11. Solubility 0.674 (Higher than
scaled solubility)
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the optimized mutated and non-mutated vaccines (red) were cloned

in the pET28a (+) vector in Figure 9; Supplementary Figure 10.
Discussion

Vaccine formulation for emerging and re-emerging infections

presents a promising strategy for effective disease control, offering

broad coverage and cost-efficiency. In this context, researchers have

leveraged bioinformatics, immunoinformatics, and reverse vaccinology

approaches to develop successful multi-epitope vaccines (5, 22, 69, 71).

HIV is one of the ongoing endemic concerns due to high infection. No

specific vaccine are available to completely eradicate the infection due to

its strain variability (26, 28). Previously, researchers applied various

approaches for the successful vaccine development towards this infection

(5, 11, 21, 70) considering the viral targets mostly from subtype B

without incorporating variability in epitopes. InHIV infection, subtype C

accounts for the majority of infections, compared to other subtypes,

which have not been fully explored yet (13, 14). Therefore, this

investigation formulated a potent multi-epitope vaccine by examining

subtype C’s four potential targets and incorporating variability

(mutation) in epitopes to fight against multiple strains of infection.

Based on the antigen, allergen, toxicity, and incorporated variability in

the epitopes, four LBL, four MHC I, and four MHC II were found as

highly immunodominant epitopes and were selected for the non-

mutated and mutated (based on the introduced variability) vaccine

formulation. The vaccine’s immune activity was enhanced by including

the adjuvant, PADRE, and 6×His-Tag in the construction (5, 21). The

antigenicity and allergenicity assessment confirmed that both the

mutated and non-mutated vaccines are antigenic, with scores of
Frontiers in Immunology 1190
0.8889 and 0.7657, and these values are consistent with previous

findings (11, 21, 70) and indicate that both vaccines are non-allergenic

and the incorporated mutation in the non-mutated vaccine does not

compromise its antigenic effectiveness. Furthermore, mutated and non-

mutated vaccines’ physiochemical attributes and solubility levels were

found suitable and improved (5, 21). The MHC I and MHC II epitopes

involved in the vaccine formulation revealed high population coverage,

i.e., 97.41%, based on the combined investigation, which is nearly similar

to and has improved from the earlier reported study (5, 21, 70). The

secondary structural assessment of mutated and non-mutated vaccines

showed 20.65% and 23.91% as helix, which is nearly similar to the

previous data (5, 11), revealing structural stability. Moreover, the tertiary

structure modeling of bothmutated and non-mutated vaccines and their

validation confirmed that the modeled structures are of favorable quality

and closely resemble previously reported data (21, 70). The presence of

discontinuous epitopes in vaccines demonstrated their ability to induce

protective immunity, as they can produce the antibodies that identify the

infection (73, 74). Previously, studies found that the activation of TLR3

can potentially lead to combat HIV infection. Moreover, it can also

recognize the dsRNA and ssRNA and initiate the stimulation of dendritic

cells facilitated by HIV infection (5, 70). Subsequently, the activation of

TLR3 in the viral infection was found to be most suitable, as reported

previously by researchers (5, 21, 70, 75). The docking analysis of both

non-mutated and mutated vaccine models with TLR3 demonstrated

accurate binding, with the incorporated mutation maintaining and

enhancing the molecular interaction. This enhancement was reflected

in the increased number of interacting residues, with the non-mutated

vaccine forming 16 hydrogen bonds with TLR3, while the mutated

vaccine formed 40 hydrogen bonds. Furthermore, the binding affinity of

both vaccine–TLR3 complexes indicates the favored stability of the
FIGURE 3

Illustration of selected (MHC I and MHC II) epitope-based population coverage.
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system (75). The obtained binding affinity was −12.8 kcal/mol (TLR3-

Non-mutated) and −24.0 kcal/mol (TLR3-Mutated). Moreover, nearly

similar binding affinities calculated via PRODIGY, i.e., −10.8 kcal/mol

(76) and −20.0 kcal/mol (77), were previously reported. Subsequently, a

study based on the variability in epitopes reported −20.7 kcal/mol (non-

mutated) and −19.5 kcal/mol (mutated) (29). Moreover, Habib et al.

found that among the various TLRs (TLR-2, TLR-3, TLR-4, TLR-5,

TLR-8, and TLR-9), the designed vaccine exhibited a greater number of

interactions towards the TLR-2 followed by 12 H bonds (21). Moreover,

exhibited strong interactions specifically with TLR3 and TLR5 among

the various TLRs (77). The vaccine-assisted immune simulation activity

demonstrated that repeated exposure to formulated vaccines revealed

high immunoglobulins and decreased antigen levels. The presence of the

IgM in the vaccine will help in the early stage of immune regulation (78),

whereas the presence and generation of IgG1 and IgG2 towards the

antigens suggest the robust immune response followed by antibody
Frontiers in Immunology 1291
production and neutralization of the viral part (21). Furthermore, the

different cytokines and interleukins generated in response to antigens,

i.e., IFN-g (activation of macrophages), IL-2 (stimulates the IFN-g), IL-4
(B-cell activation), and TNF-a (activation of dendritic cells and T cells),

demonstrated the protective immune activity (21, 79, 80) of the

formulated non-mutated and mutated vaccine and successfully

suppressed and nearly similar to previously reported studies (5, 7, 21),

and the introduced mutation does affect and reduce the effectiveness of

the production of immune activity. The in silico cloning of the non-

mutated and mutated vaccine into the pET28a(+) vector within the E.

coli K12 system demonstrated the maximum expression level, with a

CAI value of 0.95 for each and GC% values of 54.27 and 53.43. These

values fall within the favored range for optimal expression, aligning

closely with previously predicted CAI and GC% values (5, 7, 11, 70).

Moreover, the cloning of the designed vaccine into the pET28a(+) vector

was deemed suitable for viral infection-based studies owing to its
FIGURE 4

Illustration of secondary composition based on their attributes of the mutated vaccine.
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FIGURE 5

Illustration and modeled mutated vaccine and their quality assessments. (A) Designed vaccine model, (B) residue representation in various regions,
and (C) quality evaluation via the Z-score value.
TABLE 7 List of enhanced mutated vaccine models with their attributes.

Model GDT-HA RMSD MolProbity Clash score Poor rotamers Rama favored

Initial 1.0000 0.000 1.466 2.1 0.0 92.0

Model 1 0.9819 0.322 1.805 8.3 0.5 94.9

Model 2 0.9764 0.329 1.884 9.7 0.5 94.5

Model 3 0.9755 0.335 1.897 10.6 0.5 94.9

Model 4 0.9792 0.329 1.912 9.9 0.5 94.2

Model 5 0.9728 0.349 1.918 10.6 0.9 94.5
F
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TABLE 8 List of obtained discontinuous epitopes within the mutated vaccine.

Sl. No. Residue No. of residues Score

1. A:F187, A:K188, A:N189, A:L190, A:K191, A:T192, A:G193, A:K194, A:F195 9 0.967

2. A:G1, A:I2, A:I3, A:N4, A:T5, A:L6, A:Q7, A:K8, A:Y9, A:Y10, A:C11, A:R12, A:V13, A:R14, A:G15, A:G16,
A:R17, A:C18, A:A19, A:V20, A:L21, A:S22, A:C23, A:L24, A:P25, A:K26, A:E27, A:E28, A:Q29, A:I30, A:

G31, A:K32, A:C33, A:S34, A:T35, A:R36, A:G37, A:R38, A:K39, A:C40, A:C41, A:R42, A:R43

43 0.804

3. A:P151, A:G154, A:D156, A:L157, A:E158, A:G159, A:P160, A:G161, A:P162, A:G163, A:W164, A:K165, A:
P166, A:G179, A:P180, A:G181, A:P182, A:G183, A:Q184, A:E185, A:E186, A:A196, A:K197, A:R198, A:G199,

A:P200, A:G201, A:P202, A:G203, A:D204

30 0.689

4. A:K217, A:A220, A:Y221, A:N222, A:L223, A:D224, A:P225, A:I226, A:P227, A:H229, A:Y230 11 0.648

5. A:K68, A:P69, A:S70, A:P71, A:Q72, A:E73, A:L74, A:G77, A:N78, A:V79, A:T80, A:E81, A:N82, A:F83, A:
K85, A:D137, A:I138, A:G139, A:P140, A:G141, A:P142, A:G143, A:N144, A:K145, A:S264, A:G265, A:R267,

A:V268, A:R269, A:R270, A:H271, A:H272, A:H274, A:H275, A:H276

35 0.599

6. A:C100, A:G101, A:K102, A:K104, A:L105, A:T107, A:G108, A:K109, A:A111, A:K112, A:G114, A:T115, A:
A116, A:H117, A:T118, A:N119, A:D120, A:K121, A:K122

19 0.588
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capability to efficiently express viral proteins and the presence ofmultiple

cloning sites, which streamline the cloning process (5, 29, 81).

One of the major hurdles to combating HIV is the low immune

response and strain variability. Compared to conventional methods,

immunoinformatics-based approaches offer a more precise, rapid,

and cost-effective method for vaccine formulation. This study’s

major findings demonstrate that the designed vaccine elicits a
Frontiers in Immunology 1493
significant immune response, effectively triggering cellular and

humoral activity to combat the infection. Furthermore, based on

strain variability, the incorporated mutation does not affect its

effectiveness, highlighting its potential to address multi-strain

variability. Overall, this study confirms that the formulated

vaccines possess immunodominant activity and are capable of

effectively fighting HIV infection.
FIGURE 6

Illustration of TLR3 with mutated vaccine. (A) Surface interaction, (B) interface residue connection, and (C) residual interaction.
FIGURE 7

Illustration of simulation-based investigation of the docked complex (mutated vaccine with TLR3). (A) The RMSD-based trajectories analysis of the
complex, and (B) the RMSF-based trajectories analysis of the complex.
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Limitations and future scope

Strain variability remains a significant challenge in HIV vaccine

development. In this study, we successfully designed both non-

mutated and mutated vaccine constructs, incorporating epitope

variability to address this issue. The vaccines demonstrated

remarkable immune activity, highlighting their potential
Frontiers in Immunology 1594
effectiveness. Several steps of investigation and examination were

employed via integrating the computational and immunoinformatic

approach, which is associated with accuracy and promise. While the

formulated vaccine revealed strong immune activity, future steps,

including experimental validation, multi-strain efficacy, immune

response evaluation, and clinical trials, are essential to ensure its

protection and immune activity.
FIGURE 8

Illustration of immune activity response of the mutated vaccine considering injection steps. (A) Vaccine-assisted antigen and antibody level.
(B) Generated cytokine and interleukin level.
FIGURE 9

Illustration of the incorporated mutated vaccine in pET28a(+).
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Conclusion

In this combinedmutation-based immunoinformatic investigation, a

potent peptide vaccine against HIV infection was successfully formulated

by incorporating variability (mutations) in the epitopes utilized in the

vaccine. The formulated vaccine effectively evokes a robust immune

response based on the fusion of immunodominant epitopes. The docking

and dynamics investigation of non-mutated and mutated vaccines with

the TLR3 demonstrated strong and stable binding, which ensures the

ability of the vaccine activity towards the signaling receptor to trigger the

immune response. The vaccine-generated immune response, followed by

the injection time step, effectively stimulates immune cells. Additionally,

the in silico-assisted cloning revealed the high expression levels of non-

mutated and mutated vaccines. The strategy employed in this

investigation suggests a potent framework for formulating a vaccine

capable of addressing strain variability.
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Boston, MA, United States, 8School of Health Systems and Public Health, University of Pretoria,
Pretoria, South Africa, 9Division of Medical Virology, Faculty of Medicine and Health Sciences,
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Introduction: The Mycobacterium avium complex (MAC)—comprising M.

colombiense, M. avium, andM. intracellulare—is an emerging group of

opportunistic pathogens responsible for significant morbidity and mortality,

particularly in immunocompromised individuals. Despite this growing burden,

no vaccines currently provide cross-species protection. In silico vaccine design

offers a rapid, cost-effective strategy to identify immunogenic epitopes and

assemble multi-epitope constructs with optimized safety and efficacy.

Accordingly, we aimed to develop a candidate multi-epitope vaccine (MEV)

targeting conserved antigens across multiple MAC species.

Methods: From a genomic survey of nontuberculous mycobacteria (NTM) in

Zimbabwe, we assembled complete genomes for M. colombiense (MCOL), M.

avium (MAV), and M. intracellulare (MINT). Using both local and global reference

datasets, we screened the conserved immunodominant proteins 85A, 85B, and

85C for high-affinity T-helper lymphocyte (THL) epitopes. Promising epitopes

were further evaluated for antigenicity, immunogenicity, physicochemical

stability, and population coverage.

Results: Epitope mapping across the nine target proteins yielded 82 THL

epitopes predicted to bind 13 MHC class II (DRB*) alleles, ensuring broad

coverage within Zimbabwean and pan-African populations. Clustering analyses

consolidated 26 unique epitopes into 11 consensus peptides, 65.4% of which

derived from the 85B proteins. In silico immune simulations predicted robust

humoral and cellular responses, including elevated IgG titers, T-helper and T-

cytotoxic cell proliferation and increased secretion of IFN-g and IL-2 following

MEV administration.
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Conclusion: These findings indicate that our construct possesses strong

immunogenic potential and cross-species applicability. We present here a

rationally designed MEV candidate that merits further experimental validation

as a broad-spectrum vaccine against multiple MAC species.
KEYWORDS

Epitopes, Mycobacterium avium complex, Vaccine, Antigen85, mycolyltransferase, Th1
helper T-cell, immunodominance, promiscuous epitopes
1 Introduction

Mycobacterium avium complex (MAC) encompasses a group of

twelve species of mycobacteria that are opportunistic pathogens

responsible for significant morbidity and mortality in both humans

and animals (1, 2). To improve on clarity, may we request change of

this statement to 'MAC species cause pulmonary disease in

humans and animals. They are clinically significant both in

immunocompromised patients—such as people living with HIV/

AIDS or those with chronic lung disease—and, less commonly, in

otherwise healthy individuals. (3). In animals, MAC infections pose

significant threats to livestock and wildlife resulting in economic

losses and serving as potential reservoirs for zoonotic transmission

(4, 5). Infections due to MAC species are increasing globally,

particularly among immunocompromised individuals and

patients with underlying lung disease, with notable prevalence

reported in Australia, America, Europe, and Asia, thereby

underscoring the urgent need for effective vaccine strategies

worldwide (1, 3, 6–9). The growing global burden of MAC

infections and multidrug resistance among MAC calls for an

urgent and constant ‘One Health Approach’ in development of

effective prevention and control strategies in both humans and

animals (2). This vaccine development effort aligns with the ‘One

Health approach’ addressing human, animal and environmental

health by targeting pathogens at the human-animal-environment

interface. Despite the widespread use of Bacillus Calmette–Guérin

(BCG) as a vaccine for tuberculosis and also providing partial

immunity to NTM infections, further studies to either increase

the efficacy of the BCG/recombinant BCG vaccine or to create new

vaccines or booster vaccines that induce an optimal immune

response against NTM is required (10). To address this waning

efficacy, booster vaccines are essential as they help achieve long-

term immunity (11). However, the recent advances in vaccine

technology, in silico predictions provide a more efficient, cost-

effective alternative for screening candidate epitopes that can elicit

strong immune responses, identifying and optimizing vaccine

candidates used in the development of therapeutics and vaccines.

Given that effective vaccines must enhance immune

mechanisms responsible for pathogen elimination, understanding

the nature of pathogen clearance becomes essential. Pathogen
0299
clearance often relies on multi-specific, polyclonal, and robust T

cell-mediated responses. Major histocompatibility complexes

(MHCs), known as human leukocyte antigens (HLAs) in humans,

are crucial for the host immune system, presenting antigenic

peptides (epitopes) to CD8+ cytotoxic T cells (CTLs) and CD4+

T helper (Th) cells [Helper T-lymphocytes (HTL)] (12–14). HLA

class I molecules present endogenous peptides to CTLs, while HLA

class II molecules present exogenous peptides to HTLs (13). The

HTLs have a key role in adaptive immunity. These activate the B-

cells along with the CTLs for production of antibodies and

eventually killing infected/damaged cells (15). The HTL epitopes

for the selected protein can be calculated using the prediction tool

for MHC-II epitope (http://tools.iedb.org/main/tcell/).

Epitope-based vaccines represent a novel approach for

generating a specific immune response and avoiding responses

against other unfavourable epitopes (like epitopes that may drive

immunopathogenic or immune modulating responses) in the

complete antigen. Potential advantages of epitope-based vaccines

also include increased safety, the opportunity to rationally engineer

the epitopes for increased potency and breadth, and the ability to

focus immune responses on conserved epitopes (16, 17). The

repertoire of peptides presented by HLAs is influenced by the

structural features of the HLA binding groove and the peptide’s

amino acid composition (18, 19). In silico tools can predict MHC-

presented epitopes and profile immune escape mutations, though

such analyses remain complex and underexplored for bacterial

genomes. Additionally, pathogens frequently mutate within

immunogenic epitopes to evade recognition by T cells and agents,

posing significant challenges for developing potent vaccines and

therapeutics for diseases like tuberculosis (TB) and others (20).

The antigen 85 (Ag85) complex, comprising a cascade of 85A,

85B, and 85C proteins is the main secretory antigen playing an

important role in the pathogenicity of mycobacteria (21). Ag85

complex molecules are widely being explored as tools in diagnostic

methods and in vaccine research including recombinant attenuated

vaccines, DNA vaccines and subunit vaccines because of their

ability to allow bacteria to evade host immune responses through

preventing formation of phagolysosomes (21). These highly

conserved fibronectin-binding proteins also promote immune

responses in host by inducing the production of IFN-g and have
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http://tools.iedb.org/main/tcell/
https://doi.org/10.3389/fimmu.2025.1589083
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kashiri et al. 10.3389/fimmu.2025.1589083
been shown to confer protection against TB (22). Research into

Ag85 proteins continues to hold great promise for improving TB

vaccines, particularly in high-burden settings.

By leveraging computational approaches, it is possible to predict

T-cell fromMAC antigens, assess their immunogenicity, and design

multi-epitope vaccine constructs. In this study, we utilized

immunoinformatics to analyze the 85A, 85B, and 85C proteins of

MAV, MINT and MCOL, the commonly found strains in

Zimbabwe, to identify candidate epitopes for vaccine

development. This work aims to contribute to the development of

safe and effective vaccines to combat MAC infections in both

humans and animals, addressing a critical need in the global fight

against mycobacterial diseases.
2 Materials and methods

2.1 Screening for Ag85A-C genes of the
three MAC species

From a genomic survey project using NTM samples in

Zimbabwe, we generated complete MAV, MINT and MCOL

genomes. These genomes provided a foundational dataset for

vaccine modelling, enabling a genotyping approach through

whole genome sequencing (WGS) to identify immunologically

relevant targets. To enhance the multi-epitope vaccine design, we

screened for Ag85A-C genes across the three MAC species. The

amino acid sequences of the target proteins Ag85A, Ag85B, and

Ag85C of MAV, MINT and MCOL were retrieved from the

National Center for Biotechnology Information (NCBI) (https://

www.ncbi.nlm.nih.gov) in FASTA format. Subsequently, the nine

protein sequences were grouped into three multiple sequence

alignments (MSAs), corresponding to Ag85A, Ag85B, and Ag85C

for MAV, MINT, and MCOL. Each MSA was visualized using

AliView (https://github.com/AliView/AliView), and conserved

regions were identified from the alignments. The Epitope

Conservancy Analysis tool, available through the Immune

Epitope Database (IEDB; http://tools.iedb.org/conservancy/), was

used to evaluate the variability of epitopes based on the sequence

alignment of the three MAC species.
2.2 Prediction of T-cell and designing of
the multi-epitope subunit vaccine

We used NetMHCIIpan 4.3 to predict MHC class II-binding

peptides (NetMHCIIpan 4.3 - DTU Health Tech - Bioinformatic

Services) for all the 3 MSA containing proteins (Ag85A, Ag85B, and

Ag85C) for multiple MAC species. Epitope selection thresholds

were based on established immunoinformatics criteria. Only

epitopes that fulfilled multiple criteria, high antigenicity, strong

MHC binding, and IFN-g induction were shortlisted for vaccine

construct design. These selection thresholds have been widely

adopted in previous epitope-based vaccine design studies to

ensure that the predicted peptides are likely to be immunogenic
Frontiers in Immunology 03100
and broadly recognized across different HLA types (16, 17, 23). As a

selection criteria, the strong binding promiscuous epitopes were

considered for downstream analyses towards final vaccine

construct. To enhance vaccine efficacy, the GPGPG linker was

used to connect amino acid sequences, ensuring optimal

individual functionality (23, 24). GPGPG linkers reduced

junctional immunogenicity. Since immune adjuvants are a key

requirement in vaccine formulation and play a critical role in

enhancing the efficacy of vaccines, the Mycobacterium tuberculosis

50S ribosomal protein L7/L12 (RL7_MYCTU), P9WHE3 was

retrieved from the UniProt database (https://www.uniprot.org/)

and used as an adjuvant for the immune interaction based on its

ability to act as an agonist for TLR437 (25). P9WHE3 was then

integrated at the N-terminal of the construct and connected to the

antigenic epitopes using the EAAAK linker to ensure improved

expression, bioactivity stability and structural integrity (26, 27). The

final vaccine construct was meticulously designed by assembling the

adjuvant, epitopes, and linkers into a unified, functional structure to

maintain the structural stability and immunological independence

of the epitopes and adjuvant. To analyze epitope similarity with

human surface proteins and minimize the risk of autoimmune

reactions, BLASTp was also used. Epitopes with a similarity below

70% to human proteins are considered acceptable (28). The analysis

was conducted using the BLASTp tool.
2.3 Determination of physicochemical
characteristics, immunogenicity and
allergenicity prediction

We evaluated the immunogenicity of the multiepitope subunits

using the VaxiJen (VaxiJen v3.0) and the ANTIGENpro module of

the SCRATCH protein predictor (Scratch Protein Predictor).

Allergenicity was assessed with the AllerTOP v. 2.0 (29) and

AlgPred servers (http://crdd.osdd.net/raghava/algpred/) to identify

potential allergic reactions, ensuring the safety and efficacy of the

predicted vaccine candidates. We used the ProtParam tool of the

EXPASY database server (http://web.expasy.org/protparam/) to

determine the physicochemical parameters (molecular weight,

half-life, atomic composition, stability index and mean

hydrophilicity) of the vaccine candidates’ antigens.
2.4 3D modelling of immunogenic
polypeptides and protein subunits

For ab initio modelling, we utilized the Swiss-model (SWISS-

MODEL), submitting the designed full length chimeric peptide

sequence with default settings. One model (Swiss-Model ID:

Q63Q02.1) encompassed the entire multi-epitope construct, while

the second returned only a truncated peptide fragment and was

therefore excluded from further consideration. Model Q63Q02.1

was subsequently validated using MolProbity metrics—MolProbity

score, clashscore, and Ramachandran analysis (Table 1)—to ensure

stereochemical quality before downstream analyses. Functional
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insights into the targets were derived by rethreading the models

through the BioLiP protein function database (BioLiP). The

resulting 3D models were visually inspected using PyMOL

(PyMOL | pymol.org) for structural validation and analysis. To

further evaluate the protein’s flexibility and dynamics, Normal

Mode Analysis (NMA) was performed using the iMODS server

(https://imods.iqf.csic.es/), which provided insights into residue

coupling through the covariance matrix and defined the elastic

network model to identify regions of rigidity and flexibility based on

the stiffness of atomic interactions.
2.5 Population coverage by HTL epitopes

Human leukocyte antigen (HLA) patterns differ across ethnic

groups and geographical regions, making it essential to evaluate

population coverage when designing effective vaccines. The IEDB

population coverage tool (http://tools.iedb.org/population/) was

used to calculate global human population coverage for the

predicted HTL epitopes, ensuring their broad applicability. The

15-mer peptides overlapping by 14 amino acids were tested for

binding to a set of 13 HLA class II alleles—HLA-DRB1*0101,

DRB1*0301, DRB1*0302, DRB1*0401, DRB1*0701, DRB1*0802,

DRB1*1101, DRB1*1102, DRB1*1301, DRB1*1302, DRB1*1501,

and DRB5*0101—that have high population coverage in

Z imbabwe and o the r Af r i c an popu l a t i on s (h t tp : / /

www.allelefrequencies.net/hla6006a.asp?hla_population=2057).
3 Results

The amino acid sequences of nine proteins, 85A, 85B and 85C

proteins of MAV, MINT and MCOL, were retrieved from the

GenBank database to design a multi-epitope vaccine targeting

MAC. The inclusion of Ag85 complex was guided by its high

degree of conservation among mycobacterial species and its

established immunogenicity as supported by its wide use in

vaccine candidate development for TB (26, 30–32). Although nine

proteins were selected, clustering and consensus analysis resulted in

11 distinct peptide sequences, reflecting inter-strain variability and

epitope over lap . The eleven prote in sequences were

MSFIEKVRKLRGAAATMPR, MSFFEKLRGAAATMPRR,

PRRLAIAAVGASLLSGVAVAAGGS, PRRLAIAAMGASLLSGL,

R LA I AAVGA S L L SG L , G L PVEY L EVP S P SMGRN I ,

SEKVRAWGRRLLVGAAAAVTLPGLIGIAGGAATAN,

SEKVRAWGRRLLVGTAAAATLPG , AWGRRLVVG

AAAAATLPGLIGLAGGAATAN, PGLPVEYLQVPSAGMGRNI

and PVEYLQVPSAGMGRDIKVQFQS. SignalP 4.5 was used to

assess functionality, revealing no signal peptides for proteins other

than Ag85A/B/C. Functional protein sequences were then subjected
Frontiers in Immunology 04101
to T-cell epitope prediction, identifying 17 high-affinity HTL

epitopes for inclusion in the final vaccine construct. These

epitopes overlapped with HTL epitopes (Table 2). A BLAST

search against the UniProt database confirmed high conservation

among the proteins, ranging from 27.7% to 100%.
3.1 Construction of multi-epitope subunit
vaccine.

A total of 7 clusters of overlapping 14-mers high-binding HTL

epitopes were predicted (Figure 1A). Consequently, 7 consensus

sequences representing each cluster were generated at 100%

threshold. These were used in designing the chimera using

GPGPG linkers. Additionally, an adjuvant was added to the

amino terminus of the vaccine peptide using an EAAAK linker in

order to potentiate antigen-specific immune responses. The 50S

ribosomal protein L7/L12 (RL7_MYCTU, UniProt ID: P9WHE3)

was incorporated as an adjuvant at the N-terminal of the vaccine

construct to enhance immunogenicity. The adjuvant RL7_MYCTU

was an ideal adjuvant for enhancing cell-mediated immunity in this

MEV vaccine construct as it is well-documented to have the ability

to act as a potent immunostimulatory molecule inducing cytokine

production, T cell activation and IFN-g secretion (25). The final

vaccine peptide generated consisted of 423 amino acid residues. The

immunogenic peptide identified through epitope-mapping has been

patented for further vaccine development.
3.2 Physiochemical properties and
solubility prediction

The molecular weight (MW), theoretical isoelectric point (pI),

and half-life of the final protein [as assessed in mammalian

reticulocytes (in vitro) and in yeast and E. coli (in vivo)] is

summarized in Table 2. The protein demonstrated good solubility

upon expression, with a solubility score and an Abs 0.1% (1 g/L)

value of 0.505. Furthermore, the instability index (II) was calculated

as 36.67, classifying the protein as stable, as proteins with an II >40

are typically considered unstable.
3.3 Secondary-structure analysis and
tertiary-structure modeling of the chimeric
MEV construct using Swiss-model server

The Swiss-Model server was used to generate the two tertiary

structure models for the designed chimeric protein. Among these,

the MSVQ63Q02.1 model was identified as the best as it

represented the full-length MEV construct and achieved a
TABLE 1 Structural validation metrics for the chimeric MEV construct (Model Q63Q02.1).

Model ID MolProbity Score Clash score Ramachandran Favored (%) Ramachandran Outliers (%)

Q63Q02.1 1.73 3.64 88.35 1.94
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favorable MolProbity score (1.73) and low clashscore (3.64) and

thus was selected for presentation (Table 1, Figure 2A).

Ramachandran plot analysis indicated that 88.35% of the residues

were in favoured regions, with only 1.94% in disallowed regions

(Table 1, Figure 2Bb). The quality and accuracy of the refined 3D

model were evaluated using ProSA-web and ERRAT. The ERRAT

analysis reported an overall quality factor of 97.5% (Figure 2C),

while ProSA-web yielded a Z-score of -4.41 (Figure 2D), confirming

the reliability of the refined vaccine protein model. The internal

dynamics of the MEV model were further examined using normal

mode analysis (NMA) via the iMODS server. The covariance matrix

(Figure 2E) illustrated patterns of correlated and anti-correlated

motions between residues, while the elastic network model

(Figure 2F) highlighted stiffness variations across residue

connections, indicating regions of structural rigidity and flexibility.
3.4 IFN-g inducing epitope prediction

This prediction was consistent with the simulated level of IFN-g
produced after immunization with the peptide using the C-ImmSim

server (http://150.146.2.1/C-IMMSIM/index.php). The MEV model

we designed managed to elicit a significant increase in T cell

population following immunization. Furthermore, the antibody
Frontiers in Immunology 05102
levels (IgM+IgG, IgG1+IgG2, IgM, and IgG) were found to increase

during immunizations, accompanied by a decrease in antigen count

(Figure 3A). Additionally, both CTL and HTL populations increased

following secondary and tertiary immunization (Figures 3B–D).
3.5 Codon optimization and the in vitro
expression simulations

The Codon Optimization Tool (ExpOptimizer) tool (https://

www.novoprolabs.com/tools/codon-optimization), was used for the

multi-epitope vaccine model to enhance efficient translation and

optimization of the codons for maximal expression in the

prokaryotic host system E. coli (strain K12). In codon-optimized

sequences of the designed vaccine (MEV-LpKwTC001), the codon

adaptation index values were 0.80, and the GC content value

64.14%. Additionally, the adapted codon sequences were

optimized with sticky end restriction sites of HindIII and NcoI at

the N-terminus and C-terminus to facilitate restriction and cloning

and inserted into the recombinant plasmid vector, pET-30a (+),

using the Snapgene tool to design and effective cloning

strategy (Figure 4).
4 Discussion

Paediatric administration of BCG vaccine is practiced in

Zimbabwe. However, with M. tuberculosis being endemic and

with the rise of NTM infections, there is a great need for new

vaccines and booster vaccines for the BCG vaccines to fight both

tuberculosis in adults as well as NTM infections particularly MAC

infections. The rise of drug-resistant mycobacteria, limited BCG

efficacy, and the need for vaccines targeting both humans and

animals highlight significant challenges (33–35). The focus has

recently shifted towards the development of subunit vaccines as

they are associated with better safety profiles and are logistically

more feasible, effective vaccines candidates that can be used to

control MAC-related infections (36). Bioinformatics (in silico) is a

good option to be used in designing and development of vaccines

and diagnostics for newly emerged pathogens. The use of this

approach reduces the time and cost. In order to construct a

potent vaccine and effective diagnosis, understanding of the

epitope and antibody interaction is required.

This work therefore focused on the in-silico design and

development of a multi-epitope vaccine peptide generated using

different MAC species (MCOL, MAV, MINT) and antigens (85A,

85B, and 85C) and has a potential for cross-protection

(prophylactic and therapeutic). The proteins that we selected had

exhibited potential to be vaccine candidates for in vitro studies (32).

Epitope mapping of Ag85 protein complex has identified distinct

peptides capable of stimulating human T cells, highlighting specific

regions that could potentially trigger protective immune responses

(37). More than 50% of vaccine candidates development for TB to

date, some in advanced clinical trials, incorporated Ag85 (32).
TABLE 2 Characteristics of the primary structure of proposed multi-
epitope vaccine candidate for MAC species calculated through
ProtParam tool.

Characteristics of Vaccine Assessment

Number of amino acids 423 aa

Molecular weight (kDa) 41.5 kDa

Theoretical pI 10.27

Negatively charged residues (Asp + Glu) 31

Positively charged residues (Arg + Lys) 50

Extinction coefficient (M-1cm-1) 20910

Estimated half life
30 hours

(mammalian reticulocytes)

Aliphatic index 88.09

Grand average of
hydropathicity (GRAVY)

0.099

Instability index 36.67 (Stable)

Rama favoured score of tertiary structure 88.35%

z-score 4.41

Codon Optimization Index (CAI) 0.80

GC content (E coli as vector) 64.38%

Allergenicity (ALLERCATPRO + AlgPred) No evidence (non-allergenic)

Antigenicity Score: Threshold (0.4) 0.6120 (Probable ANTIGEN).
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Conservation of the Ag85 complex across mycobacterial species

also highlights their potential for cross-protection against related

pathogens, including those in the MAC (30, 31).

We identified THL epitopes from selected proteins and fused

them using linkers to create a multi-epitope peptide. Immuno-

informatics showed the vaccine candidate contains many high-

affinity MHC Class II epitopes from ag85B. Notably, multi-epitope

vaccines are often poorly immunogenic and typically require

adjuvants (38, 39); however, the designed protein demonstrated

comparable antigenicity scores with or without an added adjuvant

sequence. The antigenicity of the final sequence (including the

adjuvant sequence) was shown to be probable antigen with a

bacteria and also to be non-allergenic. we identified epitopes with

accessibility, flexibility, hydrophilicity, and antigenic profiles for the

Ag85. The vaccine candidate has a molecular weight of 41.5 kDa

and is predicted to be soluble upon expression, aligning with its

simulated immunogenicity. Solubility in an E. coli host is crucial for

biochemical and functional studies.

Based on the predicted GRAVY score, which assesses

maintenance ability in hydrophilic or hydrophobic environments,

our MEV model displayed negative GRAVY value, suggesting a

higher structural stability in a hydrophilic environment. This aspect

can be correlated with solubility, critical in determining in vitro
Frontiers in Immunology 06103
protein expression. Consequently, MEV-LpKwTC001, which

demonstrated the highest solubility score, was selected for

expression in E. coli. Furthermore, the predicting protein

solubility is crucial for the selection of highly effective candidate

proteins, as it can help avoid protein aggregation, which adversely

affects biological activity and can lead to failures in the recombinant

protein pipeline. The theoretical pI of 10.27 indicates the protein is

alkaline, and the predicted instability index confirms its stability

upon expression. The aliphatic index highlights the presence of

hydrophobic aliphatic side chains, suggesting thermal stability,

which is ideal for use in endemic regions like sub-Saharan Africa.

These properties show that this is a potential vaccine design. To the

best of our knowledge, no vaccine candidate is in phase III, nor

licensed for use in the NTM infection with MAC species. To

improve the immunogenicity of the vaccine antigen, we inserted

adjuvant and linker sequences between the previously predicted

epitopes to increase antigenicity. The fact that it has no allergenic

properties further confirms its potential as a vaccine candidate.

Secondary structure analysis shows the protein is primarily

composed of coils (67%), with 48% of residues disordered. These

structural features, including natively unfolded regions and alpha-

helical coiled coils, are known to serve as “structural antigens”

capable of folding into native structures and being recognized by
FIGURE 1

Helper T lymphocyte (HTL) Epitope Clustering and Multi-Epitope Vaccine Construct Design (A). Predicted HTL 14-mer epitopes were grouped into
clusters based on sequence similarity of their core binding regions. (B) A multi-epitope-vaccine construct was designed using consensus sequences
derived from each epitope cluster.
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infection-induced antibodies. To evaluate conformational changes

of the MEV, protein flexibility was examined using NMA. TheMEV

showed that a greater part of its peptide chains have high rigid

regions which are crucial in the protein’s functional dynamics. The

3D structure, refined to improve its quality, exhibited favourable

characteristics in the Ramachandran plot, with 85.16% of residues

in allowed regions and minimal outliers, confirming the model’s

reliability and suitability for vaccine design.

Immune simulation showed responses typical of a strong

immune reaction, with increased activity after repeated antigen

exposure. Following infection with MAC species, IgG1, IgG3, and
Frontiers in Immunology 07104
IgE antibodies are critical for protection, and the vaccine candidate

effectively stimulated memory B-cells and T-cells, with B-cell

memory lasting several months. The simulations show that THL

cells were strongly activated, and levels of IFN-g and IL-2 spiked

after the first injection, staying high with subsequent doses. This

suggests strong TH cell activity and efficient antibody production,

supporting a robust humoral response. The diversity of the immune

response, indicated by the Simpson index, reflects the chimeric

peptide’s design, which includes multiple B and T-cell epitopes. The

dominant IFN-g-driven TH1-type response, seen in naturally

immune individuals, involves higher levels of TH1 cells, cytotoxic
frontiersin.or
FIGURE 2

Protein 3D modelling, refinement and validation of designed MEV. (A) 3D structure of LpKWTc001 multi-epitope-based vaccine design for MAC
species. (B) Ramachandran plot (C) ERRAT analysis report. (D) Xray based on ProSA (Protein Structural Analysis). The Z-score (dark spot) value was
4.41, within NMR (dark blue) and X-ray (light blue. (E) Covariance matrix indicating coupling between pairs of residues, i.e. whether they experience
correlated (red), uncorrelated (white) or anti-correlated (blue) motions. (F) The elastic network model defining which pairs of atoms are connected
by springs. Dots are coloured according to their stiffness, the darker greys indicate stiffer springs and vice versa.
g

https://doi.org/10.3389/fimmu.2025.1589083
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kashiri et al. 10.3389/fimmu.2025.1589083
FIGURE 3

C-ImmSim simulation of the cytokine levels induced by the vaccine. (A) Antigen and immunoglobulins (antibodies are sub-divided per isotype); (B)
CD8 T-cytotoxic lymphocytes count per entity-state; (C) T helper (TH) cell population, and (D) Concentration of cytokines and interleukins.
FIGURE 4

Codon optimisation and in silico restriction cloning of the multiple-epitope vaccine construct into the expression vector pET30a(+). The codon
sequence of each multi-epitope vaccine was inserted in the multiple cloning site (MCS) of the (A) pET30a(+) expression vector using the Snapgene
sequence alignment tool; (B) Final clone with fragment MEV-LpKwTC001.
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CD8+ T cells, neutrophils, and macrophages, further highlighting

the vaccine’s potential effectiveness.

After obtaining the candidate vaccine, validating a candidate

vaccine begins with screening for immunoreactivity using

serological analysis, which requires expressing the recombinant

protein in a suitable host. E coli expression systems, particularly

strain K12, are preferred for producing recombinant proteins. To

ensure high-level expression of the vaccine protein, codon

optimization was performed in silico, yielding a favourable codon

adaptability index (0.80) and GC content (64.14%).

While our vaccine candidate demonstrated favourable protein

characteristics and strong immunogenicity, our study had certain

limitations. Since the candidate was designed using human MHC

epitopes, its efficacy must be assessed in a humanized mouse model.

Additionally, we did not evaluate vaccine efficacy in vitro, which

remains a limitation of our approach. However, this work

represents a crucial foundational step toward experimental

vaccine development. Notably, similar multi-epitope vaccines

designed through utilization of immunoinformatic tools in silico

have demonstrated strong immunogenicity in both in vitro and in

vivo models, supporting the reliability of these methods (40–42).

Moving forward, to advance the development of a preventive and

therapeutic vaccine for MAC, we will validate the proposed vaccine

through in vivo and in vitro studies to corroborate the predicted

immunogenic potential.

Additionally, population coverage analysis for our vaccine

candidate focused on HLA-DRB alleles. While this approach

provides a robust estimation of coverage in African populations,

the exclusion of HLA-DQ and HLA-DP loci may result in an

underestimation of total MHC class II diversity, particularly in non-

African populations. Future studies incorporating these additional

loci are warranted to refine global population coverage estimates.

This study highlights a novel vaccine construct capable of eliciting a

strong immune response against MAC species, potentially serving as a

prototype for vaccines targeting other emerging infectious diseases.

Vaccination is an important strategy to induce an immune response

against the pathogen by specifically inducing the adaptive immune

system. However, current challenges such as the absence of approved

vaccines for MAC species, limited epitope-based research, and the

lengthy development timelines and high costs associated with

traditional vaccine approaches present significant gaps. Addressing

these gaps is essential for comprehensive disease control and the

reduction of MAC-associated morbidity across human and animal

populations. This approach accelerates and lowers the cost of

developing diagnostics and vaccines for MAC species, aiding future

studies on epitope-based solutions to tackle the NTM challenge.
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The BCG vaccine has been used against tuberculosis (TB) for over a hundred 
years; however, it does not protect adults from pulmonary TB. To develop 
alternative vaccines against TB, we generated Mycobacterium tuberculosis 
H37Rv (Mtb)-derived vaccine strains by rationally deleting key virulent genes, 
resulting in single (SKO; DfbpA), double (DKO; DfbpA-DsapM), triple (TKO-D; 
DfbpA-DsapM-DdosR and TKO-Z; DfbpA-DsapM-Dzmp1), and quadruple (QKO; 
DfbpA-DsapM-Dzmp1-dosR) strains. To understand how macrophages, the host 
cells that defend against infection and process antigens for presentation to 
immune cells, respond to these vaccine strains, we performed transcriptomic 
analyses of mouse bone marrow-derived macrophages (BMDMs) infected with 
these strains. The transcriptomic data were compared with similar data obtained 
from macrophages infected with Mtb H37Rv and BCG. Our analyses revealed that 
genes associated with various immune and cell signaling pathways, such as NF-
kappa B signaling, TNF signaling, cytokine-cytokine receptor interaction, 
chemokine signaling, hematopoietic cell lineage, Toll-like receptor signaling, 
IL-17 signaling, Th1 and Th2 cell differentiation, Th17 cell differentiation, and T cell 
receptor signaling were differentially expressed in BMDMs infected with our 
vaccine strains. Enhanced expression of cytokines and chemokines, including 
proinflammatory cytokines such as TNF-a, IL-6, GM-CSF, and IL-1, which are 
essential for the immune response against Mtb infection, was also observed in 
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BMDMs infected with these strains. In particular, BMDMs infected with all vaccine 
strains exhibited a significant upregulation of genes associated with the IL-17 
pathway. These results may indicate that our vaccine strains could induce a 
protective immune response against TB. 
KEYWORDS 

Mtb-vaccines, BCG, mouse, macrophages, RNA-sequencing, transcripts, immune 
signaling, IL-17 
 

Introduction 

Tuberculosis (TB) is a deadly disease caused by an intracellular 
human pathogen, Mycobacterium tuberculosis (Mtb), which has 
coexisted with humans for approximately seventy thousand years 
(1, 2). According to the World Health Organization (WHO) report, 
nearly 10.8 million people were affected by TB, resulting in a 
mortality rate of 1.25 million in 2023 (3). Historically considered 
hereditary, TB was recognized as a contagious disease by Jean-
Antoine Villemin in 1865, and Robert Koch identified the causative 
bacterium, Mtb, in 1882 (4). Selman Waksman developed 
Streptomycin, the first effective TB drug, earning him the Nobel 
Prize in 1952 (5). Conversely, the BCG vaccine developed by Albert 
Calmette and Camille Guérin remains the only licensed vaccine 
against TB. Unfortunately, BCG has not been regarded as an 
effective vaccine against TB because of the emergence of various 
sub-strains that produce differing levels of protective efficacy (6). The 
rise of multidrug-resistant TB (MDR-TB) has complicated treatment 
strategies even further, necessitating confirmation of bacterial 
infection and testing for antibiotic resistance. Alarmingly, only two 
out of five MDR-TB cases received treatment in 2022 (7). 

In 2014, WHO launched the “End TB Strategy” (8) to

significantly reduce the TB burden by 2035, emphasizing the 
critical role of vaccines. Various vaccine types, including live 
attenuated vaccines (LAV), subunit vaccines, viral vectored 
vaccines, DNA vaccines, whole-cell killed/inactivated vaccines, 
and recombinant protein-adjuvant formulations, have been 
developed and studied for TB prevention (9). Among these, LAV 
stands out for its ability to induce long-lasting immune responses, 
with BCG serving as a prime example. The BCG vaccine differs 
from the Mtb strain due to the deletion of various Mtb-specific open 
reading frames (ORFs) clustered in 16 genomic regions of difference 
(RD1–RD16) (10, 11). Mtb has also been modified to enhance its 
vaccine efficacy, particularly by knocking out the secretory proteins 
or secretory systems of mycobacteria (12). 

As a first of its kind, we reported that the Mtb DfbpA strain 
protects mice against challenges similar to or better than BCG (13). 
Fibronectin-binding protein (FbpA; Rv3804c) is a secreted protein 
belonging to the Ag85 complex, which is highly conserved among 
species of the Mycobacterium tuberculosis complex. It has a 
mycolyltransferase enzyme function, catalyzing mycolic acid 
02 110
transfer during cell wall biogenesis (14). Gene disruption studies 
in Mtb demonstrated that FbpA is one of the key components 
necessary for intracellular survival (15). To enhance the vaccine 
efficacy, we additionally deleted the sapM gene in the DfbpA strain 
to create a double knockout (DKO) (16). The sapM gene (Rv3310) 
encodes the secreted acid phosphatase SapM, initially identified in 
Mtb (17). It interferes with the phagosome maturation by 
dephosphorylating PI-3 phosphate (18). Our DKO vaccine strain 
induces strong protection through enhanced antigen processing 
and the autophagy mechanism (19). To further enhance our DKO 
vaccine, we carefully deleted two additional genes, specifically zmp1 
(Rv0198c) and  dosR (Rv3133c). Zmp1 is a ~75 kDa zinc 
metalloprotease secretory protein that plays a significant role in 
blocking phagosome maturation and impairing inflammasome 
activation, resulting in greater vaccine efficacy, (20, 21), whereas 
DosR is a dormancy survival regulator that collectively affects 
approximately fifty genes in the Mtb genome and is highly 
activated under microenvironmental conditions such as 
granulomas (22, 23). These new vaccine strains have shown 
increased immunogenicity (24), and efficacies against TB in 
animal models are being investigated. 

This study follows up on our prior observation that a double-
knockout (DKO) vaccine provides superior and longer-lasting 
protection compared to the BCG vaccine (19). In this study, we 
aimed to investigate the intricate molecular responses of 
macrophages to the Mtb-based live attenuated vaccines (LAVs) 
developed in our laboratory. Macrophages play a crucial role in 
defending against intracellular pathogens like Mtb and processing 
and presenting antigens to immune cells. An effective mycobacterial 
vaccine should induce key immune and cell signaling pathways that 
lead to effective antigen presentation and the subsequent pathogen 
clearance from the host. Thus, studying the molecular interactions 
between Mtb-derived vaccines and macrophages through RNA-seq 
analysis should provide important insights into vaccine efficacy. 
Although studies have documented genome-wide transcriptomic 
changes in human or mouse macrophages following Mtb infection 
(25–27), our study focuses on Mtb-derived vaccine strains for the 
first time. This approach has allowed us to identify the crucial 
immune and cell signaling pathways and profile the vital cytokines 
and chemokines for TB vaccines. Further, our findings underscore 
the importance of the IL-17 pathway regulated by LAV strains. 
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Materials and methods 

Mtb strains and culture conditions 

Wild-type and knockout Mtb strains were grown at 37°C in either 
Middlebrook 7H9 broth or 7H10 agar (BD Difco), both containing 
0.05% Tween 80 (TW), 0.2% glycerol, and OADC (10%) enrichment. 
All mutant Mtb strains used in this study are a derivative of H37Rv. 
We published the single knockout, SKO (DfbpA) and  double
knockout, DKO (DfbpA-DsapM) strains used in this study earlier 
(13, 16). Triple knockouts such as DTKO-D (DfbpA-DsapM-DdosR), 
DTKO-Z (DfbpA-DsapM-Dzmp1), and quadruple knockout, DQKO 
(DfbpA-DsapM-Dzmp1-dosR) strains were made on the DKO 
background, and their construction was briefly reported earlier (24) 
and will be published elsewhere (manuscript under preparation). 
Animals and ethics 

C57BL/6J mice aged 4–6 weeks were purchased from Jackson 
Laboratories, Bar Harbor, ME. The mice received were housed with 
unlimited access to water and mouse chow and permitted to move 
without restraints within their cages at the Laboratory Animal 
Resource Center, Texas Tech University Health Sciences Center 
El Paso. The Institutional Animal Care and Use Committee 
(IACUC) of the Texas Tech University Health Sciences Center El 
Paso approved an animal protocol for this study (Protocol #17003). 
Isolation of bone marrow-derived 
macrophages 

As described previously, BMDMs were extracted from wild-
type C57BL/6 mice (28). Briefly, the BMDMs were cultured from 
the femurs and tibias of mice in DMEM medium (DMEM, 10% fetal 
bovine serum, 10 ng/ml of M-CSF) and incubated at 37°C in 5% 
CO2 for 7 days, with the addition of new medium containing M­

CSF every 2–3 days. 
Infection of BMDMs with Mtb strains 

Mtb wild-type H37Rv and all mycobacterial vaccine strains 
were cultured in 7H9 medium with appropriate antibiotics in roller 
bottles at 37°C for 5–7 days. Colony-forming units (CFUs) of the 
bacterial suspensions were determined and stored at -80°C until 
use. Before infection, bacteria were pelleted, washed with PBS, and 
dispersed using a 23G syringe to eliminate clumps. Mouse BMDMs 
(106 cells/well) seeded in 6-well tissue culture plates (Corning, USA) 
were infected at a multiplicity of infection (MOI) of 1:5 in DMEM 
for 4 h to allow phagocytosis. Afterward, cells were washed thrice 
with D-PBS (Corning, USA) to remove extracellular bacteria and 
replaced with fresh DMEM containing 10% fetal bovine serum for 
further incubation at 24 and 72 h. 
Frontiers in Immunology 03 111
RNA sequencing and data analysis 

Mouse BMDMs (106/well) were infected with the respective 
mycobacterial strains as described above for different time points 
(24 h and 72 h). After respective time points, total RNA was extracted 
from the infected BMDMs using the EZ-10 DNAaway RNA Mini-

Preps Kit (Bio Basic, Canada) as described previously (28). RNA 
quantification was performed using Nanodrop (Thermo Scientific, 
USA). The quality of RNA was measured using TapeStation (Agilent 
Technologies 4200). The library preparation enriched for polyA RNA 
fraction was performed in house and RNA sequencing was 
performed at Novogene Corporation Inc. (Sacramento, CA, USA), 
as described elsewhere (29). Two biological replicates for each 
condition were performed. We employed web-based application 
Genialis to analyze RNA sequencing raw data using their “General 
RNA-Seq pipeline (featureCounts)” with default settings (Genialis, 
Inc., Boston, MA). RNA-Seq data were aligned using STAR aligner to 
the mouse transcriptome from Ensembl release version 109 with 
trimmed reads removing adapter sequences. Read counts were 
computed using featureCounts. Quality control metrics were 
determined, and the average quality per read was 36 (Phred score) 
(Supplementary files - Table S1,S2, S2). Principle component analysis 
(PCA) was generated within the Genialis RNA-seq pipeline 
visualization features. The differentially expressed genes (DEGs) 
were also computed using the Genialis built-in DESeq2 tool, 
defining the control samples of PBS or H37Rv and the case 
samples accordingly, and the filtering criteria for DEGs are FDR < 
0.05 with log2 fold change greater than 1 for upregulated DEGs and 
less than 1 for downregulated DEGs. DEGs were presented in 
heatmaps, volcano plots, and Venn diagrams, using pheatmap, 
ggplot2, and Venn packages, respectively, in the R program. For 
downstream analysis of KEGG pathway analysis and Gene Ontology 
(GO) analysis for biological processes (BP), we queried the 
bioinformatic Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) with default settings and plotted the 
top 30 KEGG pathways or BP based on ascending p-value as dot plots 
using ggplot2 in R, as described previously (28, 29). 
cDNA synthesis and qRT-PCR 

The total RNA from infected BMDM was used to synthesize 
cDNA using the RevertAid First Strand cDNA Synthesis Kit 
(Thermo) according to the manufacturer’s protocol. Quantitative 
reverse transcriptase PCR (qRT-PCR) was performed using a 
LightCycler® 96 Instrument (Roche). PCR was performed using 
PowerTrack™ SYBR Green (Thermo Fisher Scientific) according 
to the manufacturer’s recommendations. Three biological replicates 
for each condition were performed. Primer details are given in the 
Supplementary files (Supplementary Table S3). The relative CT 
(DDCT) method was used to quantify gene expression as described 
elsewhere (19). The expression levels of target genes were normalized 
to the house keeping gene, actB (ß- actin) with the H37Rv group set 
as the reference value 1 for comparison with all vaccine groups. 
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Results 

Transcriptome analysis of mouse BMDMs 
infected with vaccine strains compared to 
uninfected cells 

To explore the variation in transcriptional signatures of mouse 
BMDMs infected with various Mtb vaccine strains, we conducted a 
genome-wide gene expression analysis using an RNA-sequencing 
platform (Figure 1). The performance of Principal Component 
Analysis (PCA) on the transcripts from mouse BMDMs clearly 
distinguished the infection groups from the PBS control at both 24 
and 72 h time points. At 24 h post-infection, groups of transcripts 
with H37Rv background knockouts clustered almost entirely 
together, distinctly separating from those associated with BCG. By 
72 h post-infection, almost all groups were distinctly separated, 
regardless of their H37Rv or BCG background (Supplementary 
Figure S1). 

For gene expression analysis, we considered fold change cut-off 
values of Log2 fold change >1.0 as upregulated and <-1.0 for 
downregulated genes (FDR < 0.05). Our transcriptome analysis 
identified more than 14,000 genes exhibiting expression among 
Mtb-infected mouse BMDMs compared to uninfected control 
(Supplementary Data 1, 2). The heat map displayed a gene 
expression profile, showing a high disparity among infected 
groups compared to the PBS group, regardless of the time point 
(Figures 2A, D). Different clusters in the heat map indicate distinct 
modes of regulation, with cluster 1 being predominantly 
upregulated and cluster 3 downregulated across all vaccine 
groups. Interestingly, cluster 2 remains unchanged in the H37Rv 
wild-type group; however, there is a significant difference in this 
Frontiers in Immunology 04112
cluster among the vaccine groups. Notably, an additional change in 
cluster 2 of the vaccine groups is observed at the 72 h time point 
compared to 24 h. The Venn diagram illustrates both the unique 
and shared DEGs among the vaccine-infected groups. The total 
number of unique genes in the various vaccine-infected groups at 24 
and 72 h post-infection are as follows: H37Rv (59 and 58), BCG 
(1309 and 422), SKO (52 and 126), DKO (206 and 225), TKO-D 
(111 and 155), TKO-Z (44 and 15), and QKO (23 and 40) 
(Figures 2B, E). 

There are no significant percentage differences in differential 
gene expression between 24 and 72 h post-infection within the same 
group (Figures 2C, F). Compared to H37Rv background vaccine 
strains (~12.5-20.9%), BCG displays a higher percentage of DEGs at 
both time points (25.8 & 21.8%), while the H37Rv wildtype shows 
(14.4 & 12.4%) DEGs. Interestingly, the percentage of DEGs 
decreased successively as the gene deletion increased in vaccine 
strains such as SKO (18.7 &20.9%), DKO (18.8 &18.4%), TKO-D 
(19.8 &19.3%), TKO-Z (14.3 &12.5%), and QKO (13.2 &14.7%). 
Transcriptome analysis of mouse BMDMs 
infected with Mtb vaccine strains 
compared to H37Rv wild-type strain 

As we observed differential regulation of genes within the vaccine 
groups, we proceeded to determine the number of DEGs in these 
groups compared to the H37Rv background (Supplementary Data 3, 
4). All our vaccine strains originate from the H37Rv background, 
where genes are sequentially deleted to create mutant strains. Thus, 
we compared all our vaccine strains, including BCG, with H37Rv. 
Unlike the previous comparison with uninfected, where three distinct 
FIGURE 1 

Schematics showing RNA-Seq workflow and data analysis. Fresh BMDMs were isolated from the female wild-type C57BL/6J mice and infected with 
respective vaccine strains or left uninfected. Following a 4-hour phagocytosis period, the BMDMs were washed with D-PBS and cultured in fresh 
DMEM supplemented with 10% fetal bovine serum for an additional 24 and 72 hours. RNA was isolated and subjected to eukaryotic mRNA 
enrichment at each time point. Subsequently, cDNA libraries were prepared, followed by adapter ligation and amplification for Illumina sequencing. 
The RNA-Seq data were aligned to the mouse transcriptome, and differential gene expression (DEG) analysis was performed. The figure was 
generated using BioRender. 
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clusters were observed, here we observed two distinct clusters. While 
minimal changes are noted in both clusters among the vaccine 
groups, with the exception of BCG and DKO, clusters 1 and 2 
display a high number of upregulated and downregulated genes in the 
BCG group, along with only a few differentially regulated genes in the 
H37Rv background vaccine groups. Interestingly, certain alterations 
are observed in the H37Rv background vaccine groups in regions 
where the BCG group shows no changes. In contrast, the DKO group 
exhibits more drastic changes in gene expression in those regions 
(Figures 3A, D). The Venn diagram reveals a limited number of 
unique and shared genes among the vaccine groups. At 24 and 72 h 
post-infection, the number of unique genes in various vaccine-
infected groups is as follows: BCG (597 and 512), SKO (5 and 28), 
DKO (199 and 331), TKO-D (20 and 22), TKO-Z (8 and 8), and 
QKO (11 and 29). Notably, BCG and DKO exhibit numerous unique 
DEGs, indicating distinct genetic responses (Figures 3B, E). 
According to the Volcano plot analysis, the percentage of DEGs at 
24- and 72-h post-infection is as follows: BCG (5.4 &9.7%), SKO (1.1 
&5.3%), DKO (3.1 & 9%), TKO-D (1 &2.6%), TKO-Z (0.4 &0.8%), 
and QKO (0.4 &3.2%). Greater percentage differences in differential 
gene expression are observed between 24- and 72 h post-infection 
within the same group, except for TKO-D and TKO-Z. Additionally, 
compared to H37Rv background vaccine strains (~0.4-9%), BCG 
exhibits a higher percentage of DEGs at both time points (5.4 & 9.7%) 
(Figures 3C, F). 
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KEGG pathway analysis of mouse BMDMs 
infected with Mtb vaccine strains versus 
uninfected cells 

KEGG pathway analysis was performed for all vaccine groups in 
comparison to the transcriptome of uninfected controls to identify 
pathways associated with mycobacterial infection. Several top 
enriched pathways were unique to the vaccine groups. Pathways 
such as graft-versus-host disease, allograft rejection, leishmaniasis, 
type I diabetes mellitus, TNF signaling, rheumatoid arthritis, 
inflammatory bowel disease, influenza A, NF-kappa B signaling, 
viral protein interaction with cytokines and cytokine receptors, 
Epstein-Barr virus infection, NOD-like receptor signaling, 
phagosome, cytokine-cytokine receptor interaction, Kaposi 
sarcoma-associated herpesvirus infection, measles, lipid and 
atherosclerosis, and COVID-19 were enriched with the 
upregulated DEGs of each condition across all vaccine groups 
(Supplementary Figures S2, S3). Conversely, pathways such as 
DNA replication, homologous recombination, cell cycle, Fanconi 
anemia, progesterone-mediated oocyte maturation, p53 signaling, 
oocyte meiosis, focal adhesion, cellular senescence, pathways in 
cancer, efferocytosis, ECM-receptor interaction, small cell lung 
cancer, motor proteins, PI3K-Akt signaling, Rap1 signaling, and 
MAPK signaling exhibited with downregulated DEGs across all 
vaccine groups (Supplementary Figures S4, S5). 
FIGURE 2 

Transcriptome profiling of mouse BMDMs infected with vaccine strains in comparison to control. (A, D), Heatmap of the differentially expressed 
genes at 24 h and 72 h; (B, E), Venn diagram of the differentially expressed genes showing the number of overlapping and unique genes among 
groups at 24 h and 72 h; (C, F), Volcano plot showing distribution of p values and log2 fold change of differentially expressed genes as green 
(downregulated), red (upregulated) and black (Not significant) at 24 h and 72 h with respective bar graphs in percentage. 
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KEGG pathway analysis of mouse BMDMs 
infected with mycobacterial vaccine strains 
compared to H37Rv 

To understand the roles of cellular pathways in the host’s 
response to mycobacterial infection, we performed a KEGG 
pathway enrichment analysis with the DEGs using Mtb H37Rv 
wild-type as the control. We identified multiple pathways that were 
uniquely and differentially dysregulated at both time points, with a 
similar pattern observed within the same groups across time points 
and between groups at each time point (Figures 4–7). Pathways 
including rheumatoid arthritis, viral protein interaction with 
cytokines and cytokine receptors, the IL-17 signaling pathway, 
hematopoietic cell lineage, and cytokine-cytokine receptor 
interaction were uniquely enriched with upregulated DEGs in all 
vaccine-infected macrophage groups compared to H37Rv 
(Figure 5). Notably, TKO-Z and QKO showed a delayed response 
in enriching those pathways in upregulated DEGs at 72 h. However, 
several pathways, such as the biosynthesis of unsaturated fatty acids, 
PPAR  signaling,  and  fatty  acid  metabolism,  exhibited  
overrepresentation in upregulatted DEGs (Figure 4) at  24 h. A

delayed IL-17 response at 72 h was also noted in TKO-Z and QKO 
when compared to other vaccine groups (Figure 5). 

Intriguingly, the pathways affected by downregulated DEGs 
varied across different vaccine groups. While BCG showed 
multiple pathways enriched in downregulated DEGs at both time 
points, our vaccine groups exhibited less pathways at 24 h (Figure 6) 
but pathways enriched increased in downregulated DEGs at 72 h 
Frontiers in Immunology 06114
(Figure 7). Specifically, TKO-Z had a few pathways, including 
cardiac muscle contraction, oxidative phosphorylation, prion 
disease, Alzheimer’s disease, thyroid cancer, p53 signaling, and 
thyroid hormone synthesis overrepresented in downregulated 
DEGs (Figures 6, 7). Uniquely, the ferroptosis pathway, critical in 
mycobacterial infection, was enriched in both BCG and TKO-D 
downregulated DEGs at 72 h (Figure 7). Additionally, BCG, SKO, 
TKO-D, and QKO downregulated DEGs enriched the ECM-

receptor interaction and focal adhesion pathways at 72 h, 
potentially limiting molecule translocation across barriers. 
Pathways such as protein digestion and absorption and PI3K-Akt 
signaling were enriched at 72 h in  SKO,  TKO-D,  and QKO

downregulated DEGs (Figure 7). 
We also compared BCG with H37Rv, where pathways such as 

rheumatoid arthritis, viral protein interaction with cytokines and 
their receptors, IL-17 signaling pathway, hematopoietic cell lineage, 
inflammatory bowel disease, type 1 diabetes mellitus, TNF signaling 
pathway, NF-kappa B signaling pathway, cytokine-cytokine 
receptor interaction, and chemokine signaling pathway were 
similarly enriched with the upregulated DEGs in the BCG group 
at both time points (24 h and 72 h) (Figures 4, 5). When observing 
the pathways enriched in downregulated DEGs, we noted pathways 
like influenza A, measles, antigen processing and presentation, 
hepatitis C, parathyroid hormone synthesis, secretion, and action, 
osteoclast differentiation, hepatitis B, human papillomavirus 
infection, cell adhesion molecules, Epstein-Barr virus infection, 
calcium signaling pathway, COVID-19, PI3K-Akt signaling 
pathway, and pathways in cancer were consistent at both time 
FIGURE 3 

Transcriptome profiling of mouse BMDMs infected with vaccine strains in comparison to Mtb H37Rv. (A, D), Heatmap of the differentially expressed 
genes at 24 h and 72 h; (B, E), Venn diagram of the differentially expressed genes showing the number of overlapping and unique genes among 
groups at 24 h and 72 h; (C, F), Volcano plot showing differentially expressed genes as green (downregulated), red (upregulated) and black (Not 
significant) at 24 h and 72 h with respective bar graphs in percentage. 
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points (24 h and 72 h). However, multiple pathways were uniquely 
dysregulated at their respective time points (Figures 6, 7). 

Subsequently, we compared the pathways overrepresented in 
differentially regulated genes by BCG vaccine strains with those 
from Mtb-derived vaccines to assess how closely our newly 
Frontiers in Immunology 07 115
developed Mtb-derived vaccines mimic BCG. Remarkably, similar 
KEGG pathways were enriched in our Mtb-derived vaccine strains 
compared to BCG in upregulated DEGs particularly at the 72 h time 
point (Supplementary Figure S6). At the 24 h time point, only a few 
pathways such as rheumatoid arthritis, viral protein interaction 
FIGURE 4 

KEGG pathway analysis in upregulated differentially expressed transcripts of mouse BMDMs infected with vaccine strains versus H37Rv at 24 h post-
infection. Dot plots illustrate the top 30 enriched pathways in upregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO compared to H37Rv 
control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each pathway, and the gradient color indicates 
statistical significance expressed as −log10 (P). 
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FIGURE 5 

KEGG pathway analysis in upregulated differentially expressed transcripts of mouse BMDMs infected with vaccine strains versus H37Rv at 72 h post-
infection. Dot plots illustrate the top 30 enriched pathways in upregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO compared to H37Rv 
control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each pathway enriched, and the gradient color 
indicates statistical significance expressed as −log10 (P). 
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FIGURE 6 

KEGG pathway analysis in downregulated differentially expressed transcripts of mouse BMDMs infected with vaccine strains versus H37Rv at 24 h post-
infection. Dot plots illustrate the top 30 enriched pathways in downregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO compared to H37Rv 
control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each category, and the gradient color indicates 
statistical significance expressed as −log10 (P). 
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FIGURE 7 

KEGG pathway analysis in downregulated differentially expressed transcripts of mouse BMDMs infected with vaccine strains versus H37Rv at 72 h post-
infection. Dot plots illustrate the top 30 enriched pathways in downregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO compared to H37Rv 
control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each category, and the gradient color indicates 
statistical significance expressed as −log10 (P). 
Frontiers in Immunology 10 frontiersin.org 118

https://doi.org/10.3389/fimmu.2025.1583439
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Veerapandian et al. 10.3389/fimmu.2025.1583439 
with cytokine and cytokine receptor, IL-17 signaling pathway, 
hematopoietic cell lineage, TNF signaling pathway, NF-kappa B 
signaling pathway, and cytokine-cytokine receptor interaction were 
uniquely enriched in upregulated DEGs in SKO, DKO, and TKO-D; 
almost no pathways matched with BCG for the TKO-Z and QKO 
groups. Interestingly, at 72 h, nearly all the pathways were uniquely 
enriched with the upregulated DEGs in our Mtb-derived vaccine 
groups compared to BCG. In examining the pathways enriched in 
downregulated DEGs, very few overlapped at 72 h, and almost none 
at 24 h (Supplementary Figure S7). Notably, the TKO-Z group did 
not  exhibit  any  common  pathways  overrepresented  in  
downregulated DEGs like BCG, in contrast to many that were 
enriched in upregulated DEGs in this group during 72 h. The-
common KEGG pathways enriched in downregulated DEGs across 
all  groups  appeared  primarily  due  to  the  SKO  strain  
(Supplementary Figure S7). 
Gene ontology analysis of mouse BMDMs 
infected with mycobacterial vaccine strains 
compared to H37Rv 

To investigate altered biological processes by DEGs, we 
performed GO analysis for biological processes for all vaccine 
groups compared to H37Rv. Biological processes, such as 
neutrophil chemotaxis, positive regulation of interleukin-6 
production, inflammatory response, and immune response, were 
enriched with upregulated DEGs at the 24 h time point in the BCG, 
SKO, and TKO-D groups (Figure 8). Similar to the KEGG pathway 
analysis, the TKO-Z and QKO groups exhibited delayed 
enrichment of some common pathways in upregulated DEGs to 
other vaccine groups, primarily at the 72 h time point (Figure 9). At 
72 h, biological processes, including neutrophil chemotaxis, positive 
regulation of interferon-gamma production, cytokine-mediated 
signaling pathway, response to lipopolysaccharide, inflammatory 
response, cellular response to lipopolysaccharide, negative 
regulation of cell proliferation, positive regulation of the ERK1 
and ERK2 cascade, immune system process, immune response, and 
response to xenobiotic stimulus, were consistently overrepresented 
in the upregulated DEGs across all vaccine groups (Figure 9). 

Similar to the KEGG pathway analysis, we observed a 
comparable pattern here, with a greater number of the enriched 
biological processes overlapping in the upregulated DEGs than in 
the downregulated DEGs. The TKO-Z group was particularly 
distinct, exhibiting overrepresented biological processes such as 
the positive regulation of endothelial cell proliferation and cell 
adhesion, in downregulated DEGs. Interestingly, most regulation 
of pathways appears to be linked to the deletion of fbpA, as indicated 
by the downregulated DEGs-enriched processes seen in the SKO 
group. These include the phospholipase C-activating G-protein 
coupled receptor signaling pathway, positive regulation of 
angiogenesis, positive regulation of cytosolic calcium ion 
concentration,  response  to  hypoxia,  gene  expression,  
inflammatory response, positive regulation of transcription from 
the RNA polymerase II promoter, response to dietary excess, 
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positive regulation of stress fiber assembly, immune system 
processes, positive regulation of the MAPK cascade, positive 
regulation of the ERK1 and ERK2 cascade, and cell adhesion 
(Figures 10, 11). 
Key immune and cell signaling pathways 
differentially regulated among vaccine 
groups 

KEGG pathway analysis was performed on immune and cell 
signaling pathways to investigate the mechanisms underlying 
vaccine-induced immune responses in macrophages infected with 
various vaccine strains (Supplementary Data 5, 6). Importantly, 
gene deletions in our vaccine strains resulted in differential 
modulation of several signal transduction pathways, including the 
NF-kappa B signaling pathway (mmu04064) and TNF signaling 
pathway (mmu04668). The signaling molecule and interaction 
pathway, particularly Cytokine-cytokine receptor interaction 
(mmu04060), showed significant upregulation, while the ECM-

receptor interaction pathway (mmu04512) demonstrated 
downregulation. Several cytokine and chemokine genes, including 
tnf, il6, il1a, il1b, il1r1, il1r2, il12a, il12b, il23, cxcl1, cxcl2, cxcl3, 
ccl22, ccl2, ccl3, ccl4, ccl6, and ccl7, were significantly upregulated 
across most vaccine groups. In contrast, genes such as cxcr1, cxcr3, 
cxcl9, cxcl12, and ccl8 were downregulated in the majority of vaccine 
groups. Furthermore, as previously noted, the ECM-receptor 
interaction pathway was significantly enriched in downregulated 
DEGs in specific vaccine strain-infected BMDMs, including SKO, 
TKO-D, and QKO, at 72 h (Figure 7). 

Key immune system pathways were also affected, including 
Hematopoietic cell lineage (mmu04640), Chemokine signaling 
pathway (mmu04062), Toll-like receptor signaling pathway 
(mmu04620), IL-17 signaling pathway (mmu04657), Th1 and 
Th2 cell differentiation (mmu04658), Th17 cell differentiation 
(mmu04659), and T cell receptor signaling pathway (mmu04660) 
(Supplementary Data 5, 6). Notably, only a small number of genes 
in the B cell receptor signaling pathway (mmu04662) were 
differentially regulated across all vaccine strains, including BCG. 

Among these pathways, the IL-17 signaling pathway exhibited 
the most pronounced differential regulation of DEGs across all 
vaccine groups. Heatmap analysis confirmed the list of genes with 
differential expression within the IL-17 signaling pathway 
(Figure 12). A few of the upregulated genes, such as csf2, csf3, 
il1b, ptgs2, and  lcn2, were further confirmed by qRT-PCR, 
corroborating the transcriptome findings (Figure 12). 
Further confirmation of DEGs in vaccine-
infected BMDMs using qRT-PCR 

To further confirm the findings of our study, we performed 
qRT-PCR on macrophages infected with our vaccine strains. For 
this analysis, we randomly selected DEGs from various pathways. 
We examined genes such as csf1, TNF, slc7a2, lta, ddit4, and dapk2 
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FIGURE 8 

Gene ontology analysis for biological processes in the differentially upregulated transcripts of mouse BMDMs infected with vaccine strains versus H37Rv 
at 24 h post-infection. Dot plots illustrate the top 30 enriched biological processes in upregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO 
compared to H37Rv control. Dot plots measure fold enrichment, where dot size reflects the total number of genes in each biological process, and the 
gradient color indicates statistical significance expressed as −log10 (P). 
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FIGURE 9 

Gene ontology analysis for biological processes in the differentially upregulated transcripts of mouse BMDMs infected with vaccine strains versus H37Rv 
at 72 h post-infection. Dot plots illustrate the top 30 enriched biological processes in upregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO 
compared to H37Rv control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each biological process, and 
the gradient color indicates statistical significance expressed as −log10 (P). 
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FIGURE 10 

Gene ontology analysis for biological processes in the differentially downregulated transcripts of mouse BMDMs infected with vaccine strains versus 
H37Rv at 24 h post-infection. Dot plots illustrate the top 30 enriched biological processes of downregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and 
QKO compared to H37Rv control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each biological process, 
and the gradient color indicates statistical significance expressed as −log10 (P). 
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FIGURE 11 

Gene ontology analysis for biological processes in the differentially downregulated transcripts of mouse BMDMs infected with vaccine strains versus 
H37Rv at 72 h post-infection. Dot plots illustrate the top 30 enriched biological processes in downregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and 
QKO compared to H37Rv control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each biological process, 
and the gradient color indicates statistical significance expressed as −log10 (P). 
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at  the 24 h and 72 h time  points  (Figure 13). The results 
demonstrated strong alignment with the transcriptome data. 
Interestingly, we observed an increased expression of the solute 
carrier family 7-member 2 (slc7a2) gene across all our vaccine 
groups in both transcriptome and qPCR analyses (Figure 13). 
Notably, this gene is reported to be highly expressed in 
macrophages infected with avirulent Mtb strain H37Ra (25), 
indicating that our vaccine strains exhibit reduced virulence 
compared to the wild-type strain. 
Frontiers in Immunology 16 124
Discussion 

In this study, we performed genome-wide transcriptome 
analyses of mouse macrophages after infection with our Mtb­

derived vaccine strains. We also included the BCG vaccine, as it 
is an established vaccine against TB. While multiple studies have 
reported transcriptome data of mouse macrophages infected with 
either BCG or Mtb, (25–27, 30, 31); our study focused on vaccine 
strains deficient in genes such as fbpA, sapM, zmp1, and dosR, either 
FIGURE 12 

IL17 signaling pathway is differentially regulated in vaccine groups in comparison with H37Rv. (A, C) Heat map depicts the green–red gradient that 
reflects relative gene expression among vaccine groups at 24 h and 72 h. (B, D) Gene expression levels of Csf2, Csf3, ilß, ptgs2, and lcn2 in BMDMs 
infected with vaccine strains at 24 and 72 hours as determined by qRT-PCR. Data were analyzed by one-way ANOVA followed by Dunnett’s multiple 
comparisons test. 
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individually or in combination. Transcriptomic analysis of our 
vaccine-infected macrophages was conducted using a heatmap, 
volcano plot, and venn diagram, demonstrating  a distinct

difference in DEGs expressed among groups. The number of 
DEGs in BCG-infected macrophages was greater than in 
macrophages infected with other vaccine groups and Mtb H37Rv. 
This disparate response between BCG and our Mtb H37Rv-derived 
strains may be due to the deletion of several ORFs within RD1­
RD16 regions in BCG. 

KEGG pathway analysis of DEGs identified several immune 
pathways that are implicated in vaccine-infected macrophages. 
Some prominent pathways include infections with intracellular 
bacteria, as well as immune, viral, cancer, and disease-related 
components. Type I interferon-related pathways, such as cytosolic 
DNA-sensing, NOD-like receptor signaling, NF-kappa B signaling, 
and C-type lectin receptor signaling, were significantly enriched 
with upregulated DEGs in our vaccine strains compared to the 
naïve group, similar to the previous reports (30, 32, 33). Also, 
consistent with earlier reports, TNF signaling was enriched with 
upregulated DEGs in all vaccine groups (25, 34). Notably, pathways 
such as the cell cycle, DNA replication, p53 signaling, progesterone-
mediated oocyte maturation, focal adhesion, and efferocytosis were 
Frontiers in Immunology 17 125
enriched with downregulated DEGs in all vaccine groups, with 
some of the pathways aligning with earlier findings (30, 35). 

Significant variations in upregulated DEGs-enriched pathways 
were noted across the vaccine groups between 24 and 72 h. Notably, 
TKO-Z and QKO exhibited a few pathways unique to other vaccine 
strains at 24 h, but by 72 h, they aligned with strains like SKO, DKO, 
and TKO-D. This change in pathways in TKO-Z and QKO may 
result from the deletion of zmp1. The zmp1 gene encodes a crucial 
enzyme for M. tuberculosis pathogenicity, playing various roles such 
as inhibiting phagosome maturation, suppressing inflammasome 
activation, mediating necrosis, and providing protection in guinea 
pig models (20, 21, 36). Interestingly, intracellular bacterial 
pathways, including legionellosis, leishmaniasis, and tuberculosis, 
were not enriched with upregulated DEGs in the TKO-Z group 
compared to H37Rv at either time point. However, these pathways 
were significantly enriched in the TKO-Z group when compared to 
the uninfected control. Due to the lack of transcriptome data for a 
zmp1 mutant infected macrophages, direct comparisons with 
previous findings cannot be made. In comparison to H37Rv, the 
upregulation of genes in the H37Rv-derived vaccine groups ranged 
from approximately 0.2 -6.1%, while the downregulated DEGs 
showed minimal changes, with only about 0.1-2.9% of genes 
FIGURE 13
 

qPCR Validation of differentially regulated pathways in vaccine groups comparison with H37Rv. (A, B) Gene expression levels of Csf1, tnf, slc7a2, lta,
 
ddit4, and dapk2 in vaccine strains infected BMDMs at 24 h and 72 h as determined by qRT-PCR. Data were analyzed by one-way ANOVA followed
 
by Dunnett’s multiple comparisons test.
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being downregulated. This highlights the need for transcriptome 
data from Mtb-derived vaccine candidates currently in clinical trials 
for a more comprehensive comparison. Similar to BCG, pathways 
such as ECM receptor interaction, efferocytosis, focal adhesion, and 
PI3K-Akt signaling were enriched with downregulated DEGs in 
some vaccine groups in our study. 

Despite developing numerous vaccines against TB, we still lack 
exact knowledge of the immune correlates of protection (CoPs) for 
TB. However, data from animal and human studies provide insights 
into the immune cells that may be crucial for controlling TB, 
including Th1, Th17, CD8+ T cells, B cells, tissue-resident 
memory T cells, trained immunity, and tissue-resident alveolar 
macrophages (37). Interestingly, genes from the major immune and 
cell signaling pathways like Cytokine-cytokine receptor interaction, 
Chemokine signaling, NF-kappa B signaling pathway, Toll-like 
receptor  signaling,  IL-17  signaling,  Th1  and  Th2  cell  
differentiation, Th17 cell differentiation, T cell receptor signaling, 
and TNF signaling pathway were differentially regulated in our 
vaccine strains compared to wildtype H37Rv. Numerous vaccine 
studies have underscored the crucial role of T cell-mediated 
protection against Mtb infection (19, 38–41) and  the limited

significance of B cell-mediated responses in TB vaccines (42). 
Similarly, our vaccines mainly boost T cell-mediated immune 
pathways instead of B cell receptor signaling pathways. These 
findings offer a hopeful perspective for the development of more 
effective TB vaccines. 

Cytokines and chemokines are essential in coordinating the 
immune response to mycobacterial infection (43). TB vaccine 
candidates like VPM1002 and MTBVAC have shown increased 
cytokine responses (44, 45). Our vaccine strains similarly showed 
different cytokine and chemokine expression profiles. Pro-
inflammatory cytokines, including TNF-a, IL-6, GM-CSF, and IL­
1, are crucial for the immune response against Mtb infection and play 
a vital role in host survival (46–48). Consistent with previous 
findings, our vaccine-infected macrophages exhibit increased 
expression of TNF-a, IL-6, and GM-CSF. Furthermore, our vaccine 
strains induce higher levels of IL-1 family cytokines, including IL-1a, 
IL-1b, IL-1R1, and IL-1R2. Chemokines such as CXCL1, CXCL2, and 
CXCL3 promote the recruitment of neutrophils and natural killer 
cells, while CCL3 and CCL4 aid in T-cell recruitment. Additionally, 
CCL7 is vital for recruiting monocytes, dendritic cells, T cells, and 
natural killer cells (49). Notably, our vaccine strains show strong 
expression of these chemokines, highlighting their potential 
immunomodulatory role effects. 

Emerging evidence underscores the essential role of IL-17 in TB 
control across various species, including mice (50, 51), non-human 
primates (52, 53), and humans (54). Initially, IL-17 was thought to 
primarily mediate responses against extracellular pathogens rather 
than intracellular bacteria like Mtb. However, recent findings 
underscore its essential role in TB control. Studies have revealed 
that IL-17 levels are significantly lower in individuals who progress 
to active TB compared to non-progressors (55). Reports indicate 
that CD4+ T cells producing IL-17 are primarily localized in the 
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lungs compared to TNF-a and IL-2. Furthermore, administering 
exogenous IL-17 in human granuloma models has shown 
effectiveness in controlling Mtb (56). Moreover, IL-17 has been 
identified as essential in mice for providing early protective 
immunity against Mtb HN878 infection (51). Mice that lack IL­
17 receptors show reduced long-term control of Mtb infection (57). 
In our study, IL-17 signaling was significantly upregulated across all 
vaccine strains, including SKO, DKO, TKO-D, TKO-Z, and QKO. 
Gene ontology analysis revealed upregulated cellular responses to 
IL-17 in TKO-D and QKO, T-helper 17 cell lineage commitment in 
TKO-Z, and positive regulation of IL-17 production in the BCG 
vaccine group. These findings underscore the pivotal role of IL-17 
in TB control and the effectiveness of our vaccine strains in eliciting 
an appropriate immune response. 

Recent studies have reported that the upregulation of slc7a2 in 
macrophages plays a critical role in controlling the intracellular survival 
of Mtb (25). Notably, slc7a2 expression is higher in macrophages 
infected with the avirulent strain H37Ra compared to the virulent 
H37Rv strain. Consistent with these findings, our DEGs analysis 
revealed increased expression of slc7a2 transcripts in our vaccine 
strains compared to the wild-type H37Rv, a result further validated 
through qPCR. While safety studies in SCID mice are still required to 
establish the safety profile of our vaccine strains, these findings suggest 
an improved safety profile for the vaccine strains used in this study. 

One of the major limitations of the present study is that the 
comparative transcriptomic analysis was performed under in vitro 
conditions and not in vivo. While our experimental design 
provides us with the controlled environment to study BMDMs’ 
responses after infection with our vaccine strains, it lacks the in 
vivo conditions like interactions with other cell types, location-
specific cell signals, etc. However, our study offers valuable 
comparative transcriptomic analysis datasets among our vaccine 
strains along with BCG, which offer insights that help enhance our 
understanding. This study focuses exclusively on comparing the 
transcriptomes of vaccine strains derived from the H37Rv Mtb 
strain. Further research is required to understand the relationship 
between the immune and cell signaling pathways activated by 
these vaccines and their actual protective efficacy. Moreover, this 
study emphasizes the importance of performing comparative

transcriptomic analyses for vaccine candidates such as 
VPM1002 and MTBVAC, currently undergoing clinical trials, to 
gain  deeper  insights  into  the  host  immune  response.  
Simultaneously, we recognize the importance of ‘decoy’ immune 
responses in TB infection (58). While certain host immune 
responses may appear promising, they indeed support the 
pathogen by promoting its persistence within the host. Thus, we 
strongly underscore the importance of performing protection 
studies in animal models and correlating these immune 
responses to actual protection, rather than relying solely on the 
statement that heightened proinflammatory cytokine production 
alone is beneficial. Overall, our study provides a thorough 
comparative transcriptome analysis of Mtb-derived vaccine 
strains alongside BCG, highlighting key immune pathways that 
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play a crucial role in modulating immune and cell signaling events 
in the fight against the Mtb pathogen. 
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Introduction: Cervical cancer is the most common malignant neoplasm of the

female reproductive tract. Infection with human papillomavirus (HPV) has been

strongly associated with cervical cancer. Previous bioinformatics studies have

examined the E6 and E7 proteins of high-risk HPV types; however, subtype-

specific analyses for HPV-31 and HPV-52 remain limited. Understanding the

structure and properties of the E6 and E7 proteins of HPV-31 and HPV-52 is

crucial to elucidating their functions and advancing vaccine development.

Methods: A bioinformatics approach was employed to predict the

physicochemical properties, hydrophilicity, protein structure, glycosylation

sites, phosphorylation sites, terminal positions, signal peptide cleavage sites,

transmembrane regions, homology, and dominant epitopes of the E6 and E7

proteins of HPV-31 and HPV-52.

Results: For HPV-31 E6, an instability index (II) of 43.93 indicated that the protein

is unstable; potential B-cell epitopes were identified at residues 55–61

(RDDTPYG), 112–116 (PEEKQ), and 125–131 (FHNIGGR), while T-cell epitopes

were predicted at residues 45–53 (FAFTDLTIV) and 72–80 (KVSEFRWYR). HPV-52

E6 exhibited an instability index (II) of 55.57, with B-cell epitopes at residues 110–

119 (LCPEEKERHV) and 129–141 (MGRWTGRCSECWR), and T-cell epitopes at

residues 45–53 (FLFTDLRIV) and 82–87 (SLYGKT). HPV-31 E7, with an instability

index (II) of 51.05, exhibited B-cell epitopes at residues 8–17 (QDYYLDLQP), 16–

20 (QPEAT), 29–41 (PDSSDEEDVIDEP), and 42–48 (AGQAKPDT), and T-cell

epitopes at residues 7–15 (TLQDYVLDL) and 82–90 (LLMGSFGIV). HPV-52 E7,

with an instability index (II) of 49.15, exhibited B-cell epitopes at residues 11–19

(YILDLQPET), 23–27 (HCYEQ), 29–38 (GDSSDEEDTD), and 36–48

(DTDGVDRPDGQAE), and T-cell epitopes at residues 53–59 (NYYIVTY) and

84–90 (MLLGTLQ).
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Discussion: In summary, the E6 and E7 proteins of HPV-31 and HPV-52 contain

dominant epitopes for both T cells and B cells. These findings delineate subtype-

specific immunogenic regions and establish a foundation for experimental

validation and vaccine design.
KEYWORDS

E6/E7, human papillomavirus 31, human papillomavirus 52, bioanalysis, antigen
epitope, oncoprotein
1 Introduction

Human papillomavirus (HPV) is among the most prevalent

sexually transmitted viruses worldwide, and infection with HPV

has been strongly associated with the development of various

cancers, particularly cervical cancer (1). Since the landmark

identification of HPV’s role in cervical carcinogenesis in the early

1980s (2, 3), the mechanisms by which specific HPV oncoproteins

disrupt cellular pathways have been extensively elucidated. HPV

types are classified as low-risk or high-risk based on their

oncogenic potential (4). While HPV-16 and HPV-18 have been

extensively studied, recent epidemiological and molecular studies

have underscored the significance of HPV-31 and HPV-52 in cervical

cancer incidence, particularly in East Asia and specific regions of

Europe (5–8). However, the structural and functional characteristics

of the E6 and E7 proteins of HPV-31 and HPV-52 remain

poorly characterized.

The oncogenic potential of HPV largely depends on its early

proteins, E6 and E7, which facilitate malignant transformation by

targeting tumor suppressor pathways (9, 10). E6 binds the p53

tumor suppressor, promoting ubiquitin-mediated degradation and

inhibiting apoptosis, while E7 disrupts the retinoblastoma (Rb)

pathway to release E2F transcription factors and deregulate cell

cycle progression (11–14). Although these mechanisms are

conserved among high-risk HPV types, sequence variations in E6

and E7 can lead to differential binding affinities and functional

outcomes (15). Recent structural studies have begun to resolve the

atomic-level details of HPV-31 and HPV-52 E6 and E7, revealing

subtype-specific conformational features that may influence

oncogenic potency (16, 18, 19). Nevertheless, a gap remains in

the comprehensive bioinformatics characterization of the E6 and E7

proteins of HPV-31 and HPV-52, particularly regarding antigenic

epitope prediction—an essential step in vaccine design.

Advances in high-throughput sequencing and computational

biology have enabled multidimensional bioinformatics analyses of

HPV oncoproteins (16–19). Specifically, homology modeling,

molecular docking, epitope mapping, and phylogenetic profiling

have uncovered key insights into structural motifs and functional

domains of E6 and E7. For instance, Conrady et al. resolved the

HPV-31 E6 crystal structure and characterized its interactions with
02131
E6AP and p53 (19), whereas Ferenczi et al. conducted phylogenetic

and functional analyses of HPV-31 E6 and E7 variants (18). Recent

work by Kogure et al. revealed significant intra-patient genomic

variability of HPV-31 in cervical cancer and precancer,

underscoring the importance of considering viral quasispecies

diversity when predicting E6 and E7 epitope profiles (20). Song

et al. characterized the genetic variability and phylogeny of HPV-52

E6 and E7 in Sichuan, China, underscoring subtype-specific

functional differences relevant to epitope selection (17). Pinheiro

et al. conducted a large-scale phylogenomic analysis of HPV-31

across 2,093 genomes, linking specific viral clades to cervical

carcinogenesis risk and thereby supporting targeted epitope

selection based on subtype phylogeny (21). In summary, prior

research has addressed HPV-31 and HPV-52 from various

perspectives—sequence diversity (17, 18, 21), structural

elucidation (19), and L1 protein-based VLP design (22, 23)—yet

none has integrated physicochemical profiling, secondary and

tertiary structure modeling, post-translational modification

predictions, and B- and T-cell epitope mapping into a single,

multilayered framework. Bioinformatics profiling of both subtypes

remains incomplete, particularly concerning immunogenic epitope

prediction, which is critical for next-generation vaccine design (24).

In this study, the E6 and E7 proteins of HPV-31 and HPV-52

were systematically analyzed using a combination of bioinformatics

tools to predict physicochemical properties, post-translational

modification sites, secondary and tertiary structures, and to

identify potential T-cell and B-cell epitopes. The following

hypotheses were tested:
1. HPV-31 and HPV-52 E6 and E7 proteins exhibit subtype-

specific sequence and structural variations that lead to

distinct distributions of immunogenic epitopes.

2. The simultaneous application of multiple bioinformatics

tools to identical sequences was hypothesized to enhance

the accuracy of predicting dominant T-cell and B-cell

epitopes in HPV-31 and HPV-52 E6 and E7 proteins.

3. By comparing predicted post-translational modification

(PTM) sites with conserved regions, immunogenic

regions that may be cross-reactive between subtypes were

expected to be uncovered.
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Further, it was hypothesized that structural disparities between

HPV-31 and HPV-52 E6 and E7 proteins correlate with unique

antigenic epitope landscapes, thereby informing the design of future

peptide-based vaccines.
2 Materials and methods

2.1 Amino acid sequence

The complete sequence of E6 and E7 oncoproteins of HPV-31

and HPV-52 was available from the National Center for

Biotechnology Information(NCBI) database (accession numbers:

HPV31 E6 [WAB53637], HPV31 E7 [WAB53638], HPV52 E6

[WAB54303], HPV52 E7 [WAB54304]).
2.2 Prediction of protein physicochemical
parameters

2.2.1 Rationale for tool selection and distinctions
To assess basic physicochemical properties of HPV-31/52 E6/

E7 proteins, we employed two ExPASy tools:

ProtParam (ExPASy ProtParam v2023.1): We used ProtParam

to compute molecular weight, theoretical isoelectric point (pI),

extinction coefficient, instability index (II), aliphatic index, and

GRAVY (grand average of hydropathicity) in a single run.

ProtParam is widely used in viral protein studies because its

predictions correlate well with experimentally determined

parameters. The instability index (II) quantifies the likelihood of a

protein’s stability in vitro, where a value of II > 40 indicates

predicted instability (25).

ProtScale (ExPASy ProtScale v2023.1): While ProtParam

provides global physicochemical metrics, ProtScale generates

residue-level hydrophobicity (Kyte–Doolittle) and hydrophilicity

(Hopp–Woods) plots, allowing us to identify local peaks or valleys

that may correspond to linear B-cell epitopes. ProtScale employs a

sliding-window approach (window size = 7) to generate a

continuous hydropathy profile, which ProtParam does not

offer (26).

2.2.2 Procedure and statistical processing
The ProtParam calculations were performed in triplicate, and

the reported values represent the mean ± standard deviation (SD) of

three independent runs.

For the ProtScale analysis, the window width was set to 7 with a

default threshold of 0.5. We identified the top three hydrophilicity

peaks (using the Hopp–Woods scale) and the deepest hydrophobic

valleys (using the Kyte–Doolittle scale) for each protein.

No statistical tests, such as t-tests or ANOVA, were applied

because this study is purely predictive, without experimental

group comparisons. The results are presented as raw means ±

SD for ProtParam values and qualitative hydropathy profiles

for ProtScale.
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2.3 Post-translational modification site
prediction

2.3.1 Rationale for tool selection
NetPhos 3.1 (threshold 0.5): A neural-network–based tool that

predicts Ser/Thr/Tyr phos-phorylation sites. We chose NetPhos

because it has been benchmarked on short viral proteins with ≥70%

accuracy (27). Compared to other open-source servers (e.g.,

PhosphoSite), NetPhos offers a user-friendly batch interface and

provides clear residue-level confidence scores.

MotifScan v2022 (threshold 0.5): Identifies kinase-specific

motifs (CK2, PKC, TK, etc.) by searching against curated motif

databases (28). We selected MotifScan because it integrates multiple

kinase-motif libraries and is particularly suited for mapping short

linear motifs adjacent to known functional domains (e.g.,

LxxLL, LxCxE).

NetNGlyc 1.0 (threshold 0.5): Predicts N-linked glycosylation

sites (N-X-S/T motifs) (29). Although E6/E7 proteins rarely

undergo glycosylation, we included NetNGlyc to confirm the

absence of glycosylation sites—a negative result that supports the

cytosolic/nuclear localization of these oncoproteins.

2.3.2 Procedure and output
2.3.2.1 NetPhos 3.1

Submitted each E6/E7 sequence (single sequence mode),

extracted residues with score > 0.5.

2.3.2.2 MotifScan v2022

Used default scoring matrices to detect CK2, PKC, TK motifs;

only motifs with score > 0.5 were retained.

2.3.2.3 NetNGlyc 1.0

Confirmed that none of the four proteins contained an N-linked

glycosylation motif above threshold 0.5.
2.4 Signal peptide and transmembrane
helix prediction

SignalP 4.1 (D-score 0.45): Uses a neural network model to

predict signal peptide cleavage sites (30). We chose SignalP 4.1

instead of older versions because it offers improved accuracy for

proteins lacking obvious signal partners. Its published D-score

threshold of 0.45 is recommended for viral oncoproteins.

TMHMM 2.0 (probability threshold 0.5): Predicts transmembrane

helices using a hidden Markov model (30). We used TMHMM to

verify that E6/E7 do not contain any transmembrane segments,

confirming their expected nuclear/cytoplasmic localization.
2.5 Secondary structure prediction

SOPMA v3.0 predicted secondary structure elements (a-helix,
b-sheet, b-turn, and random coil) using the default threshold (8%
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difference, window width = 17). SOPMA’s reported accuracy for

viral proteins is ≥70% (31). Compared to alternatives such as

PSIPRED, SOPMA provides a residue‐level map that can be

directly aligned with predicted epitope regions.
2.6 Tertiary structure prediction

Phyre2 v2.0 (Protein Homology/analogY Recognition Engine)

(32) was used for homology modeling of E6/E7 proteins. It leverages

experimentally resolved PDB templates and generates high-

confidence models for proteins with known homologues (33).

Although AlphaFold v3 (2024) can produce de novo predictions,

Phyre2’s reliance on validated templates ensures that our HPV E6/

E7 models remain directly comparable to prior structural studies

(19, 34). This consistency is crucial for accurately mapping

predicted epitopes onto known functional domains.

We accepted templates only if they exhibited ≥ 90% sequence

coverage and ≥ 99% confidence. Each E6/E7 sequence was

submitted in single-sequence mode. For HPV-31 E6, templates

c4gizC (coverage 93%, confidence 100%) were chosen; for HPV-31

E7, template d2ewla1 (coverage 50%, confidence 99.8%) was used;

for HPV-52 E6, c4gizC (coverage 94%, confidence 100%); for HPV-

52 E7, d2b9da1 (coverage 47%, confidence 99.8%).

Template Selection Rationale:

c4gizC: High sequence identity (≥ 90%) with HPV-31/52 E6 in

residues 2–144/2–142, respectively (19, 33).

d2ewla1/d2b9da1: Best available templates for E7 with ≥

99.8% confidence.

Although AlphaFold v3 could produce end-to-end predictions,

Phyre2’s reliance on experimentally validated templates (e.g.,

c4gizC) provides clear alignment evidence and facilitates

comparability with existing HPV structural literature (18, 19,

33, 35).
2.7 Sequence homology and phylogenetic
analysis

Clustal X 2.0 was chosen for multiple sequence alignment

(MSA) because it provides a graphical user interface and allows

manual inspection of alignment gaps and conserved motifs.

Although other aligners exist (e.g., MUSCLE), Clustal X is widely

cited in HPV research and facilitates identification of conserved

blocks (≥70% identity).

MEGA 7.0.20 (Molecular Evolutionary Genetics Analysis) was

used to construct a Neighbor-Joining phylogenetic tree with 1,000

bootstrap replicates, providing statistical support for each branch.

MEGA’s integrated alignment viewer and tree-editing capabilities

streamline the generation of publication‐quality phylograms.

We aligned full-length E6/E7 protein sequences from HPV

types 16, 18, 31, 33, 35, 45, 52, 56, 58, and 61 using Clustal X 2.0

(gap open penalty = 10; gap extension = 0.1). Evolutionary trees

(Neighbor-Joining method, bootstrap = 1,000) were constructed in
Frontiers in Immunology 04133
MEGA 7.0.20 (v7.0.20) to infer phylogenetic relationships.

Conserved regions were identified based on ≥ 70% identity across

aligned sequences.
2.8 Linear epitope analysis of B cells
oncoproteins

We employed four servers to predict linear B-cell epitopes, then

selected overlapping regions as dominant candidates:

ABCpred v2.0 (threshold 0.51; peptide length = 16) uses an

artificial neural network trained on known linear epitopes (36). We

included ABCpred because it has been validated on viral proteins,

achieving ~65.9% accuracy (37).

BepiPred 1.0 (threshold 0.35; window = 20) combines hidden

Markov models and propensity scales to predict epitopes with a

balanced trade-off between specificity and sensitivity (38).

BCPREDS 1.0 (epitope length = 20; specificity = 75%) uses

subsequence kernels to identify linear B-cell epitopes; it excels in

reducing false positives among random coil regions (39).

SVMTrip v1.0 (threshold 0.51; peptide length = 20) employs a

support vector machine algorithm combined with amino acid pair

propensity; it outperforms many single‐algorithm tools in

independently benchmarked tests (40).

Each E6/E7 sequence was submitted to all four servers in single‐

sequence mode. We recorded all predicted peptide segments that

surpassed each server’s threshold. Only peptides predicted by ≥ 2

servers were considered for final selection.
2.9 Prediction of T-cell epitopes

CD4+ T cell epitopes were predicted using both SYFPEITHI

v1.0 (41) and the IEDB MHC II module (42) with HLA-

DRB1*15:01 as the reference allele, selected for its 20% frequency

in the Chinese population (43). SYFPEITHI is a motif-based

predictor that assigns quantitative scores based on known anchor-

residue preferences; peptides scoring ≥ 20 were considered strong

binders. The IEDBMHC II module generates consensus predictions

by integrating multiple algorithms (e.g., NN-align, SMM-align) and

has outperformed standalone tools such as TEPITOPE in

benchmark studies; CD4+ epitopes with a percentile rank ≤ 10

were deemed strong binders.

CD8+ T cell epitopes were predicted using the IEDB MHC I

module (NetMHCpan 4.1) with HLA-A*11:01 and HLA-A*02:01—

alleles occurring at 18.0% and 15.3% frequency in Chinese

individuals, respectively (43). NetMHCpan 4.1 employs a pan-

specific neural network to predict peptide binding across diverse

HLA-A and HLA-B alleles, consistently outperforming earlier

NetMHC versions, especially for less common alleles; CD8+

epitopes with a percentile rank ≤ 1 were classified as strong

binders. All alleles were chosen based on high-frequency HLA

data in the Chinese population (44, 45). The aforementioned

methods and corresponding software are summarized in Table 1.
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3 Results

3.1 Primary structure of HPV-31 and 52 E6
and E7 proteins

The complete amino acid sequences retrieved from NCBI

(HPV-31 E6: 149 AA; HPV-31 E7: 98 AA; HPV-52 E6: 148 AA;

HPV-52 E7: 99 AA) are listed below:

HPV-31 E6 (149 AA):

MFKNPAERPRKLHELSSALEIPYDELRLNCVYCKGQLT

E T E V L D F A F T D L - T I V Y R D D T P Y G V C T K C

LRFYSKVSEFRWYRYSVYGT TLEKLTNKGICDLLIR-

C I T C Q R P L C P E E K Q R H L

DKKKRFHNIGGRWTGRCIVCWRRPRTETQV

HPV-31 E7 (98 AA):

MRGETPTLQDYVLDLQPEATDLYCYEQLPDSSDEEDVID-

S P A G Q A K P D T S N Y N I V T F C C Q C E S T L R L C V Q S

TQVDIRILQELLMGS F GIVCPNCSTRL

HPV-52 E6 (148 AA):

M F E D P A T R P R T L H E L C E V L E E S V H E I R L Q C

V Q C K K E L Q R R E V Y K F L F T D L R I V Y R

DNNPYGVCIMCLRFLSKISEYRHYQYSLYGKTLEERV

R K P L S E I T I R C I I C Q T P L C P E E K E R H

VNANKRFHNIMGRWTGRCSECWRPRPVTQV

HPV-52 E7 (99 AA):

MRGDKATIKDYILD LQPETTDLHCYEQLGDSSDEEDTD

GVDRPDGQAEQATSNYYIVTYCHSCDSTLRLCIHSTAT

DLRTLQQMLLGTLQVVCPGCAR
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3.2 The physicochemical parameters of the
proteins

3.2.1 Methods brief
ProtParam v2023.1 was used to compute the length, molecular

weight, theoretical pI, instability index (II), aliphatic index, and

GRAVY. Each value is the mean ± SD of three independent runs.

ProtScale v2023.1 (window size = 7, threshold = 0.5) was used to

generate Hopp–Woods hydrophilicity and Kyte–Doolittle

hydrophobicity plots to localize potential B-cell epitopes.

All four proteins have a molecular weight >10 kDa, consistent

with the reported immunogenic thresholds (46). Instability

indices >40 suggest they are intrinsically unstable, potentially

influencing antigen processing (37, 46). Negative GRAVY values

classi fy them as hydrophil ic , favoring solubi l i ty and

surface exposure.

Hydrophilicity/hydrophobicity plots (ProtScale) indicate

several predicted hydrophilic peaks in the protein sequences

(Figure 1). The physicochemical parameters for all four proteins

are summarized in Table 2.
3.3 Post-translational modification and
subcellular localization predictions

3.3.1 Methods brief
NetPhos 3.1 (threshold 0.5) was used to predict Ser/Thr/Tyr

phosphorylation sites.
TABLE 1 Methods summary table.

Step Tool/Method used Purpose Key parameters

Amino Acid Sequence NCBI Database Retrieve full-length protein sequences HPV31 E6/E7, HPV52 E6/E7

Physicochemical Parameters ProtParam, ProtScale
Calculate molecular weight, pI,

hydrophobicity, etc.

ProtParam: instability index, GRAVY;
ProtScale: hydrophobicity (Kyte–

Doolittle), hydrophilicity (Hopp–Woods)

PTM Site Prediction NetPhos 3.1, MotifScan, NetNGlyc
Predict phosphorylation, kinase

motifs, glycosylation
Threshold: 0.5

Signal Peptide Prediction SignalP 4.1 Predict signal peptide cleavage D-score ≥ 0.45

Transmembrane Helix TMHMM 2.0 Predict transmembrane regions Probability ≥ 0.5

Secondary Structure SOPMA v3.0
Predict secondary structure (a-helix, b-

sheet, etc.)
Threshold: 8% difference, window width

= 17

Tertiary Structure Phyre2 v2.0 Homology modeling
Templates: ≥ 90% coverage, ≥

99% confidence

Sequence Homology and
Phylogenetic Analysis

Clustal X 2.0, MEGA 7.0.20
Align sequences and infer

phylogenetic tree
Gap open penalty = 10, gap extension =

0.1, Bootstrap=1,000

B-cell Epitope Prediction
ABCpred v2.0, BepiPred 1.0,
BCPREDS 1.0, SVMTrip v1.0

Predict linear epitopes for B-cells

ABCpred v2.0: threshold 0.51; peptide
length = 16, BepiPred 1.0: threshold 0.35;
window = 20, BCPREDS 1.0: epitope

length = 20; specificity = 75%,
SVMTrip v1.0: threshold 0.51; peptide

length = 20

T-cell Epitope Prediction
SYFPEITHI v1.0, IEDB MHC II,

IEDB MHC I
Predict CD4+ and CD8+ T-cell epitopes

CD4+: SYFPEITHI score ≥ 20; CD8+:
NetMHCpan percentile rank ≤ 1
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MotifScan v2022 (threshold 0.5) was used to identify CK2, PKC,

and tyrosine kinase (TK) motifs.

NetNGlyc 1.0 (threshold 0.5) was used to examine possible N-

glycosylation sites.

SignalP 4.1 (D-score 0.45) and TMHMM 2.0 (probability 0.5)

were used to check for signal peptides and transmembrane helices.
Frontiers in Immunology 06135
3.3.2 Key findings
The post-translational modification sites and membrane

localization of the four proteins are summarized in Table 3. Both

E6 proteins have Ser/Thr phosphorylation sites clustered around

LxxLL motifs (e.g., S82), suggesting potential regulation of E6AP/

p53 binding.
TABLE 2 Summarizes physicochemical parameters for all four proteins.

Protein
AA

Length
Molecular
Mass (Da)

Theoretical
pI

Basic
(K,R)

Acidic
(D,E)

Instability
Index (II)

GRAVY
Classification (II > 40 =
unstable; GRAVY < 0

= hydrophilic)

HPV-31 E6 149 17,767.61 9.13 27 18 43.93 –0.567
Unstable; Hydrophilic

(Figure 1A)

HPV-31 E7 98 10,944.27 3.90 5 16 51.05 –0.235
Unstable; Hydrophilic

(Figure 1B)

HPV-52 E6 148 17,925.85 8.96 26 19 55.57 –0.599
Unstable; Hydrophilic

(Figure 1C)

HPV-52 E7 99 11,032.24 4.33 7 17 49.15 –0.459
Unstable; Hydrophilic

(Figure 1D)
(A) (B)

(C) (D)
FIGURE 1

Phosphorylation sites: (A) HPV31 E6 (B) HPV31 E7 (C) HPV52 E6 (D) HPV52 E7.
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E7 proteins of both subtypes have CK2 sites near the LxCxE Rb-

binding motif, suggesting modulation of Rb interaction.

No N-glycosylation, signal peptides, or transmembrane helices

were predicted for any of the four proteins, consistent with their

known nuclear/cytosolic localization (Figures 2, 3).
3.4 Secondary structure predictions

3.4.1 Methods brief
SOPMA v3.0 (window size = 17, threshold = 8%) was used to

determine the percentages of a-helix, b-sheet, b-turn, and random coil.

According to the spatial characteristics of secondary structure,

a-helix and b-sheet are not easily disrupted due to hydrogen

bonding and are mostly located in the interior of the protein,

making them less suitable as antigen-recognizing sites. In contrast,

b-turns and irregular curls are primarily protruding structures on

the protein surface (47). The specific details of the secondary

structures of the four proteins are presented in Table 4. The

secondary structure of the HPV-31 E6 protein was analyzed

online using SOPMA (Figure 4A). The analysis showed that a-
helix accounted for 49.66%, b-sheet for 14.56%, b-turn for 4.43%,

and irregular curl for 35.44%. The results indicated that the HPV-31

E6 protein structure is relatively compact (34).

The results for the HPV-31 E7 protein showed that a-helix
accounted for 25.51%, b-sheet for 22.45%, b-turn for 0%, and

irregular curl for 52.04%, as shown in Figure 4B. The results

ind ica ted tha t the HPV-31 E7 prote in s t ruc ture i s

relatively loose.

For the HPV-52 E6 protein (Figure 4C), a-helix accounted

for 54.05%, b-sheet for 10.81%, b-turn for 1.35%, and irregular

curl for 33.78%, indicating that the protein structure is

relatively compact.

For the HPV-52 E7 protein (Figure 4D), a-helix accounted for

27.27%, b-sheet for 21.21%, b-turn for 0%, and irregular curl for

51.52%, indicating that the protein structure is relatively loose.
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3.5 Tertiary structure prediction (Phyre2
v2.0)

Based on Phyre2 outputs (33), high-confidence homology

models were obtained for all four proteins (confidence ≥ 99.8%)

(Figures 5A–D).

HPV-31 E6: The model is based on c4gizC (93% coverage, 100%

confidence) (Figure 5A).

HPV-31 E7: The model is based on d2ewla1 (50% coverage,

99.8% confidence) (Figure 5B).

HPV-52 E6: The model is based on c4gizC (94% coverage, 100%

confidence) (Figure 5C).

HPV-52 E7: The model is based on d2b9da1 (47% coverage,

99.8% confidence) (Figure 5D).

3.5.1 Key findings
E6 proteins are helix-rich and compact, with fewer

b-turns, suggesting that most linear epitopes lie in random

coil loops.

E7 proteins contain ≥ 50% random coil, indicating extensive

surface exposure and many potential linear epitopes.

HPV-31 and HPV-52 E6/E7 structures are highly conserved

overall, with only minor local deviations that may underlie subtype-

specific immunogenic differences.
3.6 Homology and phylogenetic analysis
(Clustal X 2.0 & MEGA 7.0)

3.6.1 Amino acid identity and conserved regions
Multiple sequence alignment of E6 proteins (HPV-16, 18, 31,

33, 35, 45, 52, 56, 58, 61) revealed conserved motifs at positions

8–15, 25–34, 41–77, 79–89, 96–112, 114–141 for HPV-31 E6, and

8–16, 25–31, 41–56, 59–69, 71–79, 81–89, 101–107, 109–119, 123–

125, 130–136 for HPV-52 E6 (Figure 6A). E7 proteins exhibited

conserved regions at 1–17, 20–28, 30–36, 38–45, 52–77, 82–87, 89–
TABLE 3 Summary of predicted PTM sites and membrane localization (NetPhos 3.1; MotifScan v2022; NetNGlyc 1.0; SignalP 4.1; TMHMM 2.0).

Protein Phosphorylation
(NetPhos > 0.5)

CK2
(CK2
motif
> 0.5)

PKC
(PKC
motif
> 0.5)

TK (TK
motif
> 0.5)

N-Glycosylation
(NetNGlyc > 0.5)

Signal
Peptide

(SignalP D
> 0.45)

Transmembrane
(TMHMM >

0.5) (Figure 3)

HPV-31 E6 S16, S17, S71, S74, S82; T38,
T40, T58, T64, T86, T133, T145,

T147; Y60 (Figure 2A)

17–20, 38–
42, 86–89

92–94,
133–135

72–79 None None None

HPV-52 E6 S22, S71, S74, S82, S97; T11,
T48, T108, T133, T146;

Y60 (Figure 2C)

11–14, 22–
25, 87–90

100–102,
133–135

72–79 None None None

HPV-31 E7 S31, S32, S40, S50, S86; T5, T20,
T64, T72; Y52 (Figure 2B)

7–10, 31–
34, 72–75

64–66,
95–97

None None None None

HPV-52 E7 S31, S32; T7, T19, T20, T37,
T58, T66, T76; Y11 (Figure 2D)

7–10, 31–
34, 74–77

7–9, 66–68 None None None None
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94 (HPV-31) and 10–15, 24–28, 30–36, 39–46, 53–59, 62–70, 76–96

(HPV-52) (Figure 6C).

Conserved regions overlap predicted epitope regions,

suggesting potential cross-reactivity among related types (48). The

HPV−31 E6 45–53 region aligns with the HPV−16 E6 45–53 region,

indicating possible shared immune responses.
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3.6.2 Phylogenetic tree construction
Neighbor-Joining trees (bootstrap = 1,000) placed HPV-31

E6 in a close clade with HPV-35 E6 (Figure 6B), and HPV-52

E6 in a close clade with HPV-33 E6. For E7, HPV-31

clustered with HPV-16, while HPV-52 clustered with HPV-33

(Figure 6D).
FIGURE 2

Phosphorylation sites: (A) HPV31 E6 (B) HPV31 E7 (C) HPV52 E6 (D) HPV52 E7.
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(A)

(B)

(C)

(D)

FIGURE 3

TMHMM analyzed the transmembrane domain of the proteins. (A) HPV31 E6 (B) HPV31 E7 (C) HPV52 E6 (D) HPV52 E7.
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3.7 Linear epitopes of B cells

3.7.1 Methods brief
Tools: ABCpred v2.0 (peptide length = 16; threshold = 0.51), BepiPred

1.0 (threshold = 0.35), BCPREDS 1.0 (peptide length = 20; specificity =

75%), and SVMTrip v1.0 (peptide length = 20; threshold = 0.51).

Criterion: Retain only peptides predicted by ≥2 algorithms and

restrict to loop/turn regions identified by SOPMA.

After excluding a-helix and b-sheet regions, the top five

predicted epitopes per method were compared. Using the four

B-cell prediction tools, overlapping epitopes (predicted by ≥2
Frontiers in Immunology 10139
servers) were identified as dominant (Supplementary Tables 1–16).

After cross-referencing, the dominant B-cell epitopes were Table 5:
HPV-31 E6: 55–61 (RDDTPYG), 112–116 (PEEKQ), 125–

131 (FHNIGGR)

HPV-31 E7: 8–17 (LQDYVLDLQPEATDLYC), 16–20 (QPEAT),

29–41 (PDSSDEEDVIDEP), 42–48 (AGQAKPDT)

HPV - 5 2 E 6 : 1 1 0 – 1 1 9 ( LCPEEKERHV ) , 1 2 9 –

141 (MGRWTGRCSECWR)

HPV-52 E7: 11–19 (YILDLQPET), 23–27 (HCYEQ), 29–38

(GDSSDEEDTD), 36–48 (DTDGVDRPDGQAE)
(A)

(B)

(C) (D)

FIGURE 4

Secondary structure prediction: (A) HPV31 E6 oncoprotein; (B) HPV31 E7 oncoprotein; (C) HPV52 E6 oncoprotein; (D) HPV52 E7 oncoprotein.
TABLE 4 Summarizes secondary structure content.

Protein a-Helix (%) b-Sheet (%) b-Turn (%) Random Coil (%) Interpretation

HPV-31 E6 49.66 14.56 4.43 35.44 Relatively compact, fewer surface coils

HPV-31 E7 25.51 22.45 0.00 52.04
More random coils, implies greater

surface exposure

HPV-52 E6 54.05 10.81 1.35 33.78 Compact with predominant a-helices

HPV-52 E7 27.27 21.21 0.00 51.52 Loose structure with significant coils
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3.7.2 Key findings
HPV-31 E6 candidate epitopes (e.g., 55–61 RDDTPYG) are

located in a random coil adjacent to LxxLL, suggesting potential for

neutralizing antibodies.

The HPV-31 E7 region 29–41 (PDSSDEEDVIDEP) is

consistently predicted by four methods and is located within a

highly exposed coil loop.

The C-terminal loops of HPV-52 E6/E7 (e.g., 129–141 in E6,

36–48 in E7) are strong candidates for B-cell epitopes.
3.8 Linear epitopes of T cells

3.8.1 CD4+ T cell epitope prediction (HLA-
DRB1*1501)

The SYFPEITHI and IEDB MHC II tools (percentile rank ≤ 10;

positive control) were used. Supplementary Tables 17–20 present

the top five predictions. The final dominant CD4+ epitopes

(overlapping high-scoring predictions) are as follows:
Fron
- HPV-31 E6: 45–53 (FAFTDLTIV), 72–80 (KVSEFRWYR).

- HPV-31 E7: 7–15 (TLQDYVLDL), 11–19 (YVLDLQPEA),

82–90 (LLMGSFGIV).

- HPV-52 E6: 45–53 (FLFTDLRIV), 82–87 (SLYGKT).

- HPV-52 E7: 84–90 (MLLGTLQ), 53–59 (NYYIVTY),

11–19 (YILDLQPET).
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3.8.2 CD8+ T−cell epitope prediction (HLA-A1101,
A0201)

IEDB MHC I binding (NetMHCpan 4.1; percentile rank ≤ 1)

was used. Supplementary Tables 21–24 present the results. The final

dominant CD8+ epitopes are as follows (Table 6):
- HPV-31 E6: 82–90 (SVYGTTLEK; HLA-A1101 rank 0.01),

45–53 (FAFTDLTIV; HLA-A0201 rank 0.93)

- HPV-31 E7: 7–15 (TLQDYVLDL; HLA-A0201 rank 0.09),

37–46 (VIDSPAGQAK; HLA-A1101 rank 0.33)

- HPV-52 E6: 86–94 (KTLEERVRK; HLA-A1101 rank 0.01),

18–26 (VLEESVHEI; HLA-A0201 rank 0.03)

- HPV-52 E7: 84–92 (MLLGTLQVV; HLA-A0201 rank 0.08),

51–59 (TSNYYIVTY; HLA-A1101 rank 0.74)
Notably, the overlapping T-cell epitope 45–53 appears in both

E6 proteins and is conserved between HPV-31 and HPV-52,

suggesting a promiscuous HLA-binding region that could elicit

cross-type T-cell responses.
4 Discussion

In this study, integrative bioinformatics approaches were

employed to analyze the E6 and E7 proteins of HPV-31 and

HPV-52, identifying key structural features and dominant
(A) (B)

(C) (D)
FIGURE 5

Tertiary structure prediction. (A) HPV31 E6 protein; (B) HPV31 E7 protein; (C) HPV52 E6 protein; (D) HPV52 E7 protein.
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antigenic epitopes. The key findings and their biological

implications are addressed in the subsequent sections.
4.1 Physicochemical properties and
implications for immunogenicity

Viral proteins with molecular weights exceeding 10 kDa

typically exhibit sufficient immunogenicity for epitope recognition
Frontiers in Immunology 12141
(46, 49). All four E6 and E7 proteins of HPV-31 and HPV-52 exceed

this threshold (17.8–18.0 kDa) and are classified by ProtParam as

“unstable” (instability index > 40), a feature associated with

increased post-translational susceptibility and potential

antigenicity (37, 50, 51). Negative GRAVY scores categorize these

proteins as hydrophilic, thereby promoting solubility and

enhancing epitope exposure (52). These properties correlate with

an enhanced potential for antigen presentation, which is critical for

vaccine design.
(A)

(B)

(C)

(D)

FIGURE 6

Homology and molecular evolution analysis. (A) Homology analysis of E6 proteins of HPV; (B) The molecular evolutionary tree of E6 proteins of
HPV; (C) Homology analysis of E7 proteins of HPV; (D) The molecular evolutionary tree of E7 proteins of HPV.
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TABLE 6 HPV-31/52 E6/E7 T-Cell Epitope Candidates (SYFPEITHI; IEDB).

Protein Type
HLA
Allele

Residues Sequence

Affinity
Metric
(IEDB

percentile)

SYFPEITHI
Score

Structural
Context

Tool
Version/
Threshold

HPV-31 E6

CD4+ DRB1*1501 45–53 FAFTDLTIV 3.10 25
Zn-finger region;

likely helper epitope

SYFPEITHI v1.0
(score ≥ 20)
IEDB MHC-II
(percentile ≤ 10)
IEDB MHC-I

(NetMHCpan 4.1;
percentile ≤ 1)

CD4+ DRB1*1501 72–80 KVSEFRWYR 4.50 22
b-turn at surface;
T_H potentiation

Same as above

CD8+ A*1101 82–90 SVYGTTLEK 0.01 —

Conserved helix;
cross-subtype
CTL potential

Same as above

CD8+ A*0201 45–53 FAFTDLTIV 0.93 —

Overlaps with CD4+

45–53; candidate for
poly-epitope design

Same as above

(Continued)
F
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TABLE 5 HPV-31/52 E6/E7 B-Cell epitope candidates (ABCpred; BepiPred; BCPREDS; SVMTrip).

Protein
Algorithm

Combination
Residues Sequence Structural Context

Tool
Version/Threshold

HPV-31 E6

ABCpred & BepiPred &
BCPREDS & SVMTrip

55–61 RDDTPYG
Random coil adjacent to
LxxLL binding pocket

ABCpred v2.0 (threshold =
0.51)

BepiPred 1.0 (threshold =
0.35)

BCPREDS 1.0 (length = 20;
specificity = 75%)

SVMTrip v1.0 (length = 20;
threshold = 0.51)

BepiPred & BCPREDS 112–116 PEEKQ b-turn at surface Same as above

ABCpred & SVMTrip 125–131 FHNIGGR
C-terminal random coil near

functional region
Same as above

HPV-52 E6

ABCpred & BepiPred 110–119 LCPEEKERHV
C-terminal b-turn near

Zn-finger
Same as above

BepiPred & SVMTrip 129–141 MGRWTGRCSECWR
Random coil loop;
structurally exposed

Same as above

HPV-31 E7

ABCpred & BepiPred 8–17 QDYYLDLQP
N-terminal random coil,

high hydrophilicity
Same as above

BepiPred & BCPREDS 16–20 QPEAT
Small b-turn in
central region

Same as above

BCPREDS & SVMTrip 29–41 PDSSDEEDVIDEP
Long random coil loop with

high immunogenicity
Same as above

SVMTrip & ABCpred 42–48 AGQAKPDT
C-terminal loop region
accessible to antibodies

Same as above

HPV-52 E7

ABCpred & BepiPred 11–19 YILDLQPET
N-terminal random

coil loop
Same as above

BepiPred & BCPREDS 23–27 HCYEQ Small b-turn Same as above

BCPREDS & SVMTrip 29–38 GDSSDEEDTD Central random coil loop Same as above

SVMTrip & ABCpred 36–48 DTDGVDRPDGQAE C-terminal loop region Same as above
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4.2 Post-translational modifications and
functional context

Predicted phosphorylation sites were mapped to residues

involved in the interactions of E6 and E7 with host regulators.

For instance, conserved serine residues (S82 in both E6 proteins)

reside within the LxxLL-binding pocket, which is crucial for E6AP-

mediated p53 degradation (15, 19). CK2 phosphorylation motifs

overlapping this region may modulate binding affinity and

subsequent ubiquitination (10, 17). Similarly, E7 CK2 sites (e.g.,

residues 7–10 encompassing the LxCxE motif) likely regulate Rb

binding, contributing to cell cycle dysregulation (11, 13). PKC sites

adjacent to the C-terminal zinc-finger (E6 133–135) may influence

nuclear localization and stability (15). These in silico insights align
Frontiers in Immunology 14143
with experimental evidence showing that kinase-mediated

phosphorylation directly alters oncoprotein function (10, 19).
4.3 Secondary/tertiary structures and
template selection

SOPMA analysis reveals that the E6 proteins are predominantly

composed of a-helices (49.66% in HPV-31; 54.05% in HPV-52),

suggesting compact cores that may shield specific epitopes. In

contrast, the E7 proteins exhibit a higher proportion of random

coils (52.04% and 51.52%, respectively), indicating flexible surface

regions conducive to antibody binding (37, 53). Previous studies

have shown that random coils frequently coincide with B-cell
TABLE 6 Continued

Protein Type
HLA
Allele

Residues Sequence

Affinity
Metric
(IEDB

percentile)

SYFPEITHI
Score

Structural
Context

Tool
Version/
Threshold

HPV-52 E6

CD4+ DRB1*1501 45–53 FLFTDLRIV 3.70 24
Conserved block;

cross-
protection candidate

Same as above

CD4+ DRB1*1501 82–87 SLYGKT 4.00 23
Loop region;
potential

helper epitope
Same as above

CD8+ A*1101 86–94 KTLEERVRK 0.01 —

Zn-finger adjacency;
strong

CTL candidate
Same as above

CD8+ A*0201 18–26 VLEESVHEI 0.03 —

N-terminal helix;
antigen-

presenting potential
Same as above

HPV-31 E7

CD4+ DRB1*1501 7–15 TLQDYVLDL 7.10 21
N-terminal random

coil; T_H
epitope candidate

Same as above

CD4+ DRB1*1501 82–90 LLMGSFGIV 8.00 20
C-terminal coil;

possible
cross-reactive

Same as above

CD8+ A*0201 7–15 TLQDYVLDL 0.09 —

Overlaps CD4+ 7–
15; poly-epitope
design potential

Same as above

CD8+ A*1101 37–46 VIDSPAGQAK 0.33 —

Central coil loop;
strong

CTL candidate
Same as above

HPV-52 E7

CD4+ DRB1*1501 11–19 YILDLQPET 9.00 19

Loop region;
intermediate

T_H
immunogenicity

Same as above

CD4+ DRB1*1501 84–90 MLLGTLQ 13.00 18
C-terminal coil;

modest
helper response

Same as above

CD8+ A*0201 84–92 MLLGTLQVV 0.08 —

C-terminal coil;
strong

CTL candidate
Same as above

CD8+ A*1101 51–59 TSNYYIVTY 0.74 —

Central coil;
potential CTL
memory locater

Same as above
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epitope hotspots (52, 53), supporting our predictions of dominant

linear B-cell epitopes within coil-rich segments, such as residues 8–

17 (HPV-31 E7) and 23–27 (HPV-52 E7).

Homology models generated by Phyre2 (confidence > 99.8%)

confirm conserved structural motifs, including zinc-binding Cys

motifs, consistent with experimental structures (19, 40). The 3D

models generated by Phyre2, validated by high confidence scores,

display conserved zinc-finger motifs and binding pockets. While

AlphaFold3 (2025 release) could generate full-length models,

Phyre2 ’s template-based approach allowed for a direct

comparison with known E6/E7 structures. We selected Phyre2

templates (c4gizC/d2ewla1/d2b9da1) due to their high sequence

identity (>50%) and prior experimental validation (18, 19).
4.4 Homology and evolutionary insights

Multiple sequence alignment and phylogenetic analysis position

HPV-31 E6 closely with HPV-35, and HPV-52 E6 with HPV-33,

while E7 clusters similarly with HPV-16 and HPV-33 (18, 24).

Conserved regions (e.g., E6 positions 41–77; E7 positions 52–77)

overlap with predicted T-cell epitopes, suggesting potential cross-

reactivity and cross-protection among high-risk HPV types (16, 17).

This cross-immunity is essential for the design of multivalent

vaccines targeting broad high-risk HPV coverage (6).
4.5 Antigenic epitope identification and
validation potential

Dominant B-cell epitopes were identified (e.g., HPV-31 E6: 55–

61, 112–116, 125–131; HPV-52 E7: 23–27, 29–38, 36–48) and T-cell

epitopes (e.g., HPV-31 E6: 45–53; HPV-52 E6: 86–94), predicted by

multiple algorithms (ABCpred, BepiPred 1.0, BCPREDS, SVMTriP)

(37, 54, 55). CD8+ epitopes, such as HPV-31 E7: 7–15

(TLQDYVLDL), exhibited a strong binding affinity to HLA-

A0201 (IEDB rank 0.09), consistent with known CTL responses

against HPV-16 E7 (11, 56). CD4+ epitopes (e.g., HPV-52 E7: 11–

19) exhibited favorable binding to HLA-DRB1*1501, which is

crucial for helper T-cell activation (42). These in silico predictions

align with experimental data linking epitope immunodominance to

surface accessibility and structural features (54, 55). Subsequent

empirical validation, such as peptide-MHC binding assays and T-

cell activation studies, is necessary (42, 56).
4.6 Comparison with previous studies

Previous studies have characterized the sequence variability of

HPV-31/52 (17, 18, 21) and resolved individual E6 crystal

structures (19). Kogure et al. further demonstrated that HPV-31

genomes exhibit significant intra-patient heterogeneity (20),

suggesting that E6 and E7 epitopes may evolve during disease

progression. However, to date, no study has integrated

physicochemical properties, post-translational modification site
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prediction, secondary and tertiary structure modeling, and

multilayered immunoinformatic epitope mapping for both E6 and

E7 of HPV-31 and HPV-52 into a single comprehensive analysis.

Our work addresses this gap by correlating predicted

phosphorylation sites with functional motifs (e.g., LxxLL, LxCxE)

(27, 57) and mapping B- and T-cell epitopes to conserved, surface-

exposed regions identified through structural modeling.

Furthermore, Song et al. and Firdaus et al. have highlighted the

immunogenic potential of HPV-52 (17, 22, 23), particularly in

Asian populations, thus validating the public health relevance of our

subtype-specific epitope predictions. Kesheh et al. proposed

region-tailored multivalent vaccine designs based on L1 gene

diversity (58), offering translational context for our E6 and

E7-based epitope candidates.
4.7 Application to vaccine design

Although this study did not experimentally construct virus-like

particles (VLPs) or multivalent peptide vaccines, the predicted

epitopes provide a foundation for rational vaccine design:

4.7.1 Cross-subtype conserved CD8+ epitopes
The E6 45–53 segment in HPV-31 (FAFTDLTIV) and HPV-52

(FLFTDLRIV) exhibits strong binding affinity for HLA-A0201 and

HLA-A1101 (IEDB percentile ≤ 1) and is highly conserved across

high-risk types, making it an ideal candidate for inclusion as a

universal cytotoxic T-lymphocyte (CTL) epitope in a multi-epitope

DNA or peptide vaccine.

4.7.2 Helper T-cell (CD4+) epitopes
E6 72–80 (KVSEFRWYR) in HPV-31 and E6 82–87 (SLYGKT)

in HPV-52 exhibit moderate binding affinity to HLA-DRB1*1501

(IEDB percentile ≤ 10) and could be fused with CTL epitopes into a

single recombinant protein or synthetic long peptide construct to

enhance helper T-cell responses, as suggested by He et al (57).

4.7.3 B-cell neutralizing epitopes on VLP
platforms

The B-cell epitope HPV-31 E6 55–61 (RDDTPYG) and HPV-

52 E6 110–119 (LCPEEKERHV) reside in exposed random coil

regions. Firdaus et al. successfully inserted analogous linear epitopes

into the L1 VLP platform to elicit neutralizing antibodies (22),

supporting the strategy of grafting these peptides onto L1 VLPs to

generate subtype-specific antibody responses.

4.7.4 Multivalent peptide/protein vaccine
constructs

Building on Firdaus et al.’s reverse vaccinology design for HPV-

52 L1 (23), one could concatenate top CD4+ and CD8+ epitopes

(e.g., E6 45–53, 72–80; E7 7–15) with appropriate linkers and

trafficking signals to create a chimeric protein capable of eliciting

robust humoral and cell-mediated immunity in preclinical HLA-

transgenic mouse models.
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5 Limitations and future directions

Although the integrated in silico pipeline provides a

comprehensive epitope landscape, experimental validation—such as

peptide-MHC binding assays, ELISpot, and crystallographic studies—is

crucial to confirm immunogenicity (54, 55). Additionally, molecular

dynamics simulations could refine epitope conformations and assess

stability within MHC binding grooves (32, 51). This study relies solely

on in silico predictions and lacks direct in vitro or in vivo validation,

representing a primary limitation. Pinheiro et al. confirmed that certain

E6 and E7 regions correlate with cervical cancer aggressiveness at the

genomic level (21), yet these findings require empirical confirmation

through immunological assays. Kogure et al. observed intra-patient

HPV-31 variants across different lesion stages (20), emphasizing the

need to validate epitope immunogenicity across clinical time points.

Future studies should involve:
5.1 Experimental binding assays

Use ELISPOT or flow cytometry with peptide-stimulated peripheral

blood mononuclear cells (PBMCs) from HLA-typed donors to validate

CD4+ and CD8+ T-cell responses against the predicted epitopes.
5.2 Antibody neutralization studies

Synthesize candidate B-cell epitopes (e.g., HPV-31 E6 55–61;

HPV-52 E6 110–119) and assess their ability to induce neutralizing

antibodies in ELISA or pseudovirus neutralization assays.
5.3 Animal model validation

Evaluate peptide-based or VLP-based vaccine constructs (e.g.,

insertion of linear epitopes into L1 VLPs, as demonstrated by

Firdaus et al., 2023) in HLA-transgenic mouse models to measure

protective efficacy against HPV-induced tumorigenesis.

In summary, the integrative bioinformatics analysis illuminates

subtype-specific structural and immunogenic features of HPV-31

and HPV-52 E6 and E7 proteins, laying the groundwork for

experimental validation and rational vaccine design aimed at

reducing the HPV-associated cervical cancer burden.
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Rational design of an epitope-
centric vaccine against
Pseudomonas aeruginosa
using pangenomic insights and
immunoinformatics approach
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Technology (VIT), Vellore, Tamil Nadu, India, 2Department of Sensor and Biomedical Technology,
School of Electronics Engineering, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
Introduction: As a highly adaptable opportunistic pathogen, Pseudomonas

aeruginosa presents a significant threat to people with weakened immune

systems. This is because it naturally resists antibiotics and can form biofilms.

These factors complicate treatment and underscore the urgent need for

innovative therapeutic strategies, such as vaccines, to combat this pathogen.

Methods: A pangenome analysis of P. aeruginosa genomes was performed to

identify conserved core genes critical for bacterial survival and virulence. LptF, an

outermembrane protein, was prioritized as a target for vaccine development. B-cell

and T-cell epitopes were predicted from LptF using immunoinformatics tools, and a

multi-epitope peptide vaccine was designed. The interaction between the vaccine

candidate and Toll-like receptors (TLRs) was investigated through molecular

docking and molecular dynamics simulations. Codon optimization and in-silico

cloning were carried out to validate the vaccine’s expression potential in E. coli.

Immune response simulations evaluated the vaccine’s immunogenicity.

Results:Our pangenome analysis identified highly conserved core genes, including

LptF, which proved crucial for bacterial virulence. A multi-epitope peptide vaccine

was designed using themost immunogenic B-cell and T-cell epitopes derived from

LptF. Studies using molecular docking and dynamic simulation have shown stable

interactions between the vaccine and TLRs, with the POA_V_RS09 construct

exhibiting the highest stability. Codon optimization indicated high expression

efficiency in E. coli. Immune simulations revealed robust adaptive immune

responses, including sustained IgG production, the formation of memory B cells,

and the activation of T-cell responses.
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Discussion: The POA_V_RS09 vaccine candidate exhibited excellent stability,

immunogenic potential, and expression efficiency, making it a promising

candidate for combating P. aeruginosa infections. This study provides a strong

foundation for developing effective therapeutic strategies to address the growing

issue of antimicrobial resistance in P. aeruginosa. More experimental validation is

needed to verify its effectiveness in preclinical and clinical environments.
KEYWORDS

Pseudomonas aeruginosa, pangenome analysis, immunoinformatics, epitope-based
vaccine, molecular docking, immune simulation
GRAPHICAL ABSTRACT
1 Introduction

Pseudomonas aeruginosa (P. aeruginosa), a highly adaptable

opportunistic pathogen, is a significant cause of multidrug-resistant

(MDR) infections, including diabetic foot infections, ventilator-

associated pneumonia, wound infections, septicemia, and catheter-

associated urinary tract infections (1). It poses a significant threat,

particularly to immunocompromised individuals, due to its

intrinsic resistance to antibiotics and its ability to thrive in diverse

environments. Furthermore, P. aeruginosa can spread through

medical equipment, increasing the risk of cross-contamination
AMR, Antimicrobial

BI, National Center for

tabase; MD, Molecular

F, Root Mean Square

Free Energy Landscape;

02149
between patients and complicating infection control in healthcare

settings (2). According to the World Health Organization (WHO),

antimicrobial resistance (AMR) is expected to cause 10 million

deaths annually by 2050, highlighting its severe impact as a global

health threat (3). Hospital-acquired infections caused by ESKAPE

pathogens, Enterobacter species, P. aeruginosa, Staphylococcus

aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and

Enterococcus faecium are particularly concerning as they employ

diverse mechanisms to resist antibiotics, making treatment

increasingly challenging (4). Addressing P. aeruginosa’s virulence

and its role as a key contributor to AMR highlights the urgent need

for new therapeutic strategies, such as vaccines, to mitigate its

impact (5, 6).

According to the WHO’s 2024 list of critical diseases, P.

aeruginosa is a high-burden resistant bacterium resistant to last-

resort antibiotics (7). Factors contributing to its pathogenicity

include secretion systems, biofilm formation, and toxin production.

Biofilms protect bacteria from host immune responses and
frontiersin.org
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medications, promoting the formation of multidrug-resistant persister

cells that cause recurrent infections, particularly in patients with cystic

fibrosis (8). P. aeruginosa employs its Type III secretion system to

inject effector proteins into the host cells, interfering with cellular

processes and facilitating immune evasion (9). The bacterium exhibits

three primary resistance mechanisms: intrinsic resistance (efflux

pumps, antibiotic-inactivating enzymes, limited outer membrane

permeability), acquired resistance (mutations or horizontal gene

transfer leading to resistance to aminoglycosides, quinolones, and b-
lactams), and adaptive resistance (driven by persister cells and biofilm

formation) (10). Clinical outcomes of P. aeruginosa infections are

generally worse than those caused by other bacteria (11–13). During

the COVID-19 pandemic, despite a decrease in the overall number of

isolates, the percentage of MDR P. aeruginosa isolates increased

significantly, from 23.8% in 2019 to 38.8% in 2020 (14). This trend

was influenced by longer hospital stays, increased ICU admissions,

and a greater reliance on empirical antibiotics, primarily due to the

severity of cases and the extensive use of mechanical ventilation. This

highlights how AMR is exacerbated in healthcare settings during

pandemics (15). With the overuse of antibiotics, slow development of

new drugs, and increasing complexity of healthcare, AMR is expected

to worsen, leading to higher mortality rates and a greater burden on

healthcare systems globally. Traditional antibiotics are becoming

ineffective against MDR and extensively drug-resistant (XDR)

strains, which no longer respond to standard treatments (16). The

limited efficacy of last-resort drugs, such as colistin, coupled with their

toxicity risks, makes managing resistant infections even more

challenging (17). The lack of specific, targeted therapies for resistant

infections leaves healthcare providers with limited options,

underscoring the need for novel treatments and more effective

alternatives to combat AMR (18). Among vaccine development

studies for P. aeruginosa, outer membrane proteins such as Porin F

(OprF) and Lipoprotein I (OprI) have been extensively explored as

potential antigen targets (19).

Vaccines are crucial for preventing infections and reducing

antibiotic use in low- and middle-income countries, significantly

contributing to the fight against AMR. By lowering the incidence of

infectious diseases, vaccines help minimize antibiotic misuse and

overuse, particularly in populations with limited access to

healthcare (20). Vaccines hold significant promise in addressing

AMR by preventing infections, reducing antibiotic dependency, and

curbing the spread of resistant strains (21). However, designing a

vaccine for P. aeruginosa has been challenging due to its complex

genetic diversity, biofilm formation, and immune evasion

capabilities (22). Recent advancements in genomics and

immunoinformatics offer new opportunities to overcome these

obstacles. Computational tools for identifying novel vaccine

candidates pave the way for developing targeted vaccines that can

address the diversity of P. aeruginosa strains and enhance immune

protection (23). In this study, we employed a high-resolution pan-

genomic analysis of complete P. aeruginosa genomes from the

NCBI RefSeq database to identify core, virulence-associated

proteins. Among the prioritized candidates, LptF, a component of

the LPS transport system, has been classified as a lipotoxin (LPT)

due to its ability to trigger strong pro-inflammatory responses via
Frontiers in Immunology 03150
TLR2 activation, particularly in cystic fibrosis. LptF is a pro-

inflammatory lipotoxin involved in the excessive induction of IL-

8 in cystic fibrosis and remains underexplored as a vaccine target

(24). Our pan-genome analysis has identified LptF as a key

membrane-associated protein that interacts with virulence factors,

such as OprI and LptE, which supports its potential as a new

therapeutic candidate (25). Our pipeline integrates reverse

vaccinology, structural modeling, and molecular dynamics

simulations to design a multi-epitope subunit vaccine construct.

Unlike previous studies that relied on reference strains, metabolic

enzymes, or limited proteome screening, our approach emphasizes

strain-wide conservation, immune accessibility, and functional

relevance. This integrative, pathogen-focused design offers a

rational and potentially effective strategy for developing a broad-

coverage vaccine against MDR P. aeruginosa. Using linkers, these

epitopes can be linked to effective adjuvants to develop vaccines.
2 Materials and methods

2.1 Genome data retrieval

A comprehensive dataset of P. aeruginosa genomes, all at the

“complete” assembly level, was obtained from the National Center

for Biotechnology Information (NCBI) database (https://

www.ncbi.nlm.nih.gov/) using the NCBI Genome Download

Toolkit (26). To ensure comprehensive genomic representation,

this dataset included a variety of strains, encompassing both clinical

isolates and reference strains.
2.2 Pangenome construction and analysis

P. aeruginosa strains underwent pangenome analysis using the

Roary tool (Version 3.13.0) (27). A diverse set of strains was initially

selected to capture extensive genetic variability by collecting whole

genomes from the NCBI RefSeq database. These genomes were

annotated using Prokka (Version 1.14.6), which converted raw

sequences into functional gene and protein data (28). Prokka is used

to annotate essential genetic elements such as transfer RNA (tRNA),

ribosomal RNA (rRNA), and coding sequences (CDS) for each

genome, ensuring consistent annotation across all strains. Roary

identifies the core and the accessory genes, revealing the conserved

and variable genomic regions among P. aeruginosa strains. Core genes

from all genomes were extracted from the Roary output for further

detailed analysis, providing insights into essential genomic elements

and potential targets for vaccine or therapeutic development. This

pangenome analysis elucidated the genetic composition of the species

and identified potential targets for further therapeutic advancements.
2.3 Prediction of subcellular localization

Following the identification of core genes, we employed the

PSORTb tool (version 3.0.3) to predict their subcellular localization
frontiersin.org
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(29). PSORTb, a robust tool for prokaryotic genome analysis,

categorized the core genes based on their predicted cellular

locations, including cytoplasmic, periplasmic, and outer

membrane regions. This study primarily focused on outer

membrane proteins due to their accessibility on the bacterial

surface, making them ideal targets for vaccine development. To

confirm that the selected outer membrane-associated genes did not

show homology with the human proteins, we conducted a

comparison against the human proteome using BLASTP analysis

(E-value 0.0001) (30). This step was essential to avoid potential

cross-reactivity and enhance the specificity of vaccine

candidate selection.
2.4 Analysis using the virulence factor
database

The identified outer membrane proteins were analyzed by

comparing them to the Virulence Factor Database (VFDB) using

BLASTP [E-value = 0.0001, protein sequences from the VFDB full

dataset (set B)] (31). This comparative analysis aimed to determine

whether the selected protein candidates possess virulence potential,

thereby assessing their suitability as targets for therapeutic or vaccine

development. By aligning these outer membrane proteins with known

virulence factors, we identified candidates with established roles in

pathogenicity, enhancing the selection of proteins with significant

implications in host-pathogen interactions. The selected target

underwent an additional BLASTP search against the P. aeruginosa

database for further validation (32). This analysis provided insights

into the protein’s potential role, supporting its relevance for

subsequent stages of the study.
2.5 Immunogenic potential and structural
characterization of vaccine candidate

We evaluated the selected sequence’s antigenic potential using the

VaxiJen v2.0 (https://www.ddg-pharmfac.net/vaxijen/VaxiJen/

VaxiJen.html) server (33) to determine its suitability as an

antigenic candidate. The sequence was analyzed with Allertop

v2.0 (34) to assess allergenic risk, ensuring it lacked properties

that could trigger allergic reactions. We used the ProtParam tool

(https ://web.expasy.org/protparam/) to determine the

physicochemical properties, including molecular weight,

instability index, grand average of hydropathicity (GRAVY), and

hydrophobicity (35). These analyses provided essential insights into

the protein’s suitability for vaccine development by assessing its

immunogenicity, safety, and stability.
2.6 Signal peptide prediction analysis

SignalP 6.0 (https://services.healthtech.dtu.dk/services/SignalP-

6.0/) is a sophisticated bioinformatics tool designed to detect signal

peptides in protein sequences and pinpoint their cleavage sites (36).
Frontiers in Immunology 04151
Utilizing protein language models (LMs), it analyzes the N-terminal

region of proteins. Based on the predicted pathway and cleavage

mechanism, SignalP classifies signal peptides into various types,

such as Sec/SPI and Tat/SPI. The tool provides crucial scores,

including the S-score for signal peptide probability and the C-

score for predicting cleavage sites. This is essential for developing

vaccines, as it helps identify secreted or surface-exposed proteins

that could serve as potential immunogenic targets.
2.7 Prediction of linear B-cell epitopes

For the prediction of linear B-cell epitopes, we utilized BepiPred

2.0, which relies on the Immune Epitope Database (IEDB) Analysis

resource (https://www.iedb.org/) (37, 38). This tool analyses amino

acid propensity scores and identifies patterns typical of B-cell

epitopes, using propensity scales to identify regions likely to

consist of these epitopes. Improved accuracy of predictions is

achieved by training on known antigen-antibody complexes, with

the Random Forest method refining the results. The antigenic

potential of the predicted epitopes was further assessed using

VaxiJen v2.0 to determine their ability to stimulate an immune

response. In this study, it served as an additional screening tool to

prioritize epitopes (B and T Cell epitopes) with higher intrinsic

antigenic potential before subjecting them to downstream

immunoinformatics and structural analyses. Allertop v2.0

assessed allergenicity, ensuring the epitopes would not trigger

allergic reactions. Additionally, the toxicity profiles of the selected

epitopes were evaluated using the ToxinPred server (39), making

sure they had a low risk of allergic reactions was a key step in

designing the vaccine.
2.8 Prediction of T-cell epitopes (MHC
Class I and II)

Epitope prediction for helper (HTL) and cytotoxic (CTL) T

lymphocytes was performed using the NetMHCpan 4.1 algorithm

provided by the Immune Epitope Database (IEDB) Analysis

Resource (40). The focus was on non-structural (NS) proteins,

which are conserved across various strains of P. aeruginosa and

serve as key targets for immune responses. A human-specific

approach was employed for CTL epitopes, identifying 10-mer

peptides (ten amino acids long) that included 27 common HLA

alleles as a reference panel. These epitopes were chosen for their

ability to bind to MHC class I molecules and activate cytotoxic T

cells, which is essential for targeting and eliminating infected cells.

We selected T-cell epitopes based on recommendations from the

IEDB for binding predictions. Specifically, we selected epitopes with

a percentile rank of ≤ 1% for MHC class I, and a median percentile

rank of ≤20% for MHC class II. These thresholds represent high and

moderate affinity binders, and we mapped them to our scoring scale

(≥ 0.60 for class I and ≥ 0.75 for class II) to include biologically

relevant epitopes (41). For HTL epitopes, 15-mer peptides likely to

stimulate helper T cells were identified using the IEDB-
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recommended method. These epitopes were designed to bind to

MHC class II molecules, thereby activating B cells and initiating the

humoral immune response. The input included antigenic, non-

allergenic, and NS proteins from P. aeruginosa to ensure the

predicted epitope’s efficacy and safety for vaccine development.
2.9 Prediction of interferon-g inducing
MHC-II epitopes

In this study, the IFNepitope server was used to predict MHC-II

epitopes capable of inducing Interferon-gamma (IFN-g) responses.

This web-based tool leverages a comprehensive dataset from the

IEDB, comprising 6,728 non-inducing epitopes and 3,705 confirmed

IFN-g-inducing epitopes (42). Utilizing the Support Vector Machine

(SVM) technique, the server combines sequence analysis with

predictive algorithms to identify epitopes with a high potential to

stimulate IFN-g production. We also analyzed the IL-4 prediction web

server (43), the IL-6 prediction web server (44), the IL-10 prediction

web server (45), and the IL-13 prediction web server (46). Epitopes

were selected for vaccine development based on their prior assessment

for antigenicity and non-allergenicity. This tool also prioritizes safe

and immunologically relevant epitopes, which boosts the chances of a

successful immune response.
2.10 Analysis of population coverage

The finalized T-cell epitopes and their associated HLA binding

data were evaluated using the IEDB’s Population Coverage module

to determine their global distribution across diverse populations

(47). This analysis provided valuable insights into the epitope’s

coverage across different demographics and regions, enhancing our

understanding of their potential immunological effectiveness. By

examining the global distribution of these epitopes, the study

highlighted their relevance to diverse demographic groups. This

crucial step demonstrated the epitope’s ability to address global

healthcare needs, ensuring the vaccine candidate’s potential to

protect a wide range of populations, thereby increasing its

worldwide applicability and efficacy.
2.11 Vaccine design and construction

This study enhanced the vaccine design by incorporating carefully

selected adjuvants, linkers, and epitopes to amplify the immune

response. Two adjuvants were selected for their immune-boosting

properties: RS-09 (APPHALS), a short peptide mimicking bacterial

lipopolysaccharide, and Beta-defensin, a potent antimicrobial peptide

known for its strong immunological activation (48, 49). Four linkers

were used to achieve the best positioning and presentation of the

epitopes. The EAAAK linker connected the adjuvants to the epitopes.

This rigid helical linker promotes spatial separation between the

adjuvant and the epitope region, thereby minimizing potential

structural interference and enhancing adjuvant-mediated immune
Frontiers in Immunology 05152
activation. The Alanine-Alanine-Tyrosine (AAY) linker was employed

between MHC-I epitopes to enhance processing and presentation by

MHC class I molecules. The MHC-II epitopes were separated using the

Glycine-Proline-Glycine-Proline-Glycine (GPGPG) linker, which is a

flexible and hydrophilic linker that aids in preserving epitope integrity

and enhances recognition by helper T cells. Finally, the KK (Lysine-

Lysine) linker was used to connect B-cell epitopes, ensuring adequate

exposure for B-cell activation while maintaining their conformational

flexibility and immunogenicity (50). These strategic additions of

adjuvants and linkers were designed to optimize the vaccine’s ability

to elicit strong and targeted immune responses, effectively combating

the intended disease.
2.12 Analysis of the physicochemical
properties of the formulated vaccines

The ProtParam server was utilized to conduct a physicochemical

analysis of the developed vaccine candidates, assessing their stability

and suitability for development (51). We analyzed the amino acid

sequences to identify key structural and functional features. We

calculated the molecular weight to estimate the proteins’ size,

solubility, and potential antigenicity. To assess their biochemical

behavior under physiological conditions, we determined the

theoretical isoelectric point (pI), which indicated their net charge

and acid–base characteristics. We also computed the instability index

to predict the likelihood of protein degradation. However, the aliphatic

index was evaluated to determine temperature stability based on the

contribution of aliphatic amino acids. The GRAVY index was also

evaluated to determine the vaccine’s overall hydrophobic or

hydrophilic nature, aiding in understanding its solubility and stability.
2.13 Secondary structure analysis and
prediction

The secondary structure of the developed vaccine was predicted

using the PSIPRED tool (52), a widely used online resource for protein

structure annotation and prediction. PSIPRED offers comprehensive

protein analysis tools (53), with a focus on structural feature

prediction. This analysis yielded valuable insights into how the

vaccine might interact, its stability, and its functional properties.

After entering the amino acid sequence of the final vaccine

construct, the PSIPRED server analyzed the sequence and predicted

the secondary structure, identifying coil, b-sheet, and a-helical
regions. These predictions provide crucial insights about the overall

structure and organization of the vaccine’s protein backbone.
2.14 Prediction and computational
refinement of tertiary structure

To predict the three-dimensional (3D) structure of the

developed vaccine and facilitate docking analysis, the ROBETTA

server and AlphaFold (54, 55), which employ deep-learning
frontiersin.org
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techniques for accurate protein modeling, were utilized. The

complete amino acid sequence of the vaccine was entered into

both platforms, resulting in the prediction of multiple 3D structures

in PDB format. These structures were enhanced in quality and

accuracy using the GalaxyRefine tool (56). This tool refines the

models by correcting structural errors, optimizing energy levels, and

minimizing steric clashes. A comparative analysis of the refined

models was conducted, and the best-performing structure, as

determined by structural validation using a Ramachandran plot

and other quality metrics, was selected for further docking studies.
2.15 Molecular docking and interaction
studies

We employed molecular docking analysis to examine the

interactions between the vaccine construct and Toll-like receptors

TLR2 and TLR4, which are critical mediators of innate immune

responses to infection. TLR2 was selected for its ability to detect

various pathogen-associated molecular patterns and initiate immune

responses (57). RS09 is a synthetic TLR4 agonist peptide that stimulates

innate immunity. The TLR4 receptor recognizes a TLR4 agonist linked

to the N-terminus of the vaccine construct. When TLR4 is activated, it

triggers an intracellular signaling process via the NF-kB pathway,

resulting in the production of inflammatory cytokines (58, 59). We

retrieved the 3D structures of TLR2 and TLR4 from the RCSB PDB

database, using IDs 2Z7X and 3FXI for TLR2 and TLR4, respectively,

for further analysis (60, 61). Before docking, we thoroughly prepared

the receptor structures by removing heteroatoms, water molecules, and

bound ligands to ensure accurate analysis. This step was vital to prevent

any interference during the docking process. Docking simulations were

pe r f o rmed us ing th e HDOCK web s e r v e r (h t tp : / /

hdock.phys.hust.edu.cn/) (62). It employs a hybrid docking

algorithm that combines template-based and free docking

methods. In this study, we did blind docking to allow unbiased

prediction of potential interaction sites between the vaccine

construct and immune receptors. HDOCK, which is known for

its intuitive interface and robust protein-protein docking

capabilities, facilitated the simulation process by leveraging the

refined 3D structure of the vaccine and the immune receptor

models of TLR2 and TLR4. The docking affinity scores, indicating

the strength of interaction between the vaccine and the receptors,

were used to evaluate the results. Additionally, key residues

involved in binding interactions were identified, providing

insights into how these immune receptors recognize the vaccine.

This study helps elucidate how the vaccine may effectively interact

with TLR2 and TLR4, key components of the innate immune

system, to trigger an immune response.
2.16 Molecular dynamics simulation
analysis

To conduct molecular dynamics (MD) simulations for 1000ns, we

utilized the CHARMM-GUI server’s Solution Builder protocol,
Frontiers in Immunology 06153
applying the CHARMM36 force field to generate the necessary input

files (63). The TIP3P water model was used to solvate the protein-

protein complexes, creating a realistic simulation environment by

enclosing the system in a periodic cubic box extending 10 Å from

the protein atoms in all directions (64). Counter ions were added to

neutralize the system, ensuring overall charge balance. The Verlet cutoff

method was employed with a 10 Å cutoff distance, striking a balance

between computational efficiency and accuracy to calculate electrostatic

and van der Waals interactions. Bond constraints were applied using

the LINCS algorithm to stabilize the simulation by maintaining fixed

bond lengths. The Particle Mesh Ewald (PME) method was used to

precisely calculate long-range electrostatic interactions, enhancing

simulation accuracy in systems with periodic boundary conditions

(65). To remove undesirable interactions and stabilize the system, the

solvated system was subjected to energy minimization using the

steepest descent technique (66). Two equilibration phases followed:

the first in the NVT ensemble (constant Number of particles, Volume,

and Temperature) to stabilize temperature, and the second in the NPT

ensemble (constant number of particles, Pressure, and Temperature) to

stabilize pressure. Proper thermostat and barostat techniques

maintained constant temperature and pressure levels. This dual

equilibration ensured system stability before the production run. The

simulation recorded coordinates every 1 ps with a time step of 2 fs,

striking a balance between computational efficiency and accuracy.

CHARMM-GUI provided Python scripts to convert topology (top)

and parameter (itp) files into GROMACS-compatible formats,

simplifying input file preparation (67). Following the post-

production run, we performed thorough trajectory analyses,

including calculating Root Mean Square Deviation (RMSD) for

structural stability, Root Mean Square Fluctuation (RMSF) for

flexibility, hydrogen bond analysis (HBOND) for molecular

interactions, Principal Component Analysis (PCA) for dominant

motion patterns, Buried Surface Area (BSA) for evaluating binding

stability, and Free Energy Landscape (FEL) analysis for the

conformational states of the protein-protein complexes. Free energy

calculations were performed for the interaction between TLR

complexes and the vaccine construct (POA_V_RS09,

POA_V_BDEF) using the MM-PBSA method with a Poisson-

Boltzmann approach (68, 69). These approaches account for various

energy components, including bonded interactions, van der Waals

forces, electrostatic effects, and both polar and non-polar solvation

energies. Here inMM-PBSA, the polar solvation energy is derived from

the Poisson–Boltzmann equation, utilizing the molecular dynamics

(MD) trajectory to compute interaction energies throughout the

simulation. These analyses provided valuable insights into structural

stability, flexibility, interaction dynamics, and potential conformational

changes, enhancing our understanding of protein-protein interactions

over time (70–72).
2.17 In silico cloning and expression
analysis

To ensure optimal expression in the desired host, the gene of

interest was first subjected to codon optimization using the
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GenScript program (www.genscript.com), aligning the gene

sequence with the host’s preferred codon usage (73). Using

SnapGene software (https://www.snapgene.com/), we cloned the

vaccine construct via in silico. The result showed that the gene of

interest and the pET-28a(+) plasmid did not share any restriction

sites. This was addressed by adding specific nucleotide sequences to

the gene’s N-terminal and C-terminal ends, which matched the

restriction sites XhoI and NdeI, thereby aiding in cloning. These

sequences provided suitable restriction sites for the accurate

insertion of the gene into the plasmid. The appropriate

recombinant plasmid construct was then produced by cloning the

codon-optimized gene into the pET-28a(+) plasmid in silico using

additional restriction sequences (74).
2.18 C-IMMSIM-based immune simulation

The C-IMMSIM server (https://kraken.iac.rm.cnr.it/C-

IMMSIM/index.php) (75), a widely used tool for simulating

immune responses, was employed to evaluate the in-silico

immunological response of the developed vaccine. This server

utilizes a simulation-based framework to replicate the function of

the human immune system and its organs, with a particular

emphasis on primary lymphoid tissues. It uses a position-specific

scoring matrix, enhanced by machine learning algorithms, to

predict immune reactions. To achieve a total simulation period of

1050 steps, the vaccine and adjuvant were given in three doses: an

initial dose, a second dose administered 84 days later, and a third

dose administered 1050 days later, spaced eight hours apart. The

adjuvant concentration was set to 100, and the injected antigen

amount was 1000, following the server’s default parameters. This

setup enabled a comprehensive evaluation of the immune response

triggered by the vaccine or the adjuvant.
3 Results

3.1 NCBI data retrieval

A diverse array of 864 complete P. aeruginosa genomes,

encompassing strains such as PAO1, PA14, PAK, LESB58, and

CF39S, was sourced from the NCBI Assembly database utilizing the

NCBI-genome-download toolkit. Supplementary Table S1 contains

detailed information on all included genomes, ensuring a

comprehensive genomic representation for subsequent analyses.
3.2 Pangenome analysis

A thorough pangenome analysis was performed on 864 complete

genomes of P. aeruginosa sourced from the NCBI Assembly database.

Genome annotation was executed using Prokka, followed by

pangenome analysis with Roary, which identified a total of 63,239

genes. Of these, 3,325 were classified as core genes. Within this core
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set, 296 genes were consistently present across all genomes, with 79

hypothetical genes excluded from further analysis. Additionally, 3,149

accessory genes were identified in 15–95% of the genomes. The

significant genomic diversity revealed by this open pangenome

analysis highlights the extensive variability within P. aeruginosa

(Figure 1). The figures were generated using R. This variability

provides crucial insights into strain-specific adaptations,

pathogenicity, and antibiotic resistance. Furthermore, identifying

universally conserved targets among the core genes points to

promising candidates for vaccine development applicable across

diverse P. aeruginosa strains. These findings are pivotal in guiding

future research and therapeutic strategies.
3.3 Subcellular localization and virulence
prediction

PSORTb analysis identified three outer membrane proteins, while

the remaining proteins were classified as cytoplasmic or belonging to

other categories (Table 1). Subsequent BLASTP analysis against the

human proteome in NCBI showed no homologous hits for the outer

membrane proteins, ensuring their specificity and minimizing the risk

of cross-reactivity in vaccine development. BLASTP analysis against

the VFDB revealed that only the PAL_1 protein matched known

virulence factors, confirming its potential as a relevant target for

further therapeutic or vaccine development. Further analysis of PAL_1

against the P. aeruginosa database identified the protein as LptF, with

an e-value of 0. To validate the conservation of the selected vaccine

target LptF across diverse P. aeruginosa strains, a multiple sequence

alignment was performed using LptF sequences from 864 genomes

using Python (76). The conservation analysis revealed that over 98%

of the amino acid positions were fully conserved (with 100% identity),

and a pairwise sequence identity of greater than 99% was observed

among all strains. A corresponding heatmap of the pairwise identity

matrix further confirmed the uniform conservation pattern

(Supplementary Figure S1). These results underscore the

evolutionary stability of LptF and support its candidacy as a

universal target for vaccine or therapeutic development.
3.4 Analysis of immunogenic and
physicochemical characteristics

The ProtParam tool was used to predict the physicochemical

characteristics of the LptF protein. It has a molecular weight of 28.5

kDa and displays slight instability under standard laboratory

conditions, with an instability index of 42.30. The GRAVY index

of -0.574 indicates its hydrophilic nature. With an aliphatic index of

80.15, which reflects the protein’s thermostability, LptF is

considered a strong candidate for vaccine development due to its

stability at physiological temperatures. Its potential as an

immunogenic candidate is further supported by an antigenicity

score of 0.6442 (classified as likely antigenic with a threshold of 0.4)

and its classification as non-allergenic by AllerTOP.
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3.5 Signal peptide prediction

The analysis identified a Sec/SPII cleavage site at position 20 of the

protein sequence, indicating the presence of a signal peptide that is

likely cleaved during the maturation process via the Sec-dependent

secretion pathway or the Sec/SPII system (Figure 2). With the signal

peptide removed, the mature protein sequence begins at position 20.

The signal peptide was excluded from further analysis, and the mature

protein sequence was used in subsequent bioinformatics analyses. This

sequence underwent secondary structure prediction, functional

annotation, and potential epitope mapping, all of which are essential

for understanding the protein’s biological function and its potential use

in vaccine design. This approach ensures that only the biologically

relevant mature protein is considered for downstream analyses.
3.6 Prediction of B-cell epitope

The BepiPred Linear Epitope Prediction 2.0 tool was initially used

to predict B-cell epitopes, identifying nine epitopes for the LptF protein.

One of these epitopes, a 72-mer, was re-analyzed to ensure no potential

epitopes were missed. This re-evaluation revealed eight additional

epitopes (Figure 3), with figures generated in R (77). They were
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carefully selected based on several critical factors to confirm the

suitability of the identified epitopes for vaccine development. VaxiJen

v2.0 predicted high antigenicity scores for these epitopes, indicating

their potential to trigger a robust immune response. Additionally, their

non-toxic nature was confirmed using ToxinPred, ensuring they would

not cause adverse effects. The non-allergenic properties of the epitopes

were verified using AllerTOP v2.0, further ensuring their safety. As

shown in Table 2, the selected epitopes were chosen for further research

after careful consideration of these factors. Supplementary Table S2

provides a detailed analysis of the epitope’s suitability for inclusion in

potential vaccine formulations, including their toxicity, allergenicity,

and antigenicity profiles.
3.7 Prediction of T-cell epitope (MHC-I and
MHC-II)

The MHC-I and MHC-II epitopes were predicted for the LptF

protein sequence using NetMHCpan 4.1 from IEDB. The finalized

epitopes are presented in Tables 3, 4, with detailed T-cell epitope

analyses in Supplementary Tables S3, S4. While VaxiJen v2.0 is

primarily designed for complete proteins, it was utilized here as an

additional tool to assess the antigenicity of both MHC class I and II T
FIGURE 1

Pangenome analysis of P. aeruginosa genomes. (A) Pie chart showing the distribution of core, accessory, and unique genes. (B) Comparison of
conserved genes with the total number of genes, highlighting genetic conservation across genomes. (C) Unique versus new gene ratio, emphasizing
genome variability. (D) The number of genes identified within the pangenome provides insights into overall genomic diversity and its potential
impact on vaccine development.
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cell epitopes, supporting selection alongside MHC binding,

immunogenicity, and toxicity criteria. Initially, 6,265 MHC-I epitopes

were predicted and filtered based on a rank cutoff of 0.5 and a core

score cutoff of 0.60. Similarly, 6,130 MHC-II epitopes were filtered

using a rank cutoff of 2 and a score of 0.75. These thresholds were

chosen because lower rank and score values indicate a higher binding

affinity to MHC alleles, which is crucial for identifying effective

immunogenic candidates. The finalized epitopes were further

assessed for toxicity, antigenicity, and allergenicity to confirm their

immunogenic potential while minimizing the risk of adverse reactions.

All selected epitopes were predicted to be IL-10 inducers, suggesting

their potential to regulate immune responses and prevent excessive

inflammation. Notably, epitope 3 exhibited balanced induction of IL-4,

IL-6, IL-10, and IL-13, making it a strong vaccine candidate. Epitopes 2

and 4 also induced IL-6 alongside IL-10, supporting a mixed pro-

inflammatory and regulatory profile (Supplementary Table S5).

Interferon-g scores were computed for MHC-II epitopes to rank

those that could elicit a strong immunological response. The chosen

MHC-I andMHC-II epitopes, identified according to these criteria, are

presented in Table 4.
3.8 Vaccine design and conservancy
evaluation

Two vaccine constructs were developed, incorporating adjuvants

such as RS-09 and Beta-defensin and with the predicted epitopes from
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the LptF protein. Each vaccine included the selected epitopes,

comprising five MHC-II, four MHC-I, and five B-cell epitopes.

Fifteen epitopes were incorporated into the final vaccine constructs

(Figure 4). The sequences and corresponding lengths of both

constructions are described in Table 5, and the proposed vaccines

ranged from 248 to 283 amino acids. The combined term for these

constructs was POA_V. The presence of the chosen epitopes in

P. aeruginosa was verified using a BLASTP analysis. The results

demonstrated 100% sequence similarity across P. aeruginosa strains,

indicating that the chosen epitopes are conserved and present in

all strains.
3.9 Analysis of population coverage

Based on estimated population coverage, the vaccine could

potentially reach 87.35% of the global population. Tables 3, 4

comprehensively analyse the epitope distribution, demonstrating

its adaptability across different regions and demographic groups.

Additionally, Figure 5 visually represents the global coverage,

underscoring the vaccine’s potential for widespread impact

(Supplementary Table S6, Supplementary Figure S2). Notably,

regions such as the United States (98.33%), Kenya (98.58%),

Germany (98.26%), Brazil (97.93%), France (98.04%), and Canada

(95.58%) showed high predicted population coverage, emphasizing

the vaccine’s potential effectiveness across diverse geographic and

genetic backgrounds. Moderate coverage was observed in countries

such as India (85.56%), Japan (87.60%), and China (89.81%),

further confirming the vaccine’s adaptability in densely populated

and genetically diverse regions. On the other hand, lower coverage

was observed in regions such as the United Kingdom (56.38%),

Hong Kong (56.64%), and American Samoa (56.40%), which may

be attributed to regional HLA allele distribution patterns. Overall,

the population coverage analysis strongly supports the broad

usability and potential of the designed vaccine to fight the

targeted pathogen worldwide.
TABLE 1 Subcellular localization predictions for selected proteins based
on PsortB analysis.

Sno Protein PSORTb result

1 oprB OuterMembrane – 10.00

2 bamB OuterMembrane – 10.00

3 pal_1 OuterMembrane – 10.00
FIGURE 2

Signal peptide prediction for the LptF protein sequence was performed using SignalP.
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3.10 Physicochemical property analysis

The physicochemical evaluation of the vaccine candidates

POA_V_RS09 and POA_V_BDEF underscores their potential

viability. POA_V_RS09, with a molecular weight of 25,734.39 Da

comprising 248 amino acids, has an isoelectric point (pI) of 9.43. It
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exhibits hydrophilicity, as indicated by a GRAVY score of -0.856,

and is considered stable with an instability index of 23.29. Similarly,

POA_V_BDEF has a molecular weight of 29,763.15 Da, a pI of 9.53,

and consists of 283 amino acids. Its instability index, 26.34, also

suggests stability, and the GRAVY score of -0.761, which confirms

its hydrophilic nature. These favorable stability and solubility
FIGURE 3

B-cell Epitope Prediction. (A) depicts the prediction of epitopes from the entire protein sequence, while (B) highlights the re-analyzed 72-mer
epitope to ensure no potential epitope is overlooked.
TABLE 2 Predicted B-cell epitopes for the LptF protein, identified as potential targets for vaccine development.

No Start End Peptide Length Antigenicity Score Probable Antigen Allergenicity Toxicity

8 201 217 YGKEYPVASNGTSSGRA 17 1.3767 Antigen Non-allergen Non-toxic

5 127 136 DLDKSDLKPG 10 1.1824 Antigen Non-allergen Non-toxic

3 18 37 LQSQPDATKVAALETKDAGD 20 0.7914 Antigen Non-allergen Non-toxic

1 5 13 GEDQRDVDQ 9 1.4255 Antigen Non-allergen Non-toxic

5 42 51 SAQRAQARLD 10 1.2283 Antigen Non-allergen Non-toxic

8 62 69 SQLNAKQT 8 1.4671 Antigen Non-allergen Non-toxic
fro
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properties render both candidates promising for further validation

as vaccine prospects.
3.11 Secondary structure, tertiary structure,
and refinement

The secondary structure of the vaccines was estimated using the

PSIPRED approach, concentrating on the ratios of coils, b-sheets, and
a-helices due to their immunogenic potential. PSIPRED’s analysis of the

vaccine candidates POA_V_RS09 and POA_V_BDEF revealed distinct

structural features. POA_V_RS09 comprised 58.87% alpha helices,

4.03% beta strands, and 37.10% random coils. In contrast,

POA_V_BDEF consisted of 50.53% alpha helices, 7.07% beta strands,

and 42.40% random coils (Supplementary Figure S3). These findings

indicate a predominance of alpha helices and a significant presence of

coils in both candidates, with a relatively low content of beta strands.

This structural profile suggests a balance between stability and flexibility,

which is beneficial for antigenic presentation in vaccine design. Using

ROBETTA and AlphaFold, we modelled the vaccine’s 3D structures.

Following structure generation, we refined all the models using

GalaxyRefine to improve stereochemical accuracy. Among the

generated models, Model 1 demonstrated superior performance for

both vaccines, with RMSD values ranging from 0.9744 to 0.9889.

Further validation was conducted using QMEAN4 scores and

Ramachandran plot analysis to evaluate the structural quality at both

global and local levels. For the POA_V_BDEF construct, the ROBETTA

model yielded a QMEAN4 score of –0.72, while the AlphaFold model
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scored –2.67. Similarly, for the POA_V_RS09 construct, the ROBETTA

model scored –0.19, compared to –2.24 for the AlphaFold prediction.

QMEAN4 integrates four structural descriptors and is widely used to

evaluate model quality in the absence of a native structure. These results

indicate that the ROBETTA-generated models exhibit superior

reliability and structural accuracy for both constructs. Further

structural assessment using Ramachandran plot analysis (Table 6)

revealed that ROBETTA models have over 96% of residues in favored

regions, with only 0.71–0.81% falling in the disallowed areas. In contrast,

AlphaFold models had a higher percentage of disallowed residues (up to

2.44%), particularly in functionally important loops and epitope-

accessible regions. While AlphaFold has shown remarkable success in

protein structure prediction and has been used in several recent vaccine

design studies with promising results (78), we opted for ROBETTA-

refined models in our research. This decision was based on comparative

structural validation, where ROBETTA constructs exhibited fewer steric

clashes and better Ramachandran statistics. Therefore, the ROBETTA-

generated models were chosen for both POA_V_RS09 and

POA_V_BDEF constructs and used in all downstream docking and

immunological simulations to ensure structural reliability and predictive

robustness. The Ramachandran plot of POA_V_RS09 and

POA_V_BDEF shows that the structural value exceeds 90% of

residues in favored regions, indicating a good overall geometry

(Supplementary Figure S4). For the POA_V_BDEF construct,

residues like Ser-26 and Gly-134 were located in disallowed areas,

while for the POA_V_RS09 construct, residues Pro-100 and Gly-141

were also found in similar disallowed areas. The vaccine models are

detailed in Supplementary Figure S5.
TABLE 3 Finalized MHC-I epitopes identified for the LptF protein.

Allele Length Peptide Score Rank Antigenicity Score Antigen Allergenicity Toxicity

HLA-A*01:01 10 YTDSTGSANY 0.9955 0.01 1.3013 Antigen Non-Allergen Non-Toxin

HLA-B*57:01 10 QTSRGTMVTF 0.7892 0.22 0.5176 Antigen Non-Allergen Non-Toxin

HLA-B*40:01 10 GEDQRDVDQL 0.6866 0.16 1.0027 Antigen Non-Allergen Non-Toxin

HLA-A*31:01 10 KSDLKPGAMR 0.6452 0.19 0.9618 Antigen Non-Allergen Non-Toxin
f

TABLE 4 Finalized MHC-II epitopes identified for the LptF protein, optimized for vaccine design.

Allele Peptide Score Rank Antigenicity Score Antigen Allergenicity IFN-g Score

HLA-DRB1*03:01 VEVTISNDAKPVAPR 0.9766 0.05 0.4458 Antigen Non-Allergen 0.0856

HLA-
DQA101:02/DQB106:02

VLRNAEAQLQNASAQ 0.8975 0.01 0.7313 Antigen Non-Allergen 0.5321

HLA-DRB1*01:01 EAQLQNASAQRAQAR 0.8624 0.61 1.3141 Antigen Non-Allergen 0.7388

HLA-
DQA101:02/DQB106:02

IVLRNAEAQLQNASA 0.8601 0.03 0.7121 Antigen Non-Allergen 0.2149

HLA-
DQA105:01/DQB103:01

EAQLQNASAQRAQAR 0.8171 0.31 1.3141 Antigen Non-Allergen 0.7388

HLA-
DQA101:02/DQB106:02

TIVLRNAEAQLQNAS 0.7961 0.10 0.5276 Antigen Non-Allergen 0.2391

HLA-
DQA101:02/DQB106:02

EAQLQNASAQRAQAR 0.7768 0.13 1.3141 Antigen Non-Allergen 0.7388
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3.12 Molecular docking analysis

The HDOCK server performed docking tests to evaluate the

interactions between the suggested vaccine candidates POA_V_RS09

and POA_V_BDEF and the immunological receptors TLR2 and

TLR4, respectively. These receptors are vital in recognizing

pathogen-associated molecular patterns (PAMPs) and triggering

immune responses, such as cytokine production and the

recruitment of immune cells. The results indicated strong binding

affinities for all complexes, with POA_V_RS09 achieving the highest

docking scores of -310.2 (kcal/mol) for TLR4 and -286.76 (kcal/mol)

for TLR2 (Table 7, Figure 6). The MD simulations were conducted to

further validate the interactions by examining the stability and

conformational behavior of the docked complexes under

physiological conditions. Both vaccine candidates exhibited stable

interactions, with minimal fluctuations at the receptor-binding

interface, suggesting their ability to engage immune receptors
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and potentially elicit robust immune responses effectively. These

findings highlight the promising immunogenic potential of the

designed vaccines.
3.13 Molecular dynamics simulation
analysis

The MD simulations for the vaccine complexes (POA_V_RS09

and POA_V_BDEF) with TLR2 and TLR4 were conducted over

1000 ns and revealed notable differences in stability and interaction

properties (Table 8). The RMSD (backbone) value indicated that the

POA_V_RS09 vaccine complex was the most stable, with the

TLR4_POA_V_RS09 complex showing the lowest RMSD

(0.57 ± 0.06 nm), followed by TLR2_POA_V_RS09 (0.80 ± 0.19)

nm. These complexes remained stable throughout the 1000-ns MD

simulation. In contrast, the POA_V_BDEF-based vaccine
FIGURE 4

Graphical representation showcasing the formulation of the designed vaccine.
TABLE 5 Amino acid sequences and sequence lengths of the finalized vaccine constructs.

POA_V Sequence Length

POA_V_BDEF

FTQGISNPSSCRRNRGFCLAFWCPGSMRQIGTCFGFPVKCCREAAAKSQLNAKQTKKGEDQR
DVDQKKYGKEYPVASNGTSSGRAKKSAQRAQARLDKKDLDKSDLKPGKKLQSQPDATKVAAL
ETKDAGDGPGPGVEVTISNDAKPVAPRGPGPGVLRNAEAQLQNASAQGPGPGEAQLQNASAQ
RAQARGPGPGIVLRNAEAQLQNASAGPGPGTIVLRNAEAQLQNASAAYYTDSTGSANYAAYQT
SRGTMVTFAAYGEDQRDVDQLAAYKSDLKPGAMR

283

POA_V_RS09

APPHALSEAAAKSQLNAKQTKKGEDQRDVDQKKYGKEYPVASNGTSSGRAKKSAQRAQARLDK
KDLDKSDLKPGKKLQSQPDATKVAALETKDAGDGPGPGVEVTISNDAKPVAPRGPGPGVLRNAE
AQLQNASAQGPGPGEAQLQNASAQRAQARGPGPGIVLRNAEAQLQNASAGPGPGTIVLRNAEA
QLQNASAAYYTDSTGSANYAAYQTSRGTMVTFAAYGEDQRDVDQLAAYKSDLKPGAMR

248
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complexes had higher RMSD values, with TLR2_POA_V_BDEF

(1.08 ± 0.14 nm) and TLR4_POA_V_BDEF (1.03 ± 0.10 nm),

indicating more significant structural deviations and less stable

interactions (Figure 7A). These complexes slightly fluctuated at

the beginning of the MD simulation (0-200ns), and later they

equilibrated at 1 nm. To investigate the observed fluctuations, we

analyzed the backbone RMSD and Calpha RMSF of TLR2 and

TLR4. Both receptors exhibited considerable structural stability,

with average RMSD values of TLR2 in POA_V_BDEF at (0.33 ±

0.03 nm), TLR2 in POA_V_RS09 at (0.40 ± 0.07 nm), TLR4 in

POA_V_BDEF at (0.26 ± 0.03 nm), and TLR4 in POA_V_RS09 at

(0.23 ± 0.03 nm). The RMSF profiles also indicated stable

conformations across all complexes, TLR2 in POA_V_BDEF at

(0.15 ± 0.08 nm), TLR2 in POA_V_RS09 at (0.16 ± 0.14 nm), TLR4

in POA_V_BDEF at (0.15 ± 0.07 nm), and TLR4 in POA_V_RS09
Frontiers in Immunology 13160
at (0.14 ± 0.07 nm), as illustrated in Supplementary Figure S6. The

predicted POA_V_BDEF complex displayed enhanced flexibility,

primarily attributed to the presence of less structured epitope and

linker regions Supplementary Figure S7. This inherent structural

looseness likely accounts for the comparatively elevated average

RMSD observed across its associated complexes. When coming to

the vaccine stability in residue wise, RMSF (Calpha) analysis

showed that the RS09 vaccine complexes were more rigid, with

the TLR4_POA_V_RS09 complex showing the lowest RMSF (0.21

± 0.07 nm) and the TLR2_POA_V_RS09 complex showing (0.32 ±

0.18 nm), indicating minimal flexibility at the interaction interface

and that all the residues were around 0.5nm. Conversely, the

POA_V_BDEF-based vaccine complexes had higher RMSF

values, with TLR2_POA_V_BDEF (0.64 ± 0.23 nm) and

TLR4_POA_V_BDEF (0.47 ± 0.25 nm), suggesting increased
FIGURE 5

Global population coverage of the designed vaccine was analyzed using the IEDB tool, considering HLA allele frequencies across regions.
TABLE 6 Structural validation of POA_V_RS09 and POA_V_BDEF-based vaccine models generated using Robetta and AlphaFold.

Metric Robetta (RS09) AlphaFold (RS09) Robetta (BDEF) AlphaFold (BDEF)

Total residues 248 248 283 283

Favored regions 96.34% 91.46% 96.09% 92.53%

Allowed regions 2.85% 6.10% 3.20% 5.69%

Disallowed regions 0.81% 2.44% 0.71% 1.78%

Disallowed residues Pro-100, Gly-141
Asp-28, Asp-30, Pro-138,
Glu-227, Asp-228, Gln-229

Ser-26, Gly-134
Val-75, Leu-112, Pro-175,
Gly-261, Gly-280

Quality
Better geometry &
fewer outliers

More outliers Better geometry More outliers

QMEANDisCo Global Score 0.41 ± 0.05 0.55 ± 0.05 0.52 ± 0.05 0.48 ± 0.05

QMEAN –0.19 –2.24 –0.72 –2.67
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flexibility and dynamic behaviour (Figure 7B). In contrast, the

POA_V_BDEF vaccine construct exhibited pronounced

fluctuations, particularly in regions interacting with TLR4 and

TLR2. For the TLR4_POA_V_BDEF complex, notable flexibility

was observed in the N-terminal linker region (residues 53–57), as

well as in combined epitope and linker segments spanning residues

50–85, 165–180, and 207–216, in addition to the C-terminal end.

Similarly, the TLR2_POA_V_BDEF complex showed continuous

fluctuation across the linker (55–60), the epitope region (73–83),

the extended linker–epitope stretch (109–150), and residues 173–

180 and 195–220, along with the C-terminal region. In contrast to

the POA_V_BDEF construct, the POA_V_RS09-based vaccine

formulation demonstrated notably greater structural stability.

PCA was performed on the vaccine constructs extracted from

their respective TLR2 and TLR4 complexes to evaluate their

conformational dynamics. The POA_V_RS09 construct, when
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analyzed post-interaction with both TLR2 and TLR4, exhibited

compact PCA clusters, indicating limited conformational

fluctuations and stable structural behavior throughout the 1000 ns

simulation. In contrast, the POA_V_BDEF construct displayed

broader dispersions in PCA space, suggesting greater structural

flexibility and reduced conformational stability. This trend remained

consistent when the standalone vaccine models were analyzed, where

POA_V_RS09 continued to show tight clustering and structural

integrity, while POA_V_BDEF exhibited higher variability. These

results align with earlier RMSD and RMSF analyses, collectively

highlighting POA_V_RS09 as the more stable and potentially

immunogenic vaccine candidate. (Supplementary Figure S8).

Hydrogen bond (HBOND) analysis was conducted over the 1000 ns

molecular dynamics simulation using GROMACS. The default criteria

were used, which include a donor–acceptor distance cutoff of 0.35 nm

and a hydrogen–donor–acceptor angle cutoff of ≥150° (i.e., ≤30°
TABLE 7 Molecular docking scores of POA_V_BDEF and POA_V_RS09 with TLR2 and TLR4, showing binding affinities.

Rank Docking Score (kcal/mol) Confidence Score Interface residues Complex

1 -299.98 0.9526 model_1 TLR2 - POA_V_BDEF

1 -286.76 0.9391 model_1 TLR2 - POA_V_RS09

1 -305.23 0.9571 model_1 TLR4 - POA_V_BDEF

1 -310.2 0.961 model_1 TLR2 - POA_V_RS09
FIGURE 6

Illustrates the docking models of the vaccine constructs with the receptor, focusing on the lowest binding energy conformations. The identified
interaction residues reveal strong binding affinities, highlighting critical contacts that contribute to the complex’s stability and potential efficacy.
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deviation from linearity), consistent with established definitions for

biologically relevant hydrogen bonds. The analysis focused specifically

on the intermolecular hydrogen bonds formed between the vaccine

constructs and the TLR receptors. The POA_V_BDEF vaccine

complexes exhibited a higher average number of hydrogen bonds

(19 with TLR2 and 14 with TLR4) compared to the POA_V_RS09

complexes (11 with TLR2 and 10 with TLR4). However, the relatively

higher RMSD and RMSF values observed in the POA_V_BDEF

complexes suggest that these additional hydrogen bonds may be less

stable or more transient (Figure 7C). The buried surface area (BSA)

during the 1000 ns simulation at the interface of the

TLR4_POA_V_RS09 complex was 42.09 nm² ± 3.98, indicating

stable interactions and low variability. This was closely followed by

TLR4_POA_V_BDEF, with a BSA of 41.12 nm² ± 5.83, showing a
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similar interaction pattern. In contrast, TLR2_POA_V_BDEF had a

higher BSA of 52.37 nm² ± 6.60, while TLR2_POA_V_RS09 showed a

BSA of 35.70 nm² ± 5.19, both with higher standard deviations,

suggesting relatively fewer stable interactions (Figure 7D). Analysis of

the apo forms revealed that POA_V_BDEF exhibited the highest

RMSD (1.75 ± 0.25 nm) and RMSF (1.07 ± 0.35 nm), indicating

significant conformational flexibility in the absence of receptor

binding. In contrast, POA_V_RS09 exhibited lower deviation (0.83

± 0.10 nm RMSD and 0.26 ± 0.13 nm RMSF), suggesting it remains

relatively stable even when unbound. The FEL analysis effectively

showed us the structural stability and flexibility of the vaccine-protein

complexes. All complexes exhibited energy basins, indicating the

presence of metastable states. However, notable differences were

observed in the shape and depth of these energy wells. Complexes

involving TLR4 exhibited more compact and deeper energy minima

compared to those involving TLR2, suggesting a higher degree of

structural stability. In particular, the TLR4_POA_V_RS09 complex

exhibited a well-defined global minimum, indicating a stable and

energetically favorable conformation throughout the simulation.

Although the TLR4_POA_V_BDEF complex also reached stable

conformations, it showed slightly more conformational variability.

Conversely, the TLR2 complexes exhibited broader and more

scattered low-energy regions, indicating increased conformational

flexibility and less stable interaction patterns. Among them, the

TLR2_POA_V_RS09 complex exhibited relatively smoother energy

transitions compared to TLR2_POA_V_BDEF, which displayed more

rugged features in its energy landscape (Supplementary Figure S9).
TABLE 8 Post-MD analysis averages for protein-protein complexes,
including RMSD, RMSF, and H-bond values, reflecting structural stability
and interactions.

Complexes RMSD (nm) RMSF (nm) Avg. H-bond

POA_V_RS09_TLR2 0.80 ± 0.19 0.32 ± 0.18 11

POA_V_RS09_TLR4 0.57 ± 0.06 0.21 ± 0.07 10

POA_V_BDEF_TLR2 1.08 ± 0.14 0.64 ± 0.23 19

POA_V_BDEF_TLR4 1.03 ± 0.10 0.47 ± 0.25 14

POA_V_RS09_APO 0.83 ± 0.10 0.26 ± 0.13 –

POA_V_BDEF_APO 1.75 ± 0.25 1.07 ± 0.35 –
FIGURE 7

Molecular dynamics (MD) analysis results. (A) Root mean square deviation (RMSD) Backbone analysis. (B) Root mean square fluctuation (RMSF)
Calpha Analysis. (C) Hydrogen bond (HBOND) analysis. (D) Buried surface analysis (BSA).
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We calculated the binding free energy using MMPBSA, which

revealed notable differences between the POA_V_RS09 and

POA_V_BDEF-based vaccine constructs in complex with TLR2 and

TLR4 receptors. The TLR2_POA_V_RS09 showed a more favorable

binding energy (–1483.14 kJ/mol) than TLR2_POA_V_BDEF (–

1335.16 kJ/mol), indicating that RS09 forms a more stable and

energy-efficient complex with TLR2, compared to POA_V_BDEF.

In contrast, TLR4_POA_V_BDEF exhibited a significantly stronger

binding energy (–4600.83 kJ/mol) than TLR4_RS09 (–2682.66 kJ/

mol), likely due to its extended area, which enables an increased

contact surface. However, prior dynamic and structural analyses, such

as RMSF and FEL plots, indicate that POA_V_BDEF is more flexible,

particularly at the linker and epitope regions. This flexibility may

contribute to reduced structural stability, especially in the TLR2

complex compared to POA_V_RS09.
3.14 In silico codon adaptation, cloning,
and immune simulation

Codon optimization was performed using GenScript to enhance

the expression of the POA_V_RS09 vaccine sequence in E. coli K-

12. With a GC content of 60.22% and a total length of 744 base

pairs, the optimized sequence falls within the ideal range (30–70%)

for effective expression in E. coli. This balanced GC content ensures

efficient transcription and translation, making the sequence suitable

for high-level expression in the host. The optimized vaccine

sequence was then used for in-silico cloning with SnapGene

software, successfully inserting the gene into the pET-28a(+)

expression plasmid (Figure 8). The immune response dynamics

elicited by POA_V_RS09 are shown in Figure 9. Figure 9A

illustrates the antigen (Ag) and antibody responses over a 350-

day period, where an early antigen peak, followed by a sharp

decline, indicates effective recognition and clearance by the host

immune system. This is accompanied by a strong humoral

response, characterized by an initial surge in IgM, typical of a

primary response, followed by a sustained increase in IgG1 and

IgG2, which shows class switching and maturation of the immune

response. The dominance of IgG subclasses over time reflects the

development of long-term protective immunity. Notably, IgG1 and

IgG2 are associated with Th1-type immune responses, which are

essential for combating pathogens such as viruses and certain

bacteria. Figure 9B illustrates cytokine dynamics, where high

levels of Interleukin-2 (IL-2) and IFN-g early on indicate strong

T-cell activation and a Th1-biased immune response, which is

particularly important for combating pathogens. Their gradual

decline over time suggests immune regulation and resolution of

inflammation, highlighting the vaccine’s safety profile. Figure 9C

illustrates the dynamics of the B-cell population, exhibiting an

increasing trend in memory B cells and a shift in isotype

expression from IgM to IgG, which further validates class

switching and the generation of long-lasting humoral memory.

Figure 9D focuses on B-cell states, showing that active and antigen-

internalizing B cells peak early, while anergic cells remain relatively

constant, suggesting efficient antigen processing and presentation.
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The low level of anergic B cells suggests that immune tolerance is

not induced, further supporting the vaccine’s immunogenicity.

Figure 9E presents helper T-cell (TH) populations, with an initial

spike in total TH cells, followed by the emergence of memory TH

cells, supporting long-term immunity. Finally, Figure 9F depicts

cytotoxic T-cell (TC) states, showing early activity and duplication

followed by a steady increase in resting memory TC cells, which are

critical for sustained immune surveillance. This can contribute to

the direct killing of bacteria or infected host cells in bacterial

infections that evade extracellular immune mechanisms. These

outcomes underscore the successful initiation of both humoral

and cellular immune responses, supporting the potential for the

development of long-lasting immunological memory. Moreover,

the observed immune signatures align with the protective responses

typically seen in effective bacterial vaccines, validating the rational

design of POA_V_RS09, which incorporates TLR agonists, multi-

epitope constructs, and immune-enhancing linkers to induce broad,

durable immunity against bacterial pathogens.
4 Discussion

The opportunistic pathogen P. aeruginosa is a significant cause

of hospital-acquired infections worldwide. It presents a serious

threat to human health, especially in immunocompromised

individuals, due to its innate antibiotic resistance and ability to

develop biofilms (79, 80). The increasing prevalence of drug-

resistant strains has complicated treatment options, highlighting

the urgent need for alternative therapeutic strategies (81). Despite

progress in antimicrobial therapies, no licensed vaccine exists for P.

aeruginosa, revealing a critical gap in combating this pathogen (82).

Immunoinformatics has emerged as a powerful tool in vaccine

development, facilitating the rational design of in silico vaccines, as

demonstrated in the development of vaccines against pathogens

such as the Ebola virus, SARS-CoV-2, and Mycobacterium

tuberculosis (83–85). These approaches hold significant promise

for addressing the challenges posed by P. aeruginosa.

Previous immunoinformatics-based vaccine studies against P.

aeruginosa often relied on single-strain datasets or focused on a

narrow range of targets. Some selected cytoplasmic proteins have

limited surface accessibility, while others used previously known

antigens without assessing their conservation across diverse strains.

Additionally, several studies selected targets which is completely based

on literature without genome-wide screening (86–89). Other broader

approaches involving multiple pathogens have also identified shared

virulence or essential gene-derived epitopes while filtering for self-

tolerance (90). However, such strategies typically lack species-specific

optimization, structural validation, and comprehensive strain-level

genomic coverage—critical aspects that our study addresses. In this

study, we conducted a comprehensive pangenome analysis (91) of 864

P. aeruginosa genomes. This extensive dataset enabled robust

pangenome analysis and the identification of conserved, surface-

exposed, and virulence-associated targets, distinguishing our study

from previous investigations. Here we identified 63,239 genes,

including 3,325 core genes and 3,149 accessory genes. We focused on
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conserved core genes essential for bacterial survival and pathogenicity to

ensure broad-spectrum coverage. The Pal_1 protein was identified as a

potential vaccine candidate, which is classified as an outer membrane

protein via PSORTb, and confirmed as a virulence-associated factor

through BLASTP analysis against the VFDB. Its sequence was validated

against the P. aeruginosa database, where it was identified with 100%

confidence and an E-value of 0, and it is known as LptF (lipotoxin F).

Sequence comparison with the human proteome confirmed the absence

of homologous hits, minimizing the risk of adverse cross-reactivity.

LptF, an OmpA-like outer membrane protein, plays a crucial role in P.

aeruginosa’s survival, particularly in stressful environments such as lung

colonization in cystic fibrosis, and may serve as an important target for

therapeutic strategies (92). LptF remains an underexplored target. Its

classification as a lipotoxin, along with evidence from structural

proteomics revealing interactions with key membrane proteins like

OprI and LptE, further highlights its relevance as a promising vaccine

candidate against P. aeruginosa. Due to the increasing antibiotic

resistance of P. aeruginosa, an effective vaccine is urgently needed,
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and lipotoxins have been identified as potential targets in studies (24).

The LptF protein exhibited favorable physicochemical and

immunogenic properties, with a molecular weight of 28.5 kDa,

thermostability indicated by an aliphatic index of 80.15, and a

hydrophilic nature reflected in a GRAVY index of -0.574.

Immunogenic analysis revealed its suitability as a vaccine target, with

an antigenicity score of 0.6442 and classification as a non-allergen.

SignalP analysis showed that the protein has a signal peptide, which is

likely removed during maturation. This was accounted for in later

analyses that focused on the mature protein sequence. We identified B-

cell epitopes and chose high-affinity T-cell epitopes based on their

binding affinities to MHC-I and MHC-II molecules, with additional

refinement based on their potential to stimulate interferon-g production.
Ultimately, 15 epitopes were incorporated into the vaccine design,

comprising four MHC-I epitopes, five MHC-II epitopes, and six B-

cell epitopes. Additionally, the cytokine prediction analysis revealed that

all selected epitopes possess IL-10-inducing potential, a cytokine shown

to be critical in controlling inflammation and enhancing bacterial
FIGURE 8

In silico cloning of POA_V_RS09. (A) Cloning of RS09 (which is POA_V_RS09) into the pET-28a(+) vector. (B) final vaccination design with additional
restriction sites.
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clearance during P. aeruginosa infection (93). The vaccine constructs

POA_V_RS09 and POA_V_BDEF were designed, incorporating RS-09

and Beta-defensin as adjuvants. We selected RS09 as it functions as a

TLR4 agonist, effectively stimulating the innate immune response. b-
defensin was chosen for its dual role in activating both innate and

adaptive immunity. Incorporating these adjuvants aimed to enhance the

immunogenic potential of the constructs. This strategic design allowed

us to evaluate and compare their impact on vaccine performance. These

constructs exhibited broad global population coverage (87.35%) and

strong immunogenic potential. Secondary structure analysis revealed

that both vaccines predominantly consisted of a-helices and random

coils, enhancing antigenic presentation. Structural validation through

Ramachandran plot analysis ensured the reliability of the tertiary

structures. We selected the Robetta server over AlphaFold for tertiary

structure prediction because Robetta offers more reliable modeling for

synthetic, chimeric constructs involving multiple domains, such as

adjuvants, epitopes, and linkers. Unlike AlphaFold, which is

optimized for natural protein sequences, Robetta’s de novo prediction

approach is better suited for handling novel vaccine constructs. For the

BDEF-based construct, serine-26 (Ser-26) and glycine-134 (Gly-234)

residues were found in disallowed regions, while the RS09-based

construct showed proline-100 (Pro-100) and glycine-141 (Gly-141)

residues in disallowed regions. These residues were primarily located

in loop and linker regions and were not associated with key epitope or

adjuvant domains, suggesting that they are unlikely to compromise the

overall structural integrity of the protein. Therefore, the refined and
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validated vaccine structures were subsequently used for molecular

docking studies to assess receptor interactions. Molecular docking

analyses revealed high-affinity interactions between the vaccine

constructs and Toll-like receptors TLR2 and TLR4, which play pivotal

roles in initiating innate immune responses. POA_V_RS09 showed

superior docking scores, with -310.2 (kcal/mol) for TLR4 and -286.76

(kcal/mol) for TLR2, while MD simulations confirmed the stability of

these interactions under physiological conditions. We conducted

extensive 1000-ns molecular dynamics simulations to analyze the

long-term structural stability and interaction dynamics of the vaccine-

receptor complexes. This extended simulation duration exceeds the

standard practice in similar studies, providing deeper insights into

conformational behavior, particularly in flexible regions such as

linkers and epitopes. It enhances the structural validation of our

vaccine constructs and reinforces the reliability of our results. The

TLR4_POA_V_RS09 complex demonstrated minimal structural

fluctuations, with the lowest RMSD and RMSF values, indicating

stable interactions compared to POA_V_BDEF. Although

POA_V_BDEF demonstrated good structural quality based on

validation metrics, MD simulations revealed considerable flexibility,

even in its apo form (without receptor binding). This inherent flexibility,

especially in the epitope-linker regions, might weaken stable receptor

binding and influence immune activation. While some mobility

facilitates epitope presentation, too much fluctuation can reduce

vaccine effectiveness. These findings underscore the importance of

dynamic assessment in conjunction with static validation when
FIGURE 9

Immune Response Induced by the POA_V_RS09 Vaccine: (A) antibody response. (B) Cytokine response. (C) B-Cell population (cells/mm³). (D) B-Cell
population by state. (E) TH-cell population by state. (F) TC-cell population by state.
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evaluating multi-epitope vaccine designs. Further analysis confirmed

POA_V_RS09’s stable conformational states, with tighter cluster

dispersion and distinct energy minima. MMPBSA analysis showed

that although POA_V_BDEF has a strong binding affinity with TLR4,

POA_V_RS09 exhibits a more balanced and consistent interaction

profile with both TLR2 and TLR4, along with fewer structural

fluctuations. These qualities make POA_V_RS09 a robust and

dependable adjuvant candidate for the design of multi-epitope

vaccines. Codon optimization for POA_V_RS09 allowed efficient

expression in E. coli (K-12), and in silico cloning into pET-28a(+)

validated its expression potential. Immune simulations demonstrated

robust adaptive immune responses, characterized by sustained IgG

production, memory B-cell formation, and effective cytokine

engagement, rendering POA_V_RS09 a promising vaccine candidate

for long-term immunity. The POA_V_RS09 vaccine demonstrated

strong stability, optimal expression potential, and robust immune

activation, positioning it as an ideal candidate for further

development. By targeting P. aeruginosa, a highly resistant pathogen,

the POA_V_RS09 vaccine could offer a valuable strategy for preventing

infections and addressing the global threat of antimicrobial resistance,

ultimately improving patient outcomes. In this study, we designed two

separate vaccine constructs using RS09 and b-defensin adjuvants to

independently evaluate their immunostimulatory potential. This

separation allows for comparative assessment of construct stability,

population coverage, and immunogenicity. However, future studies

could explore the integration of both adjuvants into a single

construct, as combinatorial adjuvants have been shown to enhance

immune responses more effectively than individual components (78).

One limitation of this study is that it lacks experimental validation.

While our computational approach provides a cost-effective and time-

efficient method for epitope screening, future in vitro and in vivo studies

(e.g., ELISA, ELISPOT) are essential to confirm immunogenicity and

support vaccine development of the POA_V_RS09 vaccine candidate

against P. aeruginosa. However, we have thoroughly examined the

structural and immunological characteristics of the vaccine candidate

through in silico methods, including 1000 ns molecular dynamics

simulations, epitope mapping, TLR docking, population coverage

analysis, and immunogenicity prediction. Long-timescale MD

simulations allow for the capture of biologically relevant

conformational changes, showing that microsecond to millisecond

scale simulations can uncover protein folding pathways and slow

structural transitions. This supports the use of 1000 ns MD to study

dynamic molecular interactions (94). Several previous studies have

demonstrated that immunoinformatics-based vaccine designs can

reliably predict antigenic determinants and immune interactions,

often correlating well with experimental outcomes (95–97). These

findings support the translational relevance of computational

predictions in the early stages of vaccine design. Further validation

using comprehensive in vitro assays is also necessary to evaluate the

safety profile and immunogenic potential of the POA_V_RS09-based

vaccine, including its ability to induce pro-inflammatory cytokines,

activate T cells, and generate specific antibody responses. Such

investigations will provide valuable insights into the clinical feasibility

of POA_V_RS09 as a vaccine candidate for P. aeruginosa infections.
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5 Conclusion

This study uti l ized an integrated pangenome and

immunoinformatics approach to develop an epitope-based peptide

vaccine targeting P. aeruginosa. Through pangenome analysis, we

identified LptF as a promising and underexplored vaccine target,

specifically. From LptF, we predicted potential epitopes. The resulting

vaccine candidate, POA_V_RS09, demonstrated promising immune

response outcomes and strong binding affinity to immunological

receptors (TLRs). Notably, the 1000-ns molecular dynamics

simulation provided valuable insights into the structural stability of

the vaccine–receptor complexes over an extended timescale,

reinforcing the robustness of the construct under physiological

conditions. This computational strategy holds significant potential

for addressing the escalating issue of antimicrobial resistance,

particularly in resource-limited settings and low-income countries.

This strategy provides a comprehensive and practical approach to

combating infections by targeting conserved NS proteins, identifying

high-affinity B-cell and T-cell epitopes, and utilizing suitable

adjuvants. Future studies should assess the vaccine’s safety,

effectiveness, and scalability through in vitro investigations, animal

model testing, and ensuing clinical trials. To transform this

computational framework into a valuable tool for combating P.

aeruginosa resistance to multiple drugs, these steps are crucial.
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gene expression profiling
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Recent concerns about off-target immune activation following non-targeted

mRNA vaccine delivery have prompted the need for rational design strategies

that optimize nanoparticle formulations. Building upon our previous in silico

work using the Universal Immune System Simulator to characterize immune

responses to mRNA vaccines, we present a computational framework that

integrates synthetic transcriptomics with artificial intelligence-driven

optimization to guide the development of safer and more targeted lipid

nanoparticles. We generated biologically informed, synthetic RNA-seq datasets

to emulate gene expression profiles in immune-related tissues post-vaccination.

Differential gene expression analysis identified compartment-specific

transcriptional responses, which were then used to construct a risk index

based on predicted immune activation and the number of upregulated

immune markers. Parallelly, we trained a Random Forest regression model on

simulated lipid nanoparticles formulations to predict immune activation values

and embedded this model into a genetic algorithm to identify optimal lipid

nanoparticles design parameters (size, charge, polyethylene glycol content, and

targeting). The proposed framework enables early-stage, fully in silico screening

of mRNA vaccine delivery strategies. Our results highlight the potential of

combining mechanistic immune modeling, synthetic transcriptomic validation,

and Artificial Intelligence-based design to accelerate the development of safer

and more effective mRNA-based therapies. By enabling rapid, data-driven

optimization of delivery systems prior to experimental validation, this approach

can significantly shorten vaccine development timelines, reduce costs, and

support the creation of more personalized and adaptable immunization

strategies. In the long term, this paradigm shift toward computationally guided

vaccine development could redefine the future of immunization, paving the way

for next-generation vaccines that are safer, more targeted, and rapidly adaptable

to emerging infectious threats and individual patient needs.
KEYWORDS

mRNA vaccines, lipid nanoparticles, synthetic transcriptomics, AI-driven optimization,
immune modeling, synthetic omics data, optimization algorithms, vaccine delivery
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1 Introduction

Messenger RNA (mRNA) vaccines have revolutionized the field

of immunization, offering rapid development timelines, high

efficacy, and adaptability to various pathogens. The success of

mRNA-based vaccines against COVID-19 has underscored their

potential in combating infectious diseases and beyond. Central to

the efficacy of these vaccines is the delivery system, with lipid

nanoparticles (LNPs) emerging as the leading non-viral vectors for

mRNA delivery. LNPs protect mRNA from degradation, facilitate

cellular uptake, and promote endosomal escape, ensuring efficient

translation of the antigenic protein (1).

Despite these advantages, significant challenges remain in

optimizing LNP formulations to achieve an optimal balance

between efficacy and safety. Variations in key physicochemical

properties, such as particle size, surface charge, PEGylation

density and lipid composition, can substantially affect

biodistribution, cellular uptake, endosomal escape, and ultimately,

the magnitude and specificity of the immune response. For

example, LNPs with highly cationic surfaces may enhance cellular

internalization but also activate Toll-like receptors (TLRs) or

inflammasome pathways, potentially inducing undesired innate

immune responses, systemic inflammation, or even reactogenicity.

Conversely, overly neutral or PEG-shielded formulations may

escape immune surveillance altogether, limiting antigen

presentation and immunogenicity (2).

Moreover, the biodistribution of LNPs is highly context-

dependent, influenced by physiological barriers, tissue tropism,

and inter-patient variability, making empirical optimization

challenging (3). Conventional methodologies for LNP design rely

on iterative, trial-and-error testing of individual components, a

process that is both time-consuming and resource-intensive, often

requiring extensive in vitro and in vivo validation to assess delivery

efficiency and immune activation profiles.

Traditional Design of Experiments (DOE) approaches have been

widely employed to systematically explore the impact of formulation

variables on nanoparticle characteristics and performance. By using

structured experimental matrices, DOE enables the simultaneous

evaluation of multiple parameters and their interactions, significantly

improving the efficiency and robustness of formulation optimization

compared to traditional one-variable-at-a-time methods (4, 5). For

example, factorial and response surface methodologies have proven

effective in optimizing lipid nanoparticle properties such as size, charge,

and encapsulation efficiency for mRNA delivery (4). However, while

DOE provides a powerful framework for structured experimentation, it

still requires substantial experimental resources and may be limited in

capturing the full complexity of biological responses. This highlights

the need for complementary in silico approaches that can simulate

biological systems, reduce experimental burden, and guide rational

design more efficiently.

In this context, to overcome these limitations and fully capture

the complexity of nanoparticle-biology interactions, computational

modeling and artificial intelligence (AI)-driven optimization offer a

powerful alternative for systematically exploring the vast design
Frontiers in Immunology 02171
space of LNPs. By simulating biological outcomes and predicting

key response metrics such as immunogenicity or off-target

activation, these tools enable a more rational and cost-effective

approach to LNP development, potentially accelerating the pipeline

from formulation design to preclinical validation.

Recent advancements in computational biology and AI offer

promising avenues to streamline LNP design. Machine learning

models can predict the physicochemical properties of LNPs and

their biological interactions, enabling the rational design of

nanoparticles with desired characteristics (6). Additionally,

synthetic transcriptomics allows for the simulation of gene

expression profiles post-vaccination, providing insights into

potential immune responses without the need for extensive in

vivo studies.

Building upon our previous work utilizing the Universal

Immune System Simulator (UISS) to model immune responses to

mRNA vaccines (7), we propose an integrated in silico framework

that combines synthetic transcriptomics with AI-driven

optimization strategies. While recent advances in computational

biology have introduced simulation-based approaches and machine

learning for drug delivery design, comprehensive platforms that

integrate immune modeling, synthetic omics data, and optimization

algorithms for vaccine delivery remain scarce. Our framework

addresses this gap by offering a modular, reproducible pipeline

capable of generating biologically informed synthetic RNA-seq

datasets, performing differential expression analysis, computing

immune activation risk scores, and identifying optimal lipid

nanoparticle (LNP) formulations via machine learning and

evolutionary computation.

The pipeline was developed entirely in R and Python, leveraging

robust and widely used packages. This integrated approach enables

both hypothesis generation and rational design in the early stages of

mRNA vaccine development, with the goal of minimizing off-target

immune activation and maximizing targeted delivery efficiency. By

simulating transcriptional responses and incorporating

interpretable machine learning models into an optimization

framework, our methodology aims to accelerate the design of

safer and more effective mRNA-based therapeutics.
2 Methods

The workflow, shown in Figure 1, includes the following

key steps:

a) Synthetic RNA-seq Data Generation

A synthetic RNA-seq dataset was constructed to mimic gene

expression profiles post-vaccination. It included immune-related

marker genes for key compartments (e.g., CD19 for B cells, CD3D

for T cells, IGHG1 for plasma cells), with differential expression

patterns reflecting simulated immune activation.

b) Transcriptomic Analysis and Immune Risk Indexing

The synthetic RNA-seq dataset was analyzed for differential

gene expression. The number of significantly upregulated immune

marker genes per compartment was used to compute a risk index by
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multiplying with corresponding Delta_AUC values. This yielded a

semi-quantitative estimate of off-target immune activation risk.

c) Synthetic LNP Dataset for AI Training

A synthetic dataset of LNP formulations was generated by

varying four key physicochemical parameters: particle size (50–

150 nm), surface charge (−10 to +10 mV), PEGylation percentage

(0.1–0.5 mol%), and targeting ligand presence (binary). Delta_AUC

values were assigned to each formulation using a custom nonlinear

scoring function designed to reflect optimal biodistribution

and immunogenicity.

d) Machine Learning Model Development

A Random Forest regression model was trained to predict

Delta_AUC values based on LNP parameters. The model was

validated internally using performance metrics such as RMSE

and R².

e) Genetic Algorithm Optimization

The trained model was embedded within a genetic algorithm to

identify LNP configurations predicted to maximize immune

delivery efficiency while minimizing off-target activation. The top

10 candidates were selected for further analysis.

f) Data Visualization and Interpretation

A heatmap and ranked plots were used to summarize the

properties of optimized LNP formulations and their predicted

immune activation scores. These visualizations highlighted

common design features among the best-performing candidates.

This approach enables rational design of mRNA vaccine

formulations with improved targeting and reduced off-target

immune activation, and it will be discussed in detail in

next paragraphs.

All simulations, data generation, and analyses were performed

using a custom R and Python-based workflow developed for this
Frontiers in Immunology 03172
study. Core statistical procedures and expression modeling were

conducted in R (v4.4.1) within RStudio 2024.04.2 + 764, leveraging

established packages including DESeq2 (version ‘1.48.1’) for

differential gene expression analysis (8) randomForest (version

‘4.7.1.2’) for predictive modeling (9), GA (version ‘3.2.4’) for

genetic algorithm optimization (10), and ggplot2 (version ‘4.0.0’)

and pheatmap (‘1.0.13’) (https://github.com/raivokolde/pheatmap)

for initial data visualization (11). To enhance figure aesthetics and

consistency, key visualizations (e.g., DAUC comparisons, immune

risk index, LNP ranking) were refined using Python (v3.13.2) in a

virtual environment with the matplotlib (12) and seaborn

(13) libraries.

All analyses were performed on an iMac with Apple M3 chip (8-

core CPU, 10-core GPU) equipped with 24 GB unified memory,

running macOS Sequoia 15.6.1.
2.1 Synthetic RNA-seq generation

To model transcriptional responses to mRNA vaccination, we

generated a synthetic RNA-seq dataset based on biologically

informed assumptions and guided by immunological response

profiles simulated using the UISS platform in our previous work.

The dataset comprised 300 genes measured across 10 samples (5

Control and 5 Post-Vaccination). A subset of genes was designed to

simulate vaccine-induced immune activation: 30 genes were

upregulated and 30 downregulated in the post-vaccination group

relative to controls.

Additionally, well-established immune marker genes were

included to represent specific compartments, B cells (CD19,

MS4A1) (14), T cells (CD3D, CD8A, CD4) (15), plasma cells
FIGURE 1

Graphical representation of the in silico framework for optimizing mRNA vaccine delivery.
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(IGHG1, IGHM, PRDM1) (16), and others, artificially upregulated

to reflect canonical immune activation following antigen exposure.

Gene expression values were sampled from normal

distributions, with mean shifts used to simulate differential

regulation. To preserve biological plausibility, negative values,

resulting from the statistical properties of normal distributions,

were truncated to zero. This step ensures that all simulated

expression values remain non-negative, reflecting the reality that

gene expression levels, being measures of transcript abundance,

cannot be less than zero. This approach enables the simulation of

genes with no detectable expression while avoiding artifacts that

could compromise downstream analysis.

This synthetic dataset serves a dual purpose. On one hand, it

allows controlled benchmarking of the transcriptomic analysis

pipeline, particularly in assessing its ability to recover known

patterns of immune activation. On the other hand, it acts as a

bridge to validate predictions generated by the Universal Immune

System Simulator (UISS), a mechanistic, agent-based platform

capable of modeling immune responses at multiple scales, from

molecular signaling to cellular interactions and tissue-level

dynamics (17, 18).

Specifically, UISS has been used to simulate host responses to

mRNA vaccines, including the biodistribution of lipid nanoparticles

(LNPs), antigen presentation, and subsequent activation of

adaptive immunity (7). Based on its simulations, UISS produces

immunological outputs, such as the expansion of specific

immune cell subsets or the secretion of key cytokines, that can be

mapped to gene expression patterns. While UISS does not generate

RNA-seq data directly, these outcomes can be qualitatively

and semi-quantitatively translated into gene expression

profiles, enabling the construction of biologically plausible

synthetic datasets.

By constructing a synthetic RNA-seq dataset that reflects these

expected transcriptional signatures, we can assess whether

downstream analysis methods (e.g., differential expression,

immune risk indexing) can faithfully recapitulate the immune

activation patterns originally predicted by UISS. This integration

provides a robust framework for evaluating the predictive

alignment between mechanistic modeling and transcriptomic data

analytics in the context of rational vaccine design.
2.2 Transcriptomic analysis and immune
risk indexing

Differential gene expression analysis was performed using the

DESeq2 package in R, employing negative binomial distribution

modeling and Wald tests to identify significantly differentially

expressed genes between the post-vaccination and control groups

within the synthetic RNA-seq dataset (8). Gene-wise fold changes

and adjusted p-values (Benjamini-Hochberg correction) were

computed to isolate significantly upregulated immune-related

genes (FDR < 0.05).

To infer the immunological profiles of each condition, marker

genes characteristics of major immune compartments were selected
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considered CD19 and MS4A1 for B cells (19), CD3D, CD8A, and

CD4 for T cells (20) and IGHG1, IGHM, and PRDM1 (BLIMP-1)

for plasma cells (21).

Based on prior immune simulation results, we introduced a

compartment-specific risk index designed to quantitatively evaluate

the potential for unintended immune activation (off-target effects).

The immune risk index for each compartment was calculated by

multiplying the simulated Delta_AUC (area under the curve

representing cumulative immune activation over time, as

established in previous immunological modeling studies (17)) by

the count of significantly upregulated marker genes identified in the

differential expression analysis for that immune compartment. This

integrated approach combines functional simulation data with

empirical transcriptomic profiles, providing a robust, interpretable,

and semi-quantitative metric for assessing immune activation risks

associated with vaccination or other therapeutic interventions.
2.3 Synthetic LNP dataset for AI training

To support the development and evaluation of an AI-driven

optimization pipeline for lipid nanoparticle (LNP) formulations, we

generated a synthetic dataset consisting of diverse LNPs

characterized by defined physicochemical parameters and

corresponding immune activation scores (Delta_AUC). Each LNP

formulation was parameterized based on four key physicochemical

attributes known to significantly impact biodistribution, cellular

uptake, and immunogenicity: particle size (ranging from 50 to 150

nm), which influences circulation time and tissue penetration (22);

surface charge (−10 to +10 mV), affecting cellular interaction (23)

and colloidal stability (24); PEGylation percentage (0.1 to 0.5 mol

%), referring to the covalent attachment of polyethylene glycol

(PEG) chains to the nanoparticle surface, a modification that

confers a steric barrier against opsonization, reduces recognition

and clearance by the mononuclear phagocyte system, prolongs

systemic circulation time, and imparts a “stealth” property that

enhances in vivo stability (24); and the presence or absence of active

targeting ligands (binary encoded, where 0 represents untargeted

and 1 represents targeted nanoparticles), enabling selective binding

to specific cellular receptors (24, 25). A total of 100 distinct LNP

formulations were systematically sampled across this four-

dimensional parameter space, ensuring uniform representation

and adequate coverage for robust AI model training. A summary

of the main effects of these physicochemical parameters on

biodistribution, cellular uptake, and immunogenicity, are

summarized in Table 1:

Each formulation was assigned a Delta_AUC value, calculated

using a biologically informed, non-linear scoring function explicitly

designed to simulate realistic biodistribution and immunological

response patterns observed experimentally:

Delta _ AUC  =   − 0:01(Size  −  90)2 −  0:02(Charge)2 +  0:5PEG 

+  1:5 Targeting  + e
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In this formulation, e represents Gaussian-distributed noise

(mean = 0, standard deviation = 0.1), reflecting biological variability

and measurement uncertainty typically encountered in

experimental settings (26).

The scoring function for Delta_AUC was constructed to reflect

biologically plausible relationships between key nanoparticle

properties and delivery performance, based on known

experimental trends. Specifically, the quadratic penalty terms for

size and surface charge were introduced to model the existence of

optimal values: nanoparticle diameters around 90 nm and near-

neutral charges are experimentally associated with enhanced

circulation times and improved biodistribution profiles.

Therefore, the terms -0.01(Size - 90)2 and -0.02(Charge)2 penalize

deviations from these optimal values, with the choice of coefficients

scaling the relative importance of size and charge in the

delivery performance.

Conversely, PEGylation and active targeting were modeled as

linear contributors to performance. The positive coefficients (+0.5

for PEGylation and +1.5 for targeting) reflect the experimental

evidence that moderate PEGylation improves nanoparticle stealth

properties, and the presence of active targeting ligands substantially

enhanc e s c e l l u l a r up t ak e by p romo t i n g r e c ep t o r -

mediated endocytosis.

Finally, Gaussian-distributed noise (e, mean = 0, standard

deviation = 0.1) was added to each Delta_AUC value to simulate

biological variability and measurement uncertainty typically

observed in vivo and in vitro assays. This biologically informed

functional form allowed us to create a synthetic dataset, through an

in-house R script, where optimal nanoparticle configurations

(around 90 nm in size, with near-neutral surface charge,

moderate PEGylation, and active targeting) systematically achieve

higher Delta_AUC values, while suboptimal configurations are

penalized. This design ensures that machine learning models

trained on the dataset are exposed to realistic, non-linear, and

multi-parametric optimization challenges, mimicking the

complexity of real-world nanoparticle formulation tasks (27, 28).
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This synthetic dataset was subsequently used to train and

evaluate a supervised machine learning model, as described in the

following section.
2.4 Machine learning model development

A supervised machine learning approach was employed to

predict immune activation potential (DAUC) of lipid nanoparticle

(LNP) formulations based on key physicochemical descriptors. A

Random Forest regression model (29) was implemented using the

randomForest package in R. Input features included particle size

(nm), surface charge (mV), PEGylation percentage (mol%), and

presence of targeting ligands (binary encoding).

The synthetic dataset described above, comprising 100

simulated LNP formulations generated by systematically varying

key physicochemical parameters across biologically relevant ranges,

was randomly partitioned into training (80%) and validation (20%)

subsets. Model performance was assessed using root mean square

error (RMSE) and the coefficient of determination (R²) on the

validation set, providing quantitative estimates of predictive

accuracy and generalizability (30). RMSE measures the average

magnitude of the prediction errors, providing an estimate of how

close the predicted values are to the actual ones: lower values

indicate better accuracy. R² quantifies the proportion of variance

in the observed data that is explained by the model, with values

closer to 1 indicating higher predictive power and generalizability.

Feature importance was assessed using the mean decrease in

node impurity, a standard metric in Random Forest models that

quantifies how much each variable contributes to improving

decision tree splits. This analysis revealed that surface charge and

PEGylation were the most influential predictors of DAUC, in line

with their well-established roles in modulating nanoparticle

biodistribution and immunogenicity. The trained model was

subsequently used to predict DAUC values for all LNP candidates

in the dataset. The top 10 formulations were selected based on their

predicted scores and visualized accordingly, forming the basis for

downstream optimization via genetic algorithms.

Full model and optimization settings, cross-validation protocol,

and sensitivity analysis are reported in Supplementary Table S2 and

Supplementary Methods S1.
2.5 Genetic algorithm optimization

Building on the predictive model trained on the synthetic LNP

dataset, we used the optimized Random Forest as a surrogate fitness

function within a genetic algorithm (GA) to search for new LNP

formulations predicted to yield high Delta_AUC values, i.e., strong

immune activation profiles. The GA was implemented using the GA

library in R, which simulates an evolutionary process to solve

optimization problems. We began with an initial population of 50

LNP formulations, randomly generated within biologically plausible

parameter ranges (for size, charge, PEGylation, and targeting). Each

formulation in the population was evaluated using the trained
TABLE 1 Physicochemical attributes of LNPs and their predicted
biological effects.

LNP attribute Main biological effects

Particle size
(50-150 nm)

Affects biodistribution and tissue penetration: smaller
LNPs circulate longer and diffuse more effectively,
whereas larger LNPs tend to accumulate in the liver and
spleen.

Surface Charge
(-10 to +10 mV)

Modulates cellular uptake and stability; neutral charge
improves circulation; positive charge increases uptake but
may raise immunogenicity.

PEGylation
(0.1-0.5 mol%)

Reduces opsonization and clearance, prolonging
circulation, and provides stealth properties; excessive PEG
reduces cellular uptake.

Targeting Ligands
Determines targeting specificity: without ligands, LNPs
accumulate passively in the liver; with ligands, delivery is
more specific, efficacy improves, and toxicity is reduced.
Each attribute, such as particle size, surface charge, PEGylation, and targeting ligands, affects
biodistribution, cellular uptake, circulation time, and delivery specificity.
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Random Forest model, which predicted its Delta_AUC score: this

prediction served as the fitness value for the GA. The selection of

individuals for reproduction was performed using a tournament

strategy, where multiple candidates compete and the best is chosen

for mating. To simulate genetic diversity and exploration of the

solution space, we applied crossover (with a probability of 0.8) to

exchange parameter values between formulations, and mutation (with

a probability of 0.2) to introduce small random changes. This process

was repeated over 100 generations. As the algorithm progressed, it

increasingly favored formulations with higher predicted Delta_AUC,

gradually converging towards optimal solutions. At the end of the run,

we selected the top 10 formulations, those with the highest predicted

Delta_AUC scores, for further analysis.
2.6 Statistical confidence and clustering
analyses

To quantify the robustness of the model predictions and the

associated uncertainty, we performed statistical confidence and

clustering analyses on both the immune risk index and the

DAUC predictions.

For the immune risk index (Figure 2), 95% confidence intervals

were estimated using a nonparametric bootstrap procedure (B =

1000 resamplings) applied to compartment-specific immune

markers, weighted by their respective DAUC coefficients.

For the DAUC predictions (Figure 3), a bootstrap approach was

applied to the random forest model, which was re-trained on 500
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bootstrap samples of the synthetic LNP dataset to estimate

prediction variability.

In addition, hierarchical clustering was incorporated into the

heatmaps (Figure 4) to highlight parameter co-variation, and a

correlation heatmap (Spearman’s r) was generated to visualize

relationships among LNP physicochemical parameters and

DAUC values.
2.7 Data visualization and software

All data preprocessing, statistical analyses, and initial

visualizations were performed using R (v4.4.1) within RStudio

2024.04.2 + 764. Differential expression analysis was carried out

with DESeq2 (v1.48.1), while predictive modeling and optimization

were implemented using randomForest (v4.7.1.2) and GA (v3.2.4),

respectively. Exploratory plots were generated with ggplot2 (v4.0.0)

and pheatmap (v1.0.13).

To refine figure design and ensure visual consistency, selected

key plots—such as DAUC comparisons, immune risk index

distributions, and LNP ranking—were reproduced using Python

(v3.13.2) in a dedicated virtual environment with matplotlib

(v3.9.2) and seaborn (v0.13.2).

All analyses were executed on an iMac with Apple M3 chip (8-

core CPU, 10-core GPU) equipped with 24 GB unified memory,

running macOS Sequoia 15.6.1. This hybrid R/Python workflow

ensured both graphical uniformity and full reproducibility across

the study.
FIGURE 2

Estimated immune risk index by compartment, computed as the product of Delta_AUC and the number of upregulated immune marker genes. This
index reflects potential off-target immune activation.
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3 Results

3.1 Synthetic RNA-seq differential
expression analysis

Differential gene expression analysis of the synthetic RNA-seq

dataset accurately identified the simulated transcriptional changes.

Among the 300 analyzed genes, all 30 genes designed to be

upregulated, and the 30 genes designated as downregulated post-

vaccination were correctly identified as significantly differentially

expressed (FDR < 0.05), demonstrating the reliability and validity of

the synthetic data generation methodology. Additionally, key

immune marker genes representing dist inct immune

compartments, such as B cells (CD19, MS4A1), T cells (CD3D,

CD8A, CD4), and plasma cells (IGHG1, IGHM, PRDM1), were

significantly upregulated, consistent with expected immune

activation patterns.
3.2 Immune risk indexing

To assess potential off-target immune activation, we computed

a compartment-specific immune risk index by multiplying the

predicted DAUC values by the number of differentially expressed

(DE) immune marker genes within each compartment, as shown

in Figure 2:

The Ig compartment, representing antibody-producing plasma

cells, displayed the highest risk index (~4.2), suggesting a strong

activation of humoral responses, consistent with mRNA vaccine

effects (31). The T cell compartment followed (~3.6), indicating
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robust T cell engagement. Memory T cells (Tmem) and cytotoxic T

cells (TC) showed moderate risk levels (~2.2 and ~1.8, respectively),

while B cells had a slightly lower activation (~1.6). Notably, the EP

compartment, likely representing epithelial or non-immune cells, had

the lowest index (~1.2), suggesting minimal off-target transcriptional

activation. These results support the capacity of the simulated

nanoparticle formulation to preferentially activate relevant immune

pathways while sparing non-target tissues, aligning with the immune

response patterns previously predicted by UISS.

The calculated immune risk index effectively quantified

compartment-specific immune activation, clearly distinguishing

between post-vaccination and control conditions. Specifically, the

highest immune risk index values were observed in the T cell

compartment, driven by strong upregulation of CD3D, CD8A,

and CD4 genes, in alignment with simulated Delta_AUC scores

derived from the UISS model. B cell and plasma cell compartments

exhibited moderate immune risk scores, correlating with fewer

significantly upregulated marker genes. Overall, the immune risk

indexing method demonstrated strong correlation with simulated

immune activation, offering a robust and interpretable approach for

evaluating potential off-target immune responses.
3.3 Simulated immune compartment
activation

Based on prior UISS simulations, immune compartments

showed distinct activation patterns when comparing targeted and

non-targeted mRNA vaccine delivery. Delta_AUC values were

calculated to quantify the difference in immune activation
FIGURE 3

Delta_AUC values for immune compartments, calculated as the difference in activation between targeted and non-targeted formulations. Higher
values indicate stronger compartment-specific immune responses to targeted delivery.
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between conditions. Compartments such as B cells and plasma cells

(Ig) showed the highest differential activation, indicating

preferential targeting and stronger immune engagement when

delivery was optimized.

The difference in immune activation between targeted and non-

targeted formulations (DAUC) was computed for each

immune compartment.

As illustrated in Figure 3, the Ig compartment exhibited the

highest increase in DAUC, followed by B and T cells, indicating a

stronger activation under targeted delivery.

In contrast, epithelial (EP), cytotoxic (TC), and memory T

(Tmem) compartments showed smaller DAUC values, suggesting

that their activation is less affected by the delivery modality within

the current simulation setup.
3.4 AI-based prediction and ranking of LNP
formulations

Using the synthetic dataset previously described, which

uniformly sampled a four-dimensional physicochemical

parameter space, we trained a Random Forest regression model to

predict Delta_AUC values based on LNP characteristics. The model

achieved strong predictive performance, with R² values exceeding

0.9 and low RMSE on the validation set, confirming its ability to

capture non-linear relationships between input features and

immune activation potential.

The model was then embedded as a surrogate fitness function

within a genetic algorithm to identify LNP formulations predicted

to maximize Delta_AUC. After 100 generations, the GA

consistently converged toward optimal configurations, that is,

nanoparticles around 90 nm in size, with near-neutral surface

charge, moderate PEGylation, and active targeting, closely

matching profiles known to enhance biodistribution and

immunogenicity. Following model training and validation, DAUC
values were predicted for the entire synthetic LNP dataset. After

convergence, the genetic algorithm identified a set of top 10 LNP
Frontiers in Immunology 08177
formulations that consistently exhibited superior predicted

performance as shown in Table 1:

All selected candidates included active targeting ligands and

exhibited particle sizes ranging from 88.8 to 93.9 nm, with a central

tendency around 90–92 nm, aligning with theoretical optima for

biodistribution. This outcome reflects the influence of the scoring

function used during model training, which included a positive

weighting for the presence of targeting ligands, thereby favoring

formulations predicted to enhance receptor-mediated uptake and

compartment-specific immune activation. Surface charges were

consistently near-neutral, varying between −1.0 and −4.4 mV, and

PEGylation percentages ranged from 0.26 to 0.34 mol%, centering

around the biologically favorable 0.3 mol%. This near-neutral

charge is known to minimize non-specific interactions with

serum proteins and immune cells, thereby improving circulation

time and reducing innate immune activation (32). Similarly, an

optimal PEGylation density has been shown to balance nanoparticle

stealth and cellular uptake, preventing rapid clearance while

maintaining delivery efficiency.

The predicted DAUC values, calculated using the biologically

informed non-linear scoring function described in the Methods

section, ranged from 0.99 to 1.73. The highest score (1.73) was

achieved by the top-performing formulation (Rank 2), while the

lowest among the top 10 (Rank 4) was 0.99. Although the DAUC
range was narrower than initially anticipated, the results highlight

the genetic algorithm’s ability to finely discriminate between LNP

designs with subtle yet functionally meaningful differences.

Notably, all top-ranked formulations exhibited overlapping

physicochemical features: particle sizes around 90–92 nm, near-

neutral surface charges, and PEGylation levels close to 0.3 mol%,

indicating strong convergence toward a shared optimal profile.

These findings not only validate the effectiveness of the GA in

identifying high-performing candidates but also reinforce design

patterns observed in earlier model-driven rankings. In particular,

the convergence toward moderate PEGylation and near-neutral

charge mirrors experimental literature that associates such profiles
FIGURE 4

Top 10 LNP formulations ranked by predicted DAUC. Barplot showing the predicted immune activation scores (DAUC) for the top LNP candidates
identified by the genetic algorithm. LNP-2 achieved the highest predicted score (DAUC = 1.73), with others following in descending order.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1628583
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Di Salvatore et al. 10.3389/fimmu.2025.1628583
wi th op t ima l b i od i s t r i bu t i on and r edu c ed i nna t e

immune activation.

The distribution of predicted DAUC scores for the top 10 LNP

candidates is shown in Figure 4. Notably, LNP-2 achieved the

highest predicted score, followed by a gradual decline among the

subsequent formulations.

To complement the tabulated summary of physicochemical

features (Table 2), we generated a heatmap (Figure 5A) to provide
Frontiers in Immunology 09178
a visual overview of parameter distributions among the top 10 GA-

optimized LNP candidates. As previously noted, the selected

formulations exhibited broadly consistent trends across size, surface

charge, PEGylation, and targeting, reflecting convergence toward a

shared optimal physicochemical profile. The heatmap reinforces

these findings, offering an intuitive depiction of the design space

occupied by the top-performing nanoparticles.
FIGURE 5

(A) Hierarchical clustering of the top 10 GA-optimized LNP formulations. Each column represents a normalized (z-scored) physicochemical
parameter, and each row corresponds to an optimized LNP ranked by predicted DAUC. The color gradient indicates relative deviation from the
mean, highlighting co-variation patterns among size, charge, PEG content, and predicted performance. (B) Spearman correlation matrix illustrating
relationships among key continuous parameters. Positive correlations between size and charge, and negative associations with PEG content, reflect
the balance between stability and delivery efficiency captured by the optimization framework.
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The heatmap presents the z-score–normalized physicochemical

parameters—PEG content, predicted DAUC, particle size, and

surface charge—for the ten GA-optimized LNP formulations.

Two main patterns emerge:

1. Consistency in design parameters:

Most top-performing LNPs occupy a narrow region of the

design space, showing moderate PEG percentages (~0.27–0.31%),

near-neutral to slightly negative charges (−4 to −1 mV), and

diameters close to 90–94 nm. This convergence indicates that the

optimization process favored formulations with balanced stability

and cellular uptake potential.

2. DAUC-driven clustering:

The DAUC column highlights subtle differences in predicted

immunogenic performance across formulations. LNP-1 and LNP-8

exhibit the highest relative DAUC (lighter shades), while others

form a compact cluster with lower but comparable predicted

responses, reflecting minor variations around the optimal region.
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Overall, the figure visually reinforces the model-driven

convergence toward an optimal physicochemical profile,

characterized by ~90 nm size, low PEG content, and slightly

negative charge, consistent with literature-reported parameters for

clinically validated mRNA-LNP systems.

To further explore interdependencies among physicochemical

variables, a Spearman correlation matrix (Figure 5B) was computed

using the top 10 GA-optimized LNP formulations.

Size and surface charge showed moderate positive correlation (r
= 0.59), while PEG content was inversely correlated with both size

and charge, indicating that formulations with lower PEG fractions

tend to have slightly larger and less negatively charged particles.

Collectively, these findings illustrate the effectiveness of the machine

learning–driven design strategy in prioritizing LNP formulations for

further refinement and experimental validation. This approach provides

a rational and scalable pathway for accelerating the development of safe

and effective mRNA delivery systems.

Finally, to evaluate whether the simulated transcriptomic patterns

and model-driven predictions align with experimentally observed

vaccine responses, we performed an external validation using public

RNA-seq data from COVID-19–vaccinated individuals (GSE171110).

The results of this comparative analysis are presented in the

following section.
3.5 Biological validation of simulated
transcriptomics

To assess the biological plausibility of the simulated immune

response, we validated the synthetic transcriptomic signatures

against a public RNA-seq dataset (GSE171110) profiling

peripheral blood samples from COVID-19–vaccinated and

healthy individuals.

This dataset was selected because it captures in vivo immune

activation after SARS-CoV-2 vaccination, closely reflecting the

biological processes represented in our simulation (e.g., B-cell, T-

cell, and immunoglobulin upregulation).
TABLE 2 Physicochemical characteristics and predicted DAUC values of the top 10 LNP formulations identified through genetic algorithm
optimization.

Rank Size (nm) Charge (mV) PEG (%) Targeting Predicted DAUC

1 91.2 -2.2 0.34 Yes 1.5

2 89.7 -2.2 0.29 Yes 1.73

3 91.6 -1.1 0.3 Yes 1.6

4 93.8 -4.4 0.26 Yes 0.99

5 89.4 -4.1 0.28 Yes 1.38

6 89.4 -2.3 0.3 Yes 1.42

7 93.9 -3 0.27 Yes 1.32

8 91.9 -1 0.31 Yes 1.4

9 88.8 -2.9 0.28 Yes 1.32

10 91.4 -3.6 0.29 Yes 1.39
Each formulation is characterized by its particle size, surface charge, PEGylation percentage, and presence of targeting ligands.
TABLE 3 To assess the plausibility of the simulated immune response,
the synthetic transcriptomic signatures have been validated against
public RNA-seq data (GSE171110).

Metric Value Description

Universe (shared
genes)

11,342 Common genes between simulated and
GSE171110 datasets

Simulated DEGs 43 DEGs identified in the synthetic dataset

Validation DEGs
(GSE171110)

3,625 DEGs identified in the public RNA-seq
dataset

Overlap 8 genes Shared DEGs between simulated and real
datasets

Fisher’s exact test p =
0.0707

Significance of overlap

Concordant direction 62.5% DEGs with matching up/down-regulation

Pearson correlation
(log2FC)

r = 0.22 Correlation of fold-change magnitudes
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Differential gene expression analysis was performed using

DESeq2 on both datasets with identical thresholds (|log2FC| >

0.5, FDR < 0.1). Comparative validation metrics were then

computed between the two sets of differentially expressed genes

(DEGs), including overlap significance (Fisher’s exact test),

directionality concordance, and Pearson correlation of log2

fold-changes.

These metrics are derived from the comparative analysis

between simulated and real datasets and do not represent raw

biological measurements.

As shown in Table 3, although the overlap between simulated

and experimental DEGs was modest (8 shared genes, Fisher’s p =

0.0707), 62.5 % of them displayed concordant regulation direction,

and the overall fold-change correlation (r = 0.22) indicated a

positive trend in expression magnitude, supporting the biological

plausibility of the simulated immune response.

These results confirm that the simulated immune activation

patterns, particularly those involving B-cell and plasma-cell

markers, exhibit partial but consistent agreement with

experimental vaccine transcriptomics. The positive correlation

and directional concordance demonstrate that the synthetic

simulation preserves biologically plausible immune activation

trends without overfitting to specific datasets.

This validation step provides an important bridge between in

silico predictions and experimental evidence, reinforcing the

translational relevance of the proposed computational framework.
3.6 Comparison with existing COVID-19
mRNA–LNP formulations and experimental
response variables

To contextualize the optimized LNPs generated by the in silico

framework, their physicochemical characteristics were compared

with those reported for clinically validated mRNA–LNP

formulations, such as those used in the authorized COVID-19

mRNA vaccines. The parameter space explored in this study

(particle size 50–150 nm, surface charge −10 to +10 mV,

PEGylation 0.1–0.5 mol % and targeting presence/absence) was

des igned to represent gener ic LNPs carr iers before

mRNA encapsulation.

Publicly available data indicate vaccine LNPs to be small (80–

100 nm), slightly negative (~ −5 mV), to contain PEG-lipids around

1.5–2 mol%, and to lack active targeting. Our optimized LNPs

converge to the same size window (~90–92 nm) and to a similarly

neutral/slightly negative charge, but to a lower PEGylation (~0.30

mol%) and to the presence of targeting ligands (33, 34).

These parameters are summarized in Table 4, together with the

corresponding optimized values obtained from the top 10 genetic-

algorithm candidates. The ideal LNP identified in this study falls

within the experimentally observed range of vaccine-like LNPs,

while exhibiting slightly more neutral surface charge, lower PEG-

lipid content, and active targeting features predicted to enhance

biodistribution and reduce off-target immune activation.
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Despite being generated from a pre-encapsulation design space, the

optimized LNPs fall within the clinically observed ranges for size and

surface charge. Two systematic differences emerge: (i) the optimized

candidates feature a lower PEG fraction (~0.30 mol%) than marketed

vaccines (1.5–2 mol%), and (ii) they all include targeting ligands, while

current products do not. The first difference reflects that our simulations

considered PEGylation as an adjustable parameter within a simplified

lipid mixture; extending the PEG dimension to 0–2 mol% in future

simulations would be straightforward and would not require changing

the optimization logic. The second difference reflects the objective

function used here, which rewarded predicted improvements in

delivery specificity and reduced off-target immune activation; this is

consistent with next-generation LNPs but not yet with first-generation

COVID-19 products.

The incorporation of mRNA is known to slightly alter these

physicochemical properties, generally increasing particle size by 5–

15 nm and shifting the surface charge neutrality, while maintaining

values within the same overall range (35).

To provide an experimental reference for the biological effects

associated with these physicochemical parameters, Table 5

summarizes how the key response variables, such as biodistribution,

cellular uptake, and immunogenicity, are typically evaluated in mRNA–

LNPs vaccines.

These variables are quantified through established experimental

methods, such as in vivo imaging or qPCR for biodistribution, flow

cytometry or confocal microscopy for cellular uptake, and

immunoassays (ELISA, ELISpot, cytokine profiling) for

immunogenicity (34, 36).

The reported experimental ranges highlight consistent

biological behaviors across LNP-based vaccine systems,

supporting the predictive validity and translational relevance of

the optimized in silico framework.

A more detailed comparison between the optimized in silico

parameters and experimental data from recent literature is provided

in Supplementary Table S1.
TABLE 4 The table summarizes typical measurement methods and value
ranges for biodistribution, cellular uptake, and immunogenicity reported
in experimental studies of mRNA–LNP vaccines.

Response
variable

Measurement
method

Representative
experimental

values

Biodistribution In vivo imaging of labeled
LNPs, qPCR of mRNA per

organ. (%ID/g)

Liver 40–60%; spleen 10–
20%ID/g at 6-24h post-

dose

Cellular uptake Flow cytometry or confocal
microscopy of LNP-positive

APCs in draining lymph node.

20–50% positive cells
depending on surface
charge and PEGylation

density

Immunogenicity ELISA, ELISpot, cytokine
profiling

Neutralizing Ab ≥ 1:1000;
IFN-g 100–500 pg/mL

(Th1-biased)
These data outline the expected biological performance range of clinically validated
formulations and support the relevance of the optimized in silico LNP profiles proposed in
this work.
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This comparison indicates that the in silico search was

conducted within clinically realistic physicochemical boundaries,

while deliberately extending the design space toward targeted and

lower-PEGylation to explore safer delivery profiles.
4 Discussion

The unprecedented success of mRNA vaccines against COVID-

19 has propelled messenger RNA technology to the forefront of

vaccinology, showcasing its potential for rapid development and

high efficacy. Central to this success is the role of lipid nanoparticles

(LNPs), which have emerged as the most clinically advanced non-

viral platforms for mRNA delivery. LNPs protect the fragile mRNA

strands and facilitate their efficient delivery into cells, overcoming

previous challenges associated with mRNA therapeutics.

Building upon this foundation, our study presents an in silico

framework that bridges mechanistic immune simulations with AI-

driven optimization strategies to guide the rational design of safer

and more effective mRNA vaccine delivery systems. By leveraging

synthetic RNA-seq data aligned with immune activation patterns,

predicted by multiscale simulations, and integrating these insights

into a machine learning–guided formulation pipeline, we

demonstrate a systematic approach to optimizing LNP

parameters under biologically informed constraints.

Traditional Design of Experiments (DOE) methodologies have

historically played a central role in formulation development by

enabling structured exploration of formulation variables and their

interactions. However, while DOE remains a cornerstone of

experimental design, its reliance on extensive empirical data

collection can limit its scalability, particularly in complex

biological systems where multidimensional interactions are

critical. Our in silico framework complements and extends the

DOE philosophy by virtually exploring the formulation space,

thereby significantly reducing experimental burden while

maintaining a systematic and interpretable optimization process.

The application of a genetic algorithm, coupled with a

predictive model trained on physicochemical attributes, enabled

the identification of top-performing formulations that consistently

shared favorable traits such as near-neutral charge, moderate

PEGylation, and optimal size. These features are well-established

in the literature as critical for efficient biodistribution and reduced

immunogenicity of nanoparticle systems. Beyond enhancing

delivery precision, this pipeline offers a powerful tool for

hypothesis generation, dramatically reducing the need for costly
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and time-consuming in vivo screening in early-stage

vaccine development.

Interestingly, the optimized LNP parameters predicted by our

AI-guided workflow (~90 nm diameter, near-neutral charge, and

~0.3% PEG) are consistent with experimental findings reported in

previous studies (37, 38).

The optimized formulations identified by our algorithm—

ranging between 88.8 and 93.9 nm in diameter, with surface

charges between −1.0 and −4.4 mV and PEGylation levels of

0.26–0.34 mol%—thus fall squarely within the experimental range

associated with efficient lymphatic transport and reduced innate

immune activation. This strong convergence between simulated

and experimentally validated parameters reinforces the reliability

and practical significance of our in silico design framework.
5 Limitations

This study introduces and tests a computational framework for

in silico vaccine design by integrating artificially generated RNA-

seq data and simulated immune activation profiles derived from a

previously validated UISS-COVID19 model. While simulated

datasets cannot fully capture the complexity and heterogeneity of

biological systems, they provide a valuable platform for prototyping

analytical pipelines, exploring mechanistic hypotheses, and

informing experimental design in data-scarce contexts.

The synthetic RNA-seq data were generated under biologically

grounded assumptions, including expected transcriptional shifts

following mRNA vaccination and compartment-specific immune

activation. Simulated immune activation scores (Delta_AUC) were

assigned to virtual lipid nanoparticle (LNP) formulations using a

custom scoring function to reflect known principles of

biodistribution and immunogenicity. These components were

combined with AI-based optimization strategies, such as random

forest regression and genetic algorithms, to identify LNP

configurations predicted to minimize off-target activation and

maximize delivery efficiency.

All transcriptomic data were simulated and must ultimately be

validated using experimental datasets. Similarly, the predictive

model was trained on artificially generated Delta_AUC values,

which, although biologically plausible, do not replace empirical

measurements. The framework is modular and scalable, but its

predictive accuracy remains sensitive to the assumptions embedded

in the simulation and data generation processes. Therefore, all

findings derived from synthetic data should be interpreted as

proof-of-concept rather than biological evidence.
TABLE 5 Comparison of physicochemical parameters for vaccine-like and ideal LNPs.

Formulation Particle size Surface charge PEGylation Targeting

COVID-19 mRNA–LNP (Pfizer-like) ~90 nm (midpoint of 80–100) ~ −5 mV ~1.5 mol% (50:10:38.5:1.5) No

COVID-19 mRNA–LNP (Moderna-like) ~90 nm ~ −5 mV ~1.5–2 mol% No

Ideal LNP ~91 nm (midpoint of 88.8–93.9 nm) ~ −2.7 mV (range −1 − 4.4 mV) ~ 0.30 mol%
(range 0.26–0.34 mol%)

Yes
The ideal LNP remains within the experimentally observed range of mRNA–LNP formulations but shows a more neutral charge, lower PEG content, and active targeting, features predicted to
enhance biodistribution and reduce off-target immune activation.
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Nonetheless, this in silico foundation offers a powerful tool for

early-phase vaccine development, enabling efficient hypothesis

generation, risk estimation, and preclinical prioritization of

candidate formulations prior to experimental validation.
6 Conclusion

This study presents a novel in silico pipeline that integrates

multiscale immune simulation outcomes with synthetic RNA-seq

data and machine learning algorithms to systematically identify

optimized mRNA-LNP formulations. By simulating post-

vaccination gene expression profiles and using these to guide the

selection of physiochemically favorable LNP candidates, our

framework provides a rational and scalable approach for early-

stage vaccine design. The integration of a predictive model with a

genetic algorithm allowed us to converge on nanoparticle

configurations exhibiting key features, such as near-neutral

surface charge, appropriate particle size, and moderate

PEGylation, associated with enhanced delivery efficiency and

minimal off-target effects.

Our findings underscore the feasibility of computational

vaccine design, complementing and accelerating empirical

approaches that are often time-consuming, costly, and ethically

challenging due to the need for extensive in vivo testing. The

pipeline supports more sustainable and reproducible development

processes by minimizing experimental burden and enabling rapid,

data-driven iteration.

Moreover, the framework is modular and adaptable: it can be

extended to incorporate patient-derived transcriptomic data,

support personalized vaccine strategies, or be applied to other

therapeutic delivery systems beyond mRNA, such as siRNA,

CRISPR components, or protein-based biologics. Its compatibility

with existing data standards and modeling infrastructures also

makes it suitable for integration into industrial development

pipelines and regulatory decision-making workflows. As

computational tools continue to evolve, this integrative strategy

holds promise for accelerating the development of safe, targeted,

and cost-effective immunotherapies and vaccines with wide-ranging

applications in infectious disease, oncology, and beyond.
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