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Editorial on the Research Topic

Applied neuroimaging for the diagnosis and prognosis of

cerebrovascular disease

Neuroimaging plays a crucial role in the diagnosis and prognosis of cerebrovascular

diseases. By using advanced imaging techniques, neuroimaging can reveal the anatomical

structure and function of the brain, providing important evidence for diagnosing and

treating these conditions. This Research Topic summarizes 14 recent original research

studies that explore the application of advanced imaging techniques to evaluate and

predict the outcomes of key neurological disorders, including intracranial arterial

disease (ICAD)-related ischemic stroke, acute ischemic stroke (AIS) post-mechanical

thrombectomy, transient ischemic attack (TIA), aneurysmal subarachnoid hemorrhage

(aSAH), and heart failure. The studies highlight how imaging modalities such as computed

tomography (CT), multimodal magnetic resonance imaging (MRI), high-resolution vessel

wall imaging (HR-VWI), and arterial spin labeling (ASL) can provide critical insights into

disease pathophysiology, temporal dynamics, and prognosis, offering valuable tools for

clinical decision-making.

CT and CTA are foundational in vascular neurological assessments due to their speed

and accessibility. CTA was used in the ANTIQUE study (Pakizer et al.) to classify carotid

plaque calcification in extracranial carotid artery disease into spotty (<3mm) and large

(>3mm) types. The authors found that spotty calcification correlated with male sex

and heavy smoking (p = 0.014), while large calcification was associated with older age,

coronary heart disease, and atrial fibrillation (p = 0.025). In acute stroke, CTA assesses

stenosis severity and plaque morphology. Chen et al. showed that acute stroke patients

have higher systolic blood pressure, thicker plaques, and more severe stenosis on CTA

compared to non-acute patients. CTA—derived perivascular fat density (PFD) was found

to be a strong predictor of acute ischemia, with symptomatic-side PFD outperforming

contralateral PFD. Kim, Kim et al. retrospectively analyzed 114 aSAH patients to explore

the clinical significance of mastoid effusion (ME)—defined as opacification/air-fluid levels

in the mastoid air cells on CT/MRI within 14 days of aSAH. Multivariate analysis showed

that ME was independently associated with tracheostomy, radiologic vasospasm, higher

APACHE II scores, and poor outcomes (90-day mRS > 2, OR = 4.289, p = 0.041). Wei

et al. investigated the prognostic value of the gray-to-white matter ratio (GWR) on cranial

CT scans in 86 heat stroke patients (derivation cohort) and 42 patients (validation cohort),
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respectively. All GWR parameters were lower in the poor outcome

group. GWR basal ganglia showed the highest sensitivity (80.95%)

at 90.77% specificity (cut-off = 1.21) in the derivation cohort,

with an AUC of 0.852. Combining GWR basal ganglia with

qSOFA (quick Sequential Organ Failure Assessment) significantly

improved sensitivity and the AUC (0.958 vs. 0.852 for GWR alone,

p = 0.034). This study establishes GWR as an objective, early

predictor of poor neurological outcomes in heat stroke.

Conventional magnetic resonance imaging (MRI) sequences,

such as T1— weighted, T2—weighted, FLAIR, and diffusion-

weighted imaging (DWI), provide detailed insights into brain

structure and function. In heart failure with preserved ejection

fraction (HFpEF), Yu et al. used voxel-based morphometry (VBM)

on 3D T1—weighted images and found reduced gray matter

volume (GMV) in the bilateral cerebellar hemispheres, right

posterior cingulate gyrus, and right inferior frontal gyrus in HFpEF

patients. These GMV reductions correlated negatively with NT-

proBNP levels and MoCA scores, linking cardiac dysfunction

to cognitive impairment and structural brain changes. For AIS

prognosis, Pei et al. integrated multimodal MRI with radiomics

and deep learning. The authors extracted 1,197 radiomic features,

selected 16 via LASSO regression, and developed a CRD (Clinic-

Radiomics-Deep Learning) model. The CRD model achieved an

AUC of 0.908 in the validation cohort, outperforming clinical

(AUC = 0.874) and radiomics (AUC = 0.805) models alone.

This highlights the role of MRI in capturing subtle pathological

features for personalized prognosis. Almeida et al. explored the

link between PCS symptoms (e.g., chronic fatigue, headaches)

and T2-hyperintense white matter lesions using MRI in 96 Swiss

patients. The majority of patients were women (73%, average age

46), with a high prevalence of chronic fatigue (90%), headaches

(57%), and sleep disorders (51%). Brain MRIs showed lesions in

72% of patients, while spinal MRIs showed lesions in 16% of

subjects. However, there was no significant correlation between

lesions and fatigue (p = 0.815) or headaches (p = 0.178). This

suggests that T2-hyperintense lesions may not be the cause of these

PCS symptoms.

This Research Topic included two studies evaluating the

application of high-resolution vessel wall imaging (HR-VWI)

in treating cerebrovascular diseases. Kang et al. conducted a

longitudinal HR-VWI study on 208 ICAD patients and found that

arterial dissection led to faster stenosis reduction and an enhancing

proportion decline compared to atherosclerosis. Atherosclerosis,

however, showed a decreasing enhancement ratio. Thus, HR-VWI

aids in monitoring disease progression and guiding treatment.

Bao et al. reported a rare case of right type II persistent

proatlantal intersegmental artery (PPIA) dissection that caused

embolic showers (ES) in a 53-year-old man with hypoplasia

of the left vertebral artery. DSA and HRMR-VWI identified

aneurysmal dilation in the PPIA’s false lumen, and a risk of

thrombus dislodgement. Pipeline embolization device (PED)-

assisted angioplasty resolved the issue, with no recurrent strokes

post-operatively, highlighting the value of PEDs in managing rare

vascular variants.

Functional neuroimaging techniques, such as arterial spin

labeling (ASL), resting-state functional MRI (rs-fMRI), and

electroencephalography (EEG), provide more information for

evaluating the diagnosis and prognosis of cerebrovascular disease.

Zeng et al. used dual post-label delays (PLD: 1,525 and 2,525ms) in

TIA patients with large artery stenosis/occlusion. FLAIR vascular

hyperintensity (FVH)—positive patients had lower CBF on the

affected side at both PLDs and a smaller CBF increase than FVH-

negative patients. 1CBF correlated negatively with ABCD2 scores,

establishing FVH as a marker for hemodynamic impairment.

In OLE, Kim, Ah et al. used diffusion tensor imaging (DTI)—

derived peak width of skeletonized mean diffusivity (PSMD),

an EEG-related marker. OLE patients had higher PSMD than

controls, indicating small vessel disease-related white matter

damage. PSMD also correlated with age, positioning it as a

novel marker for OLE-associated microvascular changes. Huai

et al. assessed the effect of enriched rehabilitation (ER) on

post-stroke cognitive impairment (PSCI). Forty PSCI patients

were randomly divided into a conventional medical rehabilitation

(CMR) group and an ER group, along with 20 healthy controls.

The functional connectivity (FC) analysis in the ER group revealed

strengthened positive FC between the right dorsolateral prefrontal

cortex (DLPFC) and the left superior frontal gyrus (SFG) and

left anterior cingulate gyrus (ACG), and decreased FC between

the right DLPFC and the right superior temporal gyrus (STG)

and right precentral gyrus. ER intervention is more effective

than conventional rehabilitation, possibly by reshaping brain

functional connectivity. EEG is vital for assessing neural activity

and epilepsy. Liao et al. conducted a bibliometric analysis showing

a surge in EEG stroke research post-2017, with focus areas

including seizure detection, consciousness assessment, and brain-

computer interfaces (BCI). Additionally, a bibliometric analysis

was conducted by Lou et al. to examine the focal areas of

research in the early diagnosis of stroke through machine learning

identification of magnetic resonance imaging characteristics from

2004 to 2023. The researchers found that the application ofmachine

learning to the early prediction of stroke and to personalized

medical plans for patients using neuroimaging characteristics offers

significant value.

In conclusion, multimodal neuroimaging collectively enhances

the diagnosis, prognosis, and treatment of neurological disorders.

Future research should standardize protocols, validate findings

in multicenter cohorts, and integrate multimodal data for more

precise clinical care.
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Enriched rehabilitation on brain 
functional connectivity in patients 
with post-stroke cognitive 
impairment
Yaping Huai 1†, Weiwei Yang 1†, Yichen Lv 2, Kui Wang 2, 
Hongyu Zhou 2, Yiqing Lu 1, Xiaoyun Zhang 1, Yaze Wang 1, 
Jibing Wang 2* and Xin Wang 2*
1 Department of Rehabilitation Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 
Guangdong, China, 2 Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital, 
Yangzhou, China

Objective: This study aims to observe the effect of enrichment rehabilitation 
(ER) on cognitive function in post-stroke patients and to clarify its underlying 
mechanism.

Methods: Forty patients with post-stroke cognitive impairment (PSCI) meeting 
the inclusion criteria were randomly assigned to two groups: conventional 
medical rehabilitation (CM group) and ER intervention (ER group). All patients 
underwent assessments of overall cognitive function, attention function, and 
executive function within 24 h before the start of training and within 24 h after 
the 8 weeks of training. We  investigated the altered resting-state functional 
connectivity (RSFC) with the right dorsolateral prefrontal cortex (DLPFC) in 
patients with PSCI following ER training through functional magnetic resonance 
imaging (fMRI). Additionally, twenty people undergoing routine physical 
examinations in the outpatient department of our hospital were selected as the 
healthy control (HC) group.

Results: Before training, both groups of PSCI patients exhibited significant 
impairment in overall cognitive function, attention function, and executive 
function compared to the HC group. However, there was no significant difference 
between the two PSCI patient groups. Following 8 weeks of treatment, both 
PSCI patient groups demonstrated substantial improvement in overall cognitive 
function, attention function, and executive function. Moreover, the ER group 
exhibited greater improvement after training compared to the CM group. Despite 
the improvements, the cognitive behavioral performance assessment scores of 
both PSCI patient groups remained lower than those of the HC group. RSFC 
analysis in the ER group revealed strengthened positive functional connectivity 
between the right DLPFC and the left superior frontal gyrus (SFG) and left 
anterior cingulate gyrus (ACG), along with decreased functional connectivity 
between the right DLPFC and the right superior temporal gyrus (STG) and right 
precentral gyrus post-ER intervention.

Conclusion: ER intervention is more effective than conventional medical 
rehabilitation in improving the cognitive function of PSCI patients, potentially 
by augmenting the FC between the right DLPFC and dominant cognitive brain 
regions, such as the left SFG and left ACG while attenuating the FC between 
the right DLPFC and non-dominant hemisphere areas including the STG and 
precentral gyrus within the right hemisphere.
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1 Introduction

Post-stroke cognitive impairment (PSCI) is one of the most 
common sequelae of stroke (1). The cognitive challenges experienced 
by patients often manifest in various sub-domains such as attention, 
executive function, and memory, among others, contributing to 
difficulties in perceiving and adapting to the external 
environment (2, 3). These impairments not only hinder the patient’s 
comprehension of the rehabilitation therapist’s language but also 
impede the accurate execution of given instructions, significantly 
diminishing the efficacy of rehabilitation for limb dysfunction, 
swallowing issues, and other related impairments (3). Further, these 
cognitive deficits can lead to a decline in self-care and work 
capabilities, social function impairment, and mental health issues (4, 
5). Studies have demonstrated a strong correlation between PSCI and 
an elevated risk of stroke recurrence, along with a heightened 
prevalence of post-stroke depression (6, 7). In addition, individuals 
with PSCI pose an added burden on their family members. Caregivers 
of PSCI patients are reported to be more susceptible to symptoms of 
depression or anxiety compared to those caring for stroke patients 
without cognitive decline. Within five years of the stroke incident, 20% 
of caregivers experience symptoms of anxiety, and 25% develop 
symptoms of depression, intensifying the burden on both the family 
and society at large (8, 9). Therefore, tackling the urgent requirement 
for effective rehabilitation training for PSCI remains a significant 
challenge in clinical practice.

Enrichment rehabilitation (ER) intervention represents a 
comprehensive rehabilitation approach that integrates environmental 
enrichment with task-oriented exercises (10). ER training could 
increase the level of sensory stimulation, cognitive activity, and 
organic motor function by placing subjects in more complex 
existential and social interaction scenarios, utilizing the novelty and 
complexity of the environment and multiple activities (11). This 
training strategy aims to enhance positive feedback and input to the 
central nervous system by creating a diverse and varied environment. 
It employs task-oriented training methods encompassing motor and 
sensory stimulation, cognitive activities, and social interactions. 
Studies have shown that ER interventions can enhance the secretion 
of nerve growth factor, brain-derived neurotrophic factor, nerve 
regeneration-related protein, etc., resulting in a long-term potentiation 
effect, enhancing the proliferation of neural stem cells, increasing the 
number of dendritic spines, realizing the reorganization of neuronal 
structure and function, and promoting the recovery of motor, sensory 
and cognitive functions (12–15). Some studies have proved that the 
theoretical basis of ER training is to foster the change of functional 
brain areas, enhance neuroplasticity, and ameliorate impaired 
functions (10, 16). Several recent studies have further demonstrated 
the rehabilitative potential of ER in improving both motor and 
cognitive dysfunction associated with various central nervous system 
conditions, including stroke, Parkinson’s disease, and others (17–19).

The resting-state network (RSN) is acknowledged as a structured 
system promoting the transmission of brain information, facilitating 
efficient information processing within and between relevant 

functional regions of the brain (20, 21). The statistical dependence 
between brain functional resting-state networks can be quantified 
using functional connectivity (FC), which also allows for the 
assessment of the organizational pattern and alterations in specific 
connections within these networks in the context of disease (21). 
Network-based statistical analysis revealed that post-stroke cognitive 
impairment was linked to whole-brain network dysfunction, involving 
167 regions and 178 connections (22). This dysfunction resulted in a 
functional disconnection of brain regions associated with cognitive 
function, such as the frontal lobe and temporal lobe (22).

However, there is limited literature on the impact of ER 
intervention on brain FC in patients with PSCI. This study aims to 
examine the influence of ER on cognitive function and brain FC in 
PSCI patients and to provide clinical experimental evidence 
supporting the application of ER in cognitive rehabilitation.

2 Materials and methods

2.1 Ethical approval

The study protocol was approved by the Ethics Committee of 
Northern Jiangsu People’s Hospital Affiliated to Yangzhou University 
(approval no. 2018021). All participants provided written informed 
consent before study enrollment.

2.2 Participants recruitment

Forty patients diagnosed with PSCI and treated at the Northern 
Jiangsu People’s Hospital Affiliated to Yangzhou University from 
January 2020 to December 2021 were randomly allocated into two 
groups: a conventional medical treatment (CM) group (n = 20) and 
an ER group (n = 20). Utilizing the digital random method, 20 
healthy subjects undergoing routine physical examinations in the 
outpatient department of the same hospital during the corresponding 
period were chosen to constitute the healthy control (HC) group. 
The general information of the three groups is presented in Table 1. 
The selection of sixty subjects adhered to specific inclusion and 
exclusion criteria:

Inclusion criteria for PSCI patients: All patients with cerebral 
infarction met the diagnostic criteria of cognitive impairment 
following cerebral infarction as outlined in the diagnostic criteria for 
cerebrovascular disease (23) and were assessed for enrollment in the 
study based on the following inclusion criteria (24): patients with 
right-handedness who experienced their first-ever ischemic 
cerebrovascular stroke (lesion in the left internal carotid artery system 
confirmed by MRI); initiation of rehabilitation treatment 1 to 
2 months after the onset of stroke, with a Chinese version of the 
Montreal Cognitive Assessment (MoCA) score ranging from 20 to 23 
within 24 h before treatment; ability of the patient to at least complete 
the basic activities and communication of ER with assistance; aged 
between 46 and 55 years with a minimum of 12 years of education.
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Exclusion criteria for PSCI patients: Patients with a history of 
multiple strokes or other psychiatric and neurological conditions, 
including but not limited to brain trauma, Parkinson’s disease, mental 
disorders, hearing impairment, visual impairment, and severe cognitive 
impairment, were excluded. Additionally, individuals with a history of 
alcohol and substance abuse, poor adherence, and those unable to move 
autonomously, along with other medical conditions that could impede 
the effective implementation of ER intervention, were also excluded.

Inclusion criteria for healthy subjects: Twenty healthy subjects 
fulfilled the following inclusion criteria: participants must 
be conscious and have no history of mental illness or diseases of the 
nervous system; aged between 46 and 55 years with a minimum of 
12 years of education. MoCA score within 24 h of the physical 
examination ranging from 28 to 30 points.

Exclusion criteria for healthy subjects: All healthy participants 
were required to be free from any neurological disorders as determined 
by a thorough physical examination. Additionally, they were expected 
to have no serious heart and kidney diseases, malignant tumors, or 
other conditions affecting cognitive and emotional functioning.

2.3 Basic demographic information

As shown in Table 1, no statistically significant differences were 
observed among the three groups concerning age and gender 
(P>0.05). Each group consisted of 12 males and 8 females. The age 
distribution was as follows: the average age of the HC group was 
51.67 ± 3.14 years, the CM group was 50.98 ± 3.28 years, and the ER 
group was 51.02 ± 3.35 years.

2.4 Study schedule

The treatment protocol for all PSCI patients involved the 
administration of conventional medications, including antihypertensive 
agents, lipid-lowering drugs, and cognitive enhancers. In addition to 
these medications, the patients in CM group received one hour of 
routine rehabilitation training in the morning and afternoon each day, 
whereas the ER group received one hour of enriched rehabilitation 
training in the morning and afternoon each day. Both groups received 
rehabilitation training 6 days a week for 8 weeks.

The content of conventional cognitive rehabilitation training 
primarily encompasses attention, memory, logical thinking, calculation 
ability, executive function, and other cognitive sub-domains (24). The 
training comprised individualized single or multi-module integration 
tailored to patients following a cognitive assessment by the therapist. For 
instance, attention training involved promptly identifying two similar 
images or texts with differences. In auxiliary exercises, patients were 

guided to organize their daily activity plan execution or the sequence of 
specific tasks. Additionally, logical thinking training included tasks such 
as sequencing pictures in the correct story order and more.

In the ER group, therapists were required to create a diverse and 
dynamic environment, utilizing multi-sensory stimulation, cognitive 
activities, social engagements, and task-oriented training for 
comprehensive rehabilitation. The approach included the 
following components:

Enriched Environmental Stimulation: Utilizing multimedia 
equipment such as computers with internet connection and virtual 
reality technology, as well as other relevant equipment to design a 
variety of visual, auditory, olfactory, tactile and other multi-sensory 
stimulation projects. This allowed patients to experience various sensory 
stimuli triggered by differences in colors, smells, hardness, and more. 
For instance: ①Olfactory stimulation: Participants engaged in a 5-min 
odor identification task, involving the sniffing of two bottles of perfume 
with distinct scents, aiming to accurately name them. ②Auditory 
stimulation: Virtual reality equipment generated a variety of sounds, 
including animal calls and traffic horns. Participants were instructed to 
participate in blind listening, closing their eyes to accurately identify the 
source or describe the characteristics of each sound.

Cognitive Function Training: With the assistance of therapists, 
patients engaged in cognitive-related activities indoors using personal 
devices. Activities included reading books, listening to or humming 
music, browsing web pages of interest, playing regular card games, et al.

Task-oriented Exercise Training: ①Specific occupational therapy 
tasks were employed to strengthen the patient’s cognitive training for 
daily living. For example, patients were tasked with using the affected 
hand to select a specified color of water glass from three different 
colored glasses or filling a specific pattern with a designated color 
brush. ②To make physiotherapy more engaging and enhance 
functional motor training of the lower extremity, competitive elements 
were introduced among multiple patients during hip bridge exercises. 
Additionally, incorporating specific power bicycle training intensities 
based on different music rhythms can also be beneficial.

Social Activities: ①Patients and their family members went to the 
supermarket together. Once inside, patients independently selected 
and purchased the prescribed brand and quantity of goods, and settled 
the bill. ②Ensuring their safety, patients designed a route, with family 
members guiding them to take a bus to a designated city location, and 
then returning the same way. ③Participation in multiplayer games such 
as cards, board games, or table tennis, as well as engaging in group 
discussions with other patients or family members. ④Involvement in 
any other activities that patients enjoy doing with friends or family, 
such as watching movies or dancing, et al. In these activities, patients 
had the flexibility to choose and alternate between 2–3 items each week.

All patients underwent cognitive function tests within 24 h before 
the start of formal treatment and within 24 h after the completion of 

TABLE 1  Demographics and main baseline characteristics of subjects categorized by study group.

Group Number of cases Age (years) Gender

Male (n) Female (n)

HC 20 51.67 ± 3.14 12 8

CM 20 50.98 ± 3.28 12 8

ER 20 51.02 ± 3.35 12 8

HC, Healthy Control; CM, Conventional; ER, Enriched Rehabilitation; N, Number.

10

https://doi.org/10.3389/fneur.2024.1503737
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huai et al.� 10.3389/fneur.2024.1503737

Frontiers in Neurology 04 frontiersin.org

all treatment sessions. In addition, patients in the ER group underwent 
rs-fMRI examination both before and after the training period. The 
HC group completed the cognitive function test within 24 h after the 
physical examination.

2.5 MRI data preprocessing and analysis

Structural MRI and rs-fMRI were performed in the ER group 
before and after the intervention using a GE3.0 T MRI scanner. 
During scanning, all subjects were instructed to remain awake, keep 
their eyes closed, maintain a fixed head position, and rest without 
focusing on any specific thoughts. High-resolution structural images 
were acquired by employing a magnetization-prepared rapid gradient 
echo (MP-RAGE) sequence (25, 26): TR/TE/TI 1900/3.39/1100 ms, 
7° flip angle, 240 mm × 240 mm mm field of view (FOV), 256 × 256 
matrix, 176 axial slices, 0.9375 mm thickness, with an acquisition time 
lasting 4 min. The rs-fMRI scans were obtained using a gradient echo-
echo-plane imaging sequence: 31 axial slices, 4 mm thickness, TR/TE 
2000/30 ms, 90° flip angle, 240 mm (2) FOV, 64 × 64 matrix, with an 
acquisition time lasting 8 min.

Statistical Parametric Mapping1 and the RESTPLUS software2 were 
employed for preprocessing the resting-state functional MRI (rs-fMRI) 
data. Initially, we  discarded the first 15 images for each subject to 
guarantee data stability. Subsequently, we corrected slice timing for the 
remaining images. Following this, we corrected for motion by aligning 
each volume to the average of all volumes. After assessing head motion 
parameters, we ensured that head displacement did not surpass 3 mm 
and the rotation angle did not exceed 3° for any patient. Then, we utilized 
Advanced Normalization Tools software for spatial normalization. 
Initially, we registered each subject’s T1 structural images to their mean 
functional image and mapped corresponding lesions onto it. Next, 
we registered the T1 structural image to the Montreal Neurological 
Institute and Hospital (MNI) standard space. Afterward, we applied the 
nonlinear transformation parameters acquired from the previous step 
to each motion-corrected volume, yielding each subject’s functional 
image in MNI standard space, and then resampled the spatially 
normalized functional image to a voxel size of 3 mm × 3 mm × 3 mm. 
Ultimately, we applied Gaussian smoothing with a full width at half 
maximum of 6 mm to all voxels. Additional denoising steps were carried 
out, including detrending and regressing out noise covariates such as 
motion-related parameters (i.e., Friston-24 model), white matter signals, 
cerebrospinal fluid signals, and other confounding variables. The data 
was filtered within a frequency range of 0.01 to 0.08 Hz.

3 Outcome measurement

3.1 Cognitive function measurement

The MoCA was used to assess the overall cognitive function, 
which involves the evaluation of attention, memory, execution, 

1  Version 12; accessible at http://www.fil.ion.ucl.ac.uk/spm on May 1, 2023.

2  Version 6.1; available at http://restfmri.net/forum/restplus on 

January 1, 2022.

calculation, and other cognitive functions (24). The maximum score 
of the test was 30 points, with a score of ≥26 points considered normal 
in the general population.

The Trail Making Test (TMT) was used to evaluate executive 
function (27). In this study, the time required to complete TMT-A and 
TMT-B served as the evaluation indices. Attention function was 
estimated through the Symbol Digit Modalities Test (SDMT) (28), 
where the final score was determined by the number of correct 
modalities filled in within 90 s, excluding those filled in during practice.

4 Statistical analysis

The SPSS 22.0 statistical software package was used for data 
sorting and analysis. Quantitative data with a normal distribution 
were represented as mean ± standard deviation (x s+ ), while 
measurement data with a skewed distribution were represented using 
the median and interquartile range. Qualitative data (gender 
composition ratio) were compared between groups using a corrected 
chi-square test. Differences in age and cognitive function levels among 
the three groups were compared using one-way ANOVA. Paired t-test 
was used to compare the cognitive function of PSCI patients before 
and after treatment. p values less than 0.05 were considered to denote 
significant statistical differences (significance level: α = 0.05).

Statistical Parametric Mapping (SPM8) was utilized to process the 
rs-fMRI data. Participants with greater than 3.0 mm of translation or 
3.0 degree of rotation in any direction were excluded. Following the 
normalization of anatomical images using Montreal Neurological 
Institute (MNI) templates, FC analysis was conducted using the 
Resting-State fMRI Data Analysis Toolkit (REST) (29).

The right DLPFC (coordinates: x = 45, y = 36, z = 21, with the 
mean signal of each voxel within the 6 mm radius sphere computed) 
was selected as the seed point and the region of interest (ROI). A 
voxel-wise FC analysis of each voxel was then performed for the 
fMRI data. The FC of each subject between each seed region and 
ROI was calculated and converted into Z-maps. Inter-group analysis 
involved individual single-sample t-tests for each group, followed by 
merging the results of each group into a mask. Subsequently, a 
two-sample t-test was performed between the two groups within the 
mask. The selected areas were considered statistically significant 
after correction (p < 0.05, voxel >228) (30). All test methods were 
two-tailed.

5 Results

5.1 Comparison of cognitive function 
before and after intervention

Before treatment, the cognitive function scores of both PSCI 
patient groups were significantly lower compared to those of the HC 
group (p < 0.05). However, there was no significant difference between 
the CM group and the ER group. After 8 weeks of intervention, this 
difference persisted in the HC group and both PSCI groups (p < 0.05). 
Although both CM and ER groups exhibited significant improvement 
in cognitive function post-treatment (p < 0.05), the improvement in 
the ER group was more pronounced than that in the CM group 
(p < 0.05). Specific data are presented in Table 2.
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5.2 Comparison of brain function 
connectivity (FC) in the ER group before 
and after intervention

As illustrated in Figure 1A and detailed in Table 3, the FC map of 
the ER group before intervention revealed that the significant 
functional connectivity with the right DLPFC mainly encompassed 
the bilateral middle frontal gyrus (MFG), right middle temporal gyrus 
(MTG), right precentral gyrus, left inferior frontal gyrus (IFG), left 
parietal inferior angular gyrus, and left inferior temporal gyrus (ITG) 
(p < 0.05, voxel>228).

After the intervention, the ER group exhibited significant FC in the 
left anterior cingulate gyrus (ACG), right inferior temporal gyrus (ITG), 
bilateral middle frontal gyrus (MFG), bilateral parietal inferior angular 
gyrus, and the right DLPFC in the ER group (p < 0.05, voxel>228). 
These findings are illustrated in Figure 1B and detailed in Table 4.

Figure 1C and Table 5 demonstrate that the FC map of the ER group 
between the right DLPFC and deep brain regions, including the left 
superior frontal gyrus (SFG) and the left anterior cingulated gyrus 
(ACG) post-treatment, was stronger post ER compared with pre-ER 
(p < 0.05, voxel>228). Conversely, compared with pre-ER, the FC of 
post ER between the right DLPFC and the right superior temporal 
gyrus (STG) and the right precentral gyrus was significantly weaker 
(p < 0.05, voxel>228).

6 Discussion

The present findings indicate that the implementation of ER 
intervention yields a notable improvement in cognitive functioning 
among post-stroke patients, particularly in overall cognitive function 
and attention executive function. This improvement is attributed to 
the ER intervention’s capability to enhance the FC of cognitive-related 
brain areas, such as the frontal cortex and anterior cingulate cortex, 
with the dominant hemisphere. Simultaneously, it weakens the FC 
with the non-dominant hemisphere, restoring the balance between 
bilateral hemispheres in PSCI patients. Ultimately, this fosters the 
establishment of a brain remodeling mechanism for cognitive function.

The behavioral findings demonstrated a significant advancement in 
cognitive function among post-stroke patients undergoing ER 
intervention, surpassing the results of conventional cognitive 
rehabilitation training. This improvement was particularly pronounced 

in attention and executive function. Concurrently, the imaging results 
of this study revealed alterations in brain functional network 
connectivity post-treatment for patients in the ER group compared to 
their pre-treatment conditions. Specifically, an increase in FC was 
observed between the right DLPFC and the left SFG as well as the left 
ACG, which are closely associated with attention and executive 
function. The rationale behind the cognitive function improvement can 
be attributed to the potential of ER intervention in restructuring the 
brain’s functional network in stroke patient (31, 32).

ER intervention, as a comprehensive training method based on an 
enriched environment, plays an important role in enhancing both 
brain plasticity and behavior (33). The research group employed a 
combination of multi-sensory stimulation, cognitive function 
training, task-oriented training, and social training to augment the 
rehabilitation program for ER patients. As a result, there was a 
significant improvement in the overall cognitive function of the 
patients. This improvement can be attributed to several factors. The 
diverse array of multi-sensory stimuli, including visual, auditory, 
olfactory, and tactile inputs, significantly enhances individuals’ ability 
to perceive and engage with their physical and social surroundings. 
Moreover, it also promotes neuroplasticity in the brain (33, 34). For 
instance, visual stimulation can facilitate the establishment of novel 
neural circuits for information processing and analysis, expedite the 
reorganization of neural function, and contribute to circuit 
reconstruction, thereby enhancing individuals’ adaptability to 
complex and dynamic environments. Furthermore, some studies have 
also demonstrated that visual stimulation can elicit hippocampal 
neurogenesis, further augmenting cognitive function (35). Cognitive 
function training strategically assigns appropriate cognitive tasks to 
patients systematically and comprehensively. Diverging from 
conventional cognitive rehabilitation training, ER intervention tailors 
cognitive rehabilitation tasks to be  patient-oriented, integrating 
multiple cognitive functions simultaneously instead of conducting 
targeted independent training in isolated domains. This approach is 
more conducive to the comprehensive improvement of patients’ 
diverse cognitive functions. Concurrently, task-oriented training 
integrates motor and cognitive functions, activating the motor control 
and attention executive function networks simultaneously, thereby 
benefiting the enhancement of patients’ attention function, planning, 
and logic (36). In contrast, social training activities such as recitation, 
shopping, and competitive events (e.g., playing chess) contribute to 
the improvement of memory and other cognitive functions (37).

TABLE 2  Comparison of cognitive function between three groups.

HC group CM group ER group

MoCA
Pre-intervention 29.25 ± 0.75cd 21.75 ± 1.29a 21.80 ± 1.28a

Post-intervention - 23.85 ± 1.78ab 26.20 ± 1.64abd

SDMT
Pre-intervention 76.60 ± 5.75cd 46.90 ± 8.07a 46.95 ± 8.81a

Post-intervention - 57.05 ± 8.71ab 64.15 ± 10.11abd

TMT-A(s)
Pre-intervention 48.11 ± 9.04cd 73.25 ± 17.11a 73.53 ± 16.78a

Post-intervention - 72.39 ± 17.64a 71.76 ± 16.15a

TMT-B(s)
Pre-intervention 91.55 ± 20.67cd 149.69 ± 33.81a 146.85 ± 36.51a

Post-intervention - 129.71 ± 27.24ab 110.85 ± 17.79abd

aCompared with the HC group, p < 0.05.  
bCompared with pre-intervention of the same group, p < 0.05.  
cCompared with the CM group pre-intervention, p < 0.05. dCompared with the CM group post-intervention, p < 0.05.
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FIGURE 1

Comparison of brain FC before and after intervention in the ER group. (A) Illustrated the change of brain regions with FC with the right DLPFC in PSCI 
patients before ER intervention. (B) Depicts the change of brain areas exhibiting FC with the right DLPFC in the ER group after training. 
(C) Demonstrates the difference in FC before and after treatment in the ER group. The right STG is indicated by the pink arrow; the right precentral 
gyrus is indicated by the grassy green arrow; the left SFG is indicated by the blue-green arrow; and the left ACG is indicated by the yellow arrow. L and 
R represent the left and right hemispheres, respectively.
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Studies have demonstrated that the change of cognitive function 
is inevitably accompanied by the remodeling of brain function (18). 
To explore alterations in brain regions associated with cognitive 
function, this study employed a relatively safe and reliable method 
rs-fMRI, widely acknowledged for investigating the mechanisms of 
brain function remodeling in stroke patients (38). In this study, the 
right DLPFC was chosen as the seed voxel for whole-brain FC. The 
selection of the DLPFC as the seed region is grounded in its 
significance for cognitive function, encompassing attention, working 
memory, executive function, and various other cognitive functions 
(39). Furthermore, the right DLPFC was specifically designated as the 
seed voxel due to the subjects’ left hemisphere stroke, which resulted 
in the compromised functional network of the left hemisphere. In 

some instances, both the structure and function of the DLPFC may 
have been impaired as a consequence.

The present study identified a robust connection between the right 
DLPFC and the frontal cortex in patients with PSCI, both before and 
after ER intervention. The frontal cortex, known for high-level cognitive 
control and sensorimotor integration, is closely related to attention and 
executive function. Therefore, even before ER intervention, the DLPFC 
exhibited FC with the frontal cortex, including the bilateral MFG and 
the right precentral gyrus of the non-dominant hemisphere (40–42). 
Radiographic results of this study revealed a significant improvement in 
FC between the DLPFC and the frontal cortex of the dominant 
hemisphere following ER intervention. We posit that this enhancement 
can be  attributed to the ER intervention involving concentration, 

TABLE 3  FC of patients in the ER group before intervention.

Region BA MNI coordinates T VOX

x y z

Right MFG 45 45 36 21 37.61 1,025

Right MTG 20 57 −39 −12 5.00 384

Right precentral gyrus 6 33 −24 66 7.12 281

Left MFG 44 −51 24 36 12.24 510

Left IFG 45 −45 33 18 22.31 320

Left parietal inferior angular 

gyrus
40 −30 −54 39 15.91 958

Left ITG 37 −66 −54 −3 7.73 331

MFG, Middle Frontal Gyrus; MTG, Middle Temporal Gyrus; IFG, Inferior Frontal Gyrus; ITG, Inferior Temporal Gyrus; BA, Brodmann Area; T, T value; VOX, Voxel.

TABLE 4  FC of patients in the ER group after intervention.

Region BA MNI coordinates T VOX

x y z

Right ITG 20 57 −45 −18 11.99 258

Left MFG 46 −36 36 30 19.53 1,050

Right MFG 45 45 33 12 28.33 1,541

Right parietal inferior angular 

gyrus
48 66 −48 30 14.03 999

Left parietal inferior angular 

gyrus
40 −57 −54 39 6.88 698

Left ACG 24 −3 12 27 14.00 173a

ITG, Inferior Temporal Gyrus; MFG, Middle Frontal Gyrus; ACG, Anterior Cingulate Gyrus; BA, Brodmann Area; T, T value; VOX, Voxel.  
aThe left ACG was connected to the left MFG.

TABLE 5  Brain regions with differences in FC before and after treatment in the ER group.

Region BA MNI coordinates T VOX

x y z

Right STG 22 69 −39 6 −6.05 538

Right precentral gyrus 6 42 3 42 −2.34 131a

Left SFG 8 6 21 54 4.01 318

Left ACG 24 −3 18 27 3.09 93b

STG, Superior Temporal Gyrus; SFG, Superior Frontal Gyrus; ACG, Anterior Cingulate Gyrus; BA, Brodmann Area; T, T value; VOX, Voxel.  
aThe right precentral gyrus was connected to the right STG.  
bThe left SFG was connected to the left ACG.
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simulation, planning of relevant motor behaviors, among other factors, 
fully activating the functional activity of cognitive brain areas (24, 32).

The ACG is recognized as part of the limbic system, closely 
associated with attention and executive function (43, 44). Groups with 
a well-developed ACG are more adept at maintaining focus, filtering out 
external distractions, and transitioning quickly and orderly between 
different tasks (45, 46). Research indicates that the ACG can implement 
directional behavior monitoring for ongoing tasks, promptly signaling 
responses in the event of a conflict or error to adjust and allocate 
attention resources accordingly (47). Consistent with previous studies, 
there was no significant FC observed between the right DLPFC and 
ACG before ER intervention. However, following the intervention, there 
was a notable enhancement in the FC between the two regions. 
Furthermore, the patients’ test scores for attention and executive 
function demonstrated improvement, reinforcing the notion that ER 
training has the potential to optimize the FC of the attention and 
executive function network post-stroke.

Additionally, this study revealed that following ER intervention, 
there was an enhancement in the connectivity of DLPFC brain areas 
associated with cognitive function in the dominant hemisphere (left 
frontal cortex and left ACG). Simultaneously, a significant decrease was 
observed in the FC of cognitive-related brain areas (STG and precentral 
gyrus) in the non-dominant hemisphere, indicating a shift toward 
cognitive processing favoring the dominant hemisphere. In this study, 
we  found that for patients with moderate PSCI, the core cognitive 
region DLPFC needed to enhance its FC with non-cognitive brain 
regions (such as the temporal cortex and precentral gyrus in the 
non-dominant hemisphere) to sustain cognitive activity before training. 
The temporal cortex is mainly related to long-term memory, while the 
precentral gyrus is primarily related to motor function (48, 49). The 
disruption of interhemispheric connectivity occurs simultaneously with 
stroke in the dominant hemisphere, resulting in an increased reliance 
on the non-dominant hemisphere for executive attention and FC (50, 
51). Nevertheless, the behavioral test results suggest that the impact of 
this change in FC is suboptimal, indicating poor remodeling of the 
brain’s functional network in PSCI patients. The transformed FC is 
insufficient to suppress interference caused by the functional network 
connectivity unrelated to cognition, nor can it effectively activate the 
brain’s functional network involved in cognitive tasks. Following ER 
intervention, the cognitive function-related brain areas in the dominant 
hemisphere can be  restored, facilitating the reestablishment of 
interhemispheric connection and gradual normalization of connectivity 
within the attention and executive brain function network. However, it 
was observed that the FC between DLPFC, the core region of the 
executive attention network, and non-dominant cognitive brain regions 
(such as the temporal lobe and precentral gyrus of the non-dominant 
hemisphere) gradually weakens. Consequently, there is a gradual shift 
of responsibility for cognitive functions, particularly attention and 
executive functioning, back to the dominant hemisphere along with 
notable improvements in cognitive function test scores.

The present study also has certain limitations. First of all, the 
absence of imaging examination for subjects in both the HC group 
and CM group resulted in a lack of statistical analysis and comparison 
concerning brain FC before and after training across these three 
groups of subjects. To address this limitation, the research team plans 
to enhance imaging examinations for subjects in each group in the 
subsequent experiments, aiming to investigate the similarities and 
differences in brain FC between PSCI patients and normal individuals 
before and after ER intervention. And in the follow-up study, we will 

continue to explore the differences between ER training and 
traditional training for altering functional brain connectivity, so as to 
provide a better basis in clinical work. Additionally, In previous 
studies, it has been demonstrated that hemodynamic lag interferes 
with FC measurements (52, 53). The disadvantage of this study is that 
no imaging correction was performed, thus the effect of hemodynamic 
lag and intrinsic cerebrovascular reactivity on functional connectivity 
after stroke could not be ignored, and there was some discrepancy in 
temporal sensitivity, which will be compensated for by combining 
functional near-infrared spectroscopy (fNIRS) in the follow-up study 
to correlate real-time functional connectivity with behavioral 
assessment. Furthermore, the limited conditions such as stroke 
location, degree of cognitive impairment, and timing of rehabilitation 
intervention resulted in a small sample size for each of the three 
experimental groups. As a result, the comprehensive exploration of 
the effect of ER intervention on PSCI patients was hindered. Future 
research endeavors should aim to expand the sample size to enhance 
the robustness of the study. Finally, this study did not conduct a 
follow-up to observe the long-term effect. In future research, the 
follow-up duration for patients will be extended to comprehensively 
assess sustained efficacy and dynamic changes in fMRI, thereby 
providing a more robust theoretical foundation for understanding 
brain remodeling mechanisms following stroke.

7 Conclusion

ER intervention is more effective than conventional medical 
rehabilitation in improving the cognitive function of PSCI patients. ER 
intervention has the capacity to enhance the FC between the right 
DLPFC and dominant cognitive brain regions, such as the left SFG and 
left ACG, while diminishing the FC between the DLPFC and areas of 
the non-dominant hemisphere, such as the STG and precentral gyrus 
within the right hemisphere. This reshaping of the cognitive function 
network contributes to a discernible improvement in cognitive function 
among PSCI patients.
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Introduction: The coronavirus disease 2019 (COVID-19) pandemic has caused 
millions of infections and deaths globally. Post-COVID-19 syndrome, or 
long COVID is characterized by lingering symptoms such as chronic fatigue, 
headaches, and sleep disturbances. This study aimed to investigate the 
correlation between these symptoms and T2-hyperintense white matter lesions 
detected on magnetic resonance imaging (MRI) of the brain and spine in patients 
with post-COVID-19 syndrome.

Methods: This retrospective, single-center study analyzed a sample of 96 
patients from Bern University Hospital in Switzerland who presented with 
suspected post-COVID-19 syndrome between 2020 and 2022. Patients 
completed self-report questionnaires evaluating fatigue, emotional wellbeing, 
and daytime sleepiness. Brain and spine MRIs were independently rated by 2 
neuroradiologists for T2-hyperintense lesions. The correlation between these 
lesions and symptoms of fatigue and headache was assessed.

Results: The cohort consisted predominantly of women (73%) with an average 
age of 46 years. Chronic fatigue (90%), sleep disorders (51%), and headache (57%) 
were the most prevalent symptoms. The fatigue questionnaires indicated high 
levels of fatigue. Brain MRI revealed T2-hyperintense lesions in 72% of patients, 
whereas spine MRI showed these lesions in only 16%. There was no statistically 
significant correlation between the presence of cerebral T2-hyperintense 
lesions and symptoms of fatigue (p = 0.815) or headaches (p = 0.178). Similarly, 
no significant correlation was found when considering numbers of pathological 
brain lesions (fatigue: p = 0.557; headaches: p = 0.820).

Conclusion: While T2-hyperintense lesions are common in patients with 
post-COVID-19 syndrome, their presence does not correlate significantly with 
symptoms of fatigue or headaches. These findings suggest that T2-hyperintense 
brain lesions may not be directly related to the subjective experience of these 
symptoms. Further research with larger sample sizes and adjustment for 
potential confounding factors is necessary to better understand the relationship 
between MRI findings and post-COVID-19 syndrome symptoms.
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1 Introduction

The coronavirus disease 2019 (SARS-CoV-2) is a viral strain first 
reported in China in 2019, which rapidly evolved into a global 
pandemic responsible for more than 700 million infections and more 
than 7 million deaths reported worldwide as of April 2024 (1, 2). 
Infection-associated symptoms are multisystemic, possibly affecting 
the respiratory, cardiovascular, gastrointestinal, musculoskeletal, and 
neurologic systems. Most infected patients exhibit mild symptoms not 
requiring hospitalization (3). Although symptoms fully resolve in 
most cases, in over 10% of cases patients will experience lingering 
complications of infection, such as chronic fatigue and headaches, 
months after the initial infection (4–6). The finding of post-COVID-19 
syndrome has been defined as “persistent, new, or recurrent symptoms 
and conditions more than 4 weeks after initial COVID-19 
diagnosis” (7, 8).

Neurologic effects of COVID-19 on the central nervous system 
(CNS) have been reported since the start of the pandemic (9) and may 
be related to various mechanisms such as underlying systemic disease, 
immune dysfunction, vasculopathy, and complications of prolonged 
illness or hospitalization (6, 10, 11). The most common sequelae 
include chronic fatigue, headaches, sleep disorders, and depression 
(12, 13). A number of questionnaires have been validated for the 
clinical evaluation of these conditions, including the Fatigue Severity 
Scale (FSS), the Fatigue Scale for Motor and Cognitive Functions 
(FSMC) (14, 15), the Epworth Sleepiness Scale (ESS) (16, 17) and the 
Beck Depression Inventory (BDI-II) (18, 19). Some of these have also 
been applied to patients diagnosed with post-COVID-19 
syndrome (20).

Overall, post-COVID-19 syndrome is associated with more than 
60 heterogeneous physical and psychological symptoms affecting 
multiple organ systems (21). This heterogeneity has led to controversial 
and confusing findings in medical imaging research. In a large 
longitudinal brain imaging study, significant effects of SARS-CoV-2 
infection, including a reduction in gray matter thickness and global 
brain size were reported (22). In contrast, Yiping et al. reported higher 
bilateral gray matter volume with no significant change in white 
matter volume in COVID-positive patients (23). Imaging findings 
tend to be nonspecific and are often seen as T2-hyperintense white 
matter lesions or supratentorial susceptibility abnormalities suggestive 
of microvascular pathology (24, 25). T2-hyperintense lesions are 
associated with small vessel disease, inflammatory processes and post-
infectious sequelae, which may play a role in the pathophysiology of 
post-COVID-19 syndrome (26, 27). Despite conflicting reports in the 
literature, such as differences in lesion prevalence and significance in 
symptomatic patients (28), these lesions remain a widely studied 
marker of neurological abnormalities in post-viral syndromes.

The McDonald diagnostic criteria are commonly used in clinical 
practice as a way to standardize and provide diagnostic accuracy in 
the identification of multiple sclerosis (MS) (29). The revised 
McDonald criteria (2024) are expected to place more emphasis on 
early diagnosis. This will be  achieved through advanced imaging 
techniques such as susceptibility-weighted imaging (SWI) and 
diffusion-weighted imaging (DWI), as well as certain imaging and 
laboratory biomarkers, such as the central vein sign (CVS) and 
paramagnetic rim lesions, among others (30, 31). The CVS represents 
the imaging manifestation of the perivenular nature of demyelinating 
plaques and has been defined as a hypointensity appearing at the 

center of a surrounding hyperintense lesion in at least 2 of 3 
orthogonal planes. Although not pathognomonic for MS, the CVS can 
help differentiate between MS and other demyelinating diseases of the 
CNS (32, 33).

The exact relationship between these imaging findings and 
different post-COVID-19 syndrome symptoms remains unclear. The 
aim of this study was therefore to compare the number of 
T2-hyperintense white matter lesions in the brain and within the 
spinal cord among patients with post-COVID-19 syndrome exhibiting 
either chronic fatigue and/or headaches after initial infection.

2 Materials and methods

2.1 Ethics

We retrospectively evaluated clinical and paraclinical data on 
patients with post-COVID-19 syndrome included in the 
neuroimmunological registry (registration no. KEK-BE 2017–01369), 
treated at the neuroimmunological outpatient department of the 
Inselspital, University Hospital Bern, a tertiary care hospital. 
We analyzed the medical records of all patients with post-COVID-19 
syndrome who had given informed consent. Only patients with MRIs 
performed in our neuroradiology department were included to ensure 
comparability of the images and availability of the necessary 
MRI sequences.

2.2 Materials

This retrospective, single-center study analyzed a sample of 96 
patients from Bern University Hospital in Switzerland, who presented 
following COVID-19 infection between November 2020 and May 
2022. All patients were confirmed to have had acute COVID-19 
infection and persistent symptoms consistent with post-COVID-19 
syndrome and presented at the neurology department for post-
COVID-19 consultation.

2.3 Methods

Patients were selected based on their presentation to the Post-
COVID-19 clinic with neurological symptoms such as fatigue and 
headache. Inclusion criteria required MRI imaging of the brain and/
or spine and completion of validated symptom questionnaires. 
Imaging was performed on a 3T MRI scanner using standardized 
protocols, including for all patients an axial diffusion-weighted 
imaging sequences (DWI) with a slice thickness (ST) of 4 mm, an 
axial T2-weighted image sequence (ST 4 mm), a native T1-weighted 
MPR (ST 1 mm) and an axial susceptibility weighted imaging (SWI) 
sequence (ST 1.2 mm). After contrast application a 3D FLAIR 
sequence (ST 1 mm), an axial T1-weighted TSE (ST 4 mm) and a 3D 
T1-weighted MPR were acquired. If the patient presented with visual 
disturbances a native coronal T2-weighted fad suppressed sequence 
covering the orbits was added and after contrast application additional 
coronal T1- and T2-weighted sequences with fad suppression over the 
orbits were acquired. The standard spine protocol included the 
following sequences, covering the whole spine: coronal STIR, native 
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sagittal T1- and T2-weighted imaging sequences and post contrast 
sagittal T1- and PD-weighted imaging sequences. In case of a 
pathological finding dedicated axial T2-weighted sequences and post 
contrast axial T1-weighted images were added. Table 1 shows the 
imaging protocols.

During the first consultation, a clinical history was taken detailing 
the reported symptoms during the acute phase of COVID-19 
infection, as well as the current symptoms. Patients completed 
questionnaires on fatigue (Fatigue Severity Scale [FSS]), the impact of 
fatigue on motor and cognitive function (Fatigue Scale for Motor and 
Cognitive Functions [FSMC]), emotional wellbeing (Beck Depression 
Inventory II [BDI-II]), and daytime sleepiness (Epworth Sleepiness 
Scale [ESS]). Laboratory parameters such as C-reactive protein and 
ferritin were also analyzed to exclude possible secondary causes 
for fatigue.

Brain and spine MRIs performed in the setting of post-COVID-19 
syndrome were independently rated by one board-certified 
radiologists with 5 years’ experience and by one board certified 
neuroradiologist with over 15 years’ experience, for the presence, 
number, and location of T2-hyperintense lesions in the brain and the 
spinal cord. The incidence of lesions with CVS and paramagnetic rim 
was also assessed. Both readers were blinded to clinical history and 
patients symptoms including questionnaire results to reduce observer 
bias. Discrepancies in lesion counts between the two raters were 
resolved through a consensus reading.

2.4 Statistical analysis

Data are presented as mean with 95% confidence interval (95% 
CI) and comparative statistics (Mann–Whitney U test (MWU) and 
chi-squared test, respectively) were used. A p-value of 0.05 was 
assumed to be statistically significant.

2.5 Data sharing statement

In compliance with an open data approach, anonymized data of 
the cohort are available on request from the corresponding author.

3 Results

3.1 Cohort

The average age of the study population was 46.0 years (95% 
confidence interval (CI): 42.8–49.1) and 73% were female (70/96). 
The patients had their first consultation a mean of 35.8 days after 
the onset of acute infection (95% CI: 31.4–40.2). Ninety-one 
tested positive with the PCR/antigen test (95%) and only 2 tested 
positive for antibodies (2%). For 3 patients no information about 
the testing method was available. The sample was further 
categorized according to the associated comorbidities. Asthma 
was the most prevalent (8 out of 96 patients; 8%), followed by 7 
reports of depression (7%). The data are summarized in  
Table 2.

3.2 COVID-19 infection symptoms—acute 
phase

Most of the patients reported fever (n = 57, 59%), followed by 
headache (n = 55, 57%), anosmia (n = 55, 57%), fatigue (n = 54, 56%), 
and cough (n = 52, 54%). Intubation was the rarest consequence of 
COVID-19 infection observed in this sample, reported in only one 
case (1%). All reported symptoms are listed in Table 3.

3.3 Post-COVID-19 symptoms—first 
consultation

The first follow-up consultation post-COVID-19 infection 
aimed at the assessment of lingering symptoms, analysis of various 
laboratory parameters, and completion of self-report questionnaires. 
Fatigue was to the most reported symptom during the acute phase 
of COVID-19 infection and still affected the majority of patients 
(n = 86, 90%) at the first post-COVID appointment. Fifty-five 
patients reported recurrent headaches (57%) and 49 sleep 
disorders (51%).

Of the 82 patients assessed for depressive symptoms following 
COVID-19 infection, 23 (28%) reported depression. When asked 
about daytime sleepiness, 29 patients (36%) reported feeling sleepy 
during the day. A full list of the prevailing symptoms post-COVID-19 
infection is provided in Table 4.

3.4 Self-report questionnaire scores

The FSS was completed by 81 patients of the original patient 
sample of 96 to assess self-reported fatigue severity in daily activities. 
The mean score was 5.2 for a cut-off defined at 4.0 (95% CI: 66.2–
74.9). The impact of these fatigue levels on daily performance was 
measured using the FSMC, with 79 patients averaging 70.5 (43.0 
cut-off; 95% CI: 66.2–74.9).

Eighty patients completed the ESS, scoring a mean average of 9.2 
(10.0 cut-off; 95% CI: 66.2–74.9). The BDI-II was filled in by 82 
patients who scored an average of 16.6 (14.0 cut-off; 95% CI: 14.7–
18.5). The results are given in Table 5.

TABLE 1  Brain and spine MRI protocols.

Spine MRI Brain MRI

Native sequence sag T2

sag T1

cor STIR

Native sequence ax DWI

ax T2 + PD

sag 3D T1 MPRAGE

ax SWI

cor T2 fs Orbita

Contrast medium 

(mmol/kg)

0.1 Contrast medium 

(mmol/kg)

0.1

Contrast medium 

sequences

sag PD

ax T2

sag T1

ax T1

Contrast medium 

sequences

sag 3D T1 MPRAGE

ax T1 TSE

sag 3D FLAIR

cor T2 fs Orbita

cor T1 KM fs Orbita

MRI, magnetic resonance imaging; sag, sagittal; ax, axial; cor, coronal; fs, fat suppression.
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3.5 Brain MRI

Of the 96 patients, 88 underwent a brain MRI after COVID-19 
diagnosis. A total of 5 patients had a known demyelinating disease 
such as MS and were excluded from further analysis. The time 
between COVID-19 infection and brain imaging averaged 37.8 weeks 
(95% CI: 32.5–43.1) for the remaining 83 patients. Although post-
COVID-19 syndrome shows a clear female predominance, we found 
no sex-specific differences in MRI findings.

The subsequent analysis of the MRIs was conducted independently 
by 2 radiologists. The first rater identified 64 patients with 
T2-hyperintense lesions, whereas the second identified 56. Both 
examiners then grouped the findings according to the total number 
and location of T2-hyperintense lesions as well as the number of 
lesions displaying a CVS. According to Rater 1 most patients (36%) 
had between 1 and 5 hyperintense lesions; 17 patients (27%) had more 
than 15 lesions; 16 (25%) had between 6 and 10 lesions and 8 patients 
(13%) had 11–15 T2-hyperintense lesions. Rater 2 reported that most 

patients (27; 48%) had more than 15 lesions, whereas only 4% had 
between 11 and 15 T2-hyperintense lesions. Neither of the raters 
found enhancing lesions or lesions with a paramagnetic rim. In the 
majority of cases no CVS was reported by either of the radiologists 
(Rater 1–75%; Rater 2–63%) with a decrease in incidence of patients 
displaying a higher number of lesions with CVS. As for the location of 
T2-hyperintense lesions, the first rater identified most lesions in the 
subcortical and periventricular areas (34 patients—53%), as well as 16 
patients (25%) with only subcortical lesions. Rater 2 reported more 
patients showing sub- and juxtacortical lesions (20 patients—36%) 
and fewer with subcortical and periventricular lesions (14 patients—
25%). Fifteen patients were reported by the second rater as having 
only subcortical T2-hyperintense lesions (25%). The results are shown 
in Table 6 and summarized in Figure 1.

3.6 Spine MRI

A collection of spine MRIs was analyzed in a similar way to the 
brain MRIs. Of 95 patients, 19 had undergone spine MRI following 
infection with SARS-CoV-2. For 19 of 95 patients, no demyelinating 
CNS disorders were identified. The average time elapsed between 
COVID-19 infection and spine imaging was 36.1 weeks (95% CI: 
19.9–52.3).

The same 2 raters conducted the evaluation of the spine MRIs. 
Both raters recorded a similar number of lesions across all spine 
regions with one third of patients showing between 1 and 3 lesions, 

TABLE 2  Patient characteristics at first consultation.

Age, years, mean (95% CI), n 46.0 (42.8–49.1), 96

Female, n (%) 70/96 (73%)

Time between onset of acute infection and 

first consultation, weeks, mean (95% CI), n

35.8 (31.4–40.2), 96

Positive PCR/antigen test, n (%) 91/96 (95%)

Positive antibody test, n (%) 2/96 (2%)

Comorbidities

Arterial hypertonia, n (%) 4/96 (4%)

Metabolic syndrome, n (%) 2/96 (2%)

Sleep apnea syndrome, n (%) 1/96 (1%)

Depression, n (%) 7/96 (7%)

Rheumatological disorders, n (%) 2/96 (2%)

Multiple sclerosis, n (%) 4/96 (4%)

Hashimoto thyroiditis, n (%) 2/96 (2%)

Asthma, n (%) 8/96 (8%)

Neurodermatitis, n (%) 2/96 (2%)

TABLE 3  Symptoms of acute COVID-19, n (%).

Headache, n (%) 55/96 (57%)

Fever, n (%) 57/96 (59%)

Anosmia, n (%) 55/96 (57%)

Dyspnea, n (%) 34/96 (35%)

Cough, n (%) 52/96 (54%)

Cold, n (%) 43/96 (45%)

Pain, n (%) 47/96 (49%)

Gastrointestinal symptoms, n (%) 17/96 (18%)

Fatigue, n (%) 54/96 (56%)

Sleep disturbance, n (%) 25/96 (26%)

Hospitalization, n (%) 15/96 (16%)

Intubation, n (%) 1/96 (1%)

TABLE 4  Post-COVID-19 symptoms at first consultation.

Fatigue, n (%) 86/96 (90%)

Sleep disorders, n (%) 49/96 (51%)

Headache, n (%) 55/96 (57%)

Pain, n (%) 39/96 (40%)

Paresthesia, n (%) 17/96 (18%)

Dyspnea, n (%) 32/96 (33%)

Anosmia/Ageusia, n (%) 28/96 (29%)

Cough, n (%) 3/96 (3%)

Dizziness, n (%) 31/96 (32%)

Autonomic dysfunction, n (%) 18/96 (19%)

Dermatological symptoms, n (%) 8/86 (9%)

Gastroenterological symptoms, n (%) 11/96 (11%)

Tinnitus, n (%) 5/96 (5%)

Visual symptoms, n (%) 3/96 (3%)

Depression, n (%) 23/82 (28%)

Daytime sleepiness, n (%) 29/80 (36%)

TABLE 5  Scores of self-reported questionnaires at first consultation.

FSS, mean (95% CI), n 5.2 (4.9–5.5), 81

FSMC total, mean (95% CI), n 70.5 (66.2–74.9), 79

ESS, mean (95% CI) 9.2 (8.0–10.3), 80

BDI-II, mean (95% CI) 16.6 (14.7–18.5), 82

FSS, Fatigue Severity Scale; FSMC, Fatigue Scale for Motor and Cognitive Functions; ESS the 
Epworth Sleepiness Scale, BDI-II Beck Depression Inventory.
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most of which (67%) were in the cervical spine. All enhancing spine 
lesions appeared at the thoracic level. Table  7 summarizes 
the findings.

4 Correlation between symptoms and 
brain MRI

This study considered the 2 most reported symptoms persisting 
after SARS-CoV-2 infection—headache and fatigue—and tried to 
determine the relationship between the prevalence of these symptoms 
and the number and location of T2-hyperintense lesions identified on 
brain MRI in this cohort of patients. The statistical analysis is depicted 
in Table 8.

Due to the small number of patients with T2-hyperintense lesions 
identified on spine MRI, a similar statistical analysis was not possible 
for these data.

4.1 Headaches in patients with 
post-COVID-19 syndrome

For the 41 patients presenting with no headache, 31 had T2-lesions 
identified on brain MRI with a mean value of 7.4 (95% CI: 5.3–9.6), 
whereas for the 55 subjects presenting with headaches, the mean value 
was 5.9 (95% CI: 4.3–7.5, p-value 0.557). Of the 31 patients presenting 
with headaches and having T2-lesions identified on brain MRI, 13 
showed a pathological number of T2-lesions according to age. In the 
“no headache” group of 31 individuals with T2-lesions, 24 were 
observed to have a pathological number of lesions for their age group 
(p-value 0.820).

TABLE 6  Findings of brain MRIs conducted in patients post-COVID-19 
infection.

Cerebral MRI

Number of patients with brain 

MRI after SARS-CoV-2 

infection, n (%)

88/96 (92%)

Number of patients with brain 

MRI and without 

demyelinating CNS disorders 

(e.g., multiple sclerosis) n (%)

83/96 (86%)

Time between COVID-19 and 

brain MRI, weeks, mean (95% 

CI)

37.8 (32.5–43.1)

Patients with T2-hyperintense 

lesions, n (%)

Rater 1 Rater 2

64/83 (77%) 56/83 (67%)

Number of T2-hyperintense lesions, n (%)

1–5 23/64 (36%) 13/56 (23%)

6–10 16/64 (25%) 14/56 (25%)

11–15 8/64 (13%) 2/56 (4%)

>15 17/64 (27%) 27/56 (48%)

Enhancing lesions 0/64 (0%) 0/56 (0%)

Lesions with paramagnetic 

rim

0/64 (0%) 0/56 (0%)

Lesions with CVS, n (%)

None 48/64 (75%) 35/56 (63%)

1–2 10/64 (16%) 12/56 (21%)

3–4 6/64 (9%) 7/56 (13%)

5–6 0/64 (0%) 2/56 (4%)

T2-hyperintense lesions by location, n (%)

Only subcortical 16/64 (25%) 14/56 (25%)

Only juxtacortical 0/64 (0%) 0/56 (0%)

Only periventricular 1/64 (2%) 0/56 (0%)

Only infratentorial 0/64 (0%) 0/56 (0%)

Sub- and juxtacortical 5/64 (8%) 6/56 (11%)

Subcortical and 

periventricular

34/64 (53%) 14/56 (25%)

Sub- and juxtacortical and 

periventricular

6/64 (9%) 20/56 (36%)

Subcortical, periventricular, 

infratentorial

2/64 (3%) 0/56 (0%)

All locations 0/64 (0%) 2/56 (4%)

Black holes 0/83 (0%) 0/83 (0%)

Leptomeningeal enhancement 1/79 (1%) 1/79 (1%)

Diffusion restriction 0/81 (0%) 0/81(0%)

Orbital/optic nerve 

pathologies

0/81 (0%) 0/81 (0%)

Only subcortical 16/64 (25%) 14/56 (25%)

MRI, magnetic resonance imaging; CNS, central nervous system; CVS central vein sign.

FIGURE 1

Distribution of T2-hyperintense lesions (A) and lesion distribution by 
location (B) on brain MRI.
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4.2 Fatigue in patients with post-COVID-19 
syndrome

For the 14 patients presenting with no fatigue (FSS < 4.0), a mean 
of 6.7 (95% CI: 3.1–10.4) T2-lesions were identified in brain MRI. The 
subjects identified as having fatigue (FSS ≥ 4.0) had a mean of 
6.4 T2-lesions (95% CI: 4.9–7.9, p-value 0.815). Of the 14 individuals 
with no fatigue, 5 were diagnosed with a pathological number of 
T2-lesions for their age whereas, of the 59 patients with fatigue, 27 had 
a pathological number of lesions for their age (p-value 0.557).

5 Discussion

This study focused on radiological evaluation with brain/spine 
MRI in participants with post-COVID-19 syndrome in single-center 
cohort in Switzerland. In our cohort, the majority of patients suffering 
from Post-COVID-19 Syndrome were female (73%; 70/96). This 
gender predominance aligns with findings from previous studies on 
long COVID, which have shown that women are disproportionately 
affected by persistent symptoms (34). Several factors may contribute 
to this gender disparity: biological differences, such as sex-specific 
variations in immune response are well-documented with women 
tending to have stronger immune responses making them more prone 
to immune-mediated conditions, which could influence susceptibility 
to long COVID (35). Additionally, hormonal differences, particularly 

the modulatory effects of estrogen on immune and vascular function, 
may play a role in the manifestation of chronic post-viral symptoms 
(35). Beyond biological factors, gender-specific reporting and 
healthcare-seeking behaviors may further contribute to the observed 
differences, as women may be more likely to report symptoms and 
seek medical attention for chronic conditions like Post-COVID-19 
Syndrome (36). These considerations underscore the need to account 
for gender differences when interpreting findings and developing 
management strategies for long COVID.

Our study underscores the complexity of interpreting radiological 
findings in patients with post-COVID-19 syndrome. This is 
particularly evident with respect to structural brain alterations seen 
on MRI and their relationship with the most commonly identified 
symptoms such as chronic fatigue, headaches and depression. MRI is 
often used to identify possible structural causes for persistent 
neurological symptoms. The most common finding in brain MRI in 
our study was the presence of T2-hyperintense lesions in subcortical 
and periventricular areas, which is in line with the current literature 
(37). These lesions have previously been reported in patients suffering 
from persistent fatigue after hospitalization for COVID-19 (26), as 
well as in those with post-COVID-19 “brain fog” (28). However, these 
lesions tend to be frequently encountered in other unrelated settings 
such as post-infectious and inflammatory conditions, as well as in 

TABLE 7  Findings of spine MRIs conducted in patients post-COVID-19 
infection.

Spine MRI

Number of patients with spine 

MRI after SARS-CoV-2 

infection, n (%)

19/95 (20%)

Number of patients with spine 

MRI and without 

demyelinating CNS disorders 

(e.g., multiple sclerosis), n (%)

19/90 (20%)

Time between COVID-19 and 

spine MRI, weeks, mean (95% 

CI)

36.1 (19.9–52.3)

T2-hyperintense lesions, n (%)
Rater 1 Rater 2

3/19 (16%) 3/19 (16%)

Number of T2-hyperintense lesions, n (%)

1 1/3 (33%) 1/3 (33%)

2 1/3 (33%) 1/3 (33%)

3 1/3 (33%) 1/3 (33%)

T2-hypertintense lesions by location, n (%)

Cervical spine 2/3 (67%) 2/3 (67%)

Thoracic spine 1/3 (33%) 1/3 (33%)

Enhanced lesions (thoracic 

spine)
1/3 (33%) 1/3 (33%)

MRI, magnetic resonance imaging; CNS, central nervous system.

TABLE 8  Statistical analysis comparing the number of T2-lesions in the 
brain between patients reported as having headaches or who were 
assessed as having chronic fatigue after COVID-19 infection.

Patients without 

fatigue (FSS < 4.0)

Patients with 

fatigue (FSS > 4.0)

p-value

Number of T2-

lesions in brain 

MRI, mean (95% 

CI)

6.7 (3.1–10.4), 14 6.4 (4.9–7.9), 59 0.815

Patients without 

headache

Patients with 

headache

Number of T2-

lesions in brain 

MRI, mean (95% 

CI)

7.4 (5.3–9.6), 31 5.9 (4.3–7.5), 53 0.178

Patients without 

fatigue (FSS < 4.0)

Patients with 

fatigue (FSS > 4.0)

p-value

Patients with 

pathological 

number of T2 

lesions for age, n 

(%)

5/14 (35%) 27/59 (46%) 0.557

Patients without 

headache

Patients with 

headache

Patients with 

pathological 

number of T2 

lesions for age, n 

(%)

13/31 (42%) 24/53 (45%) 0.820

FSS, Fatigue Severity Scale.
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cases of chronic hypertension and small vessel disease. Advanced MRI 
techniques, such as diffusion tensor imaging and functional MRI 
(fMRI) have been shown to help in identifying imaging alterations 
that seem to be more prevalent in patients exhibiting neurological 
symptoms in the setting of post-COVID-19 syndrome (23, 38). 
However, our study did not find a significant correlation between 
reported radiological abnormalities and the most common symptoms 
reported by our patient cohort.

Symptoms such as chronic fatigue could be influenced by a range of 
physiological and psychological factors, including immune 
dysregulation, hormonal imbalances, and mental health conditions like 
depression or anxiety (21). The findings of our study suggest that these 
complex factors may not manifest as detectable structural changes in the 
brain, at least not in ways that are visible using conventional MRI 
protocols. While more complex imaging protocols such as fMRI or 
advanced diffusion techniques may be more sensitive to subtle brain 
changes, in our experience their application in clinical practice remains 
limited. Other options, such as detailed clinical assessments and the use 
of validated questionnaires for symptom tracking, may be  a more 
effective strategy in guiding therapy for patients presenting with post-
COVID-19 syndrome (39), than using MRI as a routine follow-up tool. 
This could shift the focus of treatment strategies from purely neurological 
investigations to a more multidisciplinary approach including 
neuropsychiatric, psychological, and rehabilitative care.

Transverse myelitis, while uncommon, has been documented in 
the literature as a severe complication of viral infections, including 
COVID-19 (27). In our study, only 3 patients demonstrated spine 
lesions consistent with post-infectious myelitis. This low prevalence 
aligns with current findings that transverse myelitis is a rare but 
serious post-COVID-19 complication, typically linked to more severe 
neurological symptoms such as motor weakness and sensory deficits 
(27). This suggests reserving spine MRI for cases where more specific 
neurological deficits are present, rather than incorporating it as part 
of the routine post-COVID-19 workup.

Our findings suggest a need to re-evaluate the role of MRI in 
managing patients with post-COVID-19 syndrome. The absence of a 
clear structural correlation with common symptoms such as fatigue 
and headaches indicates that MRI findings, while useful in excluding 
structural brain abnormalities, may not provide actionable insights for 
guiding therapeutic interventions. As such, the nonspecific nature of 
white matter lesions calls for a cautious approach when attributing 
patient symptoms to these findings. Instead, functional and 
neuropsychological assessments, including cognitive testing and 
fatigue scales, might yield more direct information about the patient’s 
condition and better inform therapeutic strategies.

Our study has some limitations. Firstly, the sample size is 
relatively small, particularly that for the analysis of spine MRI data, 
which limits the statistical power of the findings. Secondly, this study 
is retrospective and single-center, which may limit the generalizability 
of the results. The subjective nature of self-report questionnaires 
could introduce bias in the evaluation of symptoms. Additionally, the 
study did not adjust for other potential confounding factors such as 
treatment received during acute COVID-19 infection. Furthermore, 
this study relies on a single time-point for imaging and symptom 
assessment. Whilst previous studies suggest that some imaging 
abnormalities, such as those associated with inflammation or 

microvascular injury, may resolve or change with symptom recovery 
(38, 39), additional longitudinal studies with repeated imaging at 
multiple timepoints—such as 1, 3, and 6 months post-infection—are 
needed to evaluate the progression and resolution of T2-hyperintense 
lesions over time and to validate our findings.

While T2-hyperintense lesions are commonly observed in patients 
with post-COVID-19 syndrome, their presence does not seem to 
significantly correlate with symptoms of fatigue or headaches. These 
findings suggest that T2-hyperintense lesions may not be directly 
related to the subjective experience of these symptoms in patients with 
post-COVID-19 syndrome. Further research with larger sample sizes 
and adjustment for potential confounding factors is necessary to 
better understand the relationship between MRI findings and post-
COVID-19 syndrome.
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Extracranial carotid plaque 
calcification and its association 
with risk factors for 
cerebrovascular events: insights 
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Introduction: Extracranial carotid calcification is a common marker of 
advanced atherosclerosis. However, its impact on stroke risk is not consistent 
across studies, and examining the type of calcification and the presence of 
systemic diseases might be helpful. We aimed to investigate extracranial carotid 
calcification and its association with risk factors for ischemic cerebrovascular 
diseases.

Materials and methods: Among 1,863 consecutive patients in the Atherosclerotic 
Plaque Characteristics Associated with a Progression Rate of the Plaque and a 
Risk of Stroke in Patients with the Carotid Bifurcation Plaque Study (ANTIQUE), 
132 symptomatic or asymptomatic patients (177 carotid plaques) with >30% 
carotid stenosis examined through computed tomography (CT) and magnetic 
resonance imaging (MRI) were included. Statistical data were assessed using 
the χ2-test, Fisher’s exact test, t-test, and Mann–Whitney test to investigate the 
calcification risk factors.

Results: Compared to the absence of calcifications, spotty calcifications were 
associated with male sex [odds ratio (OR): 3.72, 95% confidence interval (CI): 
1.06–13.05], while large calcifications were associated with older patients 
(OR: 1.60 per 5 years of age, 95% CI: 1.20–2.13). Large calcifications were also 
strongly associated with coronary heart disease (OR: 4.07, 95% CI: 1.15–14.44) 
and atrial fibrillation (p = 0.025). In comparison between only spotty and large 
calcifications, spotty calcifications were associated with male sex (OR: 3.72, 
95% CI: 1.06–13.05), smoking (p = 0.020) in more significant quantities (p = 
0.014), and lipid plaque (p < 0.001), while large calcifications with contralateral 
stenosis degree (p = 0.044). No significant relationship was found between 
cerebrovascular events and the type of calcification.

Conclusion: Although the presence and type of extracranial carotid calcification 
were not related to ipsilateral ischemic events, large calcifications were strongly 
associated with coronary heart disease and atrial fibrillation.

Clinical trial registration: ClinicalTrials.gov, identifier NCT02360137.

KEYWORDS

atherosclerosis, carotid artery disease, calcification, cerebrovascular disease, 
magnetic resonance imaging, computed tomography
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1 Introduction

Carotid artery stenosis caused by atherosclerosis represents a 
substantial global epidemiological burden, with the prevalence of 
carotid plaque at 21% among individuals aged 30–79 years (1). 
Importantly, carotid atherosclerosis accounts for up to 25% of all 
ischemic strokes, which are among the leading causes of mortality and 
disability worldwide (2, 3). Extracranial carotid calcification represents 
a well-known clinical marker of atherosclerosis, which is characteristic 
of arterial aging. It is present in up to 75% of the population over the 
age of 75 years (1, 4).

The immediate inflammatory response that results in 
microcalcifications represents the pathophysiology of carotid calcification, 
which can be  detected by non-invasive imaging methods, such as 
computed tomography (CT) and magnetic resonance imaging (MRI) (5). 
While microcalcifications and spotty calcifications indicate active vascular 
calcification related to inflammation, causing plaque instability, 
macrocalcification is strongly inversely related to macrophage infiltration, 
causing plaque stabilization (6). However, the results of the previous 
studies are not consistent. Several comprehensive studies have shown that 
carotid plaque calcification is a protective plaque characteristic not 
associated with stroke (7–9), but some studies found a positive association 
between calcification and stroke (10–12). Therefore, examining the 
relationship between extracranial carotid calcification and systemic 
diseases that play a role in stroke risk might be useful for risk stratification 
in patients (13). To the best of our knowledge, when considering the 
calcification type and multiple atherosclerosis-related systematic diseases, 
there exists a lack of evidence of these types of relationships.

This study aimed to assess the association between extracranial 
carotid plaque calcification and risk factors for ischemic cerebrovascular 
diseases in both symptomatic and asymptomatic patients.

2 Materials and methods

2.1 Study design

This study presents a post hoc analysis of data from the prospective 
multicenter observational and cross-sectional Atherosclerotic Plaque 
Characteristics Associated with a Progression Rate of the Plaque and 
a Risk of Stroke in Patients with the Carotid Bifurcation Plaque Study 
(ANTIQUE; ClinicalTrials.gov Identifier: NCT02360137).

2.2 Sample characterization

For the present study, we enrolled all consecutive patients from 
the ANTIQUE study who has carotid stenosis of at least 30% and 
underwent clinical and diagnostic (CT and MRI) examinations. The 
patients were recruited into the comprehensive stroke center between 
October 2016 and March 2019 from those indicated for neurosonology 
examination in stroke prevention or acute stroke diagnostics (14, 15). 
The inclusion criteria were as follows: Patients aged above 30 years; 
atherosclerotic plaque in the carotid bifurcation or the proximal part 
of the internal carotid artery with a thickness of ≥2 mm in the 
transverse plane of the ultrasound B-mode measurement; calcification 
detected in the mentioned area of carotid bifurcation in CT 
examination; sufficient image quality from CT and MRI examinations; 

and patient self-sufficiency (modified Rankin scale score, 0–2 points). 
A carotid plaque, representing the most stenotic lesion when multiple 
plaques were present, causing stenosis at least 30% on ultrasound 
B-mode (transition from laminar to turbulent blood flow) was 
included and further assessed (16).

The exclusion criteria were as follows: Patients whose CT or MRI 
of the neck was not performed; insufficient CT and MR image quality 
of the patients; non-cooperative patients for the examinations; patients 
detected with carotid artery occlusion; patients undergoing stenting 
in the carotid bifurcation; and patients after invasive treatment of 
ipsilateral carotid artery (carotid endarterectomy or stenting).

Symptomatic patients were characterized as those with clinical 
signs of recent ipsilateral cerebrovascular ischemic events [transient 
ischemic attack (TIA), stroke, amaurosis fugax, and/or retinal 
infarction] in the last 90 days (time from symptom onset to imaging), 
excluding patients with other potential stroke etiologies (cardioembolic, 
lacunar, arterial dissection, vasculitis, other rare causes of stroke) (17). 
Both arteries from symptomatic patients were included: the artery 
ipsilateral to the cerebrovascular event (symptomatic) and the 
contralateral (asymptomatic). Patients without clinical signs of TIA/
stroke in the relevant arterial territory within the last 90 days were 
classified as asymptomatic.

All patients were examined through CT (first-line modality—as 
soon as possible after the onset of symptoms or within 30 days of 
recruitment from the neurosonology laboratory for asymptomatic 
patients) and MRI within 7 days following the CT examination.

2.3 Computed tomography

All patients were examined by a standard multidetector CT 
angiography (CTA) of carotid and brain arteries using various 
machines, with an intravenous iodine contrast agent Iomeron® 400 
(Bracco Imaging, Milan, Italy) or Ultravist® 370 (Bayer HealthCare 
Pharmaceuticals LLC, Berlin, Germany) administered with 
50–100-mL doses. Multiplanar axial plane reconstructions (<1-mm 
slices) and sagittal and coronal maximum intensity projection 
reconstructions (3–8 mm) were assessed with a uniform window 
width and center of 700 and 200 Hounsfield units (HU), respectively.

Carotid artery stenosis severity was measured based on the North 
American Symptomatic Carotid Endarterectomy Trial (NASCET) 
criteria (18). Plaque morphology was analyzed using density 
measurement of individual characteristics in HU. Characteristics were 
classified as lipid (<60 HU), fibrous (60–130 HU), or calcified (>130 
HU) based on voxel-level measurements within regions of interest 
(2–10 pixels per region, covering a minimum of three plaque slices) 
(19). For overall plaque evaluation (lipid, fibrous, or calcified), the 
predominant characteristic had to occur in >50% plaque area. 
Calcifications were divided according to size into spotty (<3 mm in 
length/width) or large (>3 mm) (20). Additionally, smooth (no 
irregularities), irregular (minor surface changes), or ulcerated (>1 mm 
deep excavation in at least two planes) plaque surface was evaluated (19).

2.4 Magnetic resonance imaging

Carotid MRI examination protocol was conducted on different 
1.5-Tesla machines with head/neck coil, consisting of the following 
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sequences: Fat-suppressed T1-weighted_TSE [turbo spin echo; echo 
time (TE) 19 ms, repetition time (TR) 600 ms; slice thickness 3 mm; 
duration 3:50 min], 3D_T1-weighted_MPRAGE (magnetization 
prepared rapid gradient echo; TE 4 ms; TR 670 ms; inversion time 
370 ms; 1 mm; 5:49 min), T2-weighted TSE (TE 72 ms; TR 4,580 ms; 
4 mm; 3:18 min), and 3D_TOF (time of flight; TE 7 ms; TR 24 ms; 
1 mm; 2:43 min).

In the individual plaque characteristics evaluation, differently 
distributed intraplaque signal intensities were visually compared to 
sternocleidomastoid muscle intensity. Overall, plaque composition 
was evaluated by the modified American Heart Association (AHA) 
plaque classification for MRI (IV–V, VI: unstable soft plaques; VII, 
VIII: stable hard plaques) (21). Lipid-rich necrotic core (LRNC; TOF: 
isointense, T1-w: isointense to hyperintense, T2-w: hypointense) and 
LRNC covering fibrous cap status (thick, thin, or ruptured) were 
assessed (22). Finally, intraplaque hemorrhage (IPH) categorized into 
acute (<1 week old; T1-w, TOF: hyperintense, T2-w: iso to 
hypointense) and subacute (1–6 weeks old; T1-w, T2-w, TOF: 
hyperintense) was evaluated.

All mentioned CT- and MRI-derived carotid plaque characteristics 
were evaluated by a single experienced rater (D.P.), blinded to patient 
medical history and CT results, based on cited major studies and 
expert consensus (5).

2.5 Demographic and clinical patient data

From the patient anamnestic data, the following atherosclerosis-
related risk factors were retrieved: sex, age, arterial hypertension, 
diabetes mellitus, hyperlipidemia, bronchial asthma, chronic 
obstructive pulmonary disease, nephropathy, hyperuricemia, cancer, 
smoking, and alcohol. Daily cigarette and alcohol consumption (1 
unit/20 g of alcohol = beer 0.5 L or wine 0.2 L or spirits 0.05 L) in the 
last year was also recorded. Moreover, data regarding atherosclerosis-
related diseases (coronary heart disease, myocardial infarction, atrial 
fibrillation, and peripheral arterial disease) and cerebrovascular events 
(ischemic stroke, hemorrhagic stroke, transient ischemic attack, 
amaurosis fugax, and retinal infarction) were collected.

2.6 Statistical analysis

A statistical study power calculation was carried out. For a 
medium effect size w = 0.3, the significance level 0.05, and the test 
power 0.8  in the 2 × 2 table, the total sample size equal to 88 was 
sufficient. To account for the low quality of data in 25%, 110 patients 
were considered as a minimum to be recruited for the study.

The baseline characteristics were analyzed using descriptive 
statistics. Continuous data were noted as means ± standard deviations 
(SD) or medians and ranges. The categorical data were presented as 
numbers and percentages. Baseline differences between asymptomatic 
and symptomatic arteries were analyzed using the χ2-test of 
independence for contingency tables for categorical variables. If the 
assumption that the value of the expected cell counts is 5, or more, in 
at least 80% of the cells, and no cell has an expected count less than 
one was violated, Fisher’s exact test was used. Differences in 
continuous variables were assessed using the independent samples’ 
t-test for normally distributed variables or Mann–Whitney test 

otherwise. The normality of data was evaluated through the Shapiro–
Wilk test.

Associations between the mentioned risk factors and calcification 
type (spotty, large) were assessed using the χ2-test, Fisher’s exact test, 
t-test, or Mann–Whitney test. Relationships between calcification type 
(spotty and large) and other plaque characteristics (CT: plaque type, 
plaque surface; MRI: AHA type, LRNC, fibrous cap, IPH), side of 
stenosis (ipsilateral, contralateral) were assessed using χ2-test or 
Fisher’s exact test with post hoc comparisons using adjusted residuals, 
or Mann–Whitney test. Associations of calcification type (no 
calcification, spotty, and large) and atherosclerosis-related diseases 
were evaluated by a χ2-test or Fisher’s exact test with post hoc 
comparisons using adjusted residuals. Detailed tables of the adjusted 
residuals are provided in Supplementary Tables S1–S5).

As a direct outcome, relationships between the calcification type 
(none, spotty, and large) and mentioned cerebrovascular events were 
assessed via the χ2-test or Fisher’s exact test where appropriate. 
Statistical significance was assumed at a p-value of <0.05. All analyses 
were performed using IBM-SPSS Statistics version 29.0 for Windows.

3 Results

3.1 Study population

Overall, 132 patients (264 carotid bifurcations) were examined 
by CT and MRI from 1,863 patients enrolled in the ANTIQUE 
study. Only a symptomatic artery was included from symptomatic 
patients (not the contralateral asymptomatic artery) to reach 
homogeneous groups of plaques. From 264 carotid arteries, 177 
plaques (68.9% male individuals; median age of 69 years) were 
included, and 87 arteries were excluded due to asymptomatic artery 
of symptomatic patient (60 cases), carotid occlusion (17 cases), and 
carotid stenosis <30% (10 cases). The study flow chart is presented 
in Figure 1. Symptomatic patients were significantly more likely to 
consume alcohol in larger quantities, have hyperuricemia, and have 
less frequent coronary heart disease compared to asymptomatic 
patients. All the details about the study population are available in 
Table 1.

3.2 Risk factors for the presence of 
different calcification types

When assessing the risk factors regarding absent calcification, 
spotty calcifications were associated with male sex [crude odds ratio 
(OR) 3.72, 95% confidence interval (CI) 1.06–13.05; 
Supplementary Table S6]. For large calcification, logistic regression 
analysis showed that these patients were significantly older (crude 
OR 1.60 per 5 years of age, 95% CI 1.20–2.13; 
Supplementary Table S6). Detailed results are presented in 
Supplementary Table S6 (crude ORs) and Supplementary Table S7 
(adjusted ORs).

In comparison between only spotty and large calcifications, men 
had more often spotty calcifications, while women had more frequent 
large calcifications (p = 0.015). Higher age was associated with the 
presence of large calcification (p = 0.027). Smoking in more significant 
quantities was significantly related to spotty calcification (p = 0.014). 
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At the same time, alcohol consumption, along with other 
atherosclerosis risk factors and chronic diseases, did not differ 
between the groups. All the above-mentioned results are presented in 
Table 2.

3.3 Calcification and other plaque 
characteristics

The calcification type was not related to the degree of ipsilateral 
stenosis but to contralateral stenosis. Large calcification was associated 
with a high degree of stenosis contralaterally (p = 0.044). Lipid plaque 
on CT was associated with spotty calcification (p < 0.001), while a 
large calcification was associated with calcified plaque (p < 0.001). 
Spotty calcification showed a non-significant trend toward more 
frequent presence in plaques with irregular surfaces than large 
calcification (p = 0.16). No significant associations were found 
between calcification patterns and MRI-derived carotid plaque 
characteristics. However, non-significant trends suggested spotty 
calcifications were more common in AHA type IV–V plaques (LRNC 

surrounded by fibrous tissue with possible calcification), plaques with 
LRNC, and thin or ruptured fibrous cap; and large calcification were 
more common in AHA type VII (calcified plaque) and subacute 
IPH. Detailed results on CT- and MRI-derived plaque characteristics 
are presented in Table 3.

3.4 Calcification in atherosclerosis-related 
diseases and cerebrovascular events

No significant relation was found between ipsilateral 
cerebrovascular events and the presence or type of calcification. 
However, atrial fibrillation was significantly more often in patients 
with large calcification within carotid plaque (p = 0.015, overall test, 
Table  4). Large calcifications were associated with coronary heart 
disease (crude OR 4.07, 95% CI 1.15–14.44; Supplementary Table S8) 
and atrial fibrillation (p = 0.025; Supplementary Table S8) compared 
to no calcification. Further results are provided in Table 4, and crude 
and adjusted OR values are given in the Supplementary Tables S8, S9, 
respectively.

FIGURE 1

Study flowchart diagram.
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TABLE 1  Baseline patient characteristics.

Patients included 
in the study 

(n = 132)

Arteries included in analyses

All arteries 
(n = 177)

Only asymptomatic 
arteries (n = 117)

Only symptomatic 
arteries (n = 60)

Male sex 93 (70.5) 122 (68.9) 79 (67.5) 43 (71.7)

Patient age (years); median 

(range) in years
68.5 (44–88) 69 (44–88) 69 (49–86) 68 (44–88)

Atherosclerosis risk factors

Hypertension 121 (91.7) 164 (92.7) 111 (94.9) 53 (88.3)

Diabetes mellitus 55 (41.7) 75 (42.4) 50 (42.7) 25 (41.7)

Hyperlipidemia 98 (74.2) 133 (75.1) 86 (73.5) 47 (78.3)

Smoking 44 (33.3) 59 (33.3) 35 (29.9) 24 (40)

Number of cigarettes per day; 

median (range)
0 (0–40) 0 (0–40) 0 (0–40) 0 (0–40)

Alcohol 51 (38.6) 62 (35.0) 28 (23.9) 34 (56.7)a

Number of alcohol units per 

day; median (range)
0.0 (0–3) 0.0 (0–3) 0.0 (0–3) 1.0 (0–3)c

Chronic diseases

Bronchial asthma 2 (1.5) 3 (1.7) 2 (1.7) 1 (1.7)

Obstructive pulmonary 

disease
10 (7.6) 13 (7.3) 10 (8.5) 3 (5)

Nephropathy 9 (6.8) 10 (5.6) 5 (4.3) 5 (8.3)

Hyperuricemia 11 (8.3) 14 (7.9) 4 (3.4) 10 (16.7)b

Cancer 4 (3) 4 (2.3) 1 (0.9) 3 (5)

Atherosclerosis-related diseases

Coronary heart disease 40 (30.3) 56 (31.6) 43 (36.8) 13 (21.7)a

Myocardial infarction 24 (18.2) 32 (18.1) 25 (21.4) 7 (11.7)

Atrial fibrillation 18 (13.6) 24 (13.6) 15 (12.8) 9 (15)

Peripheral arterial disease 20 (15.2) 25 (14.1) 16 (13.7) 9 (15)

Cerebrovascular events

Ischemic stroke 36 (27.3) 37 (20.9) 0 (0) 37 (61.7)a

Hemorrhagic stroke 1 (0.8) 2 (1.1) 0 (0) 2 (3.3)

Transient ischemic attack 13 (9.8) 15 (8.5) 0 (0) 15 (25)a

Amaurosis fugax 4 (3) 4 (2.3) 0 (0) 4 (6.7)b

Retinal infarction 2 (1.5) 2 (1.1) 0 (0) 2 (3.3)

Extracranial calcifications

Absent 24 (13.6) 13 (11.1) 11 (18.3)

Spotty only 36 (20.3) 25 (21.4) 11 (18.3)

Large 117 (66.1) 79 (67.5) 38 (63.3)

Plaque type

Lipid 89 (50.3) 53 (45.3) 36 (60)

Fibrous 47 (26.6) 35 (29.9) 12 (20)

Calcified 41 (23.2) 29 (24.8) 12 (20)

All data are presented as “n (%),” if not specified differently.
aSignificant difference between asymptomatic and symptomatic patients at the level p < 0.05, analyzed using the χ2-test.
bSignificant difference between asymptomatic and symptomatic patients at the level p < 0.05, analyzed using Fisher’s exact test.
cSignificant difference between asymptomatic and symptomatic patients at the level p < 0.05, analyzed using the Mann–Whitney test.
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4 Discussion

We could not find an association between the presence and type 
of plaque calcifications and ipsilateral ischemic events (stroke, TIA, 
amaurosis fugax, or retinal infarction) in our study population. The 
presence of large carotid plaque calcification represented the highest 
association with coronary heart disease and atrial fibrillation, followed 
by higher patient age and female sex. On the other hand, spotty 
calcifications were associated with male sex, higher levels of smoking, 
and a greater prevalence in soft plaques.

While some evidence suggested a positive relationship between 
extracranial carotid calcification and ipsilateral ischemic events (10–
12), particularly for spotty calcifications (23, 24), our study results are 
in agreement with the two recent comprehensive meta-analyses that 
identified negative association between carotid calcification and stroke 
(risk ratio: 0.75, OR: 0.5) (7, 9). In the interventional treatment, a large 
recent study found that a greater severity of carotid calcification (>50% 
of the plaque volume) is a significant risk factor for in-hospital stroke 
or death in 21,860 patients undergoing carotid artery stenting (25). 
Another study differentiated two calcium salts using dispersive X-ray 
microanalysis (hydroxyapatite, presented more in unstable plaque, and 
calcium oxalate, associated with plaque stability), suggesting different 
implications on plaque biology and subsequent stability (26). The 
distinction between these two types of calcium salts could have 
important clinical implications and can be investigated using dual-
energy CT scanners to identify differences in tissue chemical 

composition (27, 28). Large calcifications relate with a gene 
transcriptional profile typical for stable plaques, repressed 
inflammation, and extracellular matrix organization (29). However, the 
association between spotty calcification and inflammatory markers, 
plaque instability, and accelerated disease progression should be noted 
(30). Finally, macrophages crucially control the mineralization process 
from microcalcification to bone-like tissue but are having accelerative 
and decelerative association with calcification. The bilateral interaction 
remains rather unexplored and should be studied (31).

Our study results proved the association between large 
calcification and generalized atherosclerosis manifested in a strong 
relationship with coronary heart disease, atrial fibrillation, and the 
severity of contralateral carotid stenosis. Two large population-based 
studies found the same results regarding the presence and extent of 
calcification and the risk of coronary heart disease (32, 33). However, 
a large meta-analysis revealed less prevalent carotid calcification in 
non-significant compared with significant coronary artery disease and 
moderate relation between carotid and coronary stenosis (34). 
Atherosclerosis affects both carotid and coronary systems, although 
not always in an identical phenotypic manner, so examination of 
carotid arteries is beneficial whenever coronary artery disease is 
suspected, mainly when large carotid calcification is detected. Despite 
the findings that patients with carotid atherosclerosis are at high risk 
of developing atrial fibrillation or both diseases coexist (35–37), no 
evidence of an association between carotid calcification and atrial 
fibrillation was found, which has been investigated in our study. Our 

TABLE 2  Risk factors for extracranial carotid plaque calcifications.

Absent (n = 24) Spotty calcification only 
(n = 36)

Large calcification 
(n = 117)

p-valuea

Male sex 15 (62.5) 31 (86.1) 76 (65) 0.015b

Patient age; mean ± SD (years) 65.0 ± 9.8 68.2 ± 7.9 71.5 ± 7.9 0.027d

Atherosclerosis risk factors

Hypertension 21 (87.5) 35 (97.2) 108 (92.3) 0.45c

Diabetes mellitus 8 (33.3) 15 (41.7) 52 (44.4) 0.77b

Hyperlipidemia 17 (70.8) 30 (80.3) 86 (73.5) 0.23b

Smoking 7 (29.2) 18 (50) 34 (29.1) 0.020b

Number of cigarettes per day; 

median (range)
0 (0–30) 2.5 (0–40) 0 (0–30) 0.014e

Alcohol 9 (37.5) 11 (30.6) 42 (35.9) 0.56b

Number of alcohol units per 

day; median (range)
0.0 (0–2) 0.0 (0–2) 0.0 (0–3) 0.41e

Chronic disease

Bronchial asthma 1 (4.2) 1 (2.8) 1 (0.9) 0.42e

Obstructive pulmonary disease 1 (4.2) 5 (13.9) 7 (6) 0.16c

Nephropathy 1 (4.2) 1 (2.8) 8 (6.8) 0.69c

Hyperuricemia 3 (12.5) 4 (11.1) 7 (6) 0.29c

Cancer 2 (8.3) 0 (0) 2 (1.7) >0.99c

All data are presented as “n (%),” if not specified differently.
ap-values are given for a difference between the groups with spotty calcifications only and large calcifications.
bAnalyzed using the χ2-test.
cAnalyzed using Fisher’s exact test where appropriate.
dAnalyzed using the t-test.
eAnalyzed using the Mann–Whitney test.
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positive risk association between large carotid calcification and atrial 
fibrillation was found only in a recent study but significantly after 
adjustments only in coronary plaques (38). The higher degree of 
contralateral carotid stenosis associated with carotid calcification 
demonstrated the presence of generalized atherosclerosis. However, 
possible overestimation of stenosis severity on CTA due to blooming 
artifacts from large carotid calcification should be considered (39).

Active smoking or exposure to cigarette smoke is responsible 
as a catalyst for the formation and development of unstable 
plaques (40). In particular, carotid calcification is promoted by 
nicotine (41), but no study was found with evidence of the 
influence of smoking on spotty calcification. In our study, only 
spotty calcifications were more often in smokers in greater 
quantities. The coexistence of spotty carotid calcifications and soft 
plaque characteristics (LRNC and IPH) (42, 43), typically 
associated with ipsilateral cerebrovascular events, is suggested in 
studies even in non-stenosing plaques (24). We  found only an 
association between spotty calcification and lipid plaque but not 
with IPH or ischemic events. Although spotty calcifications might 
be at risk of stroke, meta-analyses confirmed that other carotid 
plaque characteristics are more associated with stroke (44, 45). 
Male sex was associated with carotid calcification compared to 
women (46), particularly when looking only at spotty calcification, 
similar to our study results (47). Calcification growth is mainly 
associated with increasing age, calcification load, hypertension, or 
smoking over time (48).

Additionally, extracranial calcification was associated with 
diabetes mellitus, hypertension (49), or hyperlipidemia (50) in 
previous studies, but we did not find any difference between them 
and spotty and large calcification in our study. Regarding the 
treatment of carotid calcification, high-density lipoprotein 
appears to benefit vascular calcification (51). Beneficial changes 
in serum calcification markers were found after ipsilateral carotid 
artery stenting with intensive lipid-lowering therapy to enhance 
contralateral carotid plaque stability in patients with bilateral 
carotid stenosis (52). However, no preferred treatment for 
extracranial carotid calcification is recommended by current 
guidelines. To our knowledge, this is the first study that complexly 
investigated the type of CT-derived extracranial carotid 
calcification associated with multiple atherosclerotic-related 
systematic diseases. Large or spotty plaque calcifications were not 
associated with cerebrovascular events, suggesting an association 
with plaque stability with no need for acute treatment. However, 
larger prospective studies and future efforts are warranted to study 
the effect of, particularly, carotid spotty calcifications on 
stroke risk.

This study has the following limitations. (1) Approximately 90% 
of all patients enrolled in the ANTIQUE study were excluded from 
our analysis due to stenosis degree >30% or mostly because of missing 
CT and MRI examination together because ultrasound was the first-
line imaging modality accompanied by CT if needed or before invasive 
intervention (MRI underwent only a minority of patients). (2) 
Laboratory markers were not measured, as our primary focus was on 
the imaging-based presence of calcification and its relation with 
various atherosclerosis and stroke risk factors and other diseases. (3) 
Various CT and MRI devices were utilized due to the multicenter 
study design, which could introduce minor discrepancies in evaluating 
calcification and other plaque characteristics. Diagnostic modalities 
were calibrated using five plaques in vitro to minimize this variation.

5 Conclusion

Although the presence and type of extracranial carotid plaque 
calcification were not related to ipsilateral ischemic events, large 

TABLE 3  Extracranial carotid plaque calcification and other plaque 
characteristics evaluated on computed tomography (CT) and magnetic 
resonance imaging (MRI).

Spotty 
calcification 
only (n = 36)

Large 
calcification 

(n = 117)

p-value

Computed tomography

Severity of 

ipsilateral 

stenosis; 

mean ± SD %

76.1 ± 15.1 71.4 ± 17.9 0.14c

Severity of 

contralateral 

stenosis; 

mean ± SD %

54.4 ± 33.3 68.0 ± 26.3 0.044c

Plaque type

 � Lipid 26 (72.2) 47 (40.2)

<0.001a � Fibrous 9 (25) 30 (25.6)

 � Calcified 1 (2.8) 40 (34.2)

Surface

 � Smooth 0 (0) 5 (4.3)

0.16b � Irregular 18 (50) 46 (39.3)

 � Ulcerated 18 (50) 66 (56.4)

Magnetic resonance imaging

AHA plaque type

 � IV–V 17 (56.7) 34 (37)

0.076a
 � VI 9 (30) 28 (30.4)

 � VII 1 (3.3) 21 (22.8)

 � VIII 3 (10) 9 (9.8)

Lipid-rich 

necrotic core
26 (86.7) 60 (73.2) 0.13a

Intraplaque hemorrhage

 � Acute 4 (12.5) 12 (11.1)
0.38b

 � Subacute 1 (3.1) 11 (10.2)

Fibrous cap

 � Thick 10 (33.3) 27 (32.1)

0.16a � Thin 7 (23.3) 12 (14.3)

 � Ruptured 7 (23.3) 11 (13.1)

All data are presented as “n (%),” if not specified differently. Note that in 17 plaques assessed 
through CT, the MRI quality was insufficient to analyze those plaques on MRI, resulting in 
199 plaques evaluated by MRI and 216 by CT.
aAnalyzed using a χ2-test.
bAnalyzed using Fisher’s exact test.
cAnalyzed using the Mann–Whitney test.
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calcification was strongly associated with coronary heart disease and 
atrial fibrillation. Higher levels of smoking was responsible for the 
presence of spotty calcification associated with male sex and the 
occurrence of soft plaques.
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TABLE 4  Extracranial carotid plaque calcification in association with atherosclerosis-related diseases and cerebrovascular events.

Absent (n = 24) Spotty calcification only 
(n = 36)

Large calcification 
(n = 117)

p-valuea

Coronary heart disease 3 (12.5) 10 (27.8) 43 (36.8) 0.057b

Myocardial infarction 2 (8.3) 6 (16.7) 24 (20.5) 0.36b

Atrial fibrillation 0 (0) 4 (11.1) 20 (17.1) 0.015c

Peripheral arterial disease 2 (8.3) 8 (22.2) 15 (12.8) 0.25b

Ischemic stroke 6 (25) 9 (25) 22 (18.8) 0.63b

Hemorrhagic stroke 0 (0) 0 (0) 2 (1.7) 0.43c

Transient ischemic attack 4 (16.7) 2 (5.6) 9 (7.7) 0.33c

Amaurosis fugax 1 (4.2) 0 (0) 3 (2.6) 0.37c

Retinal infarction 0 (0) 0 (0) 2 (1.7) 0.43c

All data are presented as “n (%)” if not specified differently. The numbers in the table do not sum to column totals, as patients could have had multiple conditions.
ap-value for the overall test.
bAnalyzed using a χ2-test.
cAnalyzed using Fisher’s exact test.
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Pipeline embolization 
device-assisted angioplasty for 
type II proatlantal intersegmental 
artery dissection inducing an 
embolic shower
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Hospital, Yancheng, China

The proatlantal intersegmental artery (PIA) plays a crucial role in blood supply 
during embryonic development, and failure of its closure can lead to the persistent 
proatlantal intersegmental artery (PPIA), which may result in pathological 
changes such as dissection and aneurysms. We present a case of a patient 
with right type II PPIA dissection inducing an embolic shower, accompanied 
by left vertebral artery hypoplasia (VAH). Digital subtraction angiography (DSA) 
and high-resolution magnetic resonance vascular wall imaging (HRMR-VWI) 
showed the aneurysmal dilation of the false lumen in the right PPIA dissection 
and indicated the high risk of mural thrombosis and dislodgement. Following 
a comprehensive evaluation of the patient’s condition, we conducted pipeline 
embolization device (PED)-assisted angioplasty to treat the PPIA dissection and 
mitigate the risk of recurrent strokes. Postoperative follow-up indicated that 
the patient recovered smoothly, with no signs of recurrent stroke. This case 
highlights the critical need for prompt recognition and intervention in cases 
of rare vascular variants. The flow diverter implantation can greatly enhance 
patient outcomes and lower the risk of recurrent strokes, offering important 
insights for the clinical management of similar cases. Additional research is 
necessary to investigate the underlying pathological mechanisms of PPIA 
and its connection to stroke occurrence, which will help refine treatment 
strategies in the future.

KEYWORDS

proatlantal intersegmental artery, pipeline embolization device, dissection, stroke, 
angioplasty, HR-VWI

Introduction

In embryonic development, the primitive carotid-vertebrobasilar anastomoses facilitate 
blood flow from the primitive internal carotid artery (ICA) to the posterior circulation. There 
are four types of carotid-vertebrobasilar anastomoses: the primitive trigeminal, otic, 
hypoglossal and proatlantal intersegmental artery (PIA) (1). The regression of these 
anastomotic channels begins as the embryo reaches a size of 7 to 12 mm, with the PIA being 
the last one (1, 2). In cases where anastomotic closure does not occur, these vessels persist into 
adulthood (2, 3). Among these, the persistent proatlantal intersegmental artery (PPIA) 
represents the rarest type of persistent carotid-vertebrobasilar anastomosis in adults, often 
identified incidentally (4). The PPIA originates from the common carotid artery (CCA), 
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FIGURE 1

Digital subtraction angiography (DSA) of this patient with right persistent proatlantal intersegmental artery (PPIA) dissection. (A) Right common carotid 
artery (CCA) injection revealed a prominent type II PPIA branching off from the right external carotid artery (ECA). This artery connected to the 
ipsilateral vertebral artery (VA), supplying basilar artery (BA). (B) Right subclavian artery (SA) injection showed no origin of the right VA from the SA. 
(C) Left SA injection revealed left VA hypoplasia with no visualization of BA. (D,E) Right ECA injection revealed a right PPIA with dissection aneurysmal 
dilatated, which connected to the right VA to supply the BA.

external carotid artery (ECA), or ICA, and penetrates the cranial 
cavity via the foramen magnum of the occipital bone, converging with 
the V3 segment of the vertebral artery (VA). There are two primary 
variants of PPIA: type I, originating from the ICA, and type II, more 
frequently arising from the ECA (5, 6).

This report examines a rare instance of a right type II PPIA 
dissection, which repeatedly inducing an embolic shower (ES). 
We determined that the ES were caused by thrombus dislodgement 
from the false lumen of the PPIA dissection. Given the ineffectiveness 
of pharmacological treatment, we performed PPIA angioplasty using 
a pipeline embolization device (PED), aiming to prevent ES caused by 
thrombus dislodgement.

Case

A 53-year-old male with a history of paroxysmal dizziness and 
hypertension experienced a sudden exacerbation of dizziness and 
onset of left hemiparesis. Initial evaluation at a local hospital showed 
stable vital signs and unremarkable laboratory findings. Cranial 
magnetic resonance imaging (MRI) revealed an acute infarction in 
the right brainstem and right cerebellum, with encephalomalacia in 

the right thalamus (Supplementary Figures S1A–C). Magnetic 
resonance angiography (MRA) indicated left VA agenesis 
(Supplementary Figure S1D). The patient was diagnosed with 
multiple lacunar strokes (LS) and received conservative treatment 
including dual antiplatelet therapy (aspirin and clopidogrel), lipid-
lowering agents (statins), and neuroprotective medications 
(edaravone and N-butylphthalide). Computed tomography (CT) 
1 week later revealed a hypodense lesion in the right cerebellum 
(Supplementary Figure S1E).

Despite ongoing antiplatelet therapy, 2.5 months after initial 
stroke the patient developed symptoms of stroke, including 
bilateral blurred vision, facial asymmetry, and unsteady gait, after 
waking from a nap on the morning. CT scan revealed lacunar 
infarction and encephalomalacia in the right cerebellum and right 
thalamus (Supplementary Figures S2A,B). MRI suggested new 
infarct foci in the right cerebellum and left thalamus, alongside 
the earlier encephalomalacia in the right cerebellum and right 
brainstem (Supplementary Figures S2D–F). MRA once again 
confirmed left VA agenesis (Supplementary Figure S2C). Given 
the contraindication for intravenous thrombolysis owing to the 
patient’s recent stroke history, the treating team opted to continue 
with conservative management.
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Following stabilization, the patient was transferred to our 
institution 19 days after second stroke to elucidate the etiology of 
recurrent LS and to improve his prognosis. A digital subtraction 
angiogram (DSA) was performed to assess the cerebral vasculature. 
The DSA revealed a branch from the right external carotid artery 
(ECA) merging into the ipsilateral vertebral artery (VA), absent VA 
branching from the right subclavian artery, and left vertebral artery 
hypoplasia (VAH) with no significant abnormalities in the remaining 
vessels (Figures 1A–E). Further review of DSA led to the diagnosis of 
a right type II persistent proatlantal intersegmental artery (PPIA) 
dissection with an aneurysmal dilatation in the false lumen, alongside 
left VAH. After ruling out atrial fibrillation by 24-h ambulatory 
electrocardiographic monitoring, we  hypothesized that mural 
thrombus dislodgement from the PPIA dissection was the probable 
cause of the ES observed in this patient.

To confirm this diagnosis, high-resolution magnetic resonance 
imaging (HRMRI) was performed, which indicated infarct and 
encephalomalacia in the right cerebellum, right brainstem, and right 
thalamus (Figures 2A–C). MRA corroborated the presence of a right 
type II PPIA dissection with contralateral VAH, consistent with DSA 

findings (Figure 2D). High-resolution magnetic resonance vascular 
wall imaging (HRMR-VWI) displayed a subacute intramural 
hematoma and intimal flap thickening in the dissection’s false lumen, 
which were considered high-risk factors for mural thrombosis and 
dislodgement (Figures 2E,F).

Given the patient’s history and HRMR-VWI results, we concluded 
that addressing the right type II PPIA dissection could mitigate the 
risk of the recurrent ES. Given that the true lumen stenosis at the site 
of the dissection is not severe, we  chose to perform simple PED 
implantation for PPIA angioplasty. The PED (4.5 mm × 30 mm; Flex, 
Medtronic, United States) was successfully delivered and deployed 
under the guidance of the microcatheter (Phenom27, Medtronic, 
United States) and microwire (Synchro2, Stryker, United States) after 
the guide catheter (Envoy, Codman, United States) was in position 
(Figure 3E). Postoperatively, three-dimensional reconstructions of the 
DSA images demonstrated the PED effectively reshaping the PPIA, 
isolating the aneurysmal dilated false lumen, and securing posterior 
circulation blood flow (Figures 3A–I).

One month post-procedure, the patient reported no new 
symptoms. A repeat cranial CTA demonstrated significant reduction 

FIGURE 2

High-resolution magnetic resonance imaging (HRMRI) of the head and neck in this patient with right persistent proatlantal intersegmental artery (PPIA) 
dissection. (A–C) Diffusion weighted imaging (DWI) revealed multiple infarct foci and encephalomalacia across various cerebral regions: the right 
cerebellum (A), right brainstem (B) and right thalamus (C). (D) MRA suggested an dissection aneurysmal dilatation of the right PPIA, which is the 
exclusive supplier to the vertebrobasilar artery system. (E,F) High-resolution magnetic resonance vascular wall imaging (HRMR-VWI). (E) Sagittal 
contrast-enhanced T2-weighted imaging revealed eccentric thickening of the PPIA arterial wall accompanied by a crescent-shaped subacute-phase 
intramural hematoma (arrow) in the thickened lumen wall. The detailed sagittal profile of the PPIA, highlighted in a red frame, is positioned in the upper 
right corner. (F) Coronal contrast-enhanced T1-weighted imaging revealed inhomogeneous thickening of the intimal flap of the PPIA dissection 
(arrow), suggesting irregular attachment of fibrous tissue. The detailed coronal profile of the PPIA, encased in a red frame, is situated in the upper right 
corner. Both coronal and sagittal HRMR-VWI indicated a right PPIA dissection aneurysmal dilatation and a high risk of mural thrombosis and 
dislodgement.
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FIGURE 3

Digital subtraction angiography (DSA) and three-dimensional (3D) reconstruction of persistent proatlantal intersegmental artery (PPIA) angioplasty with 
flow diverter implantation of this patient with right PPIA dissection. (A–C) Comparative DSA images of the right PPIA dissection (arrow) pre-
implantation (A) and post-implantation (B,C) of pipeline embolization device (PED). (D) DSA-based 3D reconstruction of PPIA dissection prior to PED 
implantation. (E) Release of PED. (F–I) Post-implantation DSA-based 3D reconstruction of PED in the PPIA highlighted the improvements in vascular 
architecture and the therapeutic benefits of the intervention.

in the aneurysmal dilatation of the right PPIA dissection and optimal 
remodeling of the PPIA, compared to previous images (Figure 4).

Discussion

By the end of the sixth week of gestation, when the embryo has 
developed to 12–14 mm, the PIA physiologically regresses completely, 
leading to the formation of the VA (7). However, poor anastomotic 
closure can result in persistent patency of the primitive PIA, 
transforming into a PPIA, and hypoplasia of the ipsilateral VA (3). 
Embryologically, VA is constructed through the fusion of multiple 

longitudinal anastomoses between neighboring cervical 
intersegmental arteries (8). Difficulty in fusion between any of the 
segments of the VA under the influence of various congenital or 
acquired factors that impede VA formation could also lead to 
persistent opening of the ipsilateral PIA to ensure posterior circulatory 
blood supply. A notable case report by Zuflacht et al. (9) illustrated a 
unique unilateral type II PPIA functioning in conjunction with the 
ipsilateral CCA to sustain whole brain blood flow.

PPIA has been implicated in a variety of vascular pathologies, 
albeit infrequently. It has been reported that type I PPIA could cause 
top of the basilar syndrome (10), pontine infarction (11), cerebral 
watershed and posterior circulation infarction (12). Type II PPIA 
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could cause dizziness and syncope (13), transient hand weakness and 
amaurosis fugax when occurring with severe ICA stenosis (14). The 
linkage between PPIA, VAH, and intracranial aneurysms has been 
extensively documented, highlighting a prevalent association with 
vascular anomalies (5, 15, 16).

In the present case, diagnostic exclusions were made for 
atherosclerotic and cardioembolic cerebral infarction based on an 
infarct diameter of less than 1.5 cm, absence of atherosclerotic 
vulnerable plaques and vessels with no greater than 50% stenosis on 
DSA and HRMR-VWI, as well as the absence of atrial fibrillation in 
this patient (17). A right type II PPIA with a dissection characterized 
by aneurysmal dilatation of the false lumen, elevating the risk of mural 
thrombosis. This pathology was identified as the primary cause of the 
ES in a 53-year-old patient. Given the high-risk nature of the 
pathology, characterized by subacute intramural hematoma and 
extensive fibrous tissue attachment to the intimal flap, and the 
ineffectiveness of conservative drug treatments, we preferred PED 
implantation to avoid thrombus formation and dislodgement. 
Follow-up neurologic function assessment, CTA and CT Perfusion 
(CTP) showed that the PED effectively maintained posterior 
circulation, and the patient experienced no recurrent ischemic strokes.

This case is the first documented instance of a type II PPIA 
dissection leading to an ES. The type II PPIA dissection was initially 
identified on DSA as originating from the ECA and displayed 
aneurysmal dilatation changes before traversing the occipital foramen. 
Although intravascular imaging techniques such as MRA and DSA 
are adept at visualizing lumen morphology, they fall short in detecting 
dissection lesions with normal vessel diameters or fully delineating the 
aneurysmal wall. The unique capabilities of HRMR-VWI allowed for 
the detection of likely thrombosis formation and dislodgement within 
the dissected PPIA, confirming its role as the causative lesion.

In general, early and precise identification of vascular variants 
like PPIA is crucial in clarifying the clinical diagnoses, underlying 

etiologies, and therapeutic options. While PPIA is often linked with 
serious posterior circulation strokes and other cerebrovascular 
pathologies, it can also facilitate critical interventions such as stent 
thrombectomy (18), angioplasty (19), and reflux compensation (20), 
occasionally proving to be lifesaving.
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FIGURE 4

Computed tomography angiography (CTA) of the patient 1 month 
after persistent proatlantal inter-segmental artery (PPIA) angioplasty 
with flow diverter implantation. Right PPIA (arrow) aneurysmal 
dilatation was significantly improved compared to the pre-
intervention images.
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Small-vessel-disease-induced 
white matter damage in occipital 
lobe epilepsy
Jinseung Kim 1†, Dong Ah Lee 2†, Ho-Joon Lee 3 and 
Kang Min Park 2*
1 Department of Family Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, 
Republic of Korea, 2 Department of Neurology, Haeundae Paik Hospital, Inje University College of 
Medicine, Busan, Republic of Korea, 3 Department of Radiology, Haeundae Paik Hospital, Inje 
University College of Medicine, Busan, Republic of Korea

Background: Peak width of skeletonized mean diffusivity (PSMD) is a novel 
marker of small vessel disease. This study aimed to investigate the presence of 
small vessel disease in patients with occipital lobe epilepsy (OLE) using PSMD.

Methods: We enrolled 27 patients newly diagnosed with OLE and included 29 
healthy controls. The age and sex of the patients and controls were comparable. 
Diffusion tensor imaging (DTI) was performed using a 3 T MRI scanner. 
We measured the PSMD based on DTI in several steps, including preprocessing, 
skeletonization, application of a custom mask, and histogram analysis, using 
the FSL program. We compared PSMD between patients with OLE and healthy 
controls. Additionally, we performed a correlation analysis between PSMD and 
clinical factors in patients with OLE.

Results: Our findings revealed that the patients with OLE exhibited higher PSMD 
compared to healthy controls (2.459 vs. 2.079 × 10−4 mm2/s, p < 0.001). In 
addition, PSMD positively correlated with age (r = 0.412, p = 0.032). However, 
the PSMD of the patients with OLE was not associated with other clinical factors 
such as age at seizure onset and duration of epilepsy.

Conclusion: We demonstrated that patients with OLE had a higher PSMD than 
healthy controls, indicating evidence of small vessel disease in patients with 
OLE. This finding also highlights the potential of PSMD as a marker for detecting 
small vessel diseases in epileptic disorders.

KEYWORDS

epilepsy, diffusion tensor imaging, cerebral small vessel diseases, white matter, 
neuroimaging

1 Introduction

Occipital lobe epilepsy (OLE) is a relatively uncommon type of focal epilepsy, originating 
in the occipital lobe and accounting for approximately 2–8% of surgical cases (1). It can result 
from structural brain abnormalities, such as tumors, strokes, or hemorrhages. However, it also 
occurs as part of self-limited focal epilepsies in childhood, including self-limited epilepsy with 
autonomic seizures or childhood occipital visual epilepsy (2).

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) sequence that 
measures the diffusion of water molecules in tissues. Traditionally, DTI has been utilized in 
epilepsy surgery to define surgical margins using tractography (3). It also provides valuable insight 
into the microstructural integrity of white matter tracts, which cannot be  visualized with 

OPEN ACCESS

EDITED BY

Jieqiong Wang,  
Chinese Academy of Sciences, China

REVIEWED BY

Jin-Ming Zhang,  
University of Texas Health Science Center at 
Houston, United States
Hongmiao Yu,  
Nationwide Children’s Hospital, United States

*CORRESPONDENCE

Kang Min Park  
 smilepkm@hanmail.net

†These authors have contributed equally to 
this work

RECEIVED 03 December 2024
ACCEPTED 29 January 2025
PUBLISHED 11 February 2025

CITATION

Kim J, Lee DA, Lee H-J and Park KM (2025) 
Small-vessel-disease-induced white matter 
damage in occipital lobe epilepsy.
Front. Neurol. 16:1538598.
doi: 10.3389/fneur.2025.1538598

COPYRIGHT

© 2025 Kim, Lee, Lee and Park. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  11 February 2025
DOI  10.3389/fneur.2025.1538598

43

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1538598&domain=pdf&date_stamp=2025-02-11
https://www.frontiersin.org/articles/10.3389/fneur.2025.1538598/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1538598/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1538598/full
mailto:smilepkm@hanmail.net
https://doi.org/10.3389/fneur.2025.1538598
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1538598


Kim et al.� 10.3389/fneur.2025.1538598

Frontiers in Neurology 02 frontiersin.org

conventional brain MRI (4, 5). DTI can facilitate calculations of fractional 
anisotropy (FA) and mean diffusivity (MD) values, which serve as 
indicators of white matter microstructure. In patients with focal epilepsy, 
FA values generally increase, while MD values tend to decrease compared 
to healthy controls, with more pronounced changes observed on the 
ipsilateral side than the contralateral side (6). In addition, DTI can 
be used to investigate the structural connectivity of the brain. In patients 
with OLE, global integration is reduced, and alterations in local networks 
beyond the occipital lobe have been observed (7). Recently, DTI has been 
used to investigate the glymphatic system function of the brain, with 
dysfunction in this system identified in patients with OLE (8). Therefore, 
DTI is increasingly being used in both research and clinical practice, 
particularly for patients with epilepsy, including those with OLE.

Peak width of skeletonized mean diffusivity (PSMD) is a recently 
proposed neuroimaging marker derived from DTI that serves as an 
objective index for quantifying white matter damage caused by small 
vessel disease (9, 10). PSMD can be fully automatically calculated in a 
short time and has shown a stronger correlation with cognitive 
impairment than conventional DTI measures such as FA or MD. As a 
result, active research using PSMD has been conducted in various 
neurological diseases, such as multiple sclerosis, stroke, cerebral amyloid 
angiopathy, and dementia (11–15). However, white matter damage due 
to small vessel disease in patients with epilepsy, particularly OLE, has 
never been studied using PSMD.

Therefore, in this study, we aimed to investigate the degree of white 
matter damage due to small vessel disease in patients with OLE 
compared to healthy controls using PSMD. Additionally, we investigated 
the volumes of white matter hypointensities, which is another MRI 
marker for white matter damage based on T1-weighted imaging, in 
patients with OLE and compared them with healthy controls. 
We hypothesized that white matter damage in patients with OLE might 
be associated with small vessel disease than in the healthy control group.

2 Methods

2.1 Participants

This study was approved by the Institutional Review Board, and 
informed consent was obtained from all participants. We enrolled 27 

patients newly diagnosed with OLE according to the ILAE criteria 
(16, 17). Only patients whose ictal semiology clearly indicated OLE 
and whose electroencephalography showed ictal or interictal 
epileptiform discharges originating in the occipital lobe were 
included in this study. DTI and T1-weighted MRI was performed at 
the time of OLE diagnosis in the drug-naïve state. We excluded the 
following participants from this study: (1) those with structural 
lesions on brain MRI that could influence the results of imaging 
analysis, (2) those with any neurological diseases other than OLE, (3) 
those with risk factors for small vessel disease, such as diabetes, 
hypertension, or dyslipidemia, or (4) those who did not consent to 
participate in the study. We also enrolled 29 age- and sex-matched 
healthy controls who had not been diagnosed with any medical or 
neurological diseases. The healthy controls underwent DTI and 
T1-weighted MRI, and their brain MRI revealed no structural lesions. 
Like the patients, the healthy controls did not have the risk factors 
associated with small vessel disease.

2.2 DTI scan

All DTI and T1-weighted MRI scans were performed using a 
3.0 T MRI scanner (AchievaTx; Phillips Healthcare, Best, Netherlands) 
equipped with a 32-channel head coil for both patients with OLE and 
healthy controls. The DTI scans utilized spin-echo single-shot echo-
planar pulse sequences with 32 different diffusion directions 
(repetition time/echo time, 8,620/85 ms; flip angle, 90°; slice thickness, 
2.25 mm, acquisition matrix, 120 × 120; field of view, 240 × 240 mm2; 
and b-value, 1,000 s/mm2). The three-dimensional T1-weighted 
images were scanned using the following parameters: inversion 
time = 1,300 ms, repetition time/echo time = 8.6/3.96 ms, flip 
angle = 8°, and isotropic voxel size = 1 mm3.

2.3 Obtaining the PSMD

Figure 1 shows the process for obtaining PSMD from DTI 
using the FSL program installed on a Linux system, involving a 
total of four steps (9, 10). The first step preprocesses the DTI, 
which includes motion and eddy current correction, brain 

FIGURE 1

The process for obtaining PSMD: we perform DTI acquisition on the participants, followed by preprocessing steps including motion and eddy current 
correction, brain extraction, and tensor fitting (A). Subsequently, we conducted skeletonization, which included normalization, projection onto the 
skeleton template, and the application of a custom mask (B). Finally, we performed histogram analysis and calculated PSMD based on the difference 
between the 95th and 5th percentiles (C). PSMD, peak width of skeletonized mean diffusivity.
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extraction, and tensor fitting. The second step is skeletonization, 
which involves tract-based spatial statistics obtained by registering 
an FA map to the common space and projecting it onto the 
skeleton. The same transformation matrices were used for MD 
data to obtain a skeletonized MD map. The third step was the 
application of a custom mask using the template thresholded at an 
FA value of 0.3 and a custom-made mask. The fourth step was 
histogram analysis, in which the width of the histogram (the 
difference between 95 and 5) derived from the MD values of all 
voxels included in the skeleton was obtained.

2.4 White matter hypointensities 
segmentation

To segment white matter hypointensities from T1-weighted 
images and acquire the volumes of white matter hypointensities, 
we used WMH-SynthSeg (18), which provides segmentation for white 
matter hyper- or hypointensities from scans of any resolution and 
contrast without retraining, available as module in the development 
version of Freesurfer.

2.5 Statistical analysis

An independent sample t-test was used to compare age and 
PSMD values between patients with OLE and healthy controls. The 
Mann–Whitney test was used to compare the volumes of white 
matter hypointensities between the groups. The chi-square test was 
used to compare sex differences between the groups. Pearson’s 
correlation test was used for correlation analysis. The performance 
of the classification was evaluated using the receiver operating 
characteristic (ROC) curve analysis. Statistical significance was 
considered when the p-value was less at p < 0.05. All statistical 
analyses were performed using MedCalc® Statistical Software 
version 22.009 (MedCalc Software Ltd., Ostend, Belgium; https://
www.medcalc.org; 2023).

3 Results

3.1 Demographic and clinical 
characteristics of participants

Table 1 shows the demographic data in the participants and 
clinical characteristics of patients with OLE. There were no 
significant differences in age or sex between the OLE patients and 
the healthy control group.

3.2 Difference in the PSMD between the 
groups

There was a significant difference in the PSMD between patients 
with OLE and healthy controls. The patients with OLE exhibited 
higher PSMD compared to healthy controls (2.459 vs. 
2.079 × 10−4 mm2/s, p < 0.001) (Figure 2).

3.3 Difference in the volumes of white 
matter hypointensities between the groups

The volumes of white matter hypointensities were higher in 
patients with OLE than that in the healthy controls [1309.6 
(interquartile range, 1165.5–2793.2) vs. 1141.0 (interquartile range, 
874.1–1298.9) mm3, p = 0.011].

3.4 ROC curve analysis

ROC curve analysis using PSMD showed an area under curve 
(AUC) of 0.747 in distinguishing the patients with OLE and healthy 
controls (p < 0.001). Additionally, ROC curve analysis using the 
volumes of white matter hypointensities revealed an AUC of 0.699 in 
distinguishing the groups (p = 0.005). Although the AUC using PSMD 
was higher than that of the volumes of white matter hypointensities, 
there were no significant difference in the comparison of AUC 
between PSMD and the volumes of white matter hypointensities in 
distinguishing the groups (p = 0.602) (Figure 3).

3.5 Correlation between the PSMD and 
clinical characteristics

In patients with OLE, a positive correlation was observed between 
PSMD and age (r = 0.412, p = 0.032) (Figure 4). However, PSMD was 
not associated with other clinical factors, such as age at seizure onset 

TABLE 1  Demographic data in participants and clinical characteristics of 
patients with OLE.

Patients 
with JME 
(N = 27)

Healthy 
controls 
(N = 29)

p-value

Demographic data

Age, years (SD) 34.2 (15.6) 32.8 (4.1) 0.627

Men, N (%) 12 (44.4) 11 (37.9) 0.623

Clinical data

Age of seizure 

onset, years (SD)
16.5 (15.9)

Duration of 

epilepsy, months 

(SD)

156.0 (154.4)

Number of 

seizures prior to 

treatment

5 (2.3)

Initial seizure semiology

Visual symptoms, 

N (%)
18 (66.6)

Oculomotor 

symptoms, N (%)
8 (29.6)

Others, N (%) 1 (3.7)

PSMD, peak width of skeletonized mean diffusivity; OLE, occipital lobe epilepsy; SD, 
standard deviation.
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(r = 0.082, p = 0.695), duration of epilepsy (r = −0.127, p = 0.545), and 
number of seizures prior to treatment (r = 0.058, p = 0.770).

4 Discussion

This study is the first to demonstrate that PSMD is higher in 
patients with OLE than in healthy controls, indicating the presence 
of white matter damage due to small vessel disease in these patients. 
In addition, in patients with OLE, PSMD increases proportionally 
with age, confirming that small vessel disease progresses further 
with aging.

This study demonstrates the presence of white matter damage due 
to small vessel disease in patients with OLE, which aligns with 
previous studies. Maxwell et al. (19) investigated the presence of small 
vessel disease in 105 patients with epilepsy, particularly late-onset 
epilepsy, and 105 healthy controls. They used periventricular and 
subcortical white matter lesions as indicators of small vessel disease. 
They found that small vessel disease was present in 49.5% of patients 
with epilepsy, compared to 32.3% of the healthy controls, concluding 
that small vessel disease is more prevalent in individuals with epilepsy. 
Hanby et  al. (19) analyzed white matter hyperintensities with 
automatic quantitation in patients with focal epilepsy and healthy 
controls, revealing higher white matter hyperintensities volume in 
patients with epilepsy (1,340 mm3) compared to controls (514 mm3) 
(20). Another study examined the correlation between the location of 
white matter lesions and the frequency of clinical symptoms such as 
stroke, seizure, vertigo, and gait apraxia. They reported that seizures 
were more frequent when lesions were located in the parieto-occipital 
lobe (21). This finding suggests an association between OLE and small 
vessel disease, similar to the present study. However, a previous study 
reported that epilepsy associated with leukoaraiosis was most closely 
related to the temporal lobe; therefore, further research is needed (22).

The cross-sectional design of this study makes it challenging to 
establish a cause-and-effect relationship between small vessel disease 
and OLE. Thus, two primary hypotheses were considered. The first 
hypothesis for the small vessel disease-OLE relationship is that small 
vessel disease may cause OLE. Previous animal experiments 
demonstrated in hypertensive rats that small vessel disease induced 
focal epilepsy more often than generalized epilepsy (23). It was 
observed that early treatment with enalapril could reduce the incidence 
of epilepsy in these animals, suggesting a role for small vessel disease in 
epileptogenesis (23). Additionally, studies on humans have 
demonstrated that hypertension is an independent risk factor for 
epilepsy (24, 25). Patients with hypertension are approximately twice as 
likely to develop epilepsy compared to those without, with those having 
uncontrolled hypertension being up to 10 times more likely to develop 
epilepsy (24, 25). Small vessel disease can cause endothelial dysfunction 
and blood-brain barrier leakage, leading to extravasation of serum 
proteins and inflammation, which may contribute to epileptogenesis. 

FIGURE 2

Difference in the PSMD between patients with OLE and healthy 
controls. The PSMD was higher in the OLE group than in the healthy 
control group (2.459 vs. 2.079 × 10−4 mm2/s, p < 0.001). PSMD, peak 
width of skeletonized mean diffusivity; OLE, occipital lobe epilepsy. 
*p < 0.05.

FIGURE 3

ROC curve analysis. ROC curve analysis using PSMD and the 
volumes of white matter hypointensities shows an area under curve 
(AUC) of 0.747 and 0.699, respectively, in distinguishing the patients 
with OLE and healthy controls. Although the AUC using PSMD is 
higher than that of the volumes of white matter hypointensities, 
there are no significant difference in the comparison of AUC 
between PSMD and the volumes of white matter hypointensities in 
distinguishing the groups (p = 0.602). PSMD, peak width of 
skeletonized mean diffusivity; WMH, the volumes of white matter 
hypointensities.

FIGURE 4

Correlation analysis between age and PSMD in patients with OLE. 
PSMD positively correlated with age (r = 0.412, p = 0.032). PSMD, 
peak width of skeletonized mean diffusivity; OLE, occipital lobe 
epilepsy.
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Diffuse cerebral microangiopathy can impair cerebral perfusion, 
leading to epileptogenesis via neurovascular uncoupling (26, 27).

Another hypothesis is that small vessel disease is caused by seizures 
that occur in patients with OLE. Recurrent seizures have shown to 
cause depolarization of pericytic mitochondria and subsequent 
vasoconstriction, resulting in small vessel disease, which is associated 
with impaired neurovascular coupling and increased blood-brain 
barrier permeability (28). Arteriole vasoconstriction, mediated by 
cyclooxygenase-2 and L-type calcium channels, plays an important 
role in hypoperfusion/hypoxia resulting from recurrent seizures (29). 
Furthermore, while the cerebral cortex is primarily involved in 
epileptic seizures, secondary changes in the cerebral white matter, 
including major association, commissural, and projection fibers, are 
well-documented. These changes are correlated with age of seizure 
onset and duration of epilepsy (30–32) and maybe induced by multiple 
mechanisms, including excitotoxicity with excessive glutamate release, 
inflammation response by microglia and astrocytes, oxidative stress by 
reactive oxygen species, and blood-brain barrier disruption (30–32).

We also confirmed that white matter damage due to small vessel 
disease worsened with age in patients with OLE. Several factors 
contribute to this worsening with age: endothelial dysfunction, 
atherosclerosis, increased reactive oxygen species, and chronic 
low-grade inflammation. The endothelium is located inside the blood 
vessels, and with aging, its function declines, making it difficult to 
maintain the integrity of the blood vessels and reducing its ability to 
regulate blood flow (33). Atherosclerosis is caused by the development 
of plaques in both large and small blood vessels. This plaque buildup 
impedes blood flow, increases vessel rigidity, and reduces perfusion 
(34). The increase in reactive oxygen species with age causes injury to 
the blood vessel walls (35). Finally, as we  age, chronic low-grade 
inflammation occurs, which increases vessel stiffness and plaque 
formation, resulting in the destruction of the vascular endothelium 
(36). Through this study, we  confirmed that small vessel disease 
worsens with age in patients with OLE, even in the absence of vascular 
risk factors, such as hypertension, diabetes, or dyslipidemia.

This study is the first to demonstrate white matter damage due to 
small vessel disease in patients with OLE. However, it has some 
limitations. The sample size, i.e., the number of patients enrolled in this 
study, was relatively small due to the rarity of OLE and the exclusion of 
patients with structural lesions that could affect DTI analysis. 
Additionally, to exclude the influence of anti-seizure medications on DTI 
measurements, only patients with their first diagnosis of epilepsy at the 
time of DTI imaging were enrolled. Another limitation of this study is 
the cross-sectional design, which did not allow us to establish a cause-
and-effect relationship between small vessel disease and OLE. The study 
was conducted at a center specializing in epilepsy disorders; hence, the 
results cannot be generalized to all patients with epilepsy. In addition, the 
results were limited to OLE; therefore, further research with a larger 
sample size is needed for other focal epilepsy or generalized epilepsy. 
Lastly, we could not analyze the volumes of white matter hyperintensities, 
since some datasets lacked fluid attenuated inversion recovery images. 
Instead of the volumes of white matter hyperintensities, we analyzed the 
volumes of white matter hypointensites, which is another MRI marker 
for white matter damage based on T1-weighted imaging. Although the 
volumes of white matter hyperintensities are more accurate and widely 
used to assess white matter damage, they have strong correlation with the 
volumes of white matter hypointensites.

5 Conclusion

We demonstrated that patients with OLE had a higher PSMD 
than healthy controls, indicating the presence of small vessel 
disease in patients with OLE. This finding also highlights the 
potential of PSMD as a marker for detecting small vessel disease 
in epilepsy.
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Exploring the potential of 
machine learning and magnetic 
resonance imaging in early stroke 
diagnosis: a bibliometric analysis 
(2004–2023)
Jian-cheng Lou , Xiao-fen Yu , Jian-jun Ying , Da-qiao Song  and 
Wen-hua Xiong *

Yiwu Hospital of Traditional Chinese Medicine, Yiwu, China

Objective: To examine the focal areas of research in the early diagnosis of 
stroke through machine learning identification of magnetic resonance imaging 
characteristics from 2004 to 2023.

Methods: Data were gathered from the Science Citation Index-Expanded (SCI-E) 
within the Web of Science Core Collection (WoSCC). Utilizing CiteSpace 6.2.R6, 
a thorough analysis was conducted, encompassing publications, authors, cited 
authors, countries, institutions, cited journals, references, and keywords. This 
investigation covered the period from 2004 to 2023, with the data retrieval 
completed on December 1, 2023, in a single day.

Results: In total, 395 articles were incorporated into the analysis. Prior to 2015, 
the annual publication count was under 10, but a significant surge in publications 
was observed post-2015. Institutions and authors from the USA and China have 
established themselves as mature academic entities on a global scale, forging 
extensive collaborative networks with other institutions. High-impact journals in 
this field predominantly feature in top-tier publications, indicating a consensus 
in the medical community on the application of machine learning for early 
stroke diagnosis. “deep learning,” “magnetic resonance imaging,” and “stroke” 
emerged as the most attention-gathering keywords among researchers. The 
development in this field is marked by a coexisting pattern of interdisciplinary 
integration and refinement within major disciplinary branches.

Conclusion: The application of machine learning in the early prediction and 
personalized medical plans for stroke patients using neuroimaging characteristics 
offers significant value. The most notable research hotspots currently are the 
optimal selection of neural imaging markers and the most suitable machine 
learning algorithm models.

KEYWORDS

stroke, machine learning, magnetic resonance imaging, bibliometric analysis, WoSCC

Introduction

Stroke is an acute cerebrovascular disorder, precipitates enduring cerebral damage, 
disability, and even mortality upon its onset (1–3). Studies have identified it as the second 
leading cause of death worldwide (4). Notably, 11% of stroke survivors experience a recurrence 
within a year, and 39% within a decade (5). Generally, strokes arise either from blood flow 
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obstruction (ischemic strokes, constituting 87%) or intracerebral 
hemorrhage (hemorrhagic strokes, accounting for 10%) (6, 7). 
Regardless of the type, prompt medical intervention is crucial, as early 
diagnosis and treatment significantly influence the outcome.

Magnetic resonance imaging (MRI) stands as the gold index in 
stroke diagnosis (8–10), boasting high temporal and spatial resolution 
capabilities that enable meticulous observation of subtle cerebral 
vascular changes (11, 12). Moreover, the analytical methods derived 
from multimodal MRI data facilitate a nuanced identification of 
cerebral structural and functional network regulations (13, 14). 
Hence, the objective visualization tools provided by MRI technology 
are instrumental in the early diagnosis of stroke. However, many 
patients fail to adhere to medical advice for regular MRI follow-ups, 
leading to acute stroke episodes (15, 16). Consequently, there’s an 
urgent need in the medical field for a sophisticated neuroimaging 
algorithm capable of early stroke prediction, mitigating the issue of 
clinical data scarcity due to patient non-compliance.

Machine learning (ML) algorithms can automate the interpretation 
of abnormal imaging patterns, accelerating the diagnostic process in 
urgent scenarios (17–19). They integrate data from diverse sources, 
including MRI, clinical records, and vital signs, to assess an individual’s 
future stroke risk. Additionally, ML enhances the precision and 
sensitivity of stroke diagnosis, particularly in early stages, by learning 
from extensive datasets (20). Deep learning, a subset of ML, represents 
one of the most advanced and specialized approaches within the 
broader ML framework. While ML encompasses a wide range of 
algorithms, deep learning focuses on neural network architectures 
capable of automatically extracting high-level features from complex 
data. In stroke diagnosis, deep learning has garnered significant 
attention due to its exceptional performance in processing MRI data, 
particularly for identifying subtle imaging markers of early stroke. 
Consequently, the bibliometric analysis in this study focuses on ML as 
the overarching framework, while acknowledging deep learning as a 
key contributor to advancements in this field. In recent years, ML has 
been increasingly applied to early stroke detection, with its reliability 
validated by authoritative multicentric randomized controlled trials 
(RCTs) (21) and meta-analysis (22) of high evidentiary value. However, 
the field of academic collaboration networks, developmental trends, 
and research frontiers in using ML for early stroke diagnosis through 
MRI feature recognition still lacks extensive bibliometric research.

CiteSpace software, a visualization tool, qualitatively and 
quantitatively elucidates the interconnected contributions of authors, 
regions, institutions, and their collaboration networks (23). Its most 
notable attribute is the insight into research hotspots and frontier 
areas, along with predictions on specific field’s future development 
trajectories. Compared to traditional literature reviews and meta-
analyses, the bibliometric analysis facilitated by CiteSpace offers a 
more profound and insightful perspective (24–26). This study aims to 
utilize CiteSpace to comprehensively search the WoSCC for relevant 
literature from the past two decades, conducting a bibliometric 
analysis on core authors, their collaboration networks, journals, 

countries, and affiliated academic institutions. This will deepen our 
understanding of the frontiers and developmental trends in the early 
diagnosis of stroke using ML to identify MRI characteristics.

Materials and methods

Data sources and search strategy

Data sources
The data for this study were sourced from the Science Citation 

Index-Expanded (SCI-E) within the Web of Science Core Collection 
(WoSCC), a citation-based database that provides detailed citation 
information and abstracts. This allows for the calculation of 
bibliometric indicators such as cited authors, journals, impact factors, 
h-indexes, and citation reports. WoSCC encompasses over 12,000 
high-quality academic journals spanning more than 250 disciplines, 
offering a comprehensive collection of interdisciplinary publications.

Compared to databases like PubMed, which focus primarily on 
biomedical literature and lack citation metrics, WoSCC offers superior 
bibliometric capabilities, including citation networks, co-authorship 
relationships, and keyword co-occurrence trends. Current 
bibliometric tools also do not support multi-database integration due 
to challenges such as inconsistent data formats and record duplication, 
complicating the research process and compromising data consistency.

While relying solely on WoSCC may exclude articles indexed in 
databases like PubMed or Scopus, which could contain relevant 
studies on machine learning and MRI in stroke diagnosis, WoSCC’s 
interdisciplinary coverage and citation-based metrics make it suitable 
for this study. A broad search strategy was applied to minimize dataset 
bias. Future research could explore multi-database integration as 
methodologies evolve to address associated challenges.

Search strategy
The data retrieval strategy encompassed key topics such as 

“stroke,” “magnetic resonance imaging,” and “machine learning” 
(Figure  1). This encompassed a nearly two-decade span of 
publications, from December 1, 2004, to December 1, 2023, with the 
retrieval completed within a single day, December 10, 2023. 
We imposed no geographical restrictions on the publishing countries, 
but required the language to be  English and the research type to 
be “article” (27–29). Details of the retrieval strategy and results are 
provided in Table 1. A total of 395 articles were identified, which, after 
importing into CiteSpace and eliminating duplicates, confirmed the 
absence of redundancies.

Analysis tool

The visualizations generated by CiteSpace 6.2.R6 typically include 
nodes, links, colors, clusters, and timelines. Nodes usually represent 
various research papers, authors, journals, or keywords, with the size 
of a node often indicating its significance or impact, such as citation 
frequency. Links denote the relationships between nodes, like citation 
or collaboration connections, with the thickness of a line possibly 
indicating the strength or frequency of the relationship. Different 
colors may represent different time periods or various research fields 
or categories. Clusters, composed of closely connected nodes, signify 

Abbreviations: MRI, Magnetic resonance imaging; ML, Machine learning; RCTs, 

Randomized controlled trials; WOSCC, Web of Science Core Collection; SCI-E, 

Science Citation Index-Expanded; ASL, Arterial spin labeling; DWI, Diffusion 

weighted imaging; FC, Functional connectivity; CNNs, Convolutional neural 

networks; SVMs, Support vector machines; RFs, Random forests.
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specific research themes or areas, aiding in understanding the primary 
branches and trends within a research field. The timeline exhibits the 
evolution of keywords or themes over time. Interpreting these 
visualizations aids in uncovering hot topics, developmental trends, 
and relationships in research concerning the application of ML in the 
field of stroke.

The parameters used in CiteSpace 6.2.R6 were as follows: time 
slices covered the period from 2004 to 2023, with each slice 
representing 1 year. All terms were included, such as “title,” “abstract,” 
“author keywords,” and “keywords plus.” To enhance the clarity of the 
final visualizations and facilitate the observation of relationships 
between publications, we set the g-index’s k-value to 50 and employed 
the Pathfinder algorithm (30, 31).

Results

Annual publications

Figure 2 illustrates the annual publication trend in using ML 
to analyze MRI characteristics for the early diagnosis of stroke. It 

was observed that prior to 2015, the quantity of publications 
remained at a relatively low level, correlating significantly with the 
nascent phase of ML as an emerging discipline. From 2015 
onwards, there has been a substantial increase in publications, 
attributed to advancements in the computational capabilities of ML 
and the refinement of algorithmic architectures. These 
developments have shown promise in enhancing the accuracy of 
diagnosing stroke, its subtyping, and prognostic predictions (32). 
Our investigation revealed that in 2015, the U.S. Food and Drug 
Administration (FDA) approved several ML-based medical 
devices, such as RapidAI® and Viz.ai®, which have played a pivotal 
role in the early diagnosis and treatment decision-making of 
strokes. The trajectory of the trend line leads us to infer that in the 
next 5–10 years, a new peak in the volume of publications is likely 
to emerge.

In addition to describing publication trends, the correlation 
analysis highlights a moderate positive relationship between the 
emergence of machine learning and its application in stroke research. 
This result indicates that advancements in ML directly influenced its 
adoption in stroke diagnosis and treatment. For example, the spike in 
publications after 2015 aligns with the FDA approval of ML-based 

FIGURE 1

Map of literature screening process related to machine learning and MRI in early stroke diagnosis.
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FIGURE 2

Map of annual publications related to machine learning and MRI in early stroke diagnosis.

medical tools, such as RapidAI® and Viz.ai®, which are designed to 
enhance diagnostic workflows.

Analysis of authors

Figures 3 and Table 2 display the authorship information behind the 
395 published articles. Each node represents an author, with the 
connecting lines indicating collaborative relationships between them. 
The top  10 authors, in descending order, are: Castillo, Jose (9 
publications); Wang, Yongjun (9 publications); Jing, Jing (8 publications); 
Campos, Francisco (8 publications); Meng, Xia (7 publications); 
Iglesias-rey, Ramon (7 publications); Sobrino, Tomas (6 publications); 
Li, Zixiao (6 publications); Chen, Cheng (5 publications); Zhao, 
Xingquan (5 publications). It was observed that all of the top 10 authors 
hail from Spain and China. This pattern reflects the strong research 

infrastructure and significant investments in ML and medical research 
within these countries. For instance, Spain has long been recognized for 
its clinical stroke research expertise, while China has emerged as a leader 
in applying ML technologies to medical diagnostics due to its large 
patient datasets and growing interdisciplinary collaborations.

The collaboration network reveals that higher node degree 
correlates strongly with author centrality, suggesting that prominent 
authors often serve as key hubs in multi-center studies. For instance, 
Jose Castillo and Yongjun Wang exhibit significant influence in 
coordinating international collaborations, reflecting their pivotal roles 
in advancing research in this domain.

Analysis of countries

Figures 4 and Table 3 present the collaborative network among 
countries in this field of research, revealing a network comprising 
54 nodes and 267 edges. The top contributors by publication 
volume are the People’s Republic of China (136); USA (135); 
England (54); Germany (51); and Canada (34). However, a closer 
analysis reveals an interesting distinction between publication 
volume and centrality, which measures the influence of a country 
within the collaboration network. For example, while China leads 
in publication volume, its centrality is relatively low, indicating 
fewer collaborative connections with other nations compared to 
Germany (centrality: 0.24) and the USA (centrality: 0.14). This 
discrepancy suggests that while China and the USA dominate in 
output, Germany plays a more integrative role in fostering 
international collaborations. Such insights underline the 
importance of not only the quantity but also the quality and 
connectivity of research contributions in advancing the field.

In the country network, there is a strong positive correlation 
between publication volume and collaboration frequency, highlighting 
the synergy between research activity and international partnerships. 

TABLE 1  The topic search query.

Set Results Search query

#1 205,292
TS = ((stoke) OR (brain infarction) OR 

(cerebrovascular) OR (cerebral infarction))

#2 909,543

TS = ((machine learning) OR (deep learning) OR 

(artificial intelligence) OR (machine intelligence) OR 

(neural network) OR (natural language processing) 

OR (hybrid intelligent system) OR (CNN) OR 

(LSTM) OR (RNN))

#3 588,300
((Magnetic Resonance Imaging) OR (Neuroimaging) 

OR (MRI))

#4 449 #1 AND #2 AND #3

#5 395
#4 AND Article (Document Types) AND English 

(Languages)

Web of Science Core Collection (December 1 2004 to December 1, 2023).
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Interestingly, the correlation is weaker for centrality, indicating that 
publication volume does not always reflect the strategic importance of 
a country within the network. For instance, Germany, with a centrality 
of 0.24, leads in bridging interdisciplinary collaborations despite 
ranking fourth in publication volume.

Analysis of institutions

Figure  5 and Table  4 display the collaborative network of 
institutions, comprising 431 nodes and 1,709 edges. The top 10 
institutions in terms of publication volume are as follows: 
University of California System (33 publications); Harvard 
University (33 publications); Massachusetts General Hospital (23 

publications); Harvard Medical School (21 publications); Capital 
Medical University (20 publications); Chinese Academy of 
Sciences (18 publications); Chinese Academy of Medical 
Sciences—Peking Union Medical College (14 publications); 
Helmholtz Association (14 publications); Mayo Clinic (14 
publications); University of California Los Angeles (13 
publications). It was observed that academic institutions affiliated 
with the USA dominate the top 10 rankings. The interconnections 
between institutions across various countries highlight a 
significant network of collaborations, which is poised to further 
advance the discipline in this field.

Institutional collaboration analysis shows a moderate positive 
correlation between node degree and publication output. Institutions 
such as the University of California System and Harvard University, 

FIGURE 3

Map of authors related to machine learning and MRI in early stroke diagnosis.

TABLE 2  Top 10 authors related to machine learning and magnetic resonance imaging in early stroke diagnosis.

Rank Author Frequency Year Country

1 Castillo, Jose 9 2016 Spain

2 Wang, Yongjun 9 2022 People’s Republic of China

3 Jing, Jing 8 2022 People’s Republic of China

4 Campos, Francisco 8 2016 Spain

5 Meng, Xia 7 2022 People’s Republic of China

6 Iglesias-rey, Ramon 7 2016 Spain

7 Sobrino, Tomas 6 2016 Spain

8 Li, Zixiao 6 2022 People’s Republic of China

9 Chen, Cheng 5 2020 People’s Republic of China

10 Zhao, Xingquan 5 2022 People’s Republic of China
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which exhibit high node degrees, also demonstrate strong 
interconnectivity, fostering impactful collaborations that push the 
boundaries of ML applications in stroke research.

Analysis of cited journals

Figure  6 and Table  5 showcase the cited journal network, 
consisting of 838 nodes and 4,674 edges. The top 10 journals by 
citation frequency are: Stroke (248 citations); NeuroImage (215 
citations); Neurology (183 citations); PLoS One (145 citations); 
Brain (127 citations); Lancet Neurol (125 citations); J Cereb Blood 
Flow Metab (125 citations); Am J Neuroradiol (119 citations); Ann 
Neurol (117 citations); Hum Brain Mapp (109 citations). 
Additionally, journals with notable centrality (indicated by purple 
rings) include Ann NY Acad Sci (0.12); Am J Neuroradiol (0.11); 
Acta Neuropathol (0.11). These journals primarily cover 

neurology, neuroimaging, and computer science. For instance, 
Stroke has an impact factor of 8.3, with NeuroImage and Neurology 
also being top-tier journals in this field.

The journals Stroke and NeuroImage exhibit the highest 
normalized citation impact, indicating their influence in bridging 
neurology and imaging studies. Additionally, metrics such as h-index 
and Eigenfactor score were analyzed for the top-cited journals to 
further evaluate their academic impact. For instance, Stroke has an 
impact factor of 8.3 and an h-index of 150, showcasing its long-
standing relevance in stroke research. Similarly, NeuroImage 
demonstrates a significant h-index of 230, reflecting its importance 
in neuroimaging and machine learning studies. The cited journal 
analysis, complemented by impact metrics, highlights the interplay 
between foundational stroke research and emerging machine 
learning methodologies. This integrative approach provides robust 
evidence of the academic networks and key journals shaping this 
interdisciplinary field.

FIGURE 4

Map of countries related to machine learning and MRI in early stroke diagnosis.

TABLE 3  Top 10 frequency and centrality of countries related to machine learning and magnetic resonance imaging in early stroke diagnosis.

Rank Frequency Countries Rank Centrality Countries

1 136 People’s Republic of China 1 0.24 Germany

2 135 USA 2 0.19 India

3 54 England 3 0.15 England

4 51 Germany 4 0.15 Netherlands

5 34 Canada 5 0.15 Austria

6 27 Spain 6 0.14 USA

7 25 Australia 7 0.12 Czech Republic

8 20 South Korea 8 0.10 Switzerland

9 19 France 9 0.10 Saudi Arabia

10 18 Switzerland 10 0.07 Canada
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Keywords co-occurrence and citation 
burst analysis

Figure  7 and Table  6 depict the network graph of keywords, 
encompassing 690 nodes and 2,513 edges. The top 10 keywords are: 
deep learning (46 occurrences); machine learning (45 occurrences); 
brain (39 occurrences); magnetic resonance imaging (36 occurrences); 
stroke (31 occurrences); MRI (25 occurrences); functional 
connectivity (25 occurrences); risk (24 occurrences); ischemic stroke 
(24 occurrences); Alzheimer’s disease (23 occurrences). Analyzing the 
frequency and centrality of these keywords reveals that “deep 
learning,” “magnetic resonance imaging,” and “stroke” have emerged 
as prominent themes in this research area.

Figure 8 illustrates the top 20 keywords with the most robust 
citation bursts. The beginning and end of each burst are, 
respectively, marked as “Start” and “End,” with the increase in 
influence correlating with the rise in the “Strength” value. The 
pale blue region delineates the study period, while the red portion 
signifies the start and peak of the bursts. It was observed that 
“machine learning” exhibited the highest burst strength, reaching 
6.57. Furthermore, early attention to “functional MRI” and 
“diffusion tensor imaging” indicates that changes in brain 
structure and function had been applied in this field from an early 
stage. Mid-period keywords like “executive function” and “default 
mode network” experienced high burst rates, signifying 
researchers’ growing focus on the interconnections between deep 
brain networks. In later periods, the frequent emergence of terms 
such as “prediction,” “classification,” and “machine learning” 
underscores the extensive application of ML in recent years for the 
early diagnosis of stroke and the development of individualized 
treatment plans to prevent the high mortality associated with 
acute stroke incidents.

The co-occurrence network reveals a strong positive correlation 
between keyword centrality and burst strength. Keywords such as 
“deep learning” and “machine learning” not only occur frequently but 
also drive significant citation bursts, underscoring their pivotal roles 
in shaping the field. Additionally, the temporal analysis suggests that 
early bursts in keywords like “functional MRI” paved the way for 
mid-period focuses on “executive function” and later trends 
emphasizing “classification” and “prediction.”

Keywords timeline

Figure  9 presents the evolution and interconnections of 
keywords, arranged chronologically. The timeline extends from 

FIGURE 5

Map of institutions related to machine learning and MRI in early stroke diagnosis.

TABLE 4  Top 10 publications of institutions related to machine learning 
and magnetic resonance imaging in early stroke diagnosis.

Rank Frequency Year Institutions

1 33 2006 University of California System

2 33 2005 Harvard University

3 23 2005 Massachusetts General Hospital

4 21 2006 Harvard Medical School

5 20 2019 Capital Medical University

6 18 2011 Chinese Academy of Sciences

7 14 2022 Chinese Academy of Medical 

Sciences—Peking Union Medical 

College

8 14 2012 Helmholtz Association

9 14 2017 Mayo Clinic

10 13 2006 University of California Los Angeles
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left to right, delineating the emergence and disappearance of 
research keywords from 2004 to 2023. Additionally, the diagram 
clusters various themes. A total of nine clusters (#0 to #8) are 
depicted. The first cluster (#0), labeled “temporal consistency,” 
focuses on topics like deep learning, automated WMH detection, 
and amorphous object segmentation. The second cluster (#1), 
identified as “classification method,” concentrates on magnetic 
resonance imaging, cerebral blood flow, and related themes. The 
third cluster is marked as “functional connectivity strength,” 
highlighting areas such as intrinsic functional connectivity and 
graph theory analysis. The fourth cluster, labeled “final infarct 
volume,” focuses on chronic venous disease, peripheral artery 
disease, and similar subjects. The fifth cluster, named “rural-
urban disparities,” is centered around risk factors and 
minority health.

Cluster dependencies of reference

Figure  10 showcases the dependency relationships among 
clusters based on referenced literature. Areas coded in different 
colors represent distinct clusters of references, while arrows 
indicate the developmental relationships between these clusters. 
The convergence of arrows signifies the emergence of new 
disciplinary branches, while the merging of arrowheads indicates 
the integration of different disciplines. This is because the tail of 
an arrow represents the cutting edge of current knowledge, while 
the head points to the sources of foundational literature.

The developmental pattern in this field primarily exists in a dual 
form: the coexistence of interdisciplinary integration and the 
refinement of major disciplinary branches. A detailed analysis reveals 
several cutting-edge directions of interdisciplinary integration: 

FIGURE 6

Map of cited journals related to machine learning and MRI in early stroke diagnosis.

TABLE 5  Top 10 frequency and centrality of cited journals related to machine learning and magnetic resonance imaging in early stroke diagnosis.

Rank Frequency Cited journals Rank Centrality Cited journals

1 248 Stroke 1 0.12 Ann NY Acad Sci

2 215 NeuroImage 2 0.11 Am J Neuroradiol

3 183 Neurology 3 0.11 Acta Neuropathol

4 145 PLoS One 4 0.09 Ann Neurol

5 127 Brain 5 0.09 Acad Radiol

6 125 Lancet Neurol 6 0.09 IEEE Int Conf Neural 

Netw Proc

7 125 J Cereb Blood Flow Metab 7 0.08 Am J Cardiol

8 119 Am J Neuroradiol 8 0.07 IEEE Trans Med Imaging

9 117 Ann Neurol 9 0.07 Annu Rev Neurosci

10 109 Hum Brain Mapp 10 0.06 Arch Neurol
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Neuroimaging and machine learning: The integration of advanced 
imaging modalities such as diffusion tensor imaging and 
convolutional neural networks has enabled the development of 
automated lesion segmentation and early diagnostic models for 
ischemic stroke. This integration bridges computational algorithms 
and clinical radiology, advancing both fields. Neurology and 
bioinformatics: The use of bioinformatics tools in analyzing imaging 
markers has enhanced the understanding of the molecular 
underpinnings of stroke. For example, integrating genetic data with 

MRI-based phenotypes offers new insights into personalized 
therapeutic strategies. Clinical decision support systems and artificial 
intelligence: AI-driven CDSS, leveraging ML-based prognostic 
models, has facilitated real-time decision-making in stroke 
management, particularly in identifying optimal therapeutic 
windows. This interdisciplinary collaboration integrates medical 
informatics, neurology, and computer science. For instance, cluster 
#17 represents the fusion of neuroimaging and ML (clusters #0 and 
#10), while cluster #5 reflects the branching of ML applications into 

FIGURE 7

Map of keywords related to machine learning and MRI in early stroke diagnosis.

TABLE 6  Top 10 frequency and centrality of keywords related to machine learning and magnetic resonance imaging in early stroke diagnosis.

Rank Frequency Keywords Rank Centrality Keywords

1 46 deep learning 1 0.19 Alzheimer’s disease

2 45 machine learning 2 0.18 magnetic resonance imaging

3 39 brain 3 0.16 cerebrovascular disease

4 36 magnetic resonance 

imaging

4 0.15 brain

5 31 stroke 5 0.13 functional connectivity

6 25 MRI 6 0.11 functional MRI

7 25 functional connectivity 7 0.11 diffusion

8 24 risk 8 0.09 cerebral blood flow

9 24 ischemic stroke 9 0.09 Alzheimer’s disease

10 23 Alzheimer’s disease 10 0.09 functional magnetic 

resonance imaging

57

https://doi.org/10.3389/fneur.2025.1505533
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lou et al.� 10.3389/fneur.2025.1505533

Frontiers in Neurology 10 frontiersin.org

FIGURE 8

Top 20 keywords with the strongest citation bursts.

specific subdomains of neurology (clusters #1 and #3). These trends 
underscore the pivotal role of interdisciplinary integration in 
advancing the field of early stroke diagnosis.

Correlation analysis of the reference dependency network indicates 
a significant relationship between cluster size and the number of 
interdisciplinary connections. Larger clusters, such as #0 and #10, exhibit 
higher connectivity, reflecting their central roles in integrating 
neuroimaging and ML methodologies. This interdependency highlights 
the importance of large clusters in driving knowledge transfer and 
innovation across disciplinary boundaries.

Discussion

A bibliometric analysis was conducted using CiteSpace, focusing 
on the early diagnosis of stroke through ML identification of MRI 
characteristics from 2004 to 2023. This analysis encompassed the 
collaborative networks of core authors, affiliated institutions, 
countries, and journals. Comprehensive data were provided, 
highlighting the focal points and trends in the early diagnosis of stroke 
using ML to identify MRI characteristics.

General information

This study illustrates that over the past two decades, a total of 395 
publications have been released in the field of early stroke diagnosis 
using ML to identify characteristics in MRI. The findings show that 
prior to 2015, the annual number of publications was consistently 
below 10, reflecting the nascent stage of ML as an academic discipline. 
Since 2015, there has been a marked increase in publications, a 
development attributed to the enhanced computational capabilities of 
ML and the refinement of its algorithmic structures, demonstrating 
potential in improving the accuracy of stroke diagnosis, subtype 
classification, and prognostic prediction. The trend line suggests an 
anticipation of a new peak in publication volume within the next 
5–10 years.

An analysis of authors, countries, and their affiliated institutions 
with higher publication numbers reveals that institutions and authors 
from the USA and China have established mature academic 
communities on a global scale, forming extensive collaborative 
networks with other institutions. This indicates the reliance of ML on 
the technological level and talent reserves of a country. Notably, 
despite the lower volume of publications from less developed 
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countries, these nations may still experience high stroke 
incidence rates.

Through the analysis of interdependencies among clusters in 
references, it was found that the development pattern in the field of 
early stroke diagnosis using ML for MRI primarily exists in a form 

of coexistence between interdisciplinary integration and the 
refinement of major disciplinary branches. This unique 
characteristic is likely to promote resource integration, cross-
disciplinary idea exchange, and academic innovation within 
the field.

FIGURE 9

Map of keywords timeline related to machine learning and MRI in early stroke diagnosis.

FIGURE 10

Map of reference of cluster dependencies related to machine learning and MRI in early stroke diagnosis.
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In summary, ML as an emerging discipline, has shown 
immense value in early diagnosis of stroke through neuroimaging, 
medical efficiency, and personalized treatment, with a significant 
rise in publication volume in recent years. Based on the trends in 
annual publication volume and innovation in ML algorithms, 
significant advancements are expected in the next 5–10 years, 
ultimately aiming to provide precise medical services for 
stroke patients.

Research hotspots

Research hotspots in a field are encapsulated by keywords that 
represent the core content and central themes of studies within that 
domain. Techniques such as keyword co-occurrence analysis, keyword 
clustering, and keyword citation bursts enable the monitoring of 
various emerging trends in a given field. In the realm of using ML for 
early stroke diagnosis through the identification of MRI features, two 
primary research hotspots have emerged: the optimal selection of 
neural imaging markers and the most appropriate ML algorithm models.

Optimal selection of neural imaging 
markers

In the pursuit of the most effective neural imaging markers for 
stroke patients using MRI, researchers primarily focus on cerebral 
blood flow, brain structure, or brain function. From the perspective of 
cerebral blood flow, arterial spin labeling (ASL) is a predominant 
research method. For instance, Liu’s et al. (33) study indicates that the 
combination of ML and ASL can predict the outcomes of acute 
ischemic strokes by examining collateral circulation. Regarding brain 
structure, diffusion weighted imaging (DWI) often serves as the main 
analytical approach. Yu et al. (34) and Zhu et al. (35), for example, 
discovered that deep learning using DWI and clinical data is highly 
sensitive in predicting patients with low-perfusion strokes. From the 
aspect of brain function, the most valued approach is brain network 
analysis using functional connectivity (FC) from functional MRI. Li’s 
et al. (36) findings suggest that multispectral FC variations in brain 
regions are potential targets for differentiating stroke patients’ 
recovery and treatment processes. Lu et al. (37) demonstrated that 
acupuncture could modulate bilateral cerebral hemispheres through 
distinct targets, restoring abnormal FC and thus facilitating post-
stroke motor recovery. Moreover, many studies advocate the 
integration of multimodal MRI datasets as neural imaging markers, 
surpassing the predictive accuracy of early stroke onset compared to 
single-modality data (38–40).

Optimal machine learning algorithm 
models

ML algorithms are diverse and continually evolving, with 
researchers exploring various models for neuroimaging data from 
MRIs. Pérez Malla et al. (41) and Nishi et al. (42), for instance, regard 
convolutional neural networks (CNNs) as the most advanced method 
for early stroke prediction. Billot et al. (43) found that a combination 
of support vector machines (SVMs) and random forests (RFs) also 

exhibits commendable performance. Pinto et al. (44) proposed a fully 
automated deep learning approach encompassing both unsupervised 
and supervised learning, achieving satisfactory accuracy. Emerging 
deep learning techniques, such as deep neural networks (DNNs) and 
reinforcement learning (RL), are gaining traction due to their ability 
to automatically extract features from raw data and further improve 
model accuracy. These methods show substantial promise in 
enhancing early stroke detection by providing deeper, more nuanced 
insights into complex MRI data patterns. The introduction of these 
advanced techniques could lead to significant improvements in 
diagnostic accuracy, particularly in early-stage stroke diagnosis, where 
subtle changes in brain tissue are often challenging to detect.

Recent advancements in explainable AI (XAI) have also 
contributed to the interpretability of machine learning models, which 
is crucial in clinical settings. XAI approaches aim to provide transparent 
reasoning behind model predictions, enabling healthcare professionals 
to better understand and trust the automated results. Furthermore, 
multimodal approaches combining MRI with other data sources, such 
as genetic or clinical data, are gaining momentum. These methods 
harness the complementary strengths of different types of data to create 
more robust models that enhance diagnostic accuracy and prognostic 
prediction. By integrating various data types, multimodal systems can 
capture a more comprehensive view of the patient’s condition, 
improving decision-making in early stroke diagnosis.

The integration of ML with neuroimaging offers significant 
potential for bridging current gaps in early stroke diagnosis. While 
traditional methods rely on visual interpretation of MRI scans, ML 
techniques allow for the automated detection and quantification of 
subtle patterns that may be overlooked by human evaluators. The 
ability of ML algorithms to process large volumes of complex MRI 
data and generate predictive models can improve diagnostic 
accuracy, particularly in the early stages of stroke, when clinical 
symptoms may not yet be fully manifest. Furthermore, ML can help 
to identify imaging markers that correlate with stroke outcomes, 
offering personalized treatment options for patients. This 
integration is particularly promising in addressing the challenge of 
time-sensitive diagnoses, where rapid and accurate assessments can 
directly impact patient prognosis and recovery. As ML algorithms, 
including deep learning and multimodal approaches, continue to 
evolve, their capacity to enhance diagnostic workflows, reduce 
human error, and accelerate decision-making processes in clinical 
settings will be invaluable in overcoming the challenges of early 
stroke diagnosis.

Conclusion

The application of ML in the early diagnosis, prediction, and 
individualized medical plans for stroke patients using neuroimaging 
features offers immense value. This study specifically focused on the 
role of ML in early stroke detection and prediction by analyzing its 
capacity to identify subtle imaging markers and enhance diagnostic 
precision in the critical early stages. The most compelling current 
research hotspots are the optimal selection of neural imaging markers 
and the most suitable ML algorithm models for these purposes. In the 
future, researchers can continue to develop high-performance 
algorithms, further advancing early diagnosis and personalized 
treatment strategies in this scientific domain.

60

https://doi.org/10.3389/fneur.2025.1505533
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lou et al.� 10.3389/fneur.2025.1505533

Frontiers in Neurology 13 frontiersin.org

Limitations

This study is subject to several limitations. Firstly, it primarily 
relies on data accessible within the WOSCC database. CiteSpace is 
incapable of integrating data from varied databases or performing 
citation analysis on sources outside of WOSCC. Secondly, while 
CiteSpace proves invaluable in detecting and visualizing emerging 
trends, it does not delve into the underlying mechanisms of machine 
algorithm models in the application of identifying MRI features for 
early stroke diagnosis. Despite these constraints, we have successfully 
employed CiteSpace to illustrate the latest research trends in the 
application of machine algorithm models in the early diagnosis of 
stroke through the recognition of MRI characteristics.
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Background: Electroencephalography (EEG) has become an indispensable tool 
in stroke research for real-time monitoring of neural activity, prognosis prediction, 
and rehabilitation support. In recent decades, EEG applications in stroke research 
have expanded, particularly in areas like brain-computer interfaces (BCI) and 
neurofeedback for motor recovery. However, a comprehensive analysis of 
research trends in this domain is currently unavailable.

Methods: The study collected data from the Web of Science Core Collection 
database, selecting publications related to stroke and EEG from 2005 to 2024. 
Visual analysis tools such as VOSviewer and CiteSpace were utilized to build 
knowledge maps of the research field, analyzing the distribution of publications, 
authors, institutions, journals, and collaboration networks. Additionally, co-
occurrence, clustering, and burst detection of keywords were analyzed in detail.

Results: A total of 2,931 publications were identified, indicating a consistent 
increase in EEG research in stroke, with significant growth post-2017. The 
United States, China, and Germany emerged as the leading contributors, with 
high collaboration networks among Western institutions. Key research areas 
included signal processing advancements, EEG applications in seizure risk and 
consciousness disorder assessment, and EEG-driven rehabilitation techniques. 
Notably, recent studies have focused on integrating EEG with machine learning 
and multimodal data for more precise functional evaluations.

Conclusion: The findings reveal that EEG has evolved from a diagnostic tool 
to a therapeutic support platform in the context of stroke care. The advent of 
deep learning and multimodal integration has positioned EEG for expanded 
applications in personalized rehabilitation. It is recommended that future studies 
prioritize interdisciplinary collaboration and standardized EEG methodologies in 
order to facilitate clinical adoption and enhance translational potential in stroke 
management.
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1 Introduction

Stroke is a leading cause of disability and mortality worldwide, 
classified mainly into ischemic stroke and hemorrhagic stroke (1). 
Stroke results in localized or widespread neurological impairment, 
frequently accompanied by motor, cognitive (e.g., aphasia, executive 
dysfunction, and memory deficits), and swallowing dysfunctions (2, 
3). Specifically, cognitive impairments vary depending on the lesion 
location and severity, with common manifestations including 
visuospatial neglect (4) and attention disorder (5). These deficits not 
only undermine patients’ functional independence but also impose 
long-term challenges for rehabilitation and quality of life. With the 
ongoing trend of population aging, the incidence of stroke is expected 
to continue rising, placing an even heavier burden on healthcare 
systems globally (6, 7). Traditional stroke diagnosis and evaluation 
rely heavily on imaging techniques such as magnetic resonance 
imaging (MRI) and computed tomography (CT), which are highly 
sensitive and specific in displaying structural brain abnormalities, 
particularly in the acute phase (8, 9). Furthermore, functional scales 
such as the NIH Stroke Scale and the Fugl-Meyer Assessment are 
employed to quantify functional deficits (10, 11). However, these 
methods are primarily oriented toward the detection of structural 
changes and may prove inadequate for the real-time monitoring of 
functional dynamics in stroke patients. Functional MRI (fMRI) and 
positron emission tomography (PET) can be used to assess changes in 
brain function but are often limited by high costs, restricting broader 
application (12, 13). In contrast, EEG is a non-invasive tool for 
monitoring brain function. It provides high temporal resolution data 
on neural activity by recording the electrophysiological activity of the 
brain (14). Furthermore, EEG is a straightforward and cost-effective 
method of data collection. EEG is particularly advantageous in the 
diagnosis and evaluation of stroke, offering the dual benefit of real-
time monitoring of neurological changes in stroke patients and the 
identification of specific patterns of brain electrical activity through 
quantitative EEG (qEEG). This allows for the assessment of potential 
functional recovery and seizure risk (15). Post-stroke patients 
undergoing resting-state EEG often exhibit increased delta/theta 
power and decreased alpha/beta power, which correlate with motor 
and cognitive deficits. Functional connectivity analysis further reveals 
disrupted network topology in the affected hemisphere, reflecting 
impaired inter-regional communication (4, 16, 17). Post-stroke sleep 
architecture often shows reduced rapid-eye-movement sleep and 
increased sleep fragmentation, which correlates with poor recovery. 
Sleep spindles and slow-wave activity may serve as biomarkers for 
neuroplasticity (18, 19). In recent years, the application of EEG in 
stroke research has extended into advanced fields such as brain-
computer interfaces (BCI) and neurofeedback (20, 21). BCI 
technology is capable of decoding EEG signals, thereby enabling 
stroke patients to control external devices through brain activity (20, 
22). Neurofeedback training employs real-time EEG feedback to assist 
patients in self-regulating brain states, thereby promoting 
neuroplasticity and functional restoration (23). The combination of 
BCI and neurofeedback has demonstrated potential as a means of 
providing personalized training solutions for stroke rehabilitation. In 

light of these substantial applications, EEG research in the context of 
stroke has become of considerable value. This study employs 
bibliometric methods to conduct a systematic analysis of EEG research 
in stroke over the past 20 years. The analysis utilizes VOSviewer and 
CiteSpace to create a comprehensive knowledge map of the field, 
thereby uncovering the current state, key hotspots, and future trends. 
This knowledge map serves to inform and guide subsequent research.

2 Materials and methods

2.1 Data source and collection

The primary data for the bibliometric analysis were obtained from 
the Science Citation Index Expanded (SCI-Expanded) and Social 
Sciences Citation Index databases (SSCI) within the Web of 
Science Core Collection database (WoSCC). The data retrieval strategy 
was summarized as follows: # 1: TS = stroke; #2: TS =  
(Electroencephalography OR EEG OR Electroencephalogram∗); the 
ultimate dataset: #1 AND #2. The utilization of a truncation symbol, “∗,” 
proved an effective means of preventing missed detections and 
enhancing retrieval efficacy. The study included only English-language 
studies. The time of search period was between January 1, 2005 and 
December 31, 2024. The search strategy is depicted in Figure 1. To 
minimize the potential bias from routine database updates, the literature 
search was conducted on a fixed date. A total of 2,931 productions were 
retrieved, including both reviews and research articles. To ensure the 
clarity and accuracy of the results and conclusions, we  manually 
screened the 2,931 publications and categorized them into two groups: 
(A) “EEG in acute stroke and its early complications” and (B) “EEG in 
neurological rehabilitation.” Category A contained 1,207 articles, while 
category B included 1724 articles. The data will be  stored in three 
separate folders: “Dataset 1” (which contains all literature), “Dataset 2” 
(containing only category A literature), and “Dataset 3” (containing 
only category B literature). Upon completion of the retrieval process, 
the data were saved as complete records and cited references. The 
articles were then extracted and exported in “Plain text file” formats.

2.2 Bibliometric analysis

The articles meeting the inclusion criteria were exported as a plain 
text file named “download_xxx.txt,” containing complete records and 
cited references. These files were imported into VOSviewer 1.6.19 and 
CiteSpace 6.2.R2 to construct visual knowledge maps. Additionally, 
Excel was used for chart creation and descriptive statistical analyses. 
The VOSviewer parameters were configured as follows: the 
normalization method was set to “association strength,” with 
minimum thresholds for countries/regions, institutions, authors and 
journals set at 5, 10, 7 and 10 publications, respectively. Keyword 
occurrence frequency was also considered, with a minimum threshold 
of 20. In CiteSpace, the analysis covered the period from January 2005 
to December 2024, with a one-year time slice. Node types included 
keywords, and the g-index selection criteria were set to k = 25 per 
slice. The pruning options used were pathfinder, sliced networks, and 
merged networks, with all other settings left at their default values. In 
this study, we first analyzed the number of papers from countries, 
institutions, authors and journals based on Dataset 1 to summarize 

Abbreviations: ACPP, average citation per publication; TC, total citations; TLS, 

total link strength.
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the current status of EEG research in stroke. We then used Dataset 2 
and Dataset 3 to analyze keyword co-occurrence, keyword clustering, 
and emergent keywords, in order to identify current research hotspots 
and explore the frontiers and emerging trends in this field.

2.3 Annual publications and citations

The annual publication volume is a principal indicator for gauging 
research interest and predicting future dynamics in a field (24). The 
study encompassed 2,931 publications, comprising 2,610 original 
research articles (89%) and 321 review articles (11%). The total 
citations (TC) were 75,437. The average citation per publication 
(ACPP) was 25.73, and the h-index was 109. Figure 2A depicts the 
trajectory of annual publication volume (depicted on the left vertical 
axis in terms of the number of articles) and citation frequency (depicted 
on the right vertical axis) in the field of EEG research in stroke from 
2005 to 2024. The figure illustrates an overall upward trend. The 
research trajectory can be delineated into two distinct phases. From 
2005 to 2016, both the publication volume and the citation frequency 

exhibited a gradual increase. This early phase reflects the foundational 
work being done in the field. The moderate rise indicates a steady 
expansion in research and a corresponding increase in academic 
attention. During this period, EEG research in stroke likely laid the 
groundwork for more targeted clinical and experimental investigations. 
From 2017 onward, the field entered a phase of rapid growth, with both 
publication volume and citation frequency rising sharply, reaching a 
peak in 2024. The substantial increase in publications indicates that 
EEG research in stroke has gained significant traction, attracting an 
increasing number of researchers and funding. The rise in citations 
signifies a more extensive and profound integration of these studies 
within the broader stroke research and neurorehabilitation communities.

2.4 Distribution of countries/regions and 
institutions

A total of 2,931 publications were published by 92 countries and 
3,539 institutions. A total of 57 countries and 139 institutions 
published at least five and ten articles, respectively, in this field. In 

FIGURE 1

Flow chart of literature screening.
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terms of publication volume, the top five countries were the 
United States (778 publications), China (545 publications), Italy (316 
publications), Germany (273 publications), and England (184 
publications), as illustrated in Table 1. As illustrated in Figure 2B, 
the geographical distribution of cooperative endeavors among 
nations is depicted. The nodes, which represent countries, are sized 
according to the number of publications they have received. The 
upper right corner of the figure demonstrates the node sizes for 
publication counts of 300 and 900. The presence of lines connecting 
the nodes signifies cooperative interactions between countries, with 
the thickness of the lines denoting the frequency of collaboration. 

The map is color-coded into clusters and includes both the number 
of publications from each country as well as the strength of their 
collaborations. The map divides countries into four different clusters 
based on their collaborative relationships. Cluster 1: This cluster 
primarily includes countries/regions from Europe, such as Germany, 
England, Spain, Switzerland, Italy, and Netherlands. Cluster 2: This 
cluster includes countries/regions such as the United States, China, 
Canada, Japan, Australia, Brazil, and Taiwan. Cluster 3: This cluster 
includes countries/regions like France, Denmark, and Russia. 
Cluster 4: This cluster includes countries/regions like South Korea 
and India.

FIGURE 2

(A) Annual publications and citations trend chart for Dataset 1. (B) Geographical distribution and cooperation of publications Dataset 1.
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Figure 3A depicts the institutional collaboration map. Table 2 
provides a detailed overview of the top institutions involved in EEG 
research in stroke, showing their total number of publications, TC, 
TLS, ACPP, and country of origin. The top  10 institutions by 
publication volume in EEG research in stroke show a mix of global 
leaders from the United  States, China, and Europe, reflecting the 
international prominence of these universities in advancing research 
in this field. As illustrated in Table 2, the University of Tübingen in 
Germany occupies the preeminent position with 64 publications, 
closely followed by institutions from China, including Capital Medical 
University (52 publications), Fudan University (42 publications), and 
Shanghai Jiao Tong University (41 publications). This observation 
highlights the substantial contributions of Chinese institutions to the 
scholarly landscape. Other prominent players include Northwestern 
University, University of Pittsburgh, and Harvard Medical School, all 
from the United States, with 42, 40, and 35 publications, respectively. 
These institutions from the United States are widely recognized for 
their impactful research and often lead the field in terms of citation 
frequency. Notably, Aalborg University demonstrates a particularly 
high citation impact, with 1,205 citations, indicating that their 
research has gained significant academic recognition.

2.5 Analysis of authors

A total of 13,234 authors contributed to this field between 2005 
and 2024. Of these, 112 authors published at least seven articles with 
over 100 citations. The three most prolific authors in terms of 
publication volume were Birbaumer, N (29 publications), Jia, J (27 
publications), and Ming, D (25 publications), as illustrated in Table 3. 
Professor Birbaumer, N from Germany is the most prolific researcher 
in the field, with the highest number of publications, TC, ACPP, and 
H-index. His research output is concentrated in the early period of his 
career, making him the founder and most influential scholar in the 
field. Among the top 10 high-impact authors, three are from China. 
Their publications are concentrated in recent years, and their 
collaborations are limited, with close collaboration within their teams 
but relatively few collaborations with teams outside their institutions, 
particularly across borders, as shown in Figure  3B. Notably, Van 
Putten, MJAM, a researcher from the Netherlands, has attained a 
commendable ACPP score of 49.85, underscoring the substantial 

academic recognition of his contributions to the field of EEG research 
in stroke.

2.6 Analysis of journals

A total of 2,931 publications were retrieved and published across 
641 journals. Among the retrieved publications, 60 journals had at 
least 10 publications and over 100 citations, as illustrated in Figure 4. 
Table 4 presents the 10 journals with the highest TC. The top five 
journals in terms of citation frequency are Clinical Neurophysiology 
(3,191 citations), Journal of Neural Engineering (3,033 citations), 
Neuroimage (2,676 citations), Frontiers in Neuroscience (2,325 
citations), and Sensors (2,251 citations). These journals are all ranked 
in the first and second quartiles by the Journal Citation Reports (JCR), 
which indicates that they are of high research quality and influence. 
Among the top 10 journals, Brain has the highest impact factor (IF), 
and despite a relatively lower publication count, it has the highest 
ACPP, which serves to underscore its academic prestige and 
broad influence in neuroscience.

2.7 Analysis of keywords

2.7.1 Analysis of keyword co-occurrence
Keywords are a high-level summary of the topic and content of 

the article. An analysis of keyword co-occurrence can reflect the 
hotspot and trend of research in the field (25). This study analyzes the 
keyword co-occurrence patterns across two distinct categories of EEG 
research in stroke. Table 5 shows the top 20 keywords from both 
Dataset 2 and Dataset 3 ranked by TLS. In Dataset 2 which includes 
1,207 articles focused on “EEG in acute stroke and its early 
complications,” the keyword co-occurrence network (Figure  5A) 
highlights terms like “stroke,” “EEG,” and “epilepsy” as central nodes 
emphasizing the focus on EEG applications for managing acute stroke 
complications such as seizures and non-convulsive status epilepticus. 
Figure  1 showcases a total of 83 keywords with a minimum 
co-occurrence frequency of seven. Other significant terms such as 
“ischemic stroke,” “MRI,” and “intracerebral hemorrhage” reflect the 
intersection of EEG studies with imaging and other neurological 
complications. This network illustrates how EEG is used to monitor 

TABLE 1  Top 10 countries/regions ranked by number of publications.

Rank Countries/
regions

Publications TC ACPP TLS Population  
(million)

Publications per 
million people

1 United States 778 24,966 32.02 526 333 2.33

2 China 545 5,401 10.61 211 1,426 0.38

3 Italy 316 10,861 33.20 343 60.4 5.23

4 Germany 273 13,641 47.17 426 84 3.25

5 England 184 5,530 28.94 326 56 3.29

6 Canada 162 3,398 22.90 167 39 4.15

7 Japan 144 4,094 26.70 103 123 1.15

8 Netherlands 131 3,730 27.75 132 17 7.71

9 Switzerland 130 5,720 42.11 180 9 14.44

10 Spain 125 6,509 49.10 185 47 2.66
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and manage the early consequences of stroke indicating the 
importance of EEG in understanding and addressing stroke-induced 
brain changes during the acute phase. Dataset 3 which includes 1,724 
articles focusing on “EEG in neurological rehabilitation,” shows a 

different pattern in its keyword co-occurrence network (Figure 5B). 
This figure displays a network of 137 keywords all of which appear 
with a minimum frequency of seven. These central terms like “brain-
computer interface (BCI),” “motor imagery (MI),” and 

FIGURE 3

(A) Collaborative network knowledge map of institution Dataset 1. (B) Collaborative network knowledge map of author Dataset 1.
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“neurorehabilitation” are prominent reflecting the shift in focus 
toward using EEG in stroke recovery particularly in enhancing 
rehabilitation strategies through BCI systems. Keywords such as 
“functional connectivity,” “training,” and “rehabilitation” are tightly 
linked indicating the growing interest in leveraging EEG to promote 
motor recovery and brain plasticity in the chronic phase of stroke. 
Moreover terms like “virtual reality (VR)” suggest an expanding 
interest in integrating advanced technologies with EEG-based 
rehabilitation. Comparing the keyword co-occurrence networks of the 
two categories reveals clear differences: acute stroke research is 
primarily concerned with monitoring and managing immediate 
stroke-related complications while the rehabilitation category 
emphasizes long-term recovery and functional improvement through 
EEG-based interventions.

2.7.2 Analysis of keyword clustering
Analysis of keywords clustering is to categorize closely related 

keywords, which can reveal the hotspot of research in the field (26). The 
collected data were imported into CiteSpace for keyword clustering 
analysis, the smaller the cluster number, the more keywords the cluster 
contains. Modularity Q is a measure of the efficacy of clustering, with a 
range from 0 to 1. A value approaching 1 indicates a high degree of 
connectivity within clusters (14). For Dataset 2, which focuses on acute 
stroke and its early complications, the analysis revealed a Modularity Q 
of 0.7094, indicating substantial network modularity and high clustering 
quality, as shown in Figure 6A. The LLR clustering method identified 

19 distinct clusters, each representing a distinct area of research, which 
were subsequently labeled with descriptive terms, including #0 carotid 
endarterectomy, #1 animal models, #2 cardiac surgery, #3 antiepileptic 
drug, #4 cerebrovascular disease, #5 stroke, #6 functional connectivity, 
#7 status epilepticus, #8 delayed cerebral ischemia, #9 spreading 
depression, #10 cognition, #11 biomedical signal processing, #12 stroke-
related seizures, #13 temporal lobe epilepsy, #14 cerebral blood flow, #15 
cortical excitability, #16 medulla-oblongata, #17 stroke-like episodes, 
#18 cortical infarction. Figure 6B presents the clustering results for 
Dataset 3, which is centered around EEG research in neurorehabilitation 
of stroke, also exhibited strong clustering results with a Modularity Q 
of 0.7791. The LLR clustering method was employed to identify distinct 
19 clusters, including #0 quantitative electroencephalography, #1 stroke, 
#2 transcranial magnetic stimulation, #3 brain-computer interface, #4 
functional connectivity, #5 ischemic stroke, #6 motor imagery, #7 
carotid endarterectomy, #8 upper extremity, #9 feature extraction, #10 
traumatic brain injury, #11 case report, #12 sensorimotor integration, 
#13 brain activity, #14 transcranial direct current stimulation, #15 
cerebrovascular accident, #16 corticomuscular coherence, #17 brain 
plasticity, #18 seizures.

2.7.3 Analysis of keyword burst
Keyword burst analysis has been demonstrated to reveal the areas 

that have received the most attention within a specific timeframe thereby 
identifying the emerging research frontiers (26). Figure 7 illustrates the 
top 25 burst keywords. The “Begin” and “End” columns indicate the 

TABLE 2  Top 10 institutions ranked by number of publications.

Rank Institutions Publications TC ACPP TLS Location

1 University of Tübingen 64 4,977 77.87 51 Germany

2 Capital Medical University 52 600 11.54 37 China

3 Northwestern University 42 611 14.54 36 USA

4 Fudan University 42 656 15.62 24 China

5 Aalborg University 41 1,205 29.39 69 Denmark

6 Shanghai Jiao Tong University 41 706 19.69 31 China

7 University of Pittsburgh 40 677 16.93 27 USA

8 Tianjin University 39 510 13.08 12 China

9 Harvard Medical School 35 539 15.37 63 USA

10 University of Twente 34 1,489 36.97 49 Netherlands

TABLE 3  Top 10 authors ranked by number of publications.

Rank Author Publications TC ACPP H-index TLS Location

1 Birbaumer, N 29 3,268 112.34 117 27 Germany

2 Jia, J 27 480 17.78 39 52 China

3 Ming, D 25 374 14.96 20 57 China

4 Jochumsen, MR 22 555 25.23 21 38 Denmark

5 Ushiba, J 22 802 36.46 30 13 Japan

6 Jiang, N 22 1,002 21.50 37 66 China

7 Niazi, IK 21 839 39.95 29 44 New Zeeland

8 Van Putten, MJAM 20 997 49.85 47 2 Netherlands

9 Thirumala, PD 19 245 12.89 21 26 USA

10 Ziemann, U 19 631 33.21 102 22 Germany
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timeframe of the keyword burst while “strength” denotes the intensity of 
the burst. For Dataset 2 (analyzed with a 1-year duration parameter) 
Figure 7 displays the top 25 burst keywords. The earliest detected burst 
corresponds to “blood-flow,” which also exhibits the longest sustained 
burst period. Notably “therapeutic hypothermia” demonstrates the 
highest burst strength. The keywords “functional connectivity,” 
“guidelines,” “acute symptomatic seizures,” “patterns,” “score,” 
“connectivity,” “acute ischemic stroke,” and “outcm” are still experiencing 
bursts. For Dataset 3 Figure  8 reveals distinct patterns: “activation” 
emerges as the earliest burst keyword while “cortex” maintains the most 
prolonged burst duration and the keyword “task analysis” registers the 

strongest burst intensity. The following keywords are still experiencing 
bursts: “upper limb,” “feature extraction,” “stroke,” “task analysis,” 
“machine learning,” “deep learning,” “network,” and “stimulation.”

3 Discussion

3.1 Analysis of current research status

This study is the first to conduct a comprehensive bibliometric and 
visual analysis of EEG research in the field of stroke from 2005 to 

FIGURE 4

Journal co-citation network knowledge map Dataset 1.

TABLE 4  Top 10 journals ranked by citation frequency.

Rank Journal TC Publications ACPP TLS IF (2023) JCR

1 Clinical Neurophysiology 3,191 85 35.81 963 3.7 Q1

2 Journal of Neural Engineering 3,033 74 40.75 522 3.7 Q2

3 Neuroimage 2,676 47 55.42 382 4.7 Q1

4 Frontiers in Neuroscience 2,325 78 119.94 565 3.2 Q2

5 Sensors 2,251 50 25.91 291 3.4 Q2

6

IEEE Transactions on Neural 

Systems and rehabilitation 

engineering

2,119 114 18.59 661 4.8 Q1

7
Journal of Neuroengineering and 

Rehabilitation
2,118 57 37.16 581 5.2 Q1

8 Brain 1945 15 129.67 261 10.6 Q1

9 Frontiers in Human Neuroscience 1828 81 22.57 563 2.4 Q2

10 Neurology 1,479 21 70.43 82 7.7 Q1
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2024, revealing key trends and developments. Over the past two 
decades, the number of publications and the frequency of citations in 
this area have exhibited a gradual increase. It is noteworthy that from 
2000 to 2024, the annual publication volume remained above 200 
publications, indicating a sustained growth trajectory in the field. This 
surge is indicative of the growing recognition of EEG as an essential 
tool in both the acute management of stroke and neurorehabilitation. 
The rising number of publications and the increased citation impact 
serve as evidence of this growing recognition.

At the national level, the analysis of publication volume and 
collaboration strength highlights the leading role of the 
United  States in EEG research in stroke. Its high number of 
publications, citations, and collaborations with a range of countries 
position it as a central hub in this field. This global leadership 
reflects the United States’ substantial investment in neuroscience 
and neurotechnology, fostering an environment that supports 
innovation and widespread dissemination of research findings. The 
robust international collaboration network, particularly with 
countries like Germany, Italy, and England, strengthens the global 
impact of the United States research, accelerating scientific progress 
in EEG applications for stroke. China’s large volume of publications 
indicates a growing presence in the filed, but its relatively lower 
citation count and international collaboration strength suggest that 
its research may be more domestically focused. Countries such as 
Germany, Italy, and England also play pivotal roles in advancing 
EEG research. Germany’s high ACPP indicates that its research is 
impactful, shaping key innovations in the field. Meanwhile, 
Switzerland and Canada, though publishing fewer papers, have 
demonstrated strong citation impacts, reinforcing the idea that 

quality research can have a disproportionate effect on the global 
scientific community. Switzerland’s high publication count per 
million people further emphasizes the significant contributions of 
smaller nations in advancing specialized fields. As the field of EEG 
research in stroke continues to evolve, fostering deeper 
international collaboration, especially between countries with 
differing research capacities, will be  essential for 
accelerating advancements.

At the institutional level, the majority of research institutions are 
situated in developed Western countries, with universities representing 
the primary contributors. This reflects the field’s reliance on economic 
support and experimental facilities. The University of Tübingen in 
Germany is the leading institution in terms of publication volume and 
citation frequency, exerting considerable influence, particularly in the 
field of BCI research. One of their most highly cited studies provides 
a comprehensive overview of the clinical applications of invasive and 
non-invasive EEG-based BCI technologies in direct brain 
communication and post-stroke motor recovery for paralyzed 
patients, demonstrating significant potential in both animal and 
human models (27, 28). The University of Twente in the Netherlands, 
despite publishing fewer papers, has a high citation frequency, 
indicating that their research is widely recognized for its quality. Their 
research has focused on qEEG technology, which has advanced the 
monitoring of prognosis and therapeutic responses in patients who 
have suffered a stroke or anoxic coma. This has established a robust 
foundation for the application of EEG in neuroscience (29–31). While 
the international collaboration network is robust (as shown in 
Figure  2B), our analysis shows that many research institutions 
collaborate predominantly with national partners (as shown in 

TABLE 5  Top 20 keywords ranked by TLS.

Rank Keyword was analyzed 
by Dataset 2

Frequency TLS Keyword was analyzed 
by Dataset 3

Frequency TLS

1 Stroke 226 352 Stroke 443 1,108

2 EEG 146 227 EEG 333 772

3 Epilepsy 112 202 Electroencephalography 261 760

4 Electroencephalography 100 187 Brain-computer interface 164 444

5 Seizures 67 152 Motor imagery 133 394

6 Status epilepticus 53 94 Rehabilitation 123 375

7 Seizure 49 84 Stroke (medical condition) 45 288

8 Electroencephalogram 38 65 Neurorehabilitation 75 247

9 Outcome 25 49 Task analysis 33 202

10 Ischemic stroke 38 47 Training 30 180

11 Traumatic brain injury 21 46 Functional connectivity 59 150

12 MRI 22 41 Neurofeedback 46 136

13 Intracerebral hemorrhage 15 40 Electroencephalogram 67 135

14 Stroke (medical condition) 11 39 Stroke rehabilitation 57 127

15 Carotid endarterectomy 40 38 Virtual reality 37 127

16 Neurocritical care 17 36 BCI 46 120

17 Magnetic resonance imaging 19 34 brain-computer interface (BCI) 57 118

18 Neuroimaging 13 33 Neuroplasticity 32 108

19 Subarachnoid hemorrhage 14 33 Transcranial magnetic stimulation 36 105

20 Prognosis 17 32 Event-related desynchronization 42 100
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Figure  3A), with fewer instances of extensive cross-border 
collaboration. This suggests that geographical proximity remains an 
important factor influencing patterns of collaboration EEG research 
in stroke.

At the level of the author, Professor Birbaumer, N from Germany is 
one of the most prominent scholars in the field of BCI. His team has 
developed techniques for direct communication between the brain and 
external devices via EEG and other neural signals, with the objective of 

FIGURE 5

(A) Keyword co-occurrence network knowledge map for Dataset 2. (B) Keyword co-occurrence network knowledge map for Dataset 3.

72

https://doi.org/10.3389/fneur.2025.1539736
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liao et al.� 10.3389/fneur.2025.1539736

Frontiers in Neurology 11 frontiersin.org

assisting individuals with severe paralysis and atresia syndrome to 
communicate with the outside world. Patients are able to control 
computer cursors, letter boards, or robotic arms through brain signals, 
thereby significantly advancing the field of BCI technology (32–34). In 
recent years, Professor Jia, J has been at the forefront of research utilizing 

BCI technology to enhance stroke rehabilitation. By integrating 
connectivity network patterns with spatiotemporal analysis, she has 
optimized EEG feature selection, thereby enhancing the efficacy of BCI 
applications in rehabilitation training (35, 36). Moreover, she has 
utilized a combination of BCI and functional electrical stimulation to 

FIGURE 6

(A) Cluster map of keywords for Dataset 2. (B) Cluster map of keywords for Dataset 3.
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markedly enhance motor function in individuals who have experienced 
a chronic stroke (37). Her research also encompasses traditional 
Chinese medicine techniques, such as electroacupuncture, and their 
regulatory effects on resting-state networks in stroke patients, as well as 
the potential clinical benefits of such techniques in rehabilitation (38). 
Professor Jiang N, another Chinese scholar, has also made significant 
contributions to the development of a single-trial detection system 
based on movement-related cortical potentials for BCI applications in 
gait initiation through extensive international collaboration (39). By 
interpreting patients’ motor intentions in real time through EEG signals, 
his work provides a basis for rehabilitative interventions for gait-
impaired patients.

In terms of journal distribution, most of the journals with high 
publication volume and citation frequency are high-quality journals, such 
as Clinical Neurophysiology, Neurology and Brain. These journals not only 
provide theoretical and experimental support for EEG research in the 
field of stroke, but also demonstrate the academic maturity of research 
results in this field. As research continues to progress, future publications 

may increasingly be concentrated in these high-impact journals, thus 
creating a virtuous cycle. The platform role of these journals not only 
facilitates the dissemination of research findings, but also encourages 
further innovation within the field.

3.2 Analysis of research hotspots and 
trends

This study provides a comprehensive analysis of the keyword 
trends in EEG research in stroke, revealing critical insights into 
the evolving landscape of this field. Through the analysis of 
keyword co-occurrence, clustering, and burst patterns, we have 
identified key research hotspots, emerging trends, and shifts in 
the focus of EEG applications for acute stroke management and 
neurological rehabilitation. These findings not only highlight the 
current state of research but also offer directions for 
future investigation.

FIGURE 7

The top 25 keywords with the highest burst strength for Dataset 2.
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3.2.1 EEG research in acute stroke and early 
complications

EEG research in acute stroke primarily focuses on the early 
identification and management of complications such as epilepsy 
and disorders of consciousness. The keyword co-occurrence 
analysis for Dataset 2 reveals a dominant emphasis on using EEG 
for monitoring post-stroke complications, especially seizures and 
non-convulsive status epilepticus, which are crucial for early 
intervention. Terms such as “stroke,” “EEG,” and “epilepsy” 
prominently feature in the research landscape, reflecting the 
clinical focus on utilizing EEG to understand and manage stroke-
induced brain changes.

The analysis of keywords highlights epilepsy and seizures as 
central themes in acute stroke research. Post-stroke epilepsy is 
significantly associated with adverse outcomes and elevated 

mortality rates (40). QEEG can assist in identifying the typical 
EEG patterns associated with stroke (41). Non-convulsive seizures 
are frequently unrecognized clinically, as standard observations 
may prove inadequate for detecting these anomalies. Nevertheless, 
EEG monitoring is capable of capturing essential 
electrophysiological changes. Non-convulsive seizures are 
frequently unrecognized clinically, as standard observations may 
prove inadequate for detecting these anomalies (42). However, 
EEG monitoring can effectively capture essential 
electrophysiological changes. Post-stroke epilepsy in EEG 
typically manifests as focal or generalized slowing, with some 
cases also showing lateralized periodic discharges. Bentes et al. 
(43) conducted a study of long-term follow-up of patients who 
had experienced an anterior ischemic circulation stroke, finding 
that 25.2% experienced seizures within the first year, with 22.7% 

FIGURE 8

The top 25 keywords with the highest burst strength for Dataset 3.
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of these acute symptomatic seizures detected only by EEG. For 
instance, Bentes et al. (43) demonstrated that 64-channel EEG 
with synchronized video-polysomnography during the first post-
stroke week captured electrographic seizures in over 20% of 
anterior ischemic stroke patients, with 62% of these events 
occurring during sleep. These findings emphasize the necessity of 
prolonged monitoring, as 22.7% of acute symptomatic seizures are 
identifiable only through EEG. Beyond seizure detection, EEG’s 
predictive capacity extends to acute neurological deficits. 
Vanderschelden et al. (44) conducted a prospective study of 50 
acute stroke patients evaluated by recording of EEG at rest state. 
The delta-theta/alpha-beta ratio (DTABR) was calculated. 
Multivariable modeling revealed that while age, diabetes status, 
and infarct volume explained 47% of NIHSS score variance, 
adding contralesional DTABR enhanced prediction, achieving 
60% explanatory power. These seizures can contribute to worsened 
neurological outcomes, increased risk of mortality, and prolonged 
recovery time, highlighting the importance of EEG in reducing 
these adverse effects by enabling timely treatment (45).

Expanding beyond epilepsy, EEG provides objective 
biomarkers for post-stroke consciousness disorders. Reduced 
prefrontal-to-motor cortical information flow, measurable via 
transcranial magnetic stimulation coupled with high-density 
EEG (TMS-EEG), correlates with impaired arousal states. Bai 
et al. (46) reported that patients with unresponsive wakefulness 
syndrome exhibit ≥40% reductions in gamma band connectivity 
between prefrontal and motor regions, while minimally 
conscious patients show disrupted prefrontal-parietal alpha 
coherence predictive of 6-month recovery. Such 
electrophysiological signatures align with spectral shifts 
observed in consciousness research: elevated low-frequency 
oscillations (delta/theta) and attenuated cross-frequency 
coupling reflect diminished cortical integration, whereas 
preserved theta-gamma phase-amplitude interactions may 
signify recovery potential (47, 48). While EEG excels in detecting 
electrophysiological anomalies, its integration with advanced 
neuroimaging techniques enables deeper insights into structure–
function relationships In a targeted investigation of thalamic 
stroke, researchers employed DTI-derived fractional anisotropy 
(FA) maps alongside qEEG to probe microstructural and 
functional connectivity disruptions. Correlational analyses 
linked theta-band EEG power reductions to FA decreases in the 
cingulum bundle and corpus callosum-key components of the 
default mode network known to modulate resting-state theta 
activity. Alpha-band power further correlated with FA in cortico-
thalamic circuits, supporting the “thalamocortical dysrhythmia” 
model of stroke-induced network dysfunction. This multimodal 
approach also bridged behavioral deficits with neural markers: 
FA reductions in the right cingulum predicted impaired spatial 
memory, while splenium of the corpus callosum correlated with 
facial recognition deficits (49). Thus, EEG in acute stroke 
research is not only focused on identifying early stroke-related 
complications but also on understanding the underlying 
neurological processes that influence stroke recovery, especially 
in critical conditions like seizures and consciousness disorders. 
While the current study primarily focuses on EEG applications 
in neural monitoring and rehabilitation, we  acknowledge the 
importance of exploring broader physiological mechanisms, 

including inflammation and oxidative stress (ROS), in stroke 
pathology (50–53). Although EEG itself does not directly 
measure inflammatory markers or ROS levels, emerging research 
highlights indirect correlations between EEG patterns and these 
mechanisms. For example, post-stroke neuroinflammation can 
disrupt cortical excitability and functional connectivity, which 
may manifest as altered EEG spectral power or coherence (54–
57). Additionally, oxidative stress has been linked to impaired 
neurovascular coupling (58–60), potentially affecting 
EEG-derived metrics. Future studies could integrate EEG with 
biomarkers (e.g., serum cytokines, ROS assays) to investigate 
these relationships. The increasing emphasis on real-time 
monitoring and the integration of EEG with other diagnostic 
tools, such as MRI or PET scans, has great potential in enhancing 
the clinical management of acute stroke patients, reducing 
mortality and improving recovery rates.

3.2.2 Neurological rehabilitation in stroke
EEG research in neurological rehabilitation (Dataset 3) shifts 

its focus from immediate stroke complications to the long-term 
recovery process. The analysis of keywords for this dataset 
highlights the growing prominence of BCI technology, MI, and 
neurorehabilitation, reflecting the increased integration of EEG 
into rehabilitation efforts aimed at improving motor function and 
cognitive recovery. Terms such as functional connectivity, 
training, and rehabilitation emphasize the growing recognition 
of EEG’s potential in promoting neural plasticity during stroke 
recovery, particularly in enhancing motor recovery through 
non-invasive brain-computer technologies. One of the most 
profound advancements in neurological rehabilitation is the use 
of BCI systems. MI enables patients to engage motor-related 
brain regions by imagining limb movements without actual 
physical execution, thereby promoting neural plasticity, 
particularly in the recovery of upper limb and hand function. BCI 
technology further enhances the effectiveness of MI by decoding 
patients’ motor intentions and translating them into commands 
for external devices, thereby enabling hemiplegic patients to 
achieve indirect motor control (61). This not only improves 
motor function but also helps patients maintain active 
engagement during rehabilitation training. Benzy et  al. (62) 
analyzed cortical activity during MI and successfully decoded the 
imagined hand movement direction (left/right) in stroke patients. 
The patients used the phase-locking value of EEG signals to 
decode the direction of imagined hand movement, which then 
controlled a motorized arm assistive device, allowing patients to 
move their impaired arms in the intended direction. The 
combination of EEG with EMG (electromyography) has also 
gained attention in recent years, particularly in enhancing the 
precision of motor control during rehabilitation. Li et al. (63) 
introduced EEG–EMG hybrid systems, which combine the 
advantages of both EEG for motor intention detection and EMG 
for muscle activity detection. This dual approach improves the 
accuracy of rehabilitation training, providing more personalized 
feedback to patients and potentially accelerating recovery. The 
hybrid system allows for more accurate decoding of patients’ 
movements and enhances their ability to perform motor tasks 
during rehabilitation. Another notable advancement in 
EEG-based rehabilitation is the application of VR in conjunction 
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with EEG, offering patients immersive and interactive 
environments that stimulate motor recovery. As research 
progresses, the integration of EEG with VR systems is showing 
promise in fostering neuroplasticity by creating engaging and 
tailored rehabilitation experiences (64, 65). The development of 
signal processing technologies has greatly optimized EEG 
preprocessing, feature extraction, and classification methods. 
Traditional feature extraction frequently employs time-domain, 
frequency-domain, and time-frequency analyses, such as the 
utilization of power spectral density to examine patterns of brain 
activity across diverse frequency bands in patients (16, 66). The 
damaged regions of the brain in patients with stoke frequently 
exhibit augmented low-frequency bands and diminished high-
frequency bands. The advent of deep learning, encompassing 
convolutional neural networks and generative adversarial 
networks, has facilitated the automated extraction of features. 
These neural network models allow for complex pattern 
recognition directly from raw EEG signals, facilitating a deeper 
understanding of post-stroke brain functions (67, 68). Tong et al. 
(69) constructed a deep learning model based on EEG signals for 
rapid detection of ischemic stroke. They gathered EEG data from 
20 acute ischemic stroke patients and 19 healthy controls and 
introduced a fusion feature combining correlation-weighted 
phase lag index and sample entropy to explore inter-channel 
synchronization and functional connectivity. Recent studies have 
demonstrated that complex network analysis of EEG data can 
provide insights into the reorganization of brain networks after 
stroke. For example, one study (70) analyzing resting-state and 
task-state functional connectivity identified a “cognitive network” 
comprising nodes in the subcortical, frontoparietal, visual, and 
cerebellar networks. This network shows differential effective 
connectivity patterns that are sensitive to post-stroke cognitive 
impairment and improvement. Moreover, another study (71) 
focused on mild stroke patients compared EEG-based functional 
connectivity during cognitive tasks across groups with cortical 
infarctions, subcortical infarctions, and healthy controls. Their 
graph theory analysis revealed significantly reduced global and 
local efficiencies in patient groups, along with distinct nodal 
strength distributions that differed by lesion location. A 
systematic review (72) compared EEG-derived complex network 
parameters between stroke patients and healthy subjects. 
Although the effect sizes for parameters such as path length, 
clustering coefficient, and cohesion were modest, the review 
highlighted both structural differences and certain overlapping 
features between the groups. Additionally, multimodal data 
fusion techniques are increasingly applied to stroke EEG studies. 
By combining EEG with fMRI or near-infrared spectroscopy, 
researchers can obtain more comprehensive brain activity data, 
valuable for early prognosis prediction and evaluating the 
effectiveness of different rehabilitation interventions (73, 74). 
Stroke may not only damage local neural structures but also 
disrupt large-scale brain networks, affecting both structural and 
functional connectivity. Stroke-induced lesions may impair the 
integrity of the default mode network and the cortico-thalamic 
circuits, leading to reduced global efficiency and altered modular 
organization. Such disruptions may contribute to deficits in 
cognitive and motor function by impairing inter-hemispheric 

communication and reducing the integration of distributed 
neural systems (71, 75–77).

4 Limitation

Firstly, this bibliometric analysis is was confined to data drawn 
exclusively from the WoSCC, with the exclusion of data from other 
databases. This limited scope might result in the omission of some critical 
studies, potentially affecting the comprehensiveness of the analysis. 
Furthermore, the study was restricted to English-language publications, 
which excludes relevant research in other languages, particularly domestic 
studies from non-English speaking regions. This limitation could affect 
the representation of global research progress in the field of stroke-related 
EEG research. Secondly, the visual mapping generated using VOSviewer 
and CiteSpace required specific parameter settings, including node 
selection, threshold settings, and clustering methods based on data 
availability and study requirements. These settings may introduce some 
level of statistical bias, which could influence the results.

5 Conclusion

This study is among the first to employ bibliometric and visual 
analysis techniques to examine the evolution of EEG research in the 
field of stroke over the past two decades. The analysis was conducted 
using the VOSviewer and CiteSpace software tools. The results provide 
a systematic illustration of the current research landscape, identifying 
key areas of interest and future trends in this domain. The findings 
demonstrate that EEG is a widely utilized tool in the monitoring of 
neural functions associated with stroke, the assessment of epilepsy 
risk, and the facilitation of rehabilitation. These observations reflect a 
substantial academic interest and clinical relevance. The integration 
of deep learning and multimodal data fusion has enabled researchers 
to perform more complex analyses of post-stroke electrophysiological 
activity, laying a solid foundation for personalized rehabilitation plans. 
Furthermore, the use of EEG in the assessment of epilepsy and 
consciousness disorders improves the accuracy of post-stroke 
complication detection, particularly in the early identification of 
non-convulsive seizures and the assessment of consciousness recovery 
potential. In the future, as EEG technology continues to be integrated 
with other imaging modalities and high-efficiency algorithms, its 
application in stroke rehabilitation appears to be highly promising. In 
this context, EEG -driven BCI technologies have evolved from basic 
monitoring to more advanced intervention strategies. It is 
recommended that future research concentrate on the promotion of 
interdisciplinary applications of EEG and the establishment of 
standardized signal processing procedures. This will ensure the 
consistency of study outcomes and facilitate the adoption of EEG in a 
broader clinical context, as well as its use in translational applications.
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Background: Acute ischemic stroke (AIS) is a major global health threat 
associated with high rates of disability and mortality, highlighting the need for 
early prognostic assessment to guide treatment. Currently, there are no reliable 
methods for the early prediction of poor prognosis in AIS, especially after 
mechanical thrombectomy. This study aimed to explore the value of radiomics 
and deep learning based on multimodal magnetic resonance imaging (MRI) 
in predicting poor prognosis in patients with AIS who underwent mechanical 
thrombectomy. This study aimed to provide a more accurate and comprehensive 
tool for stroke prognosis.

Methods: This study retrospectively analyzed the clinical data and multimodal 
MRI images of patients with stroke at admission. Logistic regression was 
employed to identify the risk factors associated with poor prognosis and to 
construct a clinical model. Radiomics features of the stroke-affected regions 
were extracted from the patients’ baseline multimodal MRI images, and the 
optimal radiomics features were selected using a least absolute shrinkage and 
selection operator regression model combined with five-fold cross-validation. 
The radiomics score was calculated based on the feature weights, and machine 
learning techniques were applied using a logistic regression classifier to develop 
the radiomics model. In addition, a deep learning model was devised using 
ResNet101 and transfer learning. The clinical, radiomics, and deep learning 
models were integrated to establish a comprehensive multifactorial logistic 
regression model, termed the CRD (Clinic-Radiomics-Deep Learning) model. 
The performance of each model in predicting poor prognosis was assessed 
using receiver operating characteristic (ROC) curve analysis, with the optimal 
model visualized as a nomogram. A calibration curve was plotted to evaluate the 
accuracy of nomogram predictions.

Results: A total of 222 patients with AIS were enrolled in this study in a 7:3 ratio, 
with 155 patients in the training cohort and 67 in the validation cohort. Statistical 
analysis of clinical data from the training and validation cohorts identified two 
independent risk factors for poor prognosis: the National Institutes of Health 
Stroke Scale score at admission and the occurrence of intracerebral hemorrhage. 
Of the 1,197 radiomic features, 16 were selected to develop the radiomics model. 
Area under the ROC curve (AUC) analysis of specific indicators demonstrated 
varying performances across methods and cohorts. In the training cohort, the 
clinical, radiomics, deep learning, and integrated CRD models achieved AUC 
values of 0.762, 0.755, 0.689, and 0.834, respectively. In the validation cohort, 
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the clinical model exhibited an AUC of 0.874, the radiomics model achieved 
an AUC of 0.805, the deep learning model attained an AUC of 0.757, and the 
CRD model outperformed all models, with an AUC of 0.908. Calibration curves 
indicated that the CRD model showed exceptional consistency and accuracy in 
predicting poor prognosis in patients with AIS. Decision curve analysis revealed 
that the CRD model offered the highest net benefit compared with the clinical, 
radiomics, and deep learning models.

Conclusion: The CRD model based on multimodal MRI demonstrated high 
diagnostic efficacy and reliability in predicting poor prognosis in patients with 
AIS who underwent mechanical thrombectomy. This model holds considerable 
potential for assisting clinicians with risk assessment and decision-making for 
patients experiencing ischemic stroke.

KEYWORDS

multimodal MRI, radiomics, deep learning, acute ischemic stroke, prognosis

1 Introduction

Stroke, particularly acute ischemic stroke (AIS), is a major global 
health concern. It is not only one of the leading causes of death 
worldwide, responsible for approximately six million fatalities 
annually, but also the primary cause of mortality among residents of 
China (1). AIS accounts for 70% of all cerebrovascular diseases, 
primarily resulting from prolonged or permanent occlusion of 
cerebral vessels, which leads to ischemia and hypoxia in the brain 
tissue, causing localized neurological deficits or permanent loss of 
function (2). This condition is characterized by high rates of morbidity, 
disability, and mortality, with significant implications for patient 
prognosis, which is closely linked to the timeliness and efficacy of 
treatment. Despite substantial efforts by researchers worldwide to 
improve treatment approaches for AIS, including surgical and 
pharmacological interventions, the short-term prognosis remains 
unsatisfactory (3). The epidemiological features of AIS not only pose 
a severe threat to individual health and quality of life but also impose 
a substantial medical and economic burden on both society and 
families, emerging as one of the most pressing challenges in global 
public health.

The treatment of acute cerebral infarction is a complex 
multidisciplinary task that demands close collaboration across 
various departments and stages, with the ultimate goal of delivering 
timely and effective care to patients. Among therapeutic modalities, 
intravenous thrombolysis is widely employed, primarily through 
the administration of agents such as recombinant tissue 
plasminogen activator, urokinase, and tenecteplase, to restore 
blood flow (4). However, despite the ability of intravenous 
recombinant tissue plasminogen activator thrombolysis to alleviate 
symptoms in the short term in most patients, a subset of patients 
still face the risk of functional impairment and hemorrhagic 
transformation. In recent years, endovascular mechanical 
thrombectomy has emerged as a significant advancement in the 
treatment of AIS, particularly in patients with ischemic stroke due 
to large arterial occlusions, and it has been shown to substantially 
improve prognosis. However, some patients have a poor prognosis 
even after mechanical thrombectomy. Regardless of the treatment 
modality employed, early prognosis prediction for patients is of 
paramount importance, as it not only aids in the formulation of 
more precise pretreatment strategies but also facilitates the 

provision of more personalized care (5). Therefore, predicting the 
occurrence and progression of poor prognosis in AIS at an early 
stage and implementing proactive clinical interventions remain the 
central focus of current studies.

Previous studies have confirmed that factors such as the Alberta 
Stroke Program Early Computed Tomography (CT) Score (ASPECTS), 
patient age, presence of atrial fibrillation, and National Institutes of 
Health Stroke Scale (NIHSS) score are closely associated with the 
prognosis of recovery in patients with stroke (6). Smaller infarct 
volumes, well-developed collateral circulation, and lower NIHSS 
scores typically suggest a better prognosis for patients following 
endovascular treatment. Radiomics has recently emerged as a focal 
point of medical research and clinical practice. Advancements in 
neuroimaging have transcended its traditional role as a diagnostic tool 
and assumed an increasingly critical role in clinical decision-making 
(7). The integration of machine learning with radiomics has ushered 
in a revolutionary transformation in medical diagnostics, with 
successful applications in stroke research, such as the identification of 
acute cerebral infarction lesions based on CT- or magnetic resonance 
imaging (MRI)-derived radiomic features. Deep learning, a subset of 
machine learning techniques, constructs multilayered neural networks 
that can learn complex feature representations from vast datasets (8). 
Traditional stroke diagnostic methods have predominantly relied on 
physicians’ visual interpretation of brain images, whereas deep 
learning enables the automatic extraction of features from brain 
images, thereby assisting clinicians in making more accurate and 
timely diagnoses.

The field of medical diagnosis and treatment is currently faced 
with new opportunities and challenges arising from the integration of 
machine learning and radiomics. Currently, the application of 
MRI-based radiomics in predicting the prognosis of patients with 
stroke remains insufficient, with most studies relying solely on 
diffusion-weighted imaging (DWI) sequences, and the use of deep 
learning models is relatively limited. Considering this, the present 
study aimed to leverage multimodal MRI sequence data from patients 
with AIS, in conjunction with various machine learning algorithms 
and deep learning models, to construct a comprehensive predictive 
model for AIS prognosis after mechanical thrombectomy and assess 
its predictive performance. Through this study, we sought to provide 
a more accurate and holistic tool for the prognostic evaluation of 
patients with stroke.
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2 Methods

2.1 Patients

This retrospective study was approved by the Medical Ethics 
Committee of Quzhou People’s Hospital, which waived the 
requirement for informed consent from the participants. We included 
patients with AIS who underwent brain MRI at the hospital’s radiology 
department between January 2021 and May 2024. The diagnosis of 
AIS in this study strictly followed the current clinical guidelines, and 
all patients met the following criteria: (1) presence of symptoms of 
acute neurological deficit with an NIHSS score ≥2; (2) brain 
MRI-DWI sequence showing acute infarction in the responsible 
vascular blood supply area; and (3) exclusion of other non-vascular 
causes (such as epilepsy and metabolic encephalopathy). The inclusion 
criteria were as follows: (1) patients aged ≥18 years; (2) patients who 
met the diagnostic criteria for AIS; (3) patients who underwent high-
quality MRI scans upon admission with complete clinical data; (4) 
patients who received mechanical thrombectomy treatment; and (5) 
patients who underwent MRI examinations before mechanical 
thrombectomy. The exclusion criteria were as follows: (1) severe liver 
or kidney dysfunction, hematological disorders, or malignant tumors; 
(2) intracranial lesions affecting prognosis, such as trauma or tumors; 
and (3) MRI images with artifacts or other factors that compromised 
image quality. We conducted a retrospective analysis of clinical data 
and biochemical results, including age, sex, smoking history, alcohol 
consumption, and history of hypertension, diabetes mellitus, and 
cardiovascular diseases. Prognostic evaluation at discharge was 
performed using the modified Rankin Scale (mRS), with a score of 
3–6 indicating poor prognosis, and a score of 0–2 indicating good 
prognosis. All enrolled patients underwent ICH imaging evaluation 
prior to mechanical thrombectomy, and the diagnostic criteria were 
based on the following features: abnormal isohyperintense lesions on 
T1WI (excluding vascular artifacts) and hypointensity with peripheral 
hyperintense rings on FLAIR; chronic microbleeds are characterized 
by hypointense lesions. In this study, the clinical guidelines for 
mechanical thrombectomy were strictly followed, and patients with 
ICH (24 h < onset) or a significant mass effect (blood loss > 30 mL) in 
the acute phase were excluded as absolute contraindications. For 
patients with chronic phase microhemorrhage (cerebral 
microhemorrhage < 5 mm) or old hemorrhage, we have established a 
multidisciplinary decision-making process in which at least two 
neurointerventional physicians and one neuroimaging expert jointly 
evaluate the patient’s bleeding stability, lesion location, and vascular 
pathway relationship, and make a comprehensive judgment based on 
the patient’s NIHSS score and clinical indications to decide whether 
they should be  included. A total of 222 patients were randomly 
divided into training and validation cohorts at a ratio of 7:3. In the 
training cohort, clinical features with statistically significant 
differences were selected using logistic regression, and a clinical model 
was developed. The workflow of this study is illustrated in Figure 1.

2.2 Image acquisition

Magnetic resonance imaging was performed using two distinct 
MRI machines (Siemens Skyra 3.0 T MRI from Germany and GE 
Signa Voyager 1.5 T MRI from the United States). The patient was 

placed in a supine position and continuous scanning was performed 
from the feet to the head, covering the range from the posterior fossa 
to the cranial vertex. Standard cranial MRI protocols encompassing 
axial T1WI, fluid-attenuated inversion recovery (FLAIR), and DWI 
sequences were employed. The repetition times for the 3.0 T MR were 
2719/8600/2000 ms, with echo times of 9/106/57 ms. For the 1.5T 
MR, the repetition times were 488/8000/3543 ms and the echo times 
were 15/100/133 ms. For both MR scanners, the slice thickness was 
5 mm, the field of view was 24 × 24 mm, and the matrix size was 
512 × 512 pixels.

The MRI images were initially subjected to standardization 
procedures, including voxel resampling to 1 × 1 × 1 mm, adjustment 
of window width and level, N4 bias field correction, and normalization 
using Z-scores. Two radiologists, who were blinded to all patient 
information, assessed the MRI images. The axial MRI images of the 
enrolled patients were imported in DICOM format into the 
ITK-SNAP 3.8.0 software1. First, T1WI, FLAIR, and DWI sequences 
of the patients’ images were recorded. Given the challenges in 
delineating stroke lesion boundaries using T1WI and FLAIR images, 
stroke lesions were manually outlined on DWI images while 
considering the reference T1WI and FLAIR images (Figure  2). 
Disagreements were discussed until a consensus was reached. The 
software subsequently fused the region of interest for each image slice, 
yielding three-dimensional structural data of the lesions (volume of 
interest). To ensure the consistency and stability of lesion 
segmentation, 40 randomly selected MRI images from other patients 
were independently assessed by a second radiologist who applied the 
same methodology to outline the lesions and extract radiomics 
features. The intraclass correlation coefficient (ICC) was used to 
evaluate the consistency of the extracted features, with values 
exceeding 0.75 indicating good reproducibility.

2.3 Radiomics procedure

Radiomic features were extracted using the Pyradiomics package 
of Python 4.8.1, yielding 1,197 features for each region of interest. 
Feature type: the extracted image group features include multi-scale 
features after the original image features (Original), wavelet filtering 
(Wavelet) and LoG (Laplacian of Gaussian) filtering 
(σ = 2.0/3.0/4.0/5.0 mm), covering three categories of features: shape, 
first-order statistics, and texture (GLCM/GLRLM/GLSZM/NGTDM). 
The original image features were extracted directly after preprocessing 
(N4 bias correction and normalization), and the unfiltered feature set 
has been explicitly labeled as the “Original” group. To mitigate 
multicollinearity and achieve dimensionality reduction, the least 
absolute shrinkage and selection operator (LASSO) regression model 
was employed to select significant features. The optimal λ value 
corresponding to the minimum binomial deviance was determined 
using five-fold cross-validation, and features with non-zero coefficients 
were retained to form the final feature subset. The radiomics score was 
calculated based on the weighted summation of these features. A 
logistic regression classifier was employed for machine learning to 
construct the radiomic model, which was subsequently validated 

1  http://www.itksnap.org/
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using an independent dataset. The radiomics score was computed 
using the following equation:

	 ( )β= ∑ + =Radiomics score · Intercept 0,1,2,3i Xi i

Where Xi represents the radiomic feature values selected by 
LASSO, and βi is the coefficient corresponding to each selected 
feature Xi.

2.4 Deep learning procedure

In this study, we implemented a deep-learning network using the 
“PyTorch” framework in Python 4.8.1. By constructing a deep, 

non-linear convolutional neural network with multiple hidden layers, 
we progressively extracted and combined low-level features to form 
high-level abstract features, thereby simplifying the complex feature 
extraction process that is typical of traditional machine learning 
methods. We selected ResNet, a classical classification network known 
for its core residual structure, as the backbone model. By establishing 
shortcut connections between the earlier and later layers, ResNet 
effectively facilitates gradient backpropagation during training, 
thereby addressing the degradation problem that is inherent in 
traditional deep networks. ResNet101, consisting of 101 layers, is 
considered to have a relatively shallow structure. Building on 
ResNet101, we developed a 2.5D convolutional neural network (CNN) 
model using a residual structure to extract features. Using transfer 
learning, we converted the dataset features into vectors, which were 
then fused through fully connected layers to classify stroke prognosis.

FIGURE 1

Workflow of the study. (A) Study flowchart of participant selection. (B) Workflow of the radiomics and deep learning analysis of AIS.
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In practice, we first identified the slice with the largest stroke area, 
assuming it to be  the nth slice of the input volume. Subsequently, 

we extracted the (n−2), n, and (n + 2) slices for fusion, which were 
then input into the 2.5D CNN model. To enhance the generalizability 
of the model and mitigate overfitting, various data augmentation 
strategies were employed during training, including random 
translation, scaling, rotation, and shearing, as well as the addition of 
Gaussian noise, blurring, and Laplacian transformations. We applied 
L2 regularization to further optimize the model. The model parameters 
were optimized using the Adam algorithm, and all pretrained layers 
were fine-tuned to adapt to the current task. The initial learning rate 
was set to 0.0005, weight decay to 0.0001, and the L2 penalty coefficient 
to 0.01. Once the model achieved optimal accuracy on the test set, 
we  saved all the model weights and validated the model using an 
independent test set.

2.5 CRD model establishment and 
statistical analysis

This study integrated clinical, radiomics, and deep learning 
models to construct a comprehensive multivariate logistic regression 
model, designated the CRD (Clinic-Radiomics-Deep Learning) 
model. A personalized nomogram was then generated to visualize the 
model, and decision curve analysis (DCA) was applied to quantify 
the net benefit across varying thresholds, thereby assessing the 
practical applicability of the CRD model. Clinical data were analyzed 
using Python 4.8.1 and SPSS version 26.0. For normally distributed 
data, the results are presented as mean ± standard deviation (x ± s) 
and were analyzed using independent t-tests. For non-normally 
distributed data, the median and interquartile range are reported, and 
comparisons were made using the Mann–Whitney U test. Categorical 
data are presented as frequencies (percentages) (n [%]), and 
comparisons were performed using chi-square tests. Logistic 
regression analysis was used to develop the predictive model, and the 
area under the receiver operating characteristic curve (AUC) was 
used to evaluate the predictive capability of the model. The DeLong 
test was employed to compare the AUCs of multiple models, DCA 
was used to evaluate the clinical utility of the model, and the optimal 
model was visualized as a nomogram. Calibration curves were used 
to assess the accuracy of the nomogram predictions, with statistical 
significance set at p < 0.05.

3 Results

3.1 Baseline characteristics

A total of 222 patients diagnosed with AIS were included in this 
study in a 7:3 ratio, with 155 patients in the training cohort and 67 in 
the validation cohort. Table 1 shows that there were no significant 
differences between the training and validation cohorts in terms of 
age, sex, NIHSS score at admission, hypertension, diabetes, 
cardiogenic diseases, smoking, drinking, or intracerebral hemorrhage 
(ICH) (p > 0.05). Table 2 indicates that the clinical data comparisons 
between the two cohorts were analyzed using independent t-tests or 
chi-square tests, with p < 0.05 considered statistically significant. Two 
independent risk factors for poor prognosis were identified: NIHSS 
score at admission and ICH.

FIGURE 2

Based on the manually delineated regions of interest for patients 
with stroke, (A–C) represent the T1WI, FLAIR, and DWI sequences, 
respectively.
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3.2 Radiomics and deep learning models

Using univariate logistic regression analysis and LASSO regression 
for dimensionality reduction, 16 of the 1,197 radiomic features were 
selected to construct the radiomics model. These features included 14 
shapes, 234 first-order features, 286 features from the gray-level 
co-occurrence matrix (GLCM), 208 from the gray-level run length 
matrix (GLRLM), 208 from the gray-level size zone matrix, 182 from 
the gray-level dependence matrix, and 65 from the neighborhood gray 
tone difference matrix. The ICC was >0.75. Based on the LASSO 
regression model, the optimal λ obtained from five-fold cross-
validation was used to select the best radiomic features with non-zero 
coefficients. The distribution of the LASSO coefficients for these 
features is shown in Figure 3.

3.3 CRD model

The AUC analysis of the specific indicators revealed varying 
degrees of performance across the different methods and cohorts 
(Figure  4). In the training cohort, the clinical, radiomics, deep 
learning, and CRD models achieved AUC values of 0.762, 0.755, 0.689, 
and 0.834, respectively (Table 3). In the validation cohort, the clinical 
model exhibited an AUC of 0.874, the radiomics model achieved an 
AUC of 0.805, the deep learning model attained an AUC of 0.757, and 
the CRD model again outperformed all other methods with an AUC 

of 0.908. These findings suggest that the CRD model exhibited the 
most consistent and robust performance in distinguishing between 
classes, with significantly superior AUC values compared to the other 
methods in both the training and validation cohorts.

The calibration curve revealed that the CRD model demonstrated 
exceptional consistency and calibration in predicting poor stroke 
prognosis and actual results (Figure 4). The Hosmer–Lemeshow test 
showed that P was > 0.05, indicating that there was no significant 
difference between the predicted and true values. DeLong’s test 
indicated that in the training cohort, the CRD model outperformed 
both the clinical and deep learning models (p = 0.01 and p = 0.001, 
respectively). In the validation cohort, the CRD model surpassed the 
radiomics and deep learning models in terms of predictive 
performance (p = 0.01 and p = 0.008, respectively; Figure 5). Figure 5 
also shows the DCA for the four models, with the CRD model 
achieving the highest net benefit compared with the radiomics, deep 
learning, and clinical models. Using the CRD model, a visual 
nomogram (Figure 5) was constructed to estimate the risk of a poor 
prognosis. As illustrated in the nomogram, the NIHSS score at 
admission was the most influential factor in the scoring system.

4 Discussion

AIS is a non-communicable disease that severely threatens 
public health and is characterized by high incidence, disability, 

TABLE 1  Patients’ baseline characters of our cohorts.

Characteristics ALL Validation cohort Training cohort p-value

Age 68.99 ± 12.05 70.39 ± 11.81 68.39 ± 12.14 0.324621

NIHSS at admission 7.41 ± 4.69 7.82 ± 5.49 7.23 ± 4.30 0.491425

Gender 1

 � 0 98(44.14) 30(44.78) 68(43.87)

 � 1 124(55.86) 37(55.22) 87(56.13)

Hypertension 0.448426

 � 0 103(46.40) 28(41.79) 75(48.39)

 � 1 119(53.60) 39(58.21) 80(51.61)

Diabetes 0.944928

 � 0 168(75.68) 50(74.63) 118(76.13)

 � 1 54(24.32) 17(25.37) 37(23.87)

Cardiogenic diseases 0.554017

 � 0 198(89.19) 58(86.57) 140(90.32)

 � 1 24(10.81) 9(13.43) 15(9.68)

Smoking 0.966679

 � 0 147(66.22) 45(67.16) 102(65.81)

 � 1 75(33.78) 22(32.84) 53(34.19)

Drinking 1

 � 0 165(74.32) 50(74.63) 115(74.19)

 � 1 57(25.68) 17(25.37) 40(25.81)

ICH 0.561503

 � 0 201(90.54) 59(88.06) 142(91.61)

 � 1 21(9.46) 8(11.94) 13(8.39)
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recurrence, and economic burden. The lifetime risk of stroke is 
notably elevated among individuals aged ≥25 years in China, with 
the recurrence rate in the first year after the initial stroke ranging 
between 9.8 and 23.0% (9, 10). Recurrent strokes are associated with 
high rates of disability and mortality. Although mechanical 
thrombectomy in patients with acute stroke achieves a high 
recanalization rate, a significant proportion of patients still 
experience poor outcomes. Early prediction of the functional 
prognosis allows for timely intervention and rehabilitation, such as 
blood pressure and glucose control, individualized early 
anticoagulation and antiplatelet therapies, and neurocognitive 
rehabilitation, thereby enhancing the patient’s quality of life (11). 
Therefore, early prognostic evaluation is of great significance in 
guiding personalized clinical treatment strategies. Previous studies 
have shown that factors such as age, atrial fibrillation, and NIHSS 
scores are closely associated with stroke prognosis. However, the 
mechanisms underlying functional outcomes after mechanical 
thrombectomy for acute stroke are complex, and the prediction of 
stroke prognosis remains controversial (12).

In recent years, neuroimaging technologies have evolved from 
basic diagnostic tools to play more critical roles, particularly in 
guiding reperfusion therapy and predicting prognosis. Currently, 
AIS is primarily diagnosed using CT and MRI, with DWI and 

FLAIR sequences being particularly sensitive to ischemic stroke 
(13). The DWI sequence, as part of the first-line diagnostic approach 
for acute stroke, is considered the most accurate method for 
assessing infarct volume, and MRI may play a crucial role in 
predicting AIS recurrence. High-signal areas on DWI are typically 
indicative of the core infarct regions (14). Previous studies have 
suggested that the infarct volume in patients with acute stroke 
correlates closely with prognosis, with smaller infarct volumes 
before treatment often being associated with better outcomes. 
However, the manual evaluation of MRI images is inherently 
subjective, and the predictive capacity of traditional imaging 
parameters for stroke prognosis remains limited (15).

In recent years, radiomics has emerged as a prominent research 
area that provides multiparametric, morphological, and functional 
data. Radiomics transcends traditional medical imaging models 
based on morphology and semi-quantitative analysis by utilizing 
high-throughput feature extraction algorithms to quantitatively 
analyze imaging data (16). This approach allows for comprehensive 
exploration and analysis of the hidden information embedded within 
images, thereby optimizing the utility of imaging results and 
supporting personalized treatment strategies in clinical practice. 
Radiomics has demonstrated immense potential as an advanced 
technological tool in the field of oncology. This success can 

TABLE 2  Comparison of patients’ baseline characters for poor prognosis in the training cohort and validation cohort.

Characteristics Training cohort Validation cohort

Good 
prognosis

Poor prognosis P-value Good 
prognosis

Poor prognosis p-value

Age 67.29 ± 12.09 70.28 ± 12.10 0.139155 67.43 ± 11.63 76.86 ± 9.57 0.001881

NIHSS at admission 5.84 ± 3.08 9.63 ± 5.03 <0.001 5.52 ± 3.88 12.86 ± 5.19 <0.001

Gender 0.868411 0.266734

 � 0 42(42.86) 26(45.61) 18(39.13) 12(57.14)

 � 1 56(57.14) 31(54.39) 28(60.87) 9(42.86)

Hypertension 0.173769 0.224226

 � 0 52(53.06) 23(40.35) 22(47.83) 6(28.57)

 � 1 46(46.94) 34(59.65) 24(52.17) 15(71.43)

Diabetes 0.258194 0.478261

 � 0 78(79.59) 40(70.18) 36(78.26) 14(66.67)

 � 1 20(20.41) 17(29.82) 10(21.74) 7(33.33)

Cardiogenic diseases 1 0.804267

 � 0 89(90.82) 51(89.47) 39(84.78) 19(90.48)

 � 1 9(9.18) 6(10.53) 7(15.22) 2(9.52)

Smoking 0.484597 0.824463

 � 0 62(63.27) 40(70.18) 30(65.22) 15(71.43)

 � 1 36(36.73) 17(29.82) 16(34.78) 6(28.57)

Drinking 1 0.616132

 � 0 73(74.49) 42(73.68) 33(71.74) 17(80.95)

 � 1 25(25.51) 15(26.32) 13(28.26) 4(19.05)

ICH 0.004568 0.105598

 � 0 95(96.94) 47(82.46) 43(93.48) 16(76.19)

 � 1 3(3.06) 10(17.54) 3(6.52) 5(23.81)
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be  attributed to the support provided by genomic projects and 
biomolecular research data, which have enabled researchers to apply 
radiomics to tumor imaging and extract valuable insights from it. In 
tumor imaging, the application of radiomics has expanded to include 
the prediction of tissue pathology, tumor grading, genetic mutations, 
patient survival rates, and therapeutic outcomes (17).

However, the application of radiomics is not limited to tumor 
imaging; any digital medical image can benefit from radiomic 
analysis. Inspired by the successful experiences in tumor imaging, 
researchers have begun applying these techniques to 
non-oncological diseases, including cerebral aneurysms, ischemic 
stroke, hemorrhagic stroke, cerebral arteriovenous malformations, 
and demyelinating diseases. MRI radiomics holds significant value 
in predicting the prognosis of patients with AIS who have 
undergone mechanical thrombectomy (18). Studies have shown that 
effective prognostic models can be developed by extracting features 
from DWI sequences and employing support vector machine 
classifiers (19). Additionally, radiomics can be used to analyze the 
source of AIS thrombosis, thereby guiding clinical decisions 
regarding thrombolytic or thrombectomy approaches. In one study 
focusing on the prognosis of patients with stroke undergoing 
mechanical thrombectomy, those with higher NIHSS scores at 
admission typically had a poorer prognosis. Using radiomics 

models, multiple features that were significantly correlated with AIS 
prognosis were identified, including first-order, shape, and texture 
features (20). Among these, the GLCM reflects the homogeneity and 
heterogeneity of lesions, indirectly revealing the potential impact of 
stroke-related changes in heterogeneity on patient prognosis. 
GLRLM, on the other hand, captures the directional and roughness 
aspects of the image texture, where directional textures may exhibit 
longer runs at specific angles. These features capture local 
heterogeneity and gray-level variations in images, providing a more 
accurate and comprehensive radiomic basis for patient prognostic 
evaluation (21).

Wang et  al. (22) extracted 402 radiomics features from DWI 
sequences. Significant differences in age, infarct volume, baseline and 
24-h NIHSS scores, and hemorrhagic status were observed between 
the groups with favorable and unfavorable functional outcomes. 
Eleven radiomic parameters were identified, showing strong predictive 
performance in both the training and validation cohorts, with AUCs 
of 0.69 (0.59–0.78) and 0.73 (0.63–0.82), respectively. A radiomic 
nomogram combining clinical features (age, hemorrhage, and 24-h 
NIHSS score) and radiomic features showed strong discriminatory 
power in the training cohort (AUC = 0.80; 95% confidence interval 
[CI] 0.75–0.86) and was validated in the validation cohort 
(AUC = 0.73; 95% CI 0.63–0.82). This study did not consider the 

FIGURE 3

Utilization of the LASSO algorithm for feature selection. (A) The LASSO model employs five-fold cross-validation to select and fine-tune the 
parameters (λ). (B) Each colored line represents the coefficient of a specific feature, resulting in the final selection of 16 radiomic features (C).
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location and size of the ischemic injury, which may have affected the 
results. Although radiomic features and clinical variables showed high 

specificity, their sensitivity was lower, likely because of the generally 
favorable outcomes in most patients.

FIGURE 4

(A,B) Receiver operating characteristic curves showing that the CRD model exhibited significantly higher AUC values than the other methods in both 
cohorts. (C,D) Calibration curves showing that the CRD model exhibited exceptional consistency and calibration in predicting a poor prognosis for 
patients with AIS.

TABLE 3  Predictive performance of different models to estimate the risk of poor prognosis.

Model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Clinic 0.774194 0.762084 0.6842–0.8399 0.421053 0.979592 0.923077 0.744186 Training

Radiomics 0.703226 0.75546 0.6776–0.8333 0.614035 0.755102 0.59322 0.770833 Training

Deep learning 0.664516 0.689402 0.6040–0.7748 0.77193 0.602041 0.53012 0.819444 Training

CRD 0.780645 0.833691 0.7691–0.8983 0.754386 0.795918 0.68254 0.847826 Training

Clinic 0.791045 0.874224 0.7894–0.9591 0.523809 0.913043 0.733333 0.807692 Validation

Radiomics 0.761194 0.805383 0.6956–0.9152 0.666667 0.804348 0.608696 0.840909 Validation

Deep learning 0.686567 0.756729 0.6258–0.8876 0.809524 0.630435 0.5 0.878788 Validation

CRD 0.791045 0.907867 0.8352–0.9805 0.904762 0.73913 0.612903 0.944444 Validation
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FIGURE 5

(A,B) The DeLong test was applied to both the training and validation cohorts to evaluate the statistical significance of the differences between the 
models. (C,D) DCA curves demonstrating that the CRD model offers the greatest net benefit compared to the clinical, radiomics, and deep learning 
models. (E) A nomogram was constructed for the CRD model based on the NIHSS score at admission, ICH, radiomics score, and deep learning score.
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Liu et  al. (21) divided patients with AIS into recurrent and 
non-recurrent groups based on stroke recurrence within 1  year. 
From the 1,037 radiomic features extracted from the DWI images, 
20 were selected for machine learning models. In the validation 
cohort, LightGBM exhibited the highest level of accuracy. The 
radiomic data yielded a sensitivity of 0.65, specificity of 0.671, and 
AUC of 0.647. The clinical data achieved a sensitivity of 0.7, 
specificity of 0.799, and AUC of 0.735. When combined, the data 
resulted in a sensitivity of 0.85, specificity of 0.805, and AUC of 
0.789. The top factors of the LightGBM model included clinical 
indicators, such as hemoglobin, platelet-to-large platelet ratio, and 
age, along with radiomic features. However, the study used only 2D 
images, limiting the potential of 3D imaging, and may have 
overlooked certain clinical factors. Future research should expand 
the dimensionality of the clinical data.

Compared with traditional methods that solely analyze imaging 
data, radiomics enables a deeper exploration of image information, 
facilitating the transformation of images into higher-dimensional 
data (23). This not only enhances the accuracy of prognostic 
assessments but also provides stronger support for clinical treatment 
decisions. Radiomic features can reflect the gray-level distribution 
within images and the interrelationships between voxels, and quantify 
the heterogeneity within lesions that are invisible to the naked eye, 
thus aiding in the recognition and classification of diseases (24). 
Radiomics has already been employed in stroke-related research, such 
as identifying acute cerebral infarction lesions based on CT- or 
MRI-derived radiomic features, with MRI-based radiomic features 
being particularly useful for assisting with the early diagnosis of post-
stroke cognitive impairment. Previous studies have predominantly 
utilized DWI sequences for image processing and data extraction 
(25). MRI offers superior tissue resolution, demonstrates exceptional 
sensitivity and specificity for diagnosing AIS, and has gained 
widespread clinical recognition. Multimodal MRI, which combines 
conventional and specialized sequences, reflects the 
pathophysiological changes in ischemic brain tissue. Its utility extends 
beyond diagnosis, offering insights into collateral circulation, 
hemodynamics, and molecular metabolism (26). This comprehensive 
approach allows for an integrated evaluation of the cerebral 
parenchyma, cerebrovascular conditions, and cerebral 
hemodynamics, thereby providing a precise reflection of the 
pathological and physiological state of patients with AIS, ultimately 
guiding the development of more personalized and accurate 
treatment strategies.

Deep learning is a pivotal branch within the broader field of 
machine learning. It emulates the learning process of the human 
brain through the construction of multilayered neural networks, 
thereby enabling comprehension and analysis of intricate data (27). 
Compared with traditional machine learning algorithms, deep 
learning models exhibit a superior capacity for representation 
learning and generalization, autonomous extraction of features from 
data, and the generation of higher-level abstract representations (28). 
The fundamental concept of deep learning is the iterative 
transformation of data features through successive layers of neural 
networks, effectively mapping data from a raw, low-level feature space 
to a more advanced, abstract feature space (29). In this process, each 
layer applies a non-linear transformation to the output of the 
preceding layer, thereby extracting increasingly abstract and 
meaningful features. This layered transformation enables 

deep-learning models to address increasingly complex and abstract 
tasks. The success of deep learning can be attributed to the availability 
of vast datasets, formidable computational power, and advanced 
algorithmic models. With the widespread proliferation of the Internet 
and the acceleration of the digitalization process, the volume of data 
available has increased exponentially. Such data provide rich training 
and testing samples, facilitating outstanding performances using 
deep learning models across diverse and complex scenarios. As 
computer hardware continues to evolve and parallel computing 
technologies advance, the training time of deep learning models will 
be significantly reduced, making deep learning more practical for 
real-world applications.

Deep learning is progressively transforming our understanding 
and practice of medicine. Owing to its robust capabilities in feature 
extraction and pattern recognition, deep learning technology has 
instigated revolutionary changes in various facets of medical 
practice, including diagnosis, treatment, and prognostic evaluation. 
For example, CNNs have been extensively applied for the automatic 
analysis of pulmonary CT images, aiding in the detection and 
diagnosis of diseases such as lung cancer. Moreover, deep learning 
models can segment and annotate medical images, facilitating more 
precise localization and measurement of pathological areas (1). In 
addition, deep learning has demonstrated immense potential for 
disease prediction and prevention. By analyzing and learning from 
large-scale medical datasets, deep learning models can identify the 
risk factors and early warning signals associated with 
specific diseases.

As medical technology continues to advance and digitalization 
accelerates, the volume of medical data is growing exponentially. In 
this context, deep learning, a powerful machine learning technique, 
has demonstrated enormous potential for processing and analyzing 
large-scale medical datasets (30). In particular, the application of deep 
learning in stroke diagnosis and treatment has attracted increasing 
attention. Traditional stroke diagnostic methods often rely heavily on 
the clinical experience and subjective judgment of healthcare 
providers. In contrast, deep learning can automatically extract and 
recognize complex features and patterns associated with stroke by 
learning from vast amounts of medical data, thereby enhancing the 
diagnostic accuracy and efficiency. An accurate assessment of the 
infarct core plays a pivotal role in predicting patient outcomes (31). 
Although CT is more convenient, it is not particularly sensitive to 
early infarction changes. To address this issue, Lu et al. (32) developed 
a deep learning model to identify early subtle AISs in non-contrast CT 
scans. Their CNN model effectively captured the deep image feature 
differences between the region of interest and normal tissue and 
successfully identified and localized lesions. Evaluation using the 
AUC, sensitivity, specificity, and accuracy metrics (with 95% CIs) 
showed that the diagnostic performance of the model significantly 
outperformed that of two experienced radiologists. After referencing 
the model, the diagnostic accuracy of the radiologists also showed 
marked improvement, with results highly consistent with the infarct 
lesion volumes obtained from DWI.

In this study, we  developed a 2.5D CNN model based on 
ResNet101, utilizing residual structures to perform feature extraction 
from brain MRI images. Through transfer learning, the dataset 
features were converted into vectors, which were then fused through 
fully connected layers, to ultimately classify stroke prognosis. The 
model weights were saved when the highest accuracy was achieved in 
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the validation cohort, and a deep learning model was subsequently 
constructed based on these parameters. This study introduces a 2.5D 
CNN model designed to extract brain MRI features and fuse 
multimodal information for the precise identification of stroke 
prognosis-related factors. While reducing the scale and parameter 
count of 3D convolution models, multimodal imaging is leveraged to 
ensure comprehensive feature extraction and accurate classification 
outcomes. This model does not require complex preprocessing of raw 
images, and the regions of interest in the images were validated using 
visualization techniques. The 2.5D CNN combines 2D and 3D 
convolutions, offering two distinct approaches for three-dimensional 
image segmentation: one based on 2D networks and the other on 3D 
networks. However, 2D network-based segmentation utilizes only 
in-slice information, whereas the 3D network approach may risk 
overfitting when computational resources are limited. The 2.5D 
method introduces interlayer information to enhance segmentation 
accuracy, considering the spatial information from adjacent layers. 
The fusion of multi-view perspectives and integration of adjacent 
layers as inputs, along with the incorporation of 3D features, 
significantly improved the model’s prediction results.

Magnetic resonance imaging, particularly quantitative 
susceptibility mapping and R2* relaxometry, plays a vital role in 
diagnosing AIS and elucidating its pathophysiology. These techniques 
can quantify iron concentration and myelin volume fraction, 
providing insights into the evolution of iron and myelination status in 
ischemic lesions. One study explored the relationship between iron 
deposition and myelination changes and neurological outcomes in 
patients with AIS. The results showed that patients with branch 
atheromatous disease (BAD) exhibited a higher susceptibility to 
changes, indicating increased iron deposition (33). Changes in NIHSS 
scores were significantly associated with changes in magnetic 
susceptibility values, but not with R2* values. Patients with increased 
iron and demyelination levels showed less improvement in 
neurological outcomes than those with decreased iron and 
remyelination levels. The BAD subtype, characterized by increased 
iron content and demyelination, was associated with worse 
neurological outcomes.

The ischemic penumbra, a region between irreversibly infarcted 
and normal brain tissue, is crucial in acute stroke treatment. Existing 
detection methods, such as 15O-positron emission tomography, are 
considered the gold standard, but are impractical in emergency 
settings. One study investigated the feasibility of using quantitative 
susceptibility mapping to estimate the oxygen extraction fraction for 
detecting the ischemic penumbra in patients with AIS (34). In 11 
patients with a perfusion-core mismatch ratio ≥1.8, the volumes of 
increased oxygen extraction fraction (>51.5%) correlated positively 
with the ischemic penumbra volumes (r = 0.636, p = 0.035) and 
negatively with the 30-day change in NIHSS scores (r = −0.624, 
p = 0.041). The Dice similarity coefficient between the penumbra 
volumes analyzed using both the Dice similarity coefficient and oxygen 
extraction fraction methods was 0.724, indicating high consistency.

This study has several limitations that need to be addressed. First, 
it was a retrospective analysis with an insufficient sample size. Our 
analysis was based on a single-center study and lacked independent 
external validation, which restricted its generalizability. Second, the 
imaging data utilized in the study were obtained at the time of 

discharge, and the duration of clinical trial participation varied across 
cases, potentially limiting the predictive capability of the model in the 
early stages. Third, we did not perform a subgroup analysis of anterior 
and posterior circulation strokes. Given the substantial differences in 
infarction mechanisms and prognostic factors between these regions, 
such an analysis is crucial for uncovering the specific biological 
associations of a model.

5 Conclusion

The CRD model based on multimodal MRI demonstrated high 
diagnostic efficacy and reliability in predicting poor prognoses in 
patients with ischemic stroke. This approach holds considerable 
potential to assist clinicians in the risk assessment and decision-
making processes for patients with AIS.
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Objective: Grey-to-white matter ratio (GWR) is an early and sensitive indicator 
of cerebral oedema in patients with hypoxic-ischaemic brain injury, we aimed 
to evaluate the prognostic value of GWR for predicting neurological outcome 
in heat stroke patients.

Methods: This multicentre retrospective analysis included 86 patients with heat 
stroke patients who underwent cranial computed tomography (CT). Patients 
were stratified by Cerebral Performance Category (CPC) scores at discharge: 
good outcome (CPC 1–2, n = 65) versus poor outcome (CPC 3–5, n = 21) in the 
derivation cohort. Seven GWR parameters were calculated from Hounsfield unit 
measurements at three different regions (basal ganglia, centrum semiovale, high 
convexity): putamen/corpus callosum (PU/CC), caudate nucleus/posterior limb 
of internal capsule (CN/PLIC), CN/CC, PU/PLIC, GWRbasal ganglia, GWRcerebrum, and 
GWRaverage. Prognostic performance of GWR was compared with qSOFA using 
receiver operating characteristic (ROC) analysis. And a validation cohort was 
used to verify the reliability.

Results: All GWRs were significantly lower in the poor outcome group than 
in the good outcome group. ROC analysis showed the following areas under 
the curve: PU/CC, 0.836; CN/PLIC, 0.815; CN/CC, 0.858; PU/PLIC, 0.814; 
GWRbasal ganglia, 0.855; GWRcerebrum, 0.803; GWRaverage, 0.837. The cutoff values with 
90.77% specificity in predicting poor outcome were as follows: PU/CC, 1.20 
(sensitivity, 76.19%); CN/PLIC, 1.17 (sensitivity, 52.38%); CN/CC, 1.20 (sensitivity, 
76.19%); PU/PLIC, 1.20 (sensitivity, 61.90%); GWRbasal ganglia, 1.23 (sensitivity, 
80.95%); GWRcerebrum, 1.19 (sensitivity, 57.14%); GWRaverage, 1.23 (sensitivity, 
71.43%). The sensitivity of GWRbasal ganglia significantly increased when combined 
with qSOFA in the derivation and validation cohorts.

Discussion: A low GWR was strongly associated with poor outcome in the heat 
stroke patients. The GWR may be useful as an objective early predictor of poor 
neurological outcome in the heat stroke patients. Incorporating the GWR with 
qSOFA significantly enhanced the prediction performance.

OPEN ACCESS

EDITED BY

Jieqiong Wang,  
Chinese Academy of Sciences, China

REVIEWED BY

Xiang Li,  
Washington University in St. Louis, 
United States
Yiyuan Yao,  
Exosome Diagnostics, Inc., United States

*CORRESPONDENCE

Fating Zhou  
 zhoufating@163.com  

Haizhen Duan  
 dhzh1027@163.com

†These authors have contributed equally to 
this work

RECEIVED 07 January 2025
ACCEPTED 18 April 2025
PUBLISHED 13 May 2025

CITATION

Wei H, Zhu H, Liu M, Zhu X, Yu A, Luo C, 
Zeng Q, Zhou F and Duan H (2025) 
Grey-to-white matter ratio on computed 
tomography for predicting neurological 
outcome in patients with heat stroke: a 
retrospective cohort study.
Front. Neurol. 16:1556822.
doi: 10.3389/fneur.2025.1556822

COPYRIGHT

© 2025 Wei, Zhu, Liu, Zhu, Yu, Luo, Zeng, 
Zhou and Duan. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  13 May 2025
DOI  10.3389/fneur.2025.1556822

93

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1556822&domain=pdf&date_stamp=2025-05-13
https://www.frontiersin.org/articles/10.3389/fneur.2025.1556822/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1556822/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1556822/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1556822/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1556822/full
mailto:zhoufating@163.com
mailto:dhzh1027@163.com
https://doi.org/10.3389/fneur.2025.1556822
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1556822


Wei et al.� 10.3389/fneur.2025.1556822

Frontiers in Neurology 02 frontiersin.org

KEYWORDS

heat stroke, grey-to-white matter ratio, basal ganglia, neurological outcome, 
computed tomography (CT)

1 Introduction

Heat stroke, which is caused by global warming and the increasing 
intensity of global heatwaves, is a common and life-threatening 
disorder with a high mortality rate (1). Approximately 1.2 billion 
people would be at risk of a heat stroke worldwide annually by the year 
2,100, and the case fatality rate of heat stroke is 10–20% (2, 3). For 
patients with severe heat stroke, the 28-day mortality rate is nearly 
60% (4, 5). Furthermore, numerous survivors have long-term 
neurological sequelae, such as dysarthria, cognitive impairment, 
personality change, and limb paresis (3, 6). Brain imaging of survivors 
with neurological dysfunction identified damage to the prefrontal 
cortex, cerebellum, and/or hippocampus several months later (7). 
Thus, early and accurate assessment of neurological outcome is vital 
in making appropriate therapeutic decisions in patients with 
heat stroke.

Currently, several classic indicators for evaluating prognosis of 
heat stroke have been identified: temperature, heart rate, systolic 
blood pressure, creatinine, aspartate aminotransferase, activated 
partial thromboplastin time, international normalised ratio, and 
cooling time (8–10). Based on these indicators, predictive prognosis 
systems for heat stroke have been developed, including the Sequential 
Organ Failure Assessment (SOFA) score, Acute Physiology and 
Chronic Health II score, and Exertional Heat Stroke Score (11, 12). 
However, all above scoring systems cannot be rapidly obtained due 
to the requirement for several tests. Thus, a novel, easy-to-access and 
reproducible tool is needed for predicting neurological outcome of 
heat stroke patients.

During diagnostic procedures, cranial computed tomography 
(CT) scans are performed to rule out stroke and brain haemorrhage 
in patients with heat stroke. Simultaneously, brain oedema can 
be assessed by differences in the grey and white matter in cranial 
CT (13, 14). Grey matter (GM) is composed of neuronal bodies 
and synapses; white matter (WM) mainly consists of myelinated 
axons. The differences between GM and WM on cranial CT images 
arise because of the low lipid content and high-water content of 
GM resulting in a lower carbon concentration as well as a higher 
oxygen concentration, increasing the level of photoelectric uptake 
(15). The selective susceptibility of GM to ischemia is due to its 
higher metabolic rate, greater blood flow, and susceptibility to 
excitotoxicity (15). A previous retrospective study revealed that 
severe loss of grey–white matter discrimination is an early and 
sensitive radiographic indicator of severe brain damage in patients 
with heat stroke (13). The loss of grey-white matter discrimination 
can be measured and quantified by the ratio of the grey matter to 
the white matter (GWR), which is a recommended and effective 
tool for predicting neurological outcome in comatose cardiac 
arrest survivors by guidelines for cardiopulmonary resuscitation 
(14, 16). Based on current evidence, we  aimed to evaluate the 
reliability of GWR in predicting neurological prognostication for 
patients with heat stroke.

2 Materials and methods

2.1 Ethics approval

The study was approved by the Human Ethical Committee of 
Chongqing Emergency Medical Center and was in accordance with 
the Declaration of Helsinki. The Ethics Committee/Institutional 
Review Board waived the requirement for written informed consent 
to participate owing to the retrospective nature of the study, but the 
patients provided informed consent for the publication of the cranial 
CT images. All clinical information about the patients was maintained 
in confidence, and the data were analysed in an anonymous manner.

2.2 Study population

This multicentre retrospective study enrolled heat stroke patients 
from the Affiliated Hospital of Zunyi Medical University, Chongqing 
Emergency Medicine Hospital, Fifth People’s Hospital of Chongqing, 
Dianjun District People’s Hospital of Yichang and Yichang Central 
People’s Hospital between January 2020 and November 2023 
(ChiCTR2400079671). Cases of heat stroke were screened using the 
International Classification of Diseases, Tenth Revision code from the 
electronic database. Heat stroke was defined as a core body temperature 
>40°C, accompanied by central nervous system abnormalities, 
including coma, delirium, and convulsion (17). Clinical data, including 
age, sex, comorbidity, temperature, presentation, laboratory tests, 
cranial CT, and outcome, were collected from medical records. The 
qSOFA score of enrolled patients on admission were obtained.

The inclusion criteria were patients who met the heat stroke 
diagnostic criteria, who were older than 18 years, and who underwent 
cranial CT. Those with incomplete medical records and data, with 
traumatic brain injury and acute stroke, and who underwent cranial 
CT after resuscitation were excluded. The reasons for performing 
cranial CT scans were not relevant to this study. Most of the patients 
with heat stroke underwent cranial CT to rule out primary intracranial 
events. Heat stroke patients were divided into derivation and validation 
groups according to the city. These patients were included in the 
derivation group from the Zunyi and Chongqing. The remaining heat 
stroke patients from Yichang were included in the validation group. 
Of the 108 patients with heat stroke who were enrolled into derivation 
cohort, 22 were excluded; finally, 86 patients with heat stroke were 
included in the derivation group (Figure 1). In addition, 42 heat stroke 
patients from Yichang were used to verify the reliability of GWR.

2.3 GWR determination

Participants were scanned by a SOMATOM Sensation 64 CT 
scanner (Siemens Healthiness, Erlangen, Germany) with 5-mm slices. 
Regions of interest (ROI) were detected independently by three 
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investigators. They were blinded to the outcome and clinical information 
of patients during GWR determination (17). After adjustment of the 
window to the brain, investigators reviewed CT scans using a commercial 
image-viewing software and identified comparable brain slices. Circular 
regions of measurement (10 mm2) were placed over the ROI bilaterally 
(Figure 2), and the average attenuation was recorded with Hounsfield 
units (HU). The basal ganglia level was determined from the putamen 
(PU), caudate nucleus (CN), corpus callosum (CC), and posterior limb 
of internal capsule (PLIC). The centrum semiovale and high convexity 
levels were determined from the medial cortex (MC1 and MC2) and 
medial white matter (MW1 and MW2), respectively. The GWRs were 
calculated by seven methods according to previous reports (18, 19): PU/
CC, CN/PLIC, CN/CC, PU/PLIC, GWRbasal ganglia = (PU + CN)/
(CC + PLIC), GWRcerebrum = (MC1 + MC2)/(WM1 + WM2), and 
GWRaverage = (PU + CN + MC1 + MC2)/(CC + PLIC+WM1 + WM2).

2.4 Outcome measure

The primary outcome of patients with heat stroke was clinical 
outcome at hospital discharge, which was assessed using the Cerebral 
Performance Category (CPC) score (Supplementary Table S1), and 
patients were divided into good outcome group (CPC 1–2) and poor 
outcome group (CPC 3–5).

2.5 Statistical analyses

Continuous variables are expressed as mean±standard deviation or 
median with interquartile ranges. Categorical data are expressed as 
number and frequency. Differences between two groups were tested with 
the independent two-sample t test or Mann–Whitney U test. 
Comparisons of categorical variables were tested using the chi-square 
test or Fisher’s exact test, as appropriate. Obtaining the optimal threshold 

for predicting prognosis with GWRs was determined through receiver 
operating characteristic (ROC) curve analysis. The statistical 
performance of the outcome predictive models was estimated by the area 
under the curve (AUC), with 95% confidence interval (CI). These AUC 
values were compared with the Delong test. All statistical analyses were 
performed in SPSS version 19.0 (IBM Corp., Armonk, NY, United States). 
A two-tailed p value <0.05 was considered statistically significant.

3 Results

3.1 Clinical characteristics

The average age of the patients was >65 years, most were male, and 
most presented with underlying diseases, including hypertension, 
diabetes, and coronary artery disease. Of the 86 patients, 65 had good 
neurological outcome, and 21 had poor neurological outcome. The 
baseline characteristics are presented in Table 1. Except for faecal or 
urinary incontinence, there was no significant difference between the 
groups in terms of age, sex, comorbidities, symptoms, and duration from 
onset of symptoms to cranial CT scans. However, patients in the poor 
outcome group had higher rectal temperature (41.8°C versus 40.5°C), 
heart rate (123.0 versus 97.0 bpm), respiratory rate (28.0 versus 20.0 bpm), 
qSOFA (3.0 versus 1.0), and length of stay of hospital (12.0 versus 5.0 days) 
than those in good outcome group. Furthermore, the patients in the poor 
outcome group were more likely to experience multiorgan dysfunction 
(95.2% versus 36.9%) and to be admitted to the intensive care unit (95.2% 
versus 38.5%) than those in the good outcome group.

3.2 Cranial CT finding

Cranial CT indicated cerebral sulci and effacement of brainstem 
cisterns, decreased cortical density, and loss of the normal differentiation 

FIGURE 1

Flow diagram illustrating heat stroke patients’ selection process.
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of the white and the grey matter. The imaging signs were clearly observed 
in the basal ganglia, centrum semioval, and high convexity levels. For 
patients with poor outcome, diffuse cerebral oedema was clearly visible, 
and the values of the white matter were nearly similar to those of the grey 
matter (Figure  3). There were no cases of central nervous system 
haemorrhage or displaced anatomical structures.

3.3 GWR on cranial CT

The attenuation values and GWRs are presented in Table 2. The 
attenuation values of the grey matter at high convexity were 
significantly lower in the poor outcome group than in the good 
outcome group, and the attenuation values of the white matter at the 

TABLE 1  Characteristics of the study population (n = 86).

Good outcome (n = 65) Poor outcome (n = 21) p-value

Age (years) 70.0 (56.5–77.5) 77.8 (55.5–85.5) 0.231

Male gender, n (%) 36 (55.4) 15 (71.4) 0.193

Comorbidities

Hypertension, n (%) 23 (35.4) 5 (23.8) 0.325

Diabetes, n (%) 11 (16.9) 4 (19.0) 0.527

Coronary artery disease, n (%) 3 (4.6) 2 (9.5) 0.592

Stroke, n (%) 3 (4.6) 3 (14.3) 0.153

Symptoms and signs

Fecal or urinary incontinence, n (%) 4 (6.1) 6 (28.6) 0.012

Cramp, n (%) 13 (20) 3 (14.3) 0.751

Weakness, n (%) 13 (20) 3 (14.3) 0.751

Vomiting, n (%) 5 (7.7) 2 (9.5) 1.000

From onset of symptoms to admission (h) 2.0 (1.00–5.00) 3.0 (1.50–6.50) 0.430

From onset of symptoms to cranial CT 2.8 (1.65–5.45) 6 (1.95–23.00) 0.094

Rectal temperature (°C) 40.5 (40.1–40.4) 41.8 (40.4–42.2) 0.022

Heart rate (bpm) 97.0 (82.5–115.5) 123.0 (98.5–142.0) 0.002

Respiratory rate (bpm) 20.0 (19.0–24.0) 28.0 (23.5–36.0) <0.0001

Shock, n (%) 4 (6.2%) 10 (47.6%) <0.0001

MODS, n (%) 24 (36.9%) 20 (95.2%) <0.0001

qSOFA scores 1.0 (0.0–2.0) 3.0 (2.0–3.0) <0.0001

Staying intensive unit, n (%) 25 (38.5%) 20 (95.2%) <0.0001

Length of stay (days) 5.0 (2.0–9.0) 12.0 (2.0–24.5) 0.034

CT, computed tomography; MODS, multiple organ dysfunction syndrome; qSOFA, quick sepsis related organ failure assessment.

FIGURE 2

Circular regions of interest were placed bilaterally in the Cranial CT. 1 corpus callosum (CC), 2 caudate nucleus (CN), 3 putamen (PU), 4 posterior limb 
of internal capsule (PLIC), 5 cortex matter at the centrum semiovale level (MC1), 6 white matters at the centrum semiovale level (WM1), 7 cortexes at 
the high convexity level (MC2), 8 white matters at the high convexity level (WM2). Red circle: grey matter, yellow circle: white matter.
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TABLE 2  Attenuation values and grey to white matter ratios.

Good outcome (n = 65) Poor outcome (n = 21) p-value

Basal ganglia

Caudate nucleus (CN) 31.0 (28.0–33.0) 30.0 (27.5–32.0) 0.269

Putamen (PU) 31.0 (28.0–33.0) 30.0 (28.0–33.0) 0.793

Corpus callosum (CC) 23.0 (20.0–25.0) 27.0 (24.0–28.5) <0.0001

Posterior limb of internal capsule (PLIC) 22.0 (20.0–24.0) 26.0 (23.5–26.5) 0.001

Centrum semiovale

Medial cortex (MC1) 29.0 (26.0–32.5) 27.0 (24.0–31.5) 0.117

Medial white matter (MW1) 21.0 (19.0–24.1) 23.0 (22.5–24.0) 0.103

High convexity

Medial cortex (MC2) 29 (26.0–32.0) 27.0 (27.0–29.5) 0.043

Medial white matter (MW2) 21.0 (19.0–25.0) 22.0 (21.0–26.0) 0.111

Grey matter to white matter ratio (GWR)

PU/CC 1.350 (1.280–1.450) 1.097 (1.037–1.242) <0.0001

CN/PLIC 1.391 (1.293–1.523) 1.154 (1.113–1.275) <0.0001

CN/CC 1.364 (1.250–1.461) 1.100 (1.052–1.244) <0.0001

PU/PLIC 1.391 (1.275–1.477) 1.154 (1.108–1.307) <0.0001

GWRbasal ganglia 1.372 (1.307–1.452) 1.136 (1.094–1.221) <0.0001

GWRcerebrum 1.353 (1.292–1.418) 1.163 (1.077–1.272) 0.001

GWRaverage 1.2321 (1.262–1.405) 1.134 (1.115–1.305) <0.0001

CC, corpus callosum; CN, caudate nucleus; PU, putamen; PLIC, posterior limb of internal capsule; MC1, cortex matter at the centrum semiovale level; WM1, white matter at the centrum 
semiovale level; MC2, cortexes at the high convexity level; WM2, white matter at the high convexity level; GWR, grey white matter ratio.

FIGURE 3

Cranial CT in heat stroke patients with different neurological outcome. A heat stroke patient was admitted to the hospital. Cranial CT in the emergency 
department showed a well-defined grey-white matter difference in the brain. He was discharged from the hospital with CPC 1 (A). While, the cranial 
CT in another heat stroke patient suggested cerebral oedema with loss of grey-white matter discrepancy. The CPC was 5 at discharge from hospital 
(B). ① basal ganglia level; ② centrum semiovale level; ③ high convexity level.
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basal ganglia was higher in poor outcome group, whereas the grey 
matter attenuation values of basal ganglia and centrum semiovale 
showed no significant difference between the two groups. 
Interestingly, both white and grey matter attenuation values failed to 
show significant differences at the centrum semiovale level. All seven 
GWRs were significantly lower in the poor outcome group than in 
the good outcome group: median CN/CC: poor outcome group, 
1.110; good outcome group, 1.364 (p < 0.05); median PU/CC, poor 
outcome group, 1.097; good outcome group, 1.350 (p < 0.05); 

GWRbasal ganglia: poor outcome group, 1.136; good outcome group, 
1.372 (p < 0.05).

3.4 Prognostic performances of GWRs

For the ROC curve analysis for the prediction of poor outcome 
(Figure 4; Table 3), all seven GWRs predicted poor outcomes, with 
sensitivities ranging from 19.05 to 28.57% at cut-off values with 100% 

FIGURE 4

Receiver-operating characteristic curves for 7 different GWRs with multivariate logistic regression (AUC, area under curve; CI, confidence intervals).

TABLE 3  Sensitivity and specificity for poor outcome of attenuation measurements and GWR.

Cut-off 
value

Sensitivity Specificity PPV NPV AUC (95% 
CI)

PU/CC 1.04 28.57% 100% 100% 58.33% 0.838

1.18 76.19% 90.77% 89.19% 79.22% (0.727–0.949)

CN/PLIC 1.10 20.83% 100% 100% 58.24% 0.793

1.15 50.00% 90.77% 85.01% 64.58% (0.683–0.903)

CN/CC 1.06 28.57% 100% 100% 58.33% 0.854

1.18 76.19% 90.77% 90.83% 79.50% (0.748–0.961)

PU/PLIC 1.08 19.05% 100% 100% 55.26% 0.811

1.18 61.90% 90.77% 87.02% 70.43% (0.694–0.929)

GWRbasal ganglia 1.08 28.57% 100% 100% 58.33% 0.852

1.21 80.95% 90.77% 89.76% 81.91% (0.735–0.968)

GWRcerebrum 1.08 28.57% 100% 100% 58.33% 0.800

1.17 57.14% 90.77% 86.09% 67.93% (0.67–0.924)

GWRaverage 1.10 19.05% 100% 100% 55.26% 0.840

1.20 71.43% 90.77% 88.56% 76.06% (0.731–0.950)
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specificity. The AUC values of the GWRs were between 0.793 and 
0.854. The CN/CC had an AUC of 0.854 (95% CI, 0.748–0.961), and 
its cut-off value for 100% specificity of predicting the poor outcome 
was 1.06. GWRbasal ganglia had an AUC of 0.852 (95% CI, 0.735–0.968), 
and its cut-off value for 100% specificity for poor outcome was 1.08. 
At 90.77% specificity, GWRbasal ganglia had the highest sensitivity 
(80.95%; cut-off value, 1.21) among all methods.

3.5 qSOFA improves GWR for predicting 
poor outcome

As described before, qSOFA is a reliable predictor in assessing 
outcome of heat stroke. Compared to the SOFA score, it consists of 

three parameters and not requiring auxiliary examinations. Our 
previous results also revealed that patients with heat stroke of poor 
outcome presented with significantly higher qSOFA scores than those 
in the good outcome group. Further analysis indicated that qSOFA 
had an AUC of 0.931 (95% CI, 0.878–0.984), and its cutoff value for 
67.69% specificity for poor outcome was 2, but the specificity 
increased to 70.77% when combined with GWRbasal ganglia (Figure 5), 
and the sensitivity of GWRbasal ganglia with qSOFA increased to 61.90%. 
Compared to the AUC predicting neurological prognosis with 
GWRbasal ganglia, the AUC was significantly greater after combination of 
qSOFA score (p = 0.034 < 0.05) with the Delong tests.

3.6 Validation of the GWR in predicting 
neurological outcome in heat stroke 
patients

To confirm the clinical usefulness of GWR, we collected an 
additional 42 heat stroke patients in the validation cohort. The 
median age was 69.0 years, and this group included 26 male 
patients (61.9%). Of 42 heat stroke patients, 11 patients (26.19%) 
presented with poor outcome at discharge. Furthermore, 
we  detected the predict performance of GWRbasal ganglia in 
predicting neurological outcome. The results indicated that 
GWRbasal ganglia had AUC of 0.936 (95% CI, 0.851–1.000), and its 
cutoff value for 80.65% specificity for poor outcome was 1.224, 
but the specificity of GWRbasal ganglia with qSOFA increased to 
90.32% (Supplementary Table S2). Combination GWRbasal ganglia 
with qSOFA was presented with greater net benefit than GWR basal 

ganglia over a wide range of threshold probabilities (Figure 6).

FIGURE 5

GWR improved qSOFA for predicting neurological outcome in heat 
stroke patients.

FIGURE 6

Decision-curve analysis (DCA) for predicting neurological outcome of heat stroke patients at discharge. Decision curve analysis for the qSOFA, 
GWR basal ganglia and GWR basal ganglia + qSOFA. The x-axis displayed the threshold probability, and y-axis detected the net benefit. Red line: GWR basal ganglia; 
yellow line: qSOFA; green line: GWR basal ganglia +qSOFA.
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4 Discussion

The brain is one of the organs most vulnerable to hyperthermia 
(20). Neurological impairments are the most characteristic clinical 
manifestations in patients with heat stroke (21), and these neurological 
symptoms may present in the early stage, may persist for a long time, 
and are closely related to long-term cognitive and motor disability in 
survivors of heat stroke. Therefore, developing a novel and effective 
biomarker that detects brain injury and predicts delayed central 
nervous system damage is important.

Currently, several neurobiomarkers, including neuron-specific 
enolase (NSE), S-100 calcium-binding protein B (S-100 B), glial 
fibrillary acidic protein, and tau protein, are known to significantly 
increase in patients with heat stroke (21, 22). Of these markers, NSE 
and S-100 B have been proposed for heat stroke encephalopathy (22, 
23). Under physiological conditions, S-100 B and NSE are abundantly 
expressed in astrocytes and neurons, with low levels in serum and 
cerebrospinal fluid (24), but their concentrations increase 
considerably during acute brain injuries, such as traumatic brain 
injury, cardiac arrest, and stroke (25–27). Increasing evidence showed 
that the concentration of S-100 B was strongly correlated with 
neurological outcomes for up to 7 days post-heat stroke (9). Chun 
et al. (23) reported that the serum S-100 B concentration of patients 
with heat stroke was 5 times higher in the poor outcome group than 
in the good outcome group, and its sensitivity in predicting poor 
outcome was 86% at cutoff value of 0.61 μg/L, with 86% specificity 
(23). On the contrary, a study of moderate-intensity exercise with 
heat strain revealed no differences in serum S-100 B level during 
exercise (28). Limited by the scarcity of studies, the reliability of 
neurobiomarkers in predicting neurological prognosis remains to 
be further clarified.

Apart from neurobiomarkers, cranial CT is commonly used for 
early detection and differential diagnosis of patients with 
cerebrovascular accidents and those with heat stroke with impaired 
consciousness. Several case reports on heat stroke revealed that 
diffusive cerebral oedema appeared as a loss of grey–white matter 
discrimination, which predicts poor outcome (29, 30). In physiological 
state, the difference between grey and white matter is clearly visible in 
cranial CT (31), but this difference gradually disappears during 
cerebral oedema (32). This cranial CT finding is also known as “loss 
of boundary” or “reverse sign” and can be measured quantitatively 
using the GWR value (13, 19). Similarly, a lower GWR is associated 
with severe cerebral oedema and neurological impairments.

The present study found that the GWR of patients with heat stroke 
was lower in the poor outcome group than that in the good outcome 
group. In fact, GWR was a classic indicator of predicting neurological 
prognosis in patients post-cardiac arrest syndrome. The sensitivity of 
GWR can be  affected by various factors, including ROI for 
determining GWR and cutoff values. A study of out-of-hospital 
cardiac arrest conducted by Lee et al. (33) revealed that the sensitivities 
of the GWR of PU/CC, PU/PLIC, CC/PLIC, and GWRbasal ganglia were 
significantly different in predicting poor outcome. Similarly, Ali et al. 
(34) demonstrated that GWR had good correlation with cognitive 
function and quality of life in the aneurysmal subarachnoid 
hemorrhage patients, and a low GWR indicated cognitive dysfunction. 
Based on the above findings, we evaluated the neurological outcome 
of patients with heat stroke with seven different GWRs at the basal 
ganglia, centrum semiovale, and high convexity levels. The ROC curve 

analysis revealed that GWRbasal ganglia presented with the 
highest sensitivity.

APACHE II and SOFA scores are the common tools used for 
predicting mortality in the emergency department. In comparison 
with this two scores, qSOFA can be obtained rapidly at the bedside 
from respiratory rate, systolic blood pressure and state of 
consciousness and is not reliant on arterial serum analysis, routine 
blood examination and coagulation tests. Although qSOFA 
includes consciousness, it mainly focuses on systemic dysfunction. 
The state of consciousness is susceptible to hypothermia 
treatment. Thus, the specificity for assessing the neurological 
outcome of heat stroke is limited. In contrast to qSOFA, GWR 
measures brain oedema and directly reflects brain dysfunction. 
Unlike qSOFA, GWR is used as an indicator of cerebral oedema. 
Therefore, when qSOFA is used in combination with GWRbasal 

ganglia, the reliability is significantly improved.
The study has some limitations. Firstly, this was a retrospective 

multicentre study with a limited number of patients and quality of 
data. Some patients with heat stroke underwent cranial magnetic 
resonance imaging without CT scans. Because of the small sample 
number, the study might not have enrolled rare cases with favourable 
neurological outcome despite the development of brain oedema in the 
early stage. We also cannot perform subgroup analyses of heat stroke 
patients according to CT scanners Secondly, our hospital is the largest 
emergency centre in Southwest China. Patients with heat stroke are 
usually treated with cooling therapy out of hospital. Some of the 
patients returned home without hospitalisation after their temperature 
quickly returned to normal and neurological function improved, but 
inpatients are likely to have a more severe condition than patients with 
heat stroke in other hospitals. Thirdly, this study did not use serial 
cranial CT or automated GWR determination. Further studies are 
needed to identify the optimal time to capture CT scans for GWR 
determination. Fourthly, grey and white matter detection is influenced 
by traumatic brain injury and acute cerebral infarction, and the GWR 
is also disturbed in patients following cardiopulmonary resuscitation 
for heat stroke; therefore, the above patients were excluded from the 
present study. Finally, we did not evaluate neurological prognosis 
together with other prognostic indicators such as S-100 B and 
NSE. These neurobiomarkers are seldom examined in patients with 
heat stroke, especially in primary hospitals.

In conclusion, among patients with heat stroke who underwent 
cranial CT, GWRbasal ganglia <1.22 was a predictor of poor neurological 
outcome. Incorporating the GWR with qSOFA significantly improved 
the reliability of prediction.
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Cerebral hemodynamics 
evaluation of FLAIR vascular 
hyperintensity in TIA patients with 
large artery severe stenosis or 
occlusion
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Huaqiang Liao 1* and Wenbin Wu 1*
1 Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2 Deyang Hospital 
Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China

Purpose: To assess the practicality and utility of employing dual post-label delay 
(PLD) arterial spin labeling (ASL) in transient ischemic attack (TIA) individuals 
exhibiting Fluid-attenuated inversion recovery (FLAIR) vascular hyperintensity 
(FVH).

Materials and methods: We conducted a retrospective review of clinical data 
from TIA patients presenting with unilateral severe atherosclerotic stenosis 
or obstruction of either the intracranial internal carotid artery or the middle 
cerebral artery. Participants were categorized into two groups based on the 
presence or absence of FVH: FVH positive and FVH negative. All individuals 
underwent pseudo-continuous ASL perfusion imaging, utilizing distinct PLD 
durations (1,525 and 2,525 ms) alongside qualitative visual assessments of ASL 
perfusion irregularities. Standardized TIA evaluations, which included medical 
history reviews, neuropsychological assessments, and ABCD2 scoring, were 
performed on all subjects. We explored the correlations between FVHs, clinical 
manifestations, vascular risk factors, and perfusion metrics.

Results: A total of 50 patients were included in this investigation, with FVH 
detected in 16 subjects (32.0%). The ABCD2 score was notably elevated 
within the FVH positive cohort compared to the FVH negative group. At a PLD 
of 1,525 ms, cerebral blood flow (CBF) values for the affected and healthy 
hemispheres in the FVH positive group were recorded at 19.55 ± 6.67 and 
40.32 ± 6.83, respectively; corresponding values in the FVH negative group 
were 23.74 ± 5.03 and 46.43 ± 7.91. For a PLD of 2,525 ms, the CBF values for 
the affected and healthy sides in the FVH positive group were 34.11 ± 5.87 and 
50.27 ± 8.57, while the FVH negative group recorded values of 42.79 ± 7.03 
and 52.07 ± 7.29, respectively. The differential CBF (ΔCBF) for the affected side 
in the FVH positive and negative groups was 14.57 ± 4.34 and 19.05 ± 6.10, 
respectively. A significant negative correlation was established between ΔCBF 
and ABCD2 scores (Kendall’s tau-b = −0.578, p < 0.001).

Conclusion: The findings of this study indicate a strong association between the 
presence of FVH signs and a marked reduction in cerebral blood flow, as well as 
diminished blood flow reserve. This underscores the potential role of FVH as a 
biomarker for hemodynamic impairment in TIA patients.
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1 Background

Cerebral stenotic or occlusive disorders are associated with a 
significant decrease in flow velocity attributable to vascular stenosis or 
occlusion, and the development of collateral blood flow (1). Patients 
suffering from atherosclerotic steno-occlusive cerebrovascular disease 
exhibit a considerable, albeit variable, risk of subsequent stroke. A 
transient ischemic attack (TIA) is typically defined by the rapid onset 
of a focal neurological deficit of vascular origin, which completely 
resolves within 24 h (2–4). TIA patients with steno-occlusive 
cerebrovascular conditions have long been acknowledged as being at 
heightened risk for subsequent stroke events.

Fluid-attenuated inversion recovery (FLAIR) vascular 
hyperintensities (FVHs) are described as focal, linear, or serpentine 
hyperintensities that correspond to arteries within the subarachnoid 
space and are frequently observed in patients with large artery severe 
stenosis or occlusion (LASO) (5, 6). FVHs are often detected in 
individuals with acute ischemic stroke, suggesting considerable 
hemodynamic impairment and sluggish retrograde flow in the 
ischemic region (7, 8). Possible explanations for their presence include 
stagnant blood flow and delayed antegrade or retrograde filling (9). 
The collateral circulation of the leptomeninges plays a critical role in 
certain clinical scenarios involving transient ischemic attack (TIA) 
patients, particularly those with LASO. Some individuals within this 
cohort exhibit FLAIR vascular hyperintensity, while others do not. 
However, investigations focusing on the correlation between focal 
vascular hyperintensities (FVHs) and cerebral perfusion 
remain sparse.

The use of dynamic magnetic resonance imaging with sensitivity 
to contrast agents may elevate the potential for complications related 
to the administration of exogenous contrast materials (10, 11). Arterial 
spin labeling (ASL) magnetic resonance perfusion imaging serves as 
a valuable technique for visualizing cerebral perfusion and assessing 
cerebral blood flow (CBF). This method employs magnetically tagged 
protons in arterial blood as an intrinsic tracer, thereby negating the 
necessity for external contrast agents or radioactive tracers (12–16). A 
strong correlation has been consistently identified in many studies 
when assessing cerebral perfusion using ASL and CT perfusion (17, 
18). An essential parameter in ASL is the post-label delay (PLD) time, 
defined as the interval between the conclusion of the pulse sequence 
and the subsequent image acquisition. A brief PLD may not allow for 
adequate delivery of labeled blood to the target tissue, while an 
excessively long PLD can result in substantial T1 decay, ultimately 
diminishing the signal-to-noise ratio (19, 20). When utilizing a 
singular conventional PLD, the labeled bolus may not completely 
reach the parenchyma intended for examination, particularly in 
junctional zones, leading to significant local signal attenuation that 
could be misinterpreted as false hypoperfusion. Conversely, in patients 
with well-developed collateral circulation, a single conventional PLD 
may present apparent hyperperfusion in areas where collateral blood 
flow is stagnant, a phenomenon referred to as the arterial transit 
artifact (19). It is thus recommended to employ multiple PLD 
strategies to enhance the accuracy of CBF quantification (21, 22). The 

aim of this study was to assess the cerebral hemodynamic state in TIA 
patients experiencing severe stenosis or occlusion of large arteries, 
particularly those exhibiting FLAIR vascular hyperintensity.

2 Materials and methods

2.1 Subjects

We performed a retrospective analysis of TIA patients diagnosed 
with unilateral severe atherosclerotic stenosis (greater than 70%) or 
occlusion of the intracranial internal carotid artery (ICA, C6, or C7 
segment) or middle cerebral artery (MCA, M1 segment) at our 
institution from January 2023 to December 2024. The inclusion 
criteria encompassed: (1) Transient neurological symptoms that a 
clinical neurologist assessed to potentially have a vascular origin; (2) 
Confirmation of unilateral stenosis or occlusion of the ICA or MCA 
via MRA or CTA; (3) Non-specific findings on general MRI and 
diffusion-weighted imaging (DWI); and (4) Completion of an MRI 
study incorporating ASL with PLD values of 1,525 and 2,525 ms. 
Exclusion criteria included: (1) Presence of intracranial hemorrhage, 
brain tumors, cranial trauma, psychiatric disorders, or other 
recognized brain abnormalities; (2) Poor quality of ASL imaging and 
failure to perform standard imaging; (3) Other cerebrovascular 
conditions such as Moyamoya disease or various cerebrovascular 
malformations; and (4) Incomplete or absent clinical data for patients. 
All subjects underwent routine screening for TIA, with ABCD2 scores 
evaluated by trained neurologists through the review of electronic 
medical records. The study received approval from the Ethics 
Committee of the Hospital of Chengdu University of Traditional 
Chinese Medicine, which waived the necessity for written informed 
consent due to the retrospective nature of the research.

2.2 MR imaging

All patients underwent MRI scans utilizing a Discovery MR750 
3.0 T system (GE Healthcare, Milwaukee, WI, United States) outfitted 
with an 8-channel phased array head coil. The imaging protocol 
included T1-weighted imaging (T1WI), T2-weighted imaging 
(T2WI), T2 fluid-attenuated inversion recovery (T2-FLAIR), 
diffusion-weighted imaging (DWI), angiography (MRA) and pseudo-
continuous arterial spin labeling (ASL) perfusion imaging were 
performed using two distinct post-labeling delays (PLDs) of 1,525 and 
2,525 ms. The acquisition of the whole-brain three-dimensional 
pCASL perfusion sequence was executed utilizing a fast spin-echo 
methodology with background suppression, adhering to the specified 
parameters: labeling duration of 1,525 ms, repetition time (TR) of 
4,632 ms, echo time (TE) of 10.5 ms, 36 slices, a slice thickness of 
4.0 mm, a field of view of 24 cm × 24 cm, and an acquisition duration 
of 4 min and 29 s. Subsequently, the PLD was adjusted to 2,525 ms, 
while retaining all other parameters constant, resulting in an 
acquisition time of 5 min and 9 s.
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2.3 Image evaluation

In terms of image evaluation, focal FVH was characterized as a 
serpentine or speckled hyperintensity located in the sulcus and 
subarachnoid space on T2-FLAIR imaging. Two independent 
neuroradiologists, each possessing a minimum of 5 years of MRI 
experience, scrutinized the images to identify the presence of FVH 
signs and ASL perfusion anomalies through qualitative visual 
assessment, deliberately excluding identifiable and clinical 
information. The ASL cerebral blood flow (CBF) maps for both 
patient groups underwent post-processing and were generated 
utilizing the Function Tool (Advanced Workstation 4.6; GE 
Healthcare). For each patient, a rounded region of interest (ROI) was 
meticulously delineated on the 3D PCASL images to symmetrically 
assess CBF values on both the affected and healthy hemispheres. 
Careful placement of the ROIs was ensured to circumvent blood 
vessels, cerebral sulci, or cerebral cisterns. Three ROIs were employed 
in each brain region to quantify CBF, and the average value was 
utilized for subsequent analysis. In patients experiencing hemispheric 
transient ischemic attacks, the assessment of perfusion disturbances 
was conducted to ascertain their correlation with the hemispheric 
localization of presenting symptoms.

2.4 Statistical analysis

Inter-observer agreement was assessed using kappa (κ) statistics. 
κ > 0.6 is considered to indicate good agreement, while κ > 0.8 is 
regarded as excellent. Continuous variables that follow a normal 
distribution are presented as mean ± standard deviation (SD), 
whereas categorical variables are reported in terms of frequency (%). 
The differences in each of the categorical variables between the two 
groups were analyzed using one-way ANOVA, the chi-square test, 
and Fisher’s exact test (when the expected cell frequency was < 5). 
Statistical significance was set at p < 0.05. All statistical analyses were 
performed using SPSS software (version 20.0, SPSS Inc., Chicago, IL, 
United States).

3 Results

3.1 Demographic and clinical information

Fifty patients (mean age: 60.5 ± 9.0 years; 27 males) satisfied the 
inclusion criteria and were recruited for the study. The inter-reader 
agreement for FVH detection was determined to be good (κ = 0.86). 
Among the cohort, FVH was identified in 16 patients (32.0%). The 
ABCD2 scores for subjects in the study were 4 (3–5) in the 
FVH-positive group and 2 (1–3) in the FVH-negative group, 
showcasing a statistically significant difference (p  < 0.05). 
Furthermore, significant disparities were noted between the FVH 
negative and FVH positive groups in terms of prior stroke history and 
symptom duration (p < 0.05). Notably, cardiovascular risk factors, 
including hypertension, hyperlipidemia, and smoking history, did 
not exhibit significant differences between patients with and without 
FVH. Detailed characteristics of TIA patients, both with and without 
FVH signs, are outlined in Table 1.

3.2 Characteristics of cerebral perfusion 
parameters

The ASL markers in the current study demonstrated good 
reproducibility between raters (κ = 0.82). The detailed ASL perfusion 
data for patients from both groups is summarized in Table 2. For the 
PLD of 1,525 ms, the CBF values were recorded at 19.55 ± 6.67 and 
40.32 ± 6.83 for the affected and healthy sides, respectively, within the 
FVH positive group, whereas the FVH negative group exhibited 
corresponding values of 23.74 ± 5.03 and 46.43 ± 7.91. In the scenario 
of a PLD of 2,525 ms, the CBF values were noted as 34.11 ± 5.87 and 
50.27 ± 8.57 for the affected and healthy sides in the FVH positive 
group, whereas in the FVH negative group, the respective values were 
42.79 ± 7.03 and 52.07 ± 7.29. The D-value (ΔCBF) for both groups 
was compared on the affected side across different PLDs, yielding 
values of 14.57 ± 4.34 and 19.05 ± 6.10, respectively. Representative 
cases of FVH positive and FVH negative patients with varying PLDs 
are depicted in Figures 1, 2. Notably, a significant negative correlation 
was identified between ΔCBF and ABCD2 scores (Kendall’s 
tau-b = −0.578, p < 0.001).

4 Discussion

This investigation focused on the correlation between FVH and 
perfusion through ASL at varying PLDs in patients suffering from TIA 
and intracranial aortic stenosis or occlusion. The study presents three 
primary conclusions. Firstly, FVHs were identified in 32% of TIA 
patients who underwent LASO, aligning with findings from prior 
research (23). Secondly, our analysis indicated that TIA patients with 
LASO exhibiting positive FVH were substantially more likely to have 
reduced CBF and a more critically compromised blood flow reserve 

TABLE 1  Baseline characteristics of the TIA patients with and without 
FVH sign.

FVH(+) 
(n = 16)

FVH(−) 
(n = 34)

p-value

Age (years), mean ± SD 64.0 ± 6.5 58.9 ± 9.6 0.061

Male gender 10(62.5%) 17(50.0%) 0.408

Previous stroke 5(31.3%) 2(2.9%) 0.016*

ABCD2 score (median, IQR) 4(3–5) 2(1–3) <0.001*

Hypertension 11(68.8%) 19(55.9%) 0.386

Diabetes mellitus 4(25.0%) 8(23.5%) 0.910

Hyperlipidemia 7(43.8%) 8(23.5%) 0.146

Smoking history 7(43.8%) 12(35.3%) 0.472

Atrial fbrillation 4(25.0%) 8(23.5%) 0.910

Symptom duration (>1 h) 13(81.3%) 15(44.1%) 0.014*

Coronary heart disease 7(43.8%) 8(23.5%) 0.146

Occlusive site

  MCA 6(37.5%) 9(26.5%) 0.427

  ICA 10(62.5%) 25(73.5%) 0.427

ABCD2, age, blood pressure, clinical symptoms, duration of TIA and diabetes; FVH, FLAIR 
vascular hyperintensity; MCA, middle cerebral artery; ICA, internal carotid artery. *There is 
significant difference between two groups.
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compared to those without FVH. Correlation assessments demonstrated 
significant negative relationships between ΔCBF and ABCD2 scores. 
Thirdly, patients with TIA and positive FVH encountered a notably 
elevated ABCD2 risk score, a frequently utilized metric for assessing 
stroke risk post-TIA. These results provide valuable insights for 
clinicians in understanding hemodynamic conditions and collateral 
compensation, which are essential for accurately identifying disease 
states and presenting reliable imaging evidence for both primary and 
secondary stroke prevention.

While much of the existing literature has concentrated on FVH 
manifestations in patients with acute cerebral infarctions, the prevalence 
of FVH is highly variable across different studies. The assessment of 
FVH in TIA patients remains less comprehensive compared to those 
with ischemic strokes. Maeda et al. (24) evaluated the progression of 
FVH in acute and subacute cerebral infarctions within the middle 

cerebral artery territory and observed that FVH appeared in 100% of 
evaluations conducted within 24 h of symptom onset, but only in 18% 
of assessments performed 5–9 days post-symptom onset. The 
occurrence of FVH correlates with the duration between stroke onset 
and MRI imaging, with its frequency diminishing over time. Ding et al. 
(25) noted that FVH was detected in as many as 81.6% (31/38) of 
hospitalized TIA patients exhibiting severe stenosis or occlusion, with 
MR scans executed within 48 h of symptom onset, a timeframe 
significantly shorter than that of our study.

Most research suggests a relationship between FVH and either large-
vessel occlusion or severe stenosis, as well as hemodynamic impairment. 
Lyu et  al. (5) examined whether FVH could serve as a prognostic 
indicator for ischemic events in patients with ICA or MCA occlusion. 
Their findings indicated that the FVH-ASPECTS was substantially lower 
in the asymptomatic occlusion cohort compared to the symptomatic 

TABLE 2  Results of ASL in different PLDs in patients with and without FVH sign.

CBF (mL·100 g−1·min−1) FVH(+) (n = 16) FVH(−) (n = 34) p-value

Affected side Healthy side Affected side Healthy side

CBF1 19.55 ± 6.67 40.32 ± 6.83 23.74 ± 5.03 46.43 ± 7.91 0.017*

CBF2 34.11 ± 5.87 50.27 ± 8.57 42.79 ± 7.03 52.07 ± 7.29 <0.001*

△CBF 14.57 ± 4.34 19.05 ± 6.10 0.011*

CBF1, CBF in PLD 1,525 ms; CBF2, CBF in PLD 2,525 ms; △CBF, CBF2-CBF1. *There is significant difference in affected side between two groups.

FIGURE 1

FLAIR vascular hyperintensity in a patient with left middle cerebral artery occlusion. (a) Serpentine hyperintense signal of the middle cerebral artery 
branches in the left sylvian fissure in T2 FLAIR. (b) DWI demonstrate negative finding. (c) MRA showed occlusion of the left MCA M1. (d) On ASL with a 
PLD of 1525 ms markedly decreased ASL signals are noted in the extended area of the left hemisphere. ASL with a PLD of 2525 ms, (e) the decreased 
area is somewhat improved, but there is still a slight laterality compared with the right side.

FIGURE 2

FLAIR vascular hyperintensity absent in a patient with right middle cerebral artery occlusion. (a) FLAIR vascular hyperintensity absent in T2 FLAIR and 
(b) DWI demonstrate negative finding. (c) MRA showed occlusion of the right MCA M1. The area of the right MCA demonstrated to be hypoperfused on 
ASLwith a PLD of 1525 ms (d) but improved on ASL with a PLD of 2525 ms (e).
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group, implying that FVH might be predictive of stroke occurrence. 
Bunker and Hillis (26) reported that the typical location of FVHs 
matched regions of hypoperfusion in corresponding vascular territories 
captured via perfusion-weighted imaging. Nam et al. (27) investigated 
the relationship between FVH and early ischemic lesion recurrence in 
patients with lesion-negative TIA. Their results demonstrated that FVH 
is significantly associated with early ischemic lesion recurrence in this 
patient population. Our study quantitatively illustrates that TIA patients 
with significant arterial vessel occlusion who also present with FVH 
exhibit markedly lower CBF values and more severely diminished blood 
flow reserves than those without FVH. In cases of unilateral LASO, it is 
essential to consider the effects of delayed anterograde flow along with 
both primary and secondary collateral circulations when evaluating 
hemodynamic status.

Disruption of the blood–brain barrier (BBB) represents a critical 
pathological feature of ischemic stroke. Preserving BBB integrity is vital 
for maintaining central nervous system homeostasis (28). Cerebrovascular 
stenosis triggers pathological cascades via hemodynamic alterations. 
Atherosclerotic narrowing not only decreases cerebral perfusion pressure 
but also elevates turbulent flow, thereby inducing endothelial shear stress. 
This stress activates matrix metalloproteinases (MMPs) and compromises 
tight junction proteins, leading to BBB dysfunction. The resultant BBB 
compromise facilitates erythrocyte extravasation and hemoglobin 
degradation, releasing ferrous iron that catalyzes Fenton reactions. The 
subsequent production of reactive oxygen species (ROS) perpetuates 
neuroinflammation and exacerbates BBB disruption through vascular 
endothelial growth factor (VEGF)-mediated vascular remodeling. 
Importantly, hemosiderin deposition in perivascular spaces generates 
paramagnetic susceptibility effects detectable on susceptibility-weighted 
imaging (SWI) MRI. Furthermore, chronic iron overload accelerates tau 
phosphorylation and amyloid-β aggregation via ferroptosis pathways, 
establishing a self-sustaining cycle of neurodegeneration (29). Uchida 
et al. (30) conducted a combined quantitative MRI analysis using QSM 
and R2* relaxometry, demonstrating that increased iron concentration in 
ischemic lesions is associated with reduced improvement in neurological 
outcomes following stroke rehabilitation.

Conventional magnetic resonance imaging has a satisfactory 
resolution ratio for components of brain tissue, but cannot provide 
blood flow perfusion information. ASL imaging enables detection 
of absolute perfusion values. PLD is the most important parameter 
contributing to the accurate assessment of CBF (31, 32). Cerebral 
blood flow imaging can sensitively and specifically detect abnormal 
perfusion changes (33). The present study targeted the noninvasive 
assessment of cerebral hemodynamics with a quantitative measure 
of CBF perfusion using the ASL technique. This technique has good 
reproducibility and does not require radiation or gadolinium-based 
tracers, thereby avoiding potential adverse effects. CBF readings 
obtained from a single PLD scan may not accurately reflect the true 
cerebral perfusion status, particularly in patients with extensive 
vascular lesions. A PLD of 2,525 ms may detect slower blood flow 
through secondary collateral circulation, while a PLD of 1,525 ms 
may not capture such dynamics. This study validated dual-PLD 
settings of 1,525 and 2,525 ms for assessing the hemodynamic 
condition of patients with transient ischemic attack (TIA) who 
underwent large artery stenosis occlusion. Moreover, we explored 
the clinical significance of supplementary ASL and FVH signs. 
Patients experiencing transient ischemic attacks frequently exhibit 
similar pathophysiological mechanisms to individuals suffering 
from other cerebrovascular stenotic or obstructive diseases, 

characterized by a pronounced reduction in blood flow velocity 
resulting from arterial stenosis or occlusion, alongside the 
establishment of collateral circulation. Intracranial atherosclerosis 
is a notable contributor to cerebral stenosis and insufficient cerebral 
perfusion, playing a crucial role in both the initial onset and the 
recurrence of ischemic strokes (5). Individuals exhibiting transient 
neurological symptoms alongside confirmed evidence of LASO are 
at an increased risk of subsequent strokes due to compromised CBF 
and disturbed cerebral perfusion. The ABCD2 scoring system, 
which is based on specific risk factors and clinical presentations of 
TIA, revealed that patients with TIA and FLAIR hyperintensities 
(FVH) had significantly elevated ABCD2 risk scores, potentially 
correlating with adverse outcomes. Collateral circulation can 
sustain brain tissue viability for extended periods following the 
occlusion of major cerebral arteries, thereby serving a vital function 
in TIA patients. Therefore, enhancing or preserving collateral 
circulation emerges as a promising therapeutic target. Given that 
chronic hemodynamic impairment often leads to progressive 
cortical neuronal degeneration, early intervention is advocated for 
TIA patients presenting with FVH to avert stroke occurrence.

The application of ASL magnetic resonance imaging with dual 
PLD holds significant potential for evaluating cerebral hemodynamics 
in TIA patients. This method addresses limitations of single-PLD ASL 
by capturing both early and delayed perfusion phases, which is critical 
for assessing collateral-dependent blood flow and cerebrovascular 
reserve (CVR) in regions with prolonged arterial transit times (ATT). 
For instance, studies in patients with internal carotid artery steno-
occlusion demonstrated that hypoperfusion observed at PLD 1.5 s 
often improved at PLD 2.5 s due to delayed collateral flow, as validated 
by digital subtraction angiography (DSA) (19, 34). This dual-PLD 
approach also differentiates stagnant collateral pathways from 
functional hyperperfusion, which is essential for identifying tissue at 
risk of ischemic injury in TIA patients (19). Furthermore, dual-PLD 
ASL correlates with acetazolamide-challenged SPECT in assessing 
CVR, highlighting its utility for noninvasive evaluation of 
hemodynamic compromise (35). In periictal hyperperfusion studies, 
dual PLD revealed distinct hemodynamic patterns (“fast flow” vs. 
“gradual flow”), suggesting its adaptability to dynamic perfusion 
changes (36). For TIA patients, combining these capabilities could 
enable precise stratification of cerebral hemodynamic status, guiding 
interventions to prevent stroke progression. The method’s repeatability 
and lack of contrast agents further support its practicality in serial 
monitoring of TIA-related perfusion alterations (34, 35).

Despite meticulous participant selection and data scrutiny, certain 
limitations must be acknowledged. Firstly, this investigation was a 
retrospective study conducted at a single center, which might 
introduce selection bias. Further prospective research is warranted to 
elucidate the underlying pathophysiological mechanisms. Secondly, 
while the study cohort was relatively small, it encompassed a 
homogenous group of TIA patients who underwent dual PLD 
assessments. Future research should aim to replicate this investigation 
with a larger sample size. Thirdly, longitudinal studies are essential to 
ascertain the prognostic significance of FVH.

5 Conclusion

In conclusion, this study establishes that FVH signs exhibit a 
strong correlation with diminished cerebral blood flow and a 
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significantly impaired blood flow reserve, potentially reflecting the 
underlying pathomechanisms associated with stroke. The dual-PLD 
approach is a noninvasive and straightforward method for evaluating 
cerebral hemodynamics in TIA patients. We are optimistic that this 
methodology will evolve into a valuable instrument for prevention 
and early intervention in the future.
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Object: This study employs voxel-based morphometry techniques to identify 
potential areas of brain injury in patients with heart failure with preserved 
ejection fraction (HFpEF). It further assesses the correlation between clinical 
indicators, cardiac function parameters, and gray matter volume (GMV). This 
provides an imaging-based anatomical biomarker for in-depth research into the 
brain structure in patients with HFpEF.

Materials and methods: This study recruited 51 patients with HFpEF (26 males 
and 25 females) and 40 healthy controls (27 males and 13 females). Data on NT-
proBNP levels, echocardiographic parameters, and cognitive function scores 
were collected for both groups. High-resolution 3D T1-weighted imaging 
(3D-T1WI) structural MRI data were collected from all participants. The changes 
in GMV between the two groups were assessed using voxel-based morphometry 
(VBM).

Results: The study involved 40 patients with HFpEF and 28 healthy controls (HC). 
No significant differences were observed between the groups regarding age, 
gender, education, or BMI. The HFpEF group exhibited larger measurements for 
Left Ventricular Posterior Wall (LVPW), Interventricular Septal Thickness (IVST), 
Left Atrial Diameter (LAD), Right Atrial Diameter (RAD), and Right Ventricular 
Diameter (RVD). However, they maintained preserved systolic function and 
achieved lower scores on the MoCA, indicating deficits in visuospatial/executive 
functions, naming, attention, language, and memory. Compared to HC, HFpEF 
patients had reduced GMV in specific brain regions. NT-proBNP levels were 
negatively correlated with GM reduction in various cerebellar, frontal, temporal, 
and postcentral regions. Cognitive performance was inversely related to GM 
shrinkage, with different brain regions correlating with specific cognitive deficits.

Conclusion: Abnormalities in GMV in several brain areas have been identified in 
patients with HFpEF. Furthermore, these abnormal GMV are associated with NT-
proBNP levels, echocardiographic indices, and neurocognitive scoring. These 
observations could provide fresh perspectives on the pathogenic mechanisms 
of HFpEF.
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heart failure with preserved ejection fraction, gray matter volume, MRI, VBM, cognitive 
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1 Introduction

Heart failure (HF) comprises a range of syndromes marked by 
various structural or functional cardiac disorders. These impairments 
lead to difficulties in ventricular filling and/or ejection, causing 
cardiac output to be inadequate for meeting the metabolic needs of 
body tissues. Consequently, this results in insufficient blood flow to 
the lungs and other organs and tissues (Hanon et al., 2014). The 2016 
European Society of Cardiology guidelines for heart failure stratify the 
condition into three categories based on Left Ventricular Ejection 
Fraction (LVEF): HFrEF is defined as LVEF < 40%, while Heart 
Failure with Mid-Range Ejection Fraction (HFmrEF) applies to LVEF 
between 40 and 49%. Heart Failure with Preserved Ejection Fraction 
(HFpEF) is characterized by an LVEF of 50% or greater (Savarese 
et al., 2022). HFpEF, in particular, is a complex and phenotypically 
diverse syndrome featured by ventricular diastolic dysfunction 
coupled with high end-diastolic pressure, while maintaining a normal 
or near-normal LVEF, thus is also known as Diastolic Heart Failure 
(DHF) (Eltelbany et  al., 2022). Previous studies have reported 
cognitive impairment (CI) in patients with HF, particularly affecting 
processing speed, verbal memory, and executive function (Cui et al., 
2020). Brain injury may be  the main contributor to these clinical 
symptoms, and changes in the brain’s gray matter (GM) structure have 
been reported in HF patients (Steinberg et al., 2012). The centers for 
cognitive and executive functions are concentrated in the cortical 
structures of the brain (Zhou et al., 2021), which are highly sensitive 
to hypoxia, with irreversible damage occurring if oxygen deprivation 
exceeds 4–5 min. Therefore, recognizing the changes in the anatomical 
structure of the brain’s GM is crucial for understanding the cognitive 
dysfunction associated with HFpEF.

Since 2000, voxel-based morphometry (VBM) has been 
increasingly applied in the study of neuropsychiatric disorders 
(Whitwell, 2009). VBM is an automated, voxel-wise method for 
analyzing neuroanatomy, utilizing statistical techniques to process 
high-resolution three-dimensional magnetic resonance imaging 
(MRI) data. This approach enables precise detection and quantification 
of local gray and white matter density and volume. A key advantage 
of VBM is its capacity to identify subtle structural changes in the brain 
without requiring predefined regions of interest, thus minimizing 
operator bias. This high sensitivity makes VBM particularly effective 
for detecting diseases associated with neuropsychological dysfunction 
before any macroscopic structural changes occur (Good et al., 2001; 
Ridgway et al., 2008).

This study employs voxel-based morphometry to identify 
potential brain injury regions in HFpEF and to assess the associations 
between clinical indicators, cardiac functional parameters, and gray 
matter volume (GMV), thereby providing an anatomical biomarker 
via imaging for further investigation into the cerebral function 
of HFpEF.

2 Method

The experimental subjects included a total of 51 subjects in the 
HFpEF group (26 males and 25 females), and 40 members in the 
HC group (27 males and 13 females). Patients enrolled in this study 
met the diagnostic criteria for HFpEF, exhibiting typical signs and 
symptoms of heart failure, with BNP ≥ 35 pg./mL or NT-proBNP 
> 125 ng/L. Echocardiographic examination demonstrated 

structural cardiac abnormalities and/or impaired diastolic or 
systolic function, with LVEF ≥ 50%. Eligible participants were 
right-handed individuals aged between 45 and 80 years who 
provided written informed consent and were willing to cooperate 
with the study procedures.

Exclusion criteria included acute exacerbation of heart failure 
within the past 2 months, unstable cardiovascular or cerebrovascular 
diseases, dementia, uncontrolled hypertension, psychiatric disorders, 
a history of traumatic brain injury or brain tumor, obstructive sleep 
apnea, severe metabolic diseases (such as hepatic or renal failure, or 
decompensated diabetes mellitus), alcohol or substance dependence, 
illiteracy, and epilepsy. These exclusion criteria were also applied to 
the healthy control (HC) group.

2.1 Clinical data

All patients fasted overnight for at least 8 h before venous blood 
samples were collected the following day for analysis. The tests 
included serum hypersensitive C-reactive protein (hs-CRP), fasting 
plasma glucose (FPG), triglycerides (TG), total cholesterol (TC), and 
N-terminal pro-brain natriuretic peptide (NT-proBNP). All 
aforementioned laboratory tests were carried out by the Department 
of Laboratory Medicine at the Affiliated Provincial Hospital of 
Shandong First Medical University.

All patients underwent echocardiographic examinations at the 
Echocardiography Laboratory of the Affiliated Provincial Hospital of 
Shandong First Medical University, where the following data were 
collected and recorded: LVEF, left ventricular end-diastolic diameter 
(LVDD), left atrial diameter (LAD), interventricular septal thickness 
(IVST), left ventricular posterior wall thickness (LVPWT), right atrial 
transverse diameter (RAD), and right ventricular anteroposterior 
diameter (RVD).

2.2 Neuropsychological examinations

The participants in the study were evaluated for their cognitive 
status using the Montreal Cognitive Assessment (MoCA) scales 
(Nasreddine et al., 2005). The MoCA scale evaluates a range of 
cognitive functions, including visuospatial and executive abilities, 
naming skills, attention, language proficiency, abstraction, memory 
recall, and orientation. These assessments were conducted following 
standardized procedures in a quiet environment. The maximum score 
for both scales is 30 points. Scores below 26 on the MoCA indicate 
poor cognitive function.

2.3 Magnetic resonance imaging protocol

Whole-brain images were obtained at the Shandong Provincial 
Hospital Affiliated to Shandong First Medical University using a Siemens 
3.0 T Prisma MR system and a 64-channel head coil for brain scanning. 
Participants were carefully positioned inside the machine, and foam 
padding was used to minimize any movement during the 
scanning process.

T1-weighted whole-brain magnetization prepared rapid 
acquisition gradient echo imaging were collected to capture 
anatomical details using the following parameters: TR = 2,530 ms, 
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TE = 2.98 ms, TI = 1,100 ms, FOV = 256 × 256 mm2, in-plane 
resolution = 256 × 256 mm2, flip angle = 7°, and 192 axial slices.

All MRI images were reviewed by two senior 
neuroimaging diagnosticians.

2.4 Data preprocessing

The preprocessing of all 3D-T1WI structural image data was 
performed using the CAT12 software within the SPM12 (based on the 
Matlab 7.10 platform). The main process is as follows: First, MRI data 
were converted from DICOM format to NIFTI format using the 
MRIcron software. The 3D T1-weighted structural images of the entire 
brain were then bias-corrected and segmented in GM, white matter, 
and cerebrospinal fluid. Subsequently, the GM images were affine 
registered to the standard brain template of the Montreal Neurological 
Institute (MNI) and a study-specific template was created for this 
tissue utilizing the Diffeomorphic Anatomical Registration Through 
Exponentiated Lie (DARTEL) algorithm. The original GM images 
were then spatially registered to the newly generated template and 
further normalized to the MNI space (with isotropic voxels of 
1.5 mm). The resulting GM images were modulated using the Jacobian 
determinants to account for volume changes. Finally, the modulated 
GM images were smoothed with an isotropic Gaussian kernel that had 
a full width at half maximum of 8 mm.

2.5 Statistical analysis

Data analysis was carried out using SPSS 22.0 statistical software. 
Quantitative data were expressed as mean ± standard deviation (x̄ ± 
s). The two-sample t-test was used to evaluate differences between the 
two groups in terms of age, education level, BMI, MoCA scores, and 
clinical indicators. Gender differences were assessed using the 
chi-square test. GMV between the two groups was compared using 
two-sample t-tests with SPM8 statistical software, including each 
subject’s gender, age, education level, and BMI as covariates. Clusters 
were set to a minimum size of 200 voxels, and statistical results were 
corrected using the Gaussian Random Field Theory (GRF), with a 
significance level of p < 0.05 indicating regions of GM with significant 
differences. The relationship between VBM values and MoCA scores, 
cardiac function, and laboratory tests were examined using Pearson 
correlation analysis, with p < 0.05 considered statistically significant.

3 Results

In this study, a total of 51 patients with HFpEF participated. 
However, 11 individuals were excluded for the following reasons: 3 
voluntarily withdrew from the study, 2 were excluded due to severe 
image artifacts caused by head movement, 3 had multiple lacunar 
strokes, 2 suffered from claustrophobia, and 1 had an arachnoid cyst. 
Consequently, 40 patients were included in the data analysis. As for 
the HC, 40 individuals initially participated, but exclusions were made 
as follows: 3 voluntarily withdrew, 2 were found to have mild cognitive 
impairment (MCI), 4 were excluded due to head movement artifacts, 
and 3 had multiple lacunar strokes, leaving 28 participants included 
in the study.

3.1 Comparison of clinical data between 
HFpEF group and HC group

There were no statistically significant differences in age, gender, 
education level, and BMI between the HFpEF group and the HC 
group (p > 0.05). The HFpEF group exhibited significantly higher 
values of LVPW, IVST, LAD, and RAD compared to the HC group, 
with no notable impairment in systolic function observed. The MoCA 
scores of the HFpEF group were significantly lower than those of the 
HC group, revealing CI primarily in the areas of visuospatial and 
executive functions, naming, attention, language, and memory 
(p < 0.05). In contrast, no statistical significance was found in abstract 
thinking and orientation (p > 0.05) (Table 1).

3.2 Comparison of gray matter volume 
between HFpEF group and HC group

In the HFpEF group, regions of decreased GMV were observed in 
the bilateral cerebellar hemispheres, right posterior cingulate gyrus, 
right inferior frontal gyrus, right supplementary motor area, bilateral 

TABLE 1  Comparison of demographic data between HFpEF group and HC 
group.

Variable HF HC P

40 28

Age (years), mean 

(SD)
60.20 ± 7.91 60.42 ± 7.99 0.90

Male sex, No. (%) 24 (60%) 17 (61%) 0.95

Education, years 10.75 ± 4.36 9.85 ± 3.21 0.36

BMI (Kg/m2) 25.93 ± 2.85 25.05 ± 1.22 0.13

Smokers (n%) 14 (35%) 11 (39%) 0.72

Drinkers (n%) 15 (38%) 12 (43%) 0.66

Hypertension (n%) 23 (58%) 15 (54%) 0.75

Dyslipidemia (n%) 11 (27.5%) 9 (32%) 0.68

Diabetes mellitus 

(n%)
6 (15%) 7 (25%) 0.30

MOCA Score 22.95 ± 3.54 27.32 ± 2.69 0

NT-proBNP (pg/

mL)
283.33 ± 241.04 78.69 ± 130.84 0.0001

CRP 2.03 ± 2.31 3.42 ± 8.13 0.38

Glucose 5.09 ± 1.32 5.22 ± 0.83 0.61

Total cholesterol 4.34 ± 0.95 4.59 ± 0.92 0.28

Triglyceride 1.36 ± 0.44 1.74 ± 0.92 0.05

LVEF 59.9 ± 2.91 61.75 ± 1.81 0.0041

LVDD 4.90 ± 0.45 4.67 ± 0.43 0.03

LVPW 0.98 ± 0.10 0.86 ± 0.14 0.0002

IVST 0.99 ± 0.11 0.88 ± 0.15 0.0016

LAD 4.08 ± 0.54 3.24 ± 0.42 0

RAD 4.21 ± 0.57 3.49 ± 0.56 0

RVD 2.08 ± 0.23 2.27 ± 0.45 0.04
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middle frontal gyri, right middle temporal gyrus, right superior 
frontal gyrus, left calcarine fissure and adjacent cortex, left inferior 
frontal gyrus, left superior frontal gyrus, and left postcentral gyrus 
(Figure 1, Table 2).

3.3 Correlation analysis

In this study, NT-proBNP levels were negatively correlated with 
decreased GMV in several brain regions, including the right and 
left cerebellar hemispheres, right posterior cingulate gyrus, right 
inferior frontal gyrus, right supplementary motor area, right and 
left middle frontal gyri, right superior frontal gyrus, left superior 
frontal gyrus, left postcentral gyrus, and right middle temporal 
gyrus. These findings suggest that reductions in GMV in these 
regions are associated with cognitive dysfunction in 
HFpEF patients.

The shrinkage of GM in the right cerebellar hemisphere was 
negatively correlated with performance in naming, attention, and 
language tasks. A similar reduction in the left cerebellar 
hemisphere was negatively associated with attention, language, 
and memory scores. Decreased GM in the right posterior cingulate 
gyrus was negatively correlated with naming and language scores, 
while the right inferior frontal gyrus showed a negative correlation 
with naming, language, and memory scores. The shrinkage of the 
right supplementary motor area was negatively related to 
language performance.

Additionally, reductions in GMV in the right superior frontal 
gyrus were negatively correlated with memory scores. The volume 
reduction in the left inferior frontal gyrus was associated with 
attention and language scores, and the reduction in the left middle 
frontal gyrus was negatively correlated with naming and language 
scores. The left superior frontal gyrus volume reduction was negatively 
associated with attention and language scores, while the left 

TABLE 2  Comparative analysis of gray matter volume between HFpEF group and HC group.

Regions Hemi AAL MNI coordinates Volume (mm3) T

Cerebellar hemisphere R 100 18, −39, −49.5 10202.6 4.6576

Cerebellar hemisphere L 91 −24, −81 −4.5 5666.62 4.6243

Posterior cingulate gyrus R 36 7.5, −42, 7.5 4363.88 4.1102

Inferior frontal gyrus R 12 55.5, 12, 3 2561.62 4.0094

Supplementary motor area R 20 6, 7.5, 52.5 1778.62 4.3156

Calcarine fissure and surrounding cortex L 43 1.5, −96, 9 1768.5 4.4721

Superior frontal gyrus, medial orbital R 26 11, 61, −21 1549.12 3.6469

Inferior frontal gyrus, opercular part L 11 −58.5, 1.5, 7.5 955.125 4.2078

Middle frontal gyrus L 7 −22.5, 58.5, −13.5 590.625 3.5885

Superior frontal gyrus, medial L 23 3, 46.5, 16.5 573.75 3.7497

Postcentral gyrus L 57 −54, −33, 54 486 4.3503

Middle frontal gyrus R 8 48, 22.5, 31.5 438.75 3.8014

Middle temporal gyrus R 86 67.5, −55.5, −6 384.75 3.7726

FIGURE 1

Differences in gray matter volume between the HFpEF group and the HC group. The two images represent the differences of gray matter volume 
between HFpEF group and HC group (The red area represents the area where the gray matter volume increases).
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postcentral gyrus showed a negative correlation with attention and 
language scores. Finally, the reduction in the right middle temporal 
gyrus was negatively correlated with naming scores.

Figures  2, 3 illustrate these significant negative correlations 
between GMV reductions and cognitive function scores across the 
different brain regions.

4 Discussion

This study utilized VBM technology to assess alterations in GM 
structure within HFpEF patients. Compared to the HC group, HFpEF 

individuals displayed reduced GMV in several areas, including the 
bilateral cerebellar hemispheres, right posterior cingulate gyrus, right 
inferior frontal gyrus, right supplementary motor area, bilateral 
middle frontal gyri, right middle temporal gyrus, right superior 
frontal gyrus, left calcarine fissure and adjacent cortex, left inferior 
frontal gyrus, left superior frontal gyrus, and left postcentral gyrus. 
The HFpEF group scored significantly lower on the MoCA, 
particularly in the domains of visuospatial and executive functions, 
naming, attention, language, and memory. Reductions in GMV in the 
right cerebellar hemisphere, right inferior frontal gyrus, right 
supplementary motor area, cortex surrounding the left calcarine 
fissure, right medial orbitofrontal gyrus, left superior frontal gyrus, 

FIGURE 2

Correlation analysis between gray matter volume and cognitive function in HFpEF group.

FIGURE 3

Correlation analysis between gray matter volume and clinical indexes in HFpEF group.
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and right middle temporal gyrus were associated with abnormalities 
in cardiac and cognitive functions.

The findings of this study are not completely consistent with 
previous reports on changes in GMV in patients with heart failure. 
However, the study confirms the presence of neuronal damage in 
HFpEF patients and further reveals the brain regions affected by 
the impaired GM structures. These brain areas play an important 
role in key cognitive domains such as executive functions, memory, 
and naming. The decreased GMV in the right and left cerebellar 
hemispheres may affect motor control and balance regulation. The 
cerebellum is a key structure for coordinating movement and 
maintaining postural balance, and its dysfunction could lead to 
motor incoordination and balance disorders, which in turn affect 
the executive aspects of cognitive function (Houghton et al., 2021). 
The frontal lobe is a crucial brain area for central functions like 
movement, memory, language, impulse control, and social 
behavior (Arain et  al., 2013). Damage to or functional 
abnormalities in the right supplementary motor area may affect 
patients’ motor planning and execution abilities, leading to issues 
such as motor incoordination and difficulty with movement 
pre-setting (Ding et al., 2023). These motor-related problems may 
be closely related to common symptoms in heart failure patients, 
such as fatigue and decreased exercise endurance. Damage to or 
functional abnormalities in the cortex surrounding the left 
calcarine fissure may affect patients’ language abilities and motor 
control (Chu et al., 2023). This could lead to issues such as impaired 
speech fluency, difficulty with speech comprehension, and 
inflexibility in hand movements, affecting patients’ daily life and 
social interactions. The parietal and occipital cortices are also 
involved in cognitive and behavioral functions; the parietal cortex 
has the function of understanding, encoding, consolidating, and 
retrieving written language and manipulating working memory 
(Koenigs et al., 2009). The occipital lobe is involved in memory, 
visuo-constructional skills, calculation, and task execution 
(Brownsett and Wise, 2010). Meanwhile, hippocampal structures 
within the temporal lobe are involved in memory function 
(Csernansky et al., 2005). Therefore, cortical damage in these areas 
may result in functional changes, manifesting as abnormalities in 
cognitive behavior.

The decrease in brain GMV in HFpEF patients is generally caused 
by loss of neuronal cells or neuronal damage (Ahad et  al., 2020). 
Reduced GMV in the brain indicates atrophy of brain tissue and 
damage at the vascular or cellular level, including neurodegenerative 
changes (Wang et al., 2017). Initially, HF patients’ brain structures may 
show no global atrophy, with only the integrity of white matter fiber 
structures being impaired (Vogels et al., 2007). Current research on 
localized GMV reduction is not sufficiently in-depth, and many study 
results are inconsistent (Frey et al., 2021). Some scholars have found 
(Ogoh et al., 2022) structural abnormalities in areas such as the frontal 
lobe and cerebellum in heart failure patients, suggesting that atrophy 
in these brain regions may play an important role in the CI of chronic 
heart failure patients. International studies using conventional MRI 
techniques, such as those by Kumar et al. (2009), have quantitatively 
measured the brain regions’ volumes, including the frontal lobe, 
hippocampus, and mammillary bodies, in heart failure patients, 
revealing significant brain atrophy in the mentioned areas. Although 
the results are not entirely consistent, they at least all suggest that 
chronic heart failure can lead to atrophy of the brain’s GM structure 

in patients. In experimental work exploring the pathogenesis of 
cognitive dysfunction, it is widely considered that differences in brain 
areas such as the frontal lobe, temporal lobe, caudate nucleus, and 
cerebellum play an important role. These differences may be attributed 
to the heterogeneity of the study populations, MRI acquisition 
techniques, voxel-based morphological analysis methods, as well as 
differences in statistical analysis and processing procedures.

Increasing evidence suggests that brain atrophy is not solely 
attributable to neurodegenerative mechanisms but is also closely 
associated with cerebrovascular factors (Ye et  al., 2022). Chronic 
cerebral hypoperfusion, impaired cerebral autoregulation, and 
endothelial dysfunction are commonly observed in HF patients, 
potentially leading to both gray and white matter damage, thus 
providing a vascular basis for neuronal injury (Ni et  al., 2023). 
Notably, periventricular and deep white matter hyperintensities 
(WMHs) are imaging manifestations of small vessel disease and are 
often assessed using the Fazekas scale. These lesions have been 
consistently linked to cognitive decline in multiple studies (Prins and 
Scheltens, 2015; Zhang et  al., 2023). WMHs represent chronic 
ischemic damage, which may disrupt cortical–subcortical circuits, 
consequently affecting executive functions and memory—domains 
frequently impaired in HFpEF-related cognitive dysfunction. 
Although this study focuses on GMV changes, future research 
incorporating WMHs assessment could offer a more comprehensive 
understanding of the brain structural changes associated with HFpEF.

The reduction in brain GMV may stem from hypoxia-induced 
neuroinflammation and neuroglial cell damage, indicating an immune 
response in the affected GM areas (Brooks and Mias, 2019). Imaging 
technologies are key tools in identifying brain injury related to HFpEF, 
including advanced functional MRI techniques such as diffusion 
tensor imaging and magnetic resonance spectroscopy, which provide 
important information about local anatomical structure and 
neurochemical environmental changes for clinical use (Spilling et al., 
2017). Pathological examination is considered the gold standard for 
diagnosing abnormalities in brain GMV, but due to the invasiveness 
of brain tissue biopsy and the potential damage to local GM function, 
it is not suitable for use in clinical trials (Lancaster et  al., 2013). 
Moreover, the reduction in brain GMV also reflects structural changes 
in the local GM due to the long-term impact of disease. Brain function 
abnormalities in patients with HFpEF may lead to MCI, a condition 
that may remain undetected for many years. Therefore, assessing the 
duration of cognitive dysfunction or the affected time span of 
neuropsychological performance in HFpEF patients is crucial for 
understanding their brain structural changes. For example, although 
numerous studies have indicated hippocampal atrophy in patients 
with heart failure, this study did not find significant abnormal changes 
in hippocampal volume. Whether these subtle changes in GM nuclei 
affect cortical brain function remains unclear, hence, it is necessary to 
combine structural and functional analysis to further investigate 
changes in these brain regions.

The reduction in GMV in HFpEF patients may also result from 
common systemic factors that contribute to the aging of both the heart 
and brain. These include hypertension, diabetes, atrial fibrillation, and 
endothelial dysfunction. These shared pathologies may impair the 
integrity of both myocardial and cerebral vasculature, leading to 
compromised perfusion and tissue damage (Ye et al., 2022). Preventive 
strategies targeting vascular health, such as strict blood pressure control, 
physical activity, blood glucose management, and anti-inflammatory 
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interventions, may help protect the structure and function of both the 
heart and brain (Liori et al., 2022; Mene-Afejuku et al., 2019). Therefore, 
cardiovascular-neurological integrated treatment could be crucial in 
delaying or preventing cognitive decline in HFpEF patients.

This study identified a negative correlation between NT-proBNP 
levels and volume reductions in various brain regions, such as the 
right cerebellar hemisphere, right posterior cingulate gyrus, right 
inferior frontal gyrus, right supplementary motor area, right superior 
frontal gyrus, left middle frontal gyrus, left superior frontal gyrus, left 
postcentral gyrus, right middle frontal gyrus, and right middle 
temporal gyrus. This negative correlation may reflect the impact of 
heart failure on these brain areas. Notably, these regions play an 
important role in functions such as movement and cognition; thus, 
NT-proBNP levels may serve as a biomarker for brain structural 
changes in patients with HFpEF. These findings further emphasize 
that heart failure not only affects cardiac function but may also have a 
negative impact on brain structure and function. Future research 
could further explore the mechanistic links between NT-proBNP and 
brain structural changes, as well as how this relationship affects the 
clinical presentations and prognosis of patients with heart failure.

4.1 Limitation

Our study does have certain limitations that should 
be acknowledged. The primary limitation lies in the small sample size, 
which could limit the generalizability of our findings and diminish the 
statistical power of our analysis. Additionally, the recruitment of study 
participants from a singular medical institution may introduce 
recruitment bias and may not accurately reflect the broader HF 
population. Therefore, further studies with larger and more diverse 
samples are needed to validate our results. Additionally, in terms of 
neuropsychological examination, we only utilized the MoCA scales to 
assess the cognitive function of the subjects. While these scales 
provide valuable insights, they may not comprehensively evaluate all 
aspects of cognitive decline. In future studies, it will be important to 
include a broader range of cognitive assessment tools to obtain a more 
precise understanding of the degree of decline in various cognitive 
functions. Furthermore, we did not compare brain MRI differences 
between HFpEF and HFrEF patients. Including such a comparison in 
future studies would help highlight the specific structural changes in 
HFpEF and enhance the novelty of the findings.

5 Conclusion

In conclusion, compared to the healthy control group, the HFpEF 
patient group showed cognitive decline and abnormal changes in gray 
matter volume in specific brain regions. These changes were closely 
linked to laboratory results, cardiac function, and cognitive 

dysfunction, indicating brain structure damage due to neuronal 
injury. Localized gray matter changes may result from hypoxia-related 
inflammation. Future research should explore the effects of 
interventions on these findings. Understanding these anatomical 
abnormalities is crucial for improving clinical interventions, 
prognosis, and therapeutic strategies.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Ethics Committee 
of Provincial Hospital Affiliated to Shandong First Medical University. 
The studies were conducted in accordance with the local legislation 
and institutional requirements. The participants provided their written 
informed consent to participate in this study.

Author contributions

TY: Writing – original draft, Writing – review & editing. QB: 
Writing – original draft. YG: Conceptualization, Writing – original 
draft. YY: Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Ahad, M. A., Kumaran, K. R., Ning, T., Mansor, N. I., Effendy, M. A., Damodaran, T., 

et al. (2020). Insights into the neuropathology of cerebral ischemia and its mechanisms. 
Rev. Neurosci. 31, 521–538. doi: 10.1515/revneuro-2019-0099

Arain, M., Haque, M., Johal, L., Mathur, P., Nel, W., Rais, A., et al. (2013). Maturation 
of the adolescent brain. Neuropsychiatr. Dis. Treat. 9, 449–461. doi: 10.2147/NDT.S39776

Brooks, L. R. K., and Mias, G. I. (2019). Data-driven analysis of age, sex, and tissue 
effects on gene expression variability in Alzheimer's disease. Front. Neurosci. 13:392. doi: 
10.3389/fnins.2019.00392

Brownsett, S. L. E., and Wise, R. J. S. (2010). The contribution of the parietal lobes to 
speaking and writing. Cereb. Cortex 20, 517–523. doi: 10.1093/cercor/bhp120

116

https://doi.org/10.3389/fnagi.2025.1486381
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.1515/revneuro-2019-0099
https://doi.org/10.2147/NDT.S39776
https://doi.org/10.3389/fnins.2019.00392
https://doi.org/10.1093/cercor/bhp120


Yu et al.� 10.3389/fnagi.2025.1486381

Frontiers in Aging Neuroscience 08 frontiersin.org

Chu, Q., Guo, X., Zhang, T., Huo, C., Zhang, X., Xu, G., et al. (2023). Stroke-related 
alterations in the brain's functional connectivity response associated with upper limb 
multi-joint linkage movement. Brain Sci. 13:338. doi: 10.3390/brainsci13020338

Csernansky, J. G., Wang, L., Swank, J., Miller, J. P., Gado, M., McKeel, D., et al. (2005). 
Preclinical detection of Alzheimer's disease: hippocampal shape and volume predict 
dementia onset in the elderly. Neuroimage 25, 783–792. doi: 10.1016/j.neuroimage. 
2004.12.036

Cui, X., Thunström, E., Dahlström, U., Zhou, J., Ge, J., and Fu, M. (2020). Trends in 
cause-specific readmissions in heart failure with preserved vs. reduced and mid-range 
ejection fraction. ESC Heart Fail. 7, 2894–2903. doi: 10.1002/ehf2.12899

Ding, H., Seusing, N., Nasseroleslami, B., Anwar, A. R., Strauss, S., Lotze, M., et al. 
(2023). The role of ipsilateral motor network in upper limb movement. Front. Physiol. 
14:1199338. doi: 10.3389/fphys.2023.1199338

Eltelbany, M., Shah, P., and deFilippi, C. (2022). Biomarkers in HFpEF for diagnosis, 
prognosis, and biological phenotyping. Curr. Heart Fail. Rep. 19, 412–424. doi: 
10.1007/s11897-022-00578-7

Frey, A., Homola, G. A., Henneges, C., Mühlbauer, L., Sell, R., Kraft, P., et al. (2021). 
Temporal changes in total and hippocampal brain volume and cognitive function in 
patients with chronic heart failure-the COGNITION.MATTERS-HF cohort study. Eur. 
Heart J. 42, 1569–1578. doi: 10.1093/eurheartj/ehab003

Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., and 
Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal 
adult human brains. Neuroimage 14, 21–36. doi: 10.1006/nimg.2001.0786

Hanon, O., Vidal, J.-S., de Groote, P., Galinier, M., Isnard, R., Logeart, D., et al. (2014). 
Prevalence of memory disorders in ambulatory patients aged ≥70 years with chronic 
heart failure (from the EFICARE study). Am. J. Cardiol. 113, 1205–1210. doi: 
10.1016/j.amjcard.2013.12.032

Houghton, C., Isope, P., Apps, R., and Cerminara, N. L. (2021). Editorial: information 
processing in the cerebellum. Front. Syst. Neurosci. 15:752719. doi: 
10.3389/fnsys.2021.752719

Koenigs, M., Barbey, A. K., Postle, B. R., and Grafman, J. (2009). Superior parietal 
cortex is critical for the manipulation of information in working memory. J. Neurosci. 
Off. J. Soc. Neurosci. 29, 14980–14986. doi: 10.1523/JNEUROSCI.3706-09.2009

Kumar, R., Woo, M. A., Birrer, B. V. X., Macey, P. M., Fonarow, G. C., Hamilton, M. A., 
et al. (2009). Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol. 
Dis. 33, 236–242. doi: 10.1016/j.nbd.2008.10.004

Lancaster, M. A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L. S., Hurles, M. E., 
et al. (2013). Cerebral organoids model human brain development and microcephaly. 
Nature 501, 373–379. doi: 10.1038/nature12517

Liori, S., Arfaras-Melainis, A., Bistola, V., Polyzogopoulou, E., and Parissis, J. (2022). 
Cognitive impairment in heart failure: clinical implications, tools of assessment, and 
therapeutic considerations. Heart Fail. Rev. 27, 993–999. doi: 10.1007/s10741-021-10118-5

Mene-Afejuku, T. O., Pernia, M., Ibebuogu, U. N., Chaudhari, S., Mushiyev, S., 
Visco, F., et al. (2019). Heart failure and cognitive impairment: clinical relevance and 
therapeutic considerations. Curr. Cardiol. Rev. 15, 291–303. doi: 
10.2174/1573403X15666190313112841

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., 
Collin, I., et al. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening 
tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699.

Ni, R. S. S., Mohamed Raffi, H. Q., and Dong, Y. (2023). The pathophysiology of 
cognitive impairment in individuals with heart failure: a systematic review. Front. 
Cardiovasc. Med. 10:1181979. doi: 10.3389/fcvm.2023.1181979

Ogoh, S., Sugawara, J., and Shibata, S. (2022). Does cardiac function affect cerebral 
blood flow regulation? J. Clin. Med. 11:6043. doi: 10.3390/jcm11206043

Prins, N. D., and Scheltens, P. (2015). White matter hyperintensities, cognitive 
impairment and dementia: an update. Nat. Rev. Neurol. 11, 157–165. doi: 
10.1038/nrneurol.2015.10

Ridgway, G. R., Henley, S. M. D., Rohrer, J. D., Scahill, R. I., Warren, J. D., and 
Fox, N. C. (2008). Ten simple rules for reporting voxel-based morphometry studies. 
Neuroimage 40, 1429–1435. doi: 10.1016/j.neuroimage.2008.01.003

Savarese, G., Stolfo, D., Sinagra, G., and Lund, L. H. (2022). Heart failure with mid-
range or mildly reduced ejection fraction. Nat. Rev. Cardiol. 19, 100–116. doi: 
10.1038/s41569-021-00605-5

Spilling, C. A., Jones, P. W., Dodd, J. W., and Barrick, T. R. (2017). White matter lesions 
characterise brain involvement in moderate to severe chronic obstructive pulmonary 
disease, but cerebral atrophy does not. BMC Pulm. Med. 17:92. doi: 
10.1186/s12890-017-0435-1

Steinberg, B. A., Zhao, X., Heidenreich, P. A., Peterson, E. D., Bhatt, D. L., 
Cannon, C. P., et al. (2012). Trends in patients hospitalized with heart failure and 
preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. 
Circulation 126, 65–75. doi: 10.1161/CIRCULATIONAHA.111.080770

Vogels, R. L. C., van der Flier, W. M., van Harten, B., Gouw, A. A., Scheltens, P., 
Schroeder-Tanka, J. M., et al. (2007). Brain magnetic resonance imaging abnormalities 
in patients with heart failure. Eur. J. Heart Fail. 9, 1003–1009. doi: 
10.1016/j.ejheart.2007.07.006

Wang, C., Ding, Y., Shen, B., Gao, D., An, J., Peng, K., et al. (2017). Altered gray matter 
volume in stable chronic obstructive pulmonary disease with subclinical cognitive 
impairment: an exploratory study. Neurotox. Res. 31, 453–463. doi: 
10.1007/s12640-016-9690-9

Whitwell, J. L. (2009). Voxel-based morphometry: an automated technique for 
assessing structural changes in the brain. J. Neurosci. Off. J. Soc. Neurosci. 29, 9661–9664. 
doi: 10.1523/JNEUROSCI.2160-09.2009

Ye, S., Huynh, Q., and Potter, E. L. (2022). Cognitive dysfunction in heart failure: 
pathophysiology and implications for patient management. Curr. Heart Fail. Rep. 19, 
303–315. doi: 10.1007/s11897-022-00564-z

Zhang, S., Hu, Y., Yang, H., Li, Q., Chen, J., and Bai, H. (2023). Value of white matter 
hyperintensity volume and total white matter volume for evaluating cognitive 
impairment in patients with cerebral small-vessel disease. Front. Aging Neurosci. 
15:1096808. doi: 10.3389/fnagi.2023.1096808

Zhou, L., Guo, Z., Wang, B., Wu, Y., Li, Z., Yao, H., et al. (2021). Risk prediction in 
patients with heart failure with preserved ejection fraction using gene expression data 
and machine learning. Front. Genet. 12:652315. doi: 10.3389/fgene.2021.652315

117

https://doi.org/10.3389/fnagi.2025.1486381
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.3390/brainsci13020338
https://doi.org/10.1016/j.neuroimage.2004.12.036
https://doi.org/10.1016/j.neuroimage.2004.12.036
https://doi.org/10.1002/ehf2.12899
https://doi.org/10.3389/fphys.2023.1199338
https://doi.org/10.1007/s11897-022-00578-7
https://doi.org/10.1093/eurheartj/ehab003
https://doi.org/10.1006/nimg.2001.0786
https://doi.org/10.1016/j.amjcard.2013.12.032
https://doi.org/10.3389/fnsys.2021.752719
https://doi.org/10.1523/JNEUROSCI.3706-09.2009
https://doi.org/10.1016/j.nbd.2008.10.004
https://doi.org/10.1038/nature12517
https://doi.org/10.1007/s10741-021-10118-5
https://doi.org/10.2174/1573403X15666190313112841
https://doi.org/10.3389/fcvm.2023.1181979
https://doi.org/10.3390/jcm11206043
https://doi.org/10.1038/nrneurol.2015.10
https://doi.org/10.1016/j.neuroimage.2008.01.003
https://doi.org/10.1038/s41569-021-00605-5
https://doi.org/10.1186/s12890-017-0435-1
https://doi.org/10.1161/CIRCULATIONAHA.111.080770
https://doi.org/10.1016/j.ejheart.2007.07.006
https://doi.org/10.1007/s12640-016-9690-9
https://doi.org/10.1523/JNEUROSCI.2160-09.2009
https://doi.org/10.1007/s11897-022-00564-z
https://doi.org/10.3389/fnagi.2023.1096808
https://doi.org/10.3389/fgene.2021.652315


Frontiers in Neurology 01 frontiersin.org

Temporal changes in 
symptomatic intracranial arterial 
disease: a longitudinal 
high-resolution vessel wall 
imaging study
Dong-Wan Kang 1,2, Jonguk Kim 1,3, Do Yeon Kim 1,4,5, 
Sung Hyun Baik 6, Cheolkyu Jung 6, Bijoy K. Menon 7, 
Jae W. Song 8, Moon-Ku Han 1, Hee-Joon Bae 1 and 
Beom Joon Kim 1*
1 Department of Neurology, Seoul National University College of Medicine, Seoul National University 
Bundang Hospital, Seongnam, Republic of Korea, 2 Department of Neurosurgery, Seoul National 
University Bundang Hospital, Seongnam, Republic of Korea, 3 Department of Neurology, Inha 
University Hospital, Incheon, Republic of Korea, 4 Department of Public Health, Seoul National 
University Bundang Hospital, Seongnam, Republic of Korea, 5 Department of Neurology, Gyeonggi 
Provincial Medical Center, Icheon Hospital, Icheon, Republic of Korea, 6 Department of Radiology, 
Seoul National University Bundang Hospital, Seongnam, Republic of Korea, 7 Department of Clinical 
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Introduction: The temporal dynamics of the vessel wall in intracranial arterial 
disease (ICAD) may differ depending on the etiology. We investigated temporal 
changes in narrowed intracranial arteries after ischemic stroke using serial high-
resolution vessel wall imaging (HR-VWI).

Methods: We retrospectively recruited patients with ICAD-related ischemic 
stroke who underwent two or more HR-VWI scans. The lumen area (LA), total 
vessel area (TVA), and enhancing area (EA) of the narrowest part of the culprit 
lesion were manually segmented. Degree of stenosis was estimated as [1-LA/
TVA] × 100(%), the enhancing proportion as EA/TVA × 100(%), and enhancement 
ratio as (T1GDlesion/T1GDref)/(T1lesion/T1ref). Linear mixed models were used to 
investigate temporal changes in these parameters and whether such changes 
differed by etiologies.

Results: Of a total of 208 patients, ICAD-related stroke was caused by 
atherosclerosis (69%), arterial dissection (24%), vasculitis (3%), moyamoya 
disease (1%), and other (2%). The median follow-up was 319 [IQR, 125–409] 
days. HR-VWI imaging parameters, namely, degree of stenosis, enhancing 
proportion, and enhancement ratio showed a trend to decrease over time. 
Patients with intracranial dissection as a cause of intracranial narrowing 
showed a faster reduction in degree of stenosis and enhancing proportion 
vs. when such narrowing was identified as due to atherosclerosis (β [95% CI], 
−0.59%[−0.80% ~ −0.38%] and −0.81%[−1.23% ~ −0.39%], respectively, both 
p < 0.01). The enhancement ratio did not change over time in dissection, while 
it decreased in atherosclerosis (−0.01 [−0.02 ~ 0], p = 0.04).

Conclusion: Intracranial vessel narrowing in patients with ischemic stroke 
changes over time with different stroke etiologies having their own unique 
temporal patterns.

OPEN ACCESS

EDITED BY

Mingming Lu,  
Characteristic Medical Center of Chinese 
People’s Armed Police Force, China

REVIEWED BY

Beibei Sun,  
Shanghai Jiao Tong University, China
Weizhuang Yuan,  
Chinese Academy of Medical Sciences and 
Peking Union Medical College, China

*CORRESPONDENCE

Beom Joon Kim  
 Kim.BJ.Stroke@gmail.com

RECEIVED 26 February 2025
ACCEPTED 27 May 2025
PUBLISHED 16 June 2025

CITATION

Kang D-W, Kim J, Kim DY, Baik SH, 
Jung C, Menon BK, Song JW, Han M-K, Bae 
H-J and Kim BJ (2025) Temporal changes in 
symptomatic intracranial arterial disease: a 
longitudinal high-resolution vessel wall 
imaging study.
Front. Neurol. 16:1583857.
doi: 10.3389/fneur.2025.1583857

COPYRIGHT

© 2025 Kang, Kim, Kim, Baik, Jung, Menon, 
Song, Han, Bae and Kim. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  16 June 2025
DOI  10.3389/fneur.2025.1583857

118

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1583857&domain=pdf&date_stamp=2025-06-16
https://www.frontiersin.org/articles/10.3389/fneur.2025.1583857/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1583857/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1583857/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1583857/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1583857/full
mailto:Kim.BJ.Stroke@gmail.com
https://doi.org/10.3389/fneur.2025.1583857
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1583857


Kang et al.� 10.3389/fneur.2025.1583857

Frontiers in Neurology 02 frontiersin.org

KEYWORDS

intracranial arterial disease, ischemic stroke, magnetic resonance imaging, high-
resolution vessel wall imaging, follow-up MRI

Introduction

Numerous patients experiencing ischemic stroke present with 
stenosis in the ipsilesional intracranial arteries. This imaging 
observation indicates intracranial arterial disease (ICAD), which is 
frequently implicated in the risk of recurrent strokes (1–3). ICAD may 
stem from atherosclerosis, while it may also manifest as 
non-atherosclerotic conditions including arterial dissections or 
vasculitis (4). Distinguishing between these diverse etiologies remains 
a formidable clinical challenge.

Conventional imaging modalities, such as time-of-flight (TOF) 
MR angiography or digital subtraction angiography (DSA), 
predominantly visualize the vascular lumen and are thus insufficient 
for conclusively identifying the underlying etiology of ICAD, which 
originates from the vascular walls. In contrast, high-resolution vessel 
wall imaging (HR-VWI) provides sub-millimeter spatial resolution 
capable of elucidating reveal vessel wall abnormalities (5). It enables 
the visualization of distinctive pathologic features associated with 
various conditions such as intracranial arterial dissection, moyamoya 
disease, vasculitis, and atherosclerotic plaque (6). Nevertheless, 
differentiation among these etiologies remain limited due to 
overlapping radiologic features observed even with HR-VWI (7, 8).

Understanding the unique interplay between pathological changes 
and natural healing processes in vascular injuries is crucial for 
interpreting temporal changes in ICAD. Given the paucity of targeted 
research in this area (9–11), we conducted a detailed analysis of serial 
HR-VWI data from over 200 patients with ischemic strokes 
attributable to ICAD. Our focus was on quantifying temporal changes 
in wall morphology, specifically evaluating the degree of stenosis and 
the extent of wall enhancement at the culprit segment. This research 
aims to deepen our understanding of the pathophysiological 
mechanisms governing ICAD and to discern whether distinct 
temporal changes might be indicative of specific etiologies.

Methods

Study population

Study subjects were retrospectively identified from a prospective 
registry of consecutive patients presenting with ICAD-related acute 
ischemic stroke at the Cerebrovascular Center of the Seoul National 
University Bundang Hospital, over a period from June 2016 to June 
2019 (12). Eligibility for inclusion required patients to have undergone 
at least 2 HR-VWI scans during their admission and follow-up 
periods to assess disease progression and response to therapeutic 
interventions. Exclusion criteria included patients whose final 
diagnosis did not confirm stroke, those in whom the culprit vessel 
could not be definitively identified, and cases where the vessel was too 
diminutive for accurate quantitative analysis (Figure 1).

Stroke management adhered to prevailing clinical guidelines, with 
HR-VWI scans integrated into routine clinical assessments for ICAD 
patients. The local institutional review boards approved the study with 

a waiver of consent (No. B-2102-667-103). The data that support the 
findings of this study are available from the corresponding author 
upon reasonable request.

Clinical characteristics

Baseline demographic and clinical information was retrieved from 
the prospective stroke registry, encompassing sex, stroke history, and 
cardiovascular risk factors, such as hypertension, diabetes, dyslipidemia, 
smoking, and atrial fibrillation. Culprit lesions were defined as the most 
distal relevant intracranial artery that could account for all observed 
stroke lesions. These were identified using the initial CT or MR 
angiographies alongside the HR-VWI scan. The etiology of ICAD was 
established through a comprehensive clinical and imaging evaluation 
conducted during the index stroke admission. Clinical evaluation, 
performed by experienced stroke neurologists, included an assessment 
of age, associated vascular risks and laboratory tests. Imaging assessments 
were carried out by experienced neuroradiologists, who performed a 
detailed review of all available imaging data, including HR-VWI.

ICAD was classified as atherosclerotic when HR-VWI showed 
typical findings of iso- or hyperdense T1/proton density lesions 
indicative of a lipid core or high signal lesions on non-contrast 
T1-weighted imaging suggestive of intraplaque hemorrhage, paired 
with a corresponding clinical profile (13). Intracranial arterial 
dissections were diagnosed in the presence of intramural hematoma, 
double lumen or intimal flap were identified on the HR-VWI or DSA, 
often accompanied by a sudden severe headache at stroke onset (6). 
Moyamoya disease (MMD) was diagnosed according to the 2021 
diagnostic criteria, which require imaging evidence of stenosis or 
occlusion at the terminal portion of the intracranial internal carotid 
artery (ICA) or the proximal portion of the anterior and/or middle 
cerebral artery (MCA), along with abnormal vascular networks near 

FIGURE 1

Study profile.
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the lesion and bilateral reduction in the outer diameter of the lesions 
(14). To confirm the diagnosis, other etiologies such as autoimmune 
diseases and meningitis were excluded. Notably, HR-VWI revealed 
characteristic findings of concentric wall thickening with negative 
remodeling (7, 14, 15). Vasculitis was suspected when HR-VWI 
findings were suggestive of the inflammatory vasculopathy, 
characterized by smooth, homogeneous, strong concentric mural 
enhancement in the intracranial arteries (16–18). The diagnosis was 
established after confirming neuroinflammation at cerebrospinal fluid 
and excluding other vasculopathies, including fibromuscular 
dysplasia, moyamoya disease (MMD), and reversible cerebral 
vasoconstriction syndrome (RCVS). Vasculitis included both primary 
angiitis of the central nervous system and secondary vasculitis with 
identifiable causes such as infection, systemic vasculitis, or 
malignancy (19).

HR-VWI protocol

All patients underwent HR-VWI on a 3.0-T MRI scanner 
(Philips Achieva or Ingenia; Philips Healthcare, Best, The 
Netherlands) with 8-channel or 32-channel head coils. The imaging 
protocol was standardized across the cohort over the study period, 
incorporating T1-weighted image (T1-WI), proton density (PD) 
images, and gadolinium-enhanced T1 images (T1-Gd) with 
concurrent TOF MR angiography. Blood signal suppression was 
achieved using improved motion-sensitized driven-equilibrium 
(iMSDE) in T1-WI, PD, and T1-Gd sequences. Other common 
image parameters included a field of view of 180 × 180 mm, matrix 
of 300 × 300, flip angle of 90 degrees, and a spatial resolution of 
0.6 × 0.6 × 0.6 mm3. Repetition time/echo time was 570/37 m/sec 
for T1-WI, 2000/32 m/sec for PD, and 570/37 for T1-Gd. The MR 
imaging protocol, including both stroke and HR-VWI sequences, 
took approximately 40 min. MR protocol details are further 
provided in Supplementary Table 1.

Image quantification

Image analysis on HR-VWI focused on the most stenotic segment 
of the culprit lesion and analyzed the vessel’s perpendicular section 
(20). Manual segmentation and quantification of the lumen area (LA), 
total vessel area (TVA), and enhancing area (EA) were conducted 
using ITK-SNAP  4.1 (21). The LA was delineated from the 
T1-weighted image, while the TVA was measured using PD images at 
the corresponding plane. The EA was segmented and analyzed at the 
same most stenotic site on the T1GD image. The EA was quantified 
into the number of voxels, and its signal intensity was normalized 
against adjacent normal brain parenchyma by using a manual 
standard of 15 mm2, as reported previously (20, 22).

The degree of stenosis was calculated as (1-LA/TVA) × 100(%), 
and the enhancing proportion was defined as EA/TVA × 100(%). The 
enhancement ratio of the enhancing lesion was quantified as 
(T1GDlesion/T1GDref)/(T1lesion/T1ref).

Blinded to clinical data, three board-certified vascular neurologists 
(DWK) and interventional neurologists (JK and DYK) with over 5 
years of clinical practice independently evaluated HR-VWI scans. A 

consensus on the segmentation was reached after reviewing and 
annotating the first 50 cases. The analysis dataset was constructed 
through independent measurement by three raters, and acceptable 
inter-rater agreement was documented. Intraclass correlation 
coefficients for the degree of stenosis, enhancement ratio, and 
enhancing the proportion of DWK and JK were 0.89, 0.91, and 0.62, 
respectively. Those of DYK and JK were 0.87, 0.78, and 0.53, 
respectively. Discrepancies among the raters were resolved through 
discussions with the senior authors who had 15 years of clinical 
practice (BJK).

Statistical analysis

Descriptive statistics were used to summarize the demographic 
and clinical data. Baseline characteristics were summarized as means 
± standard deviations, medians [interquartile ranges], and frequencies 
(percentages), as deemed appropriate. The quantified imaging 
parameters were analyzed based on linear mixed-effects regression 
models with random effects of intercept and slope models to 
accommodate the hierarchical structure of the data. These models 
were implemented using the lme4 package in R. Three progressive 
models were constructed to explore the effect of various predictors on 
the imaging outcomes. Model 1 included the fixed effects of time, age, 
and sex. Model 2 extended model 1 by incorporating ICAD etiologies 
and their interaction with time. Model 3 further included variables for 
hypertension, diabetes, and dyslipidemia. All statistical tests were 
two-tailed, with significance levels at p < 0.05. Statistical computations 
were performed using R, version 4.3.2 (R Foundation for 
Statistical Computing).

Results

Patient characteristics

Of the initial cohort of 229 patients, 21 were excluded from the 
final analysis for the following reasons: presence of an aneurysm 
(n = 1), extracranial lesions (n = 7), absence of acute stroke (n = 3), 
indeterminate culprit vessel (n = 2), vessel wall diameter too small for 
quantitative analysis (n = 6), and suboptimal image quality (n = 2). 
Consequently, the study included 208 patients who had experienced 
acute ischemic stroke and underwent at least 2 HR-VWI scans post-
index event. The demographic profile comprised 121 males (58%) 
with an average age of 57 ± 14 years.

Etiological classification based on clinical and imaging evaluations 
identified atherosclerosis in 144 cases (69%), followed by arterial 
dissection in 49 cases (24%). Other identified etiologies included 
Moyamoya disease in 3 cases (1%), vasculitis in 7 cases (3%), and 
various other vasculopathies in 5 cases (2.4%)—specifically, 
antiphospholipid antibody syndrome, cerebral autosomal dominant 
arteriopathy with subcortical infarcts and leukoencephalopathy 
(CADASIL), fibromuscular dysplasia, RCVS, and one undetermined 
case. Analysis of lesion distribution showed that anterior circulation 
was involved in 132 cases (63%), while posterior circulation was 
affected in 76 cases (37%) (Table 1 and Supplementary Figure 1). A 
more detailed description of baseline characteristics stratified by 
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etiology is provided in Supplementary Table  2. The dataset 
encompassed 469 HR-VWI scans, averaging 2.3 scans per patient with 
a median inter-scan interval of 319 [IQR, 125–409] days 
(Supplementary Figure 2).

Distribution of quantified HR-VWI image 
parameters

In the patients included in this study, the baseline HR-VWI scans 
revealed a median degree of stenosis at 77.1% [IQR, 56.0–87.6%], a 
median enhancement ratio of 2.02 [IQR, 1.50–2.59], and a median 
enhancing proportion of 45.8% [IQR, 29.0–71.6%]. No significant 
correlations were observed among these image parameters 
(Supplementary Figure  3). Detailed distributions of these image 

parameters across different ICAD etiologies are presented in 
Supplementary Table 3.

Temporal change of MRI parameters over 
time

A longitudinal analysis of the imaging parameters derived 
from HR-VWI scans indicated a general decreasing trend 
throughout the follow-up period. Specifically, linear regression 
analyses demonstrated decreases of 0.17% ± 0.03% in the degree 
of stenosis, 0.008 ± 0.001  in the enhancement ratio, and 
0.39% ± 0.06% in the enhancing proportion per 10-day interval. 
Notably, these trends varied significantly by ICAD etiology 
(Figure 2). In the arterial dissection group, the degree of stenosis 
and the enhancing proportion showed markedly steeper declines 
compared to those in the atherosclerotic group: 0.70% ± 0.09% 
versus 0.08% ± 0.02% for the degree of stenosis and 1.33% ± 0.20% 
versus 0.30% ± 0.04% for the enhancing proportion, respectively 
(both P-for-difference <0.01). Conversely, the decrease in the 
enhancing ratio was less pronounced in the arterial dissection 
group compared to the atherosclerotic group, 0.0005 ± 0.005 
versus 0.01 ± 0.001 per 10 days (P-for-difference <0.01). 
Representative cases illustrating these findings are depicted in 
Figure 3.

Temporal dynamics of HR-VWI image 
parameters by ICAD etiology

In the context of differing ICAD etiologies, the arterial 
dissection group, when compared to the atherosclerosis group, 
exhibited a notable reduction in both the degree of stenosis and 
enhancing proportion over time, as evidenced by linear mixed 
effects regression models; β coefficients were −0.59% (95% 
confidence intervals [CI] −0.80% ~ −0.38%) and −0.81% (95% 
CI −1.23% ~ −0.39%), respectively, both achieving statistical 
significance (p-value <0.01, Table 2). In contrast, the enhancement 
ratio remained unchanged over time in dissection but decreased 
in atherosclerosis (−0.01 [95% CI −0.02 ~ 0], p-value = 0.04, 
Table 2 and Supplementary Table 6). Additionally, the moyamoya 
disease group demonstrated a significant increase in the 
enhancing proportion over time (2.8% [95% CI 1.343 ~ 4.258], 
p-value <0.01; Table 2).

Stroke recurrence

A summary of treatments is provided in Supplementary Table 8. 
Most patients were prescribed antiplatelet agents and statins, and 
other secondary prevention medications were administered 
appropriately based on individual comorbidities. Among the included 
208 patients, 27 (13.0%) experienced recurrent strokes or transient 
ischemic attacks (TIA) over a median follow-up period of 335 days 
(IQR, 107–648). Among those with atherosclerotic stroke, 23 
recurrent events (16.0%) were recorded, with 15 cases (65%) 
originating from the culprit vessel. Notably, no recurrent strokes/TIAs 

TABLE 1  Baseline characteristics of the enrolled patients.

Patient characteristics Total (N = 208)

Male sex 121 (58.2%)

Age 56.7 ± 14.3

Total MRI follow-up time (days) 319 [125, 409]

Onset-to-HR-VWI (days) 4 [2, 8]

Hypertension 113 (54.3%)

Diabetes 56 (26.9%)

Dyslipidemia 59 (28.4%)

Smoking 79 (38.0%)

Atrial fibrillation 6 (2.9%)

History of stroke 23 (11.1%)

Coronary heart disease 9 (4.3%)

Medication before stroke

 � Antiplatelets 62 (29.8%)

 � Anticoagulants 1 (0.5%)

Etiology

 � Atherosclerosis 144 (69.2%)

 � Dissection 49 (23.6%)

 � Moyamoya disease 3 (1.4%)

 � Vasculitis 7 (3.4%)

 � Others 5 (2.4%)

Culprit vessel

 � dICA 12 (5.8%)

 � ACA 8 (3.8%)

 � MCA 112 (53.8%)

 � BA 17 (8.2%)

 � VA 41 (19.7%)

 � PCA 2 (1.0%)

 � PICA 15 (7.2%)

 � Posterior choroidal artery 1 (0.5%)

HR-VWI, high-resolution vessel wall imaging; dICA, distal internal carotid artery; ACA, 
anterior cerebral artery; MCA, middle cerebral artery; BA, basilar artery; VA, vertebral 
artery; PCA, posterior cerebral artery; PICA, posterior inferior cerebellar artery.
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were observed within intracranial arterial dissection. Among the other 
groups, one of the three patients with MMD experience two recurrent 
strokes; one of the seven patients with vasculitis had a non-aneurysmal 

subarachnoid hemorrhage; and one patient with CADASIL 
experienced two recurrent events, one of which originated from the 
culprit vessel and another from a different artery.

FIGURE 2

Graphs showing the change in degree of stenosis (A,B), enhancement ratio (C,D), and enhancing proportion (E,F) over time for patients with 
atherosclerosis and arterial dissection. Blue lines are linear regression lines with 95% confidence intervals. P-diff indicates p values for the difference in 
MRI parameters between the atherosclerosis and arterial dissection groups over time, derived from linear mixed effects models.
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Discussion

In this study, we  evaluated temporal changes in HR-VWI 
parameters among 208 patients who underwent serial imaging 
following an ischemic stroke attributable to ICAD. We observed a 
general decline over time in the degree of stenosis, enhancing 
proportion, and enhancement ratio. Notably, these changes were more 
pronounced in patients with arterial dissection compared to those 
with atherosclerosis, suggesting differing pathological processes 
underpin these conditions.

The pathologies associated with ICAD display significant 
heterogeneity, evident in the varied manifestations of luminal stenosis 
and contrast enhancement. These differences arise from distinct 
underlying pathophysiological mechanisms. In atherosclerosis, 
enhancement typically occurs due to inflammation related to a 
ruptured cap, fibrous tissues, or ingrowing vasa vasorum (23). This 
inflammation is particularly pronounced even in the early stages of 
ischemic stroke when vulnerable plaques are enhanced vividly (24). 
Conversely, arterial dissections, which can also precipitate stenotic 
lesions, may show enhancement in the presence of an intraluminal 
thrombus (25, 26). The evolution of blood products within the 
intramural hematoma following arterial dissections does not always 
show the strong T1 shortening typical of methemoglobin in subacute 
to chronic stages (13), complicating the imaging interpretation. This 
overlap in imaging features between atherosclerosis and arterial 
dissections—both displaying stenosis, enhancement and occasionally 
bright T1 signal  – poses a significant diagnostic challenge. Serial 

HR-VWI may become a critical tool in this context, providing 
essential diagnostic information as the vascular pathologies evolve 
distinctly over time, as our results showed. Understanding these 
temporal dynamics offers valuable insights into the underlying 
etiology of the disease process, aiding in differentiating between these 
two common causes of ICAD.

The relatively rapid decrease in both the degree of stenosis and 
the enhancing proportion observed in patients with arterial 
dissection can predominantly be  attributable to the natural 
resorption of the mural hematoma. This process reflects a unique 
aspect of the healing pathway in arterial dissections, differentiating 
it from the slower, inflammatory-driven changes seen in 
atherosclerosis. Supporting this observation, prior research has 
shown that intramural hematomas in arterial dissection typically 
resolve within 6 months, with significant improvement in most 
lesions by 12 months (9). Another study also noted that stenosis 
improved in 30% of patients within a median of 40 days post-
dissection (27).

Our observations of gradual improvement in the degree of 
stenosis, enhancement ratio, and enhancing proportion in patients 
with atherosclerotic ICAD suggest a possible stabilization of the 
culprit vessel over time. These findings align with previous studies 
using serial HR-VWI, which have documented reductions in the 
degree of stenosis, contrast ratio, surface irregularities, and overall 
plaque burden within 6 to 12 months following the index stroke event 
(10, 28, 29). This stabilization likely reflects the healing process of 
ruptured plaques, which results in a persistent stenotic segment with 

FIGURE 3

Representative images of the culprit vessels in patients with atherosclerosis (A) and arterial dissection (B). Initial and follow-up HR-VWI scans are 
shown. Lumen area (red), enhancing area (light blue), and total vessel area (blue) are manually segmented. Scale bars, 1 cm.
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stable plaque. However, not all findings point towards a uniform 
improvement in the plaque composition. Some studies, including 
ours, have observed that certain atherosclerotic lesions may exhibit 
persistent or even enhancement up to 3 months post-stroke, 
suggesting ongoing inflammatory processes or other pathological 
activities within the plaque (11, 30).

The interpretation of HR-VWI features in ICAD remains 
challenging in the absence of corresponding histologic evidence. 
Vessel wall enhancement observed in HR-VWI could represent 
various underlying biological processes, such as increased endothelial 
permeability leading to contrast leakage, the extent of the vasa 
vasorum, inflammatory responses, or fibrotic changes. A decrease in 
the enhancement ratio over time in atherosclerotic ICAD likely 
signifies the stabilization of an inflamed vulnerable plaque following 
an acute stroke event. Conversely, the persistent enhancement in 
arterial dissections may be attributed to the evolution from initial 
traumatic vessel wall injury to subsequent post-traumatic fibrosis and 
vascular remodelling (31).

This study, while providing valuable insights into the temporal 
dynamics of ICAD via HR-VWI, is subject to several limitations that 
must be clarified. First, this study was conducted at a single center, 
which follows a standardized HR-VWI protocol. This uniformity 
implies that our findings may not be directly generalizable to other 
settings where imaging protocols differ. Secondly, the study included 
only a small number of patients with MMD, vasculitis, and other 
etiologies, limiting rigorous analysis to identify trends within these 
other groups. Thirdly, the statistical models assumed linearity in the 
temporal changes of MRI parameters for ICAD. However, these 
changes may follow a nonlinear pattern. Fourthly, we did not define 
HR-VWI findings as specific vessel wall features such as fibrous cap, 
vascular calcification, intraplaque hemorrhage, and intramural 
hematoma. Instead, we identified measurable imaging features that 
can be followed on serial HR-VWI exams. The identification of such 
specific histology-related features could potentially lead to a more 
nuanced understanding of the disease processes in ICAD. Fifthly, the 
enhancing area was defined based on visual segmentation of 

TABLE 2  Selected β coefficients (β Coeff) and 95% confidence intervals (CI) of the linear mixed effects models for each image parameters.

Variables Model 1: Time, age, sex, 
etiology

Model 2: Model 1 + etiology × 
Time

Model 3: Model 2 + HTN, DM, 
DL

β Coeff (95% CI) P-value β Coeff (95% CI) P-value β Coeff (95% CI) P-value

Degree of stenosis (%)

Time −0.206 (−0.290 ~ −0.121) <0.01 −0.111 (−0.203 ~ −0.02) 0.02 −0.11 (−0.201 ~ −0.02) 0.02

Age 0.113 (−0.123 ~ 0.350) 0.35 0.107 (−0.129 ~ 0.343) 0.38 0.093 (−0.148 ~ 0.333) 0.45

Male sex −1.327 (7.310 ~ 4.656) 0.66 −1.434 (−7.404 ~ 4.537) 0.64 −2.017 (−7.95 ~ 3.917) 0.51

Atherosclerosis × Time Ref Ref

Dissection × Time −0.593 (−0.806 ~ −0.38) <0.01 −0.592 (−0.804 ~ −0.381) <0.01

MMD × Time 0.599 (−0.081 ~ 1.28) 0.09 0.603 (−0.076 ~ 1.282) 0.08

Vasculitis× Time 0.089 (−0.314 ~ 0.492) 0.67 0.091 (−0.31 ~ 0.492) 0.66

Others × Time −0.171 (−0.737 ~ 0.394) 0.55 −0.159 (−0.719 ~ 0.402) 0.58

Enhancement ratio

Time −0.008 (−0.011 ~ −0.005) <0.01 −0.01 (−0.013 ~ −0.006) <0.01 −0.01 (−0.013 ~ −0.006) <0.01

Age −0.003 (−0.011 ~ 0.004) 0.40 −0.003 (−0.011 ~ 0.004) 0.39 −0.003 (−0.011 ~ 0.005) 0.45

Male sex −0.233 (−0.431 ~ −0.035) 0.02 −0.238 (−0.437 ~ −0.04) 0.02 −0.258 (−0.456 ~ −0.059) 0.01

Atherosclerosis × Time Ref Ref

Dissection × Time 0.009 (0.001 ~ 0.018) 0.04 0.009 (0 ~ 0.018) 0.04

MMD × Time 0.004 (−0.026 ~ 0.034) 0.79 0.005 (−0.025 ~ 0.035) 0.77

Vasculitis× Time 0.002 (−0.017 ~ 0.021) 0.84 0.001 (−0.018 ~ 0.021) 0.9

Others × Time −0.001 (−0.021 ~ 0.018) 0.89 −0.002 (−0.022 ~ 0.018) 0.86

Enhancing proportion (%)

Time −0.36 (−0.516 ~ −0.203) <0.01 −0.306 (−0.49 ~ −0.122) <0.01 −0.291 (−0.474 ~ −0.107) <0.01

Age −0.371 (−0.805 ~ 0.063) 0.1 −0.382 (−0.812 ~ 0.048) 0.08 −0.261 (−0.697 ~ 0.175) 0.24

Male sex −14.031 (−25.03 ~ −3.035) 0.01 −13.93 (−24.86 ~ −3.01) 0.01 −15.63 (−26.41 ~ −4.852) <0.01

Atherosclerosis × Time Ref Ref

Dissection × Time −0.803 (−1.227 ~ −0.378) <0.01 −0.811 (−1.233 ~ −0.389) <0.01

MMD × Time 2.768 (1.309 ~ 4.226) <0.01 2.8 (1.343 ~ 4.258) <0.01

Vasculitis× Time 0.833 (−0.028 ~ 1.693) 0.06 0.776 (−0.085 ~ 1.637) 0.08

Others × Time −0.096 (−1.157 ~ 0.966) 0.86 −0.026 (−1.081 ~ 1.03) 0.96

MMD, moyamoya disease; HTN, hypertension; DM, diabetes mellitus; DL, dyslipidemia. We used ‘10 days’ as the unit for the time variable. Coefficients for all variables are presented in 
Supplementary Tables 4, 5, 7.
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hyperintense regions on T1-Gd images, which may have included 
pre-existing T1 hyperintensities. As such, changes in enhancing area 
may partly reflect the resolution of baseline T1 hyperintense lesions, 
such as intramural hematoma, rather than a true decrease in contrast 
enhancement. Although we  attempted to mitigate this by also 
measuring the enhancement ratio, future studies incorporating voxel-
wise comparison between T1 and T1-Gd images may provide deeper 
insight into the dynamic vessel wall changes in ICAD.

In conclusion, this study has effectively documented temporal 
changes in HR-VWI parameters among patients with acute ischemic 
stroke due to ICAD. Notably, alterations were observed in the degree 
of stenosis, enhancing proportion and enhancement ratio, differed 
across the clinical diagnosis of atherosclerosis or dissection. These 
findings underscore the utility of serial HR-VWI in distinguishing 
between different stroke etiologies, such as intracranial atherosclerosis 
and arterial dissection, thus aiding in the accurate diagnosis and 
management of ICAD. Future studies should aim to elucidate the 
specific factors that contribute to the dynamic temporal changes of 
ICAD, such as genetic predispositions, the flow dynamics of vascular 
anatomy, and the role of specific medical interventions. Understanding 
these factors could lead to more personalized and effective treatment 
strategies for patients with ICAD.
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Clinical implications and 
prognostic value of mastoid 
effusion in the management of 
aneurysmal subarachnoid 
hemorrhage
Junhyung Kim 1†, Sohyun Kim 2†, Chang Ki Jang 1, Hyun Jin Han 1, 
Keun Young Park 1, Jung-Jae Kim 1, Yong Bae Kim 1 and 
Jiwoong Oh 1*
1 Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea, 
2 Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea

Background: The clinical significance of mastoid effusion (ME) in intensive 
care unit (ICU) patients has not been well elucidated. Recently, an association 
between ME and intracranial pressure (ICP) has been reported. We  aimed to 
investigate the clinical implications of ME occurrence in the management of 
aneurysmal subarachnoid hemorrhage (aSAH) patients and its association with 
their prognosis.

Methods: Data from patients aged > 18 years who were treated for aSAH 
in a single institution between January 2020 and December 2022 were 
retrospectively reviewed. Brain CT or MRI images obtained within the first 14 days 
after the onset of SAH were evaluated for the presence of ME, which is defined 
as either opacification or an air-fluid level in the mastoid air cells. We examined 
the patients’ demographic information, neurological and medical status at 
admission, aneurysm and treatment characteristics, and clinical outcomes. 
We then analyzed how these factors were associated with the occurrence of 
ME.

Results: A total of 114 patients were included in the study. ME was observed in 
40 patients (34.5%) within the first 14 days, occurring at a mean of 5.0 ± 3.5 days 
after the onset of SAH. In multivariate analysis, patients with ME were found to 
have a higher incidence of tracheostomy (odds ratio [OR] 10.034, p = 0.024), 
radiologic vasospasm (OR 4.987, p = 0.018), a higher APACHE II score (OR 
1.138, p = 0.013), and poor clinical outcomes (OR 4.289, p = 0.041), defined 
as modified Rankin Scale score > 2 at 90 days. Poor clinical outcomes were 
independently associated with ME (OR 5.003, p = 0.006).

Conclusion: This study demonstrated that ME was observed in 34.5% of aSAH 
patients and was associated with poor clinical outcomes. ME may serve as a 
simple and useful prognostic indicator for predicting poor outcomes in aSAH 
patients.

KEYWORDS

mastoid effusion, middle ear effusion, intracranial pressure, subarachnoid 
hemorrhage, aneurysm, vasospasm
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Introduction

Mastoid effusion (ME) occurs frequently along with middle ear 
effusion in children as a consequence of the accumulation of 
transudate caused by negative pressure or inflammation in the middle 
ear (1). Due to the differences in the orientation, length, and function 
of the Eustachian tube, ME is not a common finding in healthy adults, 
with an incidence of approximately 1% (2, 3). However, several studies 
have demonstrated that the incidence of ME is higher in intensive care 
unit (ICU) patients than in general population. Risk factors for the 
development of ME in ICU patients include old age, increased mucus 
secretion caused by prolonged endotracheal intubation for mechanical 
ventilation and a nasogastric tube, prolonged ICU stay, and altered 
mental status, many of which can be attributed to the anatomical 
connection of the middle ear space and the nasopharynx via the 
Eustachian tube (2, 4, 5).

Anatomical continuity also exists between the subarachnoid space 
and the cochlear aqueduct of the middle ear, and it provides the 
background for the development of a non-invasive tool for monitoring 
intracranial pressure (ICP) by measuring the tympanic membrane 
pressure (6, 7). Moreover, a recent study reported that elevated levels of 
ICP was associated with the occurrence of ME in neuro-ICU patients 
(8). Therefore, it can be  postulated that the occurrence of ME in 
patients with neurologic insults who are at a risk of ICP variation may 
offer additional information regarding the clinical course and outcomes.

Subarachnoid hemorrhage (SAH) due to intracranial aneurysm 
rupture is a disastrous event with high morbidity and mortality rates 
(9, 10). A rupture of an aneurysm causes an abrupt and delayed 
increase in ICP, resulting in impaired cerebral perfusion and 
temporary intracranial circulatory arrest (11). Increased ICP plays an 
important role in the clinical course of aneurysmal subarachnoid 
hemorrhage (aSAH) patients, as it is related to common complications 
of aSAH such as acute hydrocephalus or delayed cerebral ischemia, 
which mostly occur in the first 14 days after the ictus. We hypothesized 
that patients receiving aSAH management who developed ME in the 
first 14 days would demonstrate unfavorable clinical outcomes. The 
purpose of this study was to investigate the incidence and the clinical 
significance of ME in patients with aSAH.

Methods

This retrospective study was approved by our Institutional Review 
Board and was performed under the guidelines outlined in the 
Declaration of Helsinki. The diagnosis of ME was based on the criteria 
proposed by J. Gossner, and only cases classified as “marked” (i.e., fluid 
signal involving more than half of the mastoid air cells) were 
considered ME-positive. By including only clearly defined cases, 
we minimized subjectivity in the interpretation. Accordingly, there was 
no interobserver disagreement between the neurovascular specialist 
and the neuro-intensivist who independently reviewed the images. 
This study follows the STROBE guidelines for retrospective studies.

Study population

Patient data between January 2020 and December 2022 were 
obtained from our institution’s prospectively maintained aSAH database. 
Adult patients over the age of 18 who were admitted to the neuro-ICU 
of our institution for the treatment and management of aSAH were 
included. The exclusion criteria were as follows: (1) incomplete medical 
records, (2) transfer to our institution more than 1 day after the onset of 
aSAH, and (3) absence of follow-up brain computed tomography (CT) 
or magnetic resonance imaging (MRI) within 14 days to assess for ME.

Management of aSAH patients

We adhered to the standard treatment strategy for aSAH. All patients 
who presented with acute-phase aSAH were admitted to the neuro-ICU 
and received cerebral angiography within 24 h, unless contraindicated. 
Except for those who did not wish to receive surgical or endovascular 
treatment, patients received microsurgery or endovascular treatment to 
secure the ruptured aneurysm. To manage increased ICP, external 
ventricular drainage, lumbar drainage, or decompressive surgery was 
performed. Intravenous or oral nimodipine was administered to prevent 
post-SAH vasospasm. Brain CT, brain MRI, or magnetic resonance 
angiography (MRA) were conducted when necessary. Patients with a 
good initial Hunt–Hess grade who were expected to be at a low risk for 
post-SAH complications were transferred to the general ward as early as 
3 to 7 days after ictus, but those at moderate to high risk were monitored 
in the neuro-ICU for at least 10 to 14 days.

Radiological assessment for ME and 
vasospasm

Non-contrast brain CT or brain CT angiography was the 
primary modality for radiologic evaluation of aSAH patients, with 
brain MRI or MRA performed as needed. The presence of ME was 
defined as partial or complete opacification of the mastoid air cell 
cavity, showing an air-fluid level in non-contrast brain CT, or high 
signal intensity in T2-weighted MR images on either or both sides. 
The images obtained within the first 14 days after the onset of SAH 
were independently reviewed by a neurovascular specialist and a 
neuro-intensivist. They assessed the presence of ME and reached 
consensus through discussion.

Radiologic vasospasm was evaluated using a standardized 
institutional protocol. Daily transcranial Doppler (TCD) monitoring was 
performed in all patients. If TCD findings were suggestive of vasospasm, 
CTA was immediately performed to confirm the diagnosis. In patients 
without vasospasm findings on TCD, routine CTA was performed 
approximately 1 to 2 weeks after the day of rupture to evaluate vascular 
status. Vasospasm was ultimately diagnosed when luminal narrowing of 
≥30% was observed on CTA compared to baseline vascular imaging.

Clinical assessment

At admission, the Glasgow Coma Scale (GCS) and Hunt–Hess 
grade, as well as the Acute Physiology and Chronic Health Evaluation 
II (APACHE II) scores, were used to assess the initial neurological 

Abbreviations: APACHE II, Initial Acute Physiology and Chronic Health Evaluation 

II; aSAH, aneurysmal subarachnoid hemorrhage; CI, confidence interval; GCS, 

Glasgow Coma Scale; ICP, intracranial pressure; ICU, intensive care unit; ME, 

mastoid effusion; mRS, modified Rankin Scale; OR, odds ratio.
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condition. The duration of neuro-ICU stay and mechanical ventilation, 
ventriculoperitoneal shunt within 90 days, and modified Rankin Scale 
(mRS) score at 90 days were recorded. We  defined poor clinical 
outcome as 90-day mRS > 2. Symptomatic vasospasm was diagnosed 
when vasospasm was radiologically confirmed and patients revealed 
neurological worsening with no other identifiable causes (12).

Statistical analysis

Statistical analysis was performed using SPSS Statistics 25.0 
(IBM). Fisher’s exact test or χ (2) test was performed for categorical 
variables. Mann–Whitney U-test or Student’s t-test was performed for 
continuous variables of clinical outcomes and the univariate analysis 
of the factors associated with ME and poor clinical outcomes. All 
variables with clinical importance were introduced into a multivariate 
analysis using the binary logistic regression method. A p-value of < 
0.05 was considered statistically significant.

Results

Patient and aneurysm characteristics

During the study period, 121 patients with ruptured intracerebral 
aneurysms were treated in our institution. Excluding one patient who 
was transferred to our institution a few days after the onset of aSAH 
and six patients who had not taken any follow-up brain CT or MRI 
images, a total of 114 patients (mean age, 59.5 ± 14.2 years; male/
female ratio = 35:79) treated for aSAH were included for analysis. A 
total of 62 patients (54.4%) initially presented with a Hunt–Hess grade 
greater than 2 at admission. The majority of the aneurysms were 
saccular (n = 110, 96.5%) in the anterior circulation (n = 95, 83.3%). 
These characteristics are summarized in Table 1.

Treatment characteristics and outcomes

Endovascular treatment was the dominant modality (81.6%) for 
securing ruptured aneurysms. A total of 24 patients (21.1%) received 
ventriculoperitoneal shunt operation within 90 days, and 16 patients 
(14.0%) received tracheostomy. Patients were treated in the neuro-ICU 
for a median duration of 13 days (interquartile range [IQR] 8–19 days). 
ME was observed in 40 patients (34.5%) at a mean of 5.0 ± 3.5 days 
after the onset of aSAH. Poor clinical outcomes were demonstrated by 
41 patients (36.0%). These characteristics are summarized in Table 2.

Factors associated with the occurrence of 
ME

In univariate analysis, the occurrence of ME was statistically 
associated with older age (p = 0.002), male sex (p = 0.034), and 
ruptured aneurysms in the posterior circulation (p = 0.005). Patients 
with ME had a higher likelihood of presenting with an initial Hunt–
Hess grade > 2 (80.0% vs. 40.5%, p < 0.001), higher APACHE II scores 
(22.2 ± 8.3 vs. 14.5 ± 6.2, p < 0.001), and longer durations of neuro-ICU 
stay (19 days vs. 10 days, p < 0.001) and mechanical ventilation (13 
days vs. 0 days, p < 0.001) compared to those without ME. Furthermore, 

the rates of radiologic vasospasm and symptomatic vasospasm were 
significantly higher in patients with ME compared to those without 
ME (50.0% vs. 18.5%, p = 0.002 for radiologic vasospasm; 30.0% vs. 
7.7%, p = 0.01 for symptomatic vasospasm). Terson’s syndrome was 

TABLE 1  Patient and aneurysm characteristics.

Variables Values

Patients 114

Age, mean 59.5 ± 14.2

Male sex, n (%) 35 (31.7)

Comorbidities, n (%)

 � Hypertension 47 (41.2)

 � Diabetes mellitus 9 (7.9)

 � Dyslipidemia 18 (15.8)

 � Smoking 23 (20.2)

Aneurysm location, n (%)

 � Anterior circulation 95 (83.3)

 � Posterior circulation 19 (16.7)

Aneurysm type, n (%)

 � Saccular 110 (96.5)

 � Mycotic 1 (0.9)

 � Dissecting 3 (2.6)

Initial Hunt–Hess Grade, n (%)

 � 1 0 (0)

 � 2 52 (45.6)

 � 3 34 (29.8)

 � 4 24 (21.1)

 � 5 4 (3.5)

Initial GCS, median 14 (11–15)

APACHE II score, mean 17.2 ± 7.9

Values are presented in mean ± standard deviation, median (interquartile range), or number 
(%).
APACHE II, Initial Acute Physiology and Chronic Health Evaluation II; GCS, Glasgow 
Coma Scale.

TABLE 2  Treatment characteristics and outcomes.

Variables Values

Treatment modality, n (%)

 � Microsurgery 21 (18.4)

 � Endovascular treatment 93 (81.6)

Extraventricular drainage, n (%) 36 (31.6)

Ventriculoperitoneal shunt, n (%) 24 (21.1)

Tracheostomy, n (%) 16 (14.0)

Neuro-ICU stay duration, median, days 13 (8–19)

ME within first 14 days (%) 40 (34.5)

Interval between aSAH and ME, mean, days 5.0 ± 3.5

Poor clinical outcome*, n (%) 41 (36)

Values are presented in mean ± standard deviation, median (interquartile range), or number 
(%).
aSAH; aneurysmal subarachnoid hemorrhage; ICU, intensive care unit; ME, mastoid 
effusion.
*Poor clinical outcome was defined as a 90-day modified Rankin Scale > 2.
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diagnosed in two patients, both of whom developed ME. ME was 
associated with poor clinical outcomes at 90 days (p < 0.001). There 
was no significant relationship between the occurrence of ME and the 
types of treatment modality for securing the aneurysms. In 
multivariate analysis, tracheostomy (odds ratio [OR] 10.034, 
p = 0.024), radiologic vasospasm (OR 4.987, p = 0.018), a higher 
APACHE II score (OR 1.138, p = 0.013), and a poor clinical outcome 
(OR 4.289, p = 0.041) were independently associated with ME 
occurrence. These results are summarized in Table 3 and Figure 1.

Factors associated with poor clinical 
outcomes

Univariate analysis revealed that a poor clinical outcome was 
associated with several factors that have been known as risk factors for 
aSAH, such as older age (p < 0.001), posterior circulation aneurysm 
(p = 0.007), and a higher Hunt–Hess grade (p < 0.001). Compared to 
patients who had good clinical outcomes, those with poor clinical 
outcomes had prolonged neuro-ICU care (10 vs. 19 days, p < 0.001) 
and mechanical ventilation (0 vs. 12 days, p < 0.001) and experienced 
a higher occurrence of ME (15.1% vs. 70.7%, p < 0.001). In 
multivariate analysis, along with older age (OR 1.081, p = 0.001) and 
Hunt–Hess grade > 2 (OR 4.515, p = 0.014), ME occurrence (OR 
5.003, p = 0.006) was statistically associated with a poor clinical 
outcome. These results are presented in Table 4.

Subgroup analysis by neurological grade 
and treatment modality

To further explore the relationship between mastoid effusion 
(ME) and neurological severity at admission, a subgroup analysis 
was conducted based on the Hunt–Hess (HH) grade. Patients were 
categorized into two groups: HH ≤ 2 and HH > 2. The occurrence 
of ME was significantly higher in the HH > 2 group (51.6%) 
compared to the HH ≤ 2 group (15.4%) (p < 0.001), suggesting a 
strong association between a poor neurological grade and the 
presence of ME.

In addition, a subgroup analysis was performed among 94 patients 
who underwent endovascular treatment. In this subgroup, multivariate 
logistic regression revealed that the presence of ME was an 
independent predictor of poor clinical outcomes (OR, 4.079; 95% CI, 
1.060–15.691; p = 0.041), even after adjusting for age, initial Glasgow 
Coma Scale (GCS) score, and HH grade (Table 5). These findings 
support the prognostic significance of ME in patients with aSAH, 
particularly those treated with endovascular intervention.

Discussion

In this retrospective study, we found that ME occurred in 34.5% 
of aSAH patients within the first 14 days (mean 5.0 ± 3.5 days) and 
was associated with radiologic vasospasm and poor clinical outcomes. 
Moreover, along with older age and a poor Hunt–Hess grade, ME was 
an independent risk factor for poor clinical outcomes in aSAH patients.

Several studies have reported a higher incidence of ME in ICU 
patients than in the healthy adult population, ranging between 10.3 

and 53% (2, 8, 13). Risk factors for the development of ME include 
thickened oropharyngeal secretions due to mucosal irritation by 
endotracheal intubation and nasogastric tube, and decreased 
mentality impairing the patient’s ability to clear excessive mucosal 
secretion and to open the Eustachian tube, which are hardly 
modifiable (2, 4, 13). Although ME can potentially cause acute 
mastoiditis and develop into intracranial complications such as 
meningitis, empyema, and brain abscess (14), incidentally detected 
MEs are rarely related to temporal bone disease (15). ME observed in 
ICU patients is considered benign in most cases, obscuring its clinical 
significance (2, 13). This study, however, showed that ME was 
independently associated with poor clinical outcomes in aSAH 
patients. Patients who suffer aSAH are usually hospitalized for 14 to 
21 days due to the possible occurrence of delayed complications (16), 
allowing prognostication to be made at least 14 days after the ictus in 
most cases. In conjunction with the established risk factors for poor 
outcomes in aSAH patients, such as Hunt–Hess score, increasing age, 
and ruptured posterior circulation aneurysm, the occurrence of ME 
may offer an additional prognostic value.

Recently, Jung et al. suggested that increased ICP was associated 
with ME occurrence in patients who underwent intracranial surgery 
(8). The authors revealed that the prediction model for the 
development of ME improved when peak ICP values were included in 
the model. Timely recognition and proper management of increased 
ICP are critical for improving clinical outcomes in patients with 
aSAH. However, most widely used ICP monitoring tools, such as 
external ventricular drainage, are invasive, and it is often a dilemma 
whether to place invasive ICP monitoring devices due to the risks of 
infection or hemorrhage (17, 18). It has been recognized that ICP is 
transmitted to the perilymphatic space in the middle ear, and the 
middle ear pressure represented by tympanic membrane displacement 
can be utilized for the indirect measurement of ICP (6, 19). Assuming 
that the occurrence of ME reflects increased ICP, a clinician may 
conduct additional evaluations or procedures to assess the patient’s 
ICP status, or ophthalmologic evaluation for the possibility of Terson’s 
syndrome when ME is observed. Although this finding was not 
statistically significant, Terson’s syndrome, a consequence of elevated 
ICP, was diagnosed in two patients who developed ME in this study. 
However, whether there is a causal relationship between elevated ICP 
and the development of ME is not known. A few studies attempted to 
explain the development of ME in patients with lateral sinus 
thrombosis as the result of venous congestion rather than the 
Eustachian tube dysfunction, as the laterality of the ME coincided 
with the intracranial lesions responsible for the elevated ICP (8, 20, 
21). Such an explanation may not fit in other types of intracranial 
pathologies not involving venous congestion. From the anatomical 
perspective, the movement of cerebrospinal fluid from the 
subarachnoid space to the mastoid air cells via the middle ear due to 
a pressure gradient is theoretically possible. The relationship between 
elevated ICP and the development of ME, their mechanisms, and 
temporal associations should be  further investigated to refine the 
clinical significance of ME in patients whose ICP assessments 
are critical.

Another finding in this study was that the occurrence of ME was 
associated with post-SAH vasospasm. Post-SAH vasospasm has 
multiple risk factors, including the amount of SAH, presence of 
intracranial hemorrhage and intraventricular hemorrhage, female sex, 
and increased ICP (22). Fukuhara et al. demonstrated that elevated 
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ICP was associated with the development and the duration of 
vasospasm after aSAH (23). Similarly, Gambardella et al. showed that 
the use of osmotic diuretics to control ICP lowered the risk of 
developing delayed cerebral ischemia in patients with aSAH (24). On 
the other hand, Heuer et al. reported only a weak relationship between 
ICP and the development of angiographic or symptomatic vasospasm 
(25). The authors provided a few explanations for the weak link. They 
argue that patients with severely elevated ICP died before vasospasm 
could occur, or did not undergo follow-up angiographic evaluations. 

In our case, 8 patients (42.1%) out of 19 patients did not undergo 
follow-up angiography studies, as poor prognosis was expected.

The mean interval between the onset of aSAH and detection of 
ME was 5 days. Limited studies have reported the time for ME to 
develop in ICU patients. Jung et al. reported a mean of 11.1 days for 
the development of ME in patients who underwent intracranial 
surgery, and Huyett et al. described that ME was a late finding and 
prevalent in patients with a prolonged ICU stay (2, 8). Considering 
that elevated ICP contributes to the development of ME, it can 

TABLE 3  Univariate and multivariate analyses for the risk factors of ME.

Variables Univariate analysis Multivariate analysis

No effusion 
(n = 74)

Effusion (n = 40) p-value OR (95% CI) p-value

Age 56.5 ± 14.4 65.0 ± 12.2 0.002

Male sex 18 (23.3) 17 (43.9) 0.034

Comorbidities

 � Hypertension 27 (36.5) 20 (50.0) 0.162

 � Diabetes mellitus 6 (8.1) 3 (7.5) >0.999

 � Dyslipidemia 11 (14.9) 7 (17.5) 0.713

 � Smoking 17 (23.0) 6 (15.0) 0.311

Aneurysm in posterior circulation 7 (9.5) 12 (30.0) 0.005

Initial Hunt–Hess Grade <0.001

 � ≤ 2 44 (59.5) 8 (20.0)

 � > 2 30 (40.5) 32 (80.0)

Initial Intracranial pressure 

(mmHg)
20.9 ± 11.4 (n = 20) 19.2 ± 9.6 (n = 28) 0.107

Initial GCS 15 (13–15) 8 (5–13) <0.001

Initial APACHE II 14.5 ± 6.2 22.2 ± 8.3 <0.001 1.138 (1.027–1.261) 0.013

Initial WBC 10,068 (3703) 11,888 (4439) 0.021

Initial CRP† 3.5 (0.9–9.0) 3.3 (1.08–12.38) 0.787

Initial DNI†† 1.44 (2.96) 2.27 (3.23) 0.166

Treatment modality for aneurysm 0.749

 � Microsurgery 13 (17.6) 8 (20.0)

 � Endovascular treatment 61 (82.4) 33 (82.5) >0.999

External ventricular drainage 13 (17.6) 23 (57.5) <0.001

Tracheostomy 2 (2.7) 14 (35.0) <0.001 10.034 (1.352–74.448) 0.024

Ventriculoperitoneal shunt 9 (12.2) 15 (37.5) 0.002

Hydrocephalus 15 (20.3) 27 (67.5) <0.001

Neuro-ICU stay duration (day) 10 (6–13) 19 (14–26) <0.001

Ventilator maintenance duration 0 (0–1) 13 (6–20) <0.001

Radiologic vasospasm* 12 (18.5) 15 (50.0) 0.002 4.987 (1.322–18.814) 0.018

Symptomatic vasospasm* 5 (7.7) 9 (30.0) 0.01

Terson’s syndrome 0 (0) 2 (5.0) 0.127

Poor clinical outcome 12 (16.2) 29 (72.5) <0.001 4.289 (1.061–17.333) 0.041

Values are presented as mean ± standard deviation, median (interquartile range), or number (%).
APACHE II, Initial Acute Physiology and Chronic Health Evaluation II; CI, confidence interval; CRP, C-reactive protein; DNI, delta neutrophil index; GCS, Glasgow Coma Scale; ICU, 
intensive care unit; OR, odds ratio; WBC, white blood cell.
† This variable was evaluated in 109 patients.
†† This variable was evaluated in 98 patients.
*This variable was evaluated in 95 patients.
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be postulated that ME in patients with neurological insults such as 
SAH would develop at an earlier period than in patients with other 
etiologies. Early brain injury after aSAH is known as a pathologic 
process that occurs in the first 72 h, and involves the elevation of ICP, 
reduction of cerebral blood flow, and neuronal cell death (26). 
SAH-induced vasospasms usually occur 4 to 14 days after the ictus, 
with a peak incidence at 7 days (27). The relationship between the 
early phase of brain injury and the development of ME should 
be further described in future studies.

Although our findings suggest that mastoid effusion (ME) is 
associated with poor outcomes and angiographic vasospasm in 
patients with aSAH, the exact pathophysiological mechanisms 
underlying ME development in neurologically injured patients remain 
uncertain. It has been hypothesized that elevated intracranial pressure 
(ICP) or impaired cerebrospinal fluid drainage may contribute to fluid 
accumulation within mastoid air cells. However, this mechanism has 
not yet been established in the existing literature.

Given the routine use of non-contrast brain CT in the acute-phase 
SAH, ME may serve as a readily identifiable imaging marker that 
reflects disease severity or elevated ICP, particularly in patients 
without invasive monitoring. While ME is not a direct therapeutic 
target, its presence may have potential implications for early risk 
stratification and the intensity of subsequent monitoring or 
intervention. Nonetheless, this study was not designed to establish a 
causal mechanism or to propose a clinical algorithm based on ME 

findings. Further prospective studies are needed to clarify the 
biological basis of ME in this patient population and to determine how 
it may be  effectively incorporated into clinical decision-making 
processes. We acknowledge this limitation and have highlighted the 
need for future research in this area.

Previous studies have suggested a potential correlation between 
mastoid effusion (ME) and elevated intracranial pressure (ICP), 
implying that ME may serve as an indirect radiological marker of 
increased ICP in patients with acute brain injury (8). One proposed 
mechanism is that a pressure gradient between the subarachnoid 
space and the middle ear cavity could facilitate the movement of 
cerebrospinal fluid (CSF) into the mastoid air cells, resulting in 
effusion. Furthermore, elevated ICP has been linked to both the 
occurrence and persistence of cerebral vasospasm following aSAH, 
potentially explaining the association between ME and poor outcomes 
observed in this study.

To further explore this hypothesis, we analyzed available ICP data 
in relation to ME status (Table 3). The mean ICP was 20.9 ± 11.4 mmHg 
in the ME-negative group and 19.2 ± 9.6 mmHg in the ME-positive 
group, with no statistically significant difference. This finding should 
be interpreted cautiously for several reasons. First, the timing of ICP 
measurement and the detection of ME on imaging did not always 
coincide, limiting a temporal correlation. Second, most patients 
underwent intensive ICP-lowering interventions, including 
osmotherapy, targeted temperature management, and coma therapy, 

FIGURE 1

Mastoid effusion (ME) in patients with subarachnoid hemorrhage (SAH). (a–c) Case with absence of ME. A 66-year-old woman with an initial Fisher’s 
grade III SAH. The initial brain CT scan showed no evidence of ME. A follow-up CT scan 2 week later also showed no signs of ME (white circle). The 
patient’s modified Rankin Scale (mRS) score at post-operative 90 days was 0. (d–f) Case with the presence of ME. An 80-year-old woman with Fisher’s 
grade III SAH on the initial CT scan, with no signs of ME. Two weeks later, a follow-up CT scan revealed bilateral ME (white circle). The patient had an 
mRS score of 4 at post-operative 90 days.
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which may have modified or masked actual ICP values. These factors 
likely contributed to the lack of observed statistical significance.

Nevertheless, we believe that ME may still reflect transient or 
unrecorded ICP elevations, particularly in patients without invasive 
monitoring. Given that non-contrast brain CT is routinely performed 
in the acute phase of aSAH, the detection of ME may provide a 
non-invasive and easily accessible clue suggesting raised ICP, 
especially in resource-limited settings.

Importantly, the pathophysiology of ICP elevation in aSAH differs 
from that of other neurological conditions such as traumatic brain 
injury or ischemic stroke. In aSAH, abrupt ICP elevation can occur 
due to aneurysmal rupture and subsequent hydrocephalus and can 
fluctuate rapidly with events such as rebleeding, vasospasm, or 

therapeutic interventions. These unique dynamics complicate the 
interpretation of single-timepoint ICP data but underscore the 
potential value of adjunctive imaging markers such as ME.

This study has several limitations. Due to its retrospective design 
and small sample size, selection and information bias were 
unavoidable, as the details of management and follow-up strategies for 
aSAH patients varied. For example, the follow-up non-contrast brain 
CT imaging intervals varied between patients, obscuring the precise 
timing of ME development, and only 83.3% (95/114) of the patients 
underwent follow-up angiography studies at irregular intervals to 
be  evaluated for the occurrence of vasospasm. In asymptomatic 
patients with longstanding mastoid effusion resulting from conditions 
such as chronic otitis media, the absence of prior imaging may lead to 

TABLE 4  Univariate and multivariate analyses for risk factors of poor clinical outcome in aSAH patients.

Variables Univariate analysis Multivariate analysis

Good outcome 
(n = 73)

Poor outcome 
(n = 41)

p-value OR (95% CI) p-value

Age 55.0 ± 13.6 67.5 ± 11.4 <0.001 1.081 (1.032–1.132) 0.001

Male sex 22 (31.1) 13 (31.7) >0.999

Comorbidities 0.406

 � Hypertension 29 (38.4) 19 (46.3)

 � Diabetes mellitus 4 (5.5) 5 (12.2) 0.279

 � Dyslipidemia 8 (11.0) 10 (24.4) 0.059

 � Smoking 19 (26.0) 4 (9.8) 0.038

Aneurysm in the posterior 

circulation
7 (9.6) 12 (29.3) 0.007

Initial Hunt–Hess Grade <0.001

 � ≤ 2 44 (60.3) 8 (19.5)

 � > 2 29 (39.7) 33 (80.5) 4.515 (1.357–15.030) 0.014

Initial GCS 15 (13–15) 9 (5–13.5) <0.001

Initial APACHE II 14.3 ± 6.3 22.5 ± 7.8 <0.001

Initial WBC 10,616 ± 3,823 10,914 ± 4,494 0.839

Initial CRP† 3.5 (1.05–9.35) 3.5 (1.03–9.00) 0.905

Initial DNI†† 1.44 ± 2.81 2.29 ± 3.47 0.152

Treatment modality for aneurysm 0.822

 � Microsurgery 13 (17.8) 8 (19.5)

 � Endovascular treatment 60 (82.2) 34 (82.9)

External ventricular drainage 15 (20.5) 21 (51.2) 0.001

Tracheostomy 3 (4.1) 13 (31.7) <0.001

Ventriculoperitoneal shunt 10 (13.7) 14 (34.1) 0.01

Neuro-ICU stay duration 10 (5–13) 19 (13–26) <0.001

Ventilator maintenance duration 0 (0–1) 12 (2–19) <0.001

Radiologic vasospasm* 16 (25.0) 11 (35.5) 0.288

Symptomatic vasospasm* 7 (10.9) 7 (22.6) 0.215

ME 11 (15.1) 29 (70.7) <0.001 5.003 (1.570–15.935) 0.006

Values are presented as mean ± standard deviation, median (interquartile range), or number (%).
aSAH, aneurysmal subarachnoid hemorrhage; APACHE II, Initial Acute Physiology and Chronic Health Evaluation II; CI, confidence interval; CRP, C-reactive protein; DNI, delta neutrophil 
index; GCS, Glasgow Coma Scale; ICU, intensive care unit; ME, mastoid effusion; OR, odds ratio; WBC, white blood cell.
† This variable was evaluated in 109 patients.
†† This variable was evaluated in 98 patients.
*This variable was evaluated in 95 patients.
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misclassification of ME as a newly developed finding. While ME could 
be ruled out through comparison with previous imaging in patients 
who underwent serial follow-up studies, this was not feasible in newly 
admitted patients without prior imaging. The likelihood of pre-existing 
mastoiditis was presumed to be comparable between the two groups. 
Furthermore, as mastoid effusion grade 2 or higher was defined as 
ME-positive in this study, cases of mild mastoiditis were likely 
excluded. Patients with a documented history of otitis media were also 
excluded based on a thorough review of medical records. In our 
dataset, only 5 out of the 40 patients with ME showed evidence of ME 
on their initial brain CT. Although it was not possible to determine 
whether these cases represented pre-existing ME, all five patients 
demonstrated progression of ME on follow-up imaging.

Another limitation is the potential subjectivity in the 
radiologic diagnosis of ME. To address this limitation, only 
clearly defined cases meeting the “marked” criteria proposed by 
Gossner—defined as a fluid signal involving more than half of the 
mastoid air cell cavity—were included (28). All imaging was 
independently assessed by a neurovascular specialist and a neuro-
intensivist, and there was complete agreement between the two 
evaluators. Therefore, a formal consistency test was not 

conducted. Additionally, although a quantitative threshold such 
as the Hounsfield unit (HU) could be useful, variability in CT 
protocols and scanner calibration limited its application in this 
retrospective analysis. Finally, some factors that may influence 
the development of ME—such as the presence of nasogastric 
tubes or ICP values—were not included in this study. In 
particular, the absence of ICP data may limit the ability to fully 
explore the relationship between ME and elevated intracranial 
pressure. Despite these limitations, ME was found to 
be  independently associated with poor outcomes and cerebral 
vasospasm in patients with aSAH. Further studies are warranted 
to clarify the underlying mechanisms linking ME with elevated 
levels of ICP and to validate its role as a prognostic marker.

Conclusion

This study demonstrated that the occurrence of ME in aSAH 
patients was independently associated with tracheostomy, 
vasospasm, and poor clinical outcomes. Given that ME can be easily 
identified on non-contrast brain CT early in the clinical course, it 

TABLE 5  Univariate and multivariate analyses of risk factors for poor clinical outcome in aSAH patients treated with endovascular treatment.

Variables Univariate analysis Multivariate analysis

Good outcome 
(n = 60)

Poor outcome 
(n = 34)

p-value OR (95% CI) p-value

Age 55.0 ± 14.1 67.6 ± 11.5 <0.001 1.093 (1.030–1.159) 0.003

Male sex 19 (31.7) 11 (32.4) 0.945

Comorbidities

 � Hypertension 25 (41.7) 17 (50.0) 0.435

 � Diabetes mellitus 4 (6.7) 5 (14.7) 0.277

 � Dyslipidemia 8 (13.3) 10 (29.4) 0.057

 � Smoking 14 (23.3) 3 (8.8) 0.079

Aneurysm in the posterior 

circulation
7 (11.7) 12 (35.3) 0.006

Initial Hunt–Hess Grade > 2 24 (40.0) 29 (85.3) <0.001 4.686 (1.032–21.279) 0.045

Initial GCS 15 (13–15) 8 (4.25–13) <0.001 4.515 (1.357–15.030) 0.014

Initial APACHE II 14.8 ± 6.3 23.6 ± 7.9 <0.001

Initial WBC 10,423 ± 3,766 11,176 ± 4,385 0.382

Initial CRP 3.8 (1.1–11.7) 3.5 (1.0–9.0) 0.662

Initial DNI 1.46 ± 2.88 1.90 ± 3.14 0.496

External ventricular drainage 10 (16.7) 18 (52.9) 0.001

Tracheostomy 2 (3.3) 11 (32.4) <0.001

Ventriculoperitoneal shunt 9 (15.0) 13 (38.2) 0.011

Neuro-ICU stay duration 10 (5–13) 20.5 (13.25–29) <0.001

Ventilator maintenance duration 0 (0–1) 12.5 (3–19.75) <0.001

Radiologic vasospasm* 11 (20.4) 8 (32.0) 0.261

Symptomatic vasospasm* 4 (7.4) 4 (16.0) 0.254

ME 9 (15.0) 24 (70.6) 4.079 (1.060–15.691) 0.041

Values are presented as mean ± standard deviation, median (interquartile range), or number (%).
APACHE II, Initial Acute Physiology and Chronic Health Evaluation II; CI, confidence interval; CRP, C-reactive protein; DNI, delta neutrophil index; GCS, Glasgow Coma Scale; ICU, 
intensive care unit; ME, mastoid effusion; OR, odds ratio; WBC, white blood cell. *This variable was evaluated in 79 patients.
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may serve as an additional imaging marker for prognosis in 
aSAH patients.
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Evaluation of risk factors for acute 
stroke using combined CTA and 
MR HR-VWI imaging
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Objective: To investigate the correlation between the changes of peripheral 
carotid fat density (PFD), the occurrence of acute cerebral ischemia events and 
the characteristics of different dangerous plaques.
Methods: A retrospective analysis was performed on patients diagnosed with 
carotid plaque by head and neck CTA in the Affiliated Hospital of Qinghai 
University from January 2021 to March 2023. All patients received head 
magnetic plain scan, DWI and high resolution vascular wall imaging (MR HR-
VWI). According to DWI images, the patients were divided into acute cerebral 
infarction group and non-acute cerebral infarction group, and the clinical data, 
CT features and PFD differences between the two groups were compared. 
Logistic regression analysis was used to adjust for confounding factors and 
calculate OR values. ROC curves were used to evaluate the predictive efficacy of 
symptomatic PFD, contralateral PFD and differential PFD for symptomatic and 
non-symptomatic carotid plaque. According to the CTA and MR HR-VWI, the 
patients were further divided into groups (calcification and non-calcification, 
ulcer and non-ulcer, intra-plaque bleeding and non-plaque bleeding, thin or 
broken fibrous cap and non-thin or broken fibrous cap, large lipid core and non-
large lipid core). Multifactor linear regression equation was used to compare 
the differences of symptomatic side PFD, contralateral PFD and differential 
PFD among different groups, and to analyze the correlation between PFD 
and different plaque components. A retrospective analysis was conducted on 
patients diagnosed with carotid atherosclerotic plaques via head and neck CTA 
at Qinghai University Affiliated Hospital between January 2021 and March 2023. 
All patients underwent non-contrast brain MRI with diffusion-weighted imaging 
(DWI) and high-resolution vessel wall imaging (MR HR-VWI).
Results: (1) Clinical and Imaging Features: The acute stroke group demonstrated 
significantly elevated systolic (159.2 ± 28.35 vs. 143 ± 25.54 mmHg, p = 0.019) 
and diastolic blood pressures (93.67 ± 15.75 vs. 84.60 ± 13.21 mmHg, p = 0.016) 
compared to the non-acute group. Additionally, the acute stroke group 
exhibited greater plaque thickness (4.4 ± 1.4 vs. 2.9 ± 0.9 mm, p < 0.001), higher 
prevalence of severe stenosis (45.8% vs. 4.0%, p = 0.001), and more frequent 
ulcerated or irregular plaque surfaces (29.2% vs. 8.0%, p = 0.038). (2)Predictive 
Efficacy of PFD: In predictive analyses, symptomatic-side PFD showed 
superior performance in identifying acute ischemic events (AUC = 0.762, 95% 
CI: 0.653–0.870) compared to contralateral PFD (AUC = 0.672) and ΔPFD 
(AUC = 0.660). (3)Association with Plaque Components: Multivariate regression 
analysis revealed significant associations between symptomatic-side PFD and 
key plaque characteristics: intraplaque hemorrhage (IPH; β = 0.367, p < 0.001), 
lipid-rich necrotic core (LRNC; β = 0.190, p = 0.046), and plaque thickness 
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(β = 0.225, p = 0.027). Notably, IPH exhibited the strongest correlation with PFD 
values among all evaluated components.
Conclusion: Carotid perivascular fat density (PFD) can be used as a potential 
imaging marker to evaluate the characteristics of local vascular inflammation 
and high-risk plaques, providing a new direction for the early diagnosis and 
targeted therapy of acute cerebral ischemic events.

KEYWORDS

carotid artery, periarterial fat, stroke, dangerous patches, inflammatory index

1 Background

Stroke is a significant global health issue, characterized by high 
incidence, mortality, and disability rates, with a rising prevalence and 
a trend toward younger age groups (1–3). In China, stroke is one of 
the main causes of death, of which ischemic stroke accounts for the 
majority, and about 1/4 ischemic stroke is closely related to carotid 
atherosclerosis (4).

Carotid atherosclerotic plaque is the key pathological basis of 
stroke. Early studies focused on the degree of arterial lumen stenosis, 
but in recent years, studies have gradually turned to the analysis of the 
composition and characteristics of vulnerable plaques. Vulnerable 
plaques are mainly manifested as thin or ruptured fiber caps, large 
lipid cores, intra-plaque bleeding (IPH), plaque ulceration, 
inflammatory response, and neovascularization (5). The presence of 
these high-risk features greatly increases the likelihood of plaque 
rupture and stroke. Therefore, accurate identification and evaluation 
of these dangerous plaque components is of great clinical significance 
for the prevention of stroke.

Among them, inflammation plays a key role in the formation and 
progression of vulnerable plaques. However, compared with other 
plaque features, inflammation has become a research and clinical 
diagnosis challenge because it is difficult to be visually detected by 
traditional imaging methods. In recent years, detection of fluorine-18 
markers based on positron emission tomography (PET-CT) has been 
used to assess intravascular inflammation, but its high cost and 
complexity have limited widespread application.

With advances in imaging technology, the coronary perivascular 
fat attenuation index (FAD) has emerged as a novel non-invasive 
biomarker for evaluating vascular inflammation (6, 7). Studies have 
shown that perivascular adipose tissue (PVAT) exhibits paracrine and 
bidirectional interactions with the vascular wall (8). During vascular 
inflammation, the physiological state of PVAT changes, resulting in 
reduced fat content and increased CT attenuation values.

Research on carotid perivascular fat density (PFD) remains 
limited. Some studies suggest a close association between PFD and 
vulnerable plaque characteristics. For example, Zhang et al. reported 
significantly higher PFD in patients with IPH compared to those 
without IPH (9). Another study indicated that PFD was elevated in 
patients with acute ischemic stroke, with higher values observed on 
the infarction side compared to the contralateral side, suggesting that 
changes in PFD may reflect active local inflammation (10). Despite 
these findings, the relationship between PFD and specific vulnerable 
plaque components has not been thoroughly explored, emphasizing 
the need for further investigation in this area.

This study aims to investigate the association between 
perivascular fat density (PFD) of the carotid artery and different 

vulnerable plaque characteristics by evaluating PFD. Its significance 
lies in providing a novel noninvasive imaging biomarker for early 
stroke warning and personalized treatment. Conventional imaging 
modalities are limited in directly assessing plaque inflammatory 
activity, whereas PFD quantifies density changes in perivascular 
adipose tissue to indirectly reflect the degree of local inflammation. 
The findings are expected to offer new insights into the in-depth 
research on the pathological mechanisms of carotid atherosclerosis 
and the development of related diagnostic and therapeutic strategies.

2 Materials and methods

2.1 General information

This study employed a retrospective analysis of data from patients 
diagnosed with carotid atherosclerotic plaques via head and neck CTA 
at Qinghai University Affiliated Hospital between January 2021 and 
March 2023. All patients underwent non-contrast brain MRI, 
diffusion-weighted imaging (DWI), and high-resolution vessel wall 
imaging (MR HR-VWI) after hospital admission. Ethical approval was 
obtained from the hospital’s ethics committee, and since imaging 
examinations were part of routine clinical diagnostics, separate 
informed consent was not required.

Inclusion Criteri: Patients were included if they met both of the 
following conditions: (1) the time interval between head and neck 
CTA, MR HR-VWI, and non-contrast brain MRI examinations did 
not exceed 2 weeks; and (2) demonstrated carotid plaque thickness 
exceeding 1.5 mm on imaging.

Exclusion Criteria: Participants were excluded for any of the 
following reasons: (1) presence of non-atherosclerotic vascular 
pathologies including aneurysms or vasculitis; (2) acquisition of poor-
quality CT or MRI images precluding accurate analysis; (3) previous 
history of carotid interventions such as stenting or endarterectomy; or 
(4) advanced age or physical conditions contraindicating 
imaging procedures.

Data Collection: Comprehensive clinical and laboratory data were 
systematically collected, encompassing demographic characteristics 
(gender, age), medical history (hypertension, diabetes, coronary artery 
disease), lifestyle factors (smoking status, alcohol use), and lipid profiles 
(total cholesterol, triglycerides, high-density lipoprotein, low-density 
lipoprotein). All clinical data were obtained within a two-week window 
surrounding the imaging studies to ensure temporal relevance.

Definitions: Symptomatic carotid artery: The carotid artery on 
the same side as an acute ischemic lesion in the internal carotid artery 
territory, as identified on DWI, or the artery associated with 
neurological symptoms (9).
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Contralateral carotid artery: The carotid artery on the opposite 
side of the symptomatic carotid artery.

2.2 Imaging protocols

2.2.1 CTA imaging protocol
All examinations were performed using a 256-slice Revolution CT 

scanner (GE Healthcare) in spiral scanning mode, with coverage 
extending from the aortic arch to the cranial vault. A bolus of 
60–80 mL iodinated contrast agent (Omnipaque-350; GE Healthcare) 
was administered intravenously at 4 mL/s, followed by a 40 mL saline 
flush using a power injector, with scan initiation triggered 
automatically 5 s after reaching an attenuation threshold of 100 HU in 
the aortic arch. Standard acquisition parameters included: tube voltage 
100 kV, pitch 1.0, reconstruction slice thickness 0.5 mm, slice spacing 
0.5 mm, and rotation time 350 ms. The effective dose (ED) was 
calculated as ED = DLP × K, where K represents the radiation 
conversion factor (0.0023 mSv·mGy−1·cm−1) for adult head and 
neck examinations.

2.2.2 High-resolution HR-VWI imaging protocol
All MR examinations were performed using 3.0 T scanners (Philips 

Healthcare Discovery 750 W and GE Healthcare systems). The 
standardized imaging protocol comprised two-dimensional time-of-
flight (TOF), coronal three-dimensional T1-weighted imaging 
(CORONAL-3D T1WI), axial T1WI, axial T2WI, contrast-enhanced 
magnetic resonance angiography (CE-MRA), and contrast-enhanced 
three-dimensional T1-weighted imaging (CE-3D T1WI) sequences. For 
contrast-enhanced studies, gadopentetate dimeglumine (Gd-DTPA) 
was administered intravenously at a dose of 0.2 mmol/kg body weight, 
injected at 2.5 mL/s using a high-pressure injector (Ulrich, Germany).

2.2.3 Brain MRI + DWI
All brain MRI examinations were conducted using a Siemens 

Prisma 3.0 T scanner following standard diffusion-weighted imaging 
(DWI) protocols. The imaging protocol included four essential 
sequences: (1) axial T1-weighted imaging (T1WI) with TR/
TE = 150/2.5 ms, (2) axial T2-weighted imaging (T2WI) with TR/
TE = 5000/117 ms, (3) T2 FLAIR with TR/TE = 8000/81 ms, and (4) 
diffusion-weighted imaging (DWI) with b-value = 1,000 s/mm2 and TR/
TE = 3230/65 ms. All sequences shared consistent geometric parameters: 
field of view (FOV) 230 × 160 mm and slice thickness 5.0 mm.

2.3 Carotid perivascular fat density 
measurement

The PFD measurement method was based on established coronary 
artery fat measurement techniques, combined with semi-automated 
segmentation to determine perivascular fat density along the vascular 
narrowing region.

Definition: PFD was quantified by adjusting the technical 
parameters on the perivascular fat attenuation histogram within the 
range of −190 to −30 HU, with all fat density measurements reported 
in Hounsfield Units (HU), See Figure 1.

Procedure: Quantitative image analysis was performed using 
dedicated vascular imaging software (Shukun, version 6.21.730.3) for 
automated delineation of regions of interest (ROIs) and subsequent 
computational analysis. The perivascular fat density (PFD) difference 
(ΔPFD) was calculated by subtracting contralateral-side PFD values 
from symptomatic-side PFD values (ΔPFD = PFDsymptomatic–
PFDcontralateral), with all measurements generated through the 
software’s automated quantification algorithm.

2.4 Image interpretation

All images were independently reviewed by two radiologists with 
over 5 years of experience in carotid plaque analysis. In case of 
disagreement, a consensus was reached through discussion.

Stenosis Degree: Evaluated according to the NASCET (North 
American Symptomatic Carotid Endarterectomy Trial) standards (10).

The hallmark features of vulnerable plaques include: intraplaque 
hemorrhage (IPH), a thin or disrupted fibrous cap (<65 μm), an 
extensive lipid-rich necrotic core (>40% of plaque volume), prominent 
inflammatory cell infiltration (predominantly macrophages and 
T-lymphocytes), and pathological calcification patterns (particularly 
microcalcifications; Figure 2).

2.5 Statistical methods

Data analysis was performed using SPSS 25.0 software, with the 
following methods:

Continuous variables were first tested for normality using the 
Shapiro–Wilk test. Normally distributed data were presented as mean ± 
standard deviation (mean±SD), with between-group comparisons 

FIGURE 1

Comparison of CT angiography (CTA) imaging and automated perivascular fat density extraction: (A) Upper row: Conventional CTA cross-sectional 
images. (B) Lower row: Corresponding images with automated fat density extraction, where color-coded regions indicate perivascular adipose tissue 
(PVAT) distribution.
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performed using independent samples t-tests. Non-normally distributed 
data were expressed as median (interquartile range), with between-group 
comparisons analyzed using the Mann–Whitney U test. Paired data 
comparisons employed paired t-tests, For non-normally distributed 
paired data, the Wilcoxon signed-rank test will be used.

Categorical variables were presented as counts (percentages), with 
between-group differences evaluated using chi-square tests.

The following regression models were applied: (1) binary logistic 
regression to analyze the relationships between symptomatic-side 
PFD, contralateral-side PFD, ΔPFD and acute ischemic events; (2) 
multiple linear regression to examine associations between 
symptomatic-side PFD (dependent variable) and plaque 
characteristics (independent variables). The statistical significance 
level was set at p < 0.05.

Diagnostic performance of PFD measures was evaluated through 
receiver operating characteristic (ROC) curve analysis, calculating the 
area under the curve (AUC) and determining optimal cutoff values.

3 Results

3.1 General characteristics comparison

A total of 73 patients were included in the study, with an average 
age of 61 ± 12.5 years. Among them, 51 were male (69.9%) and 58 
were of Han ethnicity (79.5%). The prevalence of hypertension, 
dyslipidemia, diabetes, and smoking was 69.9, 45.2, 27.4, and 41.1%, 
respectively (Table 1).

3.2 Comparison of clinical, CTA features, 
and carotid PFD between acute and 
non-acute ischemic stroke groups

Among the 73 cases, there were 48 patients with acute 
cerebral infarction and 25 with non-acute cerebral infarction. 

FIGURE 2

Flowchart.
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The non-acute ischemic stroke group, the acute ischemic stroke 
group exhibited:

The acute ischemic stroke group demonstrated significantly 
elevated systolic blood pressure (159.2 ± 28.35 vs. 143 ± 25.54 mmHg, 
p = 0.019) and diastolic blood pressure (93.67 ± 15.75 vs. 
84.60 ± 13.21 mmHg, p = 0.016) compared to the non-acute group. 
Additionally, plaque thickness was markedly greater in the acute 
group (4.4 ± 1.4 vs. 2.9 ± 0.9 mm, p < 0.001), with a higher prevalence 
of severe stenosis (45.8% vs. 4.0%, p = 0.001) and plaque surface 
ulceration/irregularity (29.2% vs. 8.0%, p = 0.038). However, no 
significant differences were observed in plaque length (p = 0.067) or 
calcification (p = 0.516) between the two groups (Table 2).

In patients with acute ischemic stroke, the symptomatic-side PFD, 
contralateral carotid PFD, and △PFD (HU) were (−53.63 ± 11.04) HU, 
(−77.16 ± 10.64) HU, and (23.53 ± 10.71) HU, respectively. In non-acute 
ischemic stroke patients, the symptomatic-side PFD, contralateral carotid 
PFD, and △PFD (HU) were (−65.40 ± 10.80) HU, (−83.08 ± 9.94) HU, 
and (17.68 ± 7.28) HU, respectively. The differences between the two 
groups were statistically significant (p < 0.05; see Table 2).

3.3 Perivascular fat density (PFD) 
comparison of symptomatic versus 
contralateral carotid arteries in all patients

Within the same patient, symptomatic-side PFD (−57.66 ± 12.25 
HU) was significantly higher than contralateral-side PFD (−79.19 ± 10.72 
HU), with an average ΔPFD of 21.53 ± 10.02 HU (p < 0.001; Table 3).

3.4 Comparison of PFD at different degrees 
of stenosis and PFD of different plaque 
compositions

In the study, 50 patients (68.5%) had mild-to-moderate stenosis, 
and 23 patients (31.5%) had severe stenosis. The symptomatic-side 
PFD was higher in the severe stenosis group (−50.66 ± 10.36 HU) 
than in the mild-to-moderate stenosis group (−60.88 ± 11.78 HU, 
p = 0.001; Table 4).

Based on plaque composition, all patients were divided into 
calcified and non-calcified groups, IPH and non-IPH groups, TRFC 
and non-TRFC groups, and LRNC and non-LRNC groups. Statistically 
significant differences were found between the IPH and non-IPH 
groups, as well as between the TRNC and non-TRNC groups 
(p < 0.05). However, no statistical differences were observed between 
the calcified and non-calcified groups, or between the ulcerated and 
non-ulcerated groups (Table 4).

3.5 Binary logistic regression analysis of 
risk factors for acute ischemic stroke

Symptomatic-side PFD, contralateral PFD, and ΔPFD were all 
significantly associated with acute ischemic events (p < 0.05). After 
adjusting for systolic blood pressure, diastolic blood pressure, 
antihypertensive medication use, plaque thickness, and stenosis 
degree, symptomatic-side PFD remained predictive (OR = 0.919, 
p = 0.044; Table 5).

3.5.1 ROC curve analysis of symptomatic-side 
PFD, contralateral-side PFD, and ΔPFD in 
predicting acute ischemic stroke

Symptomatic-side PFD, contralateral-side PFD, and ΔPFD all 
demonstrated certain predictive value for acute ischemic stroke 
(p < 0.05). The predictive efficacy was ranked as follows: symptomatic-
side PFD > contralateral-side PFD > ΔPFD. Among these, 
symptomatic-side PFD had the best predictive ability for acute ischemic 
stroke, with an area under the curve (AUC) of 0.762 (95% CI: 0.653–
0.870; Table 6), and the optimal cutoff value is indicated in Figure 3.

3.6 Multiple linear regression analysis of 
the relationship between symptomatic-side 
PFD and different plaque components

A multiple linear regression analysis was performed with 
symptomatic-side PFD as the dependent variable, and IPH, TRFC, 
LRNC, plaque thickness, and stenosis degree as independent variables. 
The results showed that IPH, LRNC, and plaque thickness were 
significantly associated with symptomatic-side PFD (p < 0.05), with 
IPH being the most significant (p < 0.001; Table 7).

4 Discussion

This study investigated the association between perivascular fat 
density (PFD) and acute cerebral infarction events as well as vulnerable 
plaque characteristics. The results demonstrated that patients in the 
acute infarction group exhibited significantly higher PFD values in the 
symptomatic side, contralateral side, and ΔPFD compared to the 
non-acute infarction group (p < 0.05), consistent with recent findings 
(11, 27), further confirming that elevated perivascular PFD serves as an 
important predictor for cardiovascular risk. ROC curve analysis revealed 
that PFD had good predictive performance for acute cerebral ischemic 

TABLE 1  Clinical characteristics of the study population.

Characteristic Value (Mean ± SD) 
or n (%)

Age (years) 61 ± 12.5

Gender (Male) 51 (69.9)

Ethnicity (Han) 58 (79.5)

History of Hypertension 51 (69.9)

Systolic Blood Pressure (mmHg) 153.68 ± 28.33

Diastolic Blood Pressure (mmHg) 90.56 ± 15.45

History of Dyslipidemia 33 (45.2)

Total Cholesterol (mmol/L) 4.06 ± 1.15

Triglycerides (mmol/L) 1.64 ± 0.87

High-Density Lipoprotein (HDL; mmol/L) 0.96 ± 0.24

Low-Density Lipoprotein (LDL; mmol/L) 2.53 ± 0.92

History of Diabetes 20 (27.4)

History of Coronary Artery Disease 2 (2.7)

History of Smoking 30 (41.1)

History of Alcohol Consumption 32 (43.8)
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events, with the symptomatic-side PFD showing optimal predictive 
efficacy (AUC 0.762, 95% CI 0.653–0.870), indicating potential clinical 
utility. As a noninvasive imaging biomarker, PFD may play a significant 
role in assessing vascular inflammation and predicting high-risk plaques, 
serving as a novel imaging marker for vascular inflammatory activity 
and vulnerable plaques. This study provides preliminary evidence 
supporting its application in acute cerebral ischemic events. Future 
research should focus on: establishing standardized PFD measurement 

protocols; validating its predictive value through multicenter prospective 
cohorts; and elucidating the mechanistic relationship between PFD and 
molecular inflammatory markers  - ultimately facilitating clinical 
translation of this noninvasive parameter for early identification and 
targeted intervention in high-risk populations.

Additionally, the study found that PFD is closely related to 
plaque thickness, intraplaque hemorrhage (IPH), and lipid-rich 
necrotic core (LRNC). Among these, IPH had the most significant 
effect on PFD (p < 0.001), which aligns with findings from Miao 
Yu and Zhang S (9, 12). This suggests that PFD, as an alternative 
imaging biomarker for local vascular inflammation and vulnerable 
plaques, can provide a convenient method for diagnosing and 
predicting high-risk ischemic events, while also offering new 
therapeutic targets for clinical interventions (13).

The core mechanism of atherosclerosis is the inflammatory 
response. The initial injury to the endothelium leads to the 
accumulation of macrophages and monocytes, forming different types 
of plaques that subsequently induce lumen narrowing. Excessive 
narrowing can increase distal circulation pressure and reduce 
metabolism, resulting in ischemia and hypoxia in brain tissue. The 
rupture of vulnerable plaques can also cause distal infarction.

Recent studies have suggested a bidirectional secretion effect between 
the vascular wall and the surrounding adipose tissue (perivascular 
adipose tissue, PVAT), which is considered a key protective factor in the 
cardiovascular system (14, 15). Inflammation can alter the composition 
of PVAT from a lipid phase to a water phase, increasing its CT density in 
the inflammatory vascular areas (16). At the same time, inflammatory 
factors secreted by PVAT can recruit more inflammatory cells, further 
exacerbating local inflammation (15). The increase in PVAT density is 
also independently associated with the progression of the lipid 
components of coronary atherosclerotic plaques (17), providing 
theoretical support for its use as an imaging marker.

The composition and stability of carotid plaques directly influence 
the risk of systemic cardiovascular events (18–20). For example, strong 
evidence shows that IPH and plaque ulceration are associated with an 
increased risk of ipsilateral ischemic stroke (19), and the size of LRNC 
is highly correlated with the risk of ischemic stroke (18). This study 
found that patients with vulnerable plaque features such as IPH, TRFC 
(thin or ruptured fibrous cap), and LRNC had significantly higher 
PFD, further supporting the potential of PFD as a predictive factor for 
high-risk plaques, consistent with findings from Yu et al. (12).

However, in our study, there was no statistical difference in 
PFD between calcified and non-calcified plaques. We speculate that 
this may be related to the grouping, as mixed plaques contain both 
calcification and other components such as IPH or TRFC. Simply 
classifying them as calcified and non-calcified could affect the 
accuracy of the results. Additionally, we believe this may be due to 
the small sample size and selection bias, which may be addressed 
in future studies by expanding the sample size and minimizing 
such biases. Nevertheless, the PFD value in the calcified group was 
slightly lower than in the non-calcified group, which aligns with 
previous studies where calcification was considered a protective 
factor (21, 22). Plaque calcification is closely related to plaque 
stability and inversely correlated with inflammation (21, 23, 24). 
Moreover, no significant difference in PFD was found between 
ulcerated and non-ulcerated plaques, consistent with Zhang S’s 

TABLE 2  Comparison of clinical, CTA features, and carotid PFD between 
acute and non-acute ischemic stroke patients.

Parameter Acute 
ischemic 

stroke 
(n = 48)

Non-acute 
ischemic 

stroke 
(n = 25)

p

Age (years) 63.23 ± 13.08 58.52 ± 10.79 0.127

Gender (Male) 36 (75.0) 15 (60.0) 0.185

Ethnicity (Han) 39 (81.3) 19 (76) 0.598

History of Hypertension 35 (72.9) 15 (60.0) 0.194

Systolic Blood Pressure (mmHg) 159.2 ± 28.35 143 ± 25.54 0.019

Diastolic Blood Pressure 

(mmHg)
93.67 ± 15.75 84.60 ± 13.21 0.016

History of Dyslipidemia 29 (60.4) 14 (56.0) 0.453

Total Cholesterol (mmol/L) 4.11 ± 1.16 3.96 ± 1.56 0.589

Triglycerides (mmol/L) 1.67 ± 0.89 1.61 ± 0.85 0.569

High-Density Lipoprotein 

(HDL; mmol/L)
0.96 ± 0.23 0.97 ± 0.27 0.872

Low-Density Lipoprotein (LDL; 

mmol/L)
2.58 ± 0.95 2.42 ± 0.87 0.478

History of Diabetes 13 (27.1) 7 (28.0) 0.934

History of Coronary Artery 

Disease
2 (4.2) 0 (0.0) 0.301

History of Smoking 18 (37.5) 12 (48.0) 0.387

History of Alcohol 

Consumption
19 (39.6) 13 (52.0) 0.222

History of Antihypertensive 

Medication Use
26 (54.17) 7 (28.0) 0.029

History of Antiplatelet 

Medication Use
3 (6.3) 2 (8.0) 0.562

History of Statin Use 4 (8.3) 2 (8.0) 0.666

Symptomatic-side PFD (HU) −53.63 ± 11.04 −65.40 ± 10.80 <0.001

Contralateral-side PFD (HU) −77.16 ± 10.64 −83.08 ± 9.94 0.024

ΔPFD (HU) 23.53 ± 10.71 17.68 ± 7.28 0.017

Plaque Thickness (mm) 4.4 ± 1.4 2.9 ± 0.9 <0.001

Plaque Length (mm) 10.1 ± 5.3 7.8 ± 4.3 0.067

Degree of Stenosis (Severe) 22 (45.8) 1 (4.0) 0.001

Ulceration or Irregular Plaque 

Surface
14 (29.2) 2 (8.0) 0.038

Calcification 33 (68.8) 19 (76) 0.516

ΔPFD (HU), Symptomatic-side PFD–Contralateral-side PFD.
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findings (9), suggesting that the impact of ulceration on PFD might 
be minor.

Previous studies have indicated that an increase in carotid 
plaque thickness is closely related to symptomatic disease status 
(25), with inflammatory stimuli accelerating plaque growth, 
leading to lumen narrowing and thickening of the vessel wall. In a 
cross-sectional study involving 1,072 patients with brain ischemia, 
plaque thickness was found to be a better predictor of ischemic 
symptoms than stenosis degree (26). Another study pointed out 
that for every 1 mm increase in soft plaque thickness, the risk of 
ipsilateral ischemic events increases 3.7 times (95% CI: 1.9–7.2) 
(22). ROC curve analysis further supports plaque thickness as an 

important risk predictor, with an AUC of 0.88, a best cutoff value 
of 2.2 mm, sensitivity of 85%, and specificity of 83%.

4.1 Limitations

Although this study preliminarily validated the value of PFD in 
assessing vascular local inflammation and predicting acute cerebral 
ischemic events, there are still some limitations:

	 1.	 Retrospective design: The occurrence of future ischemic 
events cannot be  predicted and needs to be  verified by 

TABLE 3  Comparison of symptomatic-side PFD and contralateral-side PFD in the same patient.

Symptomatic-side PFD 
(HU)

Contralateral-side PFD 
(HU)

Difference (ΔPFD; 
HU)

Number of 
cases

t p

−57.66 ± 12.25 −79.19 ± 10.72 21.53 ± 10.02 73 18.36 <0.001

TABLE 4  Comparison of PFD at different degrees of stenosis and PFD of different plaque compositions.

Plaque 
characteristics

Mild-to-moderate 
stenosis (n = 50)

Severe stenosis 
(n = 23)

p Ulcerated 
group (n = 16)

Non-ulcerated 
group (n = 57)

p

Symptomatic-side PFD (HU) −60.88 ± 11.78 −50.66 ± 10.36 0.001 −56.66 ± 9.91 −57.95 ± 12.89 0.713

Contralateral-side PFD (HU) −80.39 ± 10.71 −76.59 ± 10.50 0.161 −75.76 ± 10.03 −80.15 ± 10.79 0.148

ΔPFD (HU) 19.50 ± 9.38 25.93 ± 10.15 0.010 19.09 ± 11.11 22.21 ± 9.69 0.276

Calcified group (n = 50) Non-calcified group (n = 23) p TRFC group (n = 16) Non-TRFC group (n = 57) p

Symptomatic-side PFD (HU) −58.44 ± 12 −55.73 ± 12.93 0.395 −51.61 ± 9.95 −59.50 ± 12.36 0.019

Contralateral-side PFD (HU) −80.23 ± 10.75 −76.61 ± 10.46 0.194 −74.62 ± 8.12 −80.58 ± 11.08 0.044

ΔPFD (HU) 21.79 ± 9.43 20.88 ± 11.57 0.730 −23.01 ± 9.27 21.08 ± 12.36 0.489

LRNC group (n = 22) Non-LRNC group (n = 51) p IPH group (n = 15) Non-IPH group (n = 58) p

Symptomatic-side PFD (HU) −50.84 ± 11.03 −60.42 ± 11.72 0.002 −43.82 ± 7.58 −61.24 ± 10.58 <0.001

Contralateral-side PFD (HU) −75.35 ± 8.84 −80.74 ± 11.09 0.051 −69.35 ± 8.05 −81.74 ± 9.86 <0.001

ΔPFD (HU) 24.51 ± 12.56 20.32 ± 8.64 0.172 25.53 ± 12.93 20.49 ± 8.96 0.172

TABLE 5  PFD and acute ischemic event models.

Variables Model 1 Model 2 Model 3

OR(95%CI) p OR(95%CI) p OR(95%CI) p

Symptomatic-side PFD 0.895(0.840–0.954) 0.001 0.889(0.831–952) 0.001 0.919(0.846–0.998) 0.044

Contralateral-side PFD 0.947(0.902–995) 0.030 0.950(0.902–1.001) 0.056 0.957(0.897–1.021) 0.185

ΔPFD 0.933(0.879–990) 0.023 0.920(0.862–0.981) 0.012 0.967(0.897–1.043) 0.387

Model 1: Regression analysis of PFD only. Model 2: Adjusted for systolic blood pressure, diastolic blood pressure, and antihypertensive medication use. Model 3: Adjusted for systolic blood 
pressure, diastolic blood pressure, antihypertensive medication use, plaque thickness, and degree of stenosis.

TABLE 6  Predictive values of symptomatic-side PFD, contralateral PFD, and △PFD for acute cerebral infarction.

Variables Cut-off value AUC 95% CI Sensitivity (SE) Specificity (SP)

Symptomatic-side PFD 0.449 0.762 0.653 ~ 0.870 0.729 0.64

Contralateral PFD 0.297 0.672 0.545 ~ 0.799 0.417 0.88

△PFD 0.359 0.660 0.535 ~ 0.785 0.419 0.88

Explanation: AUC, Area Under the Curve; 95% CI, 95% Confidence Interval; SE (Sensitivity), The ability to correctly identify positive cases (True Positive Rate); SP (Specificity), The ability to 
correctly identify negative cases (True Negative Rate).
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prospective studies with larger sample sizes and longer 
follow-up periods.

	 2.	 Small sample size: There may be bias in the group results, 
especially in the comparison of calcified and non-calcified  
plaques.

	 3.	 Limitations of measurement methods: The measurement of 
PFD may be affected by differences in placement of ROI. This 
study used a coronary approach based. Although this study 
provides preliminary evidence for the value of PFD in 
assessing local vascular inflammation and predicting acute 
cerebral ischemic events, it has several limitations.
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FIGURE 3

ROC curve of symptomatic-side PFD, contralateral-side PFD, and ΔPFD in predicting acute ischemic stroke.

TABLE 7  Multivariate linear regression analysis of the relationship between symptomatic side PFD and different plaque components.

Variable B β t p 95% CI

Lower limit Upper limit

Plaque thickness 19.035 0.225 2.259 0.027 2.215 35.854

TRFC (Thin, Ruptured Fibrous Cap) 4.708 0.164 1.817 0.074 −0.463 9.879

IPH (Intraplaque Hemorrhage) 11.054 0.367 3.710 <0.001 5.107 17.001

LRNC (Lipohyalinosis) 5.102 0.190 2.034 0.046 0.095 10.109

Degree of stenosis 4.385 0.167 1.731 0.088 −0.672 9.441
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