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Editorial on the Research Topic

Unraveling immune metabolism: single-cell & spatial transcriptomics
illuminate disease dynamics
Introduction

The interplay between cel lular metabolism and immune funct ion—

immunometabolism—has emerged as a cornerstone of modern pathology (1). Immune

cells are not static entities; they continuously adapt their metabolic programs to survive and

function within hostile microenvironments, whether in the hypoxic core of a tumor, the

inflamed synovium of an arthritic joint, or the fibrotic tissue of a failing kidney (1–5).

Historically, our understanding of these processes was limited by bulk analyses that

averaged metabolic signals across heterogeneous cell populations (6). However, the

advent of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics has

precipitated a paradigm shift (6, 7). We can now dissect the metabolic heterogeneity of

immune cells at high resolution, mapping how specific metabolic pathways drive disease

progression, resistance to therapy, and tissue remodeling (6).

This Research Topic, Unraveling Immune Metabolism: Single-Cell & Spatial

Transcriptomics Illuminate Disease Dynamics, was curated to bridge the gap between

static metabolic profiling and dynamic disease pathology. The Research Topic published

here spans a diverse spectrum of conditions—from solid tumors and renal disease to

autoimmune disorders and cardiovascular failure. Collectively, they demonstrate how
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metabolic rewiring is not merely a consequence of disease, but a

fundamental driver of the immune landscape.
Reshaping the tumor
microenvironment

Nowhere is metabolic competition more fierce than in the

tumor microenvironment (TME), where cancer cells and immune

cells vie for limited nutrients. Several contributions to this topic

highlight how spatial and single-cell technologies are decoding

this competition.

In the context of colorectal cancer, Wang et al. utilized single-

cell and spatial transcriptomics to construct a high-resolution map

of tumor heterogeneity. Their work reveals distinct molecular

programs that govern the spatial distribution of immune cells,

offering new targets for disrupting the tumor-supportive niche.

Similarly, Fu et al. investigated lung adenocarcinoma, identifying

the Midkine (MDK)-Nucleolin (NCL) pathway as a critical

regulator of the immunosuppressive environment. By integrating

spatial data, they demonstrated how this pathway orchestrates

immune exclusion, suggesting that metabolic or signaling

interventions targeting MDK-NCL could reinvigorate anti-

tumor immunity.

Two comprehensive reviews further elucidate the metabolic hurdles

within the TME. Chen et al. focused on gastric cancer, detailing how

aberrant lipid metabolism reshapes the immune microenvironment

to favor tumor growth. Chen et al. extended this discussion to

Triple-Negative Breast Cancer (TNBC), synthesizing evidence on

how metabolic plasticity limits the efficacy of immunotherapy and

proposing metabolic vulnerabilities that could be exploited for

combined treatment strategy.
Metabolic reprogramming in renal and
systemic disease

Beyond oncology, this topic emphasizes the critical role of

immunometabolism in chronic inflammatory and metabolic

diseases. The progression from Acute Kidney Injury (AKI) to

Chronic Kidney Disease (CKD) represents a complex metabolic

shift. Zeng et al. applied integrated transcriptomics to identify key

genes—CLCNKB, KLK1, and PLEKHA4—that mark this

transition, providing potential biomarkers for early intervention.

Complementing this, Li et al. employed a multi-omics and network

pharmacology approach to validate the Jianpi-Yishen formula, a

traditional intervention, revealing its capacity to modulate

metabolic networks in CKD.

In the realm of systemic metabolic disorders, Li et al. utilized

scRNA-seq to explore Type 2 Diabetes Mellitus (T2DM). Their

study uncovers distinct immunometabolic alterations in peripheral

blood mononuclear cells, linking specific immune subtypes to the

systemic metabolic dysregulation characteristic of diabetes.
Frontiers in Endocrinology 026
Autoimmunity, inflammation, and
stress responses

The plasticity of macrophages and T cells is central to

autoimmune pathology. Jiang et al. provided a compelling

analysis of Rheumatoid Arthritis (RA), specifically the ACPA-

negative subtype. Their scRNA-seq analysis highlighted a unique

macrophage expansion driven by metabolic reprogramming,

distinguishing the pathogenesis of this subtype from classical RA

and suggesting that metabolic inhibition could be a viable

therapeutic avenue for these patients.

Finally, the Research Topic addresses how immune metabolism

responds to systemic stress and hypoxia. Wang et al. probed heart

failure through the lens of immunogenic cell death (ICD),

identifying transcriptomic biomarkers that link cell death

pathways to immune activation in cardiac tissue. In a study

connecting hypoxia to systemic inflammation, Ye et al. used

interpretable machine learning to decode the “hypoxia-exosome-

immune triad” in Obstructive Sleep Apnea (OSA). They revealed

how the PRCP/UCHL1/BTG2 axis drives metabolic dysregulation,

offering a novel mechanistic view of how sleep-disordered breathing

impacts immune health.
Conclusion

The studies presented in Unraveling Immune Metabolism

collectively reinforce the concept that metabolism is not merely

the energy source for immune cells, but the instruction manual for

their function. By leveraging single-cell and spatial technologies,

these authors have moved beyond static snapshots to reveal the

dynamic, location-specific metabolic engines driving disease. As we

look to the future, the integration of these transcriptomic maps with

direct metabolite sensing and flux analysis will be the next frontier,

promising precision therapies that target the metabolic heartbeat

of pathology.
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Background: Anti-citrullinated peptide antibodies (ACPA)-negative (ACPA−)

rheumatoid arthritis (RA) presents significant diagnostic and therapeutic challenges

due to the absence of specific biomarkers, underscoring the need to elucidate its

distinctive cellular and metabolic profiles for more targeted interventions.

Methods: Single-cell RNA sequencing data from peripheral blood mononuclear

cells (PBMCs) and synovial tissues of patients with ACPA− and ACPA+ RA, as well as

healthy controls, were analyzed. Immune cell populations were classified based on

clustering and marker gene expression, with pseudotime trajectory analysis,

weighted gene co-expression network analysis (WGCNA), and transcription

factor network inference providing further insights. Cell-cell communication was

explored using CellChat and MEBOCOST, while scFEA enabled metabolic flux

estimation. A neural network model incorporating key genes was constructed to

differentiate patients with ACPA− RA from healthy controls.

Results: Patients with ACPA− RA demonstrated a pronounced increase in classical

monocytes in PBMCs and C1QChigh macrophages (p < 0.001 and p < 0.05).

Synovial macrophages exhibited increased heterogeneity and were enriched in

distinct metabolic pathways, including complement cascades and glutathione

metabolism. The neural network model achieved reliable differentiation between

patients with ACPA− RA and healthy controls (AUC=0.81). CellChat analysis

identified CD45 and CCL5 as key pathways facilitating macrophage-monocyte

interactions in ACPA− RA, prominently involving iron-mediated metabolite

communication. Metabolic flux analysis indicated elevated beta-alanine and

glutathione metabolism in ACPA− RA macrophages.

Conclusion: These findings underscore that ACPA-negative rheumatoid arthritis

is marked by elevated classical monocytes in circulation and metabolic
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reprogramming of synovial macrophages, particularly in complement cascade

and glutathione metabolism pathways. By integrating single-cell RNA

sequencing with machine learning, this study established a neural network

model that robustly differentiates patients with ACPA− RA from healthy

controls, highlighting promising diagnostic biomarkers and therapeutic targets

centered on immune cell metabolism.
KEYWORDS
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disorder

marked by persistent synovial inflammation, leading to joint

destruction and impaired functionality. Its pathogenesis is driven

by a multifaceted interaction of genetic, environmental, and

immunological factors that promote immune dysregulation and

chronic synovial inflammation (1, 2). A central feature of RA is the

presence of autoantibodies, notably anti-citrullinated peptide

antibodies (ACPA), which exhibit high specificity for the disease

and serve as important diagnostic and prognostic markers (3, 4).

Patients with ACPA-positive (ACPA+) RA typically experience a

more aggressive disease course, characterized by accelerated joint

damage and systemic involvement (5).

Nevertheless, approximately 20–30% of patients with RA are

ACPA-negative (ACPA−), lacking these specific autoantibodies (6).

ACPA− RA presents distinct clinical challenges, as it may follow

unique disease trajectories and exhibit variable therapeutic

responses compared to ACPA+ RA (7). The absence of ACPA

complicates early diagnosis, potentially delaying treatment onset

and impacting long-term patient outcomes (8). Furthermore, the

immunopathological mechanisms underlying ACPA− RA remain

incompletely characterized, posing a barrier to the development of

targeted treatments for this subgroup (9).
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Recent findings suggest that ACPA− RA represents a distinct

clinical entity with unique immunological characteristics (10).

Variations in genetic predisposition, cytokine profiles, and

immune cell composition differentiate ACPA− RA from its

ACPA+ counterpart (11, 12). Notably, alterations in monocyte

and macrophage populations have been implicated in RA

pathogenesis (13). Monocytes and macrophages are pivotal in

inflammation and immune modulation, driving synovial

hyperplasia and joint destruction through the release of pro-

inflammatory cytokines and matrix-degrading enzymes (14).

However, the precise roles of these immune cells in ACPA− RA

remain inadequately elucidated.

Metabolic reprogramming in immune cells is increasingly

recognized as a pivotal factor in autoimmune diseases, including

RA (15). During immune activation, differentiation, and effector

functions, immune cells reconfigure their metabolic pathways to

meet heightened energetic and biosynthetic demands (16).

Dysregulated metabolic processes can profoundly impact immune

cell function, fostering chronic inflammation (17). In RA, research

has demonstrated that altered glucose and lipid metabolism in both

synovial fibroblasts and immune cells accelerates disease

progression (15, 18). However, the metabolic characteristics of

immune cells in ACPA− RA remain largely unexamined.

Advancements in single-cell RNA sequencing (scRNA-seq)

now enable precise profiling of cellular heterogeneity, facilitating

the identification of novel cell subtypes and disease-associated

pathways (19). Utilizing scRNA-seq on peripheral blood

mononuclear cells (PBMCs) and synovial tissue mononuclear

cells (STMCs) from patients with RA allows researchers to

delineate the complex cellular interactions and metabolic

pathways underlying inflammation (20). Coupling scRNA-seq

data with computational models further supports the estimation

of metabolic fluxes and the construction of cell-cell communication

networks (21).

This study investigates the cellular composition, metabolic

reprogramming, and intercellular communication specific to

ACPA− RA. scRNA-seq analysis was performed on PBMCs and

STMCs from both patients with ACPA− RA and those with ACPA+

RA, with a focus on monocyte and macrophage subsets. Our
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hypothesis posits that patients with ACPA− RA exhibit distinctive

immune cell profiles and metabolic pathways that underlie their

unique clinical features. By identifying differentially expressed

genes, metabolic modules, and signaling pathways, this research

aims to pinpoint potential biomarkers and therapeutic targets for

ACPA− RA. Our findings offer new insights into ACPA− RA

pathogenesis and underscore the critical role of metabolism in

modulating immune responses within this patient subgroup.
Methods

Data acquisition

The sequence data used for this study have been deposited in the

Genome Sequence Archive at the BIG Data Center, Beijing Institute of

Genomics (BIG), Chinese Academy of Sciences, under accession code

HRA000155 (22). Researchers seeking access must submit an

application for approval to utilize this dataset for further analysis.
Single-cell RNA sequencing alignment and
quality control

Raw 10x Genomics sequencing data were processed with

CellRanger v2.2.0 using the human transcriptome GRCh38-1.2.0

as a reference (23). Additional quality control measures were

applied to remove low-quality cells, specifically excluding cells

with mitochondrial gene expression exceeding 5%. Single-cell

read counts from all samples were analyzed with the Seurat

package (v5.0.1) in R (v4.3.1), where data were transformed into

Seurat objects (24). Filtering criteria included retaining cells with

unique molecular identifier (UMI) counts between 1000 and 25000

and genes detected in at least five cells while restricting cells to those

expressing between 500 and 3500 genes. Post-filtering, data

normalization was executed with Seurat’s NormalizeData

function, followed by the identification of highly variable genes

using FindVariableFeatures.
Integration of scRNA-seq data from the
same tissue

For tissue-specific scRNA-seq data integration (PBMC or

synovial tissue), the Harmony package was employed.

Downstream analyses, including dimensionality reduction and

clustering, leveraged highly variable gene correlations.
Dimensionality reduction and major cell
type annotation

Separate analyses were conducted for PBMC and synovial tissue

datasets, with adjustments for confounders such as UMI counts,

mitochondrial gene percentage, and cell cycle genes. Gene
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expression was scaled to unit variance, and dimensionality was

reduced using principal component analysis (PCA), selecting the

top 20 principal components (PCs) based on the elbow plot and

variance explained. Cell clusters were visualized in two-dimensional

space via Uniform Manifold Approximation and Projection

(UMAP), and unsupervised clustering was executed with Seurat’s

FindClusters function, applying the Louvain algorithm for

community detection. Resolution parameters were set to 0.5 for

PBMC and 0.8 for synovial tissue.

Resolution settings were determined through an iterative

approach, evaluating cluster stability and biological significance

by varying resolution from 0.2 to 1.5 in 0.2 increments. Silhouette

scores and modularity metrics were utilized to assess cluster

cohesion and separation. The final resolutions provided an

optimal balance, capturing distinct subpopulations without

excessive clustering of biologically similar cells. Cell identities

were assigned based on known marker genes for each cell type, as

illustrated in Figure 1A and Supplementary Figure 1B, with

validation through cross-referencing published datasets and

established cell type annotations. For ambiguous marker

expression, differential expression analysis was applied to confirm

cell identity.
Differential expressed genes and
pathway analysis

Differentially expressed gene (DEG) analysis was conducted

using the FindMarkers function in Seurat with the Wilcoxon test.

Bonferroni correction was applied to adjust p-values, and DEGs

were filtered at a significance threshold of p < 0.05. For this study,

the mini pct was set to 0.1, meaning at least 10% of cells in either

group must express the gene for it to be included in the analysis.

Enrichment analysis of DEGs was carried out using the

clusterProfiler package (v3.12.0), examining Gene Ontology (GO)

terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways (25). Specific parameters used in the analysis include a p-

value cutoff of 0.05, a q-value cutoff of 0.2, and a gene set size range

of 10 to 500. Multiple testing correction was performed using the

Benjamini-Hochberg method. These parameter choices were

guided by established practices to ensure biologically meaningful

and statistically reliable results. To elucidate the functional roles of

each macrophage subset, gene set variation analysis (GSVA) was

performed with standard settings in the GSVA R package

(v1.32.0).For this single-cell analysis, log-normalized expression

data from Seurat were used as input. Pathways were selected from

the MSigDB KEGG gene set collection, ensuring a comprehensive

evaluation of biological processes. Specific parameters for the gsva()

function included method = “gsva” (default kernel-based density

estimation), mx.diff = TRUE (to calculate enrichment scores based

on maximum difference between conditions), and a min.sz = 10 and

max.sz = 500 to ensure only biologically relevant pathways were

considered while accounting for sparsity in single-cell datasets.

These parameter choices were optimized for single-cell data to

maintain robustness and biological interpretability.
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Additionally, AUCell analysis was performed to evaluate the

activity of gene sets in individual cells, complementing GSVA

results by providing cell-level resolution. This analysis used the

AUCell package (v1.12.0) with the AUCell_buildRankings()

function to rank genes based on expression levels across

individual cells. The AUCell_calcAUC() function was then

applied to calculate the Area Under the Curve (AUC) scores for

predefined gene sets, with thresholds determined based on

empirical distributions. Parameters included a ranking threshold

of 5% and the use of log-normalized data to ensure compatibility

with single-cell datasets. These details enhance the transparency

and reproducibility of the methods used in this study.
Trajectory inference

The Monocle2 algorithm was applied to explore differentiation

trajectories within selected clusters (26). Cells of interest were subset

using the Seurat subset function, and a CellDataSet object was

generated with Monocle2’s newCellDataSet function, setting the

lowerDetectionLimit parameter to 0.5. Low-quality cells and genes

were removed with min_expr = 0.1, and dimensionality reduction

was conducted using the DDRTree method. Visualization of

trajectories was achieved through plot_cell_trajectory and

plot_genes_in_pseudotime functions.
SCENIC analysis

To identify regulons (transcription factors [TFs], their modules,

and potential targets) and assess their activity, this study employed

the single-cell regulatory network inference and clustering

(SCENIC) approach (27). This workflow began with the inference

of co-expression modules using GRNBoost2, followed by motif
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pruning with cisTarget. Regulon activity was quantified with

AUCell scores, and TF activity was evaluated using the Python-

based tool pySCENIC (28). Leveraging the cis-target and motif

databases, all TFs with motifs were analyzed to identify cell-type-

specific regulons with high regulon specificity scores (RSS) (29).
HdWGCNA analysis

High-dimensional weighted gene co-expression network

analysis (hdWGCNA) was employed to identify key macrophage-

related genes (30). Monocyte and macrophage populations were

extracted from scRNA-seq data, gene expression correlation

matrices were computed, and gene co-expression modules were

identified. Critical parameters were carefully optimized during the

hdWGCNA process to ensure robust network construction and

module detection. In the initial step, gene expression correlation

matrices were calculated, and the soft-thresholding power was

determined to optimize scale-free network topology. A soft-

thresholding power of 7 was selected to ensure that the network

exhibited scale-free properties, a hallmark of biological networks.

This selection was guided by plotting the scale-free topology model

fit against various power values and choosing the point where the

network’s R-squared value reached a plateau. Following network

construction, co-expression modules—clusters of genes with similar

expression patterns across the macrophage population—were

identified. The relevance of these modules was assessed via

module-trait relationship analysis, correlating each module with

specific traits related to macrophage activation and inflammation.

For each trait-related module, hub genes—genes with high

intramodular connectivity central to the network structure—were

identified. Hub genes were defined based on their connectivity

scores (kME values) within their respective modules, following the

approach outlined in previous studies.
FIGURE 1

(A) Sample size distribution of scRNA-seq data from HC, ACPA+ RA, and ACPA− RA individuals. (B) UMAP clustering of immune cells from PBMCs.
(C) Wilcoxon test comparing immune cell proportions between ACPA+ and ACPA− groups. (D) UMAP clustering of monocyte subpopulations. (E)
Wilcoxon test comparing monocyte subpopulations between ACPA+ and ACPA− groups. (P-values are expressed as follows: * p ≤ 0.05, ** p ≤ 0.01,
and *** p ≤ 0.001.).
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Deep neural network construction

A deep neural network (DNN) was constructed using PyTorch

to define and optimize the network architecture. Based on PBMC

expression data from 20 DEGs and corresponding cell-type data,

the DNN was developed to distinguish patients with ACPA− RA

from healthy controls (HC). Data were divided into a 70% training

set and a 30% test set, with training performed over 1000 epochs

using mini-batch gradient descent. The DNN architecture consisted

of an input layer with 21 features, followed by four hidden layers

containing 128, 64, 32, and 16 neurons, each employing Sigmoid

activation functions, and concluded with a single Sigmoid neuron in

the output layer for binary classification (ACPA-negative or

healthy).In clinical settings, the characterization of macrophage

populations plays a crucial role in diagnosing and understanding

rheumatoid arthritis (RA) subtypes. If over 50% of a patient’s

macrophages are found to be ACPA-negative, this could strongly

suggest an ACPA-negative RA diagnosis. Otherwise, the patient is

likely classified as healthy.

To prevent overfitting, early stopping was applied based on

validation loss, and each hidden layer included a dropout rate of 0.2.

Key model parameters, including learning rate, number of layers,

and dropout rates, were optimized via grid search, exploring

learning rates from 0.001 to 0.01. A learning rate of 0.005 was

ultimately selected based on improved validation accuracy. Model

performance was assessed through accuracy metrics and ROC curve

analysis, with the ROC curve generated using Scikit-learn’s

roc_curve function. Additionally, cross-validation was

implemented to reinforce model robustness, averaging

performance metrics across five folds to ensure generalizability.
Cell communication and
signaling pathways

Cell communication analysis was performed using the CellChat

package in R with default parameters, focusing on PBMCmonocyte

and synovial macrophage subsets independently (31). The analysis

utilized the human CellChatDB and enabled a comparative

assessment of interactions between ACPA+ and ACPA−

macrophage subpopulations and PBMC monocytes.
MEBOCOST analysis

MEBOCOST, a Python-based tool, inferred metabolite-

mediated cell communication from scRNA-seq data. This tool,

which leverages a curated database of metabolite sensors and

partners, identified sender and receiver cells based on metabolite

outflow/inflow rates and enzyme/sensor expression levels. scRNA-

seq expression data were first loaded into a Python pandas

DataFrame, integrated with cell annotations, and then used to

infer metabolic communications. Results were visualized to

illustrate communication events, sender-to-receiver flows, and

sensor expression levels.
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Construction of single-cell metabolic
flux curves

Single-cell metabolic flux profiles were derived using the single-

cell flux estimation analysis (scFEA) algorithm, a graph neural

network-based approach (21). The algorithm utilized 168 metabolic

modules, obtained from scFEA’s official GitHub repository (https://

github.com/changwn/scFEA). KEGG enrichment analysis was

conducted on input and output modules using MetaboAnalyst

(https://www.metaboanalyst.ca/home.xhtml).
Statistical analysis

All statistical analyses were performed using R software (v4.3.1),

with visualizations generated in R Studio. Data were pre-processed to

meet the assumptions for each statistical test, and appropriate

transformations were applied when necessary. Statistical tests were

selected based on data distribution and study design. For comparisons

between two groups with normally distributed data and equal

variances, Student’s t-test was used. The Wilcoxon Rank-Sum Test

was applied for non-parametric data, providing a robust method for

comparing medians between two independent groups, especially

suitable for small sample sizes or skewed distributions. The Kruskal-

Wallis Test was employed for comparisons across more than two

independent groups with non-parametric data. To control the family-

wise error rate, p-values were adjusted using the Holm-Bonferroni

method. Statistical significance was set as follows: “ns” for p > 0.05, * for

p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001, and **** for p ≤ 0.0001.
Results

Identification of distinct immune cell types
in patients with RA

Single-cell sequencing data of immune cells from patients with

ACPA− RA and patients with ACPA+ RA were obtained from the

Genome Sequence Archive at the Big Data Center, Beijing Institute of

Genomics, Chinese Academy of Sciences. The dataset comprised 44

samples, including CD45+ PBMCs isolated from HC (n = 4) and from

ACPA+ (n = 10) and ACPA− (n = 10) RA individuals (Figure 1A).

Additionally, synovial tissuemononuclear cells (STMCs) were obtained

from ACPA+ (n = 10) and ACPA− (n = 10) RA individuals

(Figure 1A). None of the patients were receiving disease-modifying

antirheumatic drugs (DMARDs), corticosteroids, or targeted therapies

at the time of sampling, though some opted for physical therapies, such

as thermotherapy or acupuncture, to manage pain. A graph-based

unsupervised clustering method was applied to identify cell types by

examining typical marker genes. Cell populations identified included T

cells, B cells, monocytes, dendritic cells, plasma cells, NK cells, and

common myeloid progenitors (CMP). Each cell type was annotated

according to well-characterized marker genes (Figure 1B,

Supplementary Figure 1A). Specifically, T cells were defined by high

expression of CD3D and CD3E, while NK cells were distinguished by
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NKG7 and GNLY. Monocytes were annotated by CD14 and FCGR3A,

and dendritic cells by ITGAX andHLA-DQA1. B cells and plasma cells

were characterized by distinct marker profiles, with B cells expressing

CD19, MS4A1, and CD79A, and plasma cells marked by SDC1 and

MZB1. CMPs were identified using CD34, KIT, and FLT3, established

indicators of progenitor populations. Marker selection was based on

specificity for each cell type, validated by previous research in the field.

This rigorous marker selection and clustering approach enabled robust

and precise classification of cell types within the dataset.
Increased monocyte proportions in
patients with ACPA− RA

The Wilcoxon test was applied to assess differences in immune

cell type proportions across ACPA-positive, ACPA-negative, and

HC groups. Results indicated a statistically significant increase in

monocyte proportions within the ACPA-negative group compared

to both ACPA-positive and HC groups (p < 0.001). Additionally, a

significant difference was detected in T cell proportions between

ACPA-negative and ACPA-positive groups (p < 0.01). No

significant differences were observed for NK cells, B cells,

dendritic cells, plasma cells, or CMPs across the groups (Figure 1C).
Identification of monocyte subpopulations

Further dimensionality reduction and clustering analysis of

monocytes identified three distinct subpopulations: classical, non-

classical, and intermediate monocytes (Figure 1D). Classical

monocytes were characterized by CD14 expression, non-classical

monocytes by CD16, and intermediate monocytes by the co-

expression of CD14 and CD16 (Supplementary Figure 1B).
Patients with ACPA+ RA show increased
classical monocytes and reduced non-
classical monocytes

The Wilcoxon test was subsequently conducted to compare the

proportions of monocyte subpopulations between ACPA-positive

and ACPA-negative groups. This analysis revealed a statistically

significant reduction in the proportion of non-classical monocytes

in the ACPA-positive group relative to the ACPA-negative group (p

< 0.01) (Figure 1E). Conversely, the ACPA-positive group exhibited

a significant increase in classical monocyte proportions (p < 0.01)

(Figure 1E). No significant difference was identified in intermediate

monocyte proportions between the two groups (Figure 1E).
Macrophages and fibroblasts are increased
in ACPA-positive synovial tissue

Recognizing synovial inflammation as a hallmark of RA,

dimensionality reduction and clustering analysis were performed on

scRNA-seq data from synovial cells. This approach identified eight
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distinct cell populations within synovial tissue: T cells, plasma cells, NK

cells, B cells, macrophages and myeloid cells, endothelial cells, mast

cells, and fibroblasts (Figure 2A, Supplementary Figure 1C). Each cell

type was annotated based on classical markers, selected for their

established involvement in RA-related inflammation and immune

response. Specifically, T cells were characterized by CD3D and CD3E

expression, B cells by CD19 and CD79A, and plasma cells by markers

such as MZB1 and IGLC2. Macrophages and myeloid cells showed

high CD68 and LYZ levels, while endothelial cells were identified by

PECAM1 and VWF. Mast cells were marked by TPSAB1, and

fibroblasts by ACTA2 and DCN expression. These cell types are

well-documented contributors to the inflammatory cascade and

tissue damage observed in RA, providing insights into the cellular

landscape of synovial inflammation. Using the Wilcoxon test, immune

cell proportions were compared between patients with ACPA+ RA and

those with ACPA− RA. Results demonstrated a statistically significant

increase in macrophages and myeloid cells (p < 0.01) and fibroblasts (p

< 0.05) in the ACPA+ group (Figure 2E), aligning with the roles of

macrophages and fibroblasts in sustaining inflammation and

facilitating joint destruction in RA. No significant differences were

found for T cells, plasma cells, NK cells, B cells, endothelial cells, or

mast cells (Figure 2E).
Identification of 11 distinct macrophage
subtypes with differential roles in RA

Focusing on macrophages, which are central to chronic

inflammation, tissue destruction, and immune dysregulation in RA,

further dimensionality reduction and clustering analysis identified 11

distinct macrophage subtypes based on gene expression profiles: C1:

C1QChigh(T), C2:NAMPT/NFKBIAhigh(H), C3:FN1high(H), C4:

LYZhigh(H), C5:CD163high(T), C6:HLAhigh(H), C7:APOEhigh(T),

C8:MARCOhigh(H), C9:MIFhigh(H), C10:BIRC3high(T), and C11:

C1QBhigh(H) (Figure 2B, Supplementary Figure 1D). These subtypes

reflect macrophage populations with diverse roles in RA. Here, T

denotes tissue-resident macrophages, which sustain local inflammation

in synovial tissue, while H represents hematogenous macrophages,

recruited from the bloodstream in response to inflammatory signals.

Tissue-resident macrophages were identified by CXCR6, ITGAE, and

CD69 markers, while hematogenous macrophages were marked by

S1PR1, KLF2, and CCR7, following marker definitions from prior

studies (Figure 2C) (32–34).
Specific macrophage subtypes are
enriched in ACPA-negative and ACPA-
positive RA

KEGG enrichment analysis on differentially expressed genes

across 11 macrophage clusters revealed that genes downregulated in

ACPA-positive samples (i.e., upregulated in ACPA-negative

samples) were enriched in RA-related subgroups, particularly

clusters C1 and C7. These genes were associated with immune

pathways such as Th17, Th1, and Th2 cell differentiation.

Conversely, ACPA-positive samples showed lower counts and
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higher p-values in the upregulated differentially expressed genes for

C1 and C7, indicating less enrichment compared to ACPA-negative

samples (Supplementary Figures 2A, B).

GSVA identified several key pathways in C1 and C7, including

complement and coagulation cascades, allograft rejection, alcoholic

liver disease, phagosome, antigen processing and presentation,

cholesterol metabolism, pertussis, lysosome, and Staphylococcus

aureus infection (Figure 3F). Further Wilcoxon test analysis indicated

a significant increase in the proportion of C1 macrophages in the

ACPA-negative group (p < 0.05), suggesting these cells contribute to

local inflammation and synovial hyperplasia in ACPA-negative RA. In

contrast, a significant decrease in C7 proportions was observed in the

ACPA-negative group (p < 0.01), suggesting that C7macrophages may

have a regulatory or protective function that is diminished in ACPA-

positive RA (Figure 2F).

AUCell activity scoring for rheumatoid arthritis pathways in the

KEGG database across the 11 macrophage subtypes revealed

distinct activity patterns between ACPA-positive and ACPA-

negative groups. Specifically, C1, C2, C5, C6, C7, and C10

exhibited significantly higher activity scores in the ACPA-positive

group, whereas C1 and C8 had notably higher activity in the ACPA-

negative group. These results suggest that C1 and C8 may play

pivotal roles in ACPA-negative RA, while other subtypes are more

active in ACPA-positive RA (Figure 2D).
ACPA-negative RA macrophages display
more complex developmental trajectories

To elucidate the dynamic roles of macrophage subtypes in RA

progression and immune responses, pseudotime trajectory analysis
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was conducted on 11 macrophage subtypes to investigate their

developmental paths (Figures 3A–D). Separate analyses were

performed for macrophages from ACPA− RA and ACPA+ RA

individuals. Results indicated that macrophages in ACPA− RA

exhibited a more intricate developmental trajectory, forming four

distinct branches (Figure 3A), whereas ACPA+ RA macrophages

formed only two branches (Figure 3C). This suggests greater

diversity in developmental and activation processes among

macrophages in ACPA− RA, possibly reflecting increased

heterogeneity in macrophage function compared to ACPA+ RA.

Within ACPA− RA, certain macrophage subtypes displayed

distinct patterns along the developmental path. Subtypes C10(T)

and C11(H), for instance, appeared primarily in early

developmental stages, indicating a role in initial macrophage

activation or differentiation. In contrast, C1(T) and C7(T)

spanned both early and late stages but were absent from

intermediate stages, suggesting that these subtypes may have

specialized roles at the onset and resolution phases of the

macrophage lifecycle, potentially involved in initiating and

resolving inflammation. In ACPA+ RA, macrophage subtypes

were more uniformly distributed along the trajectory, indicating

less developmental complexity, which may reflect a more sustained

and homogeneous inflammatory response in ACPA+ RA. The

increased developmental complexity and unique pathway

involvement in ACPA− RA highlight a higher degree of

macrophage heterogeneity, which could contribute to the variable

clinical presentation and disease progression observed in ACPA

− RA.

To elucidate the biological relevance of pseudotime-related

changes, KEGG enrichment analysis was performed on genes

associated with pseudotime trajectories for ACPA+ RA and
FIGURE 2

(A) UMAP plot of scRNA-seq data from synovial cells. (B) UMAP plot of macrophage subtypes from synovial cells. (C) Markers for hematogenous
macrophages and tissue-resident macrophages. (D) AUCell activity scoring of the 11 macrophage subtypes in the KEGG Rheumatoid Arthritis
pathway. (E) Wilcoxon test comparing synovial cell populations between ACPA+ and ACPA− groups. (F) Wilcoxon test comparing macrophage
subpopulations from synovial cells between ACPA+ and ACPA− groups. (P-values are expressed as follows: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001,
and NS indicates no significance.).
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ACPA− RA macrophages. Both groups shared 141 pathways,

including key inflammatory and RA-related pathways such as

Rheumatoid arthritis and Osteoclast differentiation, which are

fundamental to RA pathology (Supplementary Table 1).

Distinctly, ACPA− RA macrophages were enriched in seven

pathways, including Complement and coagulation cascades,

Antifolate resistance, and Glycosphingolipid biosynthesis –

ganglion series. These pathways suggest specific roles in the

development and progression of ACPA− RA (Supplementary
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Table 1). Enrichment in the Complement and coagulation cascades

pathway implies a role in heightened inflammation and immune

activation, potentially exacerbating joint damage. Antifolate

resistance indicates an altered response to treatments such as

methotrexate, suggesting the potential need for alternative

therapeutic strategies in patients with ACPA− RA. Furthermore,

enrichment in Glycosphingolipid biosynthesis suggests unique lipid

metabolism influencing macrophage activity and immune regulation,

further distinguishing ACPA− RA fromACPA+ RA. These pathways
FIGURE 3

(A) Pseudotime trajectory analysis of macrophage subtypes in patients with ACPA− RA. (B) Pseudotime progression of macrophage subtypes in
patients with ACPA− RA. (C) Pseudotime trajectory analysis of macrophage subtypes in patients with ACPA+ RA. (D) Pseudotime progression of
macrophage subtypes in patients with ACPA+ RA. (E) Heatmap of transcription factor activity in ACPA− (left panel) and ACPA+ (right panel) RA
macrophages. (F) GSVA analysis of macrophage subpopulations.
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underscore critical biological differences that may impact both

treatment response and disease progression in ACPA− RA.

Conversely, ACPA+ RA macrophages were enriched in 22

unique pathways, including key signaling pathways such as

Sphingolipid signaling pathway, JAK-STAT signaling pathway,

mTOR signaling pathway, and Adipocytokine signaling pathway

(Supplementary Table 1). These pathways are pivotal in immune

regulation and inflammation, with their enrichment in ACPA+ RA

macrophages pointing to distinct molecular mechanisms

underlying the more aggressive disease phenotype commonly

observed in patients with ACPA+ RA.
More extensive transcription factor
networks in ACPA-positive
RA macrophages

To further elucidate the gene regulatory mechanisms

underlying these differences, SCENIC analysis was conducted to

infer TF regulatory networks. This analysis identified 80 active TFs

regulating macrophage subtypes in ACPA− RA and 90 active TFs in

ACPA+ RA (Figure 3E). Notably, 43 TFs were shared between the

two groups, indicating common regulatory mechanisms in

macrophage activation across both ACPA+ and ACPA− RA

(Figure 3E). However, the number of genes regulated by these

shared TFs was greater in ACPA+ RA, suggesting a more extensive

and complex gene regulatory network in this group. This expanded

network in ACPA+ RA likely reflects a more robust and uniform

activation of regulatory pathways, consistent with the severe and

sustained inflammatory phenotype frequently observed in patients

with ACPA+ RA.
Gene modules associated with ACPA-
negative RA identified by hdWGCNA

To investigate the molecular mechanisms of macrophage

subtypes associated with ACPA-negative (ACPA−) RA, high-

dimensional weighted gene co-expression network analysis

(hdWGCNA) was employed. While traditional WGCNA and

other dynamic network analysis tools are effective for bulk RNA-

seq data, hdWGCNA provides distinct advantages for high-

dimensional single-cell RNA-seq, being optimized to address

unique challenges such as data sparsity, high noise levels, and the

need for granularity in capturing cell-type-specific networks. Unlike

standard WGCNA, hdWGCNA preserves cellular-level data

structure, making it well-suited to the complex heterogeneity

present in RA macrophage populations.

The hdWGCNA approach enabled the identification of

modules of highly co-expressed genes, offering biological insights

through enrichment analysis and integration with known pathways.

An optimal soft threshold of 7 was chosen to ensure a scale-free

network topology, facilitating robust co-expression analysis. Using

this threshold, a co-expression network was constructed, identifying

seven distinct gene co-expression modules, each representing a
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unique set of interconnected genes with potential regulatory roles in

macrophage function.

Correlation analysis between these modules and ACPA+/- RA

showed that the brown, red, and black modules were associated

with ACPA−, while the yellow, turquoise, and blue modules were

linked to ACPA+ (Figure 4A, Supplementary Table 2). The brown

module, in particular, exhibited high expression in macrophage

subtypes C1:C1QChigh(T), C5:CD163high(T), and C7:APOEhigh

(T) (Figure 4B). Enrichment analysis on the brown, red, and black

modules revealed that the brown module was enriched in critical

immune-related pathways, such as MHC class II-related pathways,

Rheumatoid arthritis, Complement and coagulation cascades,

Antigen processing and presentation, and Th1 and Th2 cell

differentiation (Figure 4C).

By intersecting the 426 genes in the brown module with

differentially expressed genes in PBMCs and macrophage

subtypes, 20 intersecting genes were identified (Figure 4D),

indicating their differential expression in both PBMCs and

macrophage subtypes. Given that anti-cyclic citrullinated peptide

(anti-CCP) antibodies serve as an important diagnostic marker for

RA but are absent in patients with ACPA− RA, complicating

diagnosis relative to ACPA+ RA, these 20 differentially expressed

genes were leveraged to construct a neural network model.
Neural network model distinguishes ACPA-
negative RA from healthy controls

Using PBMC expression data and cell-type annotations, a deep

neural network was constructed to distinguish patients with ACPA−

RA from healthy controls. The data was split into a 70% training set

and a 30% test set, with the model trained over 1000 epochs using

mini-batch gradient descent (Figure 4E). To ensure robustness and

prevent overfitting, the ROC curve was evaluated for both training and

test sets, achieving an AUC of 0.92 on the training set and 0.81 on the

test set. To further validate the robustness and generalizability, five-fold

cross-validation was applied, with the average AUC across folds

reaching 0.87 and individual AUCs ranging from 0.84 to 0.89. These

results indicate stable model performance, supporting the potential

clinical application of single-cell transcriptomics for RA

diagnostics (Figure 4F).
ACPA-positive RA exhibits stronger
macrophage-monocyte communication

Examining PBMC monocyte and macrophage subtype

interactions in RA is essential to understanding systemic immune

responses that contribute to local joint inflammation and tissue

damage. These interactions highlight mechanisms driving chronic

inflammation, reveal biomarkers for disease progression, and

identify therapeutic targets by isolating specific pathways involved

in monocyte-to-macrophage differentiation.

CellChat was utilized to analyze cell communication between

monocytes and macrophages in ACPA+ and ACPA− RA. ACPA+
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RA showed 2,199 inferred interactions, higher than the 1,789

interactions observed in ACPA− RA. Interaction strength was

also significantly higher in ACPA+ RA (0.467) compared to

ACPA− RA (0.196) (Figure 5A), suggesting that macrophage-

monocyte communication in ACPA+ RA is more intense,

potentially contributing to the aggressive inflammatory response

and severe clinical presentation typically seen in ACPA+ RA.

Regarding relative information flow, CD45 and CCL5 emerged as

primary pathways mediating macrophage-monocyte communication

in ACPA− RA (Figure 5B, Supplementary Tables 3, Supplementary

Table 4). The CD45 pathway was particularly critical for cross-organ

communication between classical monocytes and C1:C1QChigh(T)

macrophages (Figure 5C), indicating its role in macrophage activation

and recruitment to inflamed tissues in ACPA− RA. In contrast, fewer

interactions were observed between classical monocytes and C1:

C1QChigh(T) macrophages in ACPA+ RA, suggesting alternative

pathways may drive immune responses in ACPA+ RA.

To further explore, the Wilcoxon test was employed to compare

gene expression levels of CD45 pathwaymediators, specifically PTPRC

and MRC1, between the two groups. PTPRC expression was

significantly higher in C1(T) and C9:MIFhigh(H) macrophages in

ACPA+ RA (P < 0.001 and P < 0.05, respectively) (Figure 5D). This

elevated expression of PTPRC, a key component of the CD45 pathway,

suggests sustainedmacrophage activation in ACPA+ RA. Additionally,

MRC1 showed significantly higher expression in C1(T) macrophages

(P < 0.001) (Figure 5E), implying a role in modulating immune

responses through alternative pathways in this macrophage subtype.
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Iron-mediated cell communication is
prominent in ACPA-negative RA

Previous CellChat analysis suggested that macrophage-

monocyte communication in PBMCs might be mediated by the

CD45 pathway. Given the importance of cell metabolism in RA

pathogenesis—particularly in shaping immune cell functions and

inflammatory responses—the role of metabolite-mediated

interactions between macrophages and monocytes was

considered. Metabolic factors such as lipids and iron play

significant roles in RA by influencing cellular energy balance,

signaling, and differentiation, thereby driving inflammation and

disease progression.

To explore this further, MEBOCOST, a Python-based

computational tool for inferring metabolite-mediated cell-cell

communication from single-cell RNA sequencing data, was

employed. Analysis showed a higher number of metabolite-

mediated communication events in ACPA+ RA (Figure 6B)

compared to ACPA− RA (Figure 6A). However, focusing on the

communication flow from sender metabolite to sensor in the receiver,

key interactions were identified in ACPA− RA between monocytes

and C1(T) macrophages, as predicted by CellChat. Specifically, the

metabolic communication pathways included classical monocytes

(sender) – Iron (metabolite) – TFRC (sensor) – C1:C1QChigh(T)

macrophages (receiver) and classical monocytes (sender) – Iron

(metabolite) – SLC40A1 (sensor) – C1:C1QChigh(T) macrophages

(receiver). Additionally, non-classical monocytes displayed similar
FIGURE 4

(A) Correlation heatmap of seven gene co-expression modules identified by WGCNA in macrophage subtypes. (B) Dot plot showing gene expression
within the brown module across macrophage subtypes. (C) Enrichment analysis of genes in the brown module. (D) Venn diagram showing the
overlap of 426 genes from the brown module with differentially expressed genes in PBMCs and macrophage subtypes. (E) Training loss curve for the
deep neural network model distinguishing patients with ACPA− RA from healthy controls. (F) ROC curve displaying the neural network model’s
performance on the test set.
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iron-mediated communication pathways in ACPA− RA (Figure 6C,

Supplementary Tables 5, Supplementary Table 6).

In contrast, metabolite-mediated communication between

monocytes and macrophages was less prominent in ACPA+ RA

(Figure 6D), consistent with CellChat findings, indicating that

macrophage-monocyte communication may not be as central in

ACPA+ RA. This suggests that iron-mediated interactions may be

more critical in ACPA− RA, while alternative communication

mechanisms could be more relevant in ACPA+ RA.
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Visualizing the mean abundance of communication-mediating

metabolites revealed higher levels of iron and L-glutamine in ACPA

− RA, indicating their roles in macrophage-monocyte interactions

(Figure 6E). Conversely, cholesterol abundance was higher in

ACPA+ RA, pointing to a shift towards lipid-related metabolic

pathways in this group (Figure 6F). These results underscore

distinct metabolic profiles in ACPA− and ACPA+ RA, with iron

and glutamine as key mediators in ACPA− RA, while cholesterol

may be more influential in the immune response of ACPA+ RA.
FIGURE 5

(A) Bar chart depicting the number of inferred interactions and interaction strengths. (B) Relative information flow of key signaling pathways
mediating macrophage-monocyte communication. (C) CD45 signaling pathway network for ACPA− (left) and ACPA+ (right) RA. (D) Box plot of
PTPRC expression, a critical component of the CD45 signaling pathway. (E) Box plot of MRC1 expression, another essential component of the CD45
signaling pathway. (P-values are expressed as follows: * p ≤ 0.05, *** p ≤ 0.001, and NS indicates no significance.).
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Metabolic flux analysis reveals upregulated
pathways in ACPA-negative
RA macrophages

To further explore metabolic flux in macrophage subtypes

within ACPA− RA, scFEA—a graph neural network model

tailored for estimating cell metabolism using scRNA-seq data—

was employed. scFEA leverages a reconstructed human metabolic

map, utilizing a probabilistic model with flux balance constraints

and an optimization solver within a graph neural network to

capture the intricate relationships from transcriptomics to

metabolomics. This model reflects the non-linear dependencies

between enzyme gene expression and reaction rates, using gene

expression profiles of macrophage subtypes as input data.

Figure 7A shows model convergence through the loss function,

confirming its accuracy. Given the continuous and normally

distributed output data, the limma package was used to compare

ACPA− and ACPA+ RA samples, considering p < 0.05 as statistically

significant, with t > 0 indicating upregulation in ACPA− RA and t < 0

indicating downregulation. This analysis identified 11 metabolic

modules upregulated in ACPA− RA (Figures 7B, C), with each

module corresponding to in and out metabolites. Notably, the C9:

MIFhigh(H) macrophage subtype exhibited a substantial number of

upregulated metabolites. KEGG enrichment analysis of these

metabolites was performed using MetaboAnalyst. The input

metabolites were predominantly enriched in pathways such as beta-

alanine metabolism, Glutathione metabolism, Arginine and proline
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metabolism, D-amino acid metabolism, and Histidine metabolism

(Figure 7E). The output metabolites were enriched in pathways

including Butanoate metabolism, Alanine, aspartate and glutamate

metabolism, Glutathione metabolism, Glyoxylate and dicarboxylate

metabolism, Porphyrin metabolism, Arginine and proline metabolism,

Primary bile acid biosynthesis, Nitrogen metabolism, and Valine,

leucine and isoleucine biosynthesis (Figure 7D).

These results suggest that macrophage subtypes, particularly

C9:MIFhigh(H), may significantly contribute to RA pathogenesis by

promoting key metabolic processes, highlighting distinct metabolic

pathways active in ACPA− RA.
Discussion

This study offers a detailed analysis of the cellular and molecular

distinctions of ACPA− RA, particularly focusing on metabolic

alterations. scRNA-seq identified unique immune cell

composi t ions , metabol ic pathways , and interce l lular

communication patterns that set ACPA− RA apart from ACPA+

RA. Notably, a marked increase in monocytes, especially classical

monocytes, was observed in the PBMCs of patients with ACPA−

RA patients compared to patients with ACPA+ RA and healthy

controls. This elevation suggests a pivotal role for monocytes in the

systemic inflammation that characterizes ACPA− RA. Classical

monocytes, known for their potent pro-inflammatory cytokine

production and their capacity to differentiate into macrophages
FIGURE 6

(A) Number of metabolite-sensor communication events in ACPA− RA. (B) Number of metabolite-sensor communication events in ACPA+ RA (C)
Metabolite-mediated communication pathways in ACPA− RA. (D) Metabolite-mediated communication pathways in ACPA+ RA. (E) Violin plots
showing the mean abundance of metabolites in ACPA− RA. (F) Violin plots showing the mean abundance of metabolites in ACPA+ RA.
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and dendritic cells, likely contribute significantly to disease

pathology. While previous studies have reported elevated

monocyte levels in patients with RA (35), our findings emphasize

their increased presence specifically in ACPA− RA, indicating a

subtype-specific inflammatory mechanism. This suggests that

therapies aimed at monocyte recruitment or activation might be

particularly beneficial. Monocyte-targeted interventions, such as

inhibitors of monocyte chemoattractant proteins or their receptors,
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may hold promise for reducing systemic inflammation in ACPA−

RA. Additionally, therapies that modulate monocyte differentiation

into pro-inflammatory macrophages could help in slowing disease

progression in these patients.

In synovial tissue, macrophages from patients with ACPA− RA

demonstrated greater heterogeneity and more complex

developmental trajectories, forming four distinct branches in

pseudotime analysis compared to only two branches in ACPA+
FIGURE 7

(A) Convergence of the loss function during scFEA analysis. (B) T-values of metabolite modules across macrophage subtypes, visualized with color
codes: red for t-values > 0 (indicating upregulation in the ACPA− group) and blue for t-values < 0 (indicating downregulation in the ACPA− group or
upregulation in the ACPA+ group). (C) Summary table of the top in-and-out metabolites for significant metabolic modules in ACPA− RA. (D) KEGG
enrichment analysis of output metabolites from macrophage subtypes. (E) KEGG enrichment analysis of input metabolites from
macrophage subtypes.
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RA. This increased heterogeneity suggests varied activation and

differentiation processes, potentially leading to diverse disease

courses and therapeutic responses. Notably, macrophages in

ACPA− RA were enriched in distinct metabolic pathways,

including complement and coagulation cascades, antifolate

resistance, and glycosphingolipid biosynthesis. The complement

and coagulation cascades are central to immune responses and

inflammation. Within the RA context, the complement system

contributes to synovial inflammation by promoting opsonization,

chemotaxis, and membrane attack complex formation, which drives

tissue damage (36). The activation of the coagulation cascade leads

to thrombin generation and fibrin deposition in the synovium,

intensifying inflammation and encouraging pannus formation (37).

These processes establish a pro-inflammatory environment that

supports the infiltration and activation of immune cells, such as

macrophages and T cells, thereby sustaining joint destruction.

Targeting components of the complement and coagulation

pathways could thus be a promising therapeutic approach in

ACPA− RA, potentially reducing synovial inflammation and

preventing joint damage.

The enrichment of metabolic pathways in ACPA− RA

macrophages emphasizes the critical role of altered metabolism in

disease pathogenesis. The upregulation of complement and

coagulation cascades, for example, may intensify inflammatory

responses, as components of these pathways act as chemoattractants

and immune cell activators (38). Antifolate resistance presents

potential treatment challenges, given that methotrexate, a folate

antagonist, remains central to RA therapy (39). The identification of

glycosphingolipid biosynthesis pathways aligns with evidence that

lipid metabolism influences immune cell function and inflammation

(40), potentially impacting macrophage activation and cytokine

production in ACPA− RA. These insights suggest that therapies

targeting metabolic pathways, such as inhibitors of specific enzymes

in glycosphingolipid biosynthesis like glucosylceramide synthase, may

modulate macrophage function and reduce inflammation in ACPA−

RA. Addressing antifolate resistance with alternative disease-

modifying antirheumatic drugs (DMARDs) or combination

therapies could further enhance treatment efficacy. Some inhibitors,

like eliglustat, are already approved for Gaucher disease (41), though

their viability in RA requires further investigation. Elucidating

macrophage metabolic dependencies in ACPA− RA could guide the

development of selective therapies that target pathogenic immune cell

subsets while sparing normal immune function.

scFEA further identified 11 upregulated metabolic modules in

ACPA− RA macrophages, enriched in pathways like beta-alanine

and glutathione metabolism. Beta-alanine metabolism is linked to

carnosine synthesis, an antioxidant dipeptide that can modulate

inflammatory responses (42). Glutathione metabolism is essential

for redox balance and cellular protection against oxidative stress,

which is elevated in RA (43). The pronounced role of the C9:

MIFhigh(H) macrophage subtype in driving these metabolic

pathways suggests that specific macrophage populations

contribute to the metabolic reprogramming seen in ACPA− RA.

Targeting these metabolic pathways could provide novel

therapeutic approaches. Enhancing glutathione levels or
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modulating its metabolism might alleviate oxidative stress and

inflammation in the synovial environment. N-acetylcysteine, a

glutathione precursor, is already used clinically for other

indications and could be repurposed for RA treatment (44).

Similarly, interventions targeting beta-alanine metabolism and

carnosine synthesis could influence macrophage activation or

cytokine production (45). Identifying the C9:MIFhigh(H)

macrophage subtype as a driver of these metabolic alterations

highlights it as a potential therapeutic target. Agents that inhibit

MIF (macrophage migration inhibitory factor) or its downstream

signaling could reduce inflammation and tissue damage in patients

with ACPA− RA (46, 47).

Our cell-cell communication analysis revealed that

macrophage-monocyte interactions in ACPA− RA are primarily

mediated by CD45 and CCL5 signaling pathways. CD45, a receptor

tyrosine phosphatase encoded by PTPRC, is critical for T-cell and

B-cell receptor signaling and can modulate macrophage activation

(48). The involvement of CD45 and its ligands, such as MRC1,

suggests a shift in immune regulation in ACPA− RA. Additionally,

metabolite-mediated communication analysis highlighted

significant engagement of iron-mediated pathways. Elevated iron

and L-glutamine levels in patients with ACPA− RA point to a

pivotal role for iron metabolism in immune cell interactions. Iron

can drive macrophage polarization towards a pro-inflammatory

phenotype (49), while the increased abundance of L-glutamine, a

key amino acid for immune cell proliferation and function,

underscores the metabolic demands of activated immune cells in

ACPA− RA (50). Therapeutically, targeting the CD45 pathway may

offer a means to modulate macrophage activation and reduce

inflammation (48). CD45 inhibitors, already explored in other

inflammatory conditions, hold potential for repurposing in RA

(51). Modulating iron metabolism presents another promising

strategy; iron chelators or agents that regulate iron homeostasis

could influence macrophage polarization and attenuate pro-

inflammatory responses (52). Additionally, interventions that

restrict glutamine availability or inhibit glutamine metabolism

could limit immune cell proliferation and activation, providing

another therapeutic approach (50). Such strategies may be

especially beneficial for patients with ACPA− RA, who often

respond suboptimally to standard treatments.

These metabolic alterations may underlie the distinct clinical

features of ACPA− RA. Unlike ACPA+ RA, typically associated with

more severe joint damage and systemic manifestations, ACPA− RA

may follow a different trajectory due to these metabolic distinctions.

Our findings support previous research suggesting that metabolic

reprogramming of immune cells is a hallmark of autoimmune

diseases (53). Future studies should aim to validate these metabolic

pathways as biomarkers for disease progression and treatment

response in ACPA− RA. Longitudinal studies examining metabolic

profile changes pre- and post-therapy could further clarify their clinical

utility. Additionally, clinical trials evaluating agents that target these

metabolic pathways could assess their efficacy and safety in ACPA−

RA, paving the way for more personalized treatment strategies.

Weighted gene co-expression network analysis (WGCNA)

identified key gene modules associated with ACPA− RA,
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particularly the brown module, which is enriched in immune-

related pathways. Intersecting genes from this module with

differentially expressed genes in PBMCs and macrophage

subtypes pinpointed 20 genes differentially expressed in both

compartments. Notably, genes such as HLA-DRA, CD74, and

FCER1G, which are involved in antigen presentation and

immune activation, emerged as potential biomarkers or

therapeutic targets. Modulating HLA-DRA and CD74 could

influence antigen presentation to T cells, potentially mitigating

autoimmune responses (54). Small molecules or antibodies

targeting these proteins could be developed, though this would

require extensive research and development. A neural network

model utilizing these genes was constructed, effectively

distinguishing patients with ACPA− RA from healthy controls

with an area under the curve (AUC) of 0.81. This outcome

underscores the potential of integrating scRNA-seq data with

machine learning to enhance ACPA− RA diagnosis, especially

given the absence of specific serological markers in these patients.

Early and precise diagnosis is essential for initiating timely

treatment and improving patient outcomes. To advance these

results into clinical practice, further validation of the neural

network model is required. Prospective studies with larger,

independent cohorts are necessary to confirm its diagnostic

accuracy and reliability. Additionally, integrating this model into

clinical workflows would necessitate developing accessible assays or

platforms to measure the identified genes, potentially through

targeted PCR panels or immunoassays. Considerations around

regulatory approval and cost-effectiveness would also be essential.

Ultimately, this approach holds promise for enabling earlier

diagnosis and more personalized treatment strategies for patients

with ACPA− RA.
Limitation

While this study provides valuable insights, certain limitations

exist. The cross-sectional design precludes evaluation of temporal

changes in immune cell metabolism and function. Future studies

with larger, longitudinal cohorts are needed to validate these

findings and further investigate the therapeutic potential of

targeting metabolic pathways in ACPA− RA.
Conclusion

In conclusion, this study underscores the significant role of

altered metabolism in ACPA− RA pathogenesis. The identification

of distinct immune cell compositions, metabolic pathways, and

intercellular communication patterns enhances understanding of

the disease and suggests new avenues for therapeutics targeting

metabolic processes. By pinpointing specific metabolic pathways

and immune cell interactions unique to ACPA− RA, these findings

highlight potential biomarkers and therapeutic targets that could

support the development of more effective, personalized treatments.
Frontiers in Immunology 1522
Future research should focus on clinically validating these targets

and examining their impact on patient outcomes. Targeting the

metabolic reprogramming of immune cells, particularly

macrophages, may enable the creation of precise interventions

aimed at modulating inflammation and improving clinical

outcomes for patients with ACPA− RA.
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SUPPLEMENTARY FIGURE 1

(A) Top 3 markers of cell types from PBMC. (B) Expression of CD14 and CD16
in monocytes from PBMC. (C) Top 3 markers of cell types from STMCs. (D)
Top 3 markers of cell types in macrophage subpopulations from STMCs.

SUPPLEMENTARY FIGURE 2

(A) Enrichment analysis of DEGs upregulated in ACPA+ macrophage

subpopulations. (B) Enrichment analysis of DEGs upregulated in ACPA−
macrophage subpopulations.

SUPPLEMENTARY TABLE 1

Pathways enriched by pseudotime-related gene intersections.

SUPPLEMENTARY TABLE 2

Genes from WGCNA modules in macrophage populations.

SUPPLEMENTARY TABLE 3

Cell-cell communications between STMC macrophages and PBMC
monocytes in patients with ACPA− RA.

SUPPLEMENTARY TABLE 4

Cell-cell communications between STMC macrophages and PBMC
monocytes in patients with ACPA+ RA.

SUPPLEMENTARY TABLE 5

Metabolite-mediated cell-cel l communications between STMC

macrophages and PBMC monocytes in patients with ACPA− RA.

SUPPLEMENTARY TABLE 6

Metabolite-mediated cell-cel l communications between STMC
macrophages and PBMC monocytes in patients with ACPA+ RA.
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The article provides an overview of the current understanding of the interplay

between metabolic pathways and immune function in the context of triple-

negative breast cancer (TNBC). It highlights recent advancements in single-cell

and spatial transcriptomics technologies, which have revolutionized the analysis

of tumor heterogeneity and the immune microenvironment in TNBC. The review

emphasizes the crucial role of metabolic reprogramming in modulating immune

cell function, discussing how specific metabolic pathways, such as glycolysis,

lipid metabolism, and amino acid metabolism, can directly impact the activity and

phenotypes of various immune cell populations within the TNBC tumor

microenvironment. Furthermore, the article explores the implications of these

metabolic-immune interactions for the efficacy of immune checkpoint inhibitor

(ICI) therapies in TNBC, suggesting that strategies targeting metabolic pathways

may enhance the responsiveness to ICI treatments. Finally, the review outlines

future directions and the potential for combination therapies that integrate

metabolic modulation with immunotherapeutic approaches, offering promising

avenues for improving clinical outcomes for TNBC patients.
KEYWORDS

triple-negative breast cancer, metabolic reprogramming, immune cell function,
immune checkpoint inhibitors, combination therapies, tumor microenvironment
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Introduction

Triple-negative breast cancer (TNBC) treatment has historically

relied on chemotherapy due to the absence of targeted therapies,

limiting effective options. Recent advancements in immunotherapy,

particularly immune checkpoint inhibitors (ICIs) like PD-L1 inhibitors,

have shown potential, as evidenced by trials such as IMpassion130 (1,

2). However, the modest efficacy of ICIs, benefiting only a subset of

patients, highlights the challenges TNBC’s heterogeneity poses.

Identifying predictive biomarkers and exploring combination

strategies, including metabolic interventions, are critical to improving

therapeutic outcomes and addressing TNBC’s metabolic pathways (3).

Although TNBC is generally considered a “cold” tumor with limited

immune cell infiltration, emerging evidence suggests it has antigenic

properties conducive to immunotherapy (4). TNBC generally shows

low levels of tumor-infiltrating lymphocytes (TILs); the presence of

specific immune cell types can correlate with better patient outcomes.

Specific immune markers, such as granzyme B+ CD8+ T cells (5),

sometimes correlate with improved prognosis. Additionally, plasma

cells and other immune subsets have been linked to survival benefits

(6), challenging the traditional view of TNBC as uniformly

immunologically inactive. Understanding this heterogeneity is crucial

for tailoring immunotherapies to re-engage the immune system

effectively (7).

ICIs, which block proteins like PD-1 that suppress immune responses,

have emerged as promising therapies for TNBC. Cytotoxic T lymphocytes

(CTLs) play a pivotal role in anti-tumor immunity, while regulatory T cells

(Tregs) can hinder these responses. PD-1+ CTLs and other tumor-

infiltrating lymphocytes (TILs) significantly impact ICI efficacy. A

nuanced understanding of the interactions between immune cell

populations within TNBC is vital for optimizing immunotherapeutic

strategies. Advancements in single-cell RNA sequencing (scRNA-seq)

and spatial transcriptomics have revolutionized TNBC research (8).

These technologies provide unprecedented insights into tumor

heterogeneity and immune microenvironments by analyzing gene

expression at single-cell resolution and mapping spatial interactions (9–

11). Studies reveal diverse immune cell subsets and spatial relationships,

offering new biomarkers and therapeutic targets (12). Integrating these

technologies enables researchers to uncover immune evasion mechanisms

and develop tailored immunotherapeutic strategies.

Applying these advanced techniques has deepened the

understanding of TNBC’s tumor microenvironment and immune

interactions. Researchers can better predict therapeutic responses

and personalize treatment (13) by identifying cellular diversity and

spatial organization. These insights hold significant potential for

identifying novel targets, improving clinical outcomes, and

advancing precision medicine in TNBC.

Metabolic influences on immune cells
in the tumor microenvironment

Link between metabolic pathways and
immune function

The metabolic landscape within the tumor microenvironment

(TME) significantly impacts the behavior and functionality of
Frontiers in Endocrinology 0226
immune cells. Tumors often exhibit altered metabolic pathways,

producing specific metabolites that can modulate immune responses

(14, 15). For instance, it has been observed that the accumulation of

lactate, a byproduct of glycolysis, can create an immunosuppressive

environment by inhibiting the function of cytotoxic T cells and

promoting regulatory T cells (16). Furthermore, tumor-derived

metabolites such as adenosine can disrupt T cell activation and

promote immune evasion mechanisms (17). This dynamic interplay

creates a feedback loop in which tumor cells’ metabolic state affects

their proliferation and survival and influences the immune landscape,

leading to an environment conducive to tumor progression (18).

Recent studies have elucidated how specific metabolic pathways

in tumor cells can directly alter the immune response. For example,

it was found that activating IDO pathway in tumors results in

tryptophan catabolism, leading to T cell dysfunction and promoting

an immune-suppressive environment (19). Moreover, the Warburg

effect, characterized by increased aerobic glycolysis in tumor cells,

has created an environment that favors the recruitment of

immunosuppressive cell types while inhibiting effector T cell

functions (20). Understanding these metabolic interactions is

crucial for developing strategies to reprogram the TME to

reinvigorate anti-tumor immunity (21).

Importance of metabolic pathways in
modulating immune response

Metabolic reprogramming is emerging as a critical factor influencing

immune cell functionality and their therapeutic responses. Immune cells

adapt their metabolism to fulfill their bioenergetic and biosynthetic needs

during activation. For instance, T cells require metabolic reprogramming

towards glycolysis to sustain their proliferation and effector functions.

However, a skewed metabolic environment can lead to dysfunction (16).

Furthermore, studies have shown that targeting metabolic pathways

enhances the immune response against TNBC. By inhibiting metabolic

checkpoints like mTOR and AMPK, it is possible to improve T cell

activation and restore anti-tumor immunity (5).

In the context of TNBC, therapeutic strategies focusing on

metabolic reprogramming show promise in enhancing the efficacy of

existing treatments. Combining metabolic inhibitors with

immunotherapy has been proposed as a novel approach to improve

the anti-tumor immune response. For instance, recent research

highlights the potential of using metabolic modulators to enhance

the effectiveness of immune checkpoint inhibitors, which could lead to

better clinical outcomes for TNBC patients (19). Overall,

understanding the intricate relationship between metabolic pathways

and immune function presents an opportunity to develop innovative

strategies to augment the effectiveness of therapies to TNBC.

Metabolic pathways and their effects
on immune cells in TNBC

Overview of key metabolic pathways

Metabolic pathways are critical determinants of immune cell

function and can significantly influence the efficacy of anti-tumor
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responses in TNBC. Key metabolic processes, including glycolysis,

lipid metabolism, and amino acid metabolism, orchestrate the

activities of various immune cells (Figure 1). Glycolysis, for

instance, is vital for T cell activation and proliferation. Increased

glycolytic activity in T cells correlates with enhanced effector

functions, allowing them to respond effectively to tumor cells

(22). In contrast, fatty acid oxidation is crucial for the developing

and maintaining memory T cells, ensuring long-lasting immune

protection against recurrent tumors (23).

Amino acid metabolism also plays a pivotal role in immune

responses. The availability of specific amino acids, such as

glutamine, influences T cell metabolism and function. Tumor

cells often deplete local amino acids, leading to T cell dysfunction

and impaired anti-tumor activity (24). Understanding these

metabolic pathways provides insights into how metabolic

reprogramming in immune cells can enhance their functionality

and effectiveness against TNBC.
Effects on different immune cells

Regulatory T cells
Lactate accumulation enhances the immunosuppressive

function of Treg cells by activating FOXP3 gene expression (25).

Lactate also induces Treg cell proliferation, allowing them to

dominate within the tumor microenvironment, further

diminishing the activity of CD8+ T cells, NK cells, and thereby

supporting immune evasion by the tumor. Adenosine, catalyzed by

ADA2 (Adenosine Deaminase 2), activates the A2A receptor on

Treg cells, enhancing their immunosuppressive functions (26).

Elevated adenosine levels strengthen Treg cell function and reduce

effector T cell activation, fostering an immunosuppressive

environment. Treg cell metabolism relies on specific lipid metabolic

pathways, with these metabolites promoting Treg immunosuppressive

abilities through particular lipid transport proteins, such as FABP5

(27). Lipid accumulation in Treg cells facilitates their proliferation and

survival, further diminishing the activity of effector T cells within the

tumor microenvironment (28).

Macrophages
The metabolic profiles of macrophages are critical in dictating

their pro-tumor or anti-tumor functions. In TNBC, metabolic

reprogramming within macrophages can lead to polarization

towards a tumor-promoting M2 phenotype characterized by

immunosuppressive properties (29). Conversely, promoting

metabolic shifts towards an M1-like state can enhance their anti-

tumor capabilities. Understanding these metabolic dynamics

could lead to novel strategies for reprogramming macrophages

to adopt anti-tumor phenotypes, potentially improving

therapeutic outcomes in TNBC. Lactate induces macrophage

polarization towards an immunosuppressive M2 phenotype,

giving rise to tumor-associated macrophages (TAMs) (30, 31).

These M2-polarized macrophages secrete elevated levels of

immunosuppressive factors, such as IL-10 and TGF-b, which
inhibit the antitumor responses of T cells and NK cells (32).
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PRMT5, by modulating iron metabolism, restricts the pro-

inflammatory activity of M1 macrophages, thereby allowing the

immunosuppressive properties of the M2 phenotype to

predominate (33). Reducing in iron ions further promotes M2

polarization by inhibiting the NRF2/HMOX1 pathway. CAFs

upregulate lipid metabolism, driving macrophages toward a lipid-

associated macrophage (LAM) phenotype (34), forming

immunosuppressive macrophages. These macrophages enhance

immunosuppressive effects through lipid signaling molecules,

reducing the functional infiltration of effector immune cells

within the tumor.

CD8+ T cells
Within the tumor microenvironment, the accumulation of

high concentrations of lactate results in functional impairment

of CD8+ T cells by lowering the local pH. TNFR2 enhances

immunosuppressive capacity in endothelial cells by inhibiting the

glycolytic pathway, resulting in decreased CD8+ T cell activity.

Blocking TNFR2, however, can restore antitumor immunity (30,

35). Lactate interferes with the mTOR signaling pathway, inhibiting

T cell proliferation and diminishing the secretion of key effector

cytokines, such as IFN-g, further compromising antitumor

immunity (31). Through the Warburg effect, TNBC cells

preferentially consume glucose, leading to glucose deprivation in

the surrounding environment, which hampers CD8+ T cells’ ability

to maintain the glucose levels required for efficient glycolysis. This

glucose deficiency directly reduces the activity of CD8+ T cells and,

by limiting energy supply through the PI3K/AKT/mTOR pathway

(36), decreases their proliferation and cytotoxicity. In the TNBC

microenvironment, high glutamine uptake exhausts the glutamine

needed by immune cells, adversely affecting particularly the

antioxidant-dependent CD8+ T cells (37). Glutamine scarcity

restricts glutathione synthesis in T cells, reducing their tolerance

to oxidative stress and weakening their antioxidative and antitumor

functions within the tumor.

Natural killer cells
Lactate significantly diminishes the cytotoxicity of NK cells,

reducing their tumor-killing capacity. The accumulation of lactate

also compromises NK cell survival and proliferation by acidifying

the environment, further weakening their immune clearance

functions (38). In lung cancer, lactate has been found to

upregulate PD-L1 expression on tumor cell surfaces via the

Warburg effect (39), suggesting a close link between metabolic

reprogramming of tumor cells and immune evasion mechanisms.

This pathway promotes NK cell exhaustion, enhancing the tumor’s

ability to evade immune detection (40, 41).

Dendritic cells
Dendritic cells are pivotal in antigen presentation and the

initiation of T cell responses. Tumor-derived metabolites can

profoundly influence DC function, affecting their ability to

activate T cells effectively. Exosomes secreted by TNBC cells, rich

in pro-inflammatory molecules, activate the cGAS/STING

pathway in dendritic cells (42, 43), thereby enhancing the
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initiation of antitumor immune responses. The release of these

exosomes bolsters DC activity, facilitating downstream T cell

activation and strengthening immune responses within the tumor

microenvironment. However, metabolic reprogramming in TNBC

suppresses the glycolytic pathway in dendritic cells (44), impairing

their maturation and activation capabilities and consequently

weakening their efficacy in T cell activation. This metabolic

inhibition directly impacts the antigen-presenting capacity of

DCs, resulting in reduced infiltration and activity of T cells

within the tumor. Researchers can explore therapeutic strategies

to enhance DC-mediated T cell activation by understanding how

tumor metabolism affects DC function. Targeting metabolic
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pathways in DCs may help restore their function and improve the

overall anti-tumor immune response (45, 46).

B cells
Lipid metabolism significantly impacts B cell function,

particularly in antibody production and memory formation.

Research indicates that B cells rely on fatty acid metabolism for

optimal antibody responses (47). In TNBC, modulating lipid

metabolic pathways could enhance the effectiveness of therapeutic

vaccines by promoting robust B cell activation and differentiation.

For example, interventions that enhance lipid uptake and utilization

by B cells might increase their ability to produce high-affinity
FIGURE 1

Mechanisms of Metabolite-Mediated Immunosuppression in the TNBC. (A) Tregs: Lactic acid boosts FOXP3 expression in Tregs, enhancing their
proliferation and dominance in the TME, which inhibits CD8+ T cells and NK cells, promoting tumor immune evasion. Adenosine, produced via ADA2
on Tregs, further reinforces Treg predominance, contributing to the immunosuppressive TME. Lipid metabolites, transported by proteins like FABP5,
also support Treg proliferation and function. (B) Macrophages: Lactic acid drives macrophage polarization to the immunosuppressive M2 phenotype,
forming TAMs that secrete IL-10 and TGF-b, suppressing antitumor responses. PRMT5 regulates iron metabolism, inhibiting pro-inflammatory M1
macrophages and favoring M2 polarization. CAF-induced lipid metabolism upregulation further promotes M2 macrophage transformation. (C) CD8+

T cells: High lactic acid in the TNBC microenvironment lowers local pH and disrupts the PI3K/AKT/mTOR pathway, impairing CD8+ T cell
proliferation and cytokine secretion (e.g., IFN-g), weakening antitumor immunity. Glucose consumption via the Warburg effect depletes glucose
needed for glycolysis in CD8+ T cells, exacerbating this inhibition. Additionally, high Gln uptake by TNBC cells reduces GSH synthesis in CD8+ T
cells, impairing oxidative stress tolerance and antitumor function. (D) NK cells: Lactic acid increases PD-L1 expression on tumor cells, binding PD-1
on NK cells and inhibiting their cytotoxicity, leading to NK cell exhaustion and tumor immune escape. (E) DCs: TNBC cells release exosomes that
activate dendritic cells via the cGAS/STING pathway, enhancing T cell activation and immune responses. (F) B cells: Lipid metabolism significantly
impacts B cell function, particularly in the context of antibody production and memory formation. However, metabolic reprogramming, such as the
Warburg effect, reduces glycolysis in DCs, impairing their maturation and antigen presentation, thus weakening T cell activation and effector immune
cell infiltration in the tumor. TNBC, Triple-Negative Breast Cancer; Treg, Regulatory T Cell; FOXP3, Forkhead Box P3; TME, Tumor
Microenvironment; NK cell, Natural Killer Cell; ADA2, Adenosine Deaminase 2; FABP5, Fatty Acid-Binding Protein 5; TAM, Tumor-Associated
Macrophage; IL-10, Interleukin 10; TGF-b, Transforming Growth Factor Beta; PRMT5, Protein Arginine Methyltransferase 5; CAF, Cancer-Associated
Fibroblast; LAM, Lipid-Associated Macrophage; PI3K, Phosphoinositide 3-Kinase; AKT, Protein Kinase B (often referred to as AKT); mTOR, Mechanistic
Target of Rapamycin; IFN-g, Interferon Gamma; Gln, glutamine; GSH, Glutathione; PD-L1, Programmed Death-Ligand 1; PD-1, Programmed Death-
1; DC, Dendritic Cell; cGAS, Cyclic GMP-AMP Synthase; STING, Stimulator of Interferon Genes. This figure was created using the Figdraw online
drawing tool.
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antibodies against tumor antigens (48). This approach could

represent a novel strategy to improve vaccine efficacy in

TNBC patients.
Future directions and clinical implications

The interaction between metabolic pathways and immune

responses offers promising avenues for combination therapies in

TNBC. Studies suggest that metabolic reprogramming can

significantly enhance immune cell efficacy against tumors.

Combining ICIs with metabolic pathway-targeting agents could

boost anti-tumor immunity by reinvigorating T cells or enhancing

TIL populations. These strategies may overcome the limitations of

ICIs alone and lead to more personalized treatments based on

individual metabolic profiles. Advanced techniques like single-cell

functional enzymatic assays (scFEA) and metabolic profiling tools

(e.g., Mebocost, scMetabolism) enable more insights into immune

cell metabolism in TNBC. These tools allow single-cell analysis of

metabolic activity, helping researchers understand how immune

cells metabolize nutrients within the tumor environment. By

mapping the metabolic landscape, researchers can identify critical

metabolic checkpoints as therapeutic targets, which could lead to

optimized immune function therapies. The goal of immune

metabolism research in TNBC is to translate findings into clinical

practice. Targeting specific metabolic pathways, such as glycolysis,

could lead to personalized therapies that improve survival and

quality of life for TNBC patients. Collaboration between

researchers and clinicians is essential, with clinical trials for

combination therapies already underway, signaling a shift towards

personalized medicine in TNBC and improved treatment outcomes.
Conclusion

Metabolic products, such as lactate and adenosine, are pivotal in

establishing an immunosuppressive tumor microenvironment by

modulating immune cell functions. Lactate has been shown to

promote the proliferation of Tregs while impairing the functionality

of cytotoxic CD8+ T cells, and adenosine disrupts T cell activation via

the A2A receptor. Recent research further highlights the impact of

glutamine depletion on T cell oxidative stress tolerance, demonstrating

the intricate connection between metabolic reprogramming and

immune responses in TNBC. These findings underscore the potential

of combining ICIs with metabolic modulators targeting pathways such

as glycolysis and fatty acid oxidation. Preclinical models indicate that

such combination therapies can effectively reinvigorate exhausted T

cells and enhance antitumor immunity, paving the way for improved

therapeutic strategies.
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25. Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3
reprograms T cell metabolism to function in low-glucose, high-lactate environments.
Cell Metab. (2017) 25:1282–1293.e7. doi: 10.1016/j.cmet.2016.12.018

26. Leone RD, Sun IM, Oh MH, Sun IH, Wen J, Englert J, et al. Inhibition of the
adenosine A2a receptor modulates expression of T cell coinhibitory receptors and
improves effector function for enhanced checkpoint blockade and ACT in murine
cancer models. Cancer Immunol Immunother. (2018) 67:1271–84. doi: 10.1007/s00262-
018-2186-0

27. Field CS, Baixauli F, Kyle RL, Puleston DJ, Cameron AM, Sanin DE, et al.
Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for
treg suppressive function. Cell Metab. (2020) 31:422–437.e5. doi: 10.1016/
j.cmet.2019.11.021

28. Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D, et al. Fatty acid
metabolism complements glycolysis in the selective regulatory T cell expansion during
tumor growth. Proc Natl Acad Sci. (2018) 115:E6546–55. doi: 10.1073/pnas.1720113115

29. Murray PJ, Wynn TA. Protective and pathological functions of macrophage
subsets. Nat Rev Immunol. (2021) 21:421–36. doi: 10.1038/s41577-021-00551-4

30. Deng X, Zhu Y, Dai Z, Liu Q, Song Z, Liu T, et al. A bimetallic nanomodulator to
reverse immunosuppression via sonodynamic-ferroptosis and lactate metabolism
modulation. Small. (2024) 20:2404580. doi: 10.1002/smll.202404580

31. Naik A, Decock J. Lactate metabolism and immune modulation in breast cancer:
A focused review on triple negative breast tumors. Front Oncol. (2020) 10:598626.
doi: 10.3389/fonc.2020.598626

32. Santoni M, Romagnoli E, Saladino T, Foghini L, Guarino S, Capponi M, et al.
Triple negative breast cancer: Key role of Tumor-Associated Macrophages in regulating
the activity of anti-PD-1/PD-L1 agents. Biochim Biophys Acta (BBA) Rev Cancer.
(2018) 1869:78–84. doi: 10.1016/j.bbcan.2017.10.007

33. Wang Z, Li R, Hou N, Zhang J, Wang T, Fan P, et al. PRMT5 reduces
immunotherapy efficacy in triple-negative breast cancer by methylating KEAP1 and
inhibiting ferroptosis. J Immunother Cancer. (2023) 11:e006890. doi: 10.1136/jitc-2023-
006890

34. Timperi E, Gueguen P, Molgora M, Magagna I, Kieffer Y, Lopez-Lastra S, et al.
Lipid-associated macrophages are induced by cancer-associated fibroblasts and
mediate immune suppression in breast cancer. Cancer Res. (2022) 82:3291–306.
doi: 10.1158/0008-5472.CAN-22-1427

35. Wiggs A, Molina S, Sumner SJ, Rushing BR. A review of metabolic targets of
anticancer nutrients and nutraceuticals in pre-clinical models of triple-negative breast
cancer. Nutrients. (2022) 14:1990. doi: 10.3390/nu14101990

36. Huang M, Yu X, Wang Q, Jiang Z, Li X, Chen W, et al. The immune checkpoint
TIGIT/CD155 promotes the exhaustion of CD8 + T cells in TNBC through glucose
metabolic reprogramming mediated by PI3K/AKT/mTOR signaling. Cell Commun
Signal. (2024) 22:35. doi: 10.1186/s12964-023-01455-z

37. Huang R, Wang H, Hong J, Wu J, Huang O, He J, et al. Targeting glutamine
metabolic reprogramming of SLC7A5 enhances the efficacy of anti-PD-1 in triple-negative
breast cancer. Front Immunol. (2023) 14:1251643. doi: 10.3389/fimmu.2023.1251643

38. Long Y, Gao Z, Hu X, Xiang F, Wu Z, Zhang J, et al. Downregulation of MCT4
for lactate exchange promotes the cytotoxicity of NK cells in breast carcinoma. Cancer
Med. (2018) 7:4690–700. doi: 10.1002/cam4.1713

39. Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, et al. Tumor cell-derived
lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in
human lung cancer cells. Oncogene . (2017) 36:5829–39. doi: 10.1038/
onc.2017.188
frontiersin.org

https://doi.org/10.1007/s40259-020-00436-9
https://doi.org/10.1007/s12609-019-00345-z
https://doi.org/10.1007/s12609-019-00345-z
https://doi.org/10.3390/cancers15010321
https://doi.org/10.3390/cancers15010321
https://doi.org/10.1158/1055-9965.EPI-19-0469
https://doi.org/10.1158/1055-9965.EPI-19-0469
https://doi.org/10.1172/JCI96313
https://doi.org/10.1371/journal.pone.0229955
https://doi.org/10.1007/s10549-020-05874-1
https://doi.org/10.1038/s41467-021-26271-2
https://doi.org/10.1038/s41467-021-26271-2
https://doi.org/10.1158/0008-5472.CAN-22-2682
https://doi.org/10.1158/0008-5472.CAN-22-2682
https://doi.org/10.1002/mco2.754
https://doi.org/10.3389/fcell.2024.1396836
https://doi.org/10.3389/fcell.2024.1396836
https://doi.org/10.1038/s41598-022-07685-4
https://doi.org/10.1186/s13058-019-1242-9
https://doi.org/10.3389/fimmu.2022.839362
https://doi.org/10.1111/imm.13456
https://doi.org/10.3390/cancers13133357
https://doi.org/10.1158/1078-0432.CCR-18-3524
https://doi.org/10.1158/1078-0432.CCR-18-3524
https://doi.org/10.32604/or.2023.029697
https://doi.org/10.3389/fonc.2020.00428
https://doi.org/10.3389/fonc.2020.00428
https://doi.org/10.1088/1748-605X/aca85d
https://doi.org/10.3389/fimmu.2022.836939
https://doi.org/10.3389/fimmu.2022.836939
https://doi.org/10.1016/j.cmet.2016.12.018
https://doi.org/10.1007/s00262-018-2186-0
https://doi.org/10.1007/s00262-018-2186-0
https://doi.org/10.1016/j.cmet.2019.11.021
https://doi.org/10.1016/j.cmet.2019.11.021
https://doi.org/10.1073/pnas.1720113115
https://doi.org/10.1038/s41577-021-00551-4
https://doi.org/10.1002/smll.202404580
https://doi.org/10.3389/fonc.2020.598626
https://doi.org/10.1016/j.bbcan.2017.10.007
https://doi.org/10.1136/jitc-2023-006890
https://doi.org/10.1136/jitc-2023-006890
https://doi.org/10.1158/0008-5472.CAN-22-1427
https://doi.org/10.3390/nu14101990
https://doi.org/10.1186/s12964-023-01455-z
https://doi.org/10.3389/fimmu.2023.1251643
https://doi.org/10.1002/cam4.1713
https://doi.org/10.1038/onc.2017.188
https://doi.org/10.1038/onc.2017.188
https://doi.org/10.3389/fendo.2024.1528248
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2024.1528248
40. Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino
TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1
blockade. J Clin Invest. (2018) 128:4654–68. doi: 10.1172/JCI99317

41. Liu Y, Cheng Y, Xu Y, Wang Z, Du X, Li C, et al. Increased expression of
programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor
function and indicates poor prognosis in digestive cancers. Oncogene. (2017) 36:6143–
53. doi: 10.1038/onc.2017.209

42. Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ, Zou J, et al. DNA-
containing exosomes derived from cancer cells treated with topotecan activate a
STING-dependent pathway and reinforce antitumor immunity. J Immunol. (2017)
198:1649–59. doi: 10.4049/jimmunol.1601694

43. Zhang H, Tang K, Zhang Y, Ma R, Ma J, Li Y, et al. Cell-free Tumor
Microparticle Vaccines Stimulate Dendritic Cells via cGAS/STING Signaling. Cancer
Immunol Res. (2015) 3:196–205. doi: 10.1158/2326-6066.CIR-14-0177
Frontiers in Endocrinology 0731
44. Kelly B, O’Neill LA. Metabolic reprogramming in macrophages and dendritic
cells in innate immunity. Cell Res. (2015) 25:771–84. doi: 10.1038/cr.2015.68

45. Jneid B, Bochnakian A, Hoffmann C, Delisle F, Djacoto E, Sirven P, et al.
Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci
Immunol. (2023) 8:eabn6612. doi: 10.1126/sciimmunol.abn6612

46. Lv M, Chen M, Zhang R, Zhang W, Wang C, Zhang Y, et al. Manganese
is critical for antitumor immune responses via cGAS-STING and improves the efficacy
of clinical immunotherapy. Cell Res. (2020) 30:966–79. doi: 10.1038/s41422-020-
00395-4

47. Li M, Quintana A, Alberts E, Hung MS, Boulat V, Ripoll MM, et al. B cells in
breast cancer pathology. Cancers. (2023) 15:15173.

48. Gu J, Wang M, Zhang H, Xu X. Enhancing antibody responses through
modulation of lipid metabolism in B cells. Cancer Immunol Res. (2023) 11:1011–23.
doi: 10.1158/2326-6066.CIR-22-0545
frontiersin.org

https://doi.org/10.1172/JCI99317
https://doi.org/10.1038/onc.2017.209
https://doi.org/10.4049/jimmunol.1601694
https://doi.org/10.1158/2326-6066.CIR-14-0177
https://doi.org/10.1038/cr.2015.68
https://doi.org/10.1126/sciimmunol.abn6612
https://doi.org/10.1038/s41422-020-00395-4
https://doi.org/10.1038/s41422-020-00395-4
https://doi.org/10.1158/2326-6066.CIR-22-0545
https://doi.org/10.3389/fendo.2024.1528248
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yejun Tan,
University of Minnesota Health Twin Cities,
United States

REVIEWED BY

Qi Fu,
Nanjing Medical University, China
Huang Chuiguo,
The Chinese University of Hong Kong, China

*CORRESPONDENCE

Junkun Zhan

zhanjunkun@csu.edu.cn

RECEIVED 02 December 2024
ACCEPTED 23 December 2024

PUBLISHED 14 January 2025

CITATION

Li H, Zou L, Long Z and Zhan J (2025)
Immunometabolic alterations in type 2
diabetes mellitus revealed by single-cell
RNA sequencing: insights into subtypes
and therapeutic targets.
Front. Immunol. 15:1537909.
doi: 10.3389/fimmu.2024.1537909

COPYRIGHT

© 2025 Li, Zou, Long and Zhan. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 14 January 2025

DOI 10.3389/fimmu.2024.1537909
Immunometabolic alterations in
type 2 diabetes mellitus revealed
by single-cell RNA sequencing:
insights into subtypes and
therapeutic targets
Huahua Li1, Lingling Zou1, Zhaowei Long2 and Junkun Zhan3,4*

1Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan
Normal University, Changsha, China, 2Department of Geriatric, The Third Affiliated Hospital of
Kunming Medical University, Kunming, China, 3Department of Geriatrics, The Second Xiangya
Hospital, Central South University, Changsha, China, 4Institute of Aging and Age-related Disease
Research, Central South University, Changsha, China
Background: Type 2 Diabetes Mellitus (T2DM) represents a major global health

challenge, marked by chronic hyperglycemia, insulin resistance, and immune

system dysfunction. Immune cells, including T cells andmonocytes, play a pivotal

role in driving systemic inflammation in T2DM; however, the underlying single-

cell mechanisms remain inadequately defined.

Methods: Single-cell RNA sequencing of peripheral blood mononuclear cells

(PBMCs) from 37 patients with T2DM and 11 healthy controls (HC) was

conducted. Immune cell types were identified through clustering analysis,

followed by differential expression and pathway analysis. Metabolic

heterogeneity within T cell subpopulations was evaluated using Gene Set

Variation Analysis (GSVA). Machine learning models were constructed to

classify T2DM subtypes based on metabolic signatures, and T-cell-monocyte

interactions were explored to assess immune crosstalk. Transcription factor (TF)

activity was analyzed, and drug enrichment analysis was performed to identify

potential therapeutic targets.

Results: In patients with T2DM, a marked increase in monocytes and a decrease

in CD4+ T cells were observed, indicating immune dysregulation. Significant

metabolic diversity within T cell subpopulations led to the classification of

patients with T2DM into three distinct subtypes (A-C), with HC grouped as D.

Enhanced intercellular communication, particularly through the MHC-I pathway,

was evident in T2DM subtypes. Machine learning models effectively classified

T2DM subtypes based onmetabolic signatures, achieving an AUC > 0.84. Analysis

of TF activity identified pivotal regulators, including NF-kB, STAT3, and FOXO1,

associated with immune and metabolic disturbances in T2DM. Drug enrichment

analysis highlighted potential therapeutic agents targeting these TFs and related

pathways, including Suloctidil, Chlorpropamide, and other compounds

modulating inflammatory and metabolic pathways.
frontiersin.org0132

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1537909/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1537909/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1537909/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1537909/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1537909/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1537909&domain=pdf&date_stamp=2025-01-14
mailto:zhanjunkun@csu.edu.cn
https://doi.org/10.3389/fimmu.2024.1537909
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1537909
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2024.1537909

Frontiers in Immunology
Conclusion: This study underscores significant immunometabolic dysfunction in

T2DM, characterized by alterations in immune cell composition, metabolic

pathways, and intercellular communication. The identification of critical TFs

and the development of drug enrichment profiles highlight the potential for

personalized therapeutic strategies, emphasizing the need for integrated

immunological and metabolic approaches in T2DM management.
KEYWORDS

type 2 diabetes mellitus (T2DM), single-cell RNA sequencing, immunometabolism, T
cells, machine learning models
Introduction

Type 2 Diabetes Mellitus (T2DM) represents a growing global

health crisis, with prevalence rates increasing rapidly. The

International Diabetes Federation estimates that 537 million adults

were living with diabetes in 2021, a number projected to rise to 643

million by 2030 and 783 million by 2045 (1). T2DM accounts for 90-

95% of all diabetes cases and is a leading contributor tomorbidity and

mortality, with associated complications such as cardiovascular

disease, neuropathy, nephropathy, and retinopathy (2) The rising

incidence of T2DM is driven by a combination of genetic

predisposition and lifestyle factors, including obesity, sedentary

behavior, and poor dietary habits (3).

Beyond its metabolic consequences, T2DM is increasingly

recognized for its significant immunological components,

characterized by chronic low-grade inflammation and immune

dysregulation (4). Peripheral blood mononuclear cells (PBMCs),

including T cells and monocytes, play pivotal roles in the

inflammatory processes of T2DM (5). Alterations in immune cell

populations have been documented in patients with T2DM, with

changes observed in the proportions and functions of various

immune cell subsets (6).

T cells and monocytes are particularly implicated in T2DM

pathogenesis through their contribution to systemic inflammation

and insulin resistance (7). Chronic activation of these immune cells

results in the secretion of pro-inflammatory cytokines, which

disrupt insulin signaling pathways (8). However, the precise

mechanisms by which these immune cells contribute to T2DM,

particularly at the single-cell level, remain poorly understood.

Recent advancements in single-cell RNA sequencing (scRNA-seq)

have enabled high-resolution analysis of cellular heterogeneity,

facilitating the characterization of individual cell types and states

within complex tissues (9). This technology offers a unique

opportunity to explore the immunological landscapes of PBMCs in

T2DM at an unprecedented level of detail. By analyzing gene

expression profiles at the single-cell level, it is possible to identify

specific cellular subpopulations and uncover new insights into the

disease mechanisms.
0233
Metabolic reprogramming of immune cells is a critical aspect of

their activation and function (10). In the context of T2DM, metabolic

disturbances can influence immune cell behavior, contributing to

disease progression (10). Metabolic reprogramming in T cells and

monocytes plays a pivotal role in the pathogenesis of T2DM (11).

Immune cells, like T cells and monocytes, undergo metabolic shifts in

T2DM, which affect their activation and function, thereby

exacerbating chronic inflammation and insulin resistance (11).

These metabolic alterations can promote the secretion of pro-

inflammatory cytokines, further driving disease progression (12).

Understanding how metabolic reprogramming influences immune

cell behavior could identify novel therapeutic targets for T2DM.

Furthermore, cell-cell communication, mediated by signaling

pathways and cytokines, is essential for orchestrating immune

responses (13). Dysregulation of these communication networks

can intensify inflammation and insulin resistance in T2DM (14).

Investigating intercellular signaling dynamics may reveal potential

therapeutic targets for modulating immune responses.

In this study, publicly available scRNA-seq data were used

to analyze PBMCs from patients with T2DM and healthy

controls (HC). This study aimed to characterize the immune cell

composition, metabolic heterogeneity, and cell-cell communication

networks at the single-cell level. Additionally, advanced machine

learning models were employed to classify T2DM subtypes

based on metabolic signatures. The findings offer comprehensive

insights into the immunometabolic alterations in T2DM,

providing a foundation for the development of personalized

therapeutic strategies.
Methods

Data collection

The sequencing data used in this study are publicly available

from the Gene Expression Omnibus (GEO) database. scRNA-seq

data for PBMCs from 11 HC individuals (GSE244515) (15) and 37

patients diagnosed with T2DM (GSE268210) (16) were utilized.
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Single-cell RNA sequencing alignment and
quality control

All single-cell read counts were analyzed using the Seurat package

(v5.0.1) in R (v4.3.1), converting each dataset into individual Seurat

objects. Data filtering was performed based on unique molecular

identifiers (UMIs) and the number of detected genes (17).

Specifically, cells with between 500 and 3,500 detected genes, and

those expressed in at least five cells, were retained. Cells exhibiting

mitochondrial gene expression greater than 5% were excluded to

ensure data quality. Following filtering, data normalization was

carried out using Seurat’s NormalizeData function, and highly

variable genes were identified using the FindVariableFeatures function.
Integration of scRNA-seq data from
multiple datasets

To integrate scRNA-seq data from multiple datasets, the

Harmony package was employed, focusing on highly variable

genes. This integration enabled subsequent dimensionality

reduction and clustering analyses, correcting for batch effects and

other technical variations across datasets.
Dimensionality reduction and major cell
type annotation

For the PBMC dataset, clustering resolution was set to 0.5. Principal

component analysis (PCA) was used for dimensionality reduction,

followed by Uniform Manifold Approximation and Projection

(UMAP) for visualization. Clusters were identified and annotated

based on known cell type markers, as shown in Figures 1B, 1E, and 1H
Differential gene expression and
pathway analysis

Differential gene expression analysis was conducted using the

FindMarkers function of the Seurat package, employing the

Wilcoxon rank-sum test. Genes were considered differentially

expressed if detected in at least 25% of cells (min.pct = 0.25) and

had an adjusted p-value below 0.05 after Bonferroni correction.

Significant differentially expressed genes (DEGs) were subjected to

Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses using the

clusterProfiler package (v3.12.0) (18). Drug enrichment analysis

was performed using the Drug-Gene Interaction Database (DGIdb)

as the reference, selecting enriched drugs with an adjusted p-value

threshold of P < 0.05 after multiple testing correction.
Gene set variation analysis

Gene Set Variation Analysis (GSVA) was employed to assess

pathway activity across single cells using 42 KEGG pathways as
Frontiers in Immunology 0334
predefined gene sets. The GSVA method was implemented with the

GSVA package in R, specifying appropriate gene set indices and

kernel-based distribution functions (kcdf). To optimize

computational efficiency, parallel processing was utilized, with

parameter adjustments based on available processor cores. This

approach allowed for scalable analysis, reduced processing time,

and preserved result integrity. GSVA provided pathway activity

scores for each cell, enabling the exploration of pathway

heterogeneity and functional states within the single-cell populations.
Calculation of transcription factor activity

To assess transcription factor (TF) activity, the DoRothEA

package was used to retrieve human regulon data, selecting

regulons with confidence levels A, B, and C (19). TF activity scores

were calculated using the VIPER method, with normalization

performed via the “scale” method and a minimum regulon size of

4. These scores were stored in the “dorothea” assay of the Seurat

object. Dimensionality reduction was conducted using PCA, followed

by clustering with the top 10 principal components, and UMAP was

applied for cluster visualization. Differential TF activity between

clusters was evaluated using Seurat’s FindAllMarkers function, with

significant TFs identified based on log fold change and expression

percentage. The VIPER activity scores were summarized by cell type,

and the three most variable TFs across cell types were identified.

These TFs were visualized in a heatmap, with color intensities

reflecting TF activity.
Unsupervised clustering
(consensus clustering)

To classify patients with T2DM based on T cell metabolic

patterns, consensus clustering was applied, a robust and

reproducible method that aggregates multiple clustering results to

enhance stability and reliability using the ConsensusClusterPlus

package. Initially, the mean GSVA scores for the 42 pathways were

calculated for each sample. Consensus clustering mitigates inherent

variability in individual clustering runs by repeatedly subsampling

the data and aggregating clustering results, ensuring the

identification of consistent and biologically meaningful clusters.

The optimal number of clusters (k) was determined by

calculating the incremental area, which measures changes in the

cumulative distribution function (CDF) curve area between

consecutive k values. The incremental area quantifies

improvements in cluster stability as the number of clusters

increases. A significant drop in the incremental area suggests that

additional clusters contribute minimally to cluster stability, aiding

in the selection of the optimal k. Consensus clustering was

performed across a range of k values (from k = 2 to k = 9), and

incremental area plots were generated to visualize changes in the

CDF curve areas. Using the “elbow method,” where the k value at

which the incremental area plateaus is selected (indicating

diminishing returns from adding more clusters), we identified k =

4 as the optimal number. From k = 4 onward, the reduction in
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incremental area was significantly less, indicating that k = 4 struck

a balance between minimizing the metric and maintaining

manageable cluster numbers. Clustering at k = 4 was

subsequently visualized using heatmaps and PCA plots.
Cell communication and
signaling pathways

Cell communication analysis was performed using the CellChat

package in R with default parameters (20). The pathwaysmediating cell

communication between three T cell subtypes and monocytes were

analyzed independently, utilizing the human CellChatDB as a
Frontiers in Immunology 0435
reference. The rankNet function was modified to output scaled

contribution values for each pathway within each subtype.

Differences in the strength of cell communication pathways between

the T cell subtypes and monocytes were compared and visualized with

bar charts generated by ggplot2. Additionally, specific signaling

patterns for each pathway within each subtype were illustrated using

the netVisual_bubble function.
Machine learning algorithms

An integrated machine learning model incorporating multiple

algorithms was developed to enhance predictive accuracy.
FIGURE 1

Overview of Immune Cell Profiling in T2DM and Healthy Control (HC) Groups: (A) Single-cell RNA sequencing and clustering analysis identified
seven major immune cell types in PBMCs from both T2DM and HC groups. (B) The top three marker genes for each of the seven major immune cell
types in PBMCs. (C) Violin plots comparing the proportions of these seven immune cell types in PBMCs across T2DM and HC groups. (D)
Dimensional reduction analysis of T cell clusters, revealing eight distinct T cell subtypes. (E) The top three marker genes for each of the eight T cell
subtypes. (F) Violin plots comparing the proportions of the eight T cell subtypes in PBMCs. (G) Monocyte subpopulation analysis identified three
distinct subtypes: classical, intermediate, and non-classical monocytes. (H) Expression of marker genes (CD14 and FCG3RA) used for classifying
monocyte subpopulations. (I) Violin plots comparing the proportions of the three monocyte subtypes. p-values are indicated as follows: *p ≤ 0.05,
**p ≤ 0.01, and ***p ≤ 0.001.
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A comprehensive dataset of 196,623 T cells was divided into a training

set (70%) and a test set (30%). A total of 75 different combinations of

machine learning models were evaluated. Independent predictive

models included Support Vector Machines (SVM) and Ridge

regression. Boosting methods such as glmBoost, Elastic Net (Enet)

with varying alpha values, and Gradient Boosting Machines (GBM)

were sequentially applied to correct errors from previous models.

Stepwise regression (Stepglm), utilizing forward, backward, or both

selection criteria, was combined with models like Ridge, Enet, and

Lasso to optimize predictive performance. Additional models,

including XGBoost, Linear Discriminant Analysis (LDA), Random

Forest (RF), and Naive Bayes, were integrated to leverage the unique

strengths of each algorithm in different scenarios.

For multiclass classification adjustments, both one-vs-rest

(OvR) and multinomial classification approaches were employed.

The OvR strategy decomposes the multiclass problem into multiple

binary classifiers, each distinguishing one class from all others. This

method was applied to SVM and Logistic Regression algorithms to

establish binary decision boundaries within a multiclass framework.

Multinomial classification methods, such as GBM and RF, handle

all classes simultaneously within a single model, allowing for direct

modeling of class probabilities. These algorithms natively support

multinomial classification, enabling the simultaneous prediction of

multiple classes without decomposing them into separate binary

tasks. The choice of methods was guided by the algorithm’s native

support for multiclass classification and empirical performance

during model tuning.

At the patient level, individuals were classified based on the

distribution of cell subtypes within their samples. If the majority

of a patient’s cells were assigned to a specific subtype, the patient

was classified into that subtype. This strategy enabled the

extension of single-cell classification to predict subtypes at the

patient level.

Models were configured to identify the one with the highest

average concordance index (C-index) across all validation

datasets. The accuracy of the resulting risk scores was validated

by calculating the area under the curve (AUC) using the

“timeROC” package.
Statistical analysis

All statistical analyses were performed using R software (v4.3.1),

and visualizations were generated through R Studio. The selection

of statistical tests was determined by the data distribution and

characteristics. For normally distributed data, Student’s t-test was

used to compare means between two groups. For non-normally

distributed data, the Wilcoxon rank-sum test was applied for two-

group comparisons, and the Kruskal-Wallis test was utilized for

comparisons across multiple groups. P-values > 0.05 were

considered not statistically significant and were marked as “ns.”

P-values ≤ 0.05 were considered statistically significant, with the

following indications: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and ****

p ≤ 0.0001.
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Results

Significant increase in monocytes and
decrease in CD4+ T cells in patients
with T2DM

Single-cell sequencing data of PBMCs from 11 HC (GSE244515)

and 37 patients with T2DM (GSE268210) were obtained from the

GEO database. Cluster analysis revealed seven major immune cell

types, annotated by specific marker genes: CD4+ T cells (CD3D, IL7R),

CD8+ T cells (CD3D, CD8B), NK cells (KLRF1), B cells (MS4A1),

monocytes (CD14, FCG3RA), dendritic cells (ITGAX, CD1C), and

plasma cells (SDC1, MZB1) (Figure 1A). Cell types were annotated

using established marker genes, a method validated in prior studies

(Figure 1B). Rigorous marker selection and clustering methods were

applied to ensure accurate and consistent categorization of cell types

within the datasets. Proportions of immune cell types between T2DM

and HC groups were compared using the Wilcoxon test. The analysis

revealed a significant increase inmonocyte proportions (p < 0.01) and a

decrease in CD4+ T cells (p < 0.01) in the T2DM group compared to

the HC group, while no significant differences were observed in CD8+

T cells, B cells, dendritic cells, or plasma cells (Figure 1C).
Altered proportions of T cell subtypes in
patients with T2DM

Dimensional reduction and cluster analysis of T cells based on

gene expression profiles identified eight distinct subtypes: Central

Memory CD8+ T cells (IL7R, CD27, SELL), Cytotoxic CD8+ T cells

(CD8A, GZMH, NKG7), Gamma Delta T cells (TRDC, TRDV2),

Memory CD4+ T cells (IL7R, CD27), Memory CD8+ T cells (IL7R,

CD27), Naive CD4+ T cells (LEF1, SELL, CCR7), Naive CD8+ T

cells (CD8A, LEF1, CCR7), and Regulatory CD4+ T cells (FOXP3)

(Figure 1D, E). SELL expression was utilized to distinguish between

Central Memory and Memory CD8+ T cells. Differences in T cell

subtype proportions between T2DM and HC groups were assessed

using the Wilcoxon test. Significant increases in the proportions of

Cytotoxic CD8+ T cells (p < 0.01) and Naive CD8+ T cells (p <

0.05) were observed in the T2DM group, alongside a significant

reduction in Regulatory CD4+ T cells (p < 0.05). No significant

differences were found in Central Memory CD8+ T cells, Gamma

Delta T cells, Memory CD4+ T cells, Memory CD8+ T cells, or

Naive CD4+ T cells (Figure 1F).
Changes in monocyte subpopulations in
patients with T2DM

The interaction between monocytes and T cells plays a critical role

in the inflammatory mechanisms driving T2DM progression (21).

Monocytes modulate T cell responses and are central to the immune

dysregulation observed in T2DM (22). Further analysis of monocytes

revealed three subgroups: classical monocytes, non-classical
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monocytes, and intermediate monocytes (Figure 1G). Classical

monocytes were defined by CD14 expression, non-classical by CD16,

and intermediate by both CD14 and CD16 (Figure 1H). TheWilcoxon

test revealed a significant increase in intermediate monocytes (p < 0.01)

and a decrease in classical monocytes (p < 0.05) in the T2DM group

compared to the HC group (Figure 1I).
Metabolic heterogeneity in T cell
subpopulations in T2DM

To investigate the metabolic heterogeneity within T cell

subpopulations in T2DM, each cell within these subpopulations

was scored for 42 metabolic-related pathways from the KEGG

database using GSVA. Unsupervised consensus clustering, based

on the mean pathway values for each sample, was performed. The

optimal number of clusters (k = 4) was determined using the delta

area value and the “elbow method,” partitioning the samples into

four groups (Figure 2A). The clustering heatmap clearly
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distinguished the samples into four groups, with T2DM samples

assigned to groups A-C and HC samples grouped in D (Figure 2B).

This segregation was further validated by the PCA plot, which

highlighted a distinct separation between group D (HC) and groups

A-C (Figure 2D). Specifically, group A included 12 patients, group B

included 14 patients, group C included 12 patients, and group D

contained 11 HC.

Group A exhibited elevated expression across various metabolic

pathways, including sulfur, ether lipid, and sphingolipid

metabolism; nicotinate and nicotinamide metabolism; xenobiotic

and drug metabolism by cytochrome P450; tryptophan, porphyrin,

and chlorophyll metabolism; glycine, serine, and threonine

metabolism; linoleic and alpha-linolenic acid metabolism; taurine

and hypotaurine metabolism; histidine metabolism; ascorbate and

aldarate metabolism; retinol metabolism; arachidonic acid

metabolism; and starch and sucrose metabolism, among others

(Figure 2C). This broad metabolic profile, encompassing lipid,

amino acid, and complex carbohydrate pathways, suggests an

adaptive metabolic response in T cells within Group A.
FIGURE 2

Metabolic Heterogeneity in T Cell Subpopulations and Immunological Differences in T2DM: (A) Delta area plot showing k values from 2 to 9 used for
selecting the optimal k in consensus clustering. (B) Consensus clustering heatmap of metabolic pathway scores, dividing samples into four distinct
groups. Groups A-C consist of T2DM samples, while Group D represents healthy control (HC) samples. (C) Clustering heatmap displaying the expression
levels of 42 metabolic-related pathways in T cell subpopulations across the four groups, emphasizing differences in metabolic activity. (D) PCA plot
demonstrating clear separation between the HC group (D) and T2DM groups (A-C). (E) Violin plots showing the proportions of eight T cell subtypes
across the four groups, with significant differences observed between groups. (F) Violin plots illustrating the proportions of three monocyte subtypes
across the four groups, highlighting further immune profile differences. p-values are indicated as follows: *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001.
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Group B was distinguished by high expression in pathways such

as pyruvate, glutathione, glyoxylate and dicarboxylate, purine,

pyrimidine, cysteine and methionine, nitrogen, inositol

phosphate, galactose, glycerolipid, glycerophospholipid, fructose

and mannose, and amino sugar and nucleotide sugar metabolism

(Figure 2C). This unique metabolic signature suggests a specific

adaptation in Group B, likely reflecting a distinct functional or

activation state compared to other groups.

Group C shared a metabolic profile with Group B, marked by

high expression in nitrogen, inositol phosphate, galactose,

glycerolipid, glycerophospholipid, fructose and mannose, and

amino sugar and nucleotide sugar metabolism (Figure 2C).

However, the metabolic reprogramming in Group C appeared

more targeted or restricted, suggesting a more specific metabolic

shift in the T cells.

Group D, representing the HC group, displayed strong

expression in pyruvate, glutathione, glyoxylate and dicarboxylate,

purine, pyrimidine, cysteine and methionine, propanoate,

butanoate, fatty acid, and beta-alanine metabolism (Figure 2C).

This metabolic profile aligns with basic cellular metabolism and

energy homeostasis, contrasting with the altered metabolic states

observed in the T2DM groups.
Immunological differences between T2DM
subtypes and HC group

The Kruskal-Wallis test was performed to examine immunological

differences in T cell andmonocyte subtypes across the groups, revealing

significant alterations indicative of substantial immune modulation in

T2DM. Notably, Groups A and HC displayed increased proportions of

Central Memory CD8+ T Cells, essential for long-term immune

memory, suggesting potential immune adaptation or ongoing

immune responses. A significant reduction in Cytotoxic CD8+ T

Cells was observed in Groups A and C compared to the HC group,

indicating an impaired cytotoxic response critical for targeting infected

or dysfunctional cells (Figure 2E).

Additionally, a decrease in Memory and Naive CD8+ T Cells in

Group C suggests a compromised adaptive immune response,

essential for effective long-term immunity. The reduction in

Regulatory CD4+ T Cells, especially in Group C, suggests

diminished regulatory function, potentially contributing to

unchecked immune responses and inflammation characteristic of

chronic conditions like T2DM (Figure 2E).

Moreover, a significant reduction in classical monocytes in

Group B (P < 0.05) was observed, while proportions of

intermediate monocytes were significantly increased in Groups A

and B (P < 0.05) compared to the HC group (Figure 2F).

These findings underscore the intricate interplay between

metabolic and immune shifts in T2DM, illustrating how

metabolic disturbances may impact immune function and

potentially exacerbate the disease. The distinct metabolic profiles

observed in T2DM subgroups suggest that targeted metabolic or

immunomodulatory therapies could be tailored to address specific

dysregulations in these patients.
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The communication between T-cells and
monocytes in type 2 diabetes

The communication between T-cells and monocytes in T2DM

plays a critical role, profoundly influencing immune regulation,

inflammation, and autoimmunity, all pivotal in the disease’s

progression and management. Understanding these interactions

offers insights into how immune dysregulation contributes to

chronic inflammation and insulin resistance in T2DM.

CellChat was employed to analyze communication differences

between T-cells and monocytes across three T2DM subtypes and an

HC group (Supplementary Tables 1–4). Regarding the number of

inferred interactions, Subtypes A, B, C, and HC had 1418, 1841,

1537, and 1531 interactions, respectively (Figure 3B). Interaction

strength values were 0.995 for Subtype A, 1.133 for Subtype B, 0.93

for Subtype C, and 0.793 for HC (Figure 3C). These results highlight

variability in communication intensity and complexity across

diabetic subtypes compared to HC (Figure 3A), indicating

stronger cellular interactions in patients with T2DM, suggesting

an enhanced immune response in diabetic conditions.
Intensive pathway mediation in subtype B

In Subtype B of T2DM, multiple pathways actively mediate

communication between immune cells. The CD30 pathway

facilitates interactions from Naive CD4+ T Cells and Regulatory

CD4+ T Cells to Non-Classical Monocytes, which serve as receptors

(Figure 3D). This pathway is pivotal as it involves T cells that are

essential for maintaining immune tolerance and preventing

autoimmune responses while interacting with monocytes that

play a central role in inflammation. Activation of this pathway in

Subtype B suggests a specific immune regulatory mechanism that

could significantly impact the inflammatory environment

characteristic of T2DM.

Similarly, the CD48 pathway orchestrates communication between

three monocyte subtypes and various T-cell subtypes to Central

Memory CD8+ T Cells, also functioning as receptors, and extends

this interaction to include Non-Classical Monocytes (Figure 3F). This

pathway underscores a robust exchange of signals, enhancing immune

memory and responsiveness, which is essential for managing recurrent

or chronic antigen exposure in T2DM.

Additionally, the Transforming Growth Factor Beta (TGF-b)
pathway mediates interactions from multiple T-cell and monocyte

subtypes to Central Memory CD8+ T Cells (Figure 3E). TGF-b, a key
cytokine in regulating immune responses, cell growth, and

inflammation, suggests a dual role in promoting immune

homeostasis and potentially contributing to immune tolerance

in T2DM.

The Interferon Type II (IFN-II) pathway is prominently active in

Subtypes B and C, facilitating signals from Cytotoxic CD8+ T Cells to

Classical and Non-Classical Monocytes, and from Central Memory

CD8+ T Cells to Intermediate Monocytes (Figure 3G). The

engagement of this pathway highlights an active antiviral and

antitumor response, which may be dysregulated in T2DM,
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contributing to altered immune cell activation and cytokine production

and influencing disease progression.

The extensive involvement of these pathways in Subtype B

reveals a complex and distinct immune modulation pattern that

may significantly influence the clinical manifestations and

progression of T2DM. The differential activation of these

pathways underscores the intricate interplay between immune

cells in diabetes, providing a foundation for the development of

targeted therapeutic strategies.
TNF and CCL pathway involvement

The Tumor Necrosis Factor (TNF) pathway was particularly

active in Subtype B, mediating communication from Intermediate

Monocytes to other monocyte and T-cell subtypes (acting as

receptors), and from Non-Classical Monocytes to various

monocyte and T-cell subtypes (acting as receptors) (Figure 3H).

In contrast, in Subtype C, the TNF pathway exclusively mediated

communication from Non-Classical Monocytes to other monocyte
Frontiers in Immunology 0839
and T-cell subtypes (as receptors), suggesting its involvement in

promoting inflammatory processes that may exacerbate diabetes

complications (Figure 3I).

The CCL pathway in Subtype B specifically mediated

interactions with Regulatory CD4+ T Cells as receptors and

Gamma Delta T Cells, Cytotoxic CD8+ T Cells, Central Memory

CD8+ T Cells, and Memory CD8+ T Cells as ligands (Figure 3J). In

the HC group, the CCL pathway significantly mediated

communication with Classical Monocytes and Intermediate

Monocytes as receptors (Figure 3K). The differential involvement

of this pathway highlights its potential role in modulating immune

responses differently in diabetic patients versus healthy individuals.
MHC-I pathway dominance

The Major Histocompatibility Complex Class I (MHC-I)

pathway contributed extensively across all three subtypes,

mediating nearly all communication between T-cell and

monocyte subtypes (Figure 3A). Subtype A exhibited the highest
FIGURE 3

Communication Between T Cells and Monocytes in Type 2 Diabetes Mellitus (T2DM): (A) Comparison of pathway activity across T2DM subtypes and
healthy controls (HC). (B) Number of inferred interactions by cluster. (C) Interaction strength by cluster. (D) Network diagram illustrating key
pathway-mediated interactions between T cell and monocyte subtypes for the CD30 pathway. (E) Network diagram illustrating key pathway-
mediated interactions between T cell and monocyte subtypes for the TGF-b pathway. (F) Network diagram illustrating key pathway-mediated
interactions between T cell and monocyte subtypes for the CD48 pathway. (G) Network diagram illustrating key pathway-mediated interactions
between T cell and monocyte subtypes for the IFN-g pathway. (H) Network diagram illustrating TNF pathway interactions in T2DM subtype B. (I)
Network diagram illustrating TNF pathway interactions in T2DM subtype C. (J) Network diagram illustrating CCL pathway interactions in T2DM
subtype B. (K) Network diagram illustrating CCL pathway interactions in HC.
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activity, followed by HC, with Subtype C showing the least. This

underscores the pivotal role of antigen presentation in T2DM,

which could influence autoimmune responses and overall

immune function in these patients.
VISFATIN pathway specificity

The VISFATIN pathway, uniquely present in Subtypes C and

HC, was involved exclusively in mediating communication among

T-cell subtypes, without interactions between T-cells and

monocytes. This selective engagement suggests a distinct

metabolic or inflammatory state inherent to these subtypes and

indicates that VISFATIN may play a role in unique disease

progression pathways or therapeutic resistance mechanisms in

T2DM. The focused activity of VISFATIN offers insights into

subtype-specific immune functions, potentially guiding more

personalized treatment approaches.
Additional pathways mediated T-cell and
monocyte communication

Further analysis revealed additional pathways—GRN,

SELPLG, ANNEXIN, THBS, ADGRE5, PARs, ITGB2, MHC-II,

MIF, CD40, CLEC, CD86, SEMA4, IL16, PECAM1, LCK, BAG,

ICAM, GALECTIN, CD99, APP, and RESISTIN—that mediate

communication across various T-cell and monocyte subtypes

(Figure 3A). These pathways are involved in a range of

regulatory and signaling processes, such as adhesion, immune

response modulation, and inflammation. Their involvement

across multiple subtypes highlights the complexity and dynamic

nature of cellular communication in T2DM, emphasizing the

potential for targeted therapeutic interventions based on these

specific molecular interactions.
Analysis of transcription factor activity
across diabetes subtypes

We also analyzed TF activity across the three T2DM subtypes,

identifying 126 active TFs. Key examples include IRF1, GATA6,

SPI1, EPAS1, NFKB2, and STAT5B, which are involved in immune

response, cell differentiation, and metabolic regulation, all of which

are critical in diabetes pathogenesis. A heatmap was generated to

visualize the top three TFs for each cell type across the subtypes

(Figures 4A–C).
Subtype A: activation of transcription
factors in immune cells

In Subtype A, TFs were notably active in Central Memory CD8+

T Cells, Memory CD8+ T Cells, Cytotoxic CD8+ T Cells, and

Gamma Delta T Cells, indicating an enhanced immune response

(Figure 4A). Of particular interest, HNF4A was uniquely active in
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Naive CD4+ T Cells and Naive CD8+ T Cells, suggesting a role in

early immune cell activation. EPAS1, a key factor involved in oxygen

sensing and cellular stress responses, was active in Memory CD8+ T

Cells, Cytotoxic CD8+ T Cells, and Gamma Delta T Cells,

highlighting its involvement in regulating immune cell function

during inflammatory or stress-induced conditions (Figure 4A).
Subtype B: immune modulation
and inflammation

In Subtype B, similar TF activity was observed in Central

Memory CD8+ T Cells, Memory CD8+ T Cells, Cytotoxic CD8+

T Cells, and Gamma Delta T Cells, with additional unique findings

(Figure 4B). NFKB1, known for its role in immune modulation and

inflammation, was specifically active in Regulatory CD4+ T Cells,

suggesting its contribution to immune tolerance and the prevention

of autoimmunity in this subtype. Additionally, SMAD4, a central

player in the TGF-b signaling pathway, was active across several T

cell types, indicating its role in immune response regulation and

tissue remodeling in Subtype B (Figure 4B).
Subtype C: strong immune activation
and differentiation

In Subtype C, TFs such as SPI1, STAT4, SMAD1, BCL11A,

IKZF1, LYL1, REST, and TBX21 were highly active in Central

Memory CD8+ T Cells, suggesting robust immune activation and

differentiation (Figure 4C). BCL11A, active in Central Memory

CD8+ T Cells, Cytotoxic CD8+ T Cells, and Gamma Delta T Cells,

plays a critical role in these cell types. Moreover, BHLHE22, active

in Naive CD4+ T Cells and Naive CD8+ T Cells, may regulate early-

stage immune responses (Figure 4C). KLF6, active in Central

Memory CD8+ T Cells and Memory CD4+ T Cells, likely

governs immune cell differentiation and survival. Lastly, TBX21,

essential for T cell differentiation and function, was active in Central

Memory CD8+ T Cells, underscoring its role in shaping long-term

immune responses in this subtype (Figure 4C).
Differential gene expression in subtype A

For Subtype A, further analysis revealed 436 DEGs, highlighting

significant involvement in pathways related to microRNA (miRNA)

transcription and immune system regulation (Figure 4D). The

enrichment of miRNA-related pathways, such as positive

regulation of miRNA transcription, regulation of miRNA

transcription, and miRNA transcription itself, suggests that

miRNAs play a critical role in controlling gene expression that

modulates T-cell function and overall immune responses

(Figure 4D). This subtype also exhibited significant enrichment in

immune-related pathways, including the MAPK signaling pathway,

TNF signaling pathway, and Th1/Th2 cell differentiation

(Figure 4D). These pathways are pivotal in mediating immune

responses and likely contribute to the inflammatory state observed
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in diabetes and its associated complications in Subtype A. The

presence of these pathways highlights the intricate interplay

between genetic regulation and immune responses, offering

potential insights for developing targeted therapeutic strategies for

this subtype.
Differential gene expression in subtype B

Subtype B, distinguished by 845 DEGs, is characterized by a broad

range of enriched pathways primarily related to protein metabolism

and modification (Figure 4E). Pathways such as the regulation of

protein catabolic processes, proteasomal protein catabolism, and

histone modification highlight an increased focus on protein

turnover and post-translational modifications, both critical for

cellular function and signaling. Immune-related pathways, including

the MAPK signaling pathway, AGE-RAGE signaling in diabetic
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complications, and Th17 cell differentiation, are also prominently

represented (Figure 4E). The AGE-RAGE pathway is particularly

notable for linking metabolic dysregulation to inflammatory

responses, a hallmark of diabetes-related complications (Figure 4E).

Furthermore, the Th17 differentiation pathway suggests the

involvement of a specific T-cell subset known for its role in

inflammation and autoimmunity, potentially contributing to the

pathophysiological complexity observed in Subtype B (Figure 4E).
Differential gene expression in subtype C

In Subtype C, the 122 DEGs are significantly enriched in pathways

related to metabolic processes, with a particular focus on oxidative

phosphorylation, a key energy production mechanism in cells

(Figure 4F). The inclusion of pathways such as chemical

carcinogenesis—reactive oxygen species and diabetic cardiomyopathy
FIGURE 4

Transcription Factor Activation and Pathway Enrichment Analysis in T2DM Subtypes with Machine Learning Classification: (A) Heatmap showing
logFC of the top three transcription factors in each cell type of Subtype A. (B) Heatmap showing logFC of the top three transcription factors in each
cell type of Subtype B. (C) Heatmap showing logFC of the top three transcription factors in each cell type of Subtype C. (D) Pathway enrichment
analysis of 436 differentially expressed genes in Subtype A. (E) Pathway enrichment analysis of 845 differentially expressed genes in Subtype B. (F)
Pathway enrichment analysis of 122 differentially expressed genes in Subtype C. (G) Performance of various machine learning models for classifying
T2DM subtypes based on T-cell metabolic characteristics.
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points to an increased susceptibility to oxidative stress and its

associated cardiac complications, common challenges in diabetes

management (Figure 4F). The prominence of oxidative

phosphorylation suggests altered metabolic function that may

exacerbate energy deficits in diabetic cells, potentially driving cellular

dysfunction and cardiomyopathy progression (Figure 4F). The

emphasis on metabolic and oxidative stress pathways in this subtype

underscores the importance of metabolic control and highlights

potential therapeutic targets for addressing these specific challenges.
Advanced machine learning models for
subtype classification

This study further developed machine learning models to

differentiate T2DM subtypes based on the metabolic

characteristics of T-cells, derived from the GSVA results of

KEGG metabolic pathways for each individual cell. A total of 75

model combinations were evaluated, with particular emphasis on

high-performing models such as glmBoost+GBM, glmBoost

+Stepglm (both combinations), Stepglm+GBM, and Stepglm

(backward)+Enet [alpha = 0.7] (Figure 4G).

GlmBoost, or Generalized Linear Model Boosting, enhances

prediction accuracy by combining multiple weak models, typically

linear, into a stronger predictive ensemble. Stepglm, or Stepwise

Generalized Linear Model, refines model accuracy by iteratively

adding or removing predictors based on their statistical significance,

optimizing the model for maximum performance (Figure 4G). These

models demonstrated robust predictive power, achieving AUC values

between 0.894 and 0.925 in the training set (Figure 4G). Notably, this

high performance extended to the validation set, where all selected

models achieved AUC values exceeding 0.8, with an average AUC of

over 0.84 across both sets (Figure 4G). The strong accuracy of these

models underscores the utility of advanced computational techniques

in improving our understanding and management of T2DM, enabling

precise subtype classification based on the metabolic profiles of T-cells.
Drug enrichment analyses for
personalized treatment

To facilitate the application of the three subtypes of T2DM for

personalized treatment, a drug enrichment analysis was conducted on

the upregulated DEGs (logFC > 0.5) for each subtype. This approach

identifies potential drugs tailored to the specific needs of each T2DM

subtype, offering a foundation for more targeted therapeutic strategies.
Subtype A: suloctidil and
inflammation pathways

In subtype A, suloctidil emerged as the most promising drug for

diabetes treatment (Figure 5A) (23). This drug was linked to genes

involved in inflammation and immune regulation, including

NR4A2, IFITM1, PPP1R15A, FOSB, TNFAIP3, FOS, ZFP36,

MCL1, DUSP1, NFKBIA, JUN, KLF6, KLF2, and FTH1
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(Figure 5D). These genes are critical in regulating inflammatory

responses, which are central to insulin resistance and diabetes-

related complications. The enrichment of suloctidil with these genes

suggests its potential in managing the inflammation-associated

aspects of T2DM in subtype A.
Subtype B: suloctidil as a key drug

For subtype B, suloctidil was again identified as the key drug

associated with diabetes treatment (Figure 5B) (23). This drug was

linked to genes such as NR4A2, FOSB, GADD45B, IFITM1,

PPP1R15A, TNFAIP3, DDIT4, IER2, ZFP36, FOS, MCL1, NFKBIA,

HSPA5, JUN, CD69, DUSP1, KLF2, and FTH1 (Figure 5E), which are

involved in stress responses, immune regulation, and cell survival.

While suloctidil remained the most relevant drug for this subtype,

other medications, such as Fendiline, Prenylamine, and Perhexiline—

though primarily used for cardiovascular issues—may have indirect

effects on diabetes, but are not specifically designed for its treatment.
Subtype C: chlorpropamide for
insulin regulation

In subtype C, chlorpropamide was identified as the key drug

associated with diabetes treatment (Figure 5C). As a sulfonylurea,

chlorpropamide stimulates insulin secretion, which plays a pivotal

role in improving glucose control in patients with T2DM. This drug

was associated with genes such as GADD45B, PPP1R15A, TNFAIP3,

DDIT4, IER2, ZFP36, FOS, HSPA5, JUN, DUSP1, and KLF2

(Figure 5F), which are involved in stress response and metabolic

regulation. These associations suggest that chlorpropamide may be

particularly effective in managing insulin secretion and glucose

metabolism in subtype C.
Discussion

T2DM is a complex metabolic disorder marked by chronic

hyperglycemia resulting from insulin resistance and impaired

insulin secretion (24). This study sought to investigate the

immunological and metabolic alterations in T2DM by analyzing

single-cell RNA sequencing data from PBMCs of patients with

T2DM and HC. Our findings highlighted significant immune cell

alterations, including an increase in monocytes and a decrease in

CD4+ T cells in patients with T2DM. Furthermore, we observed

metabolic heterogeneity within T cell subpopulations and enhanced

cell-cell communication pathways in T2DM.

The observed increase in monocytes in patients with T2DM

reflects heightened chronic inflammation and immune activation

(4). These monocytes contribute to insulin resistance by secreting

pro-inflammatory cytokines such as TNF-a and IL-6 (8). Previous

studies have shown that monocyte-derived macrophages infiltrate

adipose tissue in T2DM, where they play a pivotal role in promoting

inflammation and exacerbating insulin resistance (25, 26). In

contrast, the decrease in CD4+ T cells, which are critical for
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1537909
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1537909
coordinating adaptive immune responses, may impair immune

regulation (27). This reduction in CD4+ T cells potentially

undermines the body’s ability to control inflammation,

exacerbating insulin resistance and beta-cell dysfunction (28).

Further alterations in T cell subtypes underscore the immune

dysregulation associated with T2DM. An increase in cytotoxic CD8

+ T cells and naive CD8+ T cells likely reflects an overactive

immune surveillance mechanism (29). Elevated cytotoxic CD8+ T

cells can induce beta-cell apoptosis, impairing insulin secretion

(30). The rise in naive CD8+ T cells indicates ongoing recruitment

and activation in response to chronic metabolic stress (31). These

changes suggest an altered immune response, compromising the

body’s ability to regulate inflammation and immune tolerance,

thereby contributing to the pathogenesis of T2DM (32, 33). The

reduction in CD4+ T cells, which are critical for orchestrating

adaptive immune responses, may compromise immune regulation.

Previous studies have linked decreased CD4+ T cell counts in

patients with T2DM to impaired immune tolerance and increased

autoimmunity (34, 35). This decline may result in unregulated

inflammatory responses, thereby exacerbating the chronic low-

grade inflammation characteristic of T2DM (36).

Analysis of metabolic heterogeneity within T cell subpopulations

revealed distinct metabolic profiles in patients with T2DM. Subtype A

T cells exhibited high expression of lipid and amino acid metabolism
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pathways, suggesting an adaptive metabolic response to the diabetic

environment (37). This subtype demonstrated broadmetabolic activity,

particularly in lipid, amino acid, and carbohydrate metabolism,

indicating an adaptive response to chronic stress. However, it may

also reflect a hyperactivated or exhausted T cell state. Such metabolic

reprogramming likely enables T cells to survive in conditions of altered

nutrient availability, but it could also promote a pro-inflammatory

phenotype (38). Subtype B, with its emphasis on oxidative stress-

related pathways, indicates a heightened immune response, while

Subtype C displays more targeted metabolic reprogramming,

suggesting a potentially less generalized immune activation (39).

These metabolic alterations may affect T cell activation and function,

potentially exacerbating immune dysfunction in T2DM (40). In

contrast, the HC group exhibited baseline metabolic activity,

emphasizing the metabolic disturbances present in patients with

T2DM. Metabolic reprogramming significantly impacts T cell

function (41), and understanding these shifts is critical for

developing targeted therapies aimed at restoring normal T cell

function and improving metabolic control.

Enhanced cell-cell communication pathways were also observed

in patients with T2DM, indicating intensified immune responses.

CellChat analysis revealed heightened activity of pathways such as

CD30, CD48, TGF-b, and IFN-g in subtype B (42). These pathways

are pivotal in immune regulation, T cell activation, and cytokine
FIGURE 5

Drug Enrichment Analyses in T2DM Subtypes: (A) Dot plot showing the top 10 lowest P-value enriched drugs in Subtype A. (B) Dot plot showing the
top 10 lowest P-value enriched drugs in Subtype B. (C) Dot plot showing the top 10 lowest P-value enriched drugs in Subtype C. (D) Cnetplot
showing the correlated genes with enriched drugs in Subtype A. (E) Cnetplot showing the correlated genes with enriched drugs in Subtype B.
(F) Cnetplot showing the correlated genes with enriched drugs in Subtype C.
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signaling. CD30 activation, for instance, can drive pro-

inflammatory responses and immune dysregulation, while TGF-b
plays a key role in balancing immune tolerance and inflammation.

In the context of T2DM, the activation of these pathways may

impair immune function, exacerbate insulin resistance, and

contribute to beta-cell dysfunction (43). Furthermore, alterations

in TNF and CCL pathway engagement, critical for inflammation

and immune cell recruitment, suggest significant changes in

chemokine signaling, which could further influence immune cell

interactions and disease progression (44).

The dominance of the MHC-I pathway emphasizes the

importance of antigen presentation in T2DM (45). Increased antigen

presentation may enhance autoimmune responses, potentially

contributing to beta-cell destruction (46). The selective activation of

the visfatin pathway in specific T2DM subtypes may reflect unique

metabolic and inflammatory states, providing potential targets for

subtype-specific interventions (47). Focusing on the MHC-I and

visfatin pathways could offer targeted therapeutic opportunities for

more effective management of T2DM. Collectively, these findings

underscore the complexity of immune cell interactions in T2DM and

highlight potential pathways for therapeutic targeting.

This study also highlighted the critical role of TFs in regulating

immune cell function and metabolic processes in T2DM. We

identified several TFs that are differentially expressed across

T2DM subtypes, including those involved in immune response

regulation and insulin resistance. Notably, TFs such as NF-kB and

STAT3, key players in inflammatory pathways, were upregulated in

patients with T2DM, highlighting the persistent immune activation

and inflammatory environment characteristic of the disease (48). In

contrast, TFs associated with insulin signaling, such as PAX6 and

FOXO1, were downregulated, potentially contributing to impaired

insulin secretion and resistance (49, 50). The dysregulation of TF

activity in T2DM thus opens novel therapeutic avenues, as targeting

specific TFs could help restore immune homeostasis and improve

metabolic control, offering a more tailored approach to treatment.

The drug enrichment analysis further reinforces the potential for

personalized T2DM therapy based on TF activity and metabolic

alterations. For example, suloctidil, identified as associated with

specific immune-related TFs and inflammatory pathways, could

serve as a promising candidate for managing inflammation and

immune dysfunction in T2DM (8). Similarly, targeting pathways

regulated by TFs like NF-kB and STAT3may help reverse the chronic

inflammation that drives T2DM pathogenesis (51, 52). Drugs such as

chlorpropamide, which influence insulin secretion, may be especially

effective for subtypes with dysregulated insulin signaling pathways

(53). These findings emphasize the importance of integrating TF

activity and drug enrichment data into personalized treatment

strategies, potentially improving therapeutic outcomes by

addressing the underlying molecular mechanisms specific to each

patient’s disease profile.

Clinically, the development of advanced machine learning

models enabled accurate classification of T2DM subtypes based on

T cell metabolic profiles. These models achieved high AUC values,

demonstrating their potential application in clinical settings for

patient stratification and personalized treatment planning. By

identifying distinct metabolic and immunological signatures linked
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to different T2DM subtypes, clinicians can better tailor interventions

to address the underlying dysfunctions of each patient.
Limitation

Despite the strengths of this study, several limitations remain.

These include potential biases arising from the use of public datasets,

a limited sample size that may impact generalizability, and the cross-

sectional design, which limits causal inference regarding immune

changes and T2DM progression. Additionally, findings may not be

universally applicable due to demographic variations in T2DM

influences. Inherent limitations of single-cell sequencing, such as

dropout events and batch effects, may also impact data interpretation.

Future research should validate these results using larger, more

diverse cohorts, incorporate longitudinal studies to explore disease

progression, and evaluate targeted therapies through clinical trials,

with predictive models supporting personalized treatment strategies.
Conclusion

In conclusion, this study highlights significant immune and

metabolic dysregulation in T2DM, marked by elevated monocytes,

reduced CD4+ T cells, and distinct metabolic profiles within T cell

subpopulations. Enhanced cell-cell communication pathways,

particularly those involving the MHC-I pathway, further highlight

the complexity of the immune landscape in T2DM. The analysis of

TF activity, in conjunction with drug enrichment findings, identifies

promising therapeutic targets for personalized treatment.

Integrating these immunological and metabolic insights—along

with key TFs and drug candidates—into clinical practice could

optimize T2DM management and improve patient outcomes,

reinforcing the critical role of personalized medicine in

addressing the multifaceted nature of metabolic disorders.
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treatment of chronic
kidney disease
Yuyan Li1†, Yueming Luo2*†, Yilan Hu3, Siting Li4, Guandong Li3,
Wanyangchuan Zhang5, Xiufen Gu1, Jianting Wang1,
Shunmin Li1* and Hong Cheng2*

1Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical
Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China, 2Department of
Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of
Guangzhou University of Chinese Medicine, Shenzhen, China, 3The Fourth Clinical Medical College,
Guangzhou University of Chinese Medicine, Shenzhen, China, 4Beijing Tongrentang Hospital of
Traditional Chinese Medicine, Beijing, China, 5Department of Minimally Invasive Intervention and
Vascular Surgery, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District),
Chongqing, China
Objective: Chronic kidney disease (CKD) is a major global health problem. In

clinical practice, the Chinese patent herbal medicine Jianpi-Yishen (JPYS)

formula is commonly used to treat CKD. However, the molecular mechanisms

by which JPYS targets and modulates the host immune response remain unclear.

Methods: This study utilized network pharmacology, RNA sequencing (RNA-

seq), and metabolic analyses using in vivo and in vitro models to investigate the

impact of the JPYS formula on inflammation and the immune system.

Specifically, the study focused on macrophage polarization and metabolic

changes that may slow down the progression of CKD.

Results: A total of 14,946 CKD-related targets were identified from the

GeneCards and Online Mendelian Inheritance in Man (OMIM) databases

through network pharmacology analyses. 227 potential targets of the JPYS

formula were predicted using the TCMSP database. Additionally, network

diagram demonstrated that 11 targets were associated with macrophage

activity. In vivo studies indicated that the JPYS formula could reduce blood

urea nitrogen and serum creatinine in adenine-induced CKD rats. Furthermore,

the formula inhibited inflammatory damage and abnormal macrophage

infiltration in this CKD model. RNA-seq, proteomic and metabolic analyses

identified the regulation of amino acid metabolism by betaine, specifically

referring to glycine, serine, and threonine metabolism, as a key target of the

JPYS formula in slowing the progression of CKD. In addition, in vitro studies

suggested that JPYS may enhance tryptophan metabolism in M1 macrophage

polarization and betaine metabolism in M2 macrophage polarization.
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Conclusions: The JPYS formula has been shown to have beneficial impact on

CKD; a key mechanism is the mitigation of inflammatory damage through the

interaction between amino acid metabolism and macrophage polarization. Of

specific importance in this context are the roles of tryptophan in M1 polarization

and betaine in M2 polarization.
KEYWORDS

Jianpi-Yishen formula, chronic kidney disease, network pharmacology, macrophage
polarization, multi-omics
GRAPHICAL ABSTRACT
1 Introduction

Chronic kidney disease (CKD) is characterized by long-lasting

abnormalities in renal structure or function. These abnormalities

last longer than three months and have serious health repercussions

(1). The global prevalence of CKD is estimated to be approximately

10–14% (1). Furthermore, CKD accelerates the aging process and

promotes the development of end-stage renal disease. This leads to

increased disability, decreased life expectancy, and a high annual

mortality rate, all of which are important contributors to the

worldwide burden of disease (2, 3). However, there are no specific

treatment modalities available that can entirely arrest the

progression of CKD, and coping with CKD poses challenges for

both patients and their caregivers (4).
0248
Chinese herbal medicines (CHMs) are characterized by their

intricate chemical compositions, which complicates the process of

identifying the specific constituents that collectively contribute to the

therapeutic effects of these herbal remedies, as these are typically

applied in a multi-ingredient manner (5). Previous studies have

demonstrated that substances originating from Chinese herbal

remedies can ameliorate CKD via multiple molecular pathways (6–

9). In addition, certain formulations, such as the Sanqi oral solution

and the Bupi Yishen formula, have demonstrated positive impact on

kidney function (10, 11). Herbal medicine also has numerous

advantages over chemical agents in the management of CKD, not

least because of its diverse ingredients (12). The JPYS formula, which

translates to “strengthen the spleen and kidney”, is a patented

traditional Chinese medicine (TCM) formulation developed by
frontiersin.org
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Professor Li Shunmin, a distinguished physician of traditional

Chinese medicine in Guangdong Province, drawing upon decades

of comprehensive clinical experience. In previous research, the

effectiveness and safety of the JPYS formula in CKD patients have

been investigated (13). More recently, there are randomized

controlled trials being conducted to further explore its clinical

application. Previous studies have identified multi targeted effects

of the JPYS formula in slowing the progression of CKD, including

anti-inflammatory properties, protection against iron deficiency

anemia (14), inhibition of mitochondrial fission, promotion of

mitochondrial fusion, and suppression of oxidative stress, among

others (15). Notably, the anti-inflammatory effects of the JPYS

formula have been recognized as therapeutically significant (16) .

However, the specific molecular mechanisms through which the JPYS

formula targets the endogenous immune response remain unclear.

Macrophages play essential roles in immune surveillance and the

maintenance of kidney homeostasis (17). Throughout the

progression of CKD, macrophage polarization has been implicated

in the mechanisms of inflammatory injury, renal interstitial fibrosis,

and kidney repair (18). Various stimuli can influence the functional

phenotype of macrophages, leading to the differentiation towards

classically activated macrophages (M1) or alternatively activated

macrophages (M2). M1 macrophages are recognized as pro-

inflammatory cells that contribute to the progression of kidney

injury, whereas M2 macrophages are traditionally known as anti-

inflammatory cells. Some TCM therapies, encompassing both

formulated remedies and herbal active ingredients, have

demonstrated efficacy in modulating macrophage polarization

towards either M1 or M2 phenotypes in kidney disease (19, 20). As

such, the immunoregulatory properties of herbal medicine,

particularly its anti-inflammatory effects, present a novel approach

for the management of kidney diseases (21).

In this study, network pharmacology, RNA sequencing (RNA-

seq), proteomics and metabolic analyses were employed to examine

the impact of the JPYS formula on inflammation, the immune

response, macrophage polarization, and metabolic changes that

may inhibit the progression of CKD. The findings reveal that the

interaction between amino acid metabolism and macrophage

polarization serves as a key mechanism through which the JPYS

formula mitigates inflammatory injury in CKD.
2 Materials and methods

2.1 Network pharmacology

2.1.1 Screening and prediction of effective
chemical constituents in the JPYS formula

The active chemical constituents of the JPYS formula (Astragali

Radix, Atractylodis Macrocephalae Rhizoma, Dioscoreae Rhizoma,

Cistanches Herba, Amomi Fructus Rotundus, Salviae Miltiorrhizae

Radix et Rhizoma, Rhei Radix et Rhizoma, Glycyrrhizae Radix et
Frontiers in Immunology 0349
Rhizoma) were obtained from the Traditional Chinese Medicine

System Pharmacology Database (old.tcmsp-e.com/tcmsp.php,

updated until September 2023) (22). The criteria of oral

bioavailability (OB) ≥ 30% and drug likeness (DL) ≥ 0.18 were

applied to assess the active ingredients of the JPYS formula and

identify the pertinent effective active ingredients. The active

ingredients of the JPYS formula were then converted into the

corresponding human gene names using the Uniprot database. By

utilizing “chronic kidney disease” as the keyword, the GeneCards

and Online Mendelian Inheritance in Man databases were utilized

to retrieve genes associated with CKD. The identified CKD-related

genes and drug target genes were mapped to identify the common

target genes of the “JPYS formula-CKD”.
2.1.2 “Drug-Ingredient-Target-Disease”
visualization network construction

The active components of the JYPS formula and the common

target genes of the “JYPS formula–CKD” were imported into

Cytoscape 3.7.1 software for visualization. Subsequently, a

network diagram of “drug–ingredient–target–disease” was then

established. Each node in the diagram symbolized a disease, drug,

bioactive ingredient of a drug, or target, with the connections

between nodes indicating the interrelations among the disease,

drug, bioactive ingredient, and target.
2.1.3 Protein-protein interaction network and,
gene ontology functional analyses

The shared targets of the JPYS formula and CKD were entered

into the STRING database (https://string-db.org/) using specific

parameters to extract the PPI network. The analysis focused on the

human species (Homo sapiens) with a protein relationship score

threshold of 0.4. The presence of free proteins was concealed to

obtain the protein interaction network. The protein-protein

interaction network data was downloaded and imported into

Cytoscape 3.7.1 software. Utilizing the Network Analyzer tool, a

topological analysis was conducted on the relevant parameters of

drug-disease common targets, which included connectivity

(Degree), betweenness centrality, and closeness centrality. Targets

exceeding the median values of the aforementioned parameters

were designated as core targets.

The Gene Ontology Biological Process (BP), Molecular

Function (MF), and Cellular Component enrichment analysis

data, were obtained from the STRING database. The GO analysis

conditions were set to include observed gene count and strength

both greater than the median. Subsequently, the top 6 significantly

enriched items in BP, MF and CC were selected and import into

ChiPlot (https://chiplot.online/) to generate a circular enrichment

plot. Additionally, the top 6 significantly enriched items in GO-BP

and their associated targets were imported into Cytoscape 3.7.1

software for visualization processing, resulting in the creation of a

network diagram titled “BP Entry - Target.”
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2.2 JPYS formula preparation

Medicinal herbs for JPYS formula were gained from the

Pharmaceutical Department of Shenzhen Traditional Chinese

Medicine Hospital. The JPYS formula comprises the following

eight herbs: Astragali Radix, Atractylodis Macrocephalae Rhizoma,

Dioscoreae Rhizoma, Cistanches Herba, Amomi Fructus Rotundus,

Salviae Miltiorrhizae Radix et Rhizoma, Rhei Radix et Rhizoma,

Glycyrrhizae Radix et Rhizoma. These raw herbs were weighed and

boiled twice for 1 h each time in 8 times of water. Our earlier

research detailed the preparation and quality control of JPYS

formula extract (15).
2.3 Animals and experimental treatments

Male Sprague Dawley rats(ethics approval reference number:

TOP-IACUC-2021-0112) aged 6–8 weeks were randomly assigned

to one of four groups: control (n = 8), CKD (n = 10), CKD + JPYS-L

(n = 10), and CKD + JPYS-H (n = 10). Rats in the CKD and CKD +

JPYS were fed a diet containing 0.75% adenine for 3 weeks, followed

by a normal diet for 1 week. Rats in the control group were fed a

normal diet for 4 weeks. The CKD + JPYS groups were administered

with 5.44 g/kg/day of JPYS extract (CKD + JPYS-L, low-dose group)

and 10.89 g/kg/day of JPYS extract (JPYS-H, high-dose group) via

gastric irrigation for 4 weeks during the study period.
2.4 Biochemical analysis

Serum creatinine and urea nitrogen levels were measured using

a Roche automatic biochemistry analyzer (Tokyo, Japan) in

accordance with the manufacturer’s instructions.
2.5 Histological analysis
and immunohistochemistry

Paraffin-embedded kidney tissues extracted from four groups of

rats were cut into 3-µm sections, dewaxed, and rehydrated. Sections

were stained with hematoxylin and eosin (H&E) stain and

visualized. Immunohistochemistry was performed according to

the established protocol as described previously (23). Antibodies

used are in Supplementary Table 1.
2.6 RNA-seq

The kidney samples from the CKD and CKD+JPYS-H groups

underwent analysis at the Beijing Genomics Institute (BGI,

Shenzhen, China). The samples were purified and amplified

through polymerase chain reaction (PCR). The PCR yield was

quantified using Qubit, and the samples were combined to

produce a single-stranded DNA circle (ssDNA circle) which

generated DNA nanoballs. These nanoballs were then loaded into
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patterned nanoarrays. Subsequent data analysis was conducted

using the BGISEQ500 platform.
2.7 Kidney proteomics analysis

Proteomics analysis was conducted at the Climb Technology

Co., Ltd. Briefly, kidney tissue were thoroughly lysed using a protein

lysis buffer, followed by the measurement of protein concentration.

Based on the results of these measurements, an appropriate volume

of protein was extracted from each sample for enzymatic hydrolysis.

The subsequent day, the ultrafiltration tubes were centrifuged at

13000g at room temperature for 10 minutes. The liquid collected in

the collectiong tube was then transferred to a new centrifuge tube

and subjected to vacuum drying. The samples were subsequently

desalinated utilizing a C18 desalination column.

For mass spectrometry detection, the chromatographic mobile

phase A consisted of 0.1% formic acid, while phase B comprised

80% acetonitrile and 0.1% formic acid. The freeze-dried peptide

segments were completely dissolved in solution A (0.1% formic

acid) and centrifuged at 17,000 g for 15 minutes. The supernatant

was then added to the built-in tube and placed in the automatic

sampling device. The sample was introduced into the C18 analytical

column (inner diameter 150 mm, 25 cm) from the automatic

sampler at a flow rate of 1.2 mL/min using the EASY nLC 1200

liquid chromatography system (Thermo, USA) for elution. The

elution conditions for the liquid chromatography were set at a flow

rate of 600 nL/min, with the B solution (acetonitrile containing

0.1% formic acid) increasing linearly from 6% to 30% over 0 to 42

minutes, followed by a further increase from 30% to 42% between

42 and 51 minutes, and finally rising to 95% within 5 minutes,

which was maintained for 60 minutes.

The Thermo Scientific Q Exactive HF mass spectrometer,

equipped with a Nanospray Flex ion source, was utilized, with the

ion spray voltage set to 2.3 kV and the temperature of the ion

transfer tube maintained at 320°C. The mass spectrometer operated

in Data-Independent Acquisition (DIA) mode. Following the

collection of DIA data, the Spectronaut 18.0 software (Biognosys)

was employed to search the human database downloaded

from Uniprot.
2.8 Kidney metabolome analysis

Kidney samples from the CKD and JPYS-H groups (n=4 in each

group) were processed by combining them with a standard

chromatography and mass spectrometry protocol. Briefly, The

procedure involved several methodical steps: (1) Kidney samples

were processed through homogenization in 80% methanol and

subsequently incubated at -80°C for a duration of two hours.

After the incubation, the mixture was subjected to centrifugation,

and the supernatant was collected and evaporated using nitrogen

gas. To facilitate reconstitution, 100µl of an acetonitrile-water

solution (in a 4:1 ratio) was added. The resulting mixture was

vortexed, centrifuged, and the supernatant was transferred to a
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liquid phase vial for further analysis; (2) The mobile phase A

consisted of 0.1% formic acid in ultrapure water, while mobile

phase B was composed of methanol. The flow rate was maintained

at 0.30 mL/min, with the oven temperature set at 40°C. The

autosampler temperature was regulated at 10°C, and the injection

volume was 2 µL utilizing a full loop injection method; (3) Targeted

profiling was conducted using a QTRAP® 5500 System (SCIEX)

operating in positive mode, employing the Multiple Reaction

Monitoring (MRM) technique. The electrospray ionization

parameters were optimized for a flow rate of 0.30 mL/min, with

the following specifications: electrospray voltage of 5500 V,

temperature of 500°C, curtain gas at 40, CAD gas at 12, and gases

1 and 2 set at 50 psi each.
2.9 Cell culture

THP-1 cells were cultured in a 6-well plate and incubated with

10 ng/ml of Phorbol 12-myristate 13-acetate (PMA) for 48 hours.

Followed by incubated in different doses of JPYS formula for 24h

and 48h. Cell Counting Kit-8 (CCK-8) was used to assess

cell viability.

Afterwards, the macrophages were stimulated into M1 and M2

polarization, respectively. In M1 polarization, LPS (100 ng/ml) and

IFN-g (20 ng/ml) were used to stimulate M1 macrophages. The

groups were divided into different categories, including

Macrophage, M1-Macrophage, and JPYS formula doses (M1

Macrophage incubated with different JPYS formula doses) for

48h. In M2 polarization, IL-4 (25ng/ml) and IL-13 (25ng/ml)

were used to stimulate M2 macrophages. The groups were

divided into different categories, including Macrophage, M2-

Macrophage, and JPYS formula doses (M2 Macrophage incubated

with different JPYS formula doses) for 48h.
2.10 Macrophage ultra-performance liquid
chromatography tandem
mass spectrometry

Themethodology employed for the extraction of metabolites from

cells, chemicals, reagents, and the UPLC-MS/MS conditions adhered

to the procedures outlined in previous studies (24) .The protocol

involved several steps: (1) Cell samples were treated with Methanol for

shaking and lysis, followed by incubation at -80°C for 30 minutes.

Subsequently, the samples were subjected to shaking and

centrifugation, and the resulting supernatant was dried using a

nitrogen blower. Prior to sample running, re-dissolution was

performed. Additionally, the preparation and optimization of an

amino acid standard solution were carried out, including the

determination of parent and daughter ions of the standard. (2)

Standard curves were created at various concentrations (1000%,

500%, 200%, 100%, 80%, 40%, 20%, 10%, 5%) along with the

configuration of the mobile phase, liquid phase method, and mass

spectrometry method. The samples were then analyzed using LC-MS.
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(3) Experimental sample concentration involved running the samples

on a C18 chromatography column, with adjustments made for

samples with low amino acid content. Samples that did not produce

peaks were rerun using Glycan columns with corresponding

adjustments to the mobile phase and mass spectrometry method.

(4) Machine testing was conducted by mixing 50µl of supernatant

from each sample in a centrifuge tube, followed by randomization and

interspersion of Quality Control (QC) samples with cell samples. The

samples were numbered and sorted based on random numbers, with

QC values used to calculate Coefficient of Variation (CV) values. A CV

value within 15% indicated acceptable system deviation. QC samples

1-10 were configured to control sample quality, and new standard

curve ranges were established based on sample concentration test

results. Post-sample run, Multi Quant software was utilized for

result analysis.
2.11 Statistical analysis

The measurement data was presented as the mean ± SEM. The

one-way analysis of variance (ANOVA) or the Kruskal-Wallis test

was employed to assess significant differences among groups.

Statistical analysis was conducted using GraphPad Prism

software, with a significance level set at P < 0.05.
3 Results

3.1 Network pharmacology showed that
JPYS formula might reduce CKD
progression via different targets
and pathways

933 active ingredients of the JPYS formula were retrieved

through the TCMSP database and further screening performed

using the parameters of OB ≥ 30% and DL ≥ 0.18 revealed 224

potential active ingredients (Supplementary Table 2). Afterwards,

227 potential targets of the JPYS formula were predicted by TCMSP

database, and 14,946 CKD-related targets were collected via the

GeneCards and OMIM databases. The comparison of the targets

identified via these two methods revealed 224 overlapping targets

(Figure 1A). Imported 224 common targets of JPYS formula and

chronic kidney disease into the STRING database to obtained PPI

protein interaction network data. Afterwards, the data were

imported into Cytoscape 3.7.1 software to analyze and obtain the

connectivity (Degree), BC and CC of drug-disease common targets.

Core targets were considered with targets greater than the median

of the above parameters, totaling 88 (Figure 1A).
3.2 GO analysis of “JPYS formula–CKD”

2117 GO enrichment analysis entries were obtained in the

STRING database, including 1784 for BP analysis, 203 for MF
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analysis, and 130 for CC analysis. Set the analysis conditions to

observed gene count and strength both greater than the median,

and obtain the top 6 significantly enriched items in BP/MF/CC

(Figure 1B). Establishing a “BP entry target” network diagram, it

was found that 11 targets were associated with macrophage activity,

as shown in Figure 1C.
3.3 JPYS formula exhibits renoprotective
effects in CKD rats

Rats in the CKD group exhibited higher levels of serum

creatinine (Cre) and blood urea nitrogen (BUN), which were

restored after JPYS formula treatment (Figure 2A). H&E staining

revealed the CKD group exhibited inflammatory injuries and

fibrotic changes, while the CKD + JPYS group showed a

significant reduction in pathological injuries, consistent with the

improvement in renal function (Figure 2B).

To confirm whether the renoprotective effect of JPYS

formula was associated with the modulation of macrophages,

immunohistochemistry was performed to measure the expression

of CD68 and CD86 in the kidney tissue. The CKD group exhibited

higher levels of CD68 and CD86 expression than the control group,

while the JPYS group showed lower expression levels than the CKD

group (Figure 3A). Additionally, there were notable statistical

differences in Integrated Optical Density (IOD) values among

various groups (Figure 3B). These results indicate that JPYS

formula therapy down-regulates macrophages, including M1 and

M2 macrophages in the kidneys of CKD rats.
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3.4 Amino acid metabolism may be the
core targets for JPYS formula to delay the
progression of CKD

RNA enrichment analysis was conducted to compare the

differences between CKD and CKD+JPYS groups in RNA-seq (n =

4 per group). There’s 132 different genes between the CKD group and

JPYS groups (Figure 4A). And the heatmap showed different cluster

between CKD and JPYS groups (Figure 4B). The cluster analysis of

the GO classification in RNA-seq revealed a significant enrichment of

the metabolic process (Figure 4C) between CKD and JPYS formula.

In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway,

the Glycine, serine, and threonine metabolism (Amino acid

metabolism), Butanoate metabolism (Carbohydrate metabolism),

Biosynthesis of amino acids (Global and overview maps), Pyruvate

metabolism (Carbohydrate metabolism), and Glycolysis/

Gluconeogenesis (Carbohydrate metabolism) were enriched. This

suggests that JPYS formula adjusted the metabolic function in CKD

rats (Figure 4D).

Moreover, the proteomics analysis, which included PCA and

heatmap visualization, suggested that JPYS rats could be separated

from CKD rats (Figures 5A, B). Volcanoplot revealed that JPYS

formula exhibited up-regulated 260 proteins while down-regulated

339 proteins compared to CKD (Figure 5C). An enrichment analysis

of the pathway functional entries within the Reactome database, where

differential proteins are identified, indicates that the immune system

and metabolic pathways are critical for interventions involving JPYS

(Figure 5D). Additionally, we performed an extensive analysis of the

differences in metabolic pathways through proteomics, which
FIGURE 1

Network pharmacology screening and prediction of effective chemical constituents in the JPYS formula. (A) 227 potential targets of the JPYS
formula were predicted by TCMSP database, and 14,946 CKD-related targets were collected via the GeneCards and OMIM databases. The
comparison of the targets identified via these two methods revealed 224 overlapping targets. Core targets were considered with targets greater than
the median of the above parameters, totaling88. (B) Top 6 significantly enriched items in BP/MF/CC; (C) “BP entry target” network diagram
demonstrated that 11 targets were associated with macrophage activity.
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FIGURE 3

Representative immunohistochemistry images and IOD values of CD68, CD86 and CD206 expression in the kidneys of rats. (A) All images are shown
at identical magnification, ×200. (B) The IOD values among various groups. **Represents a significant variation compare with the CKD group among
the multiple comparisons. **P < 0.05.
FIGURE 2

Effects of JPYS formula on renal function and pathological injury in CKD rats. (A) Blood urea nitrogen levels and serum creatinine levels.
(B) Representative HE staining images in each groups. The arrows indicated the usual pathological alterations associated with CKD. **Represents a
significant variation compare with the CKD group among the multiple comparisons. **P < 0.05.
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demonstrated that JPYS could upregulate various metabolic pathways,

particularly highlighting the significance of amino acid metabolism

and the metabolism of other amino acids in this upregulation

(Figure 5E). These results further validated our transcriptomic

findings. A comprehensive KEGG analysis of cellular processes

revealed that the regulation of the actin cytoskeleton, phagosome,

and lysosome are significant biological processes influencing the

differential proteins associated with JPYS (Figure 5F). And the

tryptophan played a pivotal role in the metabolism pathway

(Figure 5G). This finding corroborated our previous network

pharmacology hypothesis that macrophages may served as vital

cellular targets for JPYS in the context of delaying CKD.
3.5 The regulation of amino acid
metabolism by Betaine in macrophage
polarization may serve as a potential
target for the JPYS formula in delaying
the progression of CKD

To identify metabolic pathways, we conducted metabolomic in

kidney sample to further investigate the metabolic between JPYS rats

and CKD rats. The Partial Least Squares Discriminant Analysis

(PLSDA) conducted in the field of metabolomics indicates a

distinct separation between JPY rats and CKD rats, as illustrated in

Figure 6A. An examination of renal metabolism post-JPYS

intervention identified seven metabolites that exhibited significantly
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elevated levels, namely Betaine, Glycine, Alanine, Asparagine,

Glutamic acid, Creatine, and Glutamine, as depicted in Figure 6B.

The identification of KEGG pathways associated with the differential

metabolic functions observed between the two groups (Figure 6C).

The relevant differential pathways encompassed Glycine, Serine, and

Threonine metabolism, as well as amino acid biosynthesis, aligning

with the results obtained from RNA sequencing. Additionally, an

interactive network graph analysis indicated that Betaine plays a

regulatory role in Glycine, Serine, and Threonine metabolism,

metabolic pathways, and ABC transporters (Figure 6D).

To confirm the amino acid metabolism in macrophages, we

utilized THP-1 cells and incubated into macrophages, followed by

stimulation to generate M1 and M2 polarization macrophages for

further metabolic analysis. In CCK-8, we observed that 1mg/ml,

2mg/ml and 4mg/ml shows positive influence in THP-1 cells while

8mg/ml JPYS formula downregulated THP-1 proliferation

(Figures 7A, B). With the macrophage UPLC-MS/MS, we

observed changes in amino acid metabolic pathways (Figures 7,

8). The tryptophan was up-regulated after treatment with JPYS

formula (Figure 7C). And betaine was up-regulated after treatment

with JPYS formula (Figure 8A).
4 Discussion

In previous research, the JPYS formula has been shown to have

convincing effects in anti-inflammation, anti-fibrosis, and the
FIGURE 4

RNA-seq between CKD and JPYS groups. (A) Volcano plot analysis showed 132different genes between the CKD group and JPYS groups. (B)
Heatmap showed different cluster between CKD and JPYS groups. (C) The cluster analysis of the GO classification revealed a significant enrichment
of the metabolic process. (D) In the KEGG pathway, the Glycine, serine, and threonine metabolism (Amino acid metabolism), Butanoate metabolism
(Carbohydrate metabolism), Biosynthesis of aminoacids (Global and overview maps), Pyruvate metabolism (Carbohydrate metabolism), and
Glycolysis/Gluconeogenesis (Carbohydrate metabolism) were enriched.
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FIGURE 6

The metabolomic analysis in kidney tissue to further investigate the metabolic between JPYS rats and CKD rats. (A) The PLSDA indicated a distinct
separation between JPY rats and CKD rats. (B) An examination of renal metabolism post-JPYS intervention identified seven metabolites that
exhibited significantly elevated levels. (C) The identification of KEGG pathways associated with the differential metabolic functions observed between
the two groups. (D) The interactive network graph analysis indicated that Betaine plays a regulatory role in Glycine, Serine, and Threonine
metabolism, metabolic pathways, and ABC transporters.
FIGURE 5

The proteomics analysis in kidney tissue. (A, B) The PCA and heatmap suggested that JPYS rats could be separated from CKD rats. (C) Volcanoplot
revealed that JPYS formula exhibited up-regulated 260 proteins while down-regulated 339 proteins than CKD. (D) An enrichment analysis of the
pathway functional entries within the Reactome database, where differential proteins were identified, indicated that the immune system and
metabolic pathways were critical for interventions involving JPYS. (E) In metabolic pathways, the importance of amino acid metabolism, as well as
the metabolism of other amino acids, played a crucial role in the process of upregulation. (F) A comprehensive KEGG analysis of cellular processes
revealed that the regulation of the actin cytoskeleton, phagosome, and lysosome were significant biological processes influencing the differential
proteins associated with JPYS. (G) And the tryptophan played a pivotal role in the metabolism pathway.
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FIGURE 8

Metabolic pathway changed in M2 macrophage polarization incubated with JPYS. (A-H) metabolic pathways particularly Betaine was up-regulated
after treatment with JPYS. **Represents a significant variation compare with the CKD group among the multiple comparisons. **P < 0.05.
FIGURE 7

Metabolic pathway changed in M1 macrophage polarization incubated with JPYS. (A, B) THP-1 cells and incubated into macrophages, followed by
incubated in different doses of JPYS for 24h and 48h. (C-J) Changes in amino acid metabolic pathways in M1 macrophage polarization incubated
with JPYS, particularly the tryptophan was up-regulated after treatment with JPYS. **Represents a significant variation compare with the CKD group
among the multiple comparisons. **P < 0.05.
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restoration of iron metabolism in CKD rats (14, 25). However, the

underlying mechanisms by which the JPYS formula inhibits

inflammation, especially via macrophage activity, remain unclear.

In the study, we initially employed network pharmacology to

predict the active ingredients of the JPYS formula that are

pharmacologically effective in CKD. This was followed by the

construction and analysis of protein interaction networks, as well

as conducting GO and KEGG enrichment analyses. Within the

enriched pathways, we identified macrophage polarization as a

potential target pathway of the JPYS formula, in relation to

inflammatory injuries associated with CKD. This is consistent

with the inflammatory injury that occurs during the natural

progression of CKD. In line with this, in the in vivo model of

CKD, the JPYS formula was shown to improve kidney function and

alleviate kidney histopathological inflammatory damage. To

validate the network pharmacology results, we looked further into

macrophage immunophenotype expression and found that CKD

rats had higher levels of CD68, CD86, and CD206, while the JPYS

formula may have caused downregulation of macrophage surface

marker expression in CKD. Furthermore, transcriptomic profiling

of kidney tissue has indicated that the metabolic pathways linked to

“Glycine, serine, and threonine metabolism” and “Biosynthesis of

amino acids” are enriched as potential pathways of interest from,

through which the JPYS formula provides renoprotection.

We then carried out additional validation using kidney

proteomics, which identified the “metabolism” and “immune

system” pathways as important mechanisms via which the JPYS

formula has its therapeutic effects in CKD. The analyses also

identified cellular functions, such as the regulation of the actin

cytoskeleton, phagosomes, and lysosomes, in addition to significant

associations with macrophages, which play a pivotal role in immune

function. Additionally, tryptophan was found to be essential for the

metabolism pathway. This finding is consistent with the network

pharmacology analysis, indicating that macrophages may serve as

important therapeutic targets in the treatment of CKD with JPYS.

Building further on this hypothesis, the metabolomics analysis

from kidney tissue showed that significant differential pathways, such

as the metabolism of glycine, serine, and threonine as well as the

biosynthesis of amino acids, were enriched after JPYS intervention.

Additionally, we observed a significant overexpression of betaine in the

kidney tissue, which is probably related to the inclusion of Astragalus

membranaceus and Cistanche deserticola (26, 27). Enrichment of the

pathways related to glycine, serine, and threonine metabolism appear

to correlate with the increased levels of betaine. Macrophage

polarization was also impacted by the JPYS intervention, according

to data from the in vitro studies. In particular, treatment with the JPYS

formula increased tryptophan levels in the context of M1 macrophage

polarization. JPYS formula treatment also increased the expression of

betaine during the process of M2 macrophage polarization. Together,

the JPYS formula may have protective effects against CKD injury by

reducing inflammatory damage through the interaction of macrophage

polarization and amino acid metabolism.

Macrophages are essential parts of kidney tissue which play

critical roles in renal inflammation, the immune response, and the

maintenance of kidney homeostasis (28, 29). In CKD, the persistent

activation of pro-inflammatory monocytes and the presence
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of reparative macrophages contribute to conditions like

glomerulosclerosis and tubulointerstitial fibrosis (30). Macrophage

polarization, characterized by M1 pro-inflammatory and M2

reparative phenotypes, is a response to inflammatory stimuli, and

the transition fromM1 toM2macrophages has been observed during

the progression of CKD (31). Although certain herbal ingredients

have demonstrated potential in regulating macrophage polarization

and lowering inflammation, further research is needed to fully

understand the impact of herbal treatments on aberrant

macrophage-driven inflammation (32).

Current research indicates that the JPYS formula has the ability

to influence both M1 and M2 macrophage polarization.

Considering the role of amino acids, tryptophan metabolism can

be improved by the JPYS formula in the context of M1 macrophage

polarization. As an essential aromatic amino acid, tryptophan plays

a key role in cellular synthesis, homeostasis maintenance, and it has

been implicated in CKD progression (33). Disturbances in

tryptophan metabolism are frequently reported in CKD patients,

leading to worsening renal fibrosis and the progression of CKD, by

causing metabolites to activate the aryl hydrocarbon receptor. As

CKD advances, uremic toxins accumulate due to inadequate renal

excretion, further resulting in deterioration of the condition (34).

Conversely, disturbances in tryptophan metabolism can affect the

kynurenine pathway, influencing the production of serotonin,

indole-pyruvate derivatives, and tryptamine (34).

This study’s findings indicate that the JPYS formula offers

protective effects against inflammation-induced damage driven by

M1 macrophages. This therapeutic effect may be due to the

modulation of tryptophan levels by JPYS. Moreover, it has been

shown that the JPYS formula raises levels of betaine, which is a

neutral amino acid derivative that is associated with maintaining

organ homeostasis and halting the progression of disease. Previous

studies have demonstrated the betaine in lowering steatosis,

inflammation, and fibrosis in metabolism-associated fatty liver

disease as well as oxidative stress and inflammation linked to

alcoholic liver disease. Among other benefits, betaine has also

been demonstrated to maintain the integrity of the intestinal

epithelial barrier, control adipose function, and prevent the

development of cancer (35–37). In the context of kidney health,

betaine plays a crucial role in protecting cells against osmotic stress,

exhibiting anti-inflammatory and antioxidant properties.

Furthermore, low betaine levels have been linked to increased

intestinal dysbiosis, oxidative stress, inflammation, and kidney

damage, underscoring its significance as a metabolite for assessing

the stages of CKD (38, 39). Therefore, patients with CKD may

benefit from incorporating betaine-rich diets into their diets.

Together, the available evidence generally supports using the

JPYS formula as an effective modulator of amino acid metabolism

during macrophage polarization.

One previous study demonstrated that amino acids play a

significant role in modulating the inflammatory resolution

processes, particularly through their interaction with macrophages,

specifically in terms of polarization and secretion (40). In the current

study’s enrichment analyses, the “Glycine, Serine, and Threonine

Metabolism” pathway (KEGG map 00260) was shown to play a

crucial role in the mechanism of action in JPYS treatment by
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regulating immunity and mitigating inflammatory damage.

Furthermore, betaine in JPYS promotes the upregulation of glycine,

which further enhances the expression of serine and threonine.

Elevated levels of serine also facilitate tryptophan metabolism.

Finally, the activation of amino acid metabolism, particularly the

glycine, serine, and threonine metabolism pathways, regulates

macrophage polarization and ultimately alleviates renal immune

and inflammatory damage.

Treatment with JPYS, which stands for “strengthening the spleen

and kidney,” is a traditional approach in Chinese medicine that aims

to enhance blood circulation, eliminate dampness, and detoxify the

body (41, 42). The JPYS formula has been widely applied in clinical

settings and previous research has highlighted its various effects in

delaying CKD progression. However, there is a research gap

regarding the impact of the JPYS formula on immune function,

which is crucial in understanding its potential therapeutic effects.

This study employed network pharmacology, RNA-seq,

proteomic and metabolic analysis both in vivo and in vitro. We

hypothesize that the JPYS formula elevates betaine levels in the

kidney, thereby impacting amino acid synthesis and metabolism,

particularly in pathways related to glycine, serine, and threonine

metabolism. Ultimately, this modulation appears to influence

macrophage polarization, which may represent a potential target

for the JPYS formula in order to mitigate inflammatory injury and

provide protection against CKD. Additionally, the study explored

the formula’s role in immune regulation, inflammation modulation,

in macrophage polarization, and its impact on metabolic changes to

inhibit the progression of CKD.
5 Conclusion

Taken together, our findings suggest that the JPYS formula exerts its

therapeutic effects through multiple mechanisms. These mechanisms

include modulating inflammation, immune response, and macrophage

polarization, as well as influencing metabolic changes. The interaction

between amino acid metabolism and polarization, specifically the

involvement of tryptophan in M1 polarization and betaine in M2

polarization, is a crucial mechanism of the JPYS formula in reducing

inflammatory damage in CKD and decelerating its progression.
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Background: Colorectal cancer (CRC) is a highly heterogeneous tumor, with

significant variation in malignant cells, posing challenges for treatment and

prognosis. However, this heterogeneity offers opportunities for personalized therapy.

Methods: The consensus non-negative matrix factorization algorithm was

employed to analyze single-cell transcriptomic data from CRC, which helped

identify malignant cell expression programs (MCEPs). Subsequently, a crosstalk

network linking MCEPs with immune/stromal cell trajectory development was

constructed using Monocle3 and NicheNet. Additionally, bulk RNA-seq data were

utilized to systematically explore the relationships betweenMCEPs, clinical features,

and geneticmutations. A prognosticmodel was then established through Lasso and

Cox regression analyses, integrating clinical data into a nomogram for personalized

risk prediction. Furthermore, key genes associated with MCEPs and their potential

therapeutic targets were identified using protein-protein interaction networks,

followed by molecular docking to predict drug-binding affinity.

Results:We classified CRC malignant cell transcriptional states into eight distinct

MCEPs and successfully constructed crosstalk networks between these MCEPs

and immune or stromal cells. A prognostic model containing 15 genes was

developed, demonstrating an AUC greater than 0.8 for prognostic evaluation

over 1 to 10 years when combined with clinical features. A key drug target gene

TIMP1 was identified, and several potential targeted drugs were discovered.

Conclusion: This study demonstrated that characterization of the malignant cell

transcriptional programs could effectively reveal the biological features of highly

heterogeneous tumors like CRC and exhibit significant potential in tumor

prognosis assessment. Our research provides new theoretical and practical

directions for CRC prognosis and targeted therapy.
KEYWORDS

colorectal cancer, tumor heterogeneity, prognosis, therapy, single-cell transcriptomics,
spatial transcriptomics
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1 Introduction

Colorectal cancer (CRC) is one of the three most common

cancers worldwide and the second leading cause of cancer-related

deaths, driven by its profound molecular and cellular heterogeneity

(1–3). CRC is primarily classified into two genetic subtypes—

chromosomal instability (CIN) and microsatellite instability

(MSI)—with distinct biological behaviors and therapeutic

responses (4–7). Immune checkpoint blockade (ICB) therapy has

shown efficacy in advanced MSI-H tumors, yet most patients

remain unresponsive, underscoring the need for novel biomarkers

(8–10). Molecular subtyping approaches, such as the Consensus

Molecular Subtypes (CMS) classification, integrate bulk

transcriptomic and genomic data to stratify CRC into four

prognostic subtypes (CMS1-4) (11). However, these bulk-level

analyses fail to resolve the continuum of malignant cell states or

their dynamic crosstalk with the tumor microenvironment (TME)

(12, 13).

Recent advances in single-cell and spatial transcriptomics have

revolutionized cancer research by enabling high-resolution

dissection of tumor heterogeneity. Single-cell RNA sequencing

(scRNA-seq) and ATAC-seq reveal transcriptional and epigenetic

diversity within malignant cells, while spatial technologies map

cellular interactions in TME niches (14–17). Despite these

advances, existing studies often categorize malignant cells into

discrete subtypes or focus on isolated TME components,

neglecting the continuum of transcriptional plasticity and

bidirectional stromal-immune interactions (18–20). Traditional

methods like PCA or clustering impose rigid structures on

transcriptional data: PCA reduces variance to orthogonal

components but obscures transitional states, while clustering

forces discrete boundaries on inherently continuous programs. In

contrast, consensus non-negative matrix factorization (cNMF)

decodes continuous transcriptional dynamics, as demonstrated by

its ability to resolve plastic cell states in lung cancer (21).

To advance beyond these limitations, this study integrates single-

cell and spatial multi-omics data, applying cNMF to decode CRC

heterogeneity. We identified eight continuous transcriptional

programs (MCEPs) in malignant cells, encompassing dynamic

phenotypes such as hypoxia adaptation, partial EMT plasticity, and

glandular differentiation. By combining spatial co-localization with

pseudotime trajectory analysis of stromal and immune cells, we

uncovered how MCEPs remodel the TME through specific

regulatory nodes (e.g., TGFB1-mediated fibroblast activation,

HMGB2-dependent angiogenesis). Furthermore, we developed a

prognostic model integrating MCEP-TME interactions, validated

through protein-protein network analysis and experimental

databases to prioritize therapeutic targets.

The eight MCEPs delineate critical biological dimensions in

colorectal cancer progression (1): Inflammatory-Hypoxia Stress

Program (IHS-P) coordinates hypoxic adaptation and immune

modulation within immune-enriched niches (2); Wnt Signaling
Frontiers in Immunology 0261
Stress Program (Wnt-S-P) drives canonical Wnt activation in

tumor cores (3); Proliferation Stress Program (PS-P) governs cell

cycle progression through MYC/mTORC1 signaling (4);

Inflammatory Epithelial pEMT Program (IE-pEMT-P) bridges

interferon responses with partial EMT plasticity (5); Intermediate

pEMT Program (I-pEMT-P) mediates TGFB1-dependent stromal

activation (6); Mesenchymal pEMT Program (M-pEMT-P)

executes ECM remodeling in stromal compartments (7); Cell

Cycle Program (CC-P) regulates pan-tumoral mitotic processes

(8); Glandular Secretion Program (GS-P) maintains epithelial

differentiation near normal tissues. This framework deciphers

CRC heterogeneity through malignant cell state dynamics and

their spatial-ecological networks, enabling prognostic prediction

and therapeutic target discovery for precision oncology.
2 Materials and methods

2.1 Download and preprocessing of single-
cell and spatial transcriptomics
sequencing data

Single-cell RNA sequencing data were processed using Seurat

(v5.1.0) with rigorous quality control. Three publicly available human

colorectal cancer datasets were analyzed: GSE166555 (13 tumors, 12

normals) (22), GSE200997 (16 tumors, 7 normals) (23) from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/

geo/), and syn26844071 (141 tumors, 39 normals) (24) from the

Synapse database (https://www.synapse.org/). Doublets were

removed using Scrublet (v0.2.3), followed by gene/cell filtering

criteria: genes detected in ≥3 cells, cells expressing ≥250 genes,

UMI counts <15,000, mitochondrial gene percentage <20%, and

erythrocyte gene ratio <1%.

Spatial transcriptomics data were obtained from the 10x

Genomics Visium HD platform (8 mm resolution) and

downloaded from the official 10x Genomics website (https://

www.10xgenomics.com/), comprising a total of three samples

(25) . Qual i ty contro l was performed on the spat ia l

transcriptomics data, with spots retained for downstream analysis

meeting the following thresholds: detection of ≥10 genes, UMI

counts >20, and mitochondrial gene ratio <25%.
2.2 Cell annotation for single-cell and
spatial transcriptomics data

scRNA-seq data underwent log-normalization and

identification of highly variable genes (vst method). Batch

correction was performed using Harmony (v0.1.0). Cell types

were annotated through a two-step approach: 1) Initial

classification using SingleR (v2.6.0) and CellTypist (v1.6.3) with

canonical markers; 2) Refinement via secondary dimensionality
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reduction and iterative CellTypist-based annotation, followed by

removal of misclassified cells.

For spatial data, we implemented memory-efficient processing

by subsampling 50,000 points using SketchData. Cell type

deconvolution was performed using RCTD (v2.2.1) with scRNA-

seq data as reference. Each spatial sample underwent independent

dimensionality reduction and annotation.
2.3 Identification of malignant epithelial
cells and gene expression
program profiling

Epithelial cells were isolated from the full cell atlas and

subjected to chromosomal copy number variation (CNV) analysis

using inferCNV (v1.18.1), with normal colorectal epithelial cells as

the reference. A CNV score matrix was generated, and unsupervised

K-means clustering partitioned cells into malignant or normal

clusters based on CNV-driven cluster purity.

For malignant cell subtyping, consensus high-variance genes

were identified through 200 iterations of 75% subsampling. Genes

recurrently ranked among the top 2,500 highly variable genes in

≥150 iterations were retained. These genes underwent non-negative

matrix factorization (cNMF) to decompose the expression matrix

into gene expression programs (GEPs) and their corresponding

activity scores. The optimal number of GEPs was determined by

minimizing reconstruction error and maximizing stability via elbow

plot analysis.

To define high-weight genes within each MCEP, genes were

ranked by their absolute weights in the cNMF gene coefficient

matrix. The top 100 genes per program, exhibiting the strongest

association with each transcriptional module, were selected for

downstream spatial mapping. Spatial enrichment scores for these

gene sets were computed using the AUCell R package (v1.24.0),

enabling visualization of MCEP distribution patterns across

tissue sections.
2.4 Pseudotime analysis

Developmental trajectories were reconstructed using Monocle3

(v1.3.5) with UMAP for dimensionality reduction. Cell subtypes

were pre-annotated through immune and stromal cell clustering,

which revealed preliminary developmental hierarchies. To resolve

ambiguous differentiation origins arising from complex branching

trajectories, we implemented a hybrid strategy for root node

selection (1): For lineages with biologically established progenitor-

differentiated cell relationships (e.g., T cell and B cell hierarchies),

root nodes were manually assigned to progenitor states based on

canonical marker expression and prior biological knowledge (2);

For cell types lacking definitive developmental origins, root nodes

were computationally determined by selecting the subpopulation

with the highest transcriptional immaturity index, as quantified by

CytoTRACE2 (v1.0.0). Trajectory-associated genes were identified

using Monocle3’s graph_test function with “neighbor_graph=
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principal_graph” to evaluate gene expression dynamics along

reconstructed paths.
2.5 Expression program crosstalk networks

Intercellular crosstalk networks were constructed by defining

trajectory-associated genes (Moran’s |I| > 0.25, q < 0.05) from each

malignant cell population as target gene sets. For each MCEP, the

top 100 weighted genes in expression programs were selected as

candidate regulators. Ligand-target interactions were predicted

using NicheNet (v2.1.5), generating regulatory potential matrices

where malignant cell regulators were prioritized based on their

capacity to modulate target gene sets. Potential interactions in the

lowest tertile of regulatory scores were nullified to eliminate

spurious associations. Final immune and stromal interaction

networks were reconstructed in Cytoscape (v3.10.2) using

thresholded matrices for edge weighting.
2.6 Bulk sequencing data sources

Bulk RNA-seq data and simple nucleotide variation (SNV) data

for colorectal cancer were obtained from The Cancer Genome Atlas

(TCGA) database (https://www.cancer.gov/ccg/research/genome-

sequencing/tcga). Using the R package TCGAbiolinks (v2.30.4),

we retrieved RNA-seq data from 581 colorectal cancer patients and

51 normal colorectal control samples, along with SNV data for 538

patients. Clinical data for TCGA patients and pan-cancer gene

expression profiles were additionally acquired from the UCSC Xena

database (https://xena.ucsc.edu/).

To complement TCGA data, gene expression microarray

datasets and corresponding clinical information were downloaded

from the GEO database. Datasets included GSE39582 (26),

GSE17536 (27), GSE17537 (27), GSE29621 (28), GSE38832 (29),

GSE143985 (30), and GSE161158 (31), all generated on the GPL570

platform. From GSE39582, GSE17536, GSE17537, GSE29621, and

GSE38832, overall survival (OS) data were extracted. After filtering

samples with missing survival time, status, or non-positive survival

time, 573, 177, 55, 65, and 122 samples were retained, respectively.

Disease-free survival (DFS) and recurrence/survival status data

were obtained from GSE143985 and GSE161158. Following

s imi l a r qua l i t y con t ro l , 91 and 174 sample s wer e

retained, respectively.
2.7 Differential and enrichment analyses

To further investigate the changes in expression program-

related genes at the bulk level, we integrated two distinct gene

cohorts: 1) the top 100 weighted genes from each MCEP module,

and 2) computationally predicted target genes in the MCEP-

immune/stromal cell crosstalk network. Differential gene

expression analysis was performed on this merged gene set using

bulk RNA-seq data from the TCGA cohort through the R package
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DESeq2 (version 1.42.1). Statistical significance was defined as

absolute Fold Change > 1.5 and padj < 0.05. Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were subsequently conducted on the identified

differentially expressed genes (DEGs) using the clusterProfiler

package (version 4.2.2) to characterize their functional roles.
2.8 Consensus clustering and intra-
cluster comparison

Differentially expressed genes from TCGA were subjected to

univariate Cox regression analysis (survival package v3.5-8, p<0.05)

to identify survival-associated genes. Consensus clustering via

ConsensusClusterPlus (v1.66.0) with 500 bootstraps (80% sample

resampling) and K-means (Euclidean distance) identified optimal

clusters (k=2-10) by evaluating consensus matrices and cumulative

distribution functions (CDF). Subtype-specific survival differences

were assessed by Kaplan-Meier analysis, while chi-square tests

evaluated clinical characteristics (gender, age, stage). Mutation

landscapes were visualized using maftools (v2.18.0), highlighting

the top 15 recurrently mutated genes per subtype.
2.9 Construction of the prognostic model

Gene expression data were obtained from TCGA and seven

GEO datasets (GSE39582, GSE17536, GSE17537, GSE29621,

GSE38832, GSE143985, GSE161158). Batch effects were mitigated

through z-score normalization followed by batch correction using

the `removeBatchEffect` function (limma package v3.58.1). The

TCGA and GSE39582 cohorts were partitioned into a training set

(70% of samples) and an internal validation set (30%), while

remaining datasets served as external validation cohorts.

To address feature redundancy, genes identified by univariate

Cox regression (p < 0.05) were subjected to Lasso regression

(glmnet v4.1-4) for dimensionality reduction. A stepwise

backward Cox regression was then applied to optimize model

complexity by minimizing the Akaike Information Criterion (AIC).

Risk scores were computed for all samples across training and

validation cohorts. Survival differences between high- and low-risk

groups (stratified by median risk scores) were evaluated using

Kaplan-Meier analysis with log-rank tests. Predictive performance

was quantified via time-dependent ROC curves and AUC values.

Model robustness and clinical applicability were systematically

validated across internal and external datasets using survival

outcomes and AUC consistency.
2.10 Bulk immune landscape and
calculation of single-cell and spatial
risk scores

To explore the biological relevance of our prognostic model, we

performed tumor immune microenvironment analysis on the
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TCGA cohort using the IOBR package (v0.99.9). Immune cell

composition was quantified by integrating eight computational

algorithms (MCPcounter, EPIC, xCell, CIBERSORT, IPS,

quanTIseq, ESTIMATE, and TIMER). Spearman correlation

analysis was then applied to evaluate associations among immune

infiltration scores, prognostic feature gene expression, and sample

risk scores.

For single-cell and spatial transcriptomic data, we adapted our

risk scoring approach to address inherent data sparsity. Based on

the regression coefficients from the linear prognostic model, feature

genes were partitioned into two subsets: a positive-coefficient subset

(PosRisk genes) and a negative-coefficient subset (NegRisk genes).

The AddModuleScore function was employed to calculate

PosRiskScore and NegRiskScore for each subset independently.

Final RiskScore was derived as PosRiskScore minus NegRiskScore.

This strategy enabled robust quantification of model-associated

biological processes at cellular and spatial resolutions while

mitigating technical limitations of sparse transcriptomic data.
2.11 Construction of a nomogram

Univariate Cox regression analysis was performed on TCGA

cohort data to preliminarily identify variables (risk score, age,

gender, tumor stage, and other clinical features) associated with

overall survival. Subsequently, multivariate Cox regression analysis

incorporating all candidate variables without prior feature selection

was conducted to evaluate their independent prognostic

contributions while adjusting for potential confounders.

A nomogram integrating the risk score and significant clinical

predictors was developed using the regplot package (v1.1) to

visualize survival probability estimates. Time-dependent receiver

operating characteristic (ROC) analyses spanning 1-10 years were

implemented to quantify predictive accuracy through area under

the curve (AUC) calculations. Model calibration was validated using

the rms package (v6.8-1) by comparing predicted versus observed

survival probabilities via bootstrapped calibration curves (1,000

resamples). Clinical utility was further assessed through decision

curve analysis (DCA) using the rmda package (v1.6), which

quantified net benefits across threshold probabilities ranging from

0% to 100%. This comprehensive validation framework ensures

methodological rigor and supports clinical translation of the

prognostic model.
2.12 Key genes identification with
malignant cell expression programs and
drug screening

Differential expression analysis was performed on prioritized

genes derived from malignant cell expression programs and their

microenvironment-associated targets. Resultant genes were

analyzed through the STRING database (https://cn.string-db.org/)

to construct protein-protein interaction (PPI) networks, which were
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further visualized and analyzed in Cytoscape (v3.9.1). Core hub

genes were systematically identified using the cytoHubba plugin

(v0.1) with four topology-based algorithms: MNC, MCC, DMNC,

and Degree.

Expression differences of candidate genes between tumor and

adjacent normal tissues were statistically validated using the

Wilcoxon rank-sum test. Immunohistochemical images from The

Human Protein Atlas (HPA, https://www.proteinatlas.org/) were

utilized as supporting evidence.

For therapeutic exploration, three-dimensional structures of

key t a rg e t s we r e r e t r i ev ed f rom UniPro t (h t tp s : / /

www.uniprot.org/), and 2,391 FDA-approved small-molecule

drugs were sourced from DrugBank (https://go.drugbank.com/).

Structural data standardization was implemented using rdkit

(v2023.9.6) and meeko (v0.5.1), followed by protein active site

prediction via the Prankweb database (https://prankweb.cz/).

Molecular docking simulations were executed with AutoDock

Vina (v1.2.5), prioritizing compounds based on binding affinity

(DG, kcal/mol). The top two ligands exhibiting optimal docking

scores were selected for binding conformation visualization using

PyMOL (v3.1.0a0).
2.13 Software and data analysis tools

Single-cell and spatial transcriptomic analyses were performed

using R (v4.3.2), with the cNMF algorithm (https://github.com/

dylkot/cNMF) implemented in Python (v3.8.19). Drug virtual

screening was conducted using Python (v3.10.14). Data

visualization was facilitated by R packages, including SCP

(v0.5.6), ggplot2 (v3.5.1), and ComplexHeatmap (v2.18.0).

Univariate and multivariate Cox regression analyses were

executed using the survival package (v3.5-8), while time-

dependent AUC values were computed with the timeROC

package (v0.4). Kaplan-Meier survival curves were generated

using the survminer package (v0.4.9).
3 Results

3.1 Identification of malignant cells and
characterization of heterogeneous
expression programs

In this study, we integrated single-cell transcriptomic data from

three datasets (GSE166555, GSE200997, and syn26844071),

comprising 58 normal colorectal samples and 170 CRC samples.

Following rigorous quality control and dimensionality reduction, a

total of 320,475 cells were classified into 10 major cell types: B cells,

T/NK cells, epithelial cells, plasma cells, fibroblasts, myeloid cells,

endothelial cells, mast cells, mural cells, and enteric glial

cells. Among these, T/NK cells were the most abundant (135,789

cells), followed by myeloid cells and fibroblasts (Figure 1A,

Supplementary Figure S1-Supplementary Figure S2, and

Supplementary Figure S3A-G). These refined annotations were
Frontiers in Immunology 0564
applied to three high-resolution spatial transcriptomic datasets

(ST1, ST2, ST3), enabling the visualization of the spatial

distribution of different cell types within colorectal cancer

tumors (Figure 1B).

To further investigate CRC heterogeneity, epithelial cell data

were extracted from the comprehensive cell atlas. To ensure the

purity of the epithelial cells, we re-annotated them using the SingleR

and CellTypist algorithms, removing incorrectly classified cells

(Supplementary Figure S4A-B). CNV scoring was performed on

epithelial cells from tumor samples using the inferCNV algorithm,

with normal epithelial cells serving as the reference. K-means

clustering of the CNV score matrix revealed that epithelial cells

from normal samples predominantly clustered in clusters 10, 15,

and 25, exhibiting no significant CNV alterations. In contrast,

epithelial cells from tumor samples showed clear gene copy

number alterations, distinguishing them as malignant cells

(Figure 1C, Supplementary Figure S4C). Malignant epithelial cells

were identified by excluding clusters 10, 15, and 25 from the

tumor samples.

Given the high heterogeneity of CRC cells, traditional clustering

methods were insufficient to fully capture their complexity.

Therefore, we applied the cNMF algorithm, which demonstrated

high stability and low error when set to eight expression programs

(Figure 1D). Consensus analysis confirmed the robustness of these

eight expression programs, with substantial consistency across

repeated experiments and outliers identified using a threshold of

0.05 (Figure 1E, Supplementary Figure S4D). These eight stable

expression programs effectively captured the transcriptional

characteristics of malignant CRC cells, providing a reliable

framework for further analysis of CRC heterogeneity.

To visualize the spatial distribution of these MCEPs, we applied

the AUCell algorithm to spatial transcriptomic data, scoring each

sample based on the top 100 weight genes of each program.

Enrichment analysis of the top 100 weight genes from each

program was conducted, primarily referencing a gene set from

the study by Barkley, D. et al. on pan-cancer tumor cell

heterogeneity, supplemented with enrichment results from

Hallmark Gene Sets and KEGG Pathways (32). This analysis

revealed that MCEP 1, 2, and 7 were associated with stress

responses. MCEP 1 was enriched in pathways related to hypoxia,

antigen processing and presentation, chemokine signaling, and IL-

17 signaling, while MCEP 2 was enriched inWnt signaling. MCEP 7

was enriched in cell proliferation-related pathways, including the

G2M checkpoint, mTORC1 signaling, and Myc targets V1. These

programs were categorized as Inflammatory-Hypoxia Stress

Expression Program (IHS-P), Wnt Signaling Stress Expression

Program (Wnt-S-P), and Proliferation Stress Expression Program

(PS-P), respectively. The spatial distribution of these MCEPs

showed that IHS-P was prevalent in malignant and immune cell-

rich regions, while Wnt-S-P and PS-P were more confined to

malignant cells (Figures 1F, G).

Additionally, MCEP 3, 4, and 6 were associated with pEMT

states. MCEP 3 was enriched in pEMT states and interferon

responses, with higher spatial scores observed in both malignant

and normal epithelial cells. MCEP 6, enriched in mesenchymal,
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FIGURE 1

Functional characterization of malignant cell expression programs in colorectal cancer. (A) UMAP visualization of major cell types color-coded by
cell lineage following quality control. (B) Spatial mapping of cell type distributions across three independent colorectal cancer specimens (ST1-3)
using spatial transcriptomics. (C) Copy number variation (CNV) heatmap of epithelial cells stratified by k-means clustering (left panel). Tumor-derived
cells (red) and normal counterparts (blue) are segregated based on chromosomal amplification (red) and deletion (blue) patterns. (D) Model selection
curve demonstrating the optimal number of expression programs determined by consensus non-negative matrix factorization (CNMF), balancing
stability and reconstruction error. (E) Consensus matrix establishing robust program identification. (F) Spatial activation patterns of MCEPs across
tumor sections (ST1-3). (G) Functional enrichment analysis integrating pan-cancer malignant cell states (Barkley et al.), Hallmark gene sets, and
KEGG pathways.
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myogenesis, and ECM-receptor interaction pathways, displayed

preferential spatial scores in the stromal compartment. Based on

these findings, MCEPs 3, 4, and 6 were categorized as Inflammatory

Epithelial-type pEMT Program (IE-pEMT-P), Intermediate Type

pEMT Expression Program (I-pEMT-P), and Mesenchymal Type

pEMT Expression Program (M-pEMT-P), respectively. The spatial

distributions and enrichment results for these programs are shown

in Figures 1F, G.

MCEP 5, enriched in cell cycle-related pathways such as Cell

Cycle, E2F Targets, and G2M checkpoint, exhibited a dispersed

spatial distribution across malignant and epithelial cells, and was

categorized as the Cell Cycle Expression Program (CC-P). MCEP 8,

primarily enriched in glandular and protein processing pathways in

the endoplasmic reticulum, showed a preference for normal

epithelial cells and was categorized as the Glandular Secretion

Expression Program (GS-P). The spatial distributions and

enrichment analyses for MCEP 5 and MCEP 8 are also shown in

Figures 1F, G.
3.2 Crosstalk networks between malignant
cells and immune cells mediated by
differential MCEPs

To investigate the cell-cell interactions between malignant cells

and immune cells, we first extracted each immune cell type (T/NK

cells, B/plasma cells, and myeloid cells) from the comprehensive cell

atlas for further detailed cell type annotation. T/NK cells were

subdivided into 16 subpopulations, including CD4 Naive, CD4

Effector/Memory, and ILC; B/plasma cells were further

categorized into 6 subpopulations, such as Naive B, Memory B,

and IgA Plasma; Myeloid cells were divided into 10 subpopulations,

including Macro_C1QC, Mast cells, and Mono_CD16 (Figure 2A,

Supplementary Figure S5-7). Subsequently, pseudotime analysis

was performed based on the secondary annotation results of each

immune cell type and the stemness scores of each cell type, leading

to the identification of genes associated with developmental

trajectories in each immune cell population (Figure 2B,

Supplementary Figure S8A).

These genes, associated with the pseudotime developmental

trajectory of immune cell subsets, were used as target gene sets. For

each MCEP, we selected the top 100 weighted genes in the

expression programs as candidate regulators (Figure 2C). Among

the three stress-related MCEPs, IHS-P had the highest number of

regulatory factors, with HLA-DMA and PLAU affecting more target

genes than other factors. In the three pEMT-related MCEPs, I-

pEMT-P had the most regulatory factors, with TGFB1 having the

greatest potential impact. Regulatory factors EDN1 and AREG were

also abundant and shared between I-pEMT-P and IHS-P. In CC-P,

HMGB1 had the most target genes, while TFF1 and WNT4 were

more prominent in GS-P.

Regarding immune cell responses to MCEP crosstalk, TGFB1

and CALR were the main regulatory factors influencing T/NK cells,

with TGFB1 originating from I-pEMT-P and CALR from IHS-P

(Figure 2C, Supplementary Figure S9A, Supplementary Figure
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S10A). Notable downstream target genes of TGFB1 in T/NK cells

included CCL3, FOXP3, and GZMB. For B/plasma cells, EDN1 and

TGFB1 were the main regulatory factors, with EDN1 shared

between IHS-P and I-pEMT-P (Figure 2C, Supplementary Figure

S9B, Supplementary Figure S10B). Potential target genes of EDN1

in B cells included NCF1, PTPRC, and SLC2A3, while TGFB1 target

genes included TIMP1, VIM, and CD38. In myeloid cells, the

primary regulatory factors were TGFB1 and ANXA1, with

ANXA1 originating from I-pEMT-P (Figure 2C, Supplementary

Figure S9C, Supplementary Figure S10C). Potential target genes of

TGFB1 in myeloid cells included ASB2, IGF1, and MMP9.

KEGG pathway enrichment analysis of the potential target

genes in these immune cell subsets revealed significant biological

insights (Figure 2D). The target genes of T/NK cells regulated by

malignant cells were enriched in pathways such as Cytokine

−cytokine receptor interaction, Th17 cell differentiation, and

Chemokine signaling pathway, indicating a key role of cytokine

networks in anti-tumor immune responses. The potential target

genes of B/plasma cells were enriched in pathways such

as Fc gamma R−mediated phagocytosis and Leukocyte

transendothelial migration, suggesting their role in tumor-

associated immunosuppression. In myeloid cells, the target genes

regulated by malignant cells were enriched in IL−17 signaling

pathway and TNF signaling pathway, highlighting their

involvement in immune regulation and inflammation within the

tumor microenvironment. These findings provide valuable

biological insights for the development of future cancer therapies.
3.3 Crosstalk networks between malignant
cells and stromal cells mediated by
differential MCEPs

To investigate the effects of malignant cells on stromal cells, we

performed detailed cell type annotation and stemness analysis on

four stromal cell types: endothelial cells, mural cells, fibroblasts, and

enteric glial cells, using methods similar to those employed for

immune cell analysis (Figure 3A, Supplementary Figure S8B,

Supplementary Figure S11-14). By integrating detailed

annotations and stemness analysis, we reconstructed the

developmental trajectories of these stromal cells and identified

genes associated with their development (Figure 3B). We used

high-weight genes from each MCEP as ligands to identify

potential target genes in stromal cells associated with pseudotime

trajectories, constructing a crosstalk network between malignant

and stromal cells (Figure 3C).

Regarding regulatory factors in MCEPs affecting stromal cells,

IHS-P had the highest number of potential regulatory factors, with

PLAU affecting the most target genes. In Wnt-S-P, MIF was the

only potential regulatory factor, while HSP90B1 and CDH1 were

found in PS-P. Among the pEMT-related MCEPs, M-pEMT-P had

more potential regulatory factors than the others, with BMP4

having the most target genes. I-pEMT-P’s top regulatory factor

was TGFB1, with AREG and EDN1 also shared with IHS-P. CC-P

had two regulatory factors, HMGB1 and HMGB2, with HMGB1
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affecting more target genes, although HMGB2 exhibited stronger

interactions with certain stromal targets. TFF1 was the top

regulatory factor in GS-P.

From a stromal cell perspective, the key regulatory factors for

endothelial cells were HMGB2, TGFB1, and EDN1. HMGB2 target

genes, associated with proliferative endothelial cells, included

ASPM, AURKB, and BIRC5 (Figure 3C, Supplementary Figure
Frontiers in Immunology 0867
S15A, Supplementary Figure S16A). TGFB1 and EDN1 target

genes, including CTGF, EDN1, IGF1, and CALCRL, are mainly

involved in angiogenesis. For mural cells, HMGB2, TGFB1, and

EDN1 were the main regulatory factors, with HMGB2 targets such

as FOXM1, KIF20A, and KIF2C, expressed in proliferative mural

cells. TGFB1 and EDN1 targets included CDKN1A, CNN1,

COL1A1, and EDNRB, contributing to cell proliferation and
FIGURE 2

Crosstalk networks between MCEPs and immune cells. (A) Secondary dimensionality reduction annotation of three immune cell types (T/NK cells, B/
Plasma cells, Myeloid cells). (B) Pseudotemporal trajectories reconstructed by Monocle3 for T/NK cells, plasma cells, and myeloid cells. (C) Ligand-
receptor interaction network between MCEP-derived factors (circles, size scaled by target connectivity) and immune cell targets (diamonds, line
width reflecting interaction strength). (D) Pathway enrichment analysis of target genes using hypergeometric testing, showing top five KEGG
pathways per immune subset (point size: gene count; color intensity: -log10[P-value]).
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stromal stability (Figure 3C, Supplementary Figure S15B,

Supplementary Figure S16B). In fibroblasts, HMGB2, TGFB1, and

EDN1 were also key regulatory factors, with TGFB1 target genes

including NOX4, THBS2, and DES (Figure 3C, Supplementary

Figure S15C, Supplementary Figure S16C). Enteric glial cells had

fewer potential crosstalk genes, with top regulatory factors ANXA1,

TIMP1, and HLA-A, and target genes such as COL1A1 and
Frontiers in Immunology 0968
COL3A1, which may support tumor structure and growth

(Figure 3C, Supplementary Figure S15D, Supplementary Figure

S16D). Overall, the primary regulatory factors influencing stromal

cell crosstalk were HMGB2, TGFB1, and EDN1, with HMGB2

regulating cell cycle-related targets.

Additionally, KEGG pathway enrichment analysis of potential

crosstalk target genes for each stromal cell type revealed significant
FIGURE 3

Crosstalk networks between MCEPs and stromal cells.(A) Secondary dimensionality reduction annotation of four stromal cell types (endothelial cells,
mural cells, fibroblasts, and enteric glial cells). (B) Pseudo-temporal trajectory analysis of four stromal cell subtypes (endothelial cells, mural cells,
fibroblasts, and enteric glial cells) shown through UMAP visualization. Color gradient (purple to yellow) indicates developmental progression from
early to late stages. (C) Ligand-receptor interaction network between stromal cell-derived ligands (circles) and immune cell targets (diamonds). Node
size corresponds to ligand-associated target quantity, line thickness represents interaction strength. (D) KEGG pathway enrichment of stromal cell
target genes. Top five non-disease related pathways are displayed with point size indicating gene count and color intensity showing significance
level (-log10[P-value]).
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biological insights (Figure 3D). Endothelial cell targets were

enriched in pathways such as the p53 signaling pathway, FoxO

signaling pathway, Cellular Senescence, and Cell Cycle, suggesting

their adaptability in the tumor microenvironment. Mural cell

targets were enriched in the Cell Cycle, p53 signaling pathway,

Focal Adhesion, Relaxin signaling pathway, and ECM-receptor

interaction, emphasizing their roles in cell proliferation and

matrix remodeling. Fibroblast targets were enriched in the

Relaxin signaling pathway, Focal Adhesion, IL-17 signaling

pathway, Protein Digestion and Absorption, and TNF signaling

pathway, reflecting their dual role in immune regulation and matrix

homeostasis. Enteric glial cell targets were enriched in IL-17

signaling, TNF signaling, Relaxin signaling, Osteoclast

differentiation, and Protein Digestion and Absorption pathways,

indicating their role in immune function and matrix support in the

gut microenvironment.
3.4 MCEPs validation in CRC progression
and development of MCEPs-related
prognostic model

We conducted a validation study using the TCGA CRC cohort

to explore the relationship between the 8 MCEPs and CRC

progression. First, we merged two gene sets: 1) the top 100

weighted genes from each MCEP module, and 2) predicted target

genes from the MCEP-immune/stromal cell interaction network.

Differential expression analysis was then performed comparing

tumor versus normal tissues. This analysis identified 323

upregulated genes and 215 downregulated genes (Figure 4A).

To validate the relationship between these MCEPs and CRC

onset and progression, we conducted univariate Cox regression

analysis and identified 75 differentially expressed genes (DEGs)

associated with survival, including 26 risk genes and 49 protective

genes (Figure 4B). Clustering analysis based on these genes divided

the TCGA cohort into two subtypes (Figure 4C, Supplementary

Figure S17). Survival analysis revealed significant differences

between the subtypes, with patients in subtype C1 showing

significantly higher survival rates compared to those in subtype

C2 (Figure 4D). Chi-square tests indicated significant differences in

tumor stage, lymph node metastasis, and distant metastasis,

suggesting that tumors in the C2 subtype progressed more rapidly

and were more prone to metastasis compared to those in the C1

subtype (Figure 4E).Genomic analysis revealed that the most

frequently mutated genes in subtype C1 were APC (70%), KRAS

(48%), and TP53 (47%) (Supplementary Figure S18A), while in

subtype C2, the most frequently mutated genes were APC (81%),

TP53 (74%), and TTN (44%) (Supplementary Figure S18B).

A prognostic model for assessing CRC patient survival was

developed using the identified genes. LASSO regression analysis was

performed to reduce the feature set from the 75 survival-related

DEGs identified in the previous study to 29 genes at the minimum l
value (l = 0.0153), including genes such as CLCA1, NPDC1, and

MUC16 (Figures 4F, G). A backward stepwise Cox regression

method was then applied to further reduce the feature set to 15
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genes, with the regression coefficients visualized in a lollipop plot.

The combination of LASSO and backward stepwise Cox regression

methods enabled the identification of the most robust prognostic

markers, minimizing overfitting while ensuring the model’s

predictive accuracy. Thus, these 15 genes were selected to

establish the final prognostic model. Seven features had positive

coefficients, with CLCA1 having the largest coefficient, while eight

features had negative coefficients, with ITLN1 showing the largest

absolute coefficient (Figure 4H).

In the training set, internal testing set, and external independent

validation set, samples were divided into high-risk and low-risk

groups based on the median risk score for each dataset. Significant

survival differences were observed between the two groups

(Figures 4J, K). In the training set, the AUC values for 1-year, 3-

year, and 5-year survival were all greater than 0.7; in the internal

testing set, the AUC value for 1-year survival was greater than 0.7,

while those for 3-year and 5-year survival were above 0.65 (Figure 4I).

The model also demonstrated excellent predictive performance in the

independent validation set, with only GSE17536 showing a 5-year

survival AUC value lower than 0.65. For all other datasets, the AUC

values for 1-year, 3-year, and 5-year survival were all greater than

0.65. Notably, the GSE29621 dataset showed AUC values for 1-year,

3-year, and 5-year survival above 0.7, and the GSE38832 dataset

exhibited even higher AUC values for all three survival endpoints,

with values exceeding 0.75 (Figure 4I).

To further validate the prognostic prediction capability of this

model, we assessed its ability to predict disease-free survival (DFS)

in the GSE143985 and GSE161158 datasets. Samples were divided

into risk groups based on the median predicted risk score, and

significant differences in DFS were observed between the groups

(Figure 4L). In GSE143985, the AUC values for 1-year and 3-year

DFS were above 0.65, with the 5-year DFS AUC value approaching

0.65. In GSE161158, the corresponding AUC values for DFS were

above 0.65 (Figure 4I). The model was further validated in the

TCGA cohort for disease-specific survival (DSS), progression-free

interval (PFI), and disease-free interval (DFI), showing excellent

predictive performance for DSS and PFI, with significant differences

in median survival times (Figure 4M). For DSS, the AUC values

for 1-year, 3-year, and 5-year survival were all above 0.7,

and for PFI, the AUC values were above 0.65 (Figure 4I).

Notably, the model consistently achieved stable predictive

accuracy across six independent validation cohorts (GSE17536,

GSE17537, GSE29621, GSE38832, GSE143985, and GSE161158)

and multiple clinical endpoints (OS, DFS, DSS, PFI), highlighting its

strong generalizability to diverse patient populations and

survival outcomes.
3.5 Multidimensional biological
interpretation of the prognostic model

To gain further insights into the biological underpinnings of the

prognostic model, the cellular abundance of various cell types in the

TCGA cohort was first calculated using deconvolution methods.

Next, the correlation between each gene in the prognostic model
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and the cell scores was computed, revealing that CCL11, IGF1, and

IGFBP3 were significantly correlated with multiple cell types.

Specifically, these genes were positively correlated with cancer-

associated fibroblasts, stromal score, and Tregs, while negatively

correlated with tumor purity (Figure 6A).

The model was then further dissected at the single-cell level.

Using genes with positive coefficients, a PosRiskScore for each cell

was calculated, and similarly, a NegRiskScore was calculated using

genes with negative coefficients. The total RiskScore for each cell was

derived by computing the difference between PosRiskScore and
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NegRiskScore. The distribution of these scores was first visualized,

and distinct distribution patterns for PosRiskScore and NegRiskScore

were observed (Figure 6B). Specifically, PosRiskScore was found to be

higher in endothelial cells and pre-cancer-associated fibroblasts

(preCAFs), potentially linked to angiogenesis and epithelial-

mesenchymal transition. In contrast, NegRiskScore was elevated in

iCAFs, epithelial cells, normal fibroblasts, and myeloid immune cells,

with NegRiskScore correlating with iCAFs and myeloid immune

cells, which might reflect the inflammatory characteristics of the

tumor microenvironment. Higher scores in epithelial cells were also
FIGURE 4

Validation of MCEPs in CRC progression and development of MCEPs-related prognostic models. (A) Volcano plot of differentially expressed genes (|
FC| > 1.5, adjusted p < 0.05). (B) Univariate Cox survival analysis of prognostic genes (HR>1, red: risk factors; HR<1, blue: protective factors; p<0.05).
(C) Consensus clustering matrix for two molecular subtypes. (D) Kaplan-Meier survival comparison between subtypes. (E) Clinical feature distribution
across subtypes (c² test). (F) LASSO coefficient profiles of candidate genes. (G) Optimal l selection through 10-fold cross-validation (minimum
deviance criterion). (H) Final model features with corresponding regression coefficients. (I) AUC values of the prognostic model across different
datasets and prognostic indicators at 1-, 3-, and 5-year time points. (J-M) Kaplan-Meier survival curves stratified by median risk score in: (J) Training
and internal validation sets; (K) External independent validation set; (L) DFS-specific dataset; (M) TCGA cohort with distinct survival endpoints.
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observed, which could be indicative of a more epithelial-like

phenotype associated with partial EMT processes (Figure 6C).

Furthermore, the analysis was extended to the spatial

transcriptomics level. It was shown that PosRiskScore was

predominantly localized in the stromal regions of malignant cell

areas, while NegRiskScore was mainly concentrated in the epithelial

regions. Consequently, the final RiskScore had the lowest score in

the epithelial areas and the highest score in the stromal regions, with
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similar distribution patterns observed across three samples

(Figure 6D). Overall, the positive coefficient features in the

prognostic model were likely to represent higher levels of

mesenchymal traits associated with pEMT, while the negative

coefficient features were likely linked to a more inflammatory

microenvironment and epithelial characteristics of pEMT. Thus,

the final RiskScore reflected the relative balance between epithelial-

mesenchymal features and the degree of inflammation in the
FIGURE 5

Clinical prognostic value and nomogram construction. (A) Forest plots of univariate Cox regression analyses for RiskScore and clinicopathological
parameters (gender, age, tumor stage). (B) Forest plots of multivariate Cox regression analyses for RiskScore and clinicopathological parameters
(gender, age, tumor stage). (C) Clinical nomogram integrating T/N staging, tumor stage, age, gender, and RiskScore. (D) Time-dependent ROC
analysis (1-10 years) for nomogram performance. (E) Calibration curves comparing predicted vs observed survival probabilities at 1/3/5 years. (F)
Decision curve analysis evaluating clinical utility across threshold probabilities.
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tumor microenvironment, offering valuable insights into

patient prognosis.
3.6 Integration of risk score and clinical
features to construct a nomogram for
prognosis prediction

To enhance the prognostic accuracy and clinical applicability of

the model, univariate Cox regression analysis was performed on
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age, gender, clinical stage, Stage_T, Stage_N, Stage_M, and

RiskScore (Figure 5A). Significant survival risk factors were

identified for all features except gender. In multivariate Cox

regression analysis, age, Stage_T, and RiskScore were found to be

independently associated with survival, confirming RiskScore as an

independent prognostic factor (Figure 5B).

A nomogram was subsequently constructed, incorporating age,

gender, clinical stage, Stage_T, Stage_N, and RiskScore (Figure 5C).

It was demonstrated that the nomogram improved clinical

decision-making compared to traditional staging systems through

three key mechanisms: First, continuous risk quantification allowed
FIGURE 6

Multidimensional biological interpretation of prognostic signatures. (A) Spearman correlation heatmap between model genes and deconvoluted
immune cell populations (red: positive, blue: negative). (B) Single-cell UMAP projections visualizing risk-associated signatures: PosRiskScore (positive
coefficient genes), NegRiskScore (negative coefficient genes), and composite RiskScore. (C) Dot plot displaying cell type-specific enrichment of risk
signatures (dot size: scoring cell proportion; color intensity: score magnitude). (D) Spatial distribution patterns of risk signatures across three
representative specimens (ST1-ST3).
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for more precise stratification of patient outcomes than categorical

staging classifications. Second, the multidimensional integration of

molecular risk scores with clinicopathological parameters provided

complementary prognostic information that surpassed the

limitations of anatomical staging alone. Third, the dynamic

estimation of survival probability for specific timepoints (1-10

years) facilitated personalized follow-up planning and therapeutic

decision-making. Stage_M was excluded from the analysis due to

collinearity with overall stage.

Excellent predictive performance was demonstrated by the

nomogram, with AUC values exceeding 0.8 for survival

predictions at 1, 3, 5, and 10 years (Figure 5D). Strong agreement

between predicted and actual survival probabilities was observed in

calibration curves for 1, 3, and 5 years (Figure 5E). Clinical decision

curve analysis revealed that the nomogram consistently provided

higher net benefits across various threshold probabilities when

compared to both individual clinical parameters and traditional

staging systems (Figure 5F). The enhanced clinical utility of the

nomogram was attributed to its ability to synthesize molecular

biomarkers with conventional staging data, addressing the

heterogeneity within traditional stage categories and enabling

more individualized risk assessment. These findings collectively

validated the effectiveness and clinical applicability of the

proposed model.
3.7 Potential drug therapeutic targets
based on MCEPs

To identify actionable therapeutic targets in CRC, we

systematically analyzed 538 DEGs through PPI network

construction. Four distinct topological algorithms (MNC, MCC,

DMNC, Degree) were employed to prioritize the top 100 hub genes

from the PPI network. Subsequent survival impact analysis revealed

that TIMP1 and IGF1 emerged as prognostic risk genes among

these hub genes. Notably, TIMP1 exhibited consistent identification

across all four algorithms, whereas IGF1 was only captured byMNC

and Degree algorithms (Figure 7A). Based on its algorithm-

independent prioritization and significant association with poor

prognosis, TIMP1 was selected as the principal therapeutic target

for further investigation.

Pan-cancer expression profiling demonstrated significant

TIMP1 upregulation in 15 malignancies (including colorectal

adenocarcinoma [COAD], breast invasive carcinoma [BRCA],

and cholangiocarcinoma [CHOL] as representative examples),

while downregulation was observed in 10 cancer types

(exemplified by kidney chromophobe [KICH] and lung squamous

cell carcinoma [LUSC]) with no significant alterations detected in

other malignancies (Figure 7B). Immunohistochemical validation

via the Human Protein Atlas confirmed elevated TIMP1 protein

levels in CRC, breast cancer, glioma, hepatocellular carcinoma, and

gastric adenocarcinoma (Figure 7C), underscoring its pan-

cancer relevance.
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Virtual screening of 2,000 bioactive compounds against the

TIMP1 structure identified Venetoclax (DG = -12.236 kcal/mol)

and Lumacaftor (DG = -12.129 kcal/mol) as top candidates with

superior binding affinities (Figure 7D). Molecular docking

simulations predicted stable interactions between these

compounds and key TIMP1 functional domains.

These findings computationally nominate TIMP1 as a multi-

cancer therapeutic target, with the identified small-molecule

inhibitors warranting preclinical evaluation for targeted therapy

development in CRC and other TIMP1-driven malignancies.
4 Discussion

In this study, we re-examined the biological characteristics of

CRC by leveraging prior research on malignant cell transcriptional

signatures and identified eight major MCEPs (32). These programs

encompass three stress-related categories (hypoxia-inflammation,

Wnt-related, and proliferation), three EMT subtypes (inflammatory

epithelial, intermediate, and mesenchymal), one cell cycle category,

and one glandular secretion category. Each program is critically

linked to functional roles in regulating malignant cell proliferation,

migration, drug resistance, metastasis, and patient prognosis (33–36).

Traditional molecular subtyping approaches, such as those based on

hypoxic metabolism, cellular senescence, or microenvironmental cell

markers (37–39), often oversimplify tumor heterogeneity. Solid

tumors are multifactorial systems, and reliance on binary

phenotypic classifications risks underestimating inter-individual

variability and obscuring underlying biological processes, thereby

limiting the molecular interpretability of subtypes.

To address this, we employed a programmatic state-based

framework to characterize CRC gene expression, accounting for

potential confounders and mutual exclusivity between states.

Importantly, we emphasized continuity within each state rather

than discrete isolation. For instance, malignant cell partial EMT

was defined as a tripartite continuum (mesenchymal, intermediate,

and epithelial), aligning with the evolving concept of “epithelial-

mesenchymal plasticity” endorsed by the International EMT

Association (40). The tumor microenvironment, a complex

ecosystem sculpted predominantly by malignant cells, has

historically been analyzed by grouping tumor cells homogeneously

or partitioning them into static clusters. In contrast, our crosstalk

analysis originated from malignant cell expression programs,

enabling simultaneous exploration of heterogeneity in both

malignant and stromal/immune compartments.

In our analysis of the eight MCEPs, we identified critical

regulators with potential crosstalk interactions in immune/stromal

compartments, including TGFb1 and HMGB1. Functional

annotation of downstream target genes in immune/stromal cells

revealed biological roles consistent with established mechanisms.

Specifically, TGFb1 signaling dysregulation plays a pivotal role in

colorectal carcinogenesis by governing cell growth, differentiation,

migration, and apoptosis (41–43). Pathological overexpression of
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TGFb1 drives epithelial-mesenchymal transition, extracellular matrix

remodeling, and cancer-associated fibroblast activation (44–46).

Notably, TGFb1 emerged as a key regulator in the I-pEMT-P

program, targeting immune cell genes including FOXP3, CD38,

and MMP9—established mediators of immune evasion and

immunosuppressive TME remodeling (47–49). In stromal

compartments, TGFb1 may further facilitate CAF transformation

and immunosuppressive functions through NOX4-mediated

pathways (50).Meanwhile, nuclear HMGB1 functions as a

chromatin-binding factor regulating nucleosome organization,

transcriptional control, and genomic stability, whereas extracellular

HMGB1 modulates cell differentiation, metastatic dissemination, and

apoptosis (51). Concurrently, HMGB2 within the CC-P program

demonstrated regulatory effects on mesenchymal-like cells,
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modulating pro-angiogenic genes such as AURKB, BIRC5, and

FOXM1 that coordinate endothelial and vascular smooth muscle

cell proliferation (52–54). This integrated regulatory network analysis

reveals how malignant cell-derived signals orchestrate multicellular

ecosystem dynamics through conserved molecular pathways,

providing mechanistic insights into TME reprogramming during

CRC progression.

CRC prognosis remains challenging due to pronounced tumor

heterogeneity. Existing prognostic models, often anchored to

singular features (e.g., immune, EMT, or metabolic signatures),

provide incomplete assessments. Our integrative model, combining

immune and stromal features, offers enhanced biological

interpretability. Risk stratification revealed that high-risk scores

correlate with mesenchymal-like, immunosuppressive TMEs
FIGURE 7

Core determinant identification and therapeutic exploration. (A) Protein-protein interaction (PPI) network of top 100 survival-associated genes
identified through MNC/MCC/DMNC/Degree algorithms (border color: survival association; fill color: algorithm source). (B) TIMP1 differential
expression across TCGA tumor types versus normal tissues (ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001). (C) TIMP1
immunohistochemical validation in multiple carcinomas and paired normal tissues. (D) Molecular docking of TIMP1 (PDB:3V96) with Lumacaftor
(DG = -12.13 kcal/mol) and Umbralisib (DG = -11.80 kcal/mol), showing binding pocket configurations.
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enriched in CAFs, Tregs, and inflammatory markers. Conversely,

low-risk scores associate with epithelial-like phenotypes marked by

partial EMT, reduced stromal activation, and preserved epithelial

integrity. The model incorporates 15 genes, with CLCA1 and

ITLN1 exhibiting the strongest prognostic weights. CLCA1, a

tumor suppressor, inhibits CRC progression by suppressing Wnt/

b-catenin signaling and EMT, consistent with its reduced

expression in advanced tumors and inverse correlation with

metastasis (55). ITLN1, conversely, antagonizes tumor

neovascularization and MDSC accumulation via IL-17D/CXCL2

axis modulation, thereby reshaping the immunosuppressive TME—

a mechanism aligning with its prognostic significance in both CRC

and ovarian cancer (56, 57). Additional contributors, such as

IGFBP3 and ACAA2, further underscore the multifactorial nature

of CRC heterogeneity. Elevated IGFBP3, driven by genetic

predisposition, may enhance CRC risk through IGF1-mediated

mitogenic signaling, as supported by Mendelian randomization

analyses (58). ACAA2, a fatty acid metabolism enzyme, inversely

correlates with cetuximab resistance, particularly in KRAS-mutant

CRC, suggesting its role in metabolic adaptation and therapy

response regulation (59). This framework bridges molecular

mechanisms to clinical outcomes, providing biological

interpretability to the prognostic model.

As an independent prognostic factor, our model achieved an

AUC >0.8 for 10-year outcome prediction when combined with

clinical variables. Integration with TNM staging via a nomogram

improves CRC management by enabling dynamic survival

probability estimation (1–10 years), optimizing adjuvant therapy

selection, surveillance intervals, and resource allocation.

PPI network analysis identified TIMP1 as a hub gene within the

I-pEMT-P program. TIMP1, a matrix metalloproteinase inhibitor,

exhibits context-dependent roles in cancer. In brain metastases,

astrocyte-derived TIMP1 suppresses CD8+ T cell activity (60), while

in pancreatic cancer, TIMP1-CD63-ERK signaling drives

neutrophil extracellular trap formation and tumor progression

(61). In CRC, TIMP1 correlates with tumor cell proliferation,

invasion, and poor prognosis (62). Our data suggest that the I-

pEMT-P program may remodel the stromal niche via TIMP1,

influencing tumor progression and clinical outcomes.
4.1 Limitations and future directions

Despite the significant findings, this study has some limitations.

Although single-cell data from over 100 samples were analyzed, the

lack of clinical annotations, such as tumor stage, survival time, and

survival status, restricted our ability to directly correlate expression

programs with tumor progression and patient outcomes. Therefore,

we relied on bulk RNA-seq datasets, which included complete

clinical information. Additionally, while computational

predictions identified key regulators, such as TGFb1 and

HMGB2, in stromal/immune modulation, their mechanistic roles

remain unvalidated experimentally. Future studies should employ

co-culture models or in vivo systems to confirm these interactions.
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5 Conclusion

This study identified eight distinct MCEPs that characterize the

transcriptional states of CRC malignant cells. We constructed

interaction networks between these MCEPs and immune or

stromal cells, which led to the development of a prognostic model

consisting of 15 genes. Furthermore, TIMP1 was identified as a key

gene, and two potential drugs, Venetoclax and Lumacaftor, were

highlighted for targeted therapeutic strategies. In summary, this

study provides new insights and references for CRC heterogeneity

and prognostic therapy.
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Integrative single-cell and
spatial transcriptomics analysis
reveals MDK-NCL pathway’s
role in shaping the
immunosuppressive environment
of lung adenocarcinoma
Yu Fu †, Song Li †, Yikang Zhao, Xiran Zhang, Xiaolu Mao
and Ran Xu*

Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
Objectives: The tumor microenvironment (TME) plays a critical role in the

progression of lung adenocarcinoma (LUAD). This study aims to investigate the

cellular composition of the TME in LUAD and assess the role of the MDK-NCL

signaling pathway.

Methods: We employed a multi-omics strategy to investigate LUAD, combining

single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), and bulk

RNA-seq datasets. Publicly available scRNA-seq data and ST data were utilized.

scRNA-seq data underwent quality control, dimensionality reduction, and

clustering to characterize cell populations and identify malignant epithelial

subtypes using the Seurat and inferCNV packages. Spatial transcriptomics data

facilitated the identification of distinct tumor niches, while immune infiltration

and ligand-receptor interactions were analyzed using MCPcounter and Niches.

Experimental validation was performed via real-time PCR and western blotting

on paired LUAD and adjacent normal tissue samples.

Results: scRNA-seq revealed the presence of multiple immune and stromal cell

populations, with malignant epithelial cells being subdivided into six clusters. The

MDK-NCL axis demonstrated high activity in malignant cells, showing strong

interactions with immune and stromal components. Spatial transcriptomics

revealed nine distinct tumor niches, with MDK-NCL signaling notably

upregulated at the tumor-immune interface, highlighting its role in establishing

an immunosuppressive microenvironment. In both the TCGA-LUAD cohort and

in-house cohort, MDK and NCL were significantly upregulated at the mRNA and

protein levels in tumor samples compared to normal tissues. High MDK-NCL

expression in the TCGA-LUAD cohort correlated with increased TMB, MSI, and

reduced immune cell infiltration. Elevated levels of immune checkpoint genes,

including PD-1 and CTLA-4, in patients with high MDK-NCL expression

suggested a potential resistance to immune checkpoint inhibitors. Moreover,

patients with high MDK-NCL expression exhibited poorer survival outcomes,

underscoring the pathway’s role in tumor progression and immune evasion.
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Conclusion: Our findings reveal that LUAD cells use the MDK-NCL signaling

pathway to shape the TME, suppressing immune activity and promoting

malignancy in epithelial cells. This study highlights the MDK-NCL axis as a

potential therapeutic target for LUAD, particularly for patients with high MDK-

NCL expression.
KEYWORDS

lung adenocarcinoma, tumor microenvironment, MDK-NCL, single-cell
transcriptomics, spatial transcriptomics
Introduction

Lung adenocarcinoma (LUAD) is the most common subtype of

non-small cell lung cancer (NSCLC), accounting for approximately

40% of lung cancer cases (1). While targeted therapies and

immunotherapies have significantly improved the survival rates of

some LUAD patients, the overall prognosis remains poor. This is

primarily attributed to the tumor’s heterogeneity and the

complexity of its tumor microenvironment (TME) (2). The TME,

which consists of immune cells, stromal cells, extracellular matrix,

and various signaling molecules, plays a critical role in tumor

progression, immune evasion, and therapeutic resistance (3).

Therefore, gaining a deeper understanding of the interactions

between the tumor and its microenvironment is crucial for

uncovering the mechanisms underlying cancer development and

for the development of new therapeutic strategies.

Single-cell RNA sequencing (scRNA-seq) technology offers an

unprecedented level of detail for deciphering the cellular

heterogeneity and dynamic changes within tumors, enabling the

identification of distinct cell types and their specific roles in the

TME (4). In recent years, scRNA-seq has been widely employed in

LUAD research, leading to the discovery of multiple heterogeneous

cell subpopulations, including tumor cells, immune cells, and

stromal cells, further elucidating mechanisms of immune evasion

and the interactions between tumors and their microenvironment

(5, 6). Moreover, the application of spatial transcriptomics has

allowed for a more comprehensive understanding of the spatial

distribution of these cell populations within tumors and their

interactions, providing a more complete view of the TME (7, 8).

Among the many signaling pathways that influence the TME,

the Midkine (MDK)-Nucleolin (NCL) axis has garnered significant

attention in recent years. MDK, a pro-tumor growth factor, is highly

expressed in various types of cancer and has been shown to promote

cell proliferation, migration, and survival (9–11).In LUAD, MDK

expression correlates with poor prognosis, yet its potential role in

modulating immune suppression remains unclear (13). Unlike

TGF-b-mediated immunosuppression, which primarily acts via

Treg activation and myeloid suppression, MDK-NCL signaling

may establish a distinct immunosuppressive niche by interacting

with tumor-associated macrophages (TAMs) and fibroblasts.
0279
Research has demonstrated that the MDK-NCL axis facilitates the

formation of an immunosuppressive microenvironment, thereby

promoting immune evasion by tumor cells and contributing to

tumor progression (12). Given these unique properties,

investigating the MDK-NCL axis may reveal novel mechanisms of

immune evasion in LUAD.

In this study, we utilized scRNA-seq and spatial transcriptomics

to deeply analyze the TME in LUAD and further classify malignant

cell populations. We identified that MDK-NCL signaling plays a

critical role in the interactions between maliganant cells and immune

cells, potentially driving immune evasion and reshaping the

microenvironment. Through spatial transcriptomic data, we further

revealed the differential spatial distribution of MDK-NCL signaling

across various tumor niches. Moreover, by integrating bulk RNA-seq

data from the TCGA-LUAD cohort, we investigated the relationship

between MDK-NCL expression, immune cell infiltration, and clinical

outcomes. This study provides new insights into the role of theMDK-

NCL axis in LUAD, particularly regarding its involvement in

microenvironmental remodeling and immune evasion. Our

findings offer a theoretical foundation for considering MDK-NCL

as a potential therapeutic target, with significant implications for

enhancing the efficacy of immunotherapy in clinical settings.
Results

ScRNA-seq and cell type identification of
LUAD

After correcting for batch effects, performing dimensionality

reduction, and clustering, we analyzed several key aspects of the

single-cell data (GSE131907). We visualized sample origins

(Figure 1A), transcript counts (Figure 1B), cell clusters

(Figure 1C), and cell type annotations (Figure 1D). Marker gene

expression patterns, used to identify different cell types, are depicted

in Figure 1E. Specifically, T cells were identified by TRAC,

monocyte-macrophages by LYZ, NK cells by NKG7, epithelial

cells by EPCAM, B cells by CD79A, fibroblasts by COL1A1, mast

cells by MS4A2, endothelial cells by PECAM1, conventional

dendritic cells (cDCs) by CD1C, and plasmacytoid dendritic cells
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(pDCs) by CLEC4C. The proportions of each cell type across

samples are shown in Figure 1F, with the absolute numbers in

Figure 1G, and transcript counts for each cell type detailed in

Figure 1H. The same cell annotation procedure was also performed

on the single-cell validation data GSE153935 (Supplementary

Figure S1A-E).
Malignant cell subpopulations in LUAD and
their characteristics

To infer malignancy within the epithelial cell populations, we

applied inferCNV analysis in GSE131907 and GSE153935
Frontiers in Immunology 0380
(Figure 2A & Supplementary Figure S1F). In the GSE131907

dataset, malignant epithelial cells were subsequently extracted for

further dimensionality reduction and clustering, revealing six

distinct malignant cell subpopulations (clusters 0-5, Figure 2B).

Sample distribution across these malignant clusters is illustrated in

Figure 2C, highlighting both intra- and inter-sample heterogeneity

within LUAD tumors.

Using the FindAllMarkers function, we identified cluster-

specific markers for each malignant subpopulation (Figure 2D).

Functional enrichment analysis via ssGSEA using hallmark gene

sets revealed distinct biological pathways across clusters

(Figure 2E). For example, clusters 0 and 1 were enriched in

pathways related to metabolism and mitosis. Univariate Cox
FIGURE 1

Annotation Results of scRNA-seq for LUAD. (A) Sample origin of the single-cell data, 12 samples were identified without batch effect. (B) Transcript
counts in the single-cell dataset. (C) Clustering results of the single-cell data, totally 21 clusters were presented. (D) Cell type annotation based on
marker gene expression, including T cells, monocyte-macrophages, NK cells, epithelial cells, B cells, fibroblasts, mast cells, endothelial cells,
conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). (E) Expression profiles of representative markers for ten distinct cell
types. (F) Proportion of each cell type across samples. (G) Total number of cells for each identified cell type. (H) Transcript counts per cell type,
reflecting transcriptional activity at the single-cell level.
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FIGURE 2

Identification of malignant cell subtypes. (A) inferCNV heatmap displaying copy number variations (CNVs) across cells, with normal samples in the
upper panel and tumor samples in the lower panel. Red and blue indicate CNV gains and losses, respectively. (B) UMAP plot showing clustering of
malignant cells, revealing distinct subpopulations. (C) UMAP plot indicating the patient origin of malignant cells, highlighting inter-sample
heterogeneity. (D) Expression of representative marker genes for each malignant cluster: AGR2 (Cluster 0), S100A2 (Cluster 1), TPP2 (Cluster 2),
SCGB3A2 (Cluster 3), SFTPC (Cluster 4), and S100A9 (Cluster 5). (E) Heatmap of hallmark pathway activities across clusters, with red indicating
upregulation and blue indicating downregulation of pathways, such as hypoxia response and interferon signaling, cluster0 and cluster1 have more
upregulated pathways. (F) Univariate Cox analysis of key marker genes, with hazard ratios, confidence intervals, and P-values showing their
prognostic significance. Red indicates higher risk associations, while green indicates lower risk. (G) CNV scores of different malignant cell subtypes.
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regression survival analysis, based on the top five markers per

cluster, showed that markers from clusters 0, 1, and 5 were

associated with higher risk, while clusters 2, 3, and 4 were more

protective (Figure 2F). Meanwhile, clusters 0, 1, and 5 have higher

CNV scores, suggesting greater genomic instability (Figure 2G).

This suggests that clusters 0, 1, and 5 exhibit more aggressive,

malignant phenotypes.
The result of single-cell communication
analysis

Cell-to-cell communication was analyzed for both GSE131907

and GSE153935 using the CellChat package, which identified

receptor-ligand signaling pathways received (Figure 3A &

Supplementary Figure S2A) and emitted (Figure 3B &

Supplementary Figure S2B) by different cell types. Notably, the

MIF, MK, and CXCL signaling pathways were highly active.

Figure 3C and Supplementary Figure S2C illustrates the overall

communication strength between cell types, while Figure 3D and

Supplementary Figure S2D shows the intensity of signals emitted

and received by each cell type. Malignant cells exhibited the highest

signal emission strength, underscoring their dominant role in

influencing the TME.

Among receptor-ligand pairs, four of the top ten interactions

belonged to the MK pathway, with the MDK-NCL interaction being

the most significant (Supplementary Figure S3 & Supplementary

Figure S4). The strength of MK pathway communication across

different cell types is presented in Figure 3E and Supplementary

Figure S2E, with malignant cells being the primary senders and

receivers of these signals. We further analyzed MDK-NCL

interactions between malignant and immune/stromal cells,

finding significant interaction strengths (Figure 3F &

Supplementary Figure S2F). Malignant cells exhibited extensive

interactions with all immune and stromal cell types through the

MDK-NCL axis. Expression levels of genes involved in the MK

pathway are shown in Figure 3G, with higher expression of MDK in

malignant cells and broad expression of NCL across all cell types.

These findings highlight the critical role of the MDK-NCL

interaction in shaping the TME.
Spatial transcriptomic niche
communication analysis

Following dimensionality reduction and clustering, we

identified nine distinct spatial niches (niche 0-8, Figure 4A).

Based on the expression of key marker genes-MUC1 (tumor

region), LYZ (immune region), COL14A1 (stromal region), and

SFTPC (normal region)—we classified the niches into tumor,

immune-stromal, and normal regions across all spatial

transcriptomic samples (Figures 4B, C, Supplementary Figure S5).

To validate our classification, we performed MCPcounter immune

infiltration analysis (Figure 4D), identifying six distinct cell types-

endothelial cells, fibroblasts, monocytes, T cells, B cells, and
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neutrophils-within the niches. The distribution of these cell types

across the spatial niches is depicted in Figure 4E, showing a clear

d iv i s ion in to tumor , immune-s t roma l , and norma l

epithelial regions.

We then conducted spatial communication analysis to assess

the spatial distribution of MDK-NCL receptor-ligand signaling

across the niches (Figure 4F, Supplementary Figure S5). This

included examining MDK-NCL ligand-receptor binding, NCL

receptor levels, and MDK ligand expression. These spatial

analyses revealed that the MDK-NCL axis plays a significant role

in mediating communication between malignant cells and the

surrounding immune and stromal cells, further contributing to

the spatial organization of the TME.
Pseudotime analysis of single cells

To explore the developmental trajectory of malignant epithelial

cells and the changes in the MK signaling pathway during tumor

progression, we conducted a pseudotime analysis using spatial

transcriptomics data from LUAD. Figures 5A-C illustrate the

differentiation states, cell subtypes, and pseudotime scores

obtained from the analysis. In Figure 5D, pseudotime scores are

visualized using a UMAP dimensionality reduction plot, while a box

plot (Figure 5E) compares the pseudotime scores of different

malignant cell clusters, revealing that clusters 0, 1, and 5 have

higher pseudotime scores. Additionally, the differentiation states of

these clusters are shown in Figure 5F, and the proportion of cells in

each state is presented in Figure 5G, with clusters 0, 1, and 5

primarily occupying differentiation state 6, which is associated with

a more advanced pseudotime score. These findings indicate that

clusters 0, 1, and 5, which are negatively correlated with prognosis,

not only have higher pseudotime scores but also reside in more

differentiated states, suggesting a higher level of tumor progression

and malignancy. Finally, we analyzed the expression trends of MK

pathway genes along the pseudotime trajectory (Figure 5H), which

showed a gradual upregulation of MDK and NCL expression with

increasing pseudotime scores.
The impact of MDK-NCL on the LUAD
immune microenvironment

Using single-cell and spatial transcriptomic analyses, MDK-

NCL communication between tumor cells and other cells was

identified as a critical mechanism in shaping the TME. Analysis

of bulk transcriptomic data from the TCGA-LUAD cohort revealed

that MDK and NCL expression levels were significantly higher in

tumor samples compared to control samples (Figure 6A). Similarly,

GSVA enrichment scores for the MDK-NCL pathway were also

markedly elevated in tumor samples (Figure 6B). Three validation

public cohorts were corresponding to the same results

(Supplementary Figure S6A-C). Consistent with these findings, in

our cohort, the relative mRNA expression levels of MDK and NCL

were significantly higher in tumor tissues than in adjacent normal
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tissues (Figure 6C). Western blot analysis further confirmed that

protein expression levels of MDK and NCL were significantly

upregulated in tumor samples compared to controls (Figures 6D-

F). To explore the impact of MDK and NCL on the immune
Frontiers in Immunology 0683
microenvironment, we performed ESTIMATE analysis using the

TCGA-LUAD dataset. The results demonstrated a negative

correlation between MDK and NCL expression levels and

immune-re lated scores , inc luding the ImmuneScore ,
FIGURE 3

Single-cell communication networks. (A) Incoming communication patterns of target cells, showing pathways to which each cell type responds. (B)
Outgoing communication patterns of secreting cells, illustrating the pathways through which cells send signals, MIF, MK and CXCL pathway exhibit
high activity. (C) Network diagram showing the strength of intercellular communication, with connections between various cell types. (D) Scatter
plot comparing outgoing and incoming communication strengths across cell populations, with bubble size indicating the number of interactions,
malignant cells have higher strength of intercellular communication. (E) Chord diagram depicting communication via the MK pathway between
different cell types. (F) Ligand-receptor interaction probabilities within the MK pathway between malignant and other cell types. Dot size represents
significance (P-value), and color represents communication probability highlighting the MDK-NCL signaling pathway. (G) Violin plots of MK pathway
gene expression levels across cell types, showing gene activity variations, MDK has advancer expression level in malignant cells.
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StromalScore, and ESTIMATEScore. Conversely, a positive

correlation was observed between MDK and NCL expression and

TumorPurity (Figures 6G, H). These findings suggest that MDK

and NCL are associated with the development of an

immunosuppressive TME. Further analysis divided tumor

samples into high and low MDK-NCL expression groups based

on the median enrichment score. Immune infiltration analysis

revealed that immune cell scores for various cell types were

significantly lower in the high MDK-NCL expression group

compared to the low-expression group. Patients with high MDK-

NCL expression groups exhibit increased infiltration of regulatory T

cells (Tregs), myeloid-derived suppressor cells (MDSCs), and M2-

like macrophages, which are known to promote immune evasion

and tumor progression. Additionally, the MDK-NCL pathway

suppresses cytotoxic immunity by reducing activated and effector

memory CD8+ T cells while promoting an immunosuppressive

microenvironment through increased Tregs and altering helper T

cell differentiation, facilitating tumor immune evasion. This

supports the conclusion that MDK-NCL activity suppresses

immune cell infiltration and activity, contributing to immune

evasion in LUAD.
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The association of MDK-NCL with
immunotherapy

We observed that the high MDK-NCL expression group

exhibited higher tumor mutation burden (TMB) (Figure 7A) and

microsatellite instability (MSI) scores (Figure 7B), indicating

increased genomic instability. TIDE analysis revealed that the

high MDK-NCL group had lower Dysfunction scores (Figure 7C)

and higher Exclusion scores (Figure 7D), suggesting that although T

cell dysfunction was lower, there was a higher degree of T cell

exhaustion. This supports that MDK-NCL may promote an

immune-resistant TME through T cell exclusion rather than

direct T cell exhaustion, a mechanism distinct from PD-1/PD-L1,

which primarily induces T cell dysfunction at the tumor-immune

interface. Additionally, we analyzed the expression patterns of

immunogenic cell death (ICD)-related genes (Figure 7E), finding

that the high MDK-NCL group had higher expression of several

ICD genes, while toll-like receptors TLR3 and TLR4 showed lower

expression. These findings suggest that MDK-NCL may contribute

to immune evasion by promoting T cell exclusion and

downregulating innate immune sensing, similar to TGF-b.
FIGURE 4

Spatial transcriptomics and MDK-NCL signal communication. (A) Niche clustering in spatial transcriptomics samples, identifying distinct ecological
zones. (B) Spatial expression of representative markers in key regions: MUC1 (tumor region), LYZ (immune region), COL14A1 (stromal region), and
SFTPC (normal region). (C) Violin plots displaying the expression of MUC1, LYZ, COL14A1, and SFTPC across different niches. (D) MCPcounter
analysis showing the infiltration of six cell types (e.g., endothelial cells, fibroblasts, immune lineages) across spatial regions. (E) Spatial niche
classification, distinguishing tumor, immune-stromal, and normal regions. (F) MDK-NCL ligand-receptor interaction analysis, spatially mapping MDK
ligands, NCL receptors, and their binding regions.
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Predictions from the TCIA database indicated that the high MDK-

NCL group had fewer patients with dual-negative CTLA4 and PD1

status, as well as fewer patients with PD1 single positivity but more

patients with CTLA4 single positivity (Figure 7F). This suggests that

MDK-NCL may enhance CTLA-4 mediated immune suppression,

potentially influencing the response to anti-CTLA-4 therapy.

Similarly, most of these factors got the same trends in validation

cohorts (Supplementary Figure S6D-F). Finally, we compared the

expression profiles of immune checkpoint-related genes between

the two groups (Figure 7G), revealing that the high MDK-NCL

group had elevated expression of checkpoint genes such as LAG3

and PDCD1, suggesting that these patients may respond more

favorably to immune checkpoint inhibitors. Overall, our findings

suggest that high MDK-NCL expression may predict poor ICI

r e sponse by fo s t e r ing an immune-exc luded tumor

microenvironment. Despite high TMB/MSI, MDK-NCL-high

tumors show low CD8+ T-cell infiltration and increased Tregs/

MDSCs, potentially negating the benefits of increased neoantigens.

This highlights MDK-NCL as a negative predictor of ICI response

and a potential target to enhance ICI efficacy.
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Discussion

In this study, we systematically investigated the role of the

MDK-NCL signaling axis in the TME of LUAD through the

integration of scRNA-seq and spatial transcriptomics. Our

findings shed light on the mechanisms by which the MDK-NCL

pathway contributes to immune suppression and tumor immune

evasion. offering novel insights into the potential of targeting this

axis as a therapeutic strategy. This work deepens our understanding

of TME remodeling in LUAD.

MDK, a pro-tumorigenic growth factor, is highly expressed in

various cancers (10, 14). It exerts its oncogenic effects primarily by

binding to its receptor, Nucleolin (NCL), through which it

modulates various signaling pathways critical for the regulation of

tumor progression and the maintenance of the TME (15, 16).

Through scRNA-seq and spatial transcriptomics, we elucidated

the role of MDK-NCL signaling in LUAD at the cellular level.

Our results indicate that MDK-NCL plays a pivotal role in the

interaction between malignant, immune, and stromal cells,

particularly by fostering an immunosuppressive environment that
FIGURE 5

Single-cell pseudotime analysis. (A) Pseudotime trajectory analysis showing the 6 differentiation states of cells. (B) Subtype classification of malignant
cells along the pseudotime trajectory. (C) Pseudotime scores mapped along the differentiation trajectory. (D) UMAP plot visualizing pseudotime
scores across individual cells. (E) Box plots comparing pseudotime scores across different malignant cell clusters, cluster 0, 1, and 5 had higher
pseudotime scores. (F) UMAP plot of differentiation states, with colors representing distinct states. (G) Stacked bar plots showing the proportion of
differentiation states within each malignant cell cluster, cluster 0, 1, and 5 have larger proportion of state 6. (H) Expression dynamics of MK pathway
genes (e.g., MDK, NCL, ITG genes) along the pseudotime trajectory, highlighting gene expression changes during differentiation, MDK and NCL
express more in the later time.
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FIGURE 6

Association of MDK-NCL with the immune microenvironment. (A) Boxplot shows the expression levels of MDK and NCL genes in tumor and control
groups, it exhibit higher activity in tumor group. (B) MDK-NCL enrichment scores in tumor and control groups. (C) Relative mRNA expression levels
of MDK and NCL in tumor and control groups from in-house data. (D) Relative protein expression levels of MDK and NCL in tumor and control
groups from in-house data. (E) Comparison of MDK protein expression levels between tumor and control groups. (F) Comparison of NCL protein
expression levels between tumor and control groups. (G) Correlation of MDK and NCL expression with ImmuneScore, StromalScore,
ESTIMATEScore, and TumorPurity. (H) Scatter plots depicting the relationship between MDK and NCL expression and immune-related scores
(ImmuneScore, StromalScore, ESTIMATEScore) as well as TumorPurity. (I) Comparison of immune cell infiltration scores across high and low MDK-
NCL expression groups for 28 immune cell types. *P < 0.05, **P < 0.01, ***P < 0.001.
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supports tumor immune evasion. This mechanism is further

supported by its observed spatial heterogeneity across distinct

tumor regions. Spatial transcriptomics revealed that MDK-NCL

signaling activity was markedly elevated at the tumor-immune

interface, a region characterized by high cellular density and

active immune-tumor interactions. This enrichment suggests that

MDK-NCL may serve as a defensive mechanism for tumor cells at

immune hotspots, preventing effective immune cell infiltration and

cytotoxic activity. The differential expression across tumor niches

underscores the biological importance of spatial heterogeneity in

shaping TME architecture and influencing immune evasion

strategies. For example, in low-immune regions, MDK-NCL may

facilitate stromal remodeling, whereas in high-immune regions, it

likely plays a more direct role in immune cell suppression. These

observations align with previous studies emphasizing the role of

spatial heterogeneity in defining TME functions (17).
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Understanding this spatial regulation not only highlights the

complexity of MDK-NCL signaling but also opens avenues for

spatially targeted therapeutic strategies, such as local delivery of

inhibitors to high-activity regions within the TME.

Another important finding of this study is the potential role of

the MDK-NCL axis in immunotherapy. By analyzing TMB andMSI

data from the TCGA-LUAD dataset, we found that patients with

high MDK-NCL expression tend to have higher TMB and MSI

levels, indicating a potential association between MDK-NCL

signaling and genomic instability, which may impact the response

to immune checkpoint inhibitors (ICIs). While high TMB/MSI

tumors are generally considered more immunogenic and respond

better to ICIs, tumors with high MDK-NCL expression exhibit

immune exclusion, despite their increased TMB/MSI levels.

Specifically, we hypothesize that MDK-NCL blockade could

enhance the effectiveness of anti-PD-1/PD-L1 and anti-CTLA-4
FIGURE 7

Association of MDK-NCL with immunotherapy response. (A) Comparison of tumor mutation burden (TMB) between high and low MDK-NCL
expression groups. (B) Comparison of microsatellite instability (MSI) between high and low MDK-NCL groups. (C) Comparison of dysfunction scores
between high and low MDK-NCL groups. (D) Comparison of exclusion scores between high and low MDK-NCL groups. (E) Expression of
immunogenic cell death (ICD)-related genes in high and low MDK-NCL groups. (F) Expression levels of CTLA4 and PD1 in high and low MDK-NCL
groups. (G) Comparison of immune checkpoint gene expression between high and low MDK-NCL expression groups. *P < 0.05, **P < 0.01, ***P
< 0.001.
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therapies by reversing T-cell exclusion and promoting immune cell

infiltration. These findings highlight the potential dual role of

MDK-NCL in influencing ICI responses. On one hand, increased

TMB and MSI levels suggest heightened neoantigen production,

which is typically associated with improved ICI efficacy. On the

other hand, the observed high T-cell exclusion scores in patients

with elevated MDK-NCL expression reflect an immunosuppressive

phenotype, indicating that this axis might hinder the infiltration or

activation of T cells despite a high mutational load. Additionally,

elevated expression of immune checkpoint genes (e.g., PDCD1 and

CTLA-4) in the high MDK-NCL group suggests that this pathway

might promote immune evasion by enhancing the tumor’s

dependence on checkpoint mechanisms. Therefore, targeting

MDK-NCL signaling could potentially synergize with ICIs,

alleviating immune suppression and restoring effective T-cell-

mediated immunity. Moreover, the ability to stratify LUAD

patients based on MDK-NCL expression into groups with distinct

immune profiles and ICI responses could provide valuable insights

for personalized therapy. Negative correlation between MDK-NCL

expression and IFN-g response genes, suggests that MDK-NCL may

suppress IFN-g-mediated antitumor immunity. Additionally, given

the known role of TGF-b in promoting immune exclusion, MDK-

NCL may interact with this pathway to reinforce immune

suppression. For instance, patients with high MDK-NCL

expression may benefit from combination therapies targeting both

MDK-NCL signaling and immune checkpoints, improving

response rates and reducing resistance to treatment. Future

studies should focus on preclinical models to validate this

hypothesis and assess the feasibility of such combination

strategies in LUAD.

Preclinical studies have demonstrated the efficacy of MDK and

NCL inhibitors in cancers such as glioblastoma (18) and pancreatic

cancer (19), where MDK signaling is implicated in tumor progression

and immune suppression. However, their clinical efficacy in LUAD

remains unexplored. Our study highlights the critical role of the MDK-

NCL axis in LUAD immune evasion and tumor progression, providing

a theoretical basis for targeting this pathway as a novel therapeutic

strategy. Our findings indicated that high MDK-NCL expression

correlates with reduced infiltration of antigen-presenting cells

(APCs), such as dendritic cells and MHC class I/II expression levels.

This suggests that MDK-NCL signaling may downregulate antigen

presentation, reducing tumor immunogenicity. However, further

functional studies are required to confirm this hypothesis. The high

expression ofMDK-NCL signaling in LUAD patients is associated with

an unfavorable immune microenvironment and increased immune

exclusion, suggesting that targeting this axis may enhance the efficacy

of existing immunotherapies. Unlike PD-1/PD-L1, which primarily

induces T-cell exhaustion, our data suggest that MDK-NCL drives

immune suppression through T-cell exclusion and stromal remodeling.

Additionally, MDK-NCL-high tumors show increased infiltration of

regulatory T cells (Tregs) and myeloid-derived suppressor cells

(MDSCs), highlighting a distinct mechanism of immune evasion.

Developing MDK-NCL pathway inhibitors holds promise as a novel

treatment option for refractory LUAD, particularly for patients

unresponsive to conventional immunotherapy.
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Despite these significant findings, our study has several

limitations. Although we integrated multi-omics data to explore

the role of MDK-NCL signaling in LUAD and conducted

preliminary experimental validation, further mechanistic studies

are required, particularly in larger clinical cohorts. Additionally, our

analysis relies heavily on publicly available datasets, which lack

extensive clinical sample support. Prospective clinical studies are

needed to validate our conclusions. Moreover, the development of

MDK-NCL pathway inhibitors should be prioritized and evaluated

in clinical trials. Finally, integrating additional multi-omics

approaches, such as proteomics and metabolomics, could provide

a more comprehensive understanding of the complex regulatory

roles of MDK-NCL signaling in tumor progression and

immune evasion.
Methods

Data acquisition

We downloaded spatial transcriptomics data from a LUAD

patient sample using the 10x Visium technology from the

BioStudies database (20) (https://www.ebi.ac.uk/biostudies/)

(Accession number: E-MTAB-13530, This dataset includes a total

of 40 lung tissue or NSCLC samples. For our analysis, we selected 8

tumor samples from this cohort.

From the Gene Expression Omnibus (GEO) database (21)

(https://www.ncbi.nlm.nih.gov/geo/), we obtained the GSE131907

dataset (22) and GSE153935 dataset (23), which includes scRNA-

seq data generated using the 10x Genomics platform and Drop-seq

platform. GSE131907 dataset comprises 22 single-cell samples,

including 11 primary tumor samples and 11 normal lung tissue

samples, and was used for experimental analysis in this study.

GSE153935 dataset comprises 18 single-cell samples, including 12

primary tumor samples and 6 normal lung tissue samples, and was

used for validation analysis in this study.

We also retrieved bulk gene expression data (TPM) and clinical

information such as patient gender, age, stage, grade, and survival

outcomes from The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/). Additionally, tumor mutation burden

(TMB) and microsatellite instability (MSI) data for LUAD

patients were obtained from cBioPortal (24) (https://

www.cbioportal.org/). Meanwhile, GSE11969 (25) (including 94

LUAD and 5 normal samples), GSE43458 (26) (including 80

LUAD and 30 normal samples), GSE116959 (27) (including 57

LUAD and 11 normal samples) were obtained from GEO database

as well for validation.
Single-cell RNA-seq data processing for
LUAD

We utilized the Seurat package (version 4.3.0) (4) to process and

analyze the scRNA-seq data. Quality control was performed by

filtering out cells with fewer than 200 or more than 8,000 genes,
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those with fewer than 50,000 transcripts, cells with greater than 20%

ribosomal gene content, and cells with more than 3% hemoglobin

gene expression.

Next, SCTransform (28) was applied for normalization and

variance stabilization, followed by the Harmony algorithm (29)

correct batch effects. Principal component analysis (PCA) was

performed, and the first 30 principal components were used for

clustering with the Louvain algorithm (resolution = 0.5) UMAP

embedding was generated using default parameters (n.neighbors =

30) for visualization. Using characteristic gene markers, we

classified the single-cell populations into T cells (CD3D, CD3E,

TRAC), monocyte-macrophages (LYZ, CSF3R), NK cells (NKG7),

epithelial cells (EPCAM), B cells (CD79A, MS4A1), fibroblasts

(COL1A1, FN1), mast cells (MS4A2, TPSB2), endothelial cells

(VWF, PECAM1), cDC cells (CD1C), and pDC cells (CLEC4C).

Finally, we visualized the clinical information, clustering results,

marker gene expression, and cell annotations using UMAP plot to

display the reduced dimensions of the single-cell data.
Identification of benign and malignant
epithelial cells and subtyping of malignant
epithelial cells

To distinguish malignant from benign epithelial cells, we

applied inferCNV analysis (https://github.com/broadinstitute/

inferCNV). We randomly selected 1,000 normal epithelial cells

from control samples and inserted them into the tumor epithelial

cell dataset. The remaining normal epithelial cells served as the

reference. CNVs were inferred based on expression intensity across

genomic regions, using denoise=TRUE and default settings. Cells

displaying significant CNV patterns distinct from normal epithelial

cells were classified as malignant, while those resembling reference

cells were categorized as benign. The CNV scores of epithelial cells

were also utilized to assist in distinguishing between benign and

malignant epithelial cells.

After isolating all malignant cells, we performed further

clustering to categorize them into distinct malignant cell clusters.

Using the Seurat package’s “FindAllMarkers” function, we

identified highly expressed marker genes for each cluster

(log2FoldChange > 1, p value < 0.05). Subsequently, with

hallmark gene sets from the MsigDB database (30), we applied

single-sample gene set enrichment analysis (ssGSEA) via the GSVA

package (31) to explore the biological functional characteristics of

the malignant cell clusters. Additionally, univariate Cox regression

analysis was performed to assess the prognostic significance of

marker genes in each malignant cell cluster.
Cell-cell communication analysis

To explore intercellular communication within the tumor

microenvironment, we used the CellChat package (32). Receptor-

ligand interactions were inferred using the computeCommunProb()

function, with a minimum interaction probability threshold of 0.05
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generated using computeCommunProbPathway(), and the

rankNet() function was applied to identify the most active

signaling pathways. Significant interactions were visualized using

netVisual_circle() and netVisual_aggregate(), highlighting key

intercellular communication networks. The MDK-NCL signaling

pathway emerged as a central interaction hub, particularly enriched

in malignant epithelial and stromal cells, and was selected for

further spatial and functional analysis.
Processing of spatial transcriptomics data
for LUAD

The spatial transcriptomics data were generated using the 10x

Genomics Visium platform and processed using the Seurat package

(4). Quality control was performed by removing spots with fewer

than 500 detected genes or over 10% mitochondrial gene expression.

Normalization and variance stabilization were conducted using

SCTransform, followed by PCA for dimensionality reduction. The

top 30 principal components were used for Louvain clustering

(resolution = 0.5). After dimensionality reduction and clustering,

we identified nine distinct spatial niches. Based on the expression of

MUC1 (tumor region), LYZ (immune region), COL14A1 (stromal

region), and SFTPC (normal region), we classified the niches into

tumor, immune-stromal, and normal regions.

We then applied MCPcounter analysis (33) to assess the

infiltration levels of various cell types (including T cells, B cells,

neutrophils, monocytes, fibroblasts, and endothelial cells) in each

spot of the spatial transcriptomics data. This allowed us to map the

spatial distribution of immune infiltration and compare it with the

defined niche regions.

Lastly, using the niches R package (34), we conducted spatial

ligand-receptor interaction analysis, which integrates gene expression

with spatial proximity. Interaction scores were computed for each

ligand-receptor pair between neighboring spots, and only statistically

significant pairs (adjusted p < 0.05) were retained for downstream

analysis. Compared to single-cell analysis, spatial transcriptomics

data incorporates spatial localization, providing more biologically

accurate ligand-receptor interactions.
Pseudotime analysis

Monocle (35) was used to construct pseudotime trajectories.

The “orderCells” function assigned pseudotime values to each cell,

and branching events were analyzed to assess transitions between

malignant cell states. The MK signaling pathway activity was

overlaid on the trajectory to observe its temporal dynamics.
Immune-related analysis of TCGA-LUAD

Using the ESTIMATE package (36), we performed ESTIMATE

analysis to assess the overall tumor immune microenvironment in
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each LUAD sample. This was achieved by calculating tumor purity,

immune score, and stromal score. Additionally, the infiltration

levels of 28 different immune cell types in each sample were

evaluated using ssGSEA, and detail of 28 immune signature genes

were shown in Supplementary Table S1.
Therapy-related analysis of TCGA-LUAD

TMB and MSI are critical factors that influence the interaction

between immune cells and tumor cells during immunotherapy.

Numerous studies have demonstrated their role in predicting

responses to immunotherapy. In this study, we explored the

r e l a t i on sh ip be tween the MDK-NCL pa thway and

immunotherapy by comparing TMB and MSI between groups.

We also conducted TIDE analysis (Tumor Immune Dysfunction

and Exclusion) (37), a widely used method to assess the functional

state of T cells in transcriptomic samples, and obtained two key

metrics , Dysfunction and Exclusion, which reflect T

cell functionality.

In addition, immunogenic cell death (ICD) is another key factor

influencing immunotherapy efficacy. We compared the expression

patterns of ICD-related genes between groups in TCGA and

validation datasets. From the TCIA database (https://www.tcia.at/

home), we retrieved predictions of CTLA4 and PDCD1 expression

levels in TCGA-LUAD patients and conducted comparisons

between the two groups. Lastly, we examined the differential

expression profiles of immune checkpoint-related genes, which

are closely associated with the response to immune checkpoint

inhibitors, between the two groups.
Sample collection

A total of 18 paired LUAD (lung adenocarcinoma) tissues and

corresponding adjacent normal tissues were collected from patients

undergoing surgical resection at Department of Thoracic Surgery,

Shengjing Hospital of China Medical University. All patients

included in the study had not received neoadjuvant therapy prior

to surgery. The study was approved by the Ethics Committee of

Shengjing Hospital, China Medical University (Approval

No. 2024PS1727K).
Real-time quantitative PCR

Total RNA was extracted from tissues using the Trizol reagent

(R401-01, Vazyme, Nanjing, China) following the manufacturer’s

protocol. Complementary DNA (cDNA) was synthesized from the

extracted RNA using the reverse transcription kit (RR047A,

TAKARA, Japan) according to the kit instructions. The relative

expression levels of the target genes were determined using b-actin
as the internal reference gene. Primer sequences for all genes are
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listed in Supplementary Table S2. All target gene expression

analyses were performed in triplicate to ensure reproducibility.
Western blot

LUAD and control tissue samples were homogenized using

ultrasonic disruption and lysed for 30 minutes in RIPA lysis buffer

(BL504A, Biosharp, China) containing PMSF (1:100, BL507A,

Biosharp, China) and a protease inhibitor cocktail (1:50, P1082,

Beyotime, China). Lysates were centrifuged at 12,000 rpm for 20

minutes, and protein concentrations were determined using the BCA

protein assay kit (PC0020, Solarbio, China). Proteins were separated

by SDS-PAGE (10% gel for MDK and 6% gel for NCL) and

transferred onto PVDF membranes (IPVH00010, Millipore, USA).

Membranes were blocked with 5% non-fat milk at room temperature

for 2 hours and incubated overnight at 4°C with primary antibodies.

Afterward, membranes were incubated with secondary antibodies for

2 hours at room temperature. Protein bands were visualized using

enhanced chemiluminescence (ECL) reagent (BMU102, Abbkine,

USA). Primary antibodies included MDK (1:1000, BM4392,

BOSTER, Wuhan, China), NCL (1:1000, A00228-1, BOSTER,

Wuhan, China), and GAPDH (1:1000, Sigma, USA), which was

used as an internal control. The secondary antibody used was BA1039

(BOSTER, Wuhan, China). All protein bands were quantified using

ImageJ software (Rawak Software Inc., Stuttgart, Germany).
Statistical analysis

All data processing and statistical analyses were performed

using R software (version 4.1.1). The Mann-Whitney U test (also

known as the Wilcoxon rank-sum test) was used to evaluate

differences between non-normally distributed variables. Spearman

correlation analysis was employed to calculate correlation

coefficients between non-normally distributed data. A p-value of

less than 0.05 was considered statistically significant.
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SUPPLEMENTARY FIGURE 1

Annotation results of scRNA-seq dataset GSE153935 for LUAD. (A) Sample

origin of the GSE153935. (B) Transcript counts in the GSE153935. (C)
Clustering results of the GSE153935. (D) Cell type annotation based on

marker gene expression. (E) Expression profiles of representative markers

for ten distinct cell types. (F) InferCNV heatmap displaying CNVs across cells,
with normal samples in the upper panel and tumor samples in the lower

panel. Red and blue indicate CNV gains and losses, respectively.

SUPPLEMENTARY FIGURE 2

Single-Cell communication networks for validation dataset. (A) Incoming

communication patterns of target cells, showing pathways to which each

cell type responds. (B) Outgoing communication patterns of secreting cells,
illustrating the pathways through which cells send signals. (C) Network

diagram showing the strength of intercellular communication, with
connections between various cell types. (D) Scatter plot comparing

outgoing and incoming communication strengths across cell populations,
with bubble size indicating the number of interactions. (E) Chord diagram

depicting communication via the MK pathway between different cell types. (F)
Ligand-receptor interaction probabilities within the MK pathway between
malignant and other cell types. Dot size represents significance, and color

represents communication probability. (G) Violin plots of MK pathway gene
expression levels across cell types, showing gene activity variations.

SUPPLEMENTARY FIGURE 3

Contribution of each ligand-receptor pair for GSE131907 dataset.

SUPPLEMENTARY FIGURE 4

Contribution of each ligand-receptor pair for GSE153935 dataset.

SUPPLEMENTARY FIGURE 5

The spatial distribution of MDK-NCL receptor-ligand signaling across

the niches.

SUPPLEMENTARY FIGURE 6

MDK-NCL ligand-receptor interaction analysis, spatially mapping MDK
ligands, NCL receptors, and their binding regions in validation data.
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and Hyperglycemia Correlated with Cardiovascular and Cerebrovascular Diseases, Taiyuan,
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Background: Heart failure (HF) represents the terminal stage of various

cardiovascular disorders, with immunogenic cell death (ICD) potentially

influencing HF progression through modulation of immune cell activity. This

study aimed to identify ICD-associated biomarkers in patients with HF and

explore their underlying mechanisms.

Methods: Data from GSE57338, GSE3586 and GSE5406 were retrieved from the

Gene Expression Omnibus (GEO) database. Differential expression analysis and

weighted gene co-expression network analysis (WGCNA) were employed to

identify candidate genes, followed by enrichment analysis and Protein-Protein

Interaction (PPI) network construction. Candidate biomarkers were selected using

twomachine learning approaches and validated for expression levels, with receiver

operating characteristic (ROC) curve analysis determining the final biomarkers. A

nomogram model was built based on the biomarkers, followed by molecular

regulatory network analysis, gene set enrichment analysis (GSEA), immune

infiltration assessment, and drug prediction. Additionally, key cells were selected

for pseudo-time and cell communication analysis using the GSE183852 dataset.

Next, pseudotemporal analysis was also performed on key cell subpopulations.

Real-time quantitative PCR (RT-qPCR) was employed to validate the biomarkers.

Results: Three biomarkers, CD163, FPR1, and VSIG4, were identified as having

significant diagnostic value for HF. GSEA revealed their enrichment in ribosomal

and immune cell-related pathways. These biomarkers were notably correlated

with CD8 T cells and M2 macrophages. Carbachol and etynodiol were predicted

to interact with all three biomarkers. Single-cell RNA sequencing identified nine

cell types, with expression of the biomarkers confined to monocytes and

macrophages. Strong cell communication was observed between these cell

types and fibroblasts. Expression of CD163 and VSIG4 decreased over time in

monocytes and macrophages, whereas FPR1 showed an upward trend. In
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addition, the expression levels of CD163 and VSIG4 increased in subpopulations

of monocytes and macrophages, whereas FPR1 showed a decreasing trend. RT-

qPCR results confirmed significant down-regulation of CD163, FPR1, and VSIG4

in patients with HF and animal models.

Conclusions: This study identified and validated three ICD-related biomarkers in

HF—CD163, FPR1, and VSIG4—offering a novel theoretical foundation for the

clinical diagnosis and treatment of HF.
KEYWORDS

immunogenic cell death, heart failure, biomarker, single-cell RNA sequencing analysis,
monocytes and macrophages
1 Introduction

Heart failure (HF), the terminal stage of various cardiovascular

diseases, affects approximately 56.2 million people worldwide (1, 2).

Despite lifestyle changes and advances in medical care that have

stabilized age-adjusted incidence rates, the prevalence and mortality

rates of HF remain high, highlighting the need for further research

to identify improved management strategies (3). Although HF was

once considered non-immune-mediated, recent studies have

demonstrated the involvement of the immune system in its

pathophysiology, and clinical trials on immune modulation

therapy for HF have been conducted (4). Consequently,

modulating immune responses to maintain stability may serve as

a promising strategy to delay HF progression.

Immunogenic cell death (ICD), a unique form of regulated cell

death that occurs as a downstream effect of tumor-specific immune

responses, has been extensively studied in cancer immunotherapy

(5, 6), with emerging research in cardiovascular diseases.

Endothelial cell ICD in atherosclerosis has been linked to the

initiation of adaptive immune responses, sustaining chronic

inflammation within plaques (7). In coronary artery disease,

stratification based on ICD-related genes (IRGs) enables the

development of risk models and immune subtypes that facilitate

treatment decisions (8). Moreover, ICD has been explored as a

diagnostic tool for ischemic stroke in elderly women, identifying
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key biomarkers for diagnosis (9). However, the mechanisms

underlying ICD in HF remain unexplored.

This study utilized machine learning techniques to identify ICD

biomarkers in HF, followed by immune infiltration analysis, targeted

drug prediction, gene set enrichment analysis (GSEA), single-cell data

clustering and annotation, cell communication analysis, and

pseudotime analysis. The findings revealed the functional and

potential molecular mechanisms of these biomarkers at both the

transcriptomic and cellular levels, providing a novel theoretical

framework for the clinical diagnosis and treatment of HF.
2 Materials and methods

2.1 Data collection

RNA data from GSE57338 (sequencing platform: GPL11532)

was obtained from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/), comprising 136 normal left

ventricular tissue samples and 177 left ventricular tissue samples

from patients with HF (10). Additionally, RNA data from GSE3586

(sequencing platform: GPL3050) was downloaded, containing 15

normal left ventricular tissue samples and 13 left ventricular tissue

samples from patients with HF (11). Moreover, the GSE5406

dataset contained 16 normal and 194 HF patients’ heart tissue

samples. The data were obtained from the GPL96 platform using

chip sequencing technology, mainly for biomarkers expression

validation. The single-cell dataset GSE183852 was retrieved from

the GEO website (sequencing platform: GPL24676), including heart

tissue samples from 5 patients with HF and 2 normal heart tissue

samples (12). A total of 34 ICD-associated genes were obtained

from the literature (13) (Additional file 1).
2.2 Differential expression analysis

Differential expression analysis was conducted using the R

package “limma” (v 3.58.1) (14), applying the screening criteria of
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|log2fold change (FC)| > 0.5 and P < 0.05 to compare HF and control

samples in the GSE57338 dataset. Volcano plots of the differentially

expressed gene (DEGs) were visualized using the R package

“ggplot2” (v 3.4.1) (15), highlighting the top 10 up- and down-

regulated DEGs. Heatmaps of the top 10 DEGs were generated

using the R package “ComplexHeatmap” (v 2.4.0) (16).
2.3 Weighted gene co-expression networks
analysis

To calculate the single-sample gene set enrichment analysis

(ssGSEA) scores for ICD-related genes across 313 samples, the

ssGSEA algorithm from the R package “GSVA” (v 1.46.0) (17) was

applied, and box plots were created using “ggplot2” (v 3.4.1).

WGCNA was performed on the GSE57338 dataset using the R

package “WGCNA” (v 1.72.5) (18), with ssGSEA scores as the

feature. Initial clustering of samples identified and excluded

abnormal samples. The soft threshold (power) was determined

based on an R2 > 0.85 and mean connectivity = 0. The dynamic

tree cutting algorithm, with a minimum gene number of 50 per

module and a module merging threshold of 0.3, was applied to

define gene modules. Genes were color-coded, and the “grey”

module (containing unclassified genes) was excluded. Pearson

correlation coefficients were calculated between the modules and

ssGSEA scores, with a heatmap generated to highlight modules with

significant correlation (|cor| > 0.5, P < 0.05). Genes within these

modules were identified as key module genes.
2.4 Enrichment analysis of candidate genes
and protein-protein interactions network
analysis

The R package “ggvenn” (v 1.7.3) (19) was employed to identify

the intersection between DEGs and key module genes, resulting in

the selection of candidate genes. These genes were then converted

from SYMBOL to ENTREZID using the human genome database

org.Hs.eg.db (v 3.18.0) (20). Candidate genes underwent Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) functional enrichment analysis with the R package

“ClusterProfiler” (v 3.16.0) (21), with a threshold of P < 0.05. To

construct PPI networks, candidate genes were analyzed using the

search tool for the retrieval of interacting genes (STRING) database

(https://string-db.org) with a confidence score of 0.4. PPI networks

were then visualized with Cytoscape (v 3.10.0) (22). The Cytohubba

plugin in Cytoscape (v 3.10.0) was utilized to rank candidate genes

using six algorithms: Maximum Connectivity Component (MCC),

Minimum Network Connectivity (MNC), Degree of Minimum

Network Connectivity (DMNC), Degree, Closeness, and

Betweenness. Based on the ranking results, the top 20 genes from

each algorithm were extracted, and their intersection was used to

identify the final candidate key genes. UpSet plots were generated

using the R package (v 1.4.0) (23).
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2.5 Screening candidate biomarkers by
machine learning

Candidate key genes were further screened based on sample

grouping information from GSE57338 using the support vector

machine-recursive feature elimination (SVM-RFE) algorithm (10-

fold cross validation) (v 4.1.4) (24) to obtain feature genes. The R

package “randomForest” (v 3.2.2) (25) was used for random forest

algorithm analysis of the feature genes, incorporating sample

grouping information from GSE57338. A total of 500 decision

trees were computed using the randomForest function, and the

MeanDecreaseGini values for each feature gene were visualized in a

bar chart. The median of the MeanDecreaseGini values

(MeanDecreaseGini measures the effect of each variable on the

heterogeneity of observations at each node in the classification tree,

thus assessing the importance of the variable. The larger the value,

the higher the importance of the variable) was calculated, and genes

with values above the median were selected as candidate

biomarkers. Correlation analysis of the candidate biomarkers was

performed using the R package “corrplot” (v 0.92) (26), with

thresholds of |cor| > 0.3 and P < 0.05.
2.6 Expression validation of candidate
biomarkers

Expression differences of candidate biomarkers between HF and

normal samples were analyzed using the grouping information from

GSE3586 and GSE57338, with a threshold of P < 0.05. Box plots were

constructed using the R package “ggplot2” (v 3.4.1). Candidate

biomarkers showing differential expression between groups and

consistent trends across both datasets were selected for receiver

operating characteristic (ROC) analysis. ROC curves for candidate

biomarkers were generated using the R package “pROC” (v 1.18.0)

(27), and the area under the curve (AUC) was calculated, with

biomarkers defined as those having an AUC > 0.7. To validate

biomarkers expression, differential expression analysis was performed

in the GSE5406 dataset.
2.7 Construction of a nomogram

In the GSE57338 dataset, a nomogram was constructed using

the R package “rms” (v 5.1.4) (28) to evaluate the risk of developing

HF, based on the expression of identified biomarkers. The

predictive performance of the nomogram was assessed by plotting

the ROC curve with the R package “pROC” (v 1.18.0).
2.8 Gene set enrichment analysis

Spearman correlation analysis was performed between each

biomarker and the remaining genes across all GSE57338 samples

using the R package “psych” (v 2.2.9) (29), generating correlation
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coefficients. Genes were then ranked according to these coefficients,

yielding gene lists associated with each biomarker. GSEA was

performed using the sorted results and the R package

“ClusterProfiler” (v 3.16.0), with “c2.kegg.v7.4.symbols.gmt” and

“c5.go.v7.4.symbols.gmt” from the Molecular Signatures Database

(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) as

reference gene sets. The top 5 most significant signaling pathways

were visualized using the enrichplot package (P < 0.05 and |

Normalized Enrichment Score (NES)| > 1) (v 1.18.3) (20).
2.9 Immune infiltration analysis

The CIBERSORT algorithm (v 1.03) (30) was employed to

calculate the relative abundance of 22 immune cell types (31) in HF

and normal samples from the GSE57338 dataset. Immune cells with

a result of 0 were excluded. Differential immune cells (P < 0.05)

were identified, and box plots were constructed for visualization.

Spearman correlation analysis was used to assess the relationships

among differential immune cells and between biomarkers and

immune cells (|cor| > 0.3 and P < 0.05). A correlation matrix was

created using the R package “corrplot” (v 0.92) (26), and a heatmap

was plotted using the R package “pheatmap” (v 1.0.12) (32).
2.10 Regulatory network analysis

MiRNAs targeting the biomarkers were predicted using the

microRNA database (miRDB, http://mirdb.org) and the starBase

database (http://starbase.sysu.edu.cn/), and the intersection of

miRNAs from both databases was extracted. Based on these

predictions, a miRNA-biomarker network was constructed using

Cytoscape (v 3.10.0). Transcription factors (TFs) related to the

biomarkers were identified using the TRRUST database (http://

www.grnpedia.org/trrust/), while the disease signatures database

(DSigDB, https://www.dsigdb.org/) was used to identify drugs

targeting the biomarkers. A biomarker-drug network was then

created and visualized.
2.11 Single-cell RNA sequencing analysis

The single-cell RNA sequencing data from GSE183852 were

processed into Seurat objects using the R package “Seurat” (v 4.4.0)

(33). Quality control was performed by applying the following

parameters: 200 < nFeature_RNA < 4,000, nCount_RNA < 10,000,

and Mt < 10%. Genes covered by fewer than three cells were removed.

Hypervariable genes were selected using variance stabilization

transformation (vst), and the highly variable genes (HVGs) were

retained for further analysis. The LabelPoints function was applied to

identify the top 10 most variable genes, and the Scale Data function was

used for normalization. Principal component analysis (PCA) was

performed on the HVGs for dimensionality reduction. The p-value

for PCs 1 to 15 was calculated using the Jackstraw function, and

variance drop values for PCs were computed using the Elbowplot
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function. Based on the elbow plot, appropriate PCs were selected for

subsequent analysis (P < 0.05). Uniform Manifold Approximation and

Projection (UMAP) clustering analysis was applied to identify cell

clusters (resolution = 0.5). Cellular annotation was performed according

to the literature (12). The Dotplot function was used to visualize the

expression of the three biomarkers in the cells, and cells expressing all

three biomarkers were selected as key cells. Enrichment analysis for

each cell subtype was conducted using the analyze_sc_clusters function

from the R package “ReactomeGSA” (v 1.12.0) (34). The pathways

function was used to extract enrichment results, and a heatmap

displayed the top ten enriched pathways in each cell subtype. Cell

subtype interactions were explored using the R package “CellChat” (v

1.6.1) (35) to conduct communication analysis. Trajectory

differentiation of key cell clusters was simulated using the R package

“Moncle” (v 2.30.1) (36). The dynamic trend of biomarker expression

during cell differentiation was plotted using the plot_pseudo-

time_heatmap function. Next, the marker genes of key cell

subpopulations were selected for annotation based on the CellMarker

2.0 database (https://ngdc.cncb.ac.cn/databasecommons/database/id/

6110), and the final key cell subpopulations were identified based

on the specific expression of these genes in different clusters. To

further explore the expression dynamics and temporal trajectories

of biomarkers in the key cells, the annotated key cell subpopulations

were analyzed by the proposed timeline trajectory analysis. Using

the R package Monocle2 (v 2.24.1) (37), the distribution of

biomarkers in each key cell subtype was projected onto a root

and multiple branches, a single-cell trajectory map was constructed,

and the dynamic trend of biomarker expression during cell

differentiation was plotted. Subsequently, in order to analyze the

relationship between differentiation states and subtypes of key cells,

stacked maps of cell subpopulations in different differentiation

states were drawn. Based on the subtype annotation results, the

proportions of cell types under different groupings were first

visualized. Wilcoxon test. Finally, the differences in the expression

of NOS2, TNF, ARG1, and MRC1 genes in Monocyte&Macrophage

between HF and control samples were analyzed and statistically

analyzed using the Wilcoxon test.
2.12 Human Subjects and Extraction of
PBMC

Patients with HF admitted to the First Hospital of Shanxi

Medical University were selected as the HF group, and a control

group was matched with the HF group based on age, gender, and

other underlying diseases besides HF. Based on the expression of

biomarkers obtained through bioinformatics, the sample size was

calculated using PASS.15, resulting in a total of 15 pairs of samples.

In the morning of the second day after admission, venous blood was

collected into EDTA tubes, and peripheral blood lymphocytes were

isolated within 2 hours using human peripheral blood lymphocyte

separation liquid (Solarbio, China). The trial protocol was approved

by the Scientific Research Ethics Review Committee of the First

Hospital of Shanxi Medical University (NO. KYLL-2024-236), and

all patients provided written informed consent.
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2.13 Animal model (echocardiography)

SSPF-grade male Sprague-Dawley rats (180–200 g, 6–8 weeks old)

were used to establish a chronic HF model (38). HF was induced by

permanently ligating the left coronary artery in rats, while sham-

operated rats underwent the same surgical procedure without artery

ligation. Six weeks post-ligation, high-resolution echocardiography was

performed using the Vevo 770 system (Visualsonics) with a 40 MHz

RMV 704 scanhead to assess cardiac function. Rats with an ejection

fraction (EF) < 40% were considered to have successfully developed HF,

and those that did not develop HF were excluded. After completing

echocardiography, the animals were euthanized, and tissues were

collected for analysis. The experimental protocol was approved by the

Animal Experimental Center Ethics Committee of Beijing

Yongxinkangtai Science and Technology Development Co., Ltd.

(NO. YXKT2024L010).
2.14 Staining

Hearts were fixed in 4% paraformaldehyde at room temperature

for 48 hours, followed by dehydration and embedding. The samples

were sectioned at 5mm thickness, dewaxed, rehydrated, and stained

with Hematoxylin and Eosin (HE) and Masson stains. For IHC

staining, primary antibodies targeting CD163 (1:200, Selleck,

F1548) was incubated overnight at 4 °C. Then, second antibody

was incubated at 37°C for 1 hour. Chromogen development was

accomplished with DAB. Images were captured under a microscope

(Olympus, Japan).
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2.15 Real-time quantitative PCR

Following tissue homogenization, total RNA was extracted

using Trizol (Thermo Fisher Scientific, USA). cDNA synthesis was

carried out using PrimeScript RT Master Mix (Takara, Japan)

according to the manufacturer’s protocol. Real-time quantitative

PCR (qPCR) analysis was performed with SYBR Green Master

Mix (DBI Bioscience, Germany) on a QuantStudio3 real-time PCR

instrument (Thermo Fisher Scientific, USA), with GAPDH as an

internal control. Relative mRNA expression levels were quantified

using the 2-DDCt method. Primer sequences are provided

in Table 1.
2.16 Statistical analysis

Statistical analyses were conducted using R software (v 4.2.2)

and GraphPad Prism 9. Differences between two groups were

assessed using the Wilcoxon rank sum test, with statistical

significance defined as P < 0.05.
3 Results

3.1 Acquisition of key module genes

A total of 441 DEGs were identified, including 236 up-regulated

and 205 down-regulated genes in HF (Additional files 2a-b). The

ssGSEA scores for ICD-related genes significantly differed between
TABLE 1 Primer sequences for quantitative real-time PCR.

Species Target gene Primer sequence (5’to3’)

Human

VSIG4
Forward AAGCAACATCTACAGTGAAGCAGTC

Reverse ATGATGAGGATGATGGCAAAGACAG

FPR1
Forward AGTGGACATCAACTTGTTCGGAAG

Reverse ACGGTGCGGTGGTTCTGG

CD163
Forward ACAATGAAGATGCTGGCGTGAC

Reverse TCTCTGAATCTCCACCTCAACTGTC

GAPDH
Forward CGTATCGGACGCCTGGTT

Reverse AGGTCAATGAAGGGGTCGTT

Rat

VSIG4
Forward AGCTGCCGATCTTTGCCATAATC

Reverse TCCTGCTCACCTCATAGACATACTC

FPR1
Forward CCGTGAACACTTGAGGAACATACC

Reverse GGATTGGGTTGAGGCAGCTATTG

CD163
Forward GAATCACAGCATGGCACAGGTC

Reverse CACAAGAGGAAGGCAATGAGAAGG

GAPDH
Forward GACATGCCGCCTGGAGAAAC

Reverse AGCCCAGGATGCCCTTTAGT
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HF and normal samples (Additional file 2c). In the WGCNA

analysis of the GSE57338 dataset, no outlier samples were

detected (Additional file 2d). The soft threshold was determined

to be 7 (Additional file 2e). Similar modules were merged from the

co-expression matrix, resulting in 11 identified gene modules

(excluding the gray module for unclassified genes), with each

module represented by a different color (Figure 1a). The yellow

module (cor = 0.72, P = 5.8 × 10–17) demonstrated the strongest

correlation with ICD-related gene ssGSEA scores. Consequently,

the 432 genes within the yellow module were designated as key

module genes (Figure 1b).
3.2 Identification and enrichment analysis
of candidate genes and PPI

In this study, 47 candidate genes were identified through the

intersection of DEGs and key module genes (Figure 2a). The

obtained candidate genes were subject to gene ID conversion,

though FCGR1B could not be successfully converted. GO

enrichment analysis revealed 272 GO terms, comprising 224

biological processes (BP), 24 cellular components (CC), and 24

molecular functions (MF) (P < 0.05) (Figure 2b). The candidate

genes were significantly enriched in pathways such as the positive

regulation of inflammatory response, secretory granule membrane,

and RAGE receptor binding. Additionally, the candidate genes were

enriched in 26 KEGG pathways (P < 0.05), including

staphylococcus aureus infection, phagosome, and neutrophil

extracellular trap formation (Figure 2c). These results implied

that candidate genes may play important roles in antimicrobial

immunity, inflammatory response and cellular damage repair.

The candidate genes were further subjected to PPI network

construction, resulting in 42 genes, such as TLR2, FPR1, andMRC1,

and 240 gene-to-gene pairs, including TLR2-CD163 and VSIG4-

CD14 (Figure 2d).

To optimize the screening of candidate genes, the genes were

ranked using different algorithms. The top 20 genes from each

algorithm were extracted, and the intersection of these top 20 genes
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was taken. Finally, 16 genes were identified as the candidate key

genes for further analysis (Figure 2e).
3.3 Machine learning for candidate
biomarker screening

Based on the sample grouping information from GSE57338, the

SVM-RFE algorithm was applied for screening, resulting in 13

feature genes: CD163, VSIG4, FCER1G, CCR1, CCL5, FPR1, TLR2,

C1QB, CD14, MSR1, CD68, MRC1, and CYBB (Figure 3a). The

MeanDecreaseGini values for each feature gene ranged from 0 to 30,

with notable differences observed between the genes (Figure 3b). By

calculating the median of the MeanDecreaseGini values, six genes

greater than the median were selected as candidate biomarkers:

CD163, VSIG4, FCER1G, CCR1, CCL5, and FPR1. Among these,

CCL5 showed a negative correlation with VSIG4 and CD163, while

the remaining five genes exhibited positive correlations with each

other (P < 0.01) (Figure 3c). The correlation between these genes

suggested that they may work in concert at different stages of the

immune response or in different types of immune cells.
3.4 Diagnosis and evaluation of biomarkers

In GSE57338, the six candidate biomarkers demonstrated

significant differences between HF and normal samples (P <

0.05), with CD163, FPR1, and VSIG4 showing decreased

expression in HF samples (Figure 4a). In GSE3586, only CD163,

VSIG4, CCR1, and FPR1 were expressed, with CD163, FPR1, and

VSIG4 levels significantly reduced in HF samples, consistent with

the expression patterns observed in GSE57338 (Figure 4b).

Consequently, CD163, FPR1, and VSIG4 were selected for ROC

analysis, which revealed that the AUC for all three biomarkers

exceeded 0.7 in both datasets, confirming their potential as HF

biomarkers (Figures 4c-h). Next, the expression analysis of CD163,

FPR1, and VSIG4 in the GSE5406 dataset showed that all three were

significantly under-expressed in the HF group compared to the
FIGURE 1

Acquisition of key module genes. (a) Co-expression module identification. (b) Heatmap showing the correlation between modules and phenotypes.
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normal group (Additional file 3). The expression patterns were

consistent with those in the GSE57338 and GSE3586 datasets.

The nomogram model demonstrated that these three

biomarkers could accurately predict the risk of HF occurrence.

ROC analysis of the nomogram yielded an AUC of 0.913,
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indicating that the predictive accuracy of the nomogram model

was significantly superior to single-gene predictions (Additional

file 4). It also suggested that the onset and progression of

HF may involve complex interactions of multiple genes or

biological pathways.
FIGURE 2

Identification and enrichment analysis of candidate genes and PPI. (a) Venn diagram depicting the overlap between differentially expressed genes
(DEGs) and key module genes. (b) Gene Ontology (GO) enrichment analysis results. (c) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis results. (d) Protein-Protein Interaction (PPI) network. (e) Upset plot representing the PPI network.
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3.5 Functional analysis of biomarkers

Further analysis of the signaling pathways involving CD163,

FPR1, and VSIG4 revealed that CD163 was enriched in 76

pathways, including ribosome, Parkinson’s disease, leishmania

infection, Fc gamma R-mediated phagocytosis, and B cell receptor

signaling (Figure 5a). FPR1 was enriched in 79 pathways, including

ribosome, leishmania infection, Parkinson’s disease, cytokine-

cytokine receptor interaction, and chemokine signaling

(Figure 5b). VSIG4 was enriched in 85 pathways, including

ribosome, Fc gamma R-mediated phagocytosis, B cell receptor

signaling, leishmania infection, and chemokine signaling

(Figure 5c). Notably, all three biomarkers were enriched in

pathways related to ribosome function, immune cells, and

immune factors. These findings provided a basis for further

investigation of the potential applications of biomarkers in

immunomodulation, disease diagnosis and therapy.
3.6 Analysis of immune cell infiltration

To further explore immune status differences between HF and

normal samples, immune infiltration analysis was performed on

GSE57338 samples, revealing differences in the abundance of 22

immune cell types between samples from patients with HF and

normal samples (Additional file 5). Immune cells with a result of 0

in 30% of the samples were excluded, leaving 12 immune cell types

for subsequent analysis. Five immune cell types showed significant

differences between the groups: M2 macrophages, resting mast cells,

plasma cells, CD8+ T cells, and T regulatory cells (Tregs) (P < 0.05)
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(Figure 6a). Correlation analysis among these five immune cell

types revealed a strong positive correlation between CD8+ T cells

and Tregs, while plasma cells exhibited negative correlations with

Tregs, CD8+ T cells, M2 macrophages, and resting mast cells

(|cor| > 0.3, P < 0.05) (Figure 6b). The correlation heatmap

between biomarkers and the five immune cell types showed that

VSIG4 had a strong positive correlation with M2 macrophages, and

M2 macrophages positively correlated with CD163 and FPR1. In

contrast, CD8+ T cells and plasma cells negatively correlated with

CD163, FPR1, and VSIG4, respectively. Resting mast cells

demonstrated an inverse correlation with CD163 and FPR1

(|cor| > 0.3, P < 0.05) (Figure 6c). The above results suggested

that biomarkers may be involved in disease onset and progression

by modulating immune responses and cellular functions.
3.7 Molecular regulatory network and drug
prediction

Prediction of miRNA interactions with the three biomarkers

revealed that VSIG4 was regulated by four miRNAs, including hsa-

miR-665; CD163 was regulated by 11 miRNAs, including hsa-miR-

4262; while no miRNA regulatory relationships were found for

FPR1 (Figure 7a). TFs regulating the biomarkers were also analyzed,

revealing that no TFs regulated VSIG4 or FPR1, but eight TFs,

including SOX9, were found to regulate CD163 (Figure 7b). These

findings provided important clues for further understanding of

immune markers and their regulatory networks in HF.

A total of 74 biomarker-drug/compound relationships were

identified. The network analysis suggested that carbachol and
FIGURE 3

Machine learning for candidate biomarker screening. (a) Results of the Support Vector Machine-Recursive Feature Elimination (SVM-RFE) model.
(b) Bar chart depicting the MeanDecreaseGini scores for candidate genes. (c) Correlation analysis of candidate biomarkers. *P < 0.05, ***P < 0.001.
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etynodiol may have potential effects on all three biomarkers.

Additionally, six compounds were shared between CD163 and

FPR1—prednisolone, flunisolide, fludroxycortide, halcinonide,

ribavirin, and isoflupredone—while five compounds were shared

between FPR1 and VSIG4, including anisomycin, trichostatin A,

cephaeline, emetine, and beclometasone (Figure 7c). By

understanding the role of these drugs in regulating the expression

of immune markers, more effective therapeutic strategies may be

developed in the future.
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3.8 Single-cell RNA sequencing analysis

Following quality control, 23,963 genes and 49,042 cells were

identified (Additional file 6). The top 2000 HVGs were selected, and

the 10 genes exhibiting the greatest variation were identified

(Additional file 7a). PCA was performed on the selected HVGs,

and the top 10 principal components (PCs) were chosen for further

analysis (P < 0.05) (Additional files 7b-c). UMAP clustering analysis

was conducted prior to cell annotation, resulting in the
FIGURE 4

Diagnosis and evaluation of biomarkers. (a) Expression levels of candidate genes in the training set, with the horizontal axis representing genes and
the vertical axis indicating gene expression levels (Wlicoxon rank sum test, ****P < 0.0001). (b) Expression levels of candidate genes in the validation
set, with similar axis labels and significance markers (Wlicoxon rank sum test, *P < 0.05, **P < 0.01, ns: P > 0.05). (c) ROC curve analysis of the VSIG4
biomarker in the validation set. (d) ROC curve analysis of the CD163 biomarker in the training set. (e) ROC curve analysis of the FPR1 biomarker in
the training set. (f) ROC curve analysis of the VSIG4 biomarker in the training set. (g) ROC curve analysis of the FPR1 biomarker in the validation set.
(h) ROC curve analysis of the CD163 biomarker in the validation set.
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identification of 14 distinct cell clusters (Additional file 7d). Nine

cell types and their corresponding markers were extracted for

annotation based on the reference (12). Subsequently, cell

annotation revealed eight distinct cell types: endothelium,

fibroblasts, pericytes, monocytes and macrophages, natural killer

and T lymphocytes (NK&T cells), neurons, B cells, and smooth
Frontiers in Immunology 10102
muscle cells (Figure 8a; Additional file 8). Monocytes and

macrophages expressing all three biomarkers were designated as

key cells (Figure 8b). To explore the biological pathways and

functions of these cell subtypes in HF development, enrichment

analysis revealed that pericytes and smooth muscle cells were

significantly associated with ATP-sensitive potassium channels
FIGURE 5

Functional analysis of biomarkers. (a) GSEA enrichment analysis of the CD163 gene. (b) GSEA enrichment analysis of the FPR1 gene. (c) GSEA
enrichment analysis of the VSIG4 gene.
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and BDNF activation of NTRK2 (TRKB) signaling, while NK&T

cells and B cells were predominantly enriched for activation of Na-

permeable kainate receptors and hydroxycarboxylic acid-binding

receptors (Figure 8c). The above results implied that these cell types

act synergistically through multiple mechanisms and may provide

new targets and ideas for the treatment of HF.

Analysis of cell communication between the eight cell types

showed that fibroblasts and neurons exhibited the highest number

of ligand-receptor pairs, indicating the strongest interaction

between these two cell types. Fibroblasts also demonstrated a

higher probability of communication with monocytes and

macrophages, NK&T cells, and B cells (Figures 9a, b; a: plot of

probability of cellular communication, b: plot of number of cellular

communications). The high-frequency interaction of fibroblasts

with these immune cells suggested that they may play an

important role in tissue repair and remodeling in immune

responses, and inflammation.
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Monocytes and macrophages were projected onto a root with 9

branches, traversing 9 nodes along their developmental trajectory.

Clusters 0 and 3 marked the initial stages of monocyte and

macrophage development, while clusters 4 and 6 were primarily

located at the final stages of cellular differentiation (Figures 9c, d).

This dynamic developmental trajectory may reflected how immune

cells progressively differentiate and regulate their functions in the

body according to different needs.

Given the specific expression of the biomarkers in monocytes

and macrophages, the gene expression of the three biomarkers was

analyzed across the pseudo-time series. The expression of CD163

showed a decreasing trend over time, with slight increases at certain

nodes of the developmental cycle, but overall, the expression in the

cells declined. In contrast, FPR1 exhibited an upward trend,

indicating its potential significant role in cellular development

and differentiation. The expression pattern of VSIG4 mirrored

that of CD163 (Figure 9e). This expression pattern suggested that
FIGURE 6

Analysis of immune cell infiltration. (a) Box plot illustrating immune cell infiltration differences (Wlicoxon rank sum test, *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, ns: P > 0.05). (b) Correlation of differential immune cell types (*P < 0.05, **P < 0.01, ***P < 0.001). (c) Correlation
between biomarkers and differential immune cells (*P < 0.05, **P < 0.01, ***P < 0.001).
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their immunosuppressive or reparative functions may be gradually

replaced by other functions.

To further explore the biomarker expression of monocyte and

macrophage subpopulations at different stages of differentiation, 13

cells were first clustered and annotated into 5 subpopulations based

on marker genes (Table 2; Additional file 9a-c). Subsequently, the

five cell subpopulations were analyzed in a proposed time series. As

shown in Additional file 9d, cells gradually differentiated over time,

with darker blue representing earlier differentiation. Each cell
Frontiers in Immunology 12104
subpopulation mapped to a different differentiation time and

corresponded to a different differentiation state, with darker red

indicating the earliest type of differentiation. As cells differentiated,

the expression of CD163 and VSIG4 in key cell subpopulations

gradually increased, while the expression of FPR1 slowly decreased

(Additional file 9e). Next, stacked plots of cell subpopulations in

different differentiation states (Additional file 9f) showed that M1

macrophages were distributed in all differentiation states, especially

more in state 2 and state 5; Intermediate monocytes were
FIGURE 7

Molecular regulatory network and drug prediction. (a) Regulatory network between the CD163 gene and miRNAs, where pink nodes represent
biomarkers and blue nodes represent interacting miRNAs. (b) Regulatory network between the CD163 gene and transcription factors (TFs).
(c) Diagram of drug prediction for biomarkers.
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distributed only in state 1; and Non-classical monocytes were

mainly distributed in state 1 and state 3; M2 macrophages were

concentrated in state 3 and state 4 in the later stages of

differentiation; Classical monocytes were found mainly in state 1

and state 5. Subsequently, the proportions of cell subtypes under

different groupings were visualized (Additional file 10a). By

comparing NOS2, TNF, ARG1 and MRC1 gene expression in

Monocyte&Macrophage between HF and control samples, TNF

and MRC1 were found to be significantly different between the two

groups (Additional files 10b-e). This provided important clues to a

deeper understanding of the function of monocytes and

macrophages and their role in disease.
3.9 Clinical and animal validation of Hub
genes

To validate the expression levels of ICD-related hub genes in

HF, PBMCs were extracted from 15 clinical patients with HF and

controls for RT-qPCR analysis. Results revealed significant down-

regulation of CD163, FPR1, and VSIG4 in patients with HF

(Figure 10a). Further investigation was conducted in heart tissues

using the HF rat model. Echocardiography showed reduced left

ventricular ejection fraction (LVEF) and left ventricular fractional
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shortening index (LVFS), alongside increased left ventricular end-

systolic diameter (LVIDs) and left ventricular end-diastolic

diameter (LVIDd) in HF rats (Figures 10b-c). The ratios of heart

weight to body weight and lung weight to tibia length were

significantly elevated (Figure 10d). HE staining revealed

prominent cardiomyocyte hypertrophy, with inflammatory cell

infiltration in the HF group (Figure 10e). Masson staining

indicated severe fibrosis in the HF group (Figure 10f), and the

difference in fibrosis between the two groups was significant

(Figure 10g). Cardiac tissue RT-qPCR results confirmed that

CD163, FPR1, and VSIG4 were significantly down-regulated in

HF rats (Figure 10h). The results of immunohistochemistry showed

that the expression of CD163+ cells was decreased in the myocardial

tissue of HF mice (Additional file 11). These results suggested that

down-regulation of CD163, FPR1, and VSIG4 expression in HF

patients and HF rat models may be closely associated with

dysregulation of the immune system, decreased cardiac function,

and tissue damage.
4 Discussion

Cardiac immunology has recently emerged as a focal area of

research. While some aspects of immune regulation in HF are
FIGURE 8

Single-cell RNA sequencing analysis. (a) UMAP plot for different cell types. (b) Expression profile plot of biomarkers. (c) Pathway enrichment analysis
of cell subtypes.
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understood, many questions remain to be addressed. ICD is a form

of programmed cell death induced by antigens and adjuvants,

triggering downstream immune responses. However, the role and

mechanisms of ICD in HF pathophysiology remain unclear. In this

study, three ICD-related biomarkers—CD163, FPR1, and VSIG4—

were identified in patients with HF using transcriptomic and single-

cell dataset analyses (Additional file 12). Previous studies have

shown that these three genes, as combined markers, may act

synergistically to affect the occurrence and development of HF

and non-alcoholic fatty liver disease by regulating mechanisms such
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as immune response and monocyte migration. In addition, their

association with natural killer (NK) cells and macrophages was also

found, further supporting their important role in the immune

response (39).

Single-cell sequencing data in this study were obtained from the

research by Koenig et al. (12). Unlike the study by Koenig, our work

systematically integrated multiomics analyses (including

transcriptomes and single-cell sequencing), machine-learning

approaches (e.g., SVM-RFE and random forests), and immune

infiltration assessments, which were not comprehensively
FIGURE 9

Cell subtype communication analysis. (a-b) Diagrams of cell communication results. (c) Results of pseudotime and state analysis in single-cell
pseudotemporal analysis. Darker colors indicate the most advanced state of development, while lighter colors indicate more mature development.
The cells were divided into 9 different periods according to their developmental state. (d) Cell pseudotime analysis of Seurat clusters. Different cell
clusters presented different positions at various nodes of the developmental trajectory. (e) Dynamic atlas of biomarkers.
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combined in their study. Furthermore, this study identified the

association of CD163, FPR1, and VSIG4 with ICD, a connection

that Koenig et al. did not investigate. Specifically, during ICD,

certain molecules, especially ANXA1, may enhance local

inflammatory responses by binding to FPR1 receptors and

activating macrophages and monocytes. At the same time, the

activation of fibroblasts may promote vascular wall structural

changes and fibrosis (40). Therefore, targeting FPR1 or ICD-

related pathways may be a potential strategy for the treatment of

ascending aortic aneurysm. When tumor cells develop ICD through
FIGURE 10

Clinical and animal validation of hub genes. (a) Expression of CD163, FPR1, and VSIG4 in peripheral blood mononuclear cells of patients with HF and
NHF individuals (Unpaired t test, **P < 0.01, ***P < 0.001). (b-c) Echocardiograms of the HF rat model and sham group (Unpaired t test,
***P < 0.001). (d) The ratios of heart weight to body weight and lung weight to tibia length in rat model (Unpaired t test, *P < 0.05). (e-f) HE and
Masson staining of rat hearts. (g) Collagen volume fraction(%) calculated by Masson staining (Unpaired t test, ***P < 0.001). (h) Expression of CD163,
FPR1, and VSIG4 in the hearts of HF and sham groups (Unpaired t test, *P < 0.05, **P < 0.01).
TABLE 2 Marker gene annotation information for key
cell subpopulations.

TNF M1 macrophage

MERTK, CD163, STAB1, MRC1 M2 macrophage

BASP1, CXCL8, GPR183 Classical monocyte

FCN1 Non-classical monocyte

FCGR3A Intermediate monocyte
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radiotherapy or other therapeutic modalities, macrophages

recognize tumor cell death signals through CD163 receptors.

CD163+ macrophages are normally in an immunosuppressive

state and help tumors evade immune surveillance by promoting

Treg cell infiltration and inhibiting effector T cell function (41). In

addition, carbon ion radiotherapy has been shown to effectively

reduce fiber deposition in scar tissue by inducing ICD of fibroblasts,

slowing their proliferation and promoting their death (42). Another

study pointed out that ICD may affect cancer-associated fibroblasts

by regulating immune responses, thereby altering tumor

progression and patient survival prognosis. Although no

association between ICD and macrophages or fibroblasts has been

found in HF, these immune cells may affect the occurrence and

development of HF through the ICD process. Additionally,

potential therapeutic targets were proposed via drug prediction,

such as carbachol and etynodiol, which target all three biomarkers.

Collectively, this study not only extends the findings of Koenig et al.

but also offers novel insights and references for future research

in HF.

CD163 (Cluster of Differentiation 163), a 130 kDa cell surface

glycoprotein, is predominantly expressed on monocytes and

macrophages. It plays significant roles in metabolic diseases and

immune regulation and is considered a promising target for drug

development (43, 44). Soluble CD163 (sCD163) is a soluble

inflammatory mediator produced through the enzymatic

hydrolysis of CD163 (45). CD163 expression tends to be low in

conditions such as non-alcoholic fatty liver (39, 46) and ischemic

cardiomyopathy (47), whereas sCD163 tends to be elevated in

hypertension (48) and diabetes (49, 50). Additionally, sCD163 has

been linked to increased cardiovascular mortality in diabetic

patients. In HF, CD163 expression is down-regulated in cardiac

tissues (39, 51), consistent with both bioinformatics and

experimental findings in this study. CD163 expression in cardiac

tissue is also associated with hyperlipidemia (52) and cellular

stemness (51). Moreover, sCD163 is highly expressed in the blood

of patients with HF (53), though the mechanisms driving this

increase remain under investigation. Some studies suggest that

sCD163 levels are influenced by left ventricular diastolic volume

(53), while others have linked sCD163 to monocyte activation,

particularly activation related to the M2 phenotype (54), which

warrants further exploration. In addition, research has

demonstrated that CD163 serves as a critical link between the

immune system, inflammatory response, and cardiovascular disease

by not only reflecting the activation of immune cells, particularly

macrophages, but also modulating immune responses (54).

Furthermore, in another study, CD163, acting as a macrophage

marker, was found to play a significant role in regulating

inflammation and the tumor microenvironment (44). This study

also found a reduction in CD163 expression in macrophages in HF,

suggesting that the progression of HF may be linked to decreased

CD163 expression in macrophages.

FPR1 (Formyl Peptide Receptor 1), a key member of the G

protein-coupled receptor family, plays a critical role in the

inflammatory process and immune cell recruitment. It is highly
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expressed in macrophages (55) and mediates macrophage

chemotactic motility and functional activation by binding to

TAFA4 (56, 57). FPR1 is a well-established target for clinical

therapeutic drugs, with various agonists and inhibitors developed

for its modulation (58). Studies have demonstrated that FPR1

modulates the immune response and repair process of the heart

by regulating macrophage activity, and dysregulation of the

immune response following cardiac injury may contribute to the

development of HF (59). Moreover, FPR1 may mitigate

inflammatory responses and facilitate cardiac repair and recovery

in HF through the regulation of macrophage function (60). Studies

suggest that FPR1 may be a promising drug target for

cardiovascular diseases, aiding both diagnosis and treatment (61).

It plays a negative regulatory role in myocardial ischemia-

reperfusion and coronary atherosclerosis but a positive regulatory

role in myocardial infarction. FPR1 contributes to atherosclerotic

lesions by modulating the number of blood neutrophils under

hypercholesterolemia (62) and exacerbates myocardial cell

apoptosis and inflammation during ischemia-reperfusion through

the MAPK signaling pathway (63). However, FPR1 activation has

been shown to improve left ventricular remodeling after myocardial

infarction in mice and rats, potentially by promoting early

neutrophil migration and infiltration, thus accelerating wound

healing (64). In the present study, decreased expression of FPR1

was observed in PBMCs from patients with HF and in the hearts of

HF rats through both bioinformatics and experimental validation.

However, no significant difference in FPR1 expression was found in

macrophages in HF. Notably, FPR1 expression gradually increased

during macrophage differentiation, suggesting its potential as a

therapeutic target for HF.

VSIG4 (V-set and immunoglobulin domain containing 4) is a

type I transmembrane receptor that inhibits T cell activation and

induces the differentiation of regulatory T cells, thus suppressing

immune-mediated inflammatory diseases (65). Soluble VSIG4, shed

from the surface of macrophages, serves as a biomarker for diseases

associated with macrophage activation (66). VSIG4 has a protective

role in cardiovascular diseases and can alleviate age-related insulin

resistance and hypertension (67). Additionally, research has

highlighted that VSIG4, as a critical immune marker, is strongly

associated with macrophage function and plays a pivotal role in both

the immune response and the diagnosis of HF (39, 68). In myocardial

ischemia/reperfusion (I/R) injury, VSIG4 inhibits M1 macrophage

polarization by blocking TLR4/NF-kB signaling, thus preventing

cardiomyocyte apoptosis (69). However, VSIG4 expression in M2

macrophages promotes fibrosis after acute myocardial infarction,

suggesting its potential as an immunomodulatory therapeutic target

(70). In HF, VSIG4 expression is significantly down-regulated in

patients with right ventricular HF (71), while serum levels of VSIG4

are elevated in patients with left ventricular HF, with high levels

correlating with poor prognosis (72). In the present study, VSIG4

expression was decreased in macrophages in HF, and its expression

showed a decreasing trend duringmacrophage differentiation, further

suggesting that HF progression may be linked to the expression of

VSIG4 in macrophages.
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GSEA enrichment analysis reveals that the three biomarkers are

significantly enriched in ribosomes. The enhanced translation

function of ribosomes is a hallmark of cardiac hypertrophy, and

inhibiting ribosomal translation can effectively mitigate

hypertrophy (73). However, systemic inhibition of ribosomal

translation may cause adverse effects in organs outside the heart.

For example, while rapamycin effectively inhibits cardiac

hypertrophy, it can lead to severe consequences such as immune

suppression (74). Recent studies have identified the cardiac-specific

nuclear ribonucleoprotein (RNP)-binding long non-coding RNA

(lncRNA) CARDINAL, which alleviates cardiac hypertrophy in vivo

and in vitro by inhibiting the translation of hypertrophy-related

proteins (75). In the study by Koji Kasahara et al. (76), FPR1

indirectly influenced ribosomal function through the regulation of

ribosomal protein gene expression. Additionally, VSIG4, an up-

regulated gene, is linked to ribosome function, implying its potential

significance in protein synthesis or cellular function regulation (77).

Prior research has demonstrated that CD163 expression correlates

with the mTOR signaling pathway (78), which governs translation

initiation and ribosome biogenesis (79). The biomarkers identified

in this study are all associated with ribosomes, offering a new

avenue for basic research. Single-cell analysis highlights the pivotal

role of monocytes and macrophages in HF progression, with cardiac

macrophages regulating both survival and adaptive remodeling in

patients with HF. However, these macrophages are highly infiltrated

in the hearts of patients with HF, potentially due to the elevated

expression of Ang II, which mobilizes macrophages (80).

Macrophages are categorized into M1 and M2 types based on

their secreted factors and functions. Promoting the conversion of

M1 to M2 macrophages and maintaining a balance between these

two subtypes may provide an effective strategy for treating HF (81).

It has been demonstrated that sodium-glucose cotransporter 2

(SGLT2) inhibitors can reduce fibrosis markers by promoting M2

macrophage polarization and enhancing angiogenic factors (82),

while nicorandil can suppress the production of pro-inflammatory

cytokines by inhibiting M1 polarization (83). Furthermore, this

study found a positive correlation between the expression levels of

these three biomarkers and M2 macrophages, suggesting that

targeting these biomarkers to modulate macrophage homeostasis

in HF may offer a promising therapeutic strategy.

Cell subtype communication analysis revealed that fibroblasts

likely engage in frequent interactions with monocytes,

macrophages, NK cells, T cells, and B cells. Previous studies have

demonstrated that macrophages influence cardiac function by

modulating fibroblast activity and affecting the remodeling and

excessive deposition of extracellular matrix (ECM) (84). During

cardiac inflammation and remodeling, macrophages and fibroblasts

exhibit a close interconnection. Notably, M1 macrophages release

pro-inflammatory cytokines, activate fibroblasts, and drive the

progression of fibrosis (85). Additionally, research has shown that

macrophages interact with TWEAK via the receptor CD163,

playing a critical role in cardiac fibrosis and HF (86). VSIG4

promotes cardiac fibrosis repair during acute myocardial

infarction (AMI) by regulating M2-type macrophage function and

interacting with immune factors such as TGF-b1 and IL-10 (70).
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Furthermore, the FPR1 receptor is crucial for the aggregation and

activation of immune cells, including monocytes and macrophages,

which subsequently impacts fibroblast activation and fibrosis,

thereby promoting inflammatory and fibrotic responses in the

heart and lung (87). Collectively, the intricate crosstalk between

immune cells and fibroblasts plays a pivotal role in the pathogenesis

of cardiac inflammation and fibrosis, offering potential therapeutic

targets and novel strategies for treating cardiac fibrosis.

In this paper, drug prediction was performed based on three

biomarkers, and it was found that carbachol and etynodiol may

have potential roles for all three biomarkers. Carbachol, a structural

analogue of acetylcholine that acts on muscarinic and nicotinic

receptors, is used clinically to treat glaucoma (88). Only a few

literatures have found that carbachol increases phagocytosis of

macrophages in vitro (89). Progestin is the first progestin with

moderate progestogen activity, and progestin has some effect on

macrophages. In a clinical study of adolescent endometriosis, one-

year progestin treatment increased the number of CD206+

monocytes (P < 0.001) but decreased the number of CD163+

monocytes (P = 0.017) (90). The specific effects of the above two

drugs on macrophages are still superficial, and the relevant

mechanisms are not deeply studied. In addition, the effects of the

above two drugs on heart failure are lack of relevant research

support and still need to be further explored.

This study has several limitations. First, the dataset is relatively

small, necessitating the inclusion of larger, multi-center datasets

(e.g. UK Biobank, HF registry study data) for more robust

conclusions. Furthermore, validation in human and animal

models is preliminary; additional functional experiments, such as

gene knockout or overexpression studies, are needed to clarify the

roles of these biomarkers in HF progression. Simultaneously,

further experimental evidence is required to clarify the

relationship between biomarkers and ribosomes. Moreover,

existing studies have predominantly focused on monocytes/

macrophages, while the interactions with other cell types, such as

fibroblasts and cardiomyocytes, remain underexplored. Future

investigations could leverage spatial transcriptome technologies,

like Visium, to map co-localization regions and deepen our

understanding of macrophage-fibroblast interactions. Lastly, the

absence of experimental validation for drug predictions restricts

their direct clinical application. In subsequent studies, carbachol or

etynodiol could be administered in HF rat models to monitor

changes in CD163/VSIG4 expression levels, cardiac function

parameters, and inflammatory/fibrosis markers. Despite these

limitations, the study identifies novel mechanisms underlying HF

and highlights potential biomarkers, offering valuable insights for

the prevention and treatment of HF and establishing a foundation

for future research.
5 Conclusions

This study identified three biomarkers—CD163, FPR1, and

VSIG4—associated with immunogenic cell death in patients with

HF, integrating transcriptomic data with single-cell datasets. The
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functions and biological pathways of these biomarkers were

examined, and the potential links between immunogenic cell

death-related genes and HF pathophysiology were explored.

Additionally, the expression of these biomarkers was validated in

both human and animal models, providing a novel theoretical

framework for clinical diagnosis and treatment of HF.
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Thirty-four ICD-related genes.
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Volcano plot illustrating differentially expressed genes. (b) Heatmap

displaying the top 10 differentially expressed genes. (c) Comparison of
ssGSEA scores between heart failure and normal samples. The horizontal

axis represents the ssGSEA score, and the vertical axis represents sample
groupings (Wlicoxon rank sum test, ** P < 0.01). (d) Hierarchical clustering of

samples. Each branch in the clustering tree corresponds to a sample, with the

vertical coordinate representing the Euclidean distance of sample expression
levels. (e) Soft-thresholding analysis for network construction.
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differentiation dynamics. (a-b) Expression levels of Marker genes in different
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cell populations. (c) Annotated cellular map of monocyte and macrophage

subpopulations. (d) Proposed temporal analysis plot of key cell subpopulations.

(e) Changes in biomarker expression during cell differentiation. (f) The stacked
plots of cell subpopulations in different differentiation states.
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TNF and MRC1 were significantly different between HF and control samples.
(a) Visualization of the proportions of cell subtypes under different groupings.
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(b-e) Express ion of NOS2 , TNF , ARG1 , and MRC1 genes in

Monocyte&Macrophage between HF and control samples.
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Expression of CD163+macrophages in rat myocardium.

ADDITIONAL FILE 12

The flowchart of this research.
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29. Unger-Plasek B, Temesi Á, Lakner. Z. Towards understanding the motivators of
sustainable consumer behavior-validation of the food eco-guilt scale. Nutrients. (2024)
16:(21). doi: 10.3390/nu16213695

30. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh. AA. Profiling tumor
infiltrating immune cells with CIBERSORT. Methods Mol Biol. (2018) 1711:243–59.
doi: 10.1007/978-1-4939-7493-1_12

31. Chen F, Yang Y, Zhao Y, Pei L, Yan. H. Immune infiltration profiling in
nonsmall cell lung cancer and their clinical significance: study based on gene expression
measurements. DNA Cell Biol. (2019) 38:1387–401. doi: 10.1089/dna.2019.4899

32. Gu Z, Hübschmann. D. Make interactive complex heatmaps in R.
Bioinformatics. (2022) 38:1460–2. doi: 10.1093/bioinformatics/btab806

33. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng 3S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell. (2021) 184:3573–3587.e29.
doi: 10.1016/j.cell.2021.04.048

34. Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob. H.
ReactomeGSA - efficient multi-omics comparative pathway analysis. Mol Cell
Proteom. (2020) 19:2115–25. doi: 10.1074/mcp.TIR120.002155

35. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

36. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell. C. Single-cell mRNA
quantification and differential analysis with Census. Nat Methods. (2017) 14:309–15.
doi: 10.1038/nmeth.4150

37. Jiang Y, Yu W, Hu T, Peng H, Hu F, Yuan Y, et al. Unveiling macrophage
diversity in myocardial ischemia-reperfusion injury: identification of a distinct lipid-
associated macrophage subset. Front Immunol. (2024) 15:1335333. doi: 10.3389/
fimmu.2024.1335333

38. Hu W, Tu H, Wadman MC, Li YL, Zhang. D. Renal denervation achieves its
antiarrhythmic effect through attenuating macrophage activation and
neuroinflammation in stellate ganglia in chronic heart failure. Cardiovasc Res. (2024)
120(18):2420–33. doi: 10.1093/cvr/cvae196

39. Zhang Y, Feng L, Guan X, Zhu Z, He Y, Li. X. Non-alcoholic fatty liver disease
and heart failure: A comprehensive bioinformatics and Mendelian randomization
analysis. ESC Heart Fail. (2024) 11:4185–200. doi: 10.1002/ehf2.15019
frontiersin.org

https://doi.org/10.1038/s41569-024-01046-6
https://doi.org/10.1038/s41569-024-01046-6
https://doi.org/10.1093/cvr/cvac013
https://doi.org/10.1016/j.jchf.2024.02.020
https://doi.org/10.1038/s41569-023-00919-6
https://doi.org/10.1038/s41568-024-00674-x
https://doi.org/10.3389/fimmu.2024.1390263
https://doi.org/10.3389/fimmu.2024.1390263
https://doi.org/10.1016/j.intimp.2023.110130
https://doi.org/10.2147/jir.S439315
https://doi.org/10.1038/s41598-024-65390-w
https://doi.org/10.1016/j.ygeno.2014.12.002
https://doi.org/10.1016/j.jacc.2006.07.026
https://doi.org/10.1016/j.jacc.2006.07.026
https://doi.org/10.1038/s44161-022-00028-6
https://doi.org/10.1080/2162402x.2015.1069938
https://doi.org/10.1186/s12967-023-04845-6
https://doi.org/10.1093/bioinformatics/btac409
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3892/etm.2022.11449
https://doi.org/10.3389/fimmu.2022.989286
https://doi.org/10.3389/fimmu.2022.989286
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.3389/fgene.2022.990888
https://doi.org/10.1186/s12967-023-04029-2
https://doi.org/10.1186/s12967-023-04029-2
https://doi.org/10.3389/fcvm.2022.1016081
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1016/j.heliyon.2023.e21147
https://doi.org/10.1016/j.heliyon.2023.e21147
https://doi.org/10.3390/nu16213695
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1089/dna.2019.4899
https://doi.org/10.1093/bioinformatics/btab806
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1074/mcp.TIR120.002155
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/nmeth.4150
https://doi.org/10.3389/fimmu.2024.1335333
https://doi.org/10.3389/fimmu.2024.1335333
https://doi.org/10.1093/cvr/cvae196
https://doi.org/10.1002/ehf2.15019
https://doi.org/10.3389/fimmu.2025.1560903
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1560903
40. Tian Z, Zhang P, Li X, Jiang. D. Analysis of immunogenic cell death in ascending
thoracic aortic aneurysms based on single-cell sequencing data. Front Immunol. (2023)
14:1087978. doi: 10.3389/fimmu.2023.1087978

41. Lip H, Zetrini A, Park E, Cai P, Abbasi AZ, Huyan T, et al. Mitigating
radioresistance mechanisms by polymer-lipid manganese dioxide nanoparticles
enhances immunogenic cell death and antitumor immune response to facilitate
abscopal effect in breast tumor models. Drug Delivery Transl Res. (2025).
doi: 10.1007/s13346-025-01873-1

42. Zhou H, Yang P, Zhang T, Kepp O, Ren Y, Jiang N, et al. The role of apoptosis,
immunogenic cell death, and macrophage polarization in carbon ion radiotherapy for
keloids: Targeting the TGF-b1/SMADs signaling pathway. Biochim Biophys Acta Mol
Basis Dis. (2025) 1871:167499. doi: 10.1016/j.bbadis.2024.167499

43. Ratajczak W, Atkinson SD, Kelly. C. The TWEAK/Fn14/CD163 axis-
implications for metabolic disease. Rev Endocr Metab Disord. (2022) 23:449–62.
doi: 10.1007/s11154-021-09688-4

44. Skytthe MK, Graversen JH, Moestrup. SK. Targeting of CD163(+) macrophages
in inflammatory and Malignant diseases. Int J Mol Sci. (2020) 21:(15). doi: 10.3390/
ijms21155497

45. Plevriti A, Lamprou M, Mourkogianni E, Skoulas N, Giannakopoulou M, Sajib
MS, et al. The role of soluble CD163 (sCD163) in human physiology and
pathophysiology. Cells. (2024) 13:(20). doi: 10.3390/cells13201679

46. Li G, Lu Z, Chen Z. Identification of common signature genes and pathways
underlying the pathogenesis association between nonalcoholic fatty liver disease and
heart failure. Front Immunol. (2024) 15:1424308. doi: 10.3389/fimmu.2024.1424308

47. Wang J, Xie S, Cheng Y, Li X, Chen J, Zhu M. Identification of potential
biomarkers of inflammation-related genes for ischemic cardiomyopathy. Front
Cardiovasc Med. (2022) 9:972274. doi: 10.3389/fcvm.2022.972274

48. Al-Daghri NM, Al-Attas OS, Bindahman LS, Alokail MS, Alkharfy KM, Draz
HM, et al. Soluble CD163 is associated with body mass index and blood pressure in
hypertensive obese Saudi patients. Eur J Clin Invest. (2012) 42(11):1221–6.
doi: 10.1111/j.1365-2362.2012.02714.x

49. Siwan E, Twigg SM, Min D. Alterations of CD163 expression in the
complications of diabetes: A systematic review. J Diabetes Complications. (2022) 36
(4):108150. doi: 10.1016/j.jdiacomp.2022.108150

50. Semnani-Azad Z, Blanco Mejia S, Connelly PW, Bazinet RP, Retnakaran R,
Jenkins DJA, et al. The association of soluble CD163, a novel biomarker of macrophage
activation, with type 2 diabetes mellitus and its underlying physiological disorders: A
systematic review. Obes Rev. (2021) 22(8):e13257. doi: 10.1111/obr.13257

51. Yan W, Li Y, Wang G, Huang Y, Xie. P. Clinical application and immune
infiltration landscape of stemness-related genes in heart failure. ESC Heart Fail. (2024)
12(1):250–70. doi: 10.1002/ehf2.15055

52. Wang C, Yang H, Gao. C. Potential biomarkers for heart failure. J Cell Physiol.
(2019) 234:9467–74. doi: 10.1002/jcp.27632

53. Ptaszynska-Kopczynska K, Marcinkiewicz-Siemion M, Lisowska A,
Waszkiewicz E, Witkowski M, Jasiewicz M, et al. Alterations of soluble TWEAK and
CD163 concentrations in patients with chronic heart failure. Cytokine. (2016) 80:7–12.
doi: 10.1016/j.cyto.2016.02.005

54. Durda P, Raffield LM, Lange EM, Olson NC, Jenny NS, Cushman M, et al.
Circulating soluble CD163, associations with cardiovascular outcomes and mortality,
and identification of genetic variants in older individuals: the cardiovascular health
study. J Am Heart Assoc. (2022) 11:e024374. doi: 10.1161/jaha.121.024374

55. Pei X, Liu L, Wang J, Guo C, Li Q, Li J, et al. Exosomal secreted SCIMP regulates
communication between macrophages and neutrophils in pneumonia. Nat Commun.
(2024) 15:691. doi: 10.1038/s41467-024-44714-4

56. Wang Z, Wang Y, Yan Q, Cai C, Feng Y, Huang Q, et al. FPR1 signaling
aberrantly regulates S100A8/A9 production by CD14(+)FCN1(hi) macrophages and
aggravates pulmonary pathology in severe COVID-19. Commun Biol. (2024) 7:1321.
doi: 10.1038/s42003-024-07025-4

57. Zhu S, Hu X, Bennett S, Mai Y, Xu. J. Molecular structure, expression and role of
TAFA4 and its receptor FPR1 in the spinal cord. Front Cell Dev Biol. (2022) 10:911414.
doi: 10.3389/fcell.2022.911414

58. Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell. JB. The formyl peptide
receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the
development of small-molecule agonists. Eur J Med Chem. (2024) 265:115989.
doi: 10.1016/j.ejmech.2023.115989

59. Vafadarnejad E, Rizzo G, Krampert L, Arampatzi P, Arias-Loza AP, Nazzal Y,
et al. Dynamics of cardiac neutrophil diversity in murine myocardial infarction. Circ
Res. (2020) 127:e232–49. doi: 10.1161/circresaha.120.317200

60. Asahina Y, Wurtz NR, Arakawa K, Carson N, Fujii K, Fukuchi K, et al. Discovery
of BMS-986235/LAR-1219: A potent formyl peptide receptor 2 (FPR2) selective agonist
for the prevention of heart failure. J Med Chem. (2020) 63:9003–19. doi: 10.1021/
acs.jmedchem.9b02101

61. Zhangsun Z, Dong Y, Tang J, Jin Z, Lei W, Wang C, et al. FPR1: A critical gatekeeper
of the heart and brain. Pharmacol Res. (2024) 202:107125. doi: 10.1016/j.phrs.2024.107125

62. Döring Y, Bender A, Soehnlein. O. Lack of formyl-peptide receptor 1 mitigates
Frontiers in Immunology 20112
atherosclerosis in hyperlipidemic mice. Thromb Haemost. (2024) 124:986–9. doi: 10.1055/s-
0044-1787264

63. Zhou QL, Teng F, Zhang YS, Sun Q, Cao YX, Meng. GW. FPR1 gene silencing
suppresses cardiomyocyte apoptosis and ventricular remodeling in rats with ischemia/
reperfusion injury through the inhibition of MAPK signaling pathway. Exp Cell Res.
(2018) 370:506–18. doi: 10.1016/j.yexcr.2018.07.016
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Chinese Medicine), Hangzhou, Zhejiang, China, 2School of Medical Technology and Information
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Gastric cancer (GC) remains one of the leading causes of cancer-related

mortality worldwide, with limited responses to immune checkpoint blockade

(ICB) therapies in most patients. Increasing evidence indicates that the tumor

immune microenvironment (TIME) plays a crucial role in immunotherapy

outcomes. Among various metabolic abnormalities in the TIME, dysregulated

lipid metabolism has emerged as a critical determinant of immune cell fate,

differentiation, and function. In this review, we comprehensively summarize the

current understanding of the immune landscape in GC, focusing on how altered

lipid metabolism reshapes immune cell populations—including tumor-

associated macrophages (TAMs), dendritic cells (DCs), regulatory T cells

(Tregs), myeloid-derived suppressor cells (MDSCs), and cytotoxic CD8+ T cells.

We highlight key metabolic pathways such as fatty acid oxidation(FAO),

cholesterol homeostasis, and lipid uptake that impact immune cell activity,

contributing to immune evasion and therapeutic resistance. Importantly, we

explore emerging therapeutic strategies targeting lipid metabolism, including

inhibitors of cluster of differentiation 36 (CD36), fatty acid synthase (FASN), and

sterol regulatory element-binding protein 1 (SREBP1) and discuss their synergistic

potential when combined with ICB therapies. In conclusion, lipid metabolic

reprogramming represents a promising yet underexplored axis in modulating

antitumor immunity in GC. Integrating metabolic intervention with

immunotherapy holds potential to overcome current treatment limitations and

improve clinical outcomes. Future studies incorporating spatial omics and single-

cell profiling will be essential to elucidate cell-type specific metabolic

dependencies and foster translational breakthroughs.
KEYWORDS

gastric cancer, lipid metabolism, tumor immune microenvironment, CD8+ T cells,
tumor-associated macrophages, immunotherapy resistance, fatty acid oxidation,
immune checkpoint blockade
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1 Introduction

According to GLOBOCAN 2022 statistics, in 2022, more than

968,000 new cases of gastric cancer (GC) were added, with nearly

660,000 deaths, ranking fifth globally both in terms of incidence and

mortality. The region with the highest incidence rate is East Asia,

which imposes a significant burden on cancer (1). Consequently, an

urgent exploration and development of new therapeutic approaches

has become imperative.

The tumormicroenvironment (TME) is a complex system that can

inhibit immune responses while promoting tumor progression. The

composition of the TME differs across different tumor types, but its

defining features include immune cells, stromal cells, vasculature, and

extracellular matrix (2, 3). The complexity and dynamic interactions

within the TME contribute significantly to the aggressive nature of GC

and the development of therapeutic resistance (4). Therefore,

understanding the intricate characteristics of the TME, particularly

metabolic reprogramming within this milieu, is of substantial clinical

importance for developing effective treatments for GC patients.

Metabolic reprogramming is widely recognized as a hallmark of

cancer, allowing tumor cells to sustain proliferation, evade immune

surveillance, and survive under stressful conditions. Among various

metabolic alterations, abnormal lipid metabolism has emerged as a

pivotal player in cancer progression, influencing energy

metabolism, membrane biosynthesis, and signaling pathways (5–

7). Cancer cells undergo significant lipid metabolic reprogramming,

including increased lipid uptake, enhanced fatty acid synthesis

(FAS), and elevated fatty acid oxidation (FAO). These alterations

not only provide essential metabolic substrates but also enable

cancer cells to resist oxidative stress, promoting tumor survival

and resistance to conventional therapies (8).

Key enzymes involved in lipid metabolism, such as fatty acid

synthase (FASN), ATP citrate lyase (ACLY), and stearoyl-CoA

desaturase (SCD), are upregulated in GC (9–11), indicating their

potential as therapeutic targets. Aberrant lipid metabolic pathways

influence the recruitment, differentiation, and function of key

immune cel l populat ions including tumor-associated

macrophages (TAMs), regulatory T cells (Tregs),and myeloid-

derived suppressor cells (MDSCs), dendritic cells (DCs), CD8+ T
Abbreviations: ACC, acetyl CoA carboxylase; ACLY, ATP citrate lyase; ACSLs,

acyl-CoA synthetase long-chain family members; CAFs, cancer-associated

fibroblasts; CD36, cluster of differentiation 36; CPT1, carnitine palmitoyl-

transferase 1; DCs, dendritic cells; FAO, fatty acid oxidation; FAS, fatty acid

synthesis; FASN, fatty acid synthase; FABP5, fatty acid-binding protein 5; GC,

gastric cancer; ICIs, immune checkpoint inhibitors; LSR, lipolysis-stimulated

lipoprotein receptor; MDSCs, myeloid-derived suppressor cells; MHC, major

histocompatibility complex; MIF, migration inhibitory factor; PPAR-g,

peroxisome proliferator-activated receptor g; ROS, reactive oxygen species;

SCD, stearoyl-CoA desaturase; SREBP1, sterol regulatory element-binding

prote in 1 ; TAMs, tumor-assoc ia ted macrophages ; TME, tumor

microenvironment; Tpex, progenitor-exhausted T cells; Trm, tissue-resident

memory T cells; Tregs, regulatory T cells.
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cells,contributing to an immunosuppressive microenvironment that

facilitates tumor progression.
2 Lipid metabolic pathways and
molecular mechanisms

A key energy-generating pathway in lipid metabolism is

mitochondrial fatty acid b-oxidation, which is mediated by

carnitine palmitoyl-transferase 1 (CPT1), especially the isoform

CPT1a (12, 13). This enzyme facilitates the transport of long-chain

fatty acids to the mitochondria for oxidative breakdown and ATP

production, particularly under nutrient-deprived conditions (14).

Simultaneously, cancer cells exploit exogenous lipid sources

through dietary uptake, with cluster of differentiation 36 (CD36)

functioning as a major fatty acid translocase (15). CD36 is

frequently overexpressed in malignant cells, contributing to

enhanced fatty acid uptake, intracellular lipid accumulation, and

increased metabolic plasticity (16–18). This metabolic architecture

is tightly regulated by oncogenic signaling cascades, especially the

PI3K/Akt/mTOR axis. This axis activates sterol regulatory element-

binding protein 1 (SREBP1), a master transcriptional regulator of

lipid biosynthesis (19, 20). When SREBP1 is activated, the

expression of key enzymes involved in fat production, such as

FASN and acetyl CoA carboxylase (ACC), is enhanced. This can

promote de novo fat generation and support the promotion of

membrane biogenesis and proliferation (21, 22). The uptake of

extracellular lipids via CD36 and the lipolysis-stimulated

lipoprotein receptor (LSR) is often upregulated in tumors and is

also responsive to PI3K/mTOR signaling, reinforcing the lipid

supply for cancer progression (23–25). Enzymes like acyl-CoA

synthetase long-chain family members (ACSLs) activate imported

fatty acids and channel them into biosynthetic and storage

pathways, while lipogenesis induced by SREBP1 inhibits

ferroptosis and improves tumor cell survival (20, 26). Uptake of

lipids by CD36 enhances metastatic potential and contributes to

adaptation to the TME (27). Additionally, reorganization of lipid

metabolism can alter antigen presentation and inhibit T-cell

activation, leading to impairment of immune surveillance (28).

Phospholipid remodeling represents another critical branch of

lipid metabolism. This metabolic adaptation highlights the key

function of lipid metabolism in coordinating cellular bioenergetics

with tumor invasiveness and immune escape, laying the

mechanistic foundation for its involvement in the formation of an

immunosuppressive TME (29).
3 Overview of the immune
microenvironment in gastric cancer

TME of GC is composed of various immune cell subsets and

non-immune components, and is characterized by prominent

immunosuppressive features. Single-cell analyses have revealed a

highly heterogeneous pattern of immune cell infiltration within the

TME of GC. Immunosuppressive components such as Tregs,
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MDSCs, and TAMs are widely distributed and are closely associated

with ineffective antitumor immune responses (30–33). Tregs

suppress CD8+ T cell activity and the antigen presentation

process through multiple mechanisms, serving as key regulatory

factors in the progression of GC (34, 35). MDSCs exacerbate the

immunosuppressive state by secreting inhibitory factors and

modulating macrophage polarization (36). Moreover, M2

polarization of TAMs in GC has been shown to be closely

associated with immune evasion and poor prognosis (37–39).

Another key mechanism underlying the immunosuppressive TME

is the upregulation of immune checkpoints, such as PD-L1 and the

CD39/CD73 axis, which inhibit T cell effector functions and

promote tumor immune evasion (40, 41). Studies have indicated

that the TME in GC patients often exhibits a “cold tumor”

phenotype—characterized by low immune cell infiltration and

weak immune activation—which not only predicts poor prognosis

but also correlates with low responsiveness to immunotherapy

(42, 43).

Immune infiltration patterns exhibit dynamic changes across

different GC subtypes and treatment contexts. Neoadjuvant

chemotherapy can significantly remodel the TME by enhancing

CD8+T cell infiltration and reducing immunosuppressive cells,

highlighting the plasticity of the immune landscape (44, 45).

High-throughput analyses and multiplex immunofluorescence

have revealed complex interactions among different immune cells

within the TME, such as exosome-mediated communication

between TAMs and cancer cells (46, 47).

Furthermore, the degree of immune cell infiltration is closely

associated with clinical outcomes. For instance, high PD-L1

expression often coexists with an “immune-excluded” infiltration

pattern, suggesting that patients may benefit from immune

checkpoint inhibitor therapy (48, 49). Key molecular features of

the TME significantly shape immune infi l tration and

immunotherapy responses in GC, highlighting new avenues for

enhancing antitumor immunity (50–52). Among these features,

spatial metabolic heterogeneity — particularly lipid gradients

within the TME — has recently gained attention as a critical

factor influencing immune cell behavior.
4 Interactions between aberrant lipid
metabolism and immune cells

4.1 TAMs

TAMs, one of the most abundant immune cells in the GC

immune microenvironment, exhibit significant metabolic plasticity.

Under the stimulation of various cytokines, macrophages can be

polarized into two phenotypes with different functions: M1

macrophages, which have pro-inflammatory and tumor-inhibiting

effects; And M2 macrophages, which have anti-inflammatory and

tumor-promoting effects Their functional state is closely linked to

their lipid metabolic program. In gastric cancer, scavenger receptors

such as CD36 mediate the endocytosis of fatty acids and cholesterol

from the tumor microenvironment, leading to intracellular lipid
Frontiers in Immunology 03116
accumulation and promoting the establishment of a highly

immunosuppressive TME (53, 54). This process further activates

the peroxisome proliferator-activated receptor g (PPAR-g) signaling
pathway, upregulating FAO, promoting TAM towards a m2

polarized phenotype, and enhancing its oncogenic function (55,

56). Moreover, lipid uptake promotes enhanced FAO, providing a

stable energy supply for M2-polarized TAMs and augmenting their

secretion of immunosuppressive factors such as IL-10 and TGF-b
(57–59). These alterations collectively contribute to the formation

of a microenvironment that favors tumor survival and immune

evasion (60, 61). Mechanistically, lipid uptake via CD36 facilitates

intracellular fatty acid accumulation, which activates PPAR-g
signaling and upregulates key enzymes of FAO, such as CPT1A.

Further studies have revealed that the metabolic state of TAMs

is a key determinant of their spatial distribution and functional

heterogeneity. For example, lipid-rich TAMs are predominantly

located in hypoxic regions, where they respond to tumor-derived

factors such as IL-34 and signals associated with p53 inactivation,

exhibiting enhanced immunosuppressive capabilities (62, 63). At

the metabolic level, lipid metabolic reprogramming is closely

regulated by the TRAF3/STAT6 pathway, which governs key

transcriptional programs involved in the polarization process

(64). Meanwhile, signaling molecules such as CD40 have been

shown to promote the reprogramming of TAMs toward an

antitumor phenotype by remodeling fatty acid and glutamine

metabolism, highlighting the potential of metabolic interventions

in reshaping TAM function (65). Overall, lipid uptake and

metabolism determine the fate of TAMs, representing a critical

regulatory axis within the GC immune microenvironment and a

promising therapeutic target for future treatment strategies (66).

These findings highlight the central role of TAM lipid metabolism

in promoting immune evasion and progression of gastric cancer.
4.2 Dendritic cells

DCs within the GC immune microenvironment is often

markedly suppressed by dysregulated lipid metabolism. In gastric

cancer, this metabolic dysfunction contributes to impaired tumor

antigen presentation and weakened immune surveillance.The lipid-

rich tumor environment leads to lipid accumulation in DCs,

particularly the formation of lipid droplets enriched with

cholesterol and triglycerides, which significantly impairs their

antigen-presenting capacity (67, 68). Lipid overload not only

diminishes the expression of major histocompatibility complex

(MHC) class I and II molecules but also suppresses the

expression of costimulatory molecules such as CD80 and CD86,

thereby limiting T cell activation (69, 70). Studies have shown that

Epstein-Barr virus–associated GC exacerbates antigen presentation

impairment by secreting exosomes that interfere with DC

maturation (70). Moreover, tumor-induced lipid metabolic

reprogramming can suppress mitochondrial function and glucose

metabolism in DCs, driving them toward an immunotolerant

phenotype (67, 68). A decline in cross-presentation capacity is

another critical defect of lipid-laden DCs, particularly impairing
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their ability to elicit CD8+ T cell responses (71, 72). Some studies

have reported that lipid accumulation hinders the ability of DCs to

uptake and process extracellular antigens, thereby weakening their

effectiveness in activating tumor-specific T cells (73, 74).

Furthermore, Tregs form immunosuppressive complexes with

DCs through a CXCR3-mediated chemotactic mechanism, further

limiting the ability of DCs to activate CD8+ T cells (75). In recent

years, engineered dendritic cell (DC) systems have been developed

to bypass the metabolic impairments of natural DCs, offering new

avenues for tumor vaccines and targeted immunotherapy (76, 77).

Therefore, targeting lipid metabolic regulatory pathways is

considered a potential strategy to restore DC immune function

and enhance immune responses in gastric cancer (78, 79).
4.3 Tregs and MDSCs

Tregs are abundantly infiltrated in the GC immune

microenvironment and rely on lipid metabolism to maintain their

stability and immunosuppressive function. Studies have shown that

within the tumor environment, Tregs gain an energetic advantage

by enhancing FAO, which sustains their Foxp3 expression and

suppressive capacity (80, 81). PD-1 deficiency disrupts the

metabolic stability of Tregs, suggesting that their metabolic

adaptability is a critical factor in the establishment of immune

tolerance (80). Moreover, fatty acid-binding protein 5 (FABP5) and

the SIRT1–CX3CL1 axis play important roles in regulating lipid

metabolism in Tregs, influencing their distribution within the TME

and their immunosuppressive capacity (82, 83). In lipid-rich

microenvironments, Tregs exhibit enhanced stability and activity,

representing one of the major obstacles to the efficacy of immune

checkpoint inhibition therapy (84, 85).

Similar to Tregs, MDSCs exhibit potent immunosuppressive

properties regulated by lipid metabolism. In high-lipid

microenvironments, they sustain their survival through FAS and

cho les te ro l metabo l i sm, whi l e secre t ing a range of

immunosuppressive factors (29, 86). Ginger polysaccharide–

induced lipid metabolic disruption can promote apoptosis of

MDSCs, indicating that targeting lipid metabolism holds potential

for enhancing immune responses (86). Within the GC TME,

MDSCs cooperate with Tregs to establish a metabolically coupled

immunosuppressive network (87, 88). Recent studies have shown

that cancer-associated fibroblasts (CAFs) influence the metabolic

activity of MDSCs through CD36 and the secretion of macrophage

migration inhibitory factor (MIF), further exacerbating immune

evasion (87). In summary, targeting lipid metabolism has emerged

as a key strategy for modulating the functions of Tregs and MDSCs

and overcoming immune tolerance (29, 85).
4.4 CD8+ T cells

CD8+ T cells are the central effector cells in antitumor immune

responses, and their functional state is significantly influenced by

dysregulated lipid metabolism within the TME. In the GC
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microenvironment, fatty acid uptake and cholesterol metabolism

reshape the metabolic programming of CD8+ T cells, leading to

metabolic imbalance, enhanced exhaustion phenotypes, and reduced

cytotoxic function (89). Tumor cells secrete lipid metabolism–

regulating factors such as SCD1 and FABP5, which elevate levels of

free fatty acids and oxidized lipids in the TME. This induces the

accumulation of reactive oxygen species (ROS) in CD8+ T cells,

leading to lipid peroxidation and mitochondrial damage (90). This

process is accompanied by the upregulation of inhibitory receptors

such as PD-1 and TIGIT, ultimately leading to T cell exhaustion and

the loss of sustained cytotoxic activity (91). Moreover, excess

cholesterol can accumulate in the membranes of CD8+ T cells,

disrupting immunological synapse formation and TCR signaling,

thereby further suppressing their effector functions (92).

Studies have also indicated that certain lipid metabolic pathways

exert bidirectional regulatory effects on CD8+ T cells. Tissue-resident

CD8+ T cells rely on FAO to sustain energy supply and long-term

survival; however, in the nutrient-deprived and competitive TME, this

metabolic dependency may actually constrain the sustained activation

of their effector functions (89). Under high-lipid conditions, tumor

cells compete with CD8+ T cells for nutritional substrates, leading to

energy deprivation in CD8+ T cells. This results in a state of

“functional starvation,” characterized by reduced expression of

effector molecules such as Granzyme B and IFN-g (27, 91).

Therefore, targeting lipid metabolic pathways—such as CD36

inhibition, FAO blockade, or cholesterol metabolism modulation—is

considered a promising strategy to restore CD8+ T cell function and

enhance the efficacy of immunotherapy (90, 93) (Figure 1).
5 Clinical and therapeutic implications

Lipid metabolic reprogramming is not only a key mechanism in

shaping the TME of GC, but also offers multidimensional therapeutic

targets for clinical intervention. High expression of key lipid metabolic

molecules such as CD36, FASN, and SREBP1 is closely associated with

the infiltration of immunosuppressive cells and T-cell exhaustion, and

is considered one of the major contributors to immunotherapy

resistance (94–96). For instance, Li et al. found that lipid metabolic

imbalance can promote symbiotic signaling pathways between CAFs

and TAMs, which significantly impairs the efficacy of immune

checkpoint inhibitors (ICIs) (97). Emerging lipid-targeted strategies

—such as FASN inhibitors, FAO pathway blockers, and cholesterol

metabolism modulators—are being actively explored to enhance

CD8+T cell function, inhibit TAM polarization, and reduce Treg-

mediated immunosuppression (94, 98, 99). Moreover, lipid

metabolism–related genes have also been identified as potential

predictive biomarkers of immune response. Genes such as RGS2,

APOD, and MTTP have demonstrated promising prognostic and

therapeutic response prediction value in multiple studies (94, 96, 98).

Combination therapy strategies are emerging as a key approach to

overcoming the bottlenecks of immunotherapy in GC Several clinical

trials—such as ATTRACTION-2, ATTRACTION-4, KEYNOTE-859,

KEYNOTE-061 and CheckMate-649—have validated the efficacy of

combining ICIs with chemotherapy (100–104). Combination
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strategies involving CD36 antagonists or cholesterol synthase

inhibitors have significantly enhanced antitumor immune responses

in preclinical models (94). Meanwhile, lipid metabolism–based

immune subtyping approaches are increasingly being employed to

guide the selection of GC patients for immunotherapy (101, 105). In

summary, the role of lipid metabolism in precision immunotherapy

for GC is becoming increasingly prominent. Existing clinical trials

combining immune checkpoint inhibitors with chemotherapy have

demonstrated heterogeneous outcomes, which may partially reflect

underlying metabolic states of the tumor immune microenvironment

(106–110). Aberrant expression of lipid metabolism–related molecules

such as FASN, CD36, and SREBP1 has been associated with immune

cell exhaustion, Treg enrichment, and impaired dendritic cell function,

suggesting their potential value as both therapeutic targets and

predictive biomarkers (111–114). Integrating lipidomic analysis into

future clinical trial designs may enhance stratification strategies and

optimize combination regimens to overcome resistance (Table 1).
6 Research gaps and future
perspectives

Although the role of lipid metabolism in regulating the immune

microenvironment of GC has been progressively elucidated, many

gaps remain in understanding its mechanistic network. Current
Frontiers in Immunology 05118
research primarily focuses on classical lipid metabolism regulators

such as CD36 and FASN, while the roles of non-coding RNAs and

RNA modifications (e.g. m6A) in the cross-regulation of lipid

metabolism remain largely underexplored (115–117). Moreover,

how lipid metabolism specifically affects different immune cell

subsets—such as tissue-resident memory T cells (Trm) and

progenitor-exhausted T cells (Tpex)—remains insufficiently

investigated at the single-cell resolution level (118, 119). Most

current mechanistic studies are based on in vitro cell experiments

and traditional animal models, with a lack of application of

emerging technologies—such as spatial transcriptomics, spatial

metabolomics, and single-cell lipidomics—for constructing a

“functional lipid map” within the immune microenvironment

(120, 121).

In future research, a primary focus should be the expanded

systematic screening of lipid metabolism regulators, including

transporters, enzymes, and intermediate metabolites, to evaluate

their immunological effects (122, 123). Secondly, integrating clinical

cohorts to perform lipid metabolic phenotyping and establishing a

biomarker system capable of predicting immunotherapy response

and resistance risk will be critical for advancing personalized

treatment (124–126). Moreover, constructing in vitro

microenvironment models—such as organoid–immune cell co-

culture systems—or developing novel drug delivery platforms

targeting lipid metabolism will help bridge the gap between basic
FIGURE 1

Interactions between aberrant lipid metabolism and immune cells.
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TABLE 1 Clinical trials of immunotherapy-based combination strategies in gastric cancer.

Trial Phase Drugs
Actual

enrollment
Study period Reference

Lipid metabolism/
immune remodeling

findings

NCT02872116
(CHECKMATE-649)

III

Nivolumab + Ipilimumab or
Nivolumab in Combination With
Oxaliplatin + Fluoropyrimidine vs
Oxaliplatin + Fluoropyrimidine

2031
May 27, 2020-
May 31, 2024

(100)
↑ CD8+ T cells, ↓ PD-L1 immune

evasion; lipid modifications
regulate PD-L1.

NCT02746796
(ATTRCTION-04)

II/III
SOX/Capecitabine + Oxaliplatin
with vs without Nivolumab

724
March 7, 2017 –

May 10, 2018
(101)

↑ CD8+ T cells; enhanced tumor
microenvironment
immune activation.

NCT03675737
(KEYNOTE-859)

III
Pembrolizumab+ Chemotherapy
vs Placebo + Chemotherapy

1579
November 8, 2018 –

September 28, 2024
(102)

↑ PD-L1 expression, immune
activation linked to lipid gene

co-signatures.

NCT03878472 II
Camrelizumab + Apatinib + S-1

± Oxaliplatin
25

April 1, 2019 –

May 31, 2024
(105)

↑ CD8+ T cells, ↓ PD-L1
immune evasion.

NCT04082364
(MAHOGANY)

II/III
Combination Margetuximab,
Retifanlimab, Tebotelimab,

and Chemotherapy
81

September 30, 2019 -
December 2023

(106)
↑ T-cell activation via PD-1 and
LAG-3 blockade; HER2–PD-L1
immune crosstalk implicated.

NCT03335540
(ADVISE)

I
Nivolumab + Ipilimumab

vs Nivolumab
20

May 7, 2018 –

August 25, 2021
(107)

↑ Immune markers in low/
intermediate PD-L1 tumors; ↑ T-
cell and macrophage activation.

NCT03662659
(RELATIVITY-060)

II

Relatlimab + Nivolumab +
XELOX/FOLFOX/SOX vs.
Nivolumab + XELOX/

FOLFOX/SOX

274
October 16, 2018 –

January 16, 2024
(108)

↑ T-cell activation via PD-1 and
LAG-3 blockade

NCT04908566 II
PD-1 inhibitor + mFOLFIRINOX

vs. mFOLFIRINOX
30

August 2023 –

May 2025
(109)

↑ CD8+ T and NK cells, ↓
macrophages and FOXP3+ Tregs;
dynamic immune remodeling

predicts response

NCT04997837 III
Chemotherapy + PD-1 inhibitor

+ Radiotherapy
VS Chemotherapy

433
July 21, 2021 –

July 21, 2027
(110)

Radiation-induced PD-
L1 upregulation

NCT03615326
(KEYNOTE-811)

III
Pembrolizumab/Trastuzumab/

Chemotherapy vs
Trastuzumab/Chemotherapy

698
October 5, 2018 -
March 20, 2024

(111)
↑ T-cell activation; HER2–PD-L1

crosstalk enhances immune
response with pembrolizumab.

NCT02589496 II Pembrolizumab 45
March 26, 2016 –

December 2021
(113)

↑ Immune activation; metabolism
pathways and epigenetic features

linked to tumor
microenvironment score
(TMEscore) predicting

ICB response.

NCT04182724
(KEYNOTE-061)

II
PD-1 inhibitor + albumin-bound

paclitaxel + apatinib
43

July 11, 2019 –

October 13, 2022
(114)

↑ PD-L1 expression; VEGFR
inhibition and immune activation

via PD-1 blockade.

NCT02267343
(ATTRACTION-2)

III Nivolumab vs Placebo 493
October 2014 –

January 2021
(115)

↑ PD-L1–dependent immune
response; lipid metabolism

not reported.

NCT05008783 III

Cadonilimab + Oxaliplatin +
Capecitabine (XELOX)

vs. Placebo + Oxaliplatin +
Capecitabine (XELOX)

610
September 17, 2021
– October 18, 2025

(116)
↑ PD-L1 expression; enhanced

immune activation via dual PD-1/
CTLA-4 blockade.
F
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↑, upregulated; ↓, downregulated.
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research and clinical application in metabolic immune regulation

(127). Building on this foundation, conducting multicenter

prospective clinical studies to evaluate the efficacy and safety of

lipid metabolism–targeted interventions combined with

immunotherapy will be a key pathway toward the clinical

translation of metabolism-based immunotherapies (128, 129).
7 Conclusion

Lipid metabolism plays a central regulatory role in the TME of

GC. Lipid competition between tumor cells and immune cells not

only reshapes energy metabolism patterns but also alters immune

cell functional states, inducing immunosuppressive phenotypes

such as M2 polarization of TAMs, impaired antigen presentation

by DCs, enhanced Treg functionality, and exhaustion of CD8+ T

cells (30, 32, 34). Lipid metabolic reprogramming mechanisms—

including CD36-mediated lipid uptake, enhanced FAO, and

cholesterol accumulation—have been shown to play critical roles

in GC progression and immune evasion by regulating immune

checkpoint expression, immune cell metabolic adaptation, and the

secretion of immunosuppressive factors (40, 48, 101). Targeting

lipid metabolic pathways—such as FASN, CPT1A, CD36, or

cholesterol metabolism—can enhance immunotherapeutic

responses and alleviate the immunosuppressive nature of the

TME, demonstrating promising translational potential (123).

However, the cell-specific functions of lipid metabolism across

different immune cell subsets, its spatial heterogeneity, and the

interplay between metabolic and epigenetic regulation axes remain

to be further investigated (119, 130, 131). Future research should

integrate emerging technologies such as spatial transcriptomics,

single-cell lipidomics, and multi-omics analyses, while establishing

clinical cohorts to explore predictive biomarkers and novel

strategies for metabolism-targeted therapies (127, 132).
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Integrated transcriptomic and
single-cell RNA-seq analysis
identifies CLCNKB, KLK1 and
PLEKHA4 as key gene of
AKI-to-CKD progression
Fanhua Zeng, Zhenhua Yang* and Zufeng Wang*

Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning,
GuangXi, China
Background: Studies have demonstrated a significant connection between acute

kidney injury (AKI) and chronic kidney disease (CKD). The purpose of this study

was to identify biomarkers linked to the advancement of AKI and CKD, aiming to

offer new targets and insights for treating and intervening in these conditions.

Methods: Initially, candidate genes were identified by overlapping the results

from differential expression analyses of AKI and CKD. Biomarkers were

subsequently identified using machine learning algorithms, receiver operating

characteristic curve analysis, expression analysis and experimental verification.

Functional enrichment, drug prediction analyses and immune cells infiltration

were conducted to investigate the functional mechanisms of the identified

biomarkers. Furthermore, single-cell analyses were performed to examine the

trends of biomarker expression across different cell types.

Results: CLCNKB, KLK1 and PLEKHA4 were identified as biomarkers by the

screening. Subsequently, enrichment analysis showed that CLCNKB was

notably enriched in oxidative phosphorylation and the degradation of valine,

leucine, and isoleucine in both AKI and CKD datasets. CLCNKB, KLK1 and

PLEKHA4 were found to be significantly associated with multiple immune cell

types. The regulatory network indicated that PLEKHA4 might play a more

important role in the progression of AKI and CKD. Furthermore, it was

discovered that CLCNKB, KLK1, and PLEKHA4 are commonly targeted by

tetrachlorodibenzodioxin. Finally, in the single-cell data analysis, Type A

intercalated cell and Collecting duct-principal cell were identified as the key

cells. It was observed that the expression trends of these biomarkers were

different under different differentiation states of the key cell subpopulations.

Conclusion: CLCNKB, KLK1 and PLEKHA4 were identified as biomarkers related

to the development of AKI and CKD in this study, and new ideas were provided

for the research on the potential mechanisms of the progression of AKI and CKD.
KEYWORDS

acute kidney injury, chronic kidney disease, biomarkers, drug prediction, single-cell
RNA sequencing
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1 Background

Acute kidney injury (AKI) is identified by a quick loss of kidney

function happening within a 48-hour period (1). In medical

environments, AKI is typically marked by a rapid increase in

serum creatinine and a significant decrease in urine output, often

resulting from renal tubular cell necrosis and tissue damage

following acute insults such as renal ischemia-reperfusion,

exposure to nephrotoxic medications, and sepsis, among other

causes (2). Currently, AKI affects 10-15% of all patients in

hospitals and up to 50% of those in ICUs, with its prevalence

growing annually (3). Furthermore, AKI contributes to long-term

chronic kidney damage and accelerates the onset of various

complications, including hypertension and cardiovascular disease

(4). Alternatively, chronic kidney disease (CKD) is a progressive

and lasting disorder identified by the degeneration of renal units,

tubular atrophy, interstitial fibrosis, glomerulosclerosis, vascular

thinning, and arteriosclerosis (5). A glomerular filtration rate

under 60 mL/min/1.73m² for a period exceeding three months

defines CKD (6). In addition, the incidence rate of CKD globally is

roughly 9.1% (7). Due to its high incidence, significant economic

impact, and strong association with morbidity and mortality, CKD

represents a major public health concern (8). The clinical

management of CKD is hindered by several limitations (9).

Therefore, novel insights into the mechanism of AKI and CKD

are urgently required to enhance CKD treatment strategies.

Clinically, AKI and CKD are closely interrelated. Atrophy of the

tubules and fibrosis in the interstitial area are pathological changes

that arise due to inadequate repair mechanisms following AKI,

ultimately leading to the development of CKD (10). In China, there

are at least 3 million cases of AKI annually, with approximately 50%

of survivors subsequently developing CKD (11). Furthermore,

individuals with CKD have a higher chance of developing AKI

due to pre-existing renal lesions (12). The transition from AKI to

CKD is thought to be significantly influenced by the immune-

inflammatory response and kidney fibrosis, both of which

contribute to persistent renal damage (13). Despite this, the

transition from AKI to CKD remains largely unexplored, with the

key genes and pathways involved in this intermediary process not

yet clearly identified. Hence, it is essential to pinpoint biomarkers

related to the progression from AKI to CKD to uncover possible

therapeutic targets.

This study utilized transcriptomic and single-cell datasets from

public repositories related to AKI and CKD to evaluate biomarkers

associated with the progression of these conditions. The assessment

was conducted through differential expression analysis, machine

learning algorithms, Receiver Operating Characteristic (ROC) curve

evaluation, and expression validation. Subsequently, the potential

mechanisms of action of these biomarkers in AKI and CKD were

explored using biomarker enrichment analysis, immune infiltration

analysis, molecular regulatory network construction, and drug

prediction. The single-cell data enabled the examination of
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intercellular communication, leading to the identification of key

cellular entities and additional experiments were undertaken to

verify the results. Furthermore, we investigated the expression

trends of biomarkers in specific cell subsets to elucidate the

molecular roles of these biomarkers and their mechanisms in the

progression of AKI and CKD. This research aims to offer new

perspectives for the early detection and personalized treatment of

AKI and CKD patients, thereby reducing the societal burden of

kidney diseases.
2 Materials and methods

2.1 Data source

Datasets related to both AKI and CKD were sourced from the

Gene Express ion Omnibus (GEO) database (ht tp : / /

www.ncbi.nlm.nih.gov/geo/). GSE139061 (GPL20301) consisted of

39 renal tissue samples from AKI patients and 9 normal renal tissue

samples, while GSE30718 (GPL570) included samples included 28

from AKI patients and 11 from healthy kidney tissues, functioning

respectively as the training set and validation set of AKI. Similarly,

GSE66494 (GPL6480) consisted of 53 renal tissue samples from

CKD patients and 8 normal renal tissue samples, while GSE104948

(GPL22945) included 50 CKD patients’ renal tissue samples and 18

normal renal tissue samples, serving respectively as the training set

and validation set of CKD. Furthermore, GSE183277 (GPL24676)

comprised single-cell RNA sequencing (scRNA-seq) data from

kidney cortex tissue samples of 5 AKI patients, 2 CKD patients

and 11 normal individuals.
2.2 Differential expression analysis

Differentially expressed genes1 (DEGs1) between AKI and

normal samples in the GSE139061 dataset were pinpointed by

employing the DEseq2 (v 1.38.0) package (14).The dataset was

normalized using the estimateSizeFactors function, and genes with

counts ≤ 1 were filtered out. DEGs1 were selected with the

thresholds of |log2fold-change (FC)| > 1.5 and P < 0.05, and the

false discovery rate (FDR) was applied to control for multiple

comparisons. For the GSE66494 dataset, differential expression

analysis between CKD and control samples was performed using

the limma package (v3.44.3) (15). Genes with missing values were

removed using the na.omit() function. DEGs2 were identified with

the same thresholds of log2FC > 1.5 and P < 0.05, and FDR

correction was applied. Subsequently, DEGs1 and DEGs2 were

visualized as volcano plots and heatmaps, displaying only the top

10 in descending order of log2FC for both up- and down-regulated

genes. The visualizations were generated through the ggplot2 (v

3.3.2) package (16) and the pheatmap (v 0.7.7) package

(17), respectively.
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2.3 Identification and functional analysis of
candidate genes

To identify candidate genes in AKI and CKD progression, the

up-regulated genes from DEGs1 and DEGs2, as well as the down-

regulated genes from DEGs1 and DEGs2 were separately

overlapped using (v 1.7.3) ggvenn package (18). Subsequently, the

clusterProfiler package (version 3.16.0) was used to perform Gene

Ontology (GO) and Kyoto Encyclopedia of the Genome (KEGG)

enrichment analyses on the candidate genes (19). The Benjamini-

Hochberg (BH) method was applied to control the FDR, with a

significance threshold of pvalueCutoff = 0.05. The top 10 most

significantly enriched terms (ranked in ascending order of p-value)

from the GO and KEGG analyses were visualized using the

enrichplot package (v 1.14.2) (20). To explore protein interactions

among the candidate genes, the protein-protein interaction (PPI)

network (interaction score > 0.15) was constructed using the

Searching for Interacting Genes (STRING, https://www.string-

db.org) database and the results were visualized using Cytoscape

(v 3.10.2) software (21).
2.4 Biomarkers identification and
expression analysis

The glmnet (v 4.1.4) package was used to apply the least

absolute shrinkage and selection operator (LASSO) method to the

candidate genes in the GSE139061 and GSE66494 datasets (22). The

parameter family was set as binomial, and 10-fold cross-validation

(nfolds = 10) was performed to determine the optimal lambda (l)
value. Potential feature genes were screened based on the

lambda.min value for each dataset. Moreover, feature genes were

obtained by overlapping the potential feature genes obtained from

the GSE139061 and GSE66494 datasets, respectively. Immediately,

to evaluate the potential of the feature genes to distinguish AKI

samples from control samples, and CKD samples from control

samples, these feature genes were subjected to ROC curve analysis

using pROC (v 1.18.0) package (23) in the AKI training set and the

AKI validation set, the CKD training set and the CKD validation set,

respectively, and feature genes with area under the curve (AUC)

>0.7 in all four datasets were named as candidate biomarkers.

Simultaneously, the candidate biomarkers were subjected to gene

expression analysis in the AKI training set and AKI validation set,

the CKD training set and the CKD validation set, respectively, and

the candidate biomarkers showing a notable difference (P<0.05)

between the disease samples and the control samples in the four

datasets and a consistent expression trend were selected as the

biomarkers for the subsequent analyses.
2.5 Gene set enrichment analysis

To investigate the biological roles of biomarkers involved in

AKI and CKD, GSEA was performed in the GSE139061 and

GSE66494 datasets, respectively. For the analysis, the
Frontiers in Immunology 03126
c2.cp.kegg.v2023.1.Hs.symbols.gmt gene set was acquired from

the Molecular Signatures Database (MSigDB, https://www.gsea-

msigdb.org/gsea/msigdb/) to act as the background set. First,

Spearman correlations between the biomarkers and other genes

were calculated using the psych (v 2.2.5) package (24) in the

GSE139061 dataset. Subsequently, GSEA for each biomarker was

constructed using clusterProfiler (v 3.16.0) package, with

significance determined at P <0.05 and |normalized enrichment

score (NES)| > 1. The top five pathways in descending order of P-

value were visualized using the enrichplot package (v 1.14.2).

Similarly, GSEA of the biomarkers was carried out using the same

methods and thresholds in the GSE66494 dataset.
2.6 Analysis of immune infiltration and
cytokines expression

To assess the infiltration of 64 immune cells in disease samples

and control samples in the GSE139061 and GSE66494 datasets,

respectively. In the case of the GSE139061 dataset, relative

abundance was calculated using the xCell (v 1.1.0) package (25),

and the proportionate distribution of the 64 immune cells of the

AKI samples versus the control samples was visualized using the

ggplot2 (v 3.3.2) package. Differences in infiltration scores between

AKI samples and control samples in the GSE139061 dataset were

then assessed using Wilcoxon test to screen for immune cell types

with a significant difference in infiltration (P<0.05), which were

named differential immune cells. Subsequently, Spearman

correlation analysis was performed using corrplot (v 0.92)

package (26) to explore the relationship between differential

immune cells and the association between diverse immune cells

and biomarkers(|cor| > 0.30, P < 0.05), and correlation heatmaps

were plotted to show the results. In addition, immune infiltration

and correlation analyses were carried out in the GSE66494 dataset

with the same methods and thresholds.
2.7 Construction of regulatory networks
and drug prediction

Biomarkers targeted by miRNAs were forecasted using the

TargetScan (http://www.targetscan.org/) and miRDB (http://

mirdb.org/) databases. The transcription factors (TFs) that

regulate biomarkers were predicted through the ChEA3 (https://

maayanlab.cloud/chea3/) database. Then, the lncRNAs targeting

the aforementioned miRNAs were predicted by means of the

LncBase (http://carolina.imis.athena-innovation.gr/diana_tools/

web/index.php?r=lncba) database. The miRNA-mRNA, TF-

mRNA and TF-mRNA-miRNA networks were visualized by

using the Cytoscape (v 3.10.2) software, and using the ggplot2

package (v 3.3.2), the lncRNA-miRNA-mRNA network was

visualized. Additionally, the Comparative Toxicogenomics

Database (CTD, http://ctdbase.org/) was employed to predict

drugs targeting biomarkers and Cytoscape version 3.10.2 was

employed to plot the biomarker-drug network.
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2.8 scRNA-seq analysis

Firstly, 5 AKI samples and 11 control samples were selected

from the GSE183277 dataset as the AKI single-cell dataset. The AKI

single-cell dataset was the “Seurat” package (v 4.1.0) was utilized for

quality control (QC) to filter out cells with exceeded 20% of

mitochondrial genes, cells with nCount_RNA under 200 and

surpassed 30,000 genes, and cells with nFeature_RNA > 200 (27).

Then, in light of the GSE183277 dataset, data were normalized by

the “NormalizeData” function in the “Seurat” package (v 4.1.0), and

highly var iab le genes (HVGs) were se lec ted by the

“FindVariableFeatures” function. Next, the “ScaleData” function

in the “Seurat” package (v 4.1.0) was applied to scale data before

principal components analysis (PCA). Subsequently, the

“JackStraw” function within the “Seurat” package (v 5.0.1) was

applied to execute PCA on HVGs. The “ElbowPlot” function within

the “Seurat” package (v 4.1.0) was thereafter applied to draw a scree

plot of the top 30 principal components (PCs), aiming to identify

PCs that notably contributed to variation for subsequent analysis

(p < 0.05). Afterward, cell cluster analysis was conducted on cells

after dimensionality reduction utilizing “FindNeighbors” and

“FindClusters” functions (resolution = 0.2, dimension = 30).

Finally, the Seurat package’s FindNeighbors and FindClusters

functions were employed to categorize all high-quality cells into

various cell clusters using the uniform manifold approximation and

projection (UMAP) clustering technique.The FindAllMarkers

function was used to identify key marker genes for various

populations, and the classical marker genes of relevant cells in the

CellMarker (http://xteam.xbio.top/CellMarker/) database were used

as the reference gene set to annotate each cell cluster

(Supplementary Table 1). Additionally, 2 CKD samples and 11

control samples were selected from the GSE183277 dataset as the

CKD single-cell dataset and analyzed by scRNA-seq in the same

way, with marker genes shown in Supplementary Table 2.
2.9 Cell communication analysis and
identification of key cells

Cellular communication networks between cell types of AKI

samples and control samples as well as those between cell types of

CKD samples and control samples were analyzed respectively using

the CellChat (v 1.6.1) package (28) based on the AKI single-cell

dataset and the CKD single-cell dataset. And visualization was

carried out by using the patchwork (v 1.3.0) package (29). In

addition, key cells were screened and obtained based on the

expression situation of biomarkers in cell types within the 2

single-cell datasets.
2.10 Pseudotime analysis

To explore the expression changes of biomarkers during the

process of cell state transformation, key cells were first extracted

respectively based on the AKI single-cell dataset and the CKD
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single-cell dataset for secondary dimensionality reduction and

clustering, and the key cells were reclustered and divided into

different cell subpopulations. Following this, the Monocle (v

2.30.0) package was used to conduct cell pseudo-time trajectory

analysis on both the AKI and CKD single-cell datasets (30).
2.11 Mice models

In this study, male C57BL/6J mice, approximately 8 weeks of age,

were utilized. The strain was sourced from the University Model

Animal Research Center at Guangxi Medical University. Ethical

approval for the use of animals in this research was obtained in

compliance with the Guidelines for the Management of Laboratory

Animals as stipulated by the Ministry of Science and Technology of

the People’s Republic of China, as well as the Guidelines for Ethical

Review of Laboratory Animals according to the National Standard

GB/T35892–2018 of the People’s Republic of China, and the

protocols of the Animal Care and Welfare Committee at Guangxi

Medical University (No:202506002). The mice were provided with

food and water ad libitum, and the housing environment was

maintained at a temperature of 25 ± 2°C with a 12-hour light/dark

cycle. The experimental design included three groups of mice, with

the model being established through renal artery ischemia-

reperfusion surgery. For the intervention study, the C57BL/6J mice

were divided into three groups (n = 5 or 6 per group): (1) normal

control group; (2) AKI group; and (3) CKD group. Ischemic AKI was

experimentally induced using a bilateral ischemia-reperfusion injury

(BIRI) model. In this model, mice were anesthetized, and bilateral

dorsal incisions were performed to access the kidneys. Both kidneys

were then clamped to occlude blood flow for a duration of 30

minutes. CKD was simulated through a unilateral ischemia-

reperfusion procedure combined with a contralateral total

nephrectomy. Following anesthesia, a left dorsal incision was made

to clamp the left kidney, obstructing blood flow for 30 minutes.

Subsequently, 14 days post-procedure, a right dorsal incision was

executed to facilitate the complete removal of the right kidney (31).
2.12 Immunohistochemistry

Kidney tissues were paraffin-embedded and sectioned into 4 mm
slices. After deparaffinization and rehydration, antigen retrieval was

conducted with EDTA buffer at pH 9.0 for 25 minutes. A 15-minute

treatment with 10% hydrogen peroxide was used to block

endogenous peroxidase activity, and secondary antibodies were

blocked with 5% serum for 30 minutes at room temperature.The

kidney tissues underwent overnight incubation at 4°C with primary

antibodies (PLEKHA4,BD-PB3919, 1:300, Biodragon, Jiangsu,

China; KLKI,YP-AB-02871, 1:200, UpingBio, Zhejiang, China;

CLCNKB, DF9376, 1:150, Biodragon, Jiangsu, China) targeting

the candidate biomarkers. Horseradish peroxidase (HRP)-

conjugated antibodies were applied to the sections on the

subsequent day. 3,3’-diaminobenzidine (DAB) (G1212-200T,

Servicebio, Wuhan, China), a substrate specific to HRP, was used
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to highlight the stained areas in kidney tissue. Subsequently,

counterstaining is performed using hematoxylin (G1004-100ML,

Servicebio, Wuhan, China). Representative images were captured

using an Olympus microscope, and ImageJ (NIH, USA) was

employed to quantify the average optical density of the images to

assess the expression levels of candidate biomarkers.
2.13 Immunofluorescent staining

Immunofluorescence staining was conducted on 5 mm-thick

paraffin-embedded sections of mice kidney tissue. Following

deparaffinization and antigen retrieval using EDTA (pH 9.0), the

sections were blocked with goat serum and incubated overnight at

4°C with primary antibodies targeting SLC4A1 (A17391, 1:150,

ABclonal, Wuhan, China) and CA II (EM1801-08, 1:150, HuaAn,

Zhejiang, China). Subsequently, the sections were treated with

iFluor™ 647-conjugated goat anti-rabbit IgG and iFluor™ 488-

conjugated goat anti-mouse IgG (HA1125 and HA1123, 1:300,

HuaAn) for one hour at room temperature. Nuclei were

counterstained with DAPI, and imaging was performed using a

Zeiss Axio-Imager A2 confocal microscope (Carl Zeiss,

Jena, Germany).
2.14 Reverse-transcription polymerase
chain reaction

In summary, total RNA was extracted from renal tissues using

the Trizol method (15596026, Invitrogen, USA). Equivalent

amounts of mRNA were reverse transcribed into cDNA utilizing

the HiScript RT SuperMix kit (R122-01; Vazyme, China).

Quantitative real-time PCR (qRT-PCR) was conducted with the

ChamQ Universal SYBR qPCR Master Mix (Q711-02; Vazyme,

China) on a Viia 7 quantitative real-time PCR instrument (Thermo-

Fisher Scientific, USA). The PCR amplification protocol consisted

of 35 cycles at 95°C for 30 seconds, 58°C for 30 seconds, and 72°C

for 30 seconds. The following primers were employed: Aqp6

forward: GCCGTCATTGTTGGGAAGTTC and reverse: GGCT

CCAGGTCTACCACTTTC; Kit forward: GAACAGGACCTC

GGCTAACAA and reverse: CCTTTGCTCTGCTCCTGTACA;

Slc4a1 forward: CCTCGTCCAATACATCTCCCG and reverse:

CGTCATGGCAAGTAGGAAGGT. RT-PCR products were

separated on a 1.5% agarose gel and visualized under UV light.

The quantification of qRT-PCR was performed using the 2−DDCt
method and expressed as relative fold changes.
2.15 Patient samples

To investigate the expression of candidate biomarkers in

patients with AKI and CKD), we selected a cohort comprising

five patients with AKI and five with CKD. Additionally, we included

five patients diagnosed with renal malignancy, from whom normal

renal tissue adjacent to the tumor was obtained during surgical
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procedures. Patients were identified as having AKI if they fulfilled

any of these conditions: (a) a rise in serum creatinine (Scr)

exceeding 26.5 mmol/L within 48 hours; (b) a 50% increase in Scr

over the course of one week; or (c) urine output below 0.5 mL per

kilogram per hour lasting over 6 hours. CKD patients were

recognized by an estimated glomerular filtration rate (eGFR)

under 60 mL/min/1.73 m².Approval for this study was granted by

the ethics committee of The First Affiliated Hospital of Guangxi

Medical University, with informed consent obtained from the

patients (No. 2024-E0918).The data analysis design of this study

was showed in Figure 1.
2.16 Statistical analysis

Bioinformatic analysis were performed in the R (v 4.2.2).

GraphPad Prism statistical software was used for experiment

statistical analyses in the study. We employed the unpaired t test

to compare continuous variables between two groups. Values are

shown as mean ± SEM, with statistical significance set at P<0.05.
3 Results

3.1 Candidate genes were ascertained

In the GSE139061 dataset, 1153 differentially expressed genes

(DEGs1) were screened out, among which 913 were up-regulated and

240 were down-regulated. Similarly, in the GSE66494 dataset, 153

differentially expressed genes (DEGs2) were screened out, with 60

being up-regulated and 93 being down-regulated. The top 10 up- and

down-regulated DEGs in both datasets and their expression profiles

were labeled on the volcano plots and heatmaps respectively

(Figures 2A–D). Subsequently, by overlapping the 913 up-regulated

DEGs1 with the 60 up-regulated DEGs2, 6 common up-regulated

genes were identified (Figure 2E). And by overlapping the 240 down-

regulated DEGs1 with the 93 down-regulated DEGs2, 13 common

down-regulated genes were obtained (Figure 2F). The 6 common up-

regulated genes and the 13 common down-regulated genes were

combined, and 19 candidate genes were determined. In conclusion,

this analysis focused on the discovery of candidate genes that might

play important roles in the progression of AKI and CKD.
3.2 Function and pathways of candidate
genes were explored

Enrichment analyses of the 19 candidate genes showed that they

were enriched in 22 GO entries, such as organic anion transport

(Figure 2G; Supplementary Table 3), whereas KEGG analyses

revealed that the candidate genes were significantly enriched in

the Renin-angiotensin system (Figure 2H; Supplementary Table 4).

In addition, in the constructed PPI network, genes such as ALB,

SLC22A6 and SLC12A3 were highly associated with other

genes (Figure 2I).
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3.3 CLCNKB, KLK1, and PLEKHA4 were
deemed as biomarkers

Based on the candidate genes, 7 potential feature genes in the

AKI training set and 16 potential feature genes in the CKD training

set were obtained respectively through the LASSO regression

analysis (Figures 3A, B). Then, 5 feature genes were finally

obtained by overlapping (Figure 3C). Subsequently, it was found
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in the AKI training set, validation set as well as the CKD training set

and validation set that the AUC values of CLCNKB, KLK1 and

PLEKHA4 were all greater than 0.7, and thus they could be regarded

as the candidate biomarkers for this study (Figures 3D, E).

Moreover, the expression analysis of the candidate biomarkers

showed that the expression trends of CLCNKB, KLK1 and

PLEKHA4 were consistent in the four datasets. Among them,

CLCNKB and KLK1 were significantly down-regulated in AKI
FIGURE 1

The overall workflow of this study. AKI, Acute kidney injury; CKD, Chronic kidney disease; GSEA, Gene set enrichment analysis.
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FIGURE 2

The different expressed genes(DEGs) of AKI and CKD sets and function and pathways of candidate genes. (A, B) The volcano plots of DEGs in AKI
set. (B) The heatmaps of DEGs in CKD set. (C) The volcano plots of DEGs in AKI set. (D) The heatmaps of DEGs in CKD set. (E) The overlapping up-
regulated genes of AKI and CKD sets. (F) The overlapping down-regulated genes of AKI and CKD sets. (G) GO analysis of candidate genes. (H) KEGG
analysis of candidate genes. (I) PPI network of candidate genes. AKI, Acute kidney injury; CKD, Chronic kidney disease; DEGs, Differentially expressed
genes1; GO, Gene Ontology (GO); KEGG, Kyoto Encyclopedia of the Genome; PPI, protein-protein interaction.
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FIGURE 3

CLCNKB, KLK1 and PLEKHA4 were regarded as the candidate biomarkers and the GSEA analysis of candidate biomarkers. (A, B) LASSO regression
analysis of AKI and CKD training sets. (C) Overlapping genes of AKI and CKD training sets. (D, E) Receiver operating characteristic curve analysis of
AKI and CKD training sets and validation sets. (F, G) Expression trends of CLCNKB, KLK1 and PLEKHA4 in AKI and CKD training sets and validation
sets. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. AKI, Acute kidney injury; CKD, Chronic kidney disease; LASSO, Least absolute shrinkage and
selection operator.
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and CKD samples, while PLEKHA4 was significantly up-regulated

(Figures 3F, G). Moreover, the expression trends of CLCNKB,

KLK1 and PLEKHA4 in renal tissues of different groups of

patients and different groups of mice models were consistent with

our results (Figure 4).
3.4 Functional analysis helps explore
potential mechanisms of AKI and CKD
progression

GSEA was performed on the GSE139061 and GSE6649 datasets

to investigate the biological roles of the biomarkers. In the

GSE139061 dataset of AKI, CLCNKB, KLK1 and PLEKHA4 were

significantly enriched in 50, 15 and 51 pathways respectively

(Supplementary Tables 5–7). It was worth noting that CLCNKB

and PLEKHA4 were co-enriched in the valine leucine and

isoleucine degradation pathways and oxidative phosphorylation,

and KLK1 and PLEKHA4 were co-enriched in the neuroactive

ligand receptor interaction pathway (Figures 5A–C). In the

GSE6649 dataset of CKD, CLCNKB, KLK1 and PLEKHA4 were

significantly enriched in 39, 60 and 44 pathways respectively

(Supplementary Tables 8–10). Among them, CLCNKB and KLK1

were jointly enriched in the oxidative phosphorylation and valine,

leucine, and isoleucine degradation pathways, as well as in the

cytokine-cytokine receptor interaction pathway (Figures 5D–F).
3.5 GYG1 and PPP1R3D were associated
with immune infiltrating cells

Figures 6A, B illustrated the infiltration levels of 64 immune cells

in AKI versus control samples, and CKD versus control samples,

respectively. Among them, the infiltration levels of 6 types of immune

cells (differential immune cells 1) were significantly different in AKI

and control samples (Figure 6C), and the infiltration levels of 26 types

of immune cells (differential immune cells 2) were significantly

different in CKD and control samples (Figure 6D), and the

common differential immune cells included Astrocytes, Th2 cells.

Furthermore, among the differential immune cells 1 in AKI,

Fibroblasts had the most significant positive correlation with aDC

(cor = 0.32), and Astrocytes had the most significant negative

correlation with Fibroblasts (cor = -0.36) (Figure 6E;

Supplementary Table 11). Whereas PLEKHA4 had the strongest

positive relationship with pDC (cor = 0.58) and the strongest negative

relationship with Astrocytes (cor = -0.38), CLCNKB had the

strongest positive relationship with Astrocytes (cor = 0.30) and the

strongest negative relationship with Th2 cells (cor = -0.49), but KLK1

was significantly correlated with Differential Immune Cells 1

(Figure 6F; Supplementary Table 12). Subsequently, among the

differential immune cells 2 in CKD, cDC had the most significant

positive correlation with DC (cor = 0.75) and the highest positive

association with Macrophages M2 and Neurons (cor = -0.74)

(Figure 6G; Supplementary Table 13). In contrast, PLEKHA4 had
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the greatest positive connection with Th2 cells (cor = 0.58) and the

greatest negative linkage with MEP (cor = -0.40), CLCNKB had the

most significant positive correlation with Th1 cells (cor = 0.79) and

the strongest inverse relationship with NKT (cor = -0.67), and KLK1

had the greatest positive connection with MEP (cor = 0.62) and the

most prominent negative connection with Th2 cells (cor = -0.43)

(Figure 6H; Supplementary Table 14).
3.6 Molecular regulatory networks probe
regulatory mechanisms of biomarkers

Initially, merely 2 miRNAs were predicted for PLEKHA4,

whereas no miRNAs could be predicted for CLCNKB and KLK1

(Figure 7A). Subsequently, the TF-mRNA networks consisting of

133, 34 and 56 TFs corresponding to PLEKHA4, CLCNKB and

KLK1 respectively were acquired from the ChEA3 database

(Figure 7B). Then, a miRNA-mRNA-TF network was established

by integrating the 2 miRNAs (Figure 7C). Eventually, 8 lncRNAs

upstream of miRNAs were predicted and a lncRNA-miRNA-

mRNA network was constructe, such as EBLN3P-hsa-miR-3187-

3p-PLEKHA4 (Figure 7D). In a nutshell, this analysis centered

around the finding that PLEKHA4 was likely to play a more crucial

role in the progression of AKI and CKD.
3.7 CLCNKB, PLEKHA4 and KLK1 were
simultaneously targeted by
Tetrachlorodibenzodioxin

Drugs were screened for activation of CLCNKB and KLK1,

which are down-regulated in expression, and inhibition of

PLEKHA4, which is up-regulated in expression, including 27

drugs targeting KLK1, 19 drugs targeting CLCNKB and 19 drugs

targeting PLEKHA4 (Supplementary Tables 15–17). A biomarker-

drug network was constructed accordingly (Figure 7E). It was

noteworthy that CLCNKB, PLEKHA4 and KLK1 were

simultaneously targeted by Tetrachlorodibenzodioxin.
3.8 Annotation in AKI and CKD yielded 14
and 13 cell types, respectively

In the AKI single-cell dataset, a total of 78,791 cells were

retained after quality control (Supplementary Figure S1).

Subsequently, the top 2,000 highly variable genes and the top 30

PCs were applied to UMAP clustering (Figures 8A, B). All high-

quality cells were divided into 17 different cell clusters (Figure 8C).

In addition, marker genes had high specificity in different cell

clusters (Figures 8D, E). The cell clusters were annotated and 14

cell types were determined, such as Injured Proximal tubular cell

and Loop of Henle cell (Figure 8F). Subsequently, in the CKD

single-cell dataset, a total of 58,561 cells were retained after quality

control (Supplementary Figure S2). Next, the top 2,000 highly
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variable genes and the top 30 PCs were applied to UMAP clustering

(Figures 9A, B). All high-quality cells were divided into 16 different

cell clusters (Figure 9C). Moreover, marker genes also had high

specificity in different cell clusters (Figures 9D, E). The cell clusters

were annotated and 13 cell types were determined, such as Nephron

epithelial cell and Loop of Henle cell (Figure 9F).
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3.9 Type A intercalated cell and collecting
duct-principal cell identified as key cells

In the AKI single-cell dataset, the injured proximal tubular

cells in AKI samples had a relatively large number of interactions

and a relatively high intensity with other cells (Figure 10A), while
FIGURE 4

The verification of CLCNKB, KLK1 and PLEKHA4 in AKI and CKD samples. (A) The expression level of CLCNKB, KLK1 and PLEKHA4 in the kidneys of
patients with AKI and CKD. (B) The expression level of CLCNKB, KLK1 and PLEKHA4 in the kidneys of AKI and CKD mice models. ns means not
significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.Bar:50um.
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in the control samples, B cells had a relatively large number of

interactions and a relatively high intensity with other cells

(Figure 10B). Interestingly, in the CKD single-cell dataset,

Nephron epithelial cells and B cells had a relatively large

number of interactions and a relatively high intensity with other

cells both in CKD and control samples (Figures 10C, D). In

addition, KLK1 and CLCNKB had relatively high expression

levels in Type A intercalated cells and Collecting duct-principal

cells in both single-cell datasets (Figures 10E, F). To evaluate the
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abundance of type A intercalated cells in kidney disease,

immunofluorescence staining was performed on kidney sections

of AKI/CKD mice. Consistent with the reduced expression of

SLC4A1 (a specific marker for this cell type) in diseased kidneys

(Figure 11A), the expressions of additional markers (Aqp6, Kit

and Slc4a1) were also significantly downregulated (Figures 11B–

D), confirming the loss of type A intercalated cells in AKI/CKD.

Consequently, Type A intercalated cells could have been part of

the disease’s development.
FIGURE 5

GSEA analysis of biomarkers. (A–C) GSEA analysis of CLCNKB, KLK1 and PLEKHA4 in AKI set. (D–F) GSEA analysis of CLCNKB, KLK1 and PLEKHA4 in
CKD set. GSEA, Gene set enrichment analysis.
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FIGURE 6

Immune infiltrating cells of AKI and CKD. (A, B) Infiltration levels of 64 immune cells in AKI and CKD set. (C) The different immune cells in AKI and
control samples. (D) The different immune cells in CKD and control samples. (E) The correlation of different immune cells in AKI set. (F) Correlation
of immune cells and candidate biomarkers in AKI set. (G) The correlation of different immune cells in CKD set. (H) Correlation of immune cells and
candidate biomarkers in CKD set. AKI, Acute kidney injury; CKD, Chronic kidney disease. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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3.10 CLCNKB, KLK1, and PLEKHA4
expression changes during development of
key cell subpopulations

Secondary dimensionality reduction clustering analysis was

performed on Type A intercalated cell and Collecting duct-

principal cell. It was found that Type A intercalated cell and

Collecting duct-principal cell were divided into 10 and 8

subgroups respectively in the AKI single-cell dataset (Figures 12A,

B). Whereas in the CKD single-cell dataset, Type A intercalated cell

was divided into 10 subgroups and Collecting duct-principal cell

was divided into 9 subgroups (Figures 12C, D). Subsequently, the

different subgroups within Type A intercalated cell and Collecting

duct-principal cell were arranged on the developmental trajectory

according to the differentiation time. A darker blue indicates earlier

cell differentiation. In addition, after different cell subgroups were

mapped to the pseudo-time trajectory plot, it was found that they

exhibited different differentiation states. In the AKI single-cell

dataset, Type A intercalated cell had 10 differentiation states, with

State 4 being the earliest and most specific in differentiation.

Collecting duct-principal cell had 8 differentiation states, and
Frontiers in Immunology 13136
State 4 was also the earliest and most specific (Figures 12E, F). In

the CKD single-cell dataset, Type A intercalated cell also had 10

differentiation states, with State 9 being the earliest in

differentiation. Collecting duct-principal cell had 8 differentiation

states, and State 0 was the earliest and most specific (Figures 12G,

H). In the AKI single-cell dataset, with the differentiation of Type A

intercalated cells, the expressions of KLK1 and PLEKHA4 had no

significant changes. The expression of CLCNKB showed a trend of

first decreasing, then increasing and finally decreasing again

(Figures 12I). With the development of Collecting duct-principal

cells, PLEKHA4 had no significant change. The expression of

CLCNKB showed a trend of first increasing and then decreasing,

and the expression of KLK1 showed a trend of first remaining

unchanged, then increasing, then decreasing and finally remaining

unchanged (Figures 12J) In the CKD single-cell dataset, with the

development of Type A intercalated cells, PLEKHA4 had no

significant change. The expression of CLCNKB showed a trend of

first decreasing and then increasing, and the expression of KLK1

showed a trend of first decreasing, then remaining unchanged and

finally increasing (Figures 12K). With the development of

Collecting duct-principal cells, PLEKHA4 had no significant
FIGURE 7

Molecular regulatory networks and biomarker-drug network of candidate biomarkers. (A) The miRNAs were predicted for candidate biomarkers.
(B) TF-mRNA networks of candidate biomarkers. (C) miRNA-mRNA-TF network of candidate biomarkers. (D) lncRNA-miRNA-mRNA network of
candidate biomarkers. (E) Biomarker-drug network of CLCNKB, KLK1 and PLEKHA4. TF, Transcription factors.
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change. CLCNKB expression consistently declined, while KLK1

expression initially decreased and then stabilized (Figures 12L).
4 Discussion

AKI is marked by a swift reduction in kidney function over a

brief period, and the transition from AKI to CKD is a widely

recognized clinical occurrence. Our study identified three

biomarkers (CLCNKB, KLK1, and PLEKHA4) through a
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combination of machine learning algorithms, ROC curve analysis,

and expression validation. The potential mechanisms associated

with these biomarkers in AKI and CKD were explored through

enrichment analysis, regulatory network construction, immune

infiltration analysis, and drug target prediction. By integrating

single-cell data, we identified key cell types and investigated the

expression of these biomarkers at the cellular level. Thus, our

investigation discovered some new perspectives on the potential

pathogenesis and progression of AKI to CKD, which might provide

therapeutic targets to avert the transition.
FIGURE 8

Annotated cell types in AKI groups. (A, B) Top variable genes and PCs were applied to UMAP clustering. (C) Different cell cluster of high-quality cells
of AKI single-cell dataset. (D, E) Marker genes identified different cell clusters. (F) 14 cell types were determined in AKI single-cell dataset. AKI, Acute
kidney injury; UMAP, Uniform manifold approximation and projection.
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CLCNKB is responsible for encoding the CLC-Kb protein, a

component of the CLC chloride channel family, that helps with

chloride ion reabsorption in the renal tubules (32, 33).Genetic

mutations in CLCNKB can impair the glycosylation of the CLC-

Kb protein, compromising its functionality and resulting in reduced

uptake of sodium and chloride ions in the kidney tubules (34).

Mutations in the CLCNKB gene are notably linked to Bartter

syndrome type III, a rare hereditary renal tubular disorder

characterized by salt loss and electrolyte imbalances, frequently
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culminating in CKD (35, 36).Our study demonstrated a significant

down-regulation of CLCNKB in renal tissue samples from patients

with both AKI and CKD, aligning with the loss-of-function effect

indicated by the aforementioned genetic evidence. Moreover, this

substantial loss of sodium and chloride ions triggers the activation

of the renin – angiotensin – aldosterone system (RAAS), which may

exacerbate kidney injury in AKI and facilitate the development to

CKD (37).During the acute phase, persistent activation of the RAAS

may exacerbate AKI-induced renal damage by promoting
FIGURE 9

Annotated cell types in CKD groups. (A, B) Top variable genes and PCs were applied to UMAP clustering. (C) Different cell cluster of high-quality
cells of CKD single-cell dataset. (D, E) Marker genes identified different cell clusters. (F) 13 cell types were determined in AKI single-cell dataset. CKD,
Chronic kidney disease; UMAP, Uniform manifold approximation and projection.
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vasoconstriction and inflammatory responses (37). Over the long

term, this mechanism is pivotal in driving renal fibrosis and

glomerulosclerosis, thereby expediting the progression from AKI

to CKD (38). Functional enrichment analysis corroborated this

mechanism. Furthermore, CLCNKB was found to be significantly

associated with metabolic pathways, such as oxidative

phosphorylation and branched-chain amino acid degradation,

suggesting that its down-regulation may also be implicated in

energy metabolism disorders within renal tubular cells,

collectively facilitating the chronic progression of the disease.

KLK1 is a serine protease that plays a pivotal role in the

kininase-kinin system (KKS) by breaking down low molecular

weight kininogen to yield bradykinin (BK) (39). The KKS is

intricately associated with several physiological processes,
Frontiers in Immunology 16139
including inflammation, coagulation, pain, and increased vascular

permeability, all of which are mediated by kinin production (40).

KLK1 is notably involved in the signaling pathways of the B1

receptor for bradykinin (B1R) and the B2 receptor for bradykinin

(B2R), thereby triggering a series of physiological responses that

produce anti-apoptotic, anti-inflammatory, anti-fibrotic, and

antioxidant effects. These actions collectively contribute to tissue

protection, underscoring the multifaceted beneficial roles of KLK1

in maintaining tissue homeostasis (41). Furthermore, previous

research has demonstrated that Klk1 ameliorates lupus nephritis

in murine models (42, 43). The functional enrichment analysis

conducted in this study revealed a significant association between

the down-regulation of KLK1 expression and the neuroactive

ligand-receptor interaction and cytokine-cytokine receptor
FIGURE 10

Key cells and expression trends of candidate biomarkers during development of key cell sub-populations of AKI and CKD single-cell datasets. (A, B)
The cell interactions of AKI and control samples. (C, D) The cell interactions of CKD and control samples. (E, F) Cells with high expression of
candidate biomarkers in AKI and CKD datasets.
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interaction signaling pathways. This suggests that reduced KLK1

expression may compromise the protective function of renal tubular

cells by disrupting bradykinin signaling and exacerbating the

inflammatory microenvironment.Consequently, the absence of

KLK1 may be implicated in the development from AKI to CKD.

PLEKHA4 encodes a protein characterized by a Pleckstrin

homology domain near its N-terminus and has an important

function in cancer biology, particularly in gliomas. Furthermore,

PLEKHA4 regulates the Wnt/b-catenin signaling pathway. In vitro

downregulation of PLEKHA4 resulted in decreased dishevelled

protein levels and a later diminishment of Wnt/b-catenin
signaling (44).Conversely, overexpression of PLEKHA4 activated

the Wnt/b-catenin pathway, facilitating the transfer of b-catenin to

the nucleus and promoting signaling activity (45). The Wnt/b-
catenin pathway, a developmental signaling cascade typically

inactive in the adult kidney, becomes reactivated in various renal

pathologies and plays a pivotal role in the pathogenesis of CKD (46,

47). Continuous activation of the Wnt/b-catenin signaling pathway

has been linked to the advancement of kidney fibrosis, podocyte

injury, and proteinuria in CKD (48–50), as well as contributing to

AKI and sustained tissue damage in cystic kidney disease (51, 52).

Furthermore, molecular regulatory networks suggest that

PLEKHA4 may play a significant role in the progression from

AKI to CKD. Consequently, the overexpression of PLEKHA4 could

potentially exacerbate kidney damage in AKI and expedite the

progression from AKI to CKD, warranting further investigation

into the underlying mechanisms.
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Our study indicates that during the progression from AKI to

CKD, the oxidative phosphorylation pathway and the degradation

pathways of valine, leucine, and isoleucine are pivotal. Following

acute kidney injury, the renal repair process is often maladaptive,

resulting in the dedifferentiation of tubular cells and the

intensification of inflammatory responses. This maladaptive

repair mechanism is intricately linked to the dysregulation of

oxidative phosphorylation, which subsequently impacts long-term

kidney function (53, 54). Research has demonstrated a significant

association between valine degradation disorder and renal fibrosis, a

critical pathological feature of CKD (55).Similarly, amino acid

metabolism assumes a pivotal role in CKD (56). Amino acids can

influence renal lesions and fibrosis through the aryl hydrocarbon

receptor (AhR) signaling pathway (57). Certain amino acids, such

as taurine, exhibit renoprotective properties by safeguarding the

mitochondrial membrane and inhibiting cell apoptosis, thereby

mitigating structural damage to the renal cortex (58, 59). The

significance of amino acid metabolism in disease mechanisms

positions it as a potential target for the early diagnosis and

treatment of CKD (60). In CKD, amino acid metabolism is

markedly disrupted, typically evidenced by elevated levels of

arginine and citrulline and a decreased ornithine/citrulline ratio,

indicating that citrulline may serve as a potent biomarker of renal

metabolism (61). This metabolic disturbance interacts with

systemic inflammation and metabolic acidosis, disrupting amino

acid and protein homeostasis. As CKD progresses, glomerular

filtration and renal tubular reabsorption functions are further
FIGURE 11

Abundance of type A intercalated cells in AKI/CKD mice. (A) Immunostaining of intercalated cell maker CAII (green) and the type A intercalated cell
maker SLC4A1 (red) in renal collecting duct of AKI/CKD mice. (B–D) Relative expression level of type A intercalated cell maker (Aqp6, Kit and Slc4a1)
in the kidneys of AKI/CKD mice.ns means not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.Bar:50um.
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compromised, exacerbating amino acid depletion and proteinuria,

thereby perpetuating a detrimental cycle (62). Therefore,

interventions targeting oxidative phosphorylation pathways and

amino acid metabolism may offer advanced therapeutic

techniques to decelerate the progression from AKI to CKD.
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During the transition from AKI to CKD, various cell types

including fibroblasts, Th2 cells, astrocytes, DCs, and M2

macrophages, play pivotal roles, aligning with our findings.

Studies indicate that fibroblasts differentiate into myofibroblasts

following kidney injury, thereby promoting extracellular matrix
FIGURE 12

(A, B) The subgroups of Type A intercalated cell and Collecting duct-principal cell in AKI single-cell dataset. (C, D) The subgroups of Type A
intercalated cell and Collecting duct-principal cell in CKD single-cell dataset. (E, F) Different states of Type A intercalated cell and Collecting duct-
principal cell in AKI single-cell dataset. (G, H) Different states of Type A intercalated cell and Collecting duct-principal cell in CKD single-cell dataset.
(I, J) Expression trends of CLCNKB、KLK1 and PLEKHA4 in Type A intercalated cell and Collecting duct-principal cell in AKI single-cell dataset.
(K, L) Expression trends of CLCNKB、KLK1 and PLEKHA4 in Type A intercalated cell and Collecting duct-principal cell in CKD single-cell dataset. AKI,
Acute kidney injury; CKD, Chronic kidney disease.
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accumulation and contributing to renal fibrosis (63). Moreover, M2

macrophages exhibit a dual role in this process, engaging in tissue

repair while potentially facilitating fibrosis progression in chronic

inflammation (64). Post-AKI, Th2 cell activation may mitigate

inflammatory responses and promote renal repair.However, an

excessive Th2 cell response can also exacerbate fibrosis (65). In

addition, suppressing PLEKHA4 might obstruct the M2

polarization process in macrophages (66). Thus, the positive

association of Th2 cells with PLEKHA4 may expedite the

progression of kidney fibrosis. Dendritic cells modulate T cell

activation and differentiation through antigen presentation and

cytokine secretion, thereby impacting the inflammatory and

reparative mechanisms of kidney (67). Meanwhile, astrocytes are

integral to the neuroimmune regulation of the kidney, potentially

influencing the inflammatory response and fibrotic processes via

the release of neurotransmitters and cytokines (68). It is noteworthy

that interstitial cells, as a crucial component of the renal

microenvironment, play a significant role in renal inflammation.

They amplify local inflammatory signals by releasing

proinflammatory factors, thereby inducing increased apoptosis of

renal parenchymal cells and exacerbating renal fibrosis through the

promotion of myofibroblast activation and extracellular matrix

deposition (69). This process is intricately linked to abnormal

oxidative stress, which not only results from the inflammatory

response but also exacerbates inflammation and apoptosis by

impairing mitochondrial function and activating the NF-kB and

Nrf2 signaling pathways (70–72). These pathways are central to the

regulation of apoptosis, inflammation (73), and oxidative stress in

kidney diseases and are pivotal in determining the progression and

outcomes of CKD (74, 75). Furthermore, Type A intercalated cells

and collecting duct principal cells are identified as pivotal in the

transition from AKI to CKD. This process encompasses a variety of

complex pathophysiological mechanisms, including inflammation,

fibrosis, and renal tubular injury. Type A interstitial cells, a distinct

group of cells located in the kidney’s collecting duct, are crucial for

maintaining acid-base equilibrium and facilitating ion transport

(76). AKI is frequently associated with an inflammatory response,

which stimulates the release of pro-inflammatory cytokines and

chemokines (77). Type A interstitial cells may exacerbate renal

fibrosis by promoting fibroblast activation and collagen synthesis

(78). Furthermore, the dysfunction of intercalated cells is intricately

associated with alterations in the renal microenvironment, which

may encompass hypoxia, modifications in the extracellular matrix,

and dysregulation of intercellular signaling pathways (79).

Collecting duct principal cells, another predominant cell type in

the collecting duct, are responsible for the regulation of sodium and

water reabsorption, thereby maintaining fluid balance (77).

Dysfunction in the collecting duct principal cells results in

compromised water and sodium reabsorption, further

exacerbating kidney damage. Collecting duct principal cells

demonstrate considerable proliferative capacity following acute

kidney injury, a response likely aimed at compensating for

tubular damage and facilitating renal repair (80). Consequently,

these cellular types may represent potential therapeutic targets in
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the progression from AKI to CKD, warranting further in-depth

investigation into the interactions among different cell types.

In this study, a biomarker-drug network was developed, revealing

that CLCNKB, PLEKHA4, and KLK1 are concurrently targeted by

tetrachlorodibenzodioxin. However, tetrachlorobiphenyldioxin is

recognized as an environmental pollutant that induces toxicity across

multiple tissues, including the kidneys (81). Research has demonstrated

that exposure to tetrachlorobiphenyldioxin can result in oxidative

stress, leading to cellular damage and dysfunction within the kidneys

(82). However, the therapeutic effect of tetrachlorobiphenyldioxin are

poorly studied. These findings are contrary to our results, indicating

that the mechanisms of action of related drugs require further

exploration in future studies.

In this study, miRNAs and immune cells synergistically

influence the progression from AKI to CKD by targeting specific

biomarkers and engaging in the inflammation-fibrosis axis.

Regarding miRNAs, although only two miRNAs, such as hsa-

miR-3187-3p, were predicted to target PLEKHA4, the constructed

lncRNA-miRNA-mRNA network indicates its regulatory role.

MiRNAs may negatively regulate PLEKHA4 expression by

promoting mRNA degradation or inhibiting its translation. The

downregulation or loss of function of miRNAs can lead to

PLEKHA4 overexpression, which subsequently activates the Wnt/

b-catenin pathway. This activation promotes fibroblast activation,

epithelial-mesenchymal transition, and extracellular matrix

deposition, thereby accelerating renal fibrosis (51). These findings

illuminate the intricate mechanisms underlying immunometabolic

regulation in kidney diseases and provide a rationale for therapeutic

strategies targeting miRNAs or immune cells.

Among the biomarkers identified in this study, CLCNKB

demonstrates s ignificant novel ty . Pr ior research has

predominantly concentrated on the relationship between

CLCNKB variants and inherited renal tubular disorders, such as

Bartter syndrome (35). However, to date, no investigations have

reported an association between CLCNKB and AKI or CKD. This

study is the first to reveal that CLCNKB plays a crucial role in the

transition from AKI to CKD, potentially offering a novel perspective

on the mechanisms underlying AKI-CKD progression. In contrast,

KLK1 and PLEKHA4 are established targets in AKI and CKD

research. KLK1 has been demonstrated to play a significant role in

kidney disease (83). Regarding PLEKHA4, the continuous

activation of the Wnt/b-catenin signaling pathway is implicated

in the progression of renal fibrosis in CKD, contributing to ongoing

tissue damage in kidney disease (52). Through comprehensive

bioinformatics analysis, this study systematically examined the

expression patterns and potential regulatory networks of KLK1

and PLEKHA4 in the AKI-CKD transition, thereby enhancing the

understanding of their mechanisms in kidney diseases. The

identification of these biomarkers not only provides potential

molecular indicators for early diagnosis but also enriches the

current understanding of kidney disease pathophysiology.

Three biomarkers, CLCNKB, KLK1, and PLEKHA4, were

identified through bioinformatics methods as being associated with

the progression of AKI to CKD. Functional enrichment analysis was
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conducted based on these biomarkers to elucidate the biological

pathways involved in AKI and CKD. Additionally, correlation

analysis between differential immune cells and the identified

biomarkers was performed to explore potential regulatory

relationships. Single-cell analysis provided insights into the cellular-

level expression of these biomarkers, offering new perspectives for early

diagnosis and the development of novel therapeutic strategies for AKI

and CKD. This study is subject to several limitations. Firstly, the

retrospective analysis based on public databases is unable to fully

eliminate batch effects, and the sample sizes are constrained (for

instance, the scRNA-seq dataset includes only five cases of AKI and

two cases of CKD), which impedes the effective application of

multivariate statistical analysis to control for confounding factors.

Secondly, the study lacks gene function experiments, such as gene

knockout or overexpression, which are necessary to directly validate the

causal mechanisms of the candidate genes. Furthermore, the clinical

translation of target-related compounds, such as tetrachlorodibenzo-

dioxins, is severely limited due to their toxicity. Future research should

aim to expand the sample size through multi-center prospective cohort

studies to acquire comprehensive clinical information. Additionally,

animal models and cellular experiments, including gene editing and

inhibitor or agonist treatments, should be employed to further elucidate

the specific mechanisms by which CLCNKB, KLK1, and PLEKHA4

regulate fibrosis and the immune microenvironment. Moreover, flow

cytometry and RNA sequencing (RNA-seq) technologies will be

employed to assess the dynamic expression and functional status of

type A interstitial cells within a kidney injury model, thereby

elucidating their potential role in the disease pathology. Ultimately,

these insights are intended to be translated into early intervention and

targeted therapies for kidney disease through drug repositioning or the

development of novel inhibitors or agonists.
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Decoding the hypoxia-exosome-
immune triad in OSA: PRCP/
UCHL1/BTG2-driven metabolic
dysregulation revealed by
interpretable machine learning
Weilong Ye †, Yitian Yang †, Feiju Chen †, Xiaoxi Lin, Yunan Wang,
Lianfang Du, Jingjing Pan, Weifeng Liao, Bainian Chen,
Riken Chen* and Weimin Yao*

The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
Background:Obstructive sleep apnea (OSA) is a prevalent disorder characterized

by significant metabolic and immune dysregulation. This study aims to uncover

exosome-related biomarkers implicated in immune-metabolic disturbances in

OSA and explore their potential as diagnostic and therapeutic targets.

Methods: Transcriptomic data from twoGEO datasets (GSE135917 andGSE38792)

were integrated and analyzed using differential expression analysis via the limma

package. Key biomarkers were identified using feature selection techniques

including LASSO and Random Forest. Machine learning models, specifically

XGBoost, were trained to evaluate biomarker performance, with model accuracy

assessed by ROC curve analysis and AUC values. Immune cell infiltration was

evaluated using single-sample Gene Set Enrichment Analysis (ssGSEA). Drug

enrichment predictions were made through the Drug Signatures Database

(DSigDB). Vivo and Vitro Experimental Validation on Multiple Independent cohorts.

Results: Three exosome-related biomarkers—PRCP, UCHL1, and BTG2—were

identified as central to OSA’s immune-metabolic dysregulation. XGBoost

modeling demonstrated robust predictive power (AUC = 0.968). Immune

analysis revealed significant correlations between gene expression and

immune cell subsets, particularly CD56 bright natural killer cells and Memory B

cells. Drug enrichment analysis identified potential therapeutic compounds,

including Pentaphenate and Delphinidin, which target these biomarkers. OSA is

associated with a reproducible transcriptional signature characterized by

increased PRCP and UCHL1 expression and decreased BTG2 expression.

Conclusions: This study identifies PRCP, UCHL1, and BTG2 as key exosome-

related biomarkers in OSA that regulate immune-metabolic disruption. By

integrating transcriptomic data, machine learning, and immune analysis, we

uncover an “exosome-immune” axis in OSA pathophysiology.
KEYWORDS

exosome signaling, obstructive sleep apnea (OSA), immune infiltration, machine
learning, biomarkers
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GRAPHICAL ABSTRACT
1 Introduction

An estimated 1 billion people worldwide are affected by OSA

(1), and its prevalence continues to rise (2), primarily due to the

increasing global rates of obesity (3–5). OSA is characterized by

repeated partial or complete obstruction (collapse) of the upper

airway during sleep, leading to hypercapnia, intermittent hypoxia

(IH), and a reduction in blood oxygen saturation (2). The clinical

diagnostic standard for OSA relies on polysomnography (PSG) (6).

However, the high cost and time-intensive nature of this diagnostic

method limit its application in the early screening and long-term

treatment monitoring of OSA. As a result, identifying reliable

biomarkers has become a research focus in the field of sleep

medicine over the past decade (7). Pathophysiological studies

suggest that IH, a core pathological feature of OSA, activates the

sympathetic nervous system, induces metabolic disturbances, and

promotes systemic inflammation and oxidative stress (8). Notably,

IH exposure significantly upregulates the transcriptional activity of

hypoxia-inducible factor-1a (HIF-1a), which then regulates a

variety of downstream signaling pathways (9, 10). In terms of

immune regulation, OSA patients exhibit characteristic

proliferation of natural killer (NK) cells and natural killer T

(NKT) cells (11). Further analysis shows that in mild to moderate

cases, the proportion of CD4+ effector T cell subsets is abnormally

elevated, while the numbers of effector memory T cells (TEM) and

central memory T cells (TCM) are significantly reduced (12). Severe

OSA cases display also pronounced immune dysregulation: the

ratio of T helper (Th) cells to cytotoxic T lymphocytes (CTLs)

decreases, while the number of B lymphocytes, which mediate

humoral immunity, is significantly reduced (13). These findings

suggest that the pathological progression of OSA involves complex

immune cell dynamic imbalances, with characteristic immune

phenotype changes observed at different stages of the disease.
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This provides potential targets for the development of novel

diagnostic and therapeutic strategies.

Exosomes, key components of adipose-derived extracellular

vesicles, play a crucial role in systemic metabolic regulation (14).

These nanometer-sized vesicles, ranging from 30 to 150 nm in

diameter, are rich in proteins and nucleic acids (including mRNA,

miRNA, and lncRNA) derived from their parent cells (15). By

mediating intercellular communication, metabolic waste clearance,

and the maintenance of microenvironment homeostasis, exosomes

significantly contribute to metabolic processes (16). Notably,

exosome-carried metabolic regulatory factors can specifically bind

to lipid transport proteins, modulating inflammatory cascades,

immune response networks, and programmed cell death

pathways (17, 18). This ultimately leads to pathological changes

associated with metabolic disorders (19). Based on these functions,

this study proposes an innovative hypothesis: intermittent hypoxia

may alter the exosome secretion profile of adipose tissue, which in

turn changes immune cell infiltration patterns, ultimately driving

the pathological processes of OSA.

Current research has yet to fully elucidate the molecular

mechanisms by which adipose-derived exosomes interact with

metabolic regulation. Experimental evidence has shown that

adipose tissue macrophages (ATMs) deliver miR-155 to

adipocytes via exosomes, and this microRNA plays a significant

role in improving obesity-related metabolic abnormalities by

inhibiting the expression of peroxisome proliferator-activated

receptor g (PPARg) (20). On the other hand, exosome-derived

miR-34a from adipocytes has been shown to suppress M2

macrophage polarization, exacerbating the chronic inflammatory

state induced by obesity (17). These findings suggest a bidirectional

regulatory network between adipocytes and immune cells mediated

by exosomes, offering a new perspective on the mechanistic study of

metabolic diseases.
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Building on this background, this study aims to adopt a

comprehensive bioinformatics approach. First, it will screen OSA-

specific exosome biomarkers and establish a machine learning-assisted

diagnostic model. Second, the study will analyze the immune

microenvironment of adipose tissue using the ssGSEA (single-sample

Gene Set Enrichment Analysis) algorithm. Finally, we conducted in

vivo and in vitro experimental validations across multiple independent

cohorts and established a theoretical framework for the “hypoxia–

exosome–immune” regulatory axis, thereby providing a solid

foundation for the development of precise therapeutic targets.
2 Materials and methods

2.1 Collection and preprocessing of OSA
transcriptomic data

The mRNA expression profiles for OSA were obtained from the

GEO database, specifically datasets GSE135917 (21) and GSE38792

(22), both generated using the GPL6244 platform (Affymetrix

Human Gene 1.0 ST Array). In the GSE135917 dataset, the

control group included 8 samples, while the OSA group

comprised 34 samples, with total RNA extracted from

subcutaneous adipose tissue. Similarly, the GSE38792 dataset

consisted of 8 control samples and 10 OSA patient samples, with

RNA extracted from visceral adipose tissue biopsies collected

during surgery. Log transformation was applied to both datasets

to standardize expression values, followed by correction of

distribution differences across samples. The datasets were then

merged, and batch correction was performed to mitigate technical

variations. Principal component analysis (PCA) was employed to

visualize the differences between the two datasets before and after

batch correction, ensuring improved data comparability.
2.2 Differential gene expression analysis
and intersection with exosome-related
genes

After data preprocessing, differential expression analysis was

conducted using the limma package to compare gene expression

profiles between control and disease groups, aiming to investigate the

molecular mechanisms underlying sleep apnea. The normalize-

Between-Arrays() function was applied to standardize the data.

Subsequently, further analysis was performed using linear

modeling: the lmFit() function was employed to fit a generalized

linear model, make-Contrasts() was used to construct a contrast

matrix defining specific comparisons, followed by contrasts.fit() for

contrast analysis, and finally, eBayes() was applied for empirical

Bayesian adjustment to enhance the robustness and accuracy of

statistical inference. The filtering criteria included an adjusted p-

value < 0.05 and |log2FC| > 0.5 (approximately corresponding to a

1.41-fold change). This threshold was chosen based on established

practices in similar studies (23, 24), as microarray data typically reveal

subtle expression changes, with a |log2FC| > 0.5 regarded as a
Frontiers in Immunology 03148
meaningful difference. The resulting differentially expressed genes

were visualized using a heatmap. Exosome-related genes were

retrieved from the GeneCards database, a publicly available

resource for human gene information (https://www.genecards.org/).

We selected genes with Relevance Score > 2 as strongly associated

genes, which accounted for more than 50 percent of the total. A

Venn diagram was then constructed to visualize the intersection

between exosome-related genes and differentially expressed genes,

highlighting those with potential relevance to the study.
2.3 Functional enrichment analysis of
EOR-DEGs

To explore the functional roles of exosome-related differentially

expressed genes (EOR-DEGs), Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

were performed using the clusterProfiler package (25). Enrichment

was considered significant when both p-values and adjusted p-values

were less than 0.05. GO analysis encompassed 3 domains: biological

processes (BP), cellular components (CC), and molecular functions

(MF). The results of these enrichment analyses were visualized using

bar-plots to highlight significant pathways and cnet-plots to illustrate

the relationships between genes and their associated terms.
2.4 Logistic regression analysis and feature
selection of EOR-DEGs

To assess the prognostic and diagnostic value of EOR-DEGs,

univariate logistic regression was first applied, with the odds ratio

(OR) and p-value used to identify genes significantly associated with

prognosis and diagnosis (p < 0.05). Genes meeting this threshold

were then subjected to feature selection using Least Absolute

Shrinkage and Selection Operator (LASSO) regression (l. min) and

Random Forest (RF) analysis (Importance > 4) (26). The overlap of

selected genes from both methods was visualized using a Venn

diagram, identifying a set of key biomarkers for further clinical and

mechanistic analysis. Subsequently, box plot was used to illustrate the

expression levels of feature genes across different groups, and

correlation plot was employed to visualize their interrelationships.
2.5 Construction and evaluation of a
diagnostic model

A nomogram was developed to visualize the relationship

between feature gene expression and disease risk, with coefficients

derived from multivariate logistic regression. The model’s

performance was evaluated using the Receiver Operating

Characteristic (ROC) curve, with the area under the curve (AUC)

indicating predictive accuracy. Calibration curves were constructed

to assess the agreement between predicted and observed outcomes,

while Decision Curve Analysis (DCA) evaluated the model’s clinical

utility by assessing net benefit at various threshold probabilities.
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2.6 XGBoost model construction

The XGBoost algorithm (27) was selected for its efficiency and

robust performance in binary classification tasks. The feature genes

were set as the predictors, with occurrence of OSA acting as

response variable. The model’s predictive performance was

evaluated using ROC curves. To minimize overfitting, 5-fold

cross-validation was performed during model validation,

alongside a reduced learning rate and limited maximum depth.
2.7 Model interpretation based on SHAP

We calculated SHAP (SHapley Additive exPlanations) (28) values

to interpret the XGBoost model. The SHAP summary plot visualized

their relative importance. Dependency plots were generated to

illustrate the relationship between gene expression levels and disease

risk. Additionally, SHAP force plots were used to analyze individual

patient predictions, offering detailed insights into the gene-specific

contributions to the probability of OSA occurrence.
2.8 Immune correlation analysis

The ssGSEA was employed to calculate immune cell infiltration

scores, which were subsequently correlated with the expression of

feature genes. Spearman’s correlation method was used to assess the

relationship between immune cell activity and gene expression, with

statistical significance determined for each correlation. The results

were visualized in a heatmap, where the strength and significance of

the correlations were clearly represented. The 28 immune cell–related

gene sets were obtained from previously published studies (29, 30).
2.9 Drug enrichment analysis

The Drug Signatures Database (DSigDB) was utilized to identify

potential therapeutic drugs by predicting protein-drug interactions.

The DSigDB online platform (https://dsigdb.tanlab.org/), a publicly

accessible database that integrates drug-associated gene expression

data, was employed to explore drug-gene relationships, mechanisms

of drug action, and opportunities for drug repurposing (31).

Candidate drugs were identified by comparing the database’s drug

gene expression signatures with disease-related gene expression

profiles. The results were visualized using Cytoscape software

(https://cytoscape.org/).
2.10 Vivo and vitro experimental validation

Human SW872 liposarcoma cells (n=6) and murine 3T3-L1

preadipocytes (n=6) were cultured under standard conditions, with

3T3-L1 cells induced to differentiate into mature adipocytes using a

commercial induction kit. Male C57BL/6J mice (8 weeks of age; n=10)

were randomly assigned to normoxia or chronic CIH exposure. This
Frontiers in Immunology 04149
experiment was reviewed and approved by the Animal Welfare and

Ethics Committee under review number: IACUC-20250701-299. Cells

and mice were exposed to intermittent hypoxia (IH/CIH) with cyclic

oxygen fluctuations, while controls were maintained under normoxia.

Total RNA was extracted from cells and mouse adipose tissues,

reverse-transcribed into cDNA, and analyzed by SYBR Green-based

qRT-PCR. Gene expression was quantified using the 2^(-DDCT)
method with GAPDH as the internal control, and all reactions were

performed in triplicate to ensure reliability. IHC was performed on

FFPE iWAT sections using antibodies against PRCP, BTG2, and

UCHL1, with DAB visualization, and staining was quantified as

percentage positive area using ImageJ. The detailed methodological

section has been added in the supplementary file. A brief overview of

the process is presented in the Graphical Abstract.
2.11 Statistical analysis

The entire analysis was conducted using R software (version

4.4.2). During data collection, the GEOmirror and idmap2 packages

facilitated data retrieval and annotation. The limma and sva packages

were utilized for dataset organization, correction, merging, and

differential expression analysis. To ensure uniform distribution of

expression values across all samples, quantile normalization was

applied using the normalize-Between-Arrays function. After merging

the datasets, the ComBat method was employed to correct for batch

effects. For visualization, box plots were generated, and the Wilcoxon

rank-sum test was applied for group comparisons. Correlation

analysis was performed using Pearson’s correlation coefficient to

assess the relationships between gene expression levels. Data are

presented as mean ± SEM; qPCR was analyzed using per-sample

DCt values and reported as 2^−DDCt, while IHC results were

quantified as the percentage of positive area (area%) per sample

across predefined fields, with two groups compared using unpaired

two-tailed t-tests, multiple groups analyzed by one-way ANOVAwith

appropriate post-hoc tests, and non-parametric alternatives applied

when assumptions of normality or homoscedasticity were not met; P

< 0.05 was considered statistically significant.
3 Results

3.1 Data integration and differential
expression analysis

PCA demonstrated that batch correction effectively mitigated

batch effects, thereby preserving the integrity of the biological signal

(Figures 1A, B). Addressing batch effects is crucial to minimize non-

biological variations that could otherwise compromise the reliability of

downstream analyses. Utilizing thresholds of p-value < 0.05 and |

log2FC| > 0.5, 245 differentially expressed genes were identified

(Figure 1C). A heatmap showcasing the top 50 upregulated or

downregulated genes, ranked by |log2FC|, provides a visual

representation of the key expression changes (Figure 1D). Using the

keyword “exosome,” 5,293 protein-coding genes were identified, of
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which 2,740 genes with a Relevance Score > 2 were selected for further

analysis. The Venn diagram displayed 46 EOR-DEGs (Figure 1E).
3.2 Functional enrichment analysis for
EOR-DEGs

The GO terms with the highest number of enriched genes in BP,

CC, and MF were: regulation of inflammatory response, endocytic

vesicle, and structural constituent of the cytoskeleton (Figure 2A).

In the KEGG analysis, relatively few pathways were enriched (with a

p-value < 0.05 and an adjusted p-value < 0.05 with a primary focus

on lipid metabolism and atherosclerosis pathways (Figure 2B). The

GO analysis network plot highlights the top 10 most significant

functional enrichment categories (Figure 2C). The KEGG path view

suggests that LBP, MMP9, APOB, IL6, and RAP1B are involved in

lipid metabolism and atherosclerosis (Figure 2D).
3.3 Logistic regression analysis and feature
selection of EOR-DEGs

In univariate logistic regression analysis, all 46 EOR-DEGs had

p-values less than 0.05. Among them, 20 genes had odds ratios
Frontiers in Immunology 05150
(ORs) less than 1, while the remaining genes showed ORs greater

than 1 (Table 1). These 46 EOR-DEGs were further included in

LASSO analysis to address potential collinearity, resulting in the

selection of 10 genes (Figures 3A, B). Random forest analysis was

employed to determine gene importance, with genes having

importance scores greater than 4 being highlighted (Figures 3C,

D). The intersection of genes identified through LASSO and RF

analyses revealed three feature genes for model construction:

PRCP, UCHL1, and BTG2. The box plot indicated that PRCP

and UCHL1 were highly expressed in the OSA group, while BTG2

showed lower expression (Figure 3E). Correlation analysis revealed

that UCHL1 was negatively correlated with both BTG2 and

PRCP (Figure 3F).
3.4 Construction and evaluation of a
diagnostic model

The nomogram visually represents a diagnostic model

constructed through multivariate logistic regression analysis,

leveraging the expression levels of hub genes to predict the risk of

OSA (Figure 4A). The ROC curve (Bootstrapping method)

demonstrates the model’s superior diagnostic performance, with

an AUC value exceeding that of individual genes, confirming its
FIGURE 1

Data preprocessing and differential gene screening. (A) PCA plot before batch correction showed clustering by dataset origin. (B) PCA plot after
batch correction, demonstrating clustering by disease status, indicating the removal of technical variations. (C) Volcano plot of differentially
expressed genes (red dots: upregulated genes; blue dots: downregulated genes; thresholds: p-value < 0.05 and |log2FC| > 0.5), identifying 245
differentially expressed genes (DEGs). (D) Heatmap displaying the top 50 DEGs (ranked by |log2FC|), with row-normalized expression values
(Z-score) reflecting expression patterns between OSA and control groups. (E) Venn diagram showing 46 exosome-related differentially expressed
genes (EOR-DEGs, intersection of Gene Cards exosome gene set and DEGs).
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robustness (Figures 4B, C). Model evaluation through the

calibration curve indicates that the bias-corrected curve closely

parallels the ideal curve, with only minor deviations observed in

the high-probability range (approaching 1.0) (Figure 4D).

Additionally, the Decision Curve Analysis (DCA) reveals that

employing the model for prediction and intervention provides a

higher net benefit (Figure 4E). These findings underscore the

model’s reliability and practical utility in diagnostic applications.

In the XGBoost model, the AUC value reached 0.968 (Figure 4F).
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To mitigate overfitting, 5-fold cross-validation was performed,

further validating the model’s robustness (AUC = 0.989)

(Figure 4G). Additionally, a feature importance plot was

generated to illustrate the contribution of each gene to the

model’s predictions (Figure 4H). For the XGBoost model, we set

the following hyperparameters: learning rate (eta) = 0.01, maximum

tree depth = 2, minimum child weight = 2, gamma = 0.1, subsample

= 0.8, colsample_bytree = 0.8, lambda = 1, and alpha = 0. The

objective was to use a smaller learning rate and limit model
FIGURE 2

Functional and pathway enrichment of EOR-DEGs. (A) GO enrichment bar plot with significant terms (p < 0.05) including “regulation of inflammatory
response” (BP), “endocytic vesicle” (CC), and “structural constituent of cytoskeleton” (MF). (B) KEGG pathway enrichment highlighted significant
pathways such as “lipid metabolism” and “atherosclerosis”. (C) GO network diagram displaying the top 10 enriched terms, where node size
represents the number of genes and edge width indicates gene overlap. (D) KEGG pathway map (lipid metabolism) highlighting key genes (LBP,
MMP9, APOB, IL6, RAP1B).
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complexity to prevent overfitting when analyzing relatively small

sample sizes.
3.5 Interpreting the machine learning
model with SHAP analysis

The SHAP Summary Plot illustrates the contributions of the 3

hub genes (PRCP, UCHL1, and BTG2) to the overall model

prediction (Figure 5A). Among them, PRCP shows the highest

average SHAP value (0.334), indicating its strongest influence on

the model’s predictions, while UCHL1 and BTG2 have relatively

smaller contributions. The Dependence Plot visualizes the

relationship between the expression levels of the feature genes

and their corresponding SHAP values. For instance, the SHAP

value for BTG2 peaks around an expression level of 8.5, decreasing

as the expression level increases, suggesting a nonlinear relationship

that may reflect BTG2’s complex regulatory role in the model’s

output (Figure 5B). The figure also shows the relationships for

PRCP and UCHL1 (Figures 5C, D). According to the SHAP Force

Plot, in one control sample, the hub genes exhibit a negative

contribution to the occurrence of OSA (Figure 5E). These results

suggest that BTG2 might act as a protective gene, with low

expression increasing risk, while UCHL1 and PRCP may serve as

risk genes, with higher expression correlating with an increased risk

of OSA.
3.6 Correlation analysis of immunity

The ssGSEA analysis was employed to calculate the immune cell

infiltration scores, which were subsequently correlated with the

expression levels of the hub genes. UCHL1 and PRCP demonstrated

a strong positive correlation with CD56 bright natural killer cells

and a significant negative correlation with Memory B cells. In

contrast, BTG2 exhibited an inverse correlation pattern. A

heatmap was generated to visualize the correlations between the

other immune cells and the feature genes, providing a

comprehensive overview of the immune landscape associated with

these feature genes (Figure 6A).
TABLE 1 Univariate logistic regression analysis.

Gene OR OR.95L OR.95H p-value

PRCP 986.0791 60.17411 43735.75 2.90E-05

ATP6AP2 114.3371 14.29222 1758.272 8.39E-05

PDIA3 75.6924 11.11494 951.5929 0.000113

ARF4 47.53213 8.308052 428.4111 9.42E-05

GLB1 38.61957 7.375862 314.5474 0.000108

EXOSC3 27.94962 5.829075 190.7486 0.000158

UCHL1 27.675 6.2062 175.6567 7.80E-05

RAP1B 22.04958 4.769966 176.006 0.000579

ARPC4 15.57668 4.089505 76.78485 0.000201

TUBB4A 11.25975 3.354366 44.70034 0.000205

GCA 10.92942 3.585175 44.0934 0.000151

NSA2 8.126889 2.39504 39.09922 0.003046

SUCNR1 6.522213 2.137218 24.80007 0.002313

ALCAM 6.172922 2.180943 21.61758 0.001649

TUBB1 5.6868 2.185966 17.86299 0.001091

GPLD1 5.651804 2.053642 18.85715 0.00191

TXN 5.265804 1.945368 18.08795 0.003045

LBP 5.037635 1.938829 15.97191 0.002282

GPC4 4.393301 1.675899 13.27509 0.004583

HLA-DRB5 3.279293 1.375657 10.54385 0.019915

LYZ 2.892675 1.350791 6.975785 0.01005

CHI3L1 2.632013 1.409485 5.399355 0.004322

NPR3 2.523628 1.203417 5.78103 0.018065

MMP9 2.396216 1.199165 5.348592 0.020294

HBA2 2.236278 1.21276 4.4752 0.014438

HBB 2.092857 1.330592 3.531524 0.002651

ITLN1 0.62736 0.378592 0.949145 0.039053

C4B 0.477884 0.214379 0.907881 0.036145

IL6 0.477017 0.278475 0.779596 0.004177

SLPI 0.432136 0.19901 0.824733 0.017656

SLC2A3 0.392045 0.206861 0.702392 0.002305

KLF4 0.365831 0.186386 0.678436 0.00198

SOCS3 0.319353 0.147249 0.636311 0.001906

ZFP36 0.31906 0.148147 0.64201 0.001953

OGN 0.303189 0.124932 0.647185 0.003842

AREG 0.292776 0.124983 0.604413 0.001861

ATF3 0.283908 0.127676 0.582859 0.000993

MYC 0.270612 0.108965 0.590503 0.002069

(Continued)
TABLE 1 Continued

Gene OR OR.95L OR.95H p-value

WT1 0.259777 0.092083 0.626412 0.005114

DPP4 0.245084 0.073703 0.637639 0.009457

KRT19 0.215046 0.059646 0.574421 0.007162

APOB 0.158699 0.050603 0.423645 0.000567

AZGP1 0.138617 0.036829 0.396253 0.000937

SIK1 0.099512 0.026518 0.308981 0.000188

BTG2 0.068947 0.014537 0.254142 0.000202

KLF6 0.050211 0.009535 0.202541 9.92E-05
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3.7 Drug enrichment analysis

Using the gene IDs PRCP, UCHL1, and BTG2 as input in an

online platform, 69 potential drugs were identified (p-value < 0.05).

Among these, compounds such as Pentaphenate and Delphinidin

exhibited significant associations with specific genes like PRCP and

BTG2. Functional enrichment analysis highlighted their fold

enrichment, z-scores, and adjusted p-values, suggesting that these

compounds may exert critical biological effects on the related genes.

Moreover, they could play regulatory roles in specific biological

processes, providing insights into potential therapeutic applications.

The network diagram illustrates the connections between identified

drugs and their corresponding feature genes (Figure 6B). Each node

represents a drug or a gene, with a maximum of 20 drugs displayed

per gene.
3.8 Vivo and vitro experimental validation
on multiple independent cohorts

To determine whether OSA induces transcriptional alterations

in stress and metabolism-related genes, we performed qRT-PCR in

multiple independent cohorts. We focused on PRCP, UCHL1, and

BTG2, given their previously reported roles in proteolytic

regulation, protein homeostasis, and cell cycle control. As shown

in Figures 7A–C (Differentiated 3T3-L1 murine adipocytes), PRCP

and UCHL1 mRNA levels were significantly elevated in the OSA
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group compared with controls, whereas BTG2 mRNA expression

was markedly reduced. These findings were consistently reproduced

in independent experimental sets (Figures 7D–F, SW872 human

adipocytes; Figures 7G–I, eWAT), where PRCP upregulation was

highly significant (Figures 7D, G), UCHL1 expression was robustly

increased (Figures 7E, H), and BTG2 levels were consistently

downregulated across all comparisons (Figures 7F, I). Notably,

the concordant results across independent replicates underscore

the stability and reproducibility of these transcriptional changes.

Collectively, these data indicate that OSA is associated with a

reproducible transcriptional signature characterized by increased

PRCP and UCHL1 expression and decreased BTG2 expression.

IHC: Representative micrographs (Figures 7Ja–f) and semi-

quantitative analysis of DAB-positive area (%) (Figures 7Jg–i)

revealed group-dependent differences (n = 3 per group).

Compared with the control (CON) group, OSA samples exhibited

significantly higher UCHL1 and PRCP expression and markedly

lower BTG2 levels.
4 Discussion

This study elucidates the potential pathogenesis of OSA

through adipose tissue transcriptomics, revealing PRCP, UCHL1,

and BTG2 as exosome-associated hub genes that orchestrate

metabolic-immune dysregulation. By synergizing cross-platform

data integration (GSE135917/GSE38792), machine learning-
FIGURE 3

Feature selection was performed using LASSO (10-fold CV, lambda. min) and random forest (optimal trees, Mean Decrease Gini > 4). (A) coefficient
path (lasso). (B) cross-validation error (lasso). (C) error rate curve (RF). (D) variable importance ranking (RF). (E) Boxplot showing the expression
differences of feature genes (PRCP, UCHL1, BTG2) between the OSA group and the control group (*p<0.05, **p<0.01, ***p<0.001). (F) Heatmap of
feature gene expression correlations (Pearson correlation coefficient).
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driven biomarker discovery (XGBoost AUC = 0.968), and single-

sample immune deconvolution, we reveal an unprecedented

“exosome-immune” axis in OSA pathophysiology. Our robust

feature selection pipeline—incorporating LASSO regularization

(l . min) and random forest permutation importance—

convergently identified PRCP (prolyl carboxypeptidase), UCHL1

(Ubiquitin C-Terminal Hydrolase L1), and BTG2 (B-cell

translocation gene 2) as key non-redundant classifiers, validated

through SHAP interpretability to dissect nonlinear gene-disease

interactions (SHAP value for PRCP: 0.334). These results not only

demonstrate the diagnostic potential of these biomarkers but also

highlight the utility of interpretable machine learning techniques in

elucidating complex biological relationships (32).
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Prolyl carboxypeptidase (PRCP), a serine protease, exerts

regulatory effects across multiple endocrine axes including the

renin-angiotensin system (RAS), kallikrein-kinin system (KKS),

and pro-opiomelanocort in (POMC) (33) . S tudy had

demonstrated that PRCP plays a crucial role in the onset and

progression of obesity, regulating the balance between energy intake

and expenditure through an a-MSH1-mediated mechanism (34).

The coexistence of obesity and OSA is commonly observed, with a

bidirectional relationship between the two conditions (35). UCHL1,

a key member of the deubiquitinating enzyme family, influences cell

proliferation, differentiation, and damage by modulating both

ubiquitination and non-ubiquitination pathways (36, 37).

Notably, HIF-1a has been identified as a potential target
FIGURE 4

Feature gene-based OSA diagnostic model. (A) The nomogram integrates the expression levels of PRCP, UCHL1, and BTG2 to predict OSA risk, with
the total score corresponding to the right-side risk axis. (B) ROC curve showing the performance of individual genes in predicting OSA. (C) ROC
curve showing the performance of the combined diagnostic model based on feature genes. (D) Calibration curve with Bootstrap = 1000 iterations.
The dashed line represents the ideal fit, and the solid line represents the model’s bias-corrected prediction. (E) DCA showing the net clinical benefit
of the model when the threshold probability exceeds 10%. XGBoost Model Validation: (F) ROC curve. (G) 5-fold cross-validation. (H) Feature
importance plot.
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FIGURE 6

Immune association and potential targeted drugs of feature genes. (A) Heatmap depicting the correlations between immune cell infiltration and
feature gene expression. (B) Network of drug-gene interactions, visualized using Cytoscape, showing potential therapeutic drugs targeting the
feature genes.
FIGURE 5

SHAP Interpretation of the XGBoost Model. (A) Summary plot illustrating the contributions of PRCP, UCHL1, and BTG2 to the overall prediction of
OSA risk. (B) Relationship between BTG2 Expression Level and SHAP Value (LOESS fitting curve). (C) Relationship between PRCP Expression Level
and SHAP Value. (D) Relationship between UCHL1 Expression Level and SHAP Value. (E) SHAP force plot illustrating the contribution of feature genes
to the OSA risk prediction for a control sample.
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FIGURE 7

Intermittent hypoxia induces a conserved cellular stress signature across adipocyte models in vitro and in vivo. Relative mRNA expression of PRCP,
UCHL1, and BTG2 was measured by qRT-PCR. (A–C) Differentiated 3T3-L1 murine adipocytes (n = 3 per group). (D–F) SW872 human adipocytes
(n = 3 per group). Cells were exposed to 24 hours of normoxia or intermittent hypoxia (IH). (G–I) Epididymal white adipose tissue (eWAT) from mice
exposed to 4 weeks of normoxia (Control, n = 5) or chronic intermittent hypoxia (CIH, n = 5). Gene expression was normalized to Actb. Data are
presented as mean ± SEM. Statistical significance was assessed by unpaired, two-tailed Student’s t-test on DCt values. (J, a, b) Representative IHC images
of PRCP, (J, c, d) UCHL1, (J, e, f) BTG2. Brown DAB precipitate indicates positive staining; nuclei are counterstained blue (scale bar = 100 mm). (J, g–i)
Quantification of DAB-positive area (%). Each dot represents one independent sample; bars denote mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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interacting with UCHL1, and under hypoxic conditions, UCHL1

may regulate the nuclear translocation of HIF-1a, influencing its

role in cellular responses to low oxygen levels (38). In OSA patients,

IH activates HIF-1a, which in turn triggers systemic inflammation

and disrupts hepatic lipid metabolism (39–41). BTG2, a member of

the ERBB2 (BTG/TOB) family, functions as a B-cell transducer and

regulator (42). Research has shown that Btg2 expression is elevated

in the subcutaneous adipose tissue of obese mice on a high-fat diet,

highlighting its involvement in lipid metabolism during obesity and

metabolic disorders (43). Specifically, Btg2 reduces interleukin-6

expression by inhibiting the Stat3 signaling pathway, which plays a

pivotal role in adipocyte differentiation (44, 45).

Moreover, our immune correlation analysis using ssGSEA

revealed significant associations between the expression of the

hub genes and various immune cell populations. Specifically,

UCHL1 and PRCP showed strong positive correlations with

CD56 bright natural killer cells and significant negative

correlations with Memory B cells, whereas BTG2 exhibited an

opposing pattern. During the differentiation process of monocytes

into M1 macrophages, a significant upregulation of PRCP activity is

observed (46). Studies have shown that human blood-derived

alveolar macrophages exhibit higher PRCP activity (47, 48).

Given that M1 macrophages are defined as pro-inflammatory

macrophages, this suggests that PRCP plays a key role in the

inflammatory response mechanism (46). Additionally, PRCP is

also highly expressed in human neutrophils (49). UCHL1

primarily promotes the polarization of M1 macrophages by

regulating the PI3K/AKT signaling pathway (50). It can also

modulate the inflammatory response in lipopolysaccharide (LPS)-

activated macrophages through MAPK and NF-kB signaling

pathways (51). BTG2 mainly by controlling cell proliferation and

activation processes to maintain T cell quiescence (42). Moreover,

the protein complex formed by BTG2 and PRMT1 can effectively

counteract the proliferation activity of pre-B cells, thus promoting

the development of B cells (52). These findings provide solid

evidence supporting the theory that exosome-related genes are

involved in immune regulation, fully revealing their key positions

and mechanisms of action within the immune regulation network.

In addition, drug enrichment analysis using the DSigDB

platform identified several candidate compounds, such as

Pentaphenate and Delphinidin, that significantly interact with the

hub genes. Previous study had shown that PRCP, through its

involvement in the pro-opiomelanocortin (POMC) system, makes

it a highly promising target in the treatment of obesity and related

diseases (34, 53). In vitro and in vivo experiments indicate that

myricetin may influence the lipid metabolic process in the adipose

tissue of obese mice by regulating the expression levels of miR-222

and its target gene BTG2 (54). These potential therapeutic agents

may modulate exosome-mediated signaling and immune responses,

offering promising avenues for targeted intervention in OSA.

While our machine learning approaches provides novel

insights, limitations warrant consideration. First, the analyses

were based exclusively on adipose tissue transcriptomic data,

which may not fully reflect the systemic pathophysiology of OSA

involving airway, liver, and circulating immune cells. Second, the
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relatively small sample size (n=60) may limit the generalizability of

the results, underscoring the need for validation in larger, multi-

center cohorts. Finally, the DSigDB-based drug predictions require

experimental confirmation of target engagement and efficacy.

Based on previous research, we have developed an innovative

hypothesis: the “Exosome-Immune Axis in the Pathogenesis of

OSA.” During the progression of OSA, IH likely activates the HIF-

1a signaling pathway in adipose tissue, leading to the release of

pathological exosomes. These exosomes carry key regulatory

molecules such as PRCP, UCHL1, and BTG2, initiating a vicious

cycle of “hypoxia-exosome-immune metabolic disorder.” In terms

of specific mechanisms, PRCP in the exosomes may enhance the

differentiation of M1 macrophages and disrupt the normal

metabolism of a-MSH, thereby triggering a systemic

inflammatory response. UCHL1 may regulate the nuclear

translocation of HIF-1a and activate the PI3K/AKT signaling

pathway, further exacerbating M1 macrophage polarization and

suppressing NK cell activity. BTG2 primarily affects lipid

metabolism via the STAT3 signaling pathway and, through the

BTG2-PRMT1 protein complex, promotes the differentiation and

maturation of B cells. This model comprehensively integrates

interactions involving “hypoxia-exosome”-mediated signaling,

immune cell functional remodeling, and metabolic disruption,

offering a promising new research direction for a deeper

understanding of the systemic pathological mechanisms of OSA.

Finally, the proposed “Hypoxia-Exosome-Immune Axis” represents

a hypothesis derived from bioinformatics associations rather than

demonstrated causal relationships, and its mechanistic details await

functional validation.

In summary, this study is the first to identify PRCP, UCHL1,

and BTG2 as exosome-based biomarkers associated with the

diagnosis of OSA. These biomarkers are closely linked to

immune-metabolic imbalance in the body. The findings not only

uncover key molecular nodes involved in immune-metabolic

disruption in the pathogenesis of OSA but also provide potential

theoretical support and direction for the development of targeted

therapeutic strategies based on the OSA exosome-immune axis.
5 Conclusion

This study identifies PRCP, UCHL1, and BTG2 as key exosome-

related biomarkers in OSA that contribute to immune–metabolic

dysregulation. By integrating transcriptomic data, machine

learning, immune profiling, and in vivo and in vitro validations

across multiple independent cohorts, we reveal an “exosome–

immune” axis underlying OSA pathophysiology.
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