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Editorial on the Research Topic

Unraveling immune metabolism: single-cell & spatial transcriptomics
illuminate disease dynamics

Introduction

The interplay between cellular metabolism and immune function—
immunometabolism—has emerged as a cornerstone of modern pathology (1). Immune
cells are not static entities; they continuously adapt their metabolic programs to survive and
function within hostile microenvironments, whether in the hypoxic core of a tumor, the
inflamed synovium of an arthritic joint, or the fibrotic tissue of a failing kidney (1-5).
Historically, our understanding of these processes was limited by bulk analyses that
averaged metabolic signals across heterogeneous cell populations (6). However, the
advent of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics has
precipitated a paradigm shift (6, 7). We can now dissect the metabolic heterogeneity of
immune cells at high resolution, mapping how specific metabolic pathways drive disease
progression, resistance to therapy, and tissue remodeling (6).

This Research Topic, Unraveling Immune Metabolism: Single-Cell & Spatial
Transcriptomics Illuminate Disease Dynamics, was curated to bridge the gap between
static metabolic profiling and dynamic disease pathology. The Research Topic published
here spans a diverse spectrum of conditions—from solid tumors and renal disease to
autoimmune disorders and cardiovascular failure. Collectively, they demonstrate how
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metabolic rewiring is not merely a consequence of disease, but a
fundamental driver of the immune landscape.

Reshaping the tumor
microenvironment

Nowhere is metabolic competition more fierce than in the
tumor microenvironment (TME), where cancer cells and immune
cells vie for limited nutrients. Several contributions to this topic
highlight how spatial and single-cell technologies are decoding
this competition.

In the context of colorectal cancer, Wang et al. utilized single-
cell and spatial transcriptomics to construct a high-resolution map
of tumor heterogeneity. Their work reveals distinct molecular
programs that govern the spatial distribution of immune cells,
offering new targets for disrupting the tumor-supportive niche.
Similarly, Fu et al. investigated lung adenocarcinoma, identifying
the Midkine (MDK)-Nucleolin (NCL) pathway as a critical
regulator of the immunosuppressive environment. By integrating
spatial data, they demonstrated how this pathway orchestrates
immune exclusion, suggesting that metabolic or signaling
interventions targeting MDK-NCL could reinvigorate anti-
tumor immunity.

Two comprehensive reviews further elucidate the metabolic hurdles
within the TME. Chen et al. focused on gastric cancer, detailing how
aberrant lipid metabolism reshapes the immune microenvironment
to favor tumor growth. Chen et al. extended this discussion to
Triple-Negative Breast Cancer (TNBC), synthesizing evidence on
how metabolic plasticity limits the efficacy of immunotherapy and
proposing metabolic vulnerabilities that could be exploited for
combined treatment strategy.

Metabolic reprogramming in renal and
systemic disease

Beyond oncology, this topic emphasizes the critical role of
immunometabolism in chronic inflammatory and metabolic
diseases. The progression from Acute Kidney Injury (AKI) to
Chronic Kidney Disease (CKD) represents a complex metabolic
shift. Zeng et al. applied integrated transcriptomics to identify key
genes—CLCNKB, KLK1, and PLEKHA4—that mark this
transition, providing potential biomarkers for early intervention.
Complementing this, Li et al. employed a multi-omics and network
pharmacology approach to validate the Jianpi-Yishen formula, a
traditional intervention, revealing its capacity to modulate
metabolic networks in CKD.

In the realm of systemic metabolic disorders, Li et al. utilized
scRNA-seq to explore Type 2 Diabetes Mellitus (T2DM). Their
study uncovers distinct immunometabolic alterations in peripheral
blood mononuclear cells, linking specific immune subtypes to the
systemic metabolic dysregulation characteristic of diabetes.
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Autoimmunity, inflammation, and
stress responses

The plasticity of macrophages and T cells is central to
autoimmune pathology. Jiang et al. provided a compelling
analysis of Rheumatoid Arthritis (RA), specifically the ACPA-
negative subtype. Their scRNA-seq analysis highlighted a unique
macrophage expansion driven by metabolic reprogramming,
distinguishing the pathogenesis of this subtype from classical RA
and suggesting that metabolic inhibition could be a viable
therapeutic avenue for these patients.

Finally, the Research Topic addresses how immune metabolism
responds to systemic stress and hypoxia. Wang et al. probed heart
failure through the lens of immunogenic cell death (ICD),
identifying transcriptomic biomarkers that link cell death
pathways to immune activation in cardiac tissue. In a study
connecting hypoxia to systemic inflammation, Ye et al. used
interpretable machine learning to decode the “hypoxia-exosome-
immune triad” in Obstructive Sleep Apnea (OSA). They revealed
how the PRCP/UCHL1/BTG2 axis drives metabolic dysregulation,
offering a novel mechanistic view of how sleep-disordered breathing
impacts immune health.

Conclusion

The studies presented in Unraveling Immune Metabolism
collectively reinforce the concept that metabolism is not merely
the energy source for immune cells, but the instruction manual for
their function. By leveraging single-cell and spatial technologies,
these authors have moved beyond static snapshots to reveal the
dynamic, location-specific metabolic engines driving disease. As we
look to the future, the integration of these transcriptomic maps with
direct metabolite sensing and flux analysis will be the next frontier,
promising precision therapies that target the metabolic heartbeat
of pathology.
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Background: Anti-citrullinated peptide antibodies (ACPA)-negative (ACPA-)
rheumatoid arthritis (RA) presents significant diagnostic and therapeutic challenges
due to the absence of specific biomarkers, underscoring the need to elucidate its
distinctive cellular and metabolic profiles for more targeted interventions.

Methods: Single-cell RNA sequencing data from peripheral blood mononuclear
cells (PBMCs) and synovial tissues of patients with ACPA—and ACPA+ RA, as well as
healthy controls, were analyzed. Immune cell populations were classified based on
clustering and marker gene expression, with pseudotime trajectory analysis,
weighted gene co-expression network analysis (WGCNA), and transcription
factor network inference providing further insights. Cell-cell communication was
explored using CellChat and MEBOCOST, while scFEA enabled metabolic flux
estimation. A neural network model incorporating key genes was constructed to
differentiate patients with ACPA- RA from healthy controls.

Results: Patients with ACPA— RA demonstrated a pronounced increase in classical
monocytes in PBMCs and C1QChigh macrophages (p <0.001 and p<0.05).
Synovial macrophages exhibited increased heterogeneity and were enriched in
distinct metabolic pathways, including complement cascades and glutathione
metabolism. The neural network model achieved reliable differentiation between
patients with ACPA—- RA and healthy controls (AUC = 0.81). CellChat analysis
identified CD45 and CCL5 as key pathways facilitating macrophage-monocyte
interactions in ACPA- RA, prominently involving iron-mediated metabolite
communication. Metabolic flux analysis indicated elevated beta-alanine and
glutathione metabolism in ACPA—- RA macrophages.

Conclusion: These findings underscore that ACPA-negative rheumatoid arthritis
is marked by elevated classical monocytes in circulation and metabolic
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reprogramming of synovial macrophages, particularly in complement cascade
and glutathione metabolism pathways. By integrating single-cell RNA
sequencing with machine learning, this study established a neural network
model that robustly differentiates patients with ACPA- RA from healthy
controls, highlighting promising diagnostic biomarkers and therapeutic targets
centered on immune cell metabolism.

rheumatoid arthritis, single-cell RNA sequencing, ACPA, synovial macrophage, beta-
alanine and glutathione metabolism

Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disorder
marked by persistent synovial inflammation, leading to joint
destruction and impaired functionality. Its pathogenesis is driven
by a multifaceted interaction of genetic, environmental, and
immunological factors that promote immune dysregulation and
chronic synovial inflammation (1, 2). A central feature of RA is the
presence of autoantibodies, notably anti-citrullinated peptide
antibodies (ACPA), which exhibit high specificity for the disease
and serve as important diagnostic and prognostic markers (3, 4).
Patients with ACPA-positive (ACPA+) RA typically experience a
more aggressive disease course, characterized by accelerated joint
damage and systemic involvement (5).

Nevertheless, approximately 20-30% of patients with RA are
ACPA-negative (ACPA-), lacking these specific autoantibodies (6).
ACPA- RA presents distinct clinical challenges, as it may follow
unique disease trajectories and exhibit variable therapeutic
responses compared to ACPA+ RA (7). The absence of ACPA
complicates early diagnosis, potentially delaying treatment onset
and impacting long-term patient outcomes (8). Furthermore, the
immunopathological mechanisms underlying ACPA— RA remain
incompletely characterized, posing a barrier to the development of
targeted treatments for this subgroup (9).

Abbreviations: ACPA, RA: Anti-Citrullinated Protein Antibody-negative
Rheumatoid Arthritis; ACPA+ RA, Anti-Citrullinated Protein Antibody-
positive Rheumatoid Arthritis; PBMCs, Peripheral Blood Mononuclear Cells;
scRNA-seq, Single-Cell RNA Sequencing; MIF, Macrophage Migration
Inhibitory Factor; DMARDs, Disease-Modifying Anti-Rheumatic Drugs; TNEF-
o, Tumor Necrosis Factor Alpha; IL-6, Interleukin-6; JAK, Janus Kinase; STAT,
Signal Transducer and Activator of Transcription; WGCNA, Weighted Gene Co-
expression Network Analysis; HLA-DRA, Major Histocompatibility Complex,
Class II, DR Alpha; CD74, Cluster of Differentiation 74; FCER1G, High Affinity
Immunoglobulin E Receptor Subunit Gamma; MRCI1, Mannose Receptor C-
Type 1; AUC, Area Under the Curve; C9, Complement Component 9; GLUT1,
Glucose Transporter 1; NAC, N-Acetylcysteine; PCR, Polymerase Chain
Reaction; TGF-B, Transforming Growth Factor Beta.
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Recent findings suggest that ACPA— RA represents a distinct
clinical entity with unique immunological characteristics (10).
Variations in genetic predisposition, cytokine profiles, and
immune cell composition differentiate ACPA— RA from its
ACPA+ counterpart (11, 12). Notably, alterations in monocyte
and macrophage populations have been implicated in RA
pathogenesis (13). Monocytes and macrophages are pivotal in
inflammation and immune modulation, driving synovial
hyperplasia and joint destruction through the release of pro-
inflammatory cytokines and matrix-degrading enzymes (14).
However, the precise roles of these immune cells in ACPA- RA
remain inadequately elucidated.

Metabolic reprogramming in immune cells is increasingly
recognized as a pivotal factor in autoimmune diseases, including
RA (15). During immune activation, differentiation, and effector
functions, immune cells reconfigure their metabolic pathways to
meet heightened energetic and biosynthetic demands (16).
Dysregulated metabolic processes can profoundly impact immune
cell function, fostering chronic inflammation (17). In RA, research
has demonstrated that altered glucose and lipid metabolism in both
synovial fibroblasts and immune cells accelerates disease
progression (15, 18). However, the metabolic characteristics of
immune cells in ACPA— RA remain largely unexamined.

Advancements in single-cell RNA sequencing (scRNA-seq)
now enable precise profiling of cellular heterogeneity, facilitating
the identification of novel cell subtypes and disease-associated
pathways (19). Utilizing scRNA-seq on peripheral blood
mononuclear cells (PBMCs) and synovial tissue mononuclear
cells (STMCs) from patients with RA allows researchers to
delineate the complex cellular interactions and metabolic
pathways underlying inflammation (20). Coupling scRNA-seq
data with computational models further supports the estimation
of metabolic fluxes and the construction of cell-cell communication
networks (21).

This study investigates the cellular composition, metabolic
reprogramming, and intercellular communication specific to
ACPA- RA. scRNA-seq analysis was performed on PBMCs and
STMC:s from both patients with ACPA— RA and those with ACPA+
RA, with a focus on monocyte and macrophage subsets. Our

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1512483
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Jiang et al.

hypothesis posits that patients with ACPA- RA exhibit distinctive
immune cell profiles and metabolic pathways that underlie their
unique clinical features. By identifying differentially expressed
genes, metabolic modules, and signaling pathways, this research
aims to pinpoint potential biomarkers and therapeutic targets for
ACPA- RA. Our findings offer new insights into ACPA- RA
pathogenesis and underscore the critical role of metabolism in
modulating immune responses within this patient subgroup.

Methods
Data acquisition

The sequence data used for this study have been deposited in the
Genome Sequence Archive at the BIG Data Center, Beijing Institute of
Genomics (BIG), Chinese Academy of Sciences, under accession code
HRAO000155 (22). Researchers seeking access must submit an
application for approval to utilize this dataset for further analysis.

Single-cell RNA sequencing alignment and
quality control

Raw 10x Genomics sequencing data were processed with
CellRanger v2.2.0 using the human transcriptome GRCh38-1.2.0
as a reference (23). Additional quality control measures were
applied to remove low-quality cells, specifically excluding cells
with mitochondrial gene expression exceeding 5%. Single-cell
read counts from all samples were analyzed with the Seurat
package (v5.0.1) in R (v4.3.1), where data were transformed into
Seurat objects (24). Filtering criteria included retaining cells with
unique molecular identifier (UMI) counts between 1000 and 25000
and genes detected in at least five cells while restricting cells to those
expressing between 500 and 3500 genes. Post-filtering, data
normalization was executed with Seurat’s NormalizeData
function, followed by the identification of highly variable genes
using FindVariableFeatures.

Integration of scRNA-seq data from the
same tissue

For tissue-specific scRNA-seq data integration (PBMC or
synovial tissue), the Harmony package was employed.
Downstream analyses, including dimensionality reduction and
clustering, leveraged highly variable gene correlations.

Dimensionality reduction and major cell
type annotation

Separate analyses were conducted for PBMC and synovial tissue

datasets, with adjustments for confounders such as UMI counts,
mitochondrial gene percentage, and cell cycle genes. Gene
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expression was scaled to unit variance, and dimensionality was
reduced using principal component analysis (PCA), selecting the
top 20 principal components (PCs) based on the elbow plot and
variance explained. Cell clusters were visualized in two-dimensional
space via Uniform Manifold Approximation and Projection
(UMAP), and unsupervised clustering was executed with Seurat’s
FindClusters function, applying the Louvain algorithm for
community detection. Resolution parameters were set to 0.5 for
PBMC and 0.8 for synovial tissue.

Resolution settings were determined through an iterative
approach, evaluating cluster stability and biological significance
by varying resolution from 0.2 to 1.5 in 0.2 increments. Silhouette
scores and modularity metrics were utilized to assess cluster
cohesion and separation. The final resolutions provided an
optimal balance, capturing distinct subpopulations without
excessive clustering of biologically similar cells. Cell identities
were assigned based on known marker genes for each cell type, as
illustrated in Figure 1A and Supplementary Figure 1B, with
validation through cross-referencing published datasets and
established cell type annotations. For ambiguous marker
expression, differential expression analysis was applied to confirm
cell identity.

Differential expressed genes and
pathway analysis

Differentially expressed gene (DEG) analysis was conducted
using the FindMarkers function in Seurat with the Wilcoxon test.
Bonferroni correction was applied to adjust p-values, and DEGs
were filtered at a significance threshold of p < 0.05. For this study,
the mini pct was set to 0.1, meaning at least 10% of cells in either
group must express the gene for it to be included in the analysis.
Enrichment analysis of DEGs was carried out using the
clusterProfiler package (v3.12.0), examining Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (25). Specific parameters used in the analysis include a p-
value cutoff of 0.05, a q-value cutoff of 0.2, and a gene set size range
of 10 to 500. Multiple testing correction was performed using the
Benjamini-Hochberg method. These parameter choices were
guided by established practices to ensure biologically meaningful
and statistically reliable results. To elucidate the functional roles of
each macrophage subset, gene set variation analysis (GSVA) was
performed with standard settings in the GSVA R package
(v1.32.0).For this single-cell analysis, log-normalized expression
data from Seurat were used as input. Pathways were selected from
the MSigDB KEGG gene set collection, ensuring a comprehensive
evaluation of biological processes. Specific parameters for the gsva()
function included method = “gsva” (default kernel-based density
estimation), mx.diff = TRUE (to calculate enrichment scores based
on maximum difference between conditions), and a min.sz = 10 and
max.sz = 500 to ensure only biologically relevant pathways were
considered while accounting for sparsity in single-cell datasets.
These parameter choices were optimized for single-cell data to
maintain robustness and biological interpretability.
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and *** p < 0.001).

Additionally, AUCell analysis was performed to evaluate the
activity of gene sets in individual cells, complementing GSVA
results by providing cell-level resolution. This analysis used the
AUCell package (v1.12.0) with the AUCell_buildRankings()
function to rank genes based on expression levels across
individual cells. The AUCell_calcAUC() function was then
applied to calculate the Area Under the Curve (AUC) scores for
predefined gene sets, with thresholds determined based on
empirical distributions. Parameters included a ranking threshold
of 5% and the use of log-normalized data to ensure compatibility
with single-cell datasets. These details enhance the transparency
and reproducibility of the methods used in this study.

Trajectory inference

The Monocle2 algorithm was applied to explore differentiation
trajectories within selected clusters (26). Cells of interest were subset
using the Seurat subset function, and a CellDataSet object was
generated with Monocle2’s newCellDataSet function, setting the
lowerDetectionLimit parameter to 0.5. Low-quality cells and genes
were removed with min_expr = 0.1, and dimensionality reduction
was conducted using the DDRTree method. Visualization of
trajectories was achieved through plot_cell_trajectory and
plot_genes_in_pseudotime functions.

SCENIC analysis

To identify regulons (transcription factors [TFs], their modules,
and potential targets) and assess their activity, this study employed
the single-cell regulatory network inference and clustering
(SCENIC) approach (27). This workflow began with the inference
of co-expression modules using GRNBoost2, followed by motif
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pruning with cisTarget. Regulon activity was quantified with
AUCell scores, and TF activity was evaluated using the Python-
based tool pySCENIC (28). Leveraging the cis-target and motif
databases, all TFs with motifs were analyzed to identify cell-type-
specific regulons with high regulon specificity scores (RSS) (29).

HdWGCNA analysis

High-dimensional weighted gene co-expression network
analysis (h[dWGCNA) was employed to identify key macrophage-
related genes (30). Monocyte and macrophage populations were
extracted from scRNA-seq data, gene expression correlation
matrices were computed, and gene co-expression modules were
identified. Critical parameters were carefully optimized during the
hdWGCNA process to ensure robust network construction and
module detection. In the initial step, gene expression correlation
matrices were calculated, and the soft-thresholding power was
determined to optimize scale-free network topology. A soft-
thresholding power of 7 was selected to ensure that the network
exhibited scale-free properties, a hallmark of biological networks.
This selection was guided by plotting the scale-free topology model
fit against various power values and choosing the point where the
network’s R-squared value reached a plateau. Following network
construction, co-expression modules—clusters of genes with similar
expression patterns across the macrophage population—were
identified. The relevance of these modules was assessed via
module-trait relationship analysis, correlating each module with
specific traits related to macrophage activation and inflammation.
For each trait-related module, hub genes—genes with high
intramodular connectivity central to the network structure—were
identified. Hub genes were defined based on their connectivity
scores (kME values) within their respective modules, following the
approach outlined in previous studies.
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Deep neural network construction

A deep neural network (DNN) was constructed using PyTorch
to define and optimize the network architecture. Based on PBMC
expression data from 20 DEGs and corresponding cell-type data,
the DNN was developed to distinguish patients with ACPA- RA
from healthy controls (HC). Data were divided into a 70% training
set and a 30% test set, with training performed over 1000 epochs
using mini-batch gradient descent. The DNN architecture consisted
of an input layer with 21 features, followed by four hidden layers
containing 128, 64, 32, and 16 neurons, each employing Sigmoid
activation functions, and concluded with a single Sigmoid neuron in
the output layer for binary classification (ACPA-negative or
healthy).In clinical settings, the characterization of macrophage
populations plays a crucial role in diagnosing and understanding
rheumatoid arthritis (RA) subtypes. If over 50% of a patient’s
macrophages are found to be ACPA-negative, this could strongly
suggest an ACPA-negative RA diagnosis. Otherwise, the patient is
likely classified as healthy.

To prevent overfitting, early stopping was applied based on
validation loss, and each hidden layer included a dropout rate of 0.2.
Key model parameters, including learning rate, number of layers,
and dropout rates, were optimized via grid search, exploring
learning rates from 0.001 to 0.01. A learning rate of 0.005 was
ultimately selected based on improved validation accuracy. Model
performance was assessed through accuracy metrics and ROC curve
analysis, with the ROC curve generated using Scikit-learn’s
roc_curve function. Additionally, cross-validation was
implemented to reinforce model robustness, averaging
performance metrics across five folds to ensure generalizability.

Cell communication and
signaling pathways

Cell communication analysis was performed using the CellChat
package in R with default parameters, focusing on PBMC monocyte
and synovial macrophage subsets independently (31). The analysis
utilized the human CellChatDB and enabled a comparative
assessment of interactions between ACPA+ and ACPA-
macrophage subpopulations and PBMC monocytes.

MEBOCOST analysis

MEBOCOST, a Python-based tool, inferred metabolite-
mediated cell communication from scRNA-seq data. This tool,
which leverages a curated database of metabolite sensors and
partners, identified sender and receiver cells based on metabolite
outflow/inflow rates and enzyme/sensor expression levels. scRNA-
seq expression data were first loaded into a Python pandas
DataFrame, integrated with cell annotations, and then used to
infer metabolic communications. Results were visualized to
illustrate communication events, sender-to-receiver flows, and
sensor expression levels.
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Construction of single-cell metabolic
flux curves

Single-cell metabolic flux profiles were derived using the single-
cell flux estimation analysis (scFEA) algorithm, a graph neural
network-based approach (21). The algorithm utilized 168 metabolic
modules, obtained from scFEA’s official GitHub repository (https://
github.com/changwn/scFEA). KEGG enrichment analysis was
conducted on input and output modules using MetaboAnalyst
(https://www.metaboanalyst.ca/home.xhtml).

Statistical analysis

All statistical analyses were performed using R software (v4.3.1),
with visualizations generated in R Studio. Data were pre-processed to
meet the assumptions for each statistical test, and appropriate
transformations were applied when necessary. Statistical tests were
selected based on data distribution and study design. For comparisons
between two groups with normally distributed data and equal
variances, Student’s t-test was used. The Wilcoxon Rank-Sum Test
was applied for non-parametric data, providing a robust method for
comparing medians between two independent groups, especially
suitable for small sample sizes or skewed distributions. The Kruskal-
Wallis Test was employed for comparisons across more than two
independent groups with non-parametric data. To control the family-
wise error rate, p-values were adjusted using the Holm-Bonferroni
method. Statistical significance was set as follows: “ns” for p > 0.05, * for
p < 0.05, ** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001.

Results

Identification of distinct immune cell types
in patients with RA

Single-cell sequencing data of immune cells from patients with
ACPA- RA and patients with ACPA+ RA were obtained from the
Genome Sequence Archive at the Big Data Center, Beijing Institute of
Genomics, Chinese Academy of Sciences. The dataset comprised 44
samples, including CD45+ PBMC:s isolated from HC (n = 4) and from
ACPA+ (n = 10) and ACPA- (n = 10) RA individuals (Figure 1A).
Additionally, synovial tissue mononuclear cells (STMCs) were obtained
from ACPA+ (n = 10) and ACPA- (n = 10) RA individuals
(Figure 1A). None of the patients were receiving disease-modifying
antirheumatic drugs (DMARDs), corticosteroids, or targeted therapies
at the time of sampling, though some opted for physical therapies, such
as thermotherapy or acupuncture, to manage pain. A graph-based
unsupervised clustering method was applied to identify cell types by
examining typical marker genes. Cell populations identified included T
cells, B cells, monocytes, dendritic cells, plasma cells, NK cells, and
common myeloid progenitors (CMP). Each cell type was annotated
according to well-characterized marker genes (Figure 1B,
Supplementary Figure 1A). Specifically, T cells were defined by high
expression of CD3D and CD3E, while NK cells were distinguished by
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NKG7 and GNLY. Monocytes were annotated by CD14 and FCGR3A,
and dendritic cells by ITGAX and HLA-DQAL. B cells and plasma cells
were characterized by distinct marker profiles, with B cells expressing
CD19, MS4Al, and CD79A, and plasma cells marked by SDCI and
MZB1. CMPs were identified using CD34, KIT, and FLT3, established
indicators of progenitor populations. Marker selection was based on
specificity for each cell type, validated by previous research in the field.
This rigorous marker selection and clustering approach enabled robust
and precise classification of cell types within the dataset.

Increased monocyte proportions in
patients with ACPA—- RA

The Wilcoxon test was applied to assess differences in immune
cell type proportions across ACPA-positive, ACPA-negative, and
HC groups. Results indicated a statistically significant increase in
monocyte proportions within the ACPA-negative group compared
to both ACPA-positive and HC groups (p < 0.001). Additionally, a
significant difference was detected in T cell proportions between
ACPA-negative and ACPA-positive groups (p < 0.01). No
significant differences were observed for NK cells, B cells,
dendritic cells, plasma cells, or CMPs across the groups (Figure 1C).

Identification of monocyte subpopulations

Further dimensionality reduction and clustering analysis of
monocytes identified three distinct subpopulations: classical, non-
classical, and intermediate monocytes (Figure 1D). Classical
monocytes were characterized by CD14 expression, non-classical
monocytes by CD16, and intermediate monocytes by the co-
expression of CD14 and CD16 (Supplementary Figure 1B).

Patients with ACPA+ RA show increased
classical monocytes and reduced non-
classical monocytes

The Wilcoxon test was subsequently conducted to compare the
proportions of monocyte subpopulations between ACPA-positive
and ACPA-negative groups. This analysis revealed a statistically
significant reduction in the proportion of non-classical monocytes
in the ACPA-positive group relative to the ACPA-negative group (p
<0.01) (Figure 1E). Conversely, the ACPA-positive group exhibited
a significant increase in classical monocyte proportions (p < 0.01)
(Figure 1E). No significant difference was identified in intermediate
monocyte proportions between the two groups (Figure 1E).

Macrophages and fibroblasts are increased
in ACPA-positive synovial tissue

Recognizing synovial inflammation as a hallmark of RA,

dimensionality reduction and clustering analysis were performed on
scRNA-seq data from synovial cells. This approach identified eight
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distinct cell populations within synovial tissue: T cells, plasma cells, NK
cells, B cells, macrophages and myeloid cells, endothelial cells, mast
cells, and fibroblasts (Figure 2A, Supplementary Figure 1C). Each cell
type was annotated based on classical markers, selected for their
established involvement in RA-related inflammation and immune
response. Specifically, T cells were characterized by CD3D and CD3E
expression, B cells by CD19 and CD79A, and plasma cells by markers
such as MZB1 and IGLC2. Macrophages and myeloid cells showed
high CD68 and LYZ levels, while endothelial cells were identified by
PECAM1 and VWF. Mast cells were marked by TPSABI, and
fibroblasts by ACTA2 and DCN expression. These cell types are
well-documented contributors to the inflammatory cascade and
tissue damage observed in RA, providing insights into the cellular
landscape of synovial inflammation. Using the Wilcoxon test, immune
cell proportions were compared between patients with ACPA+ RA and
those with ACPA—- RA. Results demonstrated a statistically significant
increase in macrophages and myeloid cells (p < 0.01) and fibroblasts (p
< 0.05) in the ACPA+ group (Figure 2E), aligning with the roles of
macrophages and fibroblasts in sustaining inflammation and
facilitating joint destruction in RA. No significant differences were
found for T cells, plasma cells, NK cells, B cells, endothelial cells, or
mast cells (Figure 2E).

Identification of 11 distinct macrophage
subtypes with differential roles in RA

Focusing on macrophages, which are central to chronic
inflammation, tissue destruction, and immune dysregulation in RA,
further dimensionality reduction and clustering analysis identified 11
distinct macrophage subtypes based on gene expression profiles: Cl:
C1QChigh(T), C22NAMPT/NFKBIAhigh(H), C3:FN1high(H), C4:
LYZhigh(H), C5:CD163high(T), C6:HLAhigh(H), C7:APOEhigh(T),
C8:MARCOhigh(H), C9:MIFhigh(H), C10:BIRC3high(T), and C11:
C1QBhigh(H) (Figure 2B, Supplementary Figure 1D). These subtypes
reflect macrophage populations with diverse roles in RA. Here, T
denotes tissue-resident macrophages, which sustain local inflammation
in synovial tissue, while H represents hematogenous macrophages,
recruited from the bloodstream in response to inflammatory signals.
Tissue-resident macrophages were identified by CXCR6, ITGAE, and
CD69 markers, while hematogenous macrophages were marked by
S1PR1, KLF2, and CCRY7, following marker definitions from prior
studies (Figure 2C) (32-34).

Specific macrophage subtypes are
enriched in ACPA-negative and ACPA-
positive RA

KEGG enrichment analysis on differentially expressed genes
across 11 macrophage clusters revealed that genes downregulated in
ACPA-positive samples (i.e., upregulated in ACPA-negative
samples) were enriched in RA-related subgroups, particularly
clusters C1 and C7. These genes were associated with immune
pathways such as Th1l7, Thl, and Th2 cell differentiation.
Conversely, ACPA-positive samples showed lower counts and
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higher p-values in the upregulated differentially expressed genes for
C1 and C7, indicating less enrichment compared to ACPA-negative
samples (Supplementary Figures 2A, B).

GSVA identified several key pathways in Cl and C7, including
complement and coagulation cascades, allograft rejection, alcoholic
liver disease, phagosome, antigen processing and presentation,
cholesterol metabolism, pertussis, lysosome, and Staphylococcus
aureus infection (Figure 3F). Further Wilcoxon test analysis indicated
a significant increase in the proportion of Cl1 macrophages in the
ACPA-negative group (p < 0.05), suggesting these cells contribute to
local inflammation and synovial hyperplasia in ACPA-negative RA. In
contrast, a significant decrease in C7 proportions was observed in the
ACPA-negative group (p < 0.01), suggesting that C7 macrophages may
have a regulatory or protective function that is diminished in ACPA-
positive RA (Figure 2F).

AUCell activity scoring for rheumatoid arthritis pathways in the
KEGG database across the 11 macrophage subtypes revealed
distinct activity patterns between ACPA-positive and ACPA-
negative groups. Specifically, C1, C2, C5, C6, C7, and C10
exhibited significantly higher activity scores in the ACPA-positive
group, whereas C1 and C8 had notably higher activity in the ACPA-
negative group. These results suggest that C1 and C8 may play
pivotal roles in ACPA-negative RA, while other subtypes are more
active in ACPA-positive RA (Figure 2D).

ACPA-negative RA macrophages display
more complex developmental trajectories

To elucidate the dynamic roles of macrophage subtypes in RA
progression and immune responses, pseudotime trajectory analysis

Frontiers in Immunology

14

was conducted on 11 macrophage subtypes to investigate their
developmental paths (Figures 3A-D). Separate analyses were
performed for macrophages from ACPA- RA and ACPA+ RA
individuals. Results indicated that macrophages in ACPA- RA
exhibited a more intricate developmental trajectory, forming four
distinct branches (Figure 3A), whereas ACPA+ RA macrophages
formed only two branches (Figure 3C). This suggests greater
diversity in developmental and activation processes among
macrophages in ACPA- RA, possibly reflecting increased
heterogeneity in macrophage function compared to ACPA+ RA.

Within ACPA- RA, certain macrophage subtypes displayed
distinct patterns along the developmental path. Subtypes C10(T)
and Cl11(H), for instance, appeared primarily in early
developmental stages, indicating a role in initial macrophage
activation or differentiation. In contrast, C1(T) and C7(T)
spanned both early and late stages but were absent from
intermediate stages, suggesting that these subtypes may have
specialized roles at the onset and resolution phases of the
macrophage lifecycle, potentially involved in initiating and
resolving inflammation. In ACPA+ RA, macrophage subtypes
were more uniformly distributed along the trajectory, indicating
less developmental complexity, which may reflect a more sustained
and homogeneous inflammatory response in ACPA+ RA. The
increased developmental complexity and unique pathway
involvement in ACPA- RA highlight a higher degree of
macrophage heterogeneity, which could contribute to the variable
clinical presentation and disease progression observed in ACPA
- RA.

To elucidate the biological relevance of pseudotime-related
changes, KEGG enrichment analysis was performed on genes
associated with pseudotime trajectories for ACPA+ RA and
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ACPA- RA macrophages. Both groups shared 141 pathways,
including key inflammatory and RA-related pathways such as
Rheumatoid arthritis and Osteoclast differentiation, which are
fundamental to RA pathology (Supplementary Table 1).

Distinctly, ACPA- RA macrophages were enriched in seven
pathways, including Complement and coagulation cascades,
Antifolate resistance, and Glycosphingolipid biosynthesis -
ganglion series. These pathways suggest specific roles in the
development and progression of ACPA- RA (Supplementary
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Table 1). Enrichment in the Complement and coagulation cascades
pathway implies a role in heightened inflammation and immune
activation, potentially exacerbating joint damage. Antifolate
resistance indicates an altered response to treatments such as
methotrexate, suggesting the potential need for alternative
therapeutic strategies in patients with ACPA- RA. Furthermore,
enrichment in Glycosphingolipid biosynthesis suggests unique lipid
metabolism influencing macrophage activity and immune regulation,
further distinguishing ACPA— RA from ACPA+ RA. These pathways
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underscore critical biological differences that may impact both
treatment response and disease progression in ACPA— RA.

Conversely, ACPA+ RA macrophages were enriched in 22
unique pathways, including key signaling pathways such as
Sphingolipid signaling pathway, JAK-STAT signaling pathway,
mTOR signaling pathway, and Adipocytokine signaling pathway
(Supplementary Table 1). These pathways are pivotal in immune
regulation and inflammation, with their enrichment in ACPA+ RA
macrophages pointing to distinct molecular mechanisms
underlying the more aggressive disease phenotype commonly
observed in patients with ACPA+ RA.

More extensive transcription factor
networks in ACPA-positive
RA macrophages

To further elucidate the gene regulatory mechanisms
underlying these differences, SCENIC analysis was conducted to
infer TF regulatory networks. This analysis identified 80 active TFs
regulating macrophage subtypes in ACPA— RA and 90 active TFs in
ACPA+ RA (Figure 3E). Notably, 43 TFs were shared between the
two groups, indicating common regulatory mechanisms in
macrophage activation across both ACPA+ and ACPA- RA
(Figure 3E). However, the number of genes regulated by these
shared TFs was greater in ACPA+ RA, suggesting a more extensive
and complex gene regulatory network in this group. This expanded
network in ACPA+ RA likely reflects a more robust and uniform
activation of regulatory pathways, consistent with the severe and
sustained inflammatory phenotype frequently observed in patients
with ACPA+ RA.

Gene modules associated with ACPA-
negative RA identified by hdWGCNA

To investigate the molecular mechanisms of macrophage
subtypes associated with ACPA-negative (ACPA-) RA, high-
dimensional weighted gene co-expression network analysis
(hdWGCNA) was employed. While traditional WGCNA and
other dynamic network analysis tools are effective for bulk RNA-
seq data, hdWGCNA provides distinct advantages for high-
dimensional single-cell RNA-seq, being optimized to address
unique challenges such as data sparsity, high noise levels, and the
need for granularity in capturing cell-type-specific networks. Unlike
standard WGCNA, hdWGCNA preserves cellular-level data
structure, making it well-suited to the complex heterogeneity
present in RA macrophage populations.

The hdWGCNA approach enabled the identification of
modules of highly co-expressed genes, offering biological insights
through enrichment analysis and integration with known pathways.
An optimal soft threshold of 7 was chosen to ensure a scale-free
network topology, facilitating robust co-expression analysis. Using
this threshold, a co-expression network was constructed, identifying
seven distinct gene co-expression modules, each representing a
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unique set of interconnected genes with potential regulatory roles in
macrophage function.

Correlation analysis between these modules and ACPA+/- RA
showed that the brown, red, and black modules were associated
with ACPA—, while the yellow, turquoise, and blue modules were
linked to ACPA+ (Figure 4A, Supplementary Table 2). The brown
module, in particular, exhibited high expression in macrophage
subtypes C1:C1QChigh(T), C5:CD163high(T), and C7:APOEhigh
(T) (Figure 4B). Enrichment analysis on the brown, red, and black
modules revealed that the brown module was enriched in critical
immune-related pathways, such as MHC class II-related pathways,
Rheumatoid arthritis, Complement and coagulation cascades,
Antigen processing and presentation, and Thl and Th2 cell
differentiation (Figure 4C).

By intersecting the 426 genes in the brown module with
differentially expressed genes in PBMCs and macrophage
subtypes, 20 intersecting genes were identified (Figure 4D),
indicating their differential expression in both PBMCs and
macrophage subtypes. Given that anti-cyclic citrullinated peptide
(anti-CCP) antibodies serve as an important diagnostic marker for
RA but are absent in patients with ACPA— RA, complicating
diagnosis relative to ACPA+ RA, these 20 differentially expressed
genes were leveraged to construct a neural network model.

Neural network model distinguishes ACPA-
negative RA from healthy controls

Using PBMC expression data and cell-type annotations, a deep
neural network was constructed to distinguish patients with ACPA-
RA from healthy controls. The data was split into a 70% training set
and a 30% test set, with the model trained over 1000 epochs using
mini-batch gradient descent (Figure 4E). To ensure robustness and
prevent overfitting, the ROC curve was evaluated for both training and
test sets, achieving an AUC of 0.92 on the training set and 0.81 on the
test set. To further validate the robustness and generalizability, five-fold
cross-validation was applied, with the average AUC across folds
reaching 0.87 and individual AUCs ranging from 0.84 to 0.89. These
results indicate stable model performance, supporting the potential
clinical application of single-cell transcriptomics for RA
diagnostics (Figure 4F).

ACPA-positive RA exhibits stronger
macrophage-monocyte communication

Examining PBMC monocyte and macrophage subtype
interactions in RA is essential to understanding systemic immune
responses that contribute to local joint inflammation and tissue
damage. These interactions highlight mechanisms driving chronic
inflammation, reveal biomarkers for disease progression, and
identify therapeutic targets by isolating specific pathways involved
in monocyte-to-macrophage differentiation.

CellChat was utilized to analyze cell communication between
monocytes and macrophages in ACPA+ and ACPA— RA. ACPA+
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(A) Correlation heatmap of seven gene co-expression modules identified by WGCNA in macrophage subtypes. (B) Dot plot showing gene expression
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performance on the test set.

RA showed 2,199 inferred interactions, higher than the 1,789
interactions observed in ACPA— RA. Interaction strength was
also significantly higher in ACPA+ RA (0.467) compared to
ACPA- RA (0.196) (Figure 5A), suggesting that macrophage-
monocyte communication in ACPA+ RA is more intense,
potentially contributing to the aggressive inflammatory response
and severe clinical presentation typically seen in ACPA+ RA.

Regarding relative information flow, CD45 and CCL5 emerged as
primary pathways mediating macrophage-monocyte communication
in ACPA- RA (Figure 5B, Supplementary Tables 3, Supplementary
Table 4). The CD45 pathway was particularly critical for cross-organ
communication between classical monocytes and C1:C1QChigh(T)
macrophages (Figure 5C), indicating its role in macrophage activation
and recruitment to inflamed tissues in ACPA- RA. In contrast, fewer
interactions were observed between classical monocytes and Cl:
C1QChigh(T) macrophages in ACPA+ RA, suggesting alternative
pathways may drive immune responses in ACPA+ RA.

To further explore, the Wilcoxon test was employed to compare
gene expression levels of CD45 pathway mediators, specifically PTPRC
and MRCI, between the two groups. PTPRC expression was
significantly higher in C1(T) and C9:MIFhigh(H) macrophages in
ACPA+ RA (P < 0.001 and P < 0.05, respectively) (Figure 5D). This
elevated expression of PTPRC, a key component of the CD45 pathway,
suggests sustained macrophage activation in ACPA+ RA. Additionally,
MRC1 showed significantly higher expression in C1(T) macrophages
(P < 0.001) (Figure 5E), implying a role in modulating immune
responses through alternative pathways in this macrophage subtype.
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Iron-mediated cell communication is
prominent in ACPA-negative RA

Previous CellChat analysis suggested that macrophage-
monocyte communication in PBMCs might be mediated by the
CD45 pathway. Given the importance of cell metabolism in RA
pathogenesis—particularly in shaping immune cell functions and
inflammatory responses—the role of metabolite-mediated
interactions between macrophages and monocytes was
considered. Metabolic factors such as lipids and iron play
significant roles in RA by influencing cellular energy balance,
signaling, and differentiation, thereby driving inflammation and
disease progression.

To explore this further, MEBOCOST, a Python-based
computational tool for inferring metabolite-mediated cell-cell
communication from single-cell RNA sequencing data, was
employed. Analysis showed a higher number of metabolite-
mediated communication events in ACPA+ RA (Figure 6B)
compared to ACPA- RA (Figure 6A). However, focusing on the
communication flow from sender metabolite to sensor in the receiver,
key interactions were identified in ACPA— RA between monocytes
and CI(T) macrophages, as predicted by CellChat. Specifically, the
metabolic communication pathways included classical monocytes
(sender) - Iron (metabolite) — TFRC (sensor) — C1:C1QChigh(T)
macrophages (receiver) and classical monocytes (sender) - Iron
(metabolite) - SLC40A1 (sensor) — C1:C1QChigh(T) macrophages
(receiver). Additionally, non-classical monocytes displayed similar
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iron-mediated communication pathways in ACPA— RA (Figure 6C,
Supplementary Tables 5, Supplementary Table 6).

In contrast, metabolite-mediated communication between
monocytes and macrophages was less prominent in ACPA+ RA
(Figure 6D), consistent with CellChat findings, indicating that
macrophage-monocyte communication may not be as central in
ACPA+ RA. This suggests that iron-mediated interactions may be
more critical in ACPA— RA, while alternative communication
mechanisms could be more relevant in ACPA+ RA.
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Visualizing the mean abundance of communication-mediating
metabolites revealed higher levels of iron and L-glutamine in ACPA
— RA, indicating their roles in macrophage-monocyte interactions
(Figure 6E). Conversely, cholesterol abundance was higher in
ACPA+ RA, pointing to a shift towards lipid-related metabolic
pathways in this group (Figure 6F). These results underscore
distinct metabolic profiles in ACPA— and ACPA+ RA, with iron
and glutamine as key mediators in ACPA— RA, while cholesterol
may be more influential in the immune response of ACPA+ RA.
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Metabolic flux analysis reveals upregulated
pathways in ACPA-negative
RA macrophages

To further explore metabolic flux in macrophage subtypes
within ACPA- RA, scFEA—a graph neural network model
tailored for estimating cell metabolism using scRNA-seq data—
was employed. scFEA leverages a reconstructed human metabolic
map, utilizing a probabilistic model with flux balance constraints
and an optimization solver within a graph neural network to
capture the intricate relationships from transcriptomics to
metabolomics. This model reflects the non-linear dependencies
between enzyme gene expression and reaction rates, using gene
expression profiles of macrophage subtypes as input data.

Figure 7A shows model convergence through the loss function,
confirming its accuracy. Given the continuous and normally
distributed output data, the limma package was used to compare
ACPA- and ACPA+ RA samples, considering p < 0.05 as statistically
significant, with t > 0 indicating upregulation in ACPA- RAand t <0
indicating downregulation. This analysis identified 11 metabolic
modules upregulated in ACPA- RA (Figures 7B, C), with each
module corresponding to in and out metabolites. Notably, the C9:
MIFhigh(H) macrophage subtype exhibited a substantial number of
upregulated metabolites. KEGG enrichment analysis of these
metabolites was performed using MetaboAnalyst. The input
metabolites were predominantly enriched in pathways such as beta-
alanine metabolism, Glutathione metabolism, Arginine and proline

Frontiers in Immunology

metabolism, D-amino acid metabolism, and Histidine metabolism
(Figure 7E). The output metabolites were enriched in pathways
including Butanoate metabolism, Alanine, aspartate and glutamate
metabolism, Glutathione metabolism, Glyoxylate and dicarboxylate
metabolism, Porphyrin metabolism, Arginine and proline metabolism,
Primary bile acid biosynthesis, Nitrogen metabolism, and Valine,
leucine and isoleucine biosynthesis (Figure 7D).

These results suggest that macrophage subtypes, particularly
C9:MIFhigh(H), may significantly contribute to RA pathogenesis by
promoting key metabolic processes, highlighting distinct metabolic
pathways active in ACPA- RA.

Discussion

This study offers a detailed analysis of the cellular and molecular
distinctions of ACPA- RA, particularly focusing on metabolic
alterations. scRNA-seq identified unique immune cell
compositions, metabolic pathways, and intercellular
communication patterns that set ACPA— RA apart from ACPA+
RA. Notably, a marked increase in monocytes, especially classical
monocytes, was observed in the PBMCs of patients with ACPA-
RA patients compared to patients with ACPA+ RA and healthy
controls. This elevation suggests a pivotal role for monocytes in the
systemic inflammation that characterizes ACPA- RA. Classical
monocytes, known for their potent pro-inflammatory cytokine
production and their capacity to differentiate into macrophages
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and dendritic cells, likely contribute significantly to disease
pathology. While previous studies have reported elevated
monocyte levels in patients with RA (35), our findings emphasize
their increased presence specifically in ACPA- RA, indicating a
subtype-specific inflammatory mechanism. This suggests that
therapies aimed at monocyte recruitment or activation might be
particularly beneficial. Monocyte-targeted interventions, such as
inhibitors of monocyte chemoattractant proteins or their receptors,
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may hold promise for reducing systemic inflammation in ACPA-
RA. Additionally, therapies that modulate monocyte differentiation
into pro-inflammatory macrophages could help in slowing disease
progression in these patients.

In synovial tissue, macrophages from patients with ACPA— RA
demonstrated greater heterogeneity and more complex
developmental trajectories, forming four distinct branches in
pseudotime analysis compared to only two branches in ACPA+
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RA. This increased heterogeneity suggests varied activation and
differentiation processes, potentially leading to diverse disease
courses and therapeutic responses. Notably, macrophages in
ACPA- RA were enriched in distinct metabolic pathways,
including complement and coagulation cascades, antifolate
resistance, and glycosphingolipid biosynthesis. The complement
and coagulation cascades are central to immune responses and
inflammation. Within the RA context, the complement system
contributes to synovial inflammation by promoting opsonization,
chemotaxis, and membrane attack complex formation, which drives
tissue damage (36). The activation of the coagulation cascade leads
to thrombin generation and fibrin deposition in the synovium,
intensifying inflammation and encouraging pannus formation (37).
These processes establish a pro-inflammatory environment that
supports the infiltration and activation of immune cells, such as
macrophages and T cells, thereby sustaining joint destruction.
Targeting components of the complement and coagulation
pathways could thus be a promising therapeutic approach in
ACPA- RA, potentially reducing synovial inflammation and
preventing joint damage.

The enrichment of metabolic pathways in ACPA- RA
macrophages emphasizes the critical role of altered metabolism in
disease pathogenesis. The upregulation of complement and
coagulation cascades, for example, may intensify inflammatory
responses, as components of these pathways act as chemoattractants
and immune cell activators (38). Antifolate resistance presents
potential treatment challenges, given that methotrexate, a folate
antagonist, remains central to RA therapy (39). The identification of
glycosphingolipid biosynthesis pathways aligns with evidence that
lipid metabolism influences immune cell function and inflammation
(40), potentially impacting macrophage activation and cytokine
production in ACPA— RA. These insights suggest that therapies
targeting metabolic pathways, such as inhibitors of specific enzymes
in glycosphingolipid biosynthesis like glucosylceramide synthase, may
modulate macrophage function and reduce inflammation in ACPA-
RA. Addressing antifolate resistance with alternative disease-
modifying antirheumatic drugs (DMARDs) or combination
therapies could further enhance treatment efficacy. Some inhibitors,
like eliglustat, are already approved for Gaucher disease (41), though
their viability in RA requires further investigation. Elucidating
macrophage metabolic dependencies in ACPA— RA could guide the
development of selective therapies that target pathogenic immune cell
subsets while sparing normal immune function.

scFEA further identified 11 upregulated metabolic modules in
ACPA- RA macrophages, enriched in pathways like beta-alanine
and glutathione metabolism. Beta-alanine metabolism is linked to
carnosine synthesis, an antioxidant dipeptide that can modulate
inflammatory responses (42). Glutathione metabolism is essential
for redox balance and cellular protection against oxidative stress,
which is elevated in RA (43). The pronounced role of the C9:
MIFhigh(H) macrophage subtype in driving these metabolic
pathways suggests that specific macrophage populations
contribute to the metabolic reprogramming seen in ACPA- RA.
Targeting these metabolic pathways could provide novel
therapeutic approaches. Enhancing glutathione levels or
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modulating its metabolism might alleviate oxidative stress and
inflammation in the synovial environment. N-acetylcysteine, a
glutathione precursor, is already used clinically for other
indications and could be repurposed for RA treatment (44).
Similarly, interventions targeting beta-alanine metabolism and
carnosine synthesis could influence macrophage activation or
cytokine production (45). Identifying the C9:MIFhigh(H)
macrophage subtype as a driver of these metabolic alterations
highlights it as a potential therapeutic target. Agents that inhibit
MIF (macrophage migration inhibitory factor) or its downstream
signaling could reduce inflammation and tissue damage in patients
with ACPA— RA (46, 47).

Our cell-cell communication analysis revealed that
macrophage-monocyte interactions in ACPA— RA are primarily
mediated by CD45 and CCL5 signaling pathways. CD45, a receptor
tyrosine phosphatase encoded by PTPRC, is critical for T-cell and
B-cell receptor signaling and can modulate macrophage activation
(48). The involvement of CD45 and its ligands, such as MRCI,
suggests a shift in immune regulation in ACPA- RA. Additionally,
metabolite-mediated communication analysis highlighted
significant engagement of iron-mediated pathways. Elevated iron
and L-glutamine levels in patients with ACPA— RA point to a
pivotal role for iron metabolism in immune cell interactions. Iron
can drive macrophage polarization towards a pro-inflammatory
phenotype (49), while the increased abundance of L-glutamine, a
key amino acid for immune cell proliferation and function,
underscores the metabolic demands of activated immune cells in
ACPA- RA (50). Therapeutically, targeting the CD45 pathway may
offer a means to modulate macrophage activation and reduce
inflammation (48). CD45 inhibitors, already explored in other
inflammatory conditions, hold potential for repurposing in RA
(51). Modulating iron metabolism presents another promising
strategy; iron chelators or agents that regulate iron homeostasis
could influence macrophage polarization and attenuate pro-
inflammatory responses (52). Additionally, interventions that
restrict glutamine availability or inhibit glutamine metabolism
could limit immune cell proliferation and activation, providing
another therapeutic approach (50). Such strategies may be
especially beneficial for patients with ACPA- RA, who often
respond suboptimally to standard treatments.

These metabolic alterations may underlie the distinct clinical
features of ACPA— RA. Unlike ACPA+ RA, typically associated with
more severe joint damage and systemic manifestations, ACPA— RA
may follow a different trajectory due to these metabolic distinctions.
Our findings support previous research suggesting that metabolic
reprogramming of immune cells is a hallmark of autoimmune
diseases (53). Future studies should aim to validate these metabolic
pathways as biomarkers for disease progression and treatment
response in ACPA- RA. Longitudinal studies examining metabolic
profile changes pre- and post-therapy could further clarify their clinical
utility. Additionally, clinical trials evaluating agents that target these
metabolic pathways could assess their efficacy and safety in ACPA-
RA, paving the way for more personalized treatment strategies.

Weighted gene co-expression network analysis (WGCNA)
identified key gene modules associated with ACPA- RA,
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particularly the brown module, which is enriched in immune-
related pathways. Intersecting genes from this module with
differentially expressed genes in PBMCs and macrophage
subtypes pinpointed 20 genes differentially expressed in both
compartments. Notably, genes such as HLA-DRA, CD74, and
FCER1G, which are involved in antigen presentation and
immune activation, emerged as potential biomarkers or
therapeutic targets. Modulating HLA-DRA and CD74 could
influence antigen presentation to T cells, potentially mitigating
autoimmune responses (54). Small molecules or antibodies
targeting these proteins could be developed, though this would
require extensive research and development. A neural network
model utilizing these genes was constructed, effectively
distinguishing patients with ACPA— RA from healthy controls
with an area under the curve (AUC) of 0.81. This outcome
underscores the potential of integrating scRNA-seq data with
machine learning to enhance ACPA— RA diagnosis, especially
given the absence of specific serological markers in these patients.
Early and precise diagnosis is essential for initiating timely
treatment and improving patient outcomes. To advance these
results into clinical practice, further validation of the neural
network model is required. Prospective studies with larger,
independent cohorts are necessary to confirm its diagnostic
accuracy and reliability. Additionally, integrating this model into
clinical workflows would necessitate developing accessible assays or
platforms to measure the identified genes, potentially through
targeted PCR panels or immunoassays. Considerations around
regulatory approval and cost-effectiveness would also be essential.
Ultimately, this approach holds promise for enabling earlier
diagnosis and more personalized treatment strategies for patients
with ACPA- RA.

Limitation

While this study provides valuable insights, certain limitations
exist. The cross-sectional design precludes evaluation of temporal
changes in immune cell metabolism and function. Future studies
with larger, longitudinal cohorts are needed to validate these
findings and further investigate the therapeutic potential of
targeting metabolic pathways in ACPA—- RA.

Conclusion

In conclusion, this study underscores the significant role of
altered metabolism in ACPA— RA pathogenesis. The identification
of distinct immune cell compositions, metabolic pathways, and
intercellular communication patterns enhances understanding of
the disease and suggests new avenues for therapeutics targeting
metabolic processes. By pinpointing specific metabolic pathways
and immune cell interactions unique to ACPA— RA, these findings
highlight potential biomarkers and therapeutic targets that could
support the development of more effective, personalized treatments.
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Future research should focus on clinically validating these targets
and examining their impact on patient outcomes. Targeting the
metabolic reprogramming of immune cells, particularly
macrophages, may enable the creation of precise interventions
aimed at modulating inflammation and improving clinical
outcomes for patients with ACPA- RA.
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The article provides an overview of the current understanding of the interplay
between metabolic pathways and immune function in the context of triple-
negative breast cancer (TNBC). It highlights recent advancements in single-cell
and spatial transcriptomics technologies, which have revolutionized the analysis
of tumor heterogeneity and the immune microenvironment in TNBC. The review
emphasizes the crucial role of metabolic reprogramming in modulating immune
cell function, discussing how specific metabolic pathways, such as glycolysis,
lipid metabolism, and amino acid metabolism, can directly impact the activity and
phenotypes of various immune cell populations within the TNBC tumor
microenvironment. Furthermore, the article explores the implications of these
metabolic-immune interactions for the efficacy of immune checkpoint inhibitor
(IClI) therapies in TNBC, suggesting that strategies targeting metabolic pathways
may enhance the responsiveness to ICI treatments. Finally, the review outlines
future directions and the potential for combination therapies that integrate
metabolic modulation with immunotherapeutic approaches, offering promising
avenues for improving clinical outcomes for TNBC patients.
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Introduction

Triple-negative breast cancer (TNBC) treatment has historically
relied on chemotherapy due to the absence of targeted therapies,
limiting effective options. Recent advancements in immunotherapy,
particularly immune checkpoint inhibitors (ICIs) like PD-L1 inhibitors,
have shown potential, as evidenced by trials such as IMpassion130 (1,
2). However, the modest efficacy of ICIs, benefiting only a subset of
patients, highlights the challenges TNBC’s heterogeneity poses.
Identifying predictive biomarkers and exploring combination
strategies, including metabolic interventions, are critical to improving
therapeutic outcomes and addressing TNBC’s metabolic pathways (3).

Although TNBC is generally considered a “cold” tumor with limited
immune cell infiltration, emerging evidence suggests it has antigenic
properties conducive to immunotherapy (4). TNBC generally shows
low levels of tumor-infiltrating lymphocytes (TILs); the presence of
specific immune cell types can correlate with better patient outcomes.
Specific immune markers, such as granzyme B* CD8" T cells (5),
sometimes correlate with improved prognosis. Additionally, plasma
cells and other immune subsets have been linked to survival benefits
(6), challenging the traditional view of TNBC as uniformly
immunologically inactive. Understanding this heterogeneity is crucial
for tailoring immunotherapies to re-engage the immune system
effectively (7).

ICIs, which block proteins like PD-1 that suppress immune responses,
have emerged as promising therapies for TNBC. Cytotoxic T lymphocytes
(CTLs) play a pivotal role in anti-tumor immunity, while regulatory T cells
(Tregs) can hinder these responses. PD-1" CTLs and other tumor-
infiltrating lymphocytes (TILs) significantly impact ICI efficacy. A
nuanced understanding of the interactions between immune cell
populations within TNBC is vital for optimizing immunotherapeutic
strategies. Advancements in single-cell RNA sequencing (scRNA-seq)
and spatial transcriptomics have revolutionized TNBC research (8).
These technologies provide unprecedented insights into tumor
heterogeneity and immune microenvironments by analyzing gene
expression at single-cell resolution and mapping spatial interactions (9-
11). Studies reveal diverse immune cell subsets and spatial relationships,
offering new biomarkers and therapeutic targets (12). Integrating these
technologies enables researchers to uncover immune evasion mechanisms
and develop tailored immunotherapeutic strategies.

Applying these advanced techniques has deepened the
understanding of TNBC’s tumor microenvironment and immune
interactions. Researchers can better predict therapeutic responses
and personalize treatment (13) by identifying cellular diversity and
spatial organization. These insights hold significant potential for
identifying novel targets, improving clinical outcomes, and
advancing precision medicine in TNBC.

Metabolic influences on immune cells
in the tumor microenvironment

Link between metabolic pathways and
immune function

The metabolic landscape within the tumor microenvironment
(TME) significantly impacts the behavior and functionality of
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immune cells. Tumors often exhibit altered metabolic pathways,
producing specific metabolites that can modulate immune responses
(14, 15). For instance, it has been observed that the accumulation of
lactate, a byproduct of glycolysis, can create an immunosuppressive
environment by inhibiting the function of cytotoxic T cells and
promoting regulatory T cells (16). Furthermore, tumor-derived
metabolites such as adenosine can disrupt T cell activation and
promote immune evasion mechanisms (17). This dynamic interplay
creates a feedback loop in which tumor cells’ metabolic state affects
their proliferation and survival and influences the immune landscape,
leading to an environment conducive to tumor progression (18).

Recent studies have elucidated how specific metabolic pathways
in tumor cells can directly alter the immune response. For example,
it was found that activating IDO pathway in tumors results in
tryptophan catabolism, leading to T cell dysfunction and promoting
an immune-suppressive environment (19). Moreover, the Warburg
effect, characterized by increased aerobic glycolysis in tumor cells,
has created an environment that favors the recruitment of
immunosuppressive cell types while inhibiting effector T cell
functions (20). Understanding these metabolic interactions is
crucial for developing strategies to reprogram the TME to
reinvigorate anti-tumor immunity (21).

Importance of metabolic pathways in
modulating immune response

Metabolic reprogramming is emerging as a critical factor influencing
immune cell functionality and their therapeutic responses. Immune cells
adapt their metabolism to fulfill their bioenergetic and biosynthetic needs
during activation. For instance, T cells require metabolic reprogramming
towards glycolysis to sustain their proliferation and effector functions.
However, a skewed metabolic environment can lead to dysfunction (16).
Furthermore, studies have shown that targeting metabolic pathways
enhances the immune response against TNBC. By inhibiting metabolic
checkpoints like mTOR and AMPK, it is possible to improve T cell
activation and restore anti-tumor immunity (5).

In the context of TNBC, therapeutic strategies focusing on
metabolic reprogramming show promise in enhancing the efficacy of
existing treatments. Combining metabolic inhibitors with
immunotherapy has been proposed as a novel approach to improve
the anti-tumor immune response. For instance, recent research
highlights the potential of using metabolic modulators to enhance
the effectiveness of immune checkpoint inhibitors, which could lead to
better clinical outcomes for TNBC patients (19). Overall,
understanding the intricate relationship between metabolic pathways
and immune function presents an opportunity to develop innovative
strategies to augment the effectiveness of therapies to TNBC.

Metabolic pathways and their effects
on immune cells in TNBC

Overview of key metabolic pathways

Metabolic pathways are critical determinants of immune cell
function and can significantly influence the efficacy of anti-tumor
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responses in TNBC. Key metabolic processes, including glycolysis,
lipid metabolism, and amino acid metabolism, orchestrate the
activities of various immune cells (Figure 1). Glycolysis, for
instance, is vital for T cell activation and proliferation. Increased
glycolytic activity in T cells correlates with enhanced effector
functions, allowing them to respond effectively to tumor cells
(22). In contrast, fatty acid oxidation is crucial for the developing
and maintaining memory T cells, ensuring long-lasting immune
protection against recurrent tumors (23).

Amino acid metabolism also plays a pivotal role in immune
responses. The availability of specific amino acids, such as
glutamine, influences T cell metabolism and function. Tumor
cells often deplete local amino acids, leading to T cell dysfunction
and impaired anti-tumor activity (24). Understanding these
metabolic pathways provides insights into how metabolic
reprogramming in immune cells can enhance their functionality
and effectiveness against TNBC.

Effects on different immune cells

Regulatory T cells

Lactate accumulation enhances the immunosuppressive
function of Treg cells by activating FOXP3 gene expression (25).
Lactate also induces Treg cell proliferation, allowing them to
dominate within the tumor microenvironment, further
diminishing the activity of CD8" T cells, NK cells, and thereby
supporting immune evasion by the tumor. Adenosine, catalyzed by
ADA2 (Adenosine Deaminase 2), activates the A2A receptor on
Treg cells, enhancing their immunosuppressive functions (26).
Elevated adenosine levels strengthen Treg cell function and reduce
effector T cell activation, fostering an immunosuppressive
environment. Treg cell metabolism relies on specific lipid metabolic
pathways, with these metabolites promoting Treg immunosuppressive
abilities through particular lipid transport proteins, such as FABP5
(27). Lipid accumulation in Treg cells facilitates their proliferation and
survival, further diminishing the activity of effector T cells within the
tumor microenvironment (28).

Macrophages

The metabolic profiles of macrophages are critical in dictating
their pro-tumor or anti-tumor functions. In TNBC, metabolic
reprogramming within macrophages can lead to polarization
towards a tumor-promoting M2 phenotype characterized by
immunosuppressive properties (29). Conversely, promoting
metabolic shifts towards an M1-like state can enhance their anti-
tumor capabilities. Understanding these metabolic dynamics
could lead to novel strategies for reprogramming macrophages
to adopt anti-tumor phenotypes, potentially improving
therapeutic outcomes in TNBC. Lactate induces macrophage
polarization towards an immunosuppressive M2 phenotype,
giving rise to tumor-associated macrophages (TAMs) (30, 31).
These M2-polarized macrophages secrete elevated levels of
immunosuppressive factors, such as IL-10 and TGF-, which
inhibit the antitumor responses of T cells and NK cells (32).
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PRMT5, by modulating iron metabolism, restricts the pro-
inflammatory activity of M1 macrophages, thereby allowing the
immunosuppressive properties of the M2 phenotype to
predominate (33). Reducing in iron ions further promotes M2
polarization by inhibiting the NRF2/HMOXI1 pathway. CAFs
upregulate lipid metabolism, driving macrophages toward a lipid-
associated macrophage (LAM) phenotype (34), forming
immunosuppressive macrophages. These macrophages enhance
immunosuppressive effects through lipid signaling molecules,
reducing the functional infiltration of effector immune cells
within the tumor.

CD8* T cells

Within the tumor microenvironment, the accumulation of
high concentrations of lactate results in functional impairment
of CD8" T cells by lowering the local pH. TNFR2 enhances
immunosuppressive capacity in endothelial cells by inhibiting the
glycolytic pathway, resulting in decreased CD8" T cell activity.
Blocking TNFR2, however, can restore antitumor immunity (30,
35). Lactate interferes with the mTOR signaling pathway, inhibiting
T cell proliferation and diminishing the secretion of key effector
cytokines, such as IFN-vy, further compromising antitumor
immunity (31). Through the Warburg effect, TNBC cells
preferentially consume glucose, leading to glucose deprivation in
the surrounding environment, which hampers CD8" T cells’ ability
to maintain the glucose levels required for efficient glycolysis. This
glucose deficiency directly reduces the activity of CD8" T cells and,
by limiting energy supply through the PI3K/AKT/mTOR pathway
(36), decreases their proliferation and cytotoxicity. In the TNBC
microenvironment, high glutamine uptake exhausts the glutamine
needed by immune cells, adversely affecting particularly the
antioxidant-dependent CD8" T cells (37). Glutamine scarcity
restricts glutathione synthesis in T cells, reducing their tolerance
to oxidative stress and weakening their antioxidative and antitumor
functions within the tumor.

Natural killer cells

Lactate significantly diminishes the cytotoxicity of NK cells,
reducing their tumor-Kkilling capacity. The accumulation of lactate
also compromises NK cell survival and proliferation by acidifying
the environment, further weakening their immune clearance
functions (38). In lung cancer, lactate has been found to
upregulate PD-L1 expression on tumor cell surfaces via the
Warburg effect (39), suggesting a close link between metabolic
reprogramming of tumor cells and immune evasion mechanisms.
This pathway promotes NK cell exhaustion, enhancing the tumor’s
ability to evade immune detection (40, 41).

Dendritic cells

Dendritic cells are pivotal in antigen presentation and the
initiation of T cell responses. Tumor-derived metabolites can
profoundly influence DC function, affecting their ability to
activate T cells effectively. Exosomes secreted by TNBC cells, rich
in pro-inflammatory molecules, activate the cGAS/STING
pathway in dendritic cells (42, 43), thereby enhancing the
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proliferation and dominance in the TME, which inhibits CD8" T cells and NK cells, promoting tumor immune evasion. Adenosine, produced via ADA2
on Tregs, further reinforces Treg predominance, contributing to the immunosuppressive TME. Lipid metabolites, transported by proteins like FABPS5,
also support Treg proliferation and function. (B) Macrophages: Lactic acid drives macrophage polarization to the immunosuppressive M2 phenotype,
forming TAMs that secrete IL-10 and TGF-P, suppressing antitumor responses. PRMT5 regulates iron metabolism, inhibiting pro-inflammatory M1
macrophages and favoring M2 polarization. CAF-induced lipid metabolism upregulation further promotes M2 macrophage transformation. (C) CD8"
T cells: High lactic acid in the TNBC microenvironment lowers local pH and disrupts the PI3K/AKT/mTOR pathway, impairing CD8" T cell
proliferation and cytokine secretion (e.g., IFN-y), weakening antitumor immunity. Glucose consumption via the Warburg effect depletes glucose
needed for glycolysis in CD8* T cells, exacerbating this inhibition. Additionally, high Gln uptake by TNBC cells reduces GSH synthesis in CD8* T
cells, impairing oxidative stress tolerance and antitumor function. (D) NK cells: Lactic acid increases PD-L1 expression on tumor cells, binding PD-1
on NK cells and inhibiting their cytotoxicity, leading to NK cell exhaustion and tumor immune escape. (E) DCs: TNBC cells release exosomes that
activate dendritic cells via the cGAS/STING pathway, enhancing T cell activation and immune responses. (F) B cells: Lipid metabolism significantly
impacts B cell function, particularly in the context of antibody production and memory formation. However, metabolic reprogramming, such as the
Warburg effect, reduces glycolysis in DCs, impairing their maturation and antigen presentation, thus weakening T cell activation and effector immune
cell infiltration in the tumor. TNBC, Triple-Negative Breast Cancer; Treg, Regulatory T Cell; FOXP3, Forkhead Box P3; TME, Tumor
Microenvironment; NK cell, Natural Killer Cell; ADA2, Adenosine Deaminase 2; FABP5, Fatty Acid-Binding Protein 5; TAM, Tumor-Associated
Macrophage; IL-10, Interleukin 10; TGF-B, Transforming Growth Factor Beta; PRMTS5, Protein Arginine Methyltransferase 5; CAF, Cancer-Associated
Fibroblast; LAM, Lipid-Associated Macrophage; PI3K, Phosphoinositide 3-Kinase; AKT, Protein Kinase B (often referred to as AKT); mTOR, Mechanistic
Target of Rapamycin; IFN-v, Interferon Gamma; Gln, glutamine; GSH, Glutathione; PD-L1, Programmed Death-Ligand 1; PD-1, Programmed Death-

1; DC, Dendritic Cell; cGAS, Cyclic GMP-AMP Synthase; STING, Stimulator of Interferon Genes. This figure was created using the Figdraw online

drawing tool.

initiation of antitumor immune responses. The release of these
exosomes bolsters DC activity, facilitating downstream T cell
activation and strengthening immune responses within the tumor
microenvironment. However, metabolic reprogramming in TNBC
suppresses the glycolytic pathway in dendritic cells (44), impairing
their maturation and activation capabilities and consequently
weakening their efficacy in T cell activation. This metabolic
inhibition directly impacts the antigen-presenting capacity of
DCs, resulting in reduced infiltration and activity of T cells
within the tumor. Researchers can explore therapeutic strategies
to enhance DC-mediated T cell activation by understanding how
tumor metabolism affects DC function. Targeting metabolic
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pathways in DCs may help restore their function and improve the
overall anti-tumor immune response (45, 46).

B cells

Lipid metabolism significantly impacts B cell function,
particularly in antibody production and memory formation.
Research indicates that B cells rely on fatty acid metabolism for
optimal antibody responses (47). In TNBC, modulating lipid
metabolic pathways could enhance the effectiveness of therapeutic
vaccines by promoting robust B cell activation and differentiation.
For example, interventions that enhance lipid uptake and utilization
by B cells might increase their ability to produce high-affinity
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antibodies against tumor antigens (48). This approach could
represent a novel strategy to improve vaccine efficacy in
TNBC patients.

Future directions and clinical implications

The interaction between metabolic pathways and immune
responses offers promising avenues for combination therapies in
TNBC. Studies suggest that metabolic reprogramming can
significantly enhance immune cell efficacy against tumors.
Combining ICIs with metabolic pathway-targeting agents could
boost anti-tumor immunity by reinvigorating T cells or enhancing
TIL populations. These strategies may overcome the limitations of
ICIs alone and lead to more personalized treatments based on
individual metabolic profiles. Advanced techniques like single-cell
functional enzymatic assays (scFEA) and metabolic profiling tools
(e.g.» Mebocost, scMetabolism) enable more insights into immune
cell metabolism in TNBC. These tools allow single-cell analysis of
metabolic activity, helping researchers understand how immune
cells metabolize nutrients within the tumor environment. By
mapping the metabolic landscape, researchers can identify critical
metabolic checkpoints as therapeutic targets, which could lead to
optimized immune function therapies. The goal of immune
metabolism research in TNBC is to translate findings into clinical
practice. Targeting specific metabolic pathways, such as glycolysis,
could lead to personalized therapies that improve survival and
quality of life for TNBC patients. Collaboration between
researchers and clinicians is essential, with clinical trials for
combination therapies already underway, signaling a shift towards
personalized medicine in TNBC and improved treatment outcomes.

Conclusion

Metabolic products, such as lactate and adenosine, are pivotal in
establishing an immunosuppressive tumor microenvironment by
modulating immune cell functions. Lactate has been shown to
promote the proliferation of Tregs while impairing the functionality
of cytotoxic CD8" T cells, and adenosine disrupts T cell activation via
the A2A receptor. Recent research further highlights the impact of
glutamine depletion on T cell oxidative stress tolerance, demonstrating
the intricate connection between metabolic reprogramming and
immune responses in TNBC. These findings underscore the potential
of combining ICIs with metabolic modulators targeting pathways such
as glycolysis and fatty acid oxidation. Preclinical models indicate that
such combination therapies can effectively reinvigorate exhausted T
cells and enhance antitumor immunity, paving the way for improved
therapeutic strategies.
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Background: Type 2 Diabetes Mellitus (T2DM) represents a major global health
challenge, marked by chronic hyperglycemia, insulin resistance, and immune
system dysfunction. Immune cells, including T cells and monocytes, play a pivotal
role in driving systemic inflammation in T2DM; however, the underlying single-
cell mechanisms remain inadequately defined.

Methods: Single-cell RNA sequencing of peripheral blood mononuclear cells
(PBMCs) from 37 patients with T2DM and 11 healthy controls (HC) was
conducted. Immune cell types were identified through clustering analysis,
followed by differential expression and pathway analysis. Metabolic
heterogeneity within T cell subpopulations was evaluated using Gene Set
Variation Analysis (GSVA). Machine learning models were constructed to
classify T2DM subtypes based on metabolic signatures, and T-cell-monocyte
interactions were explored to assess immune crosstalk. Transcription factor (TF)
activity was analyzed, and drug enrichment analysis was performed to identify
potential therapeutic targets.

Results: In patients with T2DM, a marked increase in monocytes and a decrease
in CD4+ T cells were observed, indicating immune dysregulation. Significant
metabolic diversity within T cell subpopulations led to the classification of
patients with T2DM into three distinct subtypes (A-C), with HC grouped as D.
Enhanced intercellular communication, particularly through the MHC-| pathway,
was evident in T2DM subtypes. Machine learning models effectively classified
T2DM subtypes based on metabolic signatures, achieving an AUC > 0.84. Analysis
of TF activity identified pivotal regulators, including NF-kB, STAT3, and FOXO1,
associated with immune and metabolic disturbances in T2DM. Drug enrichment
analysis highlighted potential therapeutic agents targeting these TFs and related
pathways, including Suloctidil, Chlorpropamide, and other compounds
modulating inflammatory and metabolic pathways.
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Conclusion: This study underscores significant immunometabolic dysfunction in
T2DM, characterized by alterations in immune cell composition, metabolic
pathways, and intercellular communication. The identification of critical TFs
and the development of drug enrichment profiles highlight the potential for
personalized therapeutic strategies, emphasizing the need for integrated
immunological and metabolic approaches in T2DM management.

type 2 diabetes mellitus (T2DM), single-cell RNA sequencing, immunometabolism, T
cells, machine learning models

Introduction

Type 2 Diabetes Mellitus (T2DM) represents a growing global
health crisis, with prevalence rates increasing rapidly. The
International Diabetes Federation estimates that 537 million adults
were living with diabetes in 2021, a number projected to rise to 643
million by 2030 and 783 million by 2045 (1). T2DM accounts for 90-
95% of all diabetes cases and is a leading contributor to morbidity and
mortality, with associated complications such as cardiovascular
disease, neuropathy, nephropathy, and retinopathy (2) The rising
incidence of T2DM is driven by a combination of genetic
predisposition and lifestyle factors, including obesity, sedentary
behavior, and poor dietary habits (3).

Beyond its metabolic consequences, T2DM is increasingly
recognized for its significant immunological components,
characterized by chronic low-grade inflammation and immune
dysregulation (4). Peripheral blood mononuclear cells (PBMCs),
including T cells and monocytes, play pivotal roles in the
inflammatory processes of T2DM (5). Alterations in immune cell
populations have been documented in patients with T2DM, with
changes observed in the proportions and functions of various
immune cell subsets (6).

T cells and monocytes are particularly implicated in T2DM
pathogenesis through their contribution to systemic inflammation
and insulin resistance (7). Chronic activation of these immune cells
results in the secretion of pro-inflammatory cytokines, which
disrupt insulin signaling pathways (8). However, the precise
mechanisms by which these immune cells contribute to T2DM,
particularly at the single-cell level, remain poorly understood.

Recent advancements in single-cell RNA sequencing (scRNA-seq)
have enabled high-resolution analysis of cellular heterogeneity,
facilitating the characterization of individual cell types and states
within complex tissues (9). This technology offers a unique
opportunity to explore the immunological landscapes of PBMCs in
T2DM at an unprecedented level of detail. By analyzing gene
expression profiles at the single-cell level, it is possible to identify
specific cellular subpopulations and uncover new insights into the
disease mechanisms.

Frontiers in Immunology

Metabolic reprogramming of immune cells is a critical aspect of
their activation and function (10). In the context of T2DM, metabolic
disturbances can influence immune cell behavior, contributing to
disease progression (10). Metabolic reprogramming in T cells and
monocytes plays a pivotal role in the pathogenesis of T2DM (11).
Immune cells, like T cells and monocytes, undergo metabolic shifts in
T2DM, which affect their activation and function, thereby
exacerbating chronic inflammation and insulin resistance (11).
These metabolic alterations can promote the secretion of pro-
inflammatory cytokines, further driving disease progression (12).
Understanding how metabolic reprogramming influences immune
cell behavior could identify novel therapeutic targets for T2DM.

Furthermore, cell-cell communication, mediated by signaling
pathways and cytokines, is essential for orchestrating immune
responses (13). Dysregulation of these communication networks
can intensify inflammation and insulin resistance in T2DM (14).
Investigating intercellular signaling dynamics may reveal potential
therapeutic targets for modulating immune responses.

In this study, publicly available scRNA-seq data were used
to analyze PBMCs from patients with T2DM and healthy
controls (HC). This study aimed to characterize the immune cell
composition, metabolic heterogeneity, and cell-cell communication
networks at the single-cell level. Additionally, advanced machine
learning models were employed to classify T2DM subtypes
based on metabolic signatures. The findings offer comprehensive
insights into the immunometabolic alterations in T2DM,
providing a foundation for the development of personalized
therapeutic strategies.

Methods
Data collection

The sequencing data used in this study are publicly available
from the Gene Expression Omnibus (GEO) database. scRNA-seq

data for PBMCs from 11 HC individuals (GSE244515) (15) and 37
patients diagnosed with T2DM (GSE268210) (16) were utilized.
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Single-cell RNA sequencing alignment and
quality control

All single-cell read counts were analyzed using the Seurat package
(v5.0.1) in R (v4.3.1), converting each dataset into individual Seurat
objects. Data filtering was performed based on unique molecular
identifiers (UMIs) and the number of detected genes (17).
Specifically, cells with between 500 and 3,500 detected genes, and
those expressed in at least five cells, were retained. Cells exhibiting
mitochondrial gene expression greater than 5% were excluded to
ensure data quality. Following filtering, data normalization was
carried out using Seurat’s NormalizeData function, and highly
variable genes were identified using the FindVariableFeatures function.

Integration of scRNA-seq data from
multiple datasets

To integrate scRNA-seq data from multiple datasets, the
Harmony package was employed, focusing on highly variable
genes. This integration enabled subsequent dimensionality
reduction and clustering analyses, correcting for batch effects and
other technical variations across datasets.

Dimensionality reduction and major cell
type annotation

For the PBMC dataset, clustering resolution was set to 0.5. Principal
component analysis (PCA) was used for dimensionality reduction,
followed by Uniform Manifold Approximation and Projection
(UMAP) for visualization. Clusters were identified and annotated
based on known cell type markers, as shown in Figures 1B, 1E, and 1H

Differential gene expression and
pathway analysis

Differential gene expression analysis was conducted using the
FindMarkers function of the Seurat package, employing the
Wilcoxon rank-sum test. Genes were considered differentially
expressed if detected in at least 25% of cells (min.pct = 0.25) and
had an adjusted p-value below 0.05 after Bonferroni correction.
Significant differentially expressed genes (DEGs) were subjected to
Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses using the
clusterProfiler package (v3.12.0) (18). Drug enrichment analysis
was performed using the Drug-Gene Interaction Database (DGIdb)
as the reference, selecting enriched drugs with an adjusted p-value
threshold of P < 0.05 after multiple testing correction.

Gene set variation analysis

Gene Set Variation Analysis (GSVA) was employed to assess
pathway activity across single cells using 42 KEGG pathways as
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predefined gene sets. The GSVA method was implemented with the
GSVA package in R, specifying appropriate gene set indices and
kernel-based distribution functions (kcdf). To optimize
computational efficiency, parallel processing was utilized, with
parameter adjustments based on available processor cores. This
approach allowed for scalable analysis, reduced processing time,
and preserved result integrity. GSVA provided pathway activity
scores for each cell, enabling the exploration of pathway
heterogeneity and functional states within the single-cell populations.

Calculation of transcription factor activity

To assess transcription factor (TF) activity, the DoRothEA
package was used to retrieve human regulon data, selecting
regulons with confidence levels A, B, and C (19). TF activity scores
were calculated using the VIPER method, with normalization
performed via the “scale” method and a minimum regulon size of
4. These scores were stored in the “dorothea” assay of the Seurat
object. Dimensionality reduction was conducted using PCA, followed
by clustering with the top 10 principal components, and UMAP was
applied for cluster visualization. Differential TF activity between
clusters was evaluated using Seurat’s FindAllMarkers function, with
significant TFs identified based on log fold change and expression
percentage. The VIPER activity scores were summarized by cell type,
and the three most variable TFs across cell types were identified.
These TFs were visualized in a heatmap, with color intensities
reflecting TF activity.

Unsupervised clustering
(consensus clustering)

To classify patients with T2DM based on T cell metabolic
patterns, consensus clustering was applied, a robust and
reproducible method that aggregates multiple clustering results to
enhance stability and reliability using the ConsensusClusterPlus
package. Initially, the mean GSVA scores for the 42 pathways were
calculated for each sample. Consensus clustering mitigates inherent
variability in individual clustering runs by repeatedly subsampling
the data and aggregating clustering results, ensuring the
identification of consistent and biologically meaningful clusters.

The optimal number of clusters (k) was determined by
calculating the incremental area, which measures changes in the
cumulative distribution function (CDF) curve area between
consecutive k values. The incremental area quantifies
improvements in cluster stability as the number of clusters
increases. A significant drop in the incremental area suggests that
additional clusters contribute minimally to cluster stability, aiding
in the selection of the optimal k. Consensus clustering was
performed across a range of k values (from k = 2 to k = 9), and
incremental area plots were generated to visualize changes in the
CDF curve areas. Using the “elbow method,” where the k value at
which the incremental area plateaus is selected (indicating
diminishing returns from adding more clusters), we identified k =
4 as the optimal number. From k = 4 onward, the reduction in
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FIGURE 1

Overview of Immune Cell Profiling in T2DM and Healthy Control (HC) Groups: (A) Single-cell RNA sequencing and clustering analysis identified
seven major immune cell types in PBMCs from both T2DM and HC groups. (B) The top three marker genes for each of the seven major immune cell
types in PBMCs. (C) Violin plots comparing the proportions of these seven immune cell types in PBMCs across T2DM and HC groups. (D)
Dimensional reduction analysis of T cell clusters, revealing eight distinct T cell subtypes. (E) The top three marker genes for each of the eight T cell
subtypes. (F) Violin plots comparing the proportions of the eight T cell subtypes in PBMCs. (G) Monocyte subpopulation analysis identified three
distinct subtypes: classical, intermediate, and non-classical monocytes. (H) Expression of marker genes (CD14 and FCG3RA) used for classifying
monocyte subpopulations. (1) Violin plots comparing the proportions of the three monocyte subtypes. p-values are indicated as follows: *p < 0.05,

**p < 0.01, and ***p < 0.001.

incremental area was significantly less, indicating that k = 4 struck
a balance between minimizing the metric and maintaining
manageable cluster numbers. Clustering at k = 4 was
subsequently visualized using heatmaps and PCA plots.

Cell communication and
signaling pathways

Cell communication analysis was performed using the CellChat
package in R with default parameters (20). The pathways mediating cell
communication between three T cell subtypes and monocytes were
analyzed independently, utilizing the human CellChatDB as a
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reference. The rankNet function was modified to output scaled
contribution values for each pathway within each subtype.
Differences in the strength of cell communication pathways between
the T cell subtypes and monocytes were compared and visualized with
bar charts generated by ggplot2. Additionally, specific signaling
patterns for each pathway within each subtype were illustrated using
the netVisual_bubble function.

Machine learning algorithms

An integrated machine learning model incorporating multiple
algorithms was developed to enhance predictive accuracy.
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A comprehensive dataset of 196,623 T cells was divided into a training
set (70%) and a test set (30%). A total of 75 different combinations of
machine learning models were evaluated. Independent predictive
models included Support Vector Machines (SVM) and Ridge
regression. Boosting methods such as glmBoost, Elastic Net (Enet)
with varying alpha values, and Gradient Boosting Machines (GBM)
were sequentially applied to correct errors from previous models.
Stepwise regression (Stepglm), utilizing forward, backward, or both
selection criteria, was combined with models like Ridge, Enet, and
Lasso to optimize predictive performance. Additional models,
including XGBoost, Linear Discriminant Analysis (LDA), Random
Forest (RF), and Naive Bayes, were integrated to leverage the unique
strengths of each algorithm in different scenarios.

For multiclass classification adjustments, both one-vs-rest
(OvR) and multinomial classification approaches were employed.
The OVR strategy decomposes the multiclass problem into multiple
binary classifiers, each distinguishing one class from all others. This
method was applied to SVM and Logistic Regression algorithms to
establish binary decision boundaries within a multiclass framework.
Multinomial classification methods, such as GBM and RF, handle
all classes simultaneously within a single model, allowing for direct
modeling of class probabilities. These algorithms natively support
multinomial classification, enabling the simultaneous prediction of
multiple classes without decomposing them into separate binary
tasks. The choice of methods was guided by the algorithm’s native
support for multiclass classification and empirical performance
during model tuning.

At the patient level, individuals were classified based on the
distribution of cell subtypes within their samples. If the majority
of a patient’s cells were assigned to a specific subtype, the patient
was classified into that subtype. This strategy enabled the
extension of single-cell classification to predict subtypes at the
patient level.

Models were configured to identify the one with the highest
average concordance index (C-index) across all validation
datasets. The accuracy of the resulting risk scores was validated
by calculating the area under the curve (AUC) using the
“timeROC” package.

Statistical analysis

All statistical analyses were performed using R software (v4.3.1),
and visualizations were generated through R Studio. The selection
of statistical tests was determined by the data distribution and
characteristics. For normally distributed data, Student’s t-test was
used to compare means between two groups. For non-normally
distributed data, the Wilcoxon rank-sum test was applied for two-
group comparisons, and the Kruskal-Wallis test was utilized for
comparisons across multiple groups. P-values > 0.05 were
considered not statistically significant and were marked as “ns.”
P-values < 0.05 were considered statistically significant, with the
following indications: * p < 0.05, ** p < 0.01, *** p < 0.001, and ****
p < 0.0001.
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Results

Significant increase in monocytes and
decrease in CD4+ T cells in patients
with T2DM

Single-cell sequencing data of PBMCs from 11 HC (GSE244515)
and 37 patients with T2DM (GSE268210) were obtained from the
GEO database. Cluster analysis revealed seven major immune cell
types, annotated by specific marker genes: CD4+ T cells (CD3D, IL7R),
CD8+ T cells (CD3D, CD8B), NK cells (KLRF1), B cells (MS4A1),
monocytes (CD14, FCG3RA), dendritic cells (ITGAX, CD1C), and
plasma cells (SDC1, MZB1) (Figure 1A). Cell types were annotated
using established marker genes, a method validated in prior studies
(Figure 1B). Rigorous marker selection and clustering methods were
applied to ensure accurate and consistent categorization of cell types
within the datasets. Proportions of immune cell types between T2DM
and HC groups were compared using the Wilcoxon test. The analysis
revealed a significant increase in monocyte proportions (p < 0.01) and a
decrease in CD4+ T cells (p < 0.01) in the T2DM group compared to
the HC group, while no significant differences were observed in CD8+
T cells, B cells, dendritic cells, or plasma cells (Figure 1C).

Altered proportions of T cell subtypes in
patients with T2DM

Dimensional reduction and cluster analysis of T cells based on
gene expression profiles identified eight distinct subtypes: Central
Memory CD8+ T cells (IL7R, CD27, SELL), Cytotoxic CD8+ T cells
(CD8A, GZMH, NKG7), Gamma Delta T cells (TRDC, TRDV?2),
Memory CD4+ T cells (IL7R, CD27), Memory CD8+ T cells (IL7R,
CD27), Naive CD4+ T cells (LEF1, SELL, CCR7), Naive CD8+ T
cells (CD8A, LEF1, CCR?7), and Regulatory CD4+ T cells (FOXP3)
(Figure 1D, E). SELL expression was utilized to distinguish between
Central Memory and Memory CD8+ T cells. Differences in T cell
subtype proportions between T2DM and HC groups were assessed
using the Wilcoxon test. Significant increases in the proportions of
Cytotoxic CD8+ T cells (p < 0.01) and Naive CD8+ T cells (p <
0.05) were observed in the T2DM group, alongside a significant
reduction in Regulatory CD4+ T cells (p < 0.05). No significant
differences were found in Central Memory CD8+ T cells, Gamma
Delta T cells, Memory CD4+ T cells, Memory CD8+ T cells, or
Naive CD4+ T cells (Figure 1F).

Changes in monocyte subpopulations in
patients with T2DM

The interaction between monocytes and T cells plays a critical role
in the inflammatory mechanisms driving T2DM progression (21).
Monocytes modulate T cell responses and are central to the immune
dysregulation observed in T2DM (22). Further analysis of monocytes
revealed three subgroups: classical monocytes, non-classical
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monocytes, and intermediate monocytes (Figure 1G). Classical
monocytes were defined by CD14 expression, non-classical by CD16,
and intermediate by both CD14 and CD16 (Figure 1H). The Wilcoxon
test revealed a significant increase in intermediate monocytes (p < 0.01)
and a decrease in classical monocytes (p < 0.05) in the T2DM group
compared to the HC group (Figure 1I).

Metabolic heterogeneity in T cell
subpopulations in T2DM

To investigate the metabolic heterogeneity within T cell
subpopulations in T2DM, each cell within these subpopulations
was scored for 42 metabolic-related pathways from the KEGG
database using GSVA. Unsupervised consensus clustering, based
on the mean pathway values for each sample, was performed. The
optimal number of clusters (k = 4) was determined using the delta
area value and the “elbow method,” partitioning the samples into
four groups (Figure 2A). The clustering heatmap clearly

L L DT L DL L DL LT RE—— L] DT T LD T T

Delta area

telatve change in area under COF curve

A

consensus matrix k=4

Ll

10.3389/fimmu.2024.1537909

distinguished the samples into four groups, with T2DM samples
assigned to groups A-C and HC samples grouped in D (Figure 2B).
This segregation was further validated by the PCA plot, which
highlighted a distinct separation between group D (HC) and groups
A-C (Figure 2D). Specifically, group A included 12 patients, group B
included 14 patients, group C included 12 patients, and group D
contained 11 HC.

Group A exhibited elevated expression across various metabolic
pathways, including sulfur, ether lipid, and sphingolipid
metabolism; nicotinate and nicotinamide metabolism; xenobiotic
and drug metabolism by cytochrome P450; tryptophan, porphyrin,
and chlorophyll metabolism; glycine, serine, and threonine
metabolism; linoleic and alpha-linolenic acid metabolism; taurine
and hypotaurine metabolism; histidine metabolism; ascorbate and
aldarate metabolism; retinol metabolism; arachidonic acid
metabolism; and starch and sucrose metabolism, among others
(Figure 2C). This broad metabolic profile, encompassing lipid,
amino acid, and complex carbohydrate pathways, suggests an
adaptive metabolic response in T cells within Group A.
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FIGURE 2

Metabolic Heterogeneity in T Cell Subpopulations and Immunological Differences in T2DM: (A) Delta area plot showing k values from 2 to 9 used for
selecting the optimal k in consensus clustering. (B) Consensus clustering heatmap of metabolic pathway scores, dividing samples into four distinct
groups. Groups A-C consist of T2DM samples, while Group D represents healthy control (HC) samples. (C) Clustering heatmap displaying the expression
levels of 42 metabolic-related pathways in T cell subpopulations across the four groups, emphasizing differences in metabolic activity. (D) PCA plot
demonstrating clear separation between the HC group (D) and T2DM groups (A-C). (E) Violin plots showing the proportions of eight T cell subtypes
across the four groups, with significant differences observed between groups. (F) Violin plots illustrating the proportions of three monocyte subtypes
across the four groups, highlighting further immune profile differences. p-values are indicated as follows: *p < 0.05, **p < 0.01, and ***p < 0.001.

Frontiers in Immunology

37

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1537909
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Li et al.

Group B was distinguished by high expression in pathways such
as pyruvate, glutathione, glyoxylate and dicarboxylate, purine,
pyrimidine, cysteine and methionine, nitrogen, inositol
phosphate, galactose, glycerolipid, glycerophospholipid, fructose
and mannose, and amino sugar and nucleotide sugar metabolism
(Figure 2C). This unique metabolic signature suggests a specific
adaptation in Group B, likely reflecting a distinct functional or
activation state compared to other groups.

Group C shared a metabolic profile with Group B, marked by
high expression in nitrogen, inositol phosphate, galactose,
glycerolipid, glycerophospholipid, fructose and mannose, and
amino sugar and nucleotide sugar metabolism (Figure 2C).
However, the metabolic reprogramming in Group C appeared
more targeted or restricted, suggesting a more specific metabolic
shift in the T cells.

Group D, representing the HC group, displayed strong
expression in pyruvate, glutathione, glyoxylate and dicarboxylate,
purine, pyrimidine, cysteine and methionine, propanoate,
butanoate, fatty acid, and beta-alanine metabolism (Figure 2C).
This metabolic profile aligns with basic cellular metabolism and
energy homeostasis, contrasting with the altered metabolic states
observed in the T2DM groups.

Immunological differences between T2DM
subtypes and HC group

The Kruskal-Wallis test was performed to examine immunological
differences in T cell and monocyte subtypes across the groups, revealing
significant alterations indicative of substantial immune modulation in
T2DM. Notably, Groups A and HC displayed increased proportions of
Central Memory CD8+ T Cells, essential for long-term immune
memory, suggesting potential immune adaptation or ongoing
immune responses. A significant reduction in Cytotoxic CD8+ T
Cells was observed in Groups A and C compared to the HC group,
indicating an impaired cytotoxic response critical for targeting infected
or dysfunctional cells (Figure 2E).

Additionally, a decrease in Memory and Naive CD8+ T Cells in
Group C suggests a compromised adaptive immune response,
essential for effective long-term immunity. The reduction in
Regulatory CD4+ T Cells, especially in Group C, suggests
diminished regulatory function, potentially contributing to
unchecked immune responses and inflammation characteristic of
chronic conditions like T2DM (Figure 2E).

Moreover, a significant reduction in classical monocytes in
Group B (P < 0.05) was observed, while proportions of
intermediate monocytes were significantly increased in Groups A
and B (P < 0.05) compared to the HC group (Figure 2F).

These findings underscore the intricate interplay between
metabolic and immune shifts in T2DM, illustrating how
metabolic disturbances may impact immune function and
potentially exacerbate the disease. The distinct metabolic profiles
observed in T2DM subgroups suggest that targeted metabolic or
immunomodulatory therapies could be tailored to address specific
dysregulations in these patients.
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The communication between T-cells and
monocytes in type 2 diabetes

The communication between T-cells and monocytes in T2DM
plays a critical role, profoundly influencing immune regulation,
inflammation, and autoimmunity, all pivotal in the disease’s
progression and management. Understanding these interactions
offers insights into how immune dysregulation contributes to
chronic inflammation and insulin resistance in T2DM.

CellChat was employed to analyze communication differences
between T-cells and monocytes across three T2DM subtypes and an
HC group (Supplementary Tables 1-4). Regarding the number of
inferred interactions, Subtypes A, B, C, and HC had 1418, 1841,
1537, and 1531 interactions, respectively (Figure 3B). Interaction
strength values were 0.995 for Subtype A, 1.133 for Subtype B, 0.93
for Subtype C, and 0.793 for HC (Figure 3C). These results highlight
variability in communication intensity and complexity across
diabetic subtypes compared to HC (Figure 3A), indicating
stronger cellular interactions in patients with T2DM, suggesting
an enhanced immune response in diabetic conditions.

Intensive pathway mediation in subtype B

In Subtype B of T2DM, multiple pathways actively mediate
communication between immune cells. The CD30 pathway
facilitates interactions from Naive CD4+ T Cells and Regulatory
CD4+ T Cells to Non-Classical Monocytes, which serve as receptors
(Figure 3D). This pathway is pivotal as it involves T cells that are
essential for maintaining immune tolerance and preventing
autoimmune responses while interacting with monocytes that
play a central role in inflammation. Activation of this pathway in
Subtype B suggests a specific immune regulatory mechanism that
could significantly impact the inflammatory environment
characteristic of T2DM.

Similarly, the CD48 pathway orchestrates communication between
three monocyte subtypes and various T-cell subtypes to Central
Memory CD8+ T Cells, also functioning as receptors, and extends
this interaction to include Non-Classical Monocytes (Figure 3F). This
pathway underscores a robust exchange of signals, enhancing immune
memory and responsiveness, which is essential for managing recurrent
or chronic antigen exposure in T2DM.

Additionally, the Transforming Growth Factor Beta (TGF-f)
pathway mediates interactions from multiple T-cell and monocyte
subtypes to Central Memory CD8+ T Cells (Figure 3E). TGF-, a key
cytokine in regulating immune responses, cell growth, and
inflammation, suggests a dual role in promoting immune
homeostasis and potentially contributing to immune tolerance
in T2DM.

The Interferon Type II (IFN-II) pathway is prominently active in
Subtypes B and C, facilitating signals from Cytotoxic CD8+ T Cells to
Classical and Non-Classical Monocytes, and from Central Memory
CD8+ T Cells to Intermediate Monocytes (Figure 3G). The
engagement of this pathway highlights an active antiviral and
antitumor response, which may be dysregulated in T2DM,
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pathway-mediated interactions between T cell and monocyte subtypes for the CD30 pathway. (E) Network diagram illustrating key pathway-
mediated interactions between T cell and monocyte subtypes for the TGF-B pathway. (F) Network diagram illustrating key pathway-mediated
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between T cell and monocyte subtypes for the IFN-y pathway. (H) Network diagram illustrating TNF pathway interactions in T2DM subtype B. (1)
Network diagram illustrating TNF pathway interactions in T2DM subtype C. (J) Network diagram illustrating CCL pathway interactions in T2DM
subtype B. (K) Network diagram illustrating CCL pathway interactions in HC.

contributing to altered immune cell activation and cytokine production
and influencing disease progression.

The extensive involvement of these pathways in Subtype B
reveals a complex and distinct immune modulation pattern that
may significantly influence the clinical manifestations and
progression of T2DM. The differential activation of these
pathways underscores the intricate interplay between immune
cells in diabetes, providing a foundation for the development of
targeted therapeutic strategies.

TNF and CCL pathway involvement

The Tumor Necrosis Factor (TNF) pathway was particularly
active in Subtype B, mediating communication from Intermediate
Monocytes to other monocyte and T-cell subtypes (acting as
receptors), and from Non-Classical Monocytes to various
monocyte and T-cell subtypes (acting as receptors) (Figure 3H).
In contrast, in Subtype C, the TNF pathway exclusively mediated
communication from Non-Classical Monocytes to other monocyte
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and T-cell subtypes (as receptors), suggesting its involvement in
promoting inflammatory processes that may exacerbate diabetes
complications (Figure 3I).

The CCL pathway in Subtype B specifically mediated
interactions with Regulatory CD4+ T Cells as receptors and
Gamma Delta T Cells, Cytotoxic CD8+ T Cells, Central Memory
CD8+ T Cells, and Memory CD8+ T Cells as ligands (Figure 3]). In
the HC group, the CCL pathway significantly mediated
communication with Classical Monocytes and Intermediate
Monocytes as receptors (Figure 3K). The differential involvement
of this pathway highlights its potential role in modulating immune
responses differently in diabetic patients versus healthy individuals.

MHC-| pathway dominance

The Major Histocompatibility Complex Class I (MHC-I)
pathway contributed extensively across all three subtypes,
mediating nearly all communication between T-cell and
monocyte subtypes (Figure 3A). Subtype A exhibited the highest
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activity, followed by HC, with Subtype C showing the least. This
underscores the pivotal role of antigen presentation in T2DM,
which could influence autoimmune responses and overall
immune function in these patients.

VISFATIN pathway specificity

The VISFATIN pathway, uniquely present in Subtypes C and
HC, was involved exclusively in mediating communication among
T-cell subtypes, without interactions between T-cells and
monocytes. This selective engagement suggests a distinct
metabolic or inflammatory state inherent to these subtypes and
indicates that VISFATIN may play a role in unique disease
progression pathways or therapeutic resistance mechanisms in
T2DM. The focused activity of VISFATIN offers insights into
subtype-specific immune functions, potentially guiding more
personalized treatment approaches.

Additional pathways mediated T-cell and
monocyte communication

Further analysis revealed additional pathways—GRN,
SELPLG, ANNEXIN, THBS, ADGRES5, PARs, ITGB2, MHC-II,
MIF, CD40, CLEC, CD86, SEMA4, IL16, PECAMI, LCK, BAG,
ICAM, GALECTIN, CD99, APP, and RESISTIN—that mediate
communication across various T-cell and monocyte subtypes
(Figure 3A). These pathways are involved in a range of
regulatory and signaling processes, such as adhesion, immune
response modulation, and inflammation. Their involvement
across multiple subtypes highlights the complexity and dynamic
nature of cellular communication in T2DM, emphasizing the
potential for targeted therapeutic interventions based on these
specific molecular interactions.

Analysis of transcription factor activity
across diabetes subtypes

We also analyzed TF activity across the three T2DM subtypes,
identifying 126 active TFs. Key examples include IRF1, GATAS®,
SPI1, EPASI, NFKB2, and STAT5B, which are involved in immune
response, cell differentiation, and metabolic regulation, all of which
are critical in diabetes pathogenesis. A heatmap was generated to
visualize the top three TFs for each cell type across the subtypes
(Figures 4A-C).

Subtype A: activation of transcription
factors in immune cells

In Subtype A, TFs were notably active in Central Memory CD8+
T Cells, Memory CD8+ T Cells, Cytotoxic CD8+ T Cells, and
Gamma Delta T Cells, indicating an enhanced immune response
(Figure 4A). Of particular interest, HNF4A was uniquely active in
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Naive CD4+ T Cells and Naive CD8+ T Cells, suggesting a role in
early immune cell activation. EPASI, a key factor involved in oxygen
sensing and cellular stress responses, was active in Memory CD8+ T
Cells, Cytotoxic CD8+ T Cells, and Gamma Delta T Cells,
highlighting its involvement in regulating immune cell function
during inflammatory or stress-induced conditions (Figure 4A).

Subtype B: immune modulation
and inflammation

In Subtype B, similar TF activity was observed in Central
Memory CD8+ T Cells, Memory CD8+ T Cells, Cytotoxic CD8+
T Cells, and Gamma Delta T Cells, with additional unique findings
(Figure 4B). NFKB1, known for its role in immune modulation and
inflammation, was specifically active in Regulatory CD4+ T Cells,
suggesting its contribution to immune tolerance and the prevention
of autoimmunity in this subtype. Additionally, SMAD4, a central
player in the TGF- signaling pathway, was active across several T
cell types, indicating its role in immune response regulation and
tissue remodeling in Subtype B (Figure 4B).

Subtype C: strong immune activation
and differentiation

In Subtype C, TFs such as SPI1, STAT4, SMADI, BCLI11A,
IKZF1, LYL1, REST, and TBX21 were highly active in Central
Memory CD8+ T Cells, suggesting robust immune activation and
differentiation (Figure 4C). BCL11A, active in Central Memory
CD8+ T Cells, Cytotoxic CD8+ T Cells, and Gamma Delta T Cells,
plays a critical role in these cell types. Moreover, BHLHE22, active
in Naive CD4+ T Cells and Naive CD8+ T Cells, may regulate early-
stage immune responses (Figure 4C). KLF6, active in Central
Memory CD8+ T Cells and Memory CD4+ T Cells, likely
governs immune cell differentiation and survival. Lastly, TBX21,
essential for T cell differentiation and function, was active in Central
Memory CD8+ T Cells, underscoring its role in shaping long-term
immune responses in this subtype (Figure 4C).

Differential gene expression in subtype A

For Subtype A, further analysis revealed 436 DEGs, highlighting
significant involvement in pathways related to microRNA (miRNA)
transcription and immune system regulation (Figure 4D). The
enrichment of miRNA-related pathways, such as positive
regulation of miRNA transcription, regulation of miRNA
transcription, and miRNA transcription itself, suggests that
miRNAs play a critical role in controlling gene expression that
modulates T-cell function and overall immune responses
(Figure 4D). This subtype also exhibited significant enrichment in
immune-related pathways, including the MAPK signaling pathway,
TNF signaling pathway, and Th1/Th2 cell differentiation
(Figure 4D). These pathways are pivotal in mediating immune
responses and likely contribute to the inflammatory state observed
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T2DM subtypes based on T-cell metabolic characteristics.

in diabetes and its associated complications in Subtype A. The
presence of these pathways highlights the intricate interplay
between genetic regulation and immune responses, offering
potential insights for developing targeted therapeutic strategies for
this subtype.

Differential gene expression in subtype B

Subtype B, distinguished by 845 DEGs, is characterized by a broad
range of enriched pathways primarily related to protein metabolism
and modification (Figure 4E). Pathways such as the regulation of
protein catabolic processes, proteasomal protein catabolism, and
histone modification highlight an increased focus on protein
turnover and post-translational modifications, both critical for
cellular function and signaling. Immune-related pathways, including
the MAPK signaling pathway, AGE-RAGE signaling in diabetic
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complications, and Th17 cell differentiation, are also prominently
represented (Figure 4E). The AGE-RAGE pathway is particularly
notable for linking metabolic dysregulation to inflammatory
responses, a hallmark of diabetes-related complications (Figure 4E).
Furthermore, the Th17 differentiation pathway suggests the
involvement of a specific T-cell subset known for its role in
inflammation and autoimmunity, potentially contributing to the
pathophysiological complexity observed in Subtype B (Figure 4E).

Differential gene expression in subtype C

In Subtype C, the 122 DEGs are significantly enriched in pathways
related to metabolic processes, with a particular focus on oxidative
phosphorylation, a key energy production mechanism in cells
(Figure 4F). The inclusion of pathways such as chemical
carcinogenesis—reactive oxygen species and diabetic cardiomyopathy
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points to an increased susceptibility to oxidative stress and its
associated cardiac complications, common challenges in diabetes
management (Figure 4F). The prominence of oxidative
phosphorylation suggests altered metabolic function that may
exacerbate energy deficits in diabetic cells, potentially driving cellular
dysfunction and cardiomyopathy progression (Figure 4F). The
emphasis on metabolic and oxidative stress pathways in this subtype
underscores the importance of metabolic control and highlights
potential therapeutic targets for addressing these specific challenges.

Advanced machine learning models for
subtype classification

This study further developed machine learning models to
differentiate T2DM subtypes based on the metabolic
characteristics of T-cells, derived from the GSVA results of
KEGG metabolic pathways for each individual cell. A total of 75
model combinations were evaluated, with particular emphasis on
high-performing models such as glmBoost+GBM, glmBoost
+Stepglm (both combinations), Stepglm+GBM, and Stepglm
(backward)+Enet [alpha = 0.7] (Figure 4G).

GlmBoost, or Generalized Linear Model Boosting, enhances
prediction accuracy by combining multiple weak models, typically
linear, into a stronger predictive ensemble. Stepglm, or Stepwise
Generalized Linear Model, refines model accuracy by iteratively
adding or removing predictors based on their statistical significance,
optimizing the model for maximum performance (Figure 4G). These
models demonstrated robust predictive power, achieving AUC values
between 0.894 and 0.925 in the training set (Figure 4G). Notably, this
high performance extended to the validation set, where all selected
models achieved AUC values exceeding 0.8, with an average AUC of
over 0.84 across both sets (Figure 4G). The strong accuracy of these
models underscores the utility of advanced computational techniques
in improving our understanding and management of T2DM, enabling
precise subtype classification based on the metabolic profiles of T-cells.

Drug enrichment analyses for
personalized treatment

To facilitate the application of the three subtypes of T2DM for
personalized treatment, a drug enrichment analysis was conducted on
the upregulated DEGs (logFC > 0.5) for each subtype. This approach
identifies potential drugs tailored to the specific needs of each T2DM
subtype, offering a foundation for more targeted therapeutic strategies.

Subtype A: suloctidil and
inflammation pathways

In subtype A, suloctidil emerged as the most promising drug for
diabetes treatment (Figure 5A) (23). This drug was linked to genes
involved in inflammation and immune regulation, including
NR4A2, IFITM1, PPP1R15A, FOSB, TNFAIP3, FOS, ZFP36,
MCL1, DUSP1, NFKBIA, JUN, KLF6, KLF2, and FTHI1
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(Figure 5D). These genes are critical in regulating inflammatory
responses, which are central to insulin resistance and diabetes-
related complications. The enrichment of suloctidil with these genes
suggests its potential in managing the inflammation-associated
aspects of T2DM in subtype A.

Subtype B: suloctidil as a key drug

For subtype B, suloctidil was again identified as the key drug
associated with diabetes treatment (Figure 5B) (23). This drug was
linked to genes such as NR4A2, FOSB, GADD45B, IFITM1,
PPP1R15A, TNFAIP3, DDIT4, IER2, ZFP36, FOS, MCL1, NFKBIA,
HSPAS5, JUN, CD69, DUSP1, KLF2, and FTH1 (Figure 5E), which are
involved in stress responses, immune regulation, and cell survival.
While suloctidil remained the most relevant drug for this subtype,
other medications, such as Fendiline, Prenylamine, and Perhexiline—
though primarily used for cardiovascular issues—may have indirect
effects on diabetes, but are not specifically designed for its treatment.

Subtype C: chlorpropamide for
insulin regulation

In subtype C, chlorpropamide was identified as the key drug
associated with diabetes treatment (Figure 5C). As a sulfonylurea,
chlorpropamide stimulates insulin secretion, which plays a pivotal
role in improving glucose control in patients with T2DM. This drug
was associated with genes such as GADD45B, PPP1R15A, TNFAIP3,
DDIT4, IER2, ZFP36, FOS, HSPAS5, JUN, DUSPI, and KLF2
(Figure 5F), which are involved in stress response and metabolic
regulation. These associations suggest that chlorpropamide may be
particularly effective in managing insulin secretion and glucose
metabolism in subtype C.

Discussion

T2DM is a complex metabolic disorder marked by chronic
hyperglycemia resulting from insulin resistance and impaired
insulin secretion (24). This study sought to investigate the
immunological and metabolic alterations in T2DM by analyzing
single-cell RNA sequencing data from PBMCs of patients with
T2DM and HC. Our findings highlighted significant immune cell
alterations, including an increase in monocytes and a decrease in
CD4+ T cells in patients with T2DM. Furthermore, we observed
metabolic heterogeneity within T cell subpopulations and enhanced
cell-cell communication pathways in T2DM.

The observed increase in monocytes in patients with T2DM
reflects heightened chronic inflammation and immune activation
(4). These monocytes contribute to insulin resistance by secreting
pro-inflammatory cytokines such as TNF-o and IL-6 (8). Previous
studies have shown that monocyte-derived macrophages infiltrate
adipose tissue in T2DM, where they play a pivotal role in promoting
inflammation and exacerbating insulin resistance (25, 26). In
contrast, the decrease in CD4+ T cells, which are critical for
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coordinating adaptive immune responses, may impair immune
regulation (27). This reduction in CD4+ T cells potentially
undermines the body’s ability to control inflammation,
exacerbating insulin resistance and beta-cell dysfunction (28).

Further alterations in T cell subtypes underscore the immune
dysregulation associated with T2DM. An increase in cytotoxic CD8
+ T cells and naive CD8+ T cells likely reflects an overactive
immune surveillance mechanism (29). Elevated cytotoxic CD8+ T
cells can induce beta-cell apoptosis, impairing insulin secretion
(30). The rise in naive CD8+ T cells indicates ongoing recruitment
and activation in response to chronic metabolic stress (31). These
changes suggest an altered immune response, compromising the
body’s ability to regulate inflammation and immune tolerance,
thereby contributing to the pathogenesis of T2DM (32, 33). The
reduction in CD4+ T cells, which are critical for orchestrating
adaptive immune responses, may compromise immune regulation.
Previous studies have linked decreased CD4+ T cell counts in
patients with T2DM to impaired immune tolerance and increased
autoimmunity (34, 35). This decline may result in unregulated
inflammatory responses, thereby exacerbating the chronic low-
grade inflammation characteristic of T2DM (36).

Analysis of metabolic heterogeneity within T cell subpopulations
revealed distinct metabolic profiles in patients with T2DM. Subtype A
T cells exhibited high expression of lipid and amino acid metabolism
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pathways, suggesting an adaptive metabolic response to the diabetic
environment (37). This subtype demonstrated broad metabolic activity,
particularly in lipid, amino acid, and carbohydrate metabolism,
indicating an adaptive response to chronic stress. However, it may
also reflect a hyperactivated or exhausted T cell state. Such metabolic
reprogramming likely enables T cells to survive in conditions of altered
nutrient availability, but it could also promote a pro-inflammatory
phenotype (38). Subtype B, with its emphasis on oxidative stress-
related pathways, indicates a heightened immune response, while
Subtype C displays more targeted metabolic reprogramming,
suggesting a potentially less generalized immune activation (39).
These metabolic alterations may affect T cell activation and function,
potentially exacerbating immune dysfunction in T2DM (40). In
contrast, the HC group exhibited baseline metabolic activity,
emphasizing the metabolic disturbances present in patients with
T2DM. Metabolic reprogramming significantly impacts T cell
function (41), and understanding these shifts is critical for
developing targeted therapies aimed at restoring normal T cell
function and improving metabolic control.

Enhanced cell-cell communication pathways were also observed
in patients with T2DM, indicating intensified immune responses.
CellChat analysis revealed heightened activity of pathways such as
CD30, CD48, TGF-B, and IFN-y in subtype B (42). These pathways
are pivotal in immune regulation, T cell activation, and cytokine
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signaling. CD30 activation, for instance, can drive pro-
inflammatory responses and immune dysregulation, while TGF-3
plays a key role in balancing immune tolerance and inflammation.
In the context of T2DM, the activation of these pathways may
impair immune function, exacerbate insulin resistance, and
contribute to beta-cell dysfunction (43). Furthermore, alterations
in TNF and CCL pathway engagement, critical for inflammation
and immune cell recruitment, suggest significant changes in
chemokine signaling, which could further influence immune cell
interactions and disease progression (44).

The dominance of the MHC-I pathway emphasizes the
importance of antigen presentation in T2DM (45). Increased antigen
presentation may enhance autoimmune responses, potentially
contributing to beta-cell destruction (46). The selective activation of
the visfatin pathway in specific T2DM subtypes may reflect unique
metabolic and inflammatory states, providing potential targets for
subtype-specific interventions (47). Focusing on the MHC-I and
visfatin pathways could offer targeted therapeutic opportunities for
more effective management of T2DM. Collectively, these findings
underscore the complexity of immune cell interactions in T2DM and
highlight potential pathways for therapeutic targeting.

This study also highlighted the critical role of TFs in regulating
immune cell function and metabolic processes in T2DM. We
identified several TFs that are differentially expressed across
T2DM subtypes, including those involved in immune response
regulation and insulin resistance. Notably, TFs such as NF-kB and
STATS3, key players in inflammatory pathways, were upregulated in
patients with T2DM, highlighting the persistent immune activation
and inflammatory environment characteristic of the disease (48). In
contrast, TFs associated with insulin signaling, such as PAX6 and
FOXO1, were downregulated, potentially contributing to impaired
insulin secretion and resistance (49, 50). The dysregulation of TF
activity in T2DM thus opens novel therapeutic avenues, as targeting
specific TFs could help restore immune homeostasis and improve
metabolic control, offering a more tailored approach to treatment.

The drug enrichment analysis further reinforces the potential for
personalized T2DM therapy based on TF activity and metabolic
alterations. For example, suloctidil, identified as associated with
specific immune-related TFs and inflammatory pathways, could
serve as a promising candidate for managing inflammation and
immune dysfunction in T2DM (8). Similarly, targeting pathways
regulated by TFs like NF-kB and STAT3 may help reverse the chronic
inflammation that drives T2DM pathogenesis (51, 52). Drugs such as
chlorpropamide, which influence insulin secretion, may be especially
effective for subtypes with dysregulated insulin signaling pathways
(53). These findings emphasize the importance of integrating TF
activity and drug enrichment data into personalized treatment
strategies, potentially improving therapeutic outcomes by
addressing the underlying molecular mechanisms specific to each
patient’s disease profile.

Clinically, the development of advanced machine learning
models enabled accurate classification of T2DM subtypes based on
T cell metabolic profiles. These models achieved high AUC values,
demonstrating their potential application in clinical settings for
patient stratification and personalized treatment planning. By
identifying distinct metabolic and immunological signatures linked
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to different T2DM subtypes, clinicians can better tailor interventions
to address the underlying dysfunctions of each patient.

Limitation

Despite the strengths of this study, several limitations remain.
These include potential biases arising from the use of public datasets,
a limited sample size that may impact generalizability, and the cross-
sectional design, which limits causal inference regarding immune
changes and T2DM progression. Additionally, findings may not be
universally applicable due to demographic variations in T2DM
influences. Inherent limitations of single-cell sequencing, such as
dropout events and batch effects, may also impact data interpretation.
Future research should validate these results using larger, more
diverse cohorts, incorporate longitudinal studies to explore disease
progression, and evaluate targeted therapies through clinical trials,
with predictive models supporting personalized treatment strategies.

Conclusion

In conclusion, this study highlights significant immune and
metabolic dysregulation in T2DM, marked by elevated monocytes,
reduced CD4+ T cells, and distinct metabolic profiles within T cell
subpopulations. Enhanced cell-cell communication pathways,
particularly those involving the MHC-I pathway, further highlight
the complexity of the immune landscape in T2DM. The analysis of
TF activity, in conjunction with drug enrichment findings, identifies
promising therapeutic targets for personalized treatment.
Integrating these immunological and metabolic insights—along
with key TFs and drug candidates—into clinical practice could
optimize T2DM management and improve patient outcomes,
reinforcing the critical role of personalized medicine in
addressing the multifaceted nature of metabolic disorders.
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Objective: Chronic kidney disease (CKD) is a major global health problem. In
clinical practice, the Chinese patent herbal medicine Jianpi-Yishen (JPYS)
formula is commonly used to treat CKD. However, the molecular mechanisms
by which JPYS targets and modulates the host immune response remain unclear.

Methods: This study utilized network pharmacology, RNA sequencing (RNA-
seq), and metabolic analyses using in vivo and in vitro models to investigate the
impact of the JPYS formula on inflammation and the immune system.
Specifically, the study focused on macrophage polarization and metabolic
changes that may slow down the progression of CKD.

Results: A total of 14,946 CKD-related targets were identified from the
GeneCards and Online Mendelian Inheritance in Man (OMIM) databases
through network pharmacology analyses. 227 potential targets of the JPYS
formula were predicted using the TCMSP database. Additionally, network
diagram demonstrated that 11 targets were associated with macrophage
activity. In vivo studies indicated that the JPYS formula could reduce blood
urea nitrogen and serum creatinine in adenine-induced CKD rats. Furthermore,
the formula inhibited inflammatory damage and abnormal macrophage
infiltration in this CKD model. RNA-seq, proteomic and metabolic analyses
identified the regulation of amino acid metabolism by betaine, specifically
referring to glycine, serine, and threonine metabolism, as a key target of the
JPYS formula in slowing the progression of CKD. In addition, in vitro studies
suggested that JPYS may enhance tryptophan metabolism in M1 macrophage
polarization and betaine metabolism in M2 macrophage polarization.
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Conclusions: The JPYS formula has been shown to have beneficial impact on
CKD; a key mechanism is the mitigation of inflammatory damage through the
interaction between amino acid metabolism and macrophage polarization. Of
specific importance in this context are the roles of tryptophan in M1 polarization
and betaine in M2 polarization.

KEYWORDS

Jianpi-Yishen formula, chronic kidney disease, network pharmacology, macrophage
polarization, multi-omics
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GRAPHICAL ABSTRACT

1 Introduction

Chronic kidney disease (CKD) is characterized by long-lasting
abnormalities in renal structure or function. These abnormalities
last longer than three months and have serious health repercussions
(1). The global prevalence of CKD is estimated to be approximately
10-14% (1). Furthermore, CKD accelerates the aging process and
promotes the development of end-stage renal disease. This leads to
increased disability, decreased life expectancy, and a high annual
mortality rate, all of which are important contributors to the
worldwide burden of disease (2, 3). However, there are no specific
treatment modalities available that can entirely arrest the
progression of CKD, and coping with CKD poses challenges for
both patients and their caregivers (4).

Frontiers in Immunology

Chinese herbal medicines (CHMs) are characterized by their
intricate chemical compositions, which complicates the process of
identifying the specific constituents that collectively contribute to the
therapeutic effects of these herbal remedies, as these are typically
applied in a multi-ingredient manner (5). Previous studies have
demonstrated that substances originating from Chinese herbal
remedies can ameliorate CKD via multiple molecular pathways (6-
9). In addition, certain formulations, such as the Sanqi oral solution
and the Bupi Yishen formula, have demonstrated positive impact on
kidney function (10, 11). Herbal medicine also has numerous
advantages over chemical agents in the management of CKD, not
least because of its diverse ingredients (12). The JPYS formula, which
translates to “strengthen the spleen and kidney”, is a patented
traditional Chinese medicine (TCM) formulation developed by
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Professor Li Shunmin, a distinguished physician of traditional
Chinese medicine in Guangdong Province, drawing upon decades
of comprehensive clinical experience. In previous research, the
effectiveness and safety of the JPYS formula in CKD patients have
been investigated (13). More recently, there are randomized
controlled trials being conducted to further explore its clinical
application. Previous studies have identified multi targeted effects
of the JPYS formula in slowing the progression of CKD, including
anti-inflammatory properties, protection against iron deficiency
anemia (14), inhibition of mitochondrial fission, promotion of
mitochondrial fusion, and suppression of oxidative stress, among
others (15). Notably, the anti-inflammatory effects of the JPYS
formula have been recognized as therapeutically significant (16) .
However, the specific molecular mechanisms through which the JPYS
formula targets the endogenous immune response remain unclear.

Macrophages play essential roles in immune surveillance and the
maintenance of kidney homeostasis (17). Throughout the
progression of CKD, macrophage polarization has been implicated
in the mechanisms of inflammatory injury, renal interstitial fibrosis,
and kidney repair (18). Various stimuli can influence the functional
phenotype of macrophages, leading to the differentiation towards
classically activated macrophages (M1) or alternatively activated
macrophages (M2). M1 macrophages are recognized as pro-
inflammatory cells that contribute to the progression of kidney
injury, whereas M2 macrophages are traditionally known as anti-
inflammatory cells. Some TCM therapies, encompassing both
formulated remedies and herbal active ingredients, have
demonstrated efficacy in modulating macrophage polarization
towards either M1 or M2 phenotypes in kidney disease (19, 20). As
such, the immunoregulatory properties of herbal medicine,
particularly its anti-inflammatory effects, present a novel approach
for the management of kidney diseases (21).

In this study, network pharmacology, RNA sequencing (RNA-
seq), proteomics and metabolic analyses were employed to examine
the impact of the JPYS formula on inflammation, the immune
response, macrophage polarization, and metabolic changes that
may inhibit the progression of CKD. The findings reveal that the
interaction between amino acid metabolism and macrophage
polarization serves as a key mechanism through which the JPYS
formula mitigates inflammatory injury in CKD.

2 Materials and methods
2.1 Network pharmacology

2.1.1 Screening and prediction of effective
chemical constituents in the JPYS formula

The active chemical constituents of the JPYS formula (Astragali
Radix, Atractylodis Macrocephalae Rhizoma, Dioscoreae Rhizoma,
Cistanches Herba, Amomi Fructus Rotundus, Salviae Miltiorrhizae
Radix et Rhizoma, Rhei Radix et Rhizoma, Glycyrrhizae Radix et
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Rhizoma) were obtained from the Traditional Chinese Medicine
System Pharmacology Database (old.tcmsp-e.com/tcmsp.php,
updated until September 2023) (22). The criteria of oral
bioavailability (OB) > 30% and drug likeness (DL) > 0.18 were
applied to assess the active ingredients of the JPYS formula and
identify the pertinent effective active ingredients. The active
ingredients of the JPYS formula were then converted into the
corresponding human gene names using the Uniprot database. By
utilizing “chronic kidney disease” as the keyword, the GeneCards
and Online Mendelian Inheritance in Man databases were utilized
to retrieve genes associated with CKD. The identified CKD-related
genes and drug target genes were mapped to identify the common
target genes of the “JPYS formula-CKD”.

2.1.2 "Drug-Ingredient-Target-Disease”
visualization network construction

The active components of the JYPS formula and the common
target genes of the “JYPS formula-CKD” were imported into
Cytoscape 3.7.1 software for visualization. Subsequently, a
network diagram of “drug-ingredient-target-disease” was then
established. Each node in the diagram symbolized a disease, drug,
bioactive ingredient of a drug, or target, with the connections
between nodes indicating the interrelations among the disease,
drug, bioactive ingredient, and target.

2.1.3 Protein-protein interaction network and,
gene ontology functional analyses

The shared targets of the JPYS formula and CKD were entered
into the STRING database (https://string-db.org/) using specific
parameters to extract the PPI network. The analysis focused on the
human species (Homo sapiens) with a protein relationship score
threshold of 0.4. The presence of free proteins was concealed to
obtain the protein interaction network. The protein-protein
interaction network data was downloaded and imported into
Cytoscape 3.7.1 software. Utilizing the Network Analyzer tool, a
topological analysis was conducted on the relevant parameters of
drug-disease common targets, which included connectivity
(Degree), betweenness centrality, and closeness centrality. Targets
exceeding the median values of the aforementioned parameters
were designated as core targets.

The Gene Ontology Biological Process (BP), Molecular
Function (MF), and Cellular Component enrichment analysis
data, were obtained from the STRING database. The GO analysis
conditions were set to include observed gene count and strength
both greater than the median. Subsequently, the top 6 significantly
enriched items in BP, MF and CC were selected and import into
ChiPlot (https://chiplot.online/) to generate a circular enrichment
plot. Additionally, the top 6 significantly enriched items in GO-BP
and their associated targets were imported into Cytoscape 3.7.1
software for visualization processing, resulting in the creation of a
network diagram titled “BP Entry - Target.”
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2.2 JPYS formula preparation

Medicinal herbs for JPYS formula were gained from the
Pharmaceutical Department of Shenzhen Traditional Chinese
Medicine Hospital. The JPYS formula comprises the following
eight herbs: Astragali Radix, Atractylodis Macrocephalae Rhizoma,
Dioscoreae Rhizoma, Cistanches Herba, Amomi Fructus Rotundus,
Salviae Miltiorrhizae Radix et Rhizoma, Rhei Radix et Rhizoma,
Glycyrrhizae Radix et Rhizoma. These raw herbs were weighed and
boiled twice for 1 h each time in 8 times of water. Our earlier
research detailed the preparation and quality control of JPYS
formula extract (15).

2.3 Animals and experimental treatments

Male Sprague Dawley rats(ethics approval reference number:
TOP-IACUC-2021-0112) aged 6-8 weeks were randomly assigned
to one of four groups: control (n = 8), CKD (n = 10), CKD + JPYS-L
(n =10), and CKD + JPYS-H (n = 10). Rats in the CKD and CKD +
JPYS were fed a diet containing 0.75% adenine for 3 weeks, followed
by a normal diet for 1 week. Rats in the control group were fed a
normal diet for 4 weeks. The CKD + JPYS groups were administered
with 5.44 g/kg/day of JPYS extract (CKD + JPYS-L, low-dose group)
and 10.89 g/kg/day of JPYS extract (JPYS-H, high-dose group) via
gastric irrigation for 4 weeks during the study period.

2.4 Biochemical analysis

Serum creatinine and urea nitrogen levels were measured using
a Roche automatic biochemistry analyzer (Tokyo, Japan) in
accordance with the manufacturer’s instructions.

2.5 Histological analysis
and immunohistochemistry

Paraffin-embedded kidney tissues extracted from four groups of
rats were cut into 3-pm sections, dewaxed, and rehydrated. Sections
were stained with hematoxylin and eosin (H&E) stain and
visualized. Immunohistochemistry was performed according to
the established protocol as described previously (23). Antibodies
used are in Supplementary Table 1.

2.6 RNA-seq

The kidney samples from the CKD and CKD+JPYS-H groups
underwent analysis at the Beijing Genomics Institute (BGI,
Shenzhen, China). The samples were purified and amplified
through polymerase chain reaction (PCR). The PCR yield was
quantified using Qubit, and the samples were combined to
produce a single-stranded DNA circle (ssDNA circle) which
generated DNA nanoballs. These nanoballs were then loaded into
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patterned nanoarrays. Subsequent data analysis was conducted
using the BGISEQ500 platform.

2.7 Kidney proteomics analysis

Proteomics analysis was conducted at the Climb Technology
Co., Ltd. Briefly, kidney tissue were thoroughly lysed using a protein
lysis buffer, followed by the measurement of protein concentration.
Based on the results of these measurements, an appropriate volume
of protein was extracted from each sample for enzymatic hydrolysis.
The subsequent day, the ultrafiltration tubes were centrifuged at
13000g at room temperature for 10 minutes. The liquid collected in
the collectiong tube was then transferred to a new centrifuge tube
and subjected to vacuum drying. The samples were subsequently
desalinated utilizing a C18 desalination column.

For mass spectrometry detection, the chromatographic mobile
phase A consisted of 0.1% formic acid, while phase B comprised
80% acetonitrile and 0.1% formic acid. The freeze-dried peptide
segments were completely dissolved in solution A (0.1% formic
acid) and centrifuged at 17,000 g for 15 minutes. The supernatant
was then added to the built-in tube and placed in the automatic
sampling device. The sample was introduced into the C18 analytical
column (inner diameter 150 um, 25 cm) from the automatic
sampler at a flow rate of 1.2 uL/min using the EASY nLC 1200
liquid chromatography system (Thermo, USA) for elution. The
elution conditions for the liquid chromatography were set at a flow
rate of 600 nL/min, with the B solution (acetonitrile containing
0.1% formic acid) increasing linearly from 6% to 30% over 0 to 42
minutes, followed by a further increase from 30% to 42% between
42 and 51 minutes, and finally rising to 95% within 5 minutes,
which was maintained for 60 minutes.

The Thermo Scientific Q Exactive HF mass spectrometer,
equipped with a Nanospray Flex ion source, was utilized, with the
ion spray voltage set to 2.3 kV and the temperature of the ion
transfer tube maintained at 320°C. The mass spectrometer operated
in Data-Independent Acquisition (DIA) mode. Following the
collection of DIA data, the Spectronaut 18.0 software (Biognosys)
was employed to search the human database downloaded
from Uniprot.

2.8 Kidney metabolome analysis

Kidney samples from the CKD and JPYS-H groups (n=4 in each
group) were processed by combining them with a standard
chromatography and mass spectrometry protocol. Briefly, The
procedure involved several methodical steps: (1) Kidney samples
were processed through homogenization in 80% methanol and
subsequently incubated at -80°C for a duration of two hours.
After the incubation, the mixture was subjected to centrifugation,
and the supernatant was collected and evaporated using nitrogen
gas. To facilitate reconstitution, 100ul of an acetonitrile-water
solution (in a 4:1 ratio) was added. The resulting mixture was
vortexed, centrifuged, and the supernatant was transferred to a
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liquid phase vial for further analysis; (2) The mobile phase A
consisted of 0.1% formic acid in ultrapure water, while mobile
phase B was composed of methanol. The flow rate was maintained
at 0.30 mL/min, with the oven temperature set at 40°C. The
autosampler temperature was regulated at 10°C, and the injection
volume was 2 pL utilizing a full loop injection method; (3) Targeted
profiling was conducted using a QTRAP® 5500 System (SCIEX)
operating in positive mode, employing the Multiple Reaction
Monitoring (MRM) technique. The electrospray ionization
parameters were optimized for a flow rate of 0.30 mL/min, with
the following specifications: electrospray voltage of 5500 V,
temperature of 500°C, curtain gas at 40, CAD gas at 12, and gases
1 and 2 set at 50 psi each.

2.9 Cell culture

THP-1 cells were cultured in a 6-well plate and incubated with
10 ng/ml of Phorbol 12-myristate 13-acetate (PMA) for 48 hours.
Followed by incubated in different doses of JPYS formula for 24h
and 48h. Cell Counting Kit-8 (CCK-8) was used to assess
cell viability.

Afterwards, the macrophages were stimulated into M1 and M2
polarization, respectively. In M1 polarization, LPS (100 ng/ml) and
IFN-y (20 ng/ml) were used to stimulate M1 macrophages. The
groups were divided into different categories, including
Macrophage, M1-Macrophage, and JPYS formula doses (M1
Macrophage incubated with different JPYS formula doses) for
48h. In M2 polarization, IL-4 (25ng/ml) and IL-13 (25ng/ml)
were used to stimulate M2 macrophages. The groups were
divided into different categories, including Macrophage, M2-
Macrophage, and JPYS formula doses (M2 Macrophage incubated
with different JPYS formula doses) for 48h.

2.10 Macrophage ultra-performance liquid
chromatography tandem
mass spectrometry

The methodology employed for the extraction of metabolites from
cells, chemicals, reagents, and the UPLC-MS/MS conditions adhered
to the procedures outlined in previous studies (24) .The protocol
involved several steps: (1) Cell samples were treated with Methanol for
shaking and lysis, followed by incubation at -80°C for 30 minutes.
Subsequently, the samples were subjected to shaking and
centrifugation, and the resulting supernatant was dried using a
nitrogen blower. Prior to sample running, re-dissolution was
performed. Additionally, the preparation and optimization of an
amino acid standard solution were carried out, including the
determination of parent and daughter ions of the standard. (2)
Standard curves were created at various concentrations (1000%,
500%, 200%, 100%, 80%, 40%, 20%, 10%, 5%) along with the
configuration of the mobile phase, liquid phase method, and mass
spectrometry method. The samples were then analyzed using LC-MS.
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(3) Experimental sample concentration involved running the samples
on a Cl8 chromatography column, with adjustments made for
samples with low amino acid content. Samples that did not produce
peaks were rerun using Glycan columns with corresponding
adjustments to the mobile phase and mass spectrometry method.
(4) Machine testing was conducted by mixing 50ul of supernatant
from each sample in a centrifuge tube, followed by randomization and
interspersion of Quality Control (QC) samples with cell samples. The
samples were numbered and sorted based on random numbers, with
QC values used to calculate Coefficient of Variation (CV) values. A CV
value within 15% indicated acceptable system deviation. QC samples
1-10 were configured to control sample quality, and new standard
curve ranges were established based on sample concentration test
results. Post-sample run, Multi Quant software was utilized for
result analysis.

2.11 Statistical analysis

The measurement data was presented as the mean + SEM. The
one-way analysis of variance (ANOVA) or the Kruskal-Wallis test
was employed to assess significant differences among groups.
Statistical analysis was conducted using GraphPad Prism
software, with a significance level set at P < 0.05.

3 Results

3.1 Network pharmacology showed that
JPYS formula might reduce CKD
progression via different targets

and pathways

933 active ingredients of the JPYS formula were retrieved
through the TCMSP database and further screening performed
using the parameters of OB > 30% and DL > 0.18 revealed 224
potential active ingredients (Supplementary Table 2). Afterwards,
227 potential targets of the JPYS formula were predicted by TCMSP
database, and 14,946 CKD-related targets were collected via the
GeneCards and OMIM databases. The comparison of the targets
identified via these two methods revealed 224 overlapping targets
(Figure 1A). Imported 224 common targets of JPYS formula and
chronic kidney disease into the STRING database to obtained PPI
protein interaction network data. Afterwards, the data were
imported into Cytoscape 3.7.1 software to analyze and obtain the
connectivity (Degree), BC and CC of drug-disease common targets.
Core targets were considered with targets greater than the median
of the above parameters, totaling 88 (Figure 1A).

3.2 GO analysis of “JPYS formula—CKD"

2117 GO enrichment analysis entries were obtained in the
STRING database, including 1784 for BP analysis, 203 for MF
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Network pharmacology screening and prediction of effective chemical constituents in the JPYS formula. (A) 227 potential targets of the JPYS
formula were predicted by TCMSP database, and 14,946 CKD-related targets were collected via the GeneCards and OMIM databases. The
comparison of the targets identified via these two methods revealed 224 overlapping targets. Core targets were considered with targets greater than
the median of the above parameters, totaling88. (B) Top 6 significantly enriched items in BP/MF/CC; (C) “BP entry target” network diagram

demonstrated that 11 targets were associated with macrophage activity.

analysis, and 130 for CC analysis. Set the analysis conditions to
observed gene count and strength both greater than the median,
and obtain the top 6 significantly enriched items in BP/MF/CC
(Figure 1B). Establishing a “BP entry target” network diagram, it
was found that 11 targets were associated with macrophage activity,
as shown in Figure 1C.

3.3 JPYS formula exhibits renoprotective
effects in CKD rats

Rats in the CKD group exhibited higher levels of serum
creatinine (Cre) and blood urea nitrogen (BUN), which were
restored after JPYS formula treatment (Figure 2A). H&E staining
revealed the CKD group exhibited inflammatory injuries and
fibrotic changes, while the CKD + JPYS group showed a
significant reduction in pathological injuries, consistent with the
improvement in renal function (Figure 2B).

To confirm whether the renoprotective effect of JPYS
formula was associated with the modulation of macrophages,
immunohistochemistry was performed to measure the expression
of CD68 and CD86 in the kidney tissue. The CKD group exhibited
higher levels of CD68 and CD86 expression than the control group,
while the JPYS group showed lower expression levels than the CKD
group (Figure 3A). Additionally, there were notable statistical
differences in Integrated Optical Density (IOD) values among
various groups (Figure 3B). These results indicate that JPYS
formula therapy down-regulates macrophages, including M1 and
M2 macrophages in the kidneys of CKD rats.
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3.4 Amino acid metabolism may be the
core targets for JPYS formula to delay the
progression of CKD

RNA enrichment analysis was conducted to compare the
differences between CKD and CKD+JPYS groups in RNA-seq (n =
4 per group). There’s 132 different genes between the CKD group and
JPYS groups (Figure 4A). And the heatmap showed different cluster
between CKD and JPYS groups (Figure 4B). The cluster analysis of
the GO classification in RNA-seq revealed a significant enrichment of
the metabolic process (Figure 4C) between CKD and JPYS formula.
In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway,
the Glycine, serine, and threonine metabolism (Amino acid
metabolism), Butanoate metabolism (Carbohydrate metabolism),
Biosynthesis of amino acids (Global and overview maps), Pyruvate
metabolism (Carbohydrate metabolism), and Glycolysis/
Gluconeogenesis (Carbohydrate metabolism) were enriched. This
suggests that JPYS formula adjusted the metabolic function in CKD
rats (Figure 4D).

Moreover, the proteomics analysis, which included PCA and
heatmap visualization, suggested that JPYS rats could be separated
from CKD rats (Figures 5A, B). Volcanoplot revealed that JPYS
formula exhibited up-regulated 260 proteins while down-regulated
339 proteins compared to CKD (Figure 5C). An enrichment analysis
of the pathway functional entries within the Reactome database, where
differential proteins are identified, indicates that the immune system
and metabolic pathways are critical for interventions involving JPYS
(Figure 5D). Additionally, we performed an extensive analysis of the
differences in metabolic pathways through proteomics, which
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Effects of JPYS formula on renal function and pathological injury in CKD rats. (A) Blood urea nitrogen levels and serum creatinine levels.

(B) Representative HE staining images in each groups. The arrows indicated the usual pathological alterations associated with CKD. **Represents a
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at identical magnification, x200. (B) The IOD values among various groups. **Represents a significant variation compare with the CKD group among
the multiple comparisons. **P < 0.05.
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Glycolysis/Gluconeogenesis (Carbohydrate metabolism) were enriched.

demonstrated that JPYS could upregulate various metabolic pathways,
particularly highlighting the significance of amino acid metabolism
and the metabolism of other amino acids in this upregulation
(Figure 5E). These results further validated our transcriptomic
findings. A comprehensive KEGG analysis of cellular processes
revealed that the regulation of the actin cytoskeleton, phagosome,
and lysosome are significant biological processes influencing the
differential proteins associated with JPYS (Figure 5F). And the
tryptophan played a pivotal role in the metabolism pathway
(Figure 5G). This finding corroborated our previous network
pharmacology hypothesis that macrophages may served as vital
cellular targets for JPYS in the context of delaying CKD.

3.5 The regulation of amino acid
metabolism by Betaine in macrophage
polarization may serve as a potential
target for the JPYS formula in delaying
the progression of CKD

To identify metabolic pathways, we conducted metabolomic in
kidney sample to further investigate the metabolic between JPYS rats
and CKD rats. The Partial Least Squares Discriminant Analysis
(PLSDA) conducted in the field of metabolomics indicates a
distinct separation between JPY rats and CKD rats, as illustrated in
Figure 6A. An examination of renal metabolism post-JPYS
intervention identified seven metabolites that exhibited significantly

Frontiers in Immunology

elevated levels, namely Betaine, Glycine, Alanine, Asparagine,
Glutamic acid, Creatine, and Glutamine, as depicted in Figure 6B.
The identification of KEGG pathways associated with the differential
metabolic functions observed between the two groups (Figure 6C).
The relevant differential pathways encompassed Glycine, Serine, and
Threonine metabolism, as well as amino acid biosynthesis, aligning
with the results obtained from RNA sequencing. Additionally, an
interactive network graph analysis indicated that Betaine plays a
regulatory role in Glycine, Serine, and Threonine metabolism,
metabolic pathways, and ABC transporters (Figure 6D).

To confirm the amino acid metabolism in macrophages, we
utilized THP-1 cells and incubated into macrophages, followed by
stimulation to generate M1 and M2 polarization macrophages for
further metabolic analysis. In CCK-8, we observed that 1mg/ml,
2mg/ml and 4mg/ml shows positive influence in THP-1 cells while
8mg/ml JPYS formula downregulated THP-1 proliferation
(Figures 7A, B). With the macrophage UPLC-MS/MS, we
observed changes in amino acid metabolic pathways (Figures 7,
8). The tryptophan was up-regulated after treatment with JPYS
formula (Figure 7C). And betaine was up-regulated after treatment
with JPYS formula (Figure 8A).

4 Discussion

In previous research, the JPYS formula has been shown to have
convincing effects in anti-inflammation, anti-fibrosis, and the
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restoration of iron metabolism in CKD rats (14, 25). However, the
underlying mechanisms by which the JPYS formula inhibits
inflammation, especially via macrophage activity, remain unclear.

In the study, we initially employed network pharmacology to
predict the active ingredients of the JPYS formula that are
pharmacologically effective in CKD. This was followed by the
construction and analysis of protein interaction networks, as well
as conducting GO and KEGG enrichment analyses. Within the
enriched pathways, we identified macrophage polarization as a
potential target pathway of the JPYS formula, in relation to
inflammatory injuries associated with CKD. This is consistent
with the inflammatory injury that occurs during the natural
progression of CKD. In line with this, in the in vivo model of
CKD, the JPYS formula was shown to improve kidney function and
alleviate kidney histopathological inflammatory damage. To
validate the network pharmacology results, we looked further into
macrophage immunophenotype expression and found that CKD
rats had higher levels of CD68, CD86, and CD206, while the JPYS
formula may have caused downregulation of macrophage surface
marker expression in CKD. Furthermore, transcriptomic profiling
of kidney tissue has indicated that the metabolic pathways linked to
“Glycine, serine, and threonine metabolism” and “Biosynthesis of
amino acids” are enriched as potential pathways of interest from,
through which the JPYS formula provides renoprotection.

We then carried out additional validation using kidney
proteomics, which identified the “metabolism” and “immune
system” pathways as important mechanisms via which the JPYS
formula has its therapeutic effects in CKD. The analyses also
identified cellular functions, such as the regulation of the actin
cytoskeleton, phagosomes, and lysosomes, in addition to significant
associations with macrophages, which play a pivotal role in immune
function. Additionally, tryptophan was found to be essential for the
metabolism pathway. This finding is consistent with the network
pharmacology analysis, indicating that macrophages may serve as
important therapeutic targets in the treatment of CKD with JPYS.

Building further on this hypothesis, the metabolomics analysis
from kidney tissue showed that significant differential pathways, such
as the metabolism of glycine, serine, and threonine as well as the
biosynthesis of amino acids, were enriched after JPYS intervention.
Additionally, we observed a significant overexpression of betaine in the
kidney tissue, which is probably related to the inclusion of Astragalus
membranaceus and Cistanche deserticola (26, 27). Enrichment of the
pathways related to glycine, serine, and threonine metabolism appear
to correlate with the increased levels of betaine. Macrophage
polarization was also impacted by the JPYS intervention, according
to data from the in vitro studies. In particular, treatment with the JPYS
formula increased tryptophan levels in the context of M1 macrophage
polarization. JPYS formula treatment also increased the expression of
betaine during the process of M2 macrophage polarization. Together,
the JPYS formula may have protective effects against CKD injury by
reducing inflammatory damage through the interaction of macrophage
polarization and amino acid metabolism.

Macrophages are essential parts of kidney tissue which play
critical roles in renal inflammation, the immune response, and the
maintenance of kidney homeostasis (28, 29). In CKD, the persistent
activation of pro-inflammatory monocytes and the presence

Frontiers in Immunology

57

10.3389/fimmu.2024.1512519

of reparative macrophages contribute to conditions like
glomerulosclerosis and tubulointerstitial fibrosis (30). Macrophage
polarization, characterized by M1 pro-inflammatory and M2
reparative phenotypes, is a response to inflammatory stimuli, and
the transition from M1 to M2 macrophages has been observed during
the progression of CKD (31). Although certain herbal ingredients
have demonstrated potential in regulating macrophage polarization
and lowering inflammation, further research is needed to fully
understand the impact of herbal treatments on aberrant
macrophage-driven inflammation (32).

Current research indicates that the JPYS formula has the ability
to influence both M1 and M2 macrophage polarization.
Considering the role of amino acids, tryptophan metabolism can
be improved by the JPYS formula in the context of M1 macrophage
polarization. As an essential aromatic amino acid, tryptophan plays
a key role in cellular synthesis, homeostasis maintenance, and it has
been implicated in CKD progression (33). Disturbances in
tryptophan metabolism are frequently reported in CKD patients,
leading to worsening renal fibrosis and the progression of CKD, by
causing metabolites to activate the aryl hydrocarbon receptor. As
CKD advances, uremic toxins accumulate due to inadequate renal
excretion, further resulting in deterioration of the condition (34).
Conversely, disturbances in tryptophan metabolism can affect the
kynurenine pathway, influencing the production of serotonin,
indole-pyruvate derivatives, and tryptamine (34).

This study’s findings indicate that the JPYS formula offers
protective effects against inflammation-induced damage driven by
MI1 macrophages. This therapeutic effect may be due to the
modulation of tryptophan levels by JPYS. Moreover, it has been
shown that the JPYS formula raises levels of betaine, which is a
neutral amino acid derivative that is associated with maintaining
organ homeostasis and halting the progression of disease. Previous
studies have demonstrated the betaine in lowering steatosis,
inflammation, and fibrosis in metabolism-associated fatty liver
disease as well as oxidative stress and inflammation linked to
alcoholic liver disease. Among other benefits, betaine has also
been demonstrated to maintain the integrity of the intestinal
epithelial barrier, control adipose function, and prevent the
development of cancer (35-37). In the context of kidney health,
betaine plays a crucial role in protecting cells against osmotic stress,
exhibiting anti-inflammatory and antioxidant properties.
Furthermore, low betaine levels have been linked to increased
intestinal dysbiosis, oxidative stress, inflammation, and kidney
damage, underscoring its significance as a metabolite for assessing
the stages of CKD (38, 39). Therefore, patients with CKD may
benefit from incorporating betaine-rich diets into their diets.
Together, the available evidence generally supports using the
JPYS formula as an effective modulator of amino acid metabolism
during macrophage polarization.

One previous study demonstrated that amino acids play a
significant role in modulating the inflammatory resolution
processes, particularly through their interaction with macrophages,
specifically in terms of polarization and secretion (40). In the current
study’s enrichment analyses, the “Glycine, Serine, and Threonine
Metabolism” pathway (KEGG map 00260) was shown to play a
crucial role in the mechanism of action in JPYS treatment by
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regulating immunity and mitigating inflammatory damage.
Furthermore, betaine in JPYS promotes the upregulation of glycine,
which further enhances the expression of serine and threonine.
Elevated levels of serine also facilitate tryptophan metabolism.
Finally, the activation of amino acid metabolism, particularly the
glycine, serine, and threonine metabolism pathways, regulates
macrophage polarization and ultimately alleviates renal immune
and inflammatory damage.

Treatment with JPYS, which stands for “strengthening the spleen
and kidney,” is a traditional approach in Chinese medicine that aims
to enhance blood circulation, eliminate dampness, and detoxify the
body (41, 42). The JPYS formula has been widely applied in clinical
settings and previous research has highlighted its various effects in
delaying CKD progression. However, there is a research gap
regarding the impact of the JPYS formula on immune function,
which is crucial in understanding its potential therapeutic effects.

This study employed network pharmacology, RNA-seq,
proteomic and metabolic analysis both in vivo and in vitro. We
hypothesize that the JPYS formula elevates betaine levels in the
kidney, thereby impacting amino acid synthesis and metabolism,
particularly in pathways related to glycine, serine, and threonine
metabolism. Ultimately, this modulation appears to influence
macrophage polarization, which may represent a potential target
for the JPYS formula in order to mitigate inflammatory injury and
provide protection against CKD. Additionally, the study explored
the formula’s role in immune regulation, inflammation modulation,
in macrophage polarization, and its impact on metabolic changes to
inhibit the progression of CKD.

5 Conclusion

Taken together, our findings suggest that the JPYS formula exerts its
therapeutic effects through multiple mechanisms. These mechanisms
include modulating inflammation, immune response, and macrophage
polarization, as well as influencing metabolic changes. The interaction
between amino acid metabolism and polarization, specifically the
involvement of tryptophan in M1 polarization and betaine in M2
polarization, is a crucial mechanism of the JPYS formula in reducing
inflammatory damage in CKD and decelerating its progression.
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Background: Colorectal cancer (CRC) is a highly heterogeneous tumor, with
significant variation in malignant cells, posing challenges for treatment and
prognosis. However, this heterogeneity offers opportunities for personalized therapy.

Methods: The consensus non-negative matrix factorization algorithm was
employed to analyze single-cell transcriptomic data from CRC, which helped
identify malignant cell expression programs (MCEPs). Subsequently, a crosstalk
network linking MCEPs with immune/stromal cell trajectory development was
constructed using Monocle3 and NicheNet. Additionally, bulk RNA-seq data were
utilized to systematically explore the relationships between MCEPs, clinical features,
and genetic mutations. A prognostic model was then established through Lasso and
Cox regression analyses, integrating clinical data into a nomogram for personalized
risk prediction. Furthermore, key genes associated with MCEPs and their potential
therapeutic targets were identified using protein-protein interaction networks,
followed by molecular docking to predict drug-binding affinity.

Results: We classified CRC malignant cell transcriptional states into eight distinct
MCEPs and successfully constructed crosstalk networks between these MCEPs
and immune or stromal cells. A prognostic model containing 15 genes was
developed, demonstrating an AUC greater than 0.8 for prognostic evaluation
over 11to 10 years when combined with clinical features. A key drug target gene
TIMP1 was identified, and several potential targeted drugs were discovered.

Conclusion: This study demonstrated that characterization of the malignant cell
transcriptional programs could effectively reveal the biological features of highly
heterogeneous tumors like CRC and exhibit significant potential in tumor
prognosis assessment. Our research provides new theoretical and practical
directions for CRC prognosis and targeted therapy.

KEYWORDS

colorectal cancer, tumor heterogeneity, prognosis, therapy, single-cell transcriptomics,
spatial transcriptomics
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1 Introduction

Colorectal cancer (CRC) is one of the three most common
cancers worldwide and the second leading cause of cancer-related
deaths, driven by its profound molecular and cellular heterogeneity
(1-3). CRC is primarily classified into two genetic subtypes—
chromosomal instability (CIN) and microsatellite instability
(MSI)—with distinct biological behaviors and therapeutic
responses (4-7). Immune checkpoint blockade (ICB) therapy has
shown efficacy in advanced MSI-H tumors, yet most patients
remain unresponsive, underscoring the need for novel biomarkers
(8-10). Molecular subtyping approaches, such as the Consensus
Molecular Subtypes (CMS) classification, integrate bulk
transcriptomic and genomic data to stratify CRC into four
prognostic subtypes (CMS1-4) (11). However, these bulk-level
analyses fail to resolve the continuum of malignant cell states or
their dynamic crosstalk with the tumor microenvironment (TME)
(12, 13).

Recent advances in single-cell and spatial transcriptomics have
revolutionized cancer research by enabling high-resolution
dissection of tumor heterogeneity. Single-cell RNA sequencing
(scRNA-seq) and ATAC-seq reveal transcriptional and epigenetic
diversity within malignant cells, while spatial technologies map
cellular interactions in TME niches (14-17). Despite these
advances, existing studies often categorize malignant cells into
discrete subtypes or focus on isolated TME components,
neglecting the continuum of transcriptional plasticity and
bidirectional stromal-immune interactions (18-20). Traditional
methods like PCA or clustering impose rigid structures on
transcriptional data: PCA reduces variance to orthogonal
components but obscures transitional states, while clustering
forces discrete boundaries on inherently continuous programs. In
contrast, consensus non-negative matrix factorization (cNMF)
decodes continuous transcriptional dynamics, as demonstrated by
its ability to resolve plastic cell states in lung cancer (21).

To advance beyond these limitations, this study integrates single-
cell and spatial multi-omics data, applying cNMF to decode CRC
heterogeneity. We identified eight continuous transcriptional
programs (MCEPs) in malignant cells, encompassing dynamic
phenotypes such as hypoxia adaptation, partial EMT plasticity, and
glandular differentiation. By combining spatial co-localization with
pseudotime trajectory analysis of stromal and immune cells, we
uncovered how MCEPs remodel the TME through specific
regulatory nodes (e.g., TGFBl-mediated fibroblast activation,
HMGB2-dependent angiogenesis). Furthermore, we developed a
prognostic model integrating MCEP-TME interactions, validated
through protein-protein network analysis and experimental
databases to prioritize therapeutic targets.

The eight MCEPs delineate critical biological dimensions in
colorectal cancer progression (1): Inflammatory-Hypoxia Stress
Program (IHS-P) coordinates hypoxic adaptation and immune
modulation within immune-enriched niches (2); Wnt Signaling
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Stress Program (Wnt-S-P) drives canonical Wnt activation in
tumor cores (3); Proliferation Stress Program (PS-P) governs cell
cycle progression through MYC/mTORCI1 signaling (4);
Inflammatory Epithelial pEMT Program (IE-pEMT-P) bridges
interferon responses with partial EMT plasticity (5); Intermediate
PEMT Program (I-pEMT-P) mediates TGFB1-dependent stromal
activation (6); Mesenchymal pEMT Program (M-pEMT-P)
executes ECM remodeling in stromal compartments (7); Cell
Cycle Program (CC-P) regulates pan-tumoral mitotic processes
(8); Glandular Secretion Program (GS-P) maintains epithelial
differentiation near normal tissues. This framework deciphers
CRC heterogeneity through malignant cell state dynamics and
their spatial-ecological networks, enabling prognostic prediction
and therapeutic target discovery for precision oncology.

2 Materials and methods

2.1 Download and preprocessing of single-
cell and spatial transcriptomics
sequencing data

Single-cell RNA sequencing data were processed using Seurat
(v5.1.0) with rigorous quality control. Three publicly available human
colorectal cancer datasets were analyzed: GSE166555 (13 tumors, 12
normals) (22), GSE200997 (16 tumors, 7 normals) (23) from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/), and syn26844071 (141 tumors, 39 normals) (24) from the
Synapse database (https://www.synapse.org/). Doublets were
removed using Scrublet (v0.2.3), followed by gene/cell filtering
criteria: genes detected in >3 cells, cells expressing =250 genes,
UMI counts <15,000, mitochondrial gene percentage <20%, and
erythrocyte gene ratio <1%.

Spatial transcriptomics data were obtained from the 10x
Genomics Visium HD platform (8 pum resolution) and
downloaded from the official 10x Genomics website (https://
www.10xgenomics.com/), comprising a total of three samples
(25). Quality control was performed on the spatial
transcriptomics data, with spots retained for downstream analysis
meeting the following thresholds: detection of =10 genes, UMI
counts >20, and mitochondrial gene ratio <25%.

2.2 Cell annotation for single-cell and
spatial transcriptomics data

scRNA-seq data underwent log-normalization and
identification of highly variable genes (vst method). Batch
correction was performed using Harmony (v0.1.0). Cell types
were annotated through a two-step approach: 1) Initial
classification using SingleR (v2.6.0) and CellTypist (v1.6.3) with
canonical markers; 2) Refinement via secondary dimensionality
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reduction and iterative CellTypist-based annotation, followed by
removal of misclassified cells.

For spatial data, we implemented memory-efficient processing
by subsampling 50,000 points using SketchData. Cell type
deconvolution was performed using RCTD (v2.2.1) with scRNA-
seq data as reference. Each spatial sample underwent independent
dimensionality reduction and annotation.

2.3 ldentification of malignant epithelial
cells and gene expression
program profiling

Epithelial cells were isolated from the full cell atlas and
subjected to chromosomal copy number variation (CNV) analysis
using inferCNV (v1.18.1), with normal colorectal epithelial cells as
the reference. A CNV score matrix was generated, and unsupervised
K-means clustering partitioned cells into malignant or normal
clusters based on CNV-driven cluster purity.

For malignant cell subtyping, consensus high-variance genes
were identified through 200 iterations of 75% subsampling. Genes
recurrently ranked among the top 2,500 highly variable genes in
>150 iterations were retained. These genes underwent non-negative
matrix factorization ((NMF) to decompose the expression matrix
into gene expression programs (GEPs) and their corresponding
activity scores. The optimal number of GEPs was determined by
minimizing reconstruction error and maximizing stability via elbow
plot analysis.

To define high-weight genes within each MCEP, genes were
ranked by their absolute weights in the ctNMF gene coefficient
matrix. The top 100 genes per program, exhibiting the strongest
association with each transcriptional module, were selected for
downstream spatial mapping. Spatial enrichment scores for these
gene sets were computed using the AUCell R package (v1.24.0),
enabling visualization of MCEP distribution patterns across
tissue sections.

2.4 Pseudotime analysis

Developmental trajectories were reconstructed using Monocle3
(v1.3.5) with UMAP for dimensionality reduction. Cell subtypes
were pre-annotated through immune and stromal cell clustering,
which revealed preliminary developmental hierarchies. To resolve
ambiguous differentiation origins arising from complex branching
trajectories, we implemented a hybrid strategy for root node
selection (1): For lineages with biologically established progenitor-
differentiated cell relationships (e.g., T cell and B cell hierarchies),
root nodes were manually assigned to progenitor states based on
canonical marker expression and prior biological knowledge (2);
For cell types lacking definitive developmental origins, root nodes
were computationally determined by selecting the subpopulation
with the highest transcriptional immaturity index, as quantified by
CytoTRACE2 (v1.0.0). Trajectory-associated genes were identified
using Monocle3’s graph_test function with “neighbor_graph=
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principal_graph” to evaluate gene expression dynamics along
reconstructed paths.

2.5 Expression program crosstalk networks

Intercellular crosstalk networks were constructed by defining
trajectory-associated genes (Moran’s |I| > 0.25, q < 0.05) from each
malignant cell population as target gene sets. For each MCEP, the
top 100 weighted genes in expression programs were selected as
candidate regulators. Ligand-target interactions were predicted
using NicheNet (v2.1.5), generating regulatory potential matrices
where malignant cell regulators were prioritized based on their
capacity to modulate target gene sets. Potential interactions in the
lowest tertile of regulatory scores were nullified to eliminate
spurious associations. Final immune and stromal interaction
networks were reconstructed in Cytoscape (v3.10.2) using
thresholded matrices for edge weighting.

2.6 Bulk sequencing data sources

Bulk RNA-seq data and simple nucleotide variation (SNV) data
for colorectal cancer were obtained from The Cancer Genome Atlas
(TCGA) database (https://www.cancer.gov/ccg/research/genome-
sequencing/tcga). Using the R package TCGAbiolinks (v2.30.4),
we retrieved RNA-seq data from 581 colorectal cancer patients and
51 normal colorectal control samples, along with SNV data for 538
patients. Clinical data for TCGA patients and pan-cancer gene
expression profiles were additionally acquired from the UCSC Xena
database (https://xena.ucsc.edu/).

To complement TCGA data, gene expression microarray
datasets and corresponding clinical information were downloaded
from the GEO database. Datasets included GSE39582 (26),
GSE17536 (27), GSE17537 (27), GSE29621 (28), GSE38832 (29),
GSE143985 (30), and GSE161158 (31), all generated on the GPL570
platform. From GSE39582, GSE17536, GSE17537, GSE29621, and
GSE38832, overall survival (OS) data were extracted. After filtering
samples with missing survival time, status, or non-positive survival
time, 573, 177, 55, 65, and 122 samples were retained, respectively.
Disease-free survival (DFS) and recurrence/survival status data
were obtained from GSE143985 and GSE161158. Following
similar quality control, 91 and 174 samples were
retained, respectively.

2.7 Differential and enrichment analyses

To further investigate the changes in expression program-
related genes at the bulk level, we integrated two distinct gene
cohorts: 1) the top 100 weighted genes from each MCEP module,
and 2) computationally predicted target genes in the MCEP-
immune/stromal cell crosstalk network. Differential gene
expression analysis was performed on this merged gene set using
bulk RNA-seq data from the TCGA cohort through the R package

frontiersin.org


https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://xena.ucsc.edu/
https://doi.org/10.3389/fimmu.2025.1556386
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

DESeq2 (version 1.42.1). Statistical significance was defined as
absolute Fold Change > 1.5 and padj < 0.05. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were subsequently conducted on the identified
differentially expressed genes (DEGs) using the clusterProfiler
package (version 4.2.2) to characterize their functional roles.

2.8 Consensus clustering and intra-
cluster comparison

Differentially expressed genes from TCGA were subjected to
univariate Cox regression analysis (survival package v3.5-8, p<0.05)
to identify survival-associated genes. Consensus clustering via
ConsensusClusterPlus (v1.66.0) with 500 bootstraps (80% sample
resampling) and K-means (Euclidean distance) identified optimal
clusters (k=2-10) by evaluating consensus matrices and cumulative
distribution functions (CDF). Subtype-specific survival differences
were assessed by Kaplan-Meier analysis, while chi-square tests
evaluated clinical characteristics (gender, age, stage). Mutation
landscapes were visualized using maftools (v2.18.0), highlighting
the top 15 recurrently mutated genes per subtype.

2.9 Construction of the prognostic model

Gene expression data were obtained from TCGA and seven
GEO datasets (GSE39582, GSE17536, GSE17537, GSE29621,
GSE38832, GSE143985, GSE161158). Batch effects were mitigated
through z-score normalization followed by batch correction using
the ‘removeBatchEffect' function (limma package v3.58.1). The
TCGA and GSE39582 cohorts were partitioned into a training set
(70% of samples) and an internal validation set (30%), while
remaining datasets served as external validation cohorts.

To address feature redundancy, genes identified by univariate
Cox regression (p < 0.05) were subjected to Lasso regression
(glmnet v4.1-4) for dimensionality reduction. A stepwise
backward Cox regression was then applied to optimize model
complexity by minimizing the Akaike Information Criterion (AIC).

Risk scores were computed for all samples across training and
validation cohorts. Survival differences between high- and low-risk
groups (stratified by median risk scores) were evaluated using
Kaplan-Meier analysis with log-rank tests. Predictive performance
was quantified via time-dependent ROC curves and AUC values.
Model robustness and clinical applicability were systematically
validated across internal and external datasets using survival
outcomes and AUC consistency.

2.10 Bulk immune landscape and
calculation of single-cell and spatial
risk scores

To explore the biological relevance of our prognostic model, we
performed tumor immune microenvironment analysis on the
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TCGA cohort using the IOBR package (v0.99.9). Immune cell
composition was quantified by integrating eight computational
algorithms (MCPcounter, EPIC, xCell, CIBERSORT, IPS,
quanTIseq, ESTIMATE, and TIMER). Spearman correlation
analysis was then applied to evaluate associations among immune
infiltration scores, prognostic feature gene expression, and sample
risk scores.

For single-cell and spatial transcriptomic data, we adapted our
risk scoring approach to address inherent data sparsity. Based on
the regression coefficients from the linear prognostic model, feature
genes were partitioned into two subsets: a positive-coefficient subset
(PosRisk genes) and a negative-coefficient subset (NegRisk genes).
The AddModuleScore function was employed to calculate
PosRiskScore and NegRiskScore for each subset independently.
Final RiskScore was derived as PosRiskScore minus NegRiskScore.
This strategy enabled robust quantification of model-associated
biological processes at cellular and spatial resolutions while
mitigating technical limitations of sparse transcriptomic data.

2.11 Construction of a nomogram

Univariate Cox regression analysis was performed on TCGA
cohort data to preliminarily identify variables (risk score, age,
gender, tumor stage, and other clinical features) associated with
overall survival. Subsequently, multivariate Cox regression analysis
incorporating all candidate variables without prior feature selection
was conducted to evaluate their independent prognostic
contributions while adjusting for potential confounders.

A nomogram integrating the risk score and significant clinical
predictors was developed using the regplot package (v1.1) to
visualize survival probability estimates. Time-dependent receiver
operating characteristic (ROC) analyses spanning 1-10 years were
implemented to quantify predictive accuracy through area under
the curve (AUC) calculations. Model calibration was validated using
the rms package (v6.8-1) by comparing predicted versus observed
survival probabilities via bootstrapped calibration curves (1,000
resamples). Clinical utility was further assessed through decision
curve analysis (DCA) using the rmda package (v1.6), which
quantified net benefits across threshold probabilities ranging from
0% to 100%. This comprehensive validation framework ensures
methodological rigor and supports clinical translation of the
prognostic model.

2.12 Key genes identification with
malignant cell expression programs and
drug screening

Differential expression analysis was performed on prioritized
genes derived from malignant cell expression programs and their
microenvironment-associated targets. Resultant genes were
analyzed through the STRING database (https://cn.string-db.org/)
to construct protein-protein interaction (PPI) networks, which were
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further visualized and analyzed in Cytoscape (v3.9.1). Core hub
genes were systematically identified using the cytoHubba plugin
(v0.1) with four topology-based algorithms: MNC, MCC, DMNC,
and Degree.

Expression differences of candidate genes between tumor and
adjacent normal tissues were statistically validated using the
Wilcoxon rank-sum test. Immunohistochemical images from The
Human Protein Atlas (HPA, https://www.proteinatlas.org/) were
utilized as supporting evidence.

For therapeutic exploration, three-dimensional structures of
key targets were retrieved from UniProt (https://
www.uniprot.org/), and 2,391 FDA-approved small-molecule
drugs were sourced from DrugBank (https://go.drugbank.com/).
Structural data standardization was implemented using rdkit
(v2023.9.6) and meeko (v0.5.1), followed by protein active site
prediction via the Prankweb database (https://prankweb.cz/).
Molecular docking simulations were executed with AutoDock
Vina (v1.2.5), prioritizing compounds based on binding affinity
(AG, kcal/mol). The top two ligands exhibiting optimal docking
scores were selected for binding conformation visualization using
PyMOL (v3.1.0a0).

2.13 Software and data analysis tools

Single-cell and spatial transcriptomic analyses were performed
using R (v4.3.2), with the cNMF algorithm (https://github.com/
dylkot/cNMF) implemented in Python (v3.8.19). Drug virtual
screening was conducted using Python (v3.10.14). Data
visualization was facilitated by R packages, including SCP
(v0.5.6), ggplot2 (v3.5.1), and ComplexHeatmap (v2.18.0).
Univariate and multivariate Cox regression analyses were
executed using the survival package (v3.5-8), while time-
dependent AUC values were computed with the timeROC
package (v0.4). Kaplan-Meier survival curves were generated
using the survminer package (v0.4.9).

3 Results

3.1 Identification of malignant cells and
characterization of heterogeneous
expression programs

In this study, we integrated single-cell transcriptomic data from
three datasets (GSE166555, GSE200997, and syn26844071),
comprising 58 normal colorectal samples and 170 CRC samples.
Following rigorous quality control and dimensionality reduction, a
total of 320,475 cells were classified into 10 major cell types: B cells,
T/NK cells, epithelial cells, plasma cells, fibroblasts, myeloid cells,
endothelial cells, mast cells, mural cells, and enteric glial
cells. Among these, T/NK cells were the most abundant (135,789
cells), followed by myeloid cells and fibroblasts (Figure 1A,
Supplementary Figure S1-Supplementary Figure S2, and
Supplementary Figure S3A-G). These refined annotations were
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applied to three high-resolution spatial transcriptomic datasets
(ST1, ST2, ST3), enabling the visualization of the spatial
distribution of different cell types within colorectal cancer
tumors (Figure 1B).

To further investigate CRC heterogeneity, epithelial cell data
were extracted from the comprehensive cell atlas. To ensure the
purity of the epithelial cells, we re-annotated them using the SingleR
and CellTypist algorithms, removing incorrectly classified cells
(Supplementary Figure S4A-B). CNV scoring was performed on
epithelial cells from tumor samples using the inferCNV algorithm,
with normal epithelial cells serving as the reference. K-means
clustering of the CNV score matrix revealed that epithelial cells
from normal samples predominantly clustered in clusters 10, 15,
and 25, exhibiting no significant CNV alterations. In contrast,
epithelial cells from tumor samples showed clear gene copy
number alterations, distinguishing them as malignant cells
(Figure 1C, Supplementary Figure S4C). Malignant epithelial cells
were identified by excluding clusters 10, 15, and 25 from the
tumor samples.

Given the high heterogeneity of CRC cells, traditional clustering
methods were insufficient to fully capture their complexity.
Therefore, we applied the cNMF algorithm, which demonstrated
high stability and low error when set to eight expression programs
(Figure 1D). Consensus analysis confirmed the robustness of these
eight expression programs, with substantial consistency across
repeated experiments and outliers identified using a threshold of
0.05 (Figure 1E, Supplementary Figure S4D). These eight stable
expression programs effectively captured the transcriptional
characteristics of malignant CRC cells, providing a reliable
framework for further analysis of CRC heterogeneity.

To visualize the spatial distribution of these MCEPs, we applied
the AUCell algorithm to spatial transcriptomic data, scoring each
sample based on the top 100 weight genes of each program.
Enrichment analysis of the top 100 weight genes from each
program was conducted, primarily referencing a gene set from
the study by Barkley, D. et al. on pan-cancer tumor cell
heterogeneity, supplemented with enrichment results from
Hallmark Gene Sets and KEGG Pathways (32). This analysis
revealed that MCEP 1, 2, and 7 were associated with stress
responses. MCEP 1 was enriched in pathways related to hypoxia,
antigen processing and presentation, chemokine signaling, and IL-
17 signaling, while MCEP 2 was enriched in Wnt signaling. MCEP 7
was enriched in cell proliferation-related pathways, including the
G2M checkpoint, mTORCI signaling, and Myc targets V1. These
programs were categorized as Inflammatory-Hypoxia Stress
Expression Program (IHS-P), Wnt Signaling Stress Expression
Program (Wnt-S-P), and Proliferation Stress Expression Program
(PS-P), respectively. The spatial distribution of these MCEPs
showed that THS-P was prevalent in malignant and immune cell-
rich regions, while Wnt-S-P and PS-P were more confined to
malignant cells (Figures 1F, G).

Additionally, MCEP 3, 4, and 6 were associated with pEMT
states. MCEP 3 was enriched in pEMT states and interferon
responses, with higher spatial scores observed in both malignant
and normal epithelial cells. MCEP 6, enriched in mesenchymal,
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FIGURE 1

Functional characterization of malignant cell expression programs in colorectal cancer. (A) UMAP visualization of major cell types color-coded by
cell lineage following quality control. (B) Spatial mapping of cell type distributions across three independent colorectal cancer specimens (ST1-3)
using spatial transcriptomics. (C) Copy number variation (CNV) heatmap of epithelial cells stratified by k-means clustering (left panel). Tumor-derived
cells (red) and normal counterparts (blue) are segregated based on chromosomal amplification (red) and deletion (blue) patterns. (D) Model selection
curve demonstrating the optimal number of expression programs determined by consensus non-negative matrix factorization (CNMF), balancing
stability and reconstruction error. (E) Consensus matrix establishing robust program identification. (F) Spatial activation patterns of MCEPs across
tumor sections (ST1-3). (G) Functional enrichment analysis integrating pan-cancer malignant cell states (Barkley et al.), Hallmark gene sets, and
KEGG pathways.
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myogenesis, and ECM-receptor interaction pathways, displayed
preferential spatial scores in the stromal compartment. Based on
these findings, MCEPs 3, 4, and 6 were categorized as Inflammatory
Epithelial-type pEMT Program (IE-pEMT-P), Intermediate Type
PEMT Expression Program (I-pEMT-P), and Mesenchymal Type
PEMT Expression Program (M-pEMT-P), respectively. The spatial
distributions and enrichment results for these programs are shown
in Figures 1F, G.

MCEP 5, enriched in cell cycle-related pathways such as Cell
Cycle, E2F Targets, and G2M checkpoint, exhibited a dispersed
spatial distribution across malignant and epithelial cells, and was
categorized as the Cell Cycle Expression Program (CC-P). MCEP 8,
primarily enriched in glandular and protein processing pathways in
the endoplasmic reticulum, showed a preference for normal
epithelial cells and was categorized as the Glandular Secretion
Expression Program (GS-P). The spatial distributions and
enrichment analyses for MCEP 5 and MCEP 8 are also shown in
Figures 1F, G.

3.2 Crosstalk networks between malignant
cells and immune cells mediated by
differential MCEPs

To investigate the cell-cell interactions between malignant cells
and immune cells, we first extracted each immune cell type (T/NK
cells, B/plasma cells, and myeloid cells) from the comprehensive cell
atlas for further detailed cell type annotation. T/NK cells were
subdivided into 16 subpopulations, including CD4 Naive, CD4
Effector/Memory, and ILC; B/plasma cells were further
categorized into 6 subpopulations, such as Naive B, Memory B,
and IgA Plasma; Myeloid cells were divided into 10 subpopulations,
including Macro_C1QC, Mast cells, and Mono_CD16 (Figure 2A,
Supplementary Figure S5-7). Subsequently, pseudotime analysis
was performed based on the secondary annotation results of each
immune cell type and the stemness scores of each cell type, leading
to the identification of genes associated with developmental
trajectories in each immune cell population (Figure 2B,
Supplementary Figure S8A).

These genes, associated with the pseudotime developmental
trajectory of immune cell subsets, were used as target gene sets. For
each MCEP, we selected the top 100 weighted genes in the
expression programs as candidate regulators (Figure 2C). Among
the three stress-related MCEPs, IHS-P had the highest number of
regulatory factors, with HLA-DMA and PLAU affecting more target
genes than other factors. In the three pEMT-related MCEPs, I-
PEMT-P had the most regulatory factors, with TGFBI having the
greatest potential impact. Regulatory factors EDN1 and AREG were
also abundant and shared between I-pEMT-P and IHS-P. In CC-P,
HMGBI had the most target genes, while TFF1 and WNT4 were
more prominent in GS-P.

Regarding immune cell responses to MCEP crosstalk, TGFB1
and CALR were the main regulatory factors influencing T/NK cells,
with TGFBI originating from I-pEMT-P and CALR from IHS-P
(Figure 2C, Supplementary Figure S9A, Supplementary Figure
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S10A). Notable downstream target genes of TGFB1 in T/NK cells
included CCL3, FOXP3, and GZMB. For B/plasma cells, EDN1 and
TGFB1 were the main regulatory factors, with EDN1 shared
between THS-P and I-pEMT-P (Figure 2C, Supplementary Figure
S9B, Supplementary Figure S10B). Potential target genes of EDN1
in B cells included NCF1, PTPRC, and SLC2A3, while TGFBI target
genes included TIMP1, VIM, and CD38. In myeloid cells, the
primary regulatory factors were TGFB1 and ANXAI, with
ANXALI originating from I-pEMT-P (Figure 2C, Supplementary
Figure S9C, Supplementary Figure S10C). Potential target genes of
TGFBI1 in myeloid cells included ASB2, IGF1, and MMP9.

KEGG pathway enrichment analysis of the potential target
genes in these immune cell subsets revealed significant biological
insights (Figure 2D). The target genes of T/NK cells regulated by
malignant cells were enriched in pathways such as Cytokine
—cytokine receptor interaction, Th17 cell differentiation, and
Chemokine signaling pathway, indicating a key role of cytokine
networks in anti-tumor immune responses. The potential target
genes of B/plasma cells were enriched in pathways such
as Fc gamma R-mediated phagocytosis and Leukocyte
transendothelial migration, suggesting their role in tumor-
associated immunosuppression. In myeloid cells, the target genes
regulated by malignant cells were enriched in IL-17 signaling
pathway and TNF signaling pathway, highlighting their
involvement in immune regulation and inflammation within the
tumor microenvironment. These findings provide valuable
biological insights for the development of future cancer therapies.

3.3 Crosstalk networks between malignant
cells and stromal cells mediated by
differential MCEPs

To investigate the effects of malignant cells on stromal cells, we
performed detailed cell type annotation and stemness analysis on
four stromal cell types: endothelial cells, mural cells, fibroblasts, and
enteric glial cells, using methods similar to those employed for
immune cell analysis (Figure 3A, Supplementary Figure S8B,
Supplementary Figure S11-14). By integrating detailed
annotations and stemness analysis, we reconstructed the
developmental trajectories of these stromal cells and identified
genes associated with their development (Figure 3B). We used
high-weight genes from each MCEP as ligands to identify
potential target genes in stromal cells associated with pseudotime
trajectories, constructing a crosstalk network between malignant
and stromal cells (Figure 3C).

Regarding regulatory factors in MCEPs affecting stromal cells,
IHS-P had the highest number of potential regulatory factors, with
PLAU affecting the most target genes. In Wnt-S-P, MIF was the
only potential regulatory factor, while HSP90B1 and CDH1 were
found in PS-P. Among the pEMT-related MCEPs, M-pEMT-P had
more potential regulatory factors than the others, with BMP4
having the most target genes. I-pEMT-P’s top regulatory factor
was TGFBI1, with AREG and EDN1 also shared with IHS-P. CC-P
had two regulatory factors, HMGB1 and HMGB2, with HMGBI
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FIGURE 2

Crosstalk networks between MCEPs and immune cells. (A) Secondary dimensionality reduction annotation of three immune cell types (T/NK cells, B/
Plasma cells, Myeloid cells). (B) Pseudotemporal trajectories reconstructed by Monocle3 for T/NK cells, plasma cells, and myeloid cells. (C) Ligand-
receptor interaction network between MCEP-derived factors (circles, size scaled by target connectivity) and immune cell targets (diamonds, line
width reflecting interaction strength). (D) Pathway enrichment analysis of target genes using hypergeometric testing, showing top five KEGG
pathways per immune subset (point size: gene count; color intensity: -log10[P-value]).

affecting more target genes, although HMGB2 exhibited stronger
interactions with certain stromal targets. TFF1 was the top
regulatory factor in GS-P.

From a stromal cell perspective, the key regulatory factors for
endothelial cells were HMGB2, TGFB1, and EDN1. HMGB2 target
genes, associated with proliferative endothelial cells, included
ASPM, AURKB, and BIRC5 (Figure 3C, Supplementary Figure
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S15A, Supplementary Figure S16A). TGFB1 and EDNI1 target
genes, including CTGF, EDNI, IGFI, and CALCRL, are mainly
involved in angiogenesis. For mural cells, HMGB2, TGFB1, and
EDNI1 were the main regulatory factors, with HMGB2 targets such
as FOXM1, KIF20A, and KIF2C, expressed in proliferative mural
cells. TGFB1 and EDNI targets included CDKNIA, CNNI,
COL1A1, and EDNRB, contributing to cell proliferation and
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stromal stability (Figure 3C, Supplementary Figure SI5B,
Supplementary Figure S16B). In fibroblasts, HMGB2, TGFB1, and
EDNI were also key regulatory factors, with TGFB1 target genes
including NOX4, THBS2, and DES (Figure 3C, Supplementary
Figure S15C, Supplementary Figure S16C). Enteric glial cells had
fewer potential crosstalk genes, with top regulatory factors ANXA1I,
TIMP1, and HLA-A, and target genes such as COL1Al and
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COL3A1, which may support tumor structure and growth
(Figure 3C, Supplementary Figure S15D, Supplementary Figure
§16D). Overall, the primary regulatory factors influencing stromal
cell crosstalk were HMGB2, TGFB1, and EDNI1, with HMGB2
regulating cell cycle-related targets.

Additionally, KEGG pathway enrichment analysis of potential
crosstalk target genes for each stromal cell type revealed significant

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1556386
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

biological insights (Figure 3D). Endothelial cell targets were
enriched in pathways such as the p53 signaling pathway, FoxO
signaling pathway, Cellular Senescence, and Cell Cycle, suggesting
their adaptability in the tumor microenvironment. Mural cell
targets were enriched in the Cell Cycle, p53 signaling pathway,
Focal Adhesion, Relaxin signaling pathway, and ECM-receptor
interaction, emphasizing their roles in cell proliferation and
matrix remodeling. Fibroblast targets were enriched in the
Relaxin signaling pathway, Focal Adhesion, IL-17 signaling
pathway, Protein Digestion and Absorption, and TNF signaling
pathway, reflecting their dual role in immune regulation and matrix
homeostasis. Enteric glial cell targets were enriched in IL-17
signaling, TNF signaling, Relaxin signaling, Osteoclast
differentiation, and Protein Digestion and Absorption pathways,
indicating their role in immune function and matrix support in the
gut microenvironment.

3.4 MCEPs validation in CRC progression
and development of MCEPs-related
prognostic model

We conducted a validation study using the TCGA CRC cohort
to explore the relationship between the 8 MCEPs and CRC
progression. First, we merged two gene sets: 1) the top 100
weighted genes from each MCEP module, and 2) predicted target
genes from the MCEP-immune/stromal cell interaction network.
Differential expression analysis was then performed comparing
tumor versus normal tissues. This analysis identified 323
upregulated genes and 215 downregulated genes (Figure 4A).

To validate the relationship between these MCEPs and CRC
onset and progression, we conducted univariate Cox regression
analysis and identified 75 differentially expressed genes (DEGs)
associated with survival, including 26 risk genes and 49 protective
genes (Figure 4B). Clustering analysis based on these genes divided
the TCGA cohort into two subtypes (Figure 4C, Supplementary
Figure S17). Survival analysis revealed significant differences
between the subtypes, with patients in subtype C1 showing
significantly higher survival rates compared to those in subtype
C2 (Figure 4D). Chi-square tests indicated significant differences in
tumor stage, lymph node metastasis, and distant metastasis,
suggesting that tumors in the C2 subtype progressed more rapidly
and were more prone to metastasis compared to those in the Cl
subtype (Figure 4E).Genomic analysis revealed that the most
frequently mutated genes in subtype C1 were APC (70%), KRAS
(48%), and TP53 (47%) (Supplementary Figure S18A), while in
subtype C2, the most frequently mutated genes were APC (81%),
TP53 (74%), and TTN (44%) (Supplementary Figure S18B).

A prognostic model for assessing CRC patient survival was
developed using the identified genes. LASSO regression analysis was
performed to reduce the feature set from the 75 survival-related
DEGs identified in the previous study to 29 genes at the minimum A
value (A = 0.0153), including genes such as CLCA1, NPDC1, and
MUCI16 (Figures 4F, G). A backward stepwise Cox regression
method was then applied to further reduce the feature set to 15
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genes, with the regression coefficients visualized in a lollipop plot.
The combination of LASSO and backward stepwise Cox regression
methods enabled the identification of the most robust prognostic
markers, minimizing overfitting while ensuring the model’s
predictive accuracy. Thus, these 15 genes were selected to
establish the final prognostic model. Seven features had positive
coefficients, with CLCA1 having the largest coefficient, while eight
features had negative coefficients, with ITLN1 showing the largest
absolute coefficient (Figure 4H).

In the training set, internal testing set, and external independent
validation set, samples were divided into high-risk and low-risk
groups based on the median risk score for each dataset. Significant
survival differences were observed between the two groups
(Figures 4], K). In the training set, the AUC values for 1-year, 3-
year, and 5-year survival were all greater than 0.7; in the internal
testing set, the AUC value for 1-year survival was greater than 0.7,
while those for 3-year and 5-year survival were above 0.65 (Figure 41).
The model also demonstrated excellent predictive performance in the
independent validation set, with only GSE17536 showing a 5-year
survival AUC value lower than 0.65. For all other datasets, the AUC
values for 1-year, 3-year, and 5-year survival were all greater than
0.65. Notably, the GSE29621 dataset showed AUC values for 1-year,
3-year, and 5-year survival above 0.7, and the GSE38832 dataset
exhibited even higher AUC values for all three survival endpoints,
with values exceeding 0.75 (Figure 4I).

To further validate the prognostic prediction capability of this
model, we assessed its ability to predict disease-free survival (DFS)
in the GSE143985 and GSE161158 datasets. Samples were divided
into risk groups based on the median predicted risk score, and
significant differences in DFS were observed between the groups
(Figure 4L). In GSE143985, the AUC values for 1-year and 3-year
DEFS were above 0.65, with the 5-year DES AUC value approaching
0.65. In GSE161158, the corresponding AUC values for DFS were
above 0.65 (Figure 4I). The model was further validated in the
TCGA cohort for disease-specific survival (DSS), progression-free
interval (PFI), and disease-free interval (DFI), showing excellent
predictive performance for DSS and PFI, with significant differences
in median survival times (Figure 4M). For DSS, the AUC values
for 1-year, 3-year, and 5-year survival were all above 0.7,
and for PFI, the AUC values were above 0.65 (Figure 4I).
Notably, the model consistently achieved stable predictive
accuracy across six independent validation cohorts (GSE17536,
GSE17537, GSE29621, GSE38832, GSE143985, and GSE161158)
and multiple clinical endpoints (OS, DFS, DSS, PFI), highlighting its
strong generalizability to diverse patient populations and
survival outcomes.

3.5 Multidimensional biological
interpretation of the prognostic model

To gain further insights into the biological underpinnings of the
prognostic model, the cellular abundance of various cell types in the
TCGA cohort was first calculated using deconvolution methods.
Next, the correlation between each gene in the prognostic model
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and the cell scores was computed, revealing that CCL11, IGF1, and
IGFBP3 were significantly correlated with multiple cell types.
Specifically, these genes were positively correlated with cancer-
associated fibroblasts, stromal score, and Tregs, while negatively
correlated with tumor purity (Figure 6A).

The model was then further dissected at the single-cell level.
Using genes with positive coefficients, a PosRiskScore for each cell
was calculated, and similarly, a NegRiskScore was calculated using
genes with negative coefficients. The total RiskScore for each cell was
derived by computing the difference between PosRiskScore and
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NegRiskScore. The distribution of these scores was first visualized,
and distinct distribution patterns for PosRiskScore and NegRiskScore
were observed (Figure 6B). Specifically, PosRiskScore was found to be
higher in endothelial cells and pre-cancer-associated fibroblasts
(preCAFs), potentially linked to angiogenesis and epithelial-
mesenchymal transition. In contrast, NegRiskScore was elevated in
iCAFs, epithelial cells, normal fibroblasts, and myeloid immune cells,
with NegRiskScore correlating with iCAFs and myeloid immune
cells, which might reflect the inflammatory characteristics of the
tumor microenvironment. Higher scores in epithelial cells were also
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observed, which could be indicative of a more epithelial-like
phenotype associated with partial EMT processes (Figure 6C).
Furthermore, the analysis was extended to the spatial
transcriptomics level. It was shown that PosRiskScore was
predominantly localized in the stromal regions of malignant cell
areas, while NegRiskScore was mainly concentrated in the epithelial
regions. Consequently, the final RiskScore had the lowest score in
the epithelial areas and the highest score in the stromal regions, with

10.3389/fimmu.2025.1556386

similar distribution patterns observed across three samples
(Figure 6D). Overall, the positive coefficient features in the
prognostic model were likely to represent higher levels of
mesenchymal traits associated with pEMT, while the negative
coefficient features were likely linked to a more inflammatory
microenvironment and epithelial characteristics of pEMT. Thus,
the final RiskScore reflected the relative balance between epithelial-
mesenchymal features and the degree of inflammation in the
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tumor microenvironment, offering valuable insights into
patient prognosis.

3.6 Integration of risk score and clinical
features to construct a nomogram for
prognosis prediction

To enhance the prognostic accuracy and clinical applicability of
the model, univariate Cox regression analysis was performed on

10.3389/fimmu.2025.1556386

age, gender, clinical stage, Stage_T, Stage_N, Stage_M, and
RiskScore (Figure 5A). Significant survival risk factors were
identified for all features except gender. In multivariate Cox
regression analysis, age, Stage_T, and RiskScore were found to be
independently associated with survival, confirming RiskScore as an
independent prognostic factor (Figure 5B).

A nomogram was subsequently constructed, incorporating age,
gender, clinical stage, Stage_T, Stage_N, and RiskScore (Figure 5C).
It was demonstrated that the nomogram improved clinical
decision-making compared to traditional staging systems through
three key mechanisms: First, continuous risk quantification allowed
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for more precise stratification of patient outcomes than categorical
staging classifications. Second, the multidimensional integration of
molecular risk scores with clinicopathological parameters provided
complementary prognostic information that surpassed the
limitations of anatomical staging alone. Third, the dynamic
estimation of survival probability for specific timepoints (1-10
years) facilitated personalized follow-up planning and therapeutic
decision-making. Stage_ M was excluded from the analysis due to
collinearity with overall stage.

Excellent predictive performance was demonstrated by the
nomogram, with AUC values exceeding 0.8 for survival
predictions at 1, 3, 5, and 10 years (Figure 5D). Strong agreement
between predicted and actual survival probabilities was observed in
calibration curves for 1, 3, and 5 years (Figure 5E). Clinical decision
curve analysis revealed that the nomogram consistently provided
higher net benefits across various threshold probabilities when
compared to both individual clinical parameters and traditional
staging systems (Figure 5F). The enhanced clinical utility of the
nomogram was attributed to its ability to synthesize molecular
biomarkers with conventional staging data, addressing the
heterogeneity within traditional stage categories and enabling
more individualized risk assessment. These findings collectively
validated the effectiveness and clinical applicability of the
proposed model.

3.7 Potential drug therapeutic targets
based on MCEPs

To identify actionable therapeutic targets in CRC, we
systematically analyzed 538 DEGs through PPI network
construction. Four distinct topological algorithms (MNC, MCC,
DMNC, Degree) were employed to prioritize the top 100 hub genes
from the PPI network. Subsequent survival impact analysis revealed
that TIMP1 and IGF1 emerged as prognostic risk genes among
these hub genes. Notably, TIMP1 exhibited consistent identification
across all four algorithms, whereas IGF1 was only captured by MNC
and Degree algorithms (Figure 7A). Based on its algorithm-
independent prioritization and significant association with poor
prognosis, TIMP1 was selected as the principal therapeutic target
for further investigation.

Pan-cancer expression profiling demonstrated significant
TIMP1 upregulation in 15 malignancies (including colorectal
adenocarcinoma [COAD], breast invasive carcinoma [BRCA],
and cholangiocarcinoma [CHOL] as representative examples),
while downregulation was observed in 10 cancer types
(exemplified by kidney chromophobe [KICH] and lung squamous
cell carcinoma [LUSC]) with no significant alterations detected in
other malignancies (Figure 7B). Immunohistochemical validation
via the Human Protein Atlas confirmed elevated TIMP1 protein
levels in CRC, breast cancer, glioma, hepatocellular carcinoma, and
gastric adenocarcinoma (Figure 7C), underscoring its pan-
cancer relevance.
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Virtual screening of 2,000 bioactive compounds against the
TIMP1 structure identified Venetoclax (AG = -12.236 kcal/mol)
and Lumacaftor (AG = -12.129 kcal/mol) as top candidates with
superior binding affinities (Figure 7D). Molecular docking
simulations predicted stable interactions between these
compounds and key TIMP1 functional domains.

These findings computationally nominate TIMP1 as a multi-
cancer therapeutic target, with the identified small-molecule
inhibitors warranting preclinical evaluation for targeted therapy
development in CRC and other TIMP1-driven malignancies.

4 Discussion

In this study, we re-examined the biological characteristics of
CRC by leveraging prior research on malignant cell transcriptional
signatures and identified eight major MCEPs (32). These programs
encompass three stress-related categories (hypoxia-inflammation,
Wnht-related, and proliferation), three EMT subtypes (inflammatory
epithelial, intermediate, and mesenchymal), one cell cycle category,
and one glandular secretion category. Each program is critically
linked to functional roles in regulating malignant cell proliferation,
migration, drug resistance, metastasis, and patient prognosis (33-36).
Traditional molecular subtyping approaches, such as those based on
hypoxic metabolism, cellular senescence, or microenvironmental cell
markers (37-39), often oversimplify tumor heterogeneity. Solid
tumors are multifactorial systems, and reliance on binary
phenotypic classifications risks underestimating inter-individual
variability and obscuring underlying biological processes, thereby
limiting the molecular interpretability of subtypes.

To address this, we employed a programmatic state-based
framework to characterize CRC gene expression, accounting for
potential confounders and mutual exclusivity between states.
Importantly, we emphasized continuity within each state rather
than discrete isolation. For instance, malignant cell partial EMT
was defined as a tripartite continuum (mesenchymal, intermediate,
and epithelial), aligning with the evolving concept of “epithelial-
mesenchymal plasticity” endorsed by the International EMT
Association (40). The tumor microenvironment, a complex
ecosystem sculpted predominantly by malignant cells, has
historically been analyzed by grouping tumor cells homogeneously
or partitioning them into static clusters. In contrast, our crosstalk
analysis originated from malignant cell expression programs,
enabling simultaneous exploration of heterogeneity in both
malignant and stromal/immune compartments.

In our analysis of the eight MCEPs, we identified critical
regulators with potential crosstalk interactions in immune/stromal
compartments, including TGFB1 and HMGBI. Functional
annotation of downstream target genes in immune/stromal cells
revealed biological roles consistent with established mechanisms.
Specifically, TGFP1 signaling dysregulation plays a pivotal role in
colorectal carcinogenesis by governing cell growth, differentiation,
migration, and apoptosis (41-43). Pathological overexpression of
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Core determinant identification and therapeutic exploration. (A) Protein-protein interaction (PPI) network of top 100 survival-associated genes
identified through MNC/MCC/DMNC/Degree algorithms (border color: survival association; fill color: algorithm source). (B) TIMP1 differential
expression across TCGA tumor types versus normal tissues (ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; **** P < 0.0001). (C) TIMP1
immunohistochemical validation in multiple carcinomas and paired normal tissues. (D) Molecular docking of TIMP1 (PDB:3V96) with Lumacaftor
(AG = -12.13 kcal/mol) and Umbralisib (AG = -11.80 kcal/mol), showing binding pocket configurations.

TGEP1 drives epithelial-mesenchymal transition, extracellular matrix
remodeling, and cancer-associated fibroblast activation (44-46).
Notably, TGFPB1 emerged as a key regulator in the I-pEMT-P
program, targeting immune cell genes including FOXP3, CD38,
and MMP9—established mediators of immune evasion and
immunosuppressive TME remodeling (47-49). In stromal
compartments, TGFP1 may further facilitate CAF transformation
and immunosuppressive functions through NOX4-mediated
pathways (50).Meanwhile, nuclear HMGBI1 functions as a
chromatin-binding factor regulating nucleosome organization,
transcriptional control, and genomic stability, whereas extracellular
HMGBI1 modulates cell differentiation, metastatic dissemination, and
apoptosis (51). Concurrently, HMGB2 within the CC-P program
demonstrated regulatory effects on mesenchymal-like cells,

Frontiers in Immunology

modulating pro-angiogenic genes such as AURKB, BIRC5, and
FOXMI1 that coordinate endothelial and vascular smooth muscle
cell proliferation (52-54). This integrated regulatory network analysis
reveals how malignant cell-derived signals orchestrate multicellular
ecosystem dynamics through conserved molecular pathways,
providing mechanistic insights into TME reprogramming during
CRC progression.

CRC prognosis remains challenging due to pronounced tumor
heterogeneity. Existing prognostic models, often anchored to
singular features (e.g., immune, EMT, or metabolic signatures),
provide incomplete assessments. Our integrative model, combining
immune and stromal features, offers enhanced biological
interpretability. Risk stratification revealed that high-risk scores
correlate with mesenchymal-like, immunosuppressive TMEs

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1556386
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

enriched in CAFs, Tregs, and inflammatory markers. Conversely,
low-risk scores associate with epithelial-like phenotypes marked by
partial EMT, reduced stromal activation, and preserved epithelial
integrity. The model incorporates 15 genes, with CLCAl and
ITLN1 exhibiting the strongest prognostic weights. CLCAl, a
tumor suppressor, inhibits CRC progression by suppressing Wnt/
B-catenin signaling and EMT, consistent with its reduced
expression in advanced tumors and inverse correlation with
metastasis (55). ITLNI1, conversely, antagonizes tumor
neovascularization and MDSC accumulation via IL-17D/CXCL2
axis modulation, thereby reshaping the immunosuppressive TME—
a mechanism aligning with its prognostic significance in both CRC
and ovarian cancer (56, 57). Additional contributors, such as
IGFBP3 and ACAA2, further underscore the multifactorial nature
of CRC heterogeneity. Elevated IGFBP3, driven by genetic
predisposition, may enhance CRC risk through IGF1-mediated
mitogenic signaling, as supported by Mendelian randomization
analyses (58). ACAA2, a fatty acid metabolism enzyme, inversely
correlates with cetuximab resistance, particularly in KRAS-mutant
CRC, suggesting its role in metabolic adaptation and therapy
response regulation (59). This framework bridges molecular
mechanisms to clinical outcomes, providing biological
interpretability to the prognostic model.

As an independent prognostic factor, our model achieved an
AUC >0.8 for 10-year outcome prediction when combined with
clinical variables. Integration with TNM staging via a nomogram
improves CRC management by enabling dynamic survival
probability estimation (1-10 years), optimizing adjuvant therapy
selection, surveillance intervals, and resource allocation.

PPI network analysis identified TIMP1 as a hub gene within the
I-pEMT-P program. TIMP1, a matrix metalloproteinase inhibitor,
exhibits context-dependent roles in cancer. In brain metastases,
astrocyte-derived TIMP1 suppresses CD8" T cell activity (60), while
in pancreatic cancer, TIMP1-CD63-ERK signaling drives
neutrophil extracellular trap formation and tumor progression
(61). In CRC, TIMP1 correlates with tumor cell proliferation,
invasion, and poor prognosis (62). Our data suggest that the I-
pEMT-P program may remodel the stromal niche via TIMPI,
influencing tumor progression and clinical outcomes.

4.1 Limitations and future directions

Despite the significant findings, this study has some limitations.
Although single-cell data from over 100 samples were analyzed, the
lack of clinical annotations, such as tumor stage, survival time, and
survival status, restricted our ability to directly correlate expression
programs with tumor progression and patient outcomes. Therefore,
we relied on bulk RNA-seq datasets, which included complete
clinical information. Additionally, while computational
predictions identified key regulators, such as TGFB1 and
HMGB?2, in stromal/immune modulation, their mechanistic roles
remain unvalidated experimentally. Future studies should employ
co-culture models or in vivo systems to confirm these interactions.
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5 Conclusion

This study identified eight distinct MCEPs that characterize the
transcriptional states of CRC malignant cells. We constructed
interaction networks between these MCEPs and immune or
stromal cells, which led to the development of a prognostic model
consisting of 15 genes. Furthermore, TIMP1 was identified as a key
gene, and two potential drugs, Venetoclax and Lumacaftor, were
highlighted for targeted therapeutic strategies. In summary, this
study provides new insights and references for CRC heterogeneity
and prognostic therapy.
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Integrative single-cell and

spatial transcriptomics analysis
reveals MDK-NCL pathway's

role in shaping the
immunosuppressive environment
of lung adenocarcinoma

Yu Fu', Song Li', Yikang Zhao, Xiran Zhang, Xiaolu Mao
and Ran Xu*

Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China

Objectives: The tumor microenvironment (TME) plays a critical role in the
progression of lung adenocarcinoma (LUAD). This study aims to investigate the
cellular composition of the TME in LUAD and assess the role of the MDK-NCL
signaling pathway.

Methods: We employed a multi-omics strategy to investigate LUAD, combining
single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), and bulk
RNA-seq datasets. Publicly available scRNA-seq data and ST data were utilized.
scRNA-seq data underwent quality control, dimensionality reduction, and
clustering to characterize cell populations and identify malignant epithelial
subtypes using the Seurat and inferCNV packages. Spatial transcriptomics data
facilitated the identification of distinct tumor niches, while immune infiltration
and ligand-receptor interactions were analyzed using MCPcounter and Niches.
Experimental validation was performed via real-time PCR and western blotting
on paired LUAD and adjacent normal tissue samples.

Results: sScRNA-seq revealed the presence of multiple immune and stromal cell
populations, with malignant epithelial cells being subdivided into six clusters. The
MDK-NCL axis demonstrated high activity in malignant cells, showing strong
interactions with immune and stromal components. Spatial transcriptomics
revealed nine distinct tumor niches, with MDK-NCL signaling notably
upregulated at the tumor-immune interface, highlighting its role in establishing
an immunosuppressive microenvironment. In both the TCGA-LUAD cohort and
in-house cohort, MDK and NCL were significantly upregulated at the mRNA and
protein levels in tumor samples compared to normal tissues. High MDK-NCL
expression in the TCGA-LUAD cohort correlated with increased TMB, MSI, and
reduced immune cell infiltration. Elevated levels of immune checkpoint genes,
including PD-1 and CTLA-4, in patients with high MDK-NCL expression
suggested a potential resistance to immune checkpoint inhibitors. Moreover,
patients with high MDK-NCL expression exhibited poorer survival outcomes,
underscoring the pathway's role in tumor progression and immune evasion.
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Conclusion: Our findings reveal that LUAD cells use the MDK-NCL signaling
pathway to shape the TME, suppressing immune activity and promoting
malignancy in epithelial cells. This study highlights the MDK-NCL axis as a
potential therapeutic target for LUAD, particularly for patients with high MDK-

NCL expression.

lung adenocarcinoma, tumor microenvironment, MDK-NCL, single-cell
transcriptomics, spatial transcriptomics

Introduction

Lung adenocarcinoma (LUAD) is the most common subtype of
non-small cell lung cancer (NSCLC), accounting for approximately
40% of lung cancer cases (1). While targeted therapies and
immunotherapies have significantly improved the survival rates of
some LUAD patients, the overall prognosis remains poor. This is
primarily attributed to the tumor’s heterogeneity and the
complexity of its tumor microenvironment (TME) (2). The TME,
which consists of immune cells, stromal cells, extracellular matrix,
and various signaling molecules, plays a critical role in tumor
progression, immune evasion, and therapeutic resistance (3).
Therefore, gaining a deeper understanding of the interactions
between the tumor and its microenvironment is crucial for
uncovering the mechanisms underlying cancer development and
for the development of new therapeutic strategies.

Single-cell RNA sequencing (scRNA-seq) technology offers an
unprecedented level of detail for deciphering the cellular
heterogeneity and dynamic changes within tumors, enabling the
identification of distinct cell types and their specific roles in the
TME (4). In recent years, scRNA-seq has been widely employed in
LUAD research, leading to the discovery of multiple heterogeneous
cell subpopulations, including tumor cells, immune cells, and
stromal cells, further elucidating mechanisms of immune evasion
and the interactions between tumors and their microenvironment
(5, 6). Moreover, the application of spatial transcriptomics has
allowed for a more comprehensive understanding of the spatial
distribution of these cell populations within tumors and their
interactions, providing a more complete view of the TME (7, 8).

Among the many signaling pathways that influence the TME,
the Midkine (MDK)-Nucleolin (NCL) axis has garnered significant
attention in recent years. MDK, a pro-tumor growth factor, is highly
expressed in various types of cancer and has been shown to promote
cell proliferation, migration, and survival (9-11).In LUAD, MDK
expression correlates with poor prognosis, yet its potential role in
modulating immune suppression remains unclear (13). Unlike
TGF-B-mediated immunosuppression, which primarily acts via
Treg activation and myeloid suppression, MDK-NCL signaling
may establish a distinct immunosuppressive niche by interacting
with tumor-associated macrophages (TAMs) and fibroblasts.
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Research has demonstrated that the MDK-NCL axis facilitates the
formation of an immunosuppressive microenvironment, thereby
promoting immune evasion by tumor cells and contributing to
tumor progression (12). Given these unique properties,
investigating the MDK-NCL axis may reveal novel mechanisms of
immune evasion in LUAD.

In this study, we utilized scRNA-seq and spatial transcriptomics
to deeply analyze the TME in LUAD and further classify malignant
cell populations. We identified that MDK-NCL signaling plays a
critical role in the interactions between maliganant cells and immune
cells, potentially driving immune evasion and reshaping the
microenvironment. Through spatial transcriptomic data, we further
revealed the differential spatial distribution of MDK-NCL signaling
across various tumor niches. Moreover, by integrating bulk RNA-seq
data from the TCGA-LUAD cohort, we investigated the relationship
between MDK-NCL expression, immune cell infiltration, and clinical
outcomes. This study provides new insights into the role of the MDK-
NCL axis in LUAD, particularly regarding its involvement in
microenvironmental remodeling and immune evasion. Our
findings offer a theoretical foundation for considering MDK-NCL
as a potential therapeutic target, with significant implications for
enhancing the efficacy of immunotherapy in clinical settings.

Results

ScRNA-seq and cell type identification of
LUAD

After correcting for batch effects, performing dimensionality
reduction, and clustering, we analyzed several key aspects of the
single-cell data (GSE131907). We visualized sample origins
(Figure 1A), transcript counts (Figure 1B), cell clusters
(Figure 1C), and cell type annotations (Figure 1D). Marker gene
expression patterns, used to identify different cell types, are depicted
in Figure 1E. Specifically, T cells were identified by TRAC,
monocyte-macrophages by LYZ, NK cells by NKG7, epithelial
cells by EPCAM, B cells by CD79A, fibroblasts by COL1A1, mast
cells by MS4A2, endothelial cells by PECAMI, conventional
dendritic cells (cDCs) by CD1C, and plasmacytoid dendritic cells
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FIGURE 1

Annotation Results of scRNA-seq for LUAD. (A) Sample origin of the single-cell data, 12 samples were identified without batch effect. (B) Transcript
counts in the single-cell dataset. (C) Clustering results of the single-cell data, totally 21 clusters were presented. (D) Cell type annotation based on
marker gene expression, including T cells, monocyte-macrophages, NK cells, epithelial cells, B cells, fibroblasts, mast cells, endothelial cells,
conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). (E) Expression profiles of representative markers for ten distinct cell
types. (F) Proportion of each cell type across samples. (G) Total number of cells for each identified cell type. (H) Transcript counts per cell type,

reflecting transcriptional activity at the single-cell level.

(pDCs) by CLEC4C. The proportions of each cell type across
samples are shown in Figure 1F, with the absolute numbers in
Figure 1G, and transcript counts for each cell type detailed in
Figure 1H. The same cell annotation procedure was also performed
on the single-cell validation data GSE153935 (Supplementary
Figure S1A-E).

Malignant cell subpopulations in LUAD and
their characteristics

To infer malignancy within the epithelial cell populations, we
applied inferCNV analysis in GSE131907 and GSE153935

Frontiers in Immunology

(Figure 2A & Supplementary Figure S1F). In the GSE131907
dataset, malignant epithelial cells were subsequently extracted for
further dimensionality reduction and clustering, revealing six
distinct malignant cell subpopulations (clusters 0-5, Figure 2B).
Sample distribution across these malignant clusters is illustrated in
Figure 2C, highlighting both intra- and inter-sample heterogeneity
within LUAD tumors.

Using the FindAllMarkers function, we identified cluster-
specific markers for each malignant subpopulation (Figure 2D).
Functional enrichment analysis via ssGSEA using hallmark gene
sets revealed distinct biological pathways across clusters
(Figure 2E). For example, clusters 0 and 1 were enriched in
pathways related to metabolism and mitosis. Univariate Cox
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FIGURE 2

Identification of malignant cell subtypes. (A) inferCNV heatmap displaying copy number variations (CNVs) across cells, with normal samples in the
upper panel and tumor samples in the lower panel. Red and blue indicate CNV gains and losses, respectively. (B) UMAP plot showing clustering of
malignant cells, revealing distinct subpopulations. (C) UMAP plot indicating the patient origin of malignant cells, highlighting inter-sample
heterogeneity. (D) Expression of representative marker genes for each malignant cluster: AGR2 (Cluster 0), SI00A2 (Cluster 1), TPP2 (Cluster 2),
SCGB3A2 (Cluster 3), SFTPC (Cluster 4), and S100A9 (Cluster 5). (E) Heatmap of hallmark pathway activities across clusters, with red indicating
upregulation and blue indicating downregulation of pathways, such as hypoxia response and interferon signaling, clusterO and clusterl have more
upregulated pathways. (F) Univariate Cox analysis of key marker genes, with hazard ratios, confidence intervals, and P-values showing their
prognostic significance. Red indicates higher risk associations, while green indicates lower risk. (G) CNV scores of different malignant cell subtypes.
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regression survival analysis, based on the top five markers per
cluster, showed that markers from clusters 0, 1, and 5 were
associated with higher risk, while clusters 2, 3, and 4 were more
protective (Figure 2F). Meanwhile, clusters 0, 1, and 5 have higher
CNV scores, suggesting greater genomic instability (Figure 2G).
This suggests that clusters 0, 1, and 5 exhibit more aggressive,
malignant phenotypes.

The result of single-cell communication
analysis

Cell-to-cell communication was analyzed for both GSE131907
and GSE153935 using the CellChat package, which identified
receptor-ligand signaling pathways received (Figure 3A &
Supplementary Figure S2A) and emitted (Figure 3B &
Supplementary Figure S2B) by different cell types. Notably, the
MIF, MK, and CXCL signaling pathways were highly active.
Figure 3C and Supplementary Figure S2C illustrates the overall
communication strength between cell types, while Figure 3D and
Supplementary Figure S2D shows the intensity of signals emitted
and received by each cell type. Malignant cells exhibited the highest
signal emission strength, underscoring their dominant role in
influencing the TME.

Among receptor-ligand pairs, four of the top ten interactions
belonged to the MK pathway, with the MDK-NCL interaction being
the most significant (Supplementary Figure S3 & Supplementary
Figure S4). The strength of MK pathway communication across
different cell types is presented in Figure 3E and Supplementary
Figure S2E, with malignant cells being the primary senders and
receivers of these signals. We further analyzed MDK-NCL
interactions between malignant and immune/stromal cells,
finding significant interaction strengths (Figure 3F &
Supplementary Figure S2F). Malignant cells exhibited extensive
interactions with all immune and stromal cell types through the
MDK-NCL axis. Expression levels of genes involved in the MK
pathway are shown in Figure 3G, with higher expression of MDK in
malignant cells and broad expression of NCL across all cell types.
These findings highlight the critical role of the MDK-NCL
interaction in shaping the TME.

Spatial transcriptomic niche
communication analysis

Following dimensionality reduction and clustering, we
identified nine distinct spatial niches (niche 0-8, Figure 4A).
Based on the expression of key marker genes-MUCI (tumor
region), LYZ (immune region), COL14A1 (stromal region), and
SFTPC (normal region)—we classified the niches into tumor,
immune-stromal, and normal regions across all spatial
transcriptomic samples (Figures 4B, C, Supplementary Figure S5).
To validate our classification, we performed MCPcounter immune
infiltration analysis (Figure 4D), identifying six distinct cell types-
endothelial cells, fibroblasts, monocytes, T cells, B cells, and
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neutrophils-within the niches. The distribution of these cell types
across the spatial niches is depicted in Figure 4E, showing a clear
division into tumor, immune-stromal, and normal
epithelial regions.

We then conducted spatial communication analysis to assess
the spatial distribution of MDK-NCL receptor-ligand signaling
across the niches (Figure 4F, Supplementary Figure S5). This
included examining MDK-NCL ligand-receptor binding, NCL
receptor levels, and MDK ligand expression. These spatial
analyses revealed that the MDK-NCL axis plays a significant role
in mediating communication between malignant cells and the
surrounding immune and stromal cells, further contributing to
the spatial organization of the TME.

Pseudotime analysis of single cells

To explore the developmental trajectory of malignant epithelial
cells and the changes in the MK signaling pathway during tumor
progression, we conducted a pseudotime analysis using spatial
transcriptomics data from LUAD. Figures 5A-C illustrate the
differentiation states, cell subtypes, and pseudotime scores
obtained from the analysis. In Figure 5D, pseudotime scores are
visualized using a UMAP dimensionality reduction plot, while a box
plot (Figure 5E) compares the pseudotime scores of different
malignant cell clusters, revealing that clusters 0, 1, and 5 have
higher pseudotime scores. Additionally, the differentiation states of
these clusters are shown in Figure 5F, and the proportion of cells in
each state is presented in Figure 5G, with clusters 0, 1, and 5
primarily occupying differentiation state 6, which is associated with
a more advanced pseudotime score. These findings indicate that
clusters 0, 1, and 5, which are negatively correlated with prognosis,
not only have higher pseudotime scores but also reside in more
differentiated states, suggesting a higher level of tumor progression
and malignancy. Finally, we analyzed the expression trends of MK
pathway genes along the pseudotime trajectory (Figure 5H), which
showed a gradual upregulation of MDK and NCL expression with
increasing pseudotime scores.

The impact of MDK-NCL on the LUAD
immune microenvironment

Using single-cell and spatial transcriptomic analyses, MDK-
NCL communication between tumor cells and other cells was
identified as a critical mechanism in shaping the TME. Analysis
of bulk transcriptomic data from the TCGA-LUAD cohort revealed
that MDK and NCL expression levels were significantly higher in
tumor samples compared to control samples (Figure 6A). Similarly,
GSVA enrichment scores for the MDK-NCL pathway were also
markedly elevated in tumor samples (Figure 6B). Three validation
public cohorts were corresponding to the same results
(Supplementary Figure S6A-C). Consistent with these findings, in
our cohort, the relative mRNA expression levels of MDK and NCL
were significantly higher in tumor tissues than in adjacent normal
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tissues (Figure 6C). Western blot analysis further confirmed that
protein expression levels of MDK and NCL were significantly
upregulated in tumor samples compared to controls (Figures 6D-
F). To explore the impact of MDK and NCL on the immune
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microenvironment, we performed ESTIMATE analysis using the
TCGA-LUAD dataset. The results demonstrated a negative
correlation between MDK and NCL expression levels and
immune-related scores, including the ImmuneScore,
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StromalScore, and ESTIMATEScore. Conversely, a positive
correlation was observed between MDK and NCL expression and
TumorPurity (Figures 6G, H). These findings suggest that MDK
and NCL are associated with the development of an
immunosuppressive TME. Further analysis divided tumor
samples into high and low MDK-NCL expression groups based
on the median enrichment score. Immune infiltration analysis
revealed that immune cell scores for various cell types were
significantly lower in the high MDK-NCL expression group
compared to the low-expression group. Patients with high MDK-
NCL expression groups exhibit increased infiltration of regulatory T
cells (Tregs), myeloid-derived suppressor cells (MDSCs), and M2-
like macrophages, which are known to promote immune evasion
and tumor progression. Additionally, the MDK-NCL pathway
suppresses cytotoxic immunity by reducing activated and eftector
memory CD8+ T cells while promoting an immunosuppressive
microenvironment through increased Tregs and altering helper T
cell differentiation, facilitating tumor immune evasion. This
supports the conclusion that MDK-NCL activity suppresses
immune cell infiltration and activity, contributing to immune
evasion in LUAD.

Frontiers in Immunology

84

The association of MDK-NCL with
immunotherapy

We observed that the high MDK-NCL expression group
exhibited higher tumor mutation burden (TMB) (Figure 7A) and
microsatellite instability (MSI) scores (Figure 7B), indicating
increased genomic instability. TIDE analysis revealed that the
high MDK-NCL group had lower Dysfunction scores (Figure 7C)
and higher Exclusion scores (Figure 7D), suggesting that although T
cell dysfunction was lower, there was a higher degree of T cell
exhaustion. This supports that MDK-NCL may promote an
immune-resistant TME through T cell exclusion rather than
direct T cell exhaustion, a mechanism distinct from PD-1/PD-L1,
which primarily induces T cell dysfunction at the tumor-immune
interface. Additionally, we analyzed the expression patterns of
immunogenic cell death (ICD)-related genes (Figure 7E), finding
that the high MDK-NCL group had higher expression of several
ICD genes, while toll-like receptors TLR3 and TLR4 showed lower
expression. These findings suggest that MDK-NCL may contribute
to immune evasion by promoting T cell exclusion and
downregulating innate immune sensing, similar to TGF-P.
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express more in the later time.

Predictions from the TCIA database indicated that the high MDK-
NCL group had fewer patients with dual-negative CTLA4 and PD1
status, as well as fewer patients with PD1 single positivity but more
patients with CTLAA4 single positivity (Figure 7F). This suggests that
MDK-NCL may enhance CTLA-4 mediated immune suppression,
potentially influencing the response to anti-CTLA-4 therapy.
Similarly, most of these factors got the same trends in validation
cohorts (Supplementary Figure S6D-F). Finally, we compared the
expression profiles of immune checkpoint-related genes between
the two groups (Figure 7G), revealing that the high MDK-NCL
group had elevated expression of checkpoint genes such as LAG3
and PDCDI, suggesting that these patients may respond more
favorably to immune checkpoint inhibitors. Overall, our findings
suggest that high MDK-NCL expression may predict poor ICI
response by fostering an immune-excluded tumor
microenvironment. Despite high TMB/MSI, MDK-NCL-high
tumors show low CD8+ T-cell infiltration and increased Tregs/
MDSCs, potentially negating the benefits of increased neoantigens.
This highlights MDK-NCL as a negative predictor of ICI response
and a potential target to enhance ICI efficacy.
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Discussion

In this study, we systematically investigated the role of the
MDK-NCL signaling axis in the TME of LUAD through the
integration of scRNA-seq and spatial transcriptomics. Our
findings shed light on the mechanisms by which the MDK-NCL
pathway contributes to immune suppression and tumor immune
evasion. offering novel insights into the potential of targeting this
axis as a therapeutic strategy. This work deepens our understanding
of TME remodeling in LUAD.

MDXK, a pro-tumorigenic growth factor, is highly expressed in
various cancers (10, 14). It exerts its oncogenic effects primarily by
binding to its receptor, Nucleolin (NCL), through which it
modulates various signaling pathways critical for the regulation of
tumor progression and the maintenance of the TME (15, 16).
Through scRNA-seq and spatial transcriptomics, we elucidated
the role of MDK-NCL signaling in LUAD at the cellular level.
Our results indicate that MDK-NCL plays a pivotal role in the
interaction between malignant, immune, and stromal cells,
particularly by fostering an immunosuppressive environment that

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1546382
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Fu et al. 10.3389/fimmu.2025.1546382

A Subtype EE Normal EE Tumor B Subtype EE Normal EE Tumor C 6 00001
o % p<0.0001
=
100 075 s 4] o
: [ : 2 ;
% . % H gﬂé Subtype
050 H
g 8 i 5 . é 5 * Normal
] i a . . [ 24
. S * Tumor
[} 025 s =
50 . . % o}o
. 1 A 4
T * - 0.00 - H o
O @)
W N o MDK NCL
A\
D 1 2 s 4 5 6 E F
N T N TN TN TN TN T « 20— 154
MDK | - - - — = ]1eknpa 5° P=0.0069 3" P=0.0035
P4
NCL [ - —_— — = — =1100-110KDa % s
GAPDH 36KDa c 15 s
7 8 9 0 1 12 2 @ 10
N TN TNTNTNTN B 3
MDK [ e Q 16KDa s 0 S
- o YT [
NCL [ - — — - ] 100-110KDa c :l_:,
GAPDH DD e - a> a0 & | 35K Da 2 2 054
13 14 15 16 17 18 2 05 g
N TN TN TN TNTN T o g
MDK [ = = @] 16KDa 2 £
NCL EE— = = ==]100-110kpa @ 4, & 00
e ————————————— Normal _Tumor Normal _Tumor
G MDK correlation H. - ” - E & -
correlatiol R=-0.12=0.0068 | Re-0.1fp=3.3¢ Re-0.1p=2e-04, R=0.1p=2e-04
TumorPurity e — “ i
ESTIMATEScore | &—— 5. 5.
= g
ImmuneScore 4 ~—
-0.1 0.0 0.1 - ’ YUWI;SSD):I:Q - i ; - - ESTIMATEScorem ’ “Tumo;;unly -
NCL correlation Se~14 R=-0.3p=11e-13 R=0.3p=1.1e-13
. o . of . P o .
TumorPurity - f————o

ESTIMATEScore | @——|

NeL

ImmuneScore o #——

T - [] 1000 2000 3000 1000 L] 1000 2000 ~2000 0 2000 4000 o o4 06 08
-02 0.0 02 ImmuneScore StromalScore ESTIMATEScore TumorPurity
Subtype EE Low B8 High

100 T —— g . T T T R

LT e, O
okl '%ﬁ#' ﬁﬁ“ﬁ ¥ Lﬁﬁﬁﬁ

Expression
o o
o ~
o L

o
I
a
.

0.00
S T OO O O O
00 et et <O o S\ R e 1 <
R aéfoob‘ «® e“&\\: 'a\*\\\e \w\\:ooﬂ* P o P <f,°5\ e \"af“&\:\l\ RN \: N ¥\o“ \w\\t’ A \@\i & ’a\d ‘\?,\Q ‘\e,\Q Q° o2
PO BB e B O e e «@ «\‘“ W W \o‘ﬁ e N
& O e‘(‘ oS o\o o\° NS
o O 0P e’ ke Q

FIGURE 6

Association of MDK-NCL with the immune microenvironment. (A) Boxplot shows the expression levels of MDK and NCL genes in tumor and control
groups, it exhibit higher activity in tumor group. (B) MDK-NCL enrichment scores in tumor and control groups. (C) Relative mRNA expression levels
of MDK and NCL in tumor and control groups from in-house data. (D) Relative protein expression levels of MDK and NCL in tumor and control
groups from in-house data. (E) Comparison of MDK protein expression levels between tumor and control groups. (F) Comparison of NCL protein
expression levels between tumor and control groups. (G) Correlation of MDK and NCL expression with ImmuneScore, StromalScore,
ESTIMATEScore, and TumorPurity. (H) Scatter plots depicting the relationship between MDK and NCL expression and immune-related scores
(ImmuneScore, StromalScore, ESTIMATEScore) as well as TumorPurity. (I) Comparison of immune cell infiltration scores across high and low MDK-
NCL expression groups for 28 immune cell types. *P < 0.05, **P < 0.01, ***P < 0.001.
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Association of MDK-NCL with immunotherapy response. (A) Comparison of tumor mutation burden (TMB) between high and low MDK-NCL
expression groups. (B) Comparison of microsatellite instability (MSI) between high and low MDK-NCL groups. (C) Comparison of dysfunction scores
between high and low MDK-NCL groups. (D) Comparison of exclusion scores between high and low MDK-NCL groups. (E) Expression of
immunogenic cell death (ICD)-related genes in high and low MDK-NCL groups. (F) Expression levels of CTLA4 and PD1 in high and low MDK-NCL
groups. (G) Comparison of immune checkpoint gene expression between high and low MDK-NCL expression groups. *P < 0.05, **P < 0.01, ***P

< 0.001.

supports tumor immune evasion. This mechanism is further
supported by its observed spatial heterogeneity across distinct
tumor regions. Spatial transcriptomics revealed that MDK-NCL
signaling activity was markedly elevated at the tumor-immune
interface, a region characterized by high cellular density and
active immune-tumor interactions. This enrichment suggests that
MDK-NCL may serve as a defensive mechanism for tumor cells at
immune hotspots, preventing effective immune cell infiltration and
cytotoxic activity. The differential expression across tumor niches
underscores the biological importance of spatial heterogeneity in
shaping TME architecture and influencing immune evasion
strategies. For example, in low-immune regions, MDK-NCL may
facilitate stromal remodeling, whereas in high-immune regions, it
likely plays a more direct role in immune cell suppression. These
observations align with previous studies emphasizing the role of
spatial heterogeneity in defining TME functions (17).
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Understanding this spatial regulation not only highlights the
complexity of MDK-NCL signaling but also opens avenues for
spatially targeted therapeutic strategies, such as local delivery of
inhibitors to high-activity regions within the TME.

Another important finding of this study is the potential role of
the MDK-NCL axis in immunotherapy. By analyzing TMB and MSI
data from the TCGA-LUAD dataset, we found that patients with
high MDK-NCL expression tend to have higher TMB and MSI
levels, indicating a potential association between MDK-NCL
signaling and genomic instability, which may impact the response
to immune checkpoint inhibitors (ICIs). While high TMB/MSI
tumors are generally considered more immunogenic and respond
better to ICIs, tumors with high MDK-NCL expression exhibit
immune exclusion, despite their increased TMB/MSI levels.
Specifically, we hypothesize that MDK-NCL blockade could
enhance the effectiveness of anti-PD-1/PD-L1 and anti-CTLA-4
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therapies by reversing T-cell exclusion and promoting immune cell
infiltration. These findings highlight the potential dual role of
MDK-NCL in influencing ICI responses. On one hand, increased
TMB and MSI levels suggest heightened neoantigen production,
which is typically associated with improved ICI efficacy. On the
other hand, the observed high T-cell exclusion scores in patients
with elevated MDK-NCL expression reflect an immunosuppressive
phenotype, indicating that this axis might hinder the infiltration or
activation of T cells despite a high mutational load. Additionally,
elevated expression of immune checkpoint genes (e.g., PDCD1 and
CTLA-4) in the high MDK-NCL group suggests that this pathway
might promote immune evasion by enhancing the tumor’s
dependence on checkpoint mechanisms. Therefore, targeting
MDK-NCL signaling could potentially synergize with ICIs,
alleviating immune suppression and restoring effective T-cell-
mediated immunity. Moreover, the ability to stratify LUAD
patients based on MDK-NCL expression into groups with distinct
immune profiles and ICI responses could provide valuable insights
for personalized therapy. Negative correlation between MDK-NCL
expression and IFN-y response genes, suggests that MDK-NCL may
suppress IFN-y-mediated antitumor immunity. Additionally, given
the known role of TGF-f in promoting immune exclusion, MDK-
NCL may interact with this pathway to reinforce immune
suppression. For instance, patients with high MDK-NCL
expression may benefit from combination therapies targeting both
MDK-NCL signaling and immune checkpoints, improving
response rates and reducing resistance to treatment. Future
studies should focus on preclinical models to validate this
hypothesis and assess the feasibility of such combination
strategies in LUAD.

Preclinical studies have demonstrated the efficacy of MDK and
NCL inhibitors in cancers such as glioblastoma (18) and pancreatic
cancer (19), where MDK signaling is implicated in tumor progression
and immune suppression. However, their clinical efficacy in LUAD
remains unexplored. Our study highlights the critical role of the MDK-
NCL axis in LUAD immune evasion and tumor progression, providing
a theoretical basis for targeting this pathway as a novel therapeutic
strategy. Our findings indicated that high MDK-NCL expression
correlates with reduced infiltration of antigen-presenting cells
(APCs), such as dendritic cells and MHC class I/II expression levels.
This suggests that MDK-NCL signaling may downregulate antigen
presentation, reducing tumor immunogenicity. However, further
functional studies are required to confirm this hypothesis. The high
expression of MDK-NCL signaling in LUAD patients is associated with
an unfavorable immune microenvironment and increased immune
exclusion, suggesting that targeting this axis may enhance the efficacy
of existing immunotherapies. Unlike PD-1/PD-L1, which primarily
induces T-cell exhaustion, our data suggest that MDK-NCL drives
immune suppression through T-cell exclusion and stromal remodeling.
Additionally, MDK-NCL-high tumors show increased infiltration of
regulatory T cells (Tregs) and myeloid-derived suppressor cells
(MDSCs), highlighting a distinct mechanism of immune evasion.
Developing MDK-NCL pathway inhibitors holds promise as a novel
treatment option for refractory LUAD, particularly for patients
unresponsive to conventional immunotherapy.
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Despite these significant findings, our study has several
limitations. Although we integrated multi-omics data to explore
the role of MDK-NCL signaling in LUAD and conducted
preliminary experimental validation, further mechanistic studies
are required, particularly in larger clinical cohorts. Additionally, our
analysis relies heavily on publicly available datasets, which lack
extensive clinical sample support. Prospective clinical studies are
needed to validate our conclusions. Moreover, the development of
MDK-NCL pathway inhibitors should be prioritized and evaluated
in clinical trials. Finally, integrating additional multi-omics
approaches, such as proteomics and metabolomics, could provide
a more comprehensive understanding of the complex regulatory
roles of MDK-NCL signaling in tumor progression and

immune evasion.

Methods
Data acquisition

We downloaded spatial transcriptomics data from a LUAD
patient sample using the 10x Visium technology from the
BioStudies database (20) (https://www.ebi.ac.uk/biostudies/)
(Accession number: E-MTAB-13530, This dataset includes a total
of 40 lung tissue or NSCLC samples. For our analysis, we selected 8
tumor samples from this cohort.

From the Gene Expression Omnibus (GEO) database (21)
(https://www.ncbi.nlm.nih.gov/geo/), we obtained the GSE131907
dataset (22) and GSE153935 dataset (23), which includes scRNA-
seq data generated using the 10x Genomics platform and Drop-seq
platform. GSE131907 dataset comprises 22 single-cell samples,
including 11 primary tumor samples and 11 normal lung tissue
samples, and was used for experimental analysis in this study.
GSE153935 dataset comprises 18 single-cell samples, including 12
primary tumor samples and 6 normal lung tissue samples, and was
used for validation analysis in this study.

We also retrieved bulk gene expression data (TPM) and clinical
information such as patient gender, age, stage, grade, and survival
outcomes from The Cancer Genome Atlas (TCGA) database (https:/
portal.gdc.cancer.gov/). Additionally, tumor mutation burden
(TMB) and microsatellite instability (MSI) data for LUAD
patients were obtained from cBioPortal (24) (https://
www.cbioportal.org/). Meanwhile, GSE11969 (25) (including 94
LUAD and 5 normal samples), GSE43458 (26) (including 80
LUAD and 30 normal samples), GSE116959 (27) (including 57
LUAD and 11 normal samples) were obtained from GEO database
as well for validation.

Single-cell RNA-seq data processing for
LUAD

We utilized the Seurat package (version 4.3.0) (4) to process and
analyze the scRNA-seq data. Quality control was performed by
filtering out cells with fewer than 200 or more than 8,000 genes,
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those with fewer than 50,000 transcripts, cells with greater than 20%
ribosomal gene content, and cells with more than 3% hemoglobin
gene expression.

Next, SCTransform (28) was applied for normalization and
variance stabilization, followed by the Harmony algorithm (29)
correct batch effects. Principal component analysis (PCA) was
performed, and the first 30 principal components were used for
clustering with the Louvain algorithm (resolution = 0.5) UMAP
embedding was generated using default parameters (n.neighbors =
30) for visualization. Using characteristic gene markers, we
classified the single-cell populations into T cells (CD3D, CD3E,
TRAC), monocyte-macrophages (LYZ, CSF3R), NK cells (NKG7),
epithelial cells (EPCAM), B cells (CD79A, MS4Al), fibroblasts
(COL1A1, FNI1), mast cells (MS4A2, TPSB2), endothelial cells
(VWF, PECAMI), ¢DC cells (CD1C), and pDC cells (CLEC4C).
Finally, we visualized the clinical information, clustering results,
marker gene expression, and cell annotations using UMAP plot to
display the reduced dimensions of the single-cell data.

Identification of benign and malignant
epithelial cells and subtyping of malignant
epithelial cells

To distinguish malignant from benign epithelial cells, we
applied inferCNV analysis (https://github.com/broadinstitute/
inferCNV). We randomly selected 1,000 normal epithelial cells
from control samples and inserted them into the tumor epithelial
cell dataset. The remaining normal epithelial cells served as the
reference. CNVs were inferred based on expression intensity across
genomic regions, using denoise=TRUE and default settings. Cells
displaying significant CNV patterns distinct from normal epithelial
cells were classified as malignant, while those resembling reference
cells were categorized as benign. The CNV scores of epithelial cells
were also utilized to assist in distinguishing between benign and
malignant epithelial cells.

After isolating all malignant cells, we performed further
clustering to categorize them into distinct malignant cell clusters.
Using the Seurat package’s “FindAllMarkers” function, we
identified highly expressed marker genes for each cluster
(log2FoldChange > 1, p value < 0.05). Subsequently, with
hallmark gene sets from the MsigDB database (30), we applied
single-sample gene set enrichment analysis (ssGSEA) via the GSVA
package (31) to explore the biological functional characteristics of
the malignant cell clusters. Additionally, univariate Cox regression
analysis was performed to assess the prognostic significance of
marker genes in each malignant cell cluster.

Cell-cell communication analysis

To explore intercellular communication within the tumor
microenvironment, we used the CellChat package (32). Receptor-
ligand interactions were inferred using the computeCommunProb()
function, with a minimum interaction probability threshold of 0.05
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to filter out weak interactions. Pathway activity scores were
generated using computeCommunProbPathway(), and the
rankNet() function was applied to identify the most active
signaling pathways. Significant interactions were visualized using
netVisual_circle() and netVisual_aggregate(), highlighting key
intercellular communication networks. The MDK-NCL signaling
pathway emerged as a central interaction hub, particularly enriched
in malignant epithelial and stromal cells, and was selected for
further spatial and functional analysis.

Processing of spatial transcriptomics data
for LUAD

The spatial transcriptomics data were generated using the 10x
Genomics Visium platform and processed using the Seurat package
(4). Quality control was performed by removing spots with fewer
than 500 detected genes or over 10% mitochondrial gene expression.
Normalization and variance stabilization were conducted using
SCTransform, followed by PCA for dimensionality reduction. The
top 30 principal components were used for Louvain clustering
(resolution = 0.5). After dimensionality reduction and clustering,
we identified nine distinct spatial niches. Based on the expression of
MUCI (tumor region), LYZ (immune region), COL14A1 (stromal
region), and SFTPC (normal region), we classified the niches into
tumor, immune-stromal, and normal regions.

We then applied MCPcounter analysis (33) to assess the
infiltration levels of various cell types (including T cells, B cells,
neutrophils, monocytes, fibroblasts, and endothelial cells) in each
spot of the spatial transcriptomics data. This allowed us to map the
spatial distribution of immune infiltration and compare it with the
defined niche regions.

Lastly, using the niches R package (34), we conducted spatial
ligand-receptor interaction analysis, which integrates gene expression
with spatial proximity. Interaction scores were computed for each
ligand-receptor pair between neighboring spots, and only statistically
significant pairs (adjusted p < 0.05) were retained for downstream
analysis. Compared to single-cell analysis, spatial transcriptomics
data incorporates spatial localization, providing more biologically
accurate ligand-receptor interactions.

Pseudotime analysis

Monocle (35) was used to construct pseudotime trajectories.
The “orderCells” function assigned pseudotime values to each cell,
and branching events were analyzed to assess transitions between
malignant cell states. The MK signaling pathway activity was
overlaid on the trajectory to observe its temporal dynamics.

Immune-related analysis of TCGA-LUAD

Using the ESTIMATE package (36), we performed ESTIMATE
analysis to assess the overall tumor immune microenvironment in
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each LUAD sample. This was achieved by calculating tumor purity,
immune score, and stromal score. Additionally, the infiltration
levels of 28 different immune cell types in each sample were
evaluated using ssGSEA, and detail of 28 immune signature genes
were shown in Supplementary Table S1.

Therapy-related analysis of TCGA-LUAD

TMB and MSI are critical factors that influence the interaction
between immune cells and tumor cells during immunotherapy.
Numerous studies have demonstrated their role in predicting
responses to immunotherapy. In this study, we explored the
relationship between the MDK-NCL pathway and
immunotherapy by comparing TMB and MSI between groups.
We also conducted TIDE analysis (Tumor Immune Dysfunction
and Exclusion) (37), a widely used method to assess the functional
state of T cells in transcriptomic samples, and obtained two key
metrics, Dysfunction and Exclusion, which reflect T
cell functionality.

In addition, immunogenic cell death (ICD) is another key factor
influencing immunotherapy efficacy. We compared the expression
patterns of ICD-related genes between groups in TCGA and
validation datasets. From the TCIA database (https://www.tcia.at/
home), we retrieved predictions of CTLA4 and PDCD1 expression
levels in TCGA-LUAD patients and conducted comparisons
between the two groups. Lastly, we examined the differential
expression profiles of immune checkpoint-related genes, which
are closely associated with the response to immune checkpoint
inhibitors, between the two groups.

Sample collection

A total of 18 paired LUAD (lung adenocarcinoma) tissues and
corresponding adjacent normal tissues were collected from patients
undergoing surgical resection at Department of Thoracic Surgery,
Shengjing Hospital of China Medical University. All patients
included in the study had not received neoadjuvant therapy prior
to surgery. The study was approved by the Ethics Committee of
Shengjing Hospital, China Medical University (Approval
No. 2024PS1727K).

Real-time quantitative PCR

Total RNA was extracted from tissues using the Trizol reagent
(R401-01, Vazyme, Nanjing, China) following the manufacturer’s
protocol. Complementary DNA (cDNA) was synthesized from the
extracted RNA using the reverse transcription kit (RR047A,
TAKARA, Japan) according to the kit instructions. The relative
expression levels of the target genes were determined using -actin
as the internal reference gene. Primer sequences for all genes are
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listed in Supplementary Table S2. All target gene expression
analyses were performed in triplicate to ensure reproducibility.

Western blot

LUAD and control tissue samples were homogenized using
ultrasonic disruption and lysed for 30 minutes in RIPA lysis buffer
(BL504A, Biosharp, China) containing PMSF (1:100, BL507A,
Biosharp, China) and a protease inhibitor cocktail (1:50, P1082,
Beyotime, China). Lysates were centrifuged at 12,000 rpm for 20
minutes, and protein concentrations were determined using the BCA
protein assay kit (PC0020, Solarbio, China). Proteins were separated
by SDS-PAGE (10% gel for MDK and 6% gel for NCL) and
transferred onto PVDF membranes (IPVH00010, Millipore, USA).
Membranes were blocked with 5% non-fat milk at room temperature
for 2 hours and incubated overnight at 4°C with primary antibodies.
Afterward, membranes were incubated with secondary antibodies for
2 hours at room temperature. Protein bands were visualized using
enhanced chemiluminescence (ECL) reagent (BMUI102, Abbkine,
USA). Primary antibodies included MDK (1:1000, BM4392,
BOSTER, Wuhan, China), NCL (1:1000, A00228-1, BOSTER,
Wuhan, China), and GAPDH (1:1000, Sigma, USA), which was
used as an internal control. The secondary antibody used was BA1039
(BOSTER, Wuhan, China). All protein bands were quantified using
Image] software (Rawak Software Inc., Stuttgart, Germany).

Statistical analysis

All data processing and statistical analyses were performed
using R software (version 4.1.1). The Mann-Whitney U test (also
known as the Wilcoxon rank-sum test) was used to evaluate
differences between non-normally distributed variables. Spearman
correlation analysis was employed to calculate correlation
coefficients between non-normally distributed data. A p-value of
less than 0.05 was considered statistically significant.
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Background: Heart failure (HF) represents the terminal stage of various
cardiovascular disorders, with immunogenic cell death (ICD) potentially
influencing HF progression through modulation of immune cell activity. This
study aimed to identify ICD-associated biomarkers in patients with HF and
explore their underlying mechanisms.

Methods: Data from GSE57338, GSE3586 and GSE5406 were retrieved from the
Gene Expression Omnibus (GEO) database. Differential expression analysis and
weighted gene co-expression network analysis (WGCNA) were employed to
identify candidate genes, followed by enrichment analysis and Protein-Protein
Interaction (PPI) network construction. Candidate biomarkers were selected using
two machine learning approaches and validated for expression levels, with receiver
operating characteristic (ROC) curve analysis determining the final biomarkers. A
nomogram model was built based on the biomarkers, followed by molecular
regulatory network analysis, gene set enrichment analysis (GSEA), immune
infiltration assessment, and drug prediction. Additionally, key cells were selected
for pseudo-time and cell communication analysis using the GSE183852 dataset.
Next, pseudotemporal analysis was also performed on key cell subpopulations.
Real-time quantitative PCR (RT-gPCR) was employed to validate the biomarkers.

Results: Three biomarkers, CD163, FPR1, and VSIG4, were identified as having
significant diagnostic value for HF. GSEA revealed their enrichment in ribosomal
and immune cell-related pathways. These biomarkers were notably correlated
with CD8 T cells and M2 macrophages. Carbachol and etynodiol were predicted
to interact with all three biomarkers. Single-cell RNA sequencing identified nine
cell types, with expression of the biomarkers confined to monocytes and
macrophages. Strong cell communication was observed between these cell
types and fibroblasts. Expression of CD163 and VSIG4 decreased over time in
monocytes and macrophages, whereas FPR1 showed an upward trend. In
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addition, the expression levels of CD163 and VSIG4 increased in subpopulations
of monocytes and macrophages, whereas FPR1 showed a decreasing trend. RT-
gPCR results confirmed significant down-regulation of CD163, FPR1, and VSIG4
in patients with HF and animal models.

Conclusions: This study identified and validated three ICD-related biomarkers in
HF—CD163, FPR1, and VSIG4—offering a novel theoretical foundation for the
clinical diagnosis and treatment of HF.

immunogenic cell death, heart failure, biomarker, single-cell RNA sequencing analysis,
monocytes and macrophages

1 Introduction

Heart failure (HF), the terminal stage of various cardiovascular
diseases, affects approximately 56.2 million people worldwide (1, 2).
Despite lifestyle changes and advances in medical care that have
stabilized age-adjusted incidence rates, the prevalence and mortality
rates of HF remain high, highlighting the need for further research
to identify improved management strategies (3). Although HF was
once considered non-immune-mediated, recent studies have
demonstrated the involvement of the immune system in its
pathophysiology, and clinical trials on immune modulation
therapy for HF have been conducted (4). Consequently,
modulating immune responses to maintain stability may serve as
a promising strategy to delay HF progression.

Immunogenic cell death (ICD), a unique form of regulated cell
death that occurs as a downstream effect of tumor-specific immune
responses, has been extensively studied in cancer immunotherapy
(5, 6), with emerging research in cardiovascular diseases.
Endothelial cell ICD in atherosclerosis has been linked to the
initiation of adaptive immune responses, sustaining chronic
inflammation within plaques (7). In coronary artery disease,
stratification based on ICD-related genes (IRGs) enables the
development of risk models and immune subtypes that facilitate
treatment decisions (8). Moreover, ICD has been explored as a
diagnostic tool for ischemic stroke in elderly women, identifying

Abbreviations: HF, Heart failure; ICD, Immunogenic cell death; GEO, Gene
Expression Omnibus; PPI, Protein-Protein Interaction; ROC, Receiver operating
characteristic; GSEA, Gene set enrichment analysis; DEGs, Differential
expression genes; ssGSEA, Single sample gene set enrichment analysis; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; STRING,
Search tool for the retrieval of interacting genes; MCC, Maximum Connectivity
Component; MNC, Minimum Network Connectivity; DMNC, Degree of
Minimum Network Connectivity; SVM-REE, Support vector machine-recursive
feature elimination; AUC, Area under the curve; TFs, Transcription factors;
HVGs, Highly variable genes; PCA, Principal component analysis; UMAP,

Uniform Manifold Approximation and Projection.
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key biomarkers for diagnosis (9). However, the mechanisms
underlying ICD in HF remain unexplored.

This study utilized machine learning techniques to identify ICD
biomarkers in HF, followed by immune infiltration analysis, targeted
drug prediction, gene set enrichment analysis (GSEA), single-cell data
clustering and annotation, cell communication analysis, and
pseudotime analysis. The findings revealed the functional and
potential molecular mechanisms of these biomarkers at both the
transcriptomic and cellular levels, providing a novel theoretical
framework for the clinical diagnosis and treatment of HF.

2 Materials and methods
2.1 Data collection

RNA data from GSE57338 (sequencing platform: GPL11532)
was obtained from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/), comprising 136 normal left
ventricular tissue samples and 177 left ventricular tissue samples
from patients with HF (10). Additionally, RNA data from GSE3586
(sequencing platform: GPL3050) was downloaded, containing 15
normal left ventricular tissue samples and 13 left ventricular tissue
samples from patients with HF (11). Moreover, the GSE5406
dataset contained 16 normal and 194 HF patients’ heart tissue
samples. The data were obtained from the GPL96 platform using
chip sequencing technology, mainly for biomarkers expression
validation. The single-cell dataset GSE183852 was retrieved from
the GEO website (sequencing platform: GPL24676), including heart
tissue samples from 5 patients with HF and 2 normal heart tissue
samples (12). A total of 34 ICD-associated genes were obtained
from the literature (13) (Additional file 1).

2.2 Differential expression analysis

Differential expression analysis was conducted using the R
package “limma” (v 3.58.1) (14), applying the screening criteria of
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|logofold change (FC)| > 0.5 and P < 0.05 to compare HF and control
samples in the GSE57338 dataset. Volcano plots of the differentially
expressed gene (DEGs) were visualized using the R package
“ggplot2” (v 3.4.1) (15), highlighting the top 10 up- and down-
regulated DEGs. Heatmaps of the top 10 DEGs were generated
using the R package “ComplexHeatmap” (v 2.4.0) (16).

2.3 Weighted gene co-expression networks
analysis

To calculate the single-sample gene set enrichment analysis
(ssGSEA) scores for ICD-related genes across 313 samples, the
ssGSEA algorithm from the R package “GSVA” (v 1.46.0) (17) was
applied, and box plots were created using “ggplot2” (v 3.4.1).

WGCNA was performed on the GSE57338 dataset using the R
package “WGCNA” (v 1.72.5) (18), with ssGSEA scores as the
feature. Initial clustering of samples identified and excluded
abnormal samples. The soft threshold (power) was determined
based on an R® > 0.85 and mean connectivity = 0. The dynamic
tree cutting algorithm, with a minimum gene number of 50 per
module and a module merging threshold of 0.3, was applied to
define gene modules. Genes were color-coded, and the “grey”
module (containing unclassified genes) was excluded. Pearson
correlation coefficients were calculated between the modules and
ssGSEA scores, with a heatmap generated to highlight modules with
significant correlation (|cor| > 0.5, P < 0.05). Genes within these
modules were identified as key module genes.

2.4 Enrichment analysis of candidate genes
and protein-protein interactions network
analysis

The R package “ggvenn” (v 1.7.3) (19) was employed to identify
the intersection between DEGs and key module genes, resulting in
the selection of candidate genes. These genes were then converted
from SYMBOL to ENTREZID using the human genome database
org.Hs.eg.db (v 3.18.0) (20). Candidate genes underwent Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional enrichment analysis with the R package
“ClusterProfiler” (v 3.16.0) (21), with a threshold of P < 0.05. To
construct PPI networks, candidate genes were analyzed using the
search tool for the retrieval of interacting genes (STRING) database
(https://string-db.org) with a confidence score of 0.4. PPI networks
were then visualized with Cytoscape (v 3.10.0) (22). The Cytohubba
plugin in Cytoscape (v 3.10.0) was utilized to rank candidate genes
using six algorithms: Maximum Connectivity Component (MCC),
Minimum Network Connectivity (MNC), Degree of Minimum
Network Connectivity (DMNC), Degree, Closeness, and
Betweenness. Based on the ranking results, the top 20 genes from
each algorithm were extracted, and their intersection was used to
identify the final candidate key genes. UpSet plots were generated
using the R package (v 1.4.0) (23).
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2.5 Screening candidate biomarkers by
machine learning

Candidate key genes were further screened based on sample
grouping information from GSE57338 using the support vector
machine-recursive feature elimination (SVM-RFE) algorithm (10-
fold cross validation) (v 4.1.4) (24) to obtain feature genes. The R
package “randomForest” (v 3.2.2) (25) was used for random forest
algorithm analysis of the feature genes, incorporating sample
grouping information from GSE57338. A total of 500 decision
trees were computed using the randomForest function, and the
MeanDecreaseGini values for each feature gene were visualized in a
bar chart. The median of the MeanDecreaseGini values
(MeanDecreaseGini measures the effect of each variable on the
heterogeneity of observations at each node in the classification tree,
thus assessing the importance of the variable. The larger the value,
the higher the importance of the variable) was calculated, and genes
with values above the median were selected as candidate
biomarkers. Correlation analysis of the candidate biomarkers was
performed using the R package “corrplot” (v 0.92) (26), with
thresholds of |cor| > 0.3 and P < 0.05.

2.6 Expression validation of candidate
biomarkers

Expression differences of candidate biomarkers between HF and
normal samples were analyzed using the grouping information from
GSE3586 and GSE57338, with a threshold of P < 0.05. Box plots were
constructed using the R package “ggplot2” (v 3.4.1). Candidate
biomarkers showing differential expression between groups and
consistent trends across both datasets were selected for receiver
operating characteristic (ROC) analysis. ROC curves for candidate
biomarkers were generated using the R package “pROC” (v 1.18.0)
(27), and the area under the curve (AUC) was calculated, with
biomarkers defined as those having an AUC > 0.7. To validate
biomarkers expression, differential expression analysis was performed
in the GSE5406 dataset.

2.7 Construction of a nomogram

In the GSE57338 dataset, a nomogram was constructed using
the R package “rms” (v 5.1.4) (28) to evaluate the risk of developing
HF, based on the expression of identified biomarkers. The
predictive performance of the nomogram was assessed by plotting
the ROC curve with the R package “pROC” (v 1.18.0).

2.8 Gene set enrichment analysis
Spearman correlation analysis was performed between each

biomarker and the remaining genes across all GSE57338 samples
using the R package “psych” (v 2.2.9) (29), generating correlation
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coefficients. Genes were then ranked according to these coefficients,
yielding gene lists associated with each biomarker. GSEA was
performed using the sorted results and the R package
“ClusterProfiler” (v 3.16.0), with “c2.kegg.v7.4.symbols.gmt” and
“c5.go.v7.4.symbols.gmt” from the Molecular Signatures Database
(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) as
reference gene sets. The top 5 most significant signaling pathways
were visualized using the enrichplot package (P < 0.05 and |
Normalized Enrichment Score (NES)| > 1) (v 1.18.3) (20).

2.9 Immune infiltration analysis

The CIBERSORT algorithm (v 1.03) (30) was employed to
calculate the relative abundance of 22 immune cell types (31) in HF
and normal samples from the GSE57338 dataset. Immune cells with
a result of 0 were excluded. Differential immune cells (P < 0.05)
were identified, and box plots were constructed for visualization.
Spearman correlation analysis was used to assess the relationships
among differential immune cells and between biomarkers and
immune cells (|cor| > 0.3 and P < 0.05). A correlation matrix was
created using the R package “corrplot” (v 0.92) (26), and a heatmap
was plotted using the R package “pheatmap” (v 1.0.12) (32).

2.10 Regulatory network analysis

MiRNAs targeting the biomarkers were predicted using the
microRNA database (miRDB, http://mirdb.org) and the starBase
database (http://starbase.sysu.edu.cn/), and the intersection of
miRNAs from both databases was extracted. Based on these
predictions, a miRNA-biomarker network was constructed using
Cytoscape (v 3.10.0). Transcription factors (TFs) related to the
biomarkers were identified using the TRRUST database (http://
www.grnpedia.org/trrust/), while the disease signatures database
(DSigDB, https://www.dsigdb.org/) was used to identify drugs
targeting the biomarkers. A biomarker-drug network was then
created and visualized.

2.11 Single-cell RNA sequencing analysis

The single-cell RNA sequencing data from GSE183852 were
processed into Seurat objects using the R package “Seurat” (v 4.4.0)
(33). Quality control was performed by applying the following
parameters: 200 < nFeature RNA < 4,000, nCount RNA < 10,000,
and Mt < 10%. Genes covered by fewer than three cells were removed.
Hypervariable genes were selected using variance stabilization
transformation (vst), and the highly variable genes (HVGs) were
retained for further analysis. The LabelPoints function was applied to
identify the top 10 most variable genes, and the Scale Data function was
used for normalization. Principal component analysis (PCA) was
performed on the HVGs for dimensionality reduction. The p-value
for PCs 1 to 15 was calculated using the Jackstraw function, and
variance drop values for PCs were computed using the Elbowplot
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function. Based on the elbow plot, appropriate PCs were selected for
subsequent analysis (P < 0.05). Uniform Manifold Approximation and
Projection (UMAP) clustering analysis was applied to identify cell
clusters (resolution = 0.5). Cellular annotation was performed according
to the literature (12). The Dotplot function was used to visualize the
expression of the three biomarkers in the cells, and cells expressing all
three biomarkers were selected as key cells. Enrichment analysis for
each cell subtype was conducted using the analyze_sc_clusters function
from the R package “ReactomeGSA” (v 1.12.0) (34). The pathways
function was used to extract enrichment results, and a heatmap
displayed the top ten enriched pathways in each cell subtype. Cell
subtype interactions were explored using the R package “CellChat” (v
1.6.1) (35) to conduct communication analysis. Trajectory
differentiation of key cell clusters was simulated using the R package
“Moncle” (v 2.30.1) (36). The dynamic trend of biomarker expression
during cell differentiation was plotted using the plot_pseudo-
time_heatmap function. Next, the marker genes of key cell
subpopulations were selected for annotation based on the CellMarker
2.0 database (https://ngdc.cncb.ac.cn/databasecommons/database/id/
6110), and the final key cell subpopulations were identified based
on the specific expression of these genes in different clusters. To
further explore the expression dynamics and temporal trajectories
of biomarkers in the key cells, the annotated key cell subpopulations
were analyzed by the proposed timeline trajectory analysis. Using
the R package Monocle2 (v 2.24.1) (37), the distribution of
biomarkers in each key cell subtype was projected onto a root
and multiple branches, a single-cell trajectory map was constructed,
and the dynamic trend of biomarker expression during cell
differentiation was plotted. Subsequently, in order to analyze the
relationship between differentiation states and subtypes of key cells,
stacked maps of cell subpopulations in different differentiation
states were drawn. Based on the subtype annotation results, the
proportions of cell types under different groupings were first
visualized. Wilcoxon test. Finally, the differences in the expression
of NOS2, TNF, ARG1, and MRC1 genes in Monocyte&Macrophage
between HF and control samples were analyzed and statistically
analyzed using the Wilcoxon test.

2.12 Human Subjects and Extraction of
PBMC

Patients with HF admitted to the First Hospital of Shanxi
Medical University were selected as the HF group, and a control
group was matched with the HF group based on age, gender, and
other underlying diseases besides HF. Based on the expression of
biomarkers obtained through bioinformatics, the sample size was
calculated using PASS.15, resulting in a total of 15 pairs of samples.
In the morning of the second day after admission, venous blood was
collected into EDTA tubes, and peripheral blood lymphocytes were
isolated within 2 hours using human peripheral blood lymphocyte
separation liquid (Solarbio, China). The trial protocol was approved
by the Scientific Research Ethics Review Committee of the First
Hospital of Shanxi Medical University (NO. KYLL-2024-236), and
all patients provided written informed consent.
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2.13 Animal model (echocardiography)

SSPF-grade male Sprague-Dawley rats (180-200 g, 6-8 weeks old)
were used to establish a chronic HF model (38). HF was induced by
permanently ligating the left coronary artery in rats, while sham-
operated rats underwent the same surgical procedure without artery
ligation. Six weeks post-ligation, high-resolution echocardiography was
performed using the Vevo 770 system (Visualsonics) with a 40 MHz
RMYV 704 scanhead to assess cardiac function. Rats with an ejection
fraction (EF) < 40% were considered to have successfully developed HF,
and those that did not develop HF were excluded. After completing
echocardiography, the animals were euthanized, and tissues were
collected for analysis. The experimental protocol was approved by the
Animal Experimental Center Ethics Committee of Beijing
Yongxinkangtai Science and Technology Development Co., Ltd.
(NO. YXKT2024L010).

2.14 Staining

Hearts were fixed in 4% paraformaldehyde at room temperature
for 48 hours, followed by dehydration and embedding. The samples
were sectioned at 5um thickness, dewaxed, rehydrated, and stained
with Hematoxylin and Eosin (HE) and Masson stains. For THC
staining, primary antibodies targeting CD163 (1:200, Selleck,
F1548) was incubated overnight at 4 °C. Then, second antibody
was incubated at 37°C for 1 hour. Chromogen development was
accomplished with DAB. Images were captured under a microscope
(Olympus, Japan).

TABLE 1 Primer sequences for quantitative real-time PCR.

10.3389/fimmu.2025.1560903

2.15 Real-time quantitative PCR

Following tissue homogenization, total RNA was extracted
using Trizol (Thermo Fisher Scientific, USA). cDNA synthesis was
carried out using PrimeScript RT Master Mix (Takara, Japan)
according to the manufacturer’s protocol. Real-time quantitative
PCR (qPCR) analysis was performed with SYBR Green Master
Mix (DBI Bioscience, Germany) on a QuantStudio3 real-time PCR
instrument (Thermo Fisher Scientific, USA), with GAPDH as an
internal control. Relative mRNA expression levels were quantified
using the 2744¢
in Table 1.

method. Primer sequences are provided

2.16 Statistical analysis

Statistical analyses were conducted using R software (v 4.2.2)
and GraphPad Prism 9. Differences between two groups were
assessed using the Wilcoxon rank sum test, with statistical
significance defined as P < 0.05.

3 Results
3.1 Acquisition of key module genes
A total of 441 DEGs were identified, including 236 up-regulated

and 205 down-regulated genes in HF (Additional files 2a-b). The
ssGSEA scores for ICD-related genes significantly differed between

Species Target gene Primer sequence (5'to03’)
Forward AAGCAACATCTACAGTGAAGCAGTC
VSIG4
Reverse ATGATGAGGATGATGGCAAAGACAG
Forward AGTGGACATCAACTTGTTCGGAAG
FPR1
Reverse ACGGTGCGGTGGTTCTGG
Human
Forward ACAATGAAGATGCTGGCGTGAC
CD163
Reverse TCTCTGAATCTCCACCTCAACTGTC
Forward CGTATCGGACGCCTGGTT
GAPDH
Reverse AGGTCAATGAAGGGGTCGTT
Forward AGCTGCCGATCTTTGCCATAATC
VSIG4
Reverse TCCTGCTCACCTCATAGACATACTC
Forward CCGTGAACACTTGAGGAACATACC
FPR1
Reverse GGATTGGGTTGAGGCAGCTATTG
Rat
Forward GAATCACAGCATGGCACAGGTC
CD163
Reverse CACAAGAGGAAGGCAATGAGAAGG
Forward GACATGCCGCCTGGAGAAAC
GAPDH
Reverse AGCCCAGGATGCCCTTTAGT
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HF and normal samples (Additional file 2c). In the WGCNA
analysis of the GSE57338 dataset, no outlier samples were
detected (Additional file 2d). The soft threshold was determined
to be 7 (Additional file 2e). Similar modules were merged from the
co-expression matrix, resulting in 11 identified gene modules
(excluding the gray module for unclassified genes), with each
module represented by a different color (Figure la). The yellow
module (cor = 0.72, P = 5.8 x 10™"7) demonstrated the strongest
correlation with ICD-related gene ssGSEA scores. Consequently,
the 432 genes within the yellow module were designated as key
module genes (Figure 1b).

3.2 Identification and enrichment analysis
of candidate genes and PPI

In this study, 47 candidate genes were identified through the
intersection of DEGs and key module genes (Figure 2a). The
obtained candidate genes were subject to gene ID conversion,
though FCGR1B could not be successfully converted. GO
enrichment analysis revealed 272 GO terms, comprising 224
biological processes (BP), 24 cellular components (CC), and 24
molecular functions (MF) (P < 0.05) (Figure 2b). The candidate
genes were significantly enriched in pathways such as the positive
regulation of inflammatory response, secretory granule membrane,
and RAGE receptor binding. Additionally, the candidate genes were
enriched in 26 KEGG pathways (P < 0.05), including
staphylococcus aureus infection, phagosome, and neutrophil
extracellular trap formation (Figure 2c). These results implied
that candidate genes may play important roles in antimicrobial
immunity, inflammatory response and cellular damage repair.

The candidate genes were further subjected to PPI network
construction, resulting in 42 genes, such as TLR2, FPR1, and MRCl,
and 240 gene-to-gene pairs, including TLR2-CD163 and VSIG4-
CD14 (Figure 2d).

To optimize the screening of candidate genes, the genes were
ranked using different algorithms. The top 20 genes from each
algorithm were extracted, and the intersection of these top 20 genes

10.3389/fimmu.2025.1560903

was taken. Finally, 16 genes were identified as the candidate key
genes for further analysis (Figure 2e).

3.3 Machine learning for candidate
biomarker screening

Based on the sample grouping information from GSE57338, the
SVM-RFE algorithm was applied for screening, resulting in 13
feature genes: CD163, VSIG4, FCERIG, CCR1, CCL5, FPR1, TLR2,
C1QB, CD14, MSR1, CD68, MRCI1, and CYBB (Figure 3a). The
MeanDecreaseGini values for each feature gene ranged from 0 to 30,
with notable differences observed between the genes (Figure 3b). By
calculating the median of the MeanDecreaseGini values, six genes
greater than the median were selected as candidate biomarkers:
CD163, VSIG4, FCERI1G, CCR1, CCL5, and FPR1. Among these,
CCL5 showed a negative correlation with VSIG4 and CD163, while
the remaining five genes exhibited positive correlations with each
other (P < 0.01) (Figure 3c). The correlation between these genes
suggested that they may work in concert at different stages of the
immune response or in different types of immune cells.

3.4 Diagnosis and evaluation of biomarkers

In GSE57338, the six candidate biomarkers demonstrated
significant differences between HF and normal samples (P <
0.05), with CD163, FPR1, and VSIG4 showing decreased
expression in HF samples (Figure 4a). In GSE3586, only CD163,
VSIG4, CCR1, and FPRI were expressed, with CD163, FPR1, and
VSIG4 levels significantly reduced in HF samples, consistent with
the expression patterns observed in GSE57338 (Figure 4b).
Consequently, CD163, FPR1, and VSIG4 were selected for ROC
analysis, which revealed that the AUC for all three biomarkers
exceeded 0.7 in both datasets, confirming their potential as HF
biomarkers (Figures 4c-h). Next, the expression analysis of CD163,
FPRI1, and VSIG4 in the GSE5406 dataset showed that all three were
significantly under-expressed in the HF group compared to the
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Acquisition of key module genes. (a) Co-expression module identification. (b) Heatmap showing the correlation between modules and phenotypes.
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Identification and enrichment analysis of candidate genes and PPI. (a) Venn diagram depicting the overlap between differentially expressed genes
(DEGs) and key module genes. (b) Gene Ontology (GO) enrichment analysis results. (c) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis results. (d) Protein-Protein Interaction (PPI) network. (e) Upset plot representing the PPl network.

normal group (Additional file 3). The expression patterns were  indicating that the predictive accuracy of the nomogram model
consistent with those in the GSE57338 and GSE3586 datasets. was significantly superior to single-gene predictions (Additional

The nomogram model demonstrated that these three file 4). It also suggested that the onset and progression of
biomarkers could accurately predict the risk of HF occurrence. ~ HF may involve complex interactions of multiple genes or
ROC analysis of the nomogram yielded an AUC of 0.913,  biological pathways.
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3.5 Functional analysis of biomarkers

Further analysis of the signaling pathways involving CD163,
FPR1, and VSIG4 revealed that CD163 was enriched in 76
pathways, including ribosome, Parkinson’s disease, leishmania
infection, Fc gamma R-mediated phagocytosis, and B cell receptor
signaling (Figure 5a). FPRI was enriched in 79 pathways, including
ribosome, leishmania infection, Parkinson’s disease, cytokine-
cytokine receptor interaction, and chemokine signaling
(Figure 5b). VSIG4 was enriched in 85 pathways, including
ribosome, Fc gamma R-mediated phagocytosis, B cell receptor
signaling, leishmania infection, and chemokine signaling
(Figure 5c). Notably, all three biomarkers were enriched in
pathways related to ribosome function, immune cells, and
immune factors. These findings provided a basis for further
investigation of the potential applications of biomarkers in
immunomodulation, disease diagnosis and therapy.

3.6 Analysis of immune cell infiltration

To further explore immune status differences between HF and
normal samples, immune infiltration analysis was performed on
GSE57338 samples, revealing differences in the abundance of 22
immune cell types between samples from patients with HF and
normal samples (Additional file 5). Immune cells with a result of 0
in 30% of the samples were excluded, leaving 12 immune cell types
for subsequent analysis. Five immune cell types showed significant
differences between the groups: M2 macrophages, resting mast cells,
plasma cells, CD8" T cells, and T regulatory cells (Tregs) (P < 0.05)
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(Figure 6a). Correlation analysis among these five immune cell
types revealed a strong positive correlation between CD8" T cells
and Tregs, while plasma cells exhibited negative correlations with
Tregs, CD8" T cells, M2 macrophages, and resting mast cells
(|cor| > 0.3, P < 0.05) (Figure 6b). The correlation heatmap
between biomarkers and the five immune cell types showed that
VSIG4 had a strong positive correlation with M2 macrophages, and
M2 macrophages positively correlated with CD163 and FPRI. In
contrast, CD8" T cells and plasma cells negatively correlated with
CD163, FPRI, and VSIG4, respectively. Resting mast cells
demonstrated an inverse correlation with CD163 and FPRI
(cor| > 0.3, P < 0.05) (Figure 6¢). The above results suggested
that biomarkers may be involved in disease onset and progression
by modulating immune responses and cellular functions.

3.7 Molecular regulatory network and drug
prediction

Prediction of miRNA interactions with the three biomarkers
revealed that VSIG4 was regulated by four miRNAs, including hsa-
miR-665; CD163 was regulated by 11 miRNAs, including hsa-miR-
4262; while no miRNA regulatory relationships were found for
FPR1 (Figure 7a). TFs regulating the biomarkers were also analyzed,
revealing that no TFs regulated VSIG4 or FPRI, but eight TFs,
including SOX9, were found to regulate CD163 (Figure 7b). These
findings provided important clues for further understanding of
immune markers and their regulatory networks in HF.

A total of 74 biomarker-drug/compound relationships were
identified. The network analysis suggested that carbachol and
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Diagnosis and evaluation of biomarkers. (a) Expression levels of candidate genes in the training set, with the horizontal axis representing genes and
the vertical axis indicating gene expression levels (Wlicoxon rank sum test, ****P < 0.0001). (b) Expression levels of candidate genes in the validation
set, with similar axis labels and significance markers (Wlicoxon rank sum test, *P < 0.05, **P < 0.01, ns: P > 0.05). (c) ROC curve analysis of the VSIG4
biomarker in the validation set. (d) ROC curve analysis of the CD163 biomarker in the training set. (e) ROC curve analysis of the FPR1 biomarker in
the training set. (f) ROC curve analysis of the VSIG4 biomarker in the training set. (g) ROC curve analysis of the FPR1 biomarker in the validation set.

(h) ROC curve analysis of the CD163 biomarker in the validation set.

etynodiol may have potential effects on all three biomarkers.
Additionally, six compounds were shared between CD163 and
FPR1—prednisolone, flunisolide, fludroxycortide, halcinonide,
ribavirin, and isoflupredone—while five compounds were shared
between FPR1 and VSIG4, including anisomycin, trichostatin A,
cephaeline, emetine, and beclometasone (Figure 7c). By
understanding the role of these drugs in regulating the expression
of immune markers, more effective therapeutic strategies may be
developed in the future.
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3.8 Single-cell RNA sequencing analysis

Following quality control, 23,963 genes and 49,042 cells were
identified (Additional file 6). The top 2000 HVGs were selected, and
the 10 genes exhibiting the greatest variation were identified
(Additional file 7a). PCA was performed on the selected HVGs,
and the top 10 principal components (PCs) were chosen for further
analysis (P < 0.05) (Additional files 7b-c). UMAP clustering analysis
was conducted prior to cell annotation, resulting in the
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FIGURE 5

Functional analysis of biomarkers. (a) GSEA enrichment analysis of the CD163 gene. (b) GSEA enrichment analysis of the FPR1 gene. (c) GSEA

enrichment analysis of the VSIG4 gene.

identification of 14 distinct cell clusters (Additional file 7d). Nine
cell types and their corresponding markers were extracted for
annotation based on the reference (12). Subsequently, cell
annotation revealed eight distinct cell types: endothelium,
fibroblasts, pericytes, monocytes and macrophages, natural killer
and T lymphocytes (NK&T cells), neurons, B cells, and smooth
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muscle cells (Figure 8a; Additional file 8). Monocytes and
macrophages expressing all three biomarkers were designated as
key cells (Figure 8b). To explore the biological pathways and
functions of these cell subtypes in HF development, enrichment
analysis revealed that pericytes and smooth muscle cells were
significantly associated with ATP-sensitive potassium channels
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and BDNF activation of NTRK2 (TRKB) signaling, while NK&T
cells and B cells were predominantly enriched for activation of Na-
permeable kainate receptors and hydroxycarboxylic acid-binding
receptors (Figure 8c). The above results implied that these cell types
act synergistically through multiple mechanisms and may provide
new targets and ideas for the treatment of HF.

Analysis of cell communication between the eight cell types
showed that fibroblasts and neurons exhibited the highest number
of ligand-receptor pairs, indicating the strongest interaction
between these two cell types. Fibroblasts also demonstrated a
higher probability of communication with monocytes and
macrophages, NK&T cells, and B cells (Figures 9a, b; a: plot of
probability of cellular communication, b: plot of number of cellular
communications). The high-frequency interaction of fibroblasts
with these immune cells suggested that they may play an
important role in tissue repair and remodeling in immune
responses, and inflammation.
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***p < 0.001).

Monocytes and macrophages were projected onto a root with 9
branches, traversing 9 nodes along their developmental trajectory.
Clusters 0 and 3 marked the initial stages of monocyte and
macrophage development, while clusters 4 and 6 were primarily
located at the final stages of cellular differentiation (Figures 9c, d).
This dynamic developmental trajectory may reflected how immune
cells progressively differentiate and regulate their functions in the
body according to different needs.

Given the specific expression of the biomarkers in monocytes
and macrophages, the gene expression of the three biomarkers was
analyzed across the pseudo-time series. The expression of CD163
showed a decreasing trend over time, with slight increases at certain
nodes of the developmental cycle, but overall, the expression in the
cells declined. In contrast, FPR1 exhibited an upward trend,
indicating its potential significant role in cellular development
and differentiation. The expression pattern of VSIG4 mirrored
that of CD163 (Figure 9e¢). This expression pattern suggested that
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subpopulation mapped to a different differentiation time and
corresponded to a different differentiation state, with darker red
indicating the earliest type of differentiation. As cells differentiated,
the expression of CD163 and VSIG4 in key cell subpopulations

their immunosuppressive or reparative functions may be gradually
replaced by other functions.

To further explore the biomarker expression of monocyte and
macrophage subpopulations at different stages of differentiation, 13
cells were first clustered and annotated into 5 subpopulations based ~ gradually increased, while the expression of FPR1 slowly decreased
on marker genes (Table 2; Additional file 9a-c). Subsequently, the  (Additional file 9¢). Next, stacked plots of cell subpopulations in
different differentiation states (Additional file 9f) showed that M1

macrophages were distributed in all differentiation states, especially

five cell subpopulations were analyzed in a proposed time series. As
shown in Additional file 9d, cells gradually differentiated over time,

with darker blue representing earlier differentiation. Each cell ~more in state 2 and state 5; Intermediate monocytes were
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of cell subtypes.

distributed only in state 1; and Non-classical monocytes were
mainly distributed in state 1 and state 3; M2 macrophages were
concentrated in state 3 and state 4 in the later stages of
differentiation; Classical monocytes were found mainly in state 1
and state 5. Subsequently, the proportions of cell subtypes under
different groupings were visualized (Additional file 10a). By
comparing NOS2, TNF, ARG1 and MRCI1 gene expression in
Monocyte&Macrophage between HF and control samples, TNF
and MRC1 were found to be significantly different between the two
groups (Additional files 10b-e). This provided important clues to a
deeper understanding of the function of monocytes and
macrophages and their role in disease.

3.9 Clinical and animal validation of Hub
genes

To validate the expression levels of ICD-related hub genes in
HF, PBMCs were extracted from 15 clinical patients with HF and
controls for RT-qPCR analysis. Results revealed significant down-
regulation of CD163, FPRI1, and VSIG4 in patients with HF
(Figure 10a). Further investigation was conducted in heart tissues
using the HF rat model. Echocardiography showed reduced left
ventricular ejection fraction (LVEF) and left ventricular fractional

Frontiers in Immunology

shortening index (LVES), alongside increased left ventricular end-
systolic diameter (LVIDs) and left ventricular end-diastolic
diameter (LVIDd) in HF rats (Figures 10b-c). The ratios of heart
weight to body weight and lung weight to tibia length were
significantly elevated (Figure 10d). HE staining revealed
prominent cardiomyocyte hypertrophy, with inflammatory cell
infiltration in the HF group (Figure 10e). Masson staining
indicated severe fibrosis in the HF group (Figure 10f), and the
difference in fibrosis between the two groups was significant
(Figure 10g). Cardiac tissue RT-qPCR results confirmed that
CD163, FPR1, and VSIG4 were significantly down-regulated in
HEF rats (Figure 10h). The results of immunohistochemistry showed
that the expression of CD163" cells was decreased in the myocardial
tissue of HF mice (Additional file 11). These results suggested that
down-regulation of CD163, FPR1, and VSIG4 expression in HF
patients and HF rat models may be closely associated with
dysregulation of the immune system, decreased cardiac function,
and tissue damage.

4 Discussion

Cardiac immunology has recently emerged as a focal area of
research. While some aspects of immune regulation in HF are
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understood, many questions remain to be addressed. ICD is a form
of programmed cell death induced by antigens and adjuvants,
triggering downstream immune responses. However, the role and
mechanisms of ICD in HF pathophysiology remain unclear. In this
study, three ICD-related biomarkers—CD163, FPR1, and VSIG4—
were identified in patients with HF using transcriptomic and single-
cell dataset analyses (Additional file 12). Previous studies have
shown that these three genes, as combined markers, may act
synergistically to affect the occurrence and development of HF
and non-alcoholic fatty liver disease by regulating mechanisms such
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as immune response and monocyte migration. In addition, their
association with natural killer (NK) cells and macrophages was also
found, further supporting their important role in the immune
response (39).

Single-cell sequencing data in this study were obtained from the
research by Koenig et al. (12). Unlike the study by Koenig, our work
systematically integrated multiomics analyses (including
transcriptomes and single-cell sequencing), machine-learning
approaches (e.g., SVM-RFE and random forests), and immune
infiltration assessments, which were not comprehensively
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Clinical and animal validation of hub genes. (a) Expression of CD163, FPR1, and VSIG4 in peripheral blood mononuclear cells of patients with HF and
NHF individuals (Unpaired t test, **P < 0.01, ***P < 0.001). (b-c) Echocardiograms of the HF rat model and sham group (Unpaired t test,

***P < 0.001). (d) The ratios of heart weight to body weight and lung weight to tibia length in rat model (Unpaired t test, *P < 0.05). (e-f) HE and
Masson staining of rat hearts. (g) Collagen volume fraction(%) calculated by Masson staining (Unpaired t test, ***P < 0.001). (h) Expression of CD163,
FPR1, and VSIG4 in the hearts of HF and sham groups (Unpaired t test, *P < 0.05, **P < 0.01).

combined in their study. Furthermore, this study identified the
association of CD163, FPR1, and VSIG4 with ICD, a connection
that Koenig et al. did not investigate. Specifically, during ICD,
certain molecules, especially ANXAI, may enhance local

inflammatory responses by binding to FPRI1 receptors and

MERTK, CD163, STAB1, MRC1 M2 macrophage . . .

activating macrophages and monocytes. At the same time, the
activation of fibroblasts may promote vascular wall structural
FCN1 Non-classical monocyte changes and fibrosis (40). Therefore, targeting FPR1 or ICD-
related pathways may be a potential strategy for the treatment of
ascending aortic aneurysm. When tumor cells develop ICD through

TABLE 2 Marker gene annotation information for key
cell subpopulations.

BASP1, CXCL8, GPR183 Classical monocyte

FCGR3A Intermediate monocyte
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radiotherapy or other therapeutic modalities, macrophages
recognize tumor cell death signals through CD163 receptors.
CD163" macrophages are normally in an immunosuppressive
state and help tumors evade immune surveillance by promoting
Treg cell infiltration and inhibiting effector T cell function (41). In
addition, carbon ion radiotherapy has been shown to effectively
reduce fiber deposition in scar tissue by inducing ICD of fibroblasts,
slowing their proliferation and promoting their death (42). Another
study pointed out that ICD may affect cancer-associated fibroblasts
by regulating immune responses, thereby altering tumor
progression and patient survival prognosis. Although no
association between ICD and macrophages or fibroblasts has been
found in HF, these immune cells may affect the occurrence and
development of HF through the ICD process. Additionally,
potential therapeutic targets were proposed via drug prediction,
such as carbachol and etynodiol, which target all three biomarkers.
Collectively, this study not only extends the findings of Koenig et al.
but also offers novel insights and references for future research
in HF.

CD163 (Cluster of Differentiation 163), a 130 kDa cell surface
glycoprotein, is predominantly expressed on monocytes and
macrophages. It plays significant roles in metabolic diseases and
immune regulation and is considered a promising target for drug
development (43, 44). Soluble CD163 (sCD163) is a soluble
inflammatory mediator produced through the enzymatic
hydrolysis of CD163 (45). CD163 expression tends to be low in
conditions such as non-alcoholic fatty liver (39, 46) and ischemic
cardiomyopathy (47), whereas sCD163 tends to be elevated in
hypertension (48) and diabetes (49, 50). Additionally, sCD163 has
been linked to increased cardiovascular mortality in diabetic
patients. In HF, CD163 expression is down-regulated in cardiac
tissues (39, 51), consistent with both bioinformatics and
experimental findings in this study. CD163 expression in cardiac
tissue is also associated with hyperlipidemia (52) and cellular
stemness (51). Moreover, sCD163 is highly expressed in the blood
of patients with HF (53), though the mechanisms driving this
increase remain under investigation. Some studies suggest that
sCD163 levels are influenced by left ventricular diastolic volume
(53), while others have linked sCD163 to monocyte activation,
particularly activation related to the M2 phenotype (54), which
warrants further exploration. In addition, research has
demonstrated that CD163 serves as a critical link between the
immune system, inflammatory response, and cardiovascular disease
by not only reflecting the activation of immune cells, particularly
macrophages, but also modulating immune responses (54).
Furthermore, in another study, CD163, acting as a macrophage
marker, was found to play a significant role in regulating
inflammation and the tumor microenvironment (44). This study
also found a reduction in CD163 expression in macrophages in HF,
suggesting that the progression of HF may be linked to decreased
CD163 expression in macrophages.

FPRI (Formyl Peptide Receptor 1), a key member of the G
protein-coupled receptor family, plays a critical role in the
inflammatory process and immune cell recruitment. It is highly
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expressed in macrophages (55) and mediates macrophage
chemotactic motility and functional activation by binding to
TAFA4 (56, 57). FPR1 is a well-established target for clinical
therapeutic drugs, with various agonists and inhibitors developed
for its modulation (58). Studies have demonstrated that FPRI1
modulates the immune response and repair process of the heart
by regulating macrophage activity, and dysregulation of the
immune response following cardiac injury may contribute to the
development of HF (59). Moreover, FPR1 may mitigate
inflammatory responses and facilitate cardiac repair and recovery
in HF through the regulation of macrophage function (60). Studies
suggest that FPR1 may be a promising drug target for
cardiovascular diseases, aiding both diagnosis and treatment (61).
It plays a negative regulatory role in myocardial ischemia-
reperfusion and coronary atherosclerosis but a positive regulatory
role in myocardial infarction. FPR1 contributes to atherosclerotic
lesions by modulating the number of blood neutrophils under
hypercholesterolemia (62) and exacerbates myocardial cell
apoptosis and inflammation during ischemia-reperfusion through
the MAPK signaling pathway (63). However, FPR1 activation has
been shown to improve left ventricular remodeling after myocardial
infarction in mice and rats, potentially by promoting early
neutrophil migration and infiltration, thus accelerating wound
healing (64). In the present study, decreased expression of FPR1
was observed in PBMCs from patients with HF and in the hearts of
HF rats through both bioinformatics and experimental validation.
However, no significant difference in FPR1 expression was found in
macrophages in HF. Notably, FPR1 expression gradually increased
during macrophage differentiation, suggesting its potential as a
therapeutic target for HF.

VSIG4 (V-set and immunoglobulin domain containing 4) is a
type I transmembrane receptor that inhibits T cell activation and
induces the differentiation of regulatory T cells, thus suppressing
immune-mediated inflammatory diseases (65). Soluble VSIG4, shed
from the surface of macrophages, serves as a biomarker for diseases
associated with macrophage activation (66). VSIG4 has a protective
role in cardiovascular diseases and can alleviate age-related insulin
resistance and hypertension (67). Additionally, research has
highlighted that VSIG4, as a critical immune marker, is strongly
associated with macrophage function and plays a pivotal role in both
the immune response and the diagnosis of HF (39, 68). In myocardial
ischemia/reperfusion (I/R) injury, VSIG4 inhibits M1 macrophage
polarization by blocking TLR4/NF-kB signaling, thus preventing
cardiomyocyte apoptosis (69). However, VSIG4 expression in M2
macrophages promotes fibrosis after acute myocardial infarction,
suggesting its potential as an immunomodulatory therapeutic target
(70). In HF, VSIG4 expression is significantly down-regulated in
patients with right ventricular HF (71), while serum levels of VSIG4
are elevated in patients with left ventricular HF, with high levels
correlating with poor prognosis (72). In the present study, VSIG4
expression was decreased in macrophages in HF, and its expression
showed a decreasing trend during macrophage differentiation, further
suggesting that HF progression may be linked to the expression of
VSIG4 in macrophages.
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GSEA enrichment analysis reveals that the three biomarkers are
significantly enriched in ribosomes. The enhanced translation
function of ribosomes is a hallmark of cardiac hypertrophy, and
inhibiting ribosomal translation can effectively mitigate
hypertrophy (73). However, systemic inhibition of ribosomal
translation may cause adverse effects in organs outside the heart.
For example, while rapamycin effectively inhibits cardiac
hypertrophy, it can lead to severe consequences such as immune
suppression (74). Recent studies have identified the cardiac-specific
nuclear ribonucleoprotein (RNP)-binding long non-coding RNA
(IncRNA) CARDINAL, which alleviates cardiac hypertrophy in vivo
and in vitro by inhibiting the translation of hypertrophy-related
proteins (75). In the study by Koji Kasahara et al. (76), FPR1
indirectly influenced ribosomal function through the regulation of
ribosomal protein gene expression. Additionally, VSIG4, an up-
regulated gene, is linked to ribosome function, implying its potential
significance in protein synthesis or cellular function regulation (77).
Prior research has demonstrated that CD163 expression correlates
with the mTOR signaling pathway (78), which governs translation
initiation and ribosome biogenesis (79). The biomarkers identified
in this study are all associated with ribosomes, offering a new
avenue for basic research. Single-cell analysis highlights the pivotal
role of monocytes and macrophages in HF progression, with cardiac
macrophages regulating both survival and adaptive remodeling in
patients with HF. However, these macrophages are highly infiltrated
in the hearts of patients with HF, potentially due to the elevated
expression of Ang II, which mobilizes macrophages (80).
Macrophages are categorized into M1 and M2 types based on
their secreted factors and functions. Promoting the conversion of
M1 to M2 macrophages and maintaining a balance between these
two subtypes may provide an effective strategy for treating HF (81).
It has been demonstrated that sodium-glucose cotransporter 2
(SGLT?2) inhibitors can reduce fibrosis markers by promoting M2
macrophage polarization and enhancing angiogenic factors (82),
while nicorandil can suppress the production of pro-inflammatory
cytokines by inhibiting M1 polarization (83). Furthermore, this
study found a positive correlation between the expression levels of
these three biomarkers and M2 macrophages, suggesting that
targeting these biomarkers to modulate macrophage homeostasis
in HF may offer a promising therapeutic strategy.

Cell subtype communication analysis revealed that fibroblasts
likely engage in frequent interactions with monocytes,
macrophages, NK cells, T cells, and B cells. Previous studies have
demonstrated that macrophages influence cardiac function by
modulating fibroblast activity and affecting the remodeling and
excessive deposition of extracellular matrix (ECM) (84). During
cardiac inflammation and remodeling, macrophages and fibroblasts
exhibit a close interconnection. Notably, M1 macrophages release
pro-inflammatory cytokines, activate fibroblasts, and drive the
progression of fibrosis (85). Additionally, research has shown that
macrophages interact with TWEAK via the receptor CD163,
playing a critical role in cardiac fibrosis and HF (86). VSIG4
promotes cardiac fibrosis repair during acute myocardial
infarction (AMI) by regulating M2-type macrophage function and
interacting with immune factors such as TGF-B1 and IL-10 (70).
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Furthermore, the FPRI receptor is crucial for the aggregation and
activation of immune cells, including monocytes and macrophages,
which subsequently impacts fibroblast activation and fibrosis,
thereby promoting inflammatory and fibrotic responses in the
heart and lung (87). Collectively, the intricate crosstalk between
immune cells and fibroblasts plays a pivotal role in the pathogenesis
of cardiac inflammation and fibrosis, offering potential therapeutic
targets and novel strategies for treating cardiac fibrosis.

In this paper, drug prediction was performed based on three
biomarkers, and it was found that carbachol and etynodiol may
have potential roles for all three biomarkers. Carbachol, a structural
analogue of acetylcholine that acts on muscarinic and nicotinic
receptors, is used clinically to treat glaucoma (88). Only a few
literatures have found that carbachol increases phagocytosis of
macrophages in vitro (89). Progestin is the first progestin with
moderate progestogen activity, and progestin has some effect on
macrophages. In a clinical study of adolescent endometriosis, one-
year progestin treatment increased the number of CD206"
monocytes (P < 0.001) but decreased the number of CD163"
monocytes (P = 0.017) (90). The specific effects of the above two
drugs on macrophages are still superficial, and the relevant
mechanisms are not deeply studied. In addition, the effects of the
above two drugs on heart failure are lack of relevant research
support and still need to be further explored.

This study has several limitations. First, the dataset is relatively
small, necessitating the inclusion of larger, multi-center datasets
(e.g. UK Biobank, HF registry study data) for more robust
conclusions. Furthermore, validation in human and animal
models is preliminary; additional functional experiments, such as
gene knockout or overexpression studies, are needed to clarify the
roles of these biomarkers in HF progression. Simultaneously,
further experimental evidence is required to clarify the
relationship between biomarkers and ribosomes. Moreover,
existing studies have predominantly focused on monocytes/
macrophages, while the interactions with other cell types, such as
fibroblasts and cardiomyocytes, remain underexplored. Future
investigations could leverage spatial transcriptome technologies,
like Visium, to map co-localization regions and deepen our
understanding of macrophage-fibroblast interactions. Lastly, the
absence of experimental validation for drug predictions restricts
their direct clinical application. In subsequent studies, carbachol or
etynodiol could be administered in HF rat models to monitor
changes in CD163/VSIG4 expression levels, cardiac function
parameters, and inflammatory/fibrosis markers. Despite these
limitations, the study identifies novel mechanisms underlying HF
and highlights potential biomarkers, offering valuable insights for
the prevention and treatment of HF and establishing a foundation
for future research.

5 Conclusions
This study identified three biomarkers—CD163, FPRI1, and

VSIG4—associated with immunogenic cell death in patients with
HF, integrating transcriptomic data with single-cell datasets. The
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functions and biological pathways of these biomarkers were
examined, and the potential links between immunogenic cell
death-related genes and HF pathophysiology were explored.
Additionally, the expression of these biomarkers was validated in
both human and animal models, providing a novel theoretical
framework for clinical diagnosis and treatment of HF.
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ssGSEA scores between heart failure and normal samples. The horizontal
axis represents the ssGSEA score, and the vertical axis represents sample
groupings (Wlicoxon rank sum test, ** P < 0.01). (d) Hierarchical clustering of
samples. Each branch in the clustering tree corresponds to a sample, with the
vertical coordinate representing the Euclidean distance of sample expression
levels. (e) Soft-thresholding analysis for network construction.

ADDITIONAL FILE 3
Expression analysis of biomarkers in GSE5406 dataset.

ADDITIONAL FILE 4
ROC curves of single-gene and nhomogram models

ADDITIONAL FILE 5
Stacked column chart depicting differences in immune cell infiltration.

ADDITIONAL FILE 6
Quiality control results of single-cell sequencing.

ADDITIONAL FILE 7
Cellular heterogeneity and dimensionality reduction analysis. (a) Diagram for
screening highly variable genes. (b-c) Principal component analysis (PCA)
plots of cells. (d) UMAP plot for different cell clusters.

ADDITIONAL FILE 8
Bubble chart of cell marker genes.

ADDITIONAL FILE 9

Characterization of Monocyte and Macrophage subpopulations and their
differentiation dynamics. (a-b) Expression levels of Marker genes in different
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cell populations. (c) Annotated cellular map of monocyte and macrophage
subpopulations. (d) Proposed temporal analysis plot of key cell subpopulations.
(e) Changes in biomarker expression during cell differentiation. (f) The stacked
plots of cell subpopulations in different differentiation states

ADDITIONAL FILE 10
TNF and MRC1 were significantly different between HF and control samples.
(a) Visualization of the proportions of cell subtypes under different groupings.

References

1. Khan MS, Shahid I, Bennis A, Rakisheva A, Metra M, Butler. J. Global
epidemiology of heart failure. Nat Rev Cardiol. (2024) 21:717-34. doi: 10.1038/
§41569-024-01046-6

2. Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats. AJS. Global
burden of heart failure: a comprehensive and updated review of epidemiology.
Cardiovasc Res. (2023) 118:3272-87. doi: 10.1093/cvr/cvac013

3. Ostrominski JW, DeFilippis EM, Bansal K, Riello R, Bozkurt 3B, Heidenreich PA,
et al. Contemporary american and european guidelines for heart failure management:
JACC: heart failure guideline comparison. JACC Heart Fail. (2024) 12:810-25.
doi: 10.1016/j.jchf.2024.02.020

4. Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP,
Bomer N, Voors AA, et al. Inmunomodulation and immunopharmacology in heart
failure. Nat Rev Cardiol. (2024) 21:119-49. doi: 10.1038/s41569-023-00919-6

5. Meier P, Legrand AJ, Adam D, Silke. J. Immunogenic cell death in cancer:
targeting necroptosis to induce antitumour immunity. Nat Rev Cancer. (2024) 24:299-
315. doi: 10.1038/s41568-024-00674-x

6. Arimoto KI, Miyauchi S, Liu M, Zhang. DE. Emerging role of immunogenic cell
death in cancer immunotherapy. Front Immunol. (2024) 15:1390263. doi: 10.3389/
fimmu.2024.1390263

7. Tian Z, Li X, Jiang. D. Analysis of immunogenic cell death in atherosclerosis based
on scRNA-seq and bulk RNA-seq data. Int Immunopharmacol. (2023) 119:110130.
doi: 10.1016/j.intimp.2023.110130

8. Zhang YJ, Huang C, Zu XG, Liu JM, Li. YJ. Use of machine learning for the
identification and validation of immunogenic cell death biomarkers and
immunophenotypes in coronary artery disease. J Inﬂammation Res. (2024) 17:223-
49. doi: 10.2147/jir.5439315

9. Qin L, Li S, Cao X, Huang T, Liu Y, Chen. O. Potential diagnostic biomarkers for
immunogenic cell death in elderly female patients with ischemic stroke: identification
and analysis. Sci Rep. (2024) 14:14553. doi: 10.1038/s41598-024-65390-w

10. Liu Y, Morley M, Brandimarto J, Hannenhalli S, Hu Y, Ashley EA, et al. RNA-
Seq identifies novel myocardial gene expression signatures of heart failure. Genomics.
(2015) 105:83-9. doi: 10.1016/j.ygeno.2014.12.002

11. Barth AS, Kuner R, Buness A, Ruschhaupt M, Merk S, Zwermann L, et al.
Identification of a common gene expression signature in dilated cardiomyopathy across
independent microarray studies. ] Am Coll Cardiol. (2006) 48:1610-7. doi: 10.1016/
jjacc.2006.07.026

12. Koenig AL, Shchukina I, Amrute J, Andhey PS, Zaitsev K, Lai L, et al. Single-cell
transcriptomics reveals cell-type-specific diversification in human heart failure. Nat
Cardiovasc Res. (2022) 1:263-80. doi: 10.1038/s44161-022-00028-6

13. Garg AD, De Ruysscher D, Agostinis. P. Immunological metagene signatures
derived from immunogenic cancer cell death associate with improved survival of
patients with lung, breast or ovarian Malignancies: A large-scale meta-analysis.
Oncoimmunology. (2016) 5:¢1069938. doi: 10.1080/2162402x.2015.1069938

14. Zhang L, Zhang X, Liu H, Yang C, Yu J, Zhao W, et al. MTFR2-dependent
mitochondrial fission promotes HCC progression. J Transl Med. (2024) 22:73.
doi: 10.1186/5s12967-023-04845-6

15. Gustavsson EK, Zhang D, Reynolds RH, Garcia-Ruiz S, Ryten. M. ggtranscript:
an R package for the visualization and interpretation of transcript isoforms using
ggplot2. Bioinformatics. (2022) 38:3844-6. doi: 10.1093/bioinformatics/btac409

16. Gu Z, Eils R, Schlesner. M. Complex heatmaps reveal patterns and correlations
in multidimensional genomic data. Bioinformatics. (2016) 32:2847-9. doi: 10.1093/
bioinformatics/btw313

17. Hénzelmann S, Castelo R, Guinney. J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf. (2013) 14:7. doi: 10.1186/1471-2105-14-7

18. Langfelder P, Horvath. S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf. (2008) 9:559. doi: 10.1186/1471-2105-9-559

19. Mao W, Ding ], Li Y, Huang R, Wang. B. Inhibition of cell survival and invasion
by Tanshinone IIA via FTHI: A key therapeutic target and biomarker in head and neck
squamous cell carcinoma. Exp Ther Med. (2022) 24:521. doi: 10.3892/etm.2022.11449

20. Wang L, Wang D, Yang L, Zeng X, Zhang Q, Liu G, et al. Cuproptosis related
genes associated with Jabl shapes tumor microenvironment and pharmacological

Frontiers in Immunology

10.3389/fimmu.2025.1560903

(b-e) Expression of NOS2, TNF, ARG1, and MRC1 genes in
Monocyte&Macrophage between HF and control samples.

ADDITIONAL FILE 11
Expression of CD163"macrophages in rat myocardium.

ADDITIONAL FILE 12
The flowchart of this research.

profile in nasopharyngeal carcinoma. Front Immunol. (2022) 13:989286. doi: 10.3389/
fimmu.2022.989286

21. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation (Camb). (2021) 2:100141.
doi: 10.1016/j.xinn.2021.100141

22. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:
a software environment for integrated models of biomolecular interaction networks.
Genome Res. (2003) 13:2498-504. doi: 10.1101/gr.1239303

23. Conway JR, Lex A, Gehlenborg. N. UpSetR: an R package for the visualization of
intersecting sets and their properties. Bioinformatics. (2017) 33:2938-40. doi: 10.1093/
bioinformatics/btx364

24. Yang L, Pan X, Zhang Y, Zhao D, Wang L, Yuan G, et al. Bioinformatics analysis
to screen for genes related to myocardial infarction. Front Genet. (2022) 13:990888.
doi: 10.3389/fgene.2022.990888

25. Zhao P, Zhen H, Zhao H, Huang Y, Cao. B. Identification of hub genes and
potential molecular mechanisms related to radiotherapy sensitivity in rectal cancer
based on multiple datasets. ] Transl Med. (2023) 21:176. doi: 10.1186/s12967-023-
04029-2

26. Liu Z, Wang L, Xing Q, Liu X, Hu Y, Li W, et al. Identification of GLS as a
cuproptosis-related diagnosis gene in acute myocardial infarction. Front Cardiovasc
Med. (2022) 9:1016081. doi: 10.3389/fcvm.2022.1016081

27. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an
open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf.
(2011) 12:77. doi: 10.1186/1471-2105-12-77

28. Xu J, Yang T, Wu F, Chen T, Wang A, Hou. S. A nomogram for predicting
prognosis of patients with cervical cerclage. Heliyon. (2023) 9:¢21147. doi: 10.1016/
j-heliyon.2023.e21147

29. Unger-Plasek B, Temesi A, Lakner. Z. Towards understanding the motivators of
sustainable consumer behavior-validation of the food eco-guilt scale. Nutrients. (2024)
16:(21). doi: 10.3390/nul6213695

30. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh. AA. Profiling tumor
infiltrating immune cells with CIBERSORT. Methods Mol Biol. (2018) 1711:243-59.
doi: 10.1007/978-1-4939-7493-1_12

31. Chen F, Yang Y, Zhao Y, Pei L, Yan. H. Immune infiltration profiling in
nonsmall cell lung cancer and their clinical significance: study based on gene expression
measurements. DNA Cell Biol. (2019) 38:1387-401. doi: 10.1089/dna.2019.4899

32. Gu Z, Hiibschmann. D. Make interactive complex heatmaps in R.
Bioinformatics. (2022) 38:1460-2. doi: 10.1093/bioinformatics/btab806

33. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng 3S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell. (2021) 184:3573-3587.e29.
doi: 10.1016/j.cell.2021.04.048

34. Griss J, Viteri G, Sidiropoulos K, Nguyen V, Fabregat A, Hermjakob. H.
ReactomeGSA - efficient multi-omics comparative pathway analysis. Mol Cell
Proteom. (2020) 19:2115-25. doi: 10.1074/mcp.TIR120.002155

35. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

36. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell. C. Single-cell mRNA
quantification and differential analysis with Census. Nat Methods. (2017) 14:309-15.
doi: 10.1038/nmeth.4150

37. Jiang Y, Yu W, Hu T, Peng H, Hu F, Yuan Y, et al. Unveiling macrophage
diversity in myocardial ischemia-reperfusion injury: identification of a distinct lipid-
associated macrophage subset. Front Immunol. (2024) 15:1335333. doi: 10.3389/
fimmu.2024.1335333

38. Hu W, Tu H, Wadman MC, Li YL, Zhang. D. Renal denervation achieves its
antiarrhythmic effect through attenuating macrophage activation and
neuroinflammation in stellate ganglia in chronic heart failure. Cardiovasc Res. (2024)
120(18):2420-33. doi: 10.1093/cvr/cvael96

39. Zhang Y, Feng L, Guan X, Zhu Z, He Y, Li. X. Non-alcoholic fatty liver disease
and heart failure: A comprehensive bioinformatics and Mendelian randomization
analysis. ESC Heart Fail. (2024) 11:4185-200. doi: 10.1002/ehf2.15019

frontiersin.org


https://doi.org/10.1038/s41569-024-01046-6
https://doi.org/10.1038/s41569-024-01046-6
https://doi.org/10.1093/cvr/cvac013
https://doi.org/10.1016/j.jchf.2024.02.020
https://doi.org/10.1038/s41569-023-00919-6
https://doi.org/10.1038/s41568-024-00674-x
https://doi.org/10.3389/fimmu.2024.1390263
https://doi.org/10.3389/fimmu.2024.1390263
https://doi.org/10.1016/j.intimp.2023.110130
https://doi.org/10.2147/jir.S439315
https://doi.org/10.1038/s41598-024-65390-w
https://doi.org/10.1016/j.ygeno.2014.12.002
https://doi.org/10.1016/j.jacc.2006.07.026
https://doi.org/10.1016/j.jacc.2006.07.026
https://doi.org/10.1038/s44161-022-00028-6
https://doi.org/10.1080/2162402x.2015.1069938
https://doi.org/10.1186/s12967-023-04845-6
https://doi.org/10.1093/bioinformatics/btac409
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3892/etm.2022.11449
https://doi.org/10.3389/fimmu.2022.989286
https://doi.org/10.3389/fimmu.2022.989286
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.3389/fgene.2022.990888
https://doi.org/10.1186/s12967-023-04029-2
https://doi.org/10.1186/s12967-023-04029-2
https://doi.org/10.3389/fcvm.2022.1016081
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1016/j.heliyon.2023.e21147
https://doi.org/10.1016/j.heliyon.2023.e21147
https://doi.org/10.3390/nu16213695
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1089/dna.2019.4899
https://doi.org/10.1093/bioinformatics/btab806
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1074/mcp.TIR120.002155
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/nmeth.4150
https://doi.org/10.3389/fimmu.2024.1335333
https://doi.org/10.3389/fimmu.2024.1335333
https://doi.org/10.1093/cvr/cvae196
https://doi.org/10.1002/ehf2.15019
https://doi.org/10.3389/fimmu.2025.1560903
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

40. Tian Z, Zhang P, Li X, Jiang. D. Analysis of immunogenic cell death in ascending
thoracic aortic aneurysms based on single-cell sequencing data. Front Immunol. (2023)
14:1087978. doi: 10.3389/fimmu.2023.1087978

41. Lip H, Zetrini A, Park E, Cai P, Abbasi AZ, Huyan T, et al. Mitigating
radioresistance mechanisms by polymer-lipid manganese dioxide nanoparticles
enhances immunogenic cell death and antitumor immune response to facilitate
abscopal effect in breast tumor models. Drug Delivery Transl Res. (2025).
doi: 10.1007/s13346-025-01873-1

42. Zhou H, Yang P, Zhang T, Kepp O, Ren Y, Jiang N, et al. The role of apoptosis,
immunogenic cell death, and macrophage polarization in carbon ion radiotherapy for
keloids: Targeting the TGF-B1/SMADs signaling pathway. Biochim Biophys Acta Mol
Basis Dis. (2025) 1871:167499. doi: 10.1016/j.bbadis.2024.167499

43. Ratajczak W, Atkinson SD, Kelly. C. The TWEAK/Fn14/CD163 axis-
implications for metabolic disease. Rev Endocr Metab Disord. (2022) 23:449-62.
doi: 10.1007/s11154-021-09688-4

44. Skytthe MK, Graversen JH, Moestrup. SK. Targeting of CD163(+) macrophages
in inflammatory and Malignant diseases. Int ] Mol Sci. (2020) 21:(15). doi: 10.3390/
ijms21155497

45. Plevriti A, Lamprou M, Mourkogianni E, Skoulas N, Giannakopoulou M, Sajib
MS, et al. The role of soluble CD163 (sCD163) in human physiology and
pathophysiology. Cells. (2024) 13:(20). doi: 10.3390/cells13201679

46. Li G, Lu Z, Chen Z. Identification of common signature genes and pathways
underlying the pathogenesis association between nonalcoholic fatty liver disease and
heart failure. Front Immunol. (2024) 15:1424308. doi: 10.3389/fimmu.2024.1424308

47. Wang J, Xie S, Cheng Y, Li X, Chen J, Zhu M. Identification of potential
biomarkers of inflammation-related genes for ischemic cardiomyopathy. Front
Cardiovasc Med. (2022) 9:972274. doi: 10.3389/fcvm.2022.972274

48. Al-Daghri NM, Al-Attas OS, Bindahman LS, Alokail MS, Alkharfy KM, Draz
HM, et al. Soluble CD163 is associated with body mass index and blood pressure in
hypertensive obese Saudi patients. Eur J Clin Invest. (2012) 42(11):1221-6.
doi: 10.1111/j.1365-2362.2012.02714.x

49. Siwan E, Twigg SM, Min D. Alterations of CD163 expression in the
complications of diabetes: A systematic review. ] Diabetes Complications. (2022) 36
(4):108150. doi: 10.1016/j.jdiacomp.2022.108150

50. Semnani-Azad Z, Blanco Mejia S, Connelly PW, Bazinet RP, Retnakaran R,
Jenkins DJA, et al. The association of soluble CD163, a novel biomarker of macrophage
activation, with type 2 diabetes mellitus and its underlying physiological disorders: A
systematic review. Obes Rev. (2021) 22(8):¢13257. doi: 10.1111/0br.13257

51. Yan W, Li Y, Wang G, Huang Y, Xie. P. Clinical application and immune
infiltration landscape of stemness-related genes in heart failure. ESC Heart Fail. (2024)
12(1):250-70. doi: 10.1002/ehf2.15055

52. Wang C, Yang H, Gao. C. Potential biomarkers for heart failure. J Cell Physiol.
(2019) 234:9467-74. doi: 10.1002/jcp.27632

53. Ptaszynska-Kopczynska K, Marcinkiewicz-Siemion M, Lisowska A,
Waszkiewicz E, Witkowski M, Jasiewicz M, et al. Alterations of soluble TWEAK and
CD163 concentrations in patients with chronic heart failure. Cytokine. (2016) 80:7-12.
doi: 10.1016/j.cyt0.2016.02.005

54. Durda P, Raffield LM, Lange EM, Olson NC, Jenny NS, Cushman M, et al.
Circulating soluble CD163, associations with cardiovascular outcomes and mortality,
and identification of genetic variants in older individuals: the cardiovascular health
study. J Am Heart Assoc. (2022) 11:€024374. doi: 10.1161/jaha.121.024374

55. PeiX, Liu L, Wang J, Guo C, Li Q, Li ], et al. Exosomal secreted SCIMP regulates
communication between macrophages and neutrophils in pneumonia. Nat Commun.
(2024) 15:691. doi: 10.1038/s41467-024-44714-4

56. Wang Z, Wang Y, Yan Q, Cai C, Feng Y, Huang Q, et al. FPRI signaling
aberrantly regulates S100A8/A9 production by CD14(+)FCNI1(hi) macrophages and
aggravates pulmonary pathology in severe COVID-19. Commun Biol. (2024) 7:1321.
doi: 10.1038/542003-024-07025-4

57. Zhu S, Hu X, Bennett S, Mai Y, Xu. J. Molecular structure, expression and role of
TAFA4 and its receptor FPR1 in the spinal cord. Front Cell Dev Biol. (2022) 10:911414.
doi: 10.3389/fcell.2022.911414

58. Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell. JB. The formyl peptide
receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the
development of small-molecule agonists. Eur ] Med Chem. (2024) 265:115989.
doi: 10.1016/j.ejmech.2023.115989

59. Vafadarnejad E, Rizzo G, Krampert L, Arampatzi P, Arias-Loza AP, Nazzal Y,
et al. Dynamics of cardiac neutrophil diversity in murine myocardial infarction. Circ
Res. (2020) 127:€232-49. doi: 10.1161/circresaha.120.317200

60. Asahina Y, Wurtz NR, Arakawa K, Carson N, Fujii K, Fukuchi K, et al. Discovery
of BMS-986235/LAR-1219: A potent formyl peptide receptor 2 (FPR2) selective agonist
for the prevention of heart failure. ] Med Chem. (2020) 63:9003-19. doi: 10.1021/
acs.jmedchem.9b02101

61. Zhangsun Z, Dong Y, Tang J, Jin Z, Lei W, Wang C, et al. FPR1: A critical gatekeeper
of the heart and brain. Pharmacol Res. (2024) 202:107125. doi: 10.1016/j.phrs.2024.107125

62. Déring Y, Bender A, Soehnlein. O. Lack of formyl-peptide receptor 1 mitigates

Frontiers in Immunology

10.3389/fimmu.2025.1560903

atherosclerosis in hyperlipidemic mice. Thromb Haemost. (2024) 124:986-9. doi: 10.1055/s-
0044-1787264

63. Zhou QL, Teng F, Zhang YS, Sun Q, Cao YX, Meng. GW. FPRI1 gene silencing
suppresses cardiomyocyte apoptosis and ventricular remodeling in rats with ischemia/
reperfusion injury through the inhibition of MAPK signaling pathway. Exp Cell Res.
(2018) 370:506-18. doi: 10.1016/j.yexcr.2018.07.016

64. Garcia RA, Ito BR, Lupisella JA, Carson NA, Hsu MY, Fernando G, et al.
Preservation of post-infarction cardiac structure and function via long-term oral formyl
peptide receptor agonist treatment. JACC Basic Transl Sci. (2019) 4:905-20.
doi: 10.1016/j.jacbts.2019.07.005

65. Li Y, Wang Q, LiJ, Li A, Wang Q, Zhang Q, et al. Therapeutic modulation of V
Set and Ig domain-containing 4 (VSIG4) signaling in immune and inflammatory
diseases. Cytotherapy. (2023) 25(6):561-72. doi: 10.1016/j.jcyt.2022.12.004

66. Liu B, Cheng L, Gao H, Zhang J, Dong Y, Gao W, et al. The biology of VSIG4:
Implications for the treatment of immune-mediated inflammatory diseases and cancer.
Cancer Lett. (2023) 553:215996. doi: 10.1016/j.canlet.2022.215996

67. Liu MA, Shahabi S, Jati S, Tang K, Gao H, Jin Z, et al. Gut microbial DNA and
immune checkpoint gene Vsig4/CRIg are key antagonistic players in healthy aging and
age-associated development of hypertension and diabetes. Front Endocrinol
(Lausanne). (2022) 13:1037465. doi: 10.3389/fend0.2022.1037465

68. Li S, Ge T, Xu X, Xie L, Song S, Li R, et al. Integrating scRNA-seq to explore
novel macrophage infiltration-associated biomarkers for diagnosis of heart failure.
BMC Cardiovasc Disord. (2023) 23:560. doi: 10.1186/s12872-023-03593-1

69. Wang Y, Ding J, Song H, Teng Y, Fang. X. VSIG4 regulates macrophages
polarization and alleviates inflammation through activating PI3K/AKT and inhibiting
TLR4/NF-kB pathway in myocardial ischemia-reperfusion injury rats. Physiol Int.
(2022). doi: 10.1556/2060.2022.00055

70. Wang Y, Zhang Y, Li J, Li C, Zhao R, Shen C, et al. Hypoxia induces M2
macrophages to express VSIG4 and mediate cardiac fibrosis after myocardial
infarction. Theranostics. (2023) 13:2192-209. doi: 10.7150/thno.78736

71. di Salvo TG, Yang KC, Brittain E, Absi T, Maltais S, Hemnes. A. Right
ventricular myocardial biomarkers in human heart failure. J Card Fail. (2015)
21:398-411. doi: 10.1016/j.cardfail.2015.02.005

72. Xie Z, Shen Y, Huang S, Shen W, Liu. J. Abnormal ADAMTS2 and VSIG4 in
serum of HF patients and their relationship with CRP, UA, and HCY. Clin Lab. (2022)
68:(5). doi: 10.7754/Clin.Lab.2021.210811

73. Milenkovic I, Santos Vieira HG, Lucas MC, Ruiz-Orera ], Patone G, Kesteven S,
et al. Dynamic interplay between RPL3- and RPL3L-containing ribosomes modulates
mitochondrial activity in the mammalian heart. Nucleic Acids Res. (2023) 51:5301-24.
doi: 10.1093/nar/gkad121

74. Gu J, Hu W, Song ZP, Chen YG, Zhang DD, Wang. CQ. Rapamycin inhibits
cardiac hypertrophy by promoting autophagy via the MEK/ERK/beclin-1 pathway.
Front Physiol. (2016) 7:104. doi: 10.3389/fphys.2016.00104

75. He X, Yang T, Lu YW, Wu G, Dai G, Ma Q, et al. The long noncoding RNA
CARDINAL attenuates cardiac hypertrophy by modulating protein translation. J Clin
Invest. (2024) 134:(13). doi: 10.1172/jci169112

76. Kasahara K, Nakayama R, Shiwa Y, Kanesaki Y, Ishige T, Yoshikawa H, et al.
Fprl, a primary target of rapamycin, functions as a transcription factor for ribosomal
protein genes cooperatively with Hmol in Saccharomyces cerevisiae. PloS Genet.
(2020) 16:21008865. doi: 10.1371/journal.pgen.1008865

77. Textoris ], Ivorra D, Ben Amara A, Sabatier F, Ménard JP, Heckenroth H, et al.
Evaluation of current and new biomarkers in severe preeclampsia: a microarray
approach reveals the VSIG4 gene as a potential blood biomarker. PloS One. (2013) 8:
€82638. doi: 10.1371/journal.pone.0082638

78. Lund NC, Kayode Y, McReynolds MR, Clemmer DC, Hudson H, Clerc I, et al.
mTOR regulation of metabolism limits LPS-induced monocyte inflammatory and
procoagulant responses. Commun Biol. (2022) 5:878. doi: 10.1038/542003-022-03804-z

79. Simcox J, Lamming. DW. The central moTOR of metabolism. Dev Cell. (2022)
57:691-706. doi: 10.1016/j.devcel.2022.02.024

80. Rudi WS, Molitor M, Garlapati V, Finger S, Wild J, Miinzel T, et al. ACE
inhibition modulates myeloid hematopoiesis after acute myocardial infarction and
reduces cardiac and vascular inflammation in ischemic heart failure. Antioxid (Basel).
(2021) 10:(3). doi: 10.3390/antiox10030396

81. Shi M, Yuan H, Li Y, Guo Z, Wei. J. Targeting macrophage phenotype for
treating heart failure: A new approach. Drug Des Devel Ther. (2024) 18:4927-42.
doi: 10.2147/dddt.S486816

82. Lee TM, Chang NC, Lin. SZ. Dapagliflozin, a selective SGLT2 Inhibitor,
attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3
signaling in infarcted rat hearts. Free Radic Biol Med. (2017) 104:298-310.
doi: 10.1016/j.freeradbiomed.2017.01.035

83. Zhang F, Xuan Y, Cui J, Liu X, Shao Z, Yu. B. Nicorandil modulated
macrophages activation and polarization via NF-xb signaling pathway. Mol
Immunol. (2017) 88:69-78. doi: 10.1016/j.molimm.2017.06.019

84. Yang B, Qiao Y, Yan D, Meng. Q. Targeting interactions between fibroblasts and
macrophages to treat cardiac fibrosis. Cells. (2024) 13:(9). doi: 10.3390/cells13090764

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1087978
https://doi.org/10.1007/s13346-025-01873-1
https://doi.org/10.1016/j.bbadis.2024.167499
https://doi.org/10.1007/s11154-021-09688-4
https://doi.org/10.3390/ijms21155497
https://doi.org/10.3390/ijms21155497
https://doi.org/10.3390/cells13201679
https://doi.org/10.3389/fimmu.2024.1424308
https://doi.org/10.3389/fcvm.2022.972274
https://doi.org/10.1111/j.1365-2362.2012.02714.x
https://doi.org/10.1016/j.jdiacomp.2022.108150
https://doi.org/10.1111/obr.13257
https://doi.org/10.1002/ehf2.15055
https://doi.org/10.1002/jcp.27632
https://doi.org/10.1016/j.cyto.2016.02.005
https://doi.org/10.1161/jaha.121.024374
https://doi.org/10.1038/s41467-024-44714-4
https://doi.org/10.1038/s42003-024-07025-4
https://doi.org/10.3389/fcell.2022.911414
https://doi.org/10.1016/j.ejmech.2023.115989
https://doi.org/10.1161/circresaha.120.317200
https://doi.org/10.1021/acs.jmedchem.9b02101
https://doi.org/10.1021/acs.jmedchem.9b02101
https://doi.org/10.1016/j.phrs.2024.107125
https://doi.org/10.1055/s-0044-1787264
https://doi.org/10.1055/s-0044-1787264
https://doi.org/10.1016/j.yexcr.2018.07.016
https://doi.org/10.1016/j.jacbts.2019.07.005
https://doi.org/10.1016/j.jcyt.2022.12.004

https://doi.org/10.1016/j.canlet.2022.215996
https://doi.org/10.3389/fendo.2022.1037465
https://doi.org/10.1186/s12872-023-03593-1
https://doi.org/10.1556/2060.2022.00055
https://doi.org/10.7150/thno.78736
https://doi.org/10.1016/j.cardfail.2015.02.005
https://doi.org/10.7754/Clin.Lab.2021.210811
https://doi.org/10.1093/nar/gkad121
https://doi.org/10.3389/fphys.2016.00104
https://doi.org/10.1172/jci169112
https://doi.org/10.1371/journal.pgen.1008865
https://doi.org/10.1371/journal.pone.0082638
https://doi.org/10.1038/s42003-022-03804-z
https://doi.org/10.1016/j.devcel.2022.02.024
https://doi.org/10.3390/antiox10030396
https://doi.org/10.2147/dddt.S486816
https://doi.org/10.1016/j.freeradbiomed.2017.01.035
https://doi.org/10.1016/j.molimm.2017.06.019
https://doi.org/10.3390/cells13090764
https://doi.org/10.3389/fimmu.2025.1560903
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

85. Barcena ML, Niehues MH, Christiansen C, Estepa M, Haritonow N, Sadighi AH, et al.
Male macrophages and fibroblasts from C57/BL6] mice are more susceptible to
inflammatory stimuli. Front Immunol. (2021) 12:758767. doi: 10.3389/fimmu.2021.758767

86. Watany MM, Elhosary. MM. Clinical utility of circulating TWEAK and CD163
as biomarkers of iron-induced cardiac decompensation in transfusion dependent
thalassemia major. Cytokine. (2024) 173:156443. doi: 10.1016/j.cyt0.2023.156443

87. Margraf A, Chen J, Christoforou M, Claria-Ribas P, Henriques Schneider A,
Cecconello C, et al. Formyl-peptide receptor type 2 activation mitigates heart and lung
damage in inflammatory arthritis. EMBO Mol Med. (2025) 17(5):1153-83.
doi: 10.1038/s44321-025-00227-1

Frontiers in Immunology

113

10.3389/fimmu.2025.1560903

88. Kato N, Kambe T, Chiba T, Taguchi K, Abe. K. Analgesic effect of a cholinergic
agonist (carbachol) in a sural nerve ligation-induced hypersensitivity mouse model.
Neurol Res. (2024) 46:505-15. doi: 10.1080/01616412.2024.2337512

89. Moussa AT, Rabung A, Reichrath S, Wagenpfeil S, Dinh T, Krasteva-Christ G,
et al. Modulation of macrophage phagocytosis in vitro-A role for cholinergic
stimulation? Ann Anat. (2017) 214:31-5. doi: 10.1016/j.aanat.2017.07.007

90. Khashchenko EP, Krechetova LV, Vishnyakova PA, Fatkhudinov TK, Inviyaeva
EV, Vtorushina VV, et al. Altered monocyte and lymphocyte phenotypes associated
with pathogenesis and clinical efficacy of progestogen therapy for peritoneal
endometriosis in adolescents. Cells. (2024) 13:(14). doi: 10.3390/cells13141187

frontiersin.org


https://doi.org/10.3389/fimmu.2021.758767
https://doi.org/10.1016/j.cyto.2023.156443
https://doi.org/10.1038/s44321-025-00227-1
https://doi.org/10.1080/01616412.2024.2337512
https://doi.org/10.1016/j.aanat.2017.07.007
https://doi.org/10.3390/cells13141187
https://doi.org/10.3389/fimmu.2025.1560903
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Yejun Tan,
Hong Kong Polytechnic University, China

REVIEWED BY
Jie Ren,
Dalian Medical University, China

*CORRESPONDENCE

Shengliang Qiu
shengliang.giu@zcmu.edu.cn

Yibo He
heyb20173626@126.com

"These authors have contributed
equally to this work and share
first authorship

RECEIVED 02 June 2025
ACCEPTED 23 July 2025
PUBLISHED 18 August 2025
CORRECTED 12 December 2025

CITATION

Chen S, Chen W, Xu T, Li J, Yu J, He Y and
Qiu S (2025) The impact of aberrant

lipid metabolism on the immune
microenvironment of gastric cancer:

a mini review.

Front. Immunol. 16:1639823.

doi: 10.3389/fimmu.2025.1639823

COPYRIGHT
© 2025 Chen, Chen, Xu, Li, Yu, He and Qiu.
This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Immunology

TYPE Mini Review
PUBLISHED 18 August 2025
po110.3389/fimmu.2025.1639823

The impact of aberrant lipid
metabolism on the immune
microenvironment of gastric
cancer: a mini review

Shuangyu Chen, Wengian Chen™, Tinghui Xu', Jiayang Li",
Jianghao Yu?, Yibo He™ and Shengliang Qiu™

The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of
Chinese Medicine), Hangzhou, Zhejiang, China, 2School of Medical Technology and Information
Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China

Gastric cancer (GC) remains one of the leading causes of cancer-related
mortality worldwide, with limited responses to immune checkpoint blockade
(ICB) therapies in most patients. Increasing evidence indicates that the tumor
immune microenvironment (TIME) plays a crucial role in immunotherapy
outcomes. Among various metabolic abnormalities in the TIME, dysregulated
lipid metabolism has emerged as a critical determinant of immune cell fate,
differentiation, and function. In this review, we comprehensively summarize the
current understanding of the immune landscape in GC, focusing on how altered
lipid metabolism reshapes immune cell populations—including tumor-
associated macrophages (TAMs), dendritic cells (DCs), regulatory T cells
(Tregs), myeloid-derived suppressor cells (MDSCs), and cytotoxic CD8" T cells.
We highlight key metabolic pathways such as fatty acid oxidation(FAO),
cholesterol homeostasis, and lipid uptake that impact immune cell activity,
contributing to immune evasion and therapeutic resistance. Importantly, we
explore emerging therapeutic strategies targeting lipid metabolism, including
inhibitors of cluster of differentiation 36 (CD36), fatty acid synthase (FASN), and
sterol regulatory element-binding protein 1 (SREBP1) and discuss their synergistic
potential when combined with ICB therapies. In conclusion, lipid metabolic
reprogramming represents a promising yet underexplored axis in modulating
antitumor immunity in GC. Integrating metabolic intervention with
immunotherapy holds potential to overcome current treatment limitations and
improve clinical outcomes. Future studies incorporating spatial omics and single-
cell profiling will be essential to elucidate cell-type specific metabolic
dependencies and foster translational breakthroughs.

KEYWORDS

gastric cancer, lipid metabolism, tumor immune microenvironment, CD8+ T cells,
tumor-associated macrophages, immunotherapy resistance, fatty acid oxidation,
immune checkpoint blockade

114 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1639823/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1639823/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1639823/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1639823/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1639823&domain=pdf&date_stamp=2025-08-18
mailto:shengliang.qiu@zcmu.edu.cn
mailto:heyb20173626@126.com
https://doi.org/10.3389/fimmu.2025.1639823
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1639823
https://www.frontiersin.org/journals/immunology

Chen et al.

1 Introduction

According to GLOBOCAN 2022 statistics, in 2022, more than
968,000 new cases of gastric cancer (GC) were added, with nearly
660,000 deaths, ranking fifth globally both in terms of incidence and
mortality. The region with the highest incidence rate is East Asia,
which imposes a significant burden on cancer (1). Consequently, an
urgent exploration and development of new therapeutic approaches
has become imperative.

The tumor microenvironment (TME) is a complex system that can
inhibit immune responses while promoting tumor progression. The
composition of the TME differs across different tumor types, but its
defining features include immune cells, stromal cells, vasculature, and
extracellular matrix (2, 3). The complexity and dynamic interactions
within the TME contribute significantly to the aggressive nature of GC
and the development of therapeutic resistance (4). Therefore,
understanding the intricate characteristics of the TME, particularly
metabolic reprogramming within this milieu, is of substantial clinical
importance for developing effective treatments for GC patients.

Metabolic reprogramming is widely recognized as a hallmark of
cancer, allowing tumor cells to sustain proliferation, evade immune
surveillance, and survive under stressful conditions. Among various
metabolic alterations, abnormal lipid metabolism has emerged as a
pivotal player in cancer progression, influencing energy
metabolism, membrane biosynthesis, and signaling pathways (5-
7). Cancer cells undergo significant lipid metabolic reprogramming,
including increased lipid uptake, enhanced fatty acid synthesis
(FAS), and elevated fatty acid oxidation (FAO). These alterations
not only provide essential metabolic substrates but also enable
cancer cells to resist oxidative stress, promoting tumor survival
and resistance to conventional therapies (8).

Key enzymes involved in lipid metabolism, such as fatty acid
synthase (FASN), ATP citrate lyase (ACLY), and stearoyl-CoA
desaturase (SCD), are upregulated in GC (9-11), indicating their
potential as therapeutic targets. Aberrant lipid metabolic pathways
influence the recruitment, differentiation, and function of key
immune cell populations including tumor-associated
macrophages (TAMs), regulatory T cells (Tregs),and myeloid-
derived suppressor cells (MDSCs), dendritic cells (DCs), CD8+ T

Abbreviations: ACC, acetyl CoA carboxylase; ACLY, ATP citrate lyase; ACSLs,
acyl-CoA synthetase long-chain family members; CAFs, cancer-associated
fibroblasts; CD36, cluster of differentiation 36; CPT1, carnitine palmitoyl-
transferase 1; DCs, dendritic cells; FAO, fatty acid oxidation; FAS, fatty acid
synthesis; FASN, fatty acid synthase; FABP5, fatty acid-binding protein 5; GC,
gastric cancer; ICIs, immune checkpoint inhibitors; LSR, lipolysis-stimulated
lipoprotein receptor; MDSCs, myeloid-derived suppressor cells; MHC, major
histocompatibility complex; MIF, migration inhibitory factor; PPAR-y,
peroxisome proliferator-activated receptor y; ROS, reactive oxygen species;
SCD, stearoyl-CoA desaturase; SREBP1, sterol regulatory element-binding
protein 1; TAMs, tumor-associated macrophages; TME, tumor
microenvironment; Tpex, progenitor-exhausted T cells; Trm, tissue-resident

memory T cells; Tregs, regulatory T cells.
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cells,contributing to an immunosuppressive microenvironment that
facilitates tumor progression.

2 Lipid metabolic pathways and
molecular mechanisms

A key energy-generating pathway in lipid metabolism is
mitochondrial fatty acid B-oxidation, which is mediated by
carnitine palmitoyl-transferase 1 (CPT1), especially the isoform
CPT1a (12, 13). This enzyme facilitates the transport of long-chain
fatty acids to the mitochondria for oxidative breakdown and ATP
production, particularly under nutrient-deprived conditions (14).
Simultaneously, cancer cells exploit exogenous lipid sources
through dietary uptake, with cluster of differentiation 36 (CD36)
functioning as a major fatty acid translocase (15). CD36 is
frequently overexpressed in malignant cells, contributing to
enhanced fatty acid uptake, intracellular lipid accumulation, and
increased metabolic plasticity (16-18). This metabolic architecture
is tightly regulated by oncogenic signaling cascades, especially the
PI3K/Akt/mTOR axis. This axis activates sterol regulatory element-
binding protein 1 (SREBP1), a master transcriptional regulator of
lipid biosynthesis (19, 20). When SREBPI1 is activated, the
expression of key enzymes involved in fat production, such as
FASN and acetyl CoA carboxylase (ACC), is enhanced. This can
promote de novo fat generation and support the promotion of
membrane biogenesis and proliferation (21, 22). The uptake of
extracellular lipids via CD36 and the lipolysis-stimulated
lipoprotein receptor (LSR) is often upregulated in tumors and is
also responsive to PI3K/mTOR signaling, reinforcing the lipid
supply for cancer progression (23-25). Enzymes like acyl-CoA
synthetase long-chain family members (ACSLs) activate imported
fatty acids and channel them into biosynthetic and storage
pathways, while lipogenesis induced by SREBP1 inhibits
ferroptosis and improves tumor cell survival (20, 26). Uptake of
lipids by CD36 enhances metastatic potential and contributes to
adaptation to the TME (27). Additionally, reorganization of lipid
metabolism can alter antigen presentation and inhibit T-cell
activation, leading to impairment of immune surveillance (28).
Phospholipid remodeling represents another critical branch of
lipid metabolism. This metabolic adaptation highlights the key
function of lipid metabolism in coordinating cellular bioenergetics
with tumor invasiveness and immune escape, laying the
mechanistic foundation for its involvement in the formation of an
immunosuppressive TME (29).

3 Overview of the immune
microenvironment in gastric cancer

TME of GC is composed of various immune cell subsets and
non-immune components, and is characterized by prominent
immunosuppressive features. Single-cell analyses have revealed a
highly heterogeneous pattern of immune cell infiltration within the
TME of GC. Immunosuppressive components such as Tregs,
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MDSCs, and TAMs are widely distributed and are closely associated
with ineffective antitumor immune responses (30-33). Tregs
suppress CD8" T cell activity and the antigen presentation
process through multiple mechanisms, serving as key regulatory
factors in the progression of GC (34, 35). MDSCs exacerbate the
immunosuppressive state by secreting inhibitory factors and
modulating macrophage polarization (36). Moreover, M2
polarization of TAMs in GC has been shown to be closely
associated with immune evasion and poor prognosis (37-39).
Another key mechanism underlying the immunosuppressive TME
is the upregulation of immune checkpoints, such as PD-L1 and the
CD39/CD73 axis, which inhibit T cell effector functions and
promote tumor immune evasion (40, 41). Studies have indicated
that the TME in GC patients often exhibits a “cold tumor”
phenotype—characterized by low immune cell infiltration and
weak immune activation—which not only predicts poor prognosis
but also correlates with low responsiveness to immunotherapy
(42, 43).

Immune infiltration patterns exhibit dynamic changes across
different GC subtypes and treatment contexts. Neoadjuvant
chemotherapy can significantly remodel the TME by enhancing
CD8+T cell infiltration and reducing immunosuppressive cells,
highlighting the plasticity of the immune landscape (44, 45).
High-throughput analyses and multiplex immunofluorescence
have revealed complex interactions among different immune cells
within the TME, such as exosome-mediated communication
between TAMs and cancer cells (46, 47).

Furthermore, the degree of immune cell infiltration is closely
associated with clinical outcomes. For instance, high PD-L1
expression often coexists with an “immune-excluded” infiltration
pattern, suggesting that patients may benefit from immune
checkpoint inhibitor therapy (48, 49). Key molecular features of
the TME significantly shape immune infiltration and
immunotherapy responses in GC, highlighting new avenues for
enhancing antitumor immunity (50-52). Among these features,
spatial metabolic heterogeneity — particularly lipid gradients
within the TME — has recently gained attention as a critical
factor influencing immune cell behavior.

4 |Interactions between aberrant lipid
metabolism and immune cells

4.1 TAMs

TAMs, one of the most abundant immune cells in the GC
immune microenvironment, exhibit significant metabolic plasticity.
Under the stimulation of various cytokines, macrophages can be
polarized into two phenotypes with different functions: M1
macrophages, which have pro-inflammatory and tumor-inhibiting
effects; And M2 macrophages, which have anti-inflammatory and
tumor-promoting effects Their functional state is closely linked to
their lipid metabolic program. In gastric cancer, scavenger receptors
such as CD36 mediate the endocytosis of fatty acids and cholesterol
from the tumor microenvironment, leading to intracellular lipid
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accumulation and promoting the establishment of a highly
immunosuppressive TME (53, 54). This process further activates
the peroxisome proliferator-activated receptor y (PPAR-7) signaling
pathway, upregulating FAO, promoting TAM towards a m2
polarized phenotype, and enhancing its oncogenic function (55,
56). Moreover, lipid uptake promotes enhanced FAO, providing a
stable energy supply for M2-polarized TAMs and augmenting their
secretion of immunosuppressive factors such as IL-10 and TGF-3
(57-59). These alterations collectively contribute to the formation
of a microenvironment that favors tumor survival and immune
evasion (60, 61). Mechanistically, lipid uptake via CD36 facilitates
intracellular fatty acid accumulation, which activates PPAR-y
signaling and upregulates key enzymes of FAO, such as CPT1A.
Further studies have revealed that the metabolic state of TAMs
is a key determinant of their spatial distribution and functional
heterogeneity. For example, lipid-rich TAMs are predominantly
located in hypoxic regions, where they respond to tumor-derived
factors such as IL-34 and signals associated with p53 inactivation,
exhibiting enhanced immunosuppressive capabilities (62, 63). At
the metabolic level, lipid metabolic reprogramming is closely
regulated by the TRAF3/STAT6 pathway, which governs key
transcriptional programs involved in the polarization process
(64). Meanwhile, signaling molecules such as CD40 have been
shown to promote the reprogramming of TAMs toward an
antitumor phenotype by remodeling fatty acid and glutamine
metabolism, highlighting the potential of metabolic interventions
in reshaping TAM function (65). Overall, lipid uptake and
metabolism determine the fate of TAMs, representing a critical
regulatory axis within the GC immune microenvironment and a
promising therapeutic target for future treatment strategies (66).
These findings highlight the central role of TAM lipid metabolism
in promoting immune evasion and progression of gastric cancer.

4.2 Dendritic cells

DCs within the GC immune microenvironment is often
markedly suppressed by dysregulated lipid metabolism. In gastric
cancer, this metabolic dysfunction contributes to impaired tumor
antigen presentation and weakened immune surveillance.The lipid-
rich tumor environment leads to lipid accumulation in DCs,
particularly the formation of lipid droplets enriched with
cholesterol and triglycerides, which significantly impairs their
antigen-presenting capacity (67, 68). Lipid overload not only
diminishes the expression of major histocompatibility complex
(MHC) class I and II molecules but also suppresses the
expression of costimulatory molecules such as CD80 and CD86,
thereby limiting T cell activation (69, 70). Studies have shown that
Epstein-Barr virus-associated GC exacerbates antigen presentation
impairment by secreting exosomes that interfere with DC
maturation (70). Moreover, tumor-induced lipid metabolic
reprogramming can suppress mitochondrial function and glucose
metabolism in DCs, driving them toward an immunotolerant
phenotype (67, 68). A decline in cross-presentation capacity is
another critical defect of lipid-laden DCs, particularly impairing
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their ability to elicit CD8" T cell responses (71, 72). Some studies
have reported that lipid accumulation hinders the ability of DCs to
uptake and process extracellular antigens, thereby weakening their
effectiveness in activating tumor-specific T cells (73, 74).
Furthermore, Tregs form immunosuppressive complexes with
DCs through a CXCR3-mediated chemotactic mechanism, further
limiting the ability of DCs to activate CD8+ T cells (75). In recent
years, engineered dendritic cell (DC) systems have been developed
to bypass the metabolic impairments of natural DCs, offering new
avenues for tumor vaccines and targeted immunotherapy (76, 77).
Therefore, targeting lipid metabolic regulatory pathways is
considered a potential strategy to restore DC immune function
and enhance immune responses in gastric cancer (78, 79).

4.3 Tregs and MDSCs

Tregs are abundantly infiltrated in the GC immune
microenvironment and rely on lipid metabolism to maintain their
stability and immunosuppressive function. Studies have shown that
within the tumor environment, Tregs gain an energetic advantage
by enhancing FAO, which sustains their Foxp3 expression and
suppressive capacity (80, 81). PD-1 deficiency disrupts the
metabolic stability of Tregs, suggesting that their metabolic
adaptability is a critical factor in the establishment of immune
tolerance (80). Moreover, fatty acid-binding protein 5 (FABP5) and
the SIRT1-CX3CLI1 axis play important roles in regulating lipid
metabolism in Tregs, influencing their distribution within the TME
and their immunosuppressive capacity (82, 83). In lipid-rich
microenvironments, Tregs exhibit enhanced stability and activity,
representing one of the major obstacles to the efficacy of immune
checkpoint inhibition therapy (84, 85).

Similar to Tregs, MDSCs exhibit potent immunosuppressive
properties regulated by lipid metabolism. In high-lipid
microenvironments, they sustain their survival through FAS and
cholesterol metabolism, while secreting a range of
immunosuppressive factors (29, 86). Ginger polysaccharide-
induced lipid metabolic disruption can promote apoptosis of
MDSCs, indicating that targeting lipid metabolism holds potential
for enhancing immune responses (86). Within the GC TME,
MDSCs cooperate with Tregs to establish a metabolically coupled
immunosuppressive network (87, 88). Recent studies have shown
that cancer-associated fibroblasts (CAFs) influence the metabolic
activity of MDSCs through CD36 and the secretion of macrophage
migration inhibitory factor (MIF), further exacerbating immune
evasion (87). In summary, targeting lipid metabolism has emerged
as a key strategy for modulating the functions of Tregs and MDSCs
and overcoming immune tolerance (29, 85).

4.4 CD8"' T cells

CD8" T cells are the central effector cells in antitumor immune
responses, and their functional state is significantly influenced by
dysregulated lipid metabolism within the TME. In the GC
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microenvironment, fatty acid uptake and cholesterol metabolism
reshape the metabolic programming of CD8" T cells, leading to
metabolic imbalance, enhanced exhaustion phenotypes, and reduced
cytotoxic function (89). Tumor cells secrete lipid metabolism-
regulating factors such as SCD1 and FABP5, which elevate levels of
free fatty acids and oxidized lipids in the TME. This induces the
accumulation of reactive oxygen species (ROS) in CD8" T cells,
leading to lipid peroxidation and mitochondrial damage (90). This
process is accompanied by the upregulation of inhibitory receptors
such as PD-1 and TIGIT, ultimately leading to T cell exhaustion and
the loss of sustained cytotoxic activity (91). Moreover, excess
cholesterol can accumulate in the membranes of CD8" T cells,
disrupting immunological synapse formation and TCR signaling,
thereby further suppressing their effector functions (92).

Studies have also indicated that certain lipid metabolic pathways
exert bidirectional regulatory effects on CD8" T cells. Tissue-resident
CD8" T cells rely on FAO to sustain energy supply and long-term
survival; however, in the nutrient-deprived and competitive TME, this
metabolic dependency may actually constrain the sustained activation
of their effector functions (89). Under high-lipid conditions, tumor
cells compete with CD8" T cells for nutritional substrates, leading to
energy deprivation in CD8" T cells. This results in a state of
“functional starvation,” characterized by reduced expression of
effector molecules such as Granzyme B and IFN-y (27, 91).
Therefore, targeting lipid metabolic pathways—such as CD36
inhibition, FAO blockade, or cholesterol metabolism modulation—is
considered a promising strategy to restore CD8" T cell function and
enhance the efficacy of immunotherapy (90, 93) (Figure 1).

5 Clinical and therapeutic implications

Lipid metabolic reprogramming is not only a key mechanism in
shaping the TME of GC, but also offers multidimensional therapeutic
targets for clinical intervention. High expression of key lipid metabolic
molecules such as CD36, FASN, and SREBP1 is closely associated with
the infiltration of immunosuppressive cells and T-cell exhaustion, and
is considered one of the major contributors to immunotherapy
resistance (94-96). For instance, Li et al. found that lipid metabolic
imbalance can promote symbiotic signaling pathways between CAFs
and TAMs, which significantly impairs the efficacy of immune
checkpoint inhibitors (ICIs) (97). Emerging lipid-targeted strategies
—such as FASN inhibitors, FAO pathway blockers, and cholesterol
metabolism modulators—are being actively explored to enhance
CD8'T cell function, inhibit TAM polarization, and reduce Treg-
mediated immunosuppression (94, 98, 99). Moreover, lipid
metabolism-related genes have also been identified as potential
predictive biomarkers of immune response. Genes such as RGS2,
APOD, and MTTP have demonstrated promising prognostic and
therapeutic response prediction value in multiple studies (94, 96, 98).

Combination therapy strategies are emerging as a key approach to
overcoming the bottlenecks of immunotherapy in GC Several clinical
trials—such as ATTRACTION-2, ATTRACTION-4, KEYNOTE-859,
KEYNOTE-061 and CheckMate-649—have validated the efficacy of
combining ICIs with chemotherapy (100-104). Combination
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FIGURE 1

Interactions between aberrant lipid metabolism and immune cells.

strategies involving CD36 antagonists or cholesterol synthase
inhibitors have significantly enhanced antitumor immune responses
in preclinical models (94). Meanwhile, lipid metabolism-based
immune subtyping approaches are increasingly being employed to
guide the selection of GC patients for immunotherapy (101, 105). In
summary, the role of lipid metabolism in precision immunotherapy
for GC is becoming increasingly prominent. Existing clinical trials
combining immune checkpoint inhibitors with chemotherapy have
demonstrated heterogeneous outcomes, which may partially reflect
underlying metabolic states of the tumor immune microenvironment
(106-110). Aberrant expression of lipid metabolism-related molecules
such as FASN, CD36, and SREBP1 has been associated with immune
cell exhaustion, Treg enrichment, and impaired dendritic cell function,
suggesting their potential value as both therapeutic targets and
predictive biomarkers (111-114). Integrating lipidomic analysis into
future clinical trial designs may enhance stratification strategies and
optimize combination regimens to overcome resistance (Table 1).

6 Research gaps and future
perspectives

Although the role of lipid metabolism in regulating the immune
microenvironment of GC has been progressively elucidated, many
gaps remain in understanding its mechanistic network. Current
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research primarily focuses on classical lipid metabolism regulators
such as CD36 and FASN, while the roles of non-coding RNAs and
RNA modifications (e.g. m°A) in the cross-regulation of lipid
metabolism remain largely underexplored (115-117). Moreover,
how lipid metabolism specifically affects different immune cell
subsets—such as tissue-resident memory T cells (Trm) and
progenitor-exhausted T cells (Tpex)—remains insufficiently
investigated at the single-cell resolution level (118, 119). Most
current mechanistic studies are based on in vitro cell experiments
and traditional animal models, with a lack of application of
emerging technologies—such as spatial transcriptomics, spatial
metabolomics, and single-cell lipidomics—for constructing a
“functional lipid map” within the immune microenvironment
(120, 121).

In future research, a primary focus should be the expanded
systematic screening of lipid metabolism regulators, including
transporters, enzymes, and intermediate metabolites, to evaluate
their immunological effects (122, 123). Secondly, integrating clinical
cohorts to perform lipid metabolic phenotyping and establishing a
biomarker system capable of predicting immunotherapy response
and resistance risk will be critical for advancing personalized
treatment (124-126). Moreover, constructing in vitro
microenvironment models—such as organoid-immune cell co-
culture systems—or developing novel drug delivery platforms
targeting lipid metabolism will help bridge the gap between basic
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TABLE 1 Clinical trials of immunotherapy-based combination strategies in gastric cancer.
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research and clinical application in metabolic immune regulation
(127). Building on this foundation, conducting multicenter
prospective clinical studies to evaluate the efficacy and safety of
lipid metabolism-targeted interventions combined with
immunotherapy will be a key pathway toward the clinical
translation of metabolism-based immunotherapies (128, 129).

7 Conclusion

Lipid metabolism plays a central regulatory role in the TME of
GC. Lipid competition between tumor cells and immune cells not
only reshapes energy metabolism patterns but also alters immune
cell functional states, inducing immunosuppressive phenotypes
such as M2 polarization of TAMs, impaired antigen presentation
by DCs, enhanced Treg functionality, and exhaustion of CD8" T
cells (30, 32, 34). Lipid metabolic reprogramming mechanisms—
including CD36-mediated lipid uptake, enhanced FAO, and
cholesterol accumulation—have been shown to play critical roles
in GC progression and immune evasion by regulating immune
checkpoint expression, immune cell metabolic adaptation, and the
secretion of immunosuppressive factors (40, 48, 101). Targeting
lipid metabolic pathways—such as FASN, CPT1A, CD36, or
cholesterol metabolism—can enhance immunotherapeutic
responses and alleviate the immunosuppressive nature of the
TME, demonstrating promising translational potential (123).
However, the cell-specific functions of lipid metabolism across
different immune cell subsets, its spatial heterogeneity, and the
interplay between metabolic and epigenetic regulation axes remain
to be further investigated (119, 130, 131). Future research should
integrate emerging technologies such as spatial transcriptomics,
single-cell lipidomics, and multi-omics analyses, while establishing
clinical cohorts to explore predictive biomarkers and novel
strategies for metabolism-targeted therapies (127, 132).
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GuangXi, China

Background: Studies have demonstrated a significant connection between acute
kidney injury (AKI) and chronic kidney disease (CKD). The purpose of this study
was to identify biomarkers linked to the advancement of AKI and CKD, aiming to
offer new targets and insights for treating and intervening in these conditions.
Methods: Initially, candidate genes were identified by overlapping the results
from differential expression analyses of AKlI and CKD. Biomarkers were
subsequently identified using machine learning algorithms, receiver operating
characteristic curve analysis, expression analysis and experimental verification.
Functional enrichment, drug prediction analyses and immune cells infiltration
were conducted to investigate the functional mechanisms of the identified
biomarkers. Furthermore, single-cell analyses were performed to examine the
trends of biomarker expression across different cell types.

Results: CLCNKB, KLK1 and PLEKHA4 were identified as biomarkers by the
screening. Subsequently, enrichment analysis showed that CLCNKB was
notably enriched in oxidative phosphorylation and the degradation of valine,
leucine, and isoleucine in both AKlI and CKD datasets. CLCNKB, KLK1 and
PLEKHA4 were found to be significantly associated with multiple immune cell
types. The regulatory network indicated that PLEKHA4 might play a more
important role in the progression of AKI and CKD. Furthermore, it was
discovered that CLCNKB, KLK1, and PLEKHA4 are commonly targeted by
tetrachlorodibenzodioxin. Finally, in the single-cell data analysis, Type A
intercalated cell and Collecting duct-principal cell were identified as the key
cells. It was observed that the expression trends of these biomarkers were
different under different differentiation states of the key cell subpopulations.
Conclusion: CLCNKB, KLK1 and PLEKHA4 were identified as biomarkers related
to the development of AKI and CKD in this study, and new ideas were provided
for the research on the potential mechanisms of the progression of AKI and CKD.

acute kidney injury, chronic kidney disease, biomarkers, drug prediction, single-cell
RNA sequencing
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1 Background

Acute kidney injury (AKI) is identified by a quick loss of kidney
function happening within a 48-hour period (1). In medical
environments, AKI is typically marked by a rapid increase in
serum creatinine and a significant decrease in urine output, often
resulting from renal tubular cell necrosis and tissue damage
following acute insults such as renal ischemia-reperfusion,
exposure to nephrotoxic medications, and sepsis, among other
causes (2). Currently, AKI affects 10-15% of all patients in
hospitals and up to 50% of those in ICUs, with its prevalence
growing annually (3). Furthermore, AKI contributes to long-term
chronic kidney damage and accelerates the onset of various
complications, including hypertension and cardiovascular disease
(4). Alternatively, chronic kidney disease (CKD) is a progressive
and lasting disorder identified by the degeneration of renal units,
tubular atrophy, interstitial fibrosis, glomerulosclerosis, vascular
thinning, and arteriosclerosis (5). A glomerular filtration rate
under 60 mL/min/1.73m* for a period exceeding three months
defines CKD (6). In addition, the incidence rate of CKD globally is
roughly 9.1% (7). Due to its high incidence, significant economic
impact, and strong association with morbidity and mortality, CKD
represents a major public health concern (8). The clinical
management of CKD is hindered by several limitations (9).
Therefore, novel insights into the mechanism of AKI and CKD
are urgently required to enhance CKD treatment strategies.

Clinically, AKI and CKD are closely interrelated. Atrophy of the
tubules and fibrosis in the interstitial area are pathological changes
that arise due to inadequate repair mechanisms following AKI,
ultimately leading to the development of CKD (10). In China, there
are at least 3 million cases of AKI annually, with approximately 50%
of survivors subsequently developing CKD (11). Furthermore,
individuals with CKD have a higher chance of developing AKI
due to pre-existing renal lesions (12). The transition from AKI to
CKD is thought to be significantly influenced by the immune-
inflammatory response and kidney fibrosis, both of which
contribute to persistent renal damage (13). Despite this, the
transition from AKI to CKD remains largely unexplored, with the
key genes and pathways involved in this intermediary process not
yet clearly identified. Hence, it is essential to pinpoint biomarkers
related to the progression from AKI to CKD to uncover possible
therapeutic targets.

This study utilized transcriptomic and single-cell datasets from
public repositories related to AKI and CKD to evaluate biomarkers
associated with the progression of these conditions. The assessment
was conducted through differential expression analysis, machine
learning algorithms, Receiver Operating Characteristic (ROC) curve
evaluation, and expression validation. Subsequently, the potential
mechanisms of action of these biomarkers in AKI and CKD were
explored using biomarker enrichment analysis, immune infiltration
analysis, molecular regulatory network construction, and drug
prediction. The single-cell data enabled the examination of
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intercellular communication, leading to the identification of key
cellular entities and additional experiments were undertaken to
verify the results. Furthermore, we investigated the expression
trends of biomarkers in specific cell subsets to elucidate the
molecular roles of these biomarkers and their mechanisms in the
progression of AKI and CKD. This research aims to offer new
perspectives for the early detection and personalized treatment of
AKI and CKD patients, thereby reducing the societal burden of
kidney diseases.

2 Materials and methods
2.1 Data source

Datasets related to both AKI and CKD were sourced from the
Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). GSE139061 (GPL20301) consisted of
39 renal tissue samples from AKI patients and 9 normal renal tissue
samples, while GSE30718 (GPL570) included samples included 28
from AKI patients and 11 from healthy kidney tissues, functioning
respectively as the training set and validation set of AKI. Similarly,
GSE66494 (GPL6480) consisted of 53 renal tissue samples from
CKD patients and 8 normal renal tissue samples, while GSE104948
(GPL22945) included 50 CKD patients’ renal tissue samples and 18
normal renal tissue samples, serving respectively as the training set
and validation set of CKD. Furthermore, GSE183277 (GPL24676)
comprised single-cell RNA sequencing (scRNA-seq) data from
kidney cortex tissue samples of 5 AKI patients, 2 CKD patients
and 11 normal individuals.

2.2 Differential expression analysis

Differentially expressed genesl (DEGsl) between AKI and
normal samples in the GSE139061 dataset were pinpointed by
employing the DEseq2 (v 1.38.0) package (14).The dataset was
normalized using the estimateSizeFactors function, and genes with
counts < 1 were filtered out. DEGsl were selected with the
thresholds of |log,fold-change (FC)| > 1.5 and P < 0.05, and the
false discovery rate (FDR) was applied to control for multiple
comparisons. For the GSE66494 dataset, differential expression
analysis between CKD and control samples was performed using
the limma package (v3.44.3) (15). Genes with missing values were
removed using the na.omit() function. DEGs2 were identified with
the same thresholds of log,FC > 1.5 and P < 0.05, and FDR
correction was applied. Subsequently, DEGsl and DEGs2 were
visualized as volcano plots and heatmaps, displaying only the top
10 in descending order of log2FC for both up- and down-regulated
genes. The visualizations were generated through the ggplot2 (v
3.3.2) package (16) and the pheatmap (v 0.7.7) package
(17), respectively.

frontiersin.org


http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2025.1628962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zeng et al.

2.3 Identification and functional analysis of
candidate genes

To identify candidate genes in AKI and CKD progression, the
up-regulated genes from DEGsl and DEGs2, as well as the down-
regulated genes from DEGsl and DEGs2 were separately
overlapped using (v 1.7.3) ggvenn package (18). Subsequently, the
clusterProfiler package (version 3.16.0) was used to perform Gene
Ontology (GO) and Kyoto Encyclopedia of the Genome (KEGG)
enrichment analyses on the candidate genes (19). The Benjamini-
Hochberg (BH) method was applied to control the FDR, with a
significance threshold of pvalueCutoff = 0.05. The top 10 most
significantly enriched terms (ranked in ascending order of p-value)
from the GO and KEGG analyses were visualized using the
enrichplot package (v 1.14.2) (20). To explore protein interactions
among the candidate genes, the protein-protein interaction (PPI)
network (interaction score > 0.15) was constructed using the
Searching for Interacting Genes (STRING, https://www.string-
db.org) database and the results were visualized using Cytoscape
(v 3.10.2) software (21).

2.4 Biomarkers identification and
expression analysis

The glmnet (v 4.1.4) package was used to apply the least
absolute shrinkage and selection operator (LASSO) method to the
candidate genes in the GSE139061 and GSE66494 datasets (22). The
parameter family was set as binomial, and 10-fold cross-validation
(nfolds = 10) was performed to determine the optimal lambda ()
value. Potential feature genes were screened based on the
lambda.min value for each dataset. Moreover, feature genes were
obtained by overlapping the potential feature genes obtained from
the GSE139061 and GSE66494 datasets, respectively. Immediately,
to evaluate the potential of the feature genes to distinguish AKI
samples from control samples, and CKD samples from control
samples, these feature genes were subjected to ROC curve analysis
using pROC (v 1.18.0) package (23) in the AKI training set and the
AKI validation set, the CKD training set and the CKD validation set,
respectively, and feature genes with area under the curve (AUC)
>0.7 in all four datasets were named as candidate biomarkers.
Simultaneously, the candidate biomarkers were subjected to gene
expression analysis in the AKI training set and AKI validation set,
the CKD training set and the CKD validation set, respectively, and
the candidate biomarkers showing a notable difference (P<0.05)
between the disease samples and the control samples in the four
datasets and a consistent expression trend were selected as the
biomarkers for the subsequent analyses.

2.5 Gene set enrichment analysis
To investigate the biological roles of biomarkers involved in

AKI and CKD, GSEA was performed in the GSE139061 and
GSE66494 datasets, respectively. For the analysis, the
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c2.cp.kegg.v2023.1.Hs.symbols.gmt gene set was acquired from
the Molecular Signatures Database (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb/) to act as the background set. First,
Spearman correlations between the biomarkers and other genes
were calculated using the psych (v 2.2.5) package (24) in the
GSE139061 dataset. Subsequently, GSEA for each biomarker was
constructed using clusterProfiler (v 3.16.0) package, with
significance determined at P <0.05 and |normalized enrichment
score (NES)| > 1. The top five pathways in descending order of P-
value were visualized using the enrichplot package (v 1.14.2).
Similarly, GSEA of the biomarkers was carried out using the same
methods and thresholds in the GSE66494 dataset.

2.6 Analysis of immune infiltration and
cytokines expression

To assess the infiltration of 64 immune cells in disease samples
and control samples in the GSE139061 and GSE66494 datasets,
respectively. In the case of the GSE139061 dataset, relative
abundance was calculated using the xCell (v 1.1.0) package (25),
and the proportionate distribution of the 64 immune cells of the
AKI samples versus the control samples was visualized using the
ggplot2 (v 3.3.2) package. Differences in infiltration scores between
AKI samples and control samples in the GSE139061 dataset were
then assessed using Wilcoxon test to screen for immune cell types
with a significant difference in infiltration (P<0.05), which were
named differential immune cells. Subsequently, Spearman
correlation analysis was performed using corrplot (v 0.92)
package (26) to explore the relationship between differential
immune cells and the association between diverse immune cells
and biomarkers(|cor| > 0.30, P < 0.05), and correlation heatmaps
were plotted to show the results. In addition, immune infiltration
and correlation analyses were carried out in the GSE66494 dataset
with the same methods and thresholds.

2.7 Construction of regulatory networks
and drug prediction

Biomarkers targeted by miRNAs were forecasted using the
TargetScan (http://www.targetscan.org/) and miRDB (http://
mirdb.org/) databases. The transcription factors (TFs) that
regulate biomarkers were predicted through the ChEA3 (https://
maayanlab.cloud/chea3/) database. Then, the IncRNAs targeting
the aforementioned miRNAs were predicted by means of the
LncBase (http://carolina.imis.athena-innovation.gr/diana_tools/
web/index.php?r=Incba) database. The miRNA-mRNA, TF-
mRNA and TF-mRNA-miRNA networks were visualized by
using the Cytoscape (v 3.10.2) software, and using the ggplot2
package (v 3.3.2), the IncRNA-miRNA-mRNA network was
visualized. Additionally, the Comparative Toxicogenomics
Database (CTD, http://ctdbase.org/) was employed to predict
drugs targeting biomarkers and Cytoscape version 3.10.2 was
employed to plot the biomarker-drug network.
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2.8 scRNA-seq analysis

Firstly, 5 AKI samples and 11 control samples were selected
from the GSE183277 dataset as the AKI single-cell dataset. The AKI
single-cell dataset was the “Seurat” package (v 4.1.0) was utilized for
quality control (QC) to filter out cells with exceeded 20% of
mitochondrial genes, cells with nCount_RNA under 200 and
surpassed 30,000 genes, and cells with nFeature_RNA > 200 (27).
Then, in light of the GSE183277 dataset, data were normalized by
the “NormalizeData” function in the “Seurat” package (v 4.1.0), and
highly variable genes (HVGs) were selected by the
“FindVariableFeatures” function. Next, the “ScaleData” function
in the “Seurat” package (v 4.1.0) was applied to scale data before
principal components analysis (PCA). Subsequently, the
“JackStraw” function within the “Seurat” package (v 5.0.1) was
applied to execute PCA on HVGs. The “ElbowPlot” function within
the “Seurat” package (v 4.1.0) was thereafter applied to draw a scree
plot of the top 30 principal components (PCs), aiming to identify
PCs that notably contributed to variation for subsequent analysis
(p < 0.05). Afterward, cell cluster analysis was conducted on cells
after dimensionality reduction utilizing “FindNeighbors” and
“FindClusters” functions (resolution = 0.2, dimension = 30).
Finally, the Seurat package’s FindNeighbors and FindClusters
functions were employed to categorize all high-quality cells into
various cell clusters using the uniform manifold approximation and
projection (UMAP) clustering technique.The FindAllMarkers
function was used to identify key marker genes for various
populations, and the classical marker genes of relevant cells in the
CellMarker (http://xteam.xbio.top/CellMarker/) database were used
as the reference gene set to annotate each cell cluster
(Supplementary Table 1). Additionally, 2 CKD samples and 11
control samples were selected from the GSE183277 dataset as the
CKD single-cell dataset and analyzed by scRNA-seq in the same
way, with marker genes shown in Supplementary Table 2.

2.9 Cell communication analysis and
identification of key cells

Cellular communication networks between cell types of AKI
samples and control samples as well as those between cell types of
CKD samples and control samples were analyzed respectively using
the CellChat (v 1.6.1) package (28) based on the AKI single-cell
dataset and the CKD single-cell dataset. And visualization was
carried out by using the patchwork (v 1.3.0) package (29). In
addition, key cells were screened and obtained based on the
expression situation of biomarkers in cell types within the 2
single-cell datasets.

2.10 Pseudotime analysis
To explore the expression changes of biomarkers during the

process of cell state transformation, key cells were first extracted
respectively based on the AKI single-cell dataset and the CKD
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single-cell dataset for secondary dimensionality reduction and
clustering, and the key cells were reclustered and divided into
different cell subpopulations. Following this, the Monocle (v
2.30.0) package was used to conduct cell pseudo-time trajectory
analysis on both the AKI and CKD single-cell datasets (30).

2.11 Mice models

In this study, male C57BL/6] mice, approximately 8 weeks of age,
were utilized. The strain was sourced from the University Model
Animal Research Center at Guangxi Medical University. Ethical
approval for the use of animals in this research was obtained in
compliance with the Guidelines for the Management of Laboratory
Animals as stipulated by the Ministry of Science and Technology of
the People’s Republic of China, as well as the Guidelines for Ethical
Review of Laboratory Animals according to the National Standard
GB/T35892-2018 of the People’s Republic of China, and the
protocols of the Animal Care and Welfare Committee at Guangxi
Medical University (N0:202506002). The mice were provided with
food and water ad libitum, and the housing environment was
maintained at a temperature of 25 + 2°C with a 12-hour light/dark
cycle. The experimental design included three groups of mice, with
the model being established through renal artery ischemia-
reperfusion surgery. For the intervention study, the C57BL/6] mice
were divided into three groups (n = 5 or 6 per group): (1) normal
control group; (2) AKI group; and (3) CKD group. Ischemic AKI was
experimentally induced using a bilateral ischemia-reperfusion injury
(BIRI) model. In this model, mice were anesthetized, and bilateral
dorsal incisions were performed to access the kidneys. Both kidneys
were then clamped to occlude blood flow for a duration of 30
minutes. CKD was simulated through a unilateral ischemia-
reperfusion procedure combined with a contralateral total
nephrectomy. Following anesthesia, a left dorsal incision was made
to clamp the left kidney, obstructing blood flow for 30 minutes.
Subsequently, 14 days post-procedure, a right dorsal incision was
executed to facilitate the complete removal of the right kidney (31).

2.12 Immunohistochemistry

Kidney tissues were paraffin-embedded and sectioned into 4 um
slices. After deparaffinization and rehydration, antigen retrieval was
conducted with EDTA buffer at pH 9.0 for 25 minutes. A 15-minute
treatment with 10% hydrogen peroxide was used to block
endogenous peroxidase activity, and secondary antibodies were
blocked with 5% serum for 30 minutes at room temperature.The
kidney tissues underwent overnight incubation at 4°C with primary
antibodies (PLEKHA4,BD-PB3919, 1:300, Biodragon, Jiangsu,
China; KLKLYP-AB-02871, 1:200, UpingBio, Zhejiang, China;
CLCNKB, DF9376, 1:150, Biodragon, Jiangsu, China) targeting
the candidate biomarkers. Horseradish peroxidase (HRP)-
conjugated antibodies were applied to the sections on the
subsequent day. 3,3’-diaminobenzidine (DAB) (G1212-200T,
Servicebio, Wuhan, China), a substrate specific to HRP, was used
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to highlight the stained areas in kidney tissue. Subsequently,
counterstaining is performed using hematoxylin (G1004-100ML,
Servicebio, Wuhan, China). Representative images were captured
using an Olympus microscope, and Image] (NIH, USA) was
employed to quantify the average optical density of the images to
assess the expression levels of candidate biomarkers.

2.13 Immunofluorescent staining

Immunofluorescence staining was conducted on 5 um-thick
paraffin-embedded sections of mice kidney tissue. Following
deparaffinization and antigen retrieval using EDTA (pH 9.0), the
sections were blocked with goat serum and incubated overnight at
4°C with primary antibodies targeting SLC4A1 (A17391, 1:150,
ABclonal, Wuhan, China) and CA II (EM1801-08, 1:150, HuaAn,
Zhejiang, China). Subsequently, the sections were treated with
iFluor ™ 647-conjugated goat anti-rabbit IgG and iFluor " 488-
conjugated goat anti-mouse IgG (HA1125 and HA1123, 1:300,
HuaAn) for one hour at room temperature. Nuclei were
counterstained with DAPI, and imaging was performed using a
Zeiss Axio-Imager A2 confocal microscope (Carl Zeiss,
Jena, Germany).

2.14 Reverse-transcription polymerase
chain reaction

In summary, total RNA was extracted from renal tissues using
the Trizol method (15596026, Invitrogen, USA). Equivalent
amounts of mRNA were reverse transcribed into cDNA utilizing
the HiScript RT SuperMix kit (R122-01; Vazyme, China).
Quantitative real-time PCR (qRT-PCR) was conducted with the
ChamQ Universal SYBR qPCR Master Mix (Q711-02; Vazyme,
China) on a Viia 7 quantitative real-time PCR instrument (Thermo-
Fisher Scientific, USA). The PCR amplification protocol consisted
of 35 cycles at 95°C for 30 seconds, 58°C for 30 seconds, and 72°C
for 30 seconds. The following primers were employed: Aqp6
forward: GCCGTCATTGTTGGGAAGTTC and reverse: GGCT
CCAGGTCTACCACTTTC; Kit forward: GAACAGGACCTC
GGCTAACAA and reverse: CCTTTGCTCTGCTCCTGTACA;
Slc4al forward: CCTCGTCCAATACATCTCCCG and reverse:
CGTCATGGCAAGTAGGAAGGT. RT-PCR products were
separated on a 1.5% agarose gel and visualized under UV light.
The quantification of QRT-PCR was performed using the 2-AACt
method and expressed as relative fold changes.

2.15 Patient samples

To investigate the expression of candidate biomarkers in
patients with AKI and CKD), we selected a cohort comprising
five patients with AKI and five with CKD. Additionally, we included
five patients diagnosed with renal malignancy, from whom normal
renal tissue adjacent to the tumor was obtained during surgical
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procedures. Patients were identified as having AKI if they fulfilled
any of these conditions: (a) a rise in serum creatinine (Scr)
exceeding 26.5 umol/L within 48 hours; (b) a 50% increase in Scr
over the course of one week; or (¢) urine output below 0.5 mL per
kilogram per hour lasting over 6 hours. CKD patients were
recognized by an estimated glomerular filtration rate (eGFR)
under 60 mL/min/1.73 m*. Approval for this study was granted by
the ethics committee of The First Affiliated Hospital of Guangxi
Medical University, with informed consent obtained from the
patients (No. 2024-E0918).The data analysis design of this study
was showed in Figure 1.

2.16 Statistical analysis

Bioinformatic analysis were performed in the R (v 4.2.2).
GraphPad Prism statistical software was used for experiment
statistical analyses in the study. We employed the unpaired t test
to compare continuous variables between two groups. Values are
shown as mean + SEM, with statistical significance set at P<0.05.

3 Results
3.1 Candidate genes were ascertained

In the GSE139061 dataset, 1153 differentially expressed genes
(DEGsl) were screened out, among which 913 were up-regulated and
240 were down-regulated. Similarly, in the GSE66494 dataset, 153
differentially expressed genes (DEGs2) were screened out, with 60
being up-regulated and 93 being down-regulated. The top 10 up- and
down-regulated DEGs in both datasets and their expression profiles
were labeled on the volcano plots and heatmaps respectively
(Figures 2A-D). Subsequently, by overlapping the 913 up-regulated
DEGs1 with the 60 up-regulated DEGs2, 6 common up-regulated
genes were identified (Figure 2E). And by overlapping the 240 down-
regulated DEGs1 with the 93 down-regulated DEGs2, 13 common
down-regulated genes were obtained (Figure 2F). The 6 common up-
regulated genes and the 13 common down-regulated genes were
combined, and 19 candidate genes were determined. In conclusion,
this analysis focused on the discovery of candidate genes that might
play important roles in the progression of AKI and CKD.

3.2 Function and pathways of candidate
genes were explored

Enrichment analyses of the 19 candidate genes showed that they
were enriched in 22 GO entries, such as organic anion transport
(Figure 2G; Supplementary Table 3), whereas KEGG analyses
revealed that the candidate genes were significantly enriched in
the Renin-angiotensin system (Figure 2H; Supplementary Table 4).
In addition, in the constructed PPI network, genes such as ALB,
SLC22A6 and SLC12A3 were highly associated with other
genes (Figure 2I).
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3.3 CLCNKB, KLK1, and PLEKHA4 were
deemed as biomarkers

Based on the candidate genes, 7 potential feature genes in the
AKI training set and 16 potential feature genes in the CKD training
set were obtained respectively through the LASSO regression
analysis (Figures 3A, B). Then, 5 feature genes were finally
obtained by overlapping (Figure 3C). Subsequently, it was found
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in the AKI training set, validation set as well as the CKD training set
and validation set that the AUC values of CLCNKB, KLK1 and
PLEKHA4 were all greater than 0.7, and thus they could be regarded
as the candidate biomarkers for this study (Figures 3D, E).
Moreover, the expression analysis of the candidate biomarkers
showed that the expression trends of CLCNKB, KLKI and
PLEKHA4 were consistent in the four datasets. Among them,
CLCNKB and KLKI were significantly down-regulated in AKI
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and CKD samples, while PLEKHA4 was significantly up-regulated
(Figures 3F, G). Moreover, the expression trends of CLCNKB,
KLK1 and PLEKHA4 in renal tissues of different groups of
patients and different groups of mice models were consistent with
our results (Figure 4).

3.4 Functional analysis helps explore
potential mechanisms of AKI and CKD
progression

GSEA was performed on the GSE139061 and GSE6649 datasets
to investigate the biological roles of the biomarkers. In the
GSE139061 dataset of AKI, CLCNKB, KLK1 and PLEKHA4 were
significantly enriched in 50, 15 and 51 pathways respectively
(Supplementary Tables 5-7). It was worth noting that CLCNKB
and PLEKHA4 were co-enriched in the valine leucine and
isoleucine degradation pathways and oxidative phosphorylation,
and KLK1 and PLEKHA4 were co-enriched in the neuroactive
ligand receptor interaction pathway (Figures 5A-C). In the
GSE6649 dataset of CKD, CLCNKB, KLK1 and PLEKHA4 were
significantly enriched in 39, 60 and 44 pathways respectively
(Supplementary Tables 8-10). Among them, CLCNKB and KLK1
were jointly enriched in the oxidative phosphorylation and valine,
leucine, and isoleucine degradation pathways, as well as in the
cytokine-cytokine receptor interaction pathway (Figures 5D-F).

3.5 GYG1 and PPP1R3D were associated
with immune infiltrating cells

Figures 6A, B illustrated the infiltration levels of 64 immune cells
in AKI versus control samples, and CKD versus control samples,
respectively. Among them, the infiltration levels of 6 types of immune
cells (differential immune cells 1) were significantly different in AKI
and control samples (Figure 6C), and the infiltration levels of 26 types
of immune cells (differential immune cells 2) were significantly
different in CKD and control samples (Figure 6D), and the
common differential immune cells included Astrocytes, Th2 cells.
Furthermore, among the differential immune cells 1 in AKI,
Fibroblasts had the most significant positive correlation with aDC
(cor = 0.32), and Astrocytes had the most significant negative
correlation with Fibroblasts (cor = -0.36) (Figure 6E;
Supplementary Table 11). Whereas PLEKHA4 had the strongest
positive relationship with pDC (cor = 0.58) and the strongest negative
relationship with Astrocytes (cor = -0.38), CLCNKB had the
strongest positive relationship with Astrocytes (cor = 0.30) and the
strongest negative relationship with Th2 cells (cor = -0.49), but KLK1
was significantly correlated with Differential Immune Cells 1
(Figure 6F; Supplementary Table 12). Subsequently, among the
differential immune cells 2 in CKD, ¢DC had the most significant
positive correlation with DC (cor = 0.75) and the highest positive
association with Macrophages M2 and Neurons (cor = -0.74)
(Figure 6G; Supplementary Table 13). In contrast, PLEKHA4 had
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the greatest positive connection with Th2 cells (cor = 0.58) and the
greatest negative linkage with MEP (cor = -0.40), CLCNKB had the
most significant positive correlation with Thl cells (cor = 0.79) and
the strongest inverse relationship with NKT (cor = -0.67), and KLK1
had the greatest positive connection with MEP (cor = 0.62) and the
most prominent negative connection with Th2 cells (cor = -0.43)
(Figure 6H; Supplementary Table 14).

3.6 Molecular regulatory networks probe
regulatory mechanisms of biomarkers

Initially, merely 2 miRNAs were predicted for PLEKHA4,
whereas no miRNAs could be predicted for CLCNKB and KLK1
(Figure 7A). Subsequently, the TF-mRNA networks consisting of
133, 34 and 56 TFs corresponding to PLEKHA4, CLCNKB and
KLK1 respectively were acquired from the ChEA3 database
(Figure 7B). Then, a miRNA-mRNA-TF network was established
by integrating the 2 miRNAs (Figure 7C). Eventually, 8 IncRNAs
upstream of miRNAs were predicted and a IncRNA-miRNA-
mRNA network was constructe, such as EBLN3P-hsa-miR-3187-
3p-PLEKHA4 (Figure 7D). In a nutshell, this analysis centered
around the finding that PLEKHA4 was likely to play a more crucial
role in the progression of AKI and CKD.

3.7 CLCNKB, PLEKHA4 and KLK1 were
simultaneously targeted by
Tetrachlorodibenzodioxin

Drugs were screened for activation of CLCNKB and KLKI,
which are down-regulated in expression, and inhibition of
PLEKHA4, which is up-regulated in expression, including 27
drugs targeting KLK1, 19 drugs targeting CLCNKB and 19 drugs
targeting PLEKHA4 (Supplementary Tables 15-17). A biomarker-
drug network was constructed accordingly (Figure 7E). It was
noteworthy that CLCNKB, PLEKHA4 and KLK1 were
simultaneously targeted by Tetrachlorodibenzodioxin.

3.8 Annotation in AKI and CKD yielded 14
and 13 cell types, respectively

In the AKI single-cell dataset, a total of 78,791 cells were
retained after quality control (Supplementary Figure SI).
Subsequently, the top 2,000 highly variable genes and the top 30
PCs were applied to UMAP clustering (Figures 8A, B). All high-
quality cells were divided into 17 different cell clusters (Figure 8C).
In addition, marker genes had high specificity in different cell
clusters (Figures 8D, E). The cell clusters were annotated and 14
cell types were determined, such as Injured Proximal tubular cell
and Loop of Henle cell (Figure 8F). Subsequently, in the CKD
single-cell dataset, a total of 58,561 cells were retained after quality
control (Supplementary Figure S2). Next, the top 2,000 highly
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The verification of CLCNKB, KLK1 and PLEKHA4 in AKI and CKD samples. (A) The expression level of CLCNKB, KLK1 and PLEKHA4 in the kidneys of
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variable genes and the top 30 PCs were applied to UMAP clustering 3. 9 Type A intercalated cell and Co[[ecting

(Figures 9A, B). All high-quality cells were divided into 16 different  duct-principal cell identified as key cells
cell clusters (Figure 9C). Moreover, marker genes also had high

specificity in different cell clusters (Figures 9D, E). The cell clusters In the AKI single-cell dataset, the injured proximal tubular
were annotated and 13 cell types were determined, such as Nephron  ¢e]ls in AKI samples had a relatively large number of interactions
epithelial cell and Loop of Henle cell (Figure 9F). and a relatively high intensity with other cells (Figure 10A), while

Frontiers in Immunology 133 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1628962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zeng et al.

10.3389/fimmu.2025.1628962

Term Name

— Oxidative Phosphorylation

__ Valine Leucine And Isoleucine
Degradation
Lysosome

~— Ascorbate And Aldarate Metabolism

~— Propanoate Metabolism

Running Enrichment Score

AT TR AT 1111 A WA TR
T R T B T

L L I] I I
I ] I 1| -

Ranked List
o o
s o
| 4

5000 10000 15000
Rank in Ordered Dataset
o
g oz
@ Term Name
§ 0w — Oxidative Phosphorylation
3 __ Valine Leucine And soleucine
5 Degradation
H Neuroactive Ligand Receptor Interaction
0 -025
=y ~— Parkinsons Disease
E — Citrate Cycle Tca Cycle
5 -0s0
&
075
[ — I I 1108 R 01
I I I I
T Y R T 1 LI LT T T T T
I I I [N
10
B os
3
3
£ oo M e e e m m o
5]
i
-05
5000 10000 15000
Rank in Ordered Dataset

Term Name
— Oxidative Phosphorylation
~— Peroxisome
Drug Metabolism Cytochrome P450
~— Arginine And Proline Metabolism
Valine Leucine And Isoleucine

Degradation

Running Enrichment Score

AT TR 00111 T
W T T T T T 7

1111010 11 | I I |- LT
I T TTT I I I IT

Ranked List
o o
s o

5000 10000
Rank in Ordered Dataset

15000

FIGURE 5

Term Name

— Ribosome

~— Neuroactive Ligand Receptor Interaction
Apoptosis

~— Spliceosome

~— Drug Metabolism Cytochrome P450

Running Enrichment Score

Ranked List

5000 10000
Rank in Ordered Dataset

15000

Term Name
— Oxidative Phosphorylation
~ Offactory Transduction
Cytokine Cytokine Receptor Interaction
~— Neuroactive Ligand Receptor Interaction

Valine Leucine And Isoleucine
Degradation

Running Enrichment Score

Ranked List

5000 10000
Rank in Ordered Dataset

15000

Term Name
— Ribosome
~— Leishmania Infection
Cytokine Cytokine Receptor Interaction
~— Cell Adhesion Molecules Cams
~ Glycine Serine And Threonine Metabolism

Running Enrichment Score

T LI A I T -
| T N N R R 1 Y
— -
QI O T O O I T T 7T
I I | 1101
|
£ 05
3
R R e e I I T SRS
<]
i3
-05
5000 10000 15000

Rank in Ordered Dataset

GSEA analysis of biomarkers. (A—C) GSEA analysis of CLCNKB, KLK1 and PLEKHA4 in AKI set. (D—F) GSEA analysis of CLCNKB, KLK1 and PLEKHA4 in

CKD set. GSEA, Gene set enrichment analysis.

in the control samples, B cells had a relatively large number of
interactions and a relatively high intensity with other cells
(Figure 10B). Interestingly, in the CKD single-cell dataset,
Nephron epithelial cells and B cells had a relatively large
number of interactions and a relatively high intensity with other
cells both in CKD and control samples (Figures 10C, D). In
addition, KLK1 and CLCNKB had relatively high expression
levels in Type A intercalated cells and Collecting duct-principal
cells in both single-cell datasets (Figures 10E, F). To evaluate the
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abundance of type A intercalated cells in kidney disease,
immunofluorescence staining was performed on kidney sections
of AKI/CKD mice. Consistent with the reduced expression of
SLC4AL1 (a specific marker for this cell type) in diseased kidneys
(Figure 11A), the expressions of additional markers (Aqp6, Kit
and Slc4al) were also significantly downregulated (Figures 11B-
D), confirming the loss of type A intercalated cells in AKI/CKD.
Consequently, Type A intercalated cells could have been part of
the disease’s development.
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3.10 CLCNKB, KLK1, and PLEKHA4
expression changes during development of
key cell subpopulations

Secondary dimensionality reduction clustering analysis was
performed on Type A intercalated cell and Collecting duct-
principal cell. It was found that Type A intercalated cell and
Collecting duct-principal cell were divided into 10 and 8
subgroups respectively in the AKI single-cell dataset (Figures 124,
B). Whereas in the CKD single-cell dataset, Type A intercalated cell
was divided into 10 subgroups and Collecting duct-principal cell
was divided into 9 subgroups (Figures 12C, D). Subsequently, the
different subgroups within Type A intercalated cell and Collecting
duct-principal cell were arranged on the developmental trajectory
according to the differentiation time. A darker blue indicates earlier
cell differentiation. In addition, after different cell subgroups were
mapped to the pseudo-time trajectory plot, it was found that they
exhibited different differentiation states. In the AKI single-cell
dataset, Type A intercalated cell had 10 differentiation states, with
State 4 being the earliest and most specific in differentiation.
Collecting duct-principal cell had 8 differentiation states, and
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State 4 was also the earliest and most specific (Figures 12E, F). In
the CKD single-cell dataset, Type A intercalated cell also had 10
differentiation states, with State 9 being the earliest in
differentiation. Collecting duct-principal cell had 8 differentiation
states, and State 0 was the earliest and most specific (Figures 12G,
H). In the AKI single-cell dataset, with the differentiation of Type A
intercalated cells, the expressions of KLK1 and PLEKHA4 had no
significant changes. The expression of CLCNKB showed a trend of
first decreasing, then increasing and finally decreasing again
(Figures 12I). With the development of Collecting duct-principal
cells, PLEKHA4 had no significant change. The expression of
CLCNKB showed a trend of first increasing and then decreasing,
and the expression of KLK1 showed a trend of first remaining
unchanged, then increasing, then decreasing and finally remaining
unchanged (Figures 12]) In the CKD single-cell dataset, with the
development of Type A intercalated cells, PLEKHA4 had no
significant change. The expression of CLCNKB showed a trend of
first decreasing and then increasing, and the expression of KLK1
showed a trend of first decreasing, then remaining unchanged and
finally increasing (Figures 12K). With the development of
Collecting duct-principal cells, PLEKHA4 had no significant
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change. CLCNKB expression consistently declined, while KLK1
expression initially decreased and then stabilized (Figures 12L).

4 Discussion

AKI is marked by a swift reduction in kidney function over a
brief period, and the transition from AKI to CKD is a widely
recognized clinical occurrence. Our study identified three
biomarkers (CLCNKB, KLK1, and PLEKHA4) through a

Frontiers in Immunology

137

combination of machine learning algorithms, ROC curve analysis,
and expression validation. The potential mechanisms associated
with these biomarkers in AKI and CKD were explored through
enrichment analysis, regulatory network construction, immune
infiltration analysis, and drug target prediction. By integrating
single-cell data, we identified key cell types and investigated the
expression of these biomarkers at the cellular level. Thus, our
investigation discovered some new perspectives on the potential
pathogenesis and progression of AKI to CKD, which might provide
therapeutic targets to avert the transition.
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CLCNKB is responsible for encoding the CLC-Kb protein, a
component of the CLC chloride channel family, that helps with
chloride ion reabsorption in the renal tubules (32, 33).Genetic
mutations in CLCNKB can impair the glycosylation of the CLC-
Kb protein, compromising its functionality and resulting in reduced
uptake of sodium and chloride ions in the kidney tubules (34).
Mutations in the CLCNKB gene are notably linked to Bartter
syndrome type III, a rare hereditary renal tubular disorder
characterized by salt loss and electrolyte imbalances, frequently
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culminating in CKD (35, 36).Our study demonstrated a significant
down-regulation of CLCNKB in renal tissue samples from patients
with both AKI and CKD, aligning with the loss-of-function effect
indicated by the aforementioned genetic evidence. Moreover, this
substantial loss of sodium and chloride ions triggers the activation
of the renin - angiotensin - aldosterone system (RAAS), which may
exacerbate kidney injury in AKI and facilitate the development to
CKD (37).During the acute phase, persistent activation of the RAAS
may exacerbate AKI-induced renal damage by promoting
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vasoconstriction and inflammatory responses (37). Over the long
term, this mechanism is pivotal in driving renal fibrosis and
glomerulosclerosis, thereby expediting the progression from AKI
to CKD (38). Functional enrichment analysis corroborated this
mechanism. Furthermore, CLCNKB was found to be significantly
associated with metabolic pathways, such as oxidative
phosphorylation and branched-chain amino acid degradation,
suggesting that its down-regulation may also be implicated in
energy metabolism disorders within renal tubular cells,
collectively facilitating the chronic progression of the disease.
KLK1 is a serine protease that plays a pivotal role in the
kininase-kinin system (KKS) by breaking down low molecular
weight kininogen to yield bradykinin (BK) (39). The KKS is
intricately associated with several physiological processes,
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including inflammation, coagulation, pain, and increased vascular
permeability, all of which are mediated by kinin production (40).
KLK1 is notably involved in the signaling pathways of the Bl
receptor for bradykinin (B1R) and the B2 receptor for bradykinin
(B2R), thereby triggering a series of physiological responses that
produce anti-apoptotic, anti-inflammatory, anti-fibrotic, and
antioxidant effects. These actions collectively contribute to tissue
protection, underscoring the multifaceted beneficial roles of KLK1
in maintaining tissue homeostasis (41). Furthermore, previous
research has demonstrated that Klkl ameliorates lupus nephritis
in murine models (42, 43). The functional enrichment analysis
conducted in this study revealed a significant association between
the down-regulation of KLK1 expression and the neuroactive
ligand-receptor interaction and cytokine-cytokine receptor
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interaction signaling pathways. This suggests that reduced KLK1
expression may compromise the protective function of renal tubular
cells by disrupting bradykinin signaling and exacerbating the
inflammatory microenvironment.Consequently, the absence of
KLK1 may be implicated in the development from AKI to CKD.
PLEKHA4 encodes a protein characterized by a Pleckstrin
homology domain near its N-terminus and has an important
function in cancer biology, particularly in gliomas. Furthermore,
PLEKHA4 regulates the Wnt/B-catenin signaling pathway. In vitro
downregulation of PLEKHA4 resulted in decreased dishevelled
protein levels and a later diminishment of Wnt/B-catenin
signaling (44).Conversely, overexpression of PLEKHA4 activated
the Wnt/B-catenin pathway, facilitating the transfer of 3-catenin to
the nucleus and promoting signaling activity (45). The Wnt/B-
catenin pathway, a developmental signaling cascade typically
inactive in the adult kidney, becomes reactivated in various renal
pathologies and plays a pivotal role in the pathogenesis of CKD (46,
47). Continuous activation of the Wnt/f-catenin signaling pathway
has been linked to the advancement of kidney fibrosis, podocyte
injury, and proteinuria in CKD (48-50), as well as contributing to
AKI and sustained tissue damage in cystic kidney disease (51, 52).
Furthermore, molecular regulatory networks suggest that
PLEKHA4 may play a significant role in the progression from
AKI to CKD. Consequently, the overexpression of PLEKHA4 could
potentially exacerbate kidney damage in AKI and expedite the
progression from AKI to CKD, warranting further investigation

into the underlying mechanisms.
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Our study indicates that during the progression from AKI to
CKD, the oxidative phosphorylation pathway and the degradation
pathways of valine, leucine, and isoleucine are pivotal. Following
acute kidney injury, the renal repair process is often maladaptive,
resulting in the dedifferentiation of tubular cells and the
intensification of inflammatory responses. This maladaptive
repair mechanism is intricately linked to the dysregulation of
oxidative phosphorylation, which subsequently impacts long-term
kidney function (53, 54). Research has demonstrated a significant
association between valine degradation disorder and renal fibrosis, a
critical pathological feature of CKD (55).Similarly, amino acid
metabolism assumes a pivotal role in CKD (56). Amino acids can
influence renal lesions and fibrosis through the aryl hydrocarbon
receptor (AhR) signaling pathway (57). Certain amino acids, such
as taurine, exhibit renoprotective properties by safeguarding the
mitochondrial membrane and inhibiting cell apoptosis, thereby
mitigating structural damage to the renal cortex (58, 59). The
significance of amino acid metabolism in disease mechanisms
positions it as a potential target for the early diagnosis and
treatment of CKD (60).
markedly disrupted, typically evidenced by elevated levels of

In CKD, amino acid metabolism is

arginine and citrulline and a decreased ornithine/citrulline ratio,
indicating that citrulline may serve as a potent biomarker of renal
metabolism (61). This metabolic disturbance interacts with
systemic inflammation and metabolic acidosis, disrupting amino
acid and protein homeostasis. As CKD progresses, glomerular
filtration and renal tubular reabsorption functions are further
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(A, B) The subgroups of Type A intercalated cell and Collecting duct-principal cell in AKI single-cell dataset. (C, D) The subgroups of Type A
intercalated cell and Collecting duct-principal cell in CKD single-cell dataset. (E, F) Different states of Type A intercalated cell and Collecting duct-
principal cell in AKI single-cell dataset. (G, H) Different states of Type A intercalated cell and Collecting duct-principal cell in CKD single-cell dataset.
(I, J) Expression trends of CLCNKB, KLK1 and PLEKHA4 in Type A intercalated cell and Collecting duct-principal cell in AKI single-cell dataset.

(K, L) Expression trends of CLCNKB, KLK1 and PLEKHA4 in Type A intercalated cell and Collecting duct-principal cell in CKD single-cell dataset. AKI,

Acute kidney injury; CKD, Chronic kidney disease.

compromised, exacerbating amino acid depletion and proteinuria,
thereby perpetuating a detrimental cycle (62). Therefore,
interventions targeting oxidative phosphorylation pathways and
amino acid metabolism may offer advanced therapeutic
techniques to decelerate the progression from AKI to CKD.

Frontiers in Immunology

During the transition from AKI to CKD, various cell types
including fibroblasts, Th2 cells, astrocytes, DCs, and M2
macrophages, play pivotal roles, aligning with our findings.
Studies indicate that fibroblasts differentiate into myofibroblasts
following kidney injury, thereby promoting extracellular matrix
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accumulation and contributing to renal fibrosis (63). Moreover, M2
macrophages exhibit a dual role in this process, engaging in tissue
repair while potentially facilitating fibrosis progression in chronic
inflammation (64). Post-AKI, Th2 cell activation may mitigate
inflammatory responses and promote renal repair.However, an
excessive Th2 cell response can also exacerbate fibrosis (65). In
addition, suppressing PLEKHA4 might obstruct the M2
polarization process in macrophages (66). Thus, the positive
association of Th2 cells with PLEKHA4 may expedite the
progression of kidney fibrosis. Dendritic cells modulate T cell
activation and differentiation through antigen presentation and
cytokine secretion, thereby impacting the inflammatory and
reparative mechanisms of kidney (67). Meanwhile, astrocytes are
integral to the neuroimmune regulation of the kidney, potentially
influencing the inflammatory response and fibrotic processes via
the release of neurotransmitters and cytokines (68). It is noteworthy
that interstitial cells, as a crucial component of the renal
microenvironment, play a significant role in renal inflammation.
They amplify local inflammatory signals by releasing
proinflammatory factors, thereby inducing increased apoptosis of
renal parenchymal cells and exacerbating renal fibrosis through the
promotion of myofibroblast activation and extracellular matrix
deposition (69). This process is intricately linked to abnormal
oxidative stress, which not only results from the inflammatory
response but also exacerbates inflammation and apoptosis by
impairing mitochondrial function and activating the NF-xB and
Nrf2 signaling pathways (70-72). These pathways are central to the
regulation of apoptosis, inflammation (73), and oxidative stress in
kidney diseases and are pivotal in determining the progression and
outcomes of CKD (74, 75). Furthermore, Type A intercalated cells
and collecting duct principal cells are identified as pivotal in the
transition from AKI to CKD. This process encompasses a variety of
complex pathophysiological mechanisms, including inflammation,
fibrosis, and renal tubular injury. Type A interstitial cells, a distinct
group of cells located in the kidney’s collecting duct, are crucial for
maintaining acid-base equilibrium and facilitating ion transport
(76). AKI is frequently associated with an inflammatory response,
which stimulates the release of pro-inflammatory cytokines and
chemokines (77). Type A interstitial cells may exacerbate renal
fibrosis by promoting fibroblast activation and collagen synthesis
(78). Furthermore, the dysfunction of intercalated cells is intricately
associated with alterations in the renal microenvironment, which
may encompass hypoxia, modifications in the extracellular matrix,
and dysregulation of intercellular signaling pathways (79).
Collecting duct principal cells, another predominant cell type in
the collecting duct, are responsible for the regulation of sodium and
water reabsorption, thereby maintaining fluid balance (77).
Dysfunction in the collecting duct principal cells results in
compromised water and sodium reabsorption, further
exacerbating kidney damage. Collecting duct principal cells
demonstrate considerable proliferative capacity following acute
kidney injury, a response likely aimed at compensating for
tubular damage and facilitating renal repair (80). Consequently,
these cellular types may represent potential therapeutic targets in
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the progression from AKI to CKD, warranting further in-depth
investigation into the interactions among different cell types.

In this study, a biomarker-drug network was developed, revealing
that CLCNKB, PLEKHA4, and KLK1 are concurrently targeted by
tetrachlorodibenzodioxin. However, tetrachlorobiphenyldioxin is
recognized as an environmental pollutant that induces toxicity across
multiple tissues, including the kidneys (81). Research has demonstrated
that exposure to tetrachlorobiphenyldioxin can result in oxidative
stress, leading to cellular damage and dysfunction within the kidneys
(82). However, the therapeutic effect of tetrachlorobiphenyldioxin are
poorly studied. These findings are contrary to our results, indicating
that the mechanisms of action of related drugs require further
exploration in future studies.

In this study, miRNAs and immune cells synergistically
influence the progression from AKI to CKD by targeting specific
biomarkers and engaging in the inflammation-fibrosis axis.
Regarding miRNAs, although only two miRNAs, such as hsa-
miR-3187-3p, were predicted to target PLEKHAA4, the constructed
IncRNA-miRNA-mRNA network indicates its regulatory role.
MiRNAs may negatively regulate PLEKHA4 expression by
promoting mRNA degradation or inhibiting its translation. The
downregulation or loss of function of miRNAs can lead to
PLEKHA4 overexpression, which subsequently activates the Wnt/
[-catenin pathway. This activation promotes fibroblast activation,
epithelial-mesenchymal transition, and extracellular matrix
deposition, thereby accelerating renal fibrosis (51). These findings
illuminate the intricate mechanisms underlying immunometabolic
regulation in kidney diseases and provide a rationale for therapeutic
strategies targeting miRNAs or immune cells.

Among the biomarkers identified in this study, CLCNKB
demonstrates significant novelty. Prior research has
predominantly concentrated on the relationship between
CLCNKB variants and inherited renal tubular disorders, such as
Bartter syndrome (35). However, to date, no investigations have
reported an association between CLCNKB and AKI or CKD. This
study is the first to reveal that CLCNKB plays a crucial role in the
transition from AKI to CKD, potentially offering a novel perspective
on the mechanisms underlying AKI-CKD progression. In contrast,
KLK1 and PLEKHA4 are established targets in AKI and CKD
research. KLK1 has been demonstrated to play a significant role in
kidney disease (83). Regarding PLEKHA4, the continuous
activation of the Wnt/B-catenin signaling pathway is implicated
in the progression of renal fibrosis in CKD, contributing to ongoing
tissue damage in kidney disease (52). Through comprehensive
bioinformatics analysis, this study systematically examined the
expression patterns and potential regulatory networks of KLK1
and PLEKHA4 in the AKI-CKD transition, thereby enhancing the
understanding of their mechanisms in kidney diseases. The
identification of these biomarkers not only provides potential
molecular indicators for early diagnosis but also enriches the
current understanding of kidney disease pathophysiology.

Three biomarkers, CLCNKB, KLK1, and PLEKHA4, were
identified through bioinformatics methods as being associated with
the progression of AKI to CKD. Functional enrichment analysis was
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conducted based on these biomarkers to elucidate the biological
pathways involved in AKI and CKD. Additionally, correlation
analysis between differential immune cells and the identified
biomarkers was performed to explore potential regulatory
relationships. Single-cell analysis provided insights into the cellular-
level expression of these biomarkers, offering new perspectives for early
diagnosis and the development of novel therapeutic strategies for AKI
and CKD. This study is subject to several limitations. Firstly, the
retrospective analysis based on public databases is unable to fully
eliminate batch effects, and the sample sizes are constrained (for
instance, the scRNA-seq dataset includes only five cases of AKI and
two cases of CKD), which impedes the effective application of
multivariate statistical analysis to control for confounding factors.
Secondly, the study lacks gene function experiments, such as gene
knockout or overexpression, which are necessary to directly validate the
causal mechanisms of the candidate genes. Furthermore, the clinical
translation of target-related compounds, such as tetrachlorodibenzo-
dioxins, is severely limited due to their toxicity. Future research should
aim to expand the sample size through multi-center prospective cohort
studies to acquire comprehensive clinical information. Additionally,
animal models and cellular experiments, including gene editing and
inhibitor or agonist treatments, should be employed to further elucidate
the specific mechanisms by which CLCNKB, KLK1, and PLEKHA4
regulate fibrosis and the immune microenvironment. Moreover, flow
cytometry and RNA sequencing (RNA-seq) technologies will be
employed to assess the dynamic expression and functional status of
type A interstitial cells within a kidney injury model, thereby
elucidating their potential role in the disease pathology. Ultimately,
these insights are intended to be translated into early intervention and
targeted therapies for kidney disease through drug repositioning or the
development of novel inhibitors or agonists.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

The studies involving humans were approved by The ethics
committee of The First Affiliated Hospital of Guangxi Medical
University. The studies were conducted in accordance with the local
legislation and institutional requirements. The participants
provided their written informed consent to participate in this
study. The animal study was approved by Animals as stipulated
by the Ministry of Science and Technology of the People’s Republic
of China, as well as the Guidelines for Ethical Review of Laboratory
Animals according to the National Standard GB/T35892-2018 of
the People’s Republic of China, and the protocols of the Animal
Care and Welfare Committee at Guangxi Medical University
(N0:202506002). The study was conducted in accordance with the
local legislation and institutional requirements.

Frontiers in Immunology

10.3389/fimmu.2025.1628962

Author contributions

FZ: Validation, Visualization, Writing - original draft, Writing
- review & editing, Conceptualization, Methodology. ZY: Funding
acquisition, Project administration, Resources, Supervision, Writing
- original draft, Writing - review & editing, Formal analysis.
ZW: Conceptualization, Data curation, Funding acquisition,
Investigation, Methodology, Resources, Software, Supervision,
Writing - original draft, Writing - review & editing.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. Project supported by the
Young Scientists Fund of the Guangxi Medical University
(RC2300016245,provided by ZW); the fifth level Talent Fund of
the First Affiliated Hospital of Guangxi Medical University (No.
2022020,provided by ZW).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.
1628962/full#supplementary-material

SUPPLEMENTARY FIGURE 1
The quality control of AKI single-cell dataset. AKI: Acute kidney injury

SUPPLEMENTARY FIGURE 2
The quality control of CKD single-cell dataset. CKD: Chronic kidney disease.

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1628962/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1628962/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1628962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zeng et al.

References

1. Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, et al.
Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality
Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol. (2017) 13:241-57. doi: 10.1038/
nrneph.2017.2

2. Almazmomi MA, Esmat A, Naeem A. Acute kidney injury: definition,
management, and promising therapeutic target. Cureus. (2023) 15:e51228.
doi: 10.7759/cureus.51228

3. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al
Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPT
study. Intensive Care Med. (2015) 41:1411-23. doi: 10.1007/s00134-015-3934-7

4. See EJ, Jayasinghe K, Glassford N, Bailey M, Johnson DW, Polkinghorne KR, et al.
Long-term risk of adverse outcomes after acute kidney injury: a systematic review and
meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int.
(2019) 95:160-72. doi: 10.1016/j.kint.2018.08.036

5. Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and
management: A review. JAMA. (2019) 322:1294-304. doi: 10.1001/jama.2019.14745

6. Liu P, Quinn RR, Lam NN, Elliott MJ, Xu Y, James MT, et al. Accounting for age
in the definition of chronic kidney disease. JAMA Intern Med. (2021) 181:1359-66.
doi: 10.1001/jamainternmed.2021.4813

7. GBD Chronic Kidney Disease Collaboration. Global, regional, and national
burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global
Burden of Disease Study 2017. Lancet. (2020) 395:709-33. doi: 10.1016/S0140-6736(20)
30045-3

8. Liyanage T, Toyama T, Hockham C, Ninomiya T, Perkovic V, Woodward M,
et al. Prevalence of chronic kidney disease in Asia: a systematic review and analysis.
BM]J Glob Health. (2022) 7:€007525. doi: 10.1136/bmjgh-2021-007525

9. Wang YN, Ma SX, Chen YY, Chen L, Liu BL, Liu QQ, et al. Chronic kidney
disease: Biomarker diagnosis to therapeutic targets. Clin Chim Acta. (2019) 499:54-63.
doi: 10.1016/j.cca.2019.08.030

10. Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic
kidney disease as interconnected syndromes. N Engl ] Med. (2014) 371:58-66.
doi: 10.1056/NEJMral214243

11. Kurzhagen JT, Dellepiane S, Cantaluppi V, Rabb H. AKI: an increasingly
recognized risk factor for CKD development and progression. J Nephrol. (2020)
33:1171-87. doi: 10.1007/s40620-020-00793-2

12. Pickkers P, Darmon M, Hoste E, Joannidis M, Legrand M, Ostermann M, et al.
Acute kidney injury in the critically ill: an updated review on pathophysiology and
management. Intensive Care Med. (2021) 47:835-50. doi: 10.1007/s00134-021-06454-7

13. Zhang T, Widdop RE, Ricardo SD. Transition from acute kidney injury to
chronic kidney disease: mechanisms, models, and biomarkers. Am ] Physiol Renal
Physiol. (2024) 327:F788-805. doi: 10.1152/ajprenal.00184.2024

14. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:550.
doi: 10.1186/s13059-014-0550-8

15. Smyth GK. Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol. (2004) 3. doi: 10.2202/
1544-6115.1027

16. Xie ZW, He Y, Feng YX, Wang XH. Identification of programmed cell death-
related genes and diagnostic biomarkers in endometriosis using a machine learning and
Mendelian randomization approach. Front Endocrinol (Lausanne). (2024) 15:1372221.
doi: 10.3389/fendo.2024.1372221

17. Zhang X, Chao P, Zhang L, Xu L, Cui X, Wang S, et al. Single-cell RNA and
transcriptome sequencing profiles identify immune-associated key genes in the
development of diabetic kidney disease. Front Immunol. (2023) 14:1030198.
doi: 10.3389/fimmu.2023.1030198

18. Jia A, Xu L, Wang Y. Venn diagrams in bioinformatics. Brief Bioinform. (2021)
22:bbab108. doi: 10.1093/bib/bbab108

19. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS. (2012) 16:284-7. doi: 10.1089/
omi.2011.0118

20. Zhang C, Zheng Y, Li X, Hu X, Qi F, Luo J. Genome-wide mutation profiling and
related risk signature for prognosis of papillary renal cell carcinoma. Ann Transl Med.
(2019) 7:427. doi: 10.21037/atm.2019.08.113

21. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape stringApp: network
analysis and visualization of proteomics data. J Proteome Res. (2019) 18:623-32.
doi: 10.1021/acs.jproteome.8b00702

22. Friedman ], Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Software. (2010) 33:1-22. doi: 10.18637/
jss.v033.i01

23. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an
open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf.
(2011) 12:77. doi: 10.1186/1471-2105-12-77

Frontiers in Immunology

10.3389/fimmu.2025.1628962

24. Robles-Jimenez LE, Aranda-Aguirre E, Castelan-Ortega OA, Shettino-Bermudez
BS, Ortiz-Salinas R, Miranda M, et al. Worldwide traceability of antibiotic residues
from livestock in wastewater and soil: A systematic review. Anim (Basel). (2021) 12:60.
doi: 10.3390/ani12010060

25. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/5s13059-017-1349-1

26. Su]J, Zhou W, Yuan H, Wang H, Zhang H. Identification and functional analysis
of novel biomarkers in adenoid cystic carcinoma. Cell Mol Biol (Noisy-le-grand). (2023)
69:203-7. doi: 10.14715/cmb/2023.69.6.31

27. Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, et al.
Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat
Biotechnol. (2024) 42:293-304. doi: 10.1038/s41587-023-01767-y

28. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

29. Mayrhofer M, DiLorenzo S, Isaksson A. Patchwork: allele-specific copy number
analysis of whole-genome sequenced tumor tissue. Genome Biol. (2013) 14:R24.
doi: 10.1186/gb-2013-14-3-r24

30. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph
embedding resolves complex single-cell trajectories. Nat Methods. (2017) 14:979-82.
doi: 10.1038/nmeth.4402

31. Zhang YL, Tang TT, Wang B, Wen Y, Feng Y, Yin Q, et al. Identification of a
novel ECM remodeling macrophage subset in AKI to CKD transition by integrative
spatial and single-cell analysis. Adv Sci (Weinh). (2024) 11:¢2309752. doi: 10.1002/
advs.202309752

32. Seys E, Andrini O, Keck M, Mansour-Hendili L, Courand PY, Simian C, et al.
Clinical and genetic spectrum of bartter syndrome type 3. ] Am Soc Nephrol. (2017)
28:2540-52. doi: 10.1681/ASN.2016101057

33. Zaika O, Tomilin V, Mamenko M, Bhalla V, Pochynyuk O. New perspective of
CIC-Kb/2 Cl- channel physiology in the distal renal tubule. Am J Physiol Renal Physiol.
(2016) 310:F923-30. doi: 10.1152/ajprenal.00577.2015

34. Sharma Y, Lo R, Tomilin VN, Ha K, Deremo H, Pareek AV, et al. CIC-Kb pore
mutation disrupts glycosylation and triggers distal tubular remodeling. JCI Insight.
(2024) 9:¢175998. doi: 10.1172/jci.insight.175998

35. Roodaki N, Salinas LM, Maceda EBG, Frias J. Novel CLCNKB mutation in two
siblings with classic bartter syndrome. Case Rep Genet. (2025) 2025:8862780.
doi: 10.1155/crig/8862780

36. Feng J, Chen Z, Wang Y, Liu Y, Zhao D, Gu X. Identification of chromatin
remodeling-related gene signature to predict the prognosis in breast cancer. Clin Exp
Med. (2025) 25:137. doi: 10.1007/510238-025-01661-8

37. Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U.
Complex pathophysiology of acute kidney injury (AKI) in aging: epigenetic regulation,
matrix remodeling, and the healing effects of H2S. Biomolecules. (2024) 14:1165.
doi: 10.3390/biom14091165

38. Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, et al.
Multisociety consensus quality improvement revised consensus statement for
endovascular therapy of acute ischemic stroke. Int J Stroke. (2018) 13:612-32.
doi: 10.1177/1747493018778713

39. Devetzi M, Goulielmaki M, Khoury N, Spandidos DA, Sotiropoulou G,
Christodoulou I, et al. Genetically-modified stem cells in treatment of human
diseases: Tissue kallikrein (KLK1)-based targeted therapy (Review). Int ] Mol Med.
(2018) 41:1177-86. doi: 10.3892/ijmm.2018.3361

40. Kakoki M, Smithies O. The kallikrein-kinin system in health and in diseases of
the kidney. Kidney Int. (2009) 75:1019-30. doi: 10.1038/ki.2008.647

41. Chao J, Shen B, Gao L, Xia CF, Bledsoe G, Chao L. Tissue kallikrein in
cardiovascular, cerebrovascular and renal diseases and skin wound healing. Biol
Chem. (2010) 391:345-55. doi: 10.1515/BC.2010.042

42. Lindgren S, Anzén B, Bohlin AB, Lidman K. HIV and child-bearing: clinical
outcome and aspects of mother-to-infant transmission. AIDS. (1991) 5:1111-6.
doi: 10.1097/00002030-199109000-00009

43. Li QZ, Zhou J, Yang R, Yan M, Ye Q, Liu K, et al. The lupus-susceptibility gene
kallikrein downmodulates antibody-mediated glomerulonephritis. Genes Immun.
(2009) 10:503-8. doi: 10.1038/gene.2009.7

44. Shami Shah A, Cao X, White AC, Baskin JM. PLEKHA4 promotes wnt/B-
catenin signaling-mediated G1-S transition and proliferation in melanoma. Cancer Res.
(2021) 81:2029-43. doi: 10.3892/mmr.2024.13395

45. Yue Y, An G, Cao S, Li X, Du L, Xu D, et al. PLEKHA4 upregulation regulates
KIRC cell proliferation through B-catenin signaling. Mol Med Rep. (2025) 31:30.
doi: 10.3892/mmr.2024.13395

46. Tian Y, Chen ], Huang W, Ren Q, Feng J, Liao J, et al. Myeloid-derived Wnts
play an indispensible role in macrophage and fibroblast activation and kidney fibrosis.
Int J Biol Sci. (2024) 20:2310-22. doi: 10.7150/ijbs.94166

frontiersin.org


https://doi.org/10.1038/nrneph.2017.2
https://doi.org/10.1038/nrneph.2017.2
https://doi.org/10.7759/cureus.51228
https://doi.org/10.1007/s00134-015-3934-7
https://doi.org/10.1016/j.kint.2018.08.036
https://doi.org/10.1001/jama.2019.14745
https://doi.org/10.1001/jamainternmed.2021.4813
https://doi.org/10.1016/S0140-6736(20)30045-3
https://doi.org/10.1016/S0140-6736(20)30045-3
https://doi.org/10.1136/bmjgh-2021-007525
https://doi.org/10.1016/j.cca.2019.08.030
https://doi.org/10.1056/NEJMra1214243
https://doi.org/10.1007/s40620-020-00793-2
https://doi.org/10.1007/s00134-021-06454-7
https://doi.org/10.1152/ajprenal.00184.2024
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.2202/1544-6115.1027
https://doi.org/10.3389/fendo.2024.1372221
https://doi.org/10.3389/fimmu.2023.1030198
https://doi.org/10.1093/bib/bbab108
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.21037/atm.2019.08.113
https://doi.org/10.1021/acs.jproteome.8b00702
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.3390/ani12010060
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.14715/cmb/2023.69.6.31
https://doi.org/10.1038/s41587-023-01767-y
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1186/gb-2013-14-3-r24
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1002/advs.202309752
https://doi.org/10.1002/advs.202309752
https://doi.org/10.1681/ASN.2016101057
https://doi.org/10.1152/ajprenal.00577.2015
https://doi.org/10.1172/jci.insight.175998
https://doi.org/10.1155/crig/8862780
https://doi.org/10.1007/s10238-025-01661-8
https://doi.org/10.3390/biom14091165
https://doi.org/10.1177/1747493018778713
https://doi.org/10.3892/ijmm.2018.3361
https://doi.org/10.1038/ki.2008.647
https://doi.org/10.1515/BC.2010.042
https://doi.org/10.1097/00002030-199109000-00009
https://doi.org/10.1038/gene.2009.7
https://doi.org/10.3892/mmr.2024.13395
https://doi.org/10.3892/mmr.2024.13395
https://doi.org/10.7150/ijbs.94166
https://doi.org/10.3389/fimmu.2025.1628962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zeng et al.

47. Fu D, Senouthai S, Wang J, You Y. FKN facilitates HK-2 cell EMT and
tubulointerstitial lesions via the wnt/B-catenin pathway in a murine model of lupus
nephritis. Front Immunol. (2019) 10:784. doi: 10.3389/fimmu.2019.00784

48. Long Y, Song D, Xiao L, Xiang Y, Li D, Sun X, et al. m6A RNA methylation
drives kidney fibrosis by upregulating B-catenin signaling. Int ] Biol Sci. (2024)
20:3185-200. doi: 10.7150/ijbs.96233

49. Miao H, Wang YN, Su W, Zou L, Zhuang SG, Yu XY, et al. Sirtuin 6 protects against
podocyte injury by blocking the renin-angiotensin system by inhibiting the Wnt1/B-catenin
pathway. Acta Pharmacol Sin. (2024) 45:137-49. doi: 10.1038/s41401-023-01148-w

50. Jin B, Liu J, Zhu Y, Lu J, Zhang Q, Liang Y, et al. Kunxian capsule alleviates
podocyte injury and proteinuria by inactivating B-catenin in db/db mice. Front Med
(Lausanne). (2023) 10:1213191. doi: 10.3389/fmed.2023.1213191

51. Schunk SJ, Floege J, Fliser D, Speer T. WNT-B-catenin signalling - a versatile
player in kidney injury and repair. Nat Rev Nephrol. (2021) 17:172-84. doi: 10.1038/
541581-020-00343-w

52. Bienaimé F, Canaud G, El Karoui K, Gallazzini M, Terzi F. Molecular pathways
of chronic kidney disease progression. Nephrol Ther. (2016) 12 Suppl 1:S35-8.
doi: 10.1016/j.nephro.2016.02.009

53. Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK. Acute
kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol
Renal Physiol. (2010) 298:F1078-94. doi: 10.1152/ajprenal.00017.2010

54. Console L, Scalise M, Giangregorio N, Tonazzi A, Barile M, Indiveri C. The link
between the mitochondrial fatty acid oxidation derangement and kidney injury. Front
Physiol. (2020) 11:794. doi: 10.3389/fphys.2020.00794

55. Sato Y, Yanagita M. Resident fibroblasts in the kidney: a major driver of fibrosis
and inflammation. Inflammation Regen. (2017) 37:17. doi: 10.1186/s41232-017-0048-3

56. Miao H, Liu F, Wang YN, Yu XY, Zhuang S, Guo Y, et al. Targeting Lactobacillus
johnsonii to reverse chronic kidney disease. Signal Transduct Target Ther. (2024) 9:195.
doi: 10.1038/5s41392-024-01913-1

57. Miao H, Wang YN, Yu XY, Zou L, Guo Y, Su W, et al. Lactobacillus species
ameliorate membranous nephropathy through inhibiting the aryl hydrocarbon
receptor pathway via tryptophan-produced indole metabolites. Br | Pharmacol.
(2024) 181:162-79. doi: 10.1111/bph.16219

58. Ma J, Yang Z, Jia S, Yang R. A systematic review of preclinical studies on the
taurine role during diabetic nephropathy: focused on anti-oxidative, anti-
inflammation, and anti-apoptotic effects. Toxicol Mech Methods. (2022) 32:420-30.
doi: 10.1080/15376516.2021.2021579

59. Chen WQ, Jin H, Nguyen M, Carr J, Lee YJ, Hsu CC, et al. Role of taurine in
regulation of intracellular calcium level and neuroprotective function in cultured
neurons. ] Neurosci Res. (2001) 66:612-9. doi: 10.1002/jnr.10027

60. Li C, Gao L, Lv C, Li Z, Fan S, Liu X, et al. Active role of amino acid metabolism
in early diagnosis and treatment of diabetic kidney disease. Front Nutr. (2023)
10:1239838. doi: 10.3389/fnut.2023.1239838

61. Zhang W, Zheng J, Zhang J, Li N, Yang X, Fang ZZ, et al. Associations of serum
amino acids related to urea cycle with risk of chronic kidney disease in Chinese with
type 2 diabetes. Front Endocrinol (Lausanne). (2023) 14:1117308. doi: 10.3389/
fendo.2023.1117308

62. Liu X, Li Q, Zhang L, He Y, Tan S, Chen X, et al. Impacts of amino acid
supplementation on renal function and nutritional parameters in patients with renal
insufficiency: bibliometric analysis and meta-analysis. Front Nutr. (2025) 12:1594507.
doi: 10.3389/fnut.2025.1594507

63. Kim MG, Kim SC, Ko YS, Lee HY, Jo SK, Cho W. The role of M2 macrophages
in the progression of chronic kidney disease following acute kidney injury. PLoS One.
(2015) 10:e0143961. doi: 10.1371/journal.pone.0143961

64. Liu L, Kou P, Zeng Q, Pei G, Li Y, Liang H, et al. CD4+ T Lymphocytes,
especially Th2 cells, contribute to the progress of renal fibrosis. Am ] Nephrol. (2012)
36:386-96. doi: 10.1159/000343283

65. Li HD, You YK, Shao BY, Wu WF, Wang YF, Guo JB, et al. Roles and crosstalks
of macrophages in diabetic nephropathy. Front Immunol. (2022) 13:1015142.
doi: 10.3389/fimmu.2022.1015142

Frontiers in Immunology

145

10.3389/fimmu.2025.1628962

66. He Y, Zheng W, Huo Y, Sa L, Zhang H, He G, et al. PLEKHA4 promotes
glioblastoma progression through apoptosis inhibition, tumor cell migration, and
macrophage infiltration. Immunobiology. (2023) 228:152746. doi: 10.1016/
j.imbi0.2023.152746

67. Lee B, Ines I, Je ], Park EJ, Seong H, Jo MG, et al. Effect of renal ischemia
reperfusion on brain neuroinflammation. Biomedicines. (2022) 10:2993. doi: 10.3390/
biomedicines10112993

68. Gewin LS. Transforming growth factor- in the acute kidney injury to chronic
kidney disease transition. Nephron. (2019) 143:154-7. doi: 10.1159/000500093

69. Huang J, Liu Y, Shi M, Zhang X, Zhong Y, Guo S, et al. Empagliflozin
attenuating renal interstitial fibrosis in diabetic kidney disease by inhibiting
lymphangiogenesis and lymphatic endothelial-to-mesenchymal transition via the
VEGF-C/VEGFR3 pathway. BioMed Pharmacother. (2024) 180:117589.
doi: 10.1016/j.biopha.2024.117589

70. Jiang XS, Liu T, Xia YF, Gan H, Ren W, Du XG. Activation of the Nrf2/ARE
signaling pathway ameliorates hyperlipidemia-induced renal tubular epithelial cell
injury by inhibiting mtROS-mediated NLRP3 inflammasome activation. Front
Immunol. (2024) 15:1342350. doi: 10.3389/fimmu.2024.1342350

71. Wang YN, Miao H, Yu XY, Guo Y, Su W, Liu F, et al. Oxidative stress and
inflammation are mediated via aryl hydrocarbon receptor signalling in idiopathic
membranous nephropathy. Free Radic Biol Med. (2023) 207:89-106. doi: 10.1016/
j.freeradbiomed.2023.07.014

72. Li ], Guo Q, Wei X, Zhu Y, Luo M, Luo P. Association of serum Nrf2 protein
levels with disease activity and renal impairment in lupus nephritis. Front Immunol.
(2024) 15:1304167. doi: 10.3389/fimmu.2024.1304167

73. Zhang ], Luan ZL, Huo XK, Zhang M, Morisseau C, Sun CP, et al. Direct
targeting of sEH with alisol B alleviated the apoptosis, inflammation, and oxidative
stress in cisplatin-induced acute kidney injury. Int ] Biol Sci. (2023) 19:294-310.
doi: 10.7150/ijbs.78097

74. Li XJ, Shan QY, Wu X, Miao H, Zhao YY. Gut microbiota regulates oxidative
stress and inflammation: a double-edged sword in renal fibrosis. Cell Mol Life Sci.
(2024) 81:480. doi: 10.1007/s00018-024-05532-5

75. Zhao BR, Hu XR, Wang WD, Zhou Y. Cardiorenal syndrome: clinical diagnosis,
molecular mechanisms and therapeutic strategies. Acta Pharmacol Sin. (2025) 46:1539—
55. doi: 10.1038/s41401-025-01476-z

76. Wall SM. Regulation of blood pressure and salt balance by pendrin-positive
intercalated cells: donald seldin lecture 2020. Hypertension. (2022) 79:706-16.
doi: 10.1161/HYPERTENSIONAHA.121.16492

77. Wu ST, Feng Y, Song R, Qi Y, Li L, Lu D, et al. Foxpl is required for renal
intercalated cell differentiation and acid-base regulation. ] Am Soc Nephrol. (2024)
35:533-48. doi: 10.1681/ASN.0000000000000319

78. Baudoux T, Jadot I, Decléves AE, Antoine MH, Colet JM, Botton O, et al.
Experimental aristolochic acid nephropathy: A relevant model to study AKI-to-CKD
transition. Front Med (Lausanne). (2022) 9:822870. doi: 10.3389/fmed.2022.822870

79. Rao R, Bhalla V, Pastor-Soler NM. Intercalated cells of the kidney collecting duct
in kidney physiology. Semin Nephrol. (2019) 39:353-67. doi: 10.1016/
j.semnephrol.2019.04.005

80. LiY, Wang Z, Xu H, Hong Y, Shi M, Hu B, et al. Targeting the transmembrane
cytokine co-receptor neuropilin-1 in distal tubules improves renal injury and fibrosis.
Nat Commun. (2024) 15:5731. doi: 10.1038/s41467-024-50121-6

81. Vial R, Poitevin S, McKay N, Burtey S, Cerini C. Tryptophan metabolites
regulate neuropentraxin 1 expression in endothelial cells. Int ] Mol Sci. (2022) 23:2369.
doi: 10.3390/ijms23042369

82. Vijaya Padma V, Kalai Selvi P, Sravani S. Protective effect of ellagic acid
against TCDD-induced renal oxidative stress: modulation of CYP1A1 activity and
antioxidant defense mechanisms. Mol Biol Rep. (2014) 41:4223-32. doi: 10.1007/
s11033-014-3292-5

83. LiuK, Li QZ, Delgado-Vega AM, et al. Kallikrein genes are associated with lupus
and glomerular basement membrane-specific antibody-induced nephritis in mice and
humans. J Clin Invest. (2009) 119:911-23. doi: 10.1172/JCI36728

frontiersin.org


https://doi.org/10.3389/fimmu.2019.00784
https://doi.org/10.7150/ijbs.96233
https://doi.org/10.1038/s41401-023-01148-w
https://doi.org/10.3389/fmed.2023.1213191
https://doi.org/10.1038/s41581-020-00343-w
https://doi.org/10.1038/s41581-020-00343-w
https://doi.org/10.1016/j.nephro.2016.02.009
https://doi.org/10.1152/ajprenal.00017.2010
https://doi.org/10.3389/fphys.2020.00794
https://doi.org/10.1186/s41232-017-0048-3
https://doi.org/10.1038/s41392-024-01913-1
https://doi.org/10.1111/bph.16219
https://doi.org/10.1080/15376516.2021.2021579
https://doi.org/10.1002/jnr.10027
https://doi.org/10.3389/fnut.2023.1239838
https://doi.org/10.3389/fendo.2023.1117308
https://doi.org/10.3389/fendo.2023.1117308
https://doi.org/10.3389/fnut.2025.1594507
https://doi.org/10.1371/journal.pone.0143961
https://doi.org/10.1159/000343283
https://doi.org/10.3389/fimmu.2022.1015142
https://doi.org/10.1016/j.imbio.2023.152746
https://doi.org/10.1016/j.imbio.2023.152746
https://doi.org/10.3390/biomedicines10112993
https://doi.org/10.3390/biomedicines10112993
https://doi.org/10.1159/000500093
https://doi.org/10.1016/j.biopha.2024.117589
https://doi.org/10.3389/fimmu.2024.1342350
https://doi.org/10.1016/j.freeradbiomed.2023.07.014
https://doi.org/10.1016/j.freeradbiomed.2023.07.014
https://doi.org/10.3389/fimmu.2024.1304167
https://doi.org/10.7150/ijbs.78097
https://doi.org/10.1007/s00018-024-05532-5
https://doi.org/10.1038/s41401-025-01476-z
https://doi.org/10.1161/HYPERTENSIONAHA.121.16492
https://doi.org/10.1681/ASN.0000000000000319
https://doi.org/10.3389/fmed.2022.822870
https://doi.org/10.1016/j.semnephrol.2019.04.005
https://doi.org/10.1016/j.semnephrol.2019.04.005
https://doi.org/10.1038/s41467-024-50121-6
https://doi.org/10.3390/ijms23042369
https://doi.org/10.1007/s11033-014-3292-5
https://doi.org/10.1007/s11033-014-3292-5
https://doi.org/10.1172/JCI36728
https://doi.org/10.3389/fimmu.2025.1628962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

:' frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

Yejun Tan,
Hong Kong Polytechnic University,
Hong Kong SAR, China

Jinwei Li,

Sichuan University, China

Zoya Serebrovska,

Institute of Gerontology (NAN Ukraine),
Ukraine

Riken Chen
chenriken@126.com

Weimin Yao
490296443@qg.com

"These authors have contributed equally to
this work

05 March 2025
06 October 2025
27 October 2025

Ye W, Yang Y, Chen F, Lin X, Wang Y, Du L,
Pan J, Liao W, Chen B, Chen R and Yao W
(2025) Decoding the hypoxia-exosome-
immune triad in OSA: PRCP/UCHL1/BTG2-
driven metabolic dysregulation revealed by
interpretable machine learning.

Front. Immunol. 16:1587522.

doi: 10.3389/fimmu.2025.1587522

© 2025 Ye, Yang, Chen, Lin, Wang, Du, Pan,
Liao, Chen, Chen and Yao. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

Original Research
27 October 2025
10.3389/fimmu.2025.1587522

Decoding the hypoxia-exosome-
immune triad in OSA: PRCP/
UCHL1/BTG2-driven metabolic
dysreqgulation revealed by
interpretable machine learning

Weilong Ye', Yitian Yang', Feiju Chen', Xiaoxi Lin, Yunan Wang,
Lianfang Du, Jingjing Pan, Weifeng Liao, Bainian Chen,
Riken Chen* and Weimin Yao*

The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China

Background: Obstructive sleep apnea (OSA) is a prevalent disorder characterized
by significant metabolic and immune dysregulation. This study aims to uncover
exosome-related biomarkers implicated in immune-metabolic disturbances in
OSA and explore their potential as diagnostic and therapeutic targets.
Methods: Transcriptomic data from two GEO datasets (GSE135917 and GSE38792)
were integrated and analyzed using differential expression analysis via the limma
package. Key biomarkers were identified using feature selection techniques
including LASSO and Random Forest. Machine learning models, specifically
XGBoost, were trained to evaluate biomarker performance, with model accuracy
assessed by ROC curve analysis and AUC values. Immune cell infiltration was
evaluated using single-sample Gene Set Enrichment Analysis (ssGSEA). Drug
enrichment predictions were made through the Drug Signatures Database
(DSigDB). Vivo and Vitro Experimental Validation on Multiple Independent cohorts.
Results: Three exosome-related biomarkers—PRCP, UCHL1, and BTG2—were
identified as central to OSA’s immune-metabolic dysregulation. XGBoost
modeling demonstrated robust predictive power (AUC = 0.968). Immune
analysis revealed significant correlations between gene expression and
immune cell subsets, particularly CD56 bright natural killer cells and Memory B
cells. Drug enrichment analysis identified potential therapeutic compounds,
including Pentaphenate and Delphinidin, which target these biomarkers. OSA is
associated with a reproducible transcriptional signature characterized by
increased PRCP and UCHL1 expression and decreased BTG2 expression.
Conclusions: This study identifies PRCP, UCHL1, and BTG2 as key exosome-
related biomarkers in OSA that regulate immune-metabolic disruption. By
integrating transcriptomic data, machine learning, and immune analysis, we
uncover an “exosome-immune” axis in OSA pathophysiology.

exosome signaling, obstructive sleep apnea (OSA), immune infiltration, machine
learning, biomarkers
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GRAPHICAL ABSTRACT

1 Introduction

An estimated 1 billion people worldwide are affected by OSA
(1), and its prevalence continues to rise (2), primarily due to the
increasing global rates of obesity (3-5). OSA is characterized by
repeated partial or complete obstruction (collapse) of the upper
airway during sleep, leading to hypercapnia, intermittent hypoxia
(IH), and a reduction in blood oxygen saturation (2). The clinical
diagnostic standard for OSA relies on polysomnography (PSG) (6).
However, the high cost and time-intensive nature of this diagnostic
method limit its application in the early screening and long-term
treatment monitoring of OSA. As a result, identifying reliable
biomarkers has become a research focus in the field of sleep
medicine over the past decade (7). Pathophysiological studies
suggest that IH, a core pathological feature of OSA, activates the
sympathetic nervous system, induces metabolic disturbances, and
promotes systemic inflammation and oxidative stress (8). Notably,
IH exposure significantly upregulates the transcriptional activity of
hypoxia-inducible factor-lo. (HIF-1at), which then regulates a
variety of downstream signaling pathways (9, 10). In terms of
immune regulation, OSA patients exhibit characteristic
proliferation of natural killer (NK) cells and natural killer T
(NKT) cells (11). Further analysis shows that in mild to moderate
cases, the proportion of CD4+ effector T cell subsets is abnormally
elevated, while the numbers of effector memory T cells (TEM) and
central memory T cells (TCM) are significantly reduced (12). Severe
OSA cases display also pronounced immune dysregulation: the
ratio of T helper (Th) cells to cytotoxic T lymphocytes (CTLs)
decreases, while the number of B lymphocytes, which mediate
humoral immunity, is significantly reduced (13). These findings
suggest that the pathological progression of OSA involves complex
immune cell dynamic imbalances, with characteristic immune
phenotype changes observed at different stages of the disease.
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This provides potential targets for the development of novel
diagnostic and therapeutic strategies.

Exosomes, key components of adipose-derived extracellular
vesicles, play a crucial role in systemic metabolic regulation (14).
These nanometer-sized vesicles, ranging from 30 to 150 nm in
diameter, are rich in proteins and nucleic acids (including mRNA,
miRNA, and IncRNA) derived from their parent cells (15). By
mediating intercellular communication, metabolic waste clearance,
and the maintenance of microenvironment homeostasis, exosomes
significantly contribute to metabolic processes (16). Notably,
exosome-carried metabolic regulatory factors can specifically bind
to lipid transport proteins, modulating inflammatory cascades,
immune response networks, and programmed cell death
pathways (17, 18). This ultimately leads to pathological changes
associated with metabolic disorders (19). Based on these functions,
this study proposes an innovative hypothesis: intermittent hypoxia
may alter the exosome secretion profile of adipose tissue, which in
turn changes immune cell infiltration patterns, ultimately driving
the pathological processes of OSA.

Current research has yet to fully elucidate the molecular
mechanisms by which adipose-derived exosomes interact with
metabolic regulation. Experimental evidence has shown that
adipose tissue macrophages (ATMs) deliver miR-155 to
adipocytes via exosomes, and this microRNA plays a significant
role in improving obesity-related metabolic abnormalities by
inhibiting the expression of peroxisome proliferator-activated
receptor ¥ (PPARY) (20). On the other hand, exosome-derived
miR-34a from adipocytes has been shown to suppress M2
macrophage polarization, exacerbating the chronic inflammatory
state induced by obesity (17). These findings suggest a bidirectional
regulatory network between adipocytes and immune cells mediated
by exosomes, offering a new perspective on the mechanistic study of
metabolic diseases.
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Building on this background, this study aims to adopt a
comprehensive bioinformatics approach. First, it will screen OSA-
specific exosome biomarkers and establish a machine learning-assisted
diagnostic model. Second, the study will analyze the immune
microenvironment of adipose tissue using the ssGSEA (single-sample
Gene Set Enrichment Analysis) algorithm. Finally, we conducted in
vivo and in vitro experimental validations across multiple independent
cohorts and established a theoretical framework for the “hypoxia-
exosome-immune” regulatory axis, thereby providing a solid
foundation for the development of precise therapeutic targets.

2 Materials and methods

2.1 Collection and preprocessing of OSA
transcriptomic data

The mRNA expression profiles for OSA were obtained from the
GEO database, specifically datasets GSE135917 (21) and GSE38792
(22), both generated using the GPL6244 platform (Aftymetrix
Human Gene 1.0 ST Array). In the GSE135917 dataset, the
control group included 8 samples, while the OSA group
comprised 34 samples, with total RNA extracted from
subcutaneous adipose tissue. Similarly, the GSE38792 dataset
consisted of 8 control samples and 10 OSA patient samples, with
RNA extracted from visceral adipose tissue biopsies collected
during surgery. Log transformation was applied to both datasets
to standardize expression values, followed by correction of
distribution differences across samples. The datasets were then
merged, and batch correction was performed to mitigate technical
variations. Principal component analysis (PCA) was employed to
visualize the differences between the two datasets before and after
batch correction, ensuring improved data comparability.

2.2 Differential gene expression analysis
and intersection with exosome-related
genes

After data preprocessing, differential expression analysis was
conducted using the limma package to compare gene expression
profiles between control and disease groups, aiming to investigate the
molecular mechanisms underlying sleep apnea. The normalize-
Between-Arrays() function was applied to standardize the data.
Subsequently, further analysis was performed using linear
modeling: the ImFit() function was employed to fit a generalized
linear model, make-Contrasts() was used to construct a contrast
matrix defining specific comparisons, followed by contrasts.fit() for
contrast analysis, and finally, eBayes() was applied for empirical
Bayesian adjustment to enhance the robustness and accuracy of
statistical inference. The filtering criteria included an adjusted p-
value < 0.05 and |log2FC| > 0.5 (approximately corresponding to a
1.41-fold change). This threshold was chosen based on established
practices in similar studies (23, 24), as microarray data typically reveal
subtle expression changes, with a [log2FC| > 0.5 regarded as a
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meaningful difference. The resulting differentially expressed genes
were visualized using a heatmap. Exosome-related genes were
retrieved from the GeneCards database, a publicly available
resource for human gene information (https://www.genecards.org/).
We selected genes with Relevance Score > 2 as strongly associated
genes, which accounted for more than 50 percent of the total. A
Venn diagram was then constructed to visualize the intersection
between exosome-related genes and differentially expressed genes,
highlighting those with potential relevance to the study.

2.3 Functional enrichment analysis of
EOR-DEGs

To explore the functional roles of exosome-related differentially
expressed genes (EOR-DEGs), Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
were performed using the clusterProfiler package (25). Enrichment
was considered significant when both p-values and adjusted p-values
were less than 0.05. GO analysis encompassed 3 domains: biological
processes (BP), cellular components (CC), and molecular functions
(MF). The results of these enrichment analyses were visualized using
bar-plots to highlight significant pathways and cnet-plots to illustrate
the relationships between genes and their associated terms.

2.4 Logistic regression analysis and feature
selection of EOR-DEGs

To assess the prognostic and diagnostic value of EOR-DEGs,
univariate logistic regression was first applied, with the odds ratio
(OR) and p-value used to identify genes significantly associated with
prognosis and diagnosis (p < 0.05). Genes meeting this threshold
were then subjected to feature selection using Least Absolute
Shrinkage and Selection Operator (LASSO) regression (A. min) and
Random Forest (RF) analysis (Importance > 4) (26). The overlap of
selected genes from both methods was visualized using a Venn
diagram, identifying a set of key biomarkers for further clinical and
mechanistic analysis. Subsequently, box plot was used to illustrate the
expression levels of feature genes across different groups, and
correlation plot was employed to visualize their interrelationships.

2.5 Construction and evaluation of a
diagnostic model

A nomogram was developed to visualize the relationship
between feature gene expression and disease risk, with coefficients
derived from multivariate logistic regression. The model’s
performance was evaluated using the Receiver Operating
Characteristic (ROC) curve, with the area under the curve (AUC)
indicating predictive accuracy. Calibration curves were constructed
to assess the agreement between predicted and observed outcomes,
while Decision Curve Analysis (DCA) evaluated the model’s clinical
utility by assessing net benefit at various threshold probabilities.
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2.6 XGBoost model construction

The XGBoost algorithm (27) was selected for its efficiency and
robust performance in binary classification tasks. The feature genes
were set as the predictors, with occurrence of OSA acting as
response variable. The model’s predictive performance was
evaluated using ROC curves. To minimize overfitting, 5-fold
cross-validation was performed during model validation,
alongside a reduced learning rate and limited maximum depth.

2.7 Model interpretation based on SHAP

We calculated SHAP (SHapley Additive exPlanations) (28) values
to interpret the XGBoost model. The SHAP summary plot visualized
their relative importance. Dependency plots were generated to
illustrate the relationship between gene expression levels and disease
risk. Additionally, SHAP force plots were used to analyze individual
patient predictions, offering detailed insights into the gene-specific
contributions to the probability of OSA occurrence.

2.8 Immune correlation analysis

The ssGSEA was employed to calculate immune cell infiltration
scores, which were subsequently correlated with the expression of
feature genes. Spearman’s correlation method was used to assess the
relationship between immune cell activity and gene expression, with
statistical significance determined for each correlation. The results
were visualized in a heatmap, where the strength and significance of
the correlations were clearly represented. The 28 immune cell-related
gene sets were obtained from previously published studies (29, 30).

2.9 Drug enrichment analysis

The Drug Signatures Database (DSigDB) was utilized to identify
potential therapeutic drugs by predicting protein-drug interactions.
The DSigDB online platform (https://dsigdb.tanlab.org/), a publicly
accessible database that integrates drug-associated gene expression
data, was employed to explore drug-gene relationships, mechanisms
of drug action, and opportunities for drug repurposing (31).
Candidate drugs were identified by comparing the database’s drug
gene expression signatures with disease-related gene expression
profiles. The results were visualized using Cytoscape software
(https://cytoscape.org/).

2.10 Vivo and vitro experimental validation

Human SW872 liposarcoma cells (n=6) and murine 3T3-L1
preadipocytes (n=6) were cultured under standard conditions, with
3T3-L1 cells induced to differentiate into mature adipocytes using a
commercial induction kit. Male C57BL/6] mice (8 weeks of age; n=10)
were randomly assigned to normoxia or chronic CIH exposure. This
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experiment was reviewed and approved by the Animal Welfare and
Ethics Committee under review number: TACUC-20250701-299. Cells
and mice were exposed to intermittent hypoxia (IH/CIH) with cyclic
oxygen fluctuations, while controls were maintained under normoxia.
Total RNA was extracted from cells and mouse adipose tissues,
reverse-transcribed into cDNA, and analyzed by SYBR Green-based
gRT-PCR. Gene expression was quantified using the 2/(-AACT)
method with GAPDH as the internal control, and all reactions were
performed in triplicate to ensure reliability. IHC was performed on
FFPE iWAT sections using antibodies against PRCP, BTG2, and
UCHLI, with DAB visualization, and staining was quantified as
percentage positive area using Image]. The detailed methodological
section has been added in the supplementary file. A brief overview of
the process is presented in the Graphical Abstract.

2.11 Statistical analysis

The entire analysis was conducted using R software (version
4.4.2). During data collection, the GEOmirror and idmap2 packages
facilitated data retrieval and annotation. The limma and sva packages
were utilized for dataset organization, correction, merging, and
differential expression analysis. To ensure uniform distribution of
expression values across all samples, quantile normalization was
applied using the normalize-Between-Arrays function. After merging
the datasets, the ComBat method was employed to correct for batch
effects. For visualization, box plots were generated, and the Wilcoxon
rank-sum test was applied for group comparisons. Correlation
analysis was performed using Pearson’s correlation coefficient to
assess the relationships between gene expression levels. Data are
presented as mean + SEM; qPCR was analyzed using per-sample
ACt values and reported as 2A-AACt, while THC results were
quantified as the percentage of positive area (area%) per sample
across predefined fields, with two groups compared using unpaired
two-tailed t-tests, multiple groups analyzed by one-way ANOVA with
appropriate post-hoc tests, and non-parametric alternatives applied
when assumptions of normality or homoscedasticity were not met; P
< 0.05 was considered statistically significant.

3 Results

3.1 Data integration and differential
expression analysis

PCA demonstrated that batch correction effectively mitigated
batch effects, thereby preserving the integrity of the biological signal
(Figures 1A, B). Addressing batch effects is crucial to minimize non-
biological variations that could otherwise compromise the reliability of
downstream analyses. Utilizing thresholds of p-value < 0.05 and |
log2FC| > 0.5, 245 differentially expressed genes were identified
(Figure 1C). A heatmap showcasing the top 50 upregulated or
downregulated genes, ranked by |log2FC|, provides a visual
representation of the key expression changes (Figure 1D). Using the
keyword “exosome,” 5,293 protein-coding genes were identified, of
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FIGURE 1

Data preprocessing and differential gene screening. (A) PCA plot before batch correction showed clustering by dataset origin. (B) PCA plot after
batch correction, demonstrating clustering by disease status, indicating the removal of technical variations. (C) Volcano plot of differentially
expressed genes (red dots: upregulated genes; blue dots: downregulated genes; thresholds: p-value < 0.05 and |log2FC| > 0.5), identifying 245
differentially expressed genes (DEGs). (D) Heatmap displaying the top 50 DEGs (ranked by [log2FC]|), with row-normalized expression values
(Z-score) reflecting expression patterns between OSA and control groups. (E) Venn diagram showing 46 exosome-related differentially expressed
genes (EOR-DEGs, intersection of Gene Cards exosome gene set and DEGs).

which 2,740 genes with a Relevance Score > 2 were selected for further
analysis. The Venn diagram displayed 46 EOR-DEGs (Figure 1E).

3.2 Functional enrichment analysis for
EOR-DEGs

The GO terms with the highest number of enriched genes in BP,
CC, and MF were: regulation of inflammatory response, endocytic
vesicle, and structural constituent of the cytoskeleton (Figure 2A).
In the KEGG analysis, relatively few pathways were enriched (with a
p-value < 0.05 and an adjusted p-value < 0.05 with a primary focus
on lipid metabolism and atherosclerosis pathways (Figure 2B). The
GO analysis network plot highlights the top 10 most significant
functional enrichment categories (Figure 2C). The KEGG path view
suggests that LBP, MMP9, APOB, IL6, and RAP1B are involved in
lipid metabolism and atherosclerosis (Figure 2D).

3.3 Logistic regression analysis and feature
selection of EOR-DEGs

In univariate logistic regression analysis, all 46 EOR-DEGs had
p-values less than 0.05. Among them, 20 genes had odds ratios
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(ORs) less than 1, while the remaining genes showed ORs greater
than 1 (Table 1). These 46 EOR-DEGs were further included in
LASSO analysis to address potential collinearity, resulting in the
selection of 10 genes (Figures 3A, B). Random forest analysis was
employed to determine gene importance, with genes having
importance scores greater than 4 being highlighted (Figures 3C,
D). The intersection of genes identified through LASSO and RF
analyses revealed three feature genes for model construction:
PRCP, UCHLI, and BTG2. The box plot indicated that PRCP
and UCHLI1 were highly expressed in the OSA group, while BTG2
showed lower expression (Figure 3E). Correlation analysis revealed
that UCHL1 was negatively correlated with both BTG2 and
PRCP (Figure 3F).

3.4 Construction and evaluation of a
diagnostic model

The nomogram visually represents a diagnostic model
constructed through multivariate logistic regression analysis,
leveraging the expression levels of hub genes to predict the risk of
OSA (Figure 4A). The ROC curve (Bootstrapping method)
demonstrates the model’s superior diagnostic performance, with
an AUC value exceeding that of individual genes, confirming its
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Functional and pathway enrichment of EOR-DEGs. (A) GO enrichment bar plot with significant terms (p < 0.05) including “regulation of inflammatory
response” (BP), “endocytic vesicle” (CC), and “structural constituent of cytoskeleton” (MF). (B) KEGG pathway enrichment highlighted significant
pathways such as “lipid metabolism” and “atherosclerosis”. (C) GO network diagram displaying the top 10 enriched terms, where node size
represents the number of genes and edge width indicates gene overlap. (D) KEGG pathway map (lipid metabolism) highlighting key genes (LBP,

MMP9, APOB, IL6, RAP1B).

robustness (Figures 4B, C). Model evaluation through the
calibration curve indicates that the bias-corrected curve closely
parallels the ideal curve, with only minor deviations observed in
the high-probability range (approaching 1.0) (Figure 4D).
Additionally, the Decision Curve Analysis (DCA) reveals that
employing the model for prediction and intervention provides a
higher net benefit (Figure 4E). These findings underscore the
model’s reliability and practical utility in diagnostic applications.
In the XGBoost model, the AUC value reached 0.968 (Figure 4F).
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To mitigate overfitting, 5-fold cross-validation was performed,
further validating the model’s robustness (AUC = 0.989)
(Figure 4G). Additionally, a feature importance plot was
generated to illustrate the contribution of each gene to the
model’s predictions (Figure 4H). For the XGBoost model, we set
the following hyperparameters: learning rate (eta) = 0.01, maximum
tree depth = 2, minimum child weight = 2, gamma = 0.1, subsample
= 0.8, colsample_bytree = 0.8, lambda = 1, and alpha = 0. The
objective was to use a smaller learning rate and limit model
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TABLE 1 Univariate logistic regression analysis.

Gene OR OR.95L OR.95H p-value
PRCP 986.0791 60.17411 43735.75 2.90E-05
ATP6AP2 114.3371 14.29222 1758272 8.39E-05
PDIA3 75.6924 11.11494 951.5929 0.000113
ARF4 4753213 8.308052 4284111 9.42E-05
GLBI 38.61957 7.375862 314.5474 0.000108
EXOSC3 27.94962 5.829075 190.7486 0.000158
UCHLI 27.675 6.2062 175.6567 7.80E-05
RAPIB 22.04958 4.769966 176.006 0.000579
ARPC4 15.57668 4.089505 76.78485 0.000201
TUBB4A 11.25975 3.354366 44.70034 0.000205
GCA 10.92942 3.585175 44,0934 0.000151
NSA2 8.126889 2.39504 39.09922 0.003046
SUCNRI 6.522213 2.137218 24.80007 0.002313
ALCAM 6.172922 2.180943 2161758 0.001649
TUBB1 5.6868 2.185966 17.86299 0.001091
GPLDI1 5.651804 2.053642 18.85715 0.00191
TXN 5.265804 1.945368 18.08795 0.003045
LBP 5.037635 1.938829 15.97191 0.002282
GPC4 4393301 1.675899 13.27509 0.004583
HLA-DRB5 3279293 1.375657 10.54385 0.019915
LYZ 2.892675 1.350791 6.975785 0.01005
CHI3LI 2.632013 1.409485 5399355 0.004322
NPR3 2.523628 1203417 578103 0.018065
MMP9 2.396216 1.199165 5.348592 0.020294
HBA2 2236278 1.21276 44752 0.014438
HBB 2.092857 1.330592 3531524 0.002651
ITLN1 0.62736 0378592 0.949145 0.039053
C4B 0.477884 0214379 0.907881 0.036145
L6 0.477017 0.278475 0.779596 0.004177
SLPI 0.432136 0.19901 0.824733 0.017656
SLC2A3 0.392045 0.206861 0.702392 0.002305
KLF4 0365831 0.186386 0.678436 0.00198
SOCS3 0319353 0.147249 0.636311 0.001906
ZFP36 0.31906 0.148147 0.64201 0.001953
OGN 0.303189 0.124932 0.647185 0.003842
AREG 0.292776 0.124983 0.604413 0.001861
ATF3 0.283908 0.127676 0.582859 0.000993
MYC 0.270612 0.108965 0.590503 0.002069

(Continued)
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TABLE 1 Continued

Gene (O] OR.95L OR.95H p-value
WTI1 0259777 0.092083 0.626412 0.005114
DPP4 0.245084 0.073703 0.637639 0.009457
KRT19 0215046 0.059646 0.574421 0.007162
APOB 0.158699 0.050603 0423645 0.000567

AZGP1 0.138617 0.036829 0396253 0.000937
SIK1 0.099512 0.026518 0.308981 0.000188
BTG2 0.068947 0.014537 0.254142 0.000202
KLF6 0.050211 0.009535 0202541 9.92E-05

complexity to prevent overfitting when analyzing relatively small
sample sizes.

3.5 Interpreting the machine learning
model with SHAP analysis

The SHAP Summary Plot illustrates the contributions of the 3
hub genes (PRCP, UCHLI, and BTG2) to the overall model
prediction (Figure 5A). Among them, PRCP shows the highest
average SHAP value (0.334), indicating its strongest influence on
the model’s predictions, while UCHL1 and BTG2 have relatively
smaller contributions. The Dependence Plot visualizes the
relationship between the expression levels of the feature genes
and their corresponding SHAP values. For instance, the SHAP
value for BTG2 peaks around an expression level of 8.5, decreasing
as the expression level increases, suggesting a nonlinear relationship
that may reflect BTG2’s complex regulatory role in the model’s
output (Figure 5B). The figure also shows the relationships for
PRCP and UCHLI (Figures 5C, D). According to the SHAP Force
Plot, in one control sample, the hub genes exhibit a negative
contribution to the occurrence of OSA (Figure 5E). These results
suggest that BTG2 might act as a protective gene, with low
expression increasing risk, while UCHLI and PRCP may serve as
risk genes, with higher expression correlating with an increased risk
of OSA.

3.6 Correlation analysis of immunity

The ssGSEA analysis was employed to calculate the immune cell
infiltration scores, which were subsequently correlated with the
expression levels of the hub genes. UCHL1 and PRCP demonstrated
a strong positive correlation with CD56 bright natural killer cells
and a significant negative correlation with Memory B cells. In
contrast, BTG2 exhibited an inverse correlation pattern. A
heatmap was generated to visualize the correlations between the
other immune cells and the feature genes, providing a
comprehensive overview of the immune landscape associated with
these feature genes (Figure 6A).
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FIGURE 3

Feature selection was performed using LASSO (10-fold CV, lambda. min) and random forest (optimal trees, Mean Decrease Gini > 4). (A) coefficient
path (lasso). (B) cross-validation error (lasso). (C) error rate curve (RF). (D) variable importance ranking (RF). (E) Boxplot showing the expression
differences of feature genes (PRCP, UCHLL, BTG2) between the OSA group and the control group (*p<0.05, **p<0.01, ***p<0.001). (F) Heatmap of

feature gene expression correlations (Pearson correlation coefficient).

3.7 Drug enrichment analysis

Using the gene IDs PRCP, UCHLI, and BTG2 as input in an
online platform, 69 potential drugs were identified (p-value < 0.05).
Among these, compounds such as Pentaphenate and Delphinidin
exhibited significant associations with specific genes like PRCP and
BTG2. Functional enrichment analysis highlighted their fold
enrichment, z-scores, and adjusted p-values, suggesting that these
compounds may exert critical biological effects on the related genes.
Moreover, they could play regulatory roles in specific biological
processes, providing insights into potential therapeutic applications.
The network diagram illustrates the connections between identified
drugs and their corresponding feature genes (Figure 6B). Each node
represents a drug or a gene, with a maximum of 20 drugs displayed

per gene.

3.8 Vivo and vitro experimental validation
on multiple independent cohorts

To determine whether OSA induces transcriptional alterations
in stress and metabolism-related genes, we performed qRT-PCR in
multiple independent cohorts. We focused on PRCP, UCHLLI, and
BTG2, given their previously reported roles in proteolytic
regulation, protein homeostasis, and cell cycle control. As shown
in Figures 7A-C (Differentiated 3T3-L1 murine adipocytes), PRCP
and UCHL1 mRNA levels were significantly elevated in the OSA
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group compared with controls, whereas BTG2 mRNA expression
was markedly reduced. These findings were consistently reproduced
in independent experimental sets (Figures 7D-F, SW872 human
adipocytes; Figures 7G-I, eWAT), where PRCP upregulation was
highly significant (Figures 7D, G), UCHLI expression was robustly
increased (Figures 7E, H), and BTG2 levels were consistently
downregulated across all comparisons (Figures 7F, I). Notably,
the concordant results across independent replicates underscore
the stability and reproducibility of these transcriptional changes.
Collectively, these data indicate that OSA is associated with a
reproducible transcriptional signature characterized by increased
PRCP and UCHLLI expression and decreased BTG2 expression.
IHC: Representative micrographs (Figures 7Ja-f) and semi-
quantitative analysis of DAB-positive area (%) (Figures 7Jg-i)
revealed group-dependent differences (n = 3 per group).
Compared with the control (CON) group, OSA samples exhibited
significantly higher UCHL1 and PRCP expression and markedly
lower BTG2 levels.

4 Discussion

This study elucidates the potential pathogenesis of OSA
through adipose tissue transcriptomics, revealing PRCP, UCHLI,
and BTG2 as exosome-associated hub genes that orchestrate
metabolic-immune dysregulation. By synergizing cross-platform
data integration (GSE135917/GSE38792), machine learning-
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Feature gene-based OSA diagnostic model. (A) The nomogram integrates the expression levels of PRCP, UCHLL, and BTG2 to predict OSA risk, with
the total score corresponding to the right-side risk axis. (B) ROC curve showing the performance of individual genes in predicting OSA. (C) ROC

curve showing the performance of the combined diagnostic model base
The dashed line represents the ideal fit, and the solid line represents the

d on feature genes. (D) Calibration curve with Bootstrap = 1000 iterations.
model's bias-corrected prediction. (E) DCA showing the net clinical benefit

of the model when the threshold probability exceeds 10%. XGBoost Model Validation: (F) ROC curve. (G) 5-fold cross-validation. (H) Feature

importance plot.

driven biomarker discovery (XGBoost AUC = 0.968), and single-
sample immune deconvolution, we reveal an unprecedented
“exosome-immune” axis in OSA pathophysiology. Our robust
feature selection pipeline—incorporating LASSO regularization
(A. min) and random forest permutation importance—
convergently identified PRCP (prolyl carboxypeptidase), UCHLI
(Ubiquitin C-Terminal Hydrolase L1), and BTG2 (B-cell
translocation gene 2) as key non-redundant classifiers, validated
through SHAP interpretability to dissect nonlinear gene-disease
interactions (SHAP value for PRCP: 0.334). These results not only
demonstrate the diagnostic potential of these biomarkers but also
highlight the utility of interpretable machine learning techniques in
elucidating complex biological relationships (32).
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Prolyl carboxypeptidase (PRCP), a serine protease, exerts
regulatory effects across multiple endocrine axes including the
renin-angiotensin system (RAS), kallikrein-kinin system (KKS),
and pro-opiomelanocortin (POMC) (33). Study had
demonstrated that PRCP plays a crucial role in the onset and
progression of obesity, regulating the balance between energy intake
and expenditure through an o-MSHI1-mediated mechanism (34).
The coexistence of obesity and OSA is commonly observed, with a
bidirectional relationship between the two conditions (35). UCHLI,
a key member of the deubiquitinating enzyme family, influences cell
proliferation, differentiation, and damage by modulating both
ubiquitination and non-ubiquitination pathways (36, 37).
Notably, HIF-1o. has been identified as a potential target
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interacting with UCHLI1, and under hypoxic conditions, UCHLI
may regulate the nuclear translocation of HIF-1a, influencing its
role in cellular responses to low oxygen levels (38). In OSA patients,
IH activates HIF-1o, which in turn triggers systemic inflammation
and disrupts hepatic lipid metabolism (39-41). BTG2, a member of
the ERBB2 (BTG/TOB) family, functions as a B-cell transducer and
regulator (42). Research has shown that Btg2 expression is elevated
in the subcutaneous adipose tissue of obese mice on a high-fat diet,
highlighting its involvement in lipid metabolism during obesity and
metabolic disorders (43). Specifically, Btg2 reduces interleukin-6
expression by inhibiting the Stat3 signaling pathway, which plays a
pivotal role in adipocyte differentiation (44, 45).

Moreover, our immune correlation analysis using ssGSEA
revealed significant associations between the expression of the
hub genes and various immune cell populations. Specifically,
UCHL1 and PRCP showed strong positive correlations with
CD56 bright natural killer cells and significant negative
correlations with Memory B cells, whereas BTG2 exhibited an
opposing pattern. During the differentiation process of monocytes
into M1 macrophages, a significant upregulation of PRCP activity is
observed (46). Studies have shown that human blood-derived
alveolar macrophages exhibit higher PRCP activity (47, 48).
Given that M1 macrophages are defined as pro-inflammatory
macrophages, this suggests that PRCP plays a key role in the
inflammatory response mechanism (46). Additionally, PRCP is
also highly expressed in human neutrophils (49). UCHLIL
primarily promotes the polarization of M1 macrophages by
regulating the PI3K/AKT signaling pathway (50). It can also
modulate the inflammatory response in lipopolysaccharide (LPS)-
activated macrophages through MAPK and NF-xB signaling
pathways (51). BTG2 mainly by controlling cell proliferation and
activation processes to maintain T cell quiescence (42). Moreover,
the protein complex formed by BTG2 and PRMT1 can effectively
counteract the proliferation activity of pre-B cells, thus promoting
the development of B cells (52). These findings provide solid
evidence supporting the theory that exosome-related genes are
involved in immune regulation, fully revealing their key positions
and mechanisms of action within the immune regulation network.

In addition, drug enrichment analysis using the DSigDB
platform identified several candidate compounds, such as
Pentaphenate and Delphinidin, that significantly interact with the
hub genes. Previous study had shown that PRCP, through its
involvement in the pro-opiomelanocortin (POMC) system, makes
it a highly promising target in the treatment of obesity and related
diseases (34, 53). In vitro and in vivo experiments indicate that
myricetin may influence the lipid metabolic process in the adipose
tissue of obese mice by regulating the expression levels of miR-222
and its target gene BTG2 (54). These potential therapeutic agents
may modulate exosome-mediated signaling and immune responses,
offering promising avenues for targeted intervention in OSA.

While our machine learning approaches provides novel
insights, limitations warrant consideration. First, the analyses
were based exclusively on adipose tissue transcriptomic data,
which may not fully reflect the systemic pathophysiology of OSA
involving airway, liver, and circulating immune cells. Second, the
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relatively small sample size (n=60) may limit the generalizability of
the results, underscoring the need for validation in larger, multi-
center cohorts. Finally, the DSigDB-based drug predictions require
experimental confirmation of target engagement and efficacy.

Based on previous research, we have developed an innovative
hypothesis: the “Exosome-Immune Axis in the Pathogenesis of
OSA.” During the progression of OSA, IH likely activates the HIF-
low signaling pathway in adipose tissue, leading to the release of
pathological exosomes. These exosomes carry key regulatory
molecules such as PRCP, UCHLI, and BTG2, initiating a vicious
cycle of “hypoxia-exosome-immune metabolic disorder.” In terms
of specific mechanisms, PRCP in the exosomes may enhance the
differentiation of M1 macrophages and disrupt the normal
metabolism of a-MSH, thereby triggering a systemic
inflammatory response. UCHL1 may regulate the nuclear
translocation of HIF-1o. and activate the PI3K/AKT signaling
pathway, further exacerbating M1 macrophage polarization and
suppressing NK cell activity. BTG2 primarily affects lipid
metabolism via the STAT3 signaling pathway and, through the
BTG2-PRMT1 protein complex, promotes the differentiation and
maturation of B cells. This model comprehensively integrates
interactions involving “hypoxia-exosome”-mediated signaling,
immune cell functional remodeling, and metabolic disruption,
offering a promising new research direction for a deeper
understanding of the systemic pathological mechanisms of OSA.
Finally, the proposed “Hypoxia-Exosome-Immune Axis” represents
a hypothesis derived from bioinformatics associations rather than
demonstrated causal relationships, and its mechanistic details await
functional validation.

In summary, this study is the first to identify PRCP, UCHLI,
and BTG2 as exosome-based biomarkers associated with the
diagnosis of OSA. These biomarkers are closely linked to
immune-metabolic imbalance in the body. The findings not only
uncover key molecular nodes involved in immune-metabolic
disruption in the pathogenesis of OSA but also provide potential
theoretical support and direction for the development of targeted
therapeutic strategies based on the OSA exosome-immune axis.

5 Conclusion

This study identifies PRCP, UCHLI, and BTG2 as key exosome-
related biomarkers in OSA that contribute to immune-metabolic
dysregulation. By integrating transcriptomic data, machine
learning, immune profiling, and in vivo and in vitro validations
across multiple independent cohorts, we reveal an “exosome-
immune” axis underlying OSA pathophysiology.
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